ScheduleDAGRRList.cpp revision e32981048244ecfa67d0bdc211af1bac2020a555
1//===----- ScheduleDAGRRList.cpp - Reg pressure reduction list scheduler --===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements bottom-up and top-down register pressure reduction list
11// schedulers, using standard algorithms.  The basic approach uses a priority
12// queue of available nodes to schedule.  One at a time, nodes are taken from
13// the priority queue (thus in priority order), checked for legality to
14// schedule, and emitted if legal.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "pre-RA-sched"
19#include "ScheduleDAGSDNodes.h"
20#include "llvm/InlineAsm.h"
21#include "llvm/CodeGen/SchedulerRegistry.h"
22#include "llvm/CodeGen/SelectionDAGISel.h"
23#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
24#include "llvm/Target/TargetRegisterInfo.h"
25#include "llvm/Target/TargetData.h"
26#include "llvm/Target/TargetMachine.h"
27#include "llvm/Target/TargetInstrInfo.h"
28#include "llvm/Target/TargetLowering.h"
29#include "llvm/ADT/SmallSet.h"
30#include "llvm/ADT/Statistic.h"
31#include "llvm/ADT/STLExtras.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/Support/ErrorHandling.h"
34#include "llvm/Support/raw_ostream.h"
35#include <climits>
36using namespace llvm;
37
38STATISTIC(NumBacktracks, "Number of times scheduler backtracked");
39STATISTIC(NumUnfolds,    "Number of nodes unfolded");
40STATISTIC(NumDups,       "Number of duplicated nodes");
41STATISTIC(NumPRCopies,   "Number of physical register copies");
42
43static RegisterScheduler
44  burrListDAGScheduler("list-burr",
45                       "Bottom-up register reduction list scheduling",
46                       createBURRListDAGScheduler);
47static RegisterScheduler
48  sourceListDAGScheduler("source",
49                         "Similar to list-burr but schedules in source "
50                         "order when possible",
51                         createSourceListDAGScheduler);
52
53static RegisterScheduler
54  hybridListDAGScheduler("list-hybrid",
55                         "Bottom-up register pressure aware list scheduling "
56                         "which tries to balance latency and register pressure",
57                         createHybridListDAGScheduler);
58
59static RegisterScheduler
60  ILPListDAGScheduler("list-ilp",
61                      "Bottom-up register pressure aware list scheduling "
62                      "which tries to balance ILP and register pressure",
63                      createILPListDAGScheduler);
64
65static cl::opt<bool> DisableSchedCycles(
66  "disable-sched-cycles", cl::Hidden, cl::init(false),
67  cl::desc("Disable cycle-level precision during preRA scheduling"));
68
69// Temporary sched=list-ilp flags until the heuristics are robust.
70// Some options are also available under sched=list-hybrid.
71static cl::opt<bool> DisableSchedRegPressure(
72  "disable-sched-reg-pressure", cl::Hidden, cl::init(false),
73  cl::desc("Disable regpressure priority in sched=list-ilp"));
74static cl::opt<bool> DisableSchedLiveUses(
75  "disable-sched-live-uses", cl::Hidden, cl::init(true),
76  cl::desc("Disable live use priority in sched=list-ilp"));
77static cl::opt<bool> DisableSchedVRegCycle(
78  "disable-sched-vrcycle", cl::Hidden, cl::init(false),
79  cl::desc("Disable virtual register cycle interference checks"));
80static cl::opt<bool> DisableSchedPhysRegJoin(
81  "disable-sched-physreg-join", cl::Hidden, cl::init(false),
82  cl::desc("Disable physreg def-use affinity"));
83static cl::opt<bool> DisableSchedStalls(
84  "disable-sched-stalls", cl::Hidden, cl::init(true),
85  cl::desc("Disable no-stall priority in sched=list-ilp"));
86static cl::opt<bool> DisableSchedCriticalPath(
87  "disable-sched-critical-path", cl::Hidden, cl::init(false),
88  cl::desc("Disable critical path priority in sched=list-ilp"));
89static cl::opt<bool> DisableSchedHeight(
90  "disable-sched-height", cl::Hidden, cl::init(false),
91  cl::desc("Disable scheduled-height priority in sched=list-ilp"));
92static cl::opt<bool> Disable2AddrHack(
93  "disable-2addr-hack", cl::Hidden, cl::init(true),
94  cl::desc("Disable scheduler's two-address hack"));
95
96static cl::opt<int> MaxReorderWindow(
97  "max-sched-reorder", cl::Hidden, cl::init(6),
98  cl::desc("Number of instructions to allow ahead of the critical path "
99           "in sched=list-ilp"));
100
101static cl::opt<unsigned> AvgIPC(
102  "sched-avg-ipc", cl::Hidden, cl::init(1),
103  cl::desc("Average inst/cycle whan no target itinerary exists."));
104
105namespace {
106//===----------------------------------------------------------------------===//
107/// ScheduleDAGRRList - The actual register reduction list scheduler
108/// implementation.  This supports both top-down and bottom-up scheduling.
109///
110class ScheduleDAGRRList : public ScheduleDAGSDNodes {
111private:
112  /// NeedLatency - True if the scheduler will make use of latency information.
113  ///
114  bool NeedLatency;
115
116  /// AvailableQueue - The priority queue to use for the available SUnits.
117  SchedulingPriorityQueue *AvailableQueue;
118
119  /// PendingQueue - This contains all of the instructions whose operands have
120  /// been issued, but their results are not ready yet (due to the latency of
121  /// the operation).  Once the operands becomes available, the instruction is
122  /// added to the AvailableQueue.
123  std::vector<SUnit*> PendingQueue;
124
125  /// HazardRec - The hazard recognizer to use.
126  ScheduleHazardRecognizer *HazardRec;
127
128  /// CurCycle - The current scheduler state corresponds to this cycle.
129  unsigned CurCycle;
130
131  /// MinAvailableCycle - Cycle of the soonest available instruction.
132  unsigned MinAvailableCycle;
133
134  /// IssueCount - Count instructions issued in this cycle
135  /// Currently valid only for bottom-up scheduling.
136  unsigned IssueCount;
137
138  /// LiveRegDefs - A set of physical registers and their definition
139  /// that are "live". These nodes must be scheduled before any other nodes that
140  /// modifies the registers can be scheduled.
141  unsigned NumLiveRegs;
142  std::vector<SUnit*> LiveRegDefs;
143  std::vector<SUnit*> LiveRegGens;
144
145  /// Topo - A topological ordering for SUnits which permits fast IsReachable
146  /// and similar queries.
147  ScheduleDAGTopologicalSort Topo;
148
149  // Hack to keep track of the inverse of FindCallSeqStart without more crazy
150  // DAG crawling.
151  DenseMap<SUnit*, SUnit*> CallSeqEndForStart;
152
153public:
154  ScheduleDAGRRList(MachineFunction &mf, bool needlatency,
155                    SchedulingPriorityQueue *availqueue,
156                    CodeGenOpt::Level OptLevel)
157    : ScheduleDAGSDNodes(mf),
158      NeedLatency(needlatency), AvailableQueue(availqueue), CurCycle(0),
159      Topo(SUnits) {
160
161    const TargetMachine &tm = mf.getTarget();
162    if (DisableSchedCycles || !NeedLatency)
163      HazardRec = new ScheduleHazardRecognizer();
164    else
165      HazardRec = tm.getInstrInfo()->CreateTargetHazardRecognizer(&tm, this);
166  }
167
168  ~ScheduleDAGRRList() {
169    delete HazardRec;
170    delete AvailableQueue;
171  }
172
173  void Schedule();
174
175  ScheduleHazardRecognizer *getHazardRec() { return HazardRec; }
176
177  /// IsReachable - Checks if SU is reachable from TargetSU.
178  bool IsReachable(const SUnit *SU, const SUnit *TargetSU) {
179    return Topo.IsReachable(SU, TargetSU);
180  }
181
182  /// WillCreateCycle - Returns true if adding an edge from SU to TargetSU will
183  /// create a cycle.
184  bool WillCreateCycle(SUnit *SU, SUnit *TargetSU) {
185    return Topo.WillCreateCycle(SU, TargetSU);
186  }
187
188  /// AddPred - adds a predecessor edge to SUnit SU.
189  /// This returns true if this is a new predecessor.
190  /// Updates the topological ordering if required.
191  void AddPred(SUnit *SU, const SDep &D) {
192    Topo.AddPred(SU, D.getSUnit());
193    SU->addPred(D);
194  }
195
196  /// RemovePred - removes a predecessor edge from SUnit SU.
197  /// This returns true if an edge was removed.
198  /// Updates the topological ordering if required.
199  void RemovePred(SUnit *SU, const SDep &D) {
200    Topo.RemovePred(SU, D.getSUnit());
201    SU->removePred(D);
202  }
203
204private:
205  bool isReady(SUnit *SU) {
206    return DisableSchedCycles || !AvailableQueue->hasReadyFilter() ||
207      AvailableQueue->isReady(SU);
208  }
209
210  void ReleasePred(SUnit *SU, const SDep *PredEdge);
211  void ReleasePredecessors(SUnit *SU);
212  void ReleasePending();
213  void AdvanceToCycle(unsigned NextCycle);
214  void AdvancePastStalls(SUnit *SU);
215  void EmitNode(SUnit *SU);
216  void ScheduleNodeBottomUp(SUnit*);
217  void CapturePred(SDep *PredEdge);
218  void UnscheduleNodeBottomUp(SUnit*);
219  void RestoreHazardCheckerBottomUp();
220  void BacktrackBottomUp(SUnit*, SUnit*);
221  SUnit *CopyAndMoveSuccessors(SUnit*);
222  void InsertCopiesAndMoveSuccs(SUnit*, unsigned,
223                                const TargetRegisterClass*,
224                                const TargetRegisterClass*,
225                                SmallVector<SUnit*, 2>&);
226  bool DelayForLiveRegsBottomUp(SUnit*, SmallVector<unsigned, 4>&);
227
228  SUnit *PickNodeToScheduleBottomUp();
229  void ListScheduleBottomUp();
230
231  /// CreateNewSUnit - Creates a new SUnit and returns a pointer to it.
232  /// Updates the topological ordering if required.
233  SUnit *CreateNewSUnit(SDNode *N) {
234    unsigned NumSUnits = SUnits.size();
235    SUnit *NewNode = newSUnit(N);
236    // Update the topological ordering.
237    if (NewNode->NodeNum >= NumSUnits)
238      Topo.InitDAGTopologicalSorting();
239    return NewNode;
240  }
241
242  /// CreateClone - Creates a new SUnit from an existing one.
243  /// Updates the topological ordering if required.
244  SUnit *CreateClone(SUnit *N) {
245    unsigned NumSUnits = SUnits.size();
246    SUnit *NewNode = Clone(N);
247    // Update the topological ordering.
248    if (NewNode->NodeNum >= NumSUnits)
249      Topo.InitDAGTopologicalSorting();
250    return NewNode;
251  }
252
253  /// forceUnitLatencies - Register-pressure-reducing scheduling doesn't
254  /// need actual latency information but the hybrid scheduler does.
255  bool forceUnitLatencies() const {
256    return !NeedLatency;
257  }
258};
259}  // end anonymous namespace
260
261/// GetCostForDef - Looks up the register class and cost for a given definition.
262/// Typically this just means looking up the representative register class,
263/// but for untyped values (MVT::Untyped) it means inspecting the node's
264/// opcode to determine what register class is being generated.
265static void GetCostForDef(const ScheduleDAGSDNodes::RegDefIter &RegDefPos,
266                          const TargetLowering *TLI,
267                          const TargetInstrInfo *TII,
268                          const TargetRegisterInfo *TRI,
269                          unsigned &RegClass, unsigned &Cost,
270                          const MachineFunction &MF) {
271  EVT VT = RegDefPos.GetValue();
272
273  // Special handling for untyped values.  These values can only come from
274  // the expansion of custom DAG-to-DAG patterns.
275  if (VT == MVT::Untyped) {
276    const SDNode *Node = RegDefPos.GetNode();
277    unsigned Opcode = Node->getMachineOpcode();
278
279    if (Opcode == TargetOpcode::REG_SEQUENCE) {
280      unsigned DstRCIdx = cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue();
281      const TargetRegisterClass *RC = TRI->getRegClass(DstRCIdx);
282      RegClass = RC->getID();
283      Cost = 1;
284      return;
285    }
286
287    unsigned Idx = RegDefPos.GetIdx();
288    const MCInstrDesc Desc = TII->get(Opcode);
289    const TargetRegisterClass *RC = TII->getRegClass(Desc, Idx, TRI, MF);
290    RegClass = RC->getID();
291    // FIXME: Cost arbitrarily set to 1 because there doesn't seem to be a
292    // better way to determine it.
293    Cost = 1;
294  } else {
295    RegClass = TLI->getRepRegClassFor(VT)->getID();
296    Cost = TLI->getRepRegClassCostFor(VT);
297  }
298}
299
300/// Schedule - Schedule the DAG using list scheduling.
301void ScheduleDAGRRList::Schedule() {
302  DEBUG(dbgs()
303        << "********** List Scheduling BB#" << BB->getNumber()
304        << " '" << BB->getName() << "' **********\n");
305
306  CurCycle = 0;
307  IssueCount = 0;
308  MinAvailableCycle = DisableSchedCycles ? 0 : UINT_MAX;
309  NumLiveRegs = 0;
310  // Allocate slots for each physical register, plus one for a special register
311  // to track the virtual resource of a calling sequence.
312  LiveRegDefs.resize(TRI->getNumRegs() + 1, NULL);
313  LiveRegGens.resize(TRI->getNumRegs() + 1, NULL);
314  CallSeqEndForStart.clear();
315
316  // Build the scheduling graph.
317  BuildSchedGraph(NULL);
318
319  DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
320          SUnits[su].dumpAll(this));
321  Topo.InitDAGTopologicalSorting();
322
323  AvailableQueue->initNodes(SUnits);
324
325  HazardRec->Reset();
326
327  // Execute the actual scheduling loop.
328  ListScheduleBottomUp();
329
330  AvailableQueue->releaseState();
331
332  DEBUG({
333      dbgs() << "*** Final schedule ***\n";
334      dumpSchedule();
335      dbgs() << '\n';
336    });
337}
338
339//===----------------------------------------------------------------------===//
340//  Bottom-Up Scheduling
341//===----------------------------------------------------------------------===//
342
343/// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
344/// the AvailableQueue if the count reaches zero. Also update its cycle bound.
345void ScheduleDAGRRList::ReleasePred(SUnit *SU, const SDep *PredEdge) {
346  SUnit *PredSU = PredEdge->getSUnit();
347
348#ifndef NDEBUG
349  if (PredSU->NumSuccsLeft == 0) {
350    dbgs() << "*** Scheduling failed! ***\n";
351    PredSU->dump(this);
352    dbgs() << " has been released too many times!\n";
353    llvm_unreachable(0);
354  }
355#endif
356  --PredSU->NumSuccsLeft;
357
358  if (!forceUnitLatencies()) {
359    // Updating predecessor's height. This is now the cycle when the
360    // predecessor can be scheduled without causing a pipeline stall.
361    PredSU->setHeightToAtLeast(SU->getHeight() + PredEdge->getLatency());
362  }
363
364  // If all the node's successors are scheduled, this node is ready
365  // to be scheduled. Ignore the special EntrySU node.
366  if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) {
367    PredSU->isAvailable = true;
368
369    unsigned Height = PredSU->getHeight();
370    if (Height < MinAvailableCycle)
371      MinAvailableCycle = Height;
372
373    if (isReady(PredSU)) {
374      AvailableQueue->push(PredSU);
375    }
376    // CapturePred and others may have left the node in the pending queue, avoid
377    // adding it twice.
378    else if (!PredSU->isPending) {
379      PredSU->isPending = true;
380      PendingQueue.push_back(PredSU);
381    }
382  }
383}
384
385/// IsChainDependent - Test if Outer is reachable from Inner through
386/// chain dependencies.
