SelectionDAGBuilder.cpp revision 0a29cb045444c13160e90fe7942a9d7c720185ed
1//===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements routines for translating from LLVM IR into SelectionDAG IR.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "SelectionDAGBuilder.h"
16#include "SDNodeDbgValue.h"
17#include "llvm/ADT/BitVector.h"
18#include "llvm/ADT/SmallSet.h"
19#include "llvm/Analysis/AliasAnalysis.h"
20#include "llvm/Analysis/BranchProbabilityInfo.h"
21#include "llvm/Analysis/ConstantFolding.h"
22#include "llvm/Analysis/ValueTracking.h"
23#include "llvm/CodeGen/Analysis.h"
24#include "llvm/CodeGen/FastISel.h"
25#include "llvm/CodeGen/FunctionLoweringInfo.h"
26#include "llvm/CodeGen/GCMetadata.h"
27#include "llvm/CodeGen/GCStrategy.h"
28#include "llvm/CodeGen/MachineFrameInfo.h"
29#include "llvm/CodeGen/MachineFunction.h"
30#include "llvm/CodeGen/MachineInstrBuilder.h"
31#include "llvm/CodeGen/MachineJumpTableInfo.h"
32#include "llvm/CodeGen/MachineModuleInfo.h"
33#include "llvm/CodeGen/MachineRegisterInfo.h"
34#include "llvm/CodeGen/SelectionDAG.h"
35#include "llvm/DebugInfo.h"
36#include "llvm/IR/CallingConv.h"
37#include "llvm/IR/Constants.h"
38#include "llvm/IR/DataLayout.h"
39#include "llvm/IR/DerivedTypes.h"
40#include "llvm/IR/Function.h"
41#include "llvm/IR/GlobalVariable.h"
42#include "llvm/IR/InlineAsm.h"
43#include "llvm/IR/Instructions.h"
44#include "llvm/IR/IntrinsicInst.h"
45#include "llvm/IR/Intrinsics.h"
46#include "llvm/IR/LLVMContext.h"
47#include "llvm/IR/Module.h"
48#include "llvm/Support/CommandLine.h"
49#include "llvm/Support/Debug.h"
50#include "llvm/Support/ErrorHandling.h"
51#include "llvm/Support/IntegersSubsetMapping.h"
52#include "llvm/Support/MathExtras.h"
53#include "llvm/Support/raw_ostream.h"
54#include "llvm/Target/TargetFrameLowering.h"
55#include "llvm/Target/TargetInstrInfo.h"
56#include "llvm/Target/TargetIntrinsicInfo.h"
57#include "llvm/Target/TargetLibraryInfo.h"
58#include "llvm/Target/TargetLowering.h"
59#include "llvm/Target/TargetOptions.h"
60#include <algorithm>
61using namespace llvm;
62
63/// LimitFloatPrecision - Generate low-precision inline sequences for
64/// some float libcalls (6, 8 or 12 bits).
65static unsigned LimitFloatPrecision;
66
67static cl::opt<unsigned, true>
68LimitFPPrecision("limit-float-precision",
69                 cl::desc("Generate low-precision inline sequences "
70                          "for some float libcalls"),
71                 cl::location(LimitFloatPrecision),
72                 cl::init(0));
73
74// Limit the width of DAG chains. This is important in general to prevent
75// prevent DAG-based analysis from blowing up. For example, alias analysis and
76// load clustering may not complete in reasonable time. It is difficult to
77// recognize and avoid this situation within each individual analysis, and
78// future analyses are likely to have the same behavior. Limiting DAG width is
79// the safe approach, and will be especially important with global DAGs.
80//
81// MaxParallelChains default is arbitrarily high to avoid affecting
82// optimization, but could be lowered to improve compile time. Any ld-ld-st-st
83// sequence over this should have been converted to llvm.memcpy by the
84// frontend. It easy to induce this behavior with .ll code such as:
85// %buffer = alloca [4096 x i8]
86// %data = load [4096 x i8]* %argPtr
87// store [4096 x i8] %data, [4096 x i8]* %buffer
88static const unsigned MaxParallelChains = 64;
89
90static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
91                                      const SDValue *Parts, unsigned NumParts,
92                                      MVT PartVT, EVT ValueVT, const Value *V);
93
94/// getCopyFromParts - Create a value that contains the specified legal parts
95/// combined into the value they represent.  If the parts combine to a type
96/// larger then ValueVT then AssertOp can be used to specify whether the extra
97/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
98/// (ISD::AssertSext).
99static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL,
100                                const SDValue *Parts,
101                                unsigned NumParts, MVT PartVT, EVT ValueVT,
102                                const Value *V,
103                                ISD::NodeType AssertOp = ISD::DELETED_NODE) {
104  if (ValueVT.isVector())
105    return getCopyFromPartsVector(DAG, DL, Parts, NumParts,
106                                  PartVT, ValueVT, V);
107
108  assert(NumParts > 0 && "No parts to assemble!");
109  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
110  SDValue Val = Parts[0];
111
112  if (NumParts > 1) {
113    // Assemble the value from multiple parts.
114    if (ValueVT.isInteger()) {
115      unsigned PartBits = PartVT.getSizeInBits();
116      unsigned ValueBits = ValueVT.getSizeInBits();
117
118      // Assemble the power of 2 part.
119      unsigned RoundParts = NumParts & (NumParts - 1) ?
120        1 << Log2_32(NumParts) : NumParts;
121      unsigned RoundBits = PartBits * RoundParts;
122      EVT RoundVT = RoundBits == ValueBits ?
123        ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
124      SDValue Lo, Hi;
125
126      EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
127
128      if (RoundParts > 2) {
129        Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
130                              PartVT, HalfVT, V);
131        Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
132                              RoundParts / 2, PartVT, HalfVT, V);
133      } else {
134        Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
135        Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
136      }
137
138      if (TLI.isBigEndian())
139        std::swap(Lo, Hi);
140
141      Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
142
143      if (RoundParts < NumParts) {
144        // Assemble the trailing non-power-of-2 part.
145        unsigned OddParts = NumParts - RoundParts;
146        EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
147        Hi = getCopyFromParts(DAG, DL,
148                              Parts + RoundParts, OddParts, PartVT, OddVT, V);
149
150        // Combine the round and odd parts.
151        Lo = Val;
152        if (TLI.isBigEndian())
153          std::swap(Lo, Hi);
154        EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
155        Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
156        Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
157                         DAG.getConstant(Lo.getValueType().getSizeInBits(),
158                                         TLI.getPointerTy()));
159        Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
160        Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
161      }
162    } else if (PartVT.isFloatingPoint()) {
163      // FP split into multiple FP parts (for ppcf128)
164      assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
165             "Unexpected split");
166      SDValue Lo, Hi;
167      Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
168      Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
169      if (TLI.isBigEndian())
170        std::swap(Lo, Hi);
171      Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
172    } else {
173      // FP split into integer parts (soft fp)
174      assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
175             !PartVT.isVector() && "Unexpected split");
176      EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
177      Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V);
178    }
179  }
180
181  // There is now one part, held in Val.  Correct it to match ValueVT.
182  EVT PartEVT = Val.getValueType();
183
184  if (PartEVT == ValueVT)
185    return Val;
186
187  if (PartEVT.isInteger() && ValueVT.isInteger()) {
188    if (ValueVT.bitsLT(PartEVT)) {
189      // For a truncate, see if we have any information to
190      // indicate whether the truncated bits will always be
191      // zero or sign-extension.
192      if (AssertOp != ISD::DELETED_NODE)
193        Val = DAG.getNode(AssertOp, DL, PartEVT, Val,
194                          DAG.getValueType(ValueVT));
195      return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
196    }
197    return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
198  }
199
200  if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
201    // FP_ROUND's are always exact here.
202    if (ValueVT.bitsLT(Val.getValueType()))
203      return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val,
204                         DAG.getTargetConstant(1, TLI.getPointerTy()));
205
206    return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
207  }
208
209  if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
210    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
211
212  llvm_unreachable("Unknown mismatch!");
213}
214
215/// getCopyFromPartsVector - Create a value that contains the specified legal
216/// parts combined into the value they represent.  If the parts combine to a
217/// type larger then ValueVT then AssertOp can be used to specify whether the
218/// extra bits are known to be zero (ISD::AssertZext) or sign extended from
219/// ValueVT (ISD::AssertSext).
220static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
221                                      const SDValue *Parts, unsigned NumParts,
222                                      MVT PartVT, EVT ValueVT, const Value *V) {
223  assert(ValueVT.isVector() && "Not a vector value");
224  assert(NumParts > 0 && "No parts to assemble!");
225  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
226  SDValue Val = Parts[0];
227
228  // Handle a multi-element vector.
229  if (NumParts > 1) {
230    EVT IntermediateVT;
231    MVT RegisterVT;
232    unsigned NumIntermediates;
233    unsigned NumRegs =
234    TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
235                               NumIntermediates, RegisterVT);
236    assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
237    NumParts = NumRegs; // Silence a compiler warning.
238    assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
239    assert(RegisterVT == Parts[0].getSimpleValueType() &&
240           "Part type doesn't match part!");
241
242    // Assemble the parts into intermediate operands.
243    SmallVector<SDValue, 8> Ops(NumIntermediates);
244    if (NumIntermediates == NumParts) {
245      // If the register was not expanded, truncate or copy the value,
246      // as appropriate.
247      for (unsigned i = 0; i != NumParts; ++i)
248        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
249                                  PartVT, IntermediateVT, V);
250    } else if (NumParts > 0) {
251      // If the intermediate type was expanded, build the intermediate
252      // operands from the parts.
253      assert(NumParts % NumIntermediates == 0 &&
254             "Must expand into a divisible number of parts!");
255      unsigned Factor = NumParts / NumIntermediates;
256      for (unsigned i = 0; i != NumIntermediates; ++i)
257        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
258                                  PartVT, IntermediateVT, V);
259    }
260
261    // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
262    // intermediate operands.
263    Val = DAG.getNode(IntermediateVT.isVector() ?
264                      ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL,
265                      ValueVT, &Ops[0], NumIntermediates);
266  }
267
268  // There is now one part, held in Val.  Correct it to match ValueVT.
269  EVT PartEVT = Val.getValueType();
270
271  if (PartEVT == ValueVT)
272    return Val;
273
274  if (PartEVT.isVector()) {
275    // If the element type of the source/dest vectors are the same, but the
276    // parts vector has more elements than the value vector, then we have a
277    // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
278    // elements we want.
279    if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
280      assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
281             "Cannot narrow, it would be a lossy transformation");
282      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
283                         DAG.getIntPtrConstant(0));
284    }
285
286    // Vector/Vector bitcast.
287    if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
288      return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
289
290    assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
291      "Cannot handle this kind of promotion");
292    // Promoted vector extract
293    bool Smaller = ValueVT.bitsLE(PartEVT);
294    return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
295                       DL, ValueVT, Val);
296
297  }
298
299  // Trivial bitcast if the types are the same size and the destination
300  // vector type is legal.
301  if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
302      TLI.isTypeLegal(ValueVT))
303    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
304
305  // Handle cases such as i8 -> <1 x i1>
306  if (ValueVT.getVectorNumElements() != 1) {
307    LLVMContext &Ctx = *DAG.getContext();
308    Twine ErrMsg("non-trivial scalar-to-vector conversion");
309    if (const Instruction *I = dyn_cast_or_null<Instruction>(V)) {
310      if (const CallInst *CI = dyn_cast<CallInst>(I))
311        if (isa<InlineAsm>(CI->getCalledValue()))
312          ErrMsg = ErrMsg + ", possible invalid constraint for vector type";
313      Ctx.emitError(I, ErrMsg);
314    } else {
315      Ctx.emitError(ErrMsg);
316    }
317    report_fatal_error("Cannot handle scalar-to-vector conversion!");
318  }
319
320  if (ValueVT.getVectorNumElements() == 1 &&
321      ValueVT.getVectorElementType() != PartEVT) {
322    bool Smaller = ValueVT.bitsLE(PartEVT);
323    Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
324                       DL, ValueVT.getScalarType(), Val);
325  }
326
327  return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
328}
329
330static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl,
331                                 SDValue Val, SDValue *Parts, unsigned NumParts,
332                                 MVT PartVT, const Value *V);
333
334/// getCopyToParts - Create a series of nodes that contain the specified value
335/// split into legal parts.  If the parts contain more bits than Val, then, for
336/// integers, ExtendKind can be used to specify how to generate the extra bits.
337static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL,
338                           SDValue Val, SDValue *Parts, unsigned NumParts,
339                           MVT PartVT, const Value *V,
340                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
341  EVT ValueVT = Val.getValueType();
342
343  // Handle the vector case separately.
344  if (ValueVT.isVector())
345    return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V);
346
347  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
348  unsigned PartBits = PartVT.getSizeInBits();
349  unsigned OrigNumParts = NumParts;
350  assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
351
352  if (NumParts == 0)
353    return;
354
355  assert(!ValueVT.isVector() && "Vector case handled elsewhere");
356  EVT PartEVT = PartVT;
357  if (PartEVT == ValueVT) {
358    assert(NumParts == 1 && "No-op copy with multiple parts!");
359    Parts[0] = Val;
360    return;
361  }
362
363  if (NumParts * PartBits > ValueVT.getSizeInBits()) {
364    // If the parts cover more bits than the value has, promote the value.
365    if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
366      assert(NumParts == 1 && "Do not know what to promote to!");
367      Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
368    } else {
369      assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
370             ValueVT.isInteger() &&
371             "Unknown mismatch!");
372      ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
373      Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
374      if (PartVT == MVT::x86mmx)
375        Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
376    }
377  } else if (PartBits == ValueVT.getSizeInBits()) {
378    // Different types of the same size.
379    assert(NumParts == 1 && PartEVT != ValueVT);
380    Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
381  } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
382    // If the parts cover less bits than value has, truncate the value.
383    assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
384           ValueVT.isInteger() &&
385           "Unknown mismatch!");
386    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
387    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
388    if (PartVT == MVT::x86mmx)
389      Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
390  }
391
392  // The value may have changed - recompute ValueVT.
393  ValueVT = Val.getValueType();
394  assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
395         "Failed to tile the value with PartVT!");
396
397  if (NumParts == 1) {
398    if (PartEVT != ValueVT) {
399      LLVMContext &Ctx = *DAG.getContext();
400      Twine ErrMsg("scalar-to-vector conversion failed");
401      if (const Instruction *I = dyn_cast_or_null<Instruction>(V)) {
402        if (const CallInst *CI = dyn_cast<CallInst>(I))
403          if (isa<InlineAsm>(CI->getCalledValue()))
404            ErrMsg = ErrMsg + ", possible invalid constraint for vector type";
405        Ctx.emitError(I, ErrMsg);
406      } else {
407        Ctx.emitError(ErrMsg);
408      }
409    }
410
411    Parts[0] = Val;
412    return;
413  }
414
415  // Expand the value into multiple parts.
416  if (NumParts & (NumParts - 1)) {
417    // The number of parts is not a power of 2.  Split off and copy the tail.
418    assert(PartVT.isInteger() && ValueVT.isInteger() &&
419           "Do not know what to expand to!");
420    unsigned RoundParts = 1 << Log2_32(NumParts);
421    unsigned RoundBits = RoundParts * PartBits;
422    unsigned OddParts = NumParts - RoundParts;
423    SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
424                                 DAG.getIntPtrConstant(RoundBits));
425    getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V);
426
427    if (TLI.isBigEndian())
428      // The odd parts were reversed by getCopyToParts - unreverse them.
429      std::reverse(Parts + RoundParts, Parts + NumParts);
430
431    NumParts = RoundParts;
432    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
433    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
434  }
435
436  // The number of parts is a power of 2.  Repeatedly bisect the value using
437  // EXTRACT_ELEMENT.
438  Parts[0] = DAG.getNode(ISD::BITCAST, DL,
439                         EVT::getIntegerVT(*DAG.getContext(),
440                                           ValueVT.getSizeInBits()),
441                         Val);
442
443  for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
444    for (unsigned i = 0; i < NumParts; i += StepSize) {
445      unsigned ThisBits = StepSize * PartBits / 2;
446      EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
447      SDValue &Part0 = Parts[i];
448      SDValue &Part1 = Parts[i+StepSize/2];
449
450      Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
451                          ThisVT, Part0, DAG.getIntPtrConstant(1));
452      Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
453                          ThisVT, Part0, DAG.getIntPtrConstant(0));
454
455      if (ThisBits == PartBits && ThisVT != PartVT) {
456        Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
457        Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
458      }
459    }
460  }
461
462  if (TLI.isBigEndian())
463    std::reverse(Parts, Parts + OrigNumParts);
464}
465
466
467/// getCopyToPartsVector - Create a series of nodes that contain the specified
468/// value split into legal parts.
469static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL,
470                                 SDValue Val, SDValue *Parts, unsigned NumParts,
471                                 MVT PartVT, const Value *V) {
472  EVT ValueVT = Val.getValueType();
473  assert(ValueVT.isVector() && "Not a vector");
474  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
475
476  if (NumParts == 1) {
477    EVT PartEVT = PartVT;
478    if (PartEVT == ValueVT) {
479      // Nothing to do.
480    } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
481      // Bitconvert vector->vector case.
482      Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
483    } else if (PartVT.isVector() &&
484               PartEVT.getVectorElementType() == ValueVT.getVectorElementType() &&
485               PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
486      EVT ElementVT = PartVT.getVectorElementType();
487      // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
488      // undef elements.
489      SmallVector<SDValue, 16> Ops;
490      for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
491        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
492                                  ElementVT, Val, DAG.getIntPtrConstant(i)));
493
494      for (unsigned i = ValueVT.getVectorNumElements(),
495           e = PartVT.getVectorNumElements(); i != e; ++i)
496        Ops.push_back(DAG.getUNDEF(ElementVT));
497
498      Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size());
499
500      // FIXME: Use CONCAT for 2x -> 4x.
501
502      //SDValue UndefElts = DAG.getUNDEF(VectorTy);
503      //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
504    } else if (PartVT.isVector() &&
505               PartEVT.getVectorElementType().bitsGE(
506                 ValueVT.getVectorElementType()) &&
507               PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
508
509      // Promoted vector extract
510      bool Smaller = PartEVT.bitsLE(ValueVT);
511      Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
512                        DL, PartVT, Val);
513    } else{
514      // Vector -> scalar conversion.
515      assert(ValueVT.getVectorNumElements() == 1 &&
516             "Only trivial vector-to-scalar conversions should get here!");
517      Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
518                        PartVT, Val, DAG.getIntPtrConstant(0));
519
520      bool Smaller = ValueVT.bitsLE(PartVT);
521      Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
522                         DL, PartVT, Val);
523    }
524
525    Parts[0] = Val;
526    return;
527  }
528
529  // Handle a multi-element vector.
530  EVT IntermediateVT;
531  MVT RegisterVT;
532  unsigned NumIntermediates;
533  unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
534                                                IntermediateVT,
535                                                NumIntermediates, RegisterVT);
536  unsigned NumElements = ValueVT.getVectorNumElements();
537
538  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
539  NumParts = NumRegs; // Silence a compiler warning.
540  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
541
542  // Split the vector into intermediate operands.
543  SmallVector<SDValue, 8> Ops(NumIntermediates);
544  for (unsigned i = 0; i != NumIntermediates; ++i) {
545    if (IntermediateVT.isVector())
546      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
547                           IntermediateVT, Val,
548                   DAG.getIntPtrConstant(i * (NumElements / NumIntermediates)));
549    else
550      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
551                           IntermediateVT, Val, DAG.getIntPtrConstant(i));
552  }
553
554  // Split the intermediate operands into legal parts.
555  if (NumParts == NumIntermediates) {
556    // If the register was not expanded, promote or copy the value,
557    // as appropriate.
558    for (unsigned i = 0; i != NumParts; ++i)
559      getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V);
560  } else if (NumParts > 0) {
561    // If the intermediate type was expanded, split each the value into
562    // legal parts.
563    assert(NumParts % NumIntermediates == 0 &&
564           "Must expand into a divisible number of parts!");
565    unsigned Factor = NumParts / NumIntermediates;
566    for (unsigned i = 0; i != NumIntermediates; ++i)
567      getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V);
568  }
569}
570
571namespace {
572  /// RegsForValue - This struct represents the registers (physical or virtual)
573  /// that a particular set of values is assigned, and the type information
574  /// about the value. The most common situation is to represent one value at a
575  /// time, but struct or array values are handled element-wise as multiple
576  /// values.  The splitting of aggregates is performed recursively, so that we
577  /// never have aggregate-typed registers. The values at this point do not
578  /// necessarily have legal types, so each value may require one or more
579  /// registers of some legal type.
580  ///
581  struct RegsForValue {
582    /// ValueVTs - The value types of the values, which may not be legal, and
583    /// may need be promoted or synthesized from one or more registers.
584    ///
585    SmallVector<EVT, 4> ValueVTs;
586
587    /// RegVTs - The value types of the registers. This is the same size as
588    /// ValueVTs and it records, for each value, what the type of the assigned
589    /// register or registers are. (Individual values are never synthesized
590    /// from more than one type of register.)
591    ///
592    /// With virtual registers, the contents of RegVTs is redundant with TLI's
593    /// getRegisterType member function, however when with physical registers
594    /// it is necessary to have a separate record of the types.
595    ///
596    SmallVector<MVT, 4> RegVTs;
597
598    /// Regs - This list holds the registers assigned to the values.
599    /// Each legal or promoted value requires one register, and each
600    /// expanded value requires multiple registers.
601    ///
602    SmallVector<unsigned, 4> Regs;
603
604    RegsForValue() {}
605
606    RegsForValue(const SmallVector<unsigned, 4> &regs,
607                 MVT regvt, EVT valuevt)
608      : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
609
610    RegsForValue(LLVMContext &Context, const TargetLowering &tli,
611                 unsigned Reg, Type *Ty) {
612      ComputeValueVTs(tli, Ty, ValueVTs);
613
614      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
615        EVT ValueVT = ValueVTs[Value];
616        unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
617        MVT RegisterVT = tli.getRegisterType(Context, ValueVT);
618        for (unsigned i = 0; i != NumRegs; ++i)
619          Regs.push_back(Reg + i);
620        RegVTs.push_back(RegisterVT);
621        Reg += NumRegs;
622      }
623    }
624
625    /// areValueTypesLegal - Return true if types of all the values are legal.
626    bool areValueTypesLegal(const TargetLowering &TLI) {
627      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
628        MVT RegisterVT = RegVTs[Value];
629        if (!TLI.isTypeLegal(RegisterVT))
630          return false;
631      }
632      return true;
633    }
634
635    /// append - Add the specified values to this one.
636    void append(const RegsForValue &RHS) {
637      ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
638      RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
639      Regs.append(RHS.Regs.begin(), RHS.Regs.end());
640    }
641
642    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
643    /// this value and returns the result as a ValueVTs value.  This uses
644    /// Chain/Flag as the input and updates them for the output Chain/Flag.
645    /// If the Flag pointer is NULL, no flag is used.
646    SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
647                            DebugLoc dl,
648                            SDValue &Chain, SDValue *Flag,
649                            const Value *V = 0) const;
650
651    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
652    /// specified value into the registers specified by this object.  This uses
653    /// Chain/Flag as the input and updates them for the output Chain/Flag.
654    /// If the Flag pointer is NULL, no flag is used.
655    void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
656                       SDValue &Chain, SDValue *Flag, const Value *V) const;
657
658    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
659    /// operand list.  This adds the code marker, matching input operand index
660    /// (if applicable), and includes the number of values added into it.
661    void AddInlineAsmOperands(unsigned Kind,
662                              bool HasMatching, unsigned MatchingIdx,
663                              SelectionDAG &DAG,
664                              std::vector<SDValue> &Ops) const;
665  };
666}
667
668/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
669/// this value and returns the result as a ValueVT value.  This uses
670/// Chain/Flag as the input and updates them for the output Chain/Flag.
671/// If the Flag pointer is NULL, no flag is used.
672SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
673                                      FunctionLoweringInfo &FuncInfo,
674                                      DebugLoc dl,
675                                      SDValue &Chain, SDValue *Flag,
676                                      const Value *V) const {
677  // A Value with type {} or [0 x %t] needs no registers.
678  if (ValueVTs.empty())
679    return SDValue();
680
681  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
682
683  // Assemble the legal parts into the final values.
684  SmallVector<SDValue, 4> Values(ValueVTs.size());
685  SmallVector<SDValue, 8> Parts;
686  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
687    // Copy the legal parts from the registers.
688    EVT ValueVT = ValueVTs[Value];
689    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
690    MVT RegisterVT = RegVTs[Value];
691
692    Parts.resize(NumRegs);
693    for (unsigned i = 0; i != NumRegs; ++i) {
694      SDValue P;
695      if (Flag == 0) {
696        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
697      } else {
698        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
699        *Flag = P.getValue(2);
700      }
701
702      Chain = P.getValue(1);
703      Parts[i] = P;
704
705      // If the source register was virtual and if we know something about it,
706      // add an assert node.
707      if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
708          !RegisterVT.isInteger() || RegisterVT.isVector())
709        continue;
710
711      const FunctionLoweringInfo::LiveOutInfo *LOI =
712        FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
713      if (!LOI)
714        continue;
715
716      unsigned RegSize = RegisterVT.getSizeInBits();
717      unsigned NumSignBits = LOI->NumSignBits;
718      unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
719
720      // FIXME: We capture more information than the dag can represent.  For
721      // now, just use the tightest assertzext/assertsext possible.
722      bool isSExt = true;
723      EVT FromVT(MVT::Other);
724      if (NumSignBits == RegSize)
725        isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
726      else if (NumZeroBits >= RegSize-1)
727        isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
728      else if (NumSignBits > RegSize-8)
729        isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
730      else if (NumZeroBits >= RegSize-8)
731        isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
732      else if (NumSignBits > RegSize-16)
733        isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
734      else if (NumZeroBits >= RegSize-16)
735        isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
736      else if (NumSignBits > RegSize-32)
737        isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
738      else if (NumZeroBits >= RegSize-32)
739        isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
740      else
741        continue;
742
743      // Add an assertion node.
744      assert(FromVT != MVT::Other);
745      Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
746                             RegisterVT, P, DAG.getValueType(FromVT));
747    }
748
749    Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
750                                     NumRegs, RegisterVT, ValueVT, V);
751    Part += NumRegs;
752    Parts.clear();
753  }
754
755  return DAG.getNode(ISD::MERGE_VALUES, dl,
756                     DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
757                     &Values[0], ValueVTs.size());
758}
759
760/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
761/// specified value into the registers specified by this object.  This uses
762/// Chain/Flag as the input and updates them for the output Chain/Flag.
763/// If the Flag pointer is NULL, no flag is used.
764void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
765                                 SDValue &Chain, SDValue *Flag,
766                                 const Value *V) const {
767  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
768
769  // Get the list of the values's legal parts.
770  unsigned NumRegs = Regs.size();
771  SmallVector<SDValue, 8> Parts(NumRegs);
772  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
773    EVT ValueVT = ValueVTs[Value];
774    unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
775    MVT RegisterVT = RegVTs[Value];
776    ISD::NodeType ExtendKind =
777      TLI.isZExtFree(Val, RegisterVT)? ISD::ZERO_EXTEND: ISD::ANY_EXTEND;
778
779    getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
780                   &Parts[Part], NumParts, RegisterVT, V, ExtendKind);
781    Part += NumParts;
782  }
783
784  // Copy the parts into the registers.
785  SmallVector<SDValue, 8> Chains(NumRegs);
786  for (unsigned i = 0; i != NumRegs; ++i) {
787    SDValue Part;
788    if (Flag == 0) {
789      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
790    } else {
791      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
792      *Flag = Part.getValue(1);
793    }
794
795    Chains[i] = Part.getValue(0);
796  }
797
798  if (NumRegs == 1 || Flag)
799    // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
800    // flagged to it. That is the CopyToReg nodes and the user are considered
801    // a single scheduling unit. If we create a TokenFactor and return it as
802    // chain, then the TokenFactor is both a predecessor (operand) of the
803    // user as well as a successor (the TF operands are flagged to the user).
804    // c1, f1 = CopyToReg
805    // c2, f2 = CopyToReg
806    // c3     = TokenFactor c1, c2
807    // ...
808    //        = op c3, ..., f2
809    Chain = Chains[NumRegs-1];
810  else
811    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
812}
813
814/// AddInlineAsmOperands - Add this value to the specified inlineasm node
815/// operand list.  This adds the code marker and includes the number of
816/// values added into it.
817void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
818                                        unsigned MatchingIdx,
819                                        SelectionDAG &DAG,
820                                        std::vector<SDValue> &Ops) const {
821  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
822
823  unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
824  if (HasMatching)
825    Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
826  else if (!Regs.empty() &&
827           TargetRegisterInfo::isVirtualRegister(Regs.front())) {
828    // Put the register class of the virtual registers in the flag word.  That
829    // way, later passes can recompute register class constraints for inline
830    // assembly as well as normal instructions.
831    // Don't do this for tied operands that can use the regclass information
832    // from the def.
833    const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
834    const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
835    Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
836  }
837
838  SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
839  Ops.push_back(Res);
840
841  for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
842    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
843    MVT RegisterVT = RegVTs[Value];
844    for (unsigned i = 0; i != NumRegs; ++i) {
845      assert(Reg < Regs.size() && "Mismatch in # registers expected");
846      Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
847    }
848  }
849}
850
851void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa,
852                               const TargetLibraryInfo *li) {
853  AA = &aa;
854  GFI = gfi;
855  LibInfo = li;
856  TD = DAG.getTarget().getDataLayout();
857  Context = DAG.getContext();
858  LPadToCallSiteMap.clear();
859}
860
861/// clear - Clear out the current SelectionDAG and the associated
862/// state and prepare this SelectionDAGBuilder object to be used
863/// for a new block. This doesn't clear out information about
864/// additional blocks that are needed to complete switch lowering
865/// or PHI node updating; that information is cleared out as it is
866/// consumed.
