SelectionDAGBuilder.cpp revision 098e40cd1cb2e502cd9672aecf75cedde5713c35
1//===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements routines for translating from LLVM IR into SelectionDAG IR.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "SDNodeDbgValue.h"
16#include "SelectionDAGBuilder.h"
17#include "llvm/ADT/BitVector.h"
18#include "llvm/ADT/SmallSet.h"
19#include "llvm/Analysis/AliasAnalysis.h"
20#include "llvm/Analysis/ConstantFolding.h"
21#include "llvm/Constants.h"
22#include "llvm/CallingConv.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/Function.h"
25#include "llvm/GlobalVariable.h"
26#include "llvm/InlineAsm.h"
27#include "llvm/Instructions.h"
28#include "llvm/Intrinsics.h"
29#include "llvm/IntrinsicInst.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/Module.h"
32#include "llvm/CodeGen/Analysis.h"
33#include "llvm/CodeGen/FastISel.h"
34#include "llvm/CodeGen/FunctionLoweringInfo.h"
35#include "llvm/CodeGen/GCStrategy.h"
36#include "llvm/CodeGen/GCMetadata.h"
37#include "llvm/CodeGen/MachineFunction.h"
38#include "llvm/CodeGen/MachineFrameInfo.h"
39#include "llvm/CodeGen/MachineInstrBuilder.h"
40#include "llvm/CodeGen/MachineJumpTableInfo.h"
41#include "llvm/CodeGen/MachineModuleInfo.h"
42#include "llvm/CodeGen/MachineRegisterInfo.h"
43#include "llvm/CodeGen/PseudoSourceValue.h"
44#include "llvm/CodeGen/SelectionDAG.h"
45#include "llvm/Analysis/DebugInfo.h"
46#include "llvm/Target/TargetRegisterInfo.h"
47#include "llvm/Target/TargetData.h"
48#include "llvm/Target/TargetFrameInfo.h"
49#include "llvm/Target/TargetInstrInfo.h"
50#include "llvm/Target/TargetIntrinsicInfo.h"
51#include "llvm/Target/TargetLowering.h"
52#include "llvm/Target/TargetOptions.h"
53#include "llvm/Support/Compiler.h"
54#include "llvm/Support/CommandLine.h"
55#include "llvm/Support/Debug.h"
56#include "llvm/Support/ErrorHandling.h"
57#include "llvm/Support/MathExtras.h"
58#include "llvm/Support/raw_ostream.h"
59#include <algorithm>
60using namespace llvm;
61
62/// LimitFloatPrecision - Generate low-precision inline sequences for
63/// some float libcalls (6, 8 or 12 bits).
64static unsigned LimitFloatPrecision;
65
66static cl::opt<unsigned, true>
67LimitFPPrecision("limit-float-precision",
68                 cl::desc("Generate low-precision inline sequences "
69                          "for some float libcalls"),
70                 cl::location(LimitFloatPrecision),
71                 cl::init(0));
72
73static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
74                                      const SDValue *Parts, unsigned NumParts,
75                                      EVT PartVT, EVT ValueVT);
76
77/// getCopyFromParts - Create a value that contains the specified legal parts
78/// combined into the value they represent.  If the parts combine to a type
79/// larger then ValueVT then AssertOp can be used to specify whether the extra
80/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
81/// (ISD::AssertSext).
82static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL,
83                                const SDValue *Parts,
84                                unsigned NumParts, EVT PartVT, EVT ValueVT,
85                                ISD::NodeType AssertOp = ISD::DELETED_NODE) {
86  if (ValueVT.isVector())
87    return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT);
88
89  assert(NumParts > 0 && "No parts to assemble!");
90  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
91  SDValue Val = Parts[0];
92
93  if (NumParts > 1) {
94    // Assemble the value from multiple parts.
95    if (ValueVT.isInteger()) {
96      unsigned PartBits = PartVT.getSizeInBits();
97      unsigned ValueBits = ValueVT.getSizeInBits();
98
99      // Assemble the power of 2 part.
100      unsigned RoundParts = NumParts & (NumParts - 1) ?
101        1 << Log2_32(NumParts) : NumParts;
102      unsigned RoundBits = PartBits * RoundParts;
103      EVT RoundVT = RoundBits == ValueBits ?
104        ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
105      SDValue Lo, Hi;
106
107      EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
108
109      if (RoundParts > 2) {
110        Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
111                              PartVT, HalfVT);
112        Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
113                              RoundParts / 2, PartVT, HalfVT);
114      } else {
115        Lo = DAG.getNode(ISD::BIT_CONVERT, DL, HalfVT, Parts[0]);
116        Hi = DAG.getNode(ISD::BIT_CONVERT, DL, HalfVT, Parts[1]);
117      }
118
119      if (TLI.isBigEndian())
120        std::swap(Lo, Hi);
121
122      Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
123
124      if (RoundParts < NumParts) {
125        // Assemble the trailing non-power-of-2 part.
126        unsigned OddParts = NumParts - RoundParts;
127        EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
128        Hi = getCopyFromParts(DAG, DL,
129                              Parts + RoundParts, OddParts, PartVT, OddVT);
130
131        // Combine the round and odd parts.
132        Lo = Val;
133        if (TLI.isBigEndian())
134          std::swap(Lo, Hi);
135        EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
136        Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
137        Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
138                         DAG.getConstant(Lo.getValueType().getSizeInBits(),
139                                         TLI.getPointerTy()));
140        Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
141        Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
142      }
143    } else if (PartVT.isFloatingPoint()) {
144      // FP split into multiple FP parts (for ppcf128)
145      assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) &&
146             "Unexpected split");
147      SDValue Lo, Hi;
148      Lo = DAG.getNode(ISD::BIT_CONVERT, DL, EVT(MVT::f64), Parts[0]);
149      Hi = DAG.getNode(ISD::BIT_CONVERT, DL, EVT(MVT::f64), Parts[1]);
150      if (TLI.isBigEndian())
151        std::swap(Lo, Hi);
152      Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
153    } else {
154      // FP split into integer parts (soft fp)
155      assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
156             !PartVT.isVector() && "Unexpected split");
157      EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
158      Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT);
159    }
160  }
161
162  // There is now one part, held in Val.  Correct it to match ValueVT.
163  PartVT = Val.getValueType();
164
165  if (PartVT == ValueVT)
166    return Val;
167
168  if (PartVT.isInteger() && ValueVT.isInteger()) {
169    if (ValueVT.bitsLT(PartVT)) {
170      // For a truncate, see if we have any information to
171      // indicate whether the truncated bits will always be
172      // zero or sign-extension.
173      if (AssertOp != ISD::DELETED_NODE)
174        Val = DAG.getNode(AssertOp, DL, PartVT, Val,
175                          DAG.getValueType(ValueVT));
176      return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
177    }
178    return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
179  }
180
181  if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
182    // FP_ROUND's are always exact here.
183    if (ValueVT.bitsLT(Val.getValueType()))
184      return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val,
185                         DAG.getIntPtrConstant(1));
186
187    return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
188  }
189
190  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
191    return DAG.getNode(ISD::BIT_CONVERT, DL, ValueVT, Val);
192
193  llvm_unreachable("Unknown mismatch!");
194  return SDValue();
195}
196
197/// getCopyFromParts - Create a value that contains the specified legal parts
198/// combined into the value they represent.  If the parts combine to a type
199/// larger then ValueVT then AssertOp can be used to specify whether the extra
200/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
201/// (ISD::AssertSext).
202static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
203                                      const SDValue *Parts, unsigned NumParts,
204                                      EVT PartVT, EVT ValueVT) {
205  assert(ValueVT.isVector() && "Not a vector value");
206  assert(NumParts > 0 && "No parts to assemble!");
207  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
208  SDValue Val = Parts[0];
209
210  // Handle a multi-element vector.
211  if (NumParts > 1) {
212    EVT IntermediateVT, RegisterVT;
213    unsigned NumIntermediates;
214    unsigned NumRegs =
215    TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
216                               NumIntermediates, RegisterVT);
217    assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
218    NumParts = NumRegs; // Silence a compiler warning.
219    assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
220    assert(RegisterVT == Parts[0].getValueType() &&
221           "Part type doesn't match part!");
222
223    // Assemble the parts into intermediate operands.
224    SmallVector<SDValue, 8> Ops(NumIntermediates);
225    if (NumIntermediates == NumParts) {
226      // If the register was not expanded, truncate or copy the value,
227      // as appropriate.
228      for (unsigned i = 0; i != NumParts; ++i)
229        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
230                                  PartVT, IntermediateVT);
231    } else if (NumParts > 0) {
232      // If the intermediate type was expanded, build the intermediate
233      // operands from the parts.
234      assert(NumParts % NumIntermediates == 0 &&
235             "Must expand into a divisible number of parts!");
236      unsigned Factor = NumParts / NumIntermediates;
237      for (unsigned i = 0; i != NumIntermediates; ++i)
238        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
239                                  PartVT, IntermediateVT);
240    }
241
242    // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
243    // intermediate operands.
244    Val = DAG.getNode(IntermediateVT.isVector() ?
245                      ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL,
246                      ValueVT, &Ops[0], NumIntermediates);
247  }
248
249  // There is now one part, held in Val.  Correct it to match ValueVT.
250  PartVT = Val.getValueType();
251
252  if (PartVT == ValueVT)
253    return Val;
254
255  if (PartVT.isVector()) {
256    // If the element type of the source/dest vectors are the same, but the
257    // parts vector has more elements than the value vector, then we have a
258    // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
259    // elements we want.
260    if (PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
261      assert(PartVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
262             "Cannot narrow, it would be a lossy transformation");
263      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
264                         DAG.getIntPtrConstant(0));
265    }
266
267    // Vector/Vector bitcast.
268    return DAG.getNode(ISD::BIT_CONVERT, DL, ValueVT, Val);
269  }
270
271  assert(ValueVT.getVectorElementType() == PartVT &&
272         ValueVT.getVectorNumElements() == 1 &&
273         "Only trivial scalar-to-vector conversions should get here!");
274  return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
275}
276
277
278
279
280static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl,
281                                 SDValue Val, SDValue *Parts, unsigned NumParts,
282                                 EVT PartVT);
283
284/// getCopyToParts - Create a series of nodes that contain the specified value
285/// split into legal parts.  If the parts contain more bits than Val, then, for
286/// integers, ExtendKind can be used to specify how to generate the extra bits.
287static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL,
288                           SDValue Val, SDValue *Parts, unsigned NumParts,
289                           EVT PartVT,
290                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
291  EVT ValueVT = Val.getValueType();
292
293  // Handle the vector case separately.
294  if (ValueVT.isVector())
295    return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT);
296
297  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
298  unsigned PartBits = PartVT.getSizeInBits();
299  unsigned OrigNumParts = NumParts;
300  assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
301
302  if (NumParts == 0)
303    return;
304
305  assert(!ValueVT.isVector() && "Vector case handled elsewhere");
306  if (PartVT == ValueVT) {
307    assert(NumParts == 1 && "No-op copy with multiple parts!");
308    Parts[0] = Val;
309    return;
310  }
311
312  if (NumParts * PartBits > ValueVT.getSizeInBits()) {
313    // If the parts cover more bits than the value has, promote the value.
314    if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
315      assert(NumParts == 1 && "Do not know what to promote to!");
316      Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
317    } else {
318      assert(PartVT.isInteger() && ValueVT.isInteger() &&
319             "Unknown mismatch!");
320      ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
321      Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
322    }
323  } else if (PartBits == ValueVT.getSizeInBits()) {
324    // Different types of the same size.
325    assert(NumParts == 1 && PartVT != ValueVT);
326    Val = DAG.getNode(ISD::BIT_CONVERT, DL, PartVT, Val);
327  } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
328    // If the parts cover less bits than value has, truncate the value.
329    assert(PartVT.isInteger() && ValueVT.isInteger() &&
330           "Unknown mismatch!");
331    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
332    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
333  }
334
335  // The value may have changed - recompute ValueVT.
336  ValueVT = Val.getValueType();
337  assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
338         "Failed to tile the value with PartVT!");
339
340  if (NumParts == 1) {
341    assert(PartVT == ValueVT && "Type conversion failed!");
342    Parts[0] = Val;
343    return;
344  }
345
346  // Expand the value into multiple parts.
347  if (NumParts & (NumParts - 1)) {
348    // The number of parts is not a power of 2.  Split off and copy the tail.
349    assert(PartVT.isInteger() && ValueVT.isInteger() &&
350           "Do not know what to expand to!");
351    unsigned RoundParts = 1 << Log2_32(NumParts);
352    unsigned RoundBits = RoundParts * PartBits;
353    unsigned OddParts = NumParts - RoundParts;
354    SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
355                                 DAG.getIntPtrConstant(RoundBits));
356    getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT);
357
358    if (TLI.isBigEndian())
359      // The odd parts were reversed by getCopyToParts - unreverse them.
360      std::reverse(Parts + RoundParts, Parts + NumParts);
361
362    NumParts = RoundParts;
363    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
364    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
365  }
366
367  // The number of parts is a power of 2.  Repeatedly bisect the value using
368  // EXTRACT_ELEMENT.
369  Parts[0] = DAG.getNode(ISD::BIT_CONVERT, DL,
370                         EVT::getIntegerVT(*DAG.getContext(),
371                                           ValueVT.getSizeInBits()),
372                         Val);
373
374  for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
375    for (unsigned i = 0; i < NumParts; i += StepSize) {
376      unsigned ThisBits = StepSize * PartBits / 2;
377      EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
378      SDValue &Part0 = Parts[i];
379      SDValue &Part1 = Parts[i+StepSize/2];
380
381      Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
382                          ThisVT, Part0, DAG.getIntPtrConstant(1));
383      Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
384                          ThisVT, Part0, DAG.getIntPtrConstant(0));
385
386      if (ThisBits == PartBits && ThisVT != PartVT) {
387        Part0 = DAG.getNode(ISD::BIT_CONVERT, DL, PartVT, Part0);
388        Part1 = DAG.getNode(ISD::BIT_CONVERT, DL, PartVT, Part1);
389      }
390    }
391  }
392
393  if (TLI.isBigEndian())
394    std::reverse(Parts, Parts + OrigNumParts);
395}
396
397
398/// getCopyToPartsVector - Create a series of nodes that contain the specified
399/// value split into legal parts.
400static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL,
401                                 SDValue Val, SDValue *Parts, unsigned NumParts,
402                                 EVT PartVT) {
403  EVT ValueVT = Val.getValueType();
404  assert(ValueVT.isVector() && "Not a vector");
405  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
406
407  if (NumParts == 1) {
408    if (PartVT == ValueVT) {
409      // Nothing to do.
410    } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
411      // Bitconvert vector->vector case.
412      Val = DAG.getNode(ISD::BIT_CONVERT, DL, PartVT, Val);
413    } else if (PartVT.isVector() &&
414               PartVT.getVectorElementType() == ValueVT.getVectorElementType()&&
415               PartVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
416      EVT ElementVT = PartVT.getVectorElementType();
417      // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
418      // undef elements.
419      SmallVector<SDValue, 16> Ops;
420      for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
421        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
422                                  ElementVT, Val, DAG.getIntPtrConstant(i)));
423
424      for (unsigned i = ValueVT.getVectorNumElements(),
425           e = PartVT.getVectorNumElements(); i != e; ++i)
426        Ops.push_back(DAG.getUNDEF(ElementVT));
427
428      Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size());
429
430      // FIXME: Use CONCAT for 2x -> 4x.
431
432      //SDValue UndefElts = DAG.getUNDEF(VectorTy);
433      //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
434    } else {
435      // Vector -> scalar conversion.
436      assert(ValueVT.getVectorElementType() == PartVT &&
437             ValueVT.getVectorNumElements() == 1 &&
438             "Only trivial vector-to-scalar conversions should get here!");
439      Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
440                        PartVT, Val, DAG.getIntPtrConstant(0));
441    }
442
443    Parts[0] = Val;
444    return;
445  }
446
447  // Handle a multi-element vector.
448  EVT IntermediateVT, RegisterVT;
449  unsigned NumIntermediates;
450  unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
451                                                IntermediateVT,
452                                                NumIntermediates, RegisterVT);
453  unsigned NumElements = ValueVT.getVectorNumElements();
454
455  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
456  NumParts = NumRegs; // Silence a compiler warning.
457  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
458
459  // Split the vector into intermediate operands.
460  SmallVector<SDValue, 8> Ops(NumIntermediates);
461  for (unsigned i = 0; i != NumIntermediates; ++i) {
462    if (IntermediateVT.isVector())
463      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
464                           IntermediateVT, Val,
465                   DAG.getIntPtrConstant(i * (NumElements / NumIntermediates)));
466    else
467      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
468                           IntermediateVT, Val, DAG.getIntPtrConstant(i));
469  }
470
471  // Split the intermediate operands into legal parts.
472  if (NumParts == NumIntermediates) {
473    // If the register was not expanded, promote or copy the value,
474    // as appropriate.
475    for (unsigned i = 0; i != NumParts; ++i)
476      getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT);
477  } else if (NumParts > 0) {
478    // If the intermediate type was expanded, split each the value into
479    // legal parts.
480    assert(NumParts % NumIntermediates == 0 &&
481           "Must expand into a divisible number of parts!");
482    unsigned Factor = NumParts / NumIntermediates;
483    for (unsigned i = 0; i != NumIntermediates; ++i)
484      getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT);
485  }
486}
487
488
489
490
491namespace {
492  /// RegsForValue - This struct represents the registers (physical or virtual)
493  /// that a particular set of values is assigned, and the type information
494  /// about the value. The most common situation is to represent one value at a
495  /// time, but struct or array values are handled element-wise as multiple
496  /// values.  The splitting of aggregates is performed recursively, so that we
497  /// never have aggregate-typed registers. The values at this point do not
498  /// necessarily have legal types, so each value may require one or more
499  /// registers of some legal type.
500  ///
501  struct RegsForValue {
502    /// ValueVTs - The value types of the values, which may not be legal, and
503    /// may need be promoted or synthesized from one or more registers.
504    ///
505    SmallVector<EVT, 4> ValueVTs;
506
507    /// RegVTs - The value types of the registers. This is the same size as
508    /// ValueVTs and it records, for each value, what the type of the assigned
509    /// register or registers are. (Individual values are never synthesized
510    /// from more than one type of register.)
511    ///
512    /// With virtual registers, the contents of RegVTs is redundant with TLI's
513    /// getRegisterType member function, however when with physical registers
514    /// it is necessary to have a separate record of the types.
515    ///
516    SmallVector<EVT, 4> RegVTs;
517
518    /// Regs - This list holds the registers assigned to the values.
519    /// Each legal or promoted value requires one register, and each
520    /// expanded value requires multiple registers.
521    ///
522    SmallVector<unsigned, 4> Regs;
523
524    RegsForValue() {}
525
526    RegsForValue(const SmallVector<unsigned, 4> &regs,
527                 EVT regvt, EVT valuevt)
528      : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
529
530    RegsForValue(LLVMContext &Context, const TargetLowering &tli,
531                 unsigned Reg, const Type *Ty) {
532      ComputeValueVTs(tli, Ty, ValueVTs);
533
534      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
535        EVT ValueVT = ValueVTs[Value];
536        unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
537        EVT RegisterVT = tli.getRegisterType(Context, ValueVT);
538        for (unsigned i = 0; i != NumRegs; ++i)
539          Regs.push_back(Reg + i);
540        RegVTs.push_back(RegisterVT);
541        Reg += NumRegs;
542      }
543    }
544
545    /// areValueTypesLegal - Return true if types of all the values are legal.
546    bool areValueTypesLegal(const TargetLowering &TLI) {
547      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
548        EVT RegisterVT = RegVTs[Value];
549        if (!TLI.isTypeLegal(RegisterVT))
550          return false;
551      }
552      return true;
553    }
554
555    /// append - Add the specified values to this one.
556    void append(const RegsForValue &RHS) {
557      ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
558      RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
559      Regs.append(RHS.Regs.begin(), RHS.Regs.end());
560    }
561
562    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
563    /// this value and returns the result as a ValueVTs value.  This uses
564    /// Chain/Flag as the input and updates them for the output Chain/Flag.
565    /// If the Flag pointer is NULL, no flag is used.
566    SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
567                            DebugLoc dl,
568                            SDValue &Chain, SDValue *Flag) const;
569
570    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
571    /// specified value into the registers specified by this object.  This uses
572    /// Chain/Flag as the input and updates them for the output Chain/Flag.
573    /// If the Flag pointer is NULL, no flag is used.
574    void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
575                       SDValue &Chain, SDValue *Flag) const;
576
577    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
578    /// operand list.  This adds the code marker, matching input operand index
579    /// (if applicable), and includes the number of values added into it.
580    void AddInlineAsmOperands(unsigned Kind,
581                              bool HasMatching, unsigned MatchingIdx,
582                              SelectionDAG &DAG,
583                              std::vector<SDValue> &Ops) const;
584  };
585}
586
587/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
588/// this value and returns the result as a ValueVT value.  This uses
589/// Chain/Flag as the input and updates them for the output Chain/Flag.
590/// If the Flag pointer is NULL, no flag is used.
591SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
592                                      FunctionLoweringInfo &FuncInfo,
593                                      DebugLoc dl,
594                                      SDValue &Chain, SDValue *Flag) const {
595  // A Value with type {} or [0 x %t] needs no registers.
596  if (ValueVTs.empty())
597    return SDValue();
598
599  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
600
601  // Assemble the legal parts into the final values.
602  SmallVector<SDValue, 4> Values(ValueVTs.size());
603  SmallVector<SDValue, 8> Parts;
604  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
605    // Copy the legal parts from the registers.
606    EVT ValueVT = ValueVTs[Value];
607    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
608    EVT RegisterVT = RegVTs[Value];
609
610    Parts.resize(NumRegs);
611    for (unsigned i = 0; i != NumRegs; ++i) {
612      SDValue P;
613      if (Flag == 0) {
614        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
615      } else {
616        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
617        *Flag = P.getValue(2);
618      }
619
620      Chain = P.getValue(1);
621
622      // If the source register was virtual and if we know something about it,
623      // add an assert node.
624      if (TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) &&
625          RegisterVT.isInteger() && !RegisterVT.isVector()) {
626        unsigned SlotNo = Regs[Part+i]-TargetRegisterInfo::FirstVirtualRegister;
627        if (FuncInfo.LiveOutRegInfo.size() > SlotNo) {
628          const FunctionLoweringInfo::LiveOutInfo &LOI =
629            FuncInfo.LiveOutRegInfo[SlotNo];
630
631          unsigned RegSize = RegisterVT.getSizeInBits();
632          unsigned NumSignBits = LOI.NumSignBits;
633          unsigned NumZeroBits = LOI.KnownZero.countLeadingOnes();
634
635          // FIXME: We capture more information than the dag can represent.  For
636          // now, just use the tightest assertzext/assertsext possible.
637          bool isSExt = true;
638          EVT FromVT(MVT::Other);
639          if (NumSignBits == RegSize)
640            isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
641          else if (NumZeroBits >= RegSize-1)
642            isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
643          else if (NumSignBits > RegSize-8)
644            isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
645          else if (NumZeroBits >= RegSize-8)
646            isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
647          else if (NumSignBits > RegSize-16)
648            isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
649          else if (NumZeroBits >= RegSize-16)
650            isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
651          else if (NumSignBits > RegSize-32)
652            isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
653          else if (NumZeroBits >= RegSize-32)
654            isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
655
656          if (FromVT != MVT::Other)
657            P = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
658                            RegisterVT, P, DAG.getValueType(FromVT));
659        }
660      }
661
662      Parts[i] = P;
663    }
664
665    Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
666                                     NumRegs, RegisterVT, ValueVT);
667    Part += NumRegs;
668    Parts.clear();
669  }
670
671  return DAG.getNode(ISD::MERGE_VALUES, dl,
672                     DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
673                     &Values[0], ValueVTs.size());
674}
675
676/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
677/// specified value into the registers specified by this object.  This uses
678/// Chain/Flag as the input and updates them for the output Chain/Flag.
679/// If the Flag pointer is NULL, no flag is used.
680void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
681                                 SDValue &Chain, SDValue *Flag) const {
682  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
683
684  // Get the list of the values's legal parts.
685  unsigned NumRegs = Regs.size();
686  SmallVector<SDValue, 8> Parts(NumRegs);
687  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
688    EVT ValueVT = ValueVTs[Value];
689    unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
690    EVT RegisterVT = RegVTs[Value];
691
692    getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
693                   &Parts[Part], NumParts, RegisterVT);
694    Part += NumParts;
695  }
696
697  // Copy the parts into the registers.
698  SmallVector<SDValue, 8> Chains(NumRegs);
699  for (unsigned i = 0; i != NumRegs; ++i) {
700    SDValue Part;
701    if (Flag == 0) {
702      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
703    } else {
704      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
705      *Flag = Part.getValue(1);
706    }
707
708    Chains[i] = Part.getValue(0);
709  }
710
711  if (NumRegs == 1 || Flag)
712    // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
713    // flagged to it. That is the CopyToReg nodes and the user are considered
714    // a single scheduling unit. If we create a TokenFactor and return it as
715    // chain, then the TokenFactor is both a predecessor (operand) of the
716    // user as well as a successor (the TF operands are flagged to the user).
717    // c1, f1 = CopyToReg
718    // c2, f2 = CopyToReg
719    // c3     = TokenFactor c1, c2
720    // ...
721    //        = op c3, ..., f2
722    Chain = Chains[NumRegs-1];
723  else
724    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
725}
726
727/// AddInlineAsmOperands - Add this value to the specified inlineasm node
728/// operand list.  This adds the code marker and includes the number of
729/// values added into it.
730void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
731                                        unsigned MatchingIdx,
732                                        SelectionDAG &DAG,
733                                        std::vector<SDValue> &Ops) const {
734  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
735
736  unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
737  if (HasMatching)
738    Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
739  SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
740  Ops.push_back(Res);
741
742  for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
743    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
744    EVT RegisterVT = RegVTs[Value];
745    for (unsigned i = 0; i != NumRegs; ++i) {
746      assert(Reg < Regs.size() && "Mismatch in # registers expected");
747      Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
748    }
749  }
750}
751
752void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) {
753  AA = &aa;
754  GFI = gfi;
755  TD = DAG.getTarget().getTargetData();
756}
757
758/// clear - Clear out the current SelectionDAG and the associated
759/// state and prepare this SelectionDAGBuilder object to be used
760/// for a new block. This doesn't clear out information about
761/// additional blocks that are needed to complete switch lowering
762/// or PHI node updating; that information is cleared out as it is
763/// consumed.
764void SelectionDAGBuilder::clear() {
765  NodeMap.clear();
766  UnusedArgNodeMap.clear();
767  PendingLoads.clear();
768  PendingExports.clear();
769  DanglingDebugInfoMap.clear();
770  CurDebugLoc = DebugLoc();
771  HasTailCall = false;
772}
773
774/// getRoot - Return the current virtual root of the Selection DAG,
775/// flushing any PendingLoad items. This must be done before emitting
776/// a store or any other node that may need to be ordered after any
777/// prior load instructions.