387static bool IsChainDependent(SDNode *Outer, SDNode *Inner,
388                             unsigned NestLevel,
389                             const TargetInstrInfo *TII) {
390  SDNode *N = Outer;
391  for (;;) {
392    if (N == Inner)
393      return true;
394    // For a TokenFactor, examine each operand. There may be multiple ways
395    // to get to the CALLSEQ_BEGIN, but we need to find the path with the
396    // most nesting in order to ensure that we find the corresponding match.
397    if (N->getOpcode() == ISD::TokenFactor) {
398      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
399        if (IsChainDependent(N->getOperand(i).getNode(), Inner, NestLevel, TII))
400          return true;
401      return false;
402    }
403    // Check for a lowered CALLSEQ_BEGIN or CALLSEQ_END.
404    if (N->isMachineOpcode()) {
405      if (N->getMachineOpcode() ==
406          (unsigned)TII->getCallFrameDestroyOpcode()) {
407        ++NestLevel;
408      } else if (N->getMachineOpcode() ==
409                 (unsigned)TII->getCallFrameSetupOpcode()) {
410        if (NestLevel == 0)
411          return false;
412        --NestLevel;
413      }
414    }
415    // Otherwise, find the chain and continue climbing.
416    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
417      if (N->getOperand(i).getValueType() == MVT::Other) {
418        N = N->getOperand(i).getNode();
419        goto found_chain_operand;
420      }
421    return false;
422  found_chain_operand:;
423    if (N->getOpcode() == ISD::EntryToken)
424      return false;
425  }
426}
427
428/// FindCallSeqStart - Starting from the (lowered) CALLSEQ_END node, locate
429/// the corresponding (lowered) CALLSEQ_BEGIN node.
430///
431/// NestLevel and MaxNested are used in recursion to indcate the current level
432/// of nesting of CALLSEQ_BEGIN and CALLSEQ_END pairs, as well as the maximum
433/// level seen so far.
434///
435/// TODO: It would be better to give CALLSEQ_END an explicit operand to point
436/// to the corresponding CALLSEQ_BEGIN to avoid needing to search for it.
437static SDNode *
438FindCallSeqStart(SDNode *N, unsigned &NestLevel, unsigned &MaxNest,
439                 const TargetInstrInfo *TII) {
440  for (;;) {
441    // For a TokenFactor, examine each operand. There may be multiple ways
442    // to get to the CALLSEQ_BEGIN, but we need to find the path with the
443    // most nesting in order to ensure that we find the corresponding match.
444    if (N->getOpcode() == ISD::TokenFactor) {
445      SDNode *Best = 0;
446      unsigned BestMaxNest = MaxNest;
447      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
448        unsigned MyNestLevel = NestLevel;
449        unsigned MyMaxNest = MaxNest;
450        if (SDNode *New = FindCallSeqStart(N->getOperand(i).getNode(),
451                                           MyNestLevel, MyMaxNest, TII))
452          if (!Best || (MyMaxNest > BestMaxNest)) {
453            Best = New;
454            BestMaxNest = MyMaxNest;
455          }
456      }
457      assert(Best);
458      MaxNest = BestMaxNest;
459      return Best;
460    }
461    // Check for a lowered CALLSEQ_BEGIN or CALLSEQ_END.
462    if (N->isMachineOpcode()) {
463      if (N->getMachineOpcode() ==
464          (unsigned)TII->getCallFrameDestroyOpcode()) {
465        ++NestLevel;
466        MaxNest = std::max(MaxNest, NestLevel);
467      } else if (N->getMachineOpcode() ==
468                 (unsigned)TII->getCallFrameSetupOpcode()) {
469        assert(NestLevel != 0);
470        --NestLevel;
471        if (NestLevel == 0)
472          return N;
473      }
474    }
475    // Otherwise, find the chain and continue climbing.
476    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
477      if (N->getOperand(i).getValueType() == MVT::Other) {
478        N = N->getOperand(i).getNode();
479        goto found_chain_operand;
480      }
481    return 0;
482  found_chain_operand:;
483    if (N->getOpcode() == ISD::EntryToken)
484      return 0;
485  }
486}
487
488/// Call ReleasePred for each predecessor, then update register live def/gen.
489/// Always update LiveRegDefs for a register dependence even if the current SU
490/// also defines the register. This effectively create one large live range
491/// across a sequence of two-address node. This is important because the
492/// entire chain must be scheduled together. Example:
493///
494/// flags = (3) add
495/// flags = (2) addc flags
496/// flags = (1) addc flags
497///
498/// results in
499///
500/// LiveRegDefs[flags] = 3
501/// LiveRegGens[flags] = 1
502///
503/// If (2) addc is unscheduled, then (1) addc must also be unscheduled to avoid
504/// interference on flags.
505void ScheduleDAGRRList::ReleasePredecessors(SUnit *SU) {
506  // Bottom up: release predecessors
507  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
508       I != E; ++I) {
509    ReleasePred(SU, &*I);
510    if (I->isAssignedRegDep()) {
511      // This is a physical register dependency and it's impossible or
512      // expensive to copy the register. Make sure nothing that can
513      // clobber the register is scheduled between the predecessor and
514      // this node.
515      SUnit *RegDef = LiveRegDefs[I->getReg()]; (void)RegDef;
516      assert((!RegDef || RegDef == SU || RegDef == I->getSUnit()) &&
517             "interference on register dependence");
518      LiveRegDefs[I->getReg()] = I->getSUnit();
519      if (!LiveRegGens[I->getReg()]) {
520        ++NumLiveRegs;
521        LiveRegGens[I->getReg()] = SU;
522      }
523    }
524  }
525
526  // If we're scheduling a lowered CALLSEQ_END, find the corresponding
527  // CALLSEQ_BEGIN. Inject an artificial physical register dependence between
528  // these nodes, to prevent other calls from being interscheduled with them.
529  unsigned CallResource = TRI->getNumRegs();
530  if (!LiveRegDefs[CallResource])
531    for (SDNode *Node = SU->getNode(); Node; Node = Node->getGluedNode())
532      if (Node->isMachineOpcode() &&
533          Node->getMachineOpcode() == (unsigned)TII->getCallFrameDestroyOpcode()) {
534        unsigned NestLevel = 0;
535        unsigned MaxNest = 0;
536        SDNode *N = FindCallSeqStart(Node, NestLevel, MaxNest, TII);
537
538        SUnit *Def = &SUnits[N->getNodeId()];
539        CallSeqEndForStart[Def] = SU;
540
541        ++NumLiveRegs;
542        LiveRegDefs[CallResource] = Def;
543        LiveRegGens[CallResource] = SU;
544        break;
545      }
546}
547
548/// Check to see if any of the pending instructions are ready to issue.  If
549/// so, add them to the available queue.
550void ScheduleDAGRRList::ReleasePending() {
551  if (DisableSchedCycles) {
552    assert(PendingQueue.empty() && "pending instrs not allowed in this mode");
553    return;
554  }
555
556  // If the available queue is empty, it is safe to reset MinAvailableCycle.
557  if (AvailableQueue->empty())
558    MinAvailableCycle = UINT_MAX;
559
560  // Check to see if any of the pending instructions are ready to issue.  If
561  // so, add them to the available queue.
562  for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
563    unsigned ReadyCycle = PendingQueue[i]->getHeight();
564    if (ReadyCycle < MinAvailableCycle)
565      MinAvailableCycle = ReadyCycle;
566
567    if (PendingQueue[i]->isAvailable) {
568      if (!isReady(PendingQueue[i]))
569          continue;
570      AvailableQueue->push(PendingQueue[i]);
571    }
572    PendingQueue[i]->isPending = false;
573    PendingQueue[i] = PendingQueue.back();
574    PendingQueue.pop_back();
575    --i; --e;
576  }
577}
578
579/// Move the scheduler state forward by the specified number of Cycles.
580void ScheduleDAGRRList::AdvanceToCycle(unsigned NextCycle) {
581  if (NextCycle <= CurCycle)
582    return;
583
584  IssueCount = 0;
585  AvailableQueue->setCurCycle(NextCycle);
586  if (!HazardRec->isEnabled()) {
587    // Bypass lots of virtual calls in case of long latency.
588    CurCycle = NextCycle;
589  }
590  else {
591    for (; CurCycle != NextCycle; ++CurCycle) {
592      HazardRec->RecedeCycle();
593    }
594  }
595  // FIXME: Instead of visiting the pending Q each time, set a dirty flag on the
596  // available Q to release pending nodes at least once before popping.
597  ReleasePending();
598}
599
600/// Move the scheduler state forward until the specified node's dependents are
601/// ready and can be scheduled with no resource conflicts.
602void ScheduleDAGRRList::AdvancePastStalls(SUnit *SU) {
603  if (DisableSchedCycles)
604    return;
605
606  // FIXME: Nodes such as CopyFromReg probably should not advance the current
607  // cycle. Otherwise, we can wrongly mask real stalls. If the non-machine node
608  // has predecessors the cycle will be advanced when they are scheduled.
609  // But given the crude nature of modeling latency though such nodes, we
610  // currently need to treat these nodes like real instructions.
611  // if (!SU->getNode() || !SU->getNode()->isMachineOpcode()) return;
612
613  unsigned ReadyCycle = SU->getHeight();
614
615  // Bump CurCycle to account for latency. We assume the latency of other
616  // available instructions may be hidden by the stall (not a full pipe stall).
617  // This updates the hazard recognizer's cycle before reserving resources for
618  // this instruction.
619  AdvanceToCycle(ReadyCycle);
620
621  // Calls are scheduled in their preceding cycle, so don't conflict with
622  // hazards from instructions after the call. EmitNode will reset the
623  // scoreboard state before emitting the call.
624  if (SU->isCall)
625    return;
626
627  // FIXME: For resource conflicts in very long non-pipelined stages, we
628  // should probably skip ahead here to avoid useless scoreboard checks.
629  int Stalls = 0;
630  while (true) {
631    ScheduleHazardRecognizer::HazardType HT =
632      HazardRec->getHazardType(SU, -Stalls);
633
634    if (HT == ScheduleHazardRecognizer::NoHazard)
635      break;
636
637    ++Stalls;
638  }
639  AdvanceToCycle(CurCycle + Stalls);
640}
641
642/// Record this SUnit in the HazardRecognizer.
643/// Does not update CurCycle.
644void ScheduleDAGRRList::EmitNode(SUnit *SU) {
645  if (!HazardRec->isEnabled())
646    return;
647
648  // Check for phys reg copy.
649  if (!SU->getNode())
650    return;
651
652  switch (SU->getNode()->getOpcode()) {
653  default:
654    assert(SU->getNode()->isMachineOpcode() &&
655           "This target-independent node should not be scheduled.");
656    break;
657  case ISD::MERGE_VALUES:
658  case ISD::TokenFactor:
659  case ISD::CopyToReg:
660  case ISD::CopyFromReg:
661  case ISD::EH_LABEL:
662    // Noops don't affect the scoreboard state. Copies are likely to be
663    // removed.
664    return;
665  case ISD::INLINEASM:
666    // For inline asm, clear the pipeline state.
667    HazardRec->Reset();
668    return;
669  }
670  if (SU->isCall) {
671    // Calls are scheduled with their preceding instructions. For bottom-up
672    // scheduling, clear the pipeline state before emitting.
673    HazardRec->Reset();
674  }
675
676  HazardRec->EmitInstruction(SU);
677}
678
679static void resetVRegCycle(SUnit *SU);
680
681/// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
682/// count of its predecessors. If a predecessor pending count is zero, add it to
683/// the Available queue.
684void ScheduleDAGRRList::ScheduleNodeBottomUp(SUnit *SU) {
685  DEBUG(dbgs() << "\n*** Scheduling [" << CurCycle << "]: ");
686  DEBUG(SU->dump(this));
687
688#ifndef NDEBUG
689  if (CurCycle < SU->getHeight())
690    DEBUG(dbgs() << "   Height [" << SU->getHeight()
691          << "] pipeline stall!\n");
692#endif
693
694  // FIXME: Do not modify node height. It may interfere with
695  // backtracking. Instead add a "ready cycle" to SUnit. Before scheduling the
696  // node its ready cycle can aid heuristics, and after scheduling it can
697  // indicate the scheduled cycle.
698  SU->setHeightToAtLeast(CurCycle);
699
700  // Reserve resources for the scheduled intruction.
701  EmitNode(SU);
702
703  Sequence.push_back(SU);
704
705  AvailableQueue->scheduledNode(SU);
706
707  // If HazardRec is disabled, and each inst counts as one cycle, then
708  // advance CurCycle before ReleasePredecessors to avoid useless pushes to
709  // PendingQueue for schedulers that implement HasReadyFilter.
710  if (!HazardRec->isEnabled() && AvgIPC < 2)
711    AdvanceToCycle(CurCycle + 1);
712
713  // Update liveness of predecessors before successors to avoid treating a
714  // two-address node as a live range def.
715  ReleasePredecessors(SU);
716
717  // Release all the implicit physical register defs that are live.
718  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
719       I != E; ++I) {
720    // LiveRegDegs[I->getReg()] != SU when SU is a two-address node.
721    if (I->isAssignedRegDep() && LiveRegDefs[I->getReg()] == SU) {
722      assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
723      --NumLiveRegs;
724      LiveRegDefs[I->getReg()] = NULL;
725      LiveRegGens[I->getReg()] = NULL;
726    }
727  }
728  // Release the special call resource dependence, if this is the beginning
729  // of a call.
730  unsigned CallResource = TRI->getNumRegs();
731  if (LiveRegDefs[CallResource] == SU)
732    for (const SDNode *SUNode = SU->getNode(); SUNode;
733         SUNode = SUNode->getGluedNode()) {
734      if (SUNode->isMachineOpcode() &&
735          SUNode->getMachineOpcode() == (unsigned)TII->getCallFrameSetupOpcode()) {
736        assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
737        --NumLiveRegs;
738        LiveRegDefs[CallResource] = NULL;
739        LiveRegGens[CallResource] = NULL;
740      }
741    }
742
743  resetVRegCycle(SU);
744
745  SU->isScheduled = true;
746
747  // Conditions under which the scheduler should eagerly advance the cycle:
748  // (1) No available instructions
749  // (2) All pipelines full, so available instructions must have hazards.
750  //
751  // If HazardRec is disabled, the cycle was pre-advanced before calling
752  // ReleasePredecessors. In that case, IssueCount should remain 0.
753  //
754  // Check AvailableQueue after ReleasePredecessors in case of zero latency.
755  if (HazardRec->isEnabled() || AvgIPC > 1) {
756    if (SU->getNode() && SU->getNode()->isMachineOpcode())
757      ++IssueCount;
758    if ((HazardRec->isEnabled() && HazardRec->atIssueLimit())
759        || (!HazardRec->isEnabled() && IssueCount == AvgIPC))
760      AdvanceToCycle(CurCycle + 1);
761  }
762}
763
764/// CapturePred - This does the opposite of ReleasePred. Since SU is being
765/// unscheduled, incrcease the succ left count of its predecessors. Remove
766/// them from AvailableQueue if necessary.
767void ScheduleDAGRRList::CapturePred(SDep *PredEdge) {
768  SUnit *PredSU = PredEdge->getSUnit();
769  if (PredSU->isAvailable) {
770    PredSU->isAvailable = false;
771    if (!PredSU->isPending)
772      AvailableQueue->remove(PredSU);
773  }
774
775  assert(PredSU->NumSuccsLeft < UINT_MAX && "NumSuccsLeft will overflow!");
776  ++PredSU->NumSuccsLeft;
777}
778
779/// UnscheduleNodeBottomUp - Remove the node from the schedule, update its and
780/// its predecessor states to reflect the change.
