SelectionDAGBuilder.cpp revision 0b8c9a80f20772c3793201ab5b251d3520b9cea3
1//===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements routines for translating from LLVM IR into SelectionDAG IR.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "SelectionDAGBuilder.h"
16#include "SDNodeDbgValue.h"
17#include "llvm/ADT/BitVector.h"
18#include "llvm/ADT/PostOrderIterator.h"
19#include "llvm/ADT/SmallSet.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/ConstantFolding.h"
22#include "llvm/Analysis/ValueTracking.h"
23#include "llvm/CodeGen/Analysis.h"
24#include "llvm/CodeGen/FastISel.h"
25#include "llvm/CodeGen/FunctionLoweringInfo.h"
26#include "llvm/CodeGen/GCMetadata.h"
27#include "llvm/CodeGen/GCStrategy.h"
28#include "llvm/CodeGen/MachineFrameInfo.h"
29#include "llvm/CodeGen/MachineFunction.h"
30#include "llvm/CodeGen/MachineInstrBuilder.h"
31#include "llvm/CodeGen/MachineJumpTableInfo.h"
32#include "llvm/CodeGen/MachineModuleInfo.h"
33#include "llvm/CodeGen/MachineRegisterInfo.h"
34#include "llvm/CodeGen/SelectionDAG.h"
35#include "llvm/DebugInfo.h"
36#include "llvm/IR/CallingConv.h"
37#include "llvm/IR/Constants.h"
38#include "llvm/IR/DataLayout.h"
39#include "llvm/IR/DerivedTypes.h"
40#include "llvm/IR/Function.h"
41#include "llvm/IR/GlobalVariable.h"
42#include "llvm/IR/InlineAsm.h"
43#include "llvm/IR/Instructions.h"
44#include "llvm/IR/IntrinsicInst.h"
45#include "llvm/IR/Intrinsics.h"
46#include "llvm/IR/LLVMContext.h"
47#include "llvm/IR/Module.h"
48#include "llvm/Support/CommandLine.h"
49#include "llvm/Support/Debug.h"
50#include "llvm/Support/ErrorHandling.h"
51#include "llvm/Support/IntegersSubsetMapping.h"
52#include "llvm/Support/MathExtras.h"
53#include "llvm/Support/raw_ostream.h"
54#include "llvm/Target/TargetFrameLowering.h"
55#include "llvm/Target/TargetInstrInfo.h"
56#include "llvm/Target/TargetIntrinsicInfo.h"
57#include "llvm/Target/TargetLibraryInfo.h"
58#include "llvm/Target/TargetLowering.h"
59#include "llvm/Target/TargetOptions.h"
60#include <algorithm>
61using namespace llvm;
62
63/// LimitFloatPrecision - Generate low-precision inline sequences for
64/// some float libcalls (6, 8 or 12 bits).
65static unsigned LimitFloatPrecision;
66
67static cl::opt<unsigned, true>
68LimitFPPrecision("limit-float-precision",
69                 cl::desc("Generate low-precision inline sequences "
70                          "for some float libcalls"),
71                 cl::location(LimitFloatPrecision),
72                 cl::init(0));
73
74// Limit the width of DAG chains. This is important in general to prevent
75// prevent DAG-based analysis from blowing up. For example, alias analysis and
76// load clustering may not complete in reasonable time. It is difficult to
77// recognize and avoid this situation within each individual analysis, and
78// future analyses are likely to have the same behavior. Limiting DAG width is
79// the safe approach, and will be especially important with global DAGs.
80//
81// MaxParallelChains default is arbitrarily high to avoid affecting
82// optimization, but could be lowered to improve compile time. Any ld-ld-st-st
83// sequence over this should have been converted to llvm.memcpy by the
84// frontend. It easy to induce this behavior with .ll code such as:
85// %buffer = alloca [4096 x i8]
86// %data = load [4096 x i8]* %argPtr
87// store [4096 x i8] %data, [4096 x i8]* %buffer
88static const unsigned MaxParallelChains = 64;
89
90static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
91                                      const SDValue *Parts, unsigned NumParts,
92                                      MVT PartVT, EVT ValueVT, const Value *V);
93
94/// getCopyFromParts - Create a value that contains the specified legal parts
95/// combined into the value they represent.  If the parts combine to a type
96/// larger then ValueVT then AssertOp can be used to specify whether the extra
97/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
98/// (ISD::AssertSext).
99static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL,
100                                const SDValue *Parts,
101                                unsigned NumParts, MVT PartVT, EVT ValueVT,
102                                const Value *V,
103                                ISD::NodeType AssertOp = ISD::DELETED_NODE) {
104  if (ValueVT.isVector())
105    return getCopyFromPartsVector(DAG, DL, Parts, NumParts,
106                                  PartVT, ValueVT, V);
107
108  assert(NumParts > 0 && "No parts to assemble!");
109  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
110  SDValue Val = Parts[0];
111
112  if (NumParts > 1) {
113    // Assemble the value from multiple parts.
114    if (ValueVT.isInteger()) {
115      unsigned PartBits = PartVT.getSizeInBits();
116      unsigned ValueBits = ValueVT.getSizeInBits();
117
118      // Assemble the power of 2 part.
119      unsigned RoundParts = NumParts & (NumParts - 1) ?
120        1 << Log2_32(NumParts) : NumParts;
121      unsigned RoundBits = PartBits * RoundParts;
122      EVT RoundVT = RoundBits == ValueBits ?
123        ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
124      SDValue Lo, Hi;
125
126      EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
127
128      if (RoundParts > 2) {
129        Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
130                              PartVT, HalfVT, V);
131        Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
132                              RoundParts / 2, PartVT, HalfVT, V);
133      } else {
134        Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
135        Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
136      }
137
138      if (TLI.isBigEndian())
139        std::swap(Lo, Hi);
140
141      Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
142
143      if (RoundParts < NumParts) {
144        // Assemble the trailing non-power-of-2 part.
145        unsigned OddParts = NumParts - RoundParts;
146        EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
147        Hi = getCopyFromParts(DAG, DL,
148                              Parts + RoundParts, OddParts, PartVT, OddVT, V);
149
150        // Combine the round and odd parts.
151        Lo = Val;
152        if (TLI.isBigEndian())
153          std::swap(Lo, Hi);
154        EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
155        Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
156        Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
157                         DAG.getConstant(Lo.getValueType().getSizeInBits(),
158                                         TLI.getPointerTy()));
159        Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
160        Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
161      }
162    } else if (PartVT.isFloatingPoint()) {
163      // FP split into multiple FP parts (for ppcf128)
164      assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
165             "Unexpected split");
166      SDValue Lo, Hi;
167      Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
168      Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
169      if (TLI.isBigEndian())
170        std::swap(Lo, Hi);
171      Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
172    } else {
173      // FP split into integer parts (soft fp)
174      assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
175             !PartVT.isVector() && "Unexpected split");
176      EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
177      Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V);
178    }
179  }
180
181  // There is now one part, held in Val.  Correct it to match ValueVT.
182  EVT PartEVT = Val.getValueType();
183
184  if (PartEVT == ValueVT)
185    return Val;
186
187  if (PartEVT.isInteger() && ValueVT.isInteger()) {
188    if (ValueVT.bitsLT(PartEVT)) {
189      // For a truncate, see if we have any information to
190      // indicate whether the truncated bits will always be
191      // zero or sign-extension.
192      if (AssertOp != ISD::DELETED_NODE)
193        Val = DAG.getNode(AssertOp, DL, PartEVT, Val,
194                          DAG.getValueType(ValueVT));
195      return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
196    }
197    return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
198  }
199
200  if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
201    // FP_ROUND's are always exact here.
202    if (ValueVT.bitsLT(Val.getValueType()))
203      return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val,
204                         DAG.getTargetConstant(1, TLI.getPointerTy()));
205
206    return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
207  }
208
209  if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
210    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
211
212  llvm_unreachable("Unknown mismatch!");
213}
214
215/// getCopyFromPartsVector - Create a value that contains the specified legal
216/// parts combined into the value they represent.  If the parts combine to a
217/// type larger then ValueVT then AssertOp can be used to specify whether the
218/// extra bits are known to be zero (ISD::AssertZext) or sign extended from
219/// ValueVT (ISD::AssertSext).
220static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
221                                      const SDValue *Parts, unsigned NumParts,
222                                      MVT PartVT, EVT ValueVT, const Value *V) {
223  assert(ValueVT.isVector() && "Not a vector value");
224  assert(NumParts > 0 && "No parts to assemble!");
225  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
226  SDValue Val = Parts[0];
227
228  // Handle a multi-element vector.
229  if (NumParts > 1) {
230    EVT IntermediateVT;
231    MVT RegisterVT;
232    unsigned NumIntermediates;
233    unsigned NumRegs =
234    TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
235                               NumIntermediates, RegisterVT);
236    assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
237    NumParts = NumRegs; // Silence a compiler warning.
238    assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
239    assert(RegisterVT == Parts[0].getSimpleValueType() &&
240           "Part type doesn't match part!");
241
242    // Assemble the parts into intermediate operands.
243    SmallVector<SDValue, 8> Ops(NumIntermediates);
244    if (NumIntermediates == NumParts) {
245      // If the register was not expanded, truncate or copy the value,
246      // as appropriate.
247      for (unsigned i = 0; i != NumParts; ++i)
248        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
249                                  PartVT, IntermediateVT, V);
250    } else if (NumParts > 0) {
251      // If the intermediate type was expanded, build the intermediate
252      // operands from the parts.
253      assert(NumParts % NumIntermediates == 0 &&
254             "Must expand into a divisible number of parts!");
255      unsigned Factor = NumParts / NumIntermediates;
256      for (unsigned i = 0; i != NumIntermediates; ++i)
257        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
258                                  PartVT, IntermediateVT, V);
259    }
260
261    // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
262    // intermediate operands.
263    Val = DAG.getNode(IntermediateVT.isVector() ?
264                      ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL,
265                      ValueVT, &Ops[0], NumIntermediates);
266  }
267
268  // There is now one part, held in Val.  Correct it to match ValueVT.
269  EVT PartEVT = Val.getValueType();
270
271  if (PartEVT == ValueVT)
272    return Val;
273
274  if (PartEVT.isVector()) {
275    // If the element type of the source/dest vectors are the same, but the
276    // parts vector has more elements than the value vector, then we have a
277    // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
278    // elements we want.
279    if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
280      assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
281             "Cannot narrow, it would be a lossy transformation");
282      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
283                         DAG.getIntPtrConstant(0));
284    }
285
286    // Vector/Vector bitcast.
287    if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
288      return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
289
290    assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
291      "Cannot handle this kind of promotion");
292    // Promoted vector extract
293    bool Smaller = ValueVT.bitsLE(PartEVT);
294    return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
295                       DL, ValueVT, Val);
296
297  }
298
299  // Trivial bitcast if the types are the same size and the destination
300  // vector type is legal.
301  if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
302      TLI.isTypeLegal(ValueVT))
303    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
304
305  // Handle cases such as i8 -> <1 x i1>
306  if (ValueVT.getVectorNumElements() != 1) {
307    LLVMContext &Ctx = *DAG.getContext();
308    Twine ErrMsg("non-trivial scalar-to-vector conversion");
309    if (const Instruction *I = dyn_cast_or_null<Instruction>(V)) {
310      if (const CallInst *CI = dyn_cast<CallInst>(I))
311        if (isa<InlineAsm>(CI->getCalledValue()))
312          ErrMsg = ErrMsg + ", possible invalid constraint for vector type";
313      Ctx.emitError(I, ErrMsg);
314    } else {
315      Ctx.emitError(ErrMsg);
316    }
317    report_fatal_error("Cannot handle scalar-to-vector conversion!");
318  }
319
320  if (ValueVT.getVectorNumElements() == 1 &&
321      ValueVT.getVectorElementType() != PartEVT) {
322    bool Smaller = ValueVT.bitsLE(PartEVT);
323    Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
324                       DL, ValueVT.getScalarType(), Val);
325  }
326
327  return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
328}
329
330static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl,
331                                 SDValue Val, SDValue *Parts, unsigned NumParts,
332                                 MVT PartVT, const Value *V);
333
334/// getCopyToParts - Create a series of nodes that contain the specified value
335/// split into legal parts.  If the parts contain more bits than Val, then, for
336/// integers, ExtendKind can be used to specify how to generate the extra bits.
337static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL,
338                           SDValue Val, SDValue *Parts, unsigned NumParts,
339                           MVT PartVT, const Value *V,
340                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
341  EVT ValueVT = Val.getValueType();
342
343  // Handle the vector case separately.
344  if (ValueVT.isVector())
345    return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V);
346
347  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
348  unsigned PartBits = PartVT.getSizeInBits();
349  unsigned OrigNumParts = NumParts;
350  assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
351
352  if (NumParts == 0)
353    return;
354
355  assert(!ValueVT.isVector() && "Vector case handled elsewhere");
356  EVT PartEVT = PartVT;
357  if (PartEVT == ValueVT) {
358    assert(NumParts == 1 && "No-op copy with multiple parts!");
359    Parts[0] = Val;
360    return;
361  }
362
363  if (NumParts * PartBits > ValueVT.getSizeInBits()) {
364    // If the parts cover more bits than the value has, promote the value.
365    if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
366      assert(NumParts == 1 && "Do not know what to promote to!");
367      Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
368    } else {
369      assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
370             ValueVT.isInteger() &&
371             "Unknown mismatch!");
372      ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
373      Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
374      if (PartVT == MVT::x86mmx)
375        Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
376    }
377  } else if (PartBits == ValueVT.getSizeInBits()) {
378    // Different types of the same size.
379    assert(NumParts == 1 && PartEVT != ValueVT);
380    Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
381  } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
382    // If the parts cover less bits than value has, truncate the value.
383    assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
384           ValueVT.isInteger() &&
385           "Unknown mismatch!");
386    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
387    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
388    if (PartVT == MVT::x86mmx)
389      Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
390  }
391
392  // The value may have changed - recompute ValueVT.
393  ValueVT = Val.getValueType();
394  assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
395         "Failed to tile the value with PartVT!");
396
397  if (NumParts == 1) {
398    if (PartEVT != ValueVT) {
399      LLVMContext &Ctx = *DAG.getContext();
400      Twine ErrMsg("scalar-to-vector conversion failed");
401      if (const Instruction *I = dyn_cast_or_null<Instruction>(V)) {
402        if (const CallInst *CI = dyn_cast<CallInst>(I))
403          if (isa<InlineAsm>(CI->getCalledValue()))
404            ErrMsg = ErrMsg + ", possible invalid constraint for vector type";
405        Ctx.emitError(I, ErrMsg);
406      } else {
407        Ctx.emitError(ErrMsg);
408      }
409    }
410
411    Parts[0] = Val;
412    return;
413  }
414
415  // Expand the value into multiple parts.
416  if (NumParts & (NumParts - 1)) {
417    // The number of parts is not a power of 2.  Split off and copy the tail.
418    assert(PartVT.isInteger() && ValueVT.isInteger() &&
419           "Do not know what to expand to!");
420    unsigned RoundParts = 1 << Log2_32(NumParts);
421    unsigned RoundBits = RoundParts * PartBits;
422    unsigned OddParts = NumParts - RoundParts;
423    SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
424                                 DAG.getIntPtrConstant(RoundBits));
425    getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V);
426
427    if (TLI.isBigEndian())
428      // The odd parts were reversed by getCopyToParts - unreverse them.
429      std::reverse(Parts + RoundParts, Parts + NumParts);
430
431    NumParts = RoundParts;
432    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
433    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
434  }
435
436  // The number of parts is a power of 2.  Repeatedly bisect the value using
437  // EXTRACT_ELEMENT.
438  Parts[0] = DAG.getNode(ISD::BITCAST, DL,
439                         EVT::getIntegerVT(*DAG.getContext(),
440                                           ValueVT.getSizeInBits()),
441                         Val);
442
443  for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
444    for (unsigned i = 0; i < NumParts; i += StepSize) {
445      unsigned ThisBits = StepSize * PartBits / 2;
446      EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
447      SDValue &Part0 = Parts[i];
448      SDValue &Part1 = Parts[i+StepSize/2];
449
450      Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
451                          ThisVT, Part0, DAG.getIntPtrConstant(1));
452      Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
453                          ThisVT, Part0, DAG.getIntPtrConstant(0));
454
455      if (ThisBits == PartBits && ThisVT != PartVT) {
456        Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
457        Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
458      }
459    }
460  }
461
462  if (TLI.isBigEndian())
463    std::reverse(Parts, Parts + OrigNumParts);
464}
465
466
467/// getCopyToPartsVector - Create a series of nodes that contain the specified
468/// value split into legal parts.
469static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL,
470                                 SDValue Val, SDValue *Parts, unsigned NumParts,
471                                 MVT PartVT, const Value *V) {
472  EVT ValueVT = Val.getValueType();
473  assert(ValueVT.isVector() && "Not a vector");
474  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
475
476  if (NumParts == 1) {
477    EVT PartEVT = PartVT;
478    if (PartEVT == ValueVT) {
479      // Nothing to do.
480    } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
481      // Bitconvert vector->vector case.
482      Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
483    } else if (PartVT.isVector() &&
484               PartEVT.getVectorElementType() == ValueVT.getVectorElementType() &&
485               PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
486      EVT ElementVT = PartVT.getVectorElementType();
487      // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
488      // undef elements.
489      SmallVector<SDValue, 16> Ops;
490      for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
491        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
492                                  ElementVT, Val, DAG.getIntPtrConstant(i)));
493
494      for (unsigned i = ValueVT.getVectorNumElements(),
495           e = PartVT.getVectorNumElements(); i != e; ++i)
496        Ops.push_back(DAG.getUNDEF(ElementVT));
497
498      Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size());
499
500      // FIXME: Use CONCAT for 2x -> 4x.
501
502      //SDValue UndefElts = DAG.getUNDEF(VectorTy);
503      //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
504    } else if (PartVT.isVector() &&
505               PartEVT.getVectorElementType().bitsGE(
506                 ValueVT.getVectorElementType()) &&
507               PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
508
509      // Promoted vector extract
510      bool Smaller = PartEVT.bitsLE(ValueVT);
511      Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
512                        DL, PartVT, Val);
513    } else{
514      // Vector -> scalar conversion.
515      assert(ValueVT.getVectorNumElements() == 1 &&
516             "Only trivial vector-to-scalar conversions should get here!");
517      Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
518                        PartVT, Val, DAG.getIntPtrConstant(0));
519
520      bool Smaller = ValueVT.bitsLE(PartVT);
521      Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
522                         DL, PartVT, Val);
523    }
524
525    Parts[0] = Val;
526    return;
527  }
528
529  // Handle a multi-element vector.
530  EVT IntermediateVT;
531  MVT RegisterVT;
532  unsigned NumIntermediates;
533  unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
534                                                IntermediateVT,
535                                                NumIntermediates, RegisterVT);
536  unsigned NumElements = ValueVT.getVectorNumElements();
537
538  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
539  NumParts = NumRegs; // Silence a compiler warning.
540  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
541
542  // Split the vector into intermediate operands.
543  SmallVector<SDValue, 8> Ops(NumIntermediates);
544  for (unsigned i = 0; i != NumIntermediates; ++i) {
545    if (IntermediateVT.isVector())
546      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
547                           IntermediateVT, Val,
548                   DAG.getIntPtrConstant(i * (NumElements / NumIntermediates)));
549    else
550      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
551                           IntermediateVT, Val, DAG.getIntPtrConstant(i));
552  }
553
554  // Split the intermediate operands into legal parts.
555  if (NumParts == NumIntermediates) {
556    // If the register was not expanded, promote or copy the value,
557    // as appropriate.
558    for (unsigned i = 0; i != NumParts; ++i)
559      getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V);
560  } else if (NumParts > 0) {
561    // If the intermediate type was expanded, split each the value into
562    // legal parts.
563    assert(NumParts % NumIntermediates == 0 &&
564           "Must expand into a divisible number of parts!");
565    unsigned Factor = NumParts / NumIntermediates;
566    for (unsigned i = 0; i != NumIntermediates; ++i)
567      getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V);
568  }
569}
570
571namespace {
572  /// RegsForValue - This struct represents the registers (physical or virtual)
573  /// that a particular set of values is assigned, and the type information
574  /// about the value. The most common situation is to represent one value at a
575  /// time, but struct or array values are handled element-wise as multiple
576  /// values.  The splitting of aggregates is performed recursively, so that we
577  /// never have aggregate-typed registers. The values at this point do not
578  /// necessarily have legal types, so each value may require one or more
579  /// registers of some legal type.
580  ///
581  struct RegsForValue {
582    /// ValueVTs - The value types of the values, which may not be legal, and
583    /// may need be promoted or synthesized from one or more registers.
584    ///
585    SmallVector<EVT, 4> ValueVTs;
586
587    /// RegVTs - The value types of the registers. This is the same size as
588    /// ValueVTs and it records, for each value, what the type of the assigned
589    /// register or registers are. (Individual values are never synthesized
590    /// from more than one type of register.)
591    ///
592    /// With virtual registers, the contents of RegVTs is redundant with TLI's
593    /// getRegisterType member function, however when with physical registers
594    /// it is necessary to have a separate record of the types.
595    ///
596    SmallVector<MVT, 4> RegVTs;
597
598    /// Regs - This list holds the registers assigned to the values.
599    /// Each legal or promoted value requires one register, and each
600    /// expanded value requires multiple registers.
601    ///
602    SmallVector<unsigned, 4> Regs;
603
604    RegsForValue() {}
605
606    RegsForValue(const SmallVector<unsigned, 4> &regs,
607                 MVT regvt, EVT valuevt)
608      : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
609
610    RegsForValue(LLVMContext &Context, const TargetLowering &tli,
611                 unsigned Reg, Type *Ty) {
612      ComputeValueVTs(tli, Ty, ValueVTs);
613
614      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
615        EVT ValueVT = ValueVTs[Value];
616        unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
617        MVT RegisterVT = tli.getRegisterType(Context, ValueVT);
618        for (unsigned i = 0; i != NumRegs; ++i)
619          Regs.push_back(Reg + i);
620        RegVTs.push_back(RegisterVT);
621        Reg += NumRegs;
622      }
623    }
624
625    /// areValueTypesLegal - Return true if types of all the values are legal.
626    bool areValueTypesLegal(const TargetLowering &TLI) {
627      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
628        MVT RegisterVT = RegVTs[Value];
629        if (!TLI.isTypeLegal(RegisterVT))
630          return false;
631      }
632      return true;
633    }
634
635    /// append - Add the specified values to this one.
636    void append(const RegsForValue &RHS) {
637      ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
638      RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
639      Regs.append(RHS.Regs.begin(), RHS.Regs.end());
640    }
641
642    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
643    /// this value and returns the result as a ValueVTs value.  This uses
644    /// Chain/Flag as the input and updates them for the output Chain/Flag.
645    /// If the Flag pointer is NULL, no flag is used.
646    SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
647                            DebugLoc dl,
648                            SDValue &Chain, SDValue *Flag,
649                            const Value *V = 0) const;
650
651    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
652    /// specified value into the registers specified by this object.  This uses
653    /// Chain/Flag as the input and updates them for the output Chain/Flag.
654    /// If the Flag pointer is NULL, no flag is used.
655    void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
656                       SDValue &Chain, SDValue *Flag, const Value *V) const;
657
658    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
659    /// operand list.  This adds the code marker, matching input operand index
660    /// (if applicable), and includes the number of values added into it.
661    void AddInlineAsmOperands(unsigned Kind,
662                              bool HasMatching, unsigned MatchingIdx,
663                              SelectionDAG &DAG,
664                              std::vector<SDValue> &Ops) const;
665  };
666}
667
668/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
669/// this value and returns the result as a ValueVT value.  This uses
670/// Chain/Flag as the input and updates them for the output Chain/Flag.
671/// If the Flag pointer is NULL, no flag is used.
672SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
673                                      FunctionLoweringInfo &FuncInfo,
674                                      DebugLoc dl,
675                                      SDValue &Chain, SDValue *Flag,
676                                      const Value *V) const {
677  // A Value with type {} or [0 x %t] needs no registers.
678  if (ValueVTs.empty())
679    return SDValue();
680
681  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
682
683  // Assemble the legal parts into the final values.
684  SmallVector<SDValue, 4> Values(ValueVTs.size());
685  SmallVector<SDValue, 8> Parts;
686  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
687    // Copy the legal parts from the registers.
688    EVT ValueVT = ValueVTs[Value];
689    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
690    MVT RegisterVT = RegVTs[Value];
691
692    Parts.resize(NumRegs);
693    for (unsigned i = 0; i != NumRegs; ++i) {
694      SDValue P;
695      if (Flag == 0) {
696        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
697      } else {
698        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
699        *Flag = P.getValue(2);
700      }
701
702      Chain = P.getValue(1);
703      Parts[i] = P;
704
705      // If the source register was virtual and if we know something about it,
706      // add an assert node.
707      if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
708          !RegisterVT.isInteger() || RegisterVT.isVector())
709        continue;
710
711      const FunctionLoweringInfo::LiveOutInfo *LOI =
712        FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
713      if (!LOI)
714        continue;
715
716      unsigned RegSize = RegisterVT.getSizeInBits();
717      unsigned NumSignBits = LOI->NumSignBits;
718      unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
719
720      // FIXME: We capture more information than the dag can represent.  For
721      // now, just use the tightest assertzext/assertsext possible.
722      bool isSExt = true;
723      EVT FromVT(MVT::Other);
724      if (NumSignBits == RegSize)
725        isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
726      else if (NumZeroBits >= RegSize-1)
727        isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
728      else if (NumSignBits > RegSize-8)
729        isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
730      else if (NumZeroBits >= RegSize-8)
731        isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
732      else if (NumSignBits > RegSize-16)
733        isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
734      else if (NumZeroBits >= RegSize-16)
735        isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
736      else if (NumSignBits > RegSize-32)
737        isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
738      else if (NumZeroBits >= RegSize-32)
739        isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
740      else
741        continue;
742
743      // Add an assertion node.
744      assert(FromVT != MVT::Other);
745      Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
746                             RegisterVT, P, DAG.getValueType(FromVT));
747    }
748
749    Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
750                                     NumRegs, RegisterVT, ValueVT, V);
751    Part += NumRegs;
752    Parts.clear();
753  }
754
755  return DAG.getNode(ISD::MERGE_VALUES, dl,
756                     DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
757                     &Values[0], ValueVTs.size());
758}
759
760/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
761/// specified value into the registers specified by this object.  This uses
762/// Chain/Flag as the input and updates them for the output Chain/Flag.
763/// If the Flag pointer is NULL, no flag is used.
764void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
765                                 SDValue &Chain, SDValue *Flag,
766                                 const Value *V) const {
767  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
768
769  // Get the list of the values's legal parts.
770  unsigned NumRegs = Regs.size();
771  SmallVector<SDValue, 8> Parts(NumRegs);
772  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
773    EVT ValueVT = ValueVTs[Value];
774    unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
775    MVT RegisterVT = RegVTs[Value];
776    ISD::NodeType ExtendKind =
777      TLI.isZExtFree(Val, RegisterVT)? ISD::ZERO_EXTEND: ISD::ANY_EXTEND;
778
779    getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
780                   &Parts[Part], NumParts, RegisterVT, V, ExtendKind);
781    Part += NumParts;
782  }
783
784  // Copy the parts into the registers.
785  SmallVector<SDValue, 8> Chains(NumRegs);
786  for (unsigned i = 0; i != NumRegs; ++i) {
787    SDValue Part;
788    if (Flag == 0) {
789      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
790    } else {
791      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
792      *Flag = Part.getValue(1);
793    }
794
795    Chains[i] = Part.getValue(0);
796  }
797
798  if (NumRegs == 1 || Flag)
799    // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
800    // flagged to it. That is the CopyToReg nodes and the user are considered
801    // a single scheduling unit. If we create a TokenFactor and return it as
802    // chain, then the TokenFactor is both a predecessor (operand) of the
803    // user as well as a successor (the TF operands are flagged to the user).
804    // c1, f1 = CopyToReg
805    // c2, f2 = CopyToReg
806    // c3     = TokenFactor c1, c2
807    // ...
808    //        = op c3, ..., f2
809    Chain = Chains[NumRegs-1];
810  else
811    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
812}
813
814/// AddInlineAsmOperands - Add this value to the specified inlineasm node
815/// operand list.  This adds the code marker and includes the number of
816/// values added into it.
817void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
818                                        unsigned MatchingIdx,
819                                        SelectionDAG &DAG,
820                                        std::vector<SDValue> &Ops) const {
821  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
822
823  unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
824  if (HasMatching)
825    Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
826  else if (!Regs.empty() &&
827           TargetRegisterInfo::isVirtualRegister(Regs.front())) {
828    // Put the register class of the virtual registers in the flag word.  That
829    // way, later passes can recompute register class constraints for inline
830    // assembly as well as normal instructions.
831    // Don't do this for tied operands that can use the regclass information
832    // from the def.