778///
779SDValue SelectionDAGBuilder::getRoot() {
780  if (PendingLoads.empty())
781    return DAG.getRoot();
782
783  if (PendingLoads.size() == 1) {
784    SDValue Root = PendingLoads[0];
785    DAG.setRoot(Root);
786    PendingLoads.clear();
787    return Root;
788  }
789
790  // Otherwise, we have to make a token factor node.
791  SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
792                               &PendingLoads[0], PendingLoads.size());
793  PendingLoads.clear();
794  DAG.setRoot(Root);
795  return Root;
796}
797
798/// getControlRoot - Similar to getRoot, but instead of flushing all the
799/// PendingLoad items, flush all the PendingExports items. It is necessary
800/// to do this before emitting a terminator instruction.
801///
802SDValue SelectionDAGBuilder::getControlRoot() {
803  SDValue Root = DAG.getRoot();
804
805  if (PendingExports.empty())
806    return Root;
807
808  // Turn all of the CopyToReg chains into one factored node.
809  if (Root.getOpcode() != ISD::EntryToken) {
810    unsigned i = 0, e = PendingExports.size();
811    for (; i != e; ++i) {
812      assert(PendingExports[i].getNode()->getNumOperands() > 1);
813      if (PendingExports[i].getNode()->getOperand(0) == Root)
814        break;  // Don't add the root if we already indirectly depend on it.
815    }
816
817    if (i == e)
818      PendingExports.push_back(Root);
819  }
820
821  Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
822                     &PendingExports[0],
823                     PendingExports.size());
824  PendingExports.clear();
825  DAG.setRoot(Root);
826  return Root;
827}
828
829void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) {
830  if (DAG.GetOrdering(Node) != 0) return; // Already has ordering.
831  DAG.AssignOrdering(Node, SDNodeOrder);
832
833  for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I)
834    AssignOrderingToNode(Node->getOperand(I).getNode());
835}
836
837void SelectionDAGBuilder::visit(const Instruction &I) {
838  // Set up outgoing PHI node register values before emitting the terminator.
839  if (isa<TerminatorInst>(&I))
840    HandlePHINodesInSuccessorBlocks(I.getParent());
841
842  CurDebugLoc = I.getDebugLoc();
843
844  visit(I.getOpcode(), I);
845
846  if (!isa<TerminatorInst>(&I) && !HasTailCall)
847    CopyToExportRegsIfNeeded(&I);
848
849  CurDebugLoc = DebugLoc();
850}
851
852void SelectionDAGBuilder::visitPHI(const PHINode &) {
853  llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
854}
855
856void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
857  // Note: this doesn't use InstVisitor, because it has to work with
858  // ConstantExpr's in addition to instructions.
859  switch (Opcode) {
860  default: llvm_unreachable("Unknown instruction type encountered!");
861    // Build the switch statement using the Instruction.def file.
862#define HANDLE_INST(NUM, OPCODE, CLASS) \
863    case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break;
864#include "llvm/Instruction.def"
865  }
866
867  // Assign the ordering to the freshly created DAG nodes.
868  if (NodeMap.count(&I)) {
869    ++SDNodeOrder;
870    AssignOrderingToNode(getValue(&I).getNode());
871  }
872}
873
874// resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
875// generate the debug data structures now that we've seen its definition.
876void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
877                                                   SDValue Val) {
878  DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
879  MDNode *Variable = NULL;
880  uint64_t Offset = 0;
881
882  if (const DbgValueInst *DI = dyn_cast_or_null<DbgValueInst>(DDI.getDI())) {
883    Variable = DI->getVariable();
884    Offset = DI->getOffset();
885  } else if (const DbgDeclareInst *DI =
886             dyn_cast_or_null<DbgDeclareInst>(DDI.getDI()))
887    Variable = DI->getVariable();
888  else {
889    assert (DDI.getDI() == NULL && "Invalid debug info intrinsic!");
890    return;
891  }
892
893  if (Variable) {
894    DebugLoc dl = DDI.getdl();
895    unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
896    SDDbgValue *SDV;
897    if (Val.getNode()) {
898      if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) {
899        SDV = DAG.getDbgValue(Variable, Val.getNode(),
900                              Val.getResNo(), Offset, dl, DbgSDNodeOrder);
901        DAG.AddDbgValue(SDV, Val.getNode(), false);
902      }
903    } else {
904      SDV = DAG.getDbgValue(Variable, UndefValue::get(V->getType()),
905                            Offset, dl, SDNodeOrder);
906      DAG.AddDbgValue(SDV, 0, false);
907    }
908    DanglingDebugInfoMap[V] = DanglingDebugInfo();
909  }
910}
911
912// getValue - Return an SDValue for the given Value.
913SDValue SelectionDAGBuilder::getValue(const Value *V) {
914  // If we already have an SDValue for this value, use it. It's important
915  // to do this first, so that we don't create a CopyFromReg if we already
916  // have a regular SDValue.
917  SDValue &N = NodeMap[V];
918  if (N.getNode()) return N;
919
920  // If there's a virtual register allocated and initialized for this
921  // value, use it.
922  DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
923  if (It != FuncInfo.ValueMap.end()) {
924    unsigned InReg = It->second;
925    RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
926    SDValue Chain = DAG.getEntryNode();
927    return N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain,NULL);
928  }
929
930  // Otherwise create a new SDValue and remember it.
931  SDValue Val = getValueImpl(V);
932  NodeMap[V] = Val;
933  resolveDanglingDebugInfo(V, Val);
934  return Val;
935}
936
937/// getNonRegisterValue - Return an SDValue for the given Value, but
938/// don't look in FuncInfo.ValueMap for a virtual register.
939SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
940  // If we already have an SDValue for this value, use it.
941  SDValue &N = NodeMap[V];
942  if (N.getNode()) return N;
943
944  // Otherwise create a new SDValue and remember it.
945  SDValue Val = getValueImpl(V);
946  NodeMap[V] = Val;
947  resolveDanglingDebugInfo(V, Val);
948  return Val;
949}
950
951/// getValueImpl - Helper function for getValue and getNonRegisterValue.
952/// Create an SDValue for the given value.
953SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
954  if (const Constant *C = dyn_cast<Constant>(V)) {
955    EVT VT = TLI.getValueType(V->getType(), true);
956
957    if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
958      return DAG.getConstant(*CI, VT);
959
960    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
961      return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT);
962
963    if (isa<ConstantPointerNull>(C))
964      return DAG.getConstant(0, TLI.getPointerTy());
965
966    if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
967      return DAG.getConstantFP(*CFP, VT);
968
969    if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
970      return DAG.getUNDEF(VT);
971
972    if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
973      visit(CE->getOpcode(), *CE);
974      SDValue N1 = NodeMap[V];
975      assert(N1.getNode() && "visit didn't populate the NodeMap!");
976      return N1;
977    }
978
979    if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
980      SmallVector<SDValue, 4> Constants;
981      for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
982           OI != OE; ++OI) {
983        SDNode *Val = getValue(*OI).getNode();
984        // If the operand is an empty aggregate, there are no values.
985        if (!Val) continue;
986        // Add each leaf value from the operand to the Constants list
987        // to form a flattened list of all the values.
988        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
989          Constants.push_back(SDValue(Val, i));
990      }
991
992      return DAG.getMergeValues(&Constants[0], Constants.size(),
993                                getCurDebugLoc());
994    }
995
996    if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
997      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
998             "Unknown struct or array constant!");
999
1000      SmallVector<EVT, 4> ValueVTs;
1001      ComputeValueVTs(TLI, C->getType(), ValueVTs);
1002      unsigned NumElts = ValueVTs.size();
1003      if (NumElts == 0)
1004        return SDValue(); // empty struct
1005      SmallVector<SDValue, 4> Constants(NumElts);
1006      for (unsigned i = 0; i != NumElts; ++i) {
1007        EVT EltVT = ValueVTs[i];
1008        if (isa<UndefValue>(C))
1009          Constants[i] = DAG.getUNDEF(EltVT);
1010        else if (EltVT.isFloatingPoint())
1011          Constants[i] = DAG.getConstantFP(0, EltVT);
1012        else
1013          Constants[i] = DAG.getConstant(0, EltVT);
1014      }
1015
1016      return DAG.getMergeValues(&Constants[0], NumElts,
1017                                getCurDebugLoc());
1018    }
1019
1020    if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1021      return DAG.getBlockAddress(BA, VT);
1022
1023    const VectorType *VecTy = cast<VectorType>(V->getType());
1024    unsigned NumElements = VecTy->getNumElements();
1025
1026    // Now that we know the number and type of the elements, get that number of
1027    // elements into the Ops array based on what kind of constant it is.
1028    SmallVector<SDValue, 16> Ops;
1029    if (const ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
1030      for (unsigned i = 0; i != NumElements; ++i)
1031        Ops.push_back(getValue(CP->getOperand(i)));
1032    } else {
1033      assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1034      EVT EltVT = TLI.getValueType(VecTy->getElementType());
1035
1036      SDValue Op;
1037      if (EltVT.isFloatingPoint())
1038        Op = DAG.getConstantFP(0, EltVT);
1039      else
1040        Op = DAG.getConstant(0, EltVT);
1041      Ops.assign(NumElements, Op);
1042    }
1043
1044    // Create a BUILD_VECTOR node.
1045    return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
1046                                    VT, &Ops[0], Ops.size());
1047  }
1048
1049  // If this is a static alloca, generate it as the frameindex instead of
1050  // computation.
1051  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1052    DenseMap<const AllocaInst*, int>::iterator SI =
1053      FuncInfo.StaticAllocaMap.find(AI);
1054    if (SI != FuncInfo.StaticAllocaMap.end())
1055      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
1056  }
1057
1058  // If this is an instruction which fast-isel has deferred, select it now.
1059  if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1060    unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1061    RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType());
1062    SDValue Chain = DAG.getEntryNode();
1063    return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL);
1064  }
1065
1066  llvm_unreachable("Can't get register for value!");
1067  return SDValue();
1068}
1069
1070void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1071  SDValue Chain = getControlRoot();
1072  SmallVector<ISD::OutputArg, 8> Outs;
1073  SmallVector<SDValue, 8> OutVals;
1074
1075  if (!FuncInfo.CanLowerReturn) {
1076    unsigned DemoteReg = FuncInfo.DemoteRegister;
1077    const Function *F = I.getParent()->getParent();
1078
1079    // Emit a store of the return value through the virtual register.
1080    // Leave Outs empty so that LowerReturn won't try to load return
1081    // registers the usual way.
1082    SmallVector<EVT, 1> PtrValueVTs;
1083    ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
1084                    PtrValueVTs);
1085
1086    SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
1087    SDValue RetOp = getValue(I.getOperand(0));
1088
1089    SmallVector<EVT, 4> ValueVTs;
1090    SmallVector<uint64_t, 4> Offsets;
1091    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1092    unsigned NumValues = ValueVTs.size();
1093
1094    SmallVector<SDValue, 4> Chains(NumValues);
1095    for (unsigned i = 0; i != NumValues; ++i) {
1096      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(),
1097                                RetPtr.getValueType(), RetPtr,
1098                                DAG.getIntPtrConstant(Offsets[i]));
1099      Chains[i] =
1100        DAG.getStore(Chain, getCurDebugLoc(),
1101                     SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1102                     Add, NULL, Offsets[i], false, false, 0);
1103    }
1104
1105    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
1106                        MVT::Other, &Chains[0], NumValues);
1107  } else if (I.getNumOperands() != 0) {
1108    SmallVector<EVT, 4> ValueVTs;
1109    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
1110    unsigned NumValues = ValueVTs.size();
1111    if (NumValues) {
1112      SDValue RetOp = getValue(I.getOperand(0));
1113      for (unsigned j = 0, f = NumValues; j != f; ++j) {
1114        EVT VT = ValueVTs[j];
1115
1116        ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1117
1118        const Function *F = I.getParent()->getParent();
1119        if (F->paramHasAttr(0, Attribute::SExt))
1120          ExtendKind = ISD::SIGN_EXTEND;
1121        else if (F->paramHasAttr(0, Attribute::ZExt))
1122          ExtendKind = ISD::ZERO_EXTEND;
1123
1124        // FIXME: C calling convention requires the return type to be promoted
1125        // to at least 32-bit. But this is not necessary for non-C calling
1126        // conventions. The frontend should mark functions whose return values
1127        // require promoting with signext or zeroext attributes.
1128        if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
1129          EVT MinVT = TLI.getRegisterType(*DAG.getContext(), MVT::i32);
1130          if (VT.bitsLT(MinVT))
1131            VT = MinVT;
1132        }
1133
1134        unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
1135        EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
1136        SmallVector<SDValue, 4> Parts(NumParts);
1137        getCopyToParts(DAG, getCurDebugLoc(),
1138                       SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1139                       &Parts[0], NumParts, PartVT, ExtendKind);
1140
1141        // 'inreg' on function refers to return value
1142        ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1143        if (F->paramHasAttr(0, Attribute::InReg))
1144          Flags.setInReg();
1145
1146        // Propagate extension type if any
1147        if (F->paramHasAttr(0, Attribute::SExt))
1148          Flags.setSExt();
1149        else if (F->paramHasAttr(0, Attribute::ZExt))
1150          Flags.setZExt();
1151
1152        for (unsigned i = 0; i < NumParts; ++i) {
1153          Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1154                                        /*isfixed=*/true));
1155          OutVals.push_back(Parts[i]);
1156        }
1157      }
1158    }
1159  }
1160
1161  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1162  CallingConv::ID CallConv =
1163    DAG.getMachineFunction().getFunction()->getCallingConv();
1164  Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
1165                          Outs, OutVals, getCurDebugLoc(), DAG);
1166
1167  // Verify that the target's LowerReturn behaved as expected.
1168  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1169         "LowerReturn didn't return a valid chain!");
1170
1171  // Update the DAG with the new chain value resulting from return lowering.
1172  DAG.setRoot(Chain);
1173}
1174
1175/// CopyToExportRegsIfNeeded - If the given value has virtual registers
1176/// created for it, emit nodes to copy the value into the virtual
1177/// registers.
1178void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1179  DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1180  if (VMI != FuncInfo.ValueMap.end()) {
1181    assert(!V->use_empty() && "Unused value assigned virtual registers!");
1182    CopyValueToVirtualRegister(V, VMI->second);
1183  }
1184}
1185
1186/// ExportFromCurrentBlock - If this condition isn't known to be exported from
1187/// the current basic block, add it to ValueMap now so that we'll get a
1188/// CopyTo/FromReg.
1189void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1190  // No need to export constants.
1191  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1192
1193  // Already exported?
1194  if (FuncInfo.isExportedInst(V)) return;
1195
1196  unsigned Reg = FuncInfo.InitializeRegForValue(V);
1197  CopyValueToVirtualRegister(V, Reg);
1198}
1199
1200bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1201                                                     const BasicBlock *FromBB) {
1202  // The operands of the setcc have to be in this block.  We don't know
1203  // how to export them from some other block.
1204  if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1205    // Can export from current BB.
1206    if (VI->getParent() == FromBB)
1207      return true;
1208
1209    // Is already exported, noop.
1210    return FuncInfo.isExportedInst(V);
1211  }
1212
1213  // If this is an argument, we can export it if the BB is the entry block or
1214  // if it is already exported.
1215  if (isa<Argument>(V)) {
1216    if (FromBB == &FromBB->getParent()->getEntryBlock())
1217      return true;
1218
1219    // Otherwise, can only export this if it is already exported.
1220    return FuncInfo.isExportedInst(V);
1221  }
1222
1223  // Otherwise, constants can always be exported.
1224  return true;
1225}
1226
1227static bool InBlock(const Value *V, const BasicBlock *BB) {
1228  if (const Instruction *I = dyn_cast<Instruction>(V))
1229    return I->getParent() == BB;
1230  return true;
1231}
1232
1233/// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1234/// This function emits a branch and is used at the leaves of an OR or an
1235/// AND operator tree.
1236///
1237void
1238SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1239                                                  MachineBasicBlock *TBB,
1240                                                  MachineBasicBlock *FBB,
1241                                                  MachineBasicBlock *CurBB,
1242                                                  MachineBasicBlock *SwitchBB) {
1243  const BasicBlock *BB = CurBB->getBasicBlock();
1244
1245  // If the leaf of the tree is a comparison, merge the condition into
1246  // the caseblock.
1247  if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1248    // The operands of the cmp have to be in this block.  We don't know
1249    // how to export them from some other block.  If this is the first block
1250    // of the sequence, no exporting is needed.
1251    if (CurBB == SwitchBB ||
1252        (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1253         isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1254      ISD::CondCode Condition;
1255      if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1256        Condition = getICmpCondCode(IC->getPredicate());
1257      } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1258        Condition = getFCmpCondCode(FC->getPredicate());
1259      } else {
1260        Condition = ISD::SETEQ; // silence warning.
1261        llvm_unreachable("Unknown compare instruction");
1262      }
1263
1264      CaseBlock CB(Condition, BOp->getOperand(0),
1265                   BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1266      SwitchCases.push_back(CB);
1267      return;
1268    }
1269  }
1270
1271  // Create a CaseBlock record representing this branch.
1272  CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1273               NULL, TBB, FBB, CurBB);
1274  SwitchCases.push_back(CB);
1275}
1276
1277/// FindMergedConditions - If Cond is an expression like
1278void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1279                                               MachineBasicBlock *TBB,
1280                                               MachineBasicBlock *FBB,
1281                                               MachineBasicBlock *CurBB,
1282                                               MachineBasicBlock *SwitchBB,
1283                                               unsigned Opc) {
1284  // If this node is not part of the or/and tree, emit it as a branch.
1285  const Instruction *BOp = dyn_cast<Instruction>(Cond);
1286  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1287      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1288      BOp->getParent() != CurBB->getBasicBlock() ||
1289      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1290      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1291    EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB);
1292    return;
1293  }
1294
1295  //  Create TmpBB after CurBB.
1296  MachineFunction::iterator BBI = CurBB;
1297  MachineFunction &MF = DAG.getMachineFunction();
1298  MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1299  CurBB->getParent()->insert(++BBI, TmpBB);
1300
1301  if (Opc == Instruction::Or) {
1302    // Codegen X | Y as:
1303    //   jmp_if_X TBB
1304    //   jmp TmpBB
1305    // TmpBB:
1306    //   jmp_if_Y TBB
1307    //   jmp FBB
1308    //
1309
1310    // Emit the LHS condition.
1311    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc);
1312
1313    // Emit the RHS condition into TmpBB.
1314    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1315  } else {
1316    assert(Opc == Instruction::And && "Unknown merge op!");
1317    // Codegen X & Y as:
1318    //   jmp_if_X TmpBB
1319    //   jmp FBB
1320    // TmpBB:
1321    //   jmp_if_Y TBB
1322    //   jmp FBB
1323    //
1324    //  This requires creation of TmpBB after CurBB.
1325
1326    // Emit the LHS condition.
1327    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc);
1328
1329    // Emit the RHS condition into TmpBB.
1330    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1331  }
1332}
1333
1334/// If the set of cases should be emitted as a series of branches, return true.
1335/// If we should emit this as a bunch of and/or'd together conditions, return
1336/// false.
1337bool
1338SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
1339  if (Cases.size() != 2) return true;
1340
1341  // If this is two comparisons of the same values or'd or and'd together, they
1342  // will get folded into a single comparison, so don't emit two blocks.
1343  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1344       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1345      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1346       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1347    return false;
1348  }
1349
1350  // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1351  // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1352  if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1353      Cases[0].CC == Cases[1].CC &&
1354      isa<Constant>(Cases[0].CmpRHS) &&
1355      cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1356    if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1357      return false;
1358    if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1359      return false;
1360  }
1361
1362  return true;
1363}
1364
1365void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1366  MachineBasicBlock *BrMBB = FuncInfo.MBB;
1367
1368  // Update machine-CFG edges.
1369  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1370
1371  // Figure out which block is immediately after the current one.
1372  MachineBasicBlock *NextBlock = 0;
1373  MachineFunction::iterator BBI = BrMBB;
1374  if (++BBI != FuncInfo.MF->end())
1375    NextBlock = BBI;
1376
1377  if (I.isUnconditional()) {
1378    // Update machine-CFG edges.
1379    BrMBB->addSuccessor(Succ0MBB);
1380
1381    // If this is not a fall-through branch, emit the branch.
1382    if (Succ0MBB != NextBlock)
1383      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1384                              MVT::Other, getControlRoot(),
1385                              DAG.getBasicBlock(Succ0MBB)));
1386
1387    return;
1388  }
1389
1390  // If this condition is one of the special cases we handle, do special stuff
1391  // now.
1392  const Value *CondVal = I.getCondition();
1393  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1394
1395  // If this is a series of conditions that are or'd or and'd together, emit
1396  // this as a sequence of branches instead of setcc's with and/or operations.
1397  // For example, instead of something like:
1398  //     cmp A, B
1399  //     C = seteq
1400  //     cmp D, E
1401  //     F = setle
1402  //     or C, F
1403  //     jnz foo
1404  // Emit:
1405  //     cmp A, B
1406  //     je foo
1407  //     cmp D, E
1408  //     jle foo
1409  //
1410  if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1411    if (BOp->hasOneUse() &&
1412        (BOp->getOpcode() == Instruction::And ||
1413         BOp->getOpcode() == Instruction::Or)) {
1414      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1415                           BOp->getOpcode());
1416      // If the compares in later blocks need to use values not currently
1417      // exported from this block, export them now.  This block should always
1418      // be the first entry.
1419      assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1420
1421      // Allow some cases to be rejected.
1422      if (ShouldEmitAsBranches(SwitchCases)) {
1423        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1424          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1425          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1426        }
1427
1428        // Emit the branch for this block.
1429        visitSwitchCase(SwitchCases[0], BrMBB);
1430        SwitchCases.erase(SwitchCases.begin());
1431        return;
1432      }
1433
1434      // Okay, we decided not to do this, remove any inserted MBB's and clear
1435      // SwitchCases.
1436      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1437        FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1438
1439      SwitchCases.clear();
1440    }
1441  }
1442
1443  // Create a CaseBlock record representing this branch.
1444  CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1445               NULL, Succ0MBB, Succ1MBB, BrMBB);
1446
1447  // Use visitSwitchCase to actually insert the fast branch sequence for this
1448  // cond branch.
1449  visitSwitchCase(CB, BrMBB);
1450}
1451
1452/// visitSwitchCase - Emits the necessary code to represent a single node in
1453/// the binary search tree resulting from lowering a switch instruction.
1454void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1455                                          MachineBasicBlock *SwitchBB) {
1456  SDValue Cond;
1457  SDValue CondLHS = getValue(CB.CmpLHS);
1458  DebugLoc dl = getCurDebugLoc();
1459
1460  // Build the setcc now.
1461  if (CB.CmpMHS == NULL) {
1462    // Fold "(X == true)" to X and "(X == false)" to !X to
1463    // handle common cases produced by branch lowering.
1464    if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1465        CB.CC == ISD::SETEQ)
1466      Cond = CondLHS;
1467    else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1468             CB.CC == ISD::SETEQ) {
1469      SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1470      Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1471    } else
1472      Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1473  } else {
1474    assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1475
1476    const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1477    const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
1478
1479    SDValue CmpOp = getValue(CB.CmpMHS);
1480    EVT VT = CmpOp.getValueType();
1481
1482    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1483      Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1484                          ISD::SETLE);
1485    } else {
1486      SDValue SUB = DAG.getNode(ISD::SUB, dl,
1487                                VT, CmpOp, DAG.getConstant(Low, VT));
1488      Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1489                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1490    }
1491  }
1492
1493  // Update successor info
1494  SwitchBB->addSuccessor(CB.TrueBB);
1495  SwitchBB->addSuccessor(CB.FalseBB);
1496
1497  // Set NextBlock to be the MBB immediately after the current one, if any.
1498  // This is used to avoid emitting unnecessary branches to the next block.
1499  MachineBasicBlock *NextBlock = 0;
1500  MachineFunction::iterator BBI = SwitchBB;
1501  if (++BBI != FuncInfo.MF->end())
1502    NextBlock = BBI;
1503
1504  // If the lhs block is the next block, invert the condition so that we can
1505  // fall through to the lhs instead of the rhs block.
1506  if (CB.TrueBB == NextBlock) {
1507    std::swap(CB.TrueBB, CB.FalseBB);
1508    SDValue True = DAG.getConstant(1, Cond.getValueType());
1509    Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1510  }
1511
1512  SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1513                               MVT::Other, getControlRoot(), Cond,
1514                               DAG.getBasicBlock(CB.TrueBB));
1515
1516  // Insert the false branch.
1517  if (CB.FalseBB != NextBlock)
1518    BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1519                         DAG.getBasicBlock(CB.FalseBB));
1520
1521  DAG.setRoot(BrCond);
1522}
1523
1524/// visitJumpTable - Emit JumpTable node in the current MBB
1525void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1526  // Emit the code for the jump table
1527  assert(JT.Reg != -1U && "Should lower JT Header first!");
1528  EVT PTy = TLI.getPointerTy();
1529  SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1530                                     JT.Reg, PTy);
1531  SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1532  SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(),
1533                                    MVT::Other, Index.getValue(1),
1534                                    Table, Index);
1535  DAG.setRoot(BrJumpTable);
1536}
1537
1538/// visitJumpTableHeader - This function emits necessary code to produce index
1539/// in the JumpTable from switch case.
1540void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1541                                               JumpTableHeader &JTH,
1542                                               MachineBasicBlock *SwitchBB) {
1543  // Subtract the lowest switch case value from the value being switched on and
1544  // conditional branch to default mbb if the result is greater than the
1545  // difference between smallest and largest cases.
1546  SDValue SwitchOp = getValue(JTH.SValue);
1547  EVT VT = SwitchOp.getValueType();
1548  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1549                            DAG.getConstant(JTH.First, VT));
1550
1551  // The SDNode we just created, which holds the value being switched on minus
1552  // the smallest case value, needs to be copied to a virtual register so it
1553  // can be used as an index into the jump table in a subsequent basic block.
1554  // This value may be smaller or larger than the target's pointer type, and
1555  // therefore require extension or truncating.
1556  SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy());
1557
1558  unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy());
1559  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1560                                    JumpTableReg, SwitchOp);
1561  JT.Reg = JumpTableReg;
1562
1563  // Emit the range check for the jump table, and branch to the default block
1564  // for the switch statement if the value being switched on exceeds the largest
1565  // case in the switch.
1566  SDValue CMP = DAG.getSetCC(getCurDebugLoc(),
1567                             TLI.getSetCCResultType(Sub.getValueType()), Sub,
1568                             DAG.getConstant(JTH.Last-JTH.First,VT),
1569                             ISD::SETUGT);
1570
1571  // Set NextBlock to be the MBB immediately after the current one, if any.
1572  // This is used to avoid emitting unnecessary branches to the next block.