867void SelectionDAGBuilder::clear() {
868  NodeMap.clear();
869  UnusedArgNodeMap.clear();
870  PendingLoads.clear();
871  PendingExports.clear();
872  CurDebugLoc = DebugLoc();
873  HasTailCall = false;
874}
875
876/// clearDanglingDebugInfo - Clear the dangling debug information
877/// map. This function is separated from the clear so that debug
878/// information that is dangling in a basic block can be properly
879/// resolved in a different basic block. This allows the
880/// SelectionDAG to resolve dangling debug information attached
881/// to PHI nodes.
882void SelectionDAGBuilder::clearDanglingDebugInfo() {
883  DanglingDebugInfoMap.clear();
884}
885
886/// getRoot - Return the current virtual root of the Selection DAG,
887/// flushing any PendingLoad items. This must be done before emitting
888/// a store or any other node that may need to be ordered after any
889/// prior load instructions.
890///
891SDValue SelectionDAGBuilder::getRoot() {
892  if (PendingLoads.empty())
893    return DAG.getRoot();
894
895  if (PendingLoads.size() == 1) {
896    SDValue Root = PendingLoads[0];
897    DAG.setRoot(Root);
898    PendingLoads.clear();
899    return Root;
900  }
901
902  // Otherwise, we have to make a token factor node.
903  SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
904                               &PendingLoads[0], PendingLoads.size());
905  PendingLoads.clear();
906  DAG.setRoot(Root);
907  return Root;
908}
909
910/// getControlRoot - Similar to getRoot, but instead of flushing all the
911/// PendingLoad items, flush all the PendingExports items. It is necessary
912/// to do this before emitting a terminator instruction.
913///
914SDValue SelectionDAGBuilder::getControlRoot() {
915  SDValue Root = DAG.getRoot();
916
917  if (PendingExports.empty())
918    return Root;
919
920  // Turn all of the CopyToReg chains into one factored node.
921  if (Root.getOpcode() != ISD::EntryToken) {
922    unsigned i = 0, e = PendingExports.size();
923    for (; i != e; ++i) {
924      assert(PendingExports[i].getNode()->getNumOperands() > 1);
925      if (PendingExports[i].getNode()->getOperand(0) == Root)
926        break;  // Don't add the root if we already indirectly depend on it.
927    }
928
929    if (i == e)
930      PendingExports.push_back(Root);
931  }
932
933  Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
934                     &PendingExports[0],
935                     PendingExports.size());
936  PendingExports.clear();
937  DAG.setRoot(Root);
938  return Root;
939}
940
941void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) {
942  if (DAG.GetOrdering(Node) != 0) return; // Already has ordering.
943  DAG.AssignOrdering(Node, SDNodeOrder);
944
945  for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I)
946    AssignOrderingToNode(Node->getOperand(I).getNode());
947}
948
949void SelectionDAGBuilder::visit(const Instruction &I) {
950  // Set up outgoing PHI node register values before emitting the terminator.
951  if (isa<TerminatorInst>(&I))
952    HandlePHINodesInSuccessorBlocks(I.getParent());
953
954  CurDebugLoc = I.getDebugLoc();
955
956  visit(I.getOpcode(), I);
957
958  if (!isa<TerminatorInst>(&I) && !HasTailCall)
959    CopyToExportRegsIfNeeded(&I);
960
961  CurDebugLoc = DebugLoc();
962}
963
964void SelectionDAGBuilder::visitPHI(const PHINode &) {
965  llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
966}
967
968void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
969  // Note: this doesn't use InstVisitor, because it has to work with
970  // ConstantExpr's in addition to instructions.
971  switch (Opcode) {
972  default: llvm_unreachable("Unknown instruction type encountered!");
973    // Build the switch statement using the Instruction.def file.
974#define HANDLE_INST(NUM, OPCODE, CLASS) \
975    case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
976#include "llvm/IR/Instruction.def"
977  }
978
979  // Assign the ordering to the freshly created DAG nodes.
980  if (NodeMap.count(&I)) {
981    ++SDNodeOrder;
982    AssignOrderingToNode(getValue(&I).getNode());
983  }
984}
985
986// resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
987// generate the debug data structures now that we've seen its definition.
988void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
989                                                   SDValue Val) {
990  DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
991  if (DDI.getDI()) {
992    const DbgValueInst *DI = DDI.getDI();
993    DebugLoc dl = DDI.getdl();
994    unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
995    MDNode *Variable = DI->getVariable();
996    uint64_t Offset = DI->getOffset();
997    SDDbgValue *SDV;
998    if (Val.getNode()) {
999      if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) {
1000        SDV = DAG.getDbgValue(Variable, Val.getNode(),
1001                              Val.getResNo(), Offset, dl, DbgSDNodeOrder);
1002        DAG.AddDbgValue(SDV, Val.getNode(), false);
1003      }
1004    } else
1005      DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
1006    DanglingDebugInfoMap[V] = DanglingDebugInfo();
1007  }
1008}
1009
1010/// getValue - Return an SDValue for the given Value.
1011SDValue SelectionDAGBuilder::getValue(const Value *V) {
1012  // If we already have an SDValue for this value, use it. It's important
1013  // to do this first, so that we don't create a CopyFromReg if we already
1014  // have a regular SDValue.
1015  SDValue &N = NodeMap[V];
1016  if (N.getNode()) return N;
1017
1018  // If there's a virtual register allocated and initialized for this
1019  // value, use it.
1020  DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
1021  if (It != FuncInfo.ValueMap.end()) {
1022    unsigned InReg = It->second;
1023    RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
1024    SDValue Chain = DAG.getEntryNode();
1025    N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL, V);
1026    resolveDanglingDebugInfo(V, N);
1027    return N;
1028  }
1029
1030  // Otherwise create a new SDValue and remember it.
1031  SDValue Val = getValueImpl(V);
1032  NodeMap[V] = Val;
1033  resolveDanglingDebugInfo(V, Val);
1034  return Val;
1035}
1036
1037/// getNonRegisterValue - Return an SDValue for the given Value, but
1038/// don't look in FuncInfo.ValueMap for a virtual register.
1039SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1040  // If we already have an SDValue for this value, use it.
1041  SDValue &N = NodeMap[V];
1042  if (N.getNode()) return N;
1043
1044  // Otherwise create a new SDValue and remember it.
1045  SDValue Val = getValueImpl(V);
1046  NodeMap[V] = Val;
1047  resolveDanglingDebugInfo(V, Val);
1048  return Val;
1049}
1050
1051/// getValueImpl - Helper function for getValue and getNonRegisterValue.
1052/// Create an SDValue for the given value.
1053SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1054  if (const Constant *C = dyn_cast<Constant>(V)) {
1055    EVT VT = TLI.getValueType(V->getType(), true);
1056
1057    if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1058      return DAG.getConstant(*CI, VT);
1059
1060    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1061      return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT);
1062
1063    if (isa<ConstantPointerNull>(C))
1064      return DAG.getConstant(0, TLI.getPointerTy());
1065
1066    if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1067      return DAG.getConstantFP(*CFP, VT);
1068
1069    if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1070      return DAG.getUNDEF(VT);
1071
1072    if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1073      visit(CE->getOpcode(), *CE);
1074      SDValue N1 = NodeMap[V];
1075      assert(N1.getNode() && "visit didn't populate the NodeMap!");
1076      return N1;
1077    }
1078
1079    if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1080      SmallVector<SDValue, 4> Constants;
1081      for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1082           OI != OE; ++OI) {
1083        SDNode *Val = getValue(*OI).getNode();
1084        // If the operand is an empty aggregate, there are no values.
1085        if (!Val) continue;
1086        // Add each leaf value from the operand to the Constants list
1087        // to form a flattened list of all the values.
1088        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1089          Constants.push_back(SDValue(Val, i));
1090      }
1091
1092      return DAG.getMergeValues(&Constants[0], Constants.size(),
1093                                getCurDebugLoc());
1094    }
1095
1096    if (const ConstantDataSequential *CDS =
1097          dyn_cast<ConstantDataSequential>(C)) {
1098      SmallVector<SDValue, 4> Ops;
1099      for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1100        SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1101        // Add each leaf value from the operand to the Constants list
1102        // to form a flattened list of all the values.
1103        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1104          Ops.push_back(SDValue(Val, i));
1105      }
1106
1107      if (isa<ArrayType>(CDS->getType()))
1108        return DAG.getMergeValues(&Ops[0], Ops.size(), getCurDebugLoc());
1109      return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
1110                                      VT, &Ops[0], Ops.size());
1111    }
1112
1113    if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1114      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1115             "Unknown struct or array constant!");
1116
1117      SmallVector<EVT, 4> ValueVTs;
1118      ComputeValueVTs(TLI, C->getType(), ValueVTs);
1119      unsigned NumElts = ValueVTs.size();
1120      if (NumElts == 0)
1121        return SDValue(); // empty struct
1122      SmallVector<SDValue, 4> Constants(NumElts);
1123      for (unsigned i = 0; i != NumElts; ++i) {
1124        EVT EltVT = ValueVTs[i];
1125        if (isa<UndefValue>(C))
1126          Constants[i] = DAG.getUNDEF(EltVT);
1127        else if (EltVT.isFloatingPoint())
1128          Constants[i] = DAG.getConstantFP(0, EltVT);
1129        else
1130          Constants[i] = DAG.getConstant(0, EltVT);
1131      }
1132
1133      return DAG.getMergeValues(&Constants[0], NumElts,
1134                                getCurDebugLoc());
1135    }
1136
1137    if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1138      return DAG.getBlockAddress(BA, VT);
1139
1140    VectorType *VecTy = cast<VectorType>(V->getType());
1141    unsigned NumElements = VecTy->getNumElements();
1142
1143    // Now that we know the number and type of the elements, get that number of
1144    // elements into the Ops array based on what kind of constant it is.
1145    SmallVector<SDValue, 16> Ops;
1146    if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1147      for (unsigned i = 0; i != NumElements; ++i)
1148        Ops.push_back(getValue(CV->getOperand(i)));
1149    } else {
1150      assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1151      EVT EltVT = TLI.getValueType(VecTy->getElementType());
1152
1153      SDValue Op;
1154      if (EltVT.isFloatingPoint())
1155        Op = DAG.getConstantFP(0, EltVT);
1156      else
1157        Op = DAG.getConstant(0, EltVT);
1158      Ops.assign(NumElements, Op);
1159    }
1160
1161    // Create a BUILD_VECTOR node.
1162    return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
1163                                    VT, &Ops[0], Ops.size());
1164  }
1165
1166  // If this is a static alloca, generate it as the frameindex instead of
1167  // computation.
1168  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1169    DenseMap<const AllocaInst*, int>::iterator SI =
1170      FuncInfo.StaticAllocaMap.find(AI);
1171    if (SI != FuncInfo.StaticAllocaMap.end())
1172      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
1173  }
1174
1175  // If this is an instruction which fast-isel has deferred, select it now.
1176  if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1177    unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1178    RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType());
1179    SDValue Chain = DAG.getEntryNode();
1180    return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL, V);
1181  }
1182
1183  llvm_unreachable("Can't get register for value!");
1184}
1185
1186void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1187  SDValue Chain = getControlRoot();
1188  SmallVector<ISD::OutputArg, 8> Outs;
1189  SmallVector<SDValue, 8> OutVals;
1190
1191  if (!FuncInfo.CanLowerReturn) {
1192    unsigned DemoteReg = FuncInfo.DemoteRegister;
1193    const Function *F = I.getParent()->getParent();
1194
1195    // Emit a store of the return value through the virtual register.
1196    // Leave Outs empty so that LowerReturn won't try to load return
1197    // registers the usual way.
1198    SmallVector<EVT, 1> PtrValueVTs;
1199    ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
1200                    PtrValueVTs);
1201
1202    SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
1203    SDValue RetOp = getValue(I.getOperand(0));
1204
1205    SmallVector<EVT, 4> ValueVTs;
1206    SmallVector<uint64_t, 4> Offsets;
1207    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1208    unsigned NumValues = ValueVTs.size();
1209
1210    SmallVector<SDValue, 4> Chains(NumValues);
1211    for (unsigned i = 0; i != NumValues; ++i) {
1212      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(),
1213                                RetPtr.getValueType(), RetPtr,
1214                                DAG.getIntPtrConstant(Offsets[i]));
1215      Chains[i] =
1216        DAG.getStore(Chain, getCurDebugLoc(),
1217                     SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1218                     // FIXME: better loc info would be nice.
1219                     Add, MachinePointerInfo(), false, false, 0);
1220    }
1221
1222    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
1223                        MVT::Other, &Chains[0], NumValues);
1224  } else if (I.getNumOperands() != 0) {
1225    SmallVector<EVT, 4> ValueVTs;
1226    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
1227    unsigned NumValues = ValueVTs.size();
1228    if (NumValues) {
1229      SDValue RetOp = getValue(I.getOperand(0));
1230      for (unsigned j = 0, f = NumValues; j != f; ++j) {
1231        EVT VT = ValueVTs[j];
1232
1233        ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1234
1235        const Function *F = I.getParent()->getParent();
1236        if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1237                                            Attribute::SExt))
1238          ExtendKind = ISD::SIGN_EXTEND;
1239        else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1240                                                 Attribute::ZExt))
1241          ExtendKind = ISD::ZERO_EXTEND;
1242
1243        if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1244          VT = TLI.getTypeForExtArgOrReturn(VT.getSimpleVT(), ExtendKind);
1245
1246        unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
1247        MVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
1248        SmallVector<SDValue, 4> Parts(NumParts);
1249        getCopyToParts(DAG, getCurDebugLoc(),
1250                       SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1251                       &Parts[0], NumParts, PartVT, &I, ExtendKind);
1252
1253        // 'inreg' on function refers to return value
1254        ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1255        if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1256                                            Attribute::InReg))
1257          Flags.setInReg();
1258
1259        // Propagate extension type if any
1260        if (ExtendKind == ISD::SIGN_EXTEND)
1261          Flags.setSExt();
1262        else if (ExtendKind == ISD::ZERO_EXTEND)
1263          Flags.setZExt();
1264
1265        for (unsigned i = 0; i < NumParts; ++i) {
1266          Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1267                                        /*isfixed=*/true, 0, 0));
1268          OutVals.push_back(Parts[i]);
1269        }
1270      }
1271    }
1272  }
1273
1274  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1275  CallingConv::ID CallConv =
1276    DAG.getMachineFunction().getFunction()->getCallingConv();
1277  Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
1278                          Outs, OutVals, getCurDebugLoc(), DAG);
1279
1280  // Verify that the target's LowerReturn behaved as expected.
1281  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1282         "LowerReturn didn't return a valid chain!");
1283
1284  // Update the DAG with the new chain value resulting from return lowering.
1285  DAG.setRoot(Chain);
1286}
1287
1288/// CopyToExportRegsIfNeeded - If the given value has virtual registers
1289/// created for it, emit nodes to copy the value into the virtual
1290/// registers.
1291void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1292  // Skip empty types
1293  if (V->getType()->isEmptyTy())
1294    return;
1295
1296  DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1297  if (VMI != FuncInfo.ValueMap.end()) {
1298    assert(!V->use_empty() && "Unused value assigned virtual registers!");
1299    CopyValueToVirtualRegister(V, VMI->second);
1300  }
1301}
1302
1303/// ExportFromCurrentBlock - If this condition isn't known to be exported from
1304/// the current basic block, add it to ValueMap now so that we'll get a
1305/// CopyTo/FromReg.
1306void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1307  // No need to export constants.
1308  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1309
1310  // Already exported?
1311  if (FuncInfo.isExportedInst(V)) return;
1312
1313  unsigned Reg = FuncInfo.InitializeRegForValue(V);
1314  CopyValueToVirtualRegister(V, Reg);
1315}
1316
1317bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1318                                                     const BasicBlock *FromBB) {
1319  // The operands of the setcc have to be in this block.  We don't know
1320  // how to export them from some other block.
1321  if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1322    // Can export from current BB.
1323    if (VI->getParent() == FromBB)
1324      return true;
1325
1326    // Is already exported, noop.
1327    return FuncInfo.isExportedInst(V);
1328  }
1329
1330  // If this is an argument, we can export it if the BB is the entry block or
1331  // if it is already exported.
1332  if (isa<Argument>(V)) {
1333    if (FromBB == &FromBB->getParent()->getEntryBlock())
1334      return true;
1335
1336    // Otherwise, can only export this if it is already exported.
1337    return FuncInfo.isExportedInst(V);
1338  }
1339
1340  // Otherwise, constants can always be exported.
1341  return true;
1342}
1343
1344/// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1345uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src,
1346                                            const MachineBasicBlock *Dst) const {
1347  BranchProbabilityInfo *BPI = FuncInfo.BPI;
1348  if (!BPI)
1349    return 0;
1350  const BasicBlock *SrcBB = Src->getBasicBlock();
1351  const BasicBlock *DstBB = Dst->getBasicBlock();
1352  return BPI->getEdgeWeight(SrcBB, DstBB);
1353}
1354
1355void SelectionDAGBuilder::
1356addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst,
1357                       uint32_t Weight /* = 0 */) {
1358  if (!Weight)
1359    Weight = getEdgeWeight(Src, Dst);
1360  Src->addSuccessor(Dst, Weight);
1361}
1362
1363
1364static bool InBlock(const Value *V, const BasicBlock *BB) {
1365  if (const Instruction *I = dyn_cast<Instruction>(V))
1366    return I->getParent() == BB;
1367  return true;
1368}
1369
1370/// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1371/// This function emits a branch and is used at the leaves of an OR or an
1372/// AND operator tree.
1373///
1374void
1375SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1376                                                  MachineBasicBlock *TBB,
1377                                                  MachineBasicBlock *FBB,
1378                                                  MachineBasicBlock *CurBB,
1379                                                  MachineBasicBlock *SwitchBB) {
1380  const BasicBlock *BB = CurBB->getBasicBlock();
1381
1382  // If the leaf of the tree is a comparison, merge the condition into
1383  // the caseblock.
1384  if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1385    // The operands of the cmp have to be in this block.  We don't know
1386    // how to export them from some other block.  If this is the first block
1387    // of the sequence, no exporting is needed.
1388    if (CurBB == SwitchBB ||
1389        (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1390         isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1391      ISD::CondCode Condition;
1392      if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1393        Condition = getICmpCondCode(IC->getPredicate());
1394      } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1395        Condition = getFCmpCondCode(FC->getPredicate());
1396        if (TM.Options.NoNaNsFPMath)
1397          Condition = getFCmpCodeWithoutNaN(Condition);
1398      } else {
1399        Condition = ISD::SETEQ; // silence warning.
1400        llvm_unreachable("Unknown compare instruction");
1401      }
1402
1403      CaseBlock CB(Condition, BOp->getOperand(0),
1404                   BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1405      SwitchCases.push_back(CB);
1406      return;
1407    }
1408  }
1409
1410  // Create a CaseBlock record representing this branch.
1411  CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1412               NULL, TBB, FBB, CurBB);
1413  SwitchCases.push_back(CB);
1414}
1415
1416/// FindMergedConditions - If Cond is an expression like
1417void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1418                                               MachineBasicBlock *TBB,
1419                                               MachineBasicBlock *FBB,
1420                                               MachineBasicBlock *CurBB,
1421                                               MachineBasicBlock *SwitchBB,
1422                                               unsigned Opc) {
1423  // If this node is not part of the or/and tree, emit it as a branch.
1424  const Instruction *BOp = dyn_cast<Instruction>(Cond);
1425  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1426      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1427      BOp->getParent() != CurBB->getBasicBlock() ||
1428      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1429      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1430    EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB);
1431    return;
1432  }
1433
1434  //  Create TmpBB after CurBB.
1435  MachineFunction::iterator BBI = CurBB;
1436  MachineFunction &MF = DAG.getMachineFunction();
1437  MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1438  CurBB->getParent()->insert(++BBI, TmpBB);
1439
1440  if (Opc == Instruction::Or) {
1441    // Codegen X | Y as:
1442    //   jmp_if_X TBB
1443    //   jmp TmpBB
1444    // TmpBB:
1445    //   jmp_if_Y TBB
1446    //   jmp FBB
1447    //
1448
1449    // Emit the LHS condition.
1450    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc);
1451
1452    // Emit the RHS condition into TmpBB.
1453    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1454  } else {
1455    assert(Opc == Instruction::And && "Unknown merge op!");
1456    // Codegen X & Y as:
1457    //   jmp_if_X TmpBB
1458    //   jmp FBB
1459    // TmpBB:
1460    //   jmp_if_Y TBB
1461    //   jmp FBB
1462    //
1463    //  This requires creation of TmpBB after CurBB.
1464
1465    // Emit the LHS condition.
1466    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc);
1467
1468    // Emit the RHS condition into TmpBB.
1469    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1470  }
1471}
1472
1473/// If the set of cases should be emitted as a series of branches, return true.
1474/// If we should emit this as a bunch of and/or'd together conditions, return
1475/// false.
1476bool
1477SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
1478  if (Cases.size() != 2) return true;
1479
1480  // If this is two comparisons of the same values or'd or and'd together, they
1481  // will get folded into a single comparison, so don't emit two blocks.
1482  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1483       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1484      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1485       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1486    return false;
1487  }
1488
1489  // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1490  // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1491  if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1492      Cases[0].CC == Cases[1].CC &&
1493      isa<Constant>(Cases[0].CmpRHS) &&
1494      cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1495    if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1496      return false;
1497    if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1498      return false;
1499  }
1500
1501  return true;
1502}
1503
1504void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1505  MachineBasicBlock *BrMBB = FuncInfo.MBB;
1506
1507  // Update machine-CFG edges.
1508  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1509
1510  // Figure out which block is immediately after the current one.
1511  MachineBasicBlock *NextBlock = 0;
1512  MachineFunction::iterator BBI = BrMBB;
1513  if (++BBI != FuncInfo.MF->end())
1514    NextBlock = BBI;
1515
1516  if (I.isUnconditional()) {
1517    // Update machine-CFG edges.
1518    BrMBB->addSuccessor(Succ0MBB);
1519
1520    // If this is not a fall-through branch, emit the branch.
1521    if (Succ0MBB != NextBlock)
1522      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1523                              MVT::Other, getControlRoot(),
1524                              DAG.getBasicBlock(Succ0MBB)));
1525
1526    return;
1527  }
1528
1529  // If this condition is one of the special cases we handle, do special stuff
1530  // now.
1531  const Value *CondVal = I.getCondition();
1532  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1533
1534  // If this is a series of conditions that are or'd or and'd together, emit
1535  // this as a sequence of branches instead of setcc's with and/or operations.
1536  // As long as jumps are not expensive, this should improve performance.
1537  // For example, instead of something like:
1538  //     cmp A, B
1539  //     C = seteq
1540  //     cmp D, E
1541  //     F = setle
1542  //     or C, F
1543  //     jnz foo
1544  // Emit:
1545  //     cmp A, B
1546  //     je foo
1547  //     cmp D, E
1548  //     jle foo
1549  //
1550  if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1551    if (!TLI.isJumpExpensive() &&
1552        BOp->hasOneUse() &&
1553        (BOp->getOpcode() == Instruction::And ||
1554         BOp->getOpcode() == Instruction::Or)) {
1555      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1556                           BOp->getOpcode());
1557      // If the compares in later blocks need to use values not currently
1558      // exported from this block, export them now.  This block should always
1559      // be the first entry.
1560      assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1561
1562      // Allow some cases to be rejected.
1563      if (ShouldEmitAsBranches(SwitchCases)) {
1564        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1565          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1566          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1567        }
1568
1569        // Emit the branch for this block.
1570        visitSwitchCase(SwitchCases[0], BrMBB);
1571        SwitchCases.erase(SwitchCases.begin());
1572        return;
1573      }
1574
1575      // Okay, we decided not to do this, remove any inserted MBB's and clear
1576      // SwitchCases.
1577      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1578        FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1579
1580      SwitchCases.clear();
1581    }
1582  }
1583
1584  // Create a CaseBlock record representing this branch.
1585  CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1586               NULL, Succ0MBB, Succ1MBB, BrMBB);
1587
1588  // Use visitSwitchCase to actually insert the fast branch sequence for this
1589  // cond branch.
1590  visitSwitchCase(CB, BrMBB);
1591}
1592
1593/// visitSwitchCase - Emits the necessary code to represent a single node in
1594/// the binary search tree resulting from lowering a switch instruction.
1595void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1596                                          MachineBasicBlock *SwitchBB) {
1597  SDValue Cond;
1598  SDValue CondLHS = getValue(CB.CmpLHS);
1599  DebugLoc dl = getCurDebugLoc();
1600
1601  // Build the setcc now.
1602  if (CB.CmpMHS == NULL) {
1603    // Fold "(X == true)" to X and "(X == false)" to !X to
1604    // handle common cases produced by branch lowering.
1605    if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1606        CB.CC == ISD::SETEQ)
1607      Cond = CondLHS;
1608    else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1609             CB.CC == ISD::SETEQ) {
1610      SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1611      Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1612    } else
1613      Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1614  } else {
1615    assert(CB.CC == ISD::SETCC_INVALID &&
1616           "Condition is undefined for to-the-range belonging check.");
1617
1618    const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1619    const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
1620
1621    SDValue CmpOp = getValue(CB.CmpMHS);
1622    EVT VT = CmpOp.getValueType();
1623
1624    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(false)) {
1625      Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1626                          ISD::SETULE);
1627    } else {
1628      SDValue SUB = DAG.getNode(ISD::SUB, dl,
1629                                VT, CmpOp, DAG.getConstant(Low, VT));
1630      Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1631                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1632    }
1633  }
1634
1635  // Update successor info
1636  addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight);
1637  // TrueBB and FalseBB are always different unless the incoming IR is
1638  // degenerate. This only happens when running llc on weird IR.
1639  if (CB.TrueBB != CB.FalseBB)
1640    addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight);
1641
1642  // Set NextBlock to be the MBB immediately after the current one, if any.
1643  // This is used to avoid emitting unnecessary branches to the next block.
1644  MachineBasicBlock *NextBlock = 0;
1645  MachineFunction::iterator BBI = SwitchBB;
1646  if (++BBI != FuncInfo.MF->end())
1647    NextBlock = BBI;
1648
1649  // If the lhs block is the next block, invert the condition so that we can
1650  // fall through to the lhs instead of the rhs block.
1651  if (CB.TrueBB == NextBlock) {
1652    std::swap(CB.TrueBB, CB.FalseBB);
1653    SDValue True = DAG.getConstant(1, Cond.getValueType());
1654    Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1655  }
1656
1657  SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1658                               MVT::Other, getControlRoot(), Cond,
1659                               DAG.getBasicBlock(CB.TrueBB));
1660
1661  // Insert the false branch. Do this even if it's a fall through branch,
1662  // this makes it easier to do DAG optimizations which require inverting
1663  // the branch condition.
1664  BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1665                       DAG.getBasicBlock(CB.FalseBB));
1666
1667  DAG.setRoot(BrCond);
1668}
1669
1670/// visitJumpTable - Emit JumpTable node in the current MBB
1671void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1672  // Emit the code for the jump table
1673  assert(JT.Reg != -1U && "Should lower JT Header first!");
1674  EVT PTy = TLI.getPointerTy();
1675  SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1676                                     JT.Reg, PTy);
1677  SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1678  SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(),
1679                                    MVT::Other, Index.getValue(1),
1680                                    Table, Index);
1681  DAG.setRoot(BrJumpTable);
1682}
1683
1684/// visitJumpTableHeader - This function emits necessary code to produce index
1685/// in the JumpTable from switch case.
1686void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1687                                               JumpTableHeader &JTH,
1688                                               MachineBasicBlock *SwitchBB) {
1689  // Subtract the lowest switch case value from the value being switched on and
1690  // conditional branch to default mbb if the result is greater than the
1691  // difference between smallest and largest cases.
1692  SDValue SwitchOp = getValue(JTH.SValue);
1693  EVT VT = SwitchOp.getValueType();
1694  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1695                            DAG.getConstant(JTH.First, VT));
1696
1697  // The SDNode we just created, which holds the value being switched on minus
1698  // the smallest case value, needs to be copied to a virtual register so it
1699  // can be used as an index into the jump table in a subsequent basic block.
1700  // This value may be smaller or larger than the target's pointer type, and
1701  // therefore require extension or truncating.
1702  SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy());
1703
1704  unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy());
1705  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1706                                    JumpTableReg, SwitchOp);
1707  JT.Reg = JumpTableReg;
1708
1709  // Emit the range check for the jump table, and branch to the default block
1710  // for the switch statement if the value being switched on exceeds the largest
1711  // case in the switch.
1712  SDValue CMP = DAG.getSetCC(getCurDebugLoc(),
1713                             TLI.getSetCCResultType(Sub.getValueType()), Sub,
1714                             DAG.getConstant(JTH.Last-JTH.First,VT),
1715                             ISD::SETUGT);
1716
1717  // Set NextBlock to be the MBB immediately after the current one, if any.
1718  // This is used to avoid emitting unnecessary branches to the next block.
1719  MachineBasicBlock *NextBlock = 0;
1720  MachineFunction::iterator BBI = SwitchBB;
1721
1722  if (++BBI != FuncInfo.MF->end())
1723    NextBlock = BBI;
1724
1725  SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1726                               MVT::Other, CopyTo, CMP,
1727                               DAG.getBasicBlock(JT.Default));
1728
1729  if (JT.MBB != NextBlock)
1730    BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond,
1731                         DAG.getBasicBlock(JT.MBB));
1732
1733  DAG.setRoot(BrCond);
1734}
1735
1736/// visitBitTestHeader - This function emits necessary code to produce value
1737/// suitable for "bit tests"
1738void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1739                                             MachineBasicBlock *SwitchBB) {
1740  // Subtract the minimum value
1741  SDValue SwitchOp = getValue(B.SValue);
1742  EVT VT = SwitchOp.getValueType();
1743  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1744                            DAG.getConstant(B.First, VT));
1745
1746  // Check range
1747  SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(),
1748                                  TLI.getSetCCResultType(Sub.getValueType()),
1749                                  Sub, DAG.getConstant(B.Range, VT),
1750                                  ISD::SETUGT);
1751
1752  // Determine the type of the test operands.