833    const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
834    const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
835    Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
836  }
837
838  SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
839  Ops.push_back(Res);
840
841  for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
842    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
843    MVT RegisterVT = RegVTs[Value];
844    for (unsigned i = 0; i != NumRegs; ++i) {
845      assert(Reg < Regs.size() && "Mismatch in # registers expected");
846      Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
847    }
848  }
849}
850
851void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa,
852                               const TargetLibraryInfo *li) {
853  AA = &aa;
854  GFI = gfi;
855  LibInfo = li;
856  TD = DAG.getTarget().getDataLayout();
857  Context = DAG.getContext();
858  LPadToCallSiteMap.clear();
859}
860
861/// clear - Clear out the current SelectionDAG and the associated
862/// state and prepare this SelectionDAGBuilder object to be used
863/// for a new block. This doesn't clear out information about
864/// additional blocks that are needed to complete switch lowering
865/// or PHI node updating; that information is cleared out as it is
866/// consumed.
867void SelectionDAGBuilder::clear() {
868  NodeMap.clear();
869  UnusedArgNodeMap.clear();
870  PendingLoads.clear();
871  PendingExports.clear();
872  CurDebugLoc = DebugLoc();
873  HasTailCall = false;
874}
875
876/// clearDanglingDebugInfo - Clear the dangling debug information
877/// map. This function is separated from the clear so that debug
878/// information that is dangling in a basic block can be properly
879/// resolved in a different basic block. This allows the
880/// SelectionDAG to resolve dangling debug information attached
881/// to PHI nodes.
882void SelectionDAGBuilder::clearDanglingDebugInfo() {
883  DanglingDebugInfoMap.clear();
884}
885
886/// getRoot - Return the current virtual root of the Selection DAG,
887/// flushing any PendingLoad items. This must be done before emitting
888/// a store or any other node that may need to be ordered after any
889/// prior load instructions.
890///
891SDValue SelectionDAGBuilder::getRoot() {
892  if (PendingLoads.empty())
893    return DAG.getRoot();
894
895  if (PendingLoads.size() == 1) {
896    SDValue Root = PendingLoads[0];
897    DAG.setRoot(Root);
898    PendingLoads.clear();
899    return Root;
900  }
901
902  // Otherwise, we have to make a token factor node.
903  SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
904                               &PendingLoads[0], PendingLoads.size());
905  PendingLoads.clear();
906  DAG.setRoot(Root);
907  return Root;
908}
909
910/// getControlRoot - Similar to getRoot, but instead of flushing all the
911/// PendingLoad items, flush all the PendingExports items. It is necessary
912/// to do this before emitting a terminator instruction.
913///
914SDValue SelectionDAGBuilder::getControlRoot() {
915  SDValue Root = DAG.getRoot();
916
917  if (PendingExports.empty())
918    return Root;
919
920  // Turn all of the CopyToReg chains into one factored node.
921  if (Root.getOpcode() != ISD::EntryToken) {
922    unsigned i = 0, e = PendingExports.size();
923    for (; i != e; ++i) {
924      assert(PendingExports[i].getNode()->getNumOperands() > 1);
925      if (PendingExports[i].getNode()->getOperand(0) == Root)
926        break;  // Don't add the root if we already indirectly depend on it.
927    }
928
929    if (i == e)
930      PendingExports.push_back(Root);
931  }
932
933  Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
934                     &PendingExports[0],
935                     PendingExports.size());
936  PendingExports.clear();
937  DAG.setRoot(Root);
938  return Root;
939}
940
941void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) {
942  if (DAG.GetOrdering(Node) != 0) return; // Already has ordering.
943  DAG.AssignOrdering(Node, SDNodeOrder);
944
945  for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I)
946    AssignOrderingToNode(Node->getOperand(I).getNode());
947}
948
949void SelectionDAGBuilder::visit(const Instruction &I) {
950  // Set up outgoing PHI node register values before emitting the terminator.
951  if (isa<TerminatorInst>(&I))
952    HandlePHINodesInSuccessorBlocks(I.getParent());
953
954  CurDebugLoc = I.getDebugLoc();
955
956  visit(I.getOpcode(), I);
957
958  if (!isa<TerminatorInst>(&I) && !HasTailCall)
959    CopyToExportRegsIfNeeded(&I);
960
961  CurDebugLoc = DebugLoc();
962}
963
964void SelectionDAGBuilder::visitPHI(const PHINode &) {
965  llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
966}
967
968void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
969  // Note: this doesn't use InstVisitor, because it has to work with
970  // ConstantExpr's in addition to instructions.
971  switch (Opcode) {
972  default: llvm_unreachable("Unknown instruction type encountered!");
973    // Build the switch statement using the Instruction.def file.
974#define HANDLE_INST(NUM, OPCODE, CLASS) \
975    case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
976#include "llvm/IR/Instruction.def"
977  }
978
979  // Assign the ordering to the freshly created DAG nodes.
980  if (NodeMap.count(&I)) {
981    ++SDNodeOrder;
982    AssignOrderingToNode(getValue(&I).getNode());
983  }
984}
985
986// resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
987// generate the debug data structures now that we've seen its definition.
988void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
989                                                   SDValue Val) {
990  DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
991  if (DDI.getDI()) {
992    const DbgValueInst *DI = DDI.getDI();
993    DebugLoc dl = DDI.getdl();
994    unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
995    MDNode *Variable = DI->getVariable();
996    uint64_t Offset = DI->getOffset();
997    SDDbgValue *SDV;
998    if (Val.getNode()) {
999      if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) {
1000        SDV = DAG.getDbgValue(Variable, Val.getNode(),
1001                              Val.getResNo(), Offset, dl, DbgSDNodeOrder);
1002        DAG.AddDbgValue(SDV, Val.getNode(), false);
1003      }
1004    } else
1005      DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
1006    DanglingDebugInfoMap[V] = DanglingDebugInfo();
1007  }
1008}
1009
1010/// getValue - Return an SDValue for the given Value.
1011SDValue SelectionDAGBuilder::getValue(const Value *V) {
1012  // If we already have an SDValue for this value, use it. It's important
1013  // to do this first, so that we don't create a CopyFromReg if we already
1014  // have a regular SDValue.
1015  SDValue &N = NodeMap[V];
1016  if (N.getNode()) return N;
1017
1018  // If there's a virtual register allocated and initialized for this
1019  // value, use it.
1020  DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
1021  if (It != FuncInfo.ValueMap.end()) {
1022    unsigned InReg = It->second;
1023    RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
1024    SDValue Chain = DAG.getEntryNode();
1025    N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL, V);
1026    resolveDanglingDebugInfo(V, N);
1027    return N;
1028  }
1029
1030  // Otherwise create a new SDValue and remember it.
1031  SDValue Val = getValueImpl(V);
1032  NodeMap[V] = Val;
1033  resolveDanglingDebugInfo(V, Val);
1034  return Val;
1035}
1036
1037/// getNonRegisterValue - Return an SDValue for the given Value, but
1038/// don't look in FuncInfo.ValueMap for a virtual register.
1039SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1040  // If we already have an SDValue for this value, use it.
1041  SDValue &N = NodeMap[V];
1042  if (N.getNode()) return N;
1043
1044  // Otherwise create a new SDValue and remember it.
1045  SDValue Val = getValueImpl(V);
1046  NodeMap[V] = Val;
1047  resolveDanglingDebugInfo(V, Val);
1048  return Val;
1049}
1050
1051/// getValueImpl - Helper function for getValue and getNonRegisterValue.
1052/// Create an SDValue for the given value.
1053SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1054  if (const Constant *C = dyn_cast<Constant>(V)) {
1055    EVT VT = TLI.getValueType(V->getType(), true);
1056
1057    if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1058      return DAG.getConstant(*CI, VT);
1059
1060    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1061      return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT);
1062
1063    if (isa<ConstantPointerNull>(C))
1064      return DAG.getConstant(0, TLI.getPointerTy());
1065
1066    if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1067      return DAG.getConstantFP(*CFP, VT);
1068
1069    if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1070      return DAG.getUNDEF(VT);
1071
1072    if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1073      visit(CE->getOpcode(), *CE);
1074      SDValue N1 = NodeMap[V];
1075      assert(N1.getNode() && "visit didn't populate the NodeMap!");
1076      return N1;
1077    }
1078
1079    if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1080      SmallVector<SDValue, 4> Constants;
1081      for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1082           OI != OE; ++OI) {
1083        SDNode *Val = getValue(*OI).getNode();
1084        // If the operand is an empty aggregate, there are no values.
1085        if (!Val) continue;
1086        // Add each leaf value from the operand to the Constants list
1087        // to form a flattened list of all the values.
1088        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1089          Constants.push_back(SDValue(Val, i));
1090      }
1091
1092      return DAG.getMergeValues(&Constants[0], Constants.size(),
1093                                getCurDebugLoc());
1094    }
1095
1096    if (const ConstantDataSequential *CDS =
1097          dyn_cast<ConstantDataSequential>(C)) {
1098      SmallVector<SDValue, 4> Ops;
1099      for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1100        SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1101        // Add each leaf value from the operand to the Constants list
1102        // to form a flattened list of all the values.
1103        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1104          Ops.push_back(SDValue(Val, i));
1105      }
1106
1107      if (isa<ArrayType>(CDS->getType()))
1108        return DAG.getMergeValues(&Ops[0], Ops.size(), getCurDebugLoc());
1109      return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
1110                                      VT, &Ops[0], Ops.size());
1111    }
1112
1113    if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1114      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1115             "Unknown struct or array constant!");
1116
1117      SmallVector<EVT, 4> ValueVTs;
1118      ComputeValueVTs(TLI, C->getType(), ValueVTs);
1119      unsigned NumElts = ValueVTs.size();
1120      if (NumElts == 0)
1121        return SDValue(); // empty struct
1122      SmallVector<SDValue, 4> Constants(NumElts);
1123      for (unsigned i = 0; i != NumElts; ++i) {
1124        EVT EltVT = ValueVTs[i];
1125        if (isa<UndefValue>(C))
1126          Constants[i] = DAG.getUNDEF(EltVT);
1127        else if (EltVT.isFloatingPoint())
1128          Constants[i] = DAG.getConstantFP(0, EltVT);
1129        else
1130          Constants[i] = DAG.getConstant(0, EltVT);
1131      }
1132
1133      return DAG.getMergeValues(&Constants[0], NumElts,
1134                                getCurDebugLoc());
1135    }
1136
1137    if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1138      return DAG.getBlockAddress(BA, VT);
1139
1140    VectorType *VecTy = cast<VectorType>(V->getType());
1141    unsigned NumElements = VecTy->getNumElements();
1142
1143    // Now that we know the number and type of the elements, get that number of
1144    // elements into the Ops array based on what kind of constant it is.
1145    SmallVector<SDValue, 16> Ops;
1146    if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1147      for (unsigned i = 0; i != NumElements; ++i)
1148        Ops.push_back(getValue(CV->getOperand(i)));
1149    } else {
1150      assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1151      EVT EltVT = TLI.getValueType(VecTy->getElementType());
1152
1153      SDValue Op;
1154      if (EltVT.isFloatingPoint())
1155        Op = DAG.getConstantFP(0, EltVT);
1156      else
1157        Op = DAG.getConstant(0, EltVT);
1158      Ops.assign(NumElements, Op);
1159    }
1160
1161    // Create a BUILD_VECTOR node.
1162    return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
1163                                    VT, &Ops[0], Ops.size());
1164  }
1165
1166  // If this is a static alloca, generate it as the frameindex instead of
1167  // computation.
1168  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1169    DenseMap<const AllocaInst*, int>::iterator SI =
1170      FuncInfo.StaticAllocaMap.find(AI);
1171    if (SI != FuncInfo.StaticAllocaMap.end())
1172      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
1173  }
1174
1175  // If this is an instruction which fast-isel has deferred, select it now.
1176  if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1177    unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1178    RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType());
1179    SDValue Chain = DAG.getEntryNode();
1180    return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL, V);
1181  }
1182
1183  llvm_unreachable("Can't get register for value!");
1184}
1185
1186void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1187  SDValue Chain = getControlRoot();
1188  SmallVector<ISD::OutputArg, 8> Outs;
1189  SmallVector<SDValue, 8> OutVals;
1190
1191  if (!FuncInfo.CanLowerReturn) {
1192    unsigned DemoteReg = FuncInfo.DemoteRegister;
1193    const Function *F = I.getParent()->getParent();
1194
1195    // Emit a store of the return value through the virtual register.
1196    // Leave Outs empty so that LowerReturn won't try to load return
1197    // registers the usual way.
1198    SmallVector<EVT, 1> PtrValueVTs;
1199    ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
1200                    PtrValueVTs);
1201
1202    SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
1203    SDValue RetOp = getValue(I.getOperand(0));
1204
1205    SmallVector<EVT, 4> ValueVTs;
1206    SmallVector<uint64_t, 4> Offsets;
1207    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1208    unsigned NumValues = ValueVTs.size();
1209
1210    SmallVector<SDValue, 4> Chains(NumValues);
1211    for (unsigned i = 0; i != NumValues; ++i) {
1212      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(),
1213                                RetPtr.getValueType(), RetPtr,
1214                                DAG.getIntPtrConstant(Offsets[i]));
1215      Chains[i] =
1216        DAG.getStore(Chain, getCurDebugLoc(),
1217                     SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1218                     // FIXME: better loc info would be nice.
1219                     Add, MachinePointerInfo(), false, false, 0);
1220    }
1221
1222    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
1223                        MVT::Other, &Chains[0], NumValues);
1224  } else if (I.getNumOperands() != 0) {
1225    SmallVector<EVT, 4> ValueVTs;
1226    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
1227    unsigned NumValues = ValueVTs.size();
1228    if (NumValues) {
1229      SDValue RetOp = getValue(I.getOperand(0));
1230      for (unsigned j = 0, f = NumValues; j != f; ++j) {
1231        EVT VT = ValueVTs[j];
1232
1233        ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1234
1235        const Function *F = I.getParent()->getParent();
1236        if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1237                                            Attribute::SExt))
1238          ExtendKind = ISD::SIGN_EXTEND;
1239        else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1240                                                 Attribute::ZExt))
1241          ExtendKind = ISD::ZERO_EXTEND;
1242
1243        if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1244          VT = TLI.getTypeForExtArgOrReturn(VT.getSimpleVT(), ExtendKind);
1245
1246        unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
1247        MVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
1248        SmallVector<SDValue, 4> Parts(NumParts);
1249        getCopyToParts(DAG, getCurDebugLoc(),
1250                       SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1251                       &Parts[0], NumParts, PartVT, &I, ExtendKind);
1252
1253        // 'inreg' on function refers to return value
1254        ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1255        if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1256                                            Attribute::InReg))
1257          Flags.setInReg();
1258
1259        // Propagate extension type if any
1260        if (ExtendKind == ISD::SIGN_EXTEND)
1261          Flags.setSExt();
1262        else if (ExtendKind == ISD::ZERO_EXTEND)
1263          Flags.setZExt();
1264
1265        for (unsigned i = 0; i < NumParts; ++i) {
1266          Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1267                                        /*isfixed=*/true, 0, 0));
1268          OutVals.push_back(Parts[i]);
1269        }
1270      }
1271    }
1272  }
1273
1274  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1275  CallingConv::ID CallConv =
1276    DAG.getMachineFunction().getFunction()->getCallingConv();
1277  Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
1278                          Outs, OutVals, getCurDebugLoc(), DAG);
1279
1280  // Verify that the target's LowerReturn behaved as expected.
1281  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1282         "LowerReturn didn't return a valid chain!");
1283
1284  // Update the DAG with the new chain value resulting from return lowering.
1285  DAG.setRoot(Chain);
1286}
1287
1288/// CopyToExportRegsIfNeeded - If the given value has virtual registers
1289/// created for it, emit nodes to copy the value into the virtual
1290/// registers.
1291void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1292  // Skip empty types
1293  if (V->getType()->isEmptyTy())
1294    return;
1295
1296  DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1297  if (VMI != FuncInfo.ValueMap.end()) {
1298    assert(!V->use_empty() && "Unused value assigned virtual registers!");
1299    CopyValueToVirtualRegister(V, VMI->second);
1300  }
1301}
1302
1303/// ExportFromCurrentBlock - If this condition isn't known to be exported from
1304/// the current basic block, add it to ValueMap now so that we'll get a
1305/// CopyTo/FromReg.
1306void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1307  // No need to export constants.
1308  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1309
1310  // Already exported?
1311  if (FuncInfo.isExportedInst(V)) return;
1312
1313  unsigned Reg = FuncInfo.InitializeRegForValue(V);
1314  CopyValueToVirtualRegister(V, Reg);
1315}
1316
1317bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1318                                                     const BasicBlock *FromBB) {
1319  // The operands of the setcc have to be in this block.  We don't know
1320  // how to export them from some other block.
1321  if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1322    // Can export from current BB.
1323    if (VI->getParent() == FromBB)
1324      return true;
1325
1326    // Is already exported, noop.
1327    return FuncInfo.isExportedInst(V);
1328  }
1329
1330  // If this is an argument, we can export it if the BB is the entry block or
1331  // if it is already exported.
1332  if (isa<Argument>(V)) {
1333    if (FromBB == &FromBB->getParent()->getEntryBlock())
1334      return true;
1335
1336    // Otherwise, can only export this if it is already exported.
1337    return FuncInfo.isExportedInst(V);
1338  }
1339
1340  // Otherwise, constants can always be exported.
1341  return true;
1342}
1343
1344/// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1345uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src,
1346                                            const MachineBasicBlock *Dst) const {
1347  BranchProbabilityInfo *BPI = FuncInfo.BPI;
1348  if (!BPI)
1349    return 0;
1350  const BasicBlock *SrcBB = Src->getBasicBlock();
1351  const BasicBlock *DstBB = Dst->getBasicBlock();
1352  return BPI->getEdgeWeight(SrcBB, DstBB);
1353}
1354
1355void SelectionDAGBuilder::
1356addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst,
1357                       uint32_t Weight /* = 0 */) {
1358  if (!Weight)
1359    Weight = getEdgeWeight(Src, Dst);
1360  Src->addSuccessor(Dst, Weight);
1361}
1362
1363
1364static bool InBlock(const Value *V, const BasicBlock *BB) {
1365  if (const Instruction *I = dyn_cast<Instruction>(V))
1366    return I->getParent() == BB;
1367  return true;
1368}
1369
1370/// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1371/// This function emits a branch and is used at the leaves of an OR or an
1372/// AND operator tree.
1373///
1374void
1375SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1376                                                  MachineBasicBlock *TBB,
1377                                                  MachineBasicBlock *FBB,
1378                                                  MachineBasicBlock *CurBB,
1379                                                  MachineBasicBlock *SwitchBB) {
1380  const BasicBlock *BB = CurBB->getBasicBlock();
1381
1382  // If the leaf of the tree is a comparison, merge the condition into
1383  // the caseblock.
1384  if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1385    // The operands of the cmp have to be in this block.  We don't know
1386    // how to export them from some other block.  If this is the first block
1387    // of the sequence, no exporting is needed.
1388    if (CurBB == SwitchBB ||
1389        (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1390         isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1391      ISD::CondCode Condition;
1392      if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1393        Condition = getICmpCondCode(IC->getPredicate());
1394      } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1395        Condition = getFCmpCondCode(FC->getPredicate());
1396        if (TM.Options.NoNaNsFPMath)
1397          Condition = getFCmpCodeWithoutNaN(Condition);
1398      } else {
1399        Condition = ISD::SETEQ; // silence warning.
1400        llvm_unreachable("Unknown compare instruction");
1401      }
1402
1403      CaseBlock CB(Condition, BOp->getOperand(0),
1404                   BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1405      SwitchCases.push_back(CB);
1406      return;
1407    }
1408  }
1409
1410  // Create a CaseBlock record representing this branch.
1411  CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1412               NULL, TBB, FBB, CurBB);
1413  SwitchCases.push_back(CB);
1414}
1415
1416/// FindMergedConditions - If Cond is an expression like
1417void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1418                                               MachineBasicBlock *TBB,
1419                                               MachineBasicBlock *FBB,
1420                                               MachineBasicBlock *CurBB,
1421                                               MachineBasicBlock *SwitchBB,
1422                                               unsigned Opc) {
1423  // If this node is not part of the or/and tree, emit it as a branch.
1424  const Instruction *BOp = dyn_cast<Instruction>(Cond);
1425  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1426      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1427      BOp->getParent() != CurBB->getBasicBlock() ||
1428      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1429      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1430    EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB);
1431    return;
1432  }
1433
1434  //  Create TmpBB after CurBB.
1435  MachineFunction::iterator BBI = CurBB;
1436  MachineFunction &MF = DAG.getMachineFunction();
1437  MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1438  CurBB->getParent()->insert(++BBI, TmpBB);
1439
1440  if (Opc == Instruction::Or) {
1441    // Codegen X | Y as:
1442    //   jmp_if_X TBB
1443    //   jmp TmpBB
1444    // TmpBB:
1445    //   jmp_if_Y TBB
1446    //   jmp FBB
1447    //
1448
1449    // Emit the LHS condition.
1450    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc);
1451
1452    // Emit the RHS condition into TmpBB.
1453    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1454  } else {
1455    assert(Opc == Instruction::And && "Unknown merge op!");
1456    // Codegen X & Y as:
1457    //   jmp_if_X TmpBB
1458    //   jmp FBB
1459    // TmpBB:
1460    //   jmp_if_Y TBB
1461    //   jmp FBB
1462    //
1463    //  This requires creation of TmpBB after CurBB.
1464
1465    // Emit the LHS condition.
1466    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc);
1467
1468    // Emit the RHS condition into TmpBB.
1469    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1470  }
1471}
1472
1473/// If the set of cases should be emitted as a series of branches, return true.
1474/// If we should emit this as a bunch of and/or'd together conditions, return
1475/// false.
1476bool
1477SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
1478  if (Cases.size() != 2) return true;
1479
1480  // If this is two comparisons of the same values or'd or and'd together, they
1481  // will get folded into a single comparison, so don't emit two blocks.
1482  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1483       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1484      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1485       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1486    return false;
1487  }
1488
1489  // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1490  // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1491  if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1492      Cases[0].CC == Cases[1].CC &&
1493      isa<Constant>(Cases[0].CmpRHS) &&
1494      cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1495    if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1496      return false;
1497    if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1498      return false;
1499  }
1500
1501  return true;
1502}
1503
1504void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1505  MachineBasicBlock *BrMBB = FuncInfo.MBB;
1506
1507  // Update machine-CFG edges.
1508  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1509
1510  // Figure out which block is immediately after the current one.
1511  MachineBasicBlock *NextBlock = 0;
1512  MachineFunction::iterator BBI = BrMBB;
1513  if (++BBI != FuncInfo.MF->end())
1514    NextBlock = BBI;
1515
1516  if (I.isUnconditional()) {
1517    // Update machine-CFG edges.
1518    BrMBB->addSuccessor(Succ0MBB);
1519
1520    // If this is not a fall-through branch, emit the branch.
1521    if (Succ0MBB != NextBlock)
1522      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1523                              MVT::Other, getControlRoot(),
1524                              DAG.getBasicBlock(Succ0MBB)));
1525
1526    return;
1527  }
1528
1529  // If this condition is one of the special cases we handle, do special stuff
1530  // now.
1531  const Value *CondVal = I.getCondition();
1532  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1533
1534  // If this is a series of conditions that are or'd or and'd together, emit
1535  // this as a sequence of branches instead of setcc's with and/or operations.
1536  // As long as jumps are not expensive, this should improve performance.
1537  // For example, instead of something like:
1538  //     cmp A, B
1539  //     C = seteq
1540  //     cmp D, E
1541  //     F = setle
1542  //     or C, F
1543  //     jnz foo
1544  // Emit:
1545  //     cmp A, B
1546  //     je foo
1547  //     cmp D, E
1548  //     jle foo
1549  //
1550  if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1551    if (!TLI.isJumpExpensive() &&
1552        BOp->hasOneUse() &&
1553        (BOp->getOpcode() == Instruction::And ||
1554         BOp->getOpcode() == Instruction::Or)) {
1555      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1556                           BOp->getOpcode());
1557      // If the compares in later blocks need to use values not currently
1558      // exported from this block, export them now.  This block should always
1559      // be the first entry.
1560      assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1561
1562      // Allow some cases to be rejected.
1563      if (ShouldEmitAsBranches(SwitchCases)) {
1564        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1565          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1566          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1567        }
1568
1569        // Emit the branch for this block.
1570        visitSwitchCase(SwitchCases[0], BrMBB);
1571        SwitchCases.erase(SwitchCases.begin());
1572        return;
1573      }
1574
1575      // Okay, we decided not to do this, remove any inserted MBB's and clear
1576      // SwitchCases.
1577      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1578        FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1579
1580      SwitchCases.clear();
1581    }
1582  }
1583
1584  // Create a CaseBlock record representing this branch.
1585  CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1586               NULL, Succ0MBB, Succ1MBB, BrMBB);
1587
1588  // Use visitSwitchCase to actually insert the fast branch sequence for this
1589  // cond branch.
1590  visitSwitchCase(CB, BrMBB);
1591}
1592
1593/// visitSwitchCase - Emits the necessary code to represent a single node in
1594/// the binary search tree resulting from lowering a switch instruction.
1595void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1596                                          MachineBasicBlock *SwitchBB) {
1597  SDValue Cond;
1598  SDValue CondLHS = getValue(CB.CmpLHS);
1599  DebugLoc dl = getCurDebugLoc();
1600
1601  // Build the setcc now.
1602  if (CB.CmpMHS == NULL) {
1603    // Fold "(X == true)" to X and "(X == false)" to !X to
1604    // handle common cases produced by branch lowering.
1605    if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1606        CB.CC == ISD::SETEQ)
1607      Cond = CondLHS;
1608    else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1609             CB.CC == ISD::SETEQ) {
1610      SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1611      Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1612    } else
1613      Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1614  } else {
1615    assert(CB.CC == ISD::SETCC_INVALID &&
1616           "Condition is undefined for to-the-range belonging check.");
1617
1618    const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1619    const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
1620
1621    SDValue CmpOp = getValue(CB.CmpMHS);
1622    EVT VT = CmpOp.getValueType();
1623
1624    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(false)) {
1625      Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1626                          ISD::SETULE);
1627    } else {
1628      SDValue SUB = DAG.getNode(ISD::SUB, dl,
1629                                VT, CmpOp, DAG.getConstant(Low, VT));
1630      Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1631                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1632    }
1633  }
1634
1635  // Update successor info
1636  addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight);
1637  // TrueBB and FalseBB are always different unless the incoming IR is
1638  // degenerate. This only happens when running llc on weird IR.
1639  if (CB.TrueBB != CB.FalseBB)
1640    addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight);
1641
1642  // Set NextBlock to be the MBB immediately after the current one, if any.
1643  // This is used to avoid emitting unnecessary branches to the next block.
1644  MachineBasicBlock *NextBlock = 0;
1645  MachineFunction::iterator BBI = SwitchBB;
1646  if (++BBI != FuncInfo.MF->end())
1647    NextBlock = BBI;
1648
1649  // If the lhs block is the next block, invert the condition so that we can
1650  // fall through to the lhs instead of the rhs block.
1651  if (CB.TrueBB == NextBlock) {
1652    std::swap(CB.TrueBB, CB.FalseBB);
1653    SDValue True = DAG.getConstant(1, Cond.getValueType());
1654    Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1655  }
1656
1657  SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1658                               MVT::Other, getControlRoot(), Cond,
1659                               DAG.getBasicBlock(CB.TrueBB));
1660
1661  // Insert the false branch. Do this even if it's a fall through branch,
1662  // this makes it easier to do DAG optimizations which require inverting
1663  // the branch condition.
1664  BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1665                       DAG.getBasicBlock(CB.FalseBB));
1666
1667  DAG.setRoot(BrCond);
1668}
1669
1670/// visitJumpTable - Emit JumpTable node in the current MBB
1671void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1672  // Emit the code for the jump table
1673  assert(JT.Reg != -1U && "Should lower JT Header first!");
1674  EVT PTy = TLI.getPointerTy();
1675  SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1676                                     JT.Reg, PTy);
1677  SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1678  SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(),
1679                                    MVT::Other, Index.getValue(1),
1680                                    Table, Index);
1681  DAG.setRoot(BrJumpTable);
1682}
1683
1684/// visitJumpTableHeader - This function emits necessary code to produce index
1685/// in the JumpTable from switch case.
1686void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1687                                               JumpTableHeader &JTH,
1688                                               MachineBasicBlock *SwitchBB) {
1689  // Subtract the lowest switch case value from the value being switched on and
1690  // conditional branch to default mbb if the result is greater than the
1691  // difference between smallest and largest cases.
1692  SDValue SwitchOp = getValue(JTH.SValue);
1693  EVT VT = SwitchOp.getValueType();
1694  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1695                            DAG.getConstant(JTH.First, VT));
1696
1697  // The SDNode we just created, which holds the value being switched on minus
1698  // the smallest case value, needs to be copied to a virtual register so it
1699  // can be used as an index into the jump table in a subsequent basic block.
1700  // This value may be smaller or larger than the target's pointer type, and
1701  // therefore require extension or truncating.
1702  SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy());
1703
1704  unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy());
1705  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1706                                    JumpTableReg, SwitchOp);
1707  JT.Reg = JumpTableReg;
1708
1709  // Emit the range check for the jump table, and branch to the default block
1710  // for the switch statement if the value being switched on exceeds the largest
1711  // case in the switch.
1712  SDValue CMP = DAG.getSetCC(getCurDebugLoc(),
1713                             TLI.getSetCCResultType(Sub.getValueType()), Sub,
1714                             DAG.getConstant(JTH.Last-JTH.First,VT),
1715                             ISD::SETUGT);
1716
1717  // Set NextBlock to be the MBB immediately after the current one, if any.