781void ScheduleDAGRRList::UnscheduleNodeBottomUp(SUnit *SU) {
782  DEBUG(dbgs() << "*** Unscheduling [" << SU->getHeight() << "]: ");
783  DEBUG(SU->dump(this));
784
785  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
786       I != E; ++I) {
787    CapturePred(&*I);
788    if (I->isAssignedRegDep() && SU == LiveRegGens[I->getReg()]){
789      assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
790      assert(LiveRegDefs[I->getReg()] == I->getSUnit() &&
791             "Physical register dependency violated?");
792      --NumLiveRegs;
793      LiveRegDefs[I->getReg()] = NULL;
794      LiveRegGens[I->getReg()] = NULL;
795    }
796  }
797
798  // Reclaim the special call resource dependence, if this is the beginning
799  // of a call.
800  unsigned CallResource = TRI->getNumRegs();
801  for (const SDNode *SUNode = SU->getNode(); SUNode;
802       SUNode = SUNode->getGluedNode()) {
803    if (SUNode->isMachineOpcode() &&
804        SUNode->getMachineOpcode() == (unsigned)TII->getCallFrameSetupOpcode()) {
805      ++NumLiveRegs;
806      LiveRegDefs[CallResource] = SU;
807      LiveRegGens[CallResource] = CallSeqEndForStart[SU];
808    }
809  }
810
811  // Release the special call resource dependence, if this is the end
812  // of a call.
813  if (LiveRegGens[CallResource] == SU)
814    for (const SDNode *SUNode = SU->getNode(); SUNode;
815         SUNode = SUNode->getGluedNode()) {
816      if (SUNode->isMachineOpcode() &&
817          SUNode->getMachineOpcode() == (unsigned)TII->getCallFrameDestroyOpcode()) {
818        assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
819        --NumLiveRegs;
820        LiveRegDefs[CallResource] = NULL;
821        LiveRegGens[CallResource] = NULL;
822      }
823    }
824
825  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
826       I != E; ++I) {
827    if (I->isAssignedRegDep()) {
828      if (!LiveRegDefs[I->getReg()])
829        ++NumLiveRegs;
830      // This becomes the nearest def. Note that an earlier def may still be
831      // pending if this is a two-address node.
832      LiveRegDefs[I->getReg()] = SU;
833      if (LiveRegGens[I->getReg()] == NULL ||
834          I->getSUnit()->getHeight() < LiveRegGens[I->getReg()]->getHeight())
835        LiveRegGens[I->getReg()] = I->getSUnit();
836    }
837  }
838  if (SU->getHeight() < MinAvailableCycle)
839    MinAvailableCycle = SU->getHeight();
840
841  SU->setHeightDirty();
842  SU->isScheduled = false;
843  SU->isAvailable = true;
844  if (!DisableSchedCycles && AvailableQueue->hasReadyFilter()) {
845    // Don't make available until backtracking is complete.
846    SU->isPending = true;
847    PendingQueue.push_back(SU);
848  }
849  else {
850    AvailableQueue->push(SU);
851  }
852  AvailableQueue->unscheduledNode(SU);
853}
854
855/// After backtracking, the hazard checker needs to be restored to a state
856/// corresponding the the current cycle.
857void ScheduleDAGRRList::RestoreHazardCheckerBottomUp() {
858  HazardRec->Reset();
859
860  unsigned LookAhead = std::min((unsigned)Sequence.size(),
861                                HazardRec->getMaxLookAhead());
862  if (LookAhead == 0)
863    return;
864
865  std::vector<SUnit*>::const_iterator I = (Sequence.end() - LookAhead);
866  unsigned HazardCycle = (*I)->getHeight();
867  for (std::vector<SUnit*>::const_iterator E = Sequence.end(); I != E; ++I) {
868    SUnit *SU = *I;
869    for (; SU->getHeight() > HazardCycle; ++HazardCycle) {
870      HazardRec->RecedeCycle();
871    }
872    EmitNode(SU);
873  }
874}
875
876/// BacktrackBottomUp - Backtrack scheduling to a previous cycle specified in
877/// BTCycle in order to schedule a specific node.
878void ScheduleDAGRRList::BacktrackBottomUp(SUnit *SU, SUnit *BtSU) {
879  SUnit *OldSU = Sequence.back();
880  while (true) {
881    Sequence.pop_back();
882    if (SU->isSucc(OldSU))
883      // Don't try to remove SU from AvailableQueue.
884      SU->isAvailable = false;
885    // FIXME: use ready cycle instead of height
886    CurCycle = OldSU->getHeight();
887    UnscheduleNodeBottomUp(OldSU);
888    AvailableQueue->setCurCycle(CurCycle);
889    if (OldSU == BtSU)
890      break;
891    OldSU = Sequence.back();
892  }
893
894  assert(!SU->isSucc(OldSU) && "Something is wrong!");
895
896  RestoreHazardCheckerBottomUp();
897
898  ReleasePending();
899
900  ++NumBacktracks;
901}
902
903static bool isOperandOf(const SUnit *SU, SDNode *N) {
904  for (const SDNode *SUNode = SU->getNode(); SUNode;
905       SUNode = SUNode->getGluedNode()) {
906    if (SUNode->isOperandOf(N))
907      return true;
908  }
909  return false;
910}
911
912/// CopyAndMoveSuccessors - Clone the specified node and move its scheduled
913/// successors to the newly created node.
914SUnit *ScheduleDAGRRList::CopyAndMoveSuccessors(SUnit *SU) {
915  SDNode *N = SU->getNode();
916  if (!N)
917    return NULL;
918
919  if (SU->getNode()->getGluedNode())
920    return NULL;
921
922  SUnit *NewSU;
923  bool TryUnfold = false;
924  for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
925    EVT VT = N->getValueType(i);
926    if (VT == MVT::Glue)
927      return NULL;
928    else if (VT == MVT::Other)
929      TryUnfold = true;
930  }
931  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
932    const SDValue &Op = N->getOperand(i);
933    EVT VT = Op.getNode()->getValueType(Op.getResNo());
934    if (VT == MVT::Glue)
935      return NULL;
936  }
937
938  if (TryUnfold) {
939    SmallVector<SDNode*, 2> NewNodes;
940    if (!TII->unfoldMemoryOperand(*DAG, N, NewNodes))
941      return NULL;
942
943    // unfolding an x86 DEC64m operation results in store, dec, load which
944    // can't be handled here so quit
945    if (NewNodes.size() == 3)
946      return NULL;
947
948    DEBUG(dbgs() << "Unfolding SU #" << SU->NodeNum << "\n");
949    assert(NewNodes.size() == 2 && "Expected a load folding node!");
950
951    N = NewNodes[1];
952    SDNode *LoadNode = NewNodes[0];
953    unsigned NumVals = N->getNumValues();
954    unsigned OldNumVals = SU->getNode()->getNumValues();
955    for (unsigned i = 0; i != NumVals; ++i)
956      DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), i), SDValue(N, i));
957    DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), OldNumVals-1),
958                                   SDValue(LoadNode, 1));
959
960    // LoadNode may already exist. This can happen when there is another
961    // load from the same location and producing the same type of value
962    // but it has different alignment or volatileness.
963    bool isNewLoad = true;
964    SUnit *LoadSU;
965    if (LoadNode->getNodeId() != -1) {
966      LoadSU = &SUnits[LoadNode->getNodeId()];
967      isNewLoad = false;
968    } else {
969      LoadSU = CreateNewSUnit(LoadNode);
970      LoadNode->setNodeId(LoadSU->NodeNum);
971
972      InitNumRegDefsLeft(LoadSU);
973      computeLatency(LoadSU);
974    }
975
976    SUnit *NewSU = CreateNewSUnit(N);
977    assert(N->getNodeId() == -1 && "Node already inserted!");
978    N->setNodeId(NewSU->NodeNum);
979
980    const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
981    for (unsigned i = 0; i != MCID.getNumOperands(); ++i) {
982      if (MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1) {
983        NewSU->isTwoAddress = true;
984        break;
985      }
986    }
987    if (MCID.isCommutable())
988      NewSU->isCommutable = true;
989
990    InitNumRegDefsLeft(NewSU);
991    computeLatency(NewSU);
992
993    // Record all the edges to and from the old SU, by category.
994    SmallVector<SDep, 4> ChainPreds;
995    SmallVector<SDep, 4> ChainSuccs;
996    SmallVector<SDep, 4> LoadPreds;
997    SmallVector<SDep, 4> NodePreds;
998    SmallVector<SDep, 4> NodeSuccs;
999    for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
1000         I != E; ++I) {
1001      if (I->isCtrl())
1002        ChainPreds.push_back(*I);
1003      else if (isOperandOf(I->getSUnit(), LoadNode))
1004        LoadPreds.push_back(*I);
1005      else
1006        NodePreds.push_back(*I);
1007    }
1008    for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1009         I != E; ++I) {
1010      if (I->isCtrl())
1011        ChainSuccs.push_back(*I);
1012      else
1013        NodeSuccs.push_back(*I);
1014    }
1015
1016    // Now assign edges to the newly-created nodes.
1017    for (unsigned i = 0, e = ChainPreds.size(); i != e; ++i) {
1018      const SDep &Pred = ChainPreds[i];
1019      RemovePred(SU, Pred);
1020      if (isNewLoad)
1021        AddPred(LoadSU, Pred);
1022    }
1023    for (unsigned i = 0, e = LoadPreds.size(); i != e; ++i) {
1024      const SDep &Pred = LoadPreds[i];
1025      RemovePred(SU, Pred);
1026      if (isNewLoad)
1027        AddPred(LoadSU, Pred);
1028    }
1029    for (unsigned i = 0, e = NodePreds.size(); i != e; ++i) {
1030      const SDep &Pred = NodePreds[i];
1031      RemovePred(SU, Pred);
1032      AddPred(NewSU, Pred);
1033    }
1034    for (unsigned i = 0, e = NodeSuccs.size(); i != e; ++i) {
1035      SDep D = NodeSuccs[i];
1036      SUnit *SuccDep = D.getSUnit();
1037      D.setSUnit(SU);
1038      RemovePred(SuccDep, D);
1039      D.setSUnit(NewSU);
1040      AddPred(SuccDep, D);
1041      // Balance register pressure.
1042      if (AvailableQueue->tracksRegPressure() && SuccDep->isScheduled
1043          && !D.isCtrl() && NewSU->NumRegDefsLeft > 0)
1044        --NewSU->NumRegDefsLeft;
1045    }
1046    for (unsigned i = 0, e = ChainSuccs.size(); i != e; ++i) {
1047      SDep D = ChainSuccs[i];
1048      SUnit *SuccDep = D.getSUnit();
1049      D.setSUnit(SU);
1050      RemovePred(SuccDep, D);
1051      if (isNewLoad) {
1052        D.setSUnit(LoadSU);
1053        AddPred(SuccDep, D);
1054      }
1055    }
1056
1057    // Add a data dependency to reflect that NewSU reads the value defined
1058    // by LoadSU.
1059    AddPred(NewSU, SDep(LoadSU, SDep::Data, LoadSU->Latency));
1060
1061    if (isNewLoad)
1062      AvailableQueue->addNode(LoadSU);
1063    AvailableQueue->addNode(NewSU);
1064
1065    ++NumUnfolds;
1066
1067    if (NewSU->NumSuccsLeft == 0) {
1068      NewSU->isAvailable = true;
1069      return NewSU;
1070    }
1071    SU = NewSU;
1072  }
1073
1074  DEBUG(dbgs() << "    Duplicating SU #" << SU->NodeNum << "\n");
1075  NewSU = CreateClone(SU);
1076
1077  // New SUnit has the exact same predecessors.
1078  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
1079       I != E; ++I)
1080    if (!I->isArtificial())
1081      AddPred(NewSU, *I);
1082
1083  // Only copy scheduled successors. Cut them from old node's successor
1084  // list and move them over.
1085  SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
1086  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1087       I != E; ++I) {
1088    if (I->isArtificial())
1089      continue;
1090    SUnit *SuccSU = I->getSUnit();
1091    if (SuccSU->isScheduled) {
1092      SDep D = *I;
1093      D.setSUnit(NewSU);
1094      AddPred(SuccSU, D);
1095      D.setSUnit(SU);
1096      DelDeps.push_back(std::make_pair(SuccSU, D));
1097    }
1098  }
1099  for (unsigned i = 0, e = DelDeps.size(); i != e; ++i)
1100    RemovePred(DelDeps[i].first, DelDeps[i].second);
1101
1102  AvailableQueue->updateNode(SU);
1103  AvailableQueue->addNode(NewSU);
1104
1105  ++NumDups;
1106  return NewSU;
1107}
1108
1109/// InsertCopiesAndMoveSuccs - Insert register copies and move all
1110/// scheduled successors of the given SUnit to the last copy.
1111void ScheduleDAGRRList::InsertCopiesAndMoveSuccs(SUnit *SU, unsigned Reg,
1112                                               const TargetRegisterClass *DestRC,
1113                                               const TargetRegisterClass *SrcRC,
1114                                               SmallVector<SUnit*, 2> &Copies) {
1115  SUnit *CopyFromSU = CreateNewSUnit(NULL);
1116  CopyFromSU->CopySrcRC = SrcRC;
1117  CopyFromSU->CopyDstRC = DestRC;
1118
1119  SUnit *CopyToSU = CreateNewSUnit(NULL);
1120  CopyToSU->CopySrcRC = DestRC;
1121  CopyToSU->CopyDstRC = SrcRC;
1122
1123  // Only copy scheduled successors. Cut them from old node's successor
1124  // list and move them over.
1125  SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
1126  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1127       I != E; ++I) {
1128    if (I->isArtificial())
1129      continue;
1130    SUnit *SuccSU = I->getSUnit();
1131    if (SuccSU->isScheduled) {
1132      SDep D = *I;
1133      D.setSUnit(CopyToSU);
1134      AddPred(SuccSU, D);
1135      DelDeps.push_back(std::make_pair(SuccSU, *I));
1136    }
1137    else {
1138      // Avoid scheduling the def-side copy before other successors. Otherwise
1139      // we could introduce another physreg interference on the copy and
1140      // continue inserting copies indefinitely.
1141      SDep D(CopyFromSU, SDep::Order, /*Latency=*/0,
1142             /*Reg=*/0, /*isNormalMemory=*/false,
1143             /*isMustAlias=*/false, /*isArtificial=*/true);
1144      AddPred(SuccSU, D);
1145    }
1146  }
1147  for (unsigned i = 0, e = DelDeps.size(); i != e; ++i)
1148    RemovePred(DelDeps[i].first, DelDeps[i].second);
1149
1150  AddPred(CopyFromSU, SDep(SU, SDep::Data, SU->Latency, Reg));
1151  AddPred(CopyToSU, SDep(CopyFromSU, SDep::Data, CopyFromSU->Latency, 0));
1152
1153  AvailableQueue->updateNode(SU);
1154  AvailableQueue->addNode(CopyFromSU);
1155  AvailableQueue->addNode(CopyToSU);
1156  Copies.push_back(CopyFromSU);
1157  Copies.push_back(CopyToSU);
1158
1159  ++NumPRCopies;
1160}
1161
1162/// getPhysicalRegisterVT - Returns the ValueType of the physical register
1163/// definition of the specified node.
1164/// FIXME: Move to SelectionDAG?
1165static EVT getPhysicalRegisterVT(SDNode *N, unsigned Reg,
1166                                 const TargetInstrInfo *TII) {
1167  const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
1168  assert(MCID.ImplicitDefs && "Physical reg def must be in implicit def list!");
1169  unsigned NumRes = MCID.getNumDefs();
1170  for (const uint16_t *ImpDef = MCID.getImplicitDefs(); *ImpDef; ++ImpDef) {
1171    if (Reg == *ImpDef)
1172      break;
1173    ++NumRes;
1174  }
1175  return N->getValueType(NumRes);
1176}
1177
1178/// CheckForLiveRegDef - Return true and update live register vector if the
1179/// specified register def of the specified SUnit clobbers any "live" registers.
1180static void CheckForLiveRegDef(SUnit *SU, unsigned Reg,
1181                               std::vector<SUnit*> &LiveRegDefs,
1182                               SmallSet<unsigned, 4> &RegAdded,
1183                               SmallVector<unsigned, 4> &LRegs,
1184                               const TargetRegisterInfo *TRI) {
1185  for (const uint16_t *AliasI = TRI->getOverlaps(Reg); *AliasI; ++AliasI) {
1186
1187    // Check if Ref is live.