1573  MachineBasicBlock *NextBlock = 0;
1574  MachineFunction::iterator BBI = SwitchBB;
1575
1576  if (++BBI != FuncInfo.MF->end())
1577    NextBlock = BBI;
1578
1579  SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1580                               MVT::Other, CopyTo, CMP,
1581                               DAG.getBasicBlock(JT.Default));
1582
1583  if (JT.MBB != NextBlock)
1584    BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond,
1585                         DAG.getBasicBlock(JT.MBB));
1586
1587  DAG.setRoot(BrCond);
1588}
1589
1590/// visitBitTestHeader - This function emits necessary code to produce value
1591/// suitable for "bit tests"
1592void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1593                                             MachineBasicBlock *SwitchBB) {
1594  // Subtract the minimum value
1595  SDValue SwitchOp = getValue(B.SValue);
1596  EVT VT = SwitchOp.getValueType();
1597  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1598                            DAG.getConstant(B.First, VT));
1599
1600  // Check range
1601  SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(),
1602                                  TLI.getSetCCResultType(Sub.getValueType()),
1603                                  Sub, DAG.getConstant(B.Range, VT),
1604                                  ISD::SETUGT);
1605
1606  SDValue ShiftOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(),
1607                                       TLI.getPointerTy());
1608
1609  B.Reg = FuncInfo.CreateReg(TLI.getPointerTy());
1610  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1611                                    B.Reg, ShiftOp);
1612
1613  // Set NextBlock to be the MBB immediately after the current one, if any.
1614  // This is used to avoid emitting unnecessary branches to the next block.
1615  MachineBasicBlock *NextBlock = 0;
1616  MachineFunction::iterator BBI = SwitchBB;
1617  if (++BBI != FuncInfo.MF->end())
1618    NextBlock = BBI;
1619
1620  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1621
1622  SwitchBB->addSuccessor(B.Default);
1623  SwitchBB->addSuccessor(MBB);
1624
1625  SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1626                                MVT::Other, CopyTo, RangeCmp,
1627                                DAG.getBasicBlock(B.Default));
1628
1629  if (MBB != NextBlock)
1630    BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo,
1631                          DAG.getBasicBlock(MBB));
1632
1633  DAG.setRoot(BrRange);
1634}
1635
1636/// visitBitTestCase - this function produces one "bit test"
1637void SelectionDAGBuilder::visitBitTestCase(MachineBasicBlock* NextMBB,
1638                                           unsigned Reg,
1639                                           BitTestCase &B,
1640                                           MachineBasicBlock *SwitchBB) {
1641  SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), Reg,
1642                                       TLI.getPointerTy());
1643  SDValue Cmp;
1644  if (CountPopulation_64(B.Mask) == 1) {
1645    // Testing for a single bit; just compare the shift count with what it
1646    // would need to be to shift a 1 bit in that position.
1647    Cmp = DAG.getSetCC(getCurDebugLoc(),
1648                       TLI.getSetCCResultType(ShiftOp.getValueType()),
1649                       ShiftOp,
1650                       DAG.getConstant(CountTrailingZeros_64(B.Mask),
1651                                       TLI.getPointerTy()),
1652                       ISD::SETEQ);
1653  } else {
1654    // Make desired shift
1655    SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(),
1656                                    TLI.getPointerTy(),
1657                                    DAG.getConstant(1, TLI.getPointerTy()),
1658                                    ShiftOp);
1659
1660    // Emit bit tests and jumps
1661    SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(),
1662                                TLI.getPointerTy(), SwitchVal,
1663                                DAG.getConstant(B.Mask, TLI.getPointerTy()));
1664    Cmp = DAG.getSetCC(getCurDebugLoc(),
1665                       TLI.getSetCCResultType(AndOp.getValueType()),
1666                       AndOp, DAG.getConstant(0, TLI.getPointerTy()),
1667                       ISD::SETNE);
1668  }
1669
1670  SwitchBB->addSuccessor(B.TargetBB);
1671  SwitchBB->addSuccessor(NextMBB);
1672
1673  SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1674                              MVT::Other, getControlRoot(),
1675                              Cmp, DAG.getBasicBlock(B.TargetBB));
1676
1677  // Set NextBlock to be the MBB immediately after the current one, if any.
1678  // This is used to avoid emitting unnecessary branches to the next block.
1679  MachineBasicBlock *NextBlock = 0;
1680  MachineFunction::iterator BBI = SwitchBB;
1681  if (++BBI != FuncInfo.MF->end())
1682    NextBlock = BBI;
1683
1684  if (NextMBB != NextBlock)
1685    BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd,
1686                        DAG.getBasicBlock(NextMBB));
1687
1688  DAG.setRoot(BrAnd);
1689}
1690
1691void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1692  MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
1693
1694  // Retrieve successors.
1695  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1696  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1697
1698  const Value *Callee(I.getCalledValue());
1699  if (isa<InlineAsm>(Callee))
1700    visitInlineAsm(&I);
1701  else
1702    LowerCallTo(&I, getValue(Callee), false, LandingPad);
1703
1704  // If the value of the invoke is used outside of its defining block, make it
1705  // available as a virtual register.
1706  CopyToExportRegsIfNeeded(&I);
1707
1708  // Update successor info
1709  InvokeMBB->addSuccessor(Return);
1710  InvokeMBB->addSuccessor(LandingPad);
1711
1712  // Drop into normal successor.
1713  DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1714                          MVT::Other, getControlRoot(),
1715                          DAG.getBasicBlock(Return)));
1716}
1717
1718void SelectionDAGBuilder::visitUnwind(const UnwindInst &I) {
1719}
1720
1721/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1722/// small case ranges).
1723bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
1724                                                 CaseRecVector& WorkList,
1725                                                 const Value* SV,
1726                                                 MachineBasicBlock *Default,
1727                                                 MachineBasicBlock *SwitchBB) {
1728  Case& BackCase  = *(CR.Range.second-1);
1729
1730  // Size is the number of Cases represented by this range.
1731  size_t Size = CR.Range.second - CR.Range.first;
1732  if (Size > 3)
1733    return false;
1734
1735  // Get the MachineFunction which holds the current MBB.  This is used when
1736  // inserting any additional MBBs necessary to represent the switch.
1737  MachineFunction *CurMF = FuncInfo.MF;
1738
1739  // Figure out which block is immediately after the current one.
1740  MachineBasicBlock *NextBlock = 0;
1741  MachineFunction::iterator BBI = CR.CaseBB;
1742
1743  if (++BBI != FuncInfo.MF->end())
1744    NextBlock = BBI;
1745
1746  // TODO: If any two of the cases has the same destination, and if one value
1747  // is the same as the other, but has one bit unset that the other has set,
1748  // use bit manipulation to do two compares at once.  For example:
1749  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1750
1751  // Rearrange the case blocks so that the last one falls through if possible.
1752  if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1753    // The last case block won't fall through into 'NextBlock' if we emit the
1754    // branches in this order.  See if rearranging a case value would help.
1755    for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1756      if (I->BB == NextBlock) {
1757        std::swap(*I, BackCase);
1758        break;
1759      }
1760    }
1761  }
1762
1763  // Create a CaseBlock record representing a conditional branch to
1764  // the Case's target mbb if the value being switched on SV is equal
1765  // to C.
1766  MachineBasicBlock *CurBlock = CR.CaseBB;
1767  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1768    MachineBasicBlock *FallThrough;
1769    if (I != E-1) {
1770      FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
1771      CurMF->insert(BBI, FallThrough);
1772
1773      // Put SV in a virtual register to make it available from the new blocks.
1774      ExportFromCurrentBlock(SV);
1775    } else {
1776      // If the last case doesn't match, go to the default block.
1777      FallThrough = Default;
1778    }
1779
1780    const Value *RHS, *LHS, *MHS;
1781    ISD::CondCode CC;
1782    if (I->High == I->Low) {
1783      // This is just small small case range :) containing exactly 1 case
1784      CC = ISD::SETEQ;
1785      LHS = SV; RHS = I->High; MHS = NULL;
1786    } else {
1787      CC = ISD::SETLE;
1788      LHS = I->Low; MHS = SV; RHS = I->High;
1789    }
1790    CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock);
1791
1792    // If emitting the first comparison, just call visitSwitchCase to emit the
1793    // code into the current block.  Otherwise, push the CaseBlock onto the
1794    // vector to be later processed by SDISel, and insert the node's MBB
1795    // before the next MBB.
1796    if (CurBlock == SwitchBB)
1797      visitSwitchCase(CB, SwitchBB);
1798    else
1799      SwitchCases.push_back(CB);
1800
1801    CurBlock = FallThrough;
1802  }
1803
1804  return true;
1805}
1806
1807static inline bool areJTsAllowed(const TargetLowering &TLI) {
1808  return !DisableJumpTables &&
1809          (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
1810           TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
1811}
1812
1813static APInt ComputeRange(const APInt &First, const APInt &Last) {
1814  APInt LastExt(Last), FirstExt(First);
1815  uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
1816  LastExt.sext(BitWidth); FirstExt.sext(BitWidth);
1817  return (LastExt - FirstExt + 1ULL);
1818}
1819
1820/// handleJTSwitchCase - Emit jumptable for current switch case range
1821bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec& CR,
1822                                             CaseRecVector& WorkList,
1823                                             const Value* SV,
1824                                             MachineBasicBlock* Default,
1825                                             MachineBasicBlock *SwitchBB) {
1826  Case& FrontCase = *CR.Range.first;
1827  Case& BackCase  = *(CR.Range.second-1);
1828
1829  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
1830  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
1831
1832  APInt TSize(First.getBitWidth(), 0);
1833  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1834       I!=E; ++I)
1835    TSize += I->size();
1836
1837  if (!areJTsAllowed(TLI) || TSize.ult(4))
1838    return false;
1839
1840  APInt Range = ComputeRange(First, Last);
1841  double Density = TSize.roundToDouble() / Range.roundToDouble();
1842  if (Density < 0.4)
1843    return false;
1844
1845  DEBUG(dbgs() << "Lowering jump table\n"
1846               << "First entry: " << First << ". Last entry: " << Last << '\n'
1847               << "Range: " << Range
1848               << "Size: " << TSize << ". Density: " << Density << "\n\n");
1849
1850  // Get the MachineFunction which holds the current MBB.  This is used when
1851  // inserting any additional MBBs necessary to represent the switch.
1852  MachineFunction *CurMF = FuncInfo.MF;
1853
1854  // Figure out which block is immediately after the current one.
1855  MachineFunction::iterator BBI = CR.CaseBB;
1856  ++BBI;
1857
1858  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1859
1860  // Create a new basic block to hold the code for loading the address
1861  // of the jump table, and jumping to it.  Update successor information;
1862  // we will either branch to the default case for the switch, or the jump
1863  // table.
1864  MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1865  CurMF->insert(BBI, JumpTableBB);
1866  CR.CaseBB->addSuccessor(Default);
1867  CR.CaseBB->addSuccessor(JumpTableBB);
1868
1869  // Build a vector of destination BBs, corresponding to each target
1870  // of the jump table. If the value of the jump table slot corresponds to
1871  // a case statement, push the case's BB onto the vector, otherwise, push
1872  // the default BB.
1873  std::vector<MachineBasicBlock*> DestBBs;
1874  APInt TEI = First;
1875  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
1876    const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
1877    const APInt &High = cast<ConstantInt>(I->High)->getValue();
1878
1879    if (Low.sle(TEI) && TEI.sle(High)) {
1880      DestBBs.push_back(I->BB);
1881      if (TEI==High)
1882        ++I;
1883    } else {
1884      DestBBs.push_back(Default);
1885    }
1886  }
1887
1888  // Update successor info. Add one edge to each unique successor.
1889  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
1890  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
1891         E = DestBBs.end(); I != E; ++I) {
1892    if (!SuccsHandled[(*I)->getNumber()]) {
1893      SuccsHandled[(*I)->getNumber()] = true;
1894      JumpTableBB->addSuccessor(*I);
1895    }
1896  }
1897
1898  // Create a jump table index for this jump table.
1899  unsigned JTEncoding = TLI.getJumpTableEncoding();
1900  unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
1901                       ->createJumpTableIndex(DestBBs);
1902
1903  // Set the jump table information so that we can codegen it as a second
1904  // MachineBasicBlock
1905  JumpTable JT(-1U, JTI, JumpTableBB, Default);
1906  JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
1907  if (CR.CaseBB == SwitchBB)
1908    visitJumpTableHeader(JT, JTH, SwitchBB);
1909
1910  JTCases.push_back(JumpTableBlock(JTH, JT));
1911
1912  return true;
1913}
1914
1915/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
1916/// 2 subtrees.
1917bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
1918                                                  CaseRecVector& WorkList,
1919                                                  const Value* SV,
1920                                                  MachineBasicBlock *Default,
1921                                                  MachineBasicBlock *SwitchBB) {
1922  // Get the MachineFunction which holds the current MBB.  This is used when
1923  // inserting any additional MBBs necessary to represent the switch.
1924  MachineFunction *CurMF = FuncInfo.MF;
1925
1926  // Figure out which block is immediately after the current one.
1927  MachineFunction::iterator BBI = CR.CaseBB;
1928  ++BBI;
1929
1930  Case& FrontCase = *CR.Range.first;
1931  Case& BackCase  = *(CR.Range.second-1);
1932  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1933
1934  // Size is the number of Cases represented by this range.
1935  unsigned Size = CR.Range.second - CR.Range.first;
1936
1937  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
1938  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
1939  double FMetric = 0;
1940  CaseItr Pivot = CR.Range.first + Size/2;
1941
1942  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
1943  // (heuristically) allow us to emit JumpTable's later.
1944  APInt TSize(First.getBitWidth(), 0);
1945  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1946       I!=E; ++I)
1947    TSize += I->size();
1948
1949  APInt LSize = FrontCase.size();
1950  APInt RSize = TSize-LSize;
1951  DEBUG(dbgs() << "Selecting best pivot: \n"
1952               << "First: " << First << ", Last: " << Last <<'\n'
1953               << "LSize: " << LSize << ", RSize: " << RSize << '\n');
1954  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
1955       J!=E; ++I, ++J) {
1956    const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
1957    const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
1958    APInt Range = ComputeRange(LEnd, RBegin);
1959    assert((Range - 2ULL).isNonNegative() &&
1960           "Invalid case distance");
1961    double LDensity = (double)LSize.roundToDouble() /
1962                           (LEnd - First + 1ULL).roundToDouble();
1963    double RDensity = (double)RSize.roundToDouble() /
1964                           (Last - RBegin + 1ULL).roundToDouble();
1965    double Metric = Range.logBase2()*(LDensity+RDensity);
1966    // Should always split in some non-trivial place
1967    DEBUG(dbgs() <<"=>Step\n"
1968                 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
1969                 << "LDensity: " << LDensity
1970                 << ", RDensity: " << RDensity << '\n'
1971                 << "Metric: " << Metric << '\n');
1972    if (FMetric < Metric) {
1973      Pivot = J;
1974      FMetric = Metric;
1975      DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
1976    }
1977
1978    LSize += J->size();
1979    RSize -= J->size();
1980  }
1981  if (areJTsAllowed(TLI)) {
1982    // If our case is dense we *really* should handle it earlier!
1983    assert((FMetric > 0) && "Should handle dense range earlier!");
1984  } else {
1985    Pivot = CR.Range.first + Size/2;
1986  }
1987
1988  CaseRange LHSR(CR.Range.first, Pivot);
1989  CaseRange RHSR(Pivot, CR.Range.second);
1990  Constant *C = Pivot->Low;
1991  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
1992
1993  // We know that we branch to the LHS if the Value being switched on is
1994  // less than the Pivot value, C.  We use this to optimize our binary
1995  // tree a bit, by recognizing that if SV is greater than or equal to the
1996  // LHS's Case Value, and that Case Value is exactly one less than the
1997  // Pivot's Value, then we can branch directly to the LHS's Target,
1998  // rather than creating a leaf node for it.
1999  if ((LHSR.second - LHSR.first) == 1 &&
2000      LHSR.first->High == CR.GE &&
2001      cast<ConstantInt>(C)->getValue() ==
2002      (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
2003    TrueBB = LHSR.first->BB;
2004  } else {
2005    TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2006    CurMF->insert(BBI, TrueBB);
2007    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
2008
2009    // Put SV in a virtual register to make it available from the new blocks.
2010    ExportFromCurrentBlock(SV);
2011  }
2012
2013  // Similar to the optimization above, if the Value being switched on is
2014  // known to be less than the Constant CR.LT, and the current Case Value
2015  // is CR.LT - 1, then we can branch directly to the target block for
2016  // the current Case Value, rather than emitting a RHS leaf node for it.
2017  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
2018      cast<ConstantInt>(RHSR.first->Low)->getValue() ==
2019      (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
2020    FalseBB = RHSR.first->BB;
2021  } else {
2022    FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2023    CurMF->insert(BBI, FalseBB);
2024    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
2025
2026    // Put SV in a virtual register to make it available from the new blocks.
2027    ExportFromCurrentBlock(SV);
2028  }
2029
2030  // Create a CaseBlock record representing a conditional branch to
2031  // the LHS node if the value being switched on SV is less than C.
2032  // Otherwise, branch to LHS.
2033  CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
2034
2035  if (CR.CaseBB == SwitchBB)
2036    visitSwitchCase(CB, SwitchBB);
2037  else
2038    SwitchCases.push_back(CB);
2039
2040  return true;
2041}
2042
2043/// handleBitTestsSwitchCase - if current case range has few destination and
2044/// range span less, than machine word bitwidth, encode case range into series
2045/// of masks and emit bit tests with these masks.
2046bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
2047                                                   CaseRecVector& WorkList,
2048                                                   const Value* SV,
2049                                                   MachineBasicBlock* Default,
2050                                                   MachineBasicBlock *SwitchBB){
2051  EVT PTy = TLI.getPointerTy();
2052  unsigned IntPtrBits = PTy.getSizeInBits();
2053
2054  Case& FrontCase = *CR.Range.first;
2055  Case& BackCase  = *(CR.Range.second-1);
2056
2057  // Get the MachineFunction which holds the current MBB.  This is used when
2058  // inserting any additional MBBs necessary to represent the switch.
2059  MachineFunction *CurMF = FuncInfo.MF;
2060
2061  // If target does not have legal shift left, do not emit bit tests at all.
2062  if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
2063    return false;
2064
2065  size_t numCmps = 0;
2066  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2067       I!=E; ++I) {
2068    // Single case counts one, case range - two.
2069    numCmps += (I->Low == I->High ? 1 : 2);
2070  }
2071
2072  // Count unique destinations
2073  SmallSet<MachineBasicBlock*, 4> Dests;
2074  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2075    Dests.insert(I->BB);
2076    if (Dests.size() > 3)
2077      // Don't bother the code below, if there are too much unique destinations
2078      return false;
2079  }
2080  DEBUG(dbgs() << "Total number of unique destinations: "
2081        << Dests.size() << '\n'
2082        << "Total number of comparisons: " << numCmps << '\n');
2083
2084  // Compute span of values.
2085  const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
2086  const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
2087  APInt cmpRange = maxValue - minValue;
2088
2089  DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
2090               << "Low bound: " << minValue << '\n'
2091               << "High bound: " << maxValue << '\n');
2092
2093  if (cmpRange.uge(IntPtrBits) ||
2094      (!(Dests.size() == 1 && numCmps >= 3) &&
2095       !(Dests.size() == 2 && numCmps >= 5) &&
2096       !(Dests.size() >= 3 && numCmps >= 6)))
2097    return false;
2098
2099  DEBUG(dbgs() << "Emitting bit tests\n");
2100  APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
2101
2102  // Optimize the case where all the case values fit in a
2103  // word without having to subtract minValue. In this case,
2104  // we can optimize away the subtraction.
2105  if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) {
2106    cmpRange = maxValue;
2107  } else {
2108    lowBound = minValue;
2109  }
2110
2111  CaseBitsVector CasesBits;
2112  unsigned i, count = 0;
2113
2114  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2115    MachineBasicBlock* Dest = I->BB;
2116    for (i = 0; i < count; ++i)
2117      if (Dest == CasesBits[i].BB)
2118        break;
2119
2120    if (i == count) {
2121      assert((count < 3) && "Too much destinations to test!");
2122      CasesBits.push_back(CaseBits(0, Dest, 0));
2123      count++;
2124    }
2125
2126    const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
2127    const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
2128
2129    uint64_t lo = (lowValue - lowBound).getZExtValue();
2130    uint64_t hi = (highValue - lowBound).getZExtValue();
2131
2132    for (uint64_t j = lo; j <= hi; j++) {
2133      CasesBits[i].Mask |=  1ULL << j;
2134      CasesBits[i].Bits++;
2135    }
2136
2137  }
2138  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2139
2140  BitTestInfo BTC;
2141
2142  // Figure out which block is immediately after the current one.
2143  MachineFunction::iterator BBI = CR.CaseBB;
2144  ++BBI;
2145
2146  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2147
2148  DEBUG(dbgs() << "Cases:\n");
2149  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2150    DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
2151                 << ", Bits: " << CasesBits[i].Bits
2152                 << ", BB: " << CasesBits[i].BB << '\n');
2153
2154    MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2155    CurMF->insert(BBI, CaseBB);
2156    BTC.push_back(BitTestCase(CasesBits[i].Mask,
2157                              CaseBB,
2158                              CasesBits[i].BB));
2159
2160    // Put SV in a virtual register to make it available from the new blocks.
2161    ExportFromCurrentBlock(SV);
2162  }
2163
2164  BitTestBlock BTB(lowBound, cmpRange, SV,
2165                   -1U, (CR.CaseBB == SwitchBB),
2166                   CR.CaseBB, Default, BTC);
2167
2168  if (CR.CaseBB == SwitchBB)
2169    visitBitTestHeader(BTB, SwitchBB);
2170
2171  BitTestCases.push_back(BTB);
2172
2173  return true;
2174}
2175
2176/// Clusterify - Transform simple list of Cases into list of CaseRange's
2177size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
2178                                       const SwitchInst& SI) {
2179  size_t numCmps = 0;
2180
2181  // Start with "simple" cases
2182  for (size_t i = 1; i < SI.getNumSuccessors(); ++i) {
2183    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
2184    Cases.push_back(Case(SI.getSuccessorValue(i),
2185                         SI.getSuccessorValue(i),
2186                         SMBB));
2187  }
2188  std::sort(Cases.begin(), Cases.end(), CaseCmp());
2189
2190  // Merge case into clusters
2191  if (Cases.size() >= 2)
2192    // Must recompute end() each iteration because it may be
2193    // invalidated by erase if we hold on to it
2194    for (CaseItr I = Cases.begin(), J = ++(Cases.begin()); J != Cases.end(); ) {
2195      const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
2196      const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
2197      MachineBasicBlock* nextBB = J->BB;
2198      MachineBasicBlock* currentBB = I->BB;
2199
2200      // If the two neighboring cases go to the same destination, merge them
2201      // into a single case.
2202      if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
2203        I->High = J->High;
2204        J = Cases.erase(J);
2205      } else {
2206        I = J++;
2207      }
2208    }
2209
2210  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
2211    if (I->Low != I->High)
2212      // A range counts double, since it requires two compares.
2213      ++numCmps;
2214  }
2215
2216  return numCmps;
2217}
2218
2219void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
2220  MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
2221
2222  // Figure out which block is immediately after the current one.
2223  MachineBasicBlock *NextBlock = 0;
2224  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2225
2226  // If there is only the default destination, branch to it if it is not the
2227  // next basic block.  Otherwise, just fall through.
2228  if (SI.getNumOperands() == 2) {
2229    // Update machine-CFG edges.
2230
2231    // If this is not a fall-through branch, emit the branch.
2232    SwitchMBB->addSuccessor(Default);
2233    if (Default != NextBlock)
2234      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
2235                              MVT::Other, getControlRoot(),
2236                              DAG.getBasicBlock(Default)));
2237
2238    return;
2239  }
2240
2241  // If there are any non-default case statements, create a vector of Cases
2242  // representing each one, and sort the vector so that we can efficiently
2243  // create a binary search tree from them.
2244  CaseVector Cases;
2245  size_t numCmps = Clusterify(Cases, SI);
2246  DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2247               << ". Total compares: " << numCmps << '\n');
2248  numCmps = 0;
2249
2250  // Get the Value to be switched on and default basic blocks, which will be
2251  // inserted into CaseBlock records, representing basic blocks in the binary
2252  // search tree.
2253  const Value *SV = SI.getOperand(0);
2254
2255  // Push the initial CaseRec onto the worklist
2256  CaseRecVector WorkList;
2257  WorkList.push_back(CaseRec(SwitchMBB,0,0,
2258                             CaseRange(Cases.begin(),Cases.end())));
2259
2260  while (!WorkList.empty()) {
2261    // Grab a record representing a case range to process off the worklist
2262    CaseRec CR = WorkList.back();
2263    WorkList.pop_back();
2264
2265    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2266      continue;
2267
2268    // If the range has few cases (two or less) emit a series of specific
2269    // tests.
2270    if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
2271      continue;
2272
2273    // If the switch has more than 5 blocks, and at least 40% dense, and the
2274    // target supports indirect branches, then emit a jump table rather than
2275    // lowering the switch to a binary tree of conditional branches.
2276    if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2277      continue;
2278
2279    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2280    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2281    handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
2282  }
2283}
2284
2285void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2286  MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2287
2288  // Update machine-CFG edges with unique successors.
2289  SmallVector<BasicBlock*, 32> succs;
2290  succs.reserve(I.getNumSuccessors());
2291  for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i)
2292    succs.push_back(I.getSuccessor(i));
2293  array_pod_sort(succs.begin(), succs.end());
2294  succs.erase(std::unique(succs.begin(), succs.end()), succs.end());
2295  for (unsigned i = 0, e = succs.size(); i != e; ++i)
2296    IndirectBrMBB->addSuccessor(FuncInfo.MBBMap[succs[i]]);
2297
2298  DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(),
2299                          MVT::Other, getControlRoot(),
2300                          getValue(I.getAddress())));
2301}
2302
2303void SelectionDAGBuilder::visitFSub(const User &I) {
2304  // -0.0 - X --> fneg
2305  const Type *Ty = I.getType();
2306  if (Ty->isVectorTy()) {
2307    if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) {
2308      const VectorType *DestTy = cast<VectorType>(I.getType());
2309      const Type *ElTy = DestTy->getElementType();
2310      unsigned VL = DestTy->getNumElements();
2311      std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy));
2312      Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size());
2313      if (CV == CNZ) {
2314        SDValue Op2 = getValue(I.getOperand(1));
2315        setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2316                                 Op2.getValueType(), Op2));
2317        return;
2318      }
2319    }
2320  }
2321
2322  if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
2323    if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) {
2324      SDValue Op2 = getValue(I.getOperand(1));
2325      setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2326                               Op2.getValueType(), Op2));
2327      return;
2328    }
2329
2330  visitBinary(I, ISD::FSUB);
2331}
2332
2333void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2334  SDValue Op1 = getValue(I.getOperand(0));
2335  SDValue Op2 = getValue(I.getOperand(1));
2336  setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(),
2337                           Op1.getValueType(), Op1, Op2));
2338}
2339
2340void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2341  SDValue Op1 = getValue(I.getOperand(0));
2342  SDValue Op2 = getValue(I.getOperand(1));
2343  if (!I.getType()->isVectorTy() &&
2344      Op2.getValueType() != TLI.getShiftAmountTy()) {
2345    // If the operand is smaller than the shift count type, promote it.