1718  // This is used to avoid emitting unnecessary branches to the next block.
1719  MachineBasicBlock *NextBlock = 0;
1720  MachineFunction::iterator BBI = SwitchBB;
1721
1722  if (++BBI != FuncInfo.MF->end())
1723    NextBlock = BBI;
1724
1725  SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1726                               MVT::Other, CopyTo, CMP,
1727                               DAG.getBasicBlock(JT.Default));
1728
1729  if (JT.MBB != NextBlock)
1730    BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond,
1731                         DAG.getBasicBlock(JT.MBB));
1732
1733  DAG.setRoot(BrCond);
1734}
1735
1736/// visitBitTestHeader - This function emits necessary code to produce value
1737/// suitable for "bit tests"
1738void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1739                                             MachineBasicBlock *SwitchBB) {
1740  // Subtract the minimum value
1741  SDValue SwitchOp = getValue(B.SValue);
1742  EVT VT = SwitchOp.getValueType();
1743  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1744                            DAG.getConstant(B.First, VT));
1745
1746  // Check range
1747  SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(),
1748                                  TLI.getSetCCResultType(Sub.getValueType()),
1749                                  Sub, DAG.getConstant(B.Range, VT),
1750                                  ISD::SETUGT);
1751
1752  // Determine the type of the test operands.
1753  bool UsePtrType = false;
1754  if (!TLI.isTypeLegal(VT))
1755    UsePtrType = true;
1756  else {
1757    for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
1758      if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
1759        // Switch table case range are encoded into series of masks.
1760        // Just use pointer type, it's guaranteed to fit.
1761        UsePtrType = true;
1762        break;
1763      }
1764  }
1765  if (UsePtrType) {
1766    VT = TLI.getPointerTy();
1767    Sub = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), VT);
1768  }
1769
1770  B.RegVT = VT.getSimpleVT();
1771  B.Reg = FuncInfo.CreateReg(B.RegVT);
1772  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1773                                    B.Reg, Sub);
1774
1775  // Set NextBlock to be the MBB immediately after the current one, if any.
1776  // This is used to avoid emitting unnecessary branches to the next block.
1777  MachineBasicBlock *NextBlock = 0;
1778  MachineFunction::iterator BBI = SwitchBB;
1779  if (++BBI != FuncInfo.MF->end())
1780    NextBlock = BBI;
1781
1782  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1783
1784  addSuccessorWithWeight(SwitchBB, B.Default);
1785  addSuccessorWithWeight(SwitchBB, MBB);
1786
1787  SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1788                                MVT::Other, CopyTo, RangeCmp,
1789                                DAG.getBasicBlock(B.Default));
1790
1791  if (MBB != NextBlock)
1792    BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo,
1793                          DAG.getBasicBlock(MBB));
1794
1795  DAG.setRoot(BrRange);
1796}
1797
1798/// visitBitTestCase - this function produces one "bit test"
1799void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
1800                                           MachineBasicBlock* NextMBB,
1801                                           uint32_t BranchWeightToNext,
1802                                           unsigned Reg,
1803                                           BitTestCase &B,
1804                                           MachineBasicBlock *SwitchBB) {
1805  MVT VT = BB.RegVT;
1806  SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1807                                       Reg, VT);
1808  SDValue Cmp;
1809  unsigned PopCount = CountPopulation_64(B.Mask);
1810  if (PopCount == 1) {
1811    // Testing for a single bit; just compare the shift count with what it
1812    // would need to be to shift a 1 bit in that position.
1813    Cmp = DAG.getSetCC(getCurDebugLoc(),
1814                       TLI.getSetCCResultType(VT),
1815                       ShiftOp,
1816                       DAG.getConstant(CountTrailingZeros_64(B.Mask), VT),
1817                       ISD::SETEQ);
1818  } else if (PopCount == BB.Range) {
1819    // There is only one zero bit in the range, test for it directly.
1820    Cmp = DAG.getSetCC(getCurDebugLoc(),
1821                       TLI.getSetCCResultType(VT),
1822                       ShiftOp,
1823                       DAG.getConstant(CountTrailingOnes_64(B.Mask), VT),
1824                       ISD::SETNE);
1825  } else {
1826    // Make desired shift
1827    SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), VT,
1828                                    DAG.getConstant(1, VT), ShiftOp);
1829
1830    // Emit bit tests and jumps
1831    SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(),
1832                                VT, SwitchVal, DAG.getConstant(B.Mask, VT));
1833    Cmp = DAG.getSetCC(getCurDebugLoc(),
1834                       TLI.getSetCCResultType(VT),
1835                       AndOp, DAG.getConstant(0, VT),
1836                       ISD::SETNE);
1837  }
1838
1839  // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight.
1840  addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight);
1841  // The branch weight from SwitchBB to NextMBB is BranchWeightToNext.
1842  addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext);
1843
1844  SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1845                              MVT::Other, getControlRoot(),
1846                              Cmp, DAG.getBasicBlock(B.TargetBB));
1847
1848  // Set NextBlock to be the MBB immediately after the current one, if any.
1849  // This is used to avoid emitting unnecessary branches to the next block.
1850  MachineBasicBlock *NextBlock = 0;
1851  MachineFunction::iterator BBI = SwitchBB;
1852  if (++BBI != FuncInfo.MF->end())
1853    NextBlock = BBI;
1854
1855  if (NextMBB != NextBlock)
1856    BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd,
1857                        DAG.getBasicBlock(NextMBB));
1858
1859  DAG.setRoot(BrAnd);
1860}
1861
1862void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1863  MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
1864
1865  // Retrieve successors.
1866  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1867  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1868
1869  const Value *Callee(I.getCalledValue());
1870  const Function *Fn = dyn_cast<Function>(Callee);
1871  if (isa<InlineAsm>(Callee))
1872    visitInlineAsm(&I);
1873  else if (Fn && Fn->isIntrinsic()) {
1874    assert(Fn->getIntrinsicID() == Intrinsic::donothing);
1875    // Ignore invokes to @llvm.donothing: jump directly to the next BB.
1876  } else
1877    LowerCallTo(&I, getValue(Callee), false, LandingPad);
1878
1879  // If the value of the invoke is used outside of its defining block, make it
1880  // available as a virtual register.
1881  CopyToExportRegsIfNeeded(&I);
1882
1883  // Update successor info
1884  addSuccessorWithWeight(InvokeMBB, Return);
1885  addSuccessorWithWeight(InvokeMBB, LandingPad);
1886
1887  // Drop into normal successor.
1888  DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1889                          MVT::Other, getControlRoot(),
1890                          DAG.getBasicBlock(Return)));
1891}
1892
1893void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
1894  llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
1895}
1896
1897void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
1898  assert(FuncInfo.MBB->isLandingPad() &&
1899         "Call to landingpad not in landing pad!");
1900
1901  MachineBasicBlock *MBB = FuncInfo.MBB;
1902  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
1903  AddLandingPadInfo(LP, MMI, MBB);
1904
1905  // If there aren't registers to copy the values into (e.g., during SjLj
1906  // exceptions), then don't bother to create these DAG nodes.
1907  if (TLI.getExceptionPointerRegister() == 0 &&
1908      TLI.getExceptionSelectorRegister() == 0)
1909    return;
1910
1911  SmallVector<EVT, 2> ValueVTs;
1912  ComputeValueVTs(TLI, LP.getType(), ValueVTs);
1913
1914  // Insert the EXCEPTIONADDR instruction.
1915  assert(FuncInfo.MBB->isLandingPad() &&
1916         "Call to eh.exception not in landing pad!");
1917  SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
1918  SDValue Ops[2];
1919  Ops[0] = DAG.getRoot();
1920  SDValue Op1 = DAG.getNode(ISD::EXCEPTIONADDR, getCurDebugLoc(), VTs, Ops, 1);
1921  SDValue Chain = Op1.getValue(1);
1922
1923  // Insert the EHSELECTION instruction.
1924  VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
1925  Ops[0] = Op1;
1926  Ops[1] = Chain;
1927  SDValue Op2 = DAG.getNode(ISD::EHSELECTION, getCurDebugLoc(), VTs, Ops, 2);
1928  Chain = Op2.getValue(1);
1929  Op2 = DAG.getSExtOrTrunc(Op2, getCurDebugLoc(), MVT::i32);
1930
1931  Ops[0] = Op1;
1932  Ops[1] = Op2;
1933  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
1934                            DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
1935                            &Ops[0], 2);
1936
1937  std::pair<SDValue, SDValue> RetPair = std::make_pair(Res, Chain);
1938  setValue(&LP, RetPair.first);
1939  DAG.setRoot(RetPair.second);
1940}
1941
1942/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1943/// small case ranges).
1944bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
1945                                                 CaseRecVector& WorkList,
1946                                                 const Value* SV,
1947                                                 MachineBasicBlock *Default,
1948                                                 MachineBasicBlock *SwitchBB) {
1949  // Size is the number of Cases represented by this range.
1950  size_t Size = CR.Range.second - CR.Range.first;
1951  if (Size > 3)
1952    return false;
1953
1954  // Get the MachineFunction which holds the current MBB.  This is used when
1955  // inserting any additional MBBs necessary to represent the switch.
1956  MachineFunction *CurMF = FuncInfo.MF;
1957
1958  // Figure out which block is immediately after the current one.
1959  MachineBasicBlock *NextBlock = 0;
1960  MachineFunction::iterator BBI = CR.CaseBB;
1961
1962  if (++BBI != FuncInfo.MF->end())
1963    NextBlock = BBI;
1964
1965  BranchProbabilityInfo *BPI = FuncInfo.BPI;
1966  // If any two of the cases has the same destination, and if one value
1967  // is the same as the other, but has one bit unset that the other has set,
1968  // use bit manipulation to do two compares at once.  For example:
1969  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1970  // TODO: This could be extended to merge any 2 cases in switches with 3 cases.
1971  // TODO: Handle cases where CR.CaseBB != SwitchBB.
1972  if (Size == 2 && CR.CaseBB == SwitchBB) {
1973    Case &Small = *CR.Range.first;
1974    Case &Big = *(CR.Range.second-1);
1975
1976    if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) {
1977      const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue();
1978      const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue();
1979
1980      // Check that there is only one bit different.
1981      if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 &&
1982          (SmallValue | BigValue) == BigValue) {
1983        // Isolate the common bit.
1984        APInt CommonBit = BigValue & ~SmallValue;
1985        assert((SmallValue | CommonBit) == BigValue &&
1986               CommonBit.countPopulation() == 1 && "Not a common bit?");
1987
1988        SDValue CondLHS = getValue(SV);
1989        EVT VT = CondLHS.getValueType();
1990        DebugLoc DL = getCurDebugLoc();
1991
1992        SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
1993                                 DAG.getConstant(CommonBit, VT));
1994        SDValue Cond = DAG.getSetCC(DL, MVT::i1,
1995                                    Or, DAG.getConstant(BigValue, VT),
1996                                    ISD::SETEQ);
1997
1998        // Update successor info.
1999        // Both Small and Big will jump to Small.BB, so we sum up the weights.
2000        addSuccessorWithWeight(SwitchBB, Small.BB,
2001                               Small.ExtraWeight + Big.ExtraWeight);
2002        addSuccessorWithWeight(SwitchBB, Default,
2003          // The default destination is the first successor in IR.
2004          BPI ? BPI->getEdgeWeight(SwitchBB->getBasicBlock(), (unsigned)0) : 0);
2005
2006        // Insert the true branch.
2007        SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other,
2008                                     getControlRoot(), Cond,
2009                                     DAG.getBasicBlock(Small.BB));
2010
2011        // Insert the false branch.
2012        BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
2013                             DAG.getBasicBlock(Default));
2014
2015        DAG.setRoot(BrCond);
2016        return true;
2017      }
2018    }
2019  }
2020
2021  // Order cases by weight so the most likely case will be checked first.
2022  uint32_t UnhandledWeights = 0;
2023  if (BPI) {
2024    for (CaseItr I = CR.Range.first, IE = CR.Range.second; I != IE; ++I) {
2025      uint32_t IWeight = I->ExtraWeight;
2026      UnhandledWeights += IWeight;
2027      for (CaseItr J = CR.Range.first; J < I; ++J) {
2028        uint32_t JWeight = J->ExtraWeight;
2029        if (IWeight > JWeight)
2030          std::swap(*I, *J);
2031      }
2032    }
2033  }
2034  // Rearrange the case blocks so that the last one falls through if possible.
2035  Case &BackCase = *(CR.Range.second-1);
2036  if (Size > 1 &&
2037      NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
2038    // The last case block won't fall through into 'NextBlock' if we emit the
2039    // branches in this order.  See if rearranging a case value would help.
2040    // We start at the bottom as it's the case with the least weight.
2041    for (Case *I = &*(CR.Range.second-2), *E = &*CR.Range.first-1; I != E; --I){
2042      if (I->BB == NextBlock) {
2043        std::swap(*I, BackCase);
2044        break;
2045      }
2046    }
2047  }
2048
2049  // Create a CaseBlock record representing a conditional branch to
2050  // the Case's target mbb if the value being switched on SV is equal
2051  // to C.
2052  MachineBasicBlock *CurBlock = CR.CaseBB;
2053  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
2054    MachineBasicBlock *FallThrough;
2055    if (I != E-1) {
2056      FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
2057      CurMF->insert(BBI, FallThrough);
2058
2059      // Put SV in a virtual register to make it available from the new blocks.
2060      ExportFromCurrentBlock(SV);
2061    } else {
2062      // If the last case doesn't match, go to the default block.
2063      FallThrough = Default;
2064    }
2065
2066    const Value *RHS, *LHS, *MHS;
2067    ISD::CondCode CC;
2068    if (I->High == I->Low) {
2069      // This is just small small case range :) containing exactly 1 case
2070      CC = ISD::SETEQ;
2071      LHS = SV; RHS = I->High; MHS = NULL;
2072    } else {
2073      CC = ISD::SETCC_INVALID;
2074      LHS = I->Low; MHS = SV; RHS = I->High;
2075    }
2076
2077    // The false weight should be sum of all un-handled cases.
2078    UnhandledWeights -= I->ExtraWeight;
2079    CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough,
2080                 /* me */ CurBlock,
2081                 /* trueweight */ I->ExtraWeight,
2082                 /* falseweight */ UnhandledWeights);
2083
2084    // If emitting the first comparison, just call visitSwitchCase to emit the
2085    // code into the current block.  Otherwise, push the CaseBlock onto the
2086    // vector to be later processed by SDISel, and insert the node's MBB
2087    // before the next MBB.
2088    if (CurBlock == SwitchBB)
2089      visitSwitchCase(CB, SwitchBB);
2090    else
2091      SwitchCases.push_back(CB);
2092
2093    CurBlock = FallThrough;
2094  }
2095
2096  return true;
2097}
2098
2099static inline bool areJTsAllowed(const TargetLowering &TLI) {
2100  return TLI.supportJumpTables() &&
2101          (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
2102           TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
2103}
2104
2105static APInt ComputeRange(const APInt &First, const APInt &Last) {
2106  uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
2107  APInt LastExt = Last.zext(BitWidth), FirstExt = First.zext(BitWidth);
2108  return (LastExt - FirstExt + 1ULL);
2109}
2110
2111/// handleJTSwitchCase - Emit jumptable for current switch case range
2112bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR,
2113                                             CaseRecVector &WorkList,
2114                                             const Value *SV,
2115                                             MachineBasicBlock *Default,
2116                                             MachineBasicBlock *SwitchBB) {
2117  Case& FrontCase = *CR.Range.first;
2118  Case& BackCase  = *(CR.Range.second-1);
2119
2120  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2121  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2122
2123  APInt TSize(First.getBitWidth(), 0);
2124  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I)
2125    TSize += I->size();
2126
2127  if (!areJTsAllowed(TLI) || TSize.ult(TLI.getMinimumJumpTableEntries()))
2128    return false;
2129
2130  APInt Range = ComputeRange(First, Last);
2131  // The density is TSize / Range. Require at least 40%.
2132  // It should not be possible for IntTSize to saturate for sane code, but make
2133  // sure we handle Range saturation correctly.
2134  uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10);
2135  uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10);
2136  if (IntTSize * 10 < IntRange * 4)
2137    return false;
2138
2139  DEBUG(dbgs() << "Lowering jump table\n"
2140               << "First entry: " << First << ". Last entry: " << Last << '\n'
2141               << "Range: " << Range << ". Size: " << TSize << ".\n\n");
2142
2143  // Get the MachineFunction which holds the current MBB.  This is used when
2144  // inserting any additional MBBs necessary to represent the switch.
2145  MachineFunction *CurMF = FuncInfo.MF;
2146
2147  // Figure out which block is immediately after the current one.
2148  MachineFunction::iterator BBI = CR.CaseBB;
2149  ++BBI;
2150
2151  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2152
2153  // Create a new basic block to hold the code for loading the address
2154  // of the jump table, and jumping to it.  Update successor information;
2155  // we will either branch to the default case for the switch, or the jump
2156  // table.
2157  MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2158  CurMF->insert(BBI, JumpTableBB);
2159
2160  addSuccessorWithWeight(CR.CaseBB, Default);
2161  addSuccessorWithWeight(CR.CaseBB, JumpTableBB);
2162
2163  // Build a vector of destination BBs, corresponding to each target
2164  // of the jump table. If the value of the jump table slot corresponds to
2165  // a case statement, push the case's BB onto the vector, otherwise, push
2166  // the default BB.
2167  std::vector<MachineBasicBlock*> DestBBs;
2168  APInt TEI = First;
2169  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
2170    const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
2171    const APInt &High = cast<ConstantInt>(I->High)->getValue();
2172
2173    if (Low.ule(TEI) && TEI.ule(High)) {
2174      DestBBs.push_back(I->BB);
2175      if (TEI==High)
2176        ++I;
2177    } else {
2178      DestBBs.push_back(Default);
2179    }
2180  }
2181
2182  // Calculate weight for each unique destination in CR.
2183  DenseMap<MachineBasicBlock*, uint32_t> DestWeights;
2184  if (FuncInfo.BPI)
2185    for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
2186      DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr =
2187          DestWeights.find(I->BB);
2188      if (Itr != DestWeights.end())
2189        Itr->second += I->ExtraWeight;
2190      else
2191        DestWeights[I->BB] = I->ExtraWeight;
2192    }
2193
2194  // Update successor info. Add one edge to each unique successor.
2195  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
2196  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
2197         E = DestBBs.end(); I != E; ++I) {
2198    if (!SuccsHandled[(*I)->getNumber()]) {
2199      SuccsHandled[(*I)->getNumber()] = true;
2200      DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr =
2201          DestWeights.find(*I);
2202      addSuccessorWithWeight(JumpTableBB, *I,
2203                             Itr != DestWeights.end() ? Itr->second : 0);
2204    }
2205  }
2206
2207  // Create a jump table index for this jump table.
2208  unsigned JTEncoding = TLI.getJumpTableEncoding();
2209  unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
2210                       ->createJumpTableIndex(DestBBs);
2211
2212  // Set the jump table information so that we can codegen it as a second
2213  // MachineBasicBlock
2214  JumpTable JT(-1U, JTI, JumpTableBB, Default);
2215  JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
2216  if (CR.CaseBB == SwitchBB)
2217    visitJumpTableHeader(JT, JTH, SwitchBB);
2218
2219  JTCases.push_back(JumpTableBlock(JTH, JT));
2220  return true;
2221}
2222
2223/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
2224/// 2 subtrees.
2225bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
2226                                                  CaseRecVector& WorkList,
2227                                                  const Value* SV,
2228                                                  MachineBasicBlock *Default,
2229                                                  MachineBasicBlock *SwitchBB) {
2230  // Get the MachineFunction which holds the current MBB.  This is used when
2231  // inserting any additional MBBs necessary to represent the switch.
2232  MachineFunction *CurMF = FuncInfo.MF;
2233
2234  // Figure out which block is immediately after the current one.
2235  MachineFunction::iterator BBI = CR.CaseBB;
2236  ++BBI;
2237
2238  Case& FrontCase = *CR.Range.first;
2239  Case& BackCase  = *(CR.Range.second-1);
2240  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2241
2242  // Size is the number of Cases represented by this range.
2243  unsigned Size = CR.Range.second - CR.Range.first;
2244
2245  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2246  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2247  double FMetric = 0;
2248  CaseItr Pivot = CR.Range.first + Size/2;
2249
2250  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
2251  // (heuristically) allow us to emit JumpTable's later.
2252  APInt TSize(First.getBitWidth(), 0);
2253  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2254       I!=E; ++I)
2255    TSize += I->size();
2256
2257  APInt LSize = FrontCase.size();
2258  APInt RSize = TSize-LSize;
2259  DEBUG(dbgs() << "Selecting best pivot: \n"
2260               << "First: " << First << ", Last: " << Last <<'\n'
2261               << "LSize: " << LSize << ", RSize: " << RSize << '\n');
2262  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
2263       J!=E; ++I, ++J) {
2264    const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
2265    const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
2266    APInt Range = ComputeRange(LEnd, RBegin);
2267    assert((Range - 2ULL).isNonNegative() &&
2268           "Invalid case distance");
2269    // Use volatile double here to avoid excess precision issues on some hosts,
2270    // e.g. that use 80-bit X87 registers.
2271    volatile double LDensity =
2272       (double)LSize.roundToDouble() /
2273                           (LEnd - First + 1ULL).roundToDouble();
2274    volatile double RDensity =
2275      (double)RSize.roundToDouble() /
2276                           (Last - RBegin + 1ULL).roundToDouble();
2277    double Metric = Range.logBase2()*(LDensity+RDensity);
2278    // Should always split in some non-trivial place
2279    DEBUG(dbgs() <<"=>Step\n"
2280                 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
2281                 << "LDensity: " << LDensity
2282                 << ", RDensity: " << RDensity << '\n'
2283                 << "Metric: " << Metric << '\n');
2284    if (FMetric < Metric) {
2285      Pivot = J;
2286      FMetric = Metric;
2287      DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
2288    }
2289
2290    LSize += J->size();
2291    RSize -= J->size();
2292  }
2293  if (areJTsAllowed(TLI)) {
2294    // If our case is dense we *really* should handle it earlier!
2295    assert((FMetric > 0) && "Should handle dense range earlier!");
2296  } else {
2297    Pivot = CR.Range.first + Size/2;
2298  }
2299
2300  CaseRange LHSR(CR.Range.first, Pivot);
2301  CaseRange RHSR(Pivot, CR.Range.second);
2302  const Constant *C = Pivot->Low;
2303  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
2304
2305  // We know that we branch to the LHS if the Value being switched on is
2306  // less than the Pivot value, C.  We use this to optimize our binary
2307  // tree a bit, by recognizing that if SV is greater than or equal to the
2308  // LHS's Case Value, and that Case Value is exactly one less than the
2309  // Pivot's Value, then we can branch directly to the LHS's Target,
2310  // rather than creating a leaf node for it.
2311  if ((LHSR.second - LHSR.first) == 1 &&
2312      LHSR.first->High == CR.GE &&
2313      cast<ConstantInt>(C)->getValue() ==
2314      (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
2315    TrueBB = LHSR.first->BB;
2316  } else {
2317    TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2318    CurMF->insert(BBI, TrueBB);
2319    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
2320
2321    // Put SV in a virtual register to make it available from the new blocks.
2322    ExportFromCurrentBlock(SV);
2323  }
2324
2325  // Similar to the optimization above, if the Value being switched on is
2326  // known to be less than the Constant CR.LT, and the current Case Value
2327  // is CR.LT - 1, then we can branch directly to the target block for
2328  // the current Case Value, rather than emitting a RHS leaf node for it.
2329  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
2330      cast<ConstantInt>(RHSR.first->Low)->getValue() ==
2331      (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
2332    FalseBB = RHSR.first->BB;
2333  } else {
2334    FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2335    CurMF->insert(BBI, FalseBB);
2336    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
2337
2338    // Put SV in a virtual register to make it available from the new blocks.
2339    ExportFromCurrentBlock(SV);
2340  }
2341
2342  // Create a CaseBlock record representing a conditional branch to
2343  // the LHS node if the value being switched on SV is less than C.
2344  // Otherwise, branch to LHS.
2345  CaseBlock CB(ISD::SETULT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
2346
2347  if (CR.CaseBB == SwitchBB)
2348    visitSwitchCase(CB, SwitchBB);
2349  else
2350    SwitchCases.push_back(CB);
2351
2352  return true;
2353}
2354
2355/// handleBitTestsSwitchCase - if current case range has few destination and
2356/// range span less, than machine word bitwidth, encode case range into series
2357/// of masks and emit bit tests with these masks.
2358bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
2359                                                   CaseRecVector& WorkList,
2360                                                   const Value* SV,
2361                                                   MachineBasicBlock* Default,
2362                                                   MachineBasicBlock *SwitchBB){
2363  EVT PTy = TLI.getPointerTy();
2364  unsigned IntPtrBits = PTy.getSizeInBits();
2365
2366  Case& FrontCase = *CR.Range.first;
2367  Case& BackCase  = *(CR.Range.second-1);
2368
2369  // Get the MachineFunction which holds the current MBB.  This is used when
2370  // inserting any additional MBBs necessary to represent the switch.
2371  MachineFunction *CurMF = FuncInfo.MF;
2372
2373  // If target does not have legal shift left, do not emit bit tests at all.
2374  if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
2375    return false;
2376
2377  size_t numCmps = 0;
2378  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2379       I!=E; ++I) {
2380    // Single case counts one, case range - two.
2381    numCmps += (I->Low == I->High ? 1 : 2);
2382  }
2383
2384  // Count unique destinations
2385  SmallSet<MachineBasicBlock*, 4> Dests;
2386  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2387    Dests.insert(I->BB);
2388    if (Dests.size() > 3)
2389      // Don't bother the code below, if there are too much unique destinations
2390      return false;
2391  }
2392  DEBUG(dbgs() << "Total number of unique destinations: "
2393        << Dests.size() << '\n'
2394        << "Total number of comparisons: " << numCmps << '\n');
2395
2396  // Compute span of values.
2397  const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
2398  const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
2399  APInt cmpRange = maxValue - minValue;
2400
2401  DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
2402               << "Low bound: " << minValue << '\n'
2403               << "High bound: " << maxValue << '\n');
2404
2405  if (cmpRange.uge(IntPtrBits) ||
2406      (!(Dests.size() == 1 && numCmps >= 3) &&
2407       !(Dests.size() == 2 && numCmps >= 5) &&
2408       !(Dests.size() >= 3 && numCmps >= 6)))
2409    return false;
2410
2411  DEBUG(dbgs() << "Emitting bit tests\n");
2412  APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
2413
2414  // Optimize the case where all the case values fit in a
2415  // word without having to subtract minValue. In this case,
2416  // we can optimize away the subtraction.
2417  if (maxValue.ult(IntPtrBits)) {
2418    cmpRange = maxValue;
2419  } else {
2420    lowBound = minValue;
2421  }
2422
2423  CaseBitsVector CasesBits;
2424  unsigned i, count = 0;
2425
2426  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2427    MachineBasicBlock* Dest = I->BB;
2428    for (i = 0; i < count; ++i)
2429      if (Dest == CasesBits[i].BB)
2430        break;
2431
2432    if (i == count) {
2433      assert((count < 3) && "Too much destinations to test!");
2434      CasesBits.push_back(CaseBits(0, Dest, 0, 0/*Weight*/));
2435      count++;
2436    }
2437
2438    const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
2439    const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
2440
2441    uint64_t lo = (lowValue - lowBound).getZExtValue();
2442    uint64_t hi = (highValue - lowBound).getZExtValue();
2443    CasesBits[i].ExtraWeight += I->ExtraWeight;
2444
2445    for (uint64_t j = lo; j <= hi; j++) {
2446      CasesBits[i].Mask |=  1ULL << j;
2447      CasesBits[i].Bits++;
2448    }
2449
2450  }
2451  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2452
2453  BitTestInfo BTC;
2454
2455  // Figure out which block is immediately after the current one.
2456  MachineFunction::iterator BBI = CR.CaseBB;
2457  ++BBI;
2458
2459  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2460
2461  DEBUG(dbgs() << "Cases:\n");
2462  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2463    DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
2464                 << ", Bits: " << CasesBits[i].Bits
2465                 << ", BB: " << CasesBits[i].BB << '\n');
2466
2467    MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2468    CurMF->insert(BBI, CaseBB);
2469    BTC.push_back(BitTestCase(CasesBits[i].Mask,
2470                              CaseBB,
2471                              CasesBits[i].BB, CasesBits[i].ExtraWeight));
2472
2473    // Put SV in a virtual register to make it available from the new blocks.
2474    ExportFromCurrentBlock(SV);
2475  }
2476
2477  BitTestBlock BTB(lowBound, cmpRange, SV,
2478                   -1U, MVT::Other, (CR.CaseBB == SwitchBB),
2479                   CR.CaseBB, Default, BTC);
2480
2481  if (CR.CaseBB == SwitchBB)
2482    visitBitTestHeader(BTB, SwitchBB);
2483
2484  BitTestCases.push_back(BTB);
2485
2486  return true;
2487}
2488
2489/// Clusterify - Transform simple list of Cases into list of CaseRange's
2490size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
2491                                       const SwitchInst& SI) {
2492
2493  /// Use a shorter form of declaration, and also
2494  /// show the we want to use CRSBuilder as Clusterifier.