1188    if (!LiveRegDefs[*AliasI]) continue;
1189
1190    // Allow multiple uses of the same def.
1191    if (LiveRegDefs[*AliasI] == SU) continue;
1192
1193    // Add Reg to the set of interfering live regs.
1194    if (RegAdded.insert(*AliasI)) {
1195      LRegs.push_back(*AliasI);
1196    }
1197  }
1198}
1199
1200/// CheckForLiveRegDefMasked - Check for any live physregs that are clobbered
1201/// by RegMask, and add them to LRegs.
1202static void CheckForLiveRegDefMasked(SUnit *SU, const uint32_t *RegMask,
1203                                     std::vector<SUnit*> &LiveRegDefs,
1204                                     SmallSet<unsigned, 4> &RegAdded,
1205                                     SmallVector<unsigned, 4> &LRegs) {
1206  // Look at all live registers. Skip Reg0 and the special CallResource.
1207  for (unsigned i = 1, e = LiveRegDefs.size()-1; i != e; ++i) {
1208    if (!LiveRegDefs[i]) continue;
1209    if (LiveRegDefs[i] == SU) continue;
1210    if (!MachineOperand::clobbersPhysReg(RegMask, i)) continue;
1211    if (RegAdded.insert(i))
1212      LRegs.push_back(i);
1213  }
1214}
1215
1216/// getNodeRegMask - Returns the register mask attached to an SDNode, if any.
1217static const uint32_t *getNodeRegMask(const SDNode *N) {
1218  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1219    if (const RegisterMaskSDNode *Op =
1220        dyn_cast<RegisterMaskSDNode>(N->getOperand(i).getNode()))
1221      return Op->getRegMask();
1222  return NULL;
1223}
1224
1225/// DelayForLiveRegsBottomUp - Returns true if it is necessary to delay
1226/// scheduling of the given node to satisfy live physical register dependencies.
1227/// If the specific node is the last one that's available to schedule, do
1228/// whatever is necessary (i.e. backtracking or cloning) to make it possible.
1229bool ScheduleDAGRRList::
1230DelayForLiveRegsBottomUp(SUnit *SU, SmallVector<unsigned, 4> &LRegs) {
1231  if (NumLiveRegs == 0)
1232    return false;
1233
1234  SmallSet<unsigned, 4> RegAdded;
1235  // If this node would clobber any "live" register, then it's not ready.
1236  //
1237  // If SU is the currently live definition of the same register that it uses,
1238  // then we are free to schedule it.
1239  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
1240       I != E; ++I) {
1241    if (I->isAssignedRegDep() && LiveRegDefs[I->getReg()] != SU)
1242      CheckForLiveRegDef(I->getSUnit(), I->getReg(), LiveRegDefs,
1243                         RegAdded, LRegs, TRI);
1244  }
1245
1246  for (SDNode *Node = SU->getNode(); Node; Node = Node->getGluedNode()) {
1247    if (Node->getOpcode() == ISD::INLINEASM) {
1248      // Inline asm can clobber physical defs.
1249      unsigned NumOps = Node->getNumOperands();
1250      if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue)
1251        --NumOps;  // Ignore the glue operand.
1252
1253      for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
1254        unsigned Flags =
1255          cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue();
1256        unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
1257
1258        ++i; // Skip the ID value.
1259        if (InlineAsm::isRegDefKind(Flags) ||
1260            InlineAsm::isRegDefEarlyClobberKind(Flags) ||
1261            InlineAsm::isClobberKind(Flags)) {
1262          // Check for def of register or earlyclobber register.
1263          for (; NumVals; --NumVals, ++i) {
1264            unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
1265            if (TargetRegisterInfo::isPhysicalRegister(Reg))
1266              CheckForLiveRegDef(SU, Reg, LiveRegDefs, RegAdded, LRegs, TRI);
1267          }
1268        } else
1269          i += NumVals;
1270      }
1271      continue;
1272    }
1273
1274    if (!Node->isMachineOpcode())
1275      continue;
1276    // If we're in the middle of scheduling a call, don't begin scheduling
1277    // another call. Also, don't allow any physical registers to be live across
1278    // the call.
1279    if (Node->getMachineOpcode() == (unsigned)TII->getCallFrameDestroyOpcode()) {
1280      // Check the special calling-sequence resource.
1281      unsigned CallResource = TRI->getNumRegs();
1282      if (LiveRegDefs[CallResource]) {
1283        SDNode *Gen = LiveRegGens[CallResource]->getNode();
1284        while (SDNode *Glued = Gen->getGluedNode())
1285          Gen = Glued;
1286        if (!IsChainDependent(Gen, Node, 0, TII) && RegAdded.insert(CallResource))
1287          LRegs.push_back(CallResource);
1288      }
1289    }
1290    if (const uint32_t *RegMask = getNodeRegMask(Node))
1291      CheckForLiveRegDefMasked(SU, RegMask, LiveRegDefs, RegAdded, LRegs);
1292
1293    const MCInstrDesc &MCID = TII->get(Node->getMachineOpcode());
1294    if (!MCID.ImplicitDefs)
1295      continue;
1296    for (const uint16_t *Reg = MCID.getImplicitDefs(); *Reg; ++Reg)
1297      CheckForLiveRegDef(SU, *Reg, LiveRegDefs, RegAdded, LRegs, TRI);
1298  }
1299
1300  return !LRegs.empty();
1301}
1302
1303/// Return a node that can be scheduled in this cycle. Requirements:
1304/// (1) Ready: latency has been satisfied
1305/// (2) No Hazards: resources are available
1306/// (3) No Interferences: may unschedule to break register interferences.
1307SUnit *ScheduleDAGRRList::PickNodeToScheduleBottomUp() {
1308  SmallVector<SUnit*, 4> Interferences;
1309  DenseMap<SUnit*, SmallVector<unsigned, 4> > LRegsMap;
1310
1311  SUnit *CurSU = AvailableQueue->pop();
1312  while (CurSU) {
1313    SmallVector<unsigned, 4> LRegs;
1314    if (!DelayForLiveRegsBottomUp(CurSU, LRegs))
1315      break;
1316    LRegsMap.insert(std::make_pair(CurSU, LRegs));
1317
1318    CurSU->isPending = true;  // This SU is not in AvailableQueue right now.
1319    Interferences.push_back(CurSU);
1320    CurSU = AvailableQueue->pop();
1321  }
1322  if (CurSU) {
1323    // Add the nodes that aren't ready back onto the available list.
1324    for (unsigned i = 0, e = Interferences.size(); i != e; ++i) {
1325      Interferences[i]->isPending = false;
1326      assert(Interferences[i]->isAvailable && "must still be available");
1327      AvailableQueue->push(Interferences[i]);
1328    }
1329    return CurSU;
1330  }
1331
1332  // All candidates are delayed due to live physical reg dependencies.
1333  // Try backtracking, code duplication, or inserting cross class copies
1334  // to resolve it.
1335  for (unsigned i = 0, e = Interferences.size(); i != e; ++i) {
1336    SUnit *TrySU = Interferences[i];
1337    SmallVector<unsigned, 4> &LRegs = LRegsMap[TrySU];
1338
1339    // Try unscheduling up to the point where it's safe to schedule
1340    // this node.
1341    SUnit *BtSU = NULL;
1342    unsigned LiveCycle = UINT_MAX;
1343    for (unsigned j = 0, ee = LRegs.size(); j != ee; ++j) {
1344      unsigned Reg = LRegs[j];
1345      if (LiveRegGens[Reg]->getHeight() < LiveCycle) {
1346        BtSU = LiveRegGens[Reg];
1347        LiveCycle = BtSU->getHeight();
1348      }
1349    }
1350    if (!WillCreateCycle(TrySU, BtSU))  {
1351      BacktrackBottomUp(TrySU, BtSU);
1352
1353      // Force the current node to be scheduled before the node that
1354      // requires the physical reg dep.
1355      if (BtSU->isAvailable) {
1356        BtSU->isAvailable = false;
1357        if (!BtSU->isPending)
1358          AvailableQueue->remove(BtSU);
1359      }
1360      AddPred(TrySU, SDep(BtSU, SDep::Order, /*Latency=*/1,
1361                          /*Reg=*/0, /*isNormalMemory=*/false,
1362                          /*isMustAlias=*/false, /*isArtificial=*/true));
1363
1364      // If one or more successors has been unscheduled, then the current
1365      // node is no longer avaialable. Schedule a successor that's now
1366      // available instead.
1367      if (!TrySU->isAvailable) {
1368        CurSU = AvailableQueue->pop();
1369      }
1370      else {
1371        CurSU = TrySU;
1372        TrySU->isPending = false;
1373        Interferences.erase(Interferences.begin()+i);
1374      }
1375      break;
1376    }
1377  }
1378
1379  if (!CurSU) {
1380    // Can't backtrack. If it's too expensive to copy the value, then try
1381    // duplicate the nodes that produces these "too expensive to copy"
1382    // values to break the dependency. In case even that doesn't work,
1383    // insert cross class copies.
1384    // If it's not too expensive, i.e. cost != -1, issue copies.
1385    SUnit *TrySU = Interferences[0];
1386    SmallVector<unsigned, 4> &LRegs = LRegsMap[TrySU];
1387    assert(LRegs.size() == 1 && "Can't handle this yet!");
1388    unsigned Reg = LRegs[0];
1389    SUnit *LRDef = LiveRegDefs[Reg];
1390    EVT VT = getPhysicalRegisterVT(LRDef->getNode(), Reg, TII);
1391    const TargetRegisterClass *RC =
1392      TRI->getMinimalPhysRegClass(Reg, VT);
1393    const TargetRegisterClass *DestRC = TRI->getCrossCopyRegClass(RC);
1394
1395    // If cross copy register class is the same as RC, then it must be possible
1396    // copy the value directly. Do not try duplicate the def.
1397    // If cross copy register class is not the same as RC, then it's possible to
1398    // copy the value but it require cross register class copies and it is
1399    // expensive.
1400    // If cross copy register class is null, then it's not possible to copy
1401    // the value at all.
1402    SUnit *NewDef = 0;
1403    if (DestRC != RC) {
1404      NewDef = CopyAndMoveSuccessors(LRDef);
1405      if (!DestRC && !NewDef)
1406        report_fatal_error("Can't handle live physical register dependency!");
1407    }
1408    if (!NewDef) {
1409      // Issue copies, these can be expensive cross register class copies.
1410      SmallVector<SUnit*, 2> Copies;
1411      InsertCopiesAndMoveSuccs(LRDef, Reg, DestRC, RC, Copies);
1412      DEBUG(dbgs() << "    Adding an edge from SU #" << TrySU->NodeNum
1413            << " to SU #" << Copies.front()->NodeNum << "\n");
1414      AddPred(TrySU, SDep(Copies.front(), SDep::Order, /*Latency=*/1,
1415                          /*Reg=*/0, /*isNormalMemory=*/false,
1416                          /*isMustAlias=*/false,
1417                          /*isArtificial=*/true));
1418      NewDef = Copies.back();
1419    }
1420
1421    DEBUG(dbgs() << "    Adding an edge from SU #" << NewDef->NodeNum
1422          << " to SU #" << TrySU->NodeNum << "\n");
1423    LiveRegDefs[Reg] = NewDef;
1424    AddPred(NewDef, SDep(TrySU, SDep::Order, /*Latency=*/1,
1425                         /*Reg=*/0, /*isNormalMemory=*/false,
1426                         /*isMustAlias=*/false,
1427                         /*isArtificial=*/true));
1428    TrySU->isAvailable = false;
1429    CurSU = NewDef;
1430  }
1431
1432  assert(CurSU && "Unable to resolve live physical register dependencies!");
1433
1434  // Add the nodes that aren't ready back onto the available list.
1435  for (unsigned i = 0, e = Interferences.size(); i != e; ++i) {
1436    Interferences[i]->isPending = false;
1437    // May no longer be available due to backtracking.
1438    if (Interferences[i]->isAvailable) {
1439      AvailableQueue->push(Interferences[i]);
1440    }
1441  }
1442  return CurSU;
1443}
1444
1445/// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
1446/// schedulers.
1447void ScheduleDAGRRList::ListScheduleBottomUp() {
1448  // Release any predecessors of the special Exit node.
1449  ReleasePredecessors(&ExitSU);
1450
1451  // Add root to Available queue.
1452  if (!SUnits.empty()) {
1453    SUnit *RootSU = &SUnits[DAG->getRoot().getNode()->getNodeId()];
1454    assert(RootSU->Succs.empty() && "Graph root shouldn't have successors!");
1455    RootSU->isAvailable = true;
1456    AvailableQueue->push(RootSU);
1457  }
1458
1459  // While Available queue is not empty, grab the node with the highest
1460  // priority. If it is not ready put it back.  Schedule the node.
1461  Sequence.reserve(SUnits.size());
1462  while (!AvailableQueue->empty()) {
1463    DEBUG(dbgs() << "\nExamining Available:\n";
1464          AvailableQueue->dump(this));
1465
1466    // Pick the best node to schedule taking all constraints into
1467    // consideration.
1468    SUnit *SU = PickNodeToScheduleBottomUp();
1469
1470    AdvancePastStalls(SU);
1471
1472    ScheduleNodeBottomUp(SU);
1473
1474    while (AvailableQueue->empty() && !PendingQueue.empty()) {
1475      // Advance the cycle to free resources. Skip ahead to the next ready SU.
1476      assert(MinAvailableCycle < UINT_MAX && "MinAvailableCycle uninitialized");
1477      AdvanceToCycle(std::max(CurCycle + 1, MinAvailableCycle));
1478    }
1479  }
1480
1481  // Reverse the order if it is bottom up.
1482  std::reverse(Sequence.begin(), Sequence.end());
1483
1484#ifndef NDEBUG
1485  VerifyScheduledSequence(/*isBottomUp=*/true);
1486#endif
1487}
1488
1489//===----------------------------------------------------------------------===//
1490//                RegReductionPriorityQueue Definition
1491//===----------------------------------------------------------------------===//
1492//
1493// This is a SchedulingPriorityQueue that schedules using Sethi Ullman numbers
1494// to reduce register pressure.
1495//
1496namespace {
1497class RegReductionPQBase;
1498
1499struct queue_sort : public std::binary_function<SUnit*, SUnit*, bool> {
1500  bool isReady(SUnit* SU, unsigned CurCycle) const { return true; }
1501};
1502
1503#ifndef NDEBUG
1504template<class SF>
1505struct reverse_sort : public queue_sort {
1506  SF &SortFunc;
1507  reverse_sort(SF &sf) : SortFunc(sf) {}
1508  reverse_sort(const reverse_sort &RHS) : SortFunc(RHS.SortFunc) {}
1509
1510  bool operator()(SUnit* left, SUnit* right) const {
1511    // reverse left/right rather than simply !SortFunc(left, right)
1512    // to expose different paths in the comparison logic.
1513    return SortFunc(right, left);
1514  }
1515};
1516#endif // NDEBUG
1517
1518/// bu_ls_rr_sort - Priority function for bottom up register pressure
1519// reduction scheduler.
1520struct bu_ls_rr_sort : public queue_sort {
1521  enum {
1522    IsBottomUp = true,
1523    HasReadyFilter = false
1524  };
1525
1526  RegReductionPQBase *SPQ;
1527  bu_ls_rr_sort(RegReductionPQBase *spq) : SPQ(spq) {}
1528  bu_ls_rr_sort(const bu_ls_rr_sort &RHS) : SPQ(RHS.SPQ) {}
1529
1530  bool operator()(SUnit* left, SUnit* right) const;
1531};
1532
1533// src_ls_rr_sort - Priority function for source order scheduler.