2346    EVT PTy = TLI.getPointerTy();
2347    EVT STy = TLI.getShiftAmountTy();
2348    if (STy.bitsGT(Op2.getValueType()))
2349      Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(),
2350                        TLI.getShiftAmountTy(), Op2);
2351    // If the operand is larger than the shift count type but the shift
2352    // count type has enough bits to represent any shift value, truncate
2353    // it now. This is a common case and it exposes the truncate to
2354    // optimization early.
2355    else if (STy.getSizeInBits() >=
2356             Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2357      Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2358                        TLI.getShiftAmountTy(), Op2);
2359    // Otherwise we'll need to temporarily settle for some other
2360    // convenient type; type legalization will make adjustments as
2361    // needed.
2362    else if (PTy.bitsLT(Op2.getValueType()))
2363      Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2364                        TLI.getPointerTy(), Op2);
2365    else if (PTy.bitsGT(Op2.getValueType()))
2366      Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(),
2367                        TLI.getPointerTy(), Op2);
2368  }
2369
2370  setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(),
2371                           Op1.getValueType(), Op1, Op2));
2372}
2373
2374void SelectionDAGBuilder::visitICmp(const User &I) {
2375  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2376  if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2377    predicate = IC->getPredicate();
2378  else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2379    predicate = ICmpInst::Predicate(IC->getPredicate());
2380  SDValue Op1 = getValue(I.getOperand(0));
2381  SDValue Op2 = getValue(I.getOperand(1));
2382  ISD::CondCode Opcode = getICmpCondCode(predicate);
2383
2384  EVT DestVT = TLI.getValueType(I.getType());
2385  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode));
2386}
2387
2388void SelectionDAGBuilder::visitFCmp(const User &I) {
2389  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2390  if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2391    predicate = FC->getPredicate();
2392  else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2393    predicate = FCmpInst::Predicate(FC->getPredicate());
2394  SDValue Op1 = getValue(I.getOperand(0));
2395  SDValue Op2 = getValue(I.getOperand(1));
2396  ISD::CondCode Condition = getFCmpCondCode(predicate);
2397  EVT DestVT = TLI.getValueType(I.getType());
2398  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition));
2399}
2400
2401void SelectionDAGBuilder::visitSelect(const User &I) {
2402  SmallVector<EVT, 4> ValueVTs;
2403  ComputeValueVTs(TLI, I.getType(), ValueVTs);
2404  unsigned NumValues = ValueVTs.size();
2405  if (NumValues == 0) return;
2406
2407  SmallVector<SDValue, 4> Values(NumValues);
2408  SDValue Cond     = getValue(I.getOperand(0));
2409  SDValue TrueVal  = getValue(I.getOperand(1));
2410  SDValue FalseVal = getValue(I.getOperand(2));
2411
2412  for (unsigned i = 0; i != NumValues; ++i)
2413    Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(),
2414                          TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2415                            Cond,
2416                            SDValue(TrueVal.getNode(),
2417                                    TrueVal.getResNo() + i),
2418                            SDValue(FalseVal.getNode(),
2419                                    FalseVal.getResNo() + i));
2420
2421  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2422                           DAG.getVTList(&ValueVTs[0], NumValues),
2423                           &Values[0], NumValues));
2424}
2425
2426void SelectionDAGBuilder::visitTrunc(const User &I) {
2427  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2428  SDValue N = getValue(I.getOperand(0));
2429  EVT DestVT = TLI.getValueType(I.getType());
2430  setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N));
2431}
2432
2433void SelectionDAGBuilder::visitZExt(const User &I) {
2434  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2435  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2436  SDValue N = getValue(I.getOperand(0));
2437  EVT DestVT = TLI.getValueType(I.getType());
2438  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N));
2439}
2440
2441void SelectionDAGBuilder::visitSExt(const User &I) {
2442  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2443  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2444  SDValue N = getValue(I.getOperand(0));
2445  EVT DestVT = TLI.getValueType(I.getType());
2446  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N));
2447}
2448
2449void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2450  // FPTrunc is never a no-op cast, no need to check
2451  SDValue N = getValue(I.getOperand(0));
2452  EVT DestVT = TLI.getValueType(I.getType());
2453  setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(),
2454                           DestVT, N, DAG.getIntPtrConstant(0)));
2455}
2456
2457void SelectionDAGBuilder::visitFPExt(const User &I){
2458  // FPTrunc is never a no-op cast, no need to check
2459  SDValue N = getValue(I.getOperand(0));
2460  EVT DestVT = TLI.getValueType(I.getType());
2461  setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N));
2462}
2463
2464void SelectionDAGBuilder::visitFPToUI(const User &I) {
2465  // FPToUI is never a no-op cast, no need to check
2466  SDValue N = getValue(I.getOperand(0));
2467  EVT DestVT = TLI.getValueType(I.getType());
2468  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N));
2469}
2470
2471void SelectionDAGBuilder::visitFPToSI(const User &I) {
2472  // FPToSI is never a no-op cast, no need to check
2473  SDValue N = getValue(I.getOperand(0));
2474  EVT DestVT = TLI.getValueType(I.getType());
2475  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N));
2476}
2477
2478void SelectionDAGBuilder::visitUIToFP(const User &I) {
2479  // UIToFP is never a no-op cast, no need to check
2480  SDValue N = getValue(I.getOperand(0));
2481  EVT DestVT = TLI.getValueType(I.getType());
2482  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N));
2483}
2484
2485void SelectionDAGBuilder::visitSIToFP(const User &I){
2486  // SIToFP is never a no-op cast, no need to check
2487  SDValue N = getValue(I.getOperand(0));
2488  EVT DestVT = TLI.getValueType(I.getType());
2489  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N));
2490}
2491
2492void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2493  // What to do depends on the size of the integer and the size of the pointer.
2494  // We can either truncate, zero extend, or no-op, accordingly.
2495  SDValue N = getValue(I.getOperand(0));
2496  EVT DestVT = TLI.getValueType(I.getType());
2497  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2498}
2499
2500void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2501  // What to do depends on the size of the integer and the size of the pointer.
2502  // We can either truncate, zero extend, or no-op, accordingly.
2503  SDValue N = getValue(I.getOperand(0));
2504  EVT DestVT = TLI.getValueType(I.getType());
2505  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2506}
2507
2508void SelectionDAGBuilder::visitBitCast(const User &I) {
2509  SDValue N = getValue(I.getOperand(0));
2510  EVT DestVT = TLI.getValueType(I.getType());
2511
2512  // BitCast assures us that source and destination are the same size so this is
2513  // either a BIT_CONVERT or a no-op.
2514  if (DestVT != N.getValueType())
2515    setValue(&I, DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
2516                             DestVT, N)); // convert types.
2517  else
2518    setValue(&I, N);            // noop cast.
2519}
2520
2521void SelectionDAGBuilder::visitInsertElement(const User &I) {
2522  SDValue InVec = getValue(I.getOperand(0));
2523  SDValue InVal = getValue(I.getOperand(1));
2524  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2525                              TLI.getPointerTy(),
2526                              getValue(I.getOperand(2)));
2527  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(),
2528                           TLI.getValueType(I.getType()),
2529                           InVec, InVal, InIdx));
2530}
2531
2532void SelectionDAGBuilder::visitExtractElement(const User &I) {
2533  SDValue InVec = getValue(I.getOperand(0));
2534  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2535                              TLI.getPointerTy(),
2536                              getValue(I.getOperand(1)));
2537  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2538                           TLI.getValueType(I.getType()), InVec, InIdx));
2539}
2540
2541// Utility for visitShuffleVector - Returns true if the mask is mask starting
2542// from SIndx and increasing to the element length (undefs are allowed).
2543static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) {
2544  unsigned MaskNumElts = Mask.size();
2545  for (unsigned i = 0; i != MaskNumElts; ++i)
2546    if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx)))
2547      return false;
2548  return true;
2549}
2550
2551void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2552  SmallVector<int, 8> Mask;
2553  SDValue Src1 = getValue(I.getOperand(0));
2554  SDValue Src2 = getValue(I.getOperand(1));
2555
2556  // Convert the ConstantVector mask operand into an array of ints, with -1
2557  // representing undef values.
2558  SmallVector<Constant*, 8> MaskElts;
2559  cast<Constant>(I.getOperand(2))->getVectorElements(MaskElts);
2560  unsigned MaskNumElts = MaskElts.size();
2561  for (unsigned i = 0; i != MaskNumElts; ++i) {
2562    if (isa<UndefValue>(MaskElts[i]))
2563      Mask.push_back(-1);
2564    else
2565      Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue());
2566  }
2567
2568  EVT VT = TLI.getValueType(I.getType());
2569  EVT SrcVT = Src1.getValueType();
2570  unsigned SrcNumElts = SrcVT.getVectorNumElements();
2571
2572  if (SrcNumElts == MaskNumElts) {
2573    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2574                                      &Mask[0]));
2575    return;
2576  }
2577
2578  // Normalize the shuffle vector since mask and vector length don't match.
2579  if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2580    // Mask is longer than the source vectors and is a multiple of the source
2581    // vectors.  We can use concatenate vector to make the mask and vectors
2582    // lengths match.
2583    if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) {
2584      // The shuffle is concatenating two vectors together.
2585      setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2586                               VT, Src1, Src2));
2587      return;
2588    }
2589
2590    // Pad both vectors with undefs to make them the same length as the mask.
2591    unsigned NumConcat = MaskNumElts / SrcNumElts;
2592    bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2593    bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2594    SDValue UndefVal = DAG.getUNDEF(SrcVT);
2595
2596    SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2597    SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2598    MOps1[0] = Src1;
2599    MOps2[0] = Src2;
2600
2601    Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2602                                                  getCurDebugLoc(), VT,
2603                                                  &MOps1[0], NumConcat);
2604    Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2605                                                  getCurDebugLoc(), VT,
2606                                                  &MOps2[0], NumConcat);
2607
2608    // Readjust mask for new input vector length.
2609    SmallVector<int, 8> MappedOps;
2610    for (unsigned i = 0; i != MaskNumElts; ++i) {
2611      int Idx = Mask[i];
2612      if (Idx < (int)SrcNumElts)
2613        MappedOps.push_back(Idx);
2614      else
2615        MappedOps.push_back(Idx + MaskNumElts - SrcNumElts);
2616    }
2617
2618    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2619                                      &MappedOps[0]));
2620    return;
2621  }
2622
2623  if (SrcNumElts > MaskNumElts) {
2624    // Analyze the access pattern of the vector to see if we can extract
2625    // two subvectors and do the shuffle. The analysis is done by calculating
2626    // the range of elements the mask access on both vectors.
2627    int MinRange[2] = { SrcNumElts+1, SrcNumElts+1};
2628    int MaxRange[2] = {-1, -1};
2629
2630    for (unsigned i = 0; i != MaskNumElts; ++i) {
2631      int Idx = Mask[i];
2632      int Input = 0;
2633      if (Idx < 0)
2634        continue;
2635
2636      if (Idx >= (int)SrcNumElts) {
2637        Input = 1;
2638        Idx -= SrcNumElts;
2639      }
2640      if (Idx > MaxRange[Input])
2641        MaxRange[Input] = Idx;
2642      if (Idx < MinRange[Input])
2643        MinRange[Input] = Idx;
2644    }
2645
2646    // Check if the access is smaller than the vector size and can we find
2647    // a reasonable extract index.
2648    int RangeUse[2] = { 2, 2 };  // 0 = Unused, 1 = Extract, 2 = Can not
2649                                 // Extract.
2650    int StartIdx[2];  // StartIdx to extract from
2651    for (int Input=0; Input < 2; ++Input) {
2652      if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) {
2653        RangeUse[Input] = 0; // Unused
2654        StartIdx[Input] = 0;
2655      } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) {
2656        // Fits within range but we should see if we can find a good
2657        // start index that is a multiple of the mask length.
2658        if (MaxRange[Input] < (int)MaskNumElts) {
2659          RangeUse[Input] = 1; // Extract from beginning of the vector
2660          StartIdx[Input] = 0;
2661        } else {
2662          StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2663          if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2664              StartIdx[Input] + MaskNumElts < SrcNumElts)
2665            RangeUse[Input] = 1; // Extract from a multiple of the mask length.
2666        }
2667      }
2668    }
2669
2670    if (RangeUse[0] == 0 && RangeUse[1] == 0) {
2671      setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
2672      return;
2673    }
2674    else if (RangeUse[0] < 2 && RangeUse[1] < 2) {
2675      // Extract appropriate subvector and generate a vector shuffle
2676      for (int Input=0; Input < 2; ++Input) {
2677        SDValue &Src = Input == 0 ? Src1 : Src2;
2678        if (RangeUse[Input] == 0)
2679          Src = DAG.getUNDEF(VT);
2680        else
2681          Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT,
2682                            Src, DAG.getIntPtrConstant(StartIdx[Input]));
2683      }
2684
2685      // Calculate new mask.
2686      SmallVector<int, 8> MappedOps;
2687      for (unsigned i = 0; i != MaskNumElts; ++i) {
2688        int Idx = Mask[i];
2689        if (Idx < 0)
2690          MappedOps.push_back(Idx);
2691        else if (Idx < (int)SrcNumElts)
2692          MappedOps.push_back(Idx - StartIdx[0]);
2693        else
2694          MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts);
2695      }
2696
2697      setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2698                                        &MappedOps[0]));
2699      return;
2700    }
2701  }
2702
2703  // We can't use either concat vectors or extract subvectors so fall back to
2704  // replacing the shuffle with extract and build vector.
2705  // to insert and build vector.
2706  EVT EltVT = VT.getVectorElementType();
2707  EVT PtrVT = TLI.getPointerTy();
2708  SmallVector<SDValue,8> Ops;
2709  for (unsigned i = 0; i != MaskNumElts; ++i) {
2710    if (Mask[i] < 0) {
2711      Ops.push_back(DAG.getUNDEF(EltVT));
2712    } else {
2713      int Idx = Mask[i];
2714      SDValue Res;
2715
2716      if (Idx < (int)SrcNumElts)
2717        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2718                          EltVT, Src1, DAG.getConstant(Idx, PtrVT));
2719      else
2720        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2721                          EltVT, Src2,
2722                          DAG.getConstant(Idx - SrcNumElts, PtrVT));
2723
2724      Ops.push_back(Res);
2725    }
2726  }
2727
2728  setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
2729                           VT, &Ops[0], Ops.size()));
2730}
2731
2732void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
2733  const Value *Op0 = I.getOperand(0);
2734  const Value *Op1 = I.getOperand(1);
2735  const Type *AggTy = I.getType();
2736  const Type *ValTy = Op1->getType();
2737  bool IntoUndef = isa<UndefValue>(Op0);
2738  bool FromUndef = isa<UndefValue>(Op1);
2739
2740  unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
2741                                            I.idx_begin(), I.idx_end());
2742
2743  SmallVector<EVT, 4> AggValueVTs;
2744  ComputeValueVTs(TLI, AggTy, AggValueVTs);
2745  SmallVector<EVT, 4> ValValueVTs;
2746  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2747
2748  unsigned NumAggValues = AggValueVTs.size();
2749  unsigned NumValValues = ValValueVTs.size();
2750  SmallVector<SDValue, 4> Values(NumAggValues);
2751
2752  SDValue Agg = getValue(Op0);
2753  SDValue Val = getValue(Op1);
2754  unsigned i = 0;
2755  // Copy the beginning value(s) from the original aggregate.
2756  for (; i != LinearIndex; ++i)
2757    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2758                SDValue(Agg.getNode(), Agg.getResNo() + i);
2759  // Copy values from the inserted value(s).
2760  for (; i != LinearIndex + NumValValues; ++i)
2761    Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2762                SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
2763  // Copy remaining value(s) from the original aggregate.
2764  for (; i != NumAggValues; ++i)
2765    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2766                SDValue(Agg.getNode(), Agg.getResNo() + i);
2767
2768  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2769                           DAG.getVTList(&AggValueVTs[0], NumAggValues),
2770                           &Values[0], NumAggValues));
2771}
2772
2773void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
2774  const Value *Op0 = I.getOperand(0);
2775  const Type *AggTy = Op0->getType();
2776  const Type *ValTy = I.getType();
2777  bool OutOfUndef = isa<UndefValue>(Op0);
2778
2779  unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
2780                                            I.idx_begin(), I.idx_end());
2781
2782  SmallVector<EVT, 4> ValValueVTs;
2783  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2784
2785  unsigned NumValValues = ValValueVTs.size();
2786  SmallVector<SDValue, 4> Values(NumValValues);
2787
2788  SDValue Agg = getValue(Op0);
2789  // Copy out the selected value(s).
2790  for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
2791    Values[i - LinearIndex] =
2792      OutOfUndef ?
2793        DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
2794        SDValue(Agg.getNode(), Agg.getResNo() + i);
2795
2796  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2797                           DAG.getVTList(&ValValueVTs[0], NumValValues),
2798                           &Values[0], NumValValues));
2799}
2800
2801void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
2802  SDValue N = getValue(I.getOperand(0));
2803  const Type *Ty = I.getOperand(0)->getType();
2804
2805  for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
2806       OI != E; ++OI) {
2807    const Value *Idx = *OI;
2808    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2809      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2810      if (Field) {
2811        // N = N + Offset
2812        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
2813        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2814                        DAG.getIntPtrConstant(Offset));
2815      }
2816
2817      Ty = StTy->getElementType(Field);
2818    } else if (const UnionType *UnTy = dyn_cast<UnionType>(Ty)) {
2819      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2820
2821      // Offset canonically 0 for unions, but type changes
2822      Ty = UnTy->getElementType(Field);
2823    } else {
2824      Ty = cast<SequentialType>(Ty)->getElementType();
2825
2826      // If this is a constant subscript, handle it quickly.
2827      if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2828        if (CI->isZero()) continue;
2829        uint64_t Offs =
2830            TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
2831        SDValue OffsVal;
2832        EVT PTy = TLI.getPointerTy();
2833        unsigned PtrBits = PTy.getSizeInBits();
2834        if (PtrBits < 64)
2835          OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2836                                TLI.getPointerTy(),
2837                                DAG.getConstant(Offs, MVT::i64));
2838        else
2839          OffsVal = DAG.getIntPtrConstant(Offs);
2840
2841        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2842                        OffsVal);
2843        continue;
2844      }
2845
2846      // N = N + Idx * ElementSize;
2847      APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
2848                                TD->getTypeAllocSize(Ty));
2849      SDValue IdxN = getValue(Idx);
2850
2851      // If the index is smaller or larger than intptr_t, truncate or extend
2852      // it.
2853      IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType());
2854
2855      // If this is a multiply by a power of two, turn it into a shl
2856      // immediately.  This is a very common case.
2857      if (ElementSize != 1) {
2858        if (ElementSize.isPowerOf2()) {
2859          unsigned Amt = ElementSize.logBase2();
2860          IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(),
2861                             N.getValueType(), IdxN,
2862                             DAG.getConstant(Amt, TLI.getPointerTy()));
2863        } else {
2864          SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy());
2865          IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(),
2866                             N.getValueType(), IdxN, Scale);
2867        }
2868      }
2869
2870      N = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2871                      N.getValueType(), N, IdxN);
2872    }
2873  }
2874
2875  setValue(&I, N);
2876}
2877
2878void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
2879  // If this is a fixed sized alloca in the entry block of the function,
2880  // allocate it statically on the stack.
2881  if (FuncInfo.StaticAllocaMap.count(&I))
2882    return;   // getValue will auto-populate this.
2883
2884  const Type *Ty = I.getAllocatedType();
2885  uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
2886  unsigned Align =
2887    std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
2888             I.getAlignment());
2889
2890  SDValue AllocSize = getValue(I.getArraySize());
2891
2892  EVT IntPtr = TLI.getPointerTy();
2893  if (AllocSize.getValueType() != IntPtr)
2894    AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr);
2895
2896  AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr,
2897                          AllocSize,
2898                          DAG.getConstant(TySize, IntPtr));
2899
2900  // Handle alignment.  If the requested alignment is less than or equal to
2901  // the stack alignment, ignore it.  If the size is greater than or equal to
2902  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
2903  unsigned StackAlign = TM.getFrameInfo()->getStackAlignment();
2904  if (Align <= StackAlign)
2905    Align = 0;
2906
2907  // Round the size of the allocation up to the stack alignment size
2908  // by add SA-1 to the size.
2909  AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2910                          AllocSize.getValueType(), AllocSize,
2911                          DAG.getIntPtrConstant(StackAlign-1));
2912
2913  // Mask out the low bits for alignment purposes.
2914  AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(),
2915                          AllocSize.getValueType(), AllocSize,
2916                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
2917
2918  SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
2919  SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
2920  SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(),
2921                            VTs, Ops, 3);
2922  setValue(&I, DSA);
2923  DAG.setRoot(DSA.getValue(1));
2924
2925  // Inform the Frame Information that we have just allocated a variable-sized
2926  // object.
2927  FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1);
2928}
2929
2930void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
2931  const Value *SV = I.getOperand(0);
2932  SDValue Ptr = getValue(SV);
2933
2934  const Type *Ty = I.getType();
2935
2936  bool isVolatile = I.isVolatile();
2937  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
2938  unsigned Alignment = I.getAlignment();
2939
2940  SmallVector<EVT, 4> ValueVTs;
2941  SmallVector<uint64_t, 4> Offsets;
2942  ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
2943  unsigned NumValues = ValueVTs.size();
2944  if (NumValues == 0)
2945    return;
2946
2947  SDValue Root;
2948  bool ConstantMemory = false;
2949  if (I.isVolatile())
2950    // Serialize volatile loads with other side effects.
2951    Root = getRoot();
2952  else if (AA->pointsToConstantMemory(SV)) {
2953    // Do not serialize (non-volatile) loads of constant memory with anything.
2954    Root = DAG.getEntryNode();
2955    ConstantMemory = true;
2956  } else {
2957    // Do not serialize non-volatile loads against each other.
2958    Root = DAG.getRoot();
2959  }
2960
2961  SmallVector<SDValue, 4> Values(NumValues);
2962  SmallVector<SDValue, 4> Chains(NumValues);
2963  EVT PtrVT = Ptr.getValueType();
2964  for (unsigned i = 0; i != NumValues; ++i) {
2965    SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2966                            PtrVT, Ptr,
2967                            DAG.getConstant(Offsets[i], PtrVT));
2968    SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root,
2969                            A, SV, Offsets[i], isVolatile,
2970                            isNonTemporal, Alignment);
2971
2972    Values[i] = L;
2973    Chains[i] = L.getValue(1);
2974  }
2975
2976  if (!ConstantMemory) {
2977    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
2978                                MVT::Other, &Chains[0], NumValues);
2979    if (isVolatile)
2980      DAG.setRoot(Chain);
2981    else
2982      PendingLoads.push_back(Chain);
2983  }
2984
2985  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2986                           DAG.getVTList(&ValueVTs[0], NumValues),
2987                           &Values[0], NumValues));
2988}
2989
2990void SelectionDAGBuilder::visitStore(const StoreInst &I) {
2991  const Value *SrcV = I.getOperand(0);
2992  const Value *PtrV = I.getOperand(1);
2993
2994  SmallVector<EVT, 4> ValueVTs;
2995  SmallVector<uint64_t, 4> Offsets;
2996  ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
2997  unsigned NumValues = ValueVTs.size();
2998  if (NumValues == 0)
2999    return;
3000
3001  // Get the lowered operands. Note that we do this after
3002  // checking if NumResults is zero, because with zero results
3003  // the operands won't have values in the map.
3004  SDValue Src = getValue(SrcV);
3005  SDValue Ptr = getValue(PtrV);
3006
3007  SDValue Root = getRoot();
3008  SmallVector<SDValue, 4> Chains(NumValues);
3009  EVT PtrVT = Ptr.getValueType();
3010  bool isVolatile = I.isVolatile();
3011  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3012  unsigned Alignment = I.getAlignment();
3013
3014  for (unsigned i = 0; i != NumValues; ++i) {
3015    SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr,
3016                              DAG.getConstant(Offsets[i], PtrVT));
3017    Chains[i] = DAG.getStore(Root, getCurDebugLoc(),
3018                             SDValue(Src.getNode(), Src.getResNo() + i),
3019                             Add, PtrV, Offsets[i], isVolatile,
3020                             isNonTemporal, Alignment);
3021  }
3022
3023  DAG.setRoot(DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3024                          MVT::Other, &Chains[0], NumValues));
3025}
3026
3027/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3028/// node.
3029void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3030                                               unsigned Intrinsic) {
3031  bool HasChain = !I.doesNotAccessMemory();
3032  bool OnlyLoad = HasChain && I.onlyReadsMemory();
3033
3034  // Build the operand list.
3035  SmallVector<SDValue, 8> Ops;
3036  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
3037    if (OnlyLoad) {
3038      // We don't need to serialize loads against other loads.
3039      Ops.push_back(DAG.getRoot());
3040    } else {
3041      Ops.push_back(getRoot());
3042    }
3043  }
3044
3045  // Info is set by getTgtMemInstrinsic
3046  TargetLowering::IntrinsicInfo Info;
3047  bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
3048
3049  // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3050  if (!IsTgtIntrinsic)
3051    Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
3052
3053  // Add all operands of the call to the operand list.
3054  for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
3055    SDValue Op = getValue(I.getArgOperand(i));
3056    assert(TLI.isTypeLegal(Op.getValueType()) &&
3057           "Intrinsic uses a non-legal type?");
3058    Ops.push_back(Op);
3059  }
3060
3061  SmallVector<EVT, 4> ValueVTs;
3062  ComputeValueVTs(TLI, I.getType(), ValueVTs);
3063#ifndef NDEBUG
3064  for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) {
3065    assert(TLI.isTypeLegal(ValueVTs[Val]) &&
3066           "Intrinsic uses a non-legal type?");
3067  }
3068#endif // NDEBUG
3069
3070  if (HasChain)
3071    ValueVTs.push_back(MVT::Other);
3072
3073  SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
3074
3075  // Create the node.
3076  SDValue Result;
3077  if (IsTgtIntrinsic) {
3078    // This is target intrinsic that touches memory
3079    Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(),
3080                                     VTs, &Ops[0], Ops.size(),
3081                                     Info.memVT, Info.ptrVal, Info.offset,
3082                                     Info.align, Info.vol,
3083                                     Info.readMem, Info.writeMem);
3084  } else if (!HasChain) {
3085    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
3086                         VTs, &Ops[0], Ops.size());
3087  } else if (!I.getType()->isVoidTy()) {
3088    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
3089                         VTs, &Ops[0], Ops.size());
3090  } else {
3091    Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(),
3092                         VTs, &Ops[0], Ops.size());
3093  }
3094
3095  if (HasChain) {
3096    SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3097    if (OnlyLoad)
3098      PendingLoads.push_back(Chain);
3099    else
3100      DAG.setRoot(Chain);
3101  }
3102
3103  if (!I.getType()->isVoidTy()) {
3104    if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3105      EVT VT = TLI.getValueType(PTy);
3106      Result = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), VT, Result);
3107    }
3108
3109    setValue(&I, Result);
3110  }
3111}
3112
3113/// GetSignificand - Get the significand and build it into a floating-point
3114/// number with exponent of 1:
3115///
3116///   Op = (Op & 0x007fffff) | 0x3f800000;
3117///
3118/// where Op is the hexidecimal representation of floating point value.