2495  typedef IntegersSubsetMapping<MachineBasicBlock> Clusterifier;
2496
2497  Clusterifier TheClusterifier;
2498
2499  BranchProbabilityInfo *BPI = FuncInfo.BPI;
2500  // Start with "simple" cases
2501  for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
2502       i != e; ++i) {
2503    const BasicBlock *SuccBB = i.getCaseSuccessor();
2504    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB];
2505
2506    TheClusterifier.add(i.getCaseValueEx(), SMBB,
2507        BPI ? BPI->getEdgeWeight(SI.getParent(), i.getSuccessorIndex()) : 0);
2508  }
2509
2510  TheClusterifier.optimize();
2511
2512  size_t numCmps = 0;
2513  for (Clusterifier::RangeIterator i = TheClusterifier.begin(),
2514       e = TheClusterifier.end(); i != e; ++i, ++numCmps) {
2515    Clusterifier::Cluster &C = *i;
2516    // Update edge weight for the cluster.
2517    unsigned W = C.first.Weight;
2518
2519    // FIXME: Currently work with ConstantInt based numbers.
2520    // Changing it to APInt based is a pretty heavy for this commit.
2521    Cases.push_back(Case(C.first.getLow().toConstantInt(),
2522                         C.first.getHigh().toConstantInt(), C.second, W));
2523
2524    if (C.first.getLow() != C.first.getHigh())
2525    // A range counts double, since it requires two compares.
2526    ++numCmps;
2527  }
2528
2529  return numCmps;
2530}
2531
2532void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2533                                           MachineBasicBlock *Last) {
2534  // Update JTCases.
2535  for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2536    if (JTCases[i].first.HeaderBB == First)
2537      JTCases[i].first.HeaderBB = Last;
2538
2539  // Update BitTestCases.
2540  for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2541    if (BitTestCases[i].Parent == First)
2542      BitTestCases[i].Parent = Last;
2543}
2544
2545void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
2546  MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
2547
2548  // Figure out which block is immediately after the current one.
2549  MachineBasicBlock *NextBlock = 0;
2550  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2551
2552  // If there is only the default destination, branch to it if it is not the
2553  // next basic block.  Otherwise, just fall through.
2554  if (!SI.getNumCases()) {
2555    // Update machine-CFG edges.
2556
2557    // If this is not a fall-through branch, emit the branch.
2558    SwitchMBB->addSuccessor(Default);
2559    if (Default != NextBlock)
2560      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
2561                              MVT::Other, getControlRoot(),
2562                              DAG.getBasicBlock(Default)));
2563
2564    return;
2565  }
2566
2567  // If there are any non-default case statements, create a vector of Cases
2568  // representing each one, and sort the vector so that we can efficiently
2569  // create a binary search tree from them.
2570  CaseVector Cases;
2571  size_t numCmps = Clusterify(Cases, SI);
2572  DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2573               << ". Total compares: " << numCmps << '\n');
2574  (void)numCmps;
2575
2576  // Get the Value to be switched on and default basic blocks, which will be
2577  // inserted into CaseBlock records, representing basic blocks in the binary
2578  // search tree.
2579  const Value *SV = SI.getCondition();
2580
2581  // Push the initial CaseRec onto the worklist
2582  CaseRecVector WorkList;
2583  WorkList.push_back(CaseRec(SwitchMBB,0,0,
2584                             CaseRange(Cases.begin(),Cases.end())));
2585
2586  while (!WorkList.empty()) {
2587    // Grab a record representing a case range to process off the worklist
2588    CaseRec CR = WorkList.back();
2589    WorkList.pop_back();
2590
2591    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2592      continue;
2593
2594    // If the range has few cases (two or less) emit a series of specific
2595    // tests.
2596    if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
2597      continue;
2598
2599    // If the switch has more than N blocks, and is at least 40% dense, and the
2600    // target supports indirect branches, then emit a jump table rather than
2601    // lowering the switch to a binary tree of conditional branches.
2602    // N defaults to 4 and is controlled via TLS.getMinimumJumpTableEntries().
2603    if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2604      continue;
2605
2606    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2607    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2608    handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
2609  }
2610}
2611
2612void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2613  MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2614
2615  // Update machine-CFG edges with unique successors.
2616  SmallSet<BasicBlock*, 32> Done;
2617  for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2618    BasicBlock *BB = I.getSuccessor(i);
2619    bool Inserted = Done.insert(BB);
2620    if (!Inserted)
2621        continue;
2622
2623    MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2624    addSuccessorWithWeight(IndirectBrMBB, Succ);
2625  }
2626
2627  DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(),
2628                          MVT::Other, getControlRoot(),
2629                          getValue(I.getAddress())));
2630}
2631
2632void SelectionDAGBuilder::visitFSub(const User &I) {
2633  // -0.0 - X --> fneg
2634  Type *Ty = I.getType();
2635  if (isa<Constant>(I.getOperand(0)) &&
2636      I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2637    SDValue Op2 = getValue(I.getOperand(1));
2638    setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2639                             Op2.getValueType(), Op2));
2640    return;
2641  }
2642
2643  visitBinary(I, ISD::FSUB);
2644}
2645
2646void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2647  SDValue Op1 = getValue(I.getOperand(0));
2648  SDValue Op2 = getValue(I.getOperand(1));
2649  setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(),
2650                           Op1.getValueType(), Op1, Op2));
2651}
2652
2653void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2654  SDValue Op1 = getValue(I.getOperand(0));
2655  SDValue Op2 = getValue(I.getOperand(1));
2656
2657  MVT ShiftTy = TLI.getShiftAmountTy(Op2.getValueType());
2658
2659  // Coerce the shift amount to the right type if we can.
2660  if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2661    unsigned ShiftSize = ShiftTy.getSizeInBits();
2662    unsigned Op2Size = Op2.getValueType().getSizeInBits();
2663    DebugLoc DL = getCurDebugLoc();
2664
2665    // If the operand is smaller than the shift count type, promote it.
2666    if (ShiftSize > Op2Size)
2667      Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2668
2669    // If the operand is larger than the shift count type but the shift
2670    // count type has enough bits to represent any shift value, truncate
2671    // it now. This is a common case and it exposes the truncate to
2672    // optimization early.
2673    else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2674      Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2675    // Otherwise we'll need to temporarily settle for some other convenient
2676    // type.  Type legalization will make adjustments once the shiftee is split.
2677    else
2678      Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2679  }
2680
2681  setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(),
2682                           Op1.getValueType(), Op1, Op2));
2683}
2684
2685void SelectionDAGBuilder::visitSDiv(const User &I) {
2686  SDValue Op1 = getValue(I.getOperand(0));
2687  SDValue Op2 = getValue(I.getOperand(1));
2688
2689  // Turn exact SDivs into multiplications.
2690  // FIXME: This should be in DAGCombiner, but it doesn't have access to the
2691  // exact bit.
2692  if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() &&
2693      !isa<ConstantSDNode>(Op1) &&
2694      isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue())
2695    setValue(&I, TLI.BuildExactSDIV(Op1, Op2, getCurDebugLoc(), DAG));
2696  else
2697    setValue(&I, DAG.getNode(ISD::SDIV, getCurDebugLoc(), Op1.getValueType(),
2698                             Op1, Op2));
2699}
2700
2701void SelectionDAGBuilder::visitICmp(const User &I) {
2702  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2703  if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2704    predicate = IC->getPredicate();
2705  else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2706    predicate = ICmpInst::Predicate(IC->getPredicate());
2707  SDValue Op1 = getValue(I.getOperand(0));
2708  SDValue Op2 = getValue(I.getOperand(1));
2709  ISD::CondCode Opcode = getICmpCondCode(predicate);
2710
2711  EVT DestVT = TLI.getValueType(I.getType());
2712  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode));
2713}
2714
2715void SelectionDAGBuilder::visitFCmp(const User &I) {
2716  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2717  if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2718    predicate = FC->getPredicate();
2719  else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2720    predicate = FCmpInst::Predicate(FC->getPredicate());
2721  SDValue Op1 = getValue(I.getOperand(0));
2722  SDValue Op2 = getValue(I.getOperand(1));
2723  ISD::CondCode Condition = getFCmpCondCode(predicate);
2724  if (TM.Options.NoNaNsFPMath)
2725    Condition = getFCmpCodeWithoutNaN(Condition);
2726  EVT DestVT = TLI.getValueType(I.getType());
2727  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition));
2728}
2729
2730void SelectionDAGBuilder::visitSelect(const User &I) {
2731  SmallVector<EVT, 4> ValueVTs;
2732  ComputeValueVTs(TLI, I.getType(), ValueVTs);
2733  unsigned NumValues = ValueVTs.size();
2734  if (NumValues == 0) return;
2735
2736  SmallVector<SDValue, 4> Values(NumValues);
2737  SDValue Cond     = getValue(I.getOperand(0));
2738  SDValue TrueVal  = getValue(I.getOperand(1));
2739  SDValue FalseVal = getValue(I.getOperand(2));
2740  ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2741    ISD::VSELECT : ISD::SELECT;
2742
2743  for (unsigned i = 0; i != NumValues; ++i)
2744    Values[i] = DAG.getNode(OpCode, getCurDebugLoc(),
2745                            TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2746                            Cond,
2747                            SDValue(TrueVal.getNode(),
2748                                    TrueVal.getResNo() + i),
2749                            SDValue(FalseVal.getNode(),
2750                                    FalseVal.getResNo() + i));
2751
2752  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2753                           DAG.getVTList(&ValueVTs[0], NumValues),
2754                           &Values[0], NumValues));
2755}
2756
2757void SelectionDAGBuilder::visitTrunc(const User &I) {
2758  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2759  SDValue N = getValue(I.getOperand(0));
2760  EVT DestVT = TLI.getValueType(I.getType());
2761  setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N));
2762}
2763
2764void SelectionDAGBuilder::visitZExt(const User &I) {
2765  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2766  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2767  SDValue N = getValue(I.getOperand(0));
2768  EVT DestVT = TLI.getValueType(I.getType());
2769  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N));
2770}
2771
2772void SelectionDAGBuilder::visitSExt(const User &I) {
2773  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2774  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2775  SDValue N = getValue(I.getOperand(0));
2776  EVT DestVT = TLI.getValueType(I.getType());
2777  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N));
2778}
2779
2780void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2781  // FPTrunc is never a no-op cast, no need to check
2782  SDValue N = getValue(I.getOperand(0));
2783  EVT DestVT = TLI.getValueType(I.getType());
2784  setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(),
2785                           DestVT, N,
2786                           DAG.getTargetConstant(0, TLI.getPointerTy())));
2787}
2788
2789void SelectionDAGBuilder::visitFPExt(const User &I){
2790  // FPExt is never a no-op cast, no need to check
2791  SDValue N = getValue(I.getOperand(0));
2792  EVT DestVT = TLI.getValueType(I.getType());
2793  setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N));
2794}
2795
2796void SelectionDAGBuilder::visitFPToUI(const User &I) {
2797  // FPToUI is never a no-op cast, no need to check
2798  SDValue N = getValue(I.getOperand(0));
2799  EVT DestVT = TLI.getValueType(I.getType());
2800  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N));
2801}
2802
2803void SelectionDAGBuilder::visitFPToSI(const User &I) {
2804  // FPToSI is never a no-op cast, no need to check
2805  SDValue N = getValue(I.getOperand(0));
2806  EVT DestVT = TLI.getValueType(I.getType());
2807  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N));
2808}
2809
2810void SelectionDAGBuilder::visitUIToFP(const User &I) {
2811  // UIToFP is never a no-op cast, no need to check
2812  SDValue N = getValue(I.getOperand(0));
2813  EVT DestVT = TLI.getValueType(I.getType());
2814  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N));
2815}
2816
2817void SelectionDAGBuilder::visitSIToFP(const User &I){
2818  // SIToFP is never a no-op cast, no need to check
2819  SDValue N = getValue(I.getOperand(0));
2820  EVT DestVT = TLI.getValueType(I.getType());
2821  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N));
2822}
2823
2824void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2825  // What to do depends on the size of the integer and the size of the pointer.
2826  // We can either truncate, zero extend, or no-op, accordingly.
2827  SDValue N = getValue(I.getOperand(0));
2828  EVT DestVT = TLI.getValueType(I.getType());
2829  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2830}
2831
2832void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2833  // What to do depends on the size of the integer and the size of the pointer.
2834  // We can either truncate, zero extend, or no-op, accordingly.
2835  SDValue N = getValue(I.getOperand(0));
2836  EVT DestVT = TLI.getValueType(I.getType());
2837  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2838}
2839
2840void SelectionDAGBuilder::visitBitCast(const User &I) {
2841  SDValue N = getValue(I.getOperand(0));
2842  EVT DestVT = TLI.getValueType(I.getType());
2843
2844  // BitCast assures us that source and destination are the same size so this is
2845  // either a BITCAST or a no-op.
2846  if (DestVT != N.getValueType())
2847    setValue(&I, DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
2848                             DestVT, N)); // convert types.
2849  else
2850    setValue(&I, N);            // noop cast.
2851}
2852
2853void SelectionDAGBuilder::visitInsertElement(const User &I) {
2854  SDValue InVec = getValue(I.getOperand(0));
2855  SDValue InVal = getValue(I.getOperand(1));
2856  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2857                              TLI.getPointerTy(),
2858                              getValue(I.getOperand(2)));
2859  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(),
2860                           TLI.getValueType(I.getType()),
2861                           InVec, InVal, InIdx));
2862}
2863
2864void SelectionDAGBuilder::visitExtractElement(const User &I) {
2865  SDValue InVec = getValue(I.getOperand(0));
2866  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2867                              TLI.getPointerTy(),
2868                              getValue(I.getOperand(1)));
2869  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2870                           TLI.getValueType(I.getType()), InVec, InIdx));
2871}
2872
2873// Utility for visitShuffleVector - Return true if every element in Mask,
2874// beginning from position Pos and ending in Pos+Size, falls within the
2875// specified sequential range [L, L+Pos). or is undef.
2876static bool isSequentialInRange(const SmallVectorImpl<int> &Mask,
2877                                unsigned Pos, unsigned Size, int Low) {
2878  for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
2879    if (Mask[i] >= 0 && Mask[i] != Low)
2880      return false;
2881  return true;
2882}
2883
2884void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2885  SDValue Src1 = getValue(I.getOperand(0));
2886  SDValue Src2 = getValue(I.getOperand(1));
2887
2888  SmallVector<int, 8> Mask;
2889  ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
2890  unsigned MaskNumElts = Mask.size();
2891
2892  EVT VT = TLI.getValueType(I.getType());
2893  EVT SrcVT = Src1.getValueType();
2894  unsigned SrcNumElts = SrcVT.getVectorNumElements();
2895
2896  if (SrcNumElts == MaskNumElts) {
2897    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2898                                      &Mask[0]));
2899    return;
2900  }
2901
2902  // Normalize the shuffle vector since mask and vector length don't match.
2903  if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2904    // Mask is longer than the source vectors and is a multiple of the source
2905    // vectors.  We can use concatenate vector to make the mask and vectors
2906    // lengths match.
2907    if (SrcNumElts*2 == MaskNumElts) {
2908      // First check for Src1 in low and Src2 in high
2909      if (isSequentialInRange(Mask, 0, SrcNumElts, 0) &&
2910          isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) {
2911        // The shuffle is concatenating two vectors together.
2912        setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2913                                 VT, Src1, Src2));
2914        return;
2915      }
2916      // Then check for Src2 in low and Src1 in high
2917      if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) &&
2918          isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) {
2919        // The shuffle is concatenating two vectors together.
2920        setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2921                                 VT, Src2, Src1));
2922        return;
2923      }
2924    }
2925
2926    // Pad both vectors with undefs to make them the same length as the mask.
2927    unsigned NumConcat = MaskNumElts / SrcNumElts;
2928    bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2929    bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2930    SDValue UndefVal = DAG.getUNDEF(SrcVT);
2931
2932    SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2933    SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2934    MOps1[0] = Src1;
2935    MOps2[0] = Src2;
2936
2937    Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2938                                                  getCurDebugLoc(), VT,
2939                                                  &MOps1[0], NumConcat);
2940    Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2941                                                  getCurDebugLoc(), VT,
2942                                                  &MOps2[0], NumConcat);
2943
2944    // Readjust mask for new input vector length.
2945    SmallVector<int, 8> MappedOps;
2946    for (unsigned i = 0; i != MaskNumElts; ++i) {
2947      int Idx = Mask[i];
2948      if (Idx >= (int)SrcNumElts)
2949        Idx -= SrcNumElts - MaskNumElts;
2950      MappedOps.push_back(Idx);
2951    }
2952
2953    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2954                                      &MappedOps[0]));
2955    return;
2956  }
2957
2958  if (SrcNumElts > MaskNumElts) {
2959    // Analyze the access pattern of the vector to see if we can extract
2960    // two subvectors and do the shuffle. The analysis is done by calculating
2961    // the range of elements the mask access on both vectors.
2962    int MinRange[2] = { static_cast<int>(SrcNumElts),
2963                        static_cast<int>(SrcNumElts)};
2964    int MaxRange[2] = {-1, -1};
2965
2966    for (unsigned i = 0; i != MaskNumElts; ++i) {
2967      int Idx = Mask[i];
2968      unsigned Input = 0;
2969      if (Idx < 0)
2970        continue;
2971
2972      if (Idx >= (int)SrcNumElts) {
2973        Input = 1;
2974        Idx -= SrcNumElts;
2975      }
2976      if (Idx > MaxRange[Input])
2977        MaxRange[Input] = Idx;
2978      if (Idx < MinRange[Input])
2979        MinRange[Input] = Idx;
2980    }
2981
2982    // Check if the access is smaller than the vector size and can we find
2983    // a reasonable extract index.
2984    int RangeUse[2] = { -1, -1 };  // 0 = Unused, 1 = Extract, -1 = Can not
2985                                   // Extract.
2986    int StartIdx[2];  // StartIdx to extract from
2987    for (unsigned Input = 0; Input < 2; ++Input) {
2988      if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) {
2989        RangeUse[Input] = 0; // Unused
2990        StartIdx[Input] = 0;
2991        continue;
2992      }
2993
2994      // Find a good start index that is a multiple of the mask length. Then
2995      // see if the rest of the elements are in range.
2996      StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2997      if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2998          StartIdx[Input] + MaskNumElts <= SrcNumElts)
2999        RangeUse[Input] = 1; // Extract from a multiple of the mask length.
3000    }
3001
3002    if (RangeUse[0] == 0 && RangeUse[1] == 0) {
3003      setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3004      return;
3005    }
3006    if (RangeUse[0] >= 0 && RangeUse[1] >= 0) {
3007      // Extract appropriate subvector and generate a vector shuffle
3008      for (unsigned Input = 0; Input < 2; ++Input) {
3009        SDValue &Src = Input == 0 ? Src1 : Src2;
3010        if (RangeUse[Input] == 0)
3011          Src = DAG.getUNDEF(VT);
3012        else
3013          Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT,
3014                            Src, DAG.getIntPtrConstant(StartIdx[Input]));
3015      }
3016
3017      // Calculate new mask.
3018      SmallVector<int, 8> MappedOps;
3019      for (unsigned i = 0; i != MaskNumElts; ++i) {
3020        int Idx = Mask[i];
3021        if (Idx >= 0) {
3022          if (Idx < (int)SrcNumElts)
3023            Idx -= StartIdx[0];
3024          else
3025            Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3026        }
3027        MappedOps.push_back(Idx);
3028      }
3029
3030      setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
3031                                        &MappedOps[0]));
3032      return;
3033    }
3034  }
3035
3036  // We can't use either concat vectors or extract subvectors so fall back to
3037  // replacing the shuffle with extract and build vector.
3038  // to insert and build vector.
3039  EVT EltVT = VT.getVectorElementType();
3040  EVT PtrVT = TLI.getPointerTy();
3041  SmallVector<SDValue,8> Ops;
3042  for (unsigned i = 0; i != MaskNumElts; ++i) {
3043    int Idx = Mask[i];
3044    SDValue Res;
3045
3046    if (Idx < 0) {
3047      Res = DAG.getUNDEF(EltVT);
3048    } else {
3049      SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3050      if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3051
3052      Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
3053                        EltVT, Src, DAG.getConstant(Idx, PtrVT));
3054    }
3055
3056    Ops.push_back(Res);
3057  }
3058
3059  setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
3060                           VT, &Ops[0], Ops.size()));
3061}
3062
3063void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
3064  const Value *Op0 = I.getOperand(0);
3065  const Value *Op1 = I.getOperand(1);
3066  Type *AggTy = I.getType();
3067  Type *ValTy = Op1->getType();
3068  bool IntoUndef = isa<UndefValue>(Op0);
3069  bool FromUndef = isa<UndefValue>(Op1);
3070
3071  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3072
3073  SmallVector<EVT, 4> AggValueVTs;
3074  ComputeValueVTs(TLI, AggTy, AggValueVTs);
3075  SmallVector<EVT, 4> ValValueVTs;
3076  ComputeValueVTs(TLI, ValTy, ValValueVTs);
3077
3078  unsigned NumAggValues = AggValueVTs.size();
3079  unsigned NumValValues = ValValueVTs.size();
3080  SmallVector<SDValue, 4> Values(NumAggValues);
3081
3082  SDValue Agg = getValue(Op0);
3083  unsigned i = 0;
3084  // Copy the beginning value(s) from the original aggregate.
3085  for (; i != LinearIndex; ++i)
3086    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3087                SDValue(Agg.getNode(), Agg.getResNo() + i);
3088  // Copy values from the inserted value(s).
3089  if (NumValValues) {
3090    SDValue Val = getValue(Op1);
3091    for (; i != LinearIndex + NumValValues; ++i)
3092      Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3093                  SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3094  }
3095  // Copy remaining value(s) from the original aggregate.
3096  for (; i != NumAggValues; ++i)
3097    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3098                SDValue(Agg.getNode(), Agg.getResNo() + i);
3099
3100  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3101                           DAG.getVTList(&AggValueVTs[0], NumAggValues),
3102                           &Values[0], NumAggValues));
3103}
3104
3105void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
3106  const Value *Op0 = I.getOperand(0);
3107  Type *AggTy = Op0->getType();
3108  Type *ValTy = I.getType();
3109  bool OutOfUndef = isa<UndefValue>(Op0);
3110
3111  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3112
3113  SmallVector<EVT, 4> ValValueVTs;
3114  ComputeValueVTs(TLI, ValTy, ValValueVTs);
3115
3116  unsigned NumValValues = ValValueVTs.size();
3117
3118  // Ignore a extractvalue that produces an empty object
3119  if (!NumValValues) {
3120    setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3121    return;
3122  }
3123
3124  SmallVector<SDValue, 4> Values(NumValValues);
3125
3126  SDValue Agg = getValue(Op0);
3127  // Copy out the selected value(s).
3128  for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3129    Values[i - LinearIndex] =
3130      OutOfUndef ?
3131        DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3132        SDValue(Agg.getNode(), Agg.getResNo() + i);
3133
3134  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3135                           DAG.getVTList(&ValValueVTs[0], NumValValues),
3136                           &Values[0], NumValValues));
3137}
3138
3139void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3140  SDValue N = getValue(I.getOperand(0));
3141  // Note that the pointer operand may be a vector of pointers. Take the scalar
3142  // element which holds a pointer.
3143  Type *Ty = I.getOperand(0)->getType()->getScalarType();
3144
3145  for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
3146       OI != E; ++OI) {
3147    const Value *Idx = *OI;
3148    if (StructType *StTy = dyn_cast<StructType>(Ty)) {
3149      unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3150      if (Field) {
3151        // N = N + Offset
3152        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
3153        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
3154                        DAG.getConstant(Offset, N.getValueType()));
3155      }
3156
3157      Ty = StTy->getElementType(Field);
3158    } else {
3159      Ty = cast<SequentialType>(Ty)->getElementType();
3160
3161      // If this is a constant subscript, handle it quickly.
3162      if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
3163        if (CI->isZero()) continue;
3164        uint64_t Offs =
3165            TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
3166        SDValue OffsVal;
3167        EVT PTy = TLI.getPointerTy();
3168        unsigned PtrBits = PTy.getSizeInBits();
3169        if (PtrBits < 64)
3170          OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
3171                                TLI.getPointerTy(),
3172                                DAG.getConstant(Offs, MVT::i64));
3173        else
3174          OffsVal = DAG.getIntPtrConstant(Offs);
3175
3176        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
3177                        OffsVal);
3178        continue;
3179      }
3180
3181      // N = N + Idx * ElementSize;
3182      APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
3183                                TD->getTypeAllocSize(Ty));
3184      SDValue IdxN = getValue(Idx);
3185
3186      // If the index is smaller or larger than intptr_t, truncate or extend
3187      // it.
3188      IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType());
3189
3190      // If this is a multiply by a power of two, turn it into a shl
3191      // immediately.  This is a very common case.
3192      if (ElementSize != 1) {
3193        if (ElementSize.isPowerOf2()) {
3194          unsigned Amt = ElementSize.logBase2();
3195          IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(),
3196                             N.getValueType(), IdxN,
3197                             DAG.getConstant(Amt, IdxN.getValueType()));
3198        } else {
3199          SDValue Scale = DAG.getConstant(ElementSize, IdxN.getValueType());
3200          IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(),
3201                             N.getValueType(), IdxN, Scale);
3202        }
3203      }
3204
3205      N = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3206                      N.getValueType(), N, IdxN);
3207    }
3208  }
3209
3210  setValue(&I, N);
3211}
3212
3213void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3214  // If this is a fixed sized alloca in the entry block of the function,
3215  // allocate it statically on the stack.
3216  if (FuncInfo.StaticAllocaMap.count(&I))
3217    return;   // getValue will auto-populate this.
3218
3219  Type *Ty = I.getAllocatedType();
3220  uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty);
3221  unsigned Align =
3222    std::max((unsigned)TLI.getDataLayout()->getPrefTypeAlignment(Ty),
3223             I.getAlignment());
3224
3225  SDValue AllocSize = getValue(I.getArraySize());
3226
3227  EVT IntPtr = TLI.getPointerTy();
3228  if (AllocSize.getValueType() != IntPtr)
3229    AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr);
3230
3231  AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr,
3232                          AllocSize,
3233                          DAG.getConstant(TySize, IntPtr));
3234
3235  // Handle alignment.  If the requested alignment is less than or equal to
3236  // the stack alignment, ignore it.  If the size is greater than or equal to
3237  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3238  unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
3239  if (Align <= StackAlign)
3240    Align = 0;
3241
3242  // Round the size of the allocation up to the stack alignment size
3243  // by add SA-1 to the size.
3244  AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3245                          AllocSize.getValueType(), AllocSize,
3246                          DAG.getIntPtrConstant(StackAlign-1));
3247
3248  // Mask out the low bits for alignment purposes.
3249  AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(),
3250                          AllocSize.getValueType(), AllocSize,
3251                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
3252
3253  SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
3254  SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3255  SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(),
3256                            VTs, Ops, 3);
3257  setValue(&I, DSA);
3258  DAG.setRoot(DSA.getValue(1));
3259
3260  // Inform the Frame Information that we have just allocated a variable-sized
3261  // object.
3262  FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1);
3263}
3264
3265void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3266  if (I.isAtomic())
3267    return visitAtomicLoad(I);
3268
3269  const Value *SV = I.getOperand(0);
3270  SDValue Ptr = getValue(SV);
3271
3272  Type *Ty = I.getType();
3273
3274  bool isVolatile = I.isVolatile();
3275  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3276  bool isInvariant = I.getMetadata("invariant.load") != 0;
3277  unsigned Alignment = I.getAlignment();
3278  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3279  const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3280
3281  SmallVector<EVT, 4> ValueVTs;
3282  SmallVector<uint64_t, 4> Offsets;
3283  ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
3284  unsigned NumValues = ValueVTs.size();
3285  if (NumValues == 0)
3286    return;
3287
3288  SDValue Root;
3289  bool ConstantMemory = false;
3290  if (I.isVolatile() || NumValues > MaxParallelChains)
3291    // Serialize volatile loads with other side effects.
3292    Root = getRoot();
3293  else if (AA->pointsToConstantMemory(
3294             AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) {
3295    // Do not serialize (non-volatile) loads of constant memory with anything.
3296    Root = DAG.getEntryNode();
3297    ConstantMemory = true;
3298  } else {
3299    // Do not serialize non-volatile loads against each other.
3300    Root = DAG.getRoot();
3301  }
3302
3303  SmallVector<SDValue, 4> Values(NumValues);
3304  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3305                                          NumValues));
3306  EVT PtrVT = Ptr.getValueType();
3307  unsigned ChainI = 0;
3308  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3309    // Serializing loads here may result in excessive register pressure, and
3310    // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3311    // could recover a bit by hoisting nodes upward in the chain by recognizing
3312    // they are side-effect free or do not alias. The optimizer should really
3313    // avoid this case by converting large object/array copies to llvm.memcpy
3314    // (MaxParallelChains should always remain as failsafe).