1534struct src_ls_rr_sort : public queue_sort {
1535  enum {
1536    IsBottomUp = true,
1537    HasReadyFilter = false
1538  };
1539
1540  RegReductionPQBase *SPQ;
1541  src_ls_rr_sort(RegReductionPQBase *spq)
1542    : SPQ(spq) {}
1543  src_ls_rr_sort(const src_ls_rr_sort &RHS)
1544    : SPQ(RHS.SPQ) {}
1545
1546  bool operator()(SUnit* left, SUnit* right) const;
1547};
1548
1549// hybrid_ls_rr_sort - Priority function for hybrid scheduler.
1550struct hybrid_ls_rr_sort : public queue_sort {
1551  enum {
1552    IsBottomUp = true,
1553    HasReadyFilter = false
1554  };
1555
1556  RegReductionPQBase *SPQ;
1557  hybrid_ls_rr_sort(RegReductionPQBase *spq)
1558    : SPQ(spq) {}
1559  hybrid_ls_rr_sort(const hybrid_ls_rr_sort &RHS)
1560    : SPQ(RHS.SPQ) {}
1561
1562  bool isReady(SUnit *SU, unsigned CurCycle) const;
1563
1564  bool operator()(SUnit* left, SUnit* right) const;
1565};
1566
1567// ilp_ls_rr_sort - Priority function for ILP (instruction level parallelism)
1568// scheduler.
1569struct ilp_ls_rr_sort : public queue_sort {
1570  enum {
1571    IsBottomUp = true,
1572    HasReadyFilter = false
1573  };
1574
1575  RegReductionPQBase *SPQ;
1576  ilp_ls_rr_sort(RegReductionPQBase *spq)
1577    : SPQ(spq) {}
1578  ilp_ls_rr_sort(const ilp_ls_rr_sort &RHS)
1579    : SPQ(RHS.SPQ) {}
1580
1581  bool isReady(SUnit *SU, unsigned CurCycle) const;
1582
1583  bool operator()(SUnit* left, SUnit* right) const;
1584};
1585
1586class RegReductionPQBase : public SchedulingPriorityQueue {
1587protected:
1588  std::vector<SUnit*> Queue;
1589  unsigned CurQueueId;
1590  bool TracksRegPressure;
1591  bool SrcOrder;
1592
1593  // SUnits - The SUnits for the current graph.
1594  std::vector<SUnit> *SUnits;
1595
1596  MachineFunction &MF;
1597  const TargetInstrInfo *TII;
1598  const TargetRegisterInfo *TRI;
1599  const TargetLowering *TLI;
1600  ScheduleDAGRRList *scheduleDAG;
1601
1602  // SethiUllmanNumbers - The SethiUllman number for each node.
1603  std::vector<unsigned> SethiUllmanNumbers;
1604
1605  /// RegPressure - Tracking current reg pressure per register class.
1606  ///
1607  std::vector<unsigned> RegPressure;
1608
1609  /// RegLimit - Tracking the number of allocatable registers per register
1610  /// class.
1611  std::vector<unsigned> RegLimit;
1612
1613public:
1614  RegReductionPQBase(MachineFunction &mf,
1615                     bool hasReadyFilter,
1616                     bool tracksrp,
1617                     bool srcorder,
1618                     const TargetInstrInfo *tii,
1619                     const TargetRegisterInfo *tri,
1620                     const TargetLowering *tli)
1621    : SchedulingPriorityQueue(hasReadyFilter),
1622      CurQueueId(0), TracksRegPressure(tracksrp), SrcOrder(srcorder),
1623      MF(mf), TII(tii), TRI(tri), TLI(tli), scheduleDAG(NULL) {
1624    if (TracksRegPressure) {
1625      unsigned NumRC = TRI->getNumRegClasses();
1626      RegLimit.resize(NumRC);
1627      RegPressure.resize(NumRC);
1628      std::fill(RegLimit.begin(), RegLimit.end(), 0);
1629      std::fill(RegPressure.begin(), RegPressure.end(), 0);
1630      for (TargetRegisterInfo::regclass_iterator I = TRI->regclass_begin(),
1631             E = TRI->regclass_end(); I != E; ++I)
1632        RegLimit[(*I)->getID()] = tri->getRegPressureLimit(*I, MF);
1633    }
1634  }
1635
1636  void setScheduleDAG(ScheduleDAGRRList *scheduleDag) {
1637    scheduleDAG = scheduleDag;
1638  }
1639
1640  ScheduleHazardRecognizer* getHazardRec() {
1641    return scheduleDAG->getHazardRec();
1642  }
1643
1644  void initNodes(std::vector<SUnit> &sunits);
1645
1646  void addNode(const SUnit *SU);
1647
1648  void updateNode(const SUnit *SU);
1649
1650  void releaseState() {
1651    SUnits = 0;
1652    SethiUllmanNumbers.clear();
1653    std::fill(RegPressure.begin(), RegPressure.end(), 0);
1654  }
1655
1656  unsigned getNodePriority(const SUnit *SU) const;
1657
1658  unsigned getNodeOrdering(const SUnit *SU) const {
1659    if (!SU->getNode()) return 0;
1660
1661    return scheduleDAG->DAG->GetOrdering(SU->getNode());
1662  }
1663
1664  bool empty() const { return Queue.empty(); }
1665
1666  void push(SUnit *U) {
1667    assert(!U->NodeQueueId && "Node in the queue already");
1668    U->NodeQueueId = ++CurQueueId;
1669    Queue.push_back(U);
1670  }
1671
1672  void remove(SUnit *SU) {
1673    assert(!Queue.empty() && "Queue is empty!");
1674    assert(SU->NodeQueueId != 0 && "Not in queue!");
1675    std::vector<SUnit *>::iterator I = std::find(Queue.begin(), Queue.end(),
1676                                                 SU);
1677    if (I != prior(Queue.end()))
1678      std::swap(*I, Queue.back());
1679    Queue.pop_back();
1680    SU->NodeQueueId = 0;
1681  }
1682
1683  bool tracksRegPressure() const { return TracksRegPressure; }
1684
1685  void dumpRegPressure() const;
1686
1687  bool HighRegPressure(const SUnit *SU) const;
1688
1689  bool MayReduceRegPressure(SUnit *SU) const;
1690
1691  int RegPressureDiff(SUnit *SU, unsigned &LiveUses) const;
1692
1693  void scheduledNode(SUnit *SU);
1694
1695  void unscheduledNode(SUnit *SU);
1696
1697protected:
1698  bool canClobber(const SUnit *SU, const SUnit *Op);
1699  void AddPseudoTwoAddrDeps();
1700  void PrescheduleNodesWithMultipleUses();
1701  void CalculateSethiUllmanNumbers();
1702};
1703
1704template<class SF>
1705static SUnit *popFromQueueImpl(std::vector<SUnit*> &Q, SF &Picker) {
1706  std::vector<SUnit *>::iterator Best = Q.begin();
1707  for (std::vector<SUnit *>::iterator I = llvm::next(Q.begin()),
1708         E = Q.end(); I != E; ++I)
1709    if (Picker(*Best, *I))
1710      Best = I;
1711  SUnit *V = *Best;
1712  if (Best != prior(Q.end()))
1713    std::swap(*Best, Q.back());
1714  Q.pop_back();
1715  return V;
1716}
1717
1718template<class SF>
1719SUnit *popFromQueue(std::vector<SUnit*> &Q, SF &Picker, ScheduleDAG *DAG) {
1720#ifndef NDEBUG
1721  if (DAG->StressSched) {
1722    reverse_sort<SF> RPicker(Picker);
1723    return popFromQueueImpl(Q, RPicker);
1724  }
1725#endif
1726  (void)DAG;
1727  return popFromQueueImpl(Q, Picker);
1728}
1729
1730template<class SF>
1731class RegReductionPriorityQueue : public RegReductionPQBase {
1732  SF Picker;
1733
1734public:
1735  RegReductionPriorityQueue(MachineFunction &mf,
1736                            bool tracksrp,
1737                            bool srcorder,
1738                            const TargetInstrInfo *tii,
1739                            const TargetRegisterInfo *tri,
1740                            const TargetLowering *tli)
1741    : RegReductionPQBase(mf, SF::HasReadyFilter, tracksrp, srcorder,
1742                         tii, tri, tli),
1743      Picker(this) {}
1744
1745  bool isBottomUp() const { return SF::IsBottomUp; }
1746
1747  bool isReady(SUnit *U) const {
1748    return Picker.HasReadyFilter && Picker.isReady(U, getCurCycle());
1749  }
1750
1751  SUnit *pop() {
1752    if (Queue.empty()) return NULL;
1753
1754    SUnit *V = popFromQueue(Queue, Picker, scheduleDAG);
1755    V->NodeQueueId = 0;
1756    return V;
1757  }
1758
1759  void dump(ScheduleDAG *DAG) const {
1760    // Emulate pop() without clobbering NodeQueueIds.
1761    std::vector<SUnit*> DumpQueue = Queue;
1762    SF DumpPicker = Picker;
1763    while (!DumpQueue.empty()) {
1764      SUnit *SU = popFromQueue(DumpQueue, DumpPicker, scheduleDAG);
1765      dbgs() << "Height " << SU->getHeight() << ": ";
1766      SU->dump(DAG);
1767    }
1768  }
1769};
1770
1771typedef RegReductionPriorityQueue<bu_ls_rr_sort>
1772BURegReductionPriorityQueue;
1773
1774typedef RegReductionPriorityQueue<src_ls_rr_sort>
1775SrcRegReductionPriorityQueue;
1776
1777typedef RegReductionPriorityQueue<hybrid_ls_rr_sort>
1778HybridBURRPriorityQueue;
1779
1780typedef RegReductionPriorityQueue<ilp_ls_rr_sort>
1781ILPBURRPriorityQueue;
1782} // end anonymous namespace
1783
1784//===----------------------------------------------------------------------===//
1785//           Static Node Priority for Register Pressure Reduction
1786//===----------------------------------------------------------------------===//
1787
1788// Check for special nodes that bypass scheduling heuristics.
1789// Currently this pushes TokenFactor nodes down, but may be used for other
1790// pseudo-ops as well.
1791//
1792// Return -1 to schedule right above left, 1 for left above right.
1793// Return 0 if no bias exists.
1794static int checkSpecialNodes(const SUnit *left, const SUnit *right) {
1795  bool LSchedLow = left->isScheduleLow;
1796  bool RSchedLow = right->isScheduleLow;
1797  if (LSchedLow != RSchedLow)
1798    return LSchedLow < RSchedLow ? 1 : -1;
1799  return 0;
1800}
1801
1802/// CalcNodeSethiUllmanNumber - Compute Sethi Ullman number.
1803/// Smaller number is the higher priority.
1804static unsigned
1805CalcNodeSethiUllmanNumber(const SUnit *SU, std::vector<unsigned> &SUNumbers) {
1806  unsigned &SethiUllmanNumber = SUNumbers[SU->NodeNum];
1807  if (SethiUllmanNumber != 0)
1808    return SethiUllmanNumber;
1809
1810  unsigned Extra = 0;
1811  for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
1812       I != E; ++I) {
1813    if (I->isCtrl()) continue;  // ignore chain preds
1814    SUnit *PredSU = I->getSUnit();
1815    unsigned PredSethiUllman = CalcNodeSethiUllmanNumber(PredSU, SUNumbers);
1816    if (PredSethiUllman > SethiUllmanNumber) {
1817      SethiUllmanNumber = PredSethiUllman;
1818      Extra = 0;
1819    } else if (PredSethiUllman == SethiUllmanNumber)
1820      ++Extra;
1821  }
1822
1823  SethiUllmanNumber += Extra;
1824
1825  if (SethiUllmanNumber == 0)
1826    SethiUllmanNumber = 1;
1827
1828  return SethiUllmanNumber;
1829}
1830
1831/// CalculateSethiUllmanNumbers - Calculate Sethi-Ullman numbers of all
1832/// scheduling units.
1833void RegReductionPQBase::CalculateSethiUllmanNumbers() {
1834  SethiUllmanNumbers.assign(SUnits->size(), 0);
1835
1836  for (unsigned i = 0, e = SUnits->size(); i != e; ++i)
1837    CalcNodeSethiUllmanNumber(&(*SUnits)[i], SethiUllmanNumbers);
1838}
1839
1840void RegReductionPQBase::addNode(const SUnit *SU) {
1841  unsigned SUSize = SethiUllmanNumbers.size();
1842  if (SUnits->size() > SUSize)
1843    SethiUllmanNumbers.resize(SUSize*2, 0);
1844  CalcNodeSethiUllmanNumber(SU, SethiUllmanNumbers);
1845}
1846
1847void RegReductionPQBase::updateNode(const SUnit *SU) {
1848  SethiUllmanNumbers[SU->NodeNum] = 0;
1849  CalcNodeSethiUllmanNumber(SU, SethiUllmanNumbers);
1850}
1851
1852// Lower priority means schedule further down. For bottom-up scheduling, lower
1853// priority SUs are scheduled before higher priority SUs.
1854unsigned RegReductionPQBase::getNodePriority(const SUnit *SU) const {
1855  assert(SU->NodeNum < SethiUllmanNumbers.size());
1856  unsigned Opc = SU->getNode() ? SU->getNode()->getOpcode() : 0;
1857  if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
1858    // CopyToReg should be close to its uses to facilitate coalescing and
1859    // avoid spilling.
1860    return 0;
1861  if (Opc == TargetOpcode::EXTRACT_SUBREG ||
1862      Opc == TargetOpcode::SUBREG_TO_REG ||
1863      Opc == TargetOpcode::INSERT_SUBREG)
1864    // EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG nodes should be
1865    // close to their uses to facilitate coalescing.
1866    return 0;
1867  if (SU->NumSuccs == 0 && SU->NumPreds != 0)
1868    // If SU does not have a register use, i.e. it doesn't produce a value
1869    // that would be consumed (e.g. store), then it terminates a chain of
1870    // computation.  Give it a large SethiUllman number so it will be
1871    // scheduled right before its predecessors that it doesn't lengthen
1872    // their live ranges.
1873    return 0xffff;
1874  if (SU->NumPreds == 0 && SU->NumSuccs != 0)
1875    // If SU does not have a register def, schedule it close to its uses
1876    // because it does not lengthen any live ranges.
1877    return 0;
1878#if 1
1879  return SethiUllmanNumbers[SU->NodeNum];
1880#else
1881  unsigned Priority = SethiUllmanNumbers[SU->NodeNum];
1882  if (SU->isCallOp) {
1883    // FIXME: This assumes all of the defs are used as call operands.
1884    int NP = (int)Priority - SU->getNode()->getNumValues();
1885    return (NP > 0) ? NP : 0;
1886  }
1887  return Priority;
1888#endif
1889}
1890
1891//===----------------------------------------------------------------------===//
1892//                     Register Pressure Tracking
1893//===----------------------------------------------------------------------===//
1894
1895void RegReductionPQBase::dumpRegPressure() const {
1896  for (TargetRegisterInfo::regclass_iterator I = TRI->regclass_begin(),
1897         E = TRI->regclass_end(); I != E; ++I) {
1898    const TargetRegisterClass *RC = *I;
1899    unsigned Id = RC->getID();
1900    unsigned RP = RegPressure[Id];
1901    if (!RP) continue;
1902    DEBUG(dbgs() << RC->getName() << ": " << RP << " / " << RegLimit[Id]
1903          << '\n');
1904  }
1905}
1906
1907bool RegReductionPQBase::HighRegPressure(const SUnit *SU) const {
1908  if (!TLI)
1909    return false;
1910
1911  for (SUnit::const_pred_iterator I = SU->Preds.begin(),E = SU->Preds.end();
1912       I != E; ++I) {
1913    if (I->isCtrl())
1914      continue;
1915    SUnit *PredSU = I->getSUnit();
1916    // NumRegDefsLeft is zero when enough uses of this node have been scheduled
1917    // to cover the number of registers defined (they are all live).
