ScheduleDAGRRList.cpp revision ff8009f3058136e9ec00ba8f4210a220a41b8f7e
1//===----- ScheduleDAGRRList.cpp - Reg pressure reduction list scheduler --===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements bottom-up and top-down register pressure reduction list
11// schedulers, using standard algorithms.  The basic approach uses a priority
12// queue of available nodes to schedule.  One at a time, nodes are taken from
13// the priority queue (thus in priority order), checked for legality to
14// schedule, and emitted if legal.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "pre-RA-sched"
19#include "llvm/CodeGen/ScheduleDAGSDNodes.h"
20#include "llvm/CodeGen/SchedulerRegistry.h"
21#include "llvm/Target/TargetRegisterInfo.h"
22#include "llvm/Target/TargetData.h"
23#include "llvm/Target/TargetMachine.h"
24#include "llvm/Target/TargetInstrInfo.h"
25#include "llvm/Support/Debug.h"
26#include "llvm/Support/Compiler.h"
27#include "llvm/ADT/BitVector.h"
28#include "llvm/ADT/PriorityQueue.h"
29#include "llvm/ADT/SmallPtrSet.h"
30#include "llvm/ADT/SmallSet.h"
31#include "llvm/ADT/Statistic.h"
32#include "llvm/ADT/STLExtras.h"
33#include <climits>
34#include "llvm/Support/CommandLine.h"
35using namespace llvm;
36
37STATISTIC(NumBacktracks, "Number of times scheduler backtracked");
38STATISTIC(NumUnfolds,    "Number of nodes unfolded");
39STATISTIC(NumDups,       "Number of duplicated nodes");
40STATISTIC(NumCCCopies,   "Number of cross class copies");
41
42static RegisterScheduler
43  burrListDAGScheduler("list-burr",
44                       "Bottom-up register reduction list scheduling",
45                       createBURRListDAGScheduler);
46static RegisterScheduler
47  tdrListrDAGScheduler("list-tdrr",
48                       "Top-down register reduction list scheduling",
49                       createTDRRListDAGScheduler);
50
51namespace {
52//===----------------------------------------------------------------------===//
53/// ScheduleDAGRRList - The actual register reduction list scheduler
54/// implementation.  This supports both top-down and bottom-up scheduling.
55///
56class VISIBILITY_HIDDEN ScheduleDAGRRList : public ScheduleDAGSDNodes {
57private:
58  /// isBottomUp - This is true if the scheduling problem is bottom-up, false if
59  /// it is top-down.
60  bool isBottomUp;
61
62  /// AvailableQueue - The priority queue to use for the available SUnits.
63  SchedulingPriorityQueue *AvailableQueue;
64
65  /// LiveRegDefs - A set of physical registers and their definition
66  /// that are "live". These nodes must be scheduled before any other nodes that
67  /// modifies the registers can be scheduled.
68  unsigned NumLiveRegs;
69  std::vector<SUnit*> LiveRegDefs;
70  std::vector<unsigned> LiveRegCycles;
71
72public:
73  ScheduleDAGRRList(SelectionDAG *dag, MachineBasicBlock *bb,
74                    const TargetMachine &tm, bool isbottomup,
75                    SchedulingPriorityQueue *availqueue)
76    : ScheduleDAGSDNodes(dag, bb, tm), isBottomUp(isbottomup),
77      AvailableQueue(availqueue) {
78    }
79
80  ~ScheduleDAGRRList() {
81    delete AvailableQueue;
82  }
83
84  void Schedule();
85
86  /// IsReachable - Checks if SU is reachable from TargetSU.
87  bool IsReachable(const SUnit *SU, const SUnit *TargetSU);
88
89  /// willCreateCycle - Returns true if adding an edge from SU to TargetSU will
90  /// create a cycle.
91  bool WillCreateCycle(SUnit *SU, SUnit *TargetSU);
92
93  /// AddPred - This adds the specified node X as a predecessor of
94  /// the current node Y if not already.
95  /// This returns true if this is a new predecessor.
96  /// Updates the topological ordering if required.
97  bool AddPred(SUnit *Y, SUnit *X, bool isCtrl, bool isArtificial,
98               unsigned PhyReg = 0, int Cost = 1);
99
100  /// RemovePred - This removes the specified node N from the predecessors of
101  /// the current node M. Updates the topological ordering if required.
102  bool RemovePred(SUnit *M, SUnit *N, bool isCtrl, bool isArtificial);
103
104private:
105  void ReleasePred(SUnit *SU, SUnit *PredSU, bool isChain);
106  void ReleaseSucc(SUnit *SU, SUnit *SuccSU, bool isChain);
107  void CapturePred(SUnit*, SUnit*, bool);
108  void ScheduleNodeBottomUp(SUnit*, unsigned);
109  void ScheduleNodeTopDown(SUnit*, unsigned);
110  void UnscheduleNodeBottomUp(SUnit*);
111  void BacktrackBottomUp(SUnit*, unsigned, unsigned&);
112  SUnit *CopyAndMoveSuccessors(SUnit*);
113  void InsertCCCopiesAndMoveSuccs(SUnit*, unsigned,
114                                  const TargetRegisterClass*,
115                                  const TargetRegisterClass*,
116                                  SmallVector<SUnit*, 2>&);
117  bool DelayForLiveRegsBottomUp(SUnit*, SmallVector<unsigned, 4>&);
118  void ListScheduleTopDown();
119  void ListScheduleBottomUp();
120  void CommuteNodesToReducePressure();
121
122
123  /// CreateNewSUnit - Creates a new SUnit and returns a pointer to it.
124  /// Updates the topological ordering if required.
125  SUnit *CreateNewSUnit(SDNode *N) {
126    SUnit *NewNode = NewSUnit(N);
127    // Update the topological ordering.
128    if (NewNode->NodeNum >= Node2Index.size())
129      InitDAGTopologicalSorting();
130    return NewNode;
131  }
132
133  /// CreateClone - Creates a new SUnit from an existing one.
134  /// Updates the topological ordering if required.
135  SUnit *CreateClone(SUnit *N) {
136    SUnit *NewNode = Clone(N);
137    // Update the topological ordering.
138    if (NewNode->NodeNum >= Node2Index.size())
139      InitDAGTopologicalSorting();
140    return NewNode;
141  }
142
143  /// Functions for preserving the topological ordering
144  /// even after dynamic insertions of new edges.
145  /// This allows a very fast implementation of IsReachable.
146
147  /// InitDAGTopologicalSorting - create the initial topological
148  /// ordering from the DAG to be scheduled.
149  void InitDAGTopologicalSorting();
150
151  /// DFS - make a DFS traversal and mark all nodes affected by the
152  /// edge insertion. These nodes will later get new topological indexes
153  /// by means of the Shift method.
154  void DFS(const SUnit *SU, int UpperBound, bool& HasLoop);
155
156  /// Shift - reassign topological indexes for the nodes in the DAG
157  /// to preserve the topological ordering.
158  void Shift(BitVector& Visited, int LowerBound, int UpperBound);
159
160  /// Allocate - assign the topological index to the node n.
161  void Allocate(int n, int index);
162
163  /// Index2Node - Maps topological index to the node number.
164  std::vector<int> Index2Node;
165  /// Node2Index - Maps the node number to its topological index.
166  std::vector<int> Node2Index;
167  /// Visited - a set of nodes visited during a DFS traversal.
168  BitVector Visited;
169};
170}  // end anonymous namespace
171
172
173/// Schedule - Schedule the DAG using list scheduling.
174void ScheduleDAGRRList::Schedule() {
175  DOUT << "********** List Scheduling **********\n";
176
177  NumLiveRegs = 0;
178  LiveRegDefs.resize(TRI->getNumRegs(), NULL);
179  LiveRegCycles.resize(TRI->getNumRegs(), 0);
180
181  // Build scheduling units.
182  BuildSchedUnits();
183
184  DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
185          SUnits[su].dumpAll(this));
186  CalculateDepths();
187  CalculateHeights();
188  InitDAGTopologicalSorting();
189
190  AvailableQueue->initNodes(SUnits);
191
192  // Execute the actual scheduling loop Top-Down or Bottom-Up as appropriate.
193  if (isBottomUp)
194    ListScheduleBottomUp();
195  else
196    ListScheduleTopDown();
197
198  AvailableQueue->releaseState();
199
200  CommuteNodesToReducePressure();
201}
202
203/// CommuteNodesToReducePressure - If a node is two-address and commutable, and
204/// it is not the last use of its first operand, add it to the CommuteSet if
205/// possible. It will be commuted when it is translated to a MI.