3315    if (ChainI == MaxParallelChains) {
3316      assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3317      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3318                                  MVT::Other, &Chains[0], ChainI);
3319      Root = Chain;
3320      ChainI = 0;
3321    }
3322    SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3323                            PtrVT, Ptr,
3324                            DAG.getConstant(Offsets[i], PtrVT));
3325    SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root,
3326                            A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
3327                            isNonTemporal, isInvariant, Alignment, TBAAInfo,
3328                            Ranges);
3329
3330    Values[i] = L;
3331    Chains[ChainI] = L.getValue(1);
3332  }
3333
3334  if (!ConstantMemory) {
3335    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3336                                MVT::Other, &Chains[0], ChainI);
3337    if (isVolatile)
3338      DAG.setRoot(Chain);
3339    else
3340      PendingLoads.push_back(Chain);
3341  }
3342
3343  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3344                           DAG.getVTList(&ValueVTs[0], NumValues),
3345                           &Values[0], NumValues));
3346}
3347
3348void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3349  if (I.isAtomic())
3350    return visitAtomicStore(I);
3351
3352  const Value *SrcV = I.getOperand(0);
3353  const Value *PtrV = I.getOperand(1);
3354
3355  SmallVector<EVT, 4> ValueVTs;
3356  SmallVector<uint64_t, 4> Offsets;
3357  ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
3358  unsigned NumValues = ValueVTs.size();
3359  if (NumValues == 0)
3360    return;
3361
3362  // Get the lowered operands. Note that we do this after
3363  // checking if NumResults is zero, because with zero results
3364  // the operands won't have values in the map.
3365  SDValue Src = getValue(SrcV);
3366  SDValue Ptr = getValue(PtrV);
3367
3368  SDValue Root = getRoot();
3369  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3370                                          NumValues));
3371  EVT PtrVT = Ptr.getValueType();
3372  bool isVolatile = I.isVolatile();
3373  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3374  unsigned Alignment = I.getAlignment();
3375  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3376
3377  unsigned ChainI = 0;
3378  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3379    // See visitLoad comments.
3380    if (ChainI == MaxParallelChains) {
3381      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3382                                  MVT::Other, &Chains[0], ChainI);
3383      Root = Chain;
3384      ChainI = 0;
3385    }
3386    SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr,
3387                              DAG.getConstant(Offsets[i], PtrVT));
3388    SDValue St = DAG.getStore(Root, getCurDebugLoc(),
3389                              SDValue(Src.getNode(), Src.getResNo() + i),
3390                              Add, MachinePointerInfo(PtrV, Offsets[i]),
3391                              isVolatile, isNonTemporal, Alignment, TBAAInfo);
3392    Chains[ChainI] = St;
3393  }
3394
3395  SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3396                                  MVT::Other, &Chains[0], ChainI);
3397  ++SDNodeOrder;
3398  AssignOrderingToNode(StoreNode.getNode());
3399  DAG.setRoot(StoreNode);
3400}
3401
3402static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order,
3403                                    SynchronizationScope Scope,
3404                                    bool Before, DebugLoc dl,
3405                                    SelectionDAG &DAG,
3406                                    const TargetLowering &TLI) {
3407  // Fence, if necessary
3408  if (Before) {
3409    if (Order == AcquireRelease || Order == SequentiallyConsistent)
3410      Order = Release;
3411    else if (Order == Acquire || Order == Monotonic)
3412      return Chain;
3413  } else {
3414    if (Order == AcquireRelease)
3415      Order = Acquire;
3416    else if (Order == Release || Order == Monotonic)
3417      return Chain;
3418  }
3419  SDValue Ops[3];
3420  Ops[0] = Chain;
3421  Ops[1] = DAG.getConstant(Order, TLI.getPointerTy());
3422  Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy());
3423  return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3);
3424}
3425
3426void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
3427  DebugLoc dl = getCurDebugLoc();
3428  AtomicOrdering Order = I.getOrdering();
3429  SynchronizationScope Scope = I.getSynchScope();
3430
3431  SDValue InChain = getRoot();
3432
3433  if (TLI.getInsertFencesForAtomic())
3434    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3435                                   DAG, TLI);
3436
3437  SDValue L =
3438    DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl,
3439                  getValue(I.getCompareOperand()).getValueType().getSimpleVT(),
3440                  InChain,
3441                  getValue(I.getPointerOperand()),
3442                  getValue(I.getCompareOperand()),
3443                  getValue(I.getNewValOperand()),
3444                  MachinePointerInfo(I.getPointerOperand()), 0 /* Alignment */,
3445                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3446                  Scope);
3447
3448  SDValue OutChain = L.getValue(1);
3449
3450  if (TLI.getInsertFencesForAtomic())
3451    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3452                                    DAG, TLI);
3453
3454  setValue(&I, L);
3455  DAG.setRoot(OutChain);
3456}
3457
3458void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
3459  DebugLoc dl = getCurDebugLoc();
3460  ISD::NodeType NT;
3461  switch (I.getOperation()) {
3462  default: llvm_unreachable("Unknown atomicrmw operation");
3463  case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
3464  case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
3465  case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
3466  case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
3467  case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
3468  case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
3469  case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
3470  case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
3471  case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
3472  case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
3473  case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
3474  }
3475  AtomicOrdering Order = I.getOrdering();
3476  SynchronizationScope Scope = I.getSynchScope();
3477
3478  SDValue InChain = getRoot();
3479
3480  if (TLI.getInsertFencesForAtomic())
3481    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3482                                   DAG, TLI);
3483
3484  SDValue L =
3485    DAG.getAtomic(NT, dl,
3486                  getValue(I.getValOperand()).getValueType().getSimpleVT(),
3487                  InChain,
3488                  getValue(I.getPointerOperand()),
3489                  getValue(I.getValOperand()),
3490                  I.getPointerOperand(), 0 /* Alignment */,
3491                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3492                  Scope);
3493
3494  SDValue OutChain = L.getValue(1);
3495
3496  if (TLI.getInsertFencesForAtomic())
3497    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3498                                    DAG, TLI);
3499
3500  setValue(&I, L);
3501  DAG.setRoot(OutChain);
3502}
3503
3504void SelectionDAGBuilder::visitFence(const FenceInst &I) {
3505  DebugLoc dl = getCurDebugLoc();
3506  SDValue Ops[3];
3507  Ops[0] = getRoot();
3508  Ops[1] = DAG.getConstant(I.getOrdering(), TLI.getPointerTy());
3509  Ops[2] = DAG.getConstant(I.getSynchScope(), TLI.getPointerTy());
3510  DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3));
3511}
3512
3513void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
3514  DebugLoc dl = getCurDebugLoc();
3515  AtomicOrdering Order = I.getOrdering();
3516  SynchronizationScope Scope = I.getSynchScope();
3517
3518  SDValue InChain = getRoot();
3519
3520  EVT VT = TLI.getValueType(I.getType());
3521
3522  if (I.getAlignment() * 8 < VT.getSizeInBits())
3523    report_fatal_error("Cannot generate unaligned atomic load");
3524
3525  SDValue L =
3526    DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
3527                  getValue(I.getPointerOperand()),
3528                  I.getPointerOperand(), I.getAlignment(),
3529                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3530                  Scope);
3531
3532  SDValue OutChain = L.getValue(1);
3533
3534  if (TLI.getInsertFencesForAtomic())
3535    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3536                                    DAG, TLI);
3537
3538  setValue(&I, L);
3539  DAG.setRoot(OutChain);
3540}
3541
3542void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
3543  DebugLoc dl = getCurDebugLoc();
3544
3545  AtomicOrdering Order = I.getOrdering();
3546  SynchronizationScope Scope = I.getSynchScope();
3547
3548  SDValue InChain = getRoot();
3549
3550  EVT VT = TLI.getValueType(I.getValueOperand()->getType());
3551
3552  if (I.getAlignment() * 8 < VT.getSizeInBits())
3553    report_fatal_error("Cannot generate unaligned atomic store");
3554
3555  if (TLI.getInsertFencesForAtomic())
3556    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3557                                   DAG, TLI);
3558
3559  SDValue OutChain =
3560    DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
3561                  InChain,
3562                  getValue(I.getPointerOperand()),
3563                  getValue(I.getValueOperand()),
3564                  I.getPointerOperand(), I.getAlignment(),
3565                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3566                  Scope);
3567
3568  if (TLI.getInsertFencesForAtomic())
3569    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3570                                    DAG, TLI);
3571
3572  DAG.setRoot(OutChain);
3573}
3574
3575/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3576/// node.
3577void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3578                                               unsigned Intrinsic) {
3579  bool HasChain = !I.doesNotAccessMemory();
3580  bool OnlyLoad = HasChain && I.onlyReadsMemory();
3581
3582  // Build the operand list.
3583  SmallVector<SDValue, 8> Ops;
3584  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
3585    if (OnlyLoad) {
3586      // We don't need to serialize loads against other loads.
3587      Ops.push_back(DAG.getRoot());
3588    } else {
3589      Ops.push_back(getRoot());
3590    }
3591  }
3592
3593  // Info is set by getTgtMemInstrinsic
3594  TargetLowering::IntrinsicInfo Info;
3595  bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
3596
3597  // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3598  if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
3599      Info.opc == ISD::INTRINSIC_W_CHAIN)
3600    Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI.getPointerTy()));
3601
3602  // Add all operands of the call to the operand list.
3603  for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
3604    SDValue Op = getValue(I.getArgOperand(i));
3605    Ops.push_back(Op);
3606  }
3607
3608  SmallVector<EVT, 4> ValueVTs;
3609  ComputeValueVTs(TLI, I.getType(), ValueVTs);
3610
3611  if (HasChain)
3612    ValueVTs.push_back(MVT::Other);
3613
3614  SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
3615
3616  // Create the node.
3617  SDValue Result;
3618  if (IsTgtIntrinsic) {
3619    // This is target intrinsic that touches memory
3620    Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(),
3621                                     VTs, &Ops[0], Ops.size(),
3622                                     Info.memVT,
3623                                   MachinePointerInfo(Info.ptrVal, Info.offset),
3624                                     Info.align, Info.vol,
3625                                     Info.readMem, Info.writeMem);
3626  } else if (!HasChain) {
3627    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
3628                         VTs, &Ops[0], Ops.size());
3629  } else if (!I.getType()->isVoidTy()) {
3630    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
3631                         VTs, &Ops[0], Ops.size());
3632  } else {
3633    Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(),
3634                         VTs, &Ops[0], Ops.size());
3635  }
3636
3637  if (HasChain) {
3638    SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3639    if (OnlyLoad)
3640      PendingLoads.push_back(Chain);
3641    else
3642      DAG.setRoot(Chain);
3643  }
3644
3645  if (!I.getType()->isVoidTy()) {
3646    if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3647      EVT VT = TLI.getValueType(PTy);
3648      Result = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), VT, Result);
3649    }
3650
3651    setValue(&I, Result);
3652  } else {
3653    // Assign order to result here. If the intrinsic does not produce a result,
3654    // it won't be mapped to a SDNode and visit() will not assign it an order
3655    // number.
3656    ++SDNodeOrder;
3657    AssignOrderingToNode(Result.getNode());
3658  }
3659}
3660
3661/// GetSignificand - Get the significand and build it into a floating-point
3662/// number with exponent of 1:
3663///
3664///   Op = (Op & 0x007fffff) | 0x3f800000;
3665///
3666/// where Op is the hexidecimal representation of floating point value.
3667static SDValue
3668GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) {
3669  SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3670                           DAG.getConstant(0x007fffff, MVT::i32));
3671  SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3672                           DAG.getConstant(0x3f800000, MVT::i32));
3673  return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
3674}
3675
3676/// GetExponent - Get the exponent:
3677///
3678///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3679///
3680/// where Op is the hexidecimal representation of floating point value.
3681static SDValue
3682GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3683            DebugLoc dl) {
3684  SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3685                           DAG.getConstant(0x7f800000, MVT::i32));
3686  SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3687                           DAG.getConstant(23, TLI.getPointerTy()));
3688  SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3689                           DAG.getConstant(127, MVT::i32));
3690  return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3691}
3692
3693/// getF32Constant - Get 32-bit floating point constant.
3694static SDValue
3695getF32Constant(SelectionDAG &DAG, unsigned Flt) {
3696  return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32);
3697}
3698
3699/// expandExp - Lower an exp intrinsic. Handles the special sequences for
3700/// limited-precision mode.
3701static SDValue expandExp(DebugLoc dl, SDValue Op, SelectionDAG &DAG,
3702                         const TargetLowering &TLI) {
3703  if (Op.getValueType() == MVT::f32 &&
3704      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3705
3706    // Put the exponent in the right bit position for later addition to the
3707    // final result:
3708    //
3709    //   #define LOG2OFe 1.4426950f
3710    //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3711    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3712                             getF32Constant(DAG, 0x3fb8aa3b));
3713    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3714
3715    //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3716    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3717    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3718
3719    //   IntegerPartOfX <<= 23;
3720    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3721                                 DAG.getConstant(23, TLI.getPointerTy()));
3722
3723    SDValue TwoToFracPartOfX;
3724    if (LimitFloatPrecision <= 6) {
3725      // For floating-point precision of 6:
3726      //
3727      //   TwoToFractionalPartOfX =
3728      //     0.997535578f +
3729      //       (0.735607626f + 0.252464424f * x) * x;
3730      //
3731      // error 0.0144103317, which is 6 bits
3732      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3733                               getF32Constant(DAG, 0x3e814304));
3734      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3735                               getF32Constant(DAG, 0x3f3c50c8));
3736      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3737      TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3738                                     getF32Constant(DAG, 0x3f7f5e7e));
3739    } else if (LimitFloatPrecision <= 12) {
3740      // For floating-point precision of 12:
3741      //
3742      //   TwoToFractionalPartOfX =
3743      //     0.999892986f +
3744      //       (0.696457318f +
3745      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3746      //
3747      // 0.000107046256 error, which is 13 to 14 bits
3748      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3749                               getF32Constant(DAG, 0x3da235e3));
3750      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3751                               getF32Constant(DAG, 0x3e65b8f3));
3752      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3753      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3754                               getF32Constant(DAG, 0x3f324b07));
3755      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3756      TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3757                                     getF32Constant(DAG, 0x3f7ff8fd));
3758    } else { // LimitFloatPrecision <= 18
3759      // For floating-point precision of 18:
3760      //
3761      //   TwoToFractionalPartOfX =
3762      //     0.999999982f +
3763      //       (0.693148872f +
3764      //         (0.240227044f +
3765      //           (0.554906021e-1f +
3766      //             (0.961591928e-2f +
3767      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3768      //
3769      // error 2.47208000*10^(-7), which is better than 18 bits
3770      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3771                               getF32Constant(DAG, 0x3924b03e));
3772      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3773                               getF32Constant(DAG, 0x3ab24b87));
3774      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3775      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3776                               getF32Constant(DAG, 0x3c1d8c17));
3777      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3778      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3779                               getF32Constant(DAG, 0x3d634a1d));
3780      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3781      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3782                               getF32Constant(DAG, 0x3e75fe14));
3783      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3784      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3785                                getF32Constant(DAG, 0x3f317234));
3786      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3787      TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3788                                     getF32Constant(DAG, 0x3f800000));
3789    }
3790
3791    // Add the exponent into the result in integer domain.
3792    SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFracPartOfX);
3793    return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
3794                       DAG.getNode(ISD::ADD, dl, MVT::i32,
3795                                   t13, IntegerPartOfX));
3796  }
3797
3798  // No special expansion.
3799  return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
3800}
3801
3802/// expandLog - Lower a log intrinsic. Handles the special sequences for
3803/// limited-precision mode.
3804static SDValue expandLog(DebugLoc dl, SDValue Op, SelectionDAG &DAG,
3805                         const TargetLowering &TLI) {
3806  if (Op.getValueType() == MVT::f32 &&
3807      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3808    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3809
3810    // Scale the exponent by log(2) [0.69314718f].
3811    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3812    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3813                                        getF32Constant(DAG, 0x3f317218));
3814
3815    // Get the significand and build it into a floating-point number with
3816    // exponent of 1.
3817    SDValue X = GetSignificand(DAG, Op1, dl);
3818
3819    SDValue LogOfMantissa;
3820    if (LimitFloatPrecision <= 6) {
3821      // For floating-point precision of 6:
3822      //
3823      //   LogofMantissa =
3824      //     -1.1609546f +
3825      //       (1.4034025f - 0.23903021f * x) * x;
3826      //
3827      // error 0.0034276066, which is better than 8 bits
3828      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3829                               getF32Constant(DAG, 0xbe74c456));
3830      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3831                               getF32Constant(DAG, 0x3fb3a2b1));
3832      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3833      LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3834                                  getF32Constant(DAG, 0x3f949a29));
3835    } else if (LimitFloatPrecision <= 12) {
3836      // For floating-point precision of 12:
3837      //
3838      //   LogOfMantissa =
3839      //     -1.7417939f +
3840      //       (2.8212026f +
3841      //         (-1.4699568f +
3842      //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3843      //
3844      // error 0.000061011436, which is 14 bits
3845      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3846                               getF32Constant(DAG, 0xbd67b6d6));
3847      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3848                               getF32Constant(DAG, 0x3ee4f4b8));
3849      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3850      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3851                               getF32Constant(DAG, 0x3fbc278b));
3852      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3853      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3854                               getF32Constant(DAG, 0x40348e95));
3855      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3856      LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3857                                  getF32Constant(DAG, 0x3fdef31a));
3858    } else { // LimitFloatPrecision <= 18
3859      // For floating-point precision of 18:
3860      //
3861      //   LogOfMantissa =
3862      //     -2.1072184f +
3863      //       (4.2372794f +
3864      //         (-3.7029485f +
3865      //           (2.2781945f +
3866      //             (-0.87823314f +
3867      //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3868      //
3869      // error 0.0000023660568, which is better than 18 bits
3870      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3871                               getF32Constant(DAG, 0xbc91e5ac));
3872      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3873                               getF32Constant(DAG, 0x3e4350aa));
3874      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3875      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3876                               getF32Constant(DAG, 0x3f60d3e3));
3877      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3878      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3879                               getF32Constant(DAG, 0x4011cdf0));
3880      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3881      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3882                               getF32Constant(DAG, 0x406cfd1c));
3883      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3884      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3885                               getF32Constant(DAG, 0x408797cb));
3886      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3887      LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3888                                  getF32Constant(DAG, 0x4006dcab));
3889    }
3890
3891    return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
3892  }
3893
3894  // No special expansion.
3895  return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
3896}
3897
3898/// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
3899/// limited-precision mode.
3900static SDValue expandLog2(DebugLoc dl, SDValue Op, SelectionDAG &DAG,
3901                          const TargetLowering &TLI) {
3902  if (Op.getValueType() == MVT::f32 &&
3903      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3904    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3905
3906    // Get the exponent.
3907    SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3908
3909    // Get the significand and build it into a floating-point number with
3910    // exponent of 1.
3911    SDValue X = GetSignificand(DAG, Op1, dl);
3912
3913    // Different possible minimax approximations of significand in
3914    // floating-point for various degrees of accuracy over [1,2].
3915    SDValue Log2ofMantissa;
3916    if (LimitFloatPrecision <= 6) {
3917      // For floating-point precision of 6:
3918      //
3919      //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3920      //
3921      // error 0.0049451742, which is more than 7 bits
3922      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3923                               getF32Constant(DAG, 0xbeb08fe0));
3924      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3925                               getF32Constant(DAG, 0x40019463));
3926      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3927      Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3928                                   getF32Constant(DAG, 0x3fd6633d));
3929    } else if (LimitFloatPrecision <= 12) {
3930      // For floating-point precision of 12:
3931      //
3932      //   Log2ofMantissa =
3933      //     -2.51285454f +
3934      //       (4.07009056f +
3935      //         (-2.12067489f +
3936      //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3937      //
3938      // error 0.0000876136000, which is better than 13 bits
3939      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3940                               getF32Constant(DAG, 0xbda7262e));
3941      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3942                               getF32Constant(DAG, 0x3f25280b));
3943      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3944      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3945                               getF32Constant(DAG, 0x4007b923));
3946      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3947      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3948                               getF32Constant(DAG, 0x40823e2f));
3949      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3950      Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3951                                   getF32Constant(DAG, 0x4020d29c));
3952    } else { // LimitFloatPrecision <= 18
3953      // For floating-point precision of 18:
3954      //
3955      //   Log2ofMantissa =
3956      //     -3.0400495f +
3957      //       (6.1129976f +
3958      //         (-5.3420409f +
3959      //           (3.2865683f +
3960      //             (-1.2669343f +
3961      //               (0.27515199f -
3962      //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3963      //
3964      // error 0.0000018516, which is better than 18 bits
3965      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3966                               getF32Constant(DAG, 0xbcd2769e));
3967      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3968                               getF32Constant(DAG, 0x3e8ce0b9));
3969      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3970      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3971                               getF32Constant(DAG, 0x3fa22ae7));
3972      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3973      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3974                               getF32Constant(DAG, 0x40525723));
3975      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3976      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3977                               getF32Constant(DAG, 0x40aaf200));
3978      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3979      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3980                               getF32Constant(DAG, 0x40c39dad));
3981      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3982      Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3983                                   getF32Constant(DAG, 0x4042902c));
3984    }
3985
3986    return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
3987  }
3988
3989  // No special expansion.
3990  return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
3991}
3992
3993/// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
3994/// limited-precision mode.
3995static SDValue expandLog10(DebugLoc dl, SDValue Op, SelectionDAG &DAG,
3996                           const TargetLowering &TLI) {
3997  if (Op.getValueType() == MVT::f32 &&
3998      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3999    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4000
4001    // Scale the exponent by log10(2) [0.30102999f].
4002    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4003    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4004                                        getF32Constant(DAG, 0x3e9a209a));
4005
4006    // Get the significand and build it into a floating-point number with
4007    // exponent of 1.
4008    SDValue X = GetSignificand(DAG, Op1, dl);
4009
4010    SDValue Log10ofMantissa;
4011    if (LimitFloatPrecision <= 6) {
4012      // For floating-point precision of 6:
4013      //
4014      //   Log10ofMantissa =
4015      //     -0.50419619f +
4016      //       (0.60948995f - 0.10380950f * x) * x;
4017      //
4018      // error 0.0014886165, which is 6 bits
4019      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4020                               getF32Constant(DAG, 0xbdd49a13));
4021      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4022                               getF32Constant(DAG, 0x3f1c0789));
4023      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4024      Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4025                                    getF32Constant(DAG, 0x3f011300));
4026    } else if (LimitFloatPrecision <= 12) {
4027      // For floating-point precision of 12:
4028      //
4029      //   Log10ofMantissa =
4030      //     -0.64831180f +
4031      //       (0.91751397f +
4032      //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4033      //
4034      // error 0.00019228036, which is better than 12 bits
4035      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4036                               getF32Constant(DAG, 0x3d431f31));
4037      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4038                               getF32Constant(DAG, 0x3ea21fb2));
4039      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4040      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4041                               getF32Constant(DAG, 0x3f6ae232));
4042      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4043      Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4044                                    getF32Constant(DAG, 0x3f25f7c3));
4045    } else { // LimitFloatPrecision <= 18
4046      // For floating-point precision of 18:
4047      //
4048      //   Log10ofMantissa =
4049      //     -0.84299375f +
4050      //       (1.5327582f +
4051      //         (-1.0688956f +
4052      //           (0.49102474f +
4053      //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4054      //
4055      // error 0.0000037995730, which is better than 18 bits
4056      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4057                               getF32Constant(DAG, 0x3c5d51ce));
4058      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4059                               getF32Constant(DAG, 0x3e00685a));
4060      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4061      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4062                               getF32Constant(DAG, 0x3efb6798));
4063      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4064      SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4065                               getF32Constant(DAG, 0x3f88d192));
4066      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4067      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4068                               getF32Constant(DAG, 0x3fc4316c));
4069      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4070      Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4071                                    getF32Constant(DAG, 0x3f57ce70));
4072    }
4073
4074    return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
4075  }
4076
4077  // No special expansion.
4078  return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
4079}
4080
4081/// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4082/// limited-precision mode.
4083static SDValue expandExp2(DebugLoc dl, SDValue Op, SelectionDAG &DAG,
4084                          const TargetLowering &TLI) {
4085  if (Op.getValueType() == MVT::f32 &&
4086      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4087    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
4088
4089    //   FractionalPartOfX = x - (float)IntegerPartOfX;
4090    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4091    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
4092
4093    //   IntegerPartOfX <<= 23;
4094    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4095                                 DAG.getConstant(23, TLI.getPointerTy()));
4096
4097    SDValue TwoToFractionalPartOfX;
4098    if (LimitFloatPrecision <= 6) {
4099      // For floating-point precision of 6:
4100      //
4101      //   TwoToFractionalPartOfX =
4102      //     0.997535578f +
4103      //       (0.735607626f + 0.252464424f * x) * x;
4104      //
4105      // error 0.0144103317, which is 6 bits
4106      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4107                               getF32Constant(DAG, 0x3e814304));
4108      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4109                               getF32Constant(DAG, 0x3f3c50c8));
4110      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4111      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4112                                           getF32Constant(DAG, 0x3f7f5e7e));
4113    } else if (LimitFloatPrecision <= 12) {
4114      // For floating-point precision of 12:
4115      //
4116      //   TwoToFractionalPartOfX =
4117      //     0.999892986f +
4118      //       (0.696457318f +
4119      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4120      //
4121      // error 0.000107046256, which is 13 to 14 bits
4122      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4123                               getF32Constant(DAG, 0x3da235e3));
4124      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4125                               getF32Constant(DAG, 0x3e65b8f3));
4126      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4127      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4128                               getF32Constant(DAG, 0x3f324b07));
4129      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4130      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4131                                           getF32Constant(DAG, 0x3f7ff8fd));
4132    } else { // LimitFloatPrecision <= 18
4133      // For floating-point precision of 18:
4134      //
4135      //   TwoToFractionalPartOfX =
4136      //     0.999999982f +
4137      //       (0.693148872f +
4138      //         (0.240227044f +
4139      //           (0.554906021e-1f +
4140      //             (0.961591928e-2f +
4141      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4142      // error 2.47208000*10^(-7), which is better than 18 bits
4143      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4144                               getF32Constant(DAG, 0x3924b03e));
4145      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4146                               getF32Constant(DAG, 0x3ab24b87));
4147      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4148      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4149                               getF32Constant(DAG, 0x3c1d8c17));
4150      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4151      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4152                               getF32Constant(DAG, 0x3d634a1d));
4153      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4154      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4155                               getF32Constant(DAG, 0x3e75fe14));
4156      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4157      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4158                                getF32Constant(DAG, 0x3f317234));
4159      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4160      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4161                                           getF32Constant(DAG, 0x3f800000));
4162    }
4163
4164    // Add the exponent into the result in integer domain.
4165    SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32,
4166                              TwoToFractionalPartOfX);
4167    return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4168                       DAG.getNode(ISD::ADD, dl, MVT::i32,
4169                                   t13, IntegerPartOfX));
4170  }
4171
4172  // No special expansion.
4173  return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
4174}
4175
4176/// visitPow - Lower a pow intrinsic. Handles the special sequences for
4177/// limited-precision mode with x == 10.0f.
4178static SDValue expandPow(DebugLoc dl, SDValue LHS, SDValue RHS,
4179                         SelectionDAG &DAG, const TargetLowering &TLI) {
4180  bool IsExp10 = false;
4181  if (LHS.getValueType() == MVT::f32 && LHS.getValueType() == MVT::f32 &&
4182      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4183    if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
4184      APFloat Ten(10.0f);
4185      IsExp10 = LHSC->isExactlyValue(Ten);
4186    }
4187  }
4188
4189  if (IsExp10) {
4190    // Put the exponent in the right bit position for later addition to the
4191    // final result:
4192    //
4193    //   #define LOG2OF10 3.3219281f
4194    //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
4195    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
4196                             getF32Constant(DAG, 0x40549a78));
4197    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4198
4199    //   FractionalPartOfX = x - (float)IntegerPartOfX;
4200    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4201    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4202
4203    //   IntegerPartOfX <<= 23;
4204    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4205                                 DAG.getConstant(23, TLI.getPointerTy()));
4206
4207    SDValue TwoToFractionalPartOfX;
4208    if (LimitFloatPrecision <= 6) {
4209      // For floating-point precision of 6:
4210      //
4211      //   twoToFractionalPartOfX =
4212      //     0.997535578f +
4213      //       (0.735607626f + 0.252464424f * x) * x;
4214      //
4215      // error 0.0144103317, which is 6 bits
4216      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4217                               getF32Constant(DAG, 0x3e814304));
4218      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4219                               getF32Constant(DAG, 0x3f3c50c8));
4220      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4221      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4222                                           getF32Constant(DAG, 0x3f7f5e7e));
4223    } else if (LimitFloatPrecision <= 12) {
4224      // For floating-point precision of 12:
4225      //
4226      //   TwoToFractionalPartOfX =
4227      //     0.999892986f +
4228      //       (0.696457318f +
4229      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4230      //
4231      // error 0.000107046256, which is 13 to 14 bits
4232      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4233                               getF32Constant(DAG, 0x3da235e3));
4234      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4235                               getF32Constant(DAG, 0x3e65b8f3));
4236      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4237      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4238                               getF32Constant(DAG, 0x3f324b07));
4239      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4240      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4241                                           getF32Constant(DAG, 0x3f7ff8fd));
4242    } else { // LimitFloatPrecision <= 18
4243      // For floating-point precision of 18:
4244      //
4245      //   TwoToFractionalPartOfX =
4246      //     0.999999982f +
4247      //       (0.693148872f +
4248      //         (0.240227044f +
4249      //           (0.554906021e-1f +
4250      //             (0.961591928e-2f +
4251      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4252      // error 2.47208000*10^(-7), which is better than 18 bits
4253      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4254                               getF32Constant(DAG, 0x3924b03e));
4255      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4256                               getF32Constant(DAG, 0x3ab24b87));
4257      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4258      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4259                               getF32Constant(DAG, 0x3c1d8c17));
4260      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4261      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4262                               getF32Constant(DAG, 0x3d634a1d));
4263      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4264      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4265                               getF32Constant(DAG, 0x3e75fe14));
4266      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4267      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4268                                getF32Constant(DAG, 0x3f317234));
4269      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4270      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4271                                           getF32Constant(DAG, 0x3f800000));
4272    }
4273
4274    SDValue t13 = DAG.getNode(ISD::BITCAST, dl,MVT::i32,TwoToFractionalPartOfX);
4275    return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4276                       DAG.getNode(ISD::ADD, dl, MVT::i32,
4277                                   t13, IntegerPartOfX));
4278  }
4279
4280  // No special expansion.