1918    if (PredSU->NumRegDefsLeft == 0) {
1919      continue;
1920    }
1921    for (ScheduleDAGSDNodes::RegDefIter RegDefPos(PredSU, scheduleDAG);
1922         RegDefPos.IsValid(); RegDefPos.Advance()) {
1923      unsigned RCId, Cost;
1924      GetCostForDef(RegDefPos, TLI, TII, TRI, RCId, Cost, MF);
1925
1926      if ((RegPressure[RCId] + Cost) >= RegLimit[RCId])
1927        return true;
1928    }
1929  }
1930  return false;
1931}
1932
1933bool RegReductionPQBase::MayReduceRegPressure(SUnit *SU) const {
1934  const SDNode *N = SU->getNode();
1935
1936  if (!N->isMachineOpcode() || !SU->NumSuccs)
1937    return false;
1938
1939  unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
1940  for (unsigned i = 0; i != NumDefs; ++i) {
1941    EVT VT = N->getValueType(i);
1942    if (!N->hasAnyUseOfValue(i))
1943      continue;
1944    unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
1945    if (RegPressure[RCId] >= RegLimit[RCId])
1946      return true;
1947  }
1948  return false;
1949}
1950
1951// Compute the register pressure contribution by this instruction by count up
1952// for uses that are not live and down for defs. Only count register classes
1953// that are already under high pressure. As a side effect, compute the number of
1954// uses of registers that are already live.
1955//
1956// FIXME: This encompasses the logic in HighRegPressure and MayReduceRegPressure
1957// so could probably be factored.
1958int RegReductionPQBase::RegPressureDiff(SUnit *SU, unsigned &LiveUses) const {
1959  LiveUses = 0;
1960  int PDiff = 0;
1961  for (SUnit::const_pred_iterator I = SU->Preds.begin(),E = SU->Preds.end();
1962       I != E; ++I) {
1963    if (I->isCtrl())
1964      continue;
1965    SUnit *PredSU = I->getSUnit();
1966    // NumRegDefsLeft is zero when enough uses of this node have been scheduled
1967    // to cover the number of registers defined (they are all live).
1968    if (PredSU->NumRegDefsLeft == 0) {
1969      if (PredSU->getNode()->isMachineOpcode())
1970        ++LiveUses;
1971      continue;
1972    }
1973    for (ScheduleDAGSDNodes::RegDefIter RegDefPos(PredSU, scheduleDAG);
1974         RegDefPos.IsValid(); RegDefPos.Advance()) {
1975      EVT VT = RegDefPos.GetValue();
1976      unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
1977      if (RegPressure[RCId] >= RegLimit[RCId])
1978        ++PDiff;
1979    }
1980  }
1981  const SDNode *N = SU->getNode();
1982
1983  if (!N || !N->isMachineOpcode() || !SU->NumSuccs)
1984    return PDiff;
1985
1986  unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
1987  for (unsigned i = 0; i != NumDefs; ++i) {
1988    EVT VT = N->getValueType(i);
1989    if (!N->hasAnyUseOfValue(i))
1990      continue;
1991    unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
1992    if (RegPressure[RCId] >= RegLimit[RCId])
1993      --PDiff;
1994  }
1995  return PDiff;
1996}
1997
1998void RegReductionPQBase::scheduledNode(SUnit *SU) {
1999  if (!TracksRegPressure)
2000    return;
2001
2002  if (!SU->getNode())
2003    return;
2004
2005  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
2006       I != E; ++I) {
2007    if (I->isCtrl())
2008      continue;
2009    SUnit *PredSU = I->getSUnit();
2010    // NumRegDefsLeft is zero when enough uses of this node have been scheduled
2011    // to cover the number of registers defined (they are all live).
2012    if (PredSU->NumRegDefsLeft == 0) {
2013      continue;
2014    }
2015    // FIXME: The ScheduleDAG currently loses information about which of a
2016    // node's values is consumed by each dependence. Consequently, if the node
2017    // defines multiple register classes, we don't know which to pressurize
2018    // here. Instead the following loop consumes the register defs in an
2019    // arbitrary order. At least it handles the common case of clustered loads
2020    // to the same class. For precise liveness, each SDep needs to indicate the
2021    // result number. But that tightly couples the ScheduleDAG with the
2022    // SelectionDAG making updates tricky. A simpler hack would be to attach a
2023    // value type or register class to SDep.
2024    //
2025    // The most important aspect of register tracking is balancing the increase
2026    // here with the reduction further below. Note that this SU may use multiple
2027    // defs in PredSU. The can't be determined here, but we've already
2028    // compensated by reducing NumRegDefsLeft in PredSU during
2029    // ScheduleDAGSDNodes::AddSchedEdges.
2030    --PredSU->NumRegDefsLeft;
2031    unsigned SkipRegDefs = PredSU->NumRegDefsLeft;
2032    for (ScheduleDAGSDNodes::RegDefIter RegDefPos(PredSU, scheduleDAG);
2033         RegDefPos.IsValid(); RegDefPos.Advance(), --SkipRegDefs) {
2034      if (SkipRegDefs)
2035        continue;
2036
2037      unsigned RCId, Cost;
2038      GetCostForDef(RegDefPos, TLI, TII, TRI, RCId, Cost, MF);
2039      RegPressure[RCId] += Cost;
2040      break;
2041    }
2042  }
2043
2044  // We should have this assert, but there may be dead SDNodes that never
2045  // materialize as SUnits, so they don't appear to generate liveness.
2046  //assert(SU->NumRegDefsLeft == 0 && "not all regdefs have scheduled uses");
2047  int SkipRegDefs = (int)SU->NumRegDefsLeft;
2048  for (ScheduleDAGSDNodes::RegDefIter RegDefPos(SU, scheduleDAG);
2049       RegDefPos.IsValid(); RegDefPos.Advance(), --SkipRegDefs) {
2050    if (SkipRegDefs > 0)
2051      continue;
2052    unsigned RCId, Cost;
2053    GetCostForDef(RegDefPos, TLI, TII, TRI, RCId, Cost, MF);
2054    if (RegPressure[RCId] < Cost) {
2055      // Register pressure tracking is imprecise. This can happen. But we try
2056      // hard not to let it happen because it likely results in poor scheduling.
2057      DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") has too many regdefs\n");
2058      RegPressure[RCId] = 0;
2059    }
2060    else {
2061      RegPressure[RCId] -= Cost;
2062    }
2063  }
2064  dumpRegPressure();
2065}
2066
2067void RegReductionPQBase::unscheduledNode(SUnit *SU) {
2068  if (!TracksRegPressure)
2069    return;
2070
2071  const SDNode *N = SU->getNode();
2072  if (!N) return;
2073
2074  if (!N->isMachineOpcode()) {
2075    if (N->getOpcode() != ISD::CopyToReg)
2076      return;
2077  } else {
2078    unsigned Opc = N->getMachineOpcode();
2079    if (Opc == TargetOpcode::EXTRACT_SUBREG ||
2080        Opc == TargetOpcode::INSERT_SUBREG ||
2081        Opc == TargetOpcode::SUBREG_TO_REG ||
2082        Opc == TargetOpcode::REG_SEQUENCE ||
2083        Opc == TargetOpcode::IMPLICIT_DEF)
2084      return;
2085  }
2086
2087  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
2088       I != E; ++I) {
2089    if (I->isCtrl())
2090      continue;
2091    SUnit *PredSU = I->getSUnit();
2092    // NumSuccsLeft counts all deps. Don't compare it with NumSuccs which only
2093    // counts data deps.
2094    if (PredSU->NumSuccsLeft != PredSU->Succs.size())
2095      continue;
2096    const SDNode *PN = PredSU->getNode();
2097    if (!PN->isMachineOpcode()) {
2098      if (PN->getOpcode() == ISD::CopyFromReg) {
2099        EVT VT = PN->getValueType(0);
2100        unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2101        RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
2102      }
2103      continue;
2104    }
2105    unsigned POpc = PN->getMachineOpcode();
2106    if (POpc == TargetOpcode::IMPLICIT_DEF)
2107      continue;
2108    if (POpc == TargetOpcode::EXTRACT_SUBREG ||
2109        POpc == TargetOpcode::INSERT_SUBREG ||
2110        POpc == TargetOpcode::SUBREG_TO_REG) {
2111      EVT VT = PN->getValueType(0);
2112      unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2113      RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
2114      continue;
2115    }
2116    unsigned NumDefs = TII->get(PN->getMachineOpcode()).getNumDefs();
2117    for (unsigned i = 0; i != NumDefs; ++i) {
2118      EVT VT = PN->getValueType(i);
2119      if (!PN->hasAnyUseOfValue(i))
2120        continue;
2121      unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2122      if (RegPressure[RCId] < TLI->getRepRegClassCostFor(VT))
2123        // Register pressure tracking is imprecise. This can happen.
2124        RegPressure[RCId] = 0;
2125      else
2126        RegPressure[RCId] -= TLI->getRepRegClassCostFor(VT);
2127    }
2128  }
2129
2130  // Check for isMachineOpcode() as PrescheduleNodesWithMultipleUses()
2131  // may transfer data dependencies to CopyToReg.
2132  if (SU->NumSuccs && N->isMachineOpcode()) {
2133    unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
2134    for (unsigned i = NumDefs, e = N->getNumValues(); i != e; ++i) {
2135      EVT VT = N->getValueType(i);
2136      if (VT == MVT::Glue || VT == MVT::Other)
2137        continue;
2138      if (!N->hasAnyUseOfValue(i))
2139        continue;
2140      unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2141      RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
2142    }
2143  }
2144
2145  dumpRegPressure();
2146}
2147
2148//===----------------------------------------------------------------------===//
2149//           Dynamic Node Priority for Register Pressure Reduction
2150//===----------------------------------------------------------------------===//
2151
2152/// closestSucc - Returns the scheduled cycle of the successor which is
2153/// closest to the current cycle.
2154static unsigned closestSucc(const SUnit *SU) {
2155  unsigned MaxHeight = 0;
2156  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
2157       I != E; ++I) {
2158    if (I->isCtrl()) continue;  // ignore chain succs
2159    unsigned Height = I->getSUnit()->getHeight();
2160    // If there are bunch of CopyToRegs stacked up, they should be considered
2161    // to be at the same position.
2162    if (I->getSUnit()->getNode() &&
2163        I->getSUnit()->getNode()->getOpcode() == ISD::CopyToReg)
2164      Height = closestSucc(I->getSUnit())+1;
2165    if (Height > MaxHeight)
2166      MaxHeight = Height;
2167  }
2168  return MaxHeight;
2169}
2170
2171/// calcMaxScratches - Returns an cost estimate of the worse case requirement
2172/// for scratch registers, i.e. number of data dependencies.
2173static unsigned calcMaxScratches(const SUnit *SU) {
2174  unsigned Scratches = 0;
2175  for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
2176       I != E; ++I) {
2177    if (I->isCtrl()) continue;  // ignore chain preds
2178    Scratches++;
2179  }
2180  return Scratches;
2181}
2182
2183/// hasOnlyLiveInOpers - Return true if SU has only value predecessors that are
2184/// CopyFromReg from a virtual register.
2185static bool hasOnlyLiveInOpers(const SUnit *SU) {
2186  bool RetVal = false;
2187  for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
2188       I != E; ++I) {
2189    if (I->isCtrl()) continue;
2190    const SUnit *PredSU = I->getSUnit();
2191    if (PredSU->getNode() &&
2192        PredSU->getNode()->getOpcode() == ISD::CopyFromReg) {
2193      unsigned Reg =
2194        cast<RegisterSDNode>(PredSU->getNode()->getOperand(1))->getReg();
2195      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
2196        RetVal = true;
2197        continue;
2198      }
2199    }
2200    return false;
2201  }
2202  return RetVal;
2203}
2204
2205/// hasOnlyLiveOutUses - Return true if SU has only value successors that are
2206/// CopyToReg to a virtual register. This SU def is probably a liveout and
2207/// it has no other use. It should be scheduled closer to the terminator.
2208static bool hasOnlyLiveOutUses(const SUnit *SU) {
2209  bool RetVal = false;
2210  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
2211       I != E; ++I) {
2212    if (I->isCtrl()) continue;
2213    const SUnit *SuccSU = I->getSUnit();
2214    if (SuccSU->getNode() && SuccSU->getNode()->getOpcode() == ISD::CopyToReg) {
2215      unsigned Reg =
2216        cast<RegisterSDNode>(SuccSU->getNode()->getOperand(1))->getReg();
2217      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
2218        RetVal = true;
2219        continue;
2220      }
2221    }
2222    return false;
2223  }
2224  return RetVal;
2225}
2226
2227// Set isVRegCycle for a node with only live in opers and live out uses. Also
2228// set isVRegCycle for its CopyFromReg operands.
2229//
2230// This is only relevant for single-block loops, in which case the VRegCycle
2231// node is likely an induction variable in which the operand and target virtual
2232// registers should be coalesced (e.g. pre/post increment values). Setting the
2233// isVRegCycle flag helps the scheduler prioritize other uses of the same
2234// CopyFromReg so that this node becomes the virtual register "kill". This
2235// avoids interference between the values live in and out of the block and
2236// eliminates a copy inside the loop.
2237static void initVRegCycle(SUnit *SU) {
2238  if (DisableSchedVRegCycle)
2239    return;
2240
2241  if (!hasOnlyLiveInOpers(SU) || !hasOnlyLiveOutUses(SU))
2242    return;
2243
2244  DEBUG(dbgs() << "VRegCycle: SU(" << SU->NodeNum << ")\n");
2245
2246  SU->isVRegCycle = true;
2247
2248  for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
2249       I != E; ++I) {
2250    if (I->isCtrl()) continue;
2251    I->getSUnit()->isVRegCycle = true;
2252  }
2253}
2254
2255// After scheduling the definition of a VRegCycle, clear the isVRegCycle flag of
2256// CopyFromReg operands. We should no longer penalize other uses of this VReg.
2257static void resetVRegCycle(SUnit *SU) {
2258  if (!SU->isVRegCycle)
2259    return;
2260
2261  for (SUnit::const_pred_iterator I = SU->Preds.begin(),E = SU->Preds.end();
2262       I != E; ++I) {
2263    if (I->isCtrl()) continue;  // ignore chain preds
2264    SUnit *PredSU = I->getSUnit();
2265    if (PredSU->isVRegCycle) {
2266      assert(PredSU->getNode()->getOpcode() == ISD::CopyFromReg &&
2267             "VRegCycle def must be CopyFromReg");
2268      I->getSUnit()->isVRegCycle = 0;
2269    }
2270  }
2271}
2272
2273// Return true if this SUnit uses a CopyFromReg node marked as a VRegCycle. This
2274// means a node that defines the VRegCycle has not been scheduled yet.
2275static bool hasVRegCycleUse(const SUnit *SU) {
2276  // If this SU also defines the VReg, don't hoist it as a "use".
2277  if (SU->isVRegCycle)
2278    return false;
2279
2280  for (SUnit::const_pred_iterator I = SU->Preds.begin(),E = SU->Preds.end();
2281       I != E; ++I) {
2282    if (I->isCtrl()) continue;  // ignore chain preds
2283    if (I->getSUnit()->isVRegCycle &&
2284        I->getSUnit()->getNode()->getOpcode() == ISD::CopyFromReg) {
2285      DEBUG(dbgs() << "  VReg cycle use: SU (" << SU->NodeNum << ")\n");
2286      return true;
2287    }
2288  }
2289  return false;
2290}
2291
2292// Check for either a dependence (latency) or resource (hazard) stall.
2293//
2294// Note: The ScheduleHazardRecognizer interface requires a non-const SU.
2295static bool BUHasStall(SUnit *SU, int Height, RegReductionPQBase *SPQ) {
2296  if ((int)SPQ->getCurCycle() < Height) return true;
2297  if (SPQ->getHazardRec()->getHazardType(SU, 0)
2298      != ScheduleHazardRecognizer::NoHazard)
2299    return true;
2300  return false;
2301}
2302
2303// Return -1 if left has higher priority, 1 if right has higher priority.
2304// Return 0 if latency-based priority is equivalent.
2305static int BUCompareLatency(SUnit *left, SUnit *right, bool checkPref,
2306                            RegReductionPQBase *SPQ) {
2307  // Scheduling an instruction that uses a VReg whose postincrement has not yet
2308  // been scheduled will induce a copy. Model this as an extra cycle of latency.