3119static SDValue
3120GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) {
3121  SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3122                           DAG.getConstant(0x007fffff, MVT::i32));
3123  SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3124                           DAG.getConstant(0x3f800000, MVT::i32));
3125  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t2);
3126}
3127
3128/// GetExponent - Get the exponent:
3129///
3130///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3131///
3132/// where Op is the hexidecimal representation of floating point value.
3133static SDValue
3134GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3135            DebugLoc dl) {
3136  SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3137                           DAG.getConstant(0x7f800000, MVT::i32));
3138  SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3139                           DAG.getConstant(23, TLI.getPointerTy()));
3140  SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3141                           DAG.getConstant(127, MVT::i32));
3142  return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3143}
3144
3145/// getF32Constant - Get 32-bit floating point constant.
3146static SDValue
3147getF32Constant(SelectionDAG &DAG, unsigned Flt) {
3148  return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32);
3149}
3150
3151/// Inlined utility function to implement binary input atomic intrinsics for
3152/// visitIntrinsicCall: I is a call instruction
3153///                     Op is the associated NodeType for I
3154const char *
3155SelectionDAGBuilder::implVisitBinaryAtomic(const CallInst& I,
3156                                           ISD::NodeType Op) {
3157  SDValue Root = getRoot();
3158  SDValue L =
3159    DAG.getAtomic(Op, getCurDebugLoc(),
3160                  getValue(I.getArgOperand(1)).getValueType().getSimpleVT(),
3161                  Root,
3162                  getValue(I.getArgOperand(0)),
3163                  getValue(I.getArgOperand(1)),
3164                  I.getArgOperand(0));
3165  setValue(&I, L);
3166  DAG.setRoot(L.getValue(1));
3167  return 0;
3168}
3169
3170// implVisitAluOverflow - Lower arithmetic overflow instrinsics.
3171const char *
3172SelectionDAGBuilder::implVisitAluOverflow(const CallInst &I, ISD::NodeType Op) {
3173  SDValue Op1 = getValue(I.getArgOperand(0));
3174  SDValue Op2 = getValue(I.getArgOperand(1));
3175
3176  SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
3177  setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2));
3178  return 0;
3179}
3180
3181/// visitExp - Lower an exp intrinsic. Handles the special sequences for
3182/// limited-precision mode.
3183void
3184SelectionDAGBuilder::visitExp(const CallInst &I) {
3185  SDValue result;
3186  DebugLoc dl = getCurDebugLoc();
3187
3188  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3189      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3190    SDValue Op = getValue(I.getArgOperand(0));
3191
3192    // Put the exponent in the right bit position for later addition to the
3193    // final result:
3194    //
3195    //   #define LOG2OFe 1.4426950f
3196    //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3197    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3198                             getF32Constant(DAG, 0x3fb8aa3b));
3199    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3200
3201    //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3202    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3203    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3204
3205    //   IntegerPartOfX <<= 23;
3206    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3207                                 DAG.getConstant(23, TLI.getPointerTy()));
3208
3209    if (LimitFloatPrecision <= 6) {
3210      // For floating-point precision of 6:
3211      //
3212      //   TwoToFractionalPartOfX =
3213      //     0.997535578f +
3214      //       (0.735607626f + 0.252464424f * x) * x;
3215      //
3216      // error 0.0144103317, which is 6 bits
3217      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3218                               getF32Constant(DAG, 0x3e814304));
3219      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3220                               getF32Constant(DAG, 0x3f3c50c8));
3221      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3222      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3223                               getF32Constant(DAG, 0x3f7f5e7e));
3224      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t5);
3225
3226      // Add the exponent into the result in integer domain.
3227      SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3228                               TwoToFracPartOfX, IntegerPartOfX);
3229
3230      result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t6);
3231    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3232      // For floating-point precision of 12:
3233      //
3234      //   TwoToFractionalPartOfX =
3235      //     0.999892986f +
3236      //       (0.696457318f +
3237      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3238      //
3239      // 0.000107046256 error, which is 13 to 14 bits
3240      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3241                               getF32Constant(DAG, 0x3da235e3));
3242      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3243                               getF32Constant(DAG, 0x3e65b8f3));
3244      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3245      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3246                               getF32Constant(DAG, 0x3f324b07));
3247      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3248      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3249                               getF32Constant(DAG, 0x3f7ff8fd));
3250      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t7);
3251
3252      // Add the exponent into the result in integer domain.
3253      SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3254                               TwoToFracPartOfX, IntegerPartOfX);
3255
3256      result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t8);
3257    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3258      // For floating-point precision of 18:
3259      //
3260      //   TwoToFractionalPartOfX =
3261      //     0.999999982f +
3262      //       (0.693148872f +
3263      //         (0.240227044f +
3264      //           (0.554906021e-1f +
3265      //             (0.961591928e-2f +
3266      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3267      //
3268      // error 2.47208000*10^(-7), which is better than 18 bits
3269      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3270                               getF32Constant(DAG, 0x3924b03e));
3271      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3272                               getF32Constant(DAG, 0x3ab24b87));
3273      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3274      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3275                               getF32Constant(DAG, 0x3c1d8c17));
3276      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3277      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3278                               getF32Constant(DAG, 0x3d634a1d));
3279      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3280      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3281                               getF32Constant(DAG, 0x3e75fe14));
3282      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3283      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3284                                getF32Constant(DAG, 0x3f317234));
3285      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3286      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3287                                getF32Constant(DAG, 0x3f800000));
3288      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,
3289                                             MVT::i32, t13);
3290
3291      // Add the exponent into the result in integer domain.
3292      SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3293                                TwoToFracPartOfX, IntegerPartOfX);
3294
3295      result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t14);
3296    }
3297  } else {
3298    // No special expansion.
3299    result = DAG.getNode(ISD::FEXP, dl,
3300                         getValue(I.getArgOperand(0)).getValueType(),
3301                         getValue(I.getArgOperand(0)));
3302  }
3303
3304  setValue(&I, result);
3305}
3306
3307/// visitLog - Lower a log intrinsic. Handles the special sequences for
3308/// limited-precision mode.
3309void
3310SelectionDAGBuilder::visitLog(const CallInst &I) {
3311  SDValue result;
3312  DebugLoc dl = getCurDebugLoc();
3313
3314  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3315      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3316    SDValue Op = getValue(I.getArgOperand(0));
3317    SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
3318
3319    // Scale the exponent by log(2) [0.69314718f].
3320    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3321    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3322                                        getF32Constant(DAG, 0x3f317218));
3323
3324    // Get the significand and build it into a floating-point number with
3325    // exponent of 1.
3326    SDValue X = GetSignificand(DAG, Op1, dl);
3327
3328    if (LimitFloatPrecision <= 6) {
3329      // For floating-point precision of 6:
3330      //
3331      //   LogofMantissa =
3332      //     -1.1609546f +
3333      //       (1.4034025f - 0.23903021f * x) * x;
3334      //
3335      // error 0.0034276066, which is better than 8 bits
3336      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3337                               getF32Constant(DAG, 0xbe74c456));
3338      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3339                               getF32Constant(DAG, 0x3fb3a2b1));
3340      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3341      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3342                                          getF32Constant(DAG, 0x3f949a29));
3343
3344      result = DAG.getNode(ISD::FADD, dl,
3345                           MVT::f32, LogOfExponent, LogOfMantissa);
3346    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3347      // For floating-point precision of 12:
3348      //
3349      //   LogOfMantissa =
3350      //     -1.7417939f +
3351      //       (2.8212026f +
3352      //         (-1.4699568f +
3353      //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3354      //
3355      // error 0.000061011436, which is 14 bits
3356      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3357                               getF32Constant(DAG, 0xbd67b6d6));
3358      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3359                               getF32Constant(DAG, 0x3ee4f4b8));
3360      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3361      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3362                               getF32Constant(DAG, 0x3fbc278b));
3363      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3364      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3365                               getF32Constant(DAG, 0x40348e95));
3366      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3367      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3368                                          getF32Constant(DAG, 0x3fdef31a));
3369
3370      result = DAG.getNode(ISD::FADD, dl,
3371                           MVT::f32, LogOfExponent, LogOfMantissa);
3372    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3373      // For floating-point precision of 18:
3374      //
3375      //   LogOfMantissa =
3376      //     -2.1072184f +
3377      //       (4.2372794f +
3378      //         (-3.7029485f +
3379      //           (2.2781945f +
3380      //             (-0.87823314f +
3381      //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3382      //
3383      // error 0.0000023660568, which is better than 18 bits
3384      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3385                               getF32Constant(DAG, 0xbc91e5ac));
3386      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3387                               getF32Constant(DAG, 0x3e4350aa));
3388      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3389      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3390                               getF32Constant(DAG, 0x3f60d3e3));
3391      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3392      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3393                               getF32Constant(DAG, 0x4011cdf0));
3394      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3395      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3396                               getF32Constant(DAG, 0x406cfd1c));
3397      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3398      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3399                               getF32Constant(DAG, 0x408797cb));
3400      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3401      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3402                                          getF32Constant(DAG, 0x4006dcab));
3403
3404      result = DAG.getNode(ISD::FADD, dl,
3405                           MVT::f32, LogOfExponent, LogOfMantissa);
3406    }
3407  } else {
3408    // No special expansion.
3409    result = DAG.getNode(ISD::FLOG, dl,
3410                         getValue(I.getArgOperand(0)).getValueType(),
3411                         getValue(I.getArgOperand(0)));
3412  }
3413
3414  setValue(&I, result);
3415}
3416
3417/// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for
3418/// limited-precision mode.
3419void
3420SelectionDAGBuilder::visitLog2(const CallInst &I) {
3421  SDValue result;
3422  DebugLoc dl = getCurDebugLoc();
3423
3424  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3425      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3426    SDValue Op = getValue(I.getArgOperand(0));
3427    SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
3428
3429    // Get the exponent.
3430    SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3431
3432    // Get the significand and build it into a floating-point number with
3433    // exponent of 1.
3434    SDValue X = GetSignificand(DAG, Op1, dl);
3435
3436    // Different possible minimax approximations of significand in
3437    // floating-point for various degrees of accuracy over [1,2].
3438    if (LimitFloatPrecision <= 6) {
3439      // For floating-point precision of 6:
3440      //
3441      //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3442      //
3443      // error 0.0049451742, which is more than 7 bits
3444      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3445                               getF32Constant(DAG, 0xbeb08fe0));
3446      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3447                               getF32Constant(DAG, 0x40019463));
3448      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3449      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3450                                           getF32Constant(DAG, 0x3fd6633d));
3451
3452      result = DAG.getNode(ISD::FADD, dl,
3453                           MVT::f32, LogOfExponent, Log2ofMantissa);
3454    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3455      // For floating-point precision of 12:
3456      //
3457      //   Log2ofMantissa =
3458      //     -2.51285454f +
3459      //       (4.07009056f +
3460      //         (-2.12067489f +
3461      //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3462      //
3463      // error 0.0000876136000, which is better than 13 bits
3464      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3465                               getF32Constant(DAG, 0xbda7262e));
3466      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3467                               getF32Constant(DAG, 0x3f25280b));
3468      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3469      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3470                               getF32Constant(DAG, 0x4007b923));
3471      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3472      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3473                               getF32Constant(DAG, 0x40823e2f));
3474      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3475      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3476                                           getF32Constant(DAG, 0x4020d29c));
3477
3478      result = DAG.getNode(ISD::FADD, dl,
3479                           MVT::f32, LogOfExponent, Log2ofMantissa);
3480    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3481      // For floating-point precision of 18:
3482      //
3483      //   Log2ofMantissa =
3484      //     -3.0400495f +
3485      //       (6.1129976f +
3486      //         (-5.3420409f +
3487      //           (3.2865683f +
3488      //             (-1.2669343f +
3489      //               (0.27515199f -
3490      //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3491      //
3492      // error 0.0000018516, which is better than 18 bits
3493      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3494                               getF32Constant(DAG, 0xbcd2769e));
3495      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3496                               getF32Constant(DAG, 0x3e8ce0b9));
3497      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3498      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3499                               getF32Constant(DAG, 0x3fa22ae7));
3500      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3501      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3502                               getF32Constant(DAG, 0x40525723));
3503      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3504      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3505                               getF32Constant(DAG, 0x40aaf200));
3506      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3507      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3508                               getF32Constant(DAG, 0x40c39dad));
3509      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3510      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3511                                           getF32Constant(DAG, 0x4042902c));
3512
3513      result = DAG.getNode(ISD::FADD, dl,
3514                           MVT::f32, LogOfExponent, Log2ofMantissa);
3515    }
3516  } else {
3517    // No special expansion.
3518    result = DAG.getNode(ISD::FLOG2, dl,
3519                         getValue(I.getArgOperand(0)).getValueType(),
3520                         getValue(I.getArgOperand(0)));
3521  }
3522
3523  setValue(&I, result);
3524}
3525
3526/// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for
3527/// limited-precision mode.
3528void
3529SelectionDAGBuilder::visitLog10(const CallInst &I) {
3530  SDValue result;
3531  DebugLoc dl = getCurDebugLoc();
3532
3533  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3534      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3535    SDValue Op = getValue(I.getArgOperand(0));
3536    SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
3537
3538    // Scale the exponent by log10(2) [0.30102999f].
3539    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3540    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3541                                        getF32Constant(DAG, 0x3e9a209a));
3542
3543    // Get the significand and build it into a floating-point number with
3544    // exponent of 1.
3545    SDValue X = GetSignificand(DAG, Op1, dl);
3546
3547    if (LimitFloatPrecision <= 6) {
3548      // For floating-point precision of 6:
3549      //
3550      //   Log10ofMantissa =
3551      //     -0.50419619f +
3552      //       (0.60948995f - 0.10380950f * x) * x;
3553      //
3554      // error 0.0014886165, which is 6 bits
3555      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3556                               getF32Constant(DAG, 0xbdd49a13));
3557      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3558                               getF32Constant(DAG, 0x3f1c0789));
3559      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3560      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3561                                            getF32Constant(DAG, 0x3f011300));
3562
3563      result = DAG.getNode(ISD::FADD, dl,
3564                           MVT::f32, LogOfExponent, Log10ofMantissa);
3565    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3566      // For floating-point precision of 12:
3567      //
3568      //   Log10ofMantissa =
3569      //     -0.64831180f +
3570      //       (0.91751397f +
3571      //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
3572      //
3573      // error 0.00019228036, which is better than 12 bits
3574      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3575                               getF32Constant(DAG, 0x3d431f31));
3576      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3577                               getF32Constant(DAG, 0x3ea21fb2));
3578      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3579      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3580                               getF32Constant(DAG, 0x3f6ae232));
3581      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3582      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3583                                            getF32Constant(DAG, 0x3f25f7c3));
3584
3585      result = DAG.getNode(ISD::FADD, dl,
3586                           MVT::f32, LogOfExponent, Log10ofMantissa);
3587    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3588      // For floating-point precision of 18:
3589      //
3590      //   Log10ofMantissa =
3591      //     -0.84299375f +
3592      //       (1.5327582f +
3593      //         (-1.0688956f +
3594      //           (0.49102474f +
3595      //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
3596      //
3597      // error 0.0000037995730, which is better than 18 bits
3598      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3599                               getF32Constant(DAG, 0x3c5d51ce));
3600      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3601                               getF32Constant(DAG, 0x3e00685a));
3602      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3603      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3604                               getF32Constant(DAG, 0x3efb6798));
3605      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3606      SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3607                               getF32Constant(DAG, 0x3f88d192));
3608      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3609      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3610                               getF32Constant(DAG, 0x3fc4316c));
3611      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3612      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
3613                                            getF32Constant(DAG, 0x3f57ce70));
3614
3615      result = DAG.getNode(ISD::FADD, dl,
3616                           MVT::f32, LogOfExponent, Log10ofMantissa);
3617    }
3618  } else {
3619    // No special expansion.
3620    result = DAG.getNode(ISD::FLOG10, dl,
3621                         getValue(I.getArgOperand(0)).getValueType(),
3622                         getValue(I.getArgOperand(0)));
3623  }
3624
3625  setValue(&I, result);
3626}
3627
3628/// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for
3629/// limited-precision mode.
3630void
3631SelectionDAGBuilder::visitExp2(const CallInst &I) {
3632  SDValue result;
3633  DebugLoc dl = getCurDebugLoc();
3634
3635  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3636      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3637    SDValue Op = getValue(I.getArgOperand(0));
3638
3639    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
3640
3641    //   FractionalPartOfX = x - (float)IntegerPartOfX;
3642    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3643    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
3644
3645    //   IntegerPartOfX <<= 23;
3646    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3647                                 DAG.getConstant(23, TLI.getPointerTy()));
3648
3649    if (LimitFloatPrecision <= 6) {
3650      // For floating-point precision of 6:
3651      //
3652      //   TwoToFractionalPartOfX =
3653      //     0.997535578f +
3654      //       (0.735607626f + 0.252464424f * x) * x;
3655      //
3656      // error 0.0144103317, which is 6 bits
3657      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3658                               getF32Constant(DAG, 0x3e814304));
3659      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3660                               getF32Constant(DAG, 0x3f3c50c8));
3661      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3662      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3663                               getF32Constant(DAG, 0x3f7f5e7e));
3664      SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5);
3665      SDValue TwoToFractionalPartOfX =
3666        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3667
3668      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3669                           MVT::f32, TwoToFractionalPartOfX);
3670    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3671      // For floating-point precision of 12:
3672      //
3673      //   TwoToFractionalPartOfX =
3674      //     0.999892986f +
3675      //       (0.696457318f +
3676      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3677      //
3678      // error 0.000107046256, which is 13 to 14 bits
3679      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3680                               getF32Constant(DAG, 0x3da235e3));
3681      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3682                               getF32Constant(DAG, 0x3e65b8f3));
3683      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3684      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3685                               getF32Constant(DAG, 0x3f324b07));
3686      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3687      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3688                               getF32Constant(DAG, 0x3f7ff8fd));
3689      SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7);
3690      SDValue TwoToFractionalPartOfX =
3691        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
3692
3693      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3694                           MVT::f32, TwoToFractionalPartOfX);
3695    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3696      // For floating-point precision of 18:
3697      //
3698      //   TwoToFractionalPartOfX =
3699      //     0.999999982f +
3700      //       (0.693148872f +
3701      //         (0.240227044f +
3702      //           (0.554906021e-1f +
3703      //             (0.961591928e-2f +
3704      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3705      // error 2.47208000*10^(-7), which is better than 18 bits
3706      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3707                               getF32Constant(DAG, 0x3924b03e));
3708      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3709                               getF32Constant(DAG, 0x3ab24b87));
3710      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3711      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3712                               getF32Constant(DAG, 0x3c1d8c17));
3713      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3714      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3715                               getF32Constant(DAG, 0x3d634a1d));
3716      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3717      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3718                               getF32Constant(DAG, 0x3e75fe14));
3719      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3720      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3721                                getF32Constant(DAG, 0x3f317234));
3722      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3723      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3724                                getF32Constant(DAG, 0x3f800000));
3725      SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13);
3726      SDValue TwoToFractionalPartOfX =
3727        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
3728
3729      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3730                           MVT::f32, TwoToFractionalPartOfX);
3731    }
3732  } else {
3733    // No special expansion.
3734    result = DAG.getNode(ISD::FEXP2, dl,
3735                         getValue(I.getArgOperand(0)).getValueType(),
3736                         getValue(I.getArgOperand(0)));
3737  }
3738
3739  setValue(&I, result);
3740}
3741
3742/// visitPow - Lower a pow intrinsic. Handles the special sequences for
3743/// limited-precision mode with x == 10.0f.
3744void
3745SelectionDAGBuilder::visitPow(const CallInst &I) {
3746  SDValue result;
3747  const Value *Val = I.getArgOperand(0);
3748  DebugLoc dl = getCurDebugLoc();
3749  bool IsExp10 = false;
3750
3751  if (getValue(Val).getValueType() == MVT::f32 &&
3752      getValue(I.getArgOperand(1)).getValueType() == MVT::f32 &&
3753      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3754    if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) {
3755      if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
3756        APFloat Ten(10.0f);
3757        IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten);
3758      }
3759    }
3760  }
3761
3762  if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3763    SDValue Op = getValue(I.getArgOperand(1));
3764
3765    // Put the exponent in the right bit position for later addition to the
3766    // final result:
3767    //
3768    //   #define LOG2OF10 3.3219281f
3769    //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
3770    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3771                             getF32Constant(DAG, 0x40549a78));
3772    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3773
3774    //   FractionalPartOfX = x - (float)IntegerPartOfX;
3775    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3776    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3777
3778    //   IntegerPartOfX <<= 23;
3779    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3780                                 DAG.getConstant(23, TLI.getPointerTy()));
3781
3782    if (LimitFloatPrecision <= 6) {
3783      // For floating-point precision of 6:
3784      //
3785      //   twoToFractionalPartOfX =
3786      //     0.997535578f +
3787      //       (0.735607626f + 0.252464424f * x) * x;
3788      //
3789      // error 0.0144103317, which is 6 bits
3790      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3791                               getF32Constant(DAG, 0x3e814304));
3792      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3793                               getF32Constant(DAG, 0x3f3c50c8));
3794      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3795      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3796                               getF32Constant(DAG, 0x3f7f5e7e));
3797      SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5);
3798      SDValue TwoToFractionalPartOfX =
3799        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3800
3801      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3802                           MVT::f32, TwoToFractionalPartOfX);
3803    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3804      // For floating-point precision of 12:
3805      //
3806      //   TwoToFractionalPartOfX =
3807      //     0.999892986f +
3808      //       (0.696457318f +
3809      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3810      //
3811      // error 0.000107046256, which is 13 to 14 bits
3812      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3813                               getF32Constant(DAG, 0x3da235e3));
3814      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3815                               getF32Constant(DAG, 0x3e65b8f3));
3816      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3817      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3818                               getF32Constant(DAG, 0x3f324b07));
3819      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3820      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3821                               getF32Constant(DAG, 0x3f7ff8fd));
3822      SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7);
3823      SDValue TwoToFractionalPartOfX =
3824        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
3825
3826      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3827                           MVT::f32, TwoToFractionalPartOfX);
3828    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3829      // For floating-point precision of 18:
3830      //
3831      //   TwoToFractionalPartOfX =
3832      //     0.999999982f +
3833      //       (0.693148872f +
3834      //         (0.240227044f +
3835      //           (0.554906021e-1f +
3836      //             (0.961591928e-2f +
3837      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3838      // error 2.47208000*10^(-7), which is better than 18 bits
3839      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3840                               getF32Constant(DAG, 0x3924b03e));
3841      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3842                               getF32Constant(DAG, 0x3ab24b87));
3843      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3844      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3845                               getF32Constant(DAG, 0x3c1d8c17));
3846      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3847      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3848                               getF32Constant(DAG, 0x3d634a1d));
3849      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3850      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3851                               getF32Constant(DAG, 0x3e75fe14));
3852      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3853      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3854                                getF32Constant(DAG, 0x3f317234));
3855      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3856      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3857                                getF32Constant(DAG, 0x3f800000));
3858      SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13);
3859      SDValue TwoToFractionalPartOfX =
3860        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
3861
3862      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3863                           MVT::f32, TwoToFractionalPartOfX);
3864    }
3865  } else {
3866    // No special expansion.
3867    result = DAG.getNode(ISD::FPOW, dl,
3868                         getValue(I.getArgOperand(0)).getValueType(),
3869                         getValue(I.getArgOperand(0)),
3870                         getValue(I.getArgOperand(1)));
3871  }
3872
3873  setValue(&I, result);
3874}
3875
3876
3877/// ExpandPowI - Expand a llvm.powi intrinsic.
3878static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS,
3879                          SelectionDAG &DAG) {
3880  // If RHS is a constant, we can expand this out to a multiplication tree,
3881  // otherwise we end up lowering to a call to __powidf2 (for example).  When
3882  // optimizing for size, we only want to do this if the expansion would produce
3883  // a small number of multiplies, otherwise we do the full expansion.
3884  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3885    // Get the exponent as a positive value.
3886    unsigned Val = RHSC->getSExtValue();
3887    if ((int)Val < 0) Val = -Val;
3888
3889    // powi(x, 0) -> 1.0
3890    if (Val == 0)
3891      return DAG.getConstantFP(1.0, LHS.getValueType());
3892
3893    const Function *F = DAG.getMachineFunction().getFunction();
3894    if (!F->hasFnAttr(Attribute::OptimizeForSize) ||
3895        // If optimizing for size, don't insert too many multiplies.  This
3896        // inserts up to 5 multiplies.
3897        CountPopulation_32(Val)+Log2_32(Val) < 7) {
3898      // We use the simple binary decomposition method to generate the multiply
3899      // sequence.  There are more optimal ways to do this (for example,
3900      // powi(x,15) generates one more multiply than it should), but this has
3901      // the benefit of being both really simple and much better than a libcall.
3902      SDValue Res;  // Logically starts equal to 1.0
3903      SDValue CurSquare = LHS;
3904      while (Val) {
3905        if (Val & 1) {
3906          if (Res.getNode())
3907            Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
3908          else
3909            Res = CurSquare;  // 1.0*CurSquare.
3910        }
3911
3912        CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
3913                                CurSquare, CurSquare);
3914        Val >>= 1;
3915      }
3916
3917      // If the original was negative, invert the result, producing 1/(x*x*x).
3918      if (RHSC->getSExtValue() < 0)
3919        Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
3920                          DAG.getConstantFP(1.0, LHS.getValueType()), Res);
3921      return Res;
3922    }
3923  }
3924
3925  // Otherwise, expand to a libcall.
3926  return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
3927}
3928
3929/// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
3930/// argument, create the corresponding DBG_VALUE machine instruction for it now.
3931/// At the end of instruction selection, they will be inserted to the entry BB.
3932bool
3933SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
3934                                              uint64_t Offset,
3935                                              const SDValue &N) {
3936  if (!isa<Argument>(V))
3937    return false;
3938
3939  MachineFunction &MF = DAG.getMachineFunction();
3940  // Ignore inlined function arguments here.
3941  DIVariable DV(Variable);
3942  if (DV.isInlinedFnArgument(MF.getFunction()))
3943    return false;
3944
3945  MachineBasicBlock *MBB = FuncInfo.MBB;
3946  if (MBB != &MF.front())
3947    return false;
3948
3949  unsigned Reg = 0;
3950  if (N.getOpcode() == ISD::CopyFromReg) {
3951    Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
3952    if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
3953      MachineRegisterInfo &RegInfo = MF.getRegInfo();
3954      unsigned PR = RegInfo.getLiveInPhysReg(Reg);
3955      if (PR)
3956        Reg = PR;
3957    }
3958  }
3959
3960  if (!Reg) {
3961    DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
3962    if (VMI == FuncInfo.ValueMap.end())
3963      return false;
3964    Reg = VMI->second;
3965  }
3966
3967  const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
3968  MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(),
3969                                    TII->get(TargetOpcode::DBG_VALUE))
3970    .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable);
3971  FuncInfo.ArgDbgValues.push_back(&*MIB);
3972  return true;
3973}
3974
3975// VisualStudio defines setjmp as _setjmp
3976#if defined(_MSC_VER) && defined(setjmp)
3977#define setjmp_undefined_for_visual_studio
3978#undef setjmp
3979#endif
3980
3981/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
3982/// we want to emit this as a call to a named external function, return the name
3983/// otherwise lower it and return null.