206void ScheduleDAGRRList::CommuteNodesToReducePressure() {
207  SmallPtrSet<SUnit*, 4> OperandSeen;
208  for (unsigned i = Sequence.size(); i != 0; ) {
209    --i;
210    SUnit *SU = Sequence[i];
211    if (!SU || !SU->getNode()) continue;
212    if (SU->isCommutable) {
213      unsigned Opc = SU->getNode()->getMachineOpcode();
214      const TargetInstrDesc &TID = TII->get(Opc);
215      unsigned NumRes = TID.getNumDefs();
216      unsigned NumOps = TID.getNumOperands() - NumRes;
217      for (unsigned j = 0; j != NumOps; ++j) {
218        if (TID.getOperandConstraint(j+NumRes, TOI::TIED_TO) == -1)
219          continue;
220
221        SDNode *OpN = SU->getNode()->getOperand(j).getNode();
222        SUnit *OpSU = isPassiveNode(OpN) ? NULL : &SUnits[OpN->getNodeId()];
223        if (OpSU && OperandSeen.count(OpSU) == 1) {
224          // Ok, so SU is not the last use of OpSU, but SU is two-address so
225          // it will clobber OpSU. Try to commute SU if no other source operands
226          // are live below.
227          bool DoCommute = true;
228          for (unsigned k = 0; k < NumOps; ++k) {
229            if (k != j) {
230              OpN = SU->getNode()->getOperand(k).getNode();
231              OpSU = isPassiveNode(OpN) ? NULL : &SUnits[OpN->getNodeId()];
232              if (OpSU && OperandSeen.count(OpSU) == 1) {
233                DoCommute = false;
234                break;
235              }
236            }
237          }
238          if (DoCommute)
239            CommuteSet.insert(SU->getNode());
240        }
241
242        // Only look at the first use&def node for now.
243        break;
244      }
245    }
246
247    for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
248         I != E; ++I) {
249      if (!I->isCtrl)
250        OperandSeen.insert(I->Dep->OrigNode);
251    }
252  }
253}
254
255//===----------------------------------------------------------------------===//
256//  Bottom-Up Scheduling
257//===----------------------------------------------------------------------===//
258
259/// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
260/// the AvailableQueue if the count reaches zero. Also update its cycle bound.
261void ScheduleDAGRRList::ReleasePred(SUnit *SU, SUnit *PredSU, bool isChain) {
262  --PredSU->NumSuccsLeft;
263
264#ifndef NDEBUG
265  if (PredSU->NumSuccsLeft < 0) {
266    cerr << "*** Scheduling failed! ***\n";
267    PredSU->dump(this);
268    cerr << " has been released too many times!\n";
269    assert(0);
270  }
271#endif
272
273  if (PredSU->NumSuccsLeft == 0) {
274    PredSU->isAvailable = true;
275    AvailableQueue->push(PredSU);
276  }
277}
278
279/// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
280/// count of its predecessors. If a predecessor pending count is zero, add it to
281/// the Available queue.
282void ScheduleDAGRRList::ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle) {
283  DOUT << "*** Scheduling [" << CurCycle << "]: ";
284  DEBUG(SU->dump(this));
285
286  SU->Cycle = CurCycle;
287  Sequence.push_back(SU);
288
289  // Bottom up: release predecessors
290  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
291       I != E; ++I) {
292    ReleasePred(SU, I->Dep, I->isCtrl);
293    if (I->Cost < 0)  {
294      // This is a physical register dependency and it's impossible or
295      // expensive to copy the register. Make sure nothing that can
296      // clobber the register is scheduled between the predecessor and
297      // this node.
298      if (!LiveRegDefs[I->Reg]) {
299        ++NumLiveRegs;
300        LiveRegDefs[I->Reg] = I->Dep;
301        LiveRegCycles[I->Reg] = CurCycle;
302      }
303    }
304  }
305
306  // Release all the implicit physical register defs that are live.
307  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
308       I != E; ++I) {
309    if (I->Cost < 0)  {
310      if (LiveRegCycles[I->Reg] == I->Dep->Cycle) {
311        assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
312        assert(LiveRegDefs[I->Reg] == SU &&
313               "Physical register dependency violated?");
314        --NumLiveRegs;
315        LiveRegDefs[I->Reg] = NULL;
316        LiveRegCycles[I->Reg] = 0;
317      }
318    }
319  }
320
321  SU->isScheduled = true;
322  AvailableQueue->ScheduledNode(SU);
323}
324
325/// CapturePred - This does the opposite of ReleasePred. Since SU is being
326/// unscheduled, incrcease the succ left count of its predecessors. Remove
327/// them from AvailableQueue if necessary.
328void ScheduleDAGRRList::CapturePred(SUnit *PredSU, SUnit *SU, bool isChain) {
329  if (PredSU->isAvailable) {
330    PredSU->isAvailable = false;
331    if (!PredSU->isPending)
332      AvailableQueue->remove(PredSU);
333  }
334
335  ++PredSU->NumSuccsLeft;
336}
337
338/// UnscheduleNodeBottomUp - Remove the node from the schedule, update its and
339/// its predecessor states to reflect the change.
340void ScheduleDAGRRList::UnscheduleNodeBottomUp(SUnit *SU) {
341  DOUT << "*** Unscheduling [" << SU->Cycle << "]: ";
342  DEBUG(SU->dump(this));
343
344  AvailableQueue->UnscheduledNode(SU);
345
346  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
347       I != E; ++I) {
348    CapturePred(I->Dep, SU, I->isCtrl);
349    if (I->Cost < 0 && SU->Cycle == LiveRegCycles[I->Reg])  {
350      assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
351      assert(LiveRegDefs[I->Reg] == I->Dep &&
352             "Physical register dependency violated?");
353      --NumLiveRegs;
354      LiveRegDefs[I->Reg] = NULL;
355      LiveRegCycles[I->Reg] = 0;
356    }
357  }
358
359  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
360       I != E; ++I) {
361    if (I->Cost < 0)  {
362      if (!LiveRegDefs[I->Reg]) {
363        LiveRegDefs[I->Reg] = SU;
364        ++NumLiveRegs;
365      }
366      if (I->Dep->Cycle < LiveRegCycles[I->Reg])
367        LiveRegCycles[I->Reg] = I->Dep->Cycle;
368    }
369  }
370
371  SU->Cycle = 0;
372  SU->isScheduled = false;
373  SU->isAvailable = true;
374  AvailableQueue->push(SU);
375}
376
377/// IsReachable - Checks if SU is reachable from TargetSU.
378bool ScheduleDAGRRList::IsReachable(const SUnit *SU, const SUnit *TargetSU) {
379  // If insertion of the edge SU->TargetSU would create a cycle
380  // then there is a path from TargetSU to SU.
381  int UpperBound, LowerBound;
382  LowerBound = Node2Index[TargetSU->NodeNum];
383  UpperBound = Node2Index[SU->NodeNum];
384  bool HasLoop = false;
385  // Is Ord(TargetSU) < Ord(SU) ?
386  if (LowerBound < UpperBound) {
387    Visited.reset();
388    // There may be a path from TargetSU to SU. Check for it.
389    DFS(TargetSU, UpperBound, HasLoop);
390  }
391  return HasLoop;
392}
393
394/// Allocate - assign the topological index to the node n.
395inline void ScheduleDAGRRList::Allocate(int n, int index) {
396  Node2Index[n] = index;
397  Index2Node[index] = n;
398}
399
400/// InitDAGTopologicalSorting - create the initial topological
401/// ordering from the DAG to be scheduled.
402
403/// The idea of the algorithm is taken from
404/// "Online algorithms for managing the topological order of
405/// a directed acyclic graph" by David J. Pearce and Paul H.J. Kelly
406/// This is the MNR algorithm, which was first introduced by
407/// A. Marchetti-Spaccamela, U. Nanni and H. Rohnert in
408/// "Maintaining a topological order under edge insertions".
409///
410/// Short description of the algorithm:
411///
412/// Topological ordering, ord, of a DAG maps each node to a topological
413/// index so that for all edges X->Y it is the case that ord(X) < ord(Y).
414///
415/// This means that if there is a path from the node X to the node Z,
416/// then ord(X) < ord(Z).
417///
418/// This property can be used to check for reachability of nodes:
419/// if Z is reachable from X, then an insertion of the edge Z->X would
420/// create a cycle.
421///
422/// The algorithm first computes a topological ordering for the DAG by
423/// initializing the Index2Node and Node2Index arrays and then tries to keep
424/// the ordering up-to-date after edge insertions by reordering the DAG.
