ScheduleDAGRRList.cpp revision ffa391272bad598d73fd5404dadf3686b69f2a63
1//===----- ScheduleDAGRRList.cpp - Reg pressure reduction list scheduler --===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements bottom-up and top-down register pressure reduction list
11// schedulers, using standard algorithms.  The basic approach uses a priority
12// queue of available nodes to schedule.  One at a time, nodes are taken from
13// the priority queue (thus in priority order), checked for legality to
14// schedule, and emitted if legal.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "pre-RA-sched"
19#include "llvm/CodeGen/ScheduleDAGSDNodes.h"
20#include "llvm/CodeGen/SchedulerRegistry.h"
21#include "llvm/Target/TargetRegisterInfo.h"
22#include "llvm/Target/TargetData.h"
23#include "llvm/Target/TargetMachine.h"
24#include "llvm/Target/TargetInstrInfo.h"
25#include "llvm/Support/Debug.h"
26#include "llvm/Support/Compiler.h"
27#include "llvm/ADT/BitVector.h"
28#include "llvm/ADT/PriorityQueue.h"
29#include "llvm/ADT/SmallPtrSet.h"
30#include "llvm/ADT/SmallSet.h"
31#include "llvm/ADT/Statistic.h"
32#include "llvm/ADT/STLExtras.h"
33#include <climits>
34#include "llvm/Support/CommandLine.h"
35using namespace llvm;
36
37STATISTIC(NumBacktracks, "Number of times scheduler backtracked");
38STATISTIC(NumUnfolds,    "Number of nodes unfolded");
39STATISTIC(NumDups,       "Number of duplicated nodes");
40STATISTIC(NumCCCopies,   "Number of cross class copies");
41
42static RegisterScheduler
43  burrListDAGScheduler("list-burr",
44                       "Bottom-up register reduction list scheduling",
45                       createBURRListDAGScheduler);
46static RegisterScheduler
47  tdrListrDAGScheduler("list-tdrr",
48                       "Top-down register reduction list scheduling",
49                       createTDRRListDAGScheduler);
50
51namespace {
52//===----------------------------------------------------------------------===//
53/// ScheduleDAGRRList - The actual register reduction list scheduler
54/// implementation.  This supports both top-down and bottom-up scheduling.
55///
56class VISIBILITY_HIDDEN ScheduleDAGRRList : public ScheduleDAGSDNodes {
57private:
58  /// isBottomUp - This is true if the scheduling problem is bottom-up, false if
59  /// it is top-down.
60  bool isBottomUp;
61
62  /// AvailableQueue - The priority queue to use for the available SUnits.
63  SchedulingPriorityQueue *AvailableQueue;
64
65  /// LiveRegDefs - A set of physical registers and their definition
66  /// that are "live". These nodes must be scheduled before any other nodes that
67  /// modifies the registers can be scheduled.
68  unsigned NumLiveRegs;
69  std::vector<SUnit*> LiveRegDefs;
70  std::vector<unsigned> LiveRegCycles;
71
72  /// Topo - A topological ordering for SUnits which permits fast IsReachable
73  /// and similar queries.
74  ScheduleDAGTopologicalSort Topo;
75
76public:
77  ScheduleDAGRRList(SelectionDAG *dag, MachineBasicBlock *bb,
78                    const TargetMachine &tm, bool isbottomup,
79                    SchedulingPriorityQueue *availqueue)
80    : ScheduleDAGSDNodes(dag, bb, tm), isBottomUp(isbottomup),
81      AvailableQueue(availqueue), Topo(SUnits) {
82    }
83
84  ~ScheduleDAGRRList() {
85    delete AvailableQueue;
86  }
87
88  void Schedule();
89
90  /// IsReachable - Checks if SU is reachable from TargetSU.
91  bool IsReachable(const SUnit *SU, const SUnit *TargetSU) {
92    return Topo.IsReachable(SU, TargetSU);
93  }
94
95  /// willCreateCycle - Returns true if adding an edge from SU to TargetSU will
96  /// create a cycle.
97  bool WillCreateCycle(SUnit *SU, SUnit *TargetSU) {
98    return Topo.WillCreateCycle(SU, TargetSU);
99  }
100
101  /// AddPred - adds a predecessor edge to SUnit SU.
102  /// This returns true if this is a new predecessor.
103  /// Updates the topological ordering if required.
104  void AddPred(SUnit *SU, const SDep &D) {
105    Topo.AddPred(SU, D.getSUnit());
106    SU->addPred(D);
107  }
108
109  /// RemovePred - removes a predecessor edge from SUnit SU.
110  /// This returns true if an edge was removed.
111  /// Updates the topological ordering if required.
112  void RemovePred(SUnit *SU, const SDep &D) {
113    Topo.RemovePred(SU, D.getSUnit());
114    SU->removePred(D);
115  }
116
117private:
118  void ReleasePred(SUnit *SU, SDep *PredEdge);
119  void ReleaseSucc(SUnit *SU, SDep *SuccEdge);
120  void CapturePred(SDep *PredEdge);
121  void ScheduleNodeBottomUp(SUnit*, unsigned);
122  void ScheduleNodeTopDown(SUnit*, unsigned);
123  void UnscheduleNodeBottomUp(SUnit*);
124  void BacktrackBottomUp(SUnit*, unsigned, unsigned&);
125  SUnit *CopyAndMoveSuccessors(SUnit*);
126  void InsertCCCopiesAndMoveSuccs(SUnit*, unsigned,
127                                  const TargetRegisterClass*,
128                                  const TargetRegisterClass*,
129                                  SmallVector<SUnit*, 2>&);
130  bool DelayForLiveRegsBottomUp(SUnit*, SmallVector<unsigned, 4>&);
131  void ListScheduleTopDown();
132  void ListScheduleBottomUp();
133  void CommuteNodesToReducePressure();
134
135
136  /// CreateNewSUnit - Creates a new SUnit and returns a pointer to it.
137  /// Updates the topological ordering if required.
138  SUnit *CreateNewSUnit(SDNode *N) {
139    unsigned NumSUnits = SUnits.size();
140    SUnit *NewNode = NewSUnit(N);
141    // Update the topological ordering.
142    if (NewNode->NodeNum >= NumSUnits)
143      Topo.InitDAGTopologicalSorting();
144    return NewNode;
145  }
146
147  /// CreateClone - Creates a new SUnit from an existing one.
148  /// Updates the topological ordering if required.
149  SUnit *CreateClone(SUnit *N) {
150    unsigned NumSUnits = SUnits.size();
151    SUnit *NewNode = Clone(N);
152    // Update the topological ordering.
153    if (NewNode->NodeNum >= NumSUnits)
154      Topo.InitDAGTopologicalSorting();
155    return NewNode;
156  }
157};
158}  // end anonymous namespace
159
160
161/// Schedule - Schedule the DAG using list scheduling.
162void ScheduleDAGRRList::Schedule() {
163  DOUT << "********** List Scheduling **********\n";
164
165  NumLiveRegs = 0;
166  LiveRegDefs.resize(TRI->getNumRegs(), NULL);
167  LiveRegCycles.resize(TRI->getNumRegs(), 0);
168
169  // Build scheduling units.
170  BuildSchedUnits();
171
172  DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
173          SUnits[su].dumpAll(this));
174  CalculateDepths();
175  CalculateHeights();
176  Topo.InitDAGTopologicalSorting();
177
178  AvailableQueue->initNodes(SUnits);
179
180  // Execute the actual scheduling loop Top-Down or Bottom-Up as appropriate.