2309  int LPenalty = hasVRegCycleUse(left) ? 1 : 0;
2310  int RPenalty = hasVRegCycleUse(right) ? 1 : 0;
2311  int LHeight = (int)left->getHeight() + LPenalty;
2312  int RHeight = (int)right->getHeight() + RPenalty;
2313
2314  bool LStall = (!checkPref || left->SchedulingPref == Sched::ILP) &&
2315    BUHasStall(left, LHeight, SPQ);
2316  bool RStall = (!checkPref || right->SchedulingPref == Sched::ILP) &&
2317    BUHasStall(right, RHeight, SPQ);
2318
2319  // If scheduling one of the node will cause a pipeline stall, delay it.
2320  // If scheduling either one of the node will cause a pipeline stall, sort
2321  // them according to their height.
2322  if (LStall) {
2323    if (!RStall)
2324      return 1;
2325    if (LHeight != RHeight)
2326      return LHeight > RHeight ? 1 : -1;
2327  } else if (RStall)
2328    return -1;
2329
2330  // If either node is scheduling for latency, sort them by height/depth
2331  // and latency.
2332  if (!checkPref || (left->SchedulingPref == Sched::ILP ||
2333                     right->SchedulingPref == Sched::ILP)) {
2334    if (DisableSchedCycles) {
2335      if (LHeight != RHeight)
2336        return LHeight > RHeight ? 1 : -1;
2337    }
2338    else {
2339      // If neither instruction stalls (!LStall && !RStall) then
2340      // its height is already covered so only its depth matters. We also reach
2341      // this if both stall but have the same height.
2342      int LDepth = left->getDepth() - LPenalty;
2343      int RDepth = right->getDepth() - RPenalty;
2344      if (LDepth != RDepth) {
2345        DEBUG(dbgs() << "  Comparing latency of SU (" << left->NodeNum
2346              << ") depth " << LDepth << " vs SU (" << right->NodeNum
2347              << ") depth " << RDepth << "\n");
2348        return LDepth < RDepth ? 1 : -1;
2349      }
2350    }
2351    if (left->Latency != right->Latency)
2352      return left->Latency > right->Latency ? 1 : -1;
2353  }
2354  return 0;
2355}
2356
2357static bool BURRSort(SUnit *left, SUnit *right, RegReductionPQBase *SPQ) {
2358  // Schedule physical register definitions close to their use. This is
2359  // motivated by microarchitectures that can fuse cmp+jump macro-ops. But as
2360  // long as shortening physreg live ranges is generally good, we can defer
2361  // creating a subtarget hook.
2362  if (!DisableSchedPhysRegJoin) {
2363    bool LHasPhysReg = left->hasPhysRegDefs;
2364    bool RHasPhysReg = right->hasPhysRegDefs;
2365    if (LHasPhysReg != RHasPhysReg) {
2366      #ifndef NDEBUG
2367      const char *const PhysRegMsg[] = {" has no physreg"," defines a physreg"};
2368      #endif
2369      DEBUG(dbgs() << "  SU (" << left->NodeNum << ") "
2370            << PhysRegMsg[LHasPhysReg] << " SU(" << right->NodeNum << ") "
2371            << PhysRegMsg[RHasPhysReg] << "\n");
2372      return LHasPhysReg < RHasPhysReg;
2373    }
2374  }
2375
2376  // Prioritize by Sethi-Ulmann number and push CopyToReg nodes down.
2377  unsigned LPriority = SPQ->getNodePriority(left);
2378  unsigned RPriority = SPQ->getNodePriority(right);
2379
2380  // Be really careful about hoisting call operands above previous calls.
2381  // Only allows it if it would reduce register pressure.
2382  if (left->isCall && right->isCallOp) {
2383    unsigned RNumVals = right->getNode()->getNumValues();
2384    RPriority = (RPriority > RNumVals) ? (RPriority - RNumVals) : 0;
2385  }
2386  if (right->isCall && left->isCallOp) {
2387    unsigned LNumVals = left->getNode()->getNumValues();
2388    LPriority = (LPriority > LNumVals) ? (LPriority - LNumVals) : 0;
2389  }
2390
2391  if (LPriority != RPriority)
2392    return LPriority > RPriority;
2393
2394  // One or both of the nodes are calls and their sethi-ullman numbers are the
2395  // same, then keep source order.
2396  if (left->isCall || right->isCall) {
2397    unsigned LOrder = SPQ->getNodeOrdering(left);
2398    unsigned ROrder = SPQ->getNodeOrdering(right);
2399
2400    // Prefer an ordering where the lower the non-zero order number, the higher
2401    // the preference.
2402    if ((LOrder || ROrder) && LOrder != ROrder)
2403      return LOrder != 0 && (LOrder < ROrder || ROrder == 0);
2404  }
2405
2406  // Try schedule def + use closer when Sethi-Ullman numbers are the same.
2407  // e.g.
2408  // t1 = op t2, c1
2409  // t3 = op t4, c2
2410  //
2411  // and the following instructions are both ready.
2412  // t2 = op c3
2413  // t4 = op c4
2414  //
2415  // Then schedule t2 = op first.
2416  // i.e.
2417  // t4 = op c4
2418  // t2 = op c3
2419  // t1 = op t2, c1
2420  // t3 = op t4, c2
2421  //
2422  // This creates more short live intervals.
2423  unsigned LDist = closestSucc(left);
2424  unsigned RDist = closestSucc(right);
2425  if (LDist != RDist)
2426    return LDist < RDist;
2427
2428  // How many registers becomes live when the node is scheduled.
2429  unsigned LScratch = calcMaxScratches(left);
2430  unsigned RScratch = calcMaxScratches(right);
2431  if (LScratch != RScratch)
2432    return LScratch > RScratch;
2433
2434  // Comparing latency against a call makes little sense unless the node
2435  // is register pressure-neutral.
2436  if ((left->isCall && RPriority > 0) || (right->isCall && LPriority > 0))
2437    return (left->NodeQueueId > right->NodeQueueId);
2438
2439  // Do not compare latencies when one or both of the nodes are calls.
2440  if (!DisableSchedCycles &&
2441      !(left->isCall || right->isCall)) {
2442    int result = BUCompareLatency(left, right, false /*checkPref*/, SPQ);
2443    if (result != 0)
2444      return result > 0;
2445  }
2446  else {
2447    if (left->getHeight() != right->getHeight())
2448      return left->getHeight() > right->getHeight();
2449
2450    if (left->getDepth() != right->getDepth())
2451      return left->getDepth() < right->getDepth();
2452  }
2453
2454  assert(left->NodeQueueId && right->NodeQueueId &&
2455         "NodeQueueId cannot be zero");
2456  return (left->NodeQueueId > right->NodeQueueId);
2457}
2458
2459// Bottom up
2460bool bu_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
2461  if (int res = checkSpecialNodes(left, right))
2462    return res > 0;
2463
2464  return BURRSort(left, right, SPQ);
2465}
2466
2467// Source order, otherwise bottom up.
2468bool src_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
2469  if (int res = checkSpecialNodes(left, right))
2470    return res > 0;
2471
2472  unsigned LOrder = SPQ->getNodeOrdering(left);
2473  unsigned ROrder = SPQ->getNodeOrdering(right);
2474
2475  // Prefer an ordering where the lower the non-zero order number, the higher
2476  // the preference.
2477  if ((LOrder || ROrder) && LOrder != ROrder)
2478    return LOrder != 0 && (LOrder < ROrder || ROrder == 0);
2479
2480  return BURRSort(left, right, SPQ);
2481}
2482
2483// If the time between now and when the instruction will be ready can cover
2484// the spill code, then avoid adding it to the ready queue. This gives long
2485// stalls highest priority and allows hoisting across calls. It should also
2486// speed up processing the available queue.
2487bool hybrid_ls_rr_sort::isReady(SUnit *SU, unsigned CurCycle) const {
2488  static const unsigned ReadyDelay = 3;
2489
2490  if (SPQ->MayReduceRegPressure(SU)) return true;
2491
2492  if (SU->getHeight() > (CurCycle + ReadyDelay)) return false;
2493
2494  if (SPQ->getHazardRec()->getHazardType(SU, -ReadyDelay)
2495      != ScheduleHazardRecognizer::NoHazard)
2496    return false;
2497
2498  return true;
2499}
2500
2501// Return true if right should be scheduled with higher priority than left.
2502bool hybrid_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
2503  if (int res = checkSpecialNodes(left, right))
2504    return res > 0;
2505
2506  if (left->isCall || right->isCall)
2507    // No way to compute latency of calls.
2508    return BURRSort(left, right, SPQ);
2509
2510  bool LHigh = SPQ->HighRegPressure(left);
2511  bool RHigh = SPQ->HighRegPressure(right);
2512  // Avoid causing spills. If register pressure is high, schedule for
2513  // register pressure reduction.
2514  if (LHigh && !RHigh) {
2515    DEBUG(dbgs() << "  pressure SU(" << left->NodeNum << ") > SU("
2516          << right->NodeNum << ")\n");
2517    return true;
2518  }
2519  else if (!LHigh && RHigh) {
2520    DEBUG(dbgs() << "  pressure SU(" << right->NodeNum << ") > SU("
2521          << left->NodeNum << ")\n");
2522    return false;
2523  }
2524  if (!LHigh && !RHigh) {
2525    int result = BUCompareLatency(left, right, true /*checkPref*/, SPQ);
2526    if (result != 0)
2527      return result > 0;
2528  }
2529  return BURRSort(left, right, SPQ);
2530}
2531
2532// Schedule as many instructions in each cycle as possible. So don't make an
2533// instruction available unless it is ready in the current cycle.
2534bool ilp_ls_rr_sort::isReady(SUnit *SU, unsigned CurCycle) const {
2535  if (SU->getHeight() > CurCycle) return false;
2536
2537  if (SPQ->getHazardRec()->getHazardType(SU, 0)
2538      != ScheduleHazardRecognizer::NoHazard)
2539    return false;
2540
2541  return true;
2542}
2543
2544static bool canEnableCoalescing(SUnit *SU) {
2545  unsigned Opc = SU->getNode() ? SU->getNode()->getOpcode() : 0;
2546  if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
2547    // CopyToReg should be close to its uses to facilitate coalescing and
2548    // avoid spilling.
2549    return true;
2550
2551  if (Opc == TargetOpcode::EXTRACT_SUBREG ||
2552      Opc == TargetOpcode::SUBREG_TO_REG ||
2553      Opc == TargetOpcode::INSERT_SUBREG)
2554    // EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG nodes should be
2555    // close to their uses to facilitate coalescing.
2556    return true;
2557
2558  if (SU->NumPreds == 0 && SU->NumSuccs != 0)
2559    // If SU does not have a register def, schedule it close to its uses
2560    // because it does not lengthen any live ranges.
2561    return true;
2562
2563  return false;
2564}
2565
2566// list-ilp is currently an experimental scheduler that allows various
2567// heuristics to be enabled prior to the normal register reduction logic.
2568bool ilp_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
2569  if (int res = checkSpecialNodes(left, right))
2570    return res > 0;
2571
2572  if (left->isCall || right->isCall)
2573    // No way to compute latency of calls.
2574    return BURRSort(left, right, SPQ);
2575
2576  unsigned LLiveUses = 0, RLiveUses = 0;
2577  int LPDiff = 0, RPDiff = 0;
2578  if (!DisableSchedRegPressure || !DisableSchedLiveUses) {
2579    LPDiff = SPQ->RegPressureDiff(left, LLiveUses);
2580    RPDiff = SPQ->RegPressureDiff(right, RLiveUses);
2581  }
2582  if (!DisableSchedRegPressure && LPDiff != RPDiff) {
2583    DEBUG(dbgs() << "RegPressureDiff SU(" << left->NodeNum << "): " << LPDiff
2584          << " != SU(" << right->NodeNum << "): " << RPDiff << "\n");
2585    return LPDiff > RPDiff;
2586  }
2587
2588  if (!DisableSchedRegPressure && (LPDiff > 0 || RPDiff > 0)) {
2589    bool LReduce = canEnableCoalescing(left);
2590    bool RReduce = canEnableCoalescing(right);
2591    if (LReduce && !RReduce) return false;
2592    if (RReduce && !LReduce) return true;
2593  }
2594
2595  if (!DisableSchedLiveUses && (LLiveUses != RLiveUses)) {
2596    DEBUG(dbgs() << "Live uses SU(" << left->NodeNum << "): " << LLiveUses
2597          << " != SU(" << right->NodeNum << "): " << RLiveUses << "\n");
2598    return LLiveUses < RLiveUses;
2599  }
2600
2601  if (!DisableSchedStalls) {
2602    bool LStall = BUHasStall(left, left->getHeight(), SPQ);
2603    bool RStall = BUHasStall(right, right->getHeight(), SPQ);
2604    if (LStall != RStall)
2605      return left->getHeight() > right->getHeight();
2606  }
2607
2608  if (!DisableSchedCriticalPath) {
2609    int spread = (int)left->getDepth() - (int)right->getDepth();
2610    if (std::abs(spread) > MaxReorderWindow) {
2611      DEBUG(dbgs() << "Depth of SU(" << left->NodeNum << "): "
2612            << left->getDepth() << " != SU(" << right->NodeNum << "): "
2613            << right->getDepth() << "\n");
2614      return left->getDepth() < right->getDepth();
2615    }
2616  }
2617
2618  if (!DisableSchedHeight && left->getHeight() != right->getHeight()) {
2619    int spread = (int)left->getHeight() - (int)right->getHeight();
2620    if (std::abs(spread) > MaxReorderWindow)
2621      return left->getHeight() > right->getHeight();
2622  }
2623
2624  return BURRSort(left, right, SPQ);
2625}
2626
2627void RegReductionPQBase::initNodes(std::vector<SUnit> &sunits) {
2628  SUnits = &sunits;
2629  // Add pseudo dependency edges for two-address nodes.
2630  if (!Disable2AddrHack)
2631    AddPseudoTwoAddrDeps();
2632  // Reroute edges to nodes with multiple uses.
2633  if (!TracksRegPressure && !SrcOrder)
2634    PrescheduleNodesWithMultipleUses();
2635  // Calculate node priorities.
2636  CalculateSethiUllmanNumbers();
2637
2638  // For single block loops, mark nodes that look like canonical IV increments.
2639  if (scheduleDAG->BB->isSuccessor(scheduleDAG->BB)) {
2640    for (unsigned i = 0, e = sunits.size(); i != e; ++i) {
2641      initVRegCycle(&sunits[i]);
2642    }
2643  }
2644}
2645
2646//===----------------------------------------------------------------------===//
2647//                    Preschedule for Register Pressure
2648//===----------------------------------------------------------------------===//
2649
2650bool RegReductionPQBase::canClobber(const SUnit *SU, const SUnit *Op) {
2651  if (SU->isTwoAddress) {
2652    unsigned Opc = SU->getNode()->getMachineOpcode();
2653    const MCInstrDesc &MCID = TII->get(Opc);
2654    unsigned NumRes = MCID.getNumDefs();
2655    unsigned NumOps = MCID.getNumOperands() - NumRes;
2656    for (unsigned i = 0; i != NumOps; ++i) {
2657      if (MCID.getOperandConstraint(i+NumRes, MCOI::TIED_TO) != -1) {
2658        SDNode *DU = SU->getNode()->getOperand(i).getNode();
2659        if (DU->getNodeId() != -1 &&
2660            Op->OrigNode == &(*SUnits)[DU->getNodeId()])
2661          return true;
2662      }
2663    }
2664  }
2665  return false;
2666}
2667
2668/// canClobberReachingPhysRegUse - True if SU would clobber one of it's
2669/// successor's explicit physregs whose definition can reach DepSU.
2670/// i.e. DepSU should not be scheduled above SU.