425///
426/// On insertion of the edge X->Y, the algorithm first marks by calling DFS
427/// the nodes reachable from Y, and then shifts them using Shift to lie
428/// immediately after X in Index2Node.
429void ScheduleDAGRRList::InitDAGTopologicalSorting() {
430  unsigned DAGSize = SUnits.size();
431  std::vector<SUnit*> WorkList;
432  WorkList.reserve(DAGSize);
433
434  Index2Node.resize(DAGSize);
435  Node2Index.resize(DAGSize);
436
437  // Initialize the data structures.
438  for (unsigned i = 0, e = DAGSize; i != e; ++i) {
439    SUnit *SU = &SUnits[i];
440    int NodeNum = SU->NodeNum;
441    unsigned Degree = SU->Succs.size();
442    // Temporarily use the Node2Index array as scratch space for degree counts.
443    Node2Index[NodeNum] = Degree;
444
445    // Is it a node without dependencies?
446    if (Degree == 0) {
447        assert(SU->Succs.empty() && "SUnit should have no successors");
448        // Collect leaf nodes.
449        WorkList.push_back(SU);
450    }
451  }
452
453  int Id = DAGSize;
454  while (!WorkList.empty()) {
455    SUnit *SU = WorkList.back();
456    WorkList.pop_back();
457    Allocate(SU->NodeNum, --Id);
458    for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
459         I != E; ++I) {
460      SUnit *SU = I->Dep;
461      if (!--Node2Index[SU->NodeNum])
462        // If all dependencies of the node are processed already,
463        // then the node can be computed now.
464        WorkList.push_back(SU);
465    }
466  }
467
468  Visited.resize(DAGSize);
469
470#ifndef NDEBUG
471  // Check correctness of the ordering
472  for (unsigned i = 0, e = DAGSize; i != e; ++i) {
473    SUnit *SU = &SUnits[i];
474    for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
475         I != E; ++I) {
476       assert(Node2Index[SU->NodeNum] > Node2Index[I->Dep->NodeNum] &&
477       "Wrong topological sorting");
478    }
479  }
480#endif
481}
482
483/// AddPred - adds an edge from SUnit X to SUnit Y.
484/// Updates the topological ordering if required.
485bool ScheduleDAGRRList::AddPred(SUnit *Y, SUnit *X, bool isCtrl,
486                 bool isArtificial, unsigned PhyReg, int Cost) {
487  int UpperBound, LowerBound;
488  LowerBound = Node2Index[Y->NodeNum];
489  UpperBound = Node2Index[X->NodeNum];
490  bool HasLoop = false;
491  // Is Ord(X) < Ord(Y) ?
492  if (LowerBound < UpperBound) {
493    // Update the topological order.
494    Visited.reset();
495    DFS(Y, UpperBound, HasLoop);
496    assert(!HasLoop && "Inserted edge creates a loop!");
497    // Recompute topological indexes.
498    Shift(Visited, LowerBound, UpperBound);
499  }
500  // Now really insert the edge.
501  return Y->addPred(X, isCtrl, isArtificial, PhyReg, Cost);
502}
503
504/// RemovePred - This removes the specified node N from the predecessors of
505/// the current node M. Updates the topological ordering if required.
506bool ScheduleDAGRRList::RemovePred(SUnit *M, SUnit *N,
507                                   bool isCtrl, bool isArtificial) {
508  // InitDAGTopologicalSorting();
509  return M->removePred(N, isCtrl, isArtificial);
510}
511
512/// DFS - Make a DFS traversal to mark all nodes reachable from SU and mark
513/// all nodes affected by the edge insertion. These nodes will later get new
514/// topological indexes by means of the Shift method.
515void ScheduleDAGRRList::DFS(const SUnit *SU, int UpperBound, bool& HasLoop) {
516  std::vector<const SUnit*> WorkList;
517  WorkList.reserve(SUnits.size());
518
519  WorkList.push_back(SU);
520  while (!WorkList.empty()) {
521    SU = WorkList.back();
522    WorkList.pop_back();
523    Visited.set(SU->NodeNum);
524    for (int I = SU->Succs.size()-1; I >= 0; --I) {
525      int s = SU->Succs[I].Dep->NodeNum;
526      if (Node2Index[s] == UpperBound) {
527        HasLoop = true;
528        return;
529      }
530      // Visit successors if not already and in affected region.
531      if (!Visited.test(s) && Node2Index[s] < UpperBound) {
532        WorkList.push_back(SU->Succs[I].Dep);
533      }
534    }
535  }
536}
537
538/// Shift - Renumber the nodes so that the topological ordering is
539/// preserved.
540void ScheduleDAGRRList::Shift(BitVector& Visited, int LowerBound,
541                              int UpperBound) {
542  std::vector<int> L;
543  int shift = 0;
544  int i;
545
546  for (i = LowerBound; i <= UpperBound; ++i) {
547    // w is node at topological index i.
548    int w = Index2Node[i];
549    if (Visited.test(w)) {
550      // Unmark.
551      Visited.reset(w);
552      L.push_back(w);
553      shift = shift + 1;
554    } else {
555      Allocate(w, i - shift);
556    }
557  }
558
559  for (unsigned j = 0; j < L.size(); ++j) {
560    Allocate(L[j], i - shift);
561    i = i + 1;
562  }
563}
564
565
566/// WillCreateCycle - Returns true if adding an edge from SU to TargetSU will
567/// create a cycle.
568bool ScheduleDAGRRList::WillCreateCycle(SUnit *SU, SUnit *TargetSU) {
569  if (IsReachable(TargetSU, SU))
570    return true;
571  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
572       I != E; ++I)
573    if (I->Cost < 0 && IsReachable(TargetSU, I->Dep))
574      return true;
575  return false;
576}
577
578/// BacktrackBottomUp - Backtrack scheduling to a previous cycle specified in
579/// BTCycle in order to schedule a specific node. Returns the last unscheduled
580/// SUnit. Also returns if a successor is unscheduled in the process.
581void ScheduleDAGRRList::BacktrackBottomUp(SUnit *SU, unsigned BtCycle,
582                                          unsigned &CurCycle) {
583  SUnit *OldSU = NULL;
584  while (CurCycle > BtCycle) {
585    OldSU = Sequence.back();
586    Sequence.pop_back();
587    if (SU->isSucc(OldSU))
588      // Don't try to remove SU from AvailableQueue.
589      SU->isAvailable = false;
590    UnscheduleNodeBottomUp(OldSU);
591    --CurCycle;
592  }
593
594
595  if (SU->isSucc(OldSU)) {
596    assert(false && "Something is wrong!");
597    abort();
598  }
599
600  ++NumBacktracks;
601}
602
603/// CopyAndMoveSuccessors - Clone the specified node and move its scheduled
604/// successors to the newly created node.
605SUnit *ScheduleDAGRRList::CopyAndMoveSuccessors(SUnit *SU) {
606  if (SU->getNode()->getFlaggedNode())
607    return NULL;
608
609  SDNode *N = SU->getNode();
610  if (!N)
611    return NULL;
612
613  SUnit *NewSU;
614  bool TryUnfold = false;
615  for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
616    MVT VT = N->getValueType(i);
617    if (VT == MVT::Flag)
618      return NULL;
619    else if (VT == MVT::Other)
620      TryUnfold = true;
621  }
622  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
623    const SDValue &Op = N->getOperand(i);
624    MVT VT = Op.getNode()->getValueType(Op.getResNo());
625    if (VT == MVT::Flag)
626      return NULL;
627  }
628
629  if (TryUnfold) {
630    SmallVector<SDNode*, 2> NewNodes;
631    if (!TII->unfoldMemoryOperand(*DAG, N, NewNodes))
632      return NULL;
633
634    DOUT << "Unfolding SU # " << SU->NodeNum << "\n";
635    assert(NewNodes.size() == 2 && "Expected a load folding node!");
636
637    N = NewNodes[1];
638    SDNode *LoadNode = NewNodes[0];
639    unsigned NumVals = N->getNumValues();
640    unsigned OldNumVals = SU->getNode()->getNumValues();
641    for (unsigned i = 0; i != NumVals; ++i)
642      DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), i), SDValue(N, i));
643    DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), OldNumVals-1),
644                                   SDValue(LoadNode, 1));
645
646    // LoadNode may already exist. This can happen when there is another
647    // load from the same location and producing the same type of value
648    // but it has different alignment or volatileness.