4281  return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
4282}
4283
4284
4285/// ExpandPowI - Expand a llvm.powi intrinsic.
4286static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS,
4287                          SelectionDAG &DAG) {
4288  // If RHS is a constant, we can expand this out to a multiplication tree,
4289  // otherwise we end up lowering to a call to __powidf2 (for example).  When
4290  // optimizing for size, we only want to do this if the expansion would produce
4291  // a small number of multiplies, otherwise we do the full expansion.
4292  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4293    // Get the exponent as a positive value.
4294    unsigned Val = RHSC->getSExtValue();
4295    if ((int)Val < 0) Val = -Val;
4296
4297    // powi(x, 0) -> 1.0
4298    if (Val == 0)
4299      return DAG.getConstantFP(1.0, LHS.getValueType());
4300
4301    const Function *F = DAG.getMachineFunction().getFunction();
4302    if (!F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
4303                                         Attribute::OptimizeForSize) ||
4304        // If optimizing for size, don't insert too many multiplies.  This
4305        // inserts up to 5 multiplies.
4306        CountPopulation_32(Val)+Log2_32(Val) < 7) {
4307      // We use the simple binary decomposition method to generate the multiply
4308      // sequence.  There are more optimal ways to do this (for example,
4309      // powi(x,15) generates one more multiply than it should), but this has
4310      // the benefit of being both really simple and much better than a libcall.
4311      SDValue Res;  // Logically starts equal to 1.0
4312      SDValue CurSquare = LHS;
4313      while (Val) {
4314        if (Val & 1) {
4315          if (Res.getNode())
4316            Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4317          else
4318            Res = CurSquare;  // 1.0*CurSquare.
4319        }
4320
4321        CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4322                                CurSquare, CurSquare);
4323        Val >>= 1;
4324      }
4325
4326      // If the original was negative, invert the result, producing 1/(x*x*x).
4327      if (RHSC->getSExtValue() < 0)
4328        Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4329                          DAG.getConstantFP(1.0, LHS.getValueType()), Res);
4330      return Res;
4331    }
4332  }
4333
4334  // Otherwise, expand to a libcall.
4335  return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4336}
4337
4338// getTruncatedArgReg - Find underlying register used for an truncated
4339// argument.
4340static unsigned getTruncatedArgReg(const SDValue &N) {
4341  if (N.getOpcode() != ISD::TRUNCATE)
4342    return 0;
4343
4344  const SDValue &Ext = N.getOperand(0);
4345  if (Ext.getOpcode() == ISD::AssertZext || Ext.getOpcode() == ISD::AssertSext){
4346    const SDValue &CFR = Ext.getOperand(0);
4347    if (CFR.getOpcode() == ISD::CopyFromReg)
4348      return cast<RegisterSDNode>(CFR.getOperand(1))->getReg();
4349    if (CFR.getOpcode() == ISD::TRUNCATE)
4350      return getTruncatedArgReg(CFR);
4351  }
4352  return 0;
4353}
4354
4355/// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4356/// argument, create the corresponding DBG_VALUE machine instruction for it now.
4357/// At the end of instruction selection, they will be inserted to the entry BB.
4358bool
4359SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
4360                                              int64_t Offset,
4361                                              const SDValue &N) {
4362  const Argument *Arg = dyn_cast<Argument>(V);
4363  if (!Arg)
4364    return false;
4365
4366  MachineFunction &MF = DAG.getMachineFunction();
4367  const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
4368  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
4369
4370  // Ignore inlined function arguments here.
4371  DIVariable DV(Variable);
4372  if (DV.isInlinedFnArgument(MF.getFunction()))
4373    return false;
4374
4375  unsigned Reg = 0;
4376  // Some arguments' frame index is recorded during argument lowering.
4377  Offset = FuncInfo.getArgumentFrameIndex(Arg);
4378  if (Offset)
4379    Reg = TRI->getFrameRegister(MF);
4380
4381  if (!Reg && N.getNode()) {
4382    if (N.getOpcode() == ISD::CopyFromReg)
4383      Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
4384    else
4385      Reg = getTruncatedArgReg(N);
4386    if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4387      MachineRegisterInfo &RegInfo = MF.getRegInfo();
4388      unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4389      if (PR)
4390        Reg = PR;
4391    }
4392  }
4393
4394  if (!Reg) {
4395    // Check if ValueMap has reg number.
4396    DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4397    if (VMI != FuncInfo.ValueMap.end())
4398      Reg = VMI->second;
4399  }
4400
4401  if (!Reg && N.getNode()) {
4402    // Check if frame index is available.
4403    if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4404      if (FrameIndexSDNode *FINode =
4405          dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) {
4406        Reg = TRI->getFrameRegister(MF);
4407        Offset = FINode->getIndex();
4408      }
4409  }
4410
4411  if (!Reg)
4412    return false;
4413
4414  MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(),
4415                                    TII->get(TargetOpcode::DBG_VALUE))
4416    .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable);
4417  FuncInfo.ArgDbgValues.push_back(&*MIB);
4418  return true;
4419}
4420
4421// VisualStudio defines setjmp as _setjmp
4422#if defined(_MSC_VER) && defined(setjmp) && \
4423                         !defined(setjmp_undefined_for_msvc)
4424#  pragma push_macro("setjmp")
4425#  undef setjmp
4426#  define setjmp_undefined_for_msvc
4427#endif
4428
4429/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4430/// we want to emit this as a call to a named external function, return the name
4431/// otherwise lower it and return null.
4432const char *
4433SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4434  DebugLoc dl = getCurDebugLoc();
4435  SDValue Res;
4436
4437  switch (Intrinsic) {
4438  default:
4439    // By default, turn this into a target intrinsic node.
4440    visitTargetIntrinsic(I, Intrinsic);
4441    return 0;
4442  case Intrinsic::vastart:  visitVAStart(I); return 0;
4443  case Intrinsic::vaend:    visitVAEnd(I); return 0;
4444  case Intrinsic::vacopy:   visitVACopy(I); return 0;
4445  case Intrinsic::returnaddress:
4446    setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(),
4447                             getValue(I.getArgOperand(0))));
4448    return 0;
4449  case Intrinsic::frameaddress:
4450    setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(),
4451                             getValue(I.getArgOperand(0))));
4452    return 0;
4453  case Intrinsic::setjmp:
4454    return &"_setjmp"[!TLI.usesUnderscoreSetJmp()];
4455  case Intrinsic::longjmp:
4456    return &"_longjmp"[!TLI.usesUnderscoreLongJmp()];
4457  case Intrinsic::memcpy: {
4458    // Assert for address < 256 since we support only user defined address
4459    // spaces.
4460    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4461           < 256 &&
4462           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4463           < 256 &&
4464           "Unknown address space");
4465    SDValue Op1 = getValue(I.getArgOperand(0));
4466    SDValue Op2 = getValue(I.getArgOperand(1));
4467    SDValue Op3 = getValue(I.getArgOperand(2));
4468    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4469    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4470    DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false,
4471                              MachinePointerInfo(I.getArgOperand(0)),
4472                              MachinePointerInfo(I.getArgOperand(1))));
4473    return 0;
4474  }
4475  case Intrinsic::memset: {
4476    // Assert for address < 256 since we support only user defined address
4477    // spaces.
4478    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4479           < 256 &&
4480           "Unknown address space");
4481    SDValue Op1 = getValue(I.getArgOperand(0));
4482    SDValue Op2 = getValue(I.getArgOperand(1));
4483    SDValue Op3 = getValue(I.getArgOperand(2));
4484    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4485    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4486    DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4487                              MachinePointerInfo(I.getArgOperand(0))));
4488    return 0;
4489  }
4490  case Intrinsic::memmove: {
4491    // Assert for address < 256 since we support only user defined address
4492    // spaces.
4493    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4494           < 256 &&
4495           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4496           < 256 &&
4497           "Unknown address space");
4498    SDValue Op1 = getValue(I.getArgOperand(0));
4499    SDValue Op2 = getValue(I.getArgOperand(1));
4500    SDValue Op3 = getValue(I.getArgOperand(2));
4501    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4502    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4503    DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4504                               MachinePointerInfo(I.getArgOperand(0)),
4505                               MachinePointerInfo(I.getArgOperand(1))));
4506    return 0;
4507  }
4508  case Intrinsic::dbg_declare: {
4509    const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4510    MDNode *Variable = DI.getVariable();
4511    const Value *Address = DI.getAddress();
4512    if (!Address || !DIVariable(Variable).Verify()) {
4513      DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4514      return 0;
4515    }
4516
4517    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4518    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4519    // absolute, but not relative, values are different depending on whether
4520    // debug info exists.
4521    ++SDNodeOrder;
4522
4523    // Check if address has undef value.
4524    if (isa<UndefValue>(Address) ||
4525        (Address->use_empty() && !isa<Argument>(Address))) {
4526      DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4527      return 0;
4528    }
4529
4530    SDValue &N = NodeMap[Address];
4531    if (!N.getNode() && isa<Argument>(Address))
4532      // Check unused arguments map.
4533      N = UnusedArgNodeMap[Address];
4534    SDDbgValue *SDV;
4535    if (N.getNode()) {
4536      if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4537        Address = BCI->getOperand(0);
4538      // Parameters are handled specially.
4539      bool isParameter =
4540        (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable ||
4541         isa<Argument>(Address));
4542
4543      const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
4544
4545      if (isParameter && !AI) {
4546        FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4547        if (FINode)
4548          // Byval parameter.  We have a frame index at this point.
4549          SDV = DAG.getDbgValue(Variable, FINode->getIndex(),
4550                                0, dl, SDNodeOrder);
4551        else {
4552          // Address is an argument, so try to emit its dbg value using
4553          // virtual register info from the FuncInfo.ValueMap.
4554          EmitFuncArgumentDbgValue(Address, Variable, 0, N);
4555          return 0;
4556        }
4557      } else if (AI)
4558        SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
4559                              0, dl, SDNodeOrder);
4560      else {
4561        // Can't do anything with other non-AI cases yet.
4562        DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4563        DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t");
4564        DEBUG(Address->dump());
4565        return 0;
4566      }
4567      DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4568    } else {
4569      // If Address is an argument then try to emit its dbg value using
4570      // virtual register info from the FuncInfo.ValueMap.
4571      if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) {
4572        // If variable is pinned by a alloca in dominating bb then
4573        // use StaticAllocaMap.
4574        if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4575          if (AI->getParent() != DI.getParent()) {
4576            DenseMap<const AllocaInst*, int>::iterator SI =
4577              FuncInfo.StaticAllocaMap.find(AI);
4578            if (SI != FuncInfo.StaticAllocaMap.end()) {
4579              SDV = DAG.getDbgValue(Variable, SI->second,
4580                                    0, dl, SDNodeOrder);
4581              DAG.AddDbgValue(SDV, 0, false);
4582              return 0;
4583            }
4584          }
4585        }
4586        DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4587      }
4588    }
4589    return 0;
4590  }
4591  case Intrinsic::dbg_value: {
4592    const DbgValueInst &DI = cast<DbgValueInst>(I);
4593    if (!DIVariable(DI.getVariable()).Verify())
4594      return 0;
4595
4596    MDNode *Variable = DI.getVariable();
4597    uint64_t Offset = DI.getOffset();
4598    const Value *V = DI.getValue();
4599    if (!V)
4600      return 0;
4601
4602    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4603    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4604    // absolute, but not relative, values are different depending on whether
4605    // debug info exists.
4606    ++SDNodeOrder;
4607    SDDbgValue *SDV;
4608    if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
4609      SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder);
4610      DAG.AddDbgValue(SDV, 0, false);
4611    } else {
4612      // Do not use getValue() in here; we don't want to generate code at
4613      // this point if it hasn't been done yet.
4614      SDValue N = NodeMap[V];
4615      if (!N.getNode() && isa<Argument>(V))
4616        // Check unused arguments map.
4617        N = UnusedArgNodeMap[V];
4618      if (N.getNode()) {
4619        if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) {
4620          SDV = DAG.getDbgValue(Variable, N.getNode(),
4621                                N.getResNo(), Offset, dl, SDNodeOrder);
4622          DAG.AddDbgValue(SDV, N.getNode(), false);
4623        }
4624      } else if (!V->use_empty() ) {
4625        // Do not call getValue(V) yet, as we don't want to generate code.
4626        // Remember it for later.
4627        DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4628        DanglingDebugInfoMap[V] = DDI;
4629      } else {
4630        // We may expand this to cover more cases.  One case where we have no
4631        // data available is an unreferenced parameter.
4632        DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4633      }
4634    }
4635
4636    // Build a debug info table entry.
4637    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4638      V = BCI->getOperand(0);
4639    const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4640    // Don't handle byval struct arguments or VLAs, for example.
4641    if (!AI) {
4642      DEBUG(dbgs() << "Dropping debug location info for:\n  " << DI << "\n");
4643      DEBUG(dbgs() << "  Last seen at:\n    " << *V << "\n");
4644      return 0;
4645    }
4646    DenseMap<const AllocaInst*, int>::iterator SI =
4647      FuncInfo.StaticAllocaMap.find(AI);
4648    if (SI == FuncInfo.StaticAllocaMap.end())
4649      return 0; // VLAs.
4650    int FI = SI->second;
4651
4652    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4653    if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
4654      MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
4655    return 0;
4656  }
4657
4658  case Intrinsic::eh_typeid_for: {
4659    // Find the type id for the given typeinfo.
4660    GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0));
4661    unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4662    Res = DAG.getConstant(TypeID, MVT::i32);
4663    setValue(&I, Res);
4664    return 0;
4665  }
4666
4667  case Intrinsic::eh_return_i32:
4668  case Intrinsic::eh_return_i64:
4669    DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4670    DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl,
4671                            MVT::Other,
4672                            getControlRoot(),
4673                            getValue(I.getArgOperand(0)),
4674                            getValue(I.getArgOperand(1))));
4675    return 0;
4676  case Intrinsic::eh_unwind_init:
4677    DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4678    return 0;
4679  case Intrinsic::eh_dwarf_cfa: {
4680    SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl,
4681                                        TLI.getPointerTy());
4682    SDValue Offset = DAG.getNode(ISD::ADD, dl,
4683                                 TLI.getPointerTy(),
4684                                 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
4685                                             TLI.getPointerTy()),
4686                                 CfaArg);
4687    SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl,
4688                             TLI.getPointerTy(),
4689                             DAG.getConstant(0, TLI.getPointerTy()));
4690    setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
4691                             FA, Offset));
4692    return 0;
4693  }
4694  case Intrinsic::eh_sjlj_callsite: {
4695    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4696    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4697    assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4698    assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4699
4700    MMI.setCurrentCallSite(CI->getZExtValue());
4701    return 0;
4702  }
4703  case Intrinsic::eh_sjlj_functioncontext: {
4704    // Get and store the index of the function context.
4705    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4706    AllocaInst *FnCtx =
4707      cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
4708    int FI = FuncInfo.StaticAllocaMap[FnCtx];
4709    MFI->setFunctionContextIndex(FI);
4710    return 0;
4711  }
4712  case Intrinsic::eh_sjlj_setjmp: {
4713    SDValue Ops[2];
4714    Ops[0] = getRoot();
4715    Ops[1] = getValue(I.getArgOperand(0));
4716    SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, dl,
4717                             DAG.getVTList(MVT::i32, MVT::Other),
4718                             Ops, 2);
4719    setValue(&I, Op.getValue(0));
4720    DAG.setRoot(Op.getValue(1));
4721    return 0;
4722  }
4723  case Intrinsic::eh_sjlj_longjmp: {
4724    DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other,
4725                            getRoot(), getValue(I.getArgOperand(0))));
4726    return 0;
4727  }
4728
4729  case Intrinsic::x86_mmx_pslli_w:
4730  case Intrinsic::x86_mmx_pslli_d:
4731  case Intrinsic::x86_mmx_pslli_q:
4732  case Intrinsic::x86_mmx_psrli_w:
4733  case Intrinsic::x86_mmx_psrli_d:
4734  case Intrinsic::x86_mmx_psrli_q:
4735  case Intrinsic::x86_mmx_psrai_w:
4736  case Intrinsic::x86_mmx_psrai_d: {
4737    SDValue ShAmt = getValue(I.getArgOperand(1));
4738    if (isa<ConstantSDNode>(ShAmt)) {
4739      visitTargetIntrinsic(I, Intrinsic);
4740      return 0;
4741    }
4742    unsigned NewIntrinsic = 0;
4743    EVT ShAmtVT = MVT::v2i32;
4744    switch (Intrinsic) {
4745    case Intrinsic::x86_mmx_pslli_w:
4746      NewIntrinsic = Intrinsic::x86_mmx_psll_w;
4747      break;
4748    case Intrinsic::x86_mmx_pslli_d:
4749      NewIntrinsic = Intrinsic::x86_mmx_psll_d;
4750      break;
4751    case Intrinsic::x86_mmx_pslli_q:
4752      NewIntrinsic = Intrinsic::x86_mmx_psll_q;
4753      break;
4754    case Intrinsic::x86_mmx_psrli_w:
4755      NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
4756      break;
4757    case Intrinsic::x86_mmx_psrli_d:
4758      NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
4759      break;
4760    case Intrinsic::x86_mmx_psrli_q:
4761      NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
4762      break;
4763    case Intrinsic::x86_mmx_psrai_w:
4764      NewIntrinsic = Intrinsic::x86_mmx_psra_w;
4765      break;
4766    case Intrinsic::x86_mmx_psrai_d:
4767      NewIntrinsic = Intrinsic::x86_mmx_psra_d;
4768      break;
4769    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4770    }
4771
4772    // The vector shift intrinsics with scalars uses 32b shift amounts but
4773    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
4774    // to be zero.
4775    // We must do this early because v2i32 is not a legal type.
4776    SDValue ShOps[2];
4777    ShOps[0] = ShAmt;
4778    ShOps[1] = DAG.getConstant(0, MVT::i32);
4779    ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
4780    EVT DestVT = TLI.getValueType(I.getType());
4781    ShAmt = DAG.getNode(ISD::BITCAST, dl, DestVT, ShAmt);
4782    Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
4783                       DAG.getConstant(NewIntrinsic, MVT::i32),
4784                       getValue(I.getArgOperand(0)), ShAmt);
4785    setValue(&I, Res);
4786    return 0;
4787  }
4788  case Intrinsic::x86_avx_vinsertf128_pd_256:
4789  case Intrinsic::x86_avx_vinsertf128_ps_256:
4790  case Intrinsic::x86_avx_vinsertf128_si_256:
4791  case Intrinsic::x86_avx2_vinserti128: {
4792    EVT DestVT = TLI.getValueType(I.getType());
4793    EVT ElVT = TLI.getValueType(I.getArgOperand(1)->getType());
4794    uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue() & 1) *
4795                   ElVT.getVectorNumElements();
4796    Res = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, DestVT,
4797                      getValue(I.getArgOperand(0)),
4798                      getValue(I.getArgOperand(1)),
4799                      DAG.getIntPtrConstant(Idx));
4800    setValue(&I, Res);
4801    return 0;
4802  }
4803  case Intrinsic::x86_avx_vextractf128_pd_256:
4804  case Intrinsic::x86_avx_vextractf128_ps_256:
4805  case Intrinsic::x86_avx_vextractf128_si_256:
4806  case Intrinsic::x86_avx2_vextracti128: {
4807    EVT DestVT = TLI.getValueType(I.getType());
4808    uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(1))->getZExtValue() & 1) *
4809                   DestVT.getVectorNumElements();
4810    Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT,
4811                      getValue(I.getArgOperand(0)),
4812                      DAG.getIntPtrConstant(Idx));
4813    setValue(&I, Res);
4814    return 0;
4815  }
4816  case Intrinsic::convertff:
4817  case Intrinsic::convertfsi:
4818  case Intrinsic::convertfui:
4819  case Intrinsic::convertsif:
4820  case Intrinsic::convertuif:
4821  case Intrinsic::convertss:
4822  case Intrinsic::convertsu:
4823  case Intrinsic::convertus:
4824  case Intrinsic::convertuu: {
4825    ISD::CvtCode Code = ISD::CVT_INVALID;
4826    switch (Intrinsic) {
4827    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4828    case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
4829    case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4830    case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4831    case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4832    case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4833    case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
4834    case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
4835    case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4836    case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4837    }
4838    EVT DestVT = TLI.getValueType(I.getType());
4839    const Value *Op1 = I.getArgOperand(0);
4840    Res = DAG.getConvertRndSat(DestVT, dl, getValue(Op1),
4841                               DAG.getValueType(DestVT),
4842                               DAG.getValueType(getValue(Op1).getValueType()),
4843                               getValue(I.getArgOperand(1)),
4844                               getValue(I.getArgOperand(2)),
4845                               Code);
4846    setValue(&I, Res);
4847    return 0;
4848  }
4849  case Intrinsic::powi:
4850    setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)),
4851                            getValue(I.getArgOperand(1)), DAG));
4852    return 0;
4853  case Intrinsic::log:
4854    setValue(&I, expandLog(dl, getValue(I.getArgOperand(0)), DAG, TLI));
4855    return 0;
4856  case Intrinsic::log2:
4857    setValue(&I, expandLog2(dl, getValue(I.getArgOperand(0)), DAG, TLI));
4858    return 0;
4859  case Intrinsic::log10:
4860    setValue(&I, expandLog10(dl, getValue(I.getArgOperand(0)), DAG, TLI));
4861    return 0;
4862  case Intrinsic::exp:
4863    setValue(&I, expandExp(dl, getValue(I.getArgOperand(0)), DAG, TLI));
4864    return 0;
4865  case Intrinsic::exp2:
4866    setValue(&I, expandExp2(dl, getValue(I.getArgOperand(0)), DAG, TLI));
4867    return 0;
4868  case Intrinsic::pow:
4869    setValue(&I, expandPow(dl, getValue(I.getArgOperand(0)),
4870                           getValue(I.getArgOperand(1)), DAG, TLI));
4871    return 0;
4872  case Intrinsic::sqrt:
4873  case Intrinsic::fabs:
4874  case Intrinsic::sin:
4875  case Intrinsic::cos:
4876  case Intrinsic::floor:
4877  case Intrinsic::ceil:
4878  case Intrinsic::trunc:
4879  case Intrinsic::rint:
4880  case Intrinsic::nearbyint: {
4881    unsigned Opcode;
4882    switch (Intrinsic) {
4883    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4884    case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
4885    case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
4886    case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
4887    case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
4888    case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
4889    case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
4890    case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
4891    case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
4892    case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
4893    }
4894
4895    setValue(&I, DAG.getNode(Opcode, dl,
4896                             getValue(I.getArgOperand(0)).getValueType(),
4897                             getValue(I.getArgOperand(0))));
4898    return 0;
4899  }
4900  case Intrinsic::fma:
4901    setValue(&I, DAG.getNode(ISD::FMA, dl,
4902                             getValue(I.getArgOperand(0)).getValueType(),
4903                             getValue(I.getArgOperand(0)),
4904                             getValue(I.getArgOperand(1)),
4905                             getValue(I.getArgOperand(2))));
4906    return 0;
4907  case Intrinsic::fmuladd: {
4908    EVT VT = TLI.getValueType(I.getType());
4909    if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
4910        TLI.isOperationLegalOrCustom(ISD::FMA, VT) &&
4911        TLI.isFMAFasterThanMulAndAdd(VT)){
4912      setValue(&I, DAG.getNode(ISD::FMA, dl,
4913                               getValue(I.getArgOperand(0)).getValueType(),
4914                               getValue(I.getArgOperand(0)),
4915                               getValue(I.getArgOperand(1)),
4916                               getValue(I.getArgOperand(2))));
4917    } else {
4918      SDValue Mul = DAG.getNode(ISD::FMUL, dl,
4919                                getValue(I.getArgOperand(0)).getValueType(),
4920                                getValue(I.getArgOperand(0)),
4921                                getValue(I.getArgOperand(1)));
4922      SDValue Add = DAG.getNode(ISD::FADD, dl,
4923                                getValue(I.getArgOperand(0)).getValueType(),
4924                                Mul,
4925                                getValue(I.getArgOperand(2)));
4926      setValue(&I, Add);
4927    }
4928    return 0;
4929  }
4930  case Intrinsic::convert_to_fp16:
4931    setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl,
4932                             MVT::i16, getValue(I.getArgOperand(0))));
4933    return 0;
4934  case Intrinsic::convert_from_fp16:
4935    setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl,
4936                             MVT::f32, getValue(I.getArgOperand(0))));
4937    return 0;
4938  case Intrinsic::pcmarker: {
4939    SDValue Tmp = getValue(I.getArgOperand(0));
4940    DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp));
4941    return 0;
4942  }
4943  case Intrinsic::readcyclecounter: {
4944    SDValue Op = getRoot();
4945    Res = DAG.getNode(ISD::READCYCLECOUNTER, dl,
4946                      DAG.getVTList(MVT::i64, MVT::Other),
4947                      &Op, 1);
4948    setValue(&I, Res);
4949    DAG.setRoot(Res.getValue(1));
4950    return 0;
4951  }
4952  case Intrinsic::bswap:
4953    setValue(&I, DAG.getNode(ISD::BSWAP, dl,
4954                             getValue(I.getArgOperand(0)).getValueType(),
4955                             getValue(I.getArgOperand(0))));
4956    return 0;
4957  case Intrinsic::cttz: {
4958    SDValue Arg = getValue(I.getArgOperand(0));
4959    ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
4960    EVT Ty = Arg.getValueType();
4961    setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
4962                             dl, Ty, Arg));
4963    return 0;
4964  }
4965  case Intrinsic::ctlz: {
4966    SDValue Arg = getValue(I.getArgOperand(0));
4967    ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
4968    EVT Ty = Arg.getValueType();
4969    setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
4970                             dl, Ty, Arg));
4971    return 0;
4972  }
4973  case Intrinsic::ctpop: {
4974    SDValue Arg = getValue(I.getArgOperand(0));
4975    EVT Ty = Arg.getValueType();
4976    setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg));
4977    return 0;
4978  }
4979  case Intrinsic::stacksave: {
4980    SDValue Op = getRoot();
4981    Res = DAG.getNode(ISD::STACKSAVE, dl,
4982                      DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
4983    setValue(&I, Res);
4984    DAG.setRoot(Res.getValue(1));
4985    return 0;
4986  }
4987  case Intrinsic::stackrestore: {
4988    Res = getValue(I.getArgOperand(0));
4989    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res));
4990    return 0;
4991  }
4992  case Intrinsic::stackprotector: {
4993    // Emit code into the DAG to store the stack guard onto the stack.
4994    MachineFunction &MF = DAG.getMachineFunction();
4995    MachineFrameInfo *MFI = MF.getFrameInfo();
4996    EVT PtrTy = TLI.getPointerTy();
4997
4998    SDValue Src = getValue(I.getArgOperand(0));   // The guard's value.
4999    AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
5000
5001    int FI = FuncInfo.StaticAllocaMap[Slot];
5002    MFI->setStackProtectorIndex(FI);
5003
5004    SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
5005
5006    // Store the stack protector onto the stack.
5007    Res = DAG.getStore(getRoot(), dl, Src, FIN,
5008                       MachinePointerInfo::getFixedStack(FI),
5009                       true, false, 0);
5010    setValue(&I, Res);
5011    DAG.setRoot(Res);
5012    return 0;
5013  }
5014  case Intrinsic::objectsize: {
5015    // If we don't know by now, we're never going to know.