181  if (isBottomUp)
182    ListScheduleBottomUp();
183  else
184    ListScheduleTopDown();
185
186  AvailableQueue->releaseState();
187
188  CommuteNodesToReducePressure();
189}
190
191/// CommuteNodesToReducePressure - If a node is two-address and commutable, and
192/// it is not the last use of its first operand, add it to the CommuteSet if
193/// possible. It will be commuted when it is translated to a MI.
194void ScheduleDAGRRList::CommuteNodesToReducePressure() {
195  SmallPtrSet<SUnit*, 4> OperandSeen;
196  for (unsigned i = Sequence.size(); i != 0; ) {
197    --i;
198    SUnit *SU = Sequence[i];
199    if (!SU || !SU->getNode()) continue;
200    if (SU->isCommutable) {
201      unsigned Opc = SU->getNode()->getMachineOpcode();
202      const TargetInstrDesc &TID = TII->get(Opc);
203      unsigned NumRes = TID.getNumDefs();
204      unsigned NumOps = TID.getNumOperands() - NumRes;
205      for (unsigned j = 0; j != NumOps; ++j) {
206        if (TID.getOperandConstraint(j+NumRes, TOI::TIED_TO) == -1)
207          continue;
208
209        SDNode *OpN = SU->getNode()->getOperand(j).getNode();
210        SUnit *OpSU = isPassiveNode(OpN) ? NULL : &SUnits[OpN->getNodeId()];
211        if (OpSU && OperandSeen.count(OpSU) == 1) {
212          // Ok, so SU is not the last use of OpSU, but SU is two-address so
213          // it will clobber OpSU. Try to commute SU if no other source operands
214          // are live below.
215          bool DoCommute = true;
216          for (unsigned k = 0; k < NumOps; ++k) {
217            if (k != j) {
218              OpN = SU->getNode()->getOperand(k).getNode();
219              OpSU = isPassiveNode(OpN) ? NULL : &SUnits[OpN->getNodeId()];
220              if (OpSU && OperandSeen.count(OpSU) == 1) {
221                DoCommute = false;
222                break;
223              }
224            }
225          }
226          if (DoCommute)
227            CommuteSet.insert(SU->getNode());
228        }
229
230        // Only look at the first use&def node for now.
231        break;
232      }
233    }
234
235    for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
236         I != E; ++I) {
237      if (!I->isCtrl())
238        OperandSeen.insert(I->getSUnit()->OrigNode);
239    }
240  }
241}
242
243//===----------------------------------------------------------------------===//
244//  Bottom-Up Scheduling
245//===----------------------------------------------------------------------===//
246
247/// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
248/// the AvailableQueue if the count reaches zero. Also update its cycle bound.
249void ScheduleDAGRRList::ReleasePred(SUnit *SU, SDep *PredEdge) {
250  SUnit *PredSU = PredEdge->getSUnit();
251  --PredSU->NumSuccsLeft;
252
253#ifndef NDEBUG
254  if (PredSU->NumSuccsLeft < 0) {
255    cerr << "*** Scheduling failed! ***\n";
256    PredSU->dump(this);
257    cerr << " has been released too many times!\n";
258    assert(0);
259  }
260#endif
261
262  if (PredSU->NumSuccsLeft == 0) {
263    PredSU->isAvailable = true;
264    AvailableQueue->push(PredSU);
265  }
266}
267
268/// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
269/// count of its predecessors. If a predecessor pending count is zero, add it to
270/// the Available queue.
271void ScheduleDAGRRList::ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle) {
272  DOUT << "*** Scheduling [" << CurCycle << "]: ";
273  DEBUG(SU->dump(this));
274
275  SU->Cycle = CurCycle;
276  Sequence.push_back(SU);
277
278  // Bottom up: release predecessors
279  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
280       I != E; ++I) {
281    ReleasePred(SU, &*I);
282    if (I->isAssignedRegDep()) {
283      // This is a physical register dependency and it's impossible or
284      // expensive to copy the register. Make sure nothing that can
285      // clobber the register is scheduled between the predecessor and
286      // this node.
287      if (!LiveRegDefs[I->getReg()]) {
288        ++NumLiveRegs;
289        LiveRegDefs[I->getReg()] = I->getSUnit();
290        LiveRegCycles[I->getReg()] = CurCycle;
291      }
292    }
293  }
294
295  // Release all the implicit physical register defs that are live.
296  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
297       I != E; ++I) {
298    if (I->isAssignedRegDep()) {
299      if (LiveRegCycles[I->getReg()] == I->getSUnit()->Cycle) {
300        assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
301        assert(LiveRegDefs[I->getReg()] == SU &&
302               "Physical register dependency violated?");
303        --NumLiveRegs;
304        LiveRegDefs[I->getReg()] = NULL;
305        LiveRegCycles[I->getReg()] = 0;
306      }
307    }
308  }
309
310  SU->isScheduled = true;
311  AvailableQueue->ScheduledNode(SU);
312}
313
314/// CapturePred - This does the opposite of ReleasePred. Since SU is being
315/// unscheduled, incrcease the succ left count of its predecessors. Remove
316/// them from AvailableQueue if necessary.
317void ScheduleDAGRRList::CapturePred(SDep *PredEdge) {
318  SUnit *PredSU = PredEdge->getSUnit();
319  if (PredSU->isAvailable) {
320    PredSU->isAvailable = false;
321    if (!PredSU->isPending)
322      AvailableQueue->remove(PredSU);
323  }
324
325  ++PredSU->NumSuccsLeft;
326}
327
328/// UnscheduleNodeBottomUp - Remove the node from the schedule, update its and
329/// its predecessor states to reflect the change.
330void ScheduleDAGRRList::UnscheduleNodeBottomUp(SUnit *SU) {
331  DOUT << "*** Unscheduling [" << SU->Cycle << "]: ";
332  DEBUG(SU->dump(this));
333
334  AvailableQueue->UnscheduledNode(SU);
335
336  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
337       I != E; ++I) {
338    CapturePred(&*I);
339    if (I->isAssignedRegDep() && SU->Cycle == LiveRegCycles[I->getReg()]) {
340      assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
341      assert(LiveRegDefs[I->getReg()] == I->getSUnit() &&
342             "Physical register dependency violated?");
343      --NumLiveRegs;
344      LiveRegDefs[I->getReg()] = NULL;
345      LiveRegCycles[I->getReg()] = 0;
346    }
347  }
348
349  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
350       I != E; ++I) {
351    if (I->isAssignedRegDep()) {
352      if (!LiveRegDefs[I->getReg()]) {
353        LiveRegDefs[I->getReg()] = SU;
354        ++NumLiveRegs;
355      }
356      if (I->getSUnit()->Cycle < LiveRegCycles[I->getReg()])
357        LiveRegCycles[I->getReg()] = I->getSUnit()->Cycle;
358    }
359  }
360
361  SU->Cycle = 0;
362  SU->isScheduled = false;
363  SU->isAvailable = true;
364  AvailableQueue->push(SU);
365}
366
367/// BacktrackBottomUp - Backtrack scheduling to a previous cycle specified in
368/// BTCycle in order to schedule a specific node. Returns the last unscheduled
369/// SUnit. Also returns if a successor is unscheduled in the process.
370void ScheduleDAGRRList::BacktrackBottomUp(SUnit *SU, unsigned BtCycle,
371                                          unsigned &CurCycle) {
372  SUnit *OldSU = NULL;
373  while (CurCycle > BtCycle) {
374    OldSU = Sequence.back();
375    Sequence.pop_back();
376    if (SU->isSucc(OldSU))
377      // Don't try to remove SU from AvailableQueue.