649    bool isNewLoad = true;
650    SUnit *LoadSU;
651    if (LoadNode->getNodeId() != -1) {
652      LoadSU = &SUnits[LoadNode->getNodeId()];
653      isNewLoad = false;
654    } else {
655      LoadSU = CreateNewSUnit(LoadNode);
656      LoadNode->setNodeId(LoadSU->NodeNum);
657
658      LoadSU->Depth = SU->Depth;
659      LoadSU->Height = SU->Height;
660      ComputeLatency(LoadSU);
661    }
662
663    SUnit *NewSU = CreateNewSUnit(N);
664    assert(N->getNodeId() == -1 && "Node already inserted!");
665    N->setNodeId(NewSU->NodeNum);
666
667    const TargetInstrDesc &TID = TII->get(N->getMachineOpcode());
668    for (unsigned i = 0; i != TID.getNumOperands(); ++i) {
669      if (TID.getOperandConstraint(i, TOI::TIED_TO) != -1) {
670        NewSU->isTwoAddress = true;
671        break;
672      }
673    }
674    if (TID.isCommutable())
675      NewSU->isCommutable = true;
676    // FIXME: Calculate height / depth and propagate the changes?
677    NewSU->Depth = SU->Depth;
678    NewSU->Height = SU->Height;
679    ComputeLatency(NewSU);
680
681    SUnit *ChainPred = NULL;
682    SmallVector<SDep, 4> ChainSuccs;
683    SmallVector<SDep, 4> LoadPreds;
684    SmallVector<SDep, 4> NodePreds;
685    SmallVector<SDep, 4> NodeSuccs;
686    for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
687         I != E; ++I) {
688      if (I->isCtrl)
689        ChainPred = I->Dep;
690      else if (I->Dep->getNode() && I->Dep->getNode()->isOperandOf(LoadNode))
691        LoadPreds.push_back(SDep(I->Dep, I->Reg, I->Cost, false, false));
692      else
693        NodePreds.push_back(SDep(I->Dep, I->Reg, I->Cost, false, false));
694    }
695    for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
696         I != E; ++I) {
697      if (I->isCtrl)
698        ChainSuccs.push_back(SDep(I->Dep, I->Reg, I->Cost,
699                                  I->isCtrl, I->isArtificial));
700      else
701        NodeSuccs.push_back(SDep(I->Dep, I->Reg, I->Cost,
702                                 I->isCtrl, I->isArtificial));
703    }
704
705    if (ChainPred) {
706      RemovePred(SU, ChainPred, true, false);
707      if (isNewLoad)
708        AddPred(LoadSU, ChainPred, true, false);
709    }
710    for (unsigned i = 0, e = LoadPreds.size(); i != e; ++i) {
711      SDep *Pred = &LoadPreds[i];
712      RemovePred(SU, Pred->Dep, Pred->isCtrl, Pred->isArtificial);
713      if (isNewLoad) {
714        AddPred(LoadSU, Pred->Dep, Pred->isCtrl, Pred->isArtificial,
715                Pred->Reg, Pred->Cost);
716      }
717    }
718    for (unsigned i = 0, e = NodePreds.size(); i != e; ++i) {
719      SDep *Pred = &NodePreds[i];
720      RemovePred(SU, Pred->Dep, Pred->isCtrl, Pred->isArtificial);
721      AddPred(NewSU, Pred->Dep, Pred->isCtrl, Pred->isArtificial,
722              Pred->Reg, Pred->Cost);
723    }
724    for (unsigned i = 0, e = NodeSuccs.size(); i != e; ++i) {
725      SDep *Succ = &NodeSuccs[i];
726      RemovePred(Succ->Dep, SU, Succ->isCtrl, Succ->isArtificial);
727      AddPred(Succ->Dep, NewSU, Succ->isCtrl, Succ->isArtificial,
728              Succ->Reg, Succ->Cost);
729    }
730    for (unsigned i = 0, e = ChainSuccs.size(); i != e; ++i) {
731      SDep *Succ = &ChainSuccs[i];
732      RemovePred(Succ->Dep, SU, Succ->isCtrl, Succ->isArtificial);
733      if (isNewLoad) {
734        AddPred(Succ->Dep, LoadSU, Succ->isCtrl, Succ->isArtificial,
735                Succ->Reg, Succ->Cost);
736      }
737    }
738    if (isNewLoad) {
739      AddPred(NewSU, LoadSU, false, false);
740    }
741
742    if (isNewLoad)
743      AvailableQueue->addNode(LoadSU);
744    AvailableQueue->addNode(NewSU);
745
746    ++NumUnfolds;
747
748    if (NewSU->NumSuccsLeft == 0) {
749      NewSU->isAvailable = true;
750      return NewSU;
751    }
752    SU = NewSU;
753  }
754
755  DOUT << "Duplicating SU # " << SU->NodeNum << "\n";
756  NewSU = CreateClone(SU);
757
758  // New SUnit has the exact same predecessors.
759  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
760       I != E; ++I)
761    if (!I->isArtificial) {
762      AddPred(NewSU, I->Dep, I->isCtrl, false, I->Reg, I->Cost);
763      NewSU->Depth = std::max(NewSU->Depth, I->Dep->Depth+1);
764    }
765
766  // Only copy scheduled successors. Cut them from old node's successor
767  // list and move them over.
768  SmallVector<std::pair<SUnit*, bool>, 4> DelDeps;
769  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
770       I != E; ++I) {
771    if (I->isArtificial)
772      continue;
773    if (I->Dep->isScheduled) {
774      NewSU->Height = std::max(NewSU->Height, I->Dep->Height+1);
775      AddPred(I->Dep, NewSU, I->isCtrl, false, I->Reg, I->Cost);
776      DelDeps.push_back(std::make_pair(I->Dep, I->isCtrl));
777    }
778  }
779  for (unsigned i = 0, e = DelDeps.size(); i != e; ++i) {
780    SUnit *Succ = DelDeps[i].first;
781    bool isCtrl = DelDeps[i].second;
782    RemovePred(Succ, SU, isCtrl, false);
783  }
784
785  AvailableQueue->updateNode(SU);
786  AvailableQueue->addNode(NewSU);
787
788  ++NumDups;
789  return NewSU;
790}
791
792/// InsertCCCopiesAndMoveSuccs - Insert expensive cross register class copies
793/// and move all scheduled successors of the given SUnit to the last copy.
794void ScheduleDAGRRList::InsertCCCopiesAndMoveSuccs(SUnit *SU, unsigned Reg,
795                                              const TargetRegisterClass *DestRC,
796                                              const TargetRegisterClass *SrcRC,
797                                               SmallVector<SUnit*, 2> &Copies) {
798  SUnit *CopyFromSU = CreateNewSUnit(NULL);
799  CopyFromSU->CopySrcRC = SrcRC;
800  CopyFromSU->CopyDstRC = DestRC;
801  CopyFromSU->Depth = SU->Depth;
802  CopyFromSU->Height = SU->Height;
803
804  SUnit *CopyToSU = CreateNewSUnit(NULL);
805  CopyToSU->CopySrcRC = DestRC;
806  CopyToSU->CopyDstRC = SrcRC;
807
808  // Only copy scheduled successors. Cut them from old node's successor
809  // list and move them over.
810  SmallVector<std::pair<SUnit*, bool>, 4> DelDeps;
811  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
812       I != E; ++I) {
813    if (I->isArtificial)
814      continue;
815    if (I->Dep->isScheduled) {
816      CopyToSU->Height = std::max(CopyToSU->Height, I->Dep->Height+1);
817      AddPred(I->Dep, CopyToSU, I->isCtrl, false, I->Reg, I->Cost);
818      DelDeps.push_back(std::make_pair(I->Dep, I->isCtrl));
819    }
820  }
821  for (unsigned i = 0, e = DelDeps.size(); i != e; ++i) {
822    SUnit *Succ = DelDeps[i].first;
823    bool isCtrl = DelDeps[i].second;
824    RemovePred(Succ, SU, isCtrl, false);
825  }
826
827  AddPred(CopyFromSU, SU, false, false, Reg, -1);
828  AddPred(CopyToSU, CopyFromSU, false, false, Reg, 1);
829
830  AvailableQueue->updateNode(SU);
831  AvailableQueue->addNode(CopyFromSU);
832  AvailableQueue->addNode(CopyToSU);
833  Copies.push_back(CopyFromSU);
834  Copies.push_back(CopyToSU);
835
836  ++NumCCCopies;
837}
838
839/// getPhysicalRegisterVT - Returns the ValueType of the physical register
840/// definition of the specified node.
841/// FIXME: Move to SelectionDAG?