5016    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
5017
5018    assert(CI && "Non-constant type in __builtin_object_size?");
5019
5020    SDValue Arg = getValue(I.getCalledValue());
5021    EVT Ty = Arg.getValueType();
5022
5023    if (CI->isZero())
5024      Res = DAG.getConstant(-1ULL, Ty);
5025    else
5026      Res = DAG.getConstant(0, Ty);
5027
5028    setValue(&I, Res);
5029    return 0;
5030  }
5031  case Intrinsic::var_annotation:
5032    // Discard annotate attributes
5033    return 0;
5034
5035  case Intrinsic::init_trampoline: {
5036    const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5037
5038    SDValue Ops[6];
5039    Ops[0] = getRoot();
5040    Ops[1] = getValue(I.getArgOperand(0));
5041    Ops[2] = getValue(I.getArgOperand(1));
5042    Ops[3] = getValue(I.getArgOperand(2));
5043    Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5044    Ops[5] = DAG.getSrcValue(F);
5045
5046    Res = DAG.getNode(ISD::INIT_TRAMPOLINE, dl, MVT::Other, Ops, 6);
5047
5048    DAG.setRoot(Res);
5049    return 0;
5050  }
5051  case Intrinsic::adjust_trampoline: {
5052    setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, dl,
5053                             TLI.getPointerTy(),
5054                             getValue(I.getArgOperand(0))));
5055    return 0;
5056  }
5057  case Intrinsic::gcroot:
5058    if (GFI) {
5059      const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
5060      const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
5061
5062      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
5063      GFI->addStackRoot(FI->getIndex(), TypeMap);
5064    }
5065    return 0;
5066  case Intrinsic::gcread:
5067  case Intrinsic::gcwrite:
5068    llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
5069  case Intrinsic::flt_rounds:
5070    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32));
5071    return 0;
5072
5073  case Intrinsic::expect: {
5074    // Just replace __builtin_expect(exp, c) with EXP.
5075    setValue(&I, getValue(I.getArgOperand(0)));
5076    return 0;
5077  }
5078
5079  case Intrinsic::debugtrap:
5080  case Intrinsic::trap: {
5081    StringRef TrapFuncName = TM.Options.getTrapFunctionName();
5082    if (TrapFuncName.empty()) {
5083      ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
5084        ISD::TRAP : ISD::DEBUGTRAP;
5085      DAG.setRoot(DAG.getNode(Op, dl,MVT::Other, getRoot()));
5086      return 0;
5087    }
5088    TargetLowering::ArgListTy Args;
5089    TargetLowering::
5090    CallLoweringInfo CLI(getRoot(), I.getType(),
5091                 false, false, false, false, 0, CallingConv::C,
5092                 /*isTailCall=*/false,
5093                 /*doesNotRet=*/false, /*isReturnValueUsed=*/true,
5094                 DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()),
5095                 Args, DAG, dl);
5096    std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
5097    DAG.setRoot(Result.second);
5098    return 0;
5099  }
5100
5101  case Intrinsic::uadd_with_overflow:
5102  case Intrinsic::sadd_with_overflow:
5103  case Intrinsic::usub_with_overflow:
5104  case Intrinsic::ssub_with_overflow:
5105  case Intrinsic::umul_with_overflow:
5106  case Intrinsic::smul_with_overflow: {
5107    ISD::NodeType Op;
5108    switch (Intrinsic) {
5109    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5110    case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
5111    case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
5112    case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
5113    case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
5114    case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
5115    case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
5116    }
5117    SDValue Op1 = getValue(I.getArgOperand(0));
5118    SDValue Op2 = getValue(I.getArgOperand(1));
5119
5120    SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
5121    setValue(&I, DAG.getNode(Op, dl, VTs, Op1, Op2));
5122    return 0;
5123  }
5124  case Intrinsic::prefetch: {
5125    SDValue Ops[5];
5126    unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
5127    Ops[0] = getRoot();
5128    Ops[1] = getValue(I.getArgOperand(0));
5129    Ops[2] = getValue(I.getArgOperand(1));
5130    Ops[3] = getValue(I.getArgOperand(2));
5131    Ops[4] = getValue(I.getArgOperand(3));
5132    DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, dl,
5133                                        DAG.getVTList(MVT::Other),
5134                                        &Ops[0], 5,
5135                                        EVT::getIntegerVT(*Context, 8),
5136                                        MachinePointerInfo(I.getArgOperand(0)),
5137                                        0, /* align */
5138                                        false, /* volatile */
5139                                        rw==0, /* read */
5140                                        rw==1)); /* write */
5141    return 0;
5142  }
5143  case Intrinsic::lifetime_start:
5144  case Intrinsic::lifetime_end: {
5145    bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
5146    // Stack coloring is not enabled in O0, discard region information.
5147    if (TM.getOptLevel() == CodeGenOpt::None)
5148      return 0;
5149
5150    SmallVector<Value *, 4> Allocas;
5151    GetUnderlyingObjects(I.getArgOperand(1), Allocas, TD);
5152
5153    for (SmallVector<Value*, 4>::iterator Object = Allocas.begin(),
5154         E = Allocas.end(); Object != E; ++Object) {
5155      AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
5156
5157      // Could not find an Alloca.
5158      if (!LifetimeObject)
5159        continue;
5160
5161      int FI = FuncInfo.StaticAllocaMap[LifetimeObject];
5162
5163      SDValue Ops[2];
5164      Ops[0] = getRoot();
5165      Ops[1] = DAG.getFrameIndex(FI, TLI.getPointerTy(), true);
5166      unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END);
5167
5168      Res = DAG.getNode(Opcode, dl, MVT::Other, Ops, 2);
5169      DAG.setRoot(Res);
5170    }
5171  }
5172  case Intrinsic::invariant_start:
5173    // Discard region information.
5174    setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
5175    return 0;
5176  case Intrinsic::invariant_end:
5177    // Discard region information.
5178    return 0;
5179  case Intrinsic::donothing:
5180    // ignore
5181    return 0;
5182  }
5183}
5184
5185void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
5186                                      bool isTailCall,
5187                                      MachineBasicBlock *LandingPad) {
5188  PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
5189  FunctionType *FTy = cast<FunctionType>(PT->getElementType());
5190  Type *RetTy = FTy->getReturnType();
5191  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5192  MCSymbol *BeginLabel = 0;
5193
5194  TargetLowering::ArgListTy Args;
5195  TargetLowering::ArgListEntry Entry;
5196  Args.reserve(CS.arg_size());
5197
5198  // Check whether the function can return without sret-demotion.
5199  SmallVector<ISD::OutputArg, 4> Outs;
5200  GetReturnInfo(RetTy, CS.getAttributes(), Outs, TLI);
5201
5202  bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
5203                                           DAG.getMachineFunction(),
5204                                           FTy->isVarArg(), Outs,
5205                                           FTy->getContext());
5206
5207  SDValue DemoteStackSlot;
5208  int DemoteStackIdx = -100;
5209
5210  if (!CanLowerReturn) {
5211    uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(
5212                      FTy->getReturnType());
5213    unsigned Align  = TLI.getDataLayout()->getPrefTypeAlignment(
5214                      FTy->getReturnType());
5215    MachineFunction &MF = DAG.getMachineFunction();
5216    DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5217    Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
5218
5219    DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI.getPointerTy());
5220    Entry.Node = DemoteStackSlot;
5221    Entry.Ty = StackSlotPtrType;
5222    Entry.isSExt = false;
5223    Entry.isZExt = false;
5224    Entry.isInReg = false;
5225    Entry.isSRet = true;
5226    Entry.isNest = false;
5227    Entry.isByVal = false;
5228    Entry.Alignment = Align;
5229    Args.push_back(Entry);
5230    RetTy = Type::getVoidTy(FTy->getContext());
5231  }
5232
5233  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
5234       i != e; ++i) {
5235    const Value *V = *i;
5236
5237    // Skip empty types
5238    if (V->getType()->isEmptyTy())
5239      continue;
5240
5241    SDValue ArgNode = getValue(V);
5242    Entry.Node = ArgNode; Entry.Ty = V->getType();
5243
5244    unsigned attrInd = i - CS.arg_begin() + 1;
5245    Entry.isSExt  = CS.paramHasAttr(attrInd, Attribute::SExt);
5246    Entry.isZExt  = CS.paramHasAttr(attrInd, Attribute::ZExt);
5247    Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg);
5248    Entry.isSRet  = CS.paramHasAttr(attrInd, Attribute::StructRet);
5249    Entry.isNest  = CS.paramHasAttr(attrInd, Attribute::Nest);
5250    Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal);
5251    Entry.Alignment = CS.getParamAlignment(attrInd);
5252    Args.push_back(Entry);
5253  }
5254
5255  if (LandingPad) {
5256    // Insert a label before the invoke call to mark the try range.  This can be
5257    // used to detect deletion of the invoke via the MachineModuleInfo.
5258    BeginLabel = MMI.getContext().CreateTempSymbol();
5259
5260    // For SjLj, keep track of which landing pads go with which invokes
5261    // so as to maintain the ordering of pads in the LSDA.
5262    unsigned CallSiteIndex = MMI.getCurrentCallSite();
5263    if (CallSiteIndex) {
5264      MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
5265      LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex);
5266
5267      // Now that the call site is handled, stop tracking it.
5268      MMI.setCurrentCallSite(0);
5269    }
5270
5271    // Both PendingLoads and PendingExports must be flushed here;
5272    // this call might not return.
5273    (void)getRoot();
5274    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel));
5275  }
5276
5277  // Check if target-independent constraints permit a tail call here.
5278  // Target-dependent constraints are checked within TLI.LowerCallTo.
5279  if (isTailCall &&
5280      !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI))
5281    isTailCall = false;
5282
5283  TargetLowering::
5284  CallLoweringInfo CLI(getRoot(), RetTy, FTy, isTailCall, Callee, Args, DAG,
5285                       getCurDebugLoc(), CS);
5286  std::pair<SDValue,SDValue> Result = TLI.LowerCallTo(CLI);
5287  assert((isTailCall || Result.second.getNode()) &&
5288         "Non-null chain expected with non-tail call!");
5289  assert((Result.second.getNode() || !Result.first.getNode()) &&
5290         "Null value expected with tail call!");
5291  if (Result.first.getNode()) {
5292    setValue(CS.getInstruction(), Result.first);
5293  } else if (!CanLowerReturn && Result.second.getNode()) {
5294    // The instruction result is the result of loading from the
5295    // hidden sret parameter.
5296    SmallVector<EVT, 1> PVTs;
5297    Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
5298
5299    ComputeValueVTs(TLI, PtrRetTy, PVTs);
5300    assert(PVTs.size() == 1 && "Pointers should fit in one register");
5301    EVT PtrVT = PVTs[0];
5302
5303    SmallVector<EVT, 4> RetTys;
5304    SmallVector<uint64_t, 4> Offsets;
5305    RetTy = FTy->getReturnType();
5306    ComputeValueVTs(TLI, RetTy, RetTys, &Offsets);
5307
5308    unsigned NumValues = RetTys.size();
5309    SmallVector<SDValue, 4> Values(NumValues);
5310    SmallVector<SDValue, 4> Chains(NumValues);
5311
5312    for (unsigned i = 0; i < NumValues; ++i) {
5313      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT,
5314                                DemoteStackSlot,
5315                                DAG.getConstant(Offsets[i], PtrVT));
5316      SDValue L = DAG.getLoad(RetTys[i], getCurDebugLoc(), Result.second, Add,
5317                  MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]),
5318                              false, false, false, 1);
5319      Values[i] = L;
5320      Chains[i] = L.getValue(1);
5321    }
5322
5323    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
5324                                MVT::Other, &Chains[0], NumValues);
5325    PendingLoads.push_back(Chain);
5326
5327    setValue(CS.getInstruction(),
5328             DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
5329                         DAG.getVTList(&RetTys[0], RetTys.size()),
5330                         &Values[0], Values.size()));
5331  }
5332
5333  // Assign order to nodes here. If the call does not produce a result, it won't
5334  // be mapped to a SDNode and visit() will not assign it an order number.
5335  if (!Result.second.getNode()) {
5336    // As a special case, a null chain means that a tail call has been emitted and
5337    // the DAG root is already updated.
5338    HasTailCall = true;
5339    ++SDNodeOrder;
5340    AssignOrderingToNode(DAG.getRoot().getNode());
5341  } else {
5342    DAG.setRoot(Result.second);
5343    ++SDNodeOrder;
5344    AssignOrderingToNode(Result.second.getNode());
5345  }
5346
5347  if (LandingPad) {
5348    // Insert a label at the end of the invoke call to mark the try range.  This
5349    // can be used to detect deletion of the invoke via the MachineModuleInfo.
5350    MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
5351    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel));
5352
5353    // Inform MachineModuleInfo of range.
5354    MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
5355  }
5356}
5357
5358/// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
5359/// value is equal or not-equal to zero.
5360static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
5361  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
5362       UI != E; ++UI) {
5363    if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
5364      if (IC->isEquality())
5365        if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
5366          if (C->isNullValue())
5367            continue;
5368    // Unknown instruction.
5369    return false;
5370  }
5371  return true;
5372}
5373
5374static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
5375                             Type *LoadTy,
5376                             SelectionDAGBuilder &Builder) {
5377
5378  // Check to see if this load can be trivially constant folded, e.g. if the
5379  // input is from a string literal.
5380  if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5381    // Cast pointer to the type we really want to load.
5382    LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5383                                         PointerType::getUnqual(LoadTy));
5384
5385    if (const Constant *LoadCst =
5386          ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
5387                                       Builder.TD))
5388      return Builder.getValue(LoadCst);
5389  }
5390
5391  // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
5392  // still constant memory, the input chain can be the entry node.
5393  SDValue Root;
5394  bool ConstantMemory = false;
5395
5396  // Do not serialize (non-volatile) loads of constant memory with anything.
5397  if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5398    Root = Builder.DAG.getEntryNode();
5399    ConstantMemory = true;
5400  } else {
5401    // Do not serialize non-volatile loads against each other.
5402    Root = Builder.DAG.getRoot();
5403  }
5404
5405  SDValue Ptr = Builder.getValue(PtrVal);
5406  SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root,
5407                                        Ptr, MachinePointerInfo(PtrVal),
5408                                        false /*volatile*/,
5409                                        false /*nontemporal*/,
5410                                        false /*isinvariant*/, 1 /* align=1 */);
5411
5412  if (!ConstantMemory)
5413    Builder.PendingLoads.push_back(LoadVal.getValue(1));
5414  return LoadVal;
5415}
5416
5417
5418/// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5419/// If so, return true and lower it, otherwise return false and it will be
5420/// lowered like a normal call.
5421bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5422  // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
5423  if (I.getNumArgOperands() != 3)
5424    return false;
5425
5426  const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5427  if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5428      !I.getArgOperand(2)->getType()->isIntegerTy() ||
5429      !I.getType()->isIntegerTy())
5430    return false;
5431
5432  const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2));
5433
5434  // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
5435  // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
5436  if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) {
5437    bool ActuallyDoIt = true;
5438    MVT LoadVT;
5439    Type *LoadTy;
5440    switch (Size->getZExtValue()) {
5441    default:
5442      LoadVT = MVT::Other;
5443      LoadTy = 0;
5444      ActuallyDoIt = false;
5445      break;
5446    case 2:
5447      LoadVT = MVT::i16;
5448      LoadTy = Type::getInt16Ty(Size->getContext());
5449      break;
5450    case 4:
5451      LoadVT = MVT::i32;
5452      LoadTy = Type::getInt32Ty(Size->getContext());
5453      break;
5454    case 8:
5455      LoadVT = MVT::i64;
5456      LoadTy = Type::getInt64Ty(Size->getContext());
5457      break;
5458        /*
5459    case 16:
5460      LoadVT = MVT::v4i32;
5461      LoadTy = Type::getInt32Ty(Size->getContext());
5462      LoadTy = VectorType::get(LoadTy, 4);
5463      break;
5464         */
5465    }
5466
5467    // This turns into unaligned loads.  We only do this if the target natively
5468    // supports the MVT we'll be loading or if it is small enough (<= 4) that
5469    // we'll only produce a small number of byte loads.
5470
5471    // Require that we can find a legal MVT, and only do this if the target
5472    // supports unaligned loads of that type.  Expanding into byte loads would
5473    // bloat the code.
5474    if (ActuallyDoIt && Size->getZExtValue() > 4) {
5475      // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5476      // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5477      if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT))
5478        ActuallyDoIt = false;
5479    }
5480
5481    if (ActuallyDoIt) {
5482      SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5483      SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5484
5485      SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal,
5486                                 ISD::SETNE);
5487      EVT CallVT = TLI.getValueType(I.getType(), true);
5488      setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT));
5489      return true;
5490    }
5491  }
5492
5493
5494  return false;
5495}
5496
5497/// visitUnaryFloatCall - If a call instruction is a unary floating-point
5498/// operation (as expected), translate it to an SDNode with the specified opcode
5499/// and return true.
5500bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
5501                                              unsigned Opcode) {
5502  // Sanity check that it really is a unary floating-point call.
5503  if (I.getNumArgOperands() != 1 ||
5504      !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
5505      I.getType() != I.getArgOperand(0)->getType() ||
5506      !I.onlyReadsMemory())
5507    return false;
5508
5509  SDValue Tmp = getValue(I.getArgOperand(0));
5510  setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(), Tmp.getValueType(), Tmp));
5511  return true;
5512}
5513
5514void SelectionDAGBuilder::visitCall(const CallInst &I) {
5515  // Handle inline assembly differently.
5516  if (isa<InlineAsm>(I.getCalledValue())) {
5517    visitInlineAsm(&I);
5518    return;
5519  }
5520
5521  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5522  ComputeUsesVAFloatArgument(I, &MMI);
5523
5524  const char *RenameFn = 0;
5525  if (Function *F = I.getCalledFunction()) {
5526    if (F->isDeclaration()) {
5527      if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
5528        if (unsigned IID = II->getIntrinsicID(F)) {
5529          RenameFn = visitIntrinsicCall(I, IID);
5530          if (!RenameFn)
5531            return;
5532        }
5533      }
5534      if (unsigned IID = F->getIntrinsicID()) {
5535        RenameFn = visitIntrinsicCall(I, IID);
5536        if (!RenameFn)
5537          return;
5538      }
5539    }
5540
5541    // Check for well-known libc/libm calls.  If the function is internal, it
5542    // can't be a library call.
5543    LibFunc::Func Func;
5544    if (!F->hasLocalLinkage() && F->hasName() &&
5545        LibInfo->getLibFunc(F->getName(), Func) &&
5546        LibInfo->hasOptimizedCodeGen(Func)) {
5547      switch (Func) {
5548      default: break;
5549      case LibFunc::copysign:
5550      case LibFunc::copysignf:
5551      case LibFunc::copysignl:
5552        if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
5553            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5554            I.getType() == I.getArgOperand(0)->getType() &&
5555            I.getType() == I.getArgOperand(1)->getType() &&
5556            I.onlyReadsMemory()) {
5557          SDValue LHS = getValue(I.getArgOperand(0));
5558          SDValue RHS = getValue(I.getArgOperand(1));
5559          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(),
5560                                   LHS.getValueType(), LHS, RHS));
5561          return;
5562        }
5563        break;
5564      case LibFunc::fabs:
5565      case LibFunc::fabsf:
5566      case LibFunc::fabsl:
5567        if (visitUnaryFloatCall(I, ISD::FABS))
5568          return;
5569        break;
5570      case LibFunc::sin:
5571      case LibFunc::sinf:
5572      case LibFunc::sinl:
5573        if (visitUnaryFloatCall(I, ISD::FSIN))
5574          return;
5575        break;
5576      case LibFunc::cos:
5577      case LibFunc::cosf:
5578      case LibFunc::cosl:
5579        if (visitUnaryFloatCall(I, ISD::FCOS))
5580          return;
5581        break;
5582      case LibFunc::sqrt:
5583      case LibFunc::sqrtf:
5584      case LibFunc::sqrtl:
5585        if (visitUnaryFloatCall(I, ISD::FSQRT))
5586          return;
5587        break;
5588      case LibFunc::floor:
5589      case LibFunc::floorf:
5590      case LibFunc::floorl:
5591        if (visitUnaryFloatCall(I, ISD::FFLOOR))
5592          return;
5593        break;
5594      case LibFunc::nearbyint:
5595      case LibFunc::nearbyintf:
5596      case LibFunc::nearbyintl:
5597        if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
5598          return;
5599        break;
5600      case LibFunc::ceil:
5601      case LibFunc::ceilf:
5602      case LibFunc::ceill:
5603        if (visitUnaryFloatCall(I, ISD::FCEIL))
5604          return;
5605        break;
5606      case LibFunc::rint:
5607      case LibFunc::rintf:
5608      case LibFunc::rintl:
5609        if (visitUnaryFloatCall(I, ISD::FRINT))
5610          return;
5611        break;
5612      case LibFunc::trunc:
5613      case LibFunc::truncf:
5614      case LibFunc::truncl:
5615        if (visitUnaryFloatCall(I, ISD::FTRUNC))
5616          return;
5617        break;
5618      case LibFunc::log2:
5619      case LibFunc::log2f:
5620      case LibFunc::log2l:
5621        if (visitUnaryFloatCall(I, ISD::FLOG2))
5622          return;
5623        break;
5624      case LibFunc::exp2:
5625      case LibFunc::exp2f:
5626      case LibFunc::exp2l:
5627        if (visitUnaryFloatCall(I, ISD::FEXP2))
5628          return;
5629        break;
5630      case LibFunc::memcmp:
5631        if (visitMemCmpCall(I))
5632          return;
5633        break;
5634      }
5635    }
5636  }
5637
5638  SDValue Callee;
5639  if (!RenameFn)
5640    Callee = getValue(I.getCalledValue());
5641  else
5642    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
5643
5644  // Check if we can potentially perform a tail call. More detailed checking is
5645  // be done within LowerCallTo, after more information about the call is known.
5646  LowerCallTo(&I, Callee, I.isTailCall());
5647}
5648
5649namespace {
5650
5651/// AsmOperandInfo - This contains information for each constraint that we are
5652/// lowering.
5653class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
5654public:
5655  /// CallOperand - If this is the result output operand or a clobber
5656  /// this is null, otherwise it is the incoming operand to the CallInst.
5657  /// This gets modified as the asm is processed.
5658  SDValue CallOperand;
5659
5660  /// AssignedRegs - If this is a register or register class operand, this
5661  /// contains the set of register corresponding to the operand.
5662  RegsForValue AssignedRegs;
5663
5664  explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
5665    : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
5666  }
5667
5668  /// getCallOperandValEVT - Return the EVT of the Value* that this operand
5669  /// corresponds to.  If there is no Value* for this operand, it returns
5670  /// MVT::Other.
5671  EVT getCallOperandValEVT(LLVMContext &Context,
5672                           const TargetLowering &TLI,
5673                           const DataLayout *TD) const {
5674    if (CallOperandVal == 0) return MVT::Other;
5675
5676    if (isa<BasicBlock>(CallOperandVal))
5677      return TLI.getPointerTy();
5678
5679    llvm::Type *OpTy = CallOperandVal->getType();
5680
5681    // FIXME: code duplicated from TargetLowering::ParseConstraints().
5682    // If this is an indirect operand, the operand is a pointer to the
5683    // accessed type.
5684    if (isIndirect) {
5685      llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
5686      if (!PtrTy)
5687        report_fatal_error("Indirect operand for inline asm not a pointer!");
5688      OpTy = PtrTy->getElementType();
5689    }
5690
5691    // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
5692    if (StructType *STy = dyn_cast<StructType>(OpTy))
5693      if (STy->getNumElements() == 1)
5694        OpTy = STy->getElementType(0);
5695
5696    // If OpTy is not a single value, it may be a struct/union that we
5697    // can tile with integers.
5698    if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5699      unsigned BitSize = TD->getTypeSizeInBits(OpTy);
5700      switch (BitSize) {
5701      default: break;
5702      case 1:
5703      case 8:
5704      case 16:
5705      case 32:
5706      case 64:
5707      case 128:
5708        OpTy = IntegerType::get(Context, BitSize);
5709        break;
5710      }
5711    }
5712
5713    return TLI.getValueType(OpTy, true);
5714  }
5715};
5716
5717typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
5718
5719} // end anonymous namespace
5720
5721/// GetRegistersForValue - Assign registers (virtual or physical) for the
5722/// specified operand.  We prefer to assign virtual registers, to allow the
5723/// register allocator to handle the assignment process.  However, if the asm
5724/// uses features that we can't model on machineinstrs, we have SDISel do the
5725/// allocation.  This produces generally horrible, but correct, code.
5726///
5727///   OpInfo describes the operand.
5728///
5729static void GetRegistersForValue(SelectionDAG &DAG,
5730                                 const TargetLowering &TLI,
5731                                 DebugLoc DL,
5732                                 SDISelAsmOperandInfo &OpInfo) {
5733  LLVMContext &Context = *DAG.getContext();
5734
5735  MachineFunction &MF = DAG.getMachineFunction();
5736  SmallVector<unsigned, 4> Regs;
5737
5738  // If this is a constraint for a single physreg, or a constraint for a
5739  // register class, find it.
5740  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
5741    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5742                                     OpInfo.ConstraintVT);
5743
5744  unsigned NumRegs = 1;
5745  if (OpInfo.ConstraintVT != MVT::Other) {
5746    // If this is a FP input in an integer register (or visa versa) insert a bit
5747    // cast of the input value.  More generally, handle any case where the input
5748    // value disagrees with the register class we plan to stick this in.
5749    if (OpInfo.Type == InlineAsm::isInput &&
5750        PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
5751      // Try to convert to the first EVT that the reg class contains.  If the
5752      // types are identical size, use a bitcast to convert (e.g. two differing
5753      // vector types).
5754      MVT RegVT = *PhysReg.second->vt_begin();
5755      if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
5756        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5757                                         RegVT, OpInfo.CallOperand);
5758        OpInfo.ConstraintVT = RegVT;
5759      } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
5760        // If the input is a FP value and we want it in FP registers, do a
5761        // bitcast to the corresponding integer type.  This turns an f64 value
5762        // into i64, which can be passed with two i32 values on a 32-bit
5763        // machine.
5764        RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
5765        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5766                                         RegVT, OpInfo.CallOperand);
5767        OpInfo.ConstraintVT = RegVT;
5768      }
5769    }
5770
5771    NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
5772  }
5773
5774  MVT RegVT;
5775  EVT ValueVT = OpInfo.ConstraintVT;
5776
5777  // If this is a constraint for a specific physical register, like {r17},
5778  // assign it now.
5779  if (unsigned AssignedReg = PhysReg.first) {
5780    const TargetRegisterClass *RC = PhysReg.second;
5781    if (OpInfo.ConstraintVT == MVT::Other)
5782      ValueVT = *RC->vt_begin();
5783
5784    // Get the actual register value type.  This is important, because the user
5785    // may have asked for (e.g.) the AX register in i32 type.  We need to
5786    // remember that AX is actually i16 to get the right extension.
5787    RegVT = *RC->vt_begin();
5788
5789    // This is a explicit reference to a physical register.
5790    Regs.push_back(AssignedReg);
5791
5792    // If this is an expanded reference, add the rest of the regs to Regs.
5793    if (NumRegs != 1) {
5794      TargetRegisterClass::iterator I = RC->begin();
5795      for (; *I != AssignedReg; ++I)
5796        assert(I != RC->end() && "Didn't find reg!");
5797
5798      // Already added the first reg.
5799      --NumRegs; ++I;
5800      for (; NumRegs; --NumRegs, ++I) {
5801        assert(I != RC->end() && "Ran out of registers to allocate!");
5802        Regs.push_back(*I);
5803      }
5804    }
5805
5806    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5807    return;
5808  }
5809
5810  // Otherwise, if this was a reference to an LLVM register class, create vregs
5811  // for this reference.
5812  if (const TargetRegisterClass *RC = PhysReg.second) {
5813    RegVT = *RC->vt_begin();
5814    if (OpInfo.ConstraintVT == MVT::Other)
5815      ValueVT = RegVT;
5816
5817    // Create the appropriate number of virtual registers.
5818    MachineRegisterInfo &RegInfo = MF.getRegInfo();
5819    for (; NumRegs; --NumRegs)
5820      Regs.push_back(RegInfo.createVirtualRegister(RC));
5821
5822    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5823    return;
5824  }
5825
5826  // Otherwise, we couldn't allocate enough registers for this.
5827}
5828
5829/// visitInlineAsm - Handle a call to an InlineAsm object.
5830///
5831void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
5832  const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
5833
5834  /// ConstraintOperands - Information about all of the constraints.
5835  SDISelAsmOperandInfoVector ConstraintOperands;
5836
5837  TargetLowering::AsmOperandInfoVector
5838    TargetConstraints = TLI.ParseConstraints(CS);
5839
5840  bool hasMemory = false;
5841
5842  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
5843  unsigned ResNo = 0;   // ResNo - The result number of the next output.
5844  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
5845    ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
5846    SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
5847
5848    MVT OpVT = MVT::Other;
5849
5850    // Compute the value type for each operand.
5851    switch (OpInfo.Type) {
5852    case InlineAsm::isOutput:
5853      // Indirect outputs just consume an argument.
5854      if (OpInfo.isIndirect) {
5855        OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5856        break;
5857      }
5858
5859      // The return value of the call is this value.  As such, there is no
5860      // corresponding argument.
5861      assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
5862      if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
5863        OpVT = TLI.getSimpleValueType(STy->getElementType(ResNo));
5864      } else {
5865        assert(ResNo == 0 && "Asm only has one result!");
5866        OpVT = TLI.getSimpleValueType(CS.getType());
5867      }
5868      ++ResNo;
5869      break;
5870    case InlineAsm::isInput:
5871      OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5872      break;
5873    case InlineAsm::isClobber:
5874      // Nothing to do.
5875      break;
5876    }
5877
5878    // If this is an input or an indirect output, process the call argument.
5879    // BasicBlocks are labels, currently appearing only in asm's.
5880    if (OpInfo.CallOperandVal) {
5881      if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
5882        OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
5883      } else {
5884        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
5885      }
5886
5887      OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD).
5888        getSimpleVT();
5889    }
5890
5891    OpInfo.ConstraintVT = OpVT;
5892
5893    // Indirect operand accesses access memory.