378      SU->isAvailable = false;
379    UnscheduleNodeBottomUp(OldSU);
380    --CurCycle;
381  }
382
383
384  if (SU->isSucc(OldSU)) {
385    assert(false && "Something is wrong!");
386    abort();
387  }
388
389  ++NumBacktracks;
390}
391
392/// CopyAndMoveSuccessors - Clone the specified node and move its scheduled
393/// successors to the newly created node.
394SUnit *ScheduleDAGRRList::CopyAndMoveSuccessors(SUnit *SU) {
395  if (SU->getNode()->getFlaggedNode())
396    return NULL;
397
398  SDNode *N = SU->getNode();
399  if (!N)
400    return NULL;
401
402  SUnit *NewSU;
403  bool TryUnfold = false;
404  for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
405    MVT VT = N->getValueType(i);
406    if (VT == MVT::Flag)
407      return NULL;
408    else if (VT == MVT::Other)
409      TryUnfold = true;
410  }
411  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
412    const SDValue &Op = N->getOperand(i);
413    MVT VT = Op.getNode()->getValueType(Op.getResNo());
414    if (VT == MVT::Flag)
415      return NULL;
416  }
417
418  if (TryUnfold) {
419    SmallVector<SDNode*, 2> NewNodes;
420    if (!TII->unfoldMemoryOperand(*DAG, N, NewNodes))
421      return NULL;
422
423    DOUT << "Unfolding SU # " << SU->NodeNum << "\n";
424    assert(NewNodes.size() == 2 && "Expected a load folding node!");
425
426    N = NewNodes[1];
427    SDNode *LoadNode = NewNodes[0];
428    unsigned NumVals = N->getNumValues();
429    unsigned OldNumVals = SU->getNode()->getNumValues();
430    for (unsigned i = 0; i != NumVals; ++i)
431      DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), i), SDValue(N, i));
432    DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), OldNumVals-1),
433                                   SDValue(LoadNode, 1));
434
435    // LoadNode may already exist. This can happen when there is another
436    // load from the same location and producing the same type of value
437    // but it has different alignment or volatileness.
438    bool isNewLoad = true;
439    SUnit *LoadSU;
440    if (LoadNode->getNodeId() != -1) {
441      LoadSU = &SUnits[LoadNode->getNodeId()];
442      isNewLoad = false;
443    } else {
444      LoadSU = CreateNewSUnit(LoadNode);
445      LoadNode->setNodeId(LoadSU->NodeNum);
446
447      LoadSU->Depth = SU->Depth;
448      LoadSU->Height = SU->Height;
449      ComputeLatency(LoadSU);
450    }
451
452    SUnit *NewSU = CreateNewSUnit(N);
453    assert(N->getNodeId() == -1 && "Node already inserted!");
454    N->setNodeId(NewSU->NodeNum);
455
456    const TargetInstrDesc &TID = TII->get(N->getMachineOpcode());
457    for (unsigned i = 0; i != TID.getNumOperands(); ++i) {
458      if (TID.getOperandConstraint(i, TOI::TIED_TO) != -1) {
459        NewSU->isTwoAddress = true;
460        break;
461      }
462    }
463    if (TID.isCommutable())
464      NewSU->isCommutable = true;
465    // FIXME: Calculate height / depth and propagate the changes?
466    NewSU->Depth = SU->Depth;
467    NewSU->Height = SU->Height;
468    ComputeLatency(NewSU);
469
470    SDep ChainPred;
471    SmallVector<SDep, 4> ChainSuccs;
472    SmallVector<SDep, 4> LoadPreds;
473    SmallVector<SDep, 4> NodePreds;
474    SmallVector<SDep, 4> NodeSuccs;
475    for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
476         I != E; ++I) {
477      if (I->isCtrl())
478        ChainPred = *I;
479      else if (I->getSUnit()->getNode() &&
480               I->getSUnit()->getNode()->isOperandOf(LoadNode))
481        LoadPreds.push_back(*I);
482      else
483        NodePreds.push_back(*I);
484    }
485    for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
486         I != E; ++I) {
487      if (I->isCtrl())
488        ChainSuccs.push_back(*I);
489      else
490        NodeSuccs.push_back(*I);
491    }
492
493    if (ChainPred.getSUnit()) {
494      RemovePred(SU, ChainPred);
495      if (isNewLoad)
496        AddPred(LoadSU, ChainPred);
497    }
498    for (unsigned i = 0, e = LoadPreds.size(); i != e; ++i) {
499      const SDep &Pred = LoadPreds[i];
500      RemovePred(SU, Pred);
501      if (isNewLoad) {
502        AddPred(LoadSU, Pred);
503      }
504    }
505    for (unsigned i = 0, e = NodePreds.size(); i != e; ++i) {
506      const SDep &Pred = NodePreds[i];
507      RemovePred(SU, Pred);
508      AddPred(NewSU, Pred);
509    }
510    for (unsigned i = 0, e = NodeSuccs.size(); i != e; ++i) {
511      SDep D = NodeSuccs[i];
512      SUnit *SuccDep = D.getSUnit();
513      D.setSUnit(SU);
514      RemovePred(SuccDep, D);
515      D.setSUnit(NewSU);
516      AddPred(SuccDep, D);
517    }
518    for (unsigned i = 0, e = ChainSuccs.size(); i != e; ++i) {
519      SDep D = ChainSuccs[i];
520      SUnit *SuccDep = D.getSUnit();
521      D.setSUnit(SU);
522      RemovePred(SuccDep, D);
523      if (isNewLoad) {
524        D.setSUnit(LoadSU);
525        AddPred(SuccDep, D);
526      }
527    }
528    if (isNewLoad) {
529      AddPred(NewSU, SDep(LoadSU, SDep::Order, LoadSU->Latency));
530    }
531
532    if (isNewLoad)
533      AvailableQueue->addNode(LoadSU);
534    AvailableQueue->addNode(NewSU);
535
536    ++NumUnfolds;
537
538    if (NewSU->NumSuccsLeft == 0) {
539      NewSU->isAvailable = true;
540      return NewSU;
541    }
542    SU = NewSU;
543  }
544
545  DOUT << "Duplicating SU # " << SU->NodeNum << "\n";
546  NewSU = CreateClone(SU);
547
548  // New SUnit has the exact same predecessors.
549  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
550       I != E; ++I)
551    if (!I->isArtificial()) {
552      AddPred(NewSU, *I);
553      NewSU->Depth = std::max(NewSU->Depth, I->getSUnit()->Depth+1);
554    }
555
556  // Only copy scheduled successors. Cut them from old node's successor
557  // list and move them over.
558  SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
559  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
560       I != E; ++I) {
561    if (I->isArtificial())
562      continue;
563    SUnit *SuccSU = I->getSUnit();
564    if (SuccSU->isScheduled) {
565      NewSU->Height = std::max(NewSU->Height, SuccSU->Height+1);
566      SDep D = *I;
567      D.setSUnit(NewSU);
568      AddPred(SuccSU, D);
569      D.setSUnit(SU);
570      DelDeps.push_back(std::make_pair(SuccSU, D));
571    }
572  }
573  for (unsigned i = 0, e = DelDeps.size(); i != e; ++i) {
574    RemovePred(DelDeps[i].first, DelDeps[i].second);
575  }
576
577  AvailableQueue->updateNode(SU);
578  AvailableQueue->addNode(NewSU);
579
580  ++NumDups;
581  return NewSU;
582}
583
584/// InsertCCCopiesAndMoveSuccs - Insert expensive cross register class copies
585/// and move all scheduled successors of the given SUnit to the last copy.