1753  bool UsePtrType = false;
1754  if (!TLI.isTypeLegal(VT))
1755    UsePtrType = true;
1756  else {
1757    for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
1758      if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
1759        // Switch table case range are encoded into series of masks.
1760        // Just use pointer type, it's guaranteed to fit.
1761        UsePtrType = true;
1762        break;
1763      }
1764  }
1765  if (UsePtrType) {
1766    VT = TLI.getPointerTy();
1767    Sub = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), VT);
1768  }
1769
1770  B.RegVT = VT.getSimpleVT();
1771  B.Reg = FuncInfo.CreateReg(B.RegVT);
1772  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1773                                    B.Reg, Sub);
1774
1775  // Set NextBlock to be the MBB immediately after the current one, if any.
1776  // This is used to avoid emitting unnecessary branches to the next block.
1777  MachineBasicBlock *NextBlock = 0;
1778  MachineFunction::iterator BBI = SwitchBB;
1779  if (++BBI != FuncInfo.MF->end())
1780    NextBlock = BBI;
1781
1782  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1783
1784  addSuccessorWithWeight(SwitchBB, B.Default);
1785  addSuccessorWithWeight(SwitchBB, MBB);
1786
1787  SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1788                                MVT::Other, CopyTo, RangeCmp,
1789                                DAG.getBasicBlock(B.Default));
1790
1791  if (MBB != NextBlock)
1792    BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo,
1793                          DAG.getBasicBlock(MBB));
1794
1795  DAG.setRoot(BrRange);
1796}
1797
1798/// visitBitTestCase - this function produces one "bit test"
1799void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
1800                                           MachineBasicBlock* NextMBB,
1801                                           uint32_t BranchWeightToNext,
1802                                           unsigned Reg,
1803                                           BitTestCase &B,
1804                                           MachineBasicBlock *SwitchBB) {
1805  MVT VT = BB.RegVT;
1806  SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1807                                       Reg, VT);
1808  SDValue Cmp;
1809  unsigned PopCount = CountPopulation_64(B.Mask);
1810  if (PopCount == 1) {
1811    // Testing for a single bit; just compare the shift count with what it
1812    // would need to be to shift a 1 bit in that position.
1813    Cmp = DAG.getSetCC(getCurDebugLoc(),
1814                       TLI.getSetCCResultType(VT),
1815                       ShiftOp,
1816                       DAG.getConstant(CountTrailingZeros_64(B.Mask), VT),
1817                       ISD::SETEQ);
1818  } else if (PopCount == BB.Range) {
1819    // There is only one zero bit in the range, test for it directly.
1820    Cmp = DAG.getSetCC(getCurDebugLoc(),
1821                       TLI.getSetCCResultType(VT),
1822                       ShiftOp,
1823                       DAG.getConstant(CountTrailingOnes_64(B.Mask), VT),
1824                       ISD::SETNE);
1825  } else {
1826    // Make desired shift
1827    SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), VT,
1828                                    DAG.getConstant(1, VT), ShiftOp);
1829
1830    // Emit bit tests and jumps
1831    SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(),
1832                                VT, SwitchVal, DAG.getConstant(B.Mask, VT));
1833    Cmp = DAG.getSetCC(getCurDebugLoc(),
1834                       TLI.getSetCCResultType(VT),
1835                       AndOp, DAG.getConstant(0, VT),
1836                       ISD::SETNE);
1837  }
1838
1839  // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight.
1840  addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight);
1841  // The branch weight from SwitchBB to NextMBB is BranchWeightToNext.
1842  addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext);
1843
1844  SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1845                              MVT::Other, getControlRoot(),
1846                              Cmp, DAG.getBasicBlock(B.TargetBB));
1847
1848  // Set NextBlock to be the MBB immediately after the current one, if any.
1849  // This is used to avoid emitting unnecessary branches to the next block.
1850  MachineBasicBlock *NextBlock = 0;
1851  MachineFunction::iterator BBI = SwitchBB;
1852  if (++BBI != FuncInfo.MF->end())
1853    NextBlock = BBI;
1854
1855  if (NextMBB != NextBlock)
1856    BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd,
1857                        DAG.getBasicBlock(NextMBB));
1858
1859  DAG.setRoot(BrAnd);
1860}
1861
1862void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1863  MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
1864
1865  // Retrieve successors.
1866  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1867  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1868
1869  const Value *Callee(I.getCalledValue());
1870  const Function *Fn = dyn_cast<Function>(Callee);
1871  if (isa<InlineAsm>(Callee))
1872    visitInlineAsm(&I);
1873  else if (Fn && Fn->isIntrinsic()) {
1874    assert(Fn->getIntrinsicID() == Intrinsic::donothing);
1875    // Ignore invokes to @llvm.donothing: jump directly to the next BB.
1876  } else
1877    LowerCallTo(&I, getValue(Callee), false, LandingPad);
1878
1879  // If the value of the invoke is used outside of its defining block, make it
1880  // available as a virtual register.
1881  CopyToExportRegsIfNeeded(&I);
1882
1883  // Update successor info
1884  addSuccessorWithWeight(InvokeMBB, Return);
1885  addSuccessorWithWeight(InvokeMBB, LandingPad);
1886
1887  // Drop into normal successor.
1888  DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1889                          MVT::Other, getControlRoot(),
1890                          DAG.getBasicBlock(Return)));
1891}
1892
1893void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
1894  llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
1895}
1896
1897void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
1898  assert(FuncInfo.MBB->isLandingPad() &&
1899         "Call to landingpad not in landing pad!");
1900
1901  MachineBasicBlock *MBB = FuncInfo.MBB;
1902  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
1903  AddLandingPadInfo(LP, MMI, MBB);
1904
1905  // If there aren't registers to copy the values into (e.g., during SjLj
1906  // exceptions), then don't bother to create these DAG nodes.
1907  if (TLI.getExceptionPointerRegister() == 0 &&
1908      TLI.getExceptionSelectorRegister() == 0)
1909    return;
1910
1911  SmallVector<EVT, 2> ValueVTs;
1912  ComputeValueVTs(TLI, LP.getType(), ValueVTs);
1913
1914  // Insert the EXCEPTIONADDR instruction.
1915  assert(FuncInfo.MBB->isLandingPad() &&
1916         "Call to eh.exception not in landing pad!");
1917  SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
1918  SDValue Ops[2];
1919  Ops[0] = DAG.getRoot();
1920  SDValue Op1 = DAG.getNode(ISD::EXCEPTIONADDR, getCurDebugLoc(), VTs, Ops, 1);
1921  SDValue Chain = Op1.getValue(1);
1922
1923  // Insert the EHSELECTION instruction.
1924  VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
1925  Ops[0] = Op1;
1926  Ops[1] = Chain;
1927  SDValue Op2 = DAG.getNode(ISD::EHSELECTION, getCurDebugLoc(), VTs, Ops, 2);
1928  Chain = Op2.getValue(1);
1929  Op2 = DAG.getSExtOrTrunc(Op2, getCurDebugLoc(), MVT::i32);
1930
1931  Ops[0] = Op1;
1932  Ops[1] = Op2;
1933  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
1934                            DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
1935                            &Ops[0], 2);
1936
1937  std::pair<SDValue, SDValue> RetPair = std::make_pair(Res, Chain);
1938  setValue(&LP, RetPair.first);
1939  DAG.setRoot(RetPair.second);
1940}
1941
1942/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1943/// small case ranges).
1944bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
1945                                                 CaseRecVector& WorkList,
1946                                                 const Value* SV,
1947                                                 MachineBasicBlock *Default,
1948                                                 MachineBasicBlock *SwitchBB) {
1949  // Size is the number of Cases represented by this range.
1950  size_t Size = CR.Range.second - CR.Range.first;
1951  if (Size > 3)
1952    return false;
1953
1954  // Get the MachineFunction which holds the current MBB.  This is used when
1955  // inserting any additional MBBs necessary to represent the switch.
1956  MachineFunction *CurMF = FuncInfo.MF;
1957
1958  // Figure out which block is immediately after the current one.
1959  MachineBasicBlock *NextBlock = 0;
1960  MachineFunction::iterator BBI = CR.CaseBB;
1961
1962  if (++BBI != FuncInfo.MF->end())
1963    NextBlock = BBI;
1964
1965  BranchProbabilityInfo *BPI = FuncInfo.BPI;
1966  // If any two of the cases has the same destination, and if one value
1967  // is the same as the other, but has one bit unset that the other has set,
1968  // use bit manipulation to do two compares at once.  For example:
1969  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1970  // TODO: This could be extended to merge any 2 cases in switches with 3 cases.
1971  // TODO: Handle cases where CR.CaseBB != SwitchBB.
1972  if (Size == 2 && CR.CaseBB == SwitchBB) {
1973    Case &Small = *CR.Range.first;
1974    Case &Big = *(CR.Range.second-1);
1975
1976    if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) {
1977      const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue();
1978      const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue();
1979
1980      // Check that there is only one bit different.
1981      if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 &&
1982          (SmallValue | BigValue) == BigValue) {
1983        // Isolate the common bit.
1984        APInt CommonBit = BigValue & ~SmallValue;
1985        assert((SmallValue | CommonBit) == BigValue &&
1986               CommonBit.countPopulation() == 1 && "Not a common bit?");
1987
1988        SDValue CondLHS = getValue(SV);
1989        EVT VT = CondLHS.getValueType();
1990        DebugLoc DL = getCurDebugLoc();
1991
1992        SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
1993                                 DAG.getConstant(CommonBit, VT));
1994        SDValue Cond = DAG.getSetCC(DL, MVT::i1,
1995                                    Or, DAG.getConstant(BigValue, VT),
1996                                    ISD::SETEQ);
1997
1998        // Update successor info.
1999        // Both Small and Big will jump to Small.BB, so we sum up the weights.
2000        addSuccessorWithWeight(SwitchBB, Small.BB,
2001                               Small.ExtraWeight + Big.ExtraWeight);
2002        addSuccessorWithWeight(SwitchBB, Default,
2003          // The default destination is the first successor in IR.
2004          BPI ? BPI->getEdgeWeight(SwitchBB->getBasicBlock(), (unsigned)0) : 0);
2005
2006        // Insert the true branch.
2007        SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other,
2008                                     getControlRoot(), Cond,
2009                                     DAG.getBasicBlock(Small.BB));
2010
2011        // Insert the false branch.
2012        BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
2013                             DAG.getBasicBlock(Default));
2014
2015        DAG.setRoot(BrCond);
2016        return true;
2017      }
2018    }
2019  }
2020
2021  // Order cases by weight so the most likely case will be checked first.
2022  uint32_t UnhandledWeights = 0;
2023  if (BPI) {
2024    for (CaseItr I = CR.Range.first, IE = CR.Range.second; I != IE; ++I) {
2025      uint32_t IWeight = I->ExtraWeight;
2026      UnhandledWeights += IWeight;
2027      for (CaseItr J = CR.Range.first; J < I; ++J) {
2028        uint32_t JWeight = J->ExtraWeight;
2029        if (IWeight > JWeight)
2030          std::swap(*I, *J);
2031      }
2032    }
2033  }
2034  // Rearrange the case blocks so that the last one falls through if possible.
2035  Case &BackCase = *(CR.Range.second-1);
2036  if (Size > 1 &&
2037      NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
2038    // The last case block won't fall through into 'NextBlock' if we emit the
2039    // branches in this order.  See if rearranging a case value would help.
2040    // We start at the bottom as it's the case with the least weight.
2041    for (Case *I = &*(CR.Range.second-2), *E = &*CR.Range.first-1; I != E; --I){
2042      if (I->BB == NextBlock) {
2043        std::swap(*I, BackCase);
2044        break;
2045      }
2046    }
2047  }
2048
2049  // Create a CaseBlock record representing a conditional branch to
2050  // the Case's target mbb if the value being switched on SV is equal
2051  // to C.
2052  MachineBasicBlock *CurBlock = CR.CaseBB;
2053  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
2054    MachineBasicBlock *FallThrough;
2055    if (I != E-1) {
2056      FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
2057      CurMF->insert(BBI, FallThrough);
2058
2059      // Put SV in a virtual register to make it available from the new blocks.
2060      ExportFromCurrentBlock(SV);
2061    } else {
2062      // If the last case doesn't match, go to the default block.
2063      FallThrough = Default;
2064    }
2065
2066    const Value *RHS, *LHS, *MHS;
2067    ISD::CondCode CC;
2068    if (I->High == I->Low) {
2069      // This is just small small case range :) containing exactly 1 case
2070      CC = ISD::SETEQ;
2071      LHS = SV; RHS = I->High; MHS = NULL;
2072    } else {
2073      CC = ISD::SETCC_INVALID;
2074      LHS = I->Low; MHS = SV; RHS = I->High;
2075    }
2076
2077    // The false weight should be sum of all un-handled cases.
2078    UnhandledWeights -= I->ExtraWeight;
2079    CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough,
2080                 /* me */ CurBlock,
2081                 /* trueweight */ I->ExtraWeight,
2082                 /* falseweight */ UnhandledWeights);
2083
2084    // If emitting the first comparison, just call visitSwitchCase to emit the
2085    // code into the current block.  Otherwise, push the CaseBlock onto the
2086    // vector to be later processed by SDISel, and insert the node's MBB
2087    // before the next MBB.
2088    if (CurBlock == SwitchBB)
2089      visitSwitchCase(CB, SwitchBB);
2090    else
2091      SwitchCases.push_back(CB);
2092
2093    CurBlock = FallThrough;
2094  }
2095
2096  return true;
2097}
2098
2099static inline bool areJTsAllowed(const TargetLowering &TLI) {
2100  return TLI.supportJumpTables() &&
2101          (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
2102           TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
2103}
2104
2105static APInt ComputeRange(const APInt &First, const APInt &Last) {
2106  uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
2107  APInt LastExt = Last.zext(BitWidth), FirstExt = First.zext(BitWidth);
2108  return (LastExt - FirstExt + 1ULL);
2109}
2110
2111/// handleJTSwitchCase - Emit jumptable for current switch case range
2112bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR,
2113                                             CaseRecVector &WorkList,
2114                                             const Value *SV,
2115                                             MachineBasicBlock *Default,
2116                                             MachineBasicBlock *SwitchBB) {
2117  Case& FrontCase = *CR.Range.first;
2118  Case& BackCase  = *(CR.Range.second-1);
2119
2120  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2121  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2122
2123  APInt TSize(First.getBitWidth(), 0);
2124  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I)
2125    TSize += I->size();
2126
2127  if (!areJTsAllowed(TLI) || TSize.ult(TLI.getMinimumJumpTableEntries()))
2128    return false;
2129
2130  APInt Range = ComputeRange(First, Last);
2131  // The density is TSize / Range. Require at least 40%.
2132  // It should not be possible for IntTSize to saturate for sane code, but make
2133  // sure we handle Range saturation correctly.
2134  uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10);
2135  uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10);
2136  if (IntTSize * 10 < IntRange * 4)
2137    return false;
2138
2139  DEBUG(dbgs() << "Lowering jump table\n"
2140               << "First entry: " << First << ". Last entry: " << Last << '\n'
2141               << "Range: " << Range << ". Size: " << TSize << ".\n\n");
2142
2143  // Get the MachineFunction which holds the current MBB.  This is used when
2144  // inserting any additional MBBs necessary to represent the switch.
2145  MachineFunction *CurMF = FuncInfo.MF;
2146
2147  // Figure out which block is immediately after the current one.
2148  MachineFunction::iterator BBI = CR.CaseBB;
2149  ++BBI;
2150
2151  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2152
2153  // Create a new basic block to hold the code for loading the address
2154  // of the jump table, and jumping to it.  Update successor information;
2155  // we will either branch to the default case for the switch, or the jump
2156  // table.
2157  MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2158  CurMF->insert(BBI, JumpTableBB);
2159
2160  addSuccessorWithWeight(CR.CaseBB, Default);
2161  addSuccessorWithWeight(CR.CaseBB, JumpTableBB);
2162
2163  // Build a vector of destination BBs, corresponding to each target
2164  // of the jump table. If the value of the jump table slot corresponds to
2165  // a case statement, push the case's BB onto the vector, otherwise, push
2166  // the default BB.
2167  std::vector<MachineBasicBlock*> DestBBs;
2168  APInt TEI = First;
2169  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
2170    const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
2171    const APInt &High = cast<ConstantInt>(I->High)->getValue();
2172
2173    if (Low.ule(TEI) && TEI.ule(High)) {
2174      DestBBs.push_back(I->BB);
2175      if (TEI==High)
2176        ++I;
2177    } else {
2178      DestBBs.push_back(Default);
2179    }
2180  }
2181
2182  // Calculate weight for each unique destination in CR.
2183  DenseMap<MachineBasicBlock*, uint32_t> DestWeights;
2184  if (FuncInfo.BPI)
2185    for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
2186      DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr =
2187          DestWeights.find(I->BB);
2188      if (Itr != DestWeights.end())
2189        Itr->second += I->ExtraWeight;
2190      else
2191        DestWeights[I->BB] = I->ExtraWeight;
2192    }
2193
2194  // Update successor info. Add one edge to each unique successor.
2195  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
2196  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
2197         E = DestBBs.end(); I != E; ++I) {
2198    if (!SuccsHandled[(*I)->getNumber()]) {
2199      SuccsHandled[(*I)->getNumber()] = true;
2200      DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr =
2201          DestWeights.find(*I);
2202      addSuccessorWithWeight(JumpTableBB, *I,
2203                             Itr != DestWeights.end() ? Itr->second : 0);
2204    }
2205  }
2206
2207  // Create a jump table index for this jump table.
2208  unsigned JTEncoding = TLI.getJumpTableEncoding();
2209  unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
2210                       ->createJumpTableIndex(DestBBs);
2211
2212  // Set the jump table information so that we can codegen it as a second
2213  // MachineBasicBlock
2214  JumpTable JT(-1U, JTI, JumpTableBB, Default);
2215  JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
2216  if (CR.CaseBB == SwitchBB)
2217    visitJumpTableHeader(JT, JTH, SwitchBB);
2218
2219  JTCases.push_back(JumpTableBlock(JTH, JT));
2220  return true;
2221}
2222
2223/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
2224/// 2 subtrees.
2225bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
2226                                                  CaseRecVector& WorkList,
2227                                                  const Value* SV,
2228                                                  MachineBasicBlock *Default,
2229                                                  MachineBasicBlock *SwitchBB) {
2230  // Get the MachineFunction which holds the current MBB.  This is used when
2231  // inserting any additional MBBs necessary to represent the switch.
2232  MachineFunction *CurMF = FuncInfo.MF;
2233
2234  // Figure out which block is immediately after the current one.
2235  MachineFunction::iterator BBI = CR.CaseBB;
2236  ++BBI;
2237
2238  Case& FrontCase = *CR.Range.first;
2239  Case& BackCase  = *(CR.Range.second-1);
2240  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2241
2242  // Size is the number of Cases represented by this range.
2243  unsigned Size = CR.Range.second - CR.Range.first;
2244
2245  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2246  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2247  double FMetric = 0;
2248  CaseItr Pivot = CR.Range.first + Size/2;
2249
2250  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
2251  // (heuristically) allow us to emit JumpTable's later.
2252  APInt TSize(First.getBitWidth(), 0);
2253  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2254       I!=E; ++I)
2255    TSize += I->size();
2256
2257  APInt LSize = FrontCase.size();
2258  APInt RSize = TSize-LSize;
2259  DEBUG(dbgs() << "Selecting best pivot: \n"
2260               << "First: " << First << ", Last: " << Last <<'\n'
2261               << "LSize: " << LSize << ", RSize: " << RSize << '\n');
2262  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
2263       J!=E; ++I, ++J) {
2264    const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
2265    const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
2266    APInt Range = ComputeRange(LEnd, RBegin);
2267    assert((Range - 2ULL).isNonNegative() &&
2268           "Invalid case distance");
2269    // Use volatile double here to avoid excess precision issues on some hosts,
2270    // e.g. that use 80-bit X87 registers.
2271    volatile double LDensity =
2272       (double)LSize.roundToDouble() /
2273                           (LEnd - First + 1ULL).roundToDouble();
2274    volatile double RDensity =
2275      (double)RSize.roundToDouble() /
2276                           (Last - RBegin + 1ULL).roundToDouble();
2277    double Metric = Range.logBase2()*(LDensity+RDensity);
2278    // Should always split in some non-trivial place
2279    DEBUG(dbgs() <<"=>Step\n"
2280                 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
2281                 << "LDensity: " << LDensity
2282                 << ", RDensity: " << RDensity << '\n'
2283                 << "Metric: " << Metric << '\n');
2284    if (FMetric < Metric) {
2285      Pivot = J;
2286      FMetric = Metric;
2287      DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
2288    }
2289
2290    LSize += J->size();
2291    RSize -= J->size();
2292  }
2293  if (areJTsAllowed(TLI)) {
2294    // If our case is dense we *really* should handle it earlier!
2295    assert((FMetric > 0) && "Should handle dense range earlier!");
2296  } else {
2297    Pivot = CR.Range.first + Size/2;
2298  }
2299
2300  CaseRange LHSR(CR.Range.first, Pivot);
2301  CaseRange RHSR(Pivot, CR.Range.second);
2302  const Constant *C = Pivot->Low;
2303  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
2304
2305  // We know that we branch to the LHS if the Value being switched on is
2306  // less than the Pivot value, C.  We use this to optimize our binary
2307  // tree a bit, by recognizing that if SV is greater than or equal to the
2308  // LHS's Case Value, and that Case Value is exactly one less than the
2309  // Pivot's Value, then we can branch directly to the LHS's Target,
2310  // rather than creating a leaf node for it.
2311  if ((LHSR.second - LHSR.first) == 1 &&
2312      LHSR.first->High == CR.GE &&
2313      cast<ConstantInt>(C)->getValue() ==
2314      (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
2315    TrueBB = LHSR.first->BB;
2316  } else {
2317    TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2318    CurMF->insert(BBI, TrueBB);
2319    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
2320
2321    // Put SV in a virtual register to make it available from the new blocks.
2322    ExportFromCurrentBlock(SV);
2323  }
2324
2325  // Similar to the optimization above, if the Value being switched on is
2326  // known to be less than the Constant CR.LT, and the current Case Value
2327  // is CR.LT - 1, then we can branch directly to the target block for
2328  // the current Case Value, rather than emitting a RHS leaf node for it.
2329  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
2330      cast<ConstantInt>(RHSR.first->Low)->getValue() ==
2331      (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
2332    FalseBB = RHSR.first->BB;
2333  } else {
2334    FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2335    CurMF->insert(BBI, FalseBB);
2336    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
2337
2338    // Put SV in a virtual register to make it available from the new blocks.
2339    ExportFromCurrentBlock(SV);
2340  }
2341
2342  // Create a CaseBlock record representing a conditional branch to
2343  // the LHS node if the value being switched on SV is less than C.
2344  // Otherwise, branch to LHS.
2345  CaseBlock CB(ISD::SETULT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
2346
2347  if (CR.CaseBB == SwitchBB)
2348    visitSwitchCase(CB, SwitchBB);
2349  else
2350    SwitchCases.push_back(CB);
2351
2352  return true;
2353}
2354
2355/// handleBitTestsSwitchCase - if current case range has few destination and
2356/// range span less, than machine word bitwidth, encode case range into series
2357/// of masks and emit bit tests with these masks.
2358bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
2359                                                   CaseRecVector& WorkList,
2360                                                   const Value* SV,
2361                                                   MachineBasicBlock* Default,
2362                                                   MachineBasicBlock *SwitchBB){
2363  EVT PTy = TLI.getPointerTy();
2364  unsigned IntPtrBits = PTy.getSizeInBits();
2365
2366  Case& FrontCase = *CR.Range.first;
2367  Case& BackCase  = *(CR.Range.second-1);
2368
2369  // Get the MachineFunction which holds the current MBB.  This is used when
2370  // inserting any additional MBBs necessary to represent the switch.
2371  MachineFunction *CurMF = FuncInfo.MF;
2372
2373  // If target does not have legal shift left, do not emit bit tests at all.
2374  if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
2375    return false;
2376
2377  size_t numCmps = 0;
2378  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2379       I!=E; ++I) {
2380    // Single case counts one, case range - two.
2381    numCmps += (I->Low == I->High ? 1 : 2);
2382  }
2383
2384  // Count unique destinations
2385  SmallSet<MachineBasicBlock*, 4> Dests;
2386  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2387    Dests.insert(I->BB);
2388    if (Dests.size() > 3)
2389      // Don't bother the code below, if there are too much unique destinations
2390      return false;
2391  }
2392  DEBUG(dbgs() << "Total number of unique destinations: "
2393        << Dests.size() << '\n'
2394        << "Total number of comparisons: " << numCmps << '\n');
2395
2396  // Compute span of values.
2397  const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
2398  const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
2399  APInt cmpRange = maxValue - minValue;
2400
2401  DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
2402               << "Low bound: " << minValue << '\n'
2403               << "High bound: " << maxValue << '\n');
2404
2405  if (cmpRange.uge(IntPtrBits) ||
2406      (!(Dests.size() == 1 && numCmps >= 3) &&
2407       !(Dests.size() == 2 && numCmps >= 5) &&
2408       !(Dests.size() >= 3 && numCmps >= 6)))
2409    return false;
2410
2411  DEBUG(dbgs() << "Emitting bit tests\n");
2412  APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
2413
2414  // Optimize the case where all the case values fit in a
2415  // word without having to subtract minValue. In this case,
2416  // we can optimize away the subtraction.
2417  if (maxValue.ult(IntPtrBits)) {
2418    cmpRange = maxValue;
2419  } else {
2420    lowBound = minValue;
2421  }
2422
2423  CaseBitsVector CasesBits;
2424  unsigned i, count = 0;
2425
2426  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2427    MachineBasicBlock* Dest = I->BB;
2428    for (i = 0; i < count; ++i)
2429      if (Dest == CasesBits[i].BB)
2430        break;
2431
2432    if (i == count) {
2433      assert((count < 3) && "Too much destinations to test!");
2434      CasesBits.push_back(CaseBits(0, Dest, 0, 0/*Weight*/));
2435      count++;
2436    }
2437
2438    const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
2439    const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
2440
2441    uint64_t lo = (lowValue - lowBound).getZExtValue();
2442    uint64_t hi = (highValue - lowBound).getZExtValue();
2443    CasesBits[i].ExtraWeight += I->ExtraWeight;
2444
2445    for (uint64_t j = lo; j <= hi; j++) {
2446      CasesBits[i].Mask |=  1ULL << j;
2447      CasesBits[i].Bits++;
2448    }
2449
2450  }
2451  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2452
2453  BitTestInfo BTC;
2454
2455  // Figure out which block is immediately after the current one.
2456  MachineFunction::iterator BBI = CR.CaseBB;
2457  ++BBI;
2458
2459  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2460
2461  DEBUG(dbgs() << "Cases:\n");
2462  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2463    DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
2464                 << ", Bits: " << CasesBits[i].Bits
2465                 << ", BB: " << CasesBits[i].BB << '\n');
2466
2467    MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2468    CurMF->insert(BBI, CaseBB);
2469    BTC.push_back(BitTestCase(CasesBits[i].Mask,
2470                              CaseBB,
2471                              CasesBits[i].BB, CasesBits[i].ExtraWeight));
2472
2473    // Put SV in a virtual register to make it available from the new blocks.
2474    ExportFromCurrentBlock(SV);
2475  }
2476
2477  BitTestBlock BTB(lowBound, cmpRange, SV,
2478                   -1U, MVT::Other, (CR.CaseBB == SwitchBB),
2479                   CR.CaseBB, Default, BTC);
2480
2481  if (CR.CaseBB == SwitchBB)
2482    visitBitTestHeader(BTB, SwitchBB);
2483
2484  BitTestCases.push_back(BTB);
2485
2486  return true;
2487}
2488
2489/// Clusterify - Transform simple list of Cases into list of CaseRange's
2490size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
2491                                       const SwitchInst& SI) {
2492
2493  /// Use a shorter form of declaration, and also
2494  /// show the we want to use CRSBuilder as Clusterifier.
2495  typedef IntegersSubsetMapping<MachineBasicBlock> Clusterifier;
2496
2497  Clusterifier TheClusterifier;
2498
2499  BranchProbabilityInfo *BPI = FuncInfo.BPI;
2500  // Start with "simple" cases
2501  for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
2502       i != e; ++i) {
2503    const BasicBlock *SuccBB = i.getCaseSuccessor();
2504    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB];
2505
2506    TheClusterifier.add(i.getCaseValueEx(), SMBB,
2507        BPI ? BPI->getEdgeWeight(SI.getParent(), i.getSuccessorIndex()) : 0);
2508  }
2509
2510  TheClusterifier.optimize();
2511
2512  size_t numCmps = 0;
2513  for (Clusterifier::RangeIterator i = TheClusterifier.begin(),
2514       e = TheClusterifier.end(); i != e; ++i, ++numCmps) {
2515    Clusterifier::Cluster &C = *i;
2516    // Update edge weight for the cluster.
2517    unsigned W = C.first.Weight;
2518
2519    // FIXME: Currently work with ConstantInt based numbers.
2520    // Changing it to APInt based is a pretty heavy for this commit.
2521    Cases.push_back(Case(C.first.getLow().toConstantInt(),
2522                         C.first.getHigh().toConstantInt(), C.second, W));
2523
2524    if (C.first.getLow() != C.first.getHigh())
2525    // A range counts double, since it requires two compares.
2526    ++numCmps;
2527  }
2528
2529  return numCmps;
2530}
2531
2532void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2533                                           MachineBasicBlock *Last) {
2534  // Update JTCases.
2535  for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2536    if (JTCases[i].first.HeaderBB == First)
2537      JTCases[i].first.HeaderBB = Last;
2538
2539  // Update BitTestCases.