842static MVT getPhysicalRegisterVT(SDNode *N, unsigned Reg,
843                                 const TargetInstrInfo *TII) {
844  const TargetInstrDesc &TID = TII->get(N->getMachineOpcode());
845  assert(TID.ImplicitDefs && "Physical reg def must be in implicit def list!");
846  unsigned NumRes = TID.getNumDefs();
847  for (const unsigned *ImpDef = TID.getImplicitDefs(); *ImpDef; ++ImpDef) {
848    if (Reg == *ImpDef)
849      break;
850    ++NumRes;
851  }
852  return N->getValueType(NumRes);
853}
854
855/// DelayForLiveRegsBottomUp - Returns true if it is necessary to delay
856/// scheduling of the given node to satisfy live physical register dependencies.
857/// If the specific node is the last one that's available to schedule, do
858/// whatever is necessary (i.e. backtracking or cloning) to make it possible.
859bool ScheduleDAGRRList::DelayForLiveRegsBottomUp(SUnit *SU,
860                                                 SmallVector<unsigned, 4> &LRegs){
861  if (NumLiveRegs == 0)
862    return false;
863
864  SmallSet<unsigned, 4> RegAdded;
865  // If this node would clobber any "live" register, then it's not ready.
866  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
867       I != E; ++I) {
868    if (I->Cost < 0)  {
869      unsigned Reg = I->Reg;
870      if (LiveRegDefs[Reg] && LiveRegDefs[Reg] != I->Dep) {
871        if (RegAdded.insert(Reg))
872          LRegs.push_back(Reg);
873      }
874      for (const unsigned *Alias = TRI->getAliasSet(Reg);
875           *Alias; ++Alias)
876        if (LiveRegDefs[*Alias] && LiveRegDefs[*Alias] != I->Dep) {
877          if (RegAdded.insert(*Alias))
878            LRegs.push_back(*Alias);
879        }
880    }
881  }
882
883  for (SDNode *Node = SU->getNode(); Node; Node = Node->getFlaggedNode()) {
884    if (!Node->isMachineOpcode())
885      continue;
886    const TargetInstrDesc &TID = TII->get(Node->getMachineOpcode());
887    if (!TID.ImplicitDefs)
888      continue;
889    for (const unsigned *Reg = TID.ImplicitDefs; *Reg; ++Reg) {
890      if (LiveRegDefs[*Reg] && LiveRegDefs[*Reg] != SU) {
891        if (RegAdded.insert(*Reg))
892          LRegs.push_back(*Reg);
893      }
894      for (const unsigned *Alias = TRI->getAliasSet(*Reg);
895           *Alias; ++Alias)
896        if (LiveRegDefs[*Alias] && LiveRegDefs[*Alias] != SU) {
897          if (RegAdded.insert(*Alias))
898            LRegs.push_back(*Alias);
899        }
900    }
901  }
902  return !LRegs.empty();
903}
904
905
906/// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
907/// schedulers.
908void ScheduleDAGRRList::ListScheduleBottomUp() {
909  unsigned CurCycle = 0;
910  // Add root to Available queue.
911  if (!SUnits.empty()) {
912    SUnit *RootSU = &SUnits[DAG->getRoot().getNode()->getNodeId()];
913    assert(RootSU->Succs.empty() && "Graph root shouldn't have successors!");
914    RootSU->isAvailable = true;
915    AvailableQueue->push(RootSU);
916  }
917
918  // While Available queue is not empty, grab the node with the highest
919  // priority. If it is not ready put it back.  Schedule the node.
920  SmallVector<SUnit*, 4> NotReady;
921  DenseMap<SUnit*, SmallVector<unsigned, 4> > LRegsMap;
922  Sequence.reserve(SUnits.size());
923  while (!AvailableQueue->empty()) {
924    bool Delayed = false;
925    LRegsMap.clear();
926    SUnit *CurSU = AvailableQueue->pop();
927    while (CurSU) {
928      SmallVector<unsigned, 4> LRegs;
929      if (!DelayForLiveRegsBottomUp(CurSU, LRegs))
930        break;
931      Delayed = true;
932      LRegsMap.insert(std::make_pair(CurSU, LRegs));
933
934      CurSU->isPending = true;  // This SU is not in AvailableQueue right now.
935      NotReady.push_back(CurSU);
936      CurSU = AvailableQueue->pop();
937    }
938
939    // All candidates are delayed due to live physical reg dependencies.
940    // Try backtracking, code duplication, or inserting cross class copies
941    // to resolve it.
942    if (Delayed && !CurSU) {
943      for (unsigned i = 0, e = NotReady.size(); i != e; ++i) {
944        SUnit *TrySU = NotReady[i];
945        SmallVector<unsigned, 4> &LRegs = LRegsMap[TrySU];
946
947        // Try unscheduling up to the point where it's safe to schedule
948        // this node.
949        unsigned LiveCycle = CurCycle;
950        for (unsigned j = 0, ee = LRegs.size(); j != ee; ++j) {
951          unsigned Reg = LRegs[j];
952          unsigned LCycle = LiveRegCycles[Reg];
953          LiveCycle = std::min(LiveCycle, LCycle);
954        }
955        SUnit *OldSU = Sequence[LiveCycle];
956        if (!WillCreateCycle(TrySU, OldSU))  {
957          BacktrackBottomUp(TrySU, LiveCycle, CurCycle);
958          // Force the current node to be scheduled before the node that
959          // requires the physical reg dep.
960          if (OldSU->isAvailable) {
961            OldSU->isAvailable = false;
962            AvailableQueue->remove(OldSU);
963          }
964          AddPred(TrySU, OldSU, true, true);
965          // If one or more successors has been unscheduled, then the current
966          // node is no longer avaialable. Schedule a successor that's now
967          // available instead.
968          if (!TrySU->isAvailable)
969            CurSU = AvailableQueue->pop();
970          else {
971            CurSU = TrySU;
972            TrySU->isPending = false;
973            NotReady.erase(NotReady.begin()+i);
974          }
975          break;
976        }
977      }
978
979      if (!CurSU) {
980        // Can't backtrack. Try duplicating the nodes that produces these
981        // "expensive to copy" values to break the dependency. In case even
982        // that doesn't work, insert cross class copies.
983        SUnit *TrySU = NotReady[0];
984        SmallVector<unsigned, 4> &LRegs = LRegsMap[TrySU];
985        assert(LRegs.size() == 1 && "Can't handle this yet!");
986        unsigned Reg = LRegs[0];
987        SUnit *LRDef = LiveRegDefs[Reg];
988        SUnit *NewDef = CopyAndMoveSuccessors(LRDef);
989        if (!NewDef) {
990          // Issue expensive cross register class copies.
991          MVT VT = getPhysicalRegisterVT(LRDef->getNode(), Reg, TII);
992          const TargetRegisterClass *RC =
993            TRI->getPhysicalRegisterRegClass(Reg, VT);
994          const TargetRegisterClass *DestRC = TRI->getCrossCopyRegClass(RC);
995          if (!DestRC) {
996            assert(false && "Don't know how to copy this physical register!");
997            abort();
998          }
999          SmallVector<SUnit*, 2> Copies;
1000          InsertCCCopiesAndMoveSuccs(LRDef, Reg, DestRC, RC, Copies);
1001          DOUT << "Adding an edge from SU # " << TrySU->NodeNum
1002               << " to SU #" << Copies.front()->NodeNum << "\n";
1003          AddPred(TrySU, Copies.front(), true, true);
1004          NewDef = Copies.back();
1005        }
1006
1007        DOUT << "Adding an edge from SU # " << NewDef->NodeNum
1008             << " to SU #" << TrySU->NodeNum << "\n";
1009        LiveRegDefs[Reg] = NewDef;
1010        AddPred(NewDef, TrySU, true, true);
1011        TrySU->isAvailable = false;
1012        CurSU = NewDef;
1013      }
1014
1015      if (!CurSU) {
1016        assert(false && "Unable to resolve live physical register dependencies!");
1017        abort();
1018      }
1019    }
1020
1021    // Add the nodes that aren't ready back onto the available list.
1022    for (unsigned i = 0, e = NotReady.size(); i != e; ++i) {
1023      NotReady[i]->isPending = false;
1024      // May no longer be available due to backtracking.
1025      if (NotReady[i]->isAvailable)
1026        AvailableQueue->push(NotReady[i]);
1027    }
1028    NotReady.clear();
1029
1030    if (CurSU)
1031      ScheduleNodeBottomUp(CurSU, CurCycle);
1032    ++CurCycle;
1033  }
1034
1035  // Reverse the order if it is bottom up.
1036  std::reverse(Sequence.begin(), Sequence.end());
1037
1038#ifndef NDEBUG
1039  VerifySchedule(isBottomUp);
1040#endif
1041}
1042
1043//===----------------------------------------------------------------------===//
1044//  Top-Down Scheduling
1045//===----------------------------------------------------------------------===//
1046
1047/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
1048/// the AvailableQueue if the count reaches zero. Also update its cycle bound.