586void ScheduleDAGRRList::InsertCCCopiesAndMoveSuccs(SUnit *SU, unsigned Reg,
587                                              const TargetRegisterClass *DestRC,
588                                              const TargetRegisterClass *SrcRC,
589                                               SmallVector<SUnit*, 2> &Copies) {
590  SUnit *CopyFromSU = CreateNewSUnit(NULL);
591  CopyFromSU->CopySrcRC = SrcRC;
592  CopyFromSU->CopyDstRC = DestRC;
593  CopyFromSU->Depth = SU->Depth;
594  CopyFromSU->Height = SU->Height;
595
596  SUnit *CopyToSU = CreateNewSUnit(NULL);
597  CopyToSU->CopySrcRC = DestRC;
598  CopyToSU->CopyDstRC = SrcRC;
599
600  // Only copy scheduled successors. Cut them from old node's successor
601  // list and move them over.
602  SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
603  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
604       I != E; ++I) {
605    if (I->isArtificial())
606      continue;
607    SUnit *SuccSU = I->getSUnit();
608    if (SuccSU->isScheduled) {
609      SDep D = *I;
610      D.setSUnit(CopyToSU);
611      AddPred(SuccSU, D);
612      DelDeps.push_back(std::make_pair(SuccSU, *I));
613    }
614  }
615  for (unsigned i = 0, e = DelDeps.size(); i != e; ++i) {
616    RemovePred(DelDeps[i].first, DelDeps[i].second);
617  }
618
619  AddPred(CopyFromSU, SDep(SU, SDep::Data, SU->Latency, Reg));
620  AddPred(CopyToSU, SDep(CopyFromSU, SDep::Data, CopyFromSU->Latency, 0));
621
622  AvailableQueue->updateNode(SU);
623  AvailableQueue->addNode(CopyFromSU);
624  AvailableQueue->addNode(CopyToSU);
625  Copies.push_back(CopyFromSU);
626  Copies.push_back(CopyToSU);
627
628  ++NumCCCopies;
629}
630
631/// getPhysicalRegisterVT - Returns the ValueType of the physical register
632/// definition of the specified node.
633/// FIXME: Move to SelectionDAG?
634static MVT getPhysicalRegisterVT(SDNode *N, unsigned Reg,
635                                 const TargetInstrInfo *TII) {
636  const TargetInstrDesc &TID = TII->get(N->getMachineOpcode());
637  assert(TID.ImplicitDefs && "Physical reg def must be in implicit def list!");
638  unsigned NumRes = TID.getNumDefs();
639  for (const unsigned *ImpDef = TID.getImplicitDefs(); *ImpDef; ++ImpDef) {
640    if (Reg == *ImpDef)
641      break;
642    ++NumRes;
643  }
644  return N->getValueType(NumRes);
645}
646
647/// DelayForLiveRegsBottomUp - Returns true if it is necessary to delay
648/// scheduling of the given node to satisfy live physical register dependencies.
649/// If the specific node is the last one that's available to schedule, do
650/// whatever is necessary (i.e. backtracking or cloning) to make it possible.
651bool ScheduleDAGRRList::DelayForLiveRegsBottomUp(SUnit *SU,
652                                                 SmallVector<unsigned, 4> &LRegs){
653  if (NumLiveRegs == 0)
654    return false;
655
656  SmallSet<unsigned, 4> RegAdded;
657  // If this node would clobber any "live" register, then it's not ready.
658  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
659       I != E; ++I) {
660    if (I->isAssignedRegDep()) {
661      unsigned Reg = I->getReg();
662      if (LiveRegDefs[Reg] && LiveRegDefs[Reg] != I->getSUnit()) {
663        if (RegAdded.insert(Reg))
664          LRegs.push_back(Reg);
665      }
666      for (const unsigned *Alias = TRI->getAliasSet(Reg);
667           *Alias; ++Alias)
668        if (LiveRegDefs[*Alias] && LiveRegDefs[*Alias] != I->getSUnit()) {
669          if (RegAdded.insert(*Alias))
670            LRegs.push_back(*Alias);
671        }
672    }
673  }
674
675  for (SDNode *Node = SU->getNode(); Node; Node = Node->getFlaggedNode()) {
676    if (!Node->isMachineOpcode())
677      continue;
678    const TargetInstrDesc &TID = TII->get(Node->getMachineOpcode());
679    if (!TID.ImplicitDefs)
680      continue;
681    for (const unsigned *Reg = TID.ImplicitDefs; *Reg; ++Reg) {
682      if (LiveRegDefs[*Reg] && LiveRegDefs[*Reg] != SU) {
683        if (RegAdded.insert(*Reg))
684          LRegs.push_back(*Reg);
685      }
686      for (const unsigned *Alias = TRI->getAliasSet(*Reg);
687           *Alias; ++Alias)
688        if (LiveRegDefs[*Alias] && LiveRegDefs[*Alias] != SU) {
689          if (RegAdded.insert(*Alias))
690            LRegs.push_back(*Alias);
691        }
692    }
693  }
694  return !LRegs.empty();
695}
696
697
698/// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
699/// schedulers.
700void ScheduleDAGRRList::ListScheduleBottomUp() {
701  unsigned CurCycle = 0;
702  // Add root to Available queue.
703  if (!SUnits.empty()) {
704    SUnit *RootSU = &SUnits[DAG->getRoot().getNode()->getNodeId()];
705    assert(RootSU->Succs.empty() && "Graph root shouldn't have successors!");
706    RootSU->isAvailable = true;
707    AvailableQueue->push(RootSU);
708  }
709
710  // While Available queue is not empty, grab the node with the highest
711  // priority. If it is not ready put it back.  Schedule the node.
712  SmallVector<SUnit*, 4> NotReady;
713  DenseMap<SUnit*, SmallVector<unsigned, 4> > LRegsMap;
714  Sequence.reserve(SUnits.size());
715  while (!AvailableQueue->empty()) {
716    bool Delayed = false;
717    LRegsMap.clear();
718    SUnit *CurSU = AvailableQueue->pop();
719    while (CurSU) {
720      SmallVector<unsigned, 4> LRegs;
721      if (!DelayForLiveRegsBottomUp(CurSU, LRegs))
722        break;
723      Delayed = true;
724      LRegsMap.insert(std::make_pair(CurSU, LRegs));
725
726      CurSU->isPending = true;  // This SU is not in AvailableQueue right now.
727      NotReady.push_back(CurSU);
728      CurSU = AvailableQueue->pop();
729    }
730
731    // All candidates are delayed due to live physical reg dependencies.
732    // Try backtracking, code duplication, or inserting cross class copies
733    // to resolve it.
734    if (Delayed && !CurSU) {
735      for (unsigned i = 0, e = NotReady.size(); i != e; ++i) {
736        SUnit *TrySU = NotReady[i];
737        SmallVector<unsigned, 4> &LRegs = LRegsMap[TrySU];
738
739        // Try unscheduling up to the point where it's safe to schedule
740        // this node.