2540  for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2541    if (BitTestCases[i].Parent == First)
2542      BitTestCases[i].Parent = Last;
2543}
2544
2545void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
2546  MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
2547
2548  // Figure out which block is immediately after the current one.
2549  MachineBasicBlock *NextBlock = 0;
2550  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2551
2552  // If there is only the default destination, branch to it if it is not the
2553  // next basic block.  Otherwise, just fall through.
2554  if (!SI.getNumCases()) {
2555    // Update machine-CFG edges.
2556
2557    // If this is not a fall-through branch, emit the branch.
2558    SwitchMBB->addSuccessor(Default);
2559    if (Default != NextBlock)
2560      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
2561                              MVT::Other, getControlRoot(),
2562                              DAG.getBasicBlock(Default)));
2563
2564    return;
2565  }
2566
2567  // If there are any non-default case statements, create a vector of Cases
2568  // representing each one, and sort the vector so that we can efficiently
2569  // create a binary search tree from them.
2570  CaseVector Cases;
2571  size_t numCmps = Clusterify(Cases, SI);
2572  DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2573               << ". Total compares: " << numCmps << '\n');
2574  (void)numCmps;
2575
2576  // Get the Value to be switched on and default basic blocks, which will be
2577  // inserted into CaseBlock records, representing basic blocks in the binary
2578  // search tree.
2579  const Value *SV = SI.getCondition();
2580
2581  // Push the initial CaseRec onto the worklist
2582  CaseRecVector WorkList;
2583  WorkList.push_back(CaseRec(SwitchMBB,0,0,
2584                             CaseRange(Cases.begin(),Cases.end())));
2585
2586  while (!WorkList.empty()) {
2587    // Grab a record representing a case range to process off the worklist
2588    CaseRec CR = WorkList.back();
2589    WorkList.pop_back();
2590
2591    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2592      continue;
2593
2594    // If the range has few cases (two or less) emit a series of specific
2595    // tests.
2596    if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
2597      continue;
2598
2599    // If the switch has more than N blocks, and is at least 40% dense, and the
2600    // target supports indirect branches, then emit a jump table rather than
2601    // lowering the switch to a binary tree of conditional branches.
2602    // N defaults to 4 and is controlled via TLS.getMinimumJumpTableEntries().
2603    if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2604      continue;
2605
2606    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2607    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2608    handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
2609  }
2610}
2611
2612void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2613  MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2614
2615  // Update machine-CFG edges with unique successors.
2616  SmallSet<BasicBlock*, 32> Done;
2617  for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2618    BasicBlock *BB = I.getSuccessor(i);
2619    bool Inserted = Done.insert(BB);
2620    if (!Inserted)
2621        continue;
2622
2623    MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2624    addSuccessorWithWeight(IndirectBrMBB, Succ);
2625  }
2626
2627  DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(),
2628                          MVT::Other, getControlRoot(),
2629                          getValue(I.getAddress())));
2630}
2631
2632void SelectionDAGBuilder::visitFSub(const User &I) {
2633  // -0.0 - X --> fneg
2634  Type *Ty = I.getType();
2635  if (isa<Constant>(I.getOperand(0)) &&
2636      I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2637    SDValue Op2 = getValue(I.getOperand(1));
2638    setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2639                             Op2.getValueType(), Op2));
2640    return;
2641  }
2642
2643  visitBinary(I, ISD::FSUB);
2644}
2645
2646void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2647  SDValue Op1 = getValue(I.getOperand(0));
2648  SDValue Op2 = getValue(I.getOperand(1));
2649  setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(),
2650                           Op1.getValueType(), Op1, Op2));
2651}
2652
2653void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2654  SDValue Op1 = getValue(I.getOperand(0));
2655  SDValue Op2 = getValue(I.getOperand(1));
2656
2657  MVT ShiftTy = TLI.getShiftAmountTy(Op2.getValueType());
2658
2659  // Coerce the shift amount to the right type if we can.
2660  if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2661    unsigned ShiftSize = ShiftTy.getSizeInBits();
2662    unsigned Op2Size = Op2.getValueType().getSizeInBits();
2663    DebugLoc DL = getCurDebugLoc();
2664
2665    // If the operand is smaller than the shift count type, promote it.
2666    if (ShiftSize > Op2Size)
2667      Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2668
2669    // If the operand is larger than the shift count type but the shift
2670    // count type has enough bits to represent any shift value, truncate
2671    // it now. This is a common case and it exposes the truncate to
2672    // optimization early.
2673    else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2674      Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2675    // Otherwise we'll need to temporarily settle for some other convenient
2676    // type.  Type legalization will make adjustments once the shiftee is split.
2677    else
2678      Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2679  }
2680
2681  setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(),
2682                           Op1.getValueType(), Op1, Op2));
2683}
2684
2685void SelectionDAGBuilder::visitSDiv(const User &I) {
2686  SDValue Op1 = getValue(I.getOperand(0));
2687  SDValue Op2 = getValue(I.getOperand(1));
2688
2689  // Turn exact SDivs into multiplications.
2690  // FIXME: This should be in DAGCombiner, but it doesn't have access to the
2691  // exact bit.
2692  if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() &&
2693      !isa<ConstantSDNode>(Op1) &&
2694      isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue())
2695    setValue(&I, TLI.BuildExactSDIV(Op1, Op2, getCurDebugLoc(), DAG));
2696  else
2697    setValue(&I, DAG.getNode(ISD::SDIV, getCurDebugLoc(), Op1.getValueType(),
2698                             Op1, Op2));
2699}
2700
2701void SelectionDAGBuilder::visitICmp(const User &I) {
2702  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2703  if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2704    predicate = IC->getPredicate();
2705  else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2706    predicate = ICmpInst::Predicate(IC->getPredicate());
2707  SDValue Op1 = getValue(I.getOperand(0));
2708  SDValue Op2 = getValue(I.getOperand(1));
2709  ISD::CondCode Opcode = getICmpCondCode(predicate);
2710
2711  EVT DestVT = TLI.getValueType(I.getType());
2712  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode));
2713}
2714
2715void SelectionDAGBuilder::visitFCmp(const User &I) {
2716  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2717  if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2718    predicate = FC->getPredicate();
2719  else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2720    predicate = FCmpInst::Predicate(FC->getPredicate());
2721  SDValue Op1 = getValue(I.getOperand(0));
2722  SDValue Op2 = getValue(I.getOperand(1));
2723  ISD::CondCode Condition = getFCmpCondCode(predicate);
2724  if (TM.Options.NoNaNsFPMath)
2725    Condition = getFCmpCodeWithoutNaN(Condition);
2726  EVT DestVT = TLI.getValueType(I.getType());
2727  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition));
2728}
2729
2730void SelectionDAGBuilder::visitSelect(const User &I) {
2731  SmallVector<EVT, 4> ValueVTs;
2732  ComputeValueVTs(TLI, I.getType(), ValueVTs);
2733  unsigned NumValues = ValueVTs.size();
2734  if (NumValues == 0) return;
2735
2736  SmallVector<SDValue, 4> Values(NumValues);
2737  SDValue Cond     = getValue(I.getOperand(0));
2738  SDValue TrueVal  = getValue(I.getOperand(1));
2739  SDValue FalseVal = getValue(I.getOperand(2));
2740  ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2741    ISD::VSELECT : ISD::SELECT;
2742
2743  for (unsigned i = 0; i != NumValues; ++i)
2744    Values[i] = DAG.getNode(OpCode, getCurDebugLoc(),
2745                            TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2746                            Cond,
2747                            SDValue(TrueVal.getNode(),
2748                                    TrueVal.getResNo() + i),
2749                            SDValue(FalseVal.getNode(),
2750                                    FalseVal.getResNo() + i));
2751
2752  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2753                           DAG.getVTList(&ValueVTs[0], NumValues),
2754                           &Values[0], NumValues));
2755}
2756
2757void SelectionDAGBuilder::visitTrunc(const User &I) {
2758  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2759  SDValue N = getValue(I.getOperand(0));
2760  EVT DestVT = TLI.getValueType(I.getType());
2761  setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N));
2762}
2763
2764void SelectionDAGBuilder::visitZExt(const User &I) {
2765  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2766  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2767  SDValue N = getValue(I.getOperand(0));
2768  EVT DestVT = TLI.getValueType(I.getType());
2769  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N));
2770}
2771
2772void SelectionDAGBuilder::visitSExt(const User &I) {
2773  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2774  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2775  SDValue N = getValue(I.getOperand(0));
2776  EVT DestVT = TLI.getValueType(I.getType());
2777  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N));
2778}
2779
2780void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2781  // FPTrunc is never a no-op cast, no need to check
2782  SDValue N = getValue(I.getOperand(0));
2783  EVT DestVT = TLI.getValueType(I.getType());
2784  setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(),
2785                           DestVT, N,
2786                           DAG.getTargetConstant(0, TLI.getPointerTy())));
2787}
2788
2789void SelectionDAGBuilder::visitFPExt(const User &I){
2790  // FPExt is never a no-op cast, no need to check
2791  SDValue N = getValue(I.getOperand(0));
2792  EVT DestVT = TLI.getValueType(I.getType());
2793  setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N));
2794}
2795
2796void SelectionDAGBuilder::visitFPToUI(const User &I) {
2797  // FPToUI is never a no-op cast, no need to check
2798  SDValue N = getValue(I.getOperand(0));
2799  EVT DestVT = TLI.getValueType(I.getType());
2800  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N));
2801}
2802
2803void SelectionDAGBuilder::visitFPToSI(const User &I) {
2804  // FPToSI is never a no-op cast, no need to check
2805  SDValue N = getValue(I.getOperand(0));
2806  EVT DestVT = TLI.getValueType(I.getType());
2807  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N));
2808}
2809
2810void SelectionDAGBuilder::visitUIToFP(const User &I) {
2811  // UIToFP is never a no-op cast, no need to check
2812  SDValue N = getValue(I.getOperand(0));
2813  EVT DestVT = TLI.getValueType(I.getType());
2814  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N));
2815}
2816
2817void SelectionDAGBuilder::visitSIToFP(const User &I){
2818  // SIToFP is never a no-op cast, no need to check
2819  SDValue N = getValue(I.getOperand(0));
2820  EVT DestVT = TLI.getValueType(I.getType());
2821  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N));
2822}
2823
2824void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2825  // What to do depends on the size of the integer and the size of the pointer.
2826  // We can either truncate, zero extend, or no-op, accordingly.
2827  SDValue N = getValue(I.getOperand(0));
2828  EVT DestVT = TLI.getValueType(I.getType());
2829  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2830}
2831
2832void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2833  // What to do depends on the size of the integer and the size of the pointer.
2834  // We can either truncate, zero extend, or no-op, accordingly.
2835  SDValue N = getValue(I.getOperand(0));
2836  EVT DestVT = TLI.getValueType(I.getType());
2837  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2838}
2839
2840void SelectionDAGBuilder::visitBitCast(const User &I) {
2841  SDValue N = getValue(I.getOperand(0));
2842  EVT DestVT = TLI.getValueType(I.getType());
2843
2844  // BitCast assures us that source and destination are the same size so this is
2845  // either a BITCAST or a no-op.
2846  if (DestVT != N.getValueType())
2847    setValue(&I, DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
2848                             DestVT, N)); // convert types.
2849  else
2850    setValue(&I, N);            // noop cast.
2851}
2852
2853void SelectionDAGBuilder::visitInsertElement(const User &I) {
2854  SDValue InVec = getValue(I.getOperand(0));
2855  SDValue InVal = getValue(I.getOperand(1));
2856  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2857                              TLI.getPointerTy(),
2858                              getValue(I.getOperand(2)));
2859  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(),
2860                           TLI.getValueType(I.getType()),
2861                           InVec, InVal, InIdx));
2862}
2863
2864void SelectionDAGBuilder::visitExtractElement(const User &I) {
2865  SDValue InVec = getValue(I.getOperand(0));
2866  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2867                              TLI.getPointerTy(),
2868                              getValue(I.getOperand(1)));
2869  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2870                           TLI.getValueType(I.getType()), InVec, InIdx));
2871}
2872
2873// Utility for visitShuffleVector - Return true if every element in Mask,
2874// beginning from position Pos and ending in Pos+Size, falls within the
2875// specified sequential range [L, L+Pos). or is undef.
2876static bool isSequentialInRange(const SmallVectorImpl<int> &Mask,
2877                                unsigned Pos, unsigned Size, int Low) {
2878  for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
2879    if (Mask[i] >= 0 && Mask[i] != Low)
2880      return false;
2881  return true;
2882}
2883
2884void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2885  SDValue Src1 = getValue(I.getOperand(0));
2886  SDValue Src2 = getValue(I.getOperand(1));
2887
2888  SmallVector<int, 8> Mask;
2889  ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
2890  unsigned MaskNumElts = Mask.size();
2891
2892  EVT VT = TLI.getValueType(I.getType());
2893  EVT SrcVT = Src1.getValueType();
2894  unsigned SrcNumElts = SrcVT.getVectorNumElements();
2895
2896  if (SrcNumElts == MaskNumElts) {
2897    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2898                                      &Mask[0]));
2899    return;
2900  }
2901
2902  // Normalize the shuffle vector since mask and vector length don't match.
2903  if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2904    // Mask is longer than the source vectors and is a multiple of the source
2905    // vectors.  We can use concatenate vector to make the mask and vectors
2906    // lengths match.
2907    if (SrcNumElts*2 == MaskNumElts) {
2908      // First check for Src1 in low and Src2 in high
2909      if (isSequentialInRange(Mask, 0, SrcNumElts, 0) &&
2910          isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) {
2911        // The shuffle is concatenating two vectors together.
2912        setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2913                                 VT, Src1, Src2));
2914        return;
2915      }
2916      // Then check for Src2 in low and Src1 in high
2917      if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) &&
2918          isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) {
2919        // The shuffle is concatenating two vectors together.
2920        setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2921                                 VT, Src2, Src1));
2922        return;
2923      }
2924    }
2925
2926    // Pad both vectors with undefs to make them the same length as the mask.
2927    unsigned NumConcat = MaskNumElts / SrcNumElts;
2928    bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2929    bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2930    SDValue UndefVal = DAG.getUNDEF(SrcVT);
2931
2932    SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2933    SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2934    MOps1[0] = Src1;
2935    MOps2[0] = Src2;
2936
2937    Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2938                                                  getCurDebugLoc(), VT,
2939                                                  &MOps1[0], NumConcat);
2940    Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2941                                                  getCurDebugLoc(), VT,
2942                                                  &MOps2[0], NumConcat);
2943
2944    // Readjust mask for new input vector length.
2945    SmallVector<int, 8> MappedOps;
2946    for (unsigned i = 0; i != MaskNumElts; ++i) {
2947      int Idx = Mask[i];
2948      if (Idx >= (int)SrcNumElts)
2949        Idx -= SrcNumElts - MaskNumElts;
2950      MappedOps.push_back(Idx);
2951    }
2952
2953    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2954                                      &MappedOps[0]));
2955    return;
2956  }
2957
2958  if (SrcNumElts > MaskNumElts) {
2959    // Analyze the access pattern of the vector to see if we can extract
2960    // two subvectors and do the shuffle. The analysis is done by calculating
2961    // the range of elements the mask access on both vectors.
2962    int MinRange[2] = { static_cast<int>(SrcNumElts),
2963                        static_cast<int>(SrcNumElts)};
2964    int MaxRange[2] = {-1, -1};
2965
2966    for (unsigned i = 0; i != MaskNumElts; ++i) {
2967      int Idx = Mask[i];
2968      unsigned Input = 0;
2969      if (Idx < 0)
2970        continue;
2971
2972      if (Idx >= (int)SrcNumElts) {
2973        Input = 1;
2974        Idx -= SrcNumElts;
2975      }
2976      if (Idx > MaxRange[Input])
2977        MaxRange[Input] = Idx;
2978      if (Idx < MinRange[Input])
2979        MinRange[Input] = Idx;
2980    }
2981
2982    // Check if the access is smaller than the vector size and can we find
2983    // a reasonable extract index.
2984    int RangeUse[2] = { -1, -1 };  // 0 = Unused, 1 = Extract, -1 = Can not
2985                                   // Extract.
2986    int StartIdx[2];  // StartIdx to extract from
2987    for (unsigned Input = 0; Input < 2; ++Input) {
2988      if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) {
2989        RangeUse[Input] = 0; // Unused
2990        StartIdx[Input] = 0;
2991        continue;
2992      }
2993
2994      // Find a good start index that is a multiple of the mask length. Then
2995      // see if the rest of the elements are in range.
2996      StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2997      if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2998          StartIdx[Input] + MaskNumElts <= SrcNumElts)
2999        RangeUse[Input] = 1; // Extract from a multiple of the mask length.
3000    }
3001
3002    if (RangeUse[0] == 0 && RangeUse[1] == 0) {
3003      setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3004      return;
3005    }
3006    if (RangeUse[0] >= 0 && RangeUse[1] >= 0) {
3007      // Extract appropriate subvector and generate a vector shuffle
3008      for (unsigned Input = 0; Input < 2; ++Input) {
3009        SDValue &Src = Input == 0 ? Src1 : Src2;
3010        if (RangeUse[Input] == 0)
3011          Src = DAG.getUNDEF(VT);
3012        else
3013          Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT,
3014                            Src, DAG.getIntPtrConstant(StartIdx[Input]));
3015      }
3016
3017      // Calculate new mask.
3018      SmallVector<int, 8> MappedOps;
3019      for (unsigned i = 0; i != MaskNumElts; ++i) {
3020        int Idx = Mask[i];
3021        if (Idx >= 0) {
3022          if (Idx < (int)SrcNumElts)
3023            Idx -= StartIdx[0];
3024          else
3025            Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3026        }
3027        MappedOps.push_back(Idx);
3028      }
3029
3030      setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
3031                                        &MappedOps[0]));
3032      return;
3033    }
3034  }
3035
3036  // We can't use either concat vectors or extract subvectors so fall back to
3037  // replacing the shuffle with extract and build vector.
3038  // to insert and build vector.
3039  EVT EltVT = VT.getVectorElementType();
3040  EVT PtrVT = TLI.getPointerTy();
3041  SmallVector<SDValue,8> Ops;
3042  for (unsigned i = 0; i != MaskNumElts; ++i) {
3043    int Idx = Mask[i];
3044    SDValue Res;
3045
3046    if (Idx < 0) {
3047      Res = DAG.getUNDEF(EltVT);
3048    } else {
3049      SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3050      if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3051
3052      Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
3053                        EltVT, Src, DAG.getConstant(Idx, PtrVT));
3054    }
3055
3056    Ops.push_back(Res);
3057  }
3058
3059  setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
3060                           VT, &Ops[0], Ops.size()));
3061}
3062
3063void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
3064  const Value *Op0 = I.getOperand(0);
3065  const Value *Op1 = I.getOperand(1);
3066  Type *AggTy = I.getType();
3067  Type *ValTy = Op1->getType();
3068  bool IntoUndef = isa<UndefValue>(Op0);
3069  bool FromUndef = isa<UndefValue>(Op1);
3070
3071  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3072
3073  SmallVector<EVT, 4> AggValueVTs;
3074  ComputeValueVTs(TLI, AggTy, AggValueVTs);
3075  SmallVector<EVT, 4> ValValueVTs;
3076  ComputeValueVTs(TLI, ValTy, ValValueVTs);
3077
3078  unsigned NumAggValues = AggValueVTs.size();
3079  unsigned NumValValues = ValValueVTs.size();
3080  SmallVector<SDValue, 4> Values(NumAggValues);
3081
3082  SDValue Agg = getValue(Op0);
3083  unsigned i = 0;
3084  // Copy the beginning value(s) from the original aggregate.
3085  for (; i != LinearIndex; ++i)
3086    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3087                SDValue(Agg.getNode(), Agg.getResNo() + i);
3088  // Copy values from the inserted value(s).
3089  if (NumValValues) {
3090    SDValue Val = getValue(Op1);
3091    for (; i != LinearIndex + NumValValues; ++i)
3092      Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3093                  SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3094  }
3095  // Copy remaining value(s) from the original aggregate.
3096  for (; i != NumAggValues; ++i)
3097    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3098                SDValue(Agg.getNode(), Agg.getResNo() + i);
3099
3100  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3101                           DAG.getVTList(&AggValueVTs[0], NumAggValues),
3102                           &Values[0], NumAggValues));
3103}
3104
3105void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
3106  const Value *Op0 = I.getOperand(0);
3107  Type *AggTy = Op0->getType();
3108  Type *ValTy = I.getType();
3109  bool OutOfUndef = isa<UndefValue>(Op0);
3110
3111  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3112
3113  SmallVector<EVT, 4> ValValueVTs;
3114  ComputeValueVTs(TLI, ValTy, ValValueVTs);
3115
3116  unsigned NumValValues = ValValueVTs.size();
3117
3118  // Ignore a extractvalue that produces an empty object
3119  if (!NumValValues) {
3120    setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3121    return;
3122  }
3123
3124  SmallVector<SDValue, 4> Values(NumValValues);
3125
3126  SDValue Agg = getValue(Op0);
3127  // Copy out the selected value(s).
3128  for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3129    Values[i - LinearIndex] =
3130      OutOfUndef ?
3131        DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3132        SDValue(Agg.getNode(), Agg.getResNo() + i);
3133
3134  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3135                           DAG.getVTList(&ValValueVTs[0], NumValValues),
3136                           &Values[0], NumValValues));
3137}
3138
3139void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3140  SDValue N = getValue(I.getOperand(0));
3141  // Note that the pointer operand may be a vector of pointers. Take the scalar
3142  // element which holds a pointer.
3143  Type *Ty = I.getOperand(0)->getType()->getScalarType();
3144
3145  for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
3146       OI != E; ++OI) {
3147    const Value *Idx = *OI;
3148    if (StructType *StTy = dyn_cast<StructType>(Ty)) {
3149      unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3150      if (Field) {
3151        // N = N + Offset
3152        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
3153        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
3154                        DAG.getConstant(Offset, N.getValueType()));
3155      }
3156
3157      Ty = StTy->getElementType(Field);
3158    } else {
3159      Ty = cast<SequentialType>(Ty)->getElementType();
3160
3161      // If this is a constant subscript, handle it quickly.
3162      if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
3163        if (CI->isZero()) continue;
3164        uint64_t Offs =
3165            TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
3166        SDValue OffsVal;
3167        EVT PTy = TLI.getPointerTy();
3168        unsigned PtrBits = PTy.getSizeInBits();
3169        if (PtrBits < 64)
3170          OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
3171                                TLI.getPointerTy(),
3172                                DAG.getConstant(Offs, MVT::i64));
3173        else
3174          OffsVal = DAG.getIntPtrConstant(Offs);
3175
3176        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
3177                        OffsVal);
3178        continue;
3179      }
3180
3181      // N = N + Idx * ElementSize;
3182      APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
3183                                TD->getTypeAllocSize(Ty));
3184      SDValue IdxN = getValue(Idx);
3185
3186      // If the index is smaller or larger than intptr_t, truncate or extend
3187      // it.
3188      IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType());
3189
3190      // If this is a multiply by a power of two, turn it into a shl
3191      // immediately.  This is a very common case.
3192      if (ElementSize != 1) {
3193        if (ElementSize.isPowerOf2()) {
3194          unsigned Amt = ElementSize.logBase2();
3195          IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(),
3196                             N.getValueType(), IdxN,
3197                             DAG.getConstant(Amt, IdxN.getValueType()));
3198        } else {
3199          SDValue Scale = DAG.getConstant(ElementSize, IdxN.getValueType());
3200          IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(),
3201                             N.getValueType(), IdxN, Scale);
3202        }
3203      }
3204
3205      N = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3206                      N.getValueType(), N, IdxN);
3207    }
3208  }
3209
3210  setValue(&I, N);
3211}
3212
3213void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3214  // If this is a fixed sized alloca in the entry block of the function,
3215  // allocate it statically on the stack.
3216  if (FuncInfo.StaticAllocaMap.count(&I))
3217    return;   // getValue will auto-populate this.
3218
3219  Type *Ty = I.getAllocatedType();
3220  uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty);
3221  unsigned Align =
3222    std::max((unsigned)TLI.getDataLayout()->getPrefTypeAlignment(Ty),
3223             I.getAlignment());
3224
3225  SDValue AllocSize = getValue(I.getArraySize());
3226
3227  EVT IntPtr = TLI.getPointerTy();
3228  if (AllocSize.getValueType() != IntPtr)
3229    AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr);
3230
3231  AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr,
3232                          AllocSize,
3233                          DAG.getConstant(TySize, IntPtr));
3234
3235  // Handle alignment.  If the requested alignment is less than or equal to
3236  // the stack alignment, ignore it.  If the size is greater than or equal to
3237  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3238  unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
3239  if (Align <= StackAlign)
3240    Align = 0;
3241
3242  // Round the size of the allocation up to the stack alignment size
3243  // by add SA-1 to the size.
3244  AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3245                          AllocSize.getValueType(), AllocSize,
3246                          DAG.getIntPtrConstant(StackAlign-1));
3247
3248  // Mask out the low bits for alignment purposes.
3249  AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(),
3250                          AllocSize.getValueType(), AllocSize,
3251                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
3252
3253  SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
3254  SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3255  SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(),
3256                            VTs, Ops, 3);
3257  setValue(&I, DSA);
3258  DAG.setRoot(DSA.getValue(1));
3259
3260  // Inform the Frame Information that we have just allocated a variable-sized
3261  // object.
3262  FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1,
3263                                 I.getAlignment(), &I);
3264}
3265
3266void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3267  if (I.isAtomic())
3268    return visitAtomicLoad(I);
3269
3270  const Value *SV = I.getOperand(0);
3271  SDValue Ptr = getValue(SV);
3272
3273  Type *Ty = I.getType();
3274
3275  bool isVolatile = I.isVolatile();
3276  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3277  bool isInvariant = I.getMetadata("invariant.load") != 0;
3278  unsigned Alignment = I.getAlignment();
3279  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3280  const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3281
3282  SmallVector<EVT, 4> ValueVTs;
3283  SmallVector<uint64_t, 4> Offsets;
3284  ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
3285  unsigned NumValues = ValueVTs.size();
3286  if (NumValues == 0)
3287    return;
3288
3289  SDValue Root;
3290  bool ConstantMemory = false;
3291  if (I.isVolatile() || NumValues > MaxParallelChains)
3292    // Serialize volatile loads with other side effects.
3293    Root = getRoot();
3294  else if (AA->pointsToConstantMemory(
3295             AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) {
3296    // Do not serialize (non-volatile) loads of constant memory with anything.
3297    Root = DAG.getEntryNode();
3298    ConstantMemory = true;
3299  } else {
3300    // Do not serialize non-volatile loads against each other.
3301    Root = DAG.getRoot();
3302  }
3303
3304  SmallVector<SDValue, 4> Values(NumValues);
3305  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3306                                          NumValues));
3307  EVT PtrVT = Ptr.getValueType();
3308  unsigned ChainI = 0;
3309  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3310    // Serializing loads here may result in excessive register pressure, and
3311    // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3312    // could recover a bit by hoisting nodes upward in the chain by recognizing
3313    // they are side-effect free or do not alias. The optimizer should really
3314    // avoid this case by converting large object/array copies to llvm.memcpy
3315    // (MaxParallelChains should always remain as failsafe).
3316    if (ChainI == MaxParallelChains) {
3317      assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3318      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3319                                  MVT::Other, &Chains[0], ChainI);
3320      Root = Chain;
3321      ChainI = 0;
3322    }
3323    SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3324                            PtrVT, Ptr,
3325                            DAG.getConstant(Offsets[i], PtrVT));
3326    SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root,
3327                            A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
3328                            isNonTemporal, isInvariant, Alignment, TBAAInfo,
3329                            Ranges);
3330
3331    Values[i] = L;
3332    Chains[ChainI] = L.getValue(1);
3333  }
3334
3335  if (!ConstantMemory) {
3336    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3337                                MVT::Other, &Chains[0], ChainI);
3338    if (isVolatile)
3339      DAG.setRoot(Chain);
3340    else
3341      PendingLoads.push_back(Chain);
3342  }
3343
3344  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3345                           DAG.getVTList(&ValueVTs[0], NumValues),
3346                           &Values[0], NumValues));
3347}
3348
3349void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3350  if (I.isAtomic())
3351    return visitAtomicStore(I);
3352
3353  const Value *SrcV = I.getOperand(0);
3354  const Value *PtrV = I.getOperand(1);
3355
3356  SmallVector<EVT, 4> ValueVTs;
3357  SmallVector<uint64_t, 4> Offsets;
3358  ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
3359  unsigned NumValues = ValueVTs.size();
3360  if (NumValues == 0)
3361    return;
3362
3363  // Get the lowered operands. Note that we do this after
3364  // checking if NumResults is zero, because with zero results
3365  // the operands won't have values in the map.
3366  SDValue Src = getValue(SrcV);
3367  SDValue Ptr = getValue(PtrV);
3368
3369  SDValue Root = getRoot();
3370  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3371                                          NumValues));
3372  EVT PtrVT = Ptr.getValueType();
3373  bool isVolatile = I.isVolatile();
3374  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3375  unsigned Alignment = I.getAlignment();
3376  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3377
3378  unsigned ChainI = 0;
3379  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3380    // See visitLoad comments.