1049void ScheduleDAGRRList::ReleaseSucc(SUnit *SU, SUnit *SuccSU, bool isChain) {
1050  --SuccSU->NumPredsLeft;
1051
1052#ifndef NDEBUG
1053  if (SuccSU->NumPredsLeft < 0) {
1054    cerr << "*** Scheduling failed! ***\n";
1055    SuccSU->dump(this);
1056    cerr << " has been released too many times!\n";
1057    assert(0);
1058  }
1059#endif
1060
1061  if (SuccSU->NumPredsLeft == 0) {
1062    SuccSU->isAvailable = true;
1063    AvailableQueue->push(SuccSU);
1064  }
1065}
1066
1067/// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
1068/// count of its successors. If a successor pending count is zero, add it to
1069/// the Available queue.
1070void ScheduleDAGRRList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
1071  DOUT << "*** Scheduling [" << CurCycle << "]: ";
1072  DEBUG(SU->dump(this));
1073
1074  SU->Cycle = CurCycle;
1075  Sequence.push_back(SU);
1076
1077  // Top down: release successors
1078  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1079       I != E; ++I)
1080    ReleaseSucc(SU, I->Dep, I->isCtrl);
1081
1082  SU->isScheduled = true;
1083  AvailableQueue->ScheduledNode(SU);
1084}
1085
1086/// ListScheduleTopDown - The main loop of list scheduling for top-down
1087/// schedulers.
1088void ScheduleDAGRRList::ListScheduleTopDown() {
1089  unsigned CurCycle = 0;
1090
1091  // All leaves to Available queue.
1092  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
1093    // It is available if it has no predecessors.
1094    if (SUnits[i].Preds.empty()) {
1095      AvailableQueue->push(&SUnits[i]);
1096      SUnits[i].isAvailable = true;
1097    }
1098  }
1099
1100  // While Available queue is not empty, grab the node with the highest
1101  // priority. If it is not ready put it back.  Schedule the node.
1102  Sequence.reserve(SUnits.size());
1103  while (!AvailableQueue->empty()) {
1104    SUnit *CurSU = AvailableQueue->pop();
1105
1106    if (CurSU)
1107      ScheduleNodeTopDown(CurSU, CurCycle);
1108    ++CurCycle;
1109  }
1110
1111#ifndef NDEBUG
1112  VerifySchedule(isBottomUp);
1113#endif
1114}
1115
1116
1117//===----------------------------------------------------------------------===//
1118//                RegReductionPriorityQueue Implementation
1119//===----------------------------------------------------------------------===//
1120//
1121// This is a SchedulingPriorityQueue that schedules using Sethi Ullman numbers
1122// to reduce register pressure.
1123//
1124namespace {
1125  template<class SF>
1126  class RegReductionPriorityQueue;
1127
1128  /// Sorting functions for the Available queue.
1129  struct bu_ls_rr_sort : public std::binary_function<SUnit*, SUnit*, bool> {
1130    RegReductionPriorityQueue<bu_ls_rr_sort> *SPQ;
1131    bu_ls_rr_sort(RegReductionPriorityQueue<bu_ls_rr_sort> *spq) : SPQ(spq) {}
1132    bu_ls_rr_sort(const bu_ls_rr_sort &RHS) : SPQ(RHS.SPQ) {}
1133
1134    bool operator()(const SUnit* left, const SUnit* right) const;
1135  };
1136
1137  struct td_ls_rr_sort : public std::binary_function<SUnit*, SUnit*, bool> {
1138    RegReductionPriorityQueue<td_ls_rr_sort> *SPQ;
1139    td_ls_rr_sort(RegReductionPriorityQueue<td_ls_rr_sort> *spq) : SPQ(spq) {}
1140    td_ls_rr_sort(const td_ls_rr_sort &RHS) : SPQ(RHS.SPQ) {}
1141
1142    bool operator()(const SUnit* left, const SUnit* right) const;
1143  };
1144}  // end anonymous namespace
1145
1146static inline bool isCopyFromLiveIn(const SUnit *SU) {
1147  SDNode *N = SU->getNode();
1148  return N && N->getOpcode() == ISD::CopyFromReg &&
1149    N->getOperand(N->getNumOperands()-1).getValueType() != MVT::Flag;
1150}
1151
1152/// CalcNodeSethiUllmanNumber - Compute Sethi Ullman number.
1153/// Smaller number is the higher priority.
1154static unsigned
1155CalcNodeSethiUllmanNumber(const SUnit *SU, std::vector<unsigned> &SUNumbers) {
1156  unsigned &SethiUllmanNumber = SUNumbers[SU->NodeNum];
1157  if (SethiUllmanNumber != 0)
1158    return SethiUllmanNumber;
1159
1160  unsigned Extra = 0;
1161  for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
1162       I != E; ++I) {
1163    if (I->isCtrl) continue;  // ignore chain preds
1164    SUnit *PredSU = I->Dep;
1165    unsigned PredSethiUllman = CalcNodeSethiUllmanNumber(PredSU, SUNumbers);
1166    if (PredSethiUllman > SethiUllmanNumber) {
1167      SethiUllmanNumber = PredSethiUllman;
1168      Extra = 0;
1169    } else if (PredSethiUllman == SethiUllmanNumber && !I->isCtrl)
1170      ++Extra;
1171  }
1172
1173  SethiUllmanNumber += Extra;
1174
1175  if (SethiUllmanNumber == 0)
1176    SethiUllmanNumber = 1;
1177
1178  return SethiUllmanNumber;
1179}
1180
1181namespace {
1182  template<class SF>
1183  class VISIBILITY_HIDDEN RegReductionPriorityQueue
1184   : public SchedulingPriorityQueue {
1185    PriorityQueue<SUnit*, std::vector<SUnit*>, SF> Queue;
1186    unsigned currentQueueId;
1187
1188  protected:
1189    // SUnits - The SUnits for the current graph.
1190    std::vector<SUnit> *SUnits;
1191
1192    const TargetInstrInfo *TII;
1193    const TargetRegisterInfo *TRI;
1194    ScheduleDAGRRList *scheduleDAG;
1195
1196    // SethiUllmanNumbers - The SethiUllman number for each node.
1197    std::vector<unsigned> SethiUllmanNumbers;
1198
1199  public:
1200    RegReductionPriorityQueue(const TargetInstrInfo *tii,
1201                              const TargetRegisterInfo *tri) :
1202    Queue(SF(this)), currentQueueId(0),
1203    TII(tii), TRI(tri), scheduleDAG(NULL) {}
1204
1205    void initNodes(std::vector<SUnit> &sunits) {
1206      SUnits = &sunits;
1207      // Add pseudo dependency edges for two-address nodes.
1208      AddPseudoTwoAddrDeps();
1209      // Calculate node priorities.
1210      CalculateSethiUllmanNumbers();
1211    }
1212
1213    void addNode(const SUnit *SU) {
1214      unsigned SUSize = SethiUllmanNumbers.size();
1215      if (SUnits->size() > SUSize)
1216        SethiUllmanNumbers.resize(SUSize*2, 0);
1217      CalcNodeSethiUllmanNumber(SU, SethiUllmanNumbers);
1218    }
1219
1220    void updateNode(const SUnit *SU) {
1221      SethiUllmanNumbers[SU->NodeNum] = 0;
1222      CalcNodeSethiUllmanNumber(SU, SethiUllmanNumbers);
1223    }
1224
1225    void releaseState() {
1226      SUnits = 0;
1227      SethiUllmanNumbers.clear();
1228    }
1229
1230    unsigned getNodePriority(const SUnit *SU) const {
1231      assert(SU->NodeNum < SethiUllmanNumbers.size());
1232      unsigned Opc = SU->getNode() ? SU->getNode()->getOpcode() : 0;
1233      if (Opc == ISD::CopyFromReg && !isCopyFromLiveIn(SU))
1234        // CopyFromReg should be close to its def because it restricts
1235        // allocation choices. But if it is a livein then perhaps we want it
1236        // closer to its uses so it can be coalesced.
1237        return 0xffff;
1238      else if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
1239        // CopyToReg should be close to its uses to facilitate coalescing and
1240        // avoid spilling.
1241        return 0;
1242      else if (Opc == TargetInstrInfo::EXTRACT_SUBREG ||
1243               Opc == TargetInstrInfo::INSERT_SUBREG)
1244        // EXTRACT_SUBREG / INSERT_SUBREG should be close to its use to
1245        // facilitate coalescing.