741        unsigned LiveCycle = CurCycle;
742        for (unsigned j = 0, ee = LRegs.size(); j != ee; ++j) {
743          unsigned Reg = LRegs[j];
744          unsigned LCycle = LiveRegCycles[Reg];
745          LiveCycle = std::min(LiveCycle, LCycle);
746        }
747        SUnit *OldSU = Sequence[LiveCycle];
748        if (!WillCreateCycle(TrySU, OldSU))  {
749          BacktrackBottomUp(TrySU, LiveCycle, CurCycle);
750          // Force the current node to be scheduled before the node that
751          // requires the physical reg dep.
752          if (OldSU->isAvailable) {
753            OldSU->isAvailable = false;
754            AvailableQueue->remove(OldSU);
755          }
756          AddPred(TrySU, SDep(OldSU, SDep::Order, /*Latency=*/1,
757                              /*Reg=*/0, /*isNormalMemory=*/false,
758                              /*isMustAlias=*/false, /*isArtificial=*/true));
759          // If one or more successors has been unscheduled, then the current
760          // node is no longer avaialable. Schedule a successor that's now
761          // available instead.
762          if (!TrySU->isAvailable)
763            CurSU = AvailableQueue->pop();
764          else {
765            CurSU = TrySU;
766            TrySU->isPending = false;
767            NotReady.erase(NotReady.begin()+i);
768          }
769          break;
770        }
771      }
772
773      if (!CurSU) {
774        // Can't backtrack. Try duplicating the nodes that produces these
775        // "expensive to copy" values to break the dependency. In case even
776        // that doesn't work, insert cross class copies.
777        SUnit *TrySU = NotReady[0];
778        SmallVector<unsigned, 4> &LRegs = LRegsMap[TrySU];
779        assert(LRegs.size() == 1 && "Can't handle this yet!");
780        unsigned Reg = LRegs[0];
781        SUnit *LRDef = LiveRegDefs[Reg];
782        SUnit *NewDef = CopyAndMoveSuccessors(LRDef);
783        if (!NewDef) {
784          // Issue expensive cross register class copies.
785          MVT VT = getPhysicalRegisterVT(LRDef->getNode(), Reg, TII);
786          const TargetRegisterClass *RC =
787            TRI->getPhysicalRegisterRegClass(Reg, VT);
788          const TargetRegisterClass *DestRC = TRI->getCrossCopyRegClass(RC);
789          if (!DestRC) {
790            assert(false && "Don't know how to copy this physical register!");
791            abort();
792          }
793          SmallVector<SUnit*, 2> Copies;
794          InsertCCCopiesAndMoveSuccs(LRDef, Reg, DestRC, RC, Copies);
795          DOUT << "Adding an edge from SU # " << TrySU->NodeNum
796               << " to SU #" << Copies.front()->NodeNum << "\n";
797          AddPred(TrySU, SDep(Copies.front(), SDep::Order, /*Latency=*/1,
798                              /*Reg=*/0, /*isMustAlias=*/false,
799                              /*isArtificial=*/true));
800          NewDef = Copies.back();
801        }
802
803        DOUT << "Adding an edge from SU # " << NewDef->NodeNum
804             << " to SU #" << TrySU->NodeNum << "\n";
805        LiveRegDefs[Reg] = NewDef;
806        AddPred(NewDef, SDep(TrySU, SDep::Order, /*Latency=*/1,
807                             /*Reg=*/0, /*isMustAlias=*/false,
808                             /*isArtificial=*/true));
809        TrySU->isAvailable = false;
810        CurSU = NewDef;
811      }
812
813      if (!CurSU) {
814        assert(false && "Unable to resolve live physical register dependencies!");
815        abort();
816      }
817    }
818
819    // Add the nodes that aren't ready back onto the available list.
820    for (unsigned i = 0, e = NotReady.size(); i != e; ++i) {
821      NotReady[i]->isPending = false;
822      // May no longer be available due to backtracking.
823      if (NotReady[i]->isAvailable)
824        AvailableQueue->push(NotReady[i]);
825    }
826    NotReady.clear();
827
828    if (CurSU)
829      ScheduleNodeBottomUp(CurSU, CurCycle);
830    ++CurCycle;
831  }
832
833  // Reverse the order if it is bottom up.
834  std::reverse(Sequence.begin(), Sequence.end());
835
836#ifndef NDEBUG
837  VerifySchedule(isBottomUp);
838#endif
839}
840
841//===----------------------------------------------------------------------===//
842//  Top-Down Scheduling
843//===----------------------------------------------------------------------===//
844
845/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
846/// the AvailableQueue if the count reaches zero. Also update its cycle bound.
847void ScheduleDAGRRList::ReleaseSucc(SUnit *SU, SDep *SuccEdge) {
848  SUnit *SuccSU = SuccEdge->getSUnit();
849  --SuccSU->NumPredsLeft;
850
851#ifndef NDEBUG
852  if (SuccSU->NumPredsLeft < 0) {
853    cerr << "*** Scheduling failed! ***\n";
854    SuccSU->dump(this);
855    cerr << " has been released too many times!\n";
856    assert(0);
857  }
858#endif
859
860  if (SuccSU->NumPredsLeft == 0) {
861    SuccSU->isAvailable = true;
862    AvailableQueue->push(SuccSU);
863  }
864}
865
866/// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
867/// count of its successors. If a successor pending count is zero, add it to
868/// the Available queue.
869void ScheduleDAGRRList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
870  DOUT << "*** Scheduling [" << CurCycle << "]: ";
871  DEBUG(SU->dump(this));
872
873  SU->Cycle = CurCycle;
874  Sequence.push_back(SU);
875
876  // Top down: release successors
877  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
878       I != E; ++I)
879    ReleaseSucc(SU, &*I);
880
881  SU->isScheduled = true;
882  AvailableQueue->ScheduledNode(SU);
883}
884
885/// ListScheduleTopDown - The main loop of list scheduling for top-down
886/// schedulers.
887void ScheduleDAGRRList::ListScheduleTopDown() {
888  unsigned CurCycle = 0;
889
890  // All leaves to Available queue.
891  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
892    // It is available if it has no predecessors.
893    if (SUnits[i].Preds.empty()) {
894      AvailableQueue->push(&SUnits[i]);
895      SUnits[i].isAvailable = true;
896    }
897  }
898
899  // While Available queue is not empty, grab the node with the highest
900  // priority. If it is not ready put it back.  Schedule the node.
901  Sequence.reserve(SUnits.size());
902  while (!AvailableQueue->empty()) {
903    SUnit *CurSU = AvailableQueue->pop();
904
905    if (CurSU)
906      ScheduleNodeTopDown(CurSU, CurCycle);
907    ++CurCycle;
908  }
909
910#ifndef NDEBUG
911  VerifySchedule(isBottomUp);
912#endif
913}
914
915
916//===----------------------------------------------------------------------===//
917//                RegReductionPriorityQueue Implementation
918//===----------------------------------------------------------------------===//
919//
920// This is a SchedulingPriorityQueue that schedules using Sethi Ullman numbers
921// to reduce register pressure.
922//
923namespace {
924  template<class SF>
925  class RegReductionPriorityQueue;
926
927  /// Sorting functions for the Available queue.