3381    if (ChainI == MaxParallelChains) {
3382      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3383                                  MVT::Other, &Chains[0], ChainI);
3384      Root = Chain;
3385      ChainI = 0;
3386    }
3387    SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr,
3388                              DAG.getConstant(Offsets[i], PtrVT));
3389    SDValue St = DAG.getStore(Root, getCurDebugLoc(),
3390                              SDValue(Src.getNode(), Src.getResNo() + i),
3391                              Add, MachinePointerInfo(PtrV, Offsets[i]),
3392                              isVolatile, isNonTemporal, Alignment, TBAAInfo);
3393    Chains[ChainI] = St;
3394  }
3395
3396  SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3397                                  MVT::Other, &Chains[0], ChainI);
3398  ++SDNodeOrder;
3399  AssignOrderingToNode(StoreNode.getNode());
3400  DAG.setRoot(StoreNode);
3401}
3402
3403static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order,
3404                                    SynchronizationScope Scope,
3405                                    bool Before, DebugLoc dl,
3406                                    SelectionDAG &DAG,
3407                                    const TargetLowering &TLI) {
3408  // Fence, if necessary
3409  if (Before) {
3410    if (Order == AcquireRelease || Order == SequentiallyConsistent)
3411      Order = Release;
3412    else if (Order == Acquire || Order == Monotonic)
3413      return Chain;
3414  } else {
3415    if (Order == AcquireRelease)
3416      Order = Acquire;
3417    else if (Order == Release || Order == Monotonic)
3418      return Chain;
3419  }
3420  SDValue Ops[3];
3421  Ops[0] = Chain;
3422  Ops[1] = DAG.getConstant(Order, TLI.getPointerTy());
3423  Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy());
3424  return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3);
3425}
3426
3427void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
3428  DebugLoc dl = getCurDebugLoc();
3429  AtomicOrdering Order = I.getOrdering();
3430  SynchronizationScope Scope = I.getSynchScope();
3431
3432  SDValue InChain = getRoot();
3433
3434  if (TLI.getInsertFencesForAtomic())
3435    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3436                                   DAG, TLI);
3437
3438  SDValue L =
3439    DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl,
3440                  getValue(I.getCompareOperand()).getValueType().getSimpleVT(),
3441                  InChain,
3442                  getValue(I.getPointerOperand()),
3443                  getValue(I.getCompareOperand()),
3444                  getValue(I.getNewValOperand()),
3445                  MachinePointerInfo(I.getPointerOperand()), 0 /* Alignment */,
3446                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3447                  Scope);
3448
3449  SDValue OutChain = L.getValue(1);
3450
3451  if (TLI.getInsertFencesForAtomic())
3452    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3453                                    DAG, TLI);
3454
3455  setValue(&I, L);
3456  DAG.setRoot(OutChain);
3457}
3458
3459void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
3460  DebugLoc dl = getCurDebugLoc();
3461  ISD::NodeType NT;
3462  switch (I.getOperation()) {
3463  default: llvm_unreachable("Unknown atomicrmw operation");
3464  case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
3465  case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
3466  case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
3467  case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
3468  case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
3469  case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
3470  case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
3471  case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
3472  case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
3473  case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
3474  case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
3475  }
3476  AtomicOrdering Order = I.getOrdering();
3477  SynchronizationScope Scope = I.getSynchScope();
3478
3479  SDValue InChain = getRoot();
3480
3481  if (TLI.getInsertFencesForAtomic())
3482    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3483                                   DAG, TLI);
3484
3485  SDValue L =
3486    DAG.getAtomic(NT, dl,
3487                  getValue(I.getValOperand()).getValueType().getSimpleVT(),
3488                  InChain,
3489                  getValue(I.getPointerOperand()),
3490                  getValue(I.getValOperand()),
3491                  I.getPointerOperand(), 0 /* Alignment */,
3492                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3493                  Scope);
3494
3495  SDValue OutChain = L.getValue(1);
3496
3497  if (TLI.getInsertFencesForAtomic())
3498    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3499                                    DAG, TLI);
3500
3501  setValue(&I, L);
3502  DAG.setRoot(OutChain);
3503}
3504
3505void SelectionDAGBuilder::visitFence(const FenceInst &I) {
3506  DebugLoc dl = getCurDebugLoc();
3507  SDValue Ops[3];
3508  Ops[0] = getRoot();
3509  Ops[1] = DAG.getConstant(I.getOrdering(), TLI.getPointerTy());
3510  Ops[2] = DAG.getConstant(I.getSynchScope(), TLI.getPointerTy());
3511  DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3));
3512}
3513
3514void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
3515  DebugLoc dl = getCurDebugLoc();
3516  AtomicOrdering Order = I.getOrdering();
3517  SynchronizationScope Scope = I.getSynchScope();
3518
3519  SDValue InChain = getRoot();
3520
3521  EVT VT = TLI.getValueType(I.getType());
3522
3523  if (I.getAlignment() * 8 < VT.getSizeInBits())
3524    report_fatal_error("Cannot generate unaligned atomic load");
3525
3526  SDValue L =
3527    DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
3528                  getValue(I.getPointerOperand()),
3529                  I.getPointerOperand(), I.getAlignment(),
3530                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3531                  Scope);
3532
3533  SDValue OutChain = L.getValue(1);
3534
3535  if (TLI.getInsertFencesForAtomic())
3536    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3537                                    DAG, TLI);
3538
3539  setValue(&I, L);
3540  DAG.setRoot(OutChain);
3541}
3542
3543void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
3544  DebugLoc dl = getCurDebugLoc();
3545
3546  AtomicOrdering Order = I.getOrdering();
3547  SynchronizationScope Scope = I.getSynchScope();
3548
3549  SDValue InChain = getRoot();
3550
3551  EVT VT = TLI.getValueType(I.getValueOperand()->getType());
3552
3553  if (I.getAlignment() * 8 < VT.getSizeInBits())
3554    report_fatal_error("Cannot generate unaligned atomic store");
3555
3556  if (TLI.getInsertFencesForAtomic())
3557    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3558                                   DAG, TLI);
3559
3560  SDValue OutChain =
3561    DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
3562                  InChain,
3563                  getValue(I.getPointerOperand()),
3564                  getValue(I.getValueOperand()),
3565                  I.getPointerOperand(), I.getAlignment(),
3566                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3567                  Scope);
3568
3569  if (TLI.getInsertFencesForAtomic())
3570    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3571                                    DAG, TLI);
3572
3573  DAG.setRoot(OutChain);
3574}
3575
3576/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3577/// node.
3578void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3579                                               unsigned Intrinsic) {
3580  bool HasChain = !I.doesNotAccessMemory();
3581  bool OnlyLoad = HasChain && I.onlyReadsMemory();
3582
3583  // Build the operand list.
3584  SmallVector<SDValue, 8> Ops;
3585  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
3586    if (OnlyLoad) {
3587      // We don't need to serialize loads against other loads.
3588      Ops.push_back(DAG.getRoot());
3589    } else {
3590      Ops.push_back(getRoot());
3591    }
3592  }
3593
3594  // Info is set by getTgtMemInstrinsic
3595  TargetLowering::IntrinsicInfo Info;
3596  bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
3597
3598  // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3599  if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
3600      Info.opc == ISD::INTRINSIC_W_CHAIN)
3601    Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI.getPointerTy()));
3602
3603  // Add all operands of the call to the operand list.
3604  for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
3605    SDValue Op = getValue(I.getArgOperand(i));
3606    Ops.push_back(Op);
3607  }
3608
3609  SmallVector<EVT, 4> ValueVTs;
3610  ComputeValueVTs(TLI, I.getType(), ValueVTs);
3611
3612  if (HasChain)
3613    ValueVTs.push_back(MVT::Other);
3614
3615  SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
3616
3617  // Create the node.
3618  SDValue Result;
3619  if (IsTgtIntrinsic) {
3620    // This is target intrinsic that touches memory
3621    Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(),
3622                                     VTs, &Ops[0], Ops.size(),
3623                                     Info.memVT,
3624                                   MachinePointerInfo(Info.ptrVal, Info.offset),
3625                                     Info.align, Info.vol,
3626                                     Info.readMem, Info.writeMem);
3627  } else if (!HasChain) {
3628    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
3629                         VTs, &Ops[0], Ops.size());
3630  } else if (!I.getType()->isVoidTy()) {
3631    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
3632                         VTs, &Ops[0], Ops.size());
3633  } else {
3634    Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(),
3635                         VTs, &Ops[0], Ops.size());
3636  }
3637
3638  if (HasChain) {
3639    SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3640    if (OnlyLoad)
3641      PendingLoads.push_back(Chain);
3642    else
3643      DAG.setRoot(Chain);
3644  }
3645
3646  if (!I.getType()->isVoidTy()) {
3647    if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3648      EVT VT = TLI.getValueType(PTy);
3649      Result = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), VT, Result);
3650    }
3651
3652    setValue(&I, Result);
3653  } else {
3654    // Assign order to result here. If the intrinsic does not produce a result,
3655    // it won't be mapped to a SDNode and visit() will not assign it an order
3656    // number.
3657    ++SDNodeOrder;
3658    AssignOrderingToNode(Result.getNode());
3659  }
3660}
3661
3662/// GetSignificand - Get the significand and build it into a floating-point
3663/// number with exponent of 1:
3664///
3665///   Op = (Op & 0x007fffff) | 0x3f800000;
3666///
3667/// where Op is the hexidecimal representation of floating point value.
3668static SDValue
3669GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) {
3670  SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3671                           DAG.getConstant(0x007fffff, MVT::i32));
3672  SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3673                           DAG.getConstant(0x3f800000, MVT::i32));
3674  return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
3675}
3676
3677/// GetExponent - Get the exponent:
3678///
3679///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3680///
3681/// where Op is the hexidecimal representation of floating point value.
3682static SDValue
3683GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3684            DebugLoc dl) {
3685  SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3686                           DAG.getConstant(0x7f800000, MVT::i32));
3687  SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3688                           DAG.getConstant(23, TLI.getPointerTy()));
3689  SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3690                           DAG.getConstant(127, MVT::i32));
3691  return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3692}
3693
3694/// getF32Constant - Get 32-bit floating point constant.
3695static SDValue
3696getF32Constant(SelectionDAG &DAG, unsigned Flt) {
3697  return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)),
3698                           MVT::f32);
3699}
3700
3701/// expandExp - Lower an exp intrinsic. Handles the special sequences for
3702/// limited-precision mode.
3703static SDValue expandExp(DebugLoc dl, SDValue Op, SelectionDAG &DAG,
3704                         const TargetLowering &TLI) {
3705  if (Op.getValueType() == MVT::f32 &&
3706      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3707
3708    // Put the exponent in the right bit position for later addition to the
3709    // final result:
3710    //
3711    //   #define LOG2OFe 1.4426950f
3712    //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3713    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3714                             getF32Constant(DAG, 0x3fb8aa3b));
3715    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3716
3717    //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3718    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3719    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3720
3721    //   IntegerPartOfX <<= 23;
3722    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3723                                 DAG.getConstant(23, TLI.getPointerTy()));
3724
3725    SDValue TwoToFracPartOfX;
3726    if (LimitFloatPrecision <= 6) {
3727      // For floating-point precision of 6:
3728      //
3729      //   TwoToFractionalPartOfX =
3730      //     0.997535578f +
3731      //       (0.735607626f + 0.252464424f * x) * x;
3732      //
3733      // error 0.0144103317, which is 6 bits
3734      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3735                               getF32Constant(DAG, 0x3e814304));
3736      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3737                               getF32Constant(DAG, 0x3f3c50c8));
3738      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3739      TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3740                                     getF32Constant(DAG, 0x3f7f5e7e));
3741    } else if (LimitFloatPrecision <= 12) {
3742      // For floating-point precision of 12:
3743      //
3744      //   TwoToFractionalPartOfX =
3745      //     0.999892986f +
3746      //       (0.696457318f +
3747      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3748      //
3749      // 0.000107046256 error, which is 13 to 14 bits
3750      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3751                               getF32Constant(DAG, 0x3da235e3));
3752      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3753                               getF32Constant(DAG, 0x3e65b8f3));
3754      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3755      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3756                               getF32Constant(DAG, 0x3f324b07));
3757      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3758      TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3759                                     getF32Constant(DAG, 0x3f7ff8fd));
3760    } else { // LimitFloatPrecision <= 18
3761      // For floating-point precision of 18:
3762      //
3763      //   TwoToFractionalPartOfX =
3764      //     0.999999982f +
3765      //       (0.693148872f +
3766      //         (0.240227044f +
3767      //           (0.554906021e-1f +
3768      //             (0.961591928e-2f +
3769      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3770      //
3771      // error 2.47208000*10^(-7), which is better than 18 bits
3772      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3773                               getF32Constant(DAG, 0x3924b03e));
3774      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3775                               getF32Constant(DAG, 0x3ab24b87));
3776      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3777      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3778                               getF32Constant(DAG, 0x3c1d8c17));
3779      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3780      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3781                               getF32Constant(DAG, 0x3d634a1d));
3782      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3783      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3784                               getF32Constant(DAG, 0x3e75fe14));
3785      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3786      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3787                                getF32Constant(DAG, 0x3f317234));
3788      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3789      TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3790                                     getF32Constant(DAG, 0x3f800000));
3791    }
3792
3793    // Add the exponent into the result in integer domain.
3794    SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFracPartOfX);
3795    return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
3796                       DAG.getNode(ISD::ADD, dl, MVT::i32,
3797                                   t13, IntegerPartOfX));
3798  }
3799
3800  // No special expansion.
3801  return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
3802}
3803
3804/// expandLog - Lower a log intrinsic. Handles the special sequences for
3805/// limited-precision mode.
3806static SDValue expandLog(DebugLoc dl, SDValue Op, SelectionDAG &DAG,
3807                         const TargetLowering &TLI) {
3808  if (Op.getValueType() == MVT::f32 &&
3809      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3810    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3811
3812    // Scale the exponent by log(2) [0.69314718f].
3813    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3814    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3815                                        getF32Constant(DAG, 0x3f317218));
3816
3817    // Get the significand and build it into a floating-point number with
3818    // exponent of 1.
3819    SDValue X = GetSignificand(DAG, Op1, dl);
3820
3821    SDValue LogOfMantissa;
3822    if (LimitFloatPrecision <= 6) {
3823      // For floating-point precision of 6:
3824      //
3825      //   LogofMantissa =
3826      //     -1.1609546f +
3827      //       (1.4034025f - 0.23903021f * x) * x;
3828      //
3829      // error 0.0034276066, which is better than 8 bits
3830      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3831                               getF32Constant(DAG, 0xbe74c456));
3832      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3833                               getF32Constant(DAG, 0x3fb3a2b1));
3834      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3835      LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3836                                  getF32Constant(DAG, 0x3f949a29));
3837    } else if (LimitFloatPrecision <= 12) {
3838      // For floating-point precision of 12:
3839      //
3840      //   LogOfMantissa =
3841      //     -1.7417939f +
3842      //       (2.8212026f +
3843      //         (-1.4699568f +
3844      //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3845      //
3846      // error 0.000061011436, which is 14 bits
3847      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3848                               getF32Constant(DAG, 0xbd67b6d6));
3849      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3850                               getF32Constant(DAG, 0x3ee4f4b8));
3851      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3852      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3853                               getF32Constant(DAG, 0x3fbc278b));
3854      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3855      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3856                               getF32Constant(DAG, 0x40348e95));
3857      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3858      LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3859                                  getF32Constant(DAG, 0x3fdef31a));
3860    } else { // LimitFloatPrecision <= 18
3861      // For floating-point precision of 18:
3862      //
3863      //   LogOfMantissa =
3864      //     -2.1072184f +
3865      //       (4.2372794f +
3866      //         (-3.7029485f +
3867      //           (2.2781945f +
3868      //             (-0.87823314f +
3869      //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3870      //
3871      // error 0.0000023660568, which is better than 18 bits
3872      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3873                               getF32Constant(DAG, 0xbc91e5ac));
3874      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3875                               getF32Constant(DAG, 0x3e4350aa));
3876      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3877      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3878                               getF32Constant(DAG, 0x3f60d3e3));
3879      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3880      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3881                               getF32Constant(DAG, 0x4011cdf0));
3882      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3883      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3884                               getF32Constant(DAG, 0x406cfd1c));
3885      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3886      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3887                               getF32Constant(DAG, 0x408797cb));
3888      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3889      LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3890                                  getF32Constant(DAG, 0x4006dcab));
3891    }
3892
3893    return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
3894  }
3895
3896  // No special expansion.
3897  return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
3898}
3899
3900/// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
3901/// limited-precision mode.
3902static SDValue expandLog2(DebugLoc dl, SDValue Op, SelectionDAG &DAG,
3903                          const TargetLowering &TLI) {
3904  if (Op.getValueType() == MVT::f32 &&
3905      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3906    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3907
3908    // Get the exponent.
3909    SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3910
3911    // Get the significand and build it into a floating-point number with
3912    // exponent of 1.
3913    SDValue X = GetSignificand(DAG, Op1, dl);
3914
3915    // Different possible minimax approximations of significand in
3916    // floating-point for various degrees of accuracy over [1,2].
3917    SDValue Log2ofMantissa;
3918    if (LimitFloatPrecision <= 6) {
3919      // For floating-point precision of 6:
3920      //
3921      //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3922      //
3923      // error 0.0049451742, which is more than 7 bits
3924      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3925                               getF32Constant(DAG, 0xbeb08fe0));
3926      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3927                               getF32Constant(DAG, 0x40019463));
3928      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3929      Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3930                                   getF32Constant(DAG, 0x3fd6633d));
3931    } else if (LimitFloatPrecision <= 12) {
3932      // For floating-point precision of 12:
3933      //
3934      //   Log2ofMantissa =
3935      //     -2.51285454f +
3936      //       (4.07009056f +
3937      //         (-2.12067489f +
3938      //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3939      //
3940      // error 0.0000876136000, which is better than 13 bits
3941      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3942                               getF32Constant(DAG, 0xbda7262e));
3943      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3944                               getF32Constant(DAG, 0x3f25280b));
3945      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3946      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3947                               getF32Constant(DAG, 0x4007b923));
3948      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3949      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3950                               getF32Constant(DAG, 0x40823e2f));
3951      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3952      Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3953                                   getF32Constant(DAG, 0x4020d29c));
3954    } else { // LimitFloatPrecision <= 18
3955      // For floating-point precision of 18:
3956      //
3957      //   Log2ofMantissa =
3958      //     -3.0400495f +
3959      //       (6.1129976f +
3960      //         (-5.3420409f +
3961      //           (3.2865683f +
3962      //             (-1.2669343f +
3963      //               (0.27515199f -
3964      //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3965      //
3966      // error 0.0000018516, which is better than 18 bits
3967      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3968                               getF32Constant(DAG, 0xbcd2769e));
3969      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3970                               getF32Constant(DAG, 0x3e8ce0b9));
3971      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3972      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3973                               getF32Constant(DAG, 0x3fa22ae7));
3974      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3975      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3976                               getF32Constant(DAG, 0x40525723));
3977      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3978      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3979                               getF32Constant(DAG, 0x40aaf200));
3980      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3981      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3982                               getF32Constant(DAG, 0x40c39dad));
3983      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3984      Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3985                                   getF32Constant(DAG, 0x4042902c));
3986    }
3987
3988    return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
3989  }
3990
3991  // No special expansion.
3992  return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
3993}
3994
3995/// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
3996/// limited-precision mode.
3997static SDValue expandLog10(DebugLoc dl, SDValue Op, SelectionDAG &DAG,
3998                           const TargetLowering &TLI) {
3999  if (Op.getValueType() == MVT::f32 &&
4000      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4001    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4002
4003    // Scale the exponent by log10(2) [0.30102999f].
4004    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4005    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4006                                        getF32Constant(DAG, 0x3e9a209a));
4007
4008    // Get the significand and build it into a floating-point number with
4009    // exponent of 1.
4010    SDValue X = GetSignificand(DAG, Op1, dl);
4011
4012    SDValue Log10ofMantissa;
4013    if (LimitFloatPrecision <= 6) {
4014      // For floating-point precision of 6:
4015      //
4016      //   Log10ofMantissa =
4017      //     -0.50419619f +
4018      //       (0.60948995f - 0.10380950f * x) * x;
4019      //
4020      // error 0.0014886165, which is 6 bits
4021      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4022                               getF32Constant(DAG, 0xbdd49a13));
4023      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4024                               getF32Constant(DAG, 0x3f1c0789));
4025      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4026      Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4027                                    getF32Constant(DAG, 0x3f011300));
4028    } else if (LimitFloatPrecision <= 12) {
4029      // For floating-point precision of 12:
4030      //
4031      //   Log10ofMantissa =
4032      //     -0.64831180f +
4033      //       (0.91751397f +
4034      //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4035      //
4036      // error 0.00019228036, which is better than 12 bits
4037      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4038                               getF32Constant(DAG, 0x3d431f31));
4039      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4040                               getF32Constant(DAG, 0x3ea21fb2));
4041      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4042      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4043                               getF32Constant(DAG, 0x3f6ae232));
4044      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4045      Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4046                                    getF32Constant(DAG, 0x3f25f7c3));
4047    } else { // LimitFloatPrecision <= 18
4048      // For floating-point precision of 18:
4049      //
4050      //   Log10ofMantissa =
4051      //     -0.84299375f +
4052      //       (1.5327582f +
4053      //         (-1.0688956f +
4054      //           (0.49102474f +
4055      //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4056      //
4057      // error 0.0000037995730, which is better than 18 bits
4058      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4059                               getF32Constant(DAG, 0x3c5d51ce));
4060      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4061                               getF32Constant(DAG, 0x3e00685a));
4062      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4063      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4064                               getF32Constant(DAG, 0x3efb6798));
4065      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4066      SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4067                               getF32Constant(DAG, 0x3f88d192));
4068      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4069      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4070                               getF32Constant(DAG, 0x3fc4316c));
4071      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4072      Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4073                                    getF32Constant(DAG, 0x3f57ce70));
4074    }
4075
4076    return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
4077  }
4078
4079  // No special expansion.
4080  return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
4081}
4082
4083/// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4084/// limited-precision mode.
4085static SDValue expandExp2(DebugLoc dl, SDValue Op, SelectionDAG &DAG,
4086                          const TargetLowering &TLI) {
4087  if (Op.getValueType() == MVT::f32 &&
4088      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4089    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
4090
4091    //   FractionalPartOfX = x - (float)IntegerPartOfX;
4092    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4093    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
4094
4095    //   IntegerPartOfX <<= 23;
4096    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4097                                 DAG.getConstant(23, TLI.getPointerTy()));
4098
4099    SDValue TwoToFractionalPartOfX;
4100    if (LimitFloatPrecision <= 6) {
4101      // For floating-point precision of 6:
4102      //
4103      //   TwoToFractionalPartOfX =
4104      //     0.997535578f +
4105      //       (0.735607626f + 0.252464424f * x) * x;
4106      //
4107      // error 0.0144103317, which is 6 bits
4108      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4109                               getF32Constant(DAG, 0x3e814304));
4110      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4111                               getF32Constant(DAG, 0x3f3c50c8));
4112      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4113      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4114                                           getF32Constant(DAG, 0x3f7f5e7e));
4115    } else if (LimitFloatPrecision <= 12) {
4116      // For floating-point precision of 12:
4117      //
4118      //   TwoToFractionalPartOfX =
4119      //     0.999892986f +
4120      //       (0.696457318f +
4121      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4122      //
4123      // error 0.000107046256, which is 13 to 14 bits
4124      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4125                               getF32Constant(DAG, 0x3da235e3));
4126      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4127                               getF32Constant(DAG, 0x3e65b8f3));
4128      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4129      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4130                               getF32Constant(DAG, 0x3f324b07));
4131      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4132      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4133                                           getF32Constant(DAG, 0x3f7ff8fd));
4134    } else { // LimitFloatPrecision <= 18
4135      // For floating-point precision of 18:
4136      //
4137      //   TwoToFractionalPartOfX =
4138      //     0.999999982f +
4139      //       (0.693148872f +
4140      //         (0.240227044f +
4141      //           (0.554906021e-1f +
4142      //             (0.961591928e-2f +
4143      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4144      // error 2.47208000*10^(-7), which is better than 18 bits
4145      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4146                               getF32Constant(DAG, 0x3924b03e));
4147      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4148                               getF32Constant(DAG, 0x3ab24b87));
4149      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4150      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4151                               getF32Constant(DAG, 0x3c1d8c17));
4152      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4153      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4154                               getF32Constant(DAG, 0x3d634a1d));
4155      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4156      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4157                               getF32Constant(DAG, 0x3e75fe14));
4158      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4159      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4160                                getF32Constant(DAG, 0x3f317234));
4161      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4162      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4163                                           getF32Constant(DAG, 0x3f800000));
4164    }
4165
4166    // Add the exponent into the result in integer domain.
4167    SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32,
4168                              TwoToFractionalPartOfX);
4169    return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4170                       DAG.getNode(ISD::ADD, dl, MVT::i32,
4171                                   t13, IntegerPartOfX));
4172  }
4173
4174  // No special expansion.
4175  return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
4176}
4177
4178/// visitPow - Lower a pow intrinsic. Handles the special sequences for
4179/// limited-precision mode with x == 10.0f.
4180static SDValue expandPow(DebugLoc dl, SDValue LHS, SDValue RHS,
4181                         SelectionDAG &DAG, const TargetLowering &TLI) {
4182  bool IsExp10 = false;
4183  if (LHS.getValueType() == MVT::f32 && LHS.getValueType() == MVT::f32 &&
4184      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4185    if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
4186      APFloat Ten(10.0f);
4187      IsExp10 = LHSC->isExactlyValue(Ten);
4188    }
4189  }
4190
4191  if (IsExp10) {
4192    // Put the exponent in the right bit position for later addition to the
4193    // final result:
4194    //
4195    //   #define LOG2OF10 3.3219281f
4196    //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
4197    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
4198                             getF32Constant(DAG, 0x40549a78));
4199    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4200
4201    //   FractionalPartOfX = x - (float)IntegerPartOfX;
4202    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4203    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4204
4205    //   IntegerPartOfX <<= 23;
4206    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4207                                 DAG.getConstant(23, TLI.getPointerTy()));
4208
4209    SDValue TwoToFractionalPartOfX;
4210    if (LimitFloatPrecision <= 6) {
4211      // For floating-point precision of 6:
4212      //
4213      //   twoToFractionalPartOfX =
4214      //     0.997535578f +
4215      //       (0.735607626f + 0.252464424f * x) * x;
4216      //
4217      // error 0.0144103317, which is 6 bits
4218      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4219                               getF32Constant(DAG, 0x3e814304));
4220      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4221                               getF32Constant(DAG, 0x3f3c50c8));
4222      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4223      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4224                                           getF32Constant(DAG, 0x3f7f5e7e));
4225    } else if (LimitFloatPrecision <= 12) {
4226      // For floating-point precision of 12:
4227      //
4228      //   TwoToFractionalPartOfX =
4229      //     0.999892986f +
4230      //       (0.696457318f +
4231      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4232      //
4233      // error 0.000107046256, which is 13 to 14 bits
4234      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4235                               getF32Constant(DAG, 0x3da235e3));
4236      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4237                               getF32Constant(DAG, 0x3e65b8f3));
4238      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4239      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4240                               getF32Constant(DAG, 0x3f324b07));
4241      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4242      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4243                                           getF32Constant(DAG, 0x3f7ff8fd));
4244    } else { // LimitFloatPrecision <= 18
4245      // For floating-point precision of 18:
4246      //
4247      //   TwoToFractionalPartOfX =
4248      //     0.999999982f +
4249      //       (0.693148872f +
4250      //         (0.240227044f +
4251      //           (0.554906021e-1f +
4252      //             (0.961591928e-2f +
4253      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4254      // error 2.47208000*10^(-7), which is better than 18 bits
4255      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4256                               getF32Constant(DAG, 0x3924b03e));
4257      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4258                               getF32Constant(DAG, 0x3ab24b87));
4259      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4260      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4261                               getF32Constant(DAG, 0x3c1d8c17));
4262      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4263      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4264                               getF32Constant(DAG, 0x3d634a1d));
4265      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4266      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4267                               getF32Constant(DAG, 0x3e75fe14));
4268      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4269      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4270                                getF32Constant(DAG, 0x3f317234));
4271      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4272      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4273                                           getF32Constant(DAG, 0x3f800000));
4274    }
4275
4276    SDValue t13 = DAG.getNode(ISD::BITCAST, dl,MVT::i32,TwoToFractionalPartOfX);
4277    return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4278                       DAG.getNode(ISD::ADD, dl, MVT::i32,
4279                                   t13, IntegerPartOfX));
4280  }
4281
4282  // No special expansion.
4283  return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
4284}
4285
4286
4287/// ExpandPowI - Expand a llvm.powi intrinsic.
4288static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS,
4289                          SelectionDAG &DAG) {
4290  // If RHS is a constant, we can expand this out to a multiplication tree,
4291  // otherwise we end up lowering to a call to __powidf2 (for example).  When
4292  // optimizing for size, we only want to do this if the expansion would produce
4293  // a small number of multiplies, otherwise we do the full expansion.
4294  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4295    // Get the exponent as a positive value.
4296    unsigned Val = RHSC->getSExtValue();
4297    if ((int)Val < 0) Val = -Val;
4298
4299    // powi(x, 0) -> 1.0
4300    if (Val == 0)
4301      return DAG.getConstantFP(1.0, LHS.getValueType());
4302
4303    const Function *F = DAG.getMachineFunction().getFunction();
4304    if (!F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
4305                                         Attribute::OptimizeForSize) ||
4306        // If optimizing for size, don't insert too many multiplies.  This
4307        // inserts up to 5 multiplies.
4308        CountPopulation_32(Val)+Log2_32(Val) < 7) {
4309      // We use the simple binary decomposition method to generate the multiply
4310      // sequence.  There are more optimal ways to do this (for example,
4311      // powi(x,15) generates one more multiply than it should), but this has
4312      // the benefit of being both really simple and much better than a libcall.
4313      SDValue Res;  // Logically starts equal to 1.0
4314      SDValue CurSquare = LHS;
4315      while (Val) {
4316        if (Val & 1) {
4317          if (Res.getNode())
4318            Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4319          else
4320            Res = CurSquare;  // 1.0*CurSquare.
4321        }
4322
4323        CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4324                                CurSquare, CurSquare);
4325        Val >>= 1;
4326      }
4327
4328      // If the original was negative, invert the result, producing 1/(x*x*x).
4329      if (RHSC->getSExtValue() < 0)
4330        Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4331                          DAG.getConstantFP(1.0, LHS.getValueType()), Res);
4332      return Res;
4333    }
4334  }
4335
4336  // Otherwise, expand to a libcall.