3984const char *
3985SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
3986  DebugLoc dl = getCurDebugLoc();
3987  SDValue Res;
3988
3989  switch (Intrinsic) {
3990  default:
3991    // By default, turn this into a target intrinsic node.
3992    visitTargetIntrinsic(I, Intrinsic);
3993    return 0;
3994  case Intrinsic::vastart:  visitVAStart(I); return 0;
3995  case Intrinsic::vaend:    visitVAEnd(I); return 0;
3996  case Intrinsic::vacopy:   visitVACopy(I); return 0;
3997  case Intrinsic::returnaddress:
3998    setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(),
3999                             getValue(I.getArgOperand(0))));
4000    return 0;
4001  case Intrinsic::frameaddress:
4002    setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(),
4003                             getValue(I.getArgOperand(0))));
4004    return 0;
4005  case Intrinsic::setjmp:
4006    return "_setjmp"+!TLI.usesUnderscoreSetJmp();
4007  case Intrinsic::longjmp:
4008    return "_longjmp"+!TLI.usesUnderscoreLongJmp();
4009  case Intrinsic::memcpy: {
4010    // Assert for address < 256 since we support only user defined address
4011    // spaces.
4012    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4013           < 256 &&
4014           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4015           < 256 &&
4016           "Unknown address space");
4017    SDValue Op1 = getValue(I.getArgOperand(0));
4018    SDValue Op2 = getValue(I.getArgOperand(1));
4019    SDValue Op3 = getValue(I.getArgOperand(2));
4020    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4021    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4022    DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false,
4023                              I.getArgOperand(0), 0, I.getArgOperand(1), 0));
4024    return 0;
4025  }
4026  case Intrinsic::memset: {
4027    // Assert for address < 256 since we support only user defined address
4028    // spaces.
4029    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4030           < 256 &&
4031           "Unknown address space");
4032    SDValue Op1 = getValue(I.getArgOperand(0));
4033    SDValue Op2 = getValue(I.getArgOperand(1));
4034    SDValue Op3 = getValue(I.getArgOperand(2));
4035    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4036    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4037    DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4038                              I.getArgOperand(0), 0));
4039    return 0;
4040  }
4041  case Intrinsic::memmove: {
4042    // Assert for address < 256 since we support only user defined address
4043    // spaces.
4044    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4045           < 256 &&
4046           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4047           < 256 &&
4048           "Unknown address space");
4049    SDValue Op1 = getValue(I.getArgOperand(0));
4050    SDValue Op2 = getValue(I.getArgOperand(1));
4051    SDValue Op3 = getValue(I.getArgOperand(2));
4052    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4053    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4054
4055    // If the source and destination are known to not be aliases, we can
4056    // lower memmove as memcpy.
4057    uint64_t Size = -1ULL;
4058    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3))
4059      Size = C->getZExtValue();
4060    if (AA->alias(I.getArgOperand(0), Size, I.getArgOperand(1), Size) ==
4061        AliasAnalysis::NoAlias) {
4062      DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4063                                false, I.getArgOperand(0), 0,
4064                                I.getArgOperand(1), 0));
4065      return 0;
4066    }
4067
4068    DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4069                               I.getArgOperand(0), 0, I.getArgOperand(1), 0));
4070    return 0;
4071  }
4072  case Intrinsic::dbg_declare: {
4073    const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4074    if (!DIVariable(DI.getVariable()).Verify())
4075      return 0;
4076
4077    MDNode *Variable = DI.getVariable();
4078    // Parameters are handled specially.
4079    bool isParameter =
4080      DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable;
4081    const Value *Address = DI.getAddress();
4082    if (!Address)
4083      return 0;
4084    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4085      Address = BCI->getOperand(0);
4086    const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
4087
4088    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4089    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4090    // absolute, but not relative, values are different depending on whether
4091    // debug info exists.
4092    ++SDNodeOrder;
4093    SDValue &N = NodeMap[Address];
4094    SDDbgValue *SDV;
4095    if (N.getNode()) {
4096      if (isParameter && !AI) {
4097        FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4098        if (FINode)
4099          // Byval parameter.  We have a frame index at this point.
4100          SDV = DAG.getDbgValue(Variable, FINode->getIndex(),
4101                                0, dl, SDNodeOrder);
4102        else
4103          // Can't do anything with other non-AI cases yet.  This might be a
4104          // parameter of a callee function that got inlined, for example.
4105          return 0;
4106      } else if (AI)
4107        SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
4108                              0, dl, SDNodeOrder);
4109      else
4110        // Can't do anything with other non-AI cases yet.
4111        return 0;
4112      DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4113    } else {
4114      // This isn't useful, but it shows what we're missing.
4115      SDV = DAG.getDbgValue(Variable, UndefValue::get(Address->getType()),
4116                            0, dl, SDNodeOrder);
4117      DAG.AddDbgValue(SDV, 0, isParameter);
4118    }
4119    return 0;
4120  }
4121  case Intrinsic::dbg_value: {
4122    const DbgValueInst &DI = cast<DbgValueInst>(I);
4123    if (!DIVariable(DI.getVariable()).Verify())
4124      return 0;
4125
4126    MDNode *Variable = DI.getVariable();
4127    uint64_t Offset = DI.getOffset();
4128    const Value *V = DI.getValue();
4129    if (!V)
4130      return 0;
4131
4132    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4133    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4134    // absolute, but not relative, values are different depending on whether
4135    // debug info exists.
4136    ++SDNodeOrder;
4137    SDDbgValue *SDV;
4138    if (isa<ConstantInt>(V) || isa<ConstantFP>(V)) {
4139      SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder);
4140      DAG.AddDbgValue(SDV, 0, false);
4141    } else {
4142      bool createUndef = false;
4143      // Do not use getValue() in here; we don't want to generate code at
4144      // this point if it hasn't been done yet.
4145      SDValue N = NodeMap[V];
4146      if (!N.getNode() && isa<Argument>(V))
4147        // Check unused arguments map.
4148        N = UnusedArgNodeMap[V];
4149      if (N.getNode()) {
4150        if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) {
4151          SDV = DAG.getDbgValue(Variable, N.getNode(),
4152                                N.getResNo(), Offset, dl, SDNodeOrder);
4153          DAG.AddDbgValue(SDV, N.getNode(), false);
4154        }
4155      } else if (isa<PHINode>(V) && !V->use_empty() ) {
4156        // Do not call getValue(V) yet, as we don't want to generate code.
4157        // Remember it for later.
4158        DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4159        DanglingDebugInfoMap[V] = DDI;
4160      } else
4161        createUndef = true;
4162      if (createUndef) {
4163        // We may expand this to cover more cases.  One case where we have no
4164        // data available is an unreferenced parameter; we need this fallback.
4165        SDV = DAG.getDbgValue(Variable, UndefValue::get(V->getType()),
4166                              Offset, dl, SDNodeOrder);
4167        DAG.AddDbgValue(SDV, 0, false);
4168      }
4169    }
4170
4171    // Build a debug info table entry.
4172    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4173      V = BCI->getOperand(0);
4174    const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4175    // Don't handle byval struct arguments or VLAs, for example.
4176    if (!AI)
4177      return 0;
4178    DenseMap<const AllocaInst*, int>::iterator SI =
4179      FuncInfo.StaticAllocaMap.find(AI);
4180    if (SI == FuncInfo.StaticAllocaMap.end())
4181      return 0; // VLAs.
4182    int FI = SI->second;
4183
4184    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4185    if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
4186      MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
4187    return 0;
4188  }
4189  case Intrinsic::eh_exception: {
4190    // Insert the EXCEPTIONADDR instruction.
4191    assert(FuncInfo.MBB->isLandingPad() &&
4192           "Call to eh.exception not in landing pad!");
4193    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4194    SDValue Ops[1];
4195    Ops[0] = DAG.getRoot();
4196    SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1);
4197    setValue(&I, Op);
4198    DAG.setRoot(Op.getValue(1));
4199    return 0;
4200  }
4201
4202  case Intrinsic::eh_selector: {
4203    MachineBasicBlock *CallMBB = FuncInfo.MBB;
4204    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4205    if (CallMBB->isLandingPad())
4206      AddCatchInfo(I, &MMI, CallMBB);
4207    else {
4208#ifndef NDEBUG
4209      FuncInfo.CatchInfoLost.insert(&I);
4210#endif
4211      // FIXME: Mark exception selector register as live in.  Hack for PR1508.
4212      unsigned Reg = TLI.getExceptionSelectorRegister();
4213      if (Reg) FuncInfo.MBB->addLiveIn(Reg);
4214    }
4215
4216    // Insert the EHSELECTION instruction.
4217    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4218    SDValue Ops[2];
4219    Ops[0] = getValue(I.getArgOperand(0));
4220    Ops[1] = getRoot();
4221    SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2);
4222    DAG.setRoot(Op.getValue(1));
4223    setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32));
4224    return 0;
4225  }
4226
4227  case Intrinsic::eh_typeid_for: {
4228    // Find the type id for the given typeinfo.
4229    GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0));
4230    unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4231    Res = DAG.getConstant(TypeID, MVT::i32);
4232    setValue(&I, Res);
4233    return 0;
4234  }
4235
4236  case Intrinsic::eh_return_i32:
4237  case Intrinsic::eh_return_i64:
4238    DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4239    DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl,
4240                            MVT::Other,
4241                            getControlRoot(),
4242                            getValue(I.getArgOperand(0)),
4243                            getValue(I.getArgOperand(1))));
4244    return 0;
4245  case Intrinsic::eh_unwind_init:
4246    DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4247    return 0;
4248  case Intrinsic::eh_dwarf_cfa: {
4249    SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl,
4250                                        TLI.getPointerTy());
4251    SDValue Offset = DAG.getNode(ISD::ADD, dl,
4252                                 TLI.getPointerTy(),
4253                                 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
4254                                             TLI.getPointerTy()),
4255                                 CfaArg);
4256    SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl,
4257                             TLI.getPointerTy(),
4258                             DAG.getConstant(0, TLI.getPointerTy()));
4259    setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
4260                             FA, Offset));
4261    return 0;
4262  }
4263  case Intrinsic::eh_sjlj_callsite: {
4264    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4265    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4266    assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4267    assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4268
4269    MMI.setCurrentCallSite(CI->getZExtValue());
4270    return 0;
4271  }
4272  case Intrinsic::eh_sjlj_setjmp: {
4273    setValue(&I, DAG.getNode(ISD::EH_SJLJ_SETJMP, dl, MVT::i32, getRoot(),
4274                             getValue(I.getArgOperand(0))));
4275    return 0;
4276  }
4277  case Intrinsic::eh_sjlj_longjmp: {
4278    DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other,
4279                            getRoot(),
4280                            getValue(I.getArgOperand(0))));
4281    return 0;
4282  }
4283
4284  case Intrinsic::convertff:
4285  case Intrinsic::convertfsi:
4286  case Intrinsic::convertfui:
4287  case Intrinsic::convertsif:
4288  case Intrinsic::convertuif:
4289  case Intrinsic::convertss:
4290  case Intrinsic::convertsu:
4291  case Intrinsic::convertus:
4292  case Intrinsic::convertuu: {
4293    ISD::CvtCode Code = ISD::CVT_INVALID;
4294    switch (Intrinsic) {
4295    case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
4296    case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4297    case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4298    case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4299    case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4300    case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
4301    case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
4302    case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4303    case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4304    }
4305    EVT DestVT = TLI.getValueType(I.getType());
4306    const Value *Op1 = I.getArgOperand(0);
4307    Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1),
4308                               DAG.getValueType(DestVT),
4309                               DAG.getValueType(getValue(Op1).getValueType()),
4310                               getValue(I.getArgOperand(1)),
4311                               getValue(I.getArgOperand(2)),
4312                               Code);
4313    setValue(&I, Res);
4314    return 0;
4315  }
4316  case Intrinsic::sqrt:
4317    setValue(&I, DAG.getNode(ISD::FSQRT, dl,
4318                             getValue(I.getArgOperand(0)).getValueType(),
4319                             getValue(I.getArgOperand(0))));
4320    return 0;
4321  case Intrinsic::powi:
4322    setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)),
4323                            getValue(I.getArgOperand(1)), DAG));
4324    return 0;
4325  case Intrinsic::sin:
4326    setValue(&I, DAG.getNode(ISD::FSIN, dl,
4327                             getValue(I.getArgOperand(0)).getValueType(),
4328                             getValue(I.getArgOperand(0))));
4329    return 0;
4330  case Intrinsic::cos:
4331    setValue(&I, DAG.getNode(ISD::FCOS, dl,
4332                             getValue(I.getArgOperand(0)).getValueType(),
4333                             getValue(I.getArgOperand(0))));
4334    return 0;
4335  case Intrinsic::log:
4336    visitLog(I);
4337    return 0;
4338  case Intrinsic::log2:
4339    visitLog2(I);
4340    return 0;
4341  case Intrinsic::log10:
4342    visitLog10(I);
4343    return 0;
4344  case Intrinsic::exp:
4345    visitExp(I);
4346    return 0;
4347  case Intrinsic::exp2:
4348    visitExp2(I);
4349    return 0;
4350  case Intrinsic::pow:
4351    visitPow(I);
4352    return 0;
4353  case Intrinsic::convert_to_fp16:
4354    setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl,
4355                             MVT::i16, getValue(I.getArgOperand(0))));
4356    return 0;
4357  case Intrinsic::convert_from_fp16:
4358    setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl,
4359                             MVT::f32, getValue(I.getArgOperand(0))));
4360    return 0;
4361  case Intrinsic::pcmarker: {
4362    SDValue Tmp = getValue(I.getArgOperand(0));
4363    DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp));
4364    return 0;
4365  }
4366  case Intrinsic::readcyclecounter: {
4367    SDValue Op = getRoot();
4368    Res = DAG.getNode(ISD::READCYCLECOUNTER, dl,
4369                      DAG.getVTList(MVT::i64, MVT::Other),
4370                      &Op, 1);
4371    setValue(&I, Res);
4372    DAG.setRoot(Res.getValue(1));
4373    return 0;
4374  }
4375  case Intrinsic::bswap:
4376    setValue(&I, DAG.getNode(ISD::BSWAP, dl,
4377                             getValue(I.getArgOperand(0)).getValueType(),
4378                             getValue(I.getArgOperand(0))));
4379    return 0;
4380  case Intrinsic::cttz: {
4381    SDValue Arg = getValue(I.getArgOperand(0));
4382    EVT Ty = Arg.getValueType();
4383    setValue(&I, DAG.getNode(ISD::CTTZ, dl, Ty, Arg));
4384    return 0;
4385  }
4386  case Intrinsic::ctlz: {
4387    SDValue Arg = getValue(I.getArgOperand(0));
4388    EVT Ty = Arg.getValueType();
4389    setValue(&I, DAG.getNode(ISD::CTLZ, dl, Ty, Arg));
4390    return 0;
4391  }
4392  case Intrinsic::ctpop: {
4393    SDValue Arg = getValue(I.getArgOperand(0));
4394    EVT Ty = Arg.getValueType();
4395    setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg));
4396    return 0;
4397  }
4398  case Intrinsic::stacksave: {
4399    SDValue Op = getRoot();
4400    Res = DAG.getNode(ISD::STACKSAVE, dl,
4401                      DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
4402    setValue(&I, Res);
4403    DAG.setRoot(Res.getValue(1));
4404    return 0;
4405  }
4406  case Intrinsic::stackrestore: {
4407    Res = getValue(I.getArgOperand(0));
4408    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res));
4409    return 0;
4410  }
4411  case Intrinsic::stackprotector: {
4412    // Emit code into the DAG to store the stack guard onto the stack.
4413    MachineFunction &MF = DAG.getMachineFunction();
4414    MachineFrameInfo *MFI = MF.getFrameInfo();
4415    EVT PtrTy = TLI.getPointerTy();
4416
4417    SDValue Src = getValue(I.getArgOperand(0));   // The guard's value.
4418    AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
4419
4420    int FI = FuncInfo.StaticAllocaMap[Slot];
4421    MFI->setStackProtectorIndex(FI);
4422
4423    SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
4424
4425    // Store the stack protector onto the stack.
4426    Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN,
4427                       PseudoSourceValue::getFixedStack(FI),
4428                       0, true, false, 0);
4429    setValue(&I, Res);
4430    DAG.setRoot(Res);
4431    return 0;
4432  }
4433  case Intrinsic::objectsize: {
4434    // If we don't know by now, we're never going to know.
4435    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
4436
4437    assert(CI && "Non-constant type in __builtin_object_size?");
4438
4439    SDValue Arg = getValue(I.getCalledValue());
4440    EVT Ty = Arg.getValueType();
4441
4442    if (CI->isZero())
4443      Res = DAG.getConstant(-1ULL, Ty);
4444    else
4445      Res = DAG.getConstant(0, Ty);
4446
4447    setValue(&I, Res);
4448    return 0;
4449  }
4450  case Intrinsic::var_annotation:
4451    // Discard annotate attributes
4452    return 0;
4453
4454  case Intrinsic::init_trampoline: {
4455    const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
4456
4457    SDValue Ops[6];
4458    Ops[0] = getRoot();
4459    Ops[1] = getValue(I.getArgOperand(0));
4460    Ops[2] = getValue(I.getArgOperand(1));
4461    Ops[3] = getValue(I.getArgOperand(2));
4462    Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
4463    Ops[5] = DAG.getSrcValue(F);
4464
4465    Res = DAG.getNode(ISD::TRAMPOLINE, dl,
4466                      DAG.getVTList(TLI.getPointerTy(), MVT::Other),
4467                      Ops, 6);
4468
4469    setValue(&I, Res);
4470    DAG.setRoot(Res.getValue(1));
4471    return 0;
4472  }
4473  case Intrinsic::gcroot:
4474    if (GFI) {
4475      const Value *Alloca = I.getArgOperand(0);
4476      const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
4477
4478      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
4479      GFI->addStackRoot(FI->getIndex(), TypeMap);
4480    }
4481    return 0;
4482  case Intrinsic::gcread:
4483  case Intrinsic::gcwrite:
4484    llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
4485    return 0;
4486  case Intrinsic::flt_rounds:
4487    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32));
4488    return 0;
4489  case Intrinsic::trap:
4490    DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot()));
4491    return 0;
4492  case Intrinsic::uadd_with_overflow:
4493    return implVisitAluOverflow(I, ISD::UADDO);
4494  case Intrinsic::sadd_with_overflow:
4495    return implVisitAluOverflow(I, ISD::SADDO);
4496  case Intrinsic::usub_with_overflow:
4497    return implVisitAluOverflow(I, ISD::USUBO);
4498  case Intrinsic::ssub_with_overflow:
4499    return implVisitAluOverflow(I, ISD::SSUBO);
4500  case Intrinsic::umul_with_overflow:
4501    return implVisitAluOverflow(I, ISD::UMULO);
4502  case Intrinsic::smul_with_overflow:
4503    return implVisitAluOverflow(I, ISD::SMULO);
4504
4505  case Intrinsic::prefetch: {
4506    SDValue Ops[4];
4507    Ops[0] = getRoot();
4508    Ops[1] = getValue(I.getArgOperand(0));
4509    Ops[2] = getValue(I.getArgOperand(1));
4510    Ops[3] = getValue(I.getArgOperand(2));
4511    DAG.setRoot(DAG.getNode(ISD::PREFETCH, dl, MVT::Other, &Ops[0], 4));
4512    return 0;
4513  }
4514
4515  case Intrinsic::memory_barrier: {
4516    SDValue Ops[6];
4517    Ops[0] = getRoot();
4518    for (int x = 1; x < 6; ++x)
4519      Ops[x] = getValue(I.getArgOperand(x - 1));
4520
4521    DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6));
4522    return 0;
4523  }
4524  case Intrinsic::atomic_cmp_swap: {
4525    SDValue Root = getRoot();
4526    SDValue L =
4527      DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(),
4528                    getValue(I.getArgOperand(1)).getValueType().getSimpleVT(),
4529                    Root,
4530                    getValue(I.getArgOperand(0)),
4531                    getValue(I.getArgOperand(1)),
4532                    getValue(I.getArgOperand(2)),
4533                    I.getArgOperand(0));
4534    setValue(&I, L);
4535    DAG.setRoot(L.getValue(1));
4536    return 0;
4537  }
4538  case Intrinsic::atomic_load_add:
4539    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD);
4540  case Intrinsic::atomic_load_sub:
4541    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB);
4542  case Intrinsic::atomic_load_or:
4543    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR);
4544  case Intrinsic::atomic_load_xor:
4545    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR);
4546  case Intrinsic::atomic_load_and:
4547    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND);
4548  case Intrinsic::atomic_load_nand:
4549    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND);
4550  case Intrinsic::atomic_load_max:
4551    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX);
4552  case Intrinsic::atomic_load_min:
4553    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN);
4554  case Intrinsic::atomic_load_umin:
4555    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN);
4556  case Intrinsic::atomic_load_umax:
4557    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX);
4558  case Intrinsic::atomic_swap:
4559    return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP);
4560
4561  case Intrinsic::invariant_start:
4562  case Intrinsic::lifetime_start:
4563    // Discard region information.
4564    setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
4565    return 0;
4566  case Intrinsic::invariant_end:
4567  case Intrinsic::lifetime_end:
4568    // Discard region information.
4569    return 0;
4570  }
4571}
4572
4573void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
4574                                      bool isTailCall,
4575                                      MachineBasicBlock *LandingPad) {
4576  const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
4577  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
4578  const Type *RetTy = FTy->getReturnType();
4579  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4580  MCSymbol *BeginLabel = 0;
4581
4582  TargetLowering::ArgListTy Args;
4583  TargetLowering::ArgListEntry Entry;
4584  Args.reserve(CS.arg_size());
4585
4586  // Check whether the function can return without sret-demotion.
4587  SmallVector<ISD::OutputArg, 4> Outs;
4588  SmallVector<uint64_t, 4> Offsets;
4589  GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(),
4590                Outs, TLI, &Offsets);
4591
4592  bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
4593                        FTy->isVarArg(), Outs, FTy->getContext());
4594
4595  SDValue DemoteStackSlot;
4596
4597  if (!CanLowerReturn) {
4598    uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(
4599                      FTy->getReturnType());
4600    unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(
4601                      FTy->getReturnType());
4602    MachineFunction &MF = DAG.getMachineFunction();
4603    int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
4604    const Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
4605
4606    DemoteStackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
4607    Entry.Node = DemoteStackSlot;
4608    Entry.Ty = StackSlotPtrType;
4609    Entry.isSExt = false;
4610    Entry.isZExt = false;
4611    Entry.isInReg = false;
4612    Entry.isSRet = true;
4613    Entry.isNest = false;
4614    Entry.isByVal = false;
4615    Entry.Alignment = Align;
4616    Args.push_back(Entry);
4617    RetTy = Type::getVoidTy(FTy->getContext());
4618  }
4619
4620  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
4621       i != e; ++i) {
4622    SDValue ArgNode = getValue(*i);
4623    Entry.Node = ArgNode; Entry.Ty = (*i)->getType();
4624
4625    unsigned attrInd = i - CS.arg_begin() + 1;
4626    Entry.isSExt  = CS.paramHasAttr(attrInd, Attribute::SExt);
4627    Entry.isZExt  = CS.paramHasAttr(attrInd, Attribute::ZExt);
4628    Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg);
4629    Entry.isSRet  = CS.paramHasAttr(attrInd, Attribute::StructRet);
4630    Entry.isNest  = CS.paramHasAttr(attrInd, Attribute::Nest);
4631    Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal);
4632    Entry.Alignment = CS.getParamAlignment(attrInd);
4633    Args.push_back(Entry);
4634  }
4635
4636  if (LandingPad) {
4637    // Insert a label before the invoke call to mark the try range.  This can be
4638    // used to detect deletion of the invoke via the MachineModuleInfo.
4639    BeginLabel = MMI.getContext().CreateTempSymbol();
4640
4641    // For SjLj, keep track of which landing pads go with which invokes
4642    // so as to maintain the ordering of pads in the LSDA.
4643    unsigned CallSiteIndex = MMI.getCurrentCallSite();
4644    if (CallSiteIndex) {
4645      MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
4646      // Now that the call site is handled, stop tracking it.
4647      MMI.setCurrentCallSite(0);
4648    }
4649
4650    // Both PendingLoads and PendingExports must be flushed here;
4651    // this call might not return.
4652    (void)getRoot();
4653    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel));
4654  }
4655
4656  // Check if target-independent constraints permit a tail call here.
4657  // Target-dependent constraints are checked within TLI.LowerCallTo.
4658  if (isTailCall &&
4659      !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI))
4660    isTailCall = false;
4661
4662  std::pair<SDValue,SDValue> Result =
4663    TLI.LowerCallTo(getRoot(), RetTy,
4664                    CS.paramHasAttr(0, Attribute::SExt),
4665                    CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(),
4666                    CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(),
4667                    CS.getCallingConv(),
4668                    isTailCall,
4669                    !CS.getInstruction()->use_empty(),
4670                    Callee, Args, DAG, getCurDebugLoc());
4671  assert((isTailCall || Result.second.getNode()) &&
4672         "Non-null chain expected with non-tail call!");
4673  assert((Result.second.getNode() || !Result.first.getNode()) &&
4674         "Null value expected with tail call!");
4675  if (Result.first.getNode()) {
4676    setValue(CS.getInstruction(), Result.first);
4677  } else if (!CanLowerReturn && Result.second.getNode()) {
4678    // The instruction result is the result of loading from the
4679    // hidden sret parameter.
4680    SmallVector<EVT, 1> PVTs;
4681    const Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
4682
4683    ComputeValueVTs(TLI, PtrRetTy, PVTs);
4684    assert(PVTs.size() == 1 && "Pointers should fit in one register");
4685    EVT PtrVT = PVTs[0];
4686    unsigned NumValues = Outs.size();
4687    SmallVector<SDValue, 4> Values(NumValues);
4688    SmallVector<SDValue, 4> Chains(NumValues);
4689
4690    for (unsigned i = 0; i < NumValues; ++i) {
4691      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT,
4692                                DemoteStackSlot,
4693                                DAG.getConstant(Offsets[i], PtrVT));
4694      SDValue L = DAG.getLoad(Outs[i].VT, getCurDebugLoc(), Result.second,
4695                              Add, NULL, Offsets[i], false, false, 1);
4696      Values[i] = L;
4697      Chains[i] = L.getValue(1);
4698    }
4699
4700    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
4701                                MVT::Other, &Chains[0], NumValues);
4702    PendingLoads.push_back(Chain);
4703
4704    // Collect the legal value parts into potentially illegal values
4705    // that correspond to the original function's return values.