928  struct bu_ls_rr_sort : public std::binary_function<SUnit*, SUnit*, bool> {
929    RegReductionPriorityQueue<bu_ls_rr_sort> *SPQ;
930    bu_ls_rr_sort(RegReductionPriorityQueue<bu_ls_rr_sort> *spq) : SPQ(spq) {}
931    bu_ls_rr_sort(const bu_ls_rr_sort &RHS) : SPQ(RHS.SPQ) {}
932
933    bool operator()(const SUnit* left, const SUnit* right) const;
934  };
935
936  struct td_ls_rr_sort : public std::binary_function<SUnit*, SUnit*, bool> {
937    RegReductionPriorityQueue<td_ls_rr_sort> *SPQ;
938    td_ls_rr_sort(RegReductionPriorityQueue<td_ls_rr_sort> *spq) : SPQ(spq) {}
939    td_ls_rr_sort(const td_ls_rr_sort &RHS) : SPQ(RHS.SPQ) {}
940
941    bool operator()(const SUnit* left, const SUnit* right) const;
942  };
943}  // end anonymous namespace
944
945static inline bool isCopyFromLiveIn(const SUnit *SU) {
946  SDNode *N = SU->getNode();
947  return N && N->getOpcode() == ISD::CopyFromReg &&
948    N->getOperand(N->getNumOperands()-1).getValueType() != MVT::Flag;
949}
950
951/// CalcNodeSethiUllmanNumber - Compute Sethi Ullman number.
952/// Smaller number is the higher priority.
953static unsigned
954CalcNodeSethiUllmanNumber(const SUnit *SU, std::vector<unsigned> &SUNumbers) {
955  unsigned &SethiUllmanNumber = SUNumbers[SU->NodeNum];
956  if (SethiUllmanNumber != 0)
957    return SethiUllmanNumber;
958
959  unsigned Extra = 0;
960  for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
961       I != E; ++I) {
962    if (I->isCtrl()) continue;  // ignore chain preds
963    SUnit *PredSU = I->getSUnit();
964    unsigned PredSethiUllman = CalcNodeSethiUllmanNumber(PredSU, SUNumbers);
965    if (PredSethiUllman > SethiUllmanNumber) {
966      SethiUllmanNumber = PredSethiUllman;
967      Extra = 0;
968    } else if (PredSethiUllman == SethiUllmanNumber && !I->isCtrl())
969      ++Extra;
970  }
971
972  SethiUllmanNumber += Extra;
973
974  if (SethiUllmanNumber == 0)
975    SethiUllmanNumber = 1;
976
977  return SethiUllmanNumber;
978}
979
980namespace {
981  template<class SF>
982  class VISIBILITY_HIDDEN RegReductionPriorityQueue
983   : public SchedulingPriorityQueue {
984    PriorityQueue<SUnit*, std::vector<SUnit*>, SF> Queue;
985    unsigned currentQueueId;
986
987  protected:
988    // SUnits - The SUnits for the current graph.
989    std::vector<SUnit> *SUnits;
990
991    const TargetInstrInfo *TII;
992    const TargetRegisterInfo *TRI;
993    ScheduleDAGRRList *scheduleDAG;
994
995    // SethiUllmanNumbers - The SethiUllman number for each node.
996    std::vector<unsigned> SethiUllmanNumbers;
997
998  public:
999    RegReductionPriorityQueue(const TargetInstrInfo *tii,
1000                              const TargetRegisterInfo *tri) :
1001    Queue(SF(this)), currentQueueId(0),
1002    TII(tii), TRI(tri), scheduleDAG(NULL) {}
1003
1004    void initNodes(std::vector<SUnit> &sunits) {
1005      SUnits = &sunits;
1006      // Add pseudo dependency edges for two-address nodes.
1007      AddPseudoTwoAddrDeps();
1008      // Calculate node priorities.
1009      CalculateSethiUllmanNumbers();
1010    }
1011
1012    void addNode(const SUnit *SU) {
1013      unsigned SUSize = SethiUllmanNumbers.size();
1014      if (SUnits->size() > SUSize)
1015        SethiUllmanNumbers.resize(SUSize*2, 0);
1016      CalcNodeSethiUllmanNumber(SU, SethiUllmanNumbers);
1017    }
1018
1019    void updateNode(const SUnit *SU) {
1020      SethiUllmanNumbers[SU->NodeNum] = 0;
1021      CalcNodeSethiUllmanNumber(SU, SethiUllmanNumbers);
1022    }
1023
1024    void releaseState() {
1025      SUnits = 0;
1026      SethiUllmanNumbers.clear();
1027    }
1028
1029    unsigned getNodePriority(const SUnit *SU) const {
1030      assert(SU->NodeNum < SethiUllmanNumbers.size());
1031      unsigned Opc = SU->getNode() ? SU->getNode()->getOpcode() : 0;
1032      if (Opc == ISD::CopyFromReg && !isCopyFromLiveIn(SU))
1033        // CopyFromReg should be close to its def because it restricts
1034        // allocation choices. But if it is a livein then perhaps we want it
1035        // closer to its uses so it can be coalesced.
1036        return 0xffff;
1037      else if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
1038        // CopyToReg should be close to its uses to facilitate coalescing and
1039        // avoid spilling.
1040        return 0;
1041      else if (Opc == TargetInstrInfo::EXTRACT_SUBREG ||
1042               Opc == TargetInstrInfo::INSERT_SUBREG)
1043        // EXTRACT_SUBREG / INSERT_SUBREG should be close to its use to
1044        // facilitate coalescing.
1045        return 0;
1046      else if (SU->NumSuccs == 0)
1047        // If SU does not have a use, i.e. it doesn't produce a value that would
1048        // be consumed (e.g. store), then it terminates a chain of computation.
1049        // Give it a large SethiUllman number so it will be scheduled right
1050        // before its predecessors that it doesn't lengthen their live ranges.
1051        return 0xffff;
1052      else if (SU->NumPreds == 0)
1053        // If SU does not have a def, schedule it close to its uses because it
1054        // does not lengthen any live ranges.
1055        return 0;
1056      else
1057        return SethiUllmanNumbers[SU->NodeNum];
1058    }
1059
1060    unsigned size() const { return Queue.size(); }
1061
1062    bool empty() const { return Queue.empty(); }
1063
1064    void push(SUnit *U) {
1065      assert(!U->NodeQueueId && "Node in the queue already");
1066      U->NodeQueueId = ++currentQueueId;
1067      Queue.push(U);
1068    }
1069
1070    void push_all(const std::vector<SUnit *> &Nodes) {
1071      for (unsigned i = 0, e = Nodes.size(); i != e; ++i)
1072        push(Nodes[i]);
1073    }
1074
1075    SUnit *pop() {
1076      if (empty()) return NULL;
1077      SUnit *V = Queue.top();
1078      Queue.pop();
1079      V->NodeQueueId = 0;
1080      return V;
1081    }
1082
1083    void remove(SUnit *SU) {
1084      assert(!Queue.empty() && "Queue is empty!");
1085      assert(SU->NodeQueueId != 0 && "Not in queue!");
1086      Queue.erase_one(SU);
1087      SU->NodeQueueId = 0;
1088    }
1089
1090    void setScheduleDAG(ScheduleDAGRRList *scheduleDag) {
1091      scheduleDAG = scheduleDag;
1092    }
1093
1094  protected:
1095    bool canClobber(const SUnit *SU, const SUnit *Op);
1096    void AddPseudoTwoAddrDeps();
1097    void CalculateSethiUllmanNumbers();
1098  };
1099
1100  typedef RegReductionPriorityQueue<bu_ls_rr_sort>
1101    BURegReductionPriorityQueue;
1102
1103  typedef RegReductionPriorityQueue<td_ls_rr_sort>
1104    TDRegReductionPriorityQueue;
1105}
1106
1107/// closestSucc - Returns the scheduled cycle of the successor which is
1108/// closet to the current cycle.