2671static bool canClobberReachingPhysRegUse(const SUnit *DepSU, const SUnit *SU,
2672                                         ScheduleDAGRRList *scheduleDAG,
2673                                         const TargetInstrInfo *TII,
2674                                         const TargetRegisterInfo *TRI) {
2675  const uint16_t *ImpDefs
2676    = TII->get(SU->getNode()->getMachineOpcode()).getImplicitDefs();
2677  const uint32_t *RegMask = getNodeRegMask(SU->getNode());
2678  if(!ImpDefs && !RegMask)
2679    return false;
2680
2681  for (SUnit::const_succ_iterator SI = SU->Succs.begin(), SE = SU->Succs.end();
2682       SI != SE; ++SI) {
2683    SUnit *SuccSU = SI->getSUnit();
2684    for (SUnit::const_pred_iterator PI = SuccSU->Preds.begin(),
2685           PE = SuccSU->Preds.end(); PI != PE; ++PI) {
2686      if (!PI->isAssignedRegDep())
2687        continue;
2688
2689      if (RegMask && MachineOperand::clobbersPhysReg(RegMask, PI->getReg()) &&
2690          scheduleDAG->IsReachable(DepSU, PI->getSUnit()))
2691        return true;
2692
2693      if (ImpDefs)
2694        for (const uint16_t *ImpDef = ImpDefs; *ImpDef; ++ImpDef)
2695          // Return true if SU clobbers this physical register use and the
2696          // definition of the register reaches from DepSU. IsReachable queries
2697          // a topological forward sort of the DAG (following the successors).
2698          if (TRI->regsOverlap(*ImpDef, PI->getReg()) &&
2699              scheduleDAG->IsReachable(DepSU, PI->getSUnit()))
2700            return true;
2701    }
2702  }
2703  return false;
2704}
2705
2706/// canClobberPhysRegDefs - True if SU would clobber one of SuccSU's
2707/// physical register defs.
2708static bool canClobberPhysRegDefs(const SUnit *SuccSU, const SUnit *SU,
2709                                  const TargetInstrInfo *TII,
2710                                  const TargetRegisterInfo *TRI) {
2711  SDNode *N = SuccSU->getNode();
2712  unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
2713  const uint16_t *ImpDefs = TII->get(N->getMachineOpcode()).getImplicitDefs();
2714  assert(ImpDefs && "Caller should check hasPhysRegDefs");
2715  for (const SDNode *SUNode = SU->getNode(); SUNode;
2716       SUNode = SUNode->getGluedNode()) {
2717    if (!SUNode->isMachineOpcode())
2718      continue;
2719    const uint16_t *SUImpDefs =
2720      TII->get(SUNode->getMachineOpcode()).getImplicitDefs();
2721    const uint32_t *SURegMask = getNodeRegMask(SUNode);
2722    if (!SUImpDefs && !SURegMask)
2723      continue;
2724    for (unsigned i = NumDefs, e = N->getNumValues(); i != e; ++i) {
2725      EVT VT = N->getValueType(i);
2726      if (VT == MVT::Glue || VT == MVT::Other)
2727        continue;
2728      if (!N->hasAnyUseOfValue(i))
2729        continue;
2730      unsigned Reg = ImpDefs[i - NumDefs];
2731      if (SURegMask && MachineOperand::clobbersPhysReg(SURegMask, Reg))
2732        return true;
2733      if (!SUImpDefs)
2734        continue;
2735      for (;*SUImpDefs; ++SUImpDefs) {
2736        unsigned SUReg = *SUImpDefs;
2737        if (TRI->regsOverlap(Reg, SUReg))
2738          return true;
2739      }
2740    }
2741  }
2742  return false;
2743}
2744
2745/// PrescheduleNodesWithMultipleUses - Nodes with multiple uses
2746/// are not handled well by the general register pressure reduction
2747/// heuristics. When presented with code like this:
2748///
2749///      N
2750///    / |
2751///   /  |
2752///  U  store
2753///  |
2754/// ...
2755///
2756/// the heuristics tend to push the store up, but since the
2757/// operand of the store has another use (U), this would increase
2758/// the length of that other use (the U->N edge).
2759///
2760/// This function transforms code like the above to route U's
2761/// dependence through the store when possible, like this:
2762///
2763///      N
2764///      ||
2765///      ||
2766///     store
2767///       |
2768///       U
2769///       |
2770///      ...
2771///
2772/// This results in the store being scheduled immediately
2773/// after N, which shortens the U->N live range, reducing
2774/// register pressure.
2775///
2776void RegReductionPQBase::PrescheduleNodesWithMultipleUses() {
2777  // Visit all the nodes in topological order, working top-down.
2778  for (unsigned i = 0, e = SUnits->size(); i != e; ++i) {
2779    SUnit *SU = &(*SUnits)[i];
2780    // For now, only look at nodes with no data successors, such as stores.
2781    // These are especially important, due to the heuristics in
2782    // getNodePriority for nodes with no data successors.
2783    if (SU->NumSuccs != 0)
2784      continue;
2785    // For now, only look at nodes with exactly one data predecessor.
2786    if (SU->NumPreds != 1)
2787      continue;
2788    // Avoid prescheduling copies to virtual registers, which don't behave
2789    // like other nodes from the perspective of scheduling heuristics.
2790    if (SDNode *N = SU->getNode())
2791      if (N->getOpcode() == ISD::CopyToReg &&
2792          TargetRegisterInfo::isVirtualRegister
2793            (cast<RegisterSDNode>(N->getOperand(1))->getReg()))
2794        continue;
2795
2796    // Locate the single data predecessor.
2797    SUnit *PredSU = 0;
2798    for (SUnit::const_pred_iterator II = SU->Preds.begin(),
2799         EE = SU->Preds.end(); II != EE; ++II)
2800      if (!II->isCtrl()) {
2801        PredSU = II->getSUnit();
2802        break;
2803      }
2804    assert(PredSU);
2805
2806    // Don't rewrite edges that carry physregs, because that requires additional
2807    // support infrastructure.
2808    if (PredSU->hasPhysRegDefs)
2809      continue;
2810    // Short-circuit the case where SU is PredSU's only data successor.
2811    if (PredSU->NumSuccs == 1)
2812      continue;
2813    // Avoid prescheduling to copies from virtual registers, which don't behave
2814    // like other nodes from the perspective of scheduling heuristics.
2815    if (SDNode *N = SU->getNode())
2816      if (N->getOpcode() == ISD::CopyFromReg &&
2817          TargetRegisterInfo::isVirtualRegister
2818            (cast<RegisterSDNode>(N->getOperand(1))->getReg()))
2819        continue;
2820
2821    // Perform checks on the successors of PredSU.
2822    for (SUnit::const_succ_iterator II = PredSU->Succs.begin(),
2823         EE = PredSU->Succs.end(); II != EE; ++II) {
2824      SUnit *PredSuccSU = II->getSUnit();
2825      if (PredSuccSU == SU) continue;
2826      // If PredSU has another successor with no data successors, for
2827      // now don't attempt to choose either over the other.
2828      if (PredSuccSU->NumSuccs == 0)
2829        goto outer_loop_continue;
2830      // Don't break physical register dependencies.
2831      if (SU->hasPhysRegClobbers && PredSuccSU->hasPhysRegDefs)
2832        if (canClobberPhysRegDefs(PredSuccSU, SU, TII, TRI))
2833          goto outer_loop_continue;
2834      // Don't introduce graph cycles.
2835      if (scheduleDAG->IsReachable(SU, PredSuccSU))
2836        goto outer_loop_continue;
2837    }
2838
2839    // Ok, the transformation is safe and the heuristics suggest it is
2840    // profitable. Update the graph.
2841    DEBUG(dbgs() << "    Prescheduling SU #" << SU->NodeNum
2842                 << " next to PredSU #" << PredSU->NodeNum
2843                 << " to guide scheduling in the presence of multiple uses\n");
2844    for (unsigned i = 0; i != PredSU->Succs.size(); ++i) {
2845      SDep Edge = PredSU->Succs[i];
2846      assert(!Edge.isAssignedRegDep());
2847      SUnit *SuccSU = Edge.getSUnit();
2848      if (SuccSU != SU) {
2849        Edge.setSUnit(PredSU);
2850        scheduleDAG->RemovePred(SuccSU, Edge);
2851        scheduleDAG->AddPred(SU, Edge);
2852        Edge.setSUnit(SU);
2853        scheduleDAG->AddPred(SuccSU, Edge);
2854        --i;
2855      }
2856    }
2857  outer_loop_continue:;
2858  }
2859}
2860
2861/// AddPseudoTwoAddrDeps - If two nodes share an operand and one of them uses
2862/// it as a def&use operand. Add a pseudo control edge from it to the other
2863/// node (if it won't create a cycle) so the two-address one will be scheduled
2864/// first (lower in the schedule). If both nodes are two-address, favor the
2865/// one that has a CopyToReg use (more likely to be a loop induction update).
2866/// If both are two-address, but one is commutable while the other is not
2867/// commutable, favor the one that's not commutable.
2868void RegReductionPQBase::AddPseudoTwoAddrDeps() {
2869  for (unsigned i = 0, e = SUnits->size(); i != e; ++i) {
2870    SUnit *SU = &(*SUnits)[i];
2871    if (!SU->isTwoAddress)
2872      continue;
2873
2874    SDNode *Node = SU->getNode();
2875    if (!Node || !Node->isMachineOpcode() || SU->getNode()->getGluedNode())
2876      continue;
2877
2878    bool isLiveOut = hasOnlyLiveOutUses(SU);
2879    unsigned Opc = Node->getMachineOpcode();
2880    const MCInstrDesc &MCID = TII->get(Opc);
2881    unsigned NumRes = MCID.getNumDefs();
2882    unsigned NumOps = MCID.getNumOperands() - NumRes;
2883    for (unsigned j = 0; j != NumOps; ++j) {
2884      if (MCID.getOperandConstraint(j+NumRes, MCOI::TIED_TO) == -1)
2885        continue;
2886      SDNode *DU = SU->getNode()->getOperand(j).getNode();
2887      if (DU->getNodeId() == -1)
2888        continue;
2889      const SUnit *DUSU = &(*SUnits)[DU->getNodeId()];
2890      if (!DUSU) continue;
2891      for (SUnit::const_succ_iterator I = DUSU->Succs.begin(),
2892           E = DUSU->Succs.end(); I != E; ++I) {
2893        if (I->isCtrl()) continue;
2894        SUnit *SuccSU = I->getSUnit();
2895        if (SuccSU == SU)
2896          continue;
2897        // Be conservative. Ignore if nodes aren't at roughly the same
2898        // depth and height.
2899        if (SuccSU->getHeight() < SU->getHeight() &&
2900            (SU->getHeight() - SuccSU->getHeight()) > 1)
2901          continue;
2902        // Skip past COPY_TO_REGCLASS nodes, so that the pseudo edge
2903        // constrains whatever is using the copy, instead of the copy
2904        // itself. In the case that the copy is coalesced, this
2905        // preserves the intent of the pseudo two-address heurietics.
2906        while (SuccSU->Succs.size() == 1 &&
2907               SuccSU->getNode()->isMachineOpcode() &&
2908               SuccSU->getNode()->getMachineOpcode() ==
2909                 TargetOpcode::COPY_TO_REGCLASS)
2910          SuccSU = SuccSU->Succs.front().getSUnit();
2911        // Don't constrain non-instruction nodes.
2912        if (!SuccSU->getNode() || !SuccSU->getNode()->isMachineOpcode())
2913          continue;
2914        // Don't constrain nodes with physical register defs if the
2915        // predecessor can clobber them.
2916        if (SuccSU->hasPhysRegDefs && SU->hasPhysRegClobbers) {
2917          if (canClobberPhysRegDefs(SuccSU, SU, TII, TRI))
2918            continue;
2919        }
2920        // Don't constrain EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG;
2921        // these may be coalesced away. We want them close to their uses.
2922        unsigned SuccOpc = SuccSU->getNode()->getMachineOpcode();
2923        if (SuccOpc == TargetOpcode::EXTRACT_SUBREG ||
2924            SuccOpc == TargetOpcode::INSERT_SUBREG ||
2925            SuccOpc == TargetOpcode::SUBREG_TO_REG)
2926          continue;
2927        if (!canClobberReachingPhysRegUse(SuccSU, SU, scheduleDAG, TII, TRI) &&
2928            (!canClobber(SuccSU, DUSU) ||
2929             (isLiveOut && !hasOnlyLiveOutUses(SuccSU)) ||
2930             (!SU->isCommutable && SuccSU->isCommutable)) &&
2931            !scheduleDAG->IsReachable(SuccSU, SU)) {
2932          DEBUG(dbgs() << "    Adding a pseudo-two-addr edge from SU #"
2933                       << SU->NodeNum << " to SU #" << SuccSU->NodeNum << "\n");
2934          scheduleDAG->AddPred(SU, SDep(SuccSU, SDep::Order, /*Latency=*/0,
2935                                        /*Reg=*/0, /*isNormalMemory=*/false,
2936                                        /*isMustAlias=*/false,
2937                                        /*isArtificial=*/true));
2938        }
2939      }
2940    }
2941  }
2942}
2943
2944//===----------------------------------------------------------------------===//
2945//                         Public Constructor Functions
2946//===----------------------------------------------------------------------===//
2947
2948llvm::ScheduleDAGSDNodes *
2949llvm::createBURRListDAGScheduler(SelectionDAGISel *IS,
2950                                 CodeGenOpt::Level OptLevel) {
2951  const TargetMachine &TM = IS->TM;
2952  const TargetInstrInfo *TII = TM.getInstrInfo();
2953  const TargetRegisterInfo *TRI = TM.getRegisterInfo();
2954
2955  BURegReductionPriorityQueue *PQ =
2956    new BURegReductionPriorityQueue(*IS->MF, false, false, TII, TRI, 0);
2957  ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, false, PQ, OptLevel);
2958  PQ->setScheduleDAG(SD);
2959  return SD;
2960}
2961
2962llvm::ScheduleDAGSDNodes *
2963llvm::createSourceListDAGScheduler(SelectionDAGISel *IS,
2964                                   CodeGenOpt::Level OptLevel) {
2965  const TargetMachine &TM = IS->TM;
2966  const TargetInstrInfo *TII = TM.getInstrInfo();
2967  const TargetRegisterInfo *TRI = TM.getRegisterInfo();
2968
2969  SrcRegReductionPriorityQueue *PQ =
2970    new SrcRegReductionPriorityQueue(*IS->MF, false, true, TII, TRI, 0);
2971  ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, false, PQ, OptLevel);
2972  PQ->setScheduleDAG(SD);
2973  return SD;
2974}
2975
2976llvm::ScheduleDAGSDNodes *
2977llvm::createHybridListDAGScheduler(SelectionDAGISel *IS,
2978                                   CodeGenOpt::Level OptLevel) {
2979  const TargetMachine &TM = IS->TM;
2980  const TargetInstrInfo *TII = TM.getInstrInfo();
2981  const TargetRegisterInfo *TRI = TM.getRegisterInfo();
2982  const TargetLowering *TLI = &IS->getTargetLowering();
2983
2984  HybridBURRPriorityQueue *PQ =
2985    new HybridBURRPriorityQueue(*IS->MF, true, false, TII, TRI, TLI);
2986
2987  ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, true, PQ, OptLevel);
2988  PQ->setScheduleDAG(SD);
2989  return SD;
2990}
2991
2992llvm::ScheduleDAGSDNodes *
2993llvm::createILPListDAGScheduler(SelectionDAGISel *IS,
2994                                CodeGenOpt::Level OptLevel) {
2995  const TargetMachine &TM = IS->TM;
2996  const TargetInstrInfo *TII = TM.getInstrInfo();
2997  const TargetRegisterInfo *TRI = TM.getRegisterInfo();
2998  const TargetLowering *TLI = &IS->getTargetLowering();
2999
3000  ILPBURRPriorityQueue *PQ =
3001    new ILPBURRPriorityQueue(*IS->MF, true, false, TII, TRI, TLI);
3002  ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, true, PQ, OptLevel);
3003  PQ->setScheduleDAG(SD);
3004  return SD;
3005}
3006