4337  return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4338}
4339
4340// getTruncatedArgReg - Find underlying register used for an truncated
4341// argument.
4342static unsigned getTruncatedArgReg(const SDValue &N) {
4343  if (N.getOpcode() != ISD::TRUNCATE)
4344    return 0;
4345
4346  const SDValue &Ext = N.getOperand(0);
4347  if (Ext.getOpcode() == ISD::AssertZext || Ext.getOpcode() == ISD::AssertSext){
4348    const SDValue &CFR = Ext.getOperand(0);
4349    if (CFR.getOpcode() == ISD::CopyFromReg)
4350      return cast<RegisterSDNode>(CFR.getOperand(1))->getReg();
4351    if (CFR.getOpcode() == ISD::TRUNCATE)
4352      return getTruncatedArgReg(CFR);
4353  }
4354  return 0;
4355}
4356
4357/// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4358/// argument, create the corresponding DBG_VALUE machine instruction for it now.
4359/// At the end of instruction selection, they will be inserted to the entry BB.
4360bool
4361SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
4362                                              int64_t Offset,
4363                                              const SDValue &N) {
4364  const Argument *Arg = dyn_cast<Argument>(V);
4365  if (!Arg)
4366    return false;
4367
4368  MachineFunction &MF = DAG.getMachineFunction();
4369  const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
4370  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
4371
4372  // Ignore inlined function arguments here.
4373  DIVariable DV(Variable);
4374  if (DV.isInlinedFnArgument(MF.getFunction()))
4375    return false;
4376
4377  unsigned Reg = 0;
4378  // Some arguments' frame index is recorded during argument lowering.
4379  Offset = FuncInfo.getArgumentFrameIndex(Arg);
4380  if (Offset)
4381    Reg = TRI->getFrameRegister(MF);
4382
4383  if (!Reg && N.getNode()) {
4384    if (N.getOpcode() == ISD::CopyFromReg)
4385      Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
4386    else
4387      Reg = getTruncatedArgReg(N);
4388    if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4389      MachineRegisterInfo &RegInfo = MF.getRegInfo();
4390      unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4391      if (PR)
4392        Reg = PR;
4393    }
4394  }
4395
4396  if (!Reg) {
4397    // Check if ValueMap has reg number.
4398    DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4399    if (VMI != FuncInfo.ValueMap.end())
4400      Reg = VMI->second;
4401  }
4402
4403  if (!Reg && N.getNode()) {
4404    // Check if frame index is available.
4405    if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4406      if (FrameIndexSDNode *FINode =
4407          dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) {
4408        Reg = TRI->getFrameRegister(MF);
4409        Offset = FINode->getIndex();
4410      }
4411  }
4412
4413  if (!Reg)
4414    return false;
4415
4416  MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(),
4417                                    TII->get(TargetOpcode::DBG_VALUE))
4418    .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable);
4419  FuncInfo.ArgDbgValues.push_back(&*MIB);
4420  return true;
4421}
4422
4423// VisualStudio defines setjmp as _setjmp
4424#if defined(_MSC_VER) && defined(setjmp) && \
4425                         !defined(setjmp_undefined_for_msvc)
4426#  pragma push_macro("setjmp")
4427#  undef setjmp
4428#  define setjmp_undefined_for_msvc
4429#endif
4430
4431/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4432/// we want to emit this as a call to a named external function, return the name
4433/// otherwise lower it and return null.
4434const char *
4435SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4436  DebugLoc dl = getCurDebugLoc();
4437  SDValue Res;
4438
4439  switch (Intrinsic) {
4440  default:
4441    // By default, turn this into a target intrinsic node.
4442    visitTargetIntrinsic(I, Intrinsic);
4443    return 0;
4444  case Intrinsic::vastart:  visitVAStart(I); return 0;
4445  case Intrinsic::vaend:    visitVAEnd(I); return 0;
4446  case Intrinsic::vacopy:   visitVACopy(I); return 0;
4447  case Intrinsic::returnaddress:
4448    setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(),
4449                             getValue(I.getArgOperand(0))));
4450    return 0;
4451  case Intrinsic::frameaddress:
4452    setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(),
4453                             getValue(I.getArgOperand(0))));
4454    return 0;
4455  case Intrinsic::setjmp:
4456    return &"_setjmp"[!TLI.usesUnderscoreSetJmp()];
4457  case Intrinsic::longjmp:
4458    return &"_longjmp"[!TLI.usesUnderscoreLongJmp()];
4459  case Intrinsic::memcpy: {
4460    // Assert for address < 256 since we support only user defined address
4461    // spaces.
4462    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4463           < 256 &&
4464           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4465           < 256 &&
4466           "Unknown address space");
4467    SDValue Op1 = getValue(I.getArgOperand(0));
4468    SDValue Op2 = getValue(I.getArgOperand(1));
4469    SDValue Op3 = getValue(I.getArgOperand(2));
4470    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4471    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4472    DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false,
4473                              MachinePointerInfo(I.getArgOperand(0)),
4474                              MachinePointerInfo(I.getArgOperand(1))));
4475    return 0;
4476  }
4477  case Intrinsic::memset: {
4478    // Assert for address < 256 since we support only user defined address
4479    // spaces.
4480    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4481           < 256 &&
4482           "Unknown address space");
4483    SDValue Op1 = getValue(I.getArgOperand(0));
4484    SDValue Op2 = getValue(I.getArgOperand(1));
4485    SDValue Op3 = getValue(I.getArgOperand(2));
4486    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4487    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4488    DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4489                              MachinePointerInfo(I.getArgOperand(0))));
4490    return 0;
4491  }
4492  case Intrinsic::memmove: {
4493    // Assert for address < 256 since we support only user defined address
4494    // spaces.
4495    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4496           < 256 &&
4497           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4498           < 256 &&
4499           "Unknown address space");
4500    SDValue Op1 = getValue(I.getArgOperand(0));
4501    SDValue Op2 = getValue(I.getArgOperand(1));
4502    SDValue Op3 = getValue(I.getArgOperand(2));
4503    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4504    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4505    DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4506                               MachinePointerInfo(I.getArgOperand(0)),
4507                               MachinePointerInfo(I.getArgOperand(1))));
4508    return 0;
4509  }
4510  case Intrinsic::dbg_declare: {
4511    const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4512    MDNode *Variable = DI.getVariable();
4513    const Value *Address = DI.getAddress();
4514    if (!Address || !DIVariable(Variable).Verify()) {
4515      DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4516      return 0;
4517    }
4518
4519    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4520    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4521    // absolute, but not relative, values are different depending on whether
4522    // debug info exists.
4523    ++SDNodeOrder;
4524
4525    // Check if address has undef value.
4526    if (isa<UndefValue>(Address) ||
4527        (Address->use_empty() && !isa<Argument>(Address))) {
4528      DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4529      return 0;
4530    }
4531
4532    SDValue &N = NodeMap[Address];
4533    if (!N.getNode() && isa<Argument>(Address))
4534      // Check unused arguments map.
4535      N = UnusedArgNodeMap[Address];
4536    SDDbgValue *SDV;
4537    if (N.getNode()) {
4538      if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4539        Address = BCI->getOperand(0);
4540      // Parameters are handled specially.
4541      bool isParameter =
4542        (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable ||
4543         isa<Argument>(Address));
4544
4545      const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
4546
4547      if (isParameter && !AI) {
4548        FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4549        if (FINode)
4550          // Byval parameter.  We have a frame index at this point.
4551          SDV = DAG.getDbgValue(Variable, FINode->getIndex(),
4552                                0, dl, SDNodeOrder);
4553        else {
4554          // Address is an argument, so try to emit its dbg value using
4555          // virtual register info from the FuncInfo.ValueMap.
4556          EmitFuncArgumentDbgValue(Address, Variable, 0, N);
4557          return 0;
4558        }
4559      } else if (AI)
4560        SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
4561                              0, dl, SDNodeOrder);
4562      else {
4563        // Can't do anything with other non-AI cases yet.
4564        DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4565        DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t");
4566        DEBUG(Address->dump());
4567        return 0;
4568      }
4569      DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4570    } else {
4571      // If Address is an argument then try to emit its dbg value using
4572      // virtual register info from the FuncInfo.ValueMap.
4573      if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) {
4574        // If variable is pinned by a alloca in dominating bb then
4575        // use StaticAllocaMap.
4576        if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4577          if (AI->getParent() != DI.getParent()) {
4578            DenseMap<const AllocaInst*, int>::iterator SI =
4579              FuncInfo.StaticAllocaMap.find(AI);
4580            if (SI != FuncInfo.StaticAllocaMap.end()) {
4581              SDV = DAG.getDbgValue(Variable, SI->second,
4582                                    0, dl, SDNodeOrder);
4583              DAG.AddDbgValue(SDV, 0, false);
4584              return 0;
4585            }
4586          }
4587        }
4588        DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4589      }
4590    }
4591    return 0;
4592  }
4593  case Intrinsic::dbg_value: {
4594    const DbgValueInst &DI = cast<DbgValueInst>(I);
4595    if (!DIVariable(DI.getVariable()).Verify())
4596      return 0;
4597
4598    MDNode *Variable = DI.getVariable();
4599    uint64_t Offset = DI.getOffset();
4600    const Value *V = DI.getValue();
4601    if (!V)
4602      return 0;
4603
4604    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4605    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4606    // absolute, but not relative, values are different depending on whether
4607    // debug info exists.
4608    ++SDNodeOrder;
4609    SDDbgValue *SDV;
4610    if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
4611      SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder);
4612      DAG.AddDbgValue(SDV, 0, false);
4613    } else {
4614      // Do not use getValue() in here; we don't want to generate code at
4615      // this point if it hasn't been done yet.
4616      SDValue N = NodeMap[V];
4617      if (!N.getNode() && isa<Argument>(V))
4618        // Check unused arguments map.
4619        N = UnusedArgNodeMap[V];
4620      if (N.getNode()) {
4621        if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) {
4622          SDV = DAG.getDbgValue(Variable, N.getNode(),
4623                                N.getResNo(), Offset, dl, SDNodeOrder);
4624          DAG.AddDbgValue(SDV, N.getNode(), false);
4625        }
4626      } else if (!V->use_empty() ) {
4627        // Do not call getValue(V) yet, as we don't want to generate code.
4628        // Remember it for later.
4629        DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4630        DanglingDebugInfoMap[V] = DDI;
4631      } else {
4632        // We may expand this to cover more cases.  One case where we have no
4633        // data available is an unreferenced parameter.
4634        DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4635      }
4636    }
4637
4638    // Build a debug info table entry.
4639    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4640      V = BCI->getOperand(0);
4641    const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4642    // Don't handle byval struct arguments or VLAs, for example.
4643    if (!AI) {
4644      DEBUG(dbgs() << "Dropping debug location info for:\n  " << DI << "\n");
4645      DEBUG(dbgs() << "  Last seen at:\n    " << *V << "\n");
4646      return 0;
4647    }
4648    DenseMap<const AllocaInst*, int>::iterator SI =
4649      FuncInfo.StaticAllocaMap.find(AI);
4650    if (SI == FuncInfo.StaticAllocaMap.end())
4651      return 0; // VLAs.
4652    int FI = SI->second;
4653
4654    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4655    if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
4656      MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
4657    return 0;
4658  }
4659
4660  case Intrinsic::eh_typeid_for: {
4661    // Find the type id for the given typeinfo.
4662    GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0));
4663    unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4664    Res = DAG.getConstant(TypeID, MVT::i32);
4665    setValue(&I, Res);
4666    return 0;
4667  }
4668
4669  case Intrinsic::eh_return_i32:
4670  case Intrinsic::eh_return_i64:
4671    DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4672    DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl,
4673                            MVT::Other,
4674                            getControlRoot(),
4675                            getValue(I.getArgOperand(0)),
4676                            getValue(I.getArgOperand(1))));
4677    return 0;
4678  case Intrinsic::eh_unwind_init:
4679    DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4680    return 0;
4681  case Intrinsic::eh_dwarf_cfa: {
4682    SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl,
4683                                        TLI.getPointerTy());
4684    SDValue Offset = DAG.getNode(ISD::ADD, dl,
4685                                 TLI.getPointerTy(),
4686                                 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
4687                                             TLI.getPointerTy()),
4688                                 CfaArg);
4689    SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl,
4690                             TLI.getPointerTy(),
4691                             DAG.getConstant(0, TLI.getPointerTy()));
4692    setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
4693                             FA, Offset));
4694    return 0;
4695  }
4696  case Intrinsic::eh_sjlj_callsite: {
4697    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4698    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4699    assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4700    assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4701
4702    MMI.setCurrentCallSite(CI->getZExtValue());
4703    return 0;
4704  }
4705  case Intrinsic::eh_sjlj_functioncontext: {
4706    // Get and store the index of the function context.
4707    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4708    AllocaInst *FnCtx =
4709      cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
4710    int FI = FuncInfo.StaticAllocaMap[FnCtx];
4711    MFI->setFunctionContextIndex(FI);
4712    return 0;
4713  }
4714  case Intrinsic::eh_sjlj_setjmp: {
4715    SDValue Ops[2];
4716    Ops[0] = getRoot();
4717    Ops[1] = getValue(I.getArgOperand(0));
4718    SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, dl,
4719                             DAG.getVTList(MVT::i32, MVT::Other),
4720                             Ops, 2);
4721    setValue(&I, Op.getValue(0));
4722    DAG.setRoot(Op.getValue(1));
4723    return 0;
4724  }
4725  case Intrinsic::eh_sjlj_longjmp: {
4726    DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other,
4727                            getRoot(), getValue(I.getArgOperand(0))));
4728    return 0;
4729  }
4730
4731  case Intrinsic::x86_mmx_pslli_w:
4732  case Intrinsic::x86_mmx_pslli_d:
4733  case Intrinsic::x86_mmx_pslli_q:
4734  case Intrinsic::x86_mmx_psrli_w:
4735  case Intrinsic::x86_mmx_psrli_d:
4736  case Intrinsic::x86_mmx_psrli_q:
4737  case Intrinsic::x86_mmx_psrai_w:
4738  case Intrinsic::x86_mmx_psrai_d: {
4739    SDValue ShAmt = getValue(I.getArgOperand(1));
4740    if (isa<ConstantSDNode>(ShAmt)) {
4741      visitTargetIntrinsic(I, Intrinsic);
4742      return 0;
4743    }
4744    unsigned NewIntrinsic = 0;
4745    EVT ShAmtVT = MVT::v2i32;
4746    switch (Intrinsic) {
4747    case Intrinsic::x86_mmx_pslli_w:
4748      NewIntrinsic = Intrinsic::x86_mmx_psll_w;
4749      break;
4750    case Intrinsic::x86_mmx_pslli_d:
4751      NewIntrinsic = Intrinsic::x86_mmx_psll_d;
4752      break;
4753    case Intrinsic::x86_mmx_pslli_q:
4754      NewIntrinsic = Intrinsic::x86_mmx_psll_q;
4755      break;
4756    case Intrinsic::x86_mmx_psrli_w:
4757      NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
4758      break;
4759    case Intrinsic::x86_mmx_psrli_d:
4760      NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
4761      break;
4762    case Intrinsic::x86_mmx_psrli_q:
4763      NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
4764      break;
4765    case Intrinsic::x86_mmx_psrai_w:
4766      NewIntrinsic = Intrinsic::x86_mmx_psra_w;
4767      break;
4768    case Intrinsic::x86_mmx_psrai_d:
4769      NewIntrinsic = Intrinsic::x86_mmx_psra_d;
4770      break;
4771    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4772    }
4773
4774    // The vector shift intrinsics with scalars uses 32b shift amounts but
4775    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
4776    // to be zero.
4777    // We must do this early because v2i32 is not a legal type.
4778    SDValue ShOps[2];
4779    ShOps[0] = ShAmt;
4780    ShOps[1] = DAG.getConstant(0, MVT::i32);
4781    ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
4782    EVT DestVT = TLI.getValueType(I.getType());
4783    ShAmt = DAG.getNode(ISD::BITCAST, dl, DestVT, ShAmt);
4784    Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
4785                       DAG.getConstant(NewIntrinsic, MVT::i32),
4786                       getValue(I.getArgOperand(0)), ShAmt);
4787    setValue(&I, Res);
4788    return 0;
4789  }
4790  case Intrinsic::x86_avx_vinsertf128_pd_256:
4791  case Intrinsic::x86_avx_vinsertf128_ps_256:
4792  case Intrinsic::x86_avx_vinsertf128_si_256:
4793  case Intrinsic::x86_avx2_vinserti128: {
4794    EVT DestVT = TLI.getValueType(I.getType());
4795    EVT ElVT = TLI.getValueType(I.getArgOperand(1)->getType());
4796    uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue() & 1) *
4797                   ElVT.getVectorNumElements();
4798    Res = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, DestVT,
4799                      getValue(I.getArgOperand(0)),
4800                      getValue(I.getArgOperand(1)),
4801                      DAG.getIntPtrConstant(Idx));
4802    setValue(&I, Res);
4803    return 0;
4804  }
4805  case Intrinsic::x86_avx_vextractf128_pd_256:
4806  case Intrinsic::x86_avx_vextractf128_ps_256:
4807  case Intrinsic::x86_avx_vextractf128_si_256:
4808  case Intrinsic::x86_avx2_vextracti128: {
4809    EVT DestVT = TLI.getValueType(I.getType());
4810    uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(1))->getZExtValue() & 1) *
4811                   DestVT.getVectorNumElements();
4812    Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT,
4813                      getValue(I.getArgOperand(0)),
4814                      DAG.getIntPtrConstant(Idx));
4815    setValue(&I, Res);
4816    return 0;
4817  }
4818  case Intrinsic::convertff:
4819  case Intrinsic::convertfsi:
4820  case Intrinsic::convertfui:
4821  case Intrinsic::convertsif:
4822  case Intrinsic::convertuif:
4823  case Intrinsic::convertss:
4824  case Intrinsic::convertsu:
4825  case Intrinsic::convertus:
4826  case Intrinsic::convertuu: {
4827    ISD::CvtCode Code = ISD::CVT_INVALID;
4828    switch (Intrinsic) {
4829    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4830    case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
4831    case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4832    case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4833    case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4834    case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4835    case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
4836    case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
4837    case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4838    case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4839    }
4840    EVT DestVT = TLI.getValueType(I.getType());
4841    const Value *Op1 = I.getArgOperand(0);
4842    Res = DAG.getConvertRndSat(DestVT, dl, getValue(Op1),
4843                               DAG.getValueType(DestVT),
4844                               DAG.getValueType(getValue(Op1).getValueType()),
4845                               getValue(I.getArgOperand(1)),
4846                               getValue(I.getArgOperand(2)),
4847                               Code);
4848    setValue(&I, Res);
4849    return 0;
4850  }
4851  case Intrinsic::powi:
4852    setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)),
4853                            getValue(I.getArgOperand(1)), DAG));
4854    return 0;
4855  case Intrinsic::log:
4856    setValue(&I, expandLog(dl, getValue(I.getArgOperand(0)), DAG, TLI));
4857    return 0;
4858  case Intrinsic::log2:
4859    setValue(&I, expandLog2(dl, getValue(I.getArgOperand(0)), DAG, TLI));
4860    return 0;
4861  case Intrinsic::log10:
4862    setValue(&I, expandLog10(dl, getValue(I.getArgOperand(0)), DAG, TLI));
4863    return 0;
4864  case Intrinsic::exp:
4865    setValue(&I, expandExp(dl, getValue(I.getArgOperand(0)), DAG, TLI));
4866    return 0;
4867  case Intrinsic::exp2:
4868    setValue(&I, expandExp2(dl, getValue(I.getArgOperand(0)), DAG, TLI));
4869    return 0;
4870  case Intrinsic::pow:
4871    setValue(&I, expandPow(dl, getValue(I.getArgOperand(0)),
4872                           getValue(I.getArgOperand(1)), DAG, TLI));
4873    return 0;
4874  case Intrinsic::sqrt:
4875  case Intrinsic::fabs:
4876  case Intrinsic::sin:
4877  case Intrinsic::cos:
4878  case Intrinsic::floor:
4879  case Intrinsic::ceil:
4880  case Intrinsic::trunc:
4881  case Intrinsic::rint:
4882  case Intrinsic::nearbyint: {
4883    unsigned Opcode;
4884    switch (Intrinsic) {
4885    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4886    case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
4887    case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
4888    case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
4889    case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
4890    case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
4891    case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
4892    case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
4893    case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
4894    case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
4895    }
4896
4897    setValue(&I, DAG.getNode(Opcode, dl,
4898                             getValue(I.getArgOperand(0)).getValueType(),
4899                             getValue(I.getArgOperand(0))));
4900    return 0;
4901  }
4902  case Intrinsic::fma:
4903    setValue(&I, DAG.getNode(ISD::FMA, dl,
4904                             getValue(I.getArgOperand(0)).getValueType(),
4905                             getValue(I.getArgOperand(0)),
4906                             getValue(I.getArgOperand(1)),
4907                             getValue(I.getArgOperand(2))));
4908    return 0;
4909  case Intrinsic::fmuladd: {
4910    EVT VT = TLI.getValueType(I.getType());
4911    if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
4912        TLI.isOperationLegalOrCustom(ISD::FMA, VT) &&
4913        TLI.isFMAFasterThanMulAndAdd(VT)){
4914      setValue(&I, DAG.getNode(ISD::FMA, dl,
4915                               getValue(I.getArgOperand(0)).getValueType(),
4916                               getValue(I.getArgOperand(0)),
4917                               getValue(I.getArgOperand(1)),
4918                               getValue(I.getArgOperand(2))));
4919    } else {
4920      SDValue Mul = DAG.getNode(ISD::FMUL, dl,
4921                                getValue(I.getArgOperand(0)).getValueType(),
4922                                getValue(I.getArgOperand(0)),
4923                                getValue(I.getArgOperand(1)));
4924      SDValue Add = DAG.getNode(ISD::FADD, dl,
4925                                getValue(I.getArgOperand(0)).getValueType(),
4926                                Mul,
4927                                getValue(I.getArgOperand(2)));
4928      setValue(&I, Add);
4929    }
4930    return 0;
4931  }
4932  case Intrinsic::convert_to_fp16:
4933    setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl,
4934                             MVT::i16, getValue(I.getArgOperand(0))));
4935    return 0;
4936  case Intrinsic::convert_from_fp16:
4937    setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl,
4938                             MVT::f32, getValue(I.getArgOperand(0))));
4939    return 0;
4940  case Intrinsic::pcmarker: {
4941    SDValue Tmp = getValue(I.getArgOperand(0));
4942    DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp));
4943    return 0;
4944  }
4945  case Intrinsic::readcyclecounter: {
4946    SDValue Op = getRoot();
4947    Res = DAG.getNode(ISD::READCYCLECOUNTER, dl,
4948                      DAG.getVTList(MVT::i64, MVT::Other),
4949                      &Op, 1);
4950    setValue(&I, Res);
4951    DAG.setRoot(Res.getValue(1));
4952    return 0;
4953  }
4954  case Intrinsic::bswap:
4955    setValue(&I, DAG.getNode(ISD::BSWAP, dl,
4956                             getValue(I.getArgOperand(0)).getValueType(),
4957                             getValue(I.getArgOperand(0))));
4958    return 0;
4959  case Intrinsic::cttz: {
4960    SDValue Arg = getValue(I.getArgOperand(0));
4961    ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
4962    EVT Ty = Arg.getValueType();
4963    setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
4964                             dl, Ty, Arg));
4965    return 0;
4966  }
4967  case Intrinsic::ctlz: {
4968    SDValue Arg = getValue(I.getArgOperand(0));
4969    ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
4970    EVT Ty = Arg.getValueType();
4971    setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
4972                             dl, Ty, Arg));
4973    return 0;
4974  }
4975  case Intrinsic::ctpop: {
4976    SDValue Arg = getValue(I.getArgOperand(0));
4977    EVT Ty = Arg.getValueType();
4978    setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg));
4979    return 0;
4980  }
4981  case Intrinsic::stacksave: {
4982    SDValue Op = getRoot();
4983    Res = DAG.getNode(ISD::STACKSAVE, dl,
4984                      DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
4985    setValue(&I, Res);
4986    DAG.setRoot(Res.getValue(1));
4987    return 0;
4988  }
4989  case Intrinsic::stackrestore: {
4990    Res = getValue(I.getArgOperand(0));
4991    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res));
4992    return 0;
4993  }
4994  case Intrinsic::stackprotector: {
4995    // Emit code into the DAG to store the stack guard onto the stack.
4996    MachineFunction &MF = DAG.getMachineFunction();
4997    MachineFrameInfo *MFI = MF.getFrameInfo();
4998    EVT PtrTy = TLI.getPointerTy();
4999
5000    SDValue Src = getValue(I.getArgOperand(0));   // The guard's value.
5001    AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
5002
5003    int FI = FuncInfo.StaticAllocaMap[Slot];
5004    MFI->setStackProtectorIndex(FI);
5005
5006    SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
5007
5008    // Store the stack protector onto the stack.
5009    Res = DAG.getStore(getRoot(), dl, Src, FIN,
5010                       MachinePointerInfo::getFixedStack(FI),
5011                       true, false, 0);
5012    setValue(&I, Res);
5013    DAG.setRoot(Res);
5014    return 0;
5015  }
5016  case Intrinsic::objectsize: {
5017    // If we don't know by now, we're never going to know.
5018    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
5019
5020    assert(CI && "Non-constant type in __builtin_object_size?");
5021
5022    SDValue Arg = getValue(I.getCalledValue());
5023    EVT Ty = Arg.getValueType();
5024
5025    if (CI->isZero())
5026      Res = DAG.getConstant(-1ULL, Ty);
5027    else
5028      Res = DAG.getConstant(0, Ty);
5029
5030    setValue(&I, Res);
5031    return 0;
5032  }
5033  case Intrinsic::var_annotation:
5034    // Discard annotate attributes
5035    return 0;
5036
5037  case Intrinsic::init_trampoline: {
5038    const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5039
5040    SDValue Ops[6];
5041    Ops[0] = getRoot();
5042    Ops[1] = getValue(I.getArgOperand(0));
5043    Ops[2] = getValue(I.getArgOperand(1));
5044    Ops[3] = getValue(I.getArgOperand(2));
5045    Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5046    Ops[5] = DAG.getSrcValue(F);
5047
5048    Res = DAG.getNode(ISD::INIT_TRAMPOLINE, dl, MVT::Other, Ops, 6);
5049
5050    DAG.setRoot(Res);
5051    return 0;
5052  }
5053  case Intrinsic::adjust_trampoline: {
5054    setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, dl,
5055                             TLI.getPointerTy(),
5056                             getValue(I.getArgOperand(0))));
5057    return 0;
5058  }
5059  case Intrinsic::gcroot:
5060    if (GFI) {
5061      const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
5062      const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
5063
5064      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
5065      GFI->addStackRoot(FI->getIndex(), TypeMap);
5066    }
5067    return 0;
5068  case Intrinsic::gcread:
5069  case Intrinsic::gcwrite:
5070    llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
5071  case Intrinsic::flt_rounds:
5072    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32));
5073    return 0;
5074
5075  case Intrinsic::expect: {
5076    // Just replace __builtin_expect(exp, c) with EXP.
5077    setValue(&I, getValue(I.getArgOperand(0)));
5078    return 0;
5079  }
5080
5081  case Intrinsic::debugtrap:
5082  case Intrinsic::trap: {
5083    StringRef TrapFuncName = TM.Options.getTrapFunctionName();
5084    if (TrapFuncName.empty()) {
5085      ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
5086        ISD::TRAP : ISD::DEBUGTRAP;
5087      DAG.setRoot(DAG.getNode(Op, dl,MVT::Other, getRoot()));
5088      return 0;
5089    }
5090    TargetLowering::ArgListTy Args;
5091    TargetLowering::
5092    CallLoweringInfo CLI(getRoot(), I.getType(),
5093                 false, false, false, false, 0, CallingConv::C,
5094                 /*isTailCall=*/false,
5095                 /*doesNotRet=*/false, /*isReturnValueUsed=*/true,
5096                 DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()),
5097                 Args, DAG, dl);
5098    std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
5099    DAG.setRoot(Result.second);
5100    return 0;
5101  }
5102
5103  case Intrinsic::uadd_with_overflow:
5104  case Intrinsic::sadd_with_overflow:
5105  case Intrinsic::usub_with_overflow:
5106  case Intrinsic::ssub_with_overflow:
5107  case Intrinsic::umul_with_overflow:
5108  case Intrinsic::smul_with_overflow: {
5109    ISD::NodeType Op;
5110    switch (Intrinsic) {
5111    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5112    case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
5113    case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
5114    case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
5115    case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
5116    case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
5117    case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
5118    }
5119    SDValue Op1 = getValue(I.getArgOperand(0));
5120    SDValue Op2 = getValue(I.getArgOperand(1));
5121
5122    SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
5123    setValue(&I, DAG.getNode(Op, dl, VTs, Op1, Op2));
5124    return 0;
5125  }
5126  case Intrinsic::prefetch: {
5127    SDValue Ops[5];
5128    unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
5129    Ops[0] = getRoot();
5130    Ops[1] = getValue(I.getArgOperand(0));
5131    Ops[2] = getValue(I.getArgOperand(1));
5132    Ops[3] = getValue(I.getArgOperand(2));
5133    Ops[4] = getValue(I.getArgOperand(3));
5134    DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, dl,
5135                                        DAG.getVTList(MVT::Other),
5136                                        &Ops[0], 5,
5137                                        EVT::getIntegerVT(*Context, 8),
5138                                        MachinePointerInfo(I.getArgOperand(0)),
5139                                        0, /* align */
5140                                        false, /* volatile */
5141                                        rw==0, /* read */
5142                                        rw==1)); /* write */
5143    return 0;
5144  }
5145  case Intrinsic::lifetime_start:
5146  case Intrinsic::lifetime_end: {
5147    bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
5148    // Stack coloring is not enabled in O0, discard region information.