1109static unsigned closestSucc(const SUnit *SU) {
1110  unsigned MaxCycle = 0;
1111  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1112       I != E; ++I) {
1113    unsigned Cycle = I->getSUnit()->Cycle;
1114    // If there are bunch of CopyToRegs stacked up, they should be considered
1115    // to be at the same position.
1116    if (I->getSUnit()->getNode() &&
1117        I->getSUnit()->getNode()->getOpcode() == ISD::CopyToReg)
1118      Cycle = closestSucc(I->getSUnit())+1;
1119    if (Cycle > MaxCycle)
1120      MaxCycle = Cycle;
1121  }
1122  return MaxCycle;
1123}
1124
1125/// calcMaxScratches - Returns an cost estimate of the worse case requirement
1126/// for scratch registers. Live-in operands and live-out results don't count
1127/// since they are "fixed".
1128static unsigned calcMaxScratches(const SUnit *SU) {
1129  unsigned Scratches = 0;
1130  for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
1131       I != E; ++I) {
1132    if (I->isCtrl()) continue;  // ignore chain preds
1133    if (!I->getSUnit()->getNode() ||
1134        I->getSUnit()->getNode()->getOpcode() != ISD::CopyFromReg)
1135      Scratches++;
1136  }
1137  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1138       I != E; ++I) {
1139    if (I->isCtrl()) continue;  // ignore chain succs
1140    if (!I->getSUnit()->getNode() ||
1141        I->getSUnit()->getNode()->getOpcode() != ISD::CopyToReg)
1142      Scratches += 10;
1143  }
1144  return Scratches;
1145}
1146
1147// Bottom up
1148bool bu_ls_rr_sort::operator()(const SUnit *left, const SUnit *right) const {
1149  unsigned LPriority = SPQ->getNodePriority(left);
1150  unsigned RPriority = SPQ->getNodePriority(right);
1151  if (LPriority != RPriority)
1152    return LPriority > RPriority;
1153
1154  // Try schedule def + use closer when Sethi-Ullman numbers are the same.
1155  // e.g.
1156  // t1 = op t2, c1
1157  // t3 = op t4, c2
1158  //
1159  // and the following instructions are both ready.
1160  // t2 = op c3
1161  // t4 = op c4
1162  //
1163  // Then schedule t2 = op first.
1164  // i.e.
1165  // t4 = op c4
1166  // t2 = op c3
1167  // t1 = op t2, c1
1168  // t3 = op t4, c2
1169  //
1170  // This creates more short live intervals.
1171  unsigned LDist = closestSucc(left);
1172  unsigned RDist = closestSucc(right);
1173  if (LDist != RDist)
1174    return LDist < RDist;
1175
1176  // Intuitively, it's good to push down instructions whose results are
1177  // liveout so their long live ranges won't conflict with other values
1178  // which are needed inside the BB. Further prioritize liveout instructions
1179  // by the number of operands which are calculated within the BB.
1180  unsigned LScratch = calcMaxScratches(left);
1181  unsigned RScratch = calcMaxScratches(right);
1182  if (LScratch != RScratch)
1183    return LScratch > RScratch;
1184
1185  if (left->Height != right->Height)
1186    return left->Height > right->Height;
1187
1188  if (left->Depth != right->Depth)
1189    return left->Depth < right->Depth;
1190
1191  assert(left->NodeQueueId && right->NodeQueueId &&
1192         "NodeQueueId cannot be zero");
1193  return (left->NodeQueueId > right->NodeQueueId);
1194}
1195
1196template<class SF>
1197bool
1198RegReductionPriorityQueue<SF>::canClobber(const SUnit *SU, const SUnit *Op) {
1199  if (SU->isTwoAddress) {
1200    unsigned Opc = SU->getNode()->getMachineOpcode();
1201    const TargetInstrDesc &TID = TII->get(Opc);
1202    unsigned NumRes = TID.getNumDefs();
1203    unsigned NumOps = TID.getNumOperands() - NumRes;
1204    for (unsigned i = 0; i != NumOps; ++i) {
1205      if (TID.getOperandConstraint(i+NumRes, TOI::TIED_TO) != -1) {
1206        SDNode *DU = SU->getNode()->getOperand(i).getNode();
1207        if (DU->getNodeId() != -1 &&
1208            Op->OrigNode == &(*SUnits)[DU->getNodeId()])
1209          return true;
1210      }
1211    }
1212  }
1213  return false;
1214}
1215
1216
1217/// hasCopyToRegUse - Return true if SU has a value successor that is a
1218/// CopyToReg node.
1219static bool hasCopyToRegUse(const SUnit *SU) {
1220  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1221       I != E; ++I) {
1222    if (I->isCtrl()) continue;
1223    const SUnit *SuccSU = I->getSUnit();
1224    if (SuccSU->getNode() && SuccSU->getNode()->getOpcode() == ISD::CopyToReg)
1225      return true;
1226  }
1227  return false;
1228}
1229
1230/// canClobberPhysRegDefs - True if SU would clobber one of SuccSU's
1231/// physical register defs.
1232static bool canClobberPhysRegDefs(const SUnit *SuccSU, const SUnit *SU,
1233                                  const TargetInstrInfo *TII,
1234                                  const TargetRegisterInfo *TRI) {
1235  SDNode *N = SuccSU->getNode();
1236  unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
1237  const unsigned *ImpDefs = TII->get(N->getMachineOpcode()).getImplicitDefs();
1238  assert(ImpDefs && "Caller should check hasPhysRegDefs");
1239  const unsigned *SUImpDefs =
1240    TII->get(SU->getNode()->getMachineOpcode()).getImplicitDefs();
1241  if (!SUImpDefs)
1242    return false;
1243  for (unsigned i = NumDefs, e = N->getNumValues(); i != e; ++i) {
1244    MVT VT = N->getValueType(i);
1245    if (VT == MVT::Flag || VT == MVT::Other)
1246      continue;
1247    if (!N->hasAnyUseOfValue(i))
1248      continue;
1249    unsigned Reg = ImpDefs[i - NumDefs];
1250    for (;*SUImpDefs; ++SUImpDefs) {
1251      unsigned SUReg = *SUImpDefs;
1252      if (TRI->regsOverlap(Reg, SUReg))
1253        return true;
1254    }
1255  }
1256  return false;
1257}
1258
1259/// AddPseudoTwoAddrDeps - If two nodes share an operand and one of them uses
1260/// it as a def&use operand. Add a pseudo control edge from it to the other
1261/// node (if it won't create a cycle) so the two-address one will be scheduled
1262/// first (lower in the schedule). If both nodes are two-address, favor the
1263/// one that has a CopyToReg use (more likely to be a loop induction update).
1264/// If both are two-address, but one is commutable while the other is not
1265/// commutable, favor the one that's not commutable.
1266template<class SF>
1267void RegReductionPriorityQueue<SF>::AddPseudoTwoAddrDeps() {
1268  for (unsigned i = 0, e = SUnits->size(); i != e; ++i) {
1269    SUnit *SU = &(*SUnits)[i];
1270    if (!SU->isTwoAddress)
1271      continue;
1272
1273    SDNode *Node = SU->getNode();
1274    if (!Node || !Node->isMachineOpcode() || SU->getNode()->getFlaggedNode())
1275      continue;
1276
1277    unsigned Opc = Node->getMachineOpcode();
1278    const TargetInstrDesc &TID = TII->get(Opc);
1279    unsigned NumRes = TID.getNumDefs();
1280    unsigned NumOps = TID.getNumOperands() - NumRes;
1281    for (unsigned j = 0; j != NumOps; ++j) {
1282      if (TID.getOperandConstraint(j+NumRes, TOI::TIED_TO) == -1)
1283        continue;
1284      SDNode *DU = SU->getNode()->getOperand(j).getNode();
1285      if (DU->getNodeId() == -1)
1286        continue;
1287      const SUnit *DUSU = &(*SUnits)[DU->getNodeId()];
1288      if (!DUSU) continue;
1289      for (SUnit::const_succ_iterator I = DUSU->Succs.begin(),
1290           E = DUSU->Succs.end(); I != E; ++I) {
1291        if (I->isCtrl()) continue;
1292        SUnit *SuccSU = I->getSUnit();
1293        if (SuccSU == SU)
1294          continue;
1295        // Be conservative. Ignore if nodes aren't at roughly the same
1296        // depth and height.