1246        return 0;
1247      else if (SU->NumSuccs == 0)
1248        // If SU does not have a use, i.e. it doesn't produce a value that would
1249        // be consumed (e.g. store), then it terminates a chain of computation.
1250        // Give it a large SethiUllman number so it will be scheduled right
1251        // before its predecessors that it doesn't lengthen their live ranges.
1252        return 0xffff;
1253      else if (SU->NumPreds == 0)
1254        // If SU does not have a def, schedule it close to its uses because it
1255        // does not lengthen any live ranges.
1256        return 0;
1257      else
1258        return SethiUllmanNumbers[SU->NodeNum];
1259    }
1260
1261    unsigned size() const { return Queue.size(); }
1262
1263    bool empty() const { return Queue.empty(); }
1264
1265    void push(SUnit *U) {
1266      assert(!U->NodeQueueId && "Node in the queue already");
1267      U->NodeQueueId = ++currentQueueId;
1268      Queue.push(U);
1269    }
1270
1271    void push_all(const std::vector<SUnit *> &Nodes) {
1272      for (unsigned i = 0, e = Nodes.size(); i != e; ++i)
1273        push(Nodes[i]);
1274    }
1275
1276    SUnit *pop() {
1277      if (empty()) return NULL;
1278      SUnit *V = Queue.top();
1279      Queue.pop();
1280      V->NodeQueueId = 0;
1281      return V;
1282    }
1283
1284    void remove(SUnit *SU) {
1285      assert(!Queue.empty() && "Queue is empty!");
1286      assert(SU->NodeQueueId != 0 && "Not in queue!");
1287      Queue.erase_one(SU);
1288      SU->NodeQueueId = 0;
1289    }
1290
1291    void setScheduleDAG(ScheduleDAGRRList *scheduleDag) {
1292      scheduleDAG = scheduleDag;
1293    }
1294
1295  protected:
1296    bool canClobber(const SUnit *SU, const SUnit *Op);
1297    void AddPseudoTwoAddrDeps();
1298    void CalculateSethiUllmanNumbers();
1299  };
1300
1301  typedef RegReductionPriorityQueue<bu_ls_rr_sort>
1302    BURegReductionPriorityQueue;
1303
1304  typedef RegReductionPriorityQueue<td_ls_rr_sort>
1305    TDRegReductionPriorityQueue;
1306}
1307
1308/// closestSucc - Returns the scheduled cycle of the successor which is
1309/// closet to the current cycle.
1310static unsigned closestSucc(const SUnit *SU) {
1311  unsigned MaxCycle = 0;
1312  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1313       I != E; ++I) {
1314    unsigned Cycle = I->Dep->Cycle;
1315    // If there are bunch of CopyToRegs stacked up, they should be considered
1316    // to be at the same position.
1317    if (I->Dep->getNode() && I->Dep->getNode()->getOpcode() == ISD::CopyToReg)
1318      Cycle = closestSucc(I->Dep)+1;
1319    if (Cycle > MaxCycle)
1320      MaxCycle = Cycle;
1321  }
1322  return MaxCycle;
1323}
1324
1325/// calcMaxScratches - Returns an cost estimate of the worse case requirement
1326/// for scratch registers. Live-in operands and live-out results don't count
1327/// since they are "fixed".
1328static unsigned calcMaxScratches(const SUnit *SU) {
1329  unsigned Scratches = 0;
1330  for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
1331       I != E; ++I) {
1332    if (I->isCtrl) continue;  // ignore chain preds
1333    if (!I->Dep->getNode() || I->Dep->getNode()->getOpcode() != ISD::CopyFromReg)
1334      Scratches++;
1335  }
1336  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1337       I != E; ++I) {
1338    if (I->isCtrl) continue;  // ignore chain succs
1339    if (!I->Dep->getNode() || I->Dep->getNode()->getOpcode() != ISD::CopyToReg)
1340      Scratches += 10;
1341  }
1342  return Scratches;
1343}
1344
1345// Bottom up
1346bool bu_ls_rr_sort::operator()(const SUnit *left, const SUnit *right) const {
1347  unsigned LPriority = SPQ->getNodePriority(left);
1348  unsigned RPriority = SPQ->getNodePriority(right);
1349  if (LPriority != RPriority)
1350    return LPriority > RPriority;
1351
1352  // Try schedule def + use closer when Sethi-Ullman numbers are the same.
1353  // e.g.
1354  // t1 = op t2, c1
1355  // t3 = op t4, c2
1356  //
1357  // and the following instructions are both ready.
1358  // t2 = op c3
1359  // t4 = op c4
1360  //
1361  // Then schedule t2 = op first.
1362  // i.e.
1363  // t4 = op c4
1364  // t2 = op c3
1365  // t1 = op t2, c1
1366  // t3 = op t4, c2
1367  //
1368  // This creates more short live intervals.
1369  unsigned LDist = closestSucc(left);
1370  unsigned RDist = closestSucc(right);
1371  if (LDist != RDist)
1372    return LDist < RDist;
1373
1374  // Intuitively, it's good to push down instructions whose results are
1375  // liveout so their long live ranges won't conflict with other values
1376  // which are needed inside the BB. Further prioritize liveout instructions
1377  // by the number of operands which are calculated within the BB.
1378  unsigned LScratch = calcMaxScratches(left);
1379  unsigned RScratch = calcMaxScratches(right);
1380  if (LScratch != RScratch)
1381    return LScratch > RScratch;
1382
1383  if (left->Height != right->Height)
1384    return left->Height > right->Height;
1385
1386  if (left->Depth != right->Depth)
1387    return left->Depth < right->Depth;
1388
1389  assert(left->NodeQueueId && right->NodeQueueId &&
1390         "NodeQueueId cannot be zero");
1391  return (left->NodeQueueId > right->NodeQueueId);
1392}
1393
1394template<class SF>
1395bool
1396RegReductionPriorityQueue<SF>::canClobber(const SUnit *SU, const SUnit *Op) {
1397  if (SU->isTwoAddress) {
1398    unsigned Opc = SU->getNode()->getMachineOpcode();
1399    const TargetInstrDesc &TID = TII->get(Opc);
1400    unsigned NumRes = TID.getNumDefs();
1401    unsigned NumOps = TID.getNumOperands() - NumRes;
1402    for (unsigned i = 0; i != NumOps; ++i) {
1403      if (TID.getOperandConstraint(i+NumRes, TOI::TIED_TO) != -1) {
1404        SDNode *DU = SU->getNode()->getOperand(i).getNode();
1405        if (DU->getNodeId() != -1 &&
1406            Op->OrigNode == &(*SUnits)[DU->getNodeId()])
1407          return true;
1408      }
1409    }
1410  }
1411  return false;
1412}
1413
1414
1415/// hasCopyToRegUse - Return true if SU has a value successor that is a
1416/// CopyToReg node.
1417static bool hasCopyToRegUse(const SUnit *SU) {
1418  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1419       I != E; ++I) {
1420    if (I->isCtrl) continue;
1421    const SUnit *SuccSU = I->Dep;
1422    if (SuccSU->getNode() && SuccSU->getNode()->getOpcode() == ISD::CopyToReg)
1423      return true;
1424  }
1425  return false;
1426}
1427
1428/// canClobberPhysRegDefs - True if SU would clobber one of SuccSU's
1429/// physical register defs.
1430static bool canClobberPhysRegDefs(const SUnit *SuccSU, const SUnit *SU,
1431                                  const TargetInstrInfo *TII,
1432                                  const TargetRegisterInfo *TRI) {
1433  SDNode *N = SuccSU->getNode();
1434  unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
1435  const unsigned *ImpDefs = TII->get(N->getMachineOpcode()).getImplicitDefs();
1436  assert(ImpDefs && "Caller should check hasPhysRegDefs");
1437  const unsigned *SUImpDefs =
1438    TII->get(SU->getNode()->getMachineOpcode()).getImplicitDefs();
1439  if (!SUImpDefs)
1440    return false;
1441  for (unsigned i = NumDefs, e = N->getNumValues(); i != e; ++i) {
1442    MVT VT = N->getValueType(i);
1443    if (VT == MVT::Flag || VT == MVT::Other)
1444      continue;
1445    if (!N->hasAnyUseOfValue(i))
1446      continue;
1447    unsigned Reg = ImpDefs[i - NumDefs];
1448    for (;*SUImpDefs; ++SUImpDefs) {
1449      unsigned SUReg = *SUImpDefs;
1450      if (TRI->regsOverlap(Reg, SUReg))
1451        return true;
1452    }
1453  }
1454  return false;
1455}
1456
1457/// AddPseudoTwoAddrDeps - If two nodes share an operand and one of them uses
1458/// it as a def&use operand. Add a pseudo control edge from it to the other
1459/// node (if it won't create a cycle) so the two-address one will be scheduled
1460/// first (lower in the schedule). If both nodes are two-address, favor the
1461/// one that has a CopyToReg use (more likely to be a loop induction update).