5149    if (TM.getOptLevel() == CodeGenOpt::None)
5150      return 0;
5151
5152    SmallVector<Value *, 4> Allocas;
5153    GetUnderlyingObjects(I.getArgOperand(1), Allocas, TD);
5154
5155    for (SmallVector<Value*, 4>::iterator Object = Allocas.begin(),
5156         E = Allocas.end(); Object != E; ++Object) {
5157      AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
5158
5159      // Could not find an Alloca.
5160      if (!LifetimeObject)
5161        continue;
5162
5163      int FI = FuncInfo.StaticAllocaMap[LifetimeObject];
5164
5165      SDValue Ops[2];
5166      Ops[0] = getRoot();
5167      Ops[1] = DAG.getFrameIndex(FI, TLI.getPointerTy(), true);
5168      unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END);
5169
5170      Res = DAG.getNode(Opcode, dl, MVT::Other, Ops, 2);
5171      DAG.setRoot(Res);
5172    }
5173  }
5174  case Intrinsic::invariant_start:
5175    // Discard region information.
5176    setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
5177    return 0;
5178  case Intrinsic::invariant_end:
5179    // Discard region information.
5180    return 0;
5181  case Intrinsic::donothing:
5182    // ignore
5183    return 0;
5184  }
5185}
5186
5187void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
5188                                      bool isTailCall,
5189                                      MachineBasicBlock *LandingPad) {
5190  PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
5191  FunctionType *FTy = cast<FunctionType>(PT->getElementType());
5192  Type *RetTy = FTy->getReturnType();
5193  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5194  MCSymbol *BeginLabel = 0;
5195
5196  TargetLowering::ArgListTy Args;
5197  TargetLowering::ArgListEntry Entry;
5198  Args.reserve(CS.arg_size());
5199
5200  // Check whether the function can return without sret-demotion.
5201  SmallVector<ISD::OutputArg, 4> Outs;
5202  GetReturnInfo(RetTy, CS.getAttributes(), Outs, TLI);
5203
5204  bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
5205                                           DAG.getMachineFunction(),
5206                                           FTy->isVarArg(), Outs,
5207                                           FTy->getContext());
5208
5209  SDValue DemoteStackSlot;
5210  int DemoteStackIdx = -100;
5211
5212  if (!CanLowerReturn) {
5213    uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(
5214                      FTy->getReturnType());
5215    unsigned Align  = TLI.getDataLayout()->getPrefTypeAlignment(
5216                      FTy->getReturnType());
5217    MachineFunction &MF = DAG.getMachineFunction();
5218    DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5219    Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
5220
5221    DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI.getPointerTy());
5222    Entry.Node = DemoteStackSlot;
5223    Entry.Ty = StackSlotPtrType;
5224    Entry.isSExt = false;
5225    Entry.isZExt = false;
5226    Entry.isInReg = false;
5227    Entry.isSRet = true;
5228    Entry.isNest = false;
5229    Entry.isByVal = false;
5230    Entry.Alignment = Align;
5231    Args.push_back(Entry);
5232    RetTy = Type::getVoidTy(FTy->getContext());
5233  }
5234
5235  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
5236       i != e; ++i) {
5237    const Value *V = *i;
5238
5239    // Skip empty types
5240    if (V->getType()->isEmptyTy())
5241      continue;
5242
5243    SDValue ArgNode = getValue(V);
5244    Entry.Node = ArgNode; Entry.Ty = V->getType();
5245
5246    unsigned attrInd = i - CS.arg_begin() + 1;
5247    Entry.isSExt  = CS.paramHasAttr(attrInd, Attribute::SExt);
5248    Entry.isZExt  = CS.paramHasAttr(attrInd, Attribute::ZExt);
5249    Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg);
5250    Entry.isSRet  = CS.paramHasAttr(attrInd, Attribute::StructRet);
5251    Entry.isNest  = CS.paramHasAttr(attrInd, Attribute::Nest);
5252    Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal);
5253    Entry.Alignment = CS.getParamAlignment(attrInd);
5254    Args.push_back(Entry);
5255  }
5256
5257  if (LandingPad) {
5258    // Insert a label before the invoke call to mark the try range.  This can be
5259    // used to detect deletion of the invoke via the MachineModuleInfo.
5260    BeginLabel = MMI.getContext().CreateTempSymbol();
5261
5262    // For SjLj, keep track of which landing pads go with which invokes
5263    // so as to maintain the ordering of pads in the LSDA.
5264    unsigned CallSiteIndex = MMI.getCurrentCallSite();
5265    if (CallSiteIndex) {
5266      MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
5267      LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex);
5268
5269      // Now that the call site is handled, stop tracking it.
5270      MMI.setCurrentCallSite(0);
5271    }
5272
5273    // Both PendingLoads and PendingExports must be flushed here;
5274    // this call might not return.
5275    (void)getRoot();
5276    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel));
5277  }
5278
5279  // Check if target-independent constraints permit a tail call here.
5280  // Target-dependent constraints are checked within TLI.LowerCallTo.
5281  if (isTailCall && !isInTailCallPosition(CS, TLI))
5282    isTailCall = false;
5283
5284  TargetLowering::
5285  CallLoweringInfo CLI(getRoot(), RetTy, FTy, isTailCall, Callee, Args, DAG,
5286                       getCurDebugLoc(), CS);
5287  std::pair<SDValue,SDValue> Result = TLI.LowerCallTo(CLI);
5288  assert((isTailCall || Result.second.getNode()) &&
5289         "Non-null chain expected with non-tail call!");
5290  assert((Result.second.getNode() || !Result.first.getNode()) &&
5291         "Null value expected with tail call!");
5292  if (Result.first.getNode()) {
5293    setValue(CS.getInstruction(), Result.first);
5294  } else if (!CanLowerReturn && Result.second.getNode()) {
5295    // The instruction result is the result of loading from the
5296    // hidden sret parameter.
5297    SmallVector<EVT, 1> PVTs;
5298    Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
5299
5300    ComputeValueVTs(TLI, PtrRetTy, PVTs);
5301    assert(PVTs.size() == 1 && "Pointers should fit in one register");
5302    EVT PtrVT = PVTs[0];
5303
5304    SmallVector<EVT, 4> RetTys;
5305    SmallVector<uint64_t, 4> Offsets;
5306    RetTy = FTy->getReturnType();
5307    ComputeValueVTs(TLI, RetTy, RetTys, &Offsets);
5308
5309    unsigned NumValues = RetTys.size();
5310    SmallVector<SDValue, 4> Values(NumValues);
5311    SmallVector<SDValue, 4> Chains(NumValues);
5312
5313    for (unsigned i = 0; i < NumValues; ++i) {
5314      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT,
5315                                DemoteStackSlot,
5316                                DAG.getConstant(Offsets[i], PtrVT));
5317      SDValue L = DAG.getLoad(RetTys[i], getCurDebugLoc(), Result.second, Add,
5318                  MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]),
5319                              false, false, false, 1);
5320      Values[i] = L;
5321      Chains[i] = L.getValue(1);
5322    }
5323
5324    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
5325                                MVT::Other, &Chains[0], NumValues);
5326    PendingLoads.push_back(Chain);
5327
5328    setValue(CS.getInstruction(),
5329             DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
5330                         DAG.getVTList(&RetTys[0], RetTys.size()),
5331                         &Values[0], Values.size()));
5332  }
5333
5334  // Assign order to nodes here. If the call does not produce a result, it won't
5335  // be mapped to a SDNode and visit() will not assign it an order number.
5336  if (!Result.second.getNode()) {
5337    // As a special case, a null chain means that a tail call has been emitted and
5338    // the DAG root is already updated.
5339    HasTailCall = true;
5340    ++SDNodeOrder;
5341    AssignOrderingToNode(DAG.getRoot().getNode());
5342  } else {
5343    DAG.setRoot(Result.second);
5344    ++SDNodeOrder;
5345    AssignOrderingToNode(Result.second.getNode());
5346  }
5347
5348  if (LandingPad) {
5349    // Insert a label at the end of the invoke call to mark the try range.  This
5350    // can be used to detect deletion of the invoke via the MachineModuleInfo.
5351    MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
5352    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel));
5353
5354    // Inform MachineModuleInfo of range.
5355    MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
5356  }
5357}
5358
5359/// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
5360/// value is equal or not-equal to zero.
5361static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
5362  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
5363       UI != E; ++UI) {
5364    if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
5365      if (IC->isEquality())
5366        if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
5367          if (C->isNullValue())
5368            continue;
5369    // Unknown instruction.
5370    return false;
5371  }
5372  return true;
5373}
5374
5375static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
5376                             Type *LoadTy,
5377                             SelectionDAGBuilder &Builder) {
5378
5379  // Check to see if this load can be trivially constant folded, e.g. if the
5380  // input is from a string literal.
5381  if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5382    // Cast pointer to the type we really want to load.
5383    LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5384                                         PointerType::getUnqual(LoadTy));
5385
5386    if (const Constant *LoadCst =
5387          ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
5388                                       Builder.TD))
5389      return Builder.getValue(LoadCst);
5390  }
5391
5392  // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
5393  // still constant memory, the input chain can be the entry node.
5394  SDValue Root;
5395  bool ConstantMemory = false;
5396
5397  // Do not serialize (non-volatile) loads of constant memory with anything.
5398  if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5399    Root = Builder.DAG.getEntryNode();
5400    ConstantMemory = true;
5401  } else {
5402    // Do not serialize non-volatile loads against each other.
5403    Root = Builder.DAG.getRoot();
5404  }
5405
5406  SDValue Ptr = Builder.getValue(PtrVal);
5407  SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root,
5408                                        Ptr, MachinePointerInfo(PtrVal),
5409                                        false /*volatile*/,
5410                                        false /*nontemporal*/,
5411                                        false /*isinvariant*/, 1 /* align=1 */);
5412
5413  if (!ConstantMemory)
5414    Builder.PendingLoads.push_back(LoadVal.getValue(1));
5415  return LoadVal;
5416}
5417
5418
5419/// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5420/// If so, return true and lower it, otherwise return false and it will be
5421/// lowered like a normal call.
5422bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5423  // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
5424  if (I.getNumArgOperands() != 3)
5425    return false;
5426
5427  const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5428  if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5429      !I.getArgOperand(2)->getType()->isIntegerTy() ||
5430      !I.getType()->isIntegerTy())
5431    return false;
5432
5433  const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2));
5434
5435  // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
5436  // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
5437  if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) {
5438    bool ActuallyDoIt = true;
5439    MVT LoadVT;
5440    Type *LoadTy;
5441    switch (Size->getZExtValue()) {
5442    default:
5443      LoadVT = MVT::Other;
5444      LoadTy = 0;
5445      ActuallyDoIt = false;
5446      break;
5447    case 2:
5448      LoadVT = MVT::i16;
5449      LoadTy = Type::getInt16Ty(Size->getContext());
5450      break;
5451    case 4:
5452      LoadVT = MVT::i32;
5453      LoadTy = Type::getInt32Ty(Size->getContext());
5454      break;
5455    case 8:
5456      LoadVT = MVT::i64;
5457      LoadTy = Type::getInt64Ty(Size->getContext());
5458      break;
5459        /*
5460    case 16:
5461      LoadVT = MVT::v4i32;
5462      LoadTy = Type::getInt32Ty(Size->getContext());
5463      LoadTy = VectorType::get(LoadTy, 4);
5464      break;
5465         */
5466    }
5467
5468    // This turns into unaligned loads.  We only do this if the target natively
5469    // supports the MVT we'll be loading or if it is small enough (<= 4) that
5470    // we'll only produce a small number of byte loads.
5471
5472    // Require that we can find a legal MVT, and only do this if the target
5473    // supports unaligned loads of that type.  Expanding into byte loads would
5474    // bloat the code.
5475    if (ActuallyDoIt && Size->getZExtValue() > 4) {
5476      // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5477      // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5478      if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT))
5479        ActuallyDoIt = false;
5480    }
5481
5482    if (ActuallyDoIt) {
5483      SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5484      SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5485
5486      SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal,
5487                                 ISD::SETNE);
5488      EVT CallVT = TLI.getValueType(I.getType(), true);
5489      setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT));
5490      return true;
5491    }
5492  }
5493
5494
5495  return false;
5496}
5497
5498/// visitUnaryFloatCall - If a call instruction is a unary floating-point
5499/// operation (as expected), translate it to an SDNode with the specified opcode
5500/// and return true.
5501bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
5502                                              unsigned Opcode) {
5503  // Sanity check that it really is a unary floating-point call.
5504  if (I.getNumArgOperands() != 1 ||
5505      !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
5506      I.getType() != I.getArgOperand(0)->getType() ||
5507      !I.onlyReadsMemory())
5508    return false;
5509
5510  SDValue Tmp = getValue(I.getArgOperand(0));
5511  setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(), Tmp.getValueType(), Tmp));
5512  return true;
5513}
5514
5515void SelectionDAGBuilder::visitCall(const CallInst &I) {
5516  // Handle inline assembly differently.
5517  if (isa<InlineAsm>(I.getCalledValue())) {
5518    visitInlineAsm(&I);
5519    return;
5520  }
5521
5522  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5523  ComputeUsesVAFloatArgument(I, &MMI);
5524
5525  const char *RenameFn = 0;
5526  if (Function *F = I.getCalledFunction()) {
5527    if (F->isDeclaration()) {
5528      if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
5529        if (unsigned IID = II->getIntrinsicID(F)) {
5530          RenameFn = visitIntrinsicCall(I, IID);
5531          if (!RenameFn)
5532            return;
5533        }
5534      }
5535      if (unsigned IID = F->getIntrinsicID()) {
5536        RenameFn = visitIntrinsicCall(I, IID);
5537        if (!RenameFn)
5538          return;
5539      }
5540    }
5541
5542    // Check for well-known libc/libm calls.  If the function is internal, it
5543    // can't be a library call.
5544    LibFunc::Func Func;
5545    if (!F->hasLocalLinkage() && F->hasName() &&
5546        LibInfo->getLibFunc(F->getName(), Func) &&
5547        LibInfo->hasOptimizedCodeGen(Func)) {
5548      switch (Func) {
5549      default: break;
5550      case LibFunc::copysign:
5551      case LibFunc::copysignf:
5552      case LibFunc::copysignl:
5553        if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
5554            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5555            I.getType() == I.getArgOperand(0)->getType() &&
5556            I.getType() == I.getArgOperand(1)->getType() &&
5557            I.onlyReadsMemory()) {
5558          SDValue LHS = getValue(I.getArgOperand(0));
5559          SDValue RHS = getValue(I.getArgOperand(1));
5560          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(),
5561                                   LHS.getValueType(), LHS, RHS));
5562          return;
5563        }
5564        break;
5565      case LibFunc::fabs:
5566      case LibFunc::fabsf:
5567      case LibFunc::fabsl:
5568        if (visitUnaryFloatCall(I, ISD::FABS))
5569          return;
5570        break;
5571      case LibFunc::sin:
5572      case LibFunc::sinf:
5573      case LibFunc::sinl:
5574        if (visitUnaryFloatCall(I, ISD::FSIN))
5575          return;
5576        break;
5577      case LibFunc::cos:
5578      case LibFunc::cosf:
5579      case LibFunc::cosl:
5580        if (visitUnaryFloatCall(I, ISD::FCOS))
5581          return;
5582        break;
5583      case LibFunc::sqrt:
5584      case LibFunc::sqrtf:
5585      case LibFunc::sqrtl:
5586        if (visitUnaryFloatCall(I, ISD::FSQRT))
5587          return;
5588        break;
5589      case LibFunc::floor:
5590      case LibFunc::floorf:
5591      case LibFunc::floorl:
5592        if (visitUnaryFloatCall(I, ISD::FFLOOR))
5593          return;
5594        break;
5595      case LibFunc::nearbyint:
5596      case LibFunc::nearbyintf:
5597      case LibFunc::nearbyintl:
5598        if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
5599          return;
5600        break;
5601      case LibFunc::ceil:
5602      case LibFunc::ceilf:
5603      case LibFunc::ceill:
5604        if (visitUnaryFloatCall(I, ISD::FCEIL))
5605          return;
5606        break;
5607      case LibFunc::rint:
5608      case LibFunc::rintf:
5609      case LibFunc::rintl:
5610        if (visitUnaryFloatCall(I, ISD::FRINT))
5611          return;
5612        break;
5613      case LibFunc::trunc:
5614      case LibFunc::truncf:
5615      case LibFunc::truncl:
5616        if (visitUnaryFloatCall(I, ISD::FTRUNC))
5617          return;
5618        break;
5619      case LibFunc::log2:
5620      case LibFunc::log2f:
5621      case LibFunc::log2l:
5622        if (visitUnaryFloatCall(I, ISD::FLOG2))
5623          return;
5624        break;
5625      case LibFunc::exp2:
5626      case LibFunc::exp2f:
5627      case LibFunc::exp2l:
5628        if (visitUnaryFloatCall(I, ISD::FEXP2))
5629          return;
5630        break;
5631      case LibFunc::memcmp:
5632        if (visitMemCmpCall(I))
5633          return;
5634        break;
5635      }
5636    }
5637  }
5638
5639  SDValue Callee;
5640  if (!RenameFn)
5641    Callee = getValue(I.getCalledValue());
5642  else
5643    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
5644
5645  // Check if we can potentially perform a tail call. More detailed checking is
5646  // be done within LowerCallTo, after more information about the call is known.
5647  LowerCallTo(&I, Callee, I.isTailCall());
5648}
5649
5650namespace {
5651
5652/// AsmOperandInfo - This contains information for each constraint that we are
5653/// lowering.
5654class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
5655public:
5656  /// CallOperand - If this is the result output operand or a clobber
5657  /// this is null, otherwise it is the incoming operand to the CallInst.
5658  /// This gets modified as the asm is processed.
5659  SDValue CallOperand;
5660
5661  /// AssignedRegs - If this is a register or register class operand, this
5662  /// contains the set of register corresponding to the operand.
5663  RegsForValue AssignedRegs;
5664
5665  explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
5666    : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
5667  }
5668
5669  /// getCallOperandValEVT - Return the EVT of the Value* that this operand
5670  /// corresponds to.  If there is no Value* for this operand, it returns
5671  /// MVT::Other.
5672  EVT getCallOperandValEVT(LLVMContext &Context,
5673                           const TargetLowering &TLI,
5674                           const DataLayout *TD) const {
5675    if (CallOperandVal == 0) return MVT::Other;
5676
5677    if (isa<BasicBlock>(CallOperandVal))
5678      return TLI.getPointerTy();
5679
5680    llvm::Type *OpTy = CallOperandVal->getType();
5681
5682    // FIXME: code duplicated from TargetLowering::ParseConstraints().
5683    // If this is an indirect operand, the operand is a pointer to the
5684    // accessed type.
5685    if (isIndirect) {
5686      llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
5687      if (!PtrTy)
5688        report_fatal_error("Indirect operand for inline asm not a pointer!");
5689      OpTy = PtrTy->getElementType();
5690    }
5691
5692    // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
5693    if (StructType *STy = dyn_cast<StructType>(OpTy))
5694      if (STy->getNumElements() == 1)
5695        OpTy = STy->getElementType(0);
5696
5697    // If OpTy is not a single value, it may be a struct/union that we
5698    // can tile with integers.
5699    if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5700      unsigned BitSize = TD->getTypeSizeInBits(OpTy);
5701      switch (BitSize) {
5702      default: break;
5703      case 1:
5704      case 8:
5705      case 16:
5706      case 32:
5707      case 64:
5708      case 128:
5709        OpTy = IntegerType::get(Context, BitSize);
5710        break;
5711      }
5712    }
5713
5714    return TLI.getValueType(OpTy, true);
5715  }
5716};
5717
5718typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
5719
5720} // end anonymous namespace
5721
5722/// GetRegistersForValue - Assign registers (virtual or physical) for the
5723/// specified operand.  We prefer to assign virtual registers, to allow the
5724/// register allocator to handle the assignment process.  However, if the asm
5725/// uses features that we can't model on machineinstrs, we have SDISel do the
5726/// allocation.  This produces generally horrible, but correct, code.
5727///
5728///   OpInfo describes the operand.
5729///
5730static void GetRegistersForValue(SelectionDAG &DAG,
5731                                 const TargetLowering &TLI,
5732                                 DebugLoc DL,
5733                                 SDISelAsmOperandInfo &OpInfo) {
5734  LLVMContext &Context = *DAG.getContext();
5735
5736  MachineFunction &MF = DAG.getMachineFunction();
5737  SmallVector<unsigned, 4> Regs;
5738
5739  // If this is a constraint for a single physreg, or a constraint for a
5740  // register class, find it.
5741  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
5742    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5743                                     OpInfo.ConstraintVT);
5744
5745  unsigned NumRegs = 1;
5746  if (OpInfo.ConstraintVT != MVT::Other) {
5747    // If this is a FP input in an integer register (or visa versa) insert a bit
5748    // cast of the input value.  More generally, handle any case where the input
5749    // value disagrees with the register class we plan to stick this in.
5750    if (OpInfo.Type == InlineAsm::isInput &&
5751        PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
5752      // Try to convert to the first EVT that the reg class contains.  If the
5753      // types are identical size, use a bitcast to convert (e.g. two differing
5754      // vector types).
5755      MVT RegVT = *PhysReg.second->vt_begin();
5756      if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
5757        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5758                                         RegVT, OpInfo.CallOperand);
5759        OpInfo.ConstraintVT = RegVT;
5760      } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
5761        // If the input is a FP value and we want it in FP registers, do a
5762        // bitcast to the corresponding integer type.  This turns an f64 value
5763        // into i64, which can be passed with two i32 values on a 32-bit
5764        // machine.
5765        RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
5766        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5767                                         RegVT, OpInfo.CallOperand);
5768        OpInfo.ConstraintVT = RegVT;
5769      }
5770    }
5771
5772    NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
5773  }
5774
5775  MVT RegVT;
5776  EVT ValueVT = OpInfo.ConstraintVT;
5777
5778  // If this is a constraint for a specific physical register, like {r17},
5779  // assign it now.
5780  if (unsigned AssignedReg = PhysReg.first) {
5781    const TargetRegisterClass *RC = PhysReg.second;
5782    if (OpInfo.ConstraintVT == MVT::Other)
5783      ValueVT = *RC->vt_begin();
5784
5785    // Get the actual register value type.  This is important, because the user
5786    // may have asked for (e.g.) the AX register in i32 type.  We need to
5787    // remember that AX is actually i16 to get the right extension.
5788    RegVT = *RC->vt_begin();
5789
5790    // This is a explicit reference to a physical register.
5791    Regs.push_back(AssignedReg);
5792
5793    // If this is an expanded reference, add the rest of the regs to Regs.
5794    if (NumRegs != 1) {
5795      TargetRegisterClass::iterator I = RC->begin();
5796      for (; *I != AssignedReg; ++I)
5797        assert(I != RC->end() && "Didn't find reg!");
5798
5799      // Already added the first reg.
5800      --NumRegs; ++I;
5801      for (; NumRegs; --NumRegs, ++I) {
5802        assert(I != RC->end() && "Ran out of registers to allocate!");
5803        Regs.push_back(*I);
5804      }
5805    }
5806
5807    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5808    return;
5809  }
5810
5811  // Otherwise, if this was a reference to an LLVM register class, create vregs
5812  // for this reference.
5813  if (const TargetRegisterClass *RC = PhysReg.second) {
5814    RegVT = *RC->vt_begin();
5815    if (OpInfo.ConstraintVT == MVT::Other)
5816      ValueVT = RegVT;
5817
5818    // Create the appropriate number of virtual registers.
5819    MachineRegisterInfo &RegInfo = MF.getRegInfo();
5820    for (; NumRegs; --NumRegs)
5821      Regs.push_back(RegInfo.createVirtualRegister(RC));
5822
5823    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5824    return;
5825  }
5826
5827  // Otherwise, we couldn't allocate enough registers for this.
5828}
5829
5830/// visitInlineAsm - Handle a call to an InlineAsm object.
5831///
5832void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
5833  const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
5834
5835  /// ConstraintOperands - Information about all of the constraints.
5836  SDISelAsmOperandInfoVector ConstraintOperands;
5837
5838  TargetLowering::AsmOperandInfoVector
5839    TargetConstraints = TLI.ParseConstraints(CS);
5840
5841  bool hasMemory = false;
5842
5843  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
5844  unsigned ResNo = 0;   // ResNo - The result number of the next output.
5845  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
5846    ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
5847    SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
5848
5849    MVT OpVT = MVT::Other;
5850
5851    // Compute the value type for each operand.
5852    switch (OpInfo.Type) {
5853    case InlineAsm::isOutput:
5854      // Indirect outputs just consume an argument.
5855      if (OpInfo.isIndirect) {
5856        OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5857        break;
5858      }
5859
5860      // The return value of the call is this value.  As such, there is no
5861      // corresponding argument.
5862      assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
5863      if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
5864        OpVT = TLI.getSimpleValueType(STy->getElementType(ResNo));
5865      } else {
5866        assert(ResNo == 0 && "Asm only has one result!");
5867        OpVT = TLI.getSimpleValueType(CS.getType());
5868      }
5869      ++ResNo;
5870      break;
5871    case InlineAsm::isInput:
5872      OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5873      break;
5874    case InlineAsm::isClobber:
5875      // Nothing to do.
5876      break;
5877    }
5878
5879    // If this is an input or an indirect output, process the call argument.
5880    // BasicBlocks are labels, currently appearing only in asm's.
5881    if (OpInfo.CallOperandVal) {
5882      if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
5883        OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
5884      } else {
5885        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
5886      }
5887
5888      OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD).
5889        getSimpleVT();
5890    }
5891
5892    OpInfo.ConstraintVT = OpVT;
5893
5894    // Indirect operand accesses access memory.
5895    if (OpInfo.isIndirect)
5896      hasMemory = true;
5897    else {
5898      for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
5899        TargetLowering::ConstraintType
5900          CType = TLI.getConstraintType(OpInfo.Codes[j]);
5901        if (CType == TargetLowering::C_Memory) {
5902          hasMemory = true;
5903          break;
5904        }
5905      }
5906    }
5907  }
5908
5909  SDValue Chain, Flag;
5910
5911  // We won't need to flush pending loads if this asm doesn't touch
5912  // memory and is nonvolatile.
5913  if (hasMemory || IA->hasSideEffects())
5914    Chain = getRoot();
5915  else
5916    Chain = DAG.getRoot();
5917
5918  // Second pass over the constraints: compute which constraint option to use
5919  // and assign registers to constraints that want a specific physreg.
5920  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5921    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5922
5923    // If this is an output operand with a matching input operand, look up the
5924    // matching input. If their types mismatch, e.g. one is an integer, the
5925    // other is floating point, or their sizes are different, flag it as an
5926    // error.
5927    if (OpInfo.hasMatchingInput()) {
5928      SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5929
5930      if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5931        std::pair<unsigned, const TargetRegisterClass*> MatchRC =
5932          TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5933                                           OpInfo.ConstraintVT);
5934        std::pair<unsigned, const TargetRegisterClass*> InputRC =
5935          TLI.getRegForInlineAsmConstraint(Input.ConstraintCode,
5936                                           Input.ConstraintVT);
5937        if ((OpInfo.ConstraintVT.isInteger() !=
5938             Input.ConstraintVT.isInteger()) ||
5939            (MatchRC.second != InputRC.second)) {
5940          report_fatal_error("Unsupported asm: input constraint"
5941                             " with a matching output constraint of"
5942                             " incompatible type!");
5943        }
5944        Input.ConstraintVT = OpInfo.ConstraintVT;
5945      }
5946    }
5947
5948    // Compute the constraint code and ConstraintType to use.
5949    TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
5950
5951    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5952        OpInfo.Type == InlineAsm::isClobber)
5953      continue;
5954
5955    // If this is a memory input, and if the operand is not indirect, do what we
5956    // need to to provide an address for the memory input.
5957    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5958        !OpInfo.isIndirect) {
5959      assert((OpInfo.isMultipleAlternative ||
5960              (OpInfo.Type == InlineAsm::isInput)) &&
5961             "Can only indirectify direct input operands!");
5962
5963      // Memory operands really want the address of the value.  If we don't have
5964      // an indirect input, put it in the constpool if we can, otherwise spill
5965      // it to a stack slot.
5966      // TODO: This isn't quite right. We need to handle these according to
5967      // the addressing mode that the constraint wants. Also, this may take
5968      // an additional register for the computation and we don't want that
5969      // either.
5970
5971      // If the operand is a float, integer, or vector constant, spill to a
5972      // constant pool entry to get its address.
5973      const Value *OpVal = OpInfo.CallOperandVal;
5974      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
5975          isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
5976        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
5977                                                 TLI.getPointerTy());
5978      } else {
5979        // Otherwise, create a stack slot and emit a store to it before the
5980        // asm.
5981        Type *Ty = OpVal->getType();
5982        uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty);
5983        unsigned Align  = TLI.getDataLayout()->getPrefTypeAlignment(Ty);
5984        MachineFunction &MF = DAG.getMachineFunction();
5985        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5986        SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
5987        Chain = DAG.getStore(Chain, getCurDebugLoc(),
5988                             OpInfo.CallOperand, StackSlot,
5989                             MachinePointerInfo::getFixedStack(SSFI),
5990                             false, false, 0);
5991        OpInfo.CallOperand = StackSlot;
5992      }
5993
5994      // There is no longer a Value* corresponding to this operand.
5995      OpInfo.CallOperandVal = 0;
5996
5997      // It is now an indirect operand.
5998      OpInfo.isIndirect = true;
5999    }
6000
6001    // If this constraint is for a specific register, allocate it before
6002    // anything else.
6003    if (OpInfo.ConstraintType == TargetLowering::C_Register)
6004      GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo);
6005  }
6006
6007  // Second pass - Loop over all of the operands, assigning virtual or physregs
6008  // to register class operands.
6009  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6010    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6011
6012    // C_Register operands have already been allocated, Other/Memory don't need
6013    // to be.