1297        if (SuccSU->Height < SU->Height && (SU->Height - SuccSU->Height) > 1)
1298          continue;
1299        if (!SuccSU->getNode() || !SuccSU->getNode()->isMachineOpcode())
1300          continue;
1301        // Don't constrain nodes with physical register defs if the
1302        // predecessor can clobber them.
1303        if (SuccSU->hasPhysRegDefs) {
1304          if (canClobberPhysRegDefs(SuccSU, SU, TII, TRI))
1305            continue;
1306        }
1307        // Don't constraint extract_subreg / insert_subreg these may be
1308        // coalesced away. We don't them close to their uses.
1309        unsigned SuccOpc = SuccSU->getNode()->getMachineOpcode();
1310        if (SuccOpc == TargetInstrInfo::EXTRACT_SUBREG ||
1311            SuccOpc == TargetInstrInfo::INSERT_SUBREG)
1312          continue;
1313        if ((!canClobber(SuccSU, DUSU) ||
1314             (hasCopyToRegUse(SU) && !hasCopyToRegUse(SuccSU)) ||
1315             (!SU->isCommutable && SuccSU->isCommutable)) &&
1316            !scheduleDAG->IsReachable(SuccSU, SU)) {
1317          DOUT << "Adding a pseudo-two-addr edge from SU # " << SU->NodeNum
1318               << " to SU #" << SuccSU->NodeNum << "\n";
1319          scheduleDAG->AddPred(SU, SDep(SuccSU, SDep::Order, /*Latency=*/1,
1320                                        /*Reg=*/0, /*isMustAlias=*/false,
1321                                        /*isArtificial=*/true));
1322        }
1323      }
1324    }
1325  }
1326}
1327
1328/// CalculateSethiUllmanNumbers - Calculate Sethi-Ullman numbers of all
1329/// scheduling units.
1330template<class SF>
1331void RegReductionPriorityQueue<SF>::CalculateSethiUllmanNumbers() {
1332  SethiUllmanNumbers.assign(SUnits->size(), 0);
1333
1334  for (unsigned i = 0, e = SUnits->size(); i != e; ++i)
1335    CalcNodeSethiUllmanNumber(&(*SUnits)[i], SethiUllmanNumbers);
1336}
1337
1338/// LimitedSumOfUnscheduledPredsOfSuccs - Compute the sum of the unscheduled
1339/// predecessors of the successors of the SUnit SU. Stop when the provided
1340/// limit is exceeded.
1341static unsigned LimitedSumOfUnscheduledPredsOfSuccs(const SUnit *SU,
1342                                                    unsigned Limit) {
1343  unsigned Sum = 0;
1344  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1345       I != E; ++I) {
1346    const SUnit *SuccSU = I->getSUnit();
1347    for (SUnit::const_pred_iterator II = SuccSU->Preds.begin(),
1348         EE = SuccSU->Preds.end(); II != EE; ++II) {
1349      SUnit *PredSU = II->getSUnit();
1350      if (!PredSU->isScheduled)
1351        if (++Sum > Limit)
1352          return Sum;
1353    }
1354  }
1355  return Sum;
1356}
1357
1358
1359// Top down
1360bool td_ls_rr_sort::operator()(const SUnit *left, const SUnit *right) const {
1361  unsigned LPriority = SPQ->getNodePriority(left);
1362  unsigned RPriority = SPQ->getNodePriority(right);
1363  bool LIsTarget = left->getNode() && left->getNode()->isMachineOpcode();
1364  bool RIsTarget = right->getNode() && right->getNode()->isMachineOpcode();
1365  bool LIsFloater = LIsTarget && left->NumPreds == 0;
1366  bool RIsFloater = RIsTarget && right->NumPreds == 0;
1367  unsigned LBonus = (LimitedSumOfUnscheduledPredsOfSuccs(left,1) == 1) ? 2 : 0;
1368  unsigned RBonus = (LimitedSumOfUnscheduledPredsOfSuccs(right,1) == 1) ? 2 : 0;
1369
1370  if (left->NumSuccs == 0 && right->NumSuccs != 0)
1371    return false;
1372  else if (left->NumSuccs != 0 && right->NumSuccs == 0)
1373    return true;
1374
1375  if (LIsFloater)
1376    LBonus -= 2;
1377  if (RIsFloater)
1378    RBonus -= 2;
1379  if (left->NumSuccs == 1)
1380    LBonus += 2;
1381  if (right->NumSuccs == 1)
1382    RBonus += 2;
1383
1384  if (LPriority+LBonus != RPriority+RBonus)
1385    return LPriority+LBonus < RPriority+RBonus;
1386
1387  if (left->Depth != right->Depth)
1388    return left->Depth < right->Depth;
1389
1390  if (left->NumSuccsLeft != right->NumSuccsLeft)
1391    return left->NumSuccsLeft > right->NumSuccsLeft;
1392
1393  assert(left->NodeQueueId && right->NodeQueueId &&
1394         "NodeQueueId cannot be zero");
1395  return (left->NodeQueueId > right->NodeQueueId);
1396}
1397
1398//===----------------------------------------------------------------------===//
1399//                         Public Constructor Functions
1400//===----------------------------------------------------------------------===//
1401
1402llvm::ScheduleDAG* llvm::createBURRListDAGScheduler(SelectionDAGISel *IS,
1403                                                    SelectionDAG *DAG,
1404                                                    const TargetMachine *TM,
1405                                                    MachineBasicBlock *BB,
1406                                                    bool) {
1407  const TargetInstrInfo *TII = TM->getInstrInfo();
1408  const TargetRegisterInfo *TRI = TM->getRegisterInfo();
1409
1410  BURegReductionPriorityQueue *PQ = new BURegReductionPriorityQueue(TII, TRI);
1411
1412  ScheduleDAGRRList *SD =
1413    new ScheduleDAGRRList(DAG, BB, *TM, true, PQ);
1414  PQ->setScheduleDAG(SD);
1415  return SD;
1416}
1417
1418llvm::ScheduleDAG* llvm::createTDRRListDAGScheduler(SelectionDAGISel *IS,
1419                                                    SelectionDAG *DAG,
1420                                                    const TargetMachine *TM,
1421                                                    MachineBasicBlock *BB,
1422                                                    bool) {
1423  const TargetInstrInfo *TII = TM->getInstrInfo();
1424  const TargetRegisterInfo *TRI = TM->getRegisterInfo();
1425
1426  TDRegReductionPriorityQueue *PQ = new TDRegReductionPriorityQueue(TII, TRI);
1427
1428  ScheduleDAGRRList *SD = new ScheduleDAGRRList(DAG, BB, *TM, false, PQ);
1429  PQ->setScheduleDAG(SD);
1430  return SD;
1431}
1432