1462/// If both are two-address, but one is commutable while the other is not
1463/// commutable, favor the one that's not commutable.
1464template<class SF>
1465void RegReductionPriorityQueue<SF>::AddPseudoTwoAddrDeps() {
1466  for (unsigned i = 0, e = SUnits->size(); i != e; ++i) {
1467    SUnit *SU = &(*SUnits)[i];
1468    if (!SU->isTwoAddress)
1469      continue;
1470
1471    SDNode *Node = SU->getNode();
1472    if (!Node || !Node->isMachineOpcode() || SU->getNode()->getFlaggedNode())
1473      continue;
1474
1475    unsigned Opc = Node->getMachineOpcode();
1476    const TargetInstrDesc &TID = TII->get(Opc);
1477    unsigned NumRes = TID.getNumDefs();
1478    unsigned NumOps = TID.getNumOperands() - NumRes;
1479    for (unsigned j = 0; j != NumOps; ++j) {
1480      if (TID.getOperandConstraint(j+NumRes, TOI::TIED_TO) == -1)
1481        continue;
1482      SDNode *DU = SU->getNode()->getOperand(j).getNode();
1483      if (DU->getNodeId() == -1)
1484        continue;
1485      const SUnit *DUSU = &(*SUnits)[DU->getNodeId()];
1486      if (!DUSU) continue;
1487      for (SUnit::const_succ_iterator I = DUSU->Succs.begin(),
1488           E = DUSU->Succs.end(); I != E; ++I) {
1489        if (I->isCtrl) continue;
1490        SUnit *SuccSU = I->Dep;
1491        if (SuccSU == SU)
1492          continue;
1493        // Be conservative. Ignore if nodes aren't at roughly the same
1494        // depth and height.
1495        if (SuccSU->Height < SU->Height && (SU->Height - SuccSU->Height) > 1)
1496          continue;
1497        if (!SuccSU->getNode() || !SuccSU->getNode()->isMachineOpcode())
1498          continue;
1499        // Don't constrain nodes with physical register defs if the
1500        // predecessor can clobber them.
1501        if (SuccSU->hasPhysRegDefs) {
1502          if (canClobberPhysRegDefs(SuccSU, SU, TII, TRI))
1503            continue;
1504        }
1505        // Don't constraint extract_subreg / insert_subreg these may be
1506        // coalesced away. We don't them close to their uses.
1507        unsigned SuccOpc = SuccSU->getNode()->getMachineOpcode();
1508        if (SuccOpc == TargetInstrInfo::EXTRACT_SUBREG ||
1509            SuccOpc == TargetInstrInfo::INSERT_SUBREG)
1510          continue;
1511        if ((!canClobber(SuccSU, DUSU) ||
1512             (hasCopyToRegUse(SU) && !hasCopyToRegUse(SuccSU)) ||
1513             (!SU->isCommutable && SuccSU->isCommutable)) &&
1514            !scheduleDAG->IsReachable(SuccSU, SU)) {
1515          DOUT << "Adding an edge from SU # " << SU->NodeNum
1516               << " to SU #" << SuccSU->NodeNum << "\n";
1517          scheduleDAG->AddPred(SU, SuccSU, true, true);
1518        }
1519      }
1520    }
1521  }
1522}
1523
1524/// CalculateSethiUllmanNumbers - Calculate Sethi-Ullman numbers of all
1525/// scheduling units.
1526template<class SF>
1527void RegReductionPriorityQueue<SF>::CalculateSethiUllmanNumbers() {
1528  SethiUllmanNumbers.assign(SUnits->size(), 0);
1529
1530  for (unsigned i = 0, e = SUnits->size(); i != e; ++i)
1531    CalcNodeSethiUllmanNumber(&(*SUnits)[i], SethiUllmanNumbers);
1532}
1533
1534/// LimitedSumOfUnscheduledPredsOfSuccs - Compute the sum of the unscheduled
1535/// predecessors of the successors of the SUnit SU. Stop when the provided
1536/// limit is exceeded.
1537static unsigned LimitedSumOfUnscheduledPredsOfSuccs(const SUnit *SU,
1538                                                    unsigned Limit) {
1539  unsigned Sum = 0;
1540  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1541       I != E; ++I) {
1542    const SUnit *SuccSU = I->Dep;
1543    for (SUnit::const_pred_iterator II = SuccSU->Preds.begin(),
1544         EE = SuccSU->Preds.end(); II != EE; ++II) {
1545      SUnit *PredSU = II->Dep;
1546      if (!PredSU->isScheduled)
1547        if (++Sum > Limit)
1548          return Sum;
1549    }
1550  }
1551  return Sum;
1552}
1553
1554
1555// Top down
1556bool td_ls_rr_sort::operator()(const SUnit *left, const SUnit *right) const {
1557  unsigned LPriority = SPQ->getNodePriority(left);
1558  unsigned RPriority = SPQ->getNodePriority(right);
1559  bool LIsTarget = left->getNode() && left->getNode()->isMachineOpcode();
1560  bool RIsTarget = right->getNode() && right->getNode()->isMachineOpcode();
1561  bool LIsFloater = LIsTarget && left->NumPreds == 0;
1562  bool RIsFloater = RIsTarget && right->NumPreds == 0;
1563  unsigned LBonus = (LimitedSumOfUnscheduledPredsOfSuccs(left,1) == 1) ? 2 : 0;
1564  unsigned RBonus = (LimitedSumOfUnscheduledPredsOfSuccs(right,1) == 1) ? 2 : 0;
1565
1566  if (left->NumSuccs == 0 && right->NumSuccs != 0)
1567    return false;
1568  else if (left->NumSuccs != 0 && right->NumSuccs == 0)
1569    return true;
1570
1571  if (LIsFloater)
1572    LBonus -= 2;
1573  if (RIsFloater)
1574    RBonus -= 2;
1575  if (left->NumSuccs == 1)
1576    LBonus += 2;
1577  if (right->NumSuccs == 1)
1578    RBonus += 2;
1579
1580  if (LPriority+LBonus != RPriority+RBonus)
1581    return LPriority+LBonus < RPriority+RBonus;
1582
1583  if (left->Depth != right->Depth)
1584    return left->Depth < right->Depth;
1585
1586  if (left->NumSuccsLeft != right->NumSuccsLeft)
1587    return left->NumSuccsLeft > right->NumSuccsLeft;
1588
1589  assert(left->NodeQueueId && right->NodeQueueId &&
1590         "NodeQueueId cannot be zero");
1591  return (left->NodeQueueId > right->NodeQueueId);
1592}
1593
1594//===----------------------------------------------------------------------===//
1595//                         Public Constructor Functions
1596//===----------------------------------------------------------------------===//
1597
1598llvm::ScheduleDAG* llvm::createBURRListDAGScheduler(SelectionDAGISel *IS,
1599                                                    SelectionDAG *DAG,
1600                                                    const TargetMachine *TM,
1601                                                    MachineBasicBlock *BB,
1602                                                    bool) {
1603  const TargetInstrInfo *TII = TM->getInstrInfo();
1604  const TargetRegisterInfo *TRI = TM->getRegisterInfo();
1605
1606  BURegReductionPriorityQueue *PQ = new BURegReductionPriorityQueue(TII, TRI);
1607
1608  ScheduleDAGRRList *SD =
1609    new ScheduleDAGRRList(DAG, BB, *TM, true, PQ);
1610  PQ->setScheduleDAG(SD);
1611  return SD;
1612}
1613
1614llvm::ScheduleDAG* llvm::createTDRRListDAGScheduler(SelectionDAGISel *IS,
1615                                                    SelectionDAG *DAG,
1616                                                    const TargetMachine *TM,
1617                                                    MachineBasicBlock *BB,
1618                                                    bool) {
1619  const TargetInstrInfo *TII = TM->getInstrInfo();
1620  const TargetRegisterInfo *TRI = TM->getRegisterInfo();
1621
1622  TDRegReductionPriorityQueue *PQ = new TDRegReductionPriorityQueue(TII, TRI);
1623
1624  ScheduleDAGRRList *SD = new ScheduleDAGRRList(DAG, BB, *TM, false, PQ);
1625  PQ->setScheduleDAG(SD);
1626  return SD;
1627}
1628