6014    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
6015      GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo);
6016  }
6017
6018  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
6019  std::vector<SDValue> AsmNodeOperands;
6020  AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
6021  AsmNodeOperands.push_back(
6022          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
6023                                      TLI.getPointerTy()));
6024
6025  // If we have a !srcloc metadata node associated with it, we want to attach
6026  // this to the ultimately generated inline asm machineinstr.  To do this, we
6027  // pass in the third operand as this (potentially null) inline asm MDNode.
6028  const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
6029  AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
6030
6031  // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
6032  // bits as operand 3.
6033  unsigned ExtraInfo = 0;
6034  if (IA->hasSideEffects())
6035    ExtraInfo |= InlineAsm::Extra_HasSideEffects;
6036  if (IA->isAlignStack())
6037    ExtraInfo |= InlineAsm::Extra_IsAlignStack;
6038  // Set the asm dialect.
6039  ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
6040
6041  // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
6042  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
6043    TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
6044
6045    // Compute the constraint code and ConstraintType to use.
6046    TLI.ComputeConstraintToUse(OpInfo, SDValue());
6047
6048    // Ideally, we would only check against memory constraints.  However, the
6049    // meaning of an other constraint can be target-specific and we can't easily
6050    // reason about it.  Therefore, be conservative and set MayLoad/MayStore
6051    // for other constriants as well.
6052    if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
6053        OpInfo.ConstraintType == TargetLowering::C_Other) {
6054      if (OpInfo.Type == InlineAsm::isInput)
6055        ExtraInfo |= InlineAsm::Extra_MayLoad;
6056      else if (OpInfo.Type == InlineAsm::isOutput)
6057        ExtraInfo |= InlineAsm::Extra_MayStore;
6058      else if (OpInfo.Type == InlineAsm::isClobber)
6059        ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
6060    }
6061  }
6062
6063  AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo,
6064                                                  TLI.getPointerTy()));
6065
6066  // Loop over all of the inputs, copying the operand values into the
6067  // appropriate registers and processing the output regs.
6068  RegsForValue RetValRegs;
6069
6070  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
6071  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
6072
6073  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6074    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6075
6076    switch (OpInfo.Type) {
6077    case InlineAsm::isOutput: {
6078      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
6079          OpInfo.ConstraintType != TargetLowering::C_Register) {
6080        // Memory output, or 'other' output (e.g. 'X' constraint).
6081        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
6082
6083        // Add information to the INLINEASM node to know about this output.
6084        unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6085        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
6086                                                        TLI.getPointerTy()));
6087        AsmNodeOperands.push_back(OpInfo.CallOperand);
6088        break;
6089      }
6090
6091      // Otherwise, this is a register or register class output.
6092
6093      // Copy the output from the appropriate register.  Find a register that
6094      // we can use.
6095      if (OpInfo.AssignedRegs.Regs.empty()) {
6096        LLVMContext &Ctx = *DAG.getContext();
6097        Ctx.emitError(CS.getInstruction(),
6098                      "couldn't allocate output register for constraint '" +
6099                           Twine(OpInfo.ConstraintCode) + "'");
6100        break;
6101      }
6102
6103      // If this is an indirect operand, store through the pointer after the
6104      // asm.
6105      if (OpInfo.isIndirect) {
6106        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
6107                                                      OpInfo.CallOperandVal));
6108      } else {
6109        // This is the result value of the call.
6110        assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6111        // Concatenate this output onto the outputs list.
6112        RetValRegs.append(OpInfo.AssignedRegs);
6113      }
6114
6115      // Add information to the INLINEASM node to know that this register is
6116      // set.
6117      OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
6118                                           InlineAsm::Kind_RegDefEarlyClobber :
6119                                               InlineAsm::Kind_RegDef,
6120                                               false,
6121                                               0,
6122                                               DAG,
6123                                               AsmNodeOperands);
6124      break;
6125    }
6126    case InlineAsm::isInput: {
6127      SDValue InOperandVal = OpInfo.CallOperand;
6128
6129      if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
6130        // If this is required to match an output register we have already set,
6131        // just use its register.
6132        unsigned OperandNo = OpInfo.getMatchedOperand();
6133
6134        // Scan until we find the definition we already emitted of this operand.
6135        // When we find it, create a RegsForValue operand.
6136        unsigned CurOp = InlineAsm::Op_FirstOperand;
6137        for (; OperandNo; --OperandNo) {
6138          // Advance to the next operand.
6139          unsigned OpFlag =
6140            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6141          assert((InlineAsm::isRegDefKind(OpFlag) ||
6142                  InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
6143                  InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
6144          CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
6145        }
6146
6147        unsigned OpFlag =
6148          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6149        if (InlineAsm::isRegDefKind(OpFlag) ||
6150            InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
6151          // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
6152          if (OpInfo.isIndirect) {
6153            // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
6154            LLVMContext &Ctx = *DAG.getContext();
6155            Ctx.emitError(CS.getInstruction(),  "inline asm not supported yet:"
6156                          " don't know how to handle tied "
6157                          "indirect register inputs");
6158          }
6159
6160          RegsForValue MatchedRegs;
6161          MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
6162          MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
6163          MatchedRegs.RegVTs.push_back(RegVT);
6164          MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
6165          for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
6166               i != e; ++i)
6167            MatchedRegs.Regs.push_back
6168              (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)));
6169
6170          // Use the produced MatchedRegs object to
6171          MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
6172                                    Chain, &Flag, CS.getInstruction());
6173          MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
6174                                           true, OpInfo.getMatchedOperand(),
6175                                           DAG, AsmNodeOperands);
6176          break;
6177        }
6178
6179        assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
6180        assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
6181               "Unexpected number of operands");
6182        // Add information to the INLINEASM node to know about this input.
6183        // See InlineAsm.h isUseOperandTiedToDef.
6184        OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
6185                                                    OpInfo.getMatchedOperand());
6186        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
6187                                                        TLI.getPointerTy()));
6188        AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
6189        break;
6190      }
6191
6192      // Treat indirect 'X' constraint as memory.
6193      if (OpInfo.ConstraintType == TargetLowering::C_Other &&
6194          OpInfo.isIndirect)
6195        OpInfo.ConstraintType = TargetLowering::C_Memory;
6196
6197      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
6198        std::vector<SDValue> Ops;
6199        TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
6200                                         Ops, DAG);
6201        if (Ops.empty()) {
6202          LLVMContext &Ctx = *DAG.getContext();
6203          Ctx.emitError(CS.getInstruction(),
6204                        "invalid operand for inline asm constraint '" +
6205                        Twine(OpInfo.ConstraintCode) + "'");
6206          break;
6207        }
6208
6209        // Add information to the INLINEASM node to know about this input.
6210        unsigned ResOpType =
6211          InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
6212        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6213                                                        TLI.getPointerTy()));
6214        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
6215        break;
6216      }
6217
6218      if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
6219        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
6220        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
6221               "Memory operands expect pointer values");
6222
6223        // Add information to the INLINEASM node to know about this input.
6224        unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6225        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6226                                                        TLI.getPointerTy()));
6227        AsmNodeOperands.push_back(InOperandVal);
6228        break;
6229      }
6230
6231      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
6232              OpInfo.ConstraintType == TargetLowering::C_Register) &&
6233             "Unknown constraint type!");
6234
6235      // TODO: Support this.
6236      if (OpInfo.isIndirect) {
6237        LLVMContext &Ctx = *DAG.getContext();
6238        Ctx.emitError(CS.getInstruction(),
6239                      "Don't know how to handle indirect register inputs yet "
6240                      "for constraint '" + Twine(OpInfo.ConstraintCode) + "'");
6241        break;
6242      }
6243
6244      // Copy the input into the appropriate registers.
6245      if (OpInfo.AssignedRegs.Regs.empty()) {
6246        LLVMContext &Ctx = *DAG.getContext();
6247        Ctx.emitError(CS.getInstruction(),
6248                      "couldn't allocate input reg for constraint '" +
6249                           Twine(OpInfo.ConstraintCode) + "'");
6250        break;
6251      }
6252
6253      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
6254                                        Chain, &Flag, CS.getInstruction());
6255
6256      OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
6257                                               DAG, AsmNodeOperands);
6258      break;
6259    }
6260    case InlineAsm::isClobber: {
6261      // Add the clobbered value to the operand list, so that the register
6262      // allocator is aware that the physreg got clobbered.
6263      if (!OpInfo.AssignedRegs.Regs.empty())
6264        OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
6265                                                 false, 0, DAG,
6266                                                 AsmNodeOperands);
6267      break;
6268    }
6269    }
6270  }
6271
6272  // Finish up input operands.  Set the input chain and add the flag last.
6273  AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
6274  if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
6275
6276  Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(),
6277                      DAG.getVTList(MVT::Other, MVT::Glue),
6278                      &AsmNodeOperands[0], AsmNodeOperands.size());
6279  Flag = Chain.getValue(1);
6280
6281  // If this asm returns a register value, copy the result from that register
6282  // and set it as the value of the call.
6283  if (!RetValRegs.Regs.empty()) {
6284    SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
6285                                             Chain, &Flag, CS.getInstruction());
6286
6287    // FIXME: Why don't we do this for inline asms with MRVs?
6288    if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
6289      EVT ResultType = TLI.getValueType(CS.getType());
6290
6291      // If any of the results of the inline asm is a vector, it may have the
6292      // wrong width/num elts.  This can happen for register classes that can
6293      // contain multiple different value types.  The preg or vreg allocated may
6294      // not have the same VT as was expected.  Convert it to the right type
6295      // with bit_convert.
6296      if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
6297        Val = DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
6298                          ResultType, Val);
6299
6300      } else if (ResultType != Val.getValueType() &&
6301                 ResultType.isInteger() && Val.getValueType().isInteger()) {
6302        // If a result value was tied to an input value, the computed result may
6303        // have a wider width than the expected result.  Extract the relevant
6304        // portion.
6305        Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val);
6306      }
6307
6308      assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
6309    }
6310
6311    setValue(CS.getInstruction(), Val);
6312    // Don't need to use this as a chain in this case.
6313    if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
6314      return;
6315  }
6316
6317  std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
6318
6319  // Process indirect outputs, first output all of the flagged copies out of
6320  // physregs.
6321  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
6322    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
6323    const Value *Ptr = IndirectStoresToEmit[i].second;
6324    SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
6325                                             Chain, &Flag, IA);
6326    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
6327  }
6328
6329  // Emit the non-flagged stores from the physregs.
6330  SmallVector<SDValue, 8> OutChains;
6331  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
6332    SDValue Val = DAG.getStore(Chain, getCurDebugLoc(),
6333                               StoresToEmit[i].first,
6334                               getValue(StoresToEmit[i].second),
6335                               MachinePointerInfo(StoresToEmit[i].second),
6336                               false, false, 0);
6337    OutChains.push_back(Val);
6338  }
6339
6340  if (!OutChains.empty())
6341    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
6342                        &OutChains[0], OutChains.size());
6343
6344  DAG.setRoot(Chain);
6345}
6346
6347void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
6348  DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(),
6349                          MVT::Other, getRoot(),
6350                          getValue(I.getArgOperand(0)),
6351                          DAG.getSrcValue(I.getArgOperand(0))));
6352}
6353
6354void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
6355  const DataLayout &TD = *TLI.getDataLayout();
6356  SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(),
6357                           getRoot(), getValue(I.getOperand(0)),
6358                           DAG.getSrcValue(I.getOperand(0)),
6359                           TD.getABITypeAlignment(I.getType()));
6360  setValue(&I, V);
6361  DAG.setRoot(V.getValue(1));
6362}
6363
6364void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
6365  DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(),
6366                          MVT::Other, getRoot(),
6367                          getValue(I.getArgOperand(0)),
6368                          DAG.getSrcValue(I.getArgOperand(0))));
6369}
6370
6371void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
6372  DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(),
6373                          MVT::Other, getRoot(),
6374                          getValue(I.getArgOperand(0)),
6375                          getValue(I.getArgOperand(1)),
6376                          DAG.getSrcValue(I.getArgOperand(0)),
6377                          DAG.getSrcValue(I.getArgOperand(1))));
6378}
6379
6380/// TargetLowering::LowerCallTo - This is the default LowerCallTo
6381/// implementation, which just calls LowerCall.
6382/// FIXME: When all targets are
6383/// migrated to using LowerCall, this hook should be integrated into SDISel.
6384std::pair<SDValue, SDValue>
6385TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
6386  // Handle all of the outgoing arguments.
6387  CLI.Outs.clear();
6388  CLI.OutVals.clear();
6389  ArgListTy &Args = CLI.Args;
6390  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
6391    SmallVector<EVT, 4> ValueVTs;
6392    ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
6393    for (unsigned Value = 0, NumValues = ValueVTs.size();
6394         Value != NumValues; ++Value) {
6395      EVT VT = ValueVTs[Value];
6396      Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
6397      SDValue Op = SDValue(Args[i].Node.getNode(),
6398                           Args[i].Node.getResNo() + Value);
6399      ISD::ArgFlagsTy Flags;
6400      unsigned OriginalAlignment =
6401        getDataLayout()->getABITypeAlignment(ArgTy);
6402
6403      if (Args[i].isZExt)
6404        Flags.setZExt();
6405      if (Args[i].isSExt)
6406        Flags.setSExt();
6407      if (Args[i].isInReg)
6408        Flags.setInReg();
6409      if (Args[i].isSRet)
6410        Flags.setSRet();
6411      if (Args[i].isByVal) {
6412        Flags.setByVal();
6413        PointerType *Ty = cast<PointerType>(Args[i].Ty);
6414        Type *ElementTy = Ty->getElementType();
6415        Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy));
6416        // For ByVal, alignment should come from FE.  BE will guess if this
6417        // info is not there but there are cases it cannot get right.
6418        unsigned FrameAlign;
6419        if (Args[i].Alignment)
6420          FrameAlign = Args[i].Alignment;
6421        else
6422          FrameAlign = getByValTypeAlignment(ElementTy);
6423        Flags.setByValAlign(FrameAlign);
6424      }
6425      if (Args[i].isNest)
6426        Flags.setNest();
6427      Flags.setOrigAlign(OriginalAlignment);
6428
6429      MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT);
6430      unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT);
6431      SmallVector<SDValue, 4> Parts(NumParts);
6432      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
6433
6434      if (Args[i].isSExt)
6435        ExtendKind = ISD::SIGN_EXTEND;
6436      else if (Args[i].isZExt)
6437        ExtendKind = ISD::ZERO_EXTEND;
6438
6439      getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts,
6440                     PartVT, CLI.CS ? CLI.CS->getInstruction() : 0, ExtendKind);
6441
6442      for (unsigned j = 0; j != NumParts; ++j) {
6443        // if it isn't first piece, alignment must be 1
6444        ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(),
6445                               i < CLI.NumFixedArgs,
6446                               i, j*Parts[j].getValueType().getStoreSize());
6447        if (NumParts > 1 && j == 0)
6448          MyFlags.Flags.setSplit();
6449        else if (j != 0)
6450          MyFlags.Flags.setOrigAlign(1);
6451
6452        CLI.Outs.push_back(MyFlags);
6453        CLI.OutVals.push_back(Parts[j]);
6454      }
6455    }
6456  }
6457
6458  // Handle the incoming return values from the call.
6459  CLI.Ins.clear();
6460  SmallVector<EVT, 4> RetTys;
6461  ComputeValueVTs(*this, CLI.RetTy, RetTys);
6462  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6463    EVT VT = RetTys[I];
6464    MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
6465    unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
6466    for (unsigned i = 0; i != NumRegs; ++i) {
6467      ISD::InputArg MyFlags;
6468      MyFlags.VT = RegisterVT;
6469      MyFlags.Used = CLI.IsReturnValueUsed;
6470      if (CLI.RetSExt)
6471        MyFlags.Flags.setSExt();
6472      if (CLI.RetZExt)
6473        MyFlags.Flags.setZExt();
6474      if (CLI.IsInReg)
6475        MyFlags.Flags.setInReg();
6476      CLI.Ins.push_back(MyFlags);
6477    }
6478  }
6479
6480  SmallVector<SDValue, 4> InVals;
6481  CLI.Chain = LowerCall(CLI, InVals);
6482
6483  // Verify that the target's LowerCall behaved as expected.
6484  assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
6485         "LowerCall didn't return a valid chain!");
6486  assert((!CLI.IsTailCall || InVals.empty()) &&
6487         "LowerCall emitted a return value for a tail call!");
6488  assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
6489         "LowerCall didn't emit the correct number of values!");
6490
6491  // For a tail call, the return value is merely live-out and there aren't
6492  // any nodes in the DAG representing it. Return a special value to
6493  // indicate that a tail call has been emitted and no more Instructions
6494  // should be processed in the current block.
6495  if (CLI.IsTailCall) {
6496    CLI.DAG.setRoot(CLI.Chain);
6497    return std::make_pair(SDValue(), SDValue());
6498  }
6499
6500  DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
6501          assert(InVals[i].getNode() &&
6502                 "LowerCall emitted a null value!");
6503          assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
6504                 "LowerCall emitted a value with the wrong type!");
6505        });
6506
6507  // Collect the legal value parts into potentially illegal values
6508  // that correspond to the original function's return values.
6509  ISD::NodeType AssertOp = ISD::DELETED_NODE;
6510  if (CLI.RetSExt)
6511    AssertOp = ISD::AssertSext;
6512  else if (CLI.RetZExt)
6513    AssertOp = ISD::AssertZext;
6514  SmallVector<SDValue, 4> ReturnValues;
6515  unsigned CurReg = 0;
6516  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6517    EVT VT = RetTys[I];
6518    MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
6519    unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
6520
6521    ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
6522                                            NumRegs, RegisterVT, VT, NULL,
6523                                            AssertOp));
6524    CurReg += NumRegs;
6525  }
6526
6527  // For a function returning void, there is no return value. We can't create
6528  // such a node, so we just return a null return value in that case. In
6529  // that case, nothing will actually look at the value.
6530  if (ReturnValues.empty())
6531    return std::make_pair(SDValue(), CLI.Chain);
6532
6533  SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
6534                                CLI.DAG.getVTList(&RetTys[0], RetTys.size()),
6535                            &ReturnValues[0], ReturnValues.size());
6536  return std::make_pair(Res, CLI.Chain);
6537}
6538
6539void TargetLowering::LowerOperationWrapper(SDNode *N,
6540                                           SmallVectorImpl<SDValue> &Results,
6541                                           SelectionDAG &DAG) const {
6542  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
6543  if (Res.getNode())
6544    Results.push_back(Res);
6545}
6546
6547SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
6548  llvm_unreachable("LowerOperation not implemented for this target!");
6549}
6550
6551void
6552SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
6553  SDValue Op = getNonRegisterValue(V);
6554  assert((Op.getOpcode() != ISD::CopyFromReg ||
6555          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
6556         "Copy from a reg to the same reg!");
6557  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
6558
6559  RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
6560  SDValue Chain = DAG.getEntryNode();
6561  RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0, V);
6562  PendingExports.push_back(Chain);
6563}
6564
6565#include "llvm/CodeGen/SelectionDAGISel.h"
6566
6567/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
6568/// entry block, return true.  This includes arguments used by switches, since
6569/// the switch may expand into multiple basic blocks.
6570static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
6571  // With FastISel active, we may be splitting blocks, so force creation
6572  // of virtual registers for all non-dead arguments.
6573  if (FastISel)
6574    return A->use_empty();
6575
6576  const BasicBlock *Entry = A->getParent()->begin();
6577  for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end();
6578       UI != E; ++UI) {
6579    const User *U = *UI;
6580    if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U))
6581      return false;  // Use not in entry block.
6582  }
6583  return true;
6584}
6585
6586void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) {
6587  // If this is the entry block, emit arguments.
6588  const Function &F = *LLVMBB->getParent();
6589  SelectionDAG &DAG = SDB->DAG;
6590  DebugLoc dl = SDB->getCurDebugLoc();
6591  const DataLayout *TD = TLI.getDataLayout();
6592  SmallVector<ISD::InputArg, 16> Ins;
6593
6594  // Check whether the function can return without sret-demotion.
6595  SmallVector<ISD::OutputArg, 4> Outs;
6596  GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI);
6597
6598  if (!FuncInfo->CanLowerReturn) {
6599    // Put in an sret pointer parameter before all the other parameters.
6600    SmallVector<EVT, 1> ValueVTs;
6601    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6602
6603    // NOTE: Assuming that a pointer will never break down to more than one VT
6604    // or one register.
6605    ISD::ArgFlagsTy Flags;
6606    Flags.setSRet();
6607    MVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]);
6608    ISD::InputArg RetArg(Flags, RegisterVT, true, 0, 0);
6609    Ins.push_back(RetArg);
6610  }
6611
6612  // Set up the incoming argument description vector.
6613  unsigned Idx = 1;
6614  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
6615       I != E; ++I, ++Idx) {
6616    SmallVector<EVT, 4> ValueVTs;
6617    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6618    bool isArgValueUsed = !I->use_empty();
6619    for (unsigned Value = 0, NumValues = ValueVTs.size();
6620         Value != NumValues; ++Value) {
6621      EVT VT = ValueVTs[Value];
6622      Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
6623      ISD::ArgFlagsTy Flags;
6624      unsigned OriginalAlignment =
6625        TD->getABITypeAlignment(ArgTy);
6626
6627      if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
6628        Flags.setZExt();
6629      if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
6630        Flags.setSExt();
6631      if (F.getAttributes().hasAttribute(Idx, Attribute::InReg))
6632        Flags.setInReg();
6633      if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet))
6634        Flags.setSRet();
6635      if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) {
6636        Flags.setByVal();
6637        PointerType *Ty = cast<PointerType>(I->getType());
6638        Type *ElementTy = Ty->getElementType();
6639        Flags.setByValSize(TD->getTypeAllocSize(ElementTy));
6640        // For ByVal, alignment should be passed from FE.  BE will guess if
6641        // this info is not there but there are cases it cannot get right.
6642        unsigned FrameAlign;
6643        if (F.getParamAlignment(Idx))
6644          FrameAlign = F.getParamAlignment(Idx);
6645        else
6646          FrameAlign = TLI.getByValTypeAlignment(ElementTy);
6647        Flags.setByValAlign(FrameAlign);
6648      }
6649      if (F.getAttributes().hasAttribute(Idx, Attribute::Nest))
6650        Flags.setNest();
6651      Flags.setOrigAlign(OriginalAlignment);
6652
6653      MVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6654      unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6655      for (unsigned i = 0; i != NumRegs; ++i) {
6656        ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed,
6657                              Idx-1, i*RegisterVT.getStoreSize());
6658        if (NumRegs > 1 && i == 0)
6659          MyFlags.Flags.setSplit();
6660        // if it isn't first piece, alignment must be 1
6661        else if (i > 0)
6662          MyFlags.Flags.setOrigAlign(1);
6663        Ins.push_back(MyFlags);
6664      }
6665    }
6666  }
6667
6668  // Call the target to set up the argument values.
6669  SmallVector<SDValue, 8> InVals;
6670  SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
6671                                             F.isVarArg(), Ins,
6672                                             dl, DAG, InVals);
6673
6674  // Verify that the target's LowerFormalArguments behaved as expected.
6675  assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
6676         "LowerFormalArguments didn't return a valid chain!");
6677  assert(InVals.size() == Ins.size() &&
6678         "LowerFormalArguments didn't emit the correct number of values!");
6679  DEBUG({
6680      for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6681        assert(InVals[i].getNode() &&
6682               "LowerFormalArguments emitted a null value!");
6683        assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6684               "LowerFormalArguments emitted a value with the wrong type!");
6685      }
6686    });
6687
6688  // Update the DAG with the new chain value resulting from argument lowering.
6689  DAG.setRoot(NewRoot);
6690
6691  // Set up the argument values.
6692  unsigned i = 0;
6693  Idx = 1;
6694  if (!FuncInfo->CanLowerReturn) {
6695    // Create a virtual register for the sret pointer, and put in a copy
6696    // from the sret argument into it.
6697    SmallVector<EVT, 1> ValueVTs;
6698    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6699    MVT VT = ValueVTs[0].getSimpleVT();
6700    MVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6701    ISD::NodeType AssertOp = ISD::DELETED_NODE;
6702    SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
6703                                        RegVT, VT, NULL, AssertOp);
6704
6705    MachineFunction& MF = SDB->DAG.getMachineFunction();
6706    MachineRegisterInfo& RegInfo = MF.getRegInfo();
6707    unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT));
6708    FuncInfo->DemoteRegister = SRetReg;
6709    NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(),
6710                                    SRetReg, ArgValue);
6711    DAG.setRoot(NewRoot);
6712
6713    // i indexes lowered arguments.  Bump it past the hidden sret argument.
6714    // Idx indexes LLVM arguments.  Don't touch it.
6715    ++i;
6716  }
6717
6718  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
6719      ++I, ++Idx) {
6720    SmallVector<SDValue, 4> ArgValues;
6721    SmallVector<EVT, 4> ValueVTs;
6722    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6723    unsigned NumValues = ValueVTs.size();
6724
6725    // If this argument is unused then remember its value. It is used to generate
6726    // debugging information.
6727    if (I->use_empty() && NumValues)
6728      SDB->setUnusedArgValue(I, InVals[i]);
6729
6730    for (unsigned Val = 0; Val != NumValues; ++Val) {
6731      EVT VT = ValueVTs[Val];
6732      MVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6733      unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6734
6735      if (!I->use_empty()) {
6736        ISD::NodeType AssertOp = ISD::DELETED_NODE;
6737        if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
6738          AssertOp = ISD::AssertSext;
6739        else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
6740          AssertOp = ISD::AssertZext;
6741
6742        ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
6743                                             NumParts, PartVT, VT,
6744                                             NULL, AssertOp));
6745      }
6746
6747      i += NumParts;
6748    }
6749
6750    // We don't need to do anything else for unused arguments.
6751    if (ArgValues.empty())
6752      continue;
6753
6754    // Note down frame index.
6755    if (FrameIndexSDNode *FI =
6756        dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
6757      FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
6758
6759    SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues,
6760                                     SDB->getCurDebugLoc());
6761
6762    SDB->setValue(I, Res);
6763    if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
6764      if (LoadSDNode *LNode =
6765          dyn_cast<LoadSDNode>(Res.getOperand(0).getNode()))
6766        if (FrameIndexSDNode *FI =
6767            dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
6768        FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
6769    }
6770
6771    // If this argument is live outside of the entry block, insert a copy from
6772    // wherever we got it to the vreg that other BB's will reference it as.
6773    if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
6774      // If we can, though, try to skip creating an unnecessary vreg.
6775      // FIXME: This isn't very clean... it would be nice to make this more
6776      // general.  It's also subtly incompatible with the hacks FastISel
6777      // uses with vregs.
6778      unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
6779      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
6780        FuncInfo->ValueMap[I] = Reg;
6781        continue;
6782      }
6783    }
6784    if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) {
6785      FuncInfo->InitializeRegForValue(I);
6786      SDB->CopyToExportRegsIfNeeded(I);
6787    }
6788  }
6789
6790  assert(i == InVals.size() && "Argument register count mismatch!");
6791
6792  // Finally, if the target has anything special to do, allow it to do so.
6793  // FIXME: this should insert code into the DAG!
6794  EmitFunctionEntryCode();
6795}
6796
6797/// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
6798/// ensure constants are generated when needed.  Remember the virtual registers
6799/// that need to be added to the Machine PHI nodes as input.  We cannot just
6800/// directly add them, because expansion might result in multiple MBB's for one
6801/// BB.  As such, the start of the BB might correspond to a different MBB than
6802/// the end.
6803///
6804void
6805SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
6806  const TerminatorInst *TI = LLVMBB->getTerminator();
6807
6808  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6809
6810  // Check successor nodes' PHI nodes that expect a constant to be available
6811  // from this block.
6812  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6813    const BasicBlock *SuccBB = TI->getSuccessor(succ);
6814    if (!isa<PHINode>(SuccBB->begin())) continue;
6815    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
6816
6817    // If this terminator has multiple identical successors (common for
6818    // switches), only handle each succ once.
6819    if (!SuccsHandled.insert(SuccMBB)) continue;
6820
6821    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6822
6823    // At this point we know that there is a 1-1 correspondence between LLVM PHI
6824    // nodes and Machine PHI nodes, but the incoming operands have not been
6825    // emitted yet.
6826    for (BasicBlock::const_iterator I = SuccBB->begin();
6827         const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
6828      // Ignore dead phi's.
6829      if (PN->use_empty()) continue;
6830
6831      // Skip empty types
6832      if (PN->getType()->isEmptyTy())
6833        continue;
6834
6835      unsigned Reg;
6836      const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6837
6838      if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
6839        unsigned &RegOut = ConstantsOut[C];
6840        if (RegOut == 0) {
6841          RegOut = FuncInfo.CreateRegs(C->getType());
6842          CopyValueToVirtualRegister(C, RegOut);
6843        }
6844        Reg = RegOut;
6845      } else {
6846        DenseMap<const Value *, unsigned>::iterator I =
6847          FuncInfo.ValueMap.find(PHIOp);
6848        if (I != FuncInfo.ValueMap.end())
6849          Reg = I->second;
6850        else {
6851          assert(isa<AllocaInst>(PHIOp) &&
6852                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
6853                 "Didn't codegen value into a register!??");
6854          Reg = FuncInfo.CreateRegs(PHIOp->getType());
6855          CopyValueToVirtualRegister(PHIOp, Reg);
6856        }
6857      }
6858
6859      // Remember that this register needs to added to the machine PHI node as
6860      // the input for this MBB.
6861      SmallVector<EVT, 4> ValueVTs;
6862      ComputeValueVTs(TLI, PN->getType(), ValueVTs);
6863      for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
6864        EVT VT = ValueVTs[vti];
6865        unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
6866        for (unsigned i = 0, e = NumRegisters; i != e; ++i)
6867          FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
6868        Reg += NumRegisters;
6869      }
6870    }
6871  }
6872  ConstantsOut.clear();
6873}
6874