4706    SmallVector<EVT, 4> RetTys;
4707    RetTy = FTy->getReturnType();
4708    ComputeValueVTs(TLI, RetTy, RetTys);
4709    ISD::NodeType AssertOp = ISD::DELETED_NODE;
4710    SmallVector<SDValue, 4> ReturnValues;
4711    unsigned CurReg = 0;
4712    for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
4713      EVT VT = RetTys[I];
4714      EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT);
4715      unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT);
4716
4717      SDValue ReturnValue =
4718        getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs,
4719                         RegisterVT, VT, AssertOp);
4720      ReturnValues.push_back(ReturnValue);
4721      CurReg += NumRegs;
4722    }
4723
4724    setValue(CS.getInstruction(),
4725             DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
4726                         DAG.getVTList(&RetTys[0], RetTys.size()),
4727                         &ReturnValues[0], ReturnValues.size()));
4728
4729  }
4730
4731  // As a special case, a null chain means that a tail call has been emitted and
4732  // the DAG root is already updated.
4733  if (Result.second.getNode())
4734    DAG.setRoot(Result.second);
4735  else
4736    HasTailCall = true;
4737
4738  if (LandingPad) {
4739    // Insert a label at the end of the invoke call to mark the try range.  This
4740    // can be used to detect deletion of the invoke via the MachineModuleInfo.
4741    MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
4742    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel));
4743
4744    // Inform MachineModuleInfo of range.
4745    MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
4746  }
4747}
4748
4749/// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
4750/// value is equal or not-equal to zero.
4751static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
4752  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
4753       UI != E; ++UI) {
4754    if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
4755      if (IC->isEquality())
4756        if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
4757          if (C->isNullValue())
4758            continue;
4759    // Unknown instruction.
4760    return false;
4761  }
4762  return true;
4763}
4764
4765static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
4766                             const Type *LoadTy,
4767                             SelectionDAGBuilder &Builder) {
4768
4769  // Check to see if this load can be trivially constant folded, e.g. if the
4770  // input is from a string literal.
4771  if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
4772    // Cast pointer to the type we really want to load.
4773    LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
4774                                         PointerType::getUnqual(LoadTy));
4775
4776    if (const Constant *LoadCst =
4777          ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
4778                                       Builder.TD))
4779      return Builder.getValue(LoadCst);
4780  }
4781
4782  // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
4783  // still constant memory, the input chain can be the entry node.
4784  SDValue Root;
4785  bool ConstantMemory = false;
4786
4787  // Do not serialize (non-volatile) loads of constant memory with anything.
4788  if (Builder.AA->pointsToConstantMemory(PtrVal)) {
4789    Root = Builder.DAG.getEntryNode();
4790    ConstantMemory = true;
4791  } else {
4792    // Do not serialize non-volatile loads against each other.
4793    Root = Builder.DAG.getRoot();
4794  }
4795
4796  SDValue Ptr = Builder.getValue(PtrVal);
4797  SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root,
4798                                        Ptr, PtrVal /*SrcValue*/, 0/*SVOffset*/,
4799                                        false /*volatile*/,
4800                                        false /*nontemporal*/, 1 /* align=1 */);
4801
4802  if (!ConstantMemory)
4803    Builder.PendingLoads.push_back(LoadVal.getValue(1));
4804  return LoadVal;
4805}
4806
4807
4808/// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
4809/// If so, return true and lower it, otherwise return false and it will be
4810/// lowered like a normal call.
4811bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
4812  // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
4813  if (I.getNumArgOperands() != 3)
4814    return false;
4815
4816  const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
4817  if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
4818      !I.getArgOperand(2)->getType()->isIntegerTy() ||
4819      !I.getType()->isIntegerTy())
4820    return false;
4821
4822  const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2));
4823
4824  // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
4825  // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
4826  if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) {
4827    bool ActuallyDoIt = true;
4828    MVT LoadVT;
4829    const Type *LoadTy;
4830    switch (Size->getZExtValue()) {
4831    default:
4832      LoadVT = MVT::Other;
4833      LoadTy = 0;
4834      ActuallyDoIt = false;
4835      break;
4836    case 2:
4837      LoadVT = MVT::i16;
4838      LoadTy = Type::getInt16Ty(Size->getContext());
4839      break;
4840    case 4:
4841      LoadVT = MVT::i32;
4842      LoadTy = Type::getInt32Ty(Size->getContext());
4843      break;
4844    case 8:
4845      LoadVT = MVT::i64;
4846      LoadTy = Type::getInt64Ty(Size->getContext());
4847      break;
4848        /*
4849    case 16:
4850      LoadVT = MVT::v4i32;
4851      LoadTy = Type::getInt32Ty(Size->getContext());
4852      LoadTy = VectorType::get(LoadTy, 4);
4853      break;
4854         */
4855    }
4856
4857    // This turns into unaligned loads.  We only do this if the target natively
4858    // supports the MVT we'll be loading or if it is small enough (<= 4) that
4859    // we'll only produce a small number of byte loads.
4860
4861    // Require that we can find a legal MVT, and only do this if the target
4862    // supports unaligned loads of that type.  Expanding into byte loads would
4863    // bloat the code.
4864    if (ActuallyDoIt && Size->getZExtValue() > 4) {
4865      // TODO: Handle 5 byte compare as 4-byte + 1 byte.
4866      // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
4867      if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT))
4868        ActuallyDoIt = false;
4869    }
4870
4871    if (ActuallyDoIt) {
4872      SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
4873      SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
4874
4875      SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal,
4876                                 ISD::SETNE);
4877      EVT CallVT = TLI.getValueType(I.getType(), true);
4878      setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT));
4879      return true;
4880    }
4881  }
4882
4883
4884  return false;
4885}
4886
4887
4888void SelectionDAGBuilder::visitCall(const CallInst &I) {
4889  // Handle inline assembly differently.
4890  if (isa<InlineAsm>(I.getCalledValue())) {
4891    visitInlineAsm(&I);
4892    return;
4893  }
4894
4895  const char *RenameFn = 0;
4896  if (Function *F = I.getCalledFunction()) {
4897    if (F->isDeclaration()) {
4898      if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
4899        if (unsigned IID = II->getIntrinsicID(F)) {
4900          RenameFn = visitIntrinsicCall(I, IID);
4901          if (!RenameFn)
4902            return;
4903        }
4904      }
4905      if (unsigned IID = F->getIntrinsicID()) {
4906        RenameFn = visitIntrinsicCall(I, IID);
4907        if (!RenameFn)
4908          return;
4909      }
4910    }
4911
4912    // Check for well-known libc/libm calls.  If the function is internal, it
4913    // can't be a library call.
4914    if (!F->hasLocalLinkage() && F->hasName()) {
4915      StringRef Name = F->getName();
4916      if (Name == "copysign" || Name == "copysignf" || Name == "copysignl") {
4917        if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
4918            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
4919            I.getType() == I.getArgOperand(0)->getType() &&
4920            I.getType() == I.getArgOperand(1)->getType()) {
4921          SDValue LHS = getValue(I.getArgOperand(0));
4922          SDValue RHS = getValue(I.getArgOperand(1));
4923          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(),
4924                                   LHS.getValueType(), LHS, RHS));
4925          return;
4926        }
4927      } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") {
4928        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
4929            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
4930            I.getType() == I.getArgOperand(0)->getType()) {
4931          SDValue Tmp = getValue(I.getArgOperand(0));
4932          setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(),
4933                                   Tmp.getValueType(), Tmp));
4934          return;
4935        }
4936      } else if (Name == "sin" || Name == "sinf" || Name == "sinl") {
4937        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
4938            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
4939            I.getType() == I.getArgOperand(0)->getType() &&
4940            I.onlyReadsMemory()) {
4941          SDValue Tmp = getValue(I.getArgOperand(0));
4942          setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(),
4943                                   Tmp.getValueType(), Tmp));
4944          return;
4945        }
4946      } else if (Name == "cos" || Name == "cosf" || Name == "cosl") {
4947        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
4948            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
4949            I.getType() == I.getArgOperand(0)->getType() &&
4950            I.onlyReadsMemory()) {
4951          SDValue Tmp = getValue(I.getArgOperand(0));
4952          setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(),
4953                                   Tmp.getValueType(), Tmp));
4954          return;
4955        }
4956      } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") {
4957        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
4958            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
4959            I.getType() == I.getArgOperand(0)->getType() &&
4960            I.onlyReadsMemory()) {
4961          SDValue Tmp = getValue(I.getArgOperand(0));
4962          setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(),
4963                                   Tmp.getValueType(), Tmp));
4964          return;
4965        }
4966      } else if (Name == "memcmp") {
4967        if (visitMemCmpCall(I))
4968          return;
4969      }
4970    }
4971  }
4972
4973  SDValue Callee;
4974  if (!RenameFn)
4975    Callee = getValue(I.getCalledValue());
4976  else
4977    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
4978
4979  // Check if we can potentially perform a tail call. More detailed checking is
4980  // be done within LowerCallTo, after more information about the call is known.
4981  LowerCallTo(&I, Callee, I.isTailCall());
4982}
4983
4984namespace llvm {
4985
4986/// AsmOperandInfo - This contains information for each constraint that we are
4987/// lowering.
4988class LLVM_LIBRARY_VISIBILITY SDISelAsmOperandInfo :
4989    public TargetLowering::AsmOperandInfo {
4990public:
4991  /// CallOperand - If this is the result output operand or a clobber
4992  /// this is null, otherwise it is the incoming operand to the CallInst.
4993  /// This gets modified as the asm is processed.
4994  SDValue CallOperand;
4995
4996  /// AssignedRegs - If this is a register or register class operand, this
4997  /// contains the set of register corresponding to the operand.
4998  RegsForValue AssignedRegs;
4999
5000  explicit SDISelAsmOperandInfo(const InlineAsm::ConstraintInfo &info)
5001    : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
5002  }
5003
5004  /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
5005  /// busy in OutputRegs/InputRegs.
5006  void MarkAllocatedRegs(bool isOutReg, bool isInReg,
5007                         std::set<unsigned> &OutputRegs,
5008                         std::set<unsigned> &InputRegs,
5009                         const TargetRegisterInfo &TRI) const {
5010    if (isOutReg) {
5011      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
5012        MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
5013    }
5014    if (isInReg) {
5015      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
5016        MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
5017    }
5018  }
5019
5020  /// getCallOperandValEVT - Return the EVT of the Value* that this operand
5021  /// corresponds to.  If there is no Value* for this operand, it returns
5022  /// MVT::Other.
5023  EVT getCallOperandValEVT(LLVMContext &Context,
5024                           const TargetLowering &TLI,
5025                           const TargetData *TD) const {
5026    if (CallOperandVal == 0) return MVT::Other;
5027
5028    if (isa<BasicBlock>(CallOperandVal))
5029      return TLI.getPointerTy();
5030
5031    const llvm::Type *OpTy = CallOperandVal->getType();
5032
5033    // If this is an indirect operand, the operand is a pointer to the
5034    // accessed type.
5035    if (isIndirect) {
5036      const llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
5037      if (!PtrTy)
5038        report_fatal_error("Indirect operand for inline asm not a pointer!");
5039      OpTy = PtrTy->getElementType();
5040    }
5041
5042    // If OpTy is not a single value, it may be a struct/union that we
5043    // can tile with integers.
5044    if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5045      unsigned BitSize = TD->getTypeSizeInBits(OpTy);
5046      switch (BitSize) {
5047      default: break;
5048      case 1:
5049      case 8:
5050      case 16:
5051      case 32:
5052      case 64:
5053      case 128:
5054        OpTy = IntegerType::get(Context, BitSize);
5055        break;
5056      }
5057    }
5058
5059    return TLI.getValueType(OpTy, true);
5060  }
5061
5062private:
5063  /// MarkRegAndAliases - Mark the specified register and all aliases in the
5064  /// specified set.
5065  static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
5066                                const TargetRegisterInfo &TRI) {
5067    assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
5068    Regs.insert(Reg);
5069    if (const unsigned *Aliases = TRI.getAliasSet(Reg))
5070      for (; *Aliases; ++Aliases)
5071        Regs.insert(*Aliases);
5072  }
5073};
5074
5075} // end llvm namespace.
5076
5077/// isAllocatableRegister - If the specified register is safe to allocate,
5078/// i.e. it isn't a stack pointer or some other special register, return the
5079/// register class for the register.  Otherwise, return null.
5080static const TargetRegisterClass *
5081isAllocatableRegister(unsigned Reg, MachineFunction &MF,
5082                      const TargetLowering &TLI,
5083                      const TargetRegisterInfo *TRI) {
5084  EVT FoundVT = MVT::Other;
5085  const TargetRegisterClass *FoundRC = 0;
5086  for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(),
5087       E = TRI->regclass_end(); RCI != E; ++RCI) {
5088    EVT ThisVT = MVT::Other;
5089
5090    const TargetRegisterClass *RC = *RCI;
5091    // If none of the value types for this register class are valid, we
5092    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
5093    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
5094         I != E; ++I) {
5095      if (TLI.isTypeLegal(*I)) {
5096        // If we have already found this register in a different register class,
5097        // choose the one with the largest VT specified.  For example, on
5098        // PowerPC, we favor f64 register classes over f32.
5099        if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) {
5100          ThisVT = *I;
5101          break;
5102        }
5103      }
5104    }
5105
5106    if (ThisVT == MVT::Other) continue;
5107
5108    // NOTE: This isn't ideal.  In particular, this might allocate the
5109    // frame pointer in functions that need it (due to them not being taken
5110    // out of allocation, because a variable sized allocation hasn't been seen
5111    // yet).  This is a slight code pessimization, but should still work.
5112    for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
5113         E = RC->allocation_order_end(MF); I != E; ++I)
5114      if (*I == Reg) {
5115        // We found a matching register class.  Keep looking at others in case
5116        // we find one with larger registers that this physreg is also in.
5117        FoundRC = RC;
5118        FoundVT = ThisVT;
5119        break;
5120      }
5121  }
5122  return FoundRC;
5123}
5124
5125/// GetRegistersForValue - Assign registers (virtual or physical) for the
5126/// specified operand.  We prefer to assign virtual registers, to allow the
5127/// register allocator to handle the assignment process.  However, if the asm
5128/// uses features that we can't model on machineinstrs, we have SDISel do the
5129/// allocation.  This produces generally horrible, but correct, code.
5130///
5131///   OpInfo describes the operand.
5132///   Input and OutputRegs are the set of already allocated physical registers.
5133///
5134void SelectionDAGBuilder::
5135GetRegistersForValue(SDISelAsmOperandInfo &OpInfo,
5136                     std::set<unsigned> &OutputRegs,
5137                     std::set<unsigned> &InputRegs) {
5138  LLVMContext &Context = FuncInfo.Fn->getContext();
5139
5140  // Compute whether this value requires an input register, an output register,
5141  // or both.
5142  bool isOutReg = false;
5143  bool isInReg = false;
5144  switch (OpInfo.Type) {
5145  case InlineAsm::isOutput:
5146    isOutReg = true;
5147
5148    // If there is an input constraint that matches this, we need to reserve
5149    // the input register so no other inputs allocate to it.
5150    isInReg = OpInfo.hasMatchingInput();
5151    break;
5152  case InlineAsm::isInput:
5153    isInReg = true;
5154    isOutReg = false;
5155    break;
5156  case InlineAsm::isClobber:
5157    isOutReg = true;
5158    isInReg = true;
5159    break;
5160  }
5161
5162
5163  MachineFunction &MF = DAG.getMachineFunction();
5164  SmallVector<unsigned, 4> Regs;
5165
5166  // If this is a constraint for a single physreg, or a constraint for a
5167  // register class, find it.
5168  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
5169    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5170                                     OpInfo.ConstraintVT);
5171
5172  unsigned NumRegs = 1;
5173  if (OpInfo.ConstraintVT != MVT::Other) {
5174    // If this is a FP input in an integer register (or visa versa) insert a bit
5175    // cast of the input value.  More generally, handle any case where the input
5176    // value disagrees with the register class we plan to stick this in.
5177    if (OpInfo.Type == InlineAsm::isInput &&
5178        PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
5179      // Try to convert to the first EVT that the reg class contains.  If the
5180      // types are identical size, use a bitcast to convert (e.g. two differing
5181      // vector types).
5182      EVT RegVT = *PhysReg.second->vt_begin();
5183      if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
5184        OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
5185                                         RegVT, OpInfo.CallOperand);
5186        OpInfo.ConstraintVT = RegVT;
5187      } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
5188        // If the input is a FP value and we want it in FP registers, do a
5189        // bitcast to the corresponding integer type.  This turns an f64 value
5190        // into i64, which can be passed with two i32 values on a 32-bit
5191        // machine.
5192        RegVT = EVT::getIntegerVT(Context,
5193                                  OpInfo.ConstraintVT.getSizeInBits());
5194        OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
5195                                         RegVT, OpInfo.CallOperand);
5196        OpInfo.ConstraintVT = RegVT;
5197      }
5198    }
5199
5200    NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
5201  }
5202
5203  EVT RegVT;
5204  EVT ValueVT = OpInfo.ConstraintVT;
5205
5206  // If this is a constraint for a specific physical register, like {r17},
5207  // assign it now.
5208  if (unsigned AssignedReg = PhysReg.first) {
5209    const TargetRegisterClass *RC = PhysReg.second;
5210    if (OpInfo.ConstraintVT == MVT::Other)
5211      ValueVT = *RC->vt_begin();
5212
5213    // Get the actual register value type.  This is important, because the user
5214    // may have asked for (e.g.) the AX register in i32 type.  We need to
5215    // remember that AX is actually i16 to get the right extension.
5216    RegVT = *RC->vt_begin();
5217
5218    // This is a explicit reference to a physical register.
5219    Regs.push_back(AssignedReg);
5220
5221    // If this is an expanded reference, add the rest of the regs to Regs.
5222    if (NumRegs != 1) {
5223      TargetRegisterClass::iterator I = RC->begin();
5224      for (; *I != AssignedReg; ++I)
5225        assert(I != RC->end() && "Didn't find reg!");
5226
5227      // Already added the first reg.
5228      --NumRegs; ++I;
5229      for (; NumRegs; --NumRegs, ++I) {
5230        assert(I != RC->end() && "Ran out of registers to allocate!");
5231        Regs.push_back(*I);
5232      }
5233    }
5234
5235    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5236    const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5237    OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5238    return;
5239  }
5240
5241  // Otherwise, if this was a reference to an LLVM register class, create vregs
5242  // for this reference.
5243  if (const TargetRegisterClass *RC = PhysReg.second) {
5244    RegVT = *RC->vt_begin();
5245    if (OpInfo.ConstraintVT == MVT::Other)
5246      ValueVT = RegVT;
5247
5248    // Create the appropriate number of virtual registers.
5249    MachineRegisterInfo &RegInfo = MF.getRegInfo();
5250    for (; NumRegs; --NumRegs)
5251      Regs.push_back(RegInfo.createVirtualRegister(RC));
5252
5253    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5254    return;
5255  }
5256
5257  // This is a reference to a register class that doesn't directly correspond
5258  // to an LLVM register class.  Allocate NumRegs consecutive, available,
5259  // registers from the class.
5260  std::vector<unsigned> RegClassRegs
5261    = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
5262                                            OpInfo.ConstraintVT);
5263
5264  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5265  unsigned NumAllocated = 0;
5266  for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
5267    unsigned Reg = RegClassRegs[i];
5268    // See if this register is available.
5269    if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
5270        (isInReg  && InputRegs.count(Reg))) {    // Already used.
5271      // Make sure we find consecutive registers.
5272      NumAllocated = 0;
5273      continue;
5274    }
5275
5276    // Check to see if this register is allocatable (i.e. don't give out the
5277    // stack pointer).
5278    const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, TRI);
5279    if (!RC) {        // Couldn't allocate this register.
5280      // Reset NumAllocated to make sure we return consecutive registers.
5281      NumAllocated = 0;
5282      continue;
5283    }
5284
5285    // Okay, this register is good, we can use it.
5286    ++NumAllocated;
5287
5288    // If we allocated enough consecutive registers, succeed.
5289    if (NumAllocated == NumRegs) {
5290      unsigned RegStart = (i-NumAllocated)+1;
5291      unsigned RegEnd   = i+1;
5292      // Mark all of the allocated registers used.
5293      for (unsigned i = RegStart; i != RegEnd; ++i)
5294        Regs.push_back(RegClassRegs[i]);
5295
5296      OpInfo.AssignedRegs = RegsForValue(Regs, *RC->vt_begin(),
5297                                         OpInfo.ConstraintVT);
5298      OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5299      return;
5300    }
5301  }
5302
5303  // Otherwise, we couldn't allocate enough registers for this.
5304}
5305
5306/// visitInlineAsm - Handle a call to an InlineAsm object.
5307///
5308void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
5309  const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
5310
5311  /// ConstraintOperands - Information about all of the constraints.
5312  std::vector<SDISelAsmOperandInfo> ConstraintOperands;
5313
5314  std::set<unsigned> OutputRegs, InputRegs;
5315
5316  // Do a prepass over the constraints, canonicalizing them, and building up the
5317  // ConstraintOperands list.
5318  std::vector<InlineAsm::ConstraintInfo>
5319    ConstraintInfos = IA->ParseConstraints();
5320
5321  bool hasMemory = hasInlineAsmMemConstraint(ConstraintInfos, TLI);
5322
5323  SDValue Chain, Flag;
5324
5325  // We won't need to flush pending loads if this asm doesn't touch
5326  // memory and is nonvolatile.
5327  if (hasMemory || IA->hasSideEffects())
5328    Chain = getRoot();
5329  else
5330    Chain = DAG.getRoot();
5331
5332  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
5333  unsigned ResNo = 0;   // ResNo - The result number of the next output.
5334  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
5335    ConstraintOperands.push_back(SDISelAsmOperandInfo(ConstraintInfos[i]));
5336    SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
5337
5338    EVT OpVT = MVT::Other;
5339
5340    // Compute the value type for each operand.
5341    switch (OpInfo.Type) {
5342    case InlineAsm::isOutput:
5343      // Indirect outputs just consume an argument.
5344      if (OpInfo.isIndirect) {
5345        OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5346        break;
5347      }
5348
5349      // The return value of the call is this value.  As such, there is no
5350      // corresponding argument.
5351      assert(!CS.getType()->isVoidTy() &&
5352             "Bad inline asm!");
5353      if (const StructType *STy = dyn_cast<StructType>(CS.getType())) {
5354        OpVT = TLI.getValueType(STy->getElementType(ResNo));
5355      } else {
5356        assert(ResNo == 0 && "Asm only has one result!");
5357        OpVT = TLI.getValueType(CS.getType());
5358      }
5359      ++ResNo;
5360      break;
5361    case InlineAsm::isInput:
5362      OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5363      break;
5364    case InlineAsm::isClobber:
5365      // Nothing to do.
5366      break;
5367    }
5368
5369    // If this is an input or an indirect output, process the call argument.
5370    // BasicBlocks are labels, currently appearing only in asm's.
5371    if (OpInfo.CallOperandVal) {
5372      // Strip bitcasts, if any.  This mostly comes up for functions.
5373      OpInfo.CallOperandVal = OpInfo.CallOperandVal->stripPointerCasts();
5374
5375      if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
5376        OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
5377      } else {
5378        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
5379      }
5380
5381      OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD);
5382    }
5383
5384    OpInfo.ConstraintVT = OpVT;
5385  }
5386
5387  // Second pass over the constraints: compute which constraint option to use
5388  // and assign registers to constraints that want a specific physreg.
5389  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
5390    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5391
5392    // If this is an output operand with a matching input operand, look up the
5393    // matching input. If their types mismatch, e.g. one is an integer, the
5394    // other is floating point, or their sizes are different, flag it as an
5395    // error.
5396    if (OpInfo.hasMatchingInput()) {
5397      SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5398
5399      if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5400        if ((OpInfo.ConstraintVT.isInteger() !=
5401             Input.ConstraintVT.isInteger()) ||
5402            (OpInfo.ConstraintVT.getSizeInBits() !=
5403             Input.ConstraintVT.getSizeInBits())) {
5404          report_fatal_error("Unsupported asm: input constraint"
5405                             " with a matching output constraint of"
5406                             " incompatible type!");
5407        }
5408        Input.ConstraintVT = OpInfo.ConstraintVT;
5409      }
5410    }
5411
5412    // Compute the constraint code and ConstraintType to use.
5413    TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
5414
5415    // If this is a memory input, and if the operand is not indirect, do what we
5416    // need to to provide an address for the memory input.
5417    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5418        !OpInfo.isIndirect) {
5419      assert(OpInfo.Type == InlineAsm::isInput &&
5420             "Can only indirectify direct input operands!");
5421
5422      // Memory operands really want the address of the value.  If we don't have
5423      // an indirect input, put it in the constpool if we can, otherwise spill
5424      // it to a stack slot.
5425
5426      // If the operand is a float, integer, or vector constant, spill to a
5427      // constant pool entry to get its address.
5428      const Value *OpVal = OpInfo.CallOperandVal;
5429      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
5430          isa<ConstantVector>(OpVal)) {
5431        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
5432                                                 TLI.getPointerTy());
5433      } else {
5434        // Otherwise, create a stack slot and emit a store to it before the
5435        // asm.
5436        const Type *Ty = OpVal->getType();
5437        uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
5438        unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
5439        MachineFunction &MF = DAG.getMachineFunction();
5440        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5441        SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
5442        Chain = DAG.getStore(Chain, getCurDebugLoc(),
5443                             OpInfo.CallOperand, StackSlot, NULL, 0,
5444                             false, false, 0);
5445        OpInfo.CallOperand = StackSlot;
5446      }
5447
5448      // There is no longer a Value* corresponding to this operand.
5449      OpInfo.CallOperandVal = 0;
5450
5451      // It is now an indirect operand.
5452      OpInfo.isIndirect = true;
5453    }
5454
5455    // If this constraint is for a specific register, allocate it before
5456    // anything else.
5457    if (OpInfo.ConstraintType == TargetLowering::C_Register)
5458      GetRegistersForValue(OpInfo, OutputRegs, InputRegs);
5459  }
5460
5461  ConstraintInfos.clear();
5462
5463  // Second pass - Loop over all of the operands, assigning virtual or physregs
5464  // to register class operands.
5465  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5466    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5467
5468    // C_Register operands have already been allocated, Other/Memory don't need
5469    // to be.
5470    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
5471      GetRegistersForValue(OpInfo, OutputRegs, InputRegs);
5472  }
5473
5474  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
5475  std::vector<SDValue> AsmNodeOperands;
5476  AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
5477  AsmNodeOperands.push_back(
5478          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
5479                                      TLI.getPointerTy()));
5480
5481  // If we have a !srcloc metadata node associated with it, we want to attach
5482  // this to the ultimately generated inline asm machineinstr.  To do this, we
5483  // pass in the third operand as this (potentially null) inline asm MDNode.
5484  const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
5485  AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
5486
5487  // Remember the AlignStack bit as operand 3.
5488  AsmNodeOperands.push_back(DAG.getTargetConstant(IA->isAlignStack() ? 1 : 0,
5489                                            MVT::i1));
5490
5491  // Loop over all of the inputs, copying the operand values into the
5492  // appropriate registers and processing the output regs.
5493  RegsForValue RetValRegs;
5494
5495  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
5496  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
5497
5498  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5499    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5500
5501    switch (OpInfo.Type) {
5502    case InlineAsm::isOutput: {
5503      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
5504          OpInfo.ConstraintType != TargetLowering::C_Register) {
5505        // Memory output, or 'other' output (e.g. 'X' constraint).
5506        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
5507
5508        // Add information to the INLINEASM node to know about this output.
5509        unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
5510        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
5511                                                        TLI.getPointerTy()));
5512        AsmNodeOperands.push_back(OpInfo.CallOperand);
5513        break;
5514      }
5515
5516      // Otherwise, this is a register or register class output.
5517
5518      // Copy the output from the appropriate register.  Find a register that
5519      // we can use.
5520      if (OpInfo.AssignedRegs.Regs.empty())
5521        report_fatal_error("Couldn't allocate output reg for constraint '" +
5522                           Twine(OpInfo.ConstraintCode) + "'!");
5523
5524      // If this is an indirect operand, store through the pointer after the
5525      // asm.
5526      if (OpInfo.isIndirect) {
5527        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
5528                                                      OpInfo.CallOperandVal));
5529      } else {
5530        // This is the result value of the call.
5531        assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
5532        // Concatenate this output onto the outputs list.
5533        RetValRegs.append(OpInfo.AssignedRegs);
5534      }
5535
5536      // Add information to the INLINEASM node to know that this register is
5537      // set.
5538      OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
5539                                           InlineAsm::Kind_RegDefEarlyClobber :
5540                                               InlineAsm::Kind_RegDef,
5541                                               false,
5542                                               0,
5543                                               DAG,
5544                                               AsmNodeOperands);
5545      break;
5546    }
5547    case InlineAsm::isInput: {
5548      SDValue InOperandVal = OpInfo.CallOperand;
5549
5550      if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
5551        // If this is required to match an output register we have already set,
5552        // just use its register.
5553        unsigned OperandNo = OpInfo.getMatchedOperand();
5554
5555        // Scan until we find the definition we already emitted of this operand.
5556        // When we find it, create a RegsForValue operand.
5557        unsigned CurOp = InlineAsm::Op_FirstOperand;
5558        for (; OperandNo; --OperandNo) {
5559          // Advance to the next operand.
5560          unsigned OpFlag =
5561            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5562          assert((InlineAsm::isRegDefKind(OpFlag) ||
5563                  InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
5564                  InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
5565          CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
5566        }
5567
5568        unsigned OpFlag =
5569          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5570        if (InlineAsm::isRegDefKind(OpFlag) ||
5571            InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
5572          // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
5573          if (OpInfo.isIndirect) {
5574            // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
5575            LLVMContext &Ctx = *DAG.getContext();
5576            Ctx.emitError(CS.getInstruction(),  "inline asm not supported yet:"
5577                          " don't know how to handle tied "
5578                          "indirect register inputs");
5579          }
5580
5581          RegsForValue MatchedRegs;
5582          MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
5583          EVT RegVT = AsmNodeOperands[CurOp+1].getValueType();
5584          MatchedRegs.RegVTs.push_back(RegVT);
5585          MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
5586          for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
5587               i != e; ++i)
5588            MatchedRegs.Regs.push_back
5589              (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)));
5590
5591          // Use the produced MatchedRegs object to
5592          MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
5593                                    Chain, &Flag);
5594          MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
5595                                           true, OpInfo.getMatchedOperand(),
5596                                           DAG, AsmNodeOperands);
5597          break;
5598        }
5599
5600        assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
5601        assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
5602               "Unexpected number of operands");
5603        // Add information to the INLINEASM node to know about this input.
5604        // See InlineAsm.h isUseOperandTiedToDef.
5605        OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
5606                                                    OpInfo.getMatchedOperand());
5607        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
5608                                                        TLI.getPointerTy()));
5609        AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
5610        break;
5611      }
5612
5613      // Treat indirect 'X' constraint as memory.
5614      if (OpInfo.ConstraintType == TargetLowering::C_Other &&
5615          OpInfo.isIndirect)
5616        OpInfo.ConstraintType = TargetLowering::C_Memory;
5617
5618      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
5619        std::vector<SDValue> Ops;
5620        TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0],
5621                                         Ops, DAG);
5622        if (Ops.empty())
5623          report_fatal_error("Invalid operand for inline asm constraint '" +
5624                             Twine(OpInfo.ConstraintCode) + "'!");
5625
5626        // Add information to the INLINEASM node to know about this input.
5627        unsigned ResOpType =
5628          InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
5629        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5630                                                        TLI.getPointerTy()));
5631        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
5632        break;
5633      }
5634
5635      if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
5636        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
5637        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
5638               "Memory operands expect pointer values");
5639
5640        // Add information to the INLINEASM node to know about this input.
5641        unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
5642        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5643                                                        TLI.getPointerTy()));
5644        AsmNodeOperands.push_back(InOperandVal);
5645        break;
5646      }
5647
5648      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
5649              OpInfo.ConstraintType == TargetLowering::C_Register) &&
5650             "Unknown constraint type!");
5651      assert(!OpInfo.isIndirect &&
5652             "Don't know how to handle indirect register inputs yet!");
5653
5654      // Copy the input into the appropriate registers.
5655      if (OpInfo.AssignedRegs.Regs.empty() ||
5656          !OpInfo.AssignedRegs.areValueTypesLegal(TLI))
5657        report_fatal_error("Couldn't allocate input reg for constraint '" +
5658                           Twine(OpInfo.ConstraintCode) + "'!");
5659
5660      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
5661                                        Chain, &Flag);
5662
5663      OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
5664                                               DAG, AsmNodeOperands);
5665      break;
5666    }
5667    case InlineAsm::isClobber: {
5668      // Add the clobbered value to the operand list, so that the register
5669      // allocator is aware that the physreg got clobbered.
5670      if (!OpInfo.AssignedRegs.Regs.empty())
5671        OpInfo.AssignedRegs.AddInlineAsmOperands(
5672                                            InlineAsm::Kind_RegDefEarlyClobber,
5673                                                 false, 0, DAG,
5674                                                 AsmNodeOperands);
5675      break;
5676    }
5677    }
5678  }
5679
5680  // Finish up input operands.  Set the input chain and add the flag last.
5681  AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
5682  if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
5683
5684  Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(),
5685                      DAG.getVTList(MVT::Other, MVT::Flag),
5686                      &AsmNodeOperands[0], AsmNodeOperands.size());
5687  Flag = Chain.getValue(1);
5688
5689  // If this asm returns a register value, copy the result from that register
5690  // and set it as the value of the call.
5691  if (!RetValRegs.Regs.empty()) {
5692    SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
5693                                             Chain, &Flag);
5694
5695    // FIXME: Why don't we do this for inline asms with MRVs?
5696    if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
5697      EVT ResultType = TLI.getValueType(CS.getType());
5698
5699      // If any of the results of the inline asm is a vector, it may have the
5700      // wrong width/num elts.  This can happen for register classes that can
5701      // contain multiple different value types.  The preg or vreg allocated may
5702      // not have the same VT as was expected.  Convert it to the right type
5703      // with bit_convert.
5704      if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
5705        Val = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
5706                          ResultType, Val);
5707
5708      } else if (ResultType != Val.getValueType() &&
5709                 ResultType.isInteger() && Val.getValueType().isInteger()) {
5710        // If a result value was tied to an input value, the computed result may
5711        // have a wider width than the expected result.  Extract the relevant
5712        // portion.
5713        Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val);
5714      }
5715
5716      assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
5717    }
5718
5719    setValue(CS.getInstruction(), Val);
5720    // Don't need to use this as a chain in this case.
5721    if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
5722      return;
5723  }
5724
5725  std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
5726
5727  // Process indirect outputs, first output all of the flagged copies out of
5728  // physregs.
5729  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
5730    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
5731    const Value *Ptr = IndirectStoresToEmit[i].second;
5732    SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
5733                                             Chain, &Flag);
5734    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
5735  }
5736
5737  // Emit the non-flagged stores from the physregs.
5738  SmallVector<SDValue, 8> OutChains;
5739  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
5740    SDValue Val = DAG.getStore(Chain, getCurDebugLoc(),
5741                               StoresToEmit[i].first,
5742                               getValue(StoresToEmit[i].second),
5743                               StoresToEmit[i].second, 0,
5744                               false, false, 0);
5745    OutChains.push_back(Val);
5746  }
5747
5748  if (!OutChains.empty())
5749    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
5750                        &OutChains[0], OutChains.size());
5751
5752  DAG.setRoot(Chain);
5753}
5754
5755void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
5756  DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(),
5757                          MVT::Other, getRoot(),
5758                          getValue(I.getArgOperand(0)),
5759                          DAG.getSrcValue(I.getArgOperand(0))));
5760}
5761
5762void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
5763  const TargetData &TD = *TLI.getTargetData();
5764  SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(),
5765                           getRoot(), getValue(I.getOperand(0)),
5766                           DAG.getSrcValue(I.getOperand(0)),
5767                           TD.getABITypeAlignment(I.getType()));
5768  setValue(&I, V);
5769  DAG.setRoot(V.getValue(1));
5770}
5771
5772void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
5773  DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(),
5774                          MVT::Other, getRoot(),
5775                          getValue(I.getArgOperand(0)),
5776                          DAG.getSrcValue(I.getArgOperand(0))));
5777}
5778
5779void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
5780  DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(),
5781                          MVT::Other, getRoot(),
5782                          getValue(I.getArgOperand(0)),
5783                          getValue(I.getArgOperand(1)),
5784                          DAG.getSrcValue(I.getArgOperand(0)),
5785                          DAG.getSrcValue(I.getArgOperand(1))));
5786}
5787
5788/// TargetLowering::LowerCallTo - This is the default LowerCallTo
5789/// implementation, which just calls LowerCall.
5790/// FIXME: When all targets are
5791/// migrated to using LowerCall, this hook should be integrated into SDISel.
5792std::pair<SDValue, SDValue>
5793TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy,
5794                            bool RetSExt, bool RetZExt, bool isVarArg,
5795                            bool isInreg, unsigned NumFixedArgs,
5796                            CallingConv::ID CallConv, bool isTailCall,
5797                            bool isReturnValueUsed,
5798                            SDValue Callee,
5799                            ArgListTy &Args, SelectionDAG &DAG,
5800                            DebugLoc dl) const {
5801  // Handle all of the outgoing arguments.
5802  SmallVector<ISD::OutputArg, 32> Outs;
5803  SmallVector<SDValue, 32> OutVals;
5804  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
5805    SmallVector<EVT, 4> ValueVTs;
5806    ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
5807    for (unsigned Value = 0, NumValues = ValueVTs.size();
5808         Value != NumValues; ++Value) {
5809      EVT VT = ValueVTs[Value];
5810      const Type *ArgTy = VT.getTypeForEVT(RetTy->getContext());
5811      SDValue Op = SDValue(Args[i].Node.getNode(),
5812                           Args[i].Node.getResNo() + Value);
5813      ISD::ArgFlagsTy Flags;
5814      unsigned OriginalAlignment =
5815        getTargetData()->getABITypeAlignment(ArgTy);
5816
5817      if (Args[i].isZExt)
5818        Flags.setZExt();
5819      if (Args[i].isSExt)
5820        Flags.setSExt();
5821      if (Args[i].isInReg)
5822        Flags.setInReg();
5823      if (Args[i].isSRet)
5824        Flags.setSRet();
5825      if (Args[i].isByVal) {
5826        Flags.setByVal();
5827        const PointerType *Ty = cast<PointerType>(Args[i].Ty);
5828        const Type *ElementTy = Ty->getElementType();
5829        unsigned FrameAlign = getByValTypeAlignment(ElementTy);
5830        unsigned FrameSize  = getTargetData()->getTypeAllocSize(ElementTy);
5831        // For ByVal, alignment should come from FE.  BE will guess if this
5832        // info is not there but there are cases it cannot get right.
5833        if (Args[i].Alignment)
5834          FrameAlign = Args[i].Alignment;
5835        Flags.setByValAlign(FrameAlign);
5836        Flags.setByValSize(FrameSize);
5837      }
5838      if (Args[i].isNest)
5839        Flags.setNest();
5840      Flags.setOrigAlign(OriginalAlignment);
5841
5842      EVT PartVT = getRegisterType(RetTy->getContext(), VT);
5843      unsigned NumParts = getNumRegisters(RetTy->getContext(), VT);
5844      SmallVector<SDValue, 4> Parts(NumParts);
5845      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
5846
5847      if (Args[i].isSExt)
5848        ExtendKind = ISD::SIGN_EXTEND;
5849      else if (Args[i].isZExt)
5850        ExtendKind = ISD::ZERO_EXTEND;
5851
5852      getCopyToParts(DAG, dl, Op, &Parts[0], NumParts,
5853                     PartVT, ExtendKind);
5854
5855      for (unsigned j = 0; j != NumParts; ++j) {
5856        // if it isn't first piece, alignment must be 1
5857        ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(),
5858                               i < NumFixedArgs);
5859        if (NumParts > 1 && j == 0)
5860          MyFlags.Flags.setSplit();
5861        else if (j != 0)
5862          MyFlags.Flags.setOrigAlign(1);
5863
5864        Outs.push_back(MyFlags);
5865        OutVals.push_back(Parts[j]);
5866      }
5867    }
5868  }
5869
5870  // Handle the incoming return values from the call.
5871  SmallVector<ISD::InputArg, 32> Ins;
5872  SmallVector<EVT, 4> RetTys;
5873  ComputeValueVTs(*this, RetTy, RetTys);
5874  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
5875    EVT VT = RetTys[I];
5876    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
5877    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
5878    for (unsigned i = 0; i != NumRegs; ++i) {
5879      ISD::InputArg MyFlags;
5880      MyFlags.VT = RegisterVT;
5881      MyFlags.Used = isReturnValueUsed;
5882      if (RetSExt)
5883        MyFlags.Flags.setSExt();
5884      if (RetZExt)
5885        MyFlags.Flags.setZExt();
5886      if (isInreg)
5887        MyFlags.Flags.setInReg();
5888      Ins.push_back(MyFlags);
5889    }
5890  }
5891
5892  SmallVector<SDValue, 4> InVals;
5893  Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall,
5894                    Outs, OutVals, Ins, dl, DAG, InVals);
5895
5896  // Verify that the target's LowerCall behaved as expected.
5897  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
5898         "LowerCall didn't return a valid chain!");
5899  assert((!isTailCall || InVals.empty()) &&
5900         "LowerCall emitted a return value for a tail call!");
5901  assert((isTailCall || InVals.size() == Ins.size()) &&
5902         "LowerCall didn't emit the correct number of values!");
5903
5904  // For a tail call, the return value is merely live-out and there aren't
5905  // any nodes in the DAG representing it. Return a special value to
5906  // indicate that a tail call has been emitted and no more Instructions
5907  // should be processed in the current block.
5908  if (isTailCall) {
5909    DAG.setRoot(Chain);
5910    return std::make_pair(SDValue(), SDValue());
5911  }
5912
5913  DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
5914          assert(InVals[i].getNode() &&
5915                 "LowerCall emitted a null value!");
5916          assert(Ins[i].VT == InVals[i].getValueType() &&
5917                 "LowerCall emitted a value with the wrong type!");
5918        });
5919
5920  // Collect the legal value parts into potentially illegal values
5921  // that correspond to the original function's return values.
5922  ISD::NodeType AssertOp = ISD::DELETED_NODE;
5923  if (RetSExt)
5924    AssertOp = ISD::AssertSext;
5925  else if (RetZExt)
5926    AssertOp = ISD::AssertZext;
5927  SmallVector<SDValue, 4> ReturnValues;
5928  unsigned CurReg = 0;
5929  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
5930    EVT VT = RetTys[I];
5931    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
5932    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
5933
5934    ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg],
5935                                            NumRegs, RegisterVT, VT,
5936                                            AssertOp));
5937    CurReg += NumRegs;
5938  }
5939
5940  // For a function returning void, there is no return value. We can't create
5941  // such a node, so we just return a null return value in that case. In
5942  // that case, nothing will actualy look at the value.
5943  if (ReturnValues.empty())
5944    return std::make_pair(SDValue(), Chain);
5945
5946  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
5947                            DAG.getVTList(&RetTys[0], RetTys.size()),
5948                            &ReturnValues[0], ReturnValues.size());
5949  return std::make_pair(Res, Chain);
5950}
5951
5952void TargetLowering::LowerOperationWrapper(SDNode *N,
5953                                           SmallVectorImpl<SDValue> &Results,
5954                                           SelectionDAG &DAG) const {
5955  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
5956  if (Res.getNode())
5957    Results.push_back(Res);
5958}
5959
5960SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
5961  llvm_unreachable("LowerOperation not implemented for this target!");
5962  return SDValue();
5963}
5964
5965void
5966SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
5967  SDValue Op = getNonRegisterValue(V);
5968  assert((Op.getOpcode() != ISD::CopyFromReg ||
5969          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
5970         "Copy from a reg to the same reg!");
5971  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
5972
5973  RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
5974  SDValue Chain = DAG.getEntryNode();
5975  RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0);
5976  PendingExports.push_back(Chain);
5977}
5978
5979#include "llvm/CodeGen/SelectionDAGISel.h"
5980
5981void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) {
5982  // If this is the entry block, emit arguments.
5983  const Function &F = *LLVMBB->getParent();
5984  SelectionDAG &DAG = SDB->DAG;
5985  DebugLoc dl = SDB->getCurDebugLoc();
5986  const TargetData *TD = TLI.getTargetData();
5987  SmallVector<ISD::InputArg, 16> Ins;
5988
5989  // Check whether the function can return without sret-demotion.
5990  SmallVector<ISD::OutputArg, 4> Outs;
5991  GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
5992                Outs, TLI);
5993
5994  if (!FuncInfo->CanLowerReturn) {
5995    // Put in an sret pointer parameter before all the other parameters.
5996    SmallVector<EVT, 1> ValueVTs;
5997    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
5998
5999    // NOTE: Assuming that a pointer will never break down to more than one VT
6000    // or one register.
6001    ISD::ArgFlagsTy Flags;
6002    Flags.setSRet();
6003    EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]);
6004    ISD::InputArg RetArg(Flags, RegisterVT, true);
6005    Ins.push_back(RetArg);
6006  }
6007
6008  // Set up the incoming argument description vector.
6009  unsigned Idx = 1;
6010  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
6011       I != E; ++I, ++Idx) {
6012    SmallVector<EVT, 4> ValueVTs;
6013    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6014    bool isArgValueUsed = !I->use_empty();
6015    for (unsigned Value = 0, NumValues = ValueVTs.size();
6016         Value != NumValues; ++Value) {
6017      EVT VT = ValueVTs[Value];
6018      const Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
6019      ISD::ArgFlagsTy Flags;
6020      unsigned OriginalAlignment =
6021        TD->getABITypeAlignment(ArgTy);
6022
6023      if (F.paramHasAttr(Idx, Attribute::ZExt))
6024        Flags.setZExt();
6025      if (F.paramHasAttr(Idx, Attribute::SExt))
6026        Flags.setSExt();
6027      if (F.paramHasAttr(Idx, Attribute::InReg))
6028        Flags.setInReg();
6029      if (F.paramHasAttr(Idx, Attribute::StructRet))
6030        Flags.setSRet();
6031      if (F.paramHasAttr(Idx, Attribute::ByVal)) {
6032        Flags.setByVal();
6033        const PointerType *Ty = cast<PointerType>(I->getType());
6034        const Type *ElementTy = Ty->getElementType();
6035        unsigned FrameAlign = TLI.getByValTypeAlignment(ElementTy);
6036        unsigned FrameSize  = TD->getTypeAllocSize(ElementTy);
6037        // For ByVal, alignment should be passed from FE.  BE will guess if
6038        // this info is not there but there are cases it cannot get right.
6039        if (F.getParamAlignment(Idx))
6040          FrameAlign = F.getParamAlignment(Idx);
6041        Flags.setByValAlign(FrameAlign);
6042        Flags.setByValSize(FrameSize);
6043      }
6044      if (F.paramHasAttr(Idx, Attribute::Nest))
6045        Flags.setNest();
6046      Flags.setOrigAlign(OriginalAlignment);
6047
6048      EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6049      unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6050      for (unsigned i = 0; i != NumRegs; ++i) {
6051        ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed);
6052        if (NumRegs > 1 && i == 0)
6053          MyFlags.Flags.setSplit();
6054        // if it isn't first piece, alignment must be 1
6055        else if (i > 0)
6056          MyFlags.Flags.setOrigAlign(1);
6057        Ins.push_back(MyFlags);
6058      }
6059    }
6060  }
6061
6062  // Call the target to set up the argument values.
6063  SmallVector<SDValue, 8> InVals;
6064  SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
6065                                             F.isVarArg(), Ins,
6066                                             dl, DAG, InVals);
6067
6068  // Verify that the target's LowerFormalArguments behaved as expected.
6069  assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
6070         "LowerFormalArguments didn't return a valid chain!");
6071  assert(InVals.size() == Ins.size() &&
6072         "LowerFormalArguments didn't emit the correct number of values!");
6073  DEBUG({
6074      for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6075        assert(InVals[i].getNode() &&
6076               "LowerFormalArguments emitted a null value!");
6077        assert(Ins[i].VT == InVals[i].getValueType() &&
6078               "LowerFormalArguments emitted a value with the wrong type!");
6079      }
6080    });
6081
6082  // Update the DAG with the new chain value resulting from argument lowering.
6083  DAG.setRoot(NewRoot);
6084
6085  // Set up the argument values.
6086  unsigned i = 0;
6087  Idx = 1;
6088  if (!FuncInfo->CanLowerReturn) {
6089    // Create a virtual register for the sret pointer, and put in a copy
6090    // from the sret argument into it.
6091    SmallVector<EVT, 1> ValueVTs;
6092    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6093    EVT VT = ValueVTs[0];
6094    EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6095    ISD::NodeType AssertOp = ISD::DELETED_NODE;
6096    SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
6097                                        RegVT, VT, AssertOp);
6098
6099    MachineFunction& MF = SDB->DAG.getMachineFunction();
6100    MachineRegisterInfo& RegInfo = MF.getRegInfo();
6101    unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT));
6102    FuncInfo->DemoteRegister = SRetReg;
6103    NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(),
6104                                    SRetReg, ArgValue);
6105    DAG.setRoot(NewRoot);
6106
6107    // i indexes lowered arguments.  Bump it past the hidden sret argument.
6108    // Idx indexes LLVM arguments.  Don't touch it.
6109    ++i;
6110  }
6111
6112  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
6113      ++I, ++Idx) {
6114    SmallVector<SDValue, 4> ArgValues;
6115    SmallVector<EVT, 4> ValueVTs;
6116    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6117    unsigned NumValues = ValueVTs.size();
6118
6119    // If this argument is unused then remember its value. It is used to generate
6120    // debugging information.
6121    if (I->use_empty() && NumValues)
6122      SDB->setUnusedArgValue(I, InVals[i]);
6123
6124    for (unsigned Value = 0; Value != NumValues; ++Value) {
6125      EVT VT = ValueVTs[Value];
6126      EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6127      unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6128
6129      if (!I->use_empty()) {
6130        ISD::NodeType AssertOp = ISD::DELETED_NODE;
6131        if (F.paramHasAttr(Idx, Attribute::SExt))
6132          AssertOp = ISD::AssertSext;
6133        else if (F.paramHasAttr(Idx, Attribute::ZExt))
6134          AssertOp = ISD::AssertZext;
6135
6136        ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
6137                                             NumParts, PartVT, VT,
6138                                             AssertOp));
6139      }
6140
6141      i += NumParts;
6142    }
6143
6144    if (!I->use_empty()) {
6145      SDValue Res;
6146      if (!ArgValues.empty())
6147        Res = DAG.getMergeValues(&ArgValues[0], NumValues,
6148                                 SDB->getCurDebugLoc());
6149      SDB->setValue(I, Res);
6150
6151      // If this argument is live outside of the entry block, insert a copy from
6152      // whereever we got it to the vreg that other BB's will reference it as.
6153      SDB->CopyToExportRegsIfNeeded(I);
6154    }
6155  }
6156
6157  assert(i == InVals.size() && "Argument register count mismatch!");
6158
6159  // Finally, if the target has anything special to do, allow it to do so.
6160  // FIXME: this should insert code into the DAG!
6161  EmitFunctionEntryCode();
6162}
6163
6164/// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
6165/// ensure constants are generated when needed.  Remember the virtual registers
6166/// that need to be added to the Machine PHI nodes as input.  We cannot just
6167/// directly add them, because expansion might result in multiple MBB's for one
6168/// BB.  As such, the start of the BB might correspond to a different MBB than
6169/// the end.
6170///
6171void
6172SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
6173  const TerminatorInst *TI = LLVMBB->getTerminator();
6174
6175  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6176
6177  // Check successor nodes' PHI nodes that expect a constant to be available
6178  // from this block.
6179  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6180    const BasicBlock *SuccBB = TI->getSuccessor(succ);
6181    if (!isa<PHINode>(SuccBB->begin())) continue;
6182    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
6183
6184    // If this terminator has multiple identical successors (common for
6185    // switches), only handle each succ once.
6186    if (!SuccsHandled.insert(SuccMBB)) continue;
6187
6188    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6189
6190    // At this point we know that there is a 1-1 correspondence between LLVM PHI
6191    // nodes and Machine PHI nodes, but the incoming operands have not been
6192    // emitted yet.
6193    for (BasicBlock::const_iterator I = SuccBB->begin();
6194         const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
6195      // Ignore dead phi's.
6196      if (PN->use_empty()) continue;
6197
6198      unsigned Reg;
6199      const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6200
6201      if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
6202        unsigned &RegOut = ConstantsOut[C];
6203        if (RegOut == 0) {
6204          RegOut = FuncInfo.CreateRegs(C->getType());
6205          CopyValueToVirtualRegister(C, RegOut);
6206        }
6207        Reg = RegOut;
6208      } else {
6209        DenseMap<const Value *, unsigned>::iterator I =
6210          FuncInfo.ValueMap.find(PHIOp);
6211        if (I != FuncInfo.ValueMap.end())
6212          Reg = I->second;
6213        else {
6214          assert(isa<AllocaInst>(PHIOp) &&
6215                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
6216                 "Didn't codegen value into a register!??");
6217          Reg = FuncInfo.CreateRegs(PHIOp->getType());
6218          CopyValueToVirtualRegister(PHIOp, Reg);
6219        }
6220      }
6221
6222      // Remember that this register needs to added to the machine PHI node as
6223      // the input for this MBB.
6224      SmallVector<EVT, 4> ValueVTs;
6225      ComputeValueVTs(TLI, PN->getType(), ValueVTs);
6226      for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
6227        EVT VT = ValueVTs[vti];
6228        unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
6229        for (unsigned i = 0, e = NumRegisters; i != e; ++i)
6230          FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
6231        Reg += NumRegisters;
6232      }
6233    }
6234  }
6235  ConstantsOut.clear();
6236}
6237