5894    if (OpInfo.isIndirect)
5895      hasMemory = true;
5896    else {
5897      for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
5898        TargetLowering::ConstraintType
5899          CType = TLI.getConstraintType(OpInfo.Codes[j]);
5900        if (CType == TargetLowering::C_Memory) {
5901          hasMemory = true;
5902          break;
5903        }
5904      }
5905    }
5906  }
5907
5908  SDValue Chain, Flag;
5909
5910  // We won't need to flush pending loads if this asm doesn't touch
5911  // memory and is nonvolatile.
5912  if (hasMemory || IA->hasSideEffects())
5913    Chain = getRoot();
5914  else
5915    Chain = DAG.getRoot();
5916
5917  // Second pass over the constraints: compute which constraint option to use
5918  // and assign registers to constraints that want a specific physreg.
5919  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5920    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5921
5922    // If this is an output operand with a matching input operand, look up the
5923    // matching input. If their types mismatch, e.g. one is an integer, the
5924    // other is floating point, or their sizes are different, flag it as an
5925    // error.
5926    if (OpInfo.hasMatchingInput()) {
5927      SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5928
5929      if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5930        std::pair<unsigned, const TargetRegisterClass*> MatchRC =
5931          TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5932                                           OpInfo.ConstraintVT);
5933        std::pair<unsigned, const TargetRegisterClass*> InputRC =
5934          TLI.getRegForInlineAsmConstraint(Input.ConstraintCode,
5935                                           Input.ConstraintVT);
5936        if ((OpInfo.ConstraintVT.isInteger() !=
5937             Input.ConstraintVT.isInteger()) ||
5938            (MatchRC.second != InputRC.second)) {
5939          report_fatal_error("Unsupported asm: input constraint"
5940                             " with a matching output constraint of"
5941                             " incompatible type!");
5942        }
5943        Input.ConstraintVT = OpInfo.ConstraintVT;
5944      }
5945    }
5946
5947    // Compute the constraint code and ConstraintType to use.
5948    TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
5949
5950    // If this is a memory input, and if the operand is not indirect, do what we
5951    // need to to provide an address for the memory input.
5952    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5953        !OpInfo.isIndirect) {
5954      assert((OpInfo.isMultipleAlternative ||
5955              (OpInfo.Type == InlineAsm::isInput)) &&
5956             "Can only indirectify direct input operands!");
5957
5958      // Memory operands really want the address of the value.  If we don't have
5959      // an indirect input, put it in the constpool if we can, otherwise spill
5960      // it to a stack slot.
5961      // TODO: This isn't quite right. We need to handle these according to
5962      // the addressing mode that the constraint wants. Also, this may take
5963      // an additional register for the computation and we don't want that
5964      // either.
5965
5966      // If the operand is a float, integer, or vector constant, spill to a
5967      // constant pool entry to get its address.
5968      const Value *OpVal = OpInfo.CallOperandVal;
5969      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
5970          isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
5971        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
5972                                                 TLI.getPointerTy());
5973      } else {
5974        // Otherwise, create a stack slot and emit a store to it before the
5975        // asm.
5976        Type *Ty = OpVal->getType();
5977        uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty);
5978        unsigned Align  = TLI.getDataLayout()->getPrefTypeAlignment(Ty);
5979        MachineFunction &MF = DAG.getMachineFunction();
5980        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5981        SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
5982        Chain = DAG.getStore(Chain, getCurDebugLoc(),
5983                             OpInfo.CallOperand, StackSlot,
5984                             MachinePointerInfo::getFixedStack(SSFI),
5985                             false, false, 0);
5986        OpInfo.CallOperand = StackSlot;
5987      }
5988
5989      // There is no longer a Value* corresponding to this operand.
5990      OpInfo.CallOperandVal = 0;
5991
5992      // It is now an indirect operand.
5993      OpInfo.isIndirect = true;
5994    }
5995
5996    // If this constraint is for a specific register, allocate it before
5997    // anything else.
5998    if (OpInfo.ConstraintType == TargetLowering::C_Register)
5999      GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo);
6000  }
6001
6002  // Second pass - Loop over all of the operands, assigning virtual or physregs
6003  // to register class operands.
6004  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6005    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6006
6007    // C_Register operands have already been allocated, Other/Memory don't need
6008    // to be.
6009    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
6010      GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo);
6011  }
6012
6013  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
6014  std::vector<SDValue> AsmNodeOperands;
6015  AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
6016  AsmNodeOperands.push_back(
6017          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
6018                                      TLI.getPointerTy()));
6019
6020  // If we have a !srcloc metadata node associated with it, we want to attach
6021  // this to the ultimately generated inline asm machineinstr.  To do this, we
6022  // pass in the third operand as this (potentially null) inline asm MDNode.
6023  const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
6024  AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
6025
6026  // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
6027  // bits as operand 3.
6028  unsigned ExtraInfo = 0;
6029  if (IA->hasSideEffects())
6030    ExtraInfo |= InlineAsm::Extra_HasSideEffects;
6031  if (IA->isAlignStack())
6032    ExtraInfo |= InlineAsm::Extra_IsAlignStack;
6033  // Set the asm dialect.
6034  ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
6035
6036  // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
6037  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
6038    TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
6039
6040    // Compute the constraint code and ConstraintType to use.
6041    TLI.ComputeConstraintToUse(OpInfo, SDValue());
6042
6043    // Ideally, we would only check against memory constraints.  However, the
6044    // meaning of an other constraint can be target-specific and we can't easily
6045    // reason about it.  Therefore, be conservative and set MayLoad/MayStore
6046    // for other constriants as well.
6047    if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
6048        OpInfo.ConstraintType == TargetLowering::C_Other) {
6049      if (OpInfo.Type == InlineAsm::isInput)
6050        ExtraInfo |= InlineAsm::Extra_MayLoad;
6051      else if (OpInfo.Type == InlineAsm::isOutput)
6052        ExtraInfo |= InlineAsm::Extra_MayStore;
6053    }
6054  }
6055
6056  AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo,
6057                                                  TLI.getPointerTy()));
6058
6059  // Loop over all of the inputs, copying the operand values into the
6060  // appropriate registers and processing the output regs.
6061  RegsForValue RetValRegs;
6062
6063  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
6064  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
6065
6066  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6067    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6068
6069    switch (OpInfo.Type) {
6070    case InlineAsm::isOutput: {
6071      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
6072          OpInfo.ConstraintType != TargetLowering::C_Register) {
6073        // Memory output, or 'other' output (e.g. 'X' constraint).
6074        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
6075
6076        // Add information to the INLINEASM node to know about this output.
6077        unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6078        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
6079                                                        TLI.getPointerTy()));
6080        AsmNodeOperands.push_back(OpInfo.CallOperand);
6081        break;
6082      }
6083
6084      // Otherwise, this is a register or register class output.
6085
6086      // Copy the output from the appropriate register.  Find a register that
6087      // we can use.
6088      if (OpInfo.AssignedRegs.Regs.empty()) {
6089        LLVMContext &Ctx = *DAG.getContext();
6090        Ctx.emitError(CS.getInstruction(),
6091                      "couldn't allocate output register for constraint '" +
6092                           Twine(OpInfo.ConstraintCode) + "'");
6093        break;
6094      }
6095
6096      // If this is an indirect operand, store through the pointer after the
6097      // asm.
6098      if (OpInfo.isIndirect) {
6099        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
6100                                                      OpInfo.CallOperandVal));
6101      } else {
6102        // This is the result value of the call.
6103        assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6104        // Concatenate this output onto the outputs list.
6105        RetValRegs.append(OpInfo.AssignedRegs);
6106      }
6107
6108      // Add information to the INLINEASM node to know that this register is
6109      // set.
6110      OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
6111                                           InlineAsm::Kind_RegDefEarlyClobber :
6112                                               InlineAsm::Kind_RegDef,
6113                                               false,
6114                                               0,
6115                                               DAG,
6116                                               AsmNodeOperands);
6117      break;
6118    }
6119    case InlineAsm::isInput: {
6120      SDValue InOperandVal = OpInfo.CallOperand;
6121
6122      if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
6123        // If this is required to match an output register we have already set,
6124        // just use its register.
6125        unsigned OperandNo = OpInfo.getMatchedOperand();
6126
6127        // Scan until we find the definition we already emitted of this operand.
6128        // When we find it, create a RegsForValue operand.
6129        unsigned CurOp = InlineAsm::Op_FirstOperand;
6130        for (; OperandNo; --OperandNo) {
6131          // Advance to the next operand.
6132          unsigned OpFlag =
6133            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6134          assert((InlineAsm::isRegDefKind(OpFlag) ||
6135                  InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
6136                  InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
6137          CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
6138        }
6139
6140        unsigned OpFlag =
6141          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6142        if (InlineAsm::isRegDefKind(OpFlag) ||
6143            InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
6144          // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
6145          if (OpInfo.isIndirect) {
6146            // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
6147            LLVMContext &Ctx = *DAG.getContext();
6148            Ctx.emitError(CS.getInstruction(),  "inline asm not supported yet:"
6149                          " don't know how to handle tied "
6150                          "indirect register inputs");
6151          }
6152
6153          RegsForValue MatchedRegs;
6154          MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
6155          MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
6156          MatchedRegs.RegVTs.push_back(RegVT);
6157          MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
6158          for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
6159               i != e; ++i)
6160            MatchedRegs.Regs.push_back
6161              (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)));
6162
6163          // Use the produced MatchedRegs object to
6164          MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
6165                                    Chain, &Flag, CS.getInstruction());
6166          MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
6167                                           true, OpInfo.getMatchedOperand(),
6168                                           DAG, AsmNodeOperands);
6169          break;
6170        }
6171
6172        assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
6173        assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
6174               "Unexpected number of operands");
6175        // Add information to the INLINEASM node to know about this input.
6176        // See InlineAsm.h isUseOperandTiedToDef.
6177        OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
6178                                                    OpInfo.getMatchedOperand());
6179        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
6180                                                        TLI.getPointerTy()));
6181        AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
6182        break;
6183      }
6184
6185      // Treat indirect 'X' constraint as memory.
6186      if (OpInfo.ConstraintType == TargetLowering::C_Other &&
6187          OpInfo.isIndirect)
6188        OpInfo.ConstraintType = TargetLowering::C_Memory;
6189
6190      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
6191        std::vector<SDValue> Ops;
6192        TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
6193                                         Ops, DAG);
6194        if (Ops.empty()) {
6195          LLVMContext &Ctx = *DAG.getContext();
6196          Ctx.emitError(CS.getInstruction(),
6197                        "invalid operand for inline asm constraint '" +
6198                        Twine(OpInfo.ConstraintCode) + "'");
6199          break;
6200        }
6201
6202        // Add information to the INLINEASM node to know about this input.
6203        unsigned ResOpType =
6204          InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
6205        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6206                                                        TLI.getPointerTy()));
6207        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
6208        break;
6209      }
6210
6211      if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
6212        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
6213        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
6214               "Memory operands expect pointer values");
6215
6216        // Add information to the INLINEASM node to know about this input.
6217        unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6218        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6219                                                        TLI.getPointerTy()));
6220        AsmNodeOperands.push_back(InOperandVal);
6221        break;
6222      }
6223
6224      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
6225              OpInfo.ConstraintType == TargetLowering::C_Register) &&
6226             "Unknown constraint type!");
6227
6228      // TODO: Support this.
6229      if (OpInfo.isIndirect) {
6230        LLVMContext &Ctx = *DAG.getContext();
6231        Ctx.emitError(CS.getInstruction(),
6232                      "Don't know how to handle indirect register inputs yet "
6233                      "for constraint '" + Twine(OpInfo.ConstraintCode) + "'");
6234        break;
6235      }
6236
6237      // Copy the input into the appropriate registers.
6238      if (OpInfo.AssignedRegs.Regs.empty()) {
6239        LLVMContext &Ctx = *DAG.getContext();
6240        Ctx.emitError(CS.getInstruction(),
6241                      "couldn't allocate input reg for constraint '" +
6242                           Twine(OpInfo.ConstraintCode) + "'");
6243        break;
6244      }
6245
6246      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
6247                                        Chain, &Flag, CS.getInstruction());
6248
6249      OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
6250                                               DAG, AsmNodeOperands);
6251      break;
6252    }
6253    case InlineAsm::isClobber: {
6254      // Add the clobbered value to the operand list, so that the register
6255      // allocator is aware that the physreg got clobbered.
6256      if (!OpInfo.AssignedRegs.Regs.empty())
6257        OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
6258                                                 false, 0, DAG,
6259                                                 AsmNodeOperands);
6260      break;
6261    }
6262    }
6263  }
6264
6265  // Finish up input operands.  Set the input chain and add the flag last.
6266  AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
6267  if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
6268
6269  Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(),
6270                      DAG.getVTList(MVT::Other, MVT::Glue),
6271                      &AsmNodeOperands[0], AsmNodeOperands.size());
6272  Flag = Chain.getValue(1);
6273
6274  // If this asm returns a register value, copy the result from that register
6275  // and set it as the value of the call.
6276  if (!RetValRegs.Regs.empty()) {
6277    SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
6278                                             Chain, &Flag, CS.getInstruction());
6279
6280    // FIXME: Why don't we do this for inline asms with MRVs?
6281    if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
6282      EVT ResultType = TLI.getValueType(CS.getType());
6283
6284      // If any of the results of the inline asm is a vector, it may have the
6285      // wrong width/num elts.  This can happen for register classes that can
6286      // contain multiple different value types.  The preg or vreg allocated may
6287      // not have the same VT as was expected.  Convert it to the right type
6288      // with bit_convert.
6289      if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
6290        Val = DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
6291                          ResultType, Val);
6292
6293      } else if (ResultType != Val.getValueType() &&
6294                 ResultType.isInteger() && Val.getValueType().isInteger()) {
6295        // If a result value was tied to an input value, the computed result may
6296        // have a wider width than the expected result.  Extract the relevant
6297        // portion.
6298        Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val);
6299      }
6300
6301      assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
6302    }
6303
6304    setValue(CS.getInstruction(), Val);
6305    // Don't need to use this as a chain in this case.
6306    if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
6307      return;
6308  }
6309
6310  std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
6311
6312  // Process indirect outputs, first output all of the flagged copies out of
6313  // physregs.
6314  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
6315    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
6316    const Value *Ptr = IndirectStoresToEmit[i].second;
6317    SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
6318                                             Chain, &Flag, IA);
6319    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
6320  }
6321
6322  // Emit the non-flagged stores from the physregs.
6323  SmallVector<SDValue, 8> OutChains;
6324  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
6325    SDValue Val = DAG.getStore(Chain, getCurDebugLoc(),
6326                               StoresToEmit[i].first,
6327                               getValue(StoresToEmit[i].second),
6328                               MachinePointerInfo(StoresToEmit[i].second),
6329                               false, false, 0);
6330    OutChains.push_back(Val);
6331  }
6332
6333  if (!OutChains.empty())
6334    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
6335                        &OutChains[0], OutChains.size());
6336
6337  DAG.setRoot(Chain);
6338}
6339
6340void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
6341  DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(),
6342                          MVT::Other, getRoot(),
6343                          getValue(I.getArgOperand(0)),
6344                          DAG.getSrcValue(I.getArgOperand(0))));
6345}
6346
6347void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
6348  const DataLayout &TD = *TLI.getDataLayout();
6349  SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(),
6350                           getRoot(), getValue(I.getOperand(0)),
6351                           DAG.getSrcValue(I.getOperand(0)),
6352                           TD.getABITypeAlignment(I.getType()));
6353  setValue(&I, V);
6354  DAG.setRoot(V.getValue(1));
6355}
6356
6357void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
6358  DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(),
6359                          MVT::Other, getRoot(),
6360                          getValue(I.getArgOperand(0)),
6361                          DAG.getSrcValue(I.getArgOperand(0))));
6362}
6363
6364void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
6365  DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(),
6366                          MVT::Other, getRoot(),
6367                          getValue(I.getArgOperand(0)),
6368                          getValue(I.getArgOperand(1)),
6369                          DAG.getSrcValue(I.getArgOperand(0)),
6370                          DAG.getSrcValue(I.getArgOperand(1))));
6371}
6372
6373/// TargetLowering::LowerCallTo - This is the default LowerCallTo
6374/// implementation, which just calls LowerCall.
6375/// FIXME: When all targets are
6376/// migrated to using LowerCall, this hook should be integrated into SDISel.
6377std::pair<SDValue, SDValue>
6378TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
6379  // Handle all of the outgoing arguments.
6380  CLI.Outs.clear();
6381  CLI.OutVals.clear();
6382  ArgListTy &Args = CLI.Args;
6383  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
6384    SmallVector<EVT, 4> ValueVTs;
6385    ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
6386    for (unsigned Value = 0, NumValues = ValueVTs.size();
6387         Value != NumValues; ++Value) {
6388      EVT VT = ValueVTs[Value];
6389      Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
6390      SDValue Op = SDValue(Args[i].Node.getNode(),
6391                           Args[i].Node.getResNo() + Value);
6392      ISD::ArgFlagsTy Flags;
6393      unsigned OriginalAlignment =
6394        getDataLayout()->getABITypeAlignment(ArgTy);
6395
6396      if (Args[i].isZExt)
6397        Flags.setZExt();
6398      if (Args[i].isSExt)
6399        Flags.setSExt();
6400      if (Args[i].isInReg)
6401        Flags.setInReg();
6402      if (Args[i].isSRet)
6403        Flags.setSRet();
6404      if (Args[i].isByVal) {
6405        Flags.setByVal();
6406        PointerType *Ty = cast<PointerType>(Args[i].Ty);
6407        Type *ElementTy = Ty->getElementType();
6408        Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy));
6409        // For ByVal, alignment should come from FE.  BE will guess if this
6410        // info is not there but there are cases it cannot get right.
6411        unsigned FrameAlign;
6412        if (Args[i].Alignment)
6413          FrameAlign = Args[i].Alignment;
6414        else
6415          FrameAlign = getByValTypeAlignment(ElementTy);
6416        Flags.setByValAlign(FrameAlign);
6417      }
6418      if (Args[i].isNest)
6419        Flags.setNest();
6420      Flags.setOrigAlign(OriginalAlignment);
6421
6422      MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT);
6423      unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT);
6424      SmallVector<SDValue, 4> Parts(NumParts);
6425      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
6426
6427      if (Args[i].isSExt)
6428        ExtendKind = ISD::SIGN_EXTEND;
6429      else if (Args[i].isZExt)
6430        ExtendKind = ISD::ZERO_EXTEND;
6431
6432      getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts,
6433                     PartVT, CLI.CS ? CLI.CS->getInstruction() : 0, ExtendKind);
6434
6435      for (unsigned j = 0; j != NumParts; ++j) {
6436        // if it isn't first piece, alignment must be 1
6437        ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(),
6438                               i < CLI.NumFixedArgs,
6439                               i, j*Parts[j].getValueType().getStoreSize());
6440        if (NumParts > 1 && j == 0)
6441          MyFlags.Flags.setSplit();
6442        else if (j != 0)
6443          MyFlags.Flags.setOrigAlign(1);
6444
6445        CLI.Outs.push_back(MyFlags);
6446        CLI.OutVals.push_back(Parts[j]);
6447      }
6448    }
6449  }
6450
6451  // Handle the incoming return values from the call.
6452  CLI.Ins.clear();
6453  SmallVector<EVT, 4> RetTys;
6454  ComputeValueVTs(*this, CLI.RetTy, RetTys);
6455  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6456    EVT VT = RetTys[I];
6457    MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
6458    unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
6459    for (unsigned i = 0; i != NumRegs; ++i) {
6460      ISD::InputArg MyFlags;
6461      MyFlags.VT = RegisterVT;
6462      MyFlags.Used = CLI.IsReturnValueUsed;
6463      if (CLI.RetSExt)
6464        MyFlags.Flags.setSExt();
6465      if (CLI.RetZExt)
6466        MyFlags.Flags.setZExt();
6467      if (CLI.IsInReg)
6468        MyFlags.Flags.setInReg();
6469      CLI.Ins.push_back(MyFlags);
6470    }
6471  }
6472
6473  SmallVector<SDValue, 4> InVals;
6474  CLI.Chain = LowerCall(CLI, InVals);
6475
6476  // Verify that the target's LowerCall behaved as expected.
6477  assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
6478         "LowerCall didn't return a valid chain!");
6479  assert((!CLI.IsTailCall || InVals.empty()) &&
6480         "LowerCall emitted a return value for a tail call!");
6481  assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
6482         "LowerCall didn't emit the correct number of values!");
6483
6484  // For a tail call, the return value is merely live-out and there aren't
6485  // any nodes in the DAG representing it. Return a special value to
6486  // indicate that a tail call has been emitted and no more Instructions
6487  // should be processed in the current block.
6488  if (CLI.IsTailCall) {
6489    CLI.DAG.setRoot(CLI.Chain);
6490    return std::make_pair(SDValue(), SDValue());
6491  }
6492
6493  DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
6494          assert(InVals[i].getNode() &&
6495                 "LowerCall emitted a null value!");
6496          assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
6497                 "LowerCall emitted a value with the wrong type!");
6498        });
6499
6500  // Collect the legal value parts into potentially illegal values
6501  // that correspond to the original function's return values.
6502  ISD::NodeType AssertOp = ISD::DELETED_NODE;
6503  if (CLI.RetSExt)
6504    AssertOp = ISD::AssertSext;
6505  else if (CLI.RetZExt)
6506    AssertOp = ISD::AssertZext;
6507  SmallVector<SDValue, 4> ReturnValues;
6508  unsigned CurReg = 0;
6509  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6510    EVT VT = RetTys[I];
6511    MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
6512    unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
6513
6514    ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
6515                                            NumRegs, RegisterVT, VT, NULL,
6516                                            AssertOp));
6517    CurReg += NumRegs;
6518  }
6519
6520  // For a function returning void, there is no return value. We can't create
6521  // such a node, so we just return a null return value in that case. In
6522  // that case, nothing will actually look at the value.
6523  if (ReturnValues.empty())
6524    return std::make_pair(SDValue(), CLI.Chain);
6525
6526  SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
6527                                CLI.DAG.getVTList(&RetTys[0], RetTys.size()),
6528                            &ReturnValues[0], ReturnValues.size());
6529  return std::make_pair(Res, CLI.Chain);
6530}
6531
6532void TargetLowering::LowerOperationWrapper(SDNode *N,
6533                                           SmallVectorImpl<SDValue> &Results,
6534                                           SelectionDAG &DAG) const {
6535  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
6536  if (Res.getNode())
6537    Results.push_back(Res);
6538}
6539
6540SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
6541  llvm_unreachable("LowerOperation not implemented for this target!");
6542}
6543
6544void
6545SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
6546  SDValue Op = getNonRegisterValue(V);
6547  assert((Op.getOpcode() != ISD::CopyFromReg ||
6548          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
6549         "Copy from a reg to the same reg!");
6550  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
6551
6552  RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
6553  SDValue Chain = DAG.getEntryNode();
6554  RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0, V);
6555  PendingExports.push_back(Chain);
6556}
6557
6558#include "llvm/CodeGen/SelectionDAGISel.h"
6559
6560/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
6561/// entry block, return true.  This includes arguments used by switches, since
6562/// the switch may expand into multiple basic blocks.
6563static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
6564  // With FastISel active, we may be splitting blocks, so force creation
6565  // of virtual registers for all non-dead arguments.
6566  if (FastISel)
6567    return A->use_empty();
6568
6569  const BasicBlock *Entry = A->getParent()->begin();
6570  for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end();
6571       UI != E; ++UI) {
6572    const User *U = *UI;
6573    if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U))
6574      return false;  // Use not in entry block.
6575  }
6576  return true;
6577}
6578
6579void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) {
6580  // If this is the entry block, emit arguments.
6581  const Function &F = *LLVMBB->getParent();
6582  SelectionDAG &DAG = SDB->DAG;
6583  DebugLoc dl = SDB->getCurDebugLoc();
6584  const DataLayout *TD = TLI.getDataLayout();
6585  SmallVector<ISD::InputArg, 16> Ins;
6586
6587  // Check whether the function can return without sret-demotion.
6588  SmallVector<ISD::OutputArg, 4> Outs;
6589  GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI);
6590
6591  if (!FuncInfo->CanLowerReturn) {
6592    // Put in an sret pointer parameter before all the other parameters.
6593    SmallVector<EVT, 1> ValueVTs;
6594    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6595
6596    // NOTE: Assuming that a pointer will never break down to more than one VT
6597    // or one register.
6598    ISD::ArgFlagsTy Flags;
6599    Flags.setSRet();
6600    MVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]);
6601    ISD::InputArg RetArg(Flags, RegisterVT, true, 0, 0);
6602    Ins.push_back(RetArg);
6603  }
6604
6605  // Set up the incoming argument description vector.
6606  unsigned Idx = 1;
6607  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
6608       I != E; ++I, ++Idx) {
6609    SmallVector<EVT, 4> ValueVTs;
6610    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6611    bool isArgValueUsed = !I->use_empty();
6612    for (unsigned Value = 0, NumValues = ValueVTs.size();
6613         Value != NumValues; ++Value) {
6614      EVT VT = ValueVTs[Value];
6615      Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
6616      ISD::ArgFlagsTy Flags;
6617      unsigned OriginalAlignment =
6618        TD->getABITypeAlignment(ArgTy);
6619
6620      if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
6621        Flags.setZExt();
6622      if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
6623        Flags.setSExt();
6624      if (F.getAttributes().hasAttribute(Idx, Attribute::InReg))
6625        Flags.setInReg();
6626      if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet))
6627        Flags.setSRet();
6628      if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) {
6629        Flags.setByVal();
6630        PointerType *Ty = cast<PointerType>(I->getType());
6631        Type *ElementTy = Ty->getElementType();
6632        Flags.setByValSize(TD->getTypeAllocSize(ElementTy));
6633        // For ByVal, alignment should be passed from FE.  BE will guess if
6634        // this info is not there but there are cases it cannot get right.
6635        unsigned FrameAlign;
6636        if (F.getParamAlignment(Idx))
6637          FrameAlign = F.getParamAlignment(Idx);
6638        else
6639          FrameAlign = TLI.getByValTypeAlignment(ElementTy);
6640        Flags.setByValAlign(FrameAlign);
6641      }
6642      if (F.getAttributes().hasAttribute(Idx, Attribute::Nest))
6643        Flags.setNest();
6644      Flags.setOrigAlign(OriginalAlignment);
6645
6646      MVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6647      unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6648      for (unsigned i = 0; i != NumRegs; ++i) {
6649        ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed,
6650                              Idx-1, i*RegisterVT.getStoreSize());
6651        if (NumRegs > 1 && i == 0)
6652          MyFlags.Flags.setSplit();
6653        // if it isn't first piece, alignment must be 1
6654        else if (i > 0)
6655          MyFlags.Flags.setOrigAlign(1);
6656        Ins.push_back(MyFlags);
6657      }
6658    }
6659  }
6660
6661  // Call the target to set up the argument values.
6662  SmallVector<SDValue, 8> InVals;
6663  SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
6664                                             F.isVarArg(), Ins,
6665                                             dl, DAG, InVals);
6666
6667  // Verify that the target's LowerFormalArguments behaved as expected.
6668  assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
6669         "LowerFormalArguments didn't return a valid chain!");
6670  assert(InVals.size() == Ins.size() &&
6671         "LowerFormalArguments didn't emit the correct number of values!");
6672  DEBUG({
6673      for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6674        assert(InVals[i].getNode() &&
6675               "LowerFormalArguments emitted a null value!");
6676        assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6677               "LowerFormalArguments emitted a value with the wrong type!");
6678      }
6679    });
6680
6681  // Update the DAG with the new chain value resulting from argument lowering.
6682  DAG.setRoot(NewRoot);
6683
6684  // Set up the argument values.
6685  unsigned i = 0;
6686  Idx = 1;
6687  if (!FuncInfo->CanLowerReturn) {
6688    // Create a virtual register for the sret pointer, and put in a copy
6689    // from the sret argument into it.
6690    SmallVector<EVT, 1> ValueVTs;
6691    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6692    MVT VT = ValueVTs[0].getSimpleVT();
6693    MVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6694    ISD::NodeType AssertOp = ISD::DELETED_NODE;
6695    SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
6696                                        RegVT, VT, NULL, AssertOp);
6697
6698    MachineFunction& MF = SDB->DAG.getMachineFunction();
6699    MachineRegisterInfo& RegInfo = MF.getRegInfo();
6700    unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT));
6701    FuncInfo->DemoteRegister = SRetReg;
6702    NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(),
6703                                    SRetReg, ArgValue);
6704    DAG.setRoot(NewRoot);
6705
6706    // i indexes lowered arguments.  Bump it past the hidden sret argument.
6707    // Idx indexes LLVM arguments.  Don't touch it.
6708    ++i;
6709  }
6710
6711  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
6712      ++I, ++Idx) {
6713    SmallVector<SDValue, 4> ArgValues;
6714    SmallVector<EVT, 4> ValueVTs;
6715    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6716    unsigned NumValues = ValueVTs.size();
6717
6718    // If this argument is unused then remember its value. It is used to generate
6719    // debugging information.
6720    if (I->use_empty() && NumValues)
6721      SDB->setUnusedArgValue(I, InVals[i]);
6722
6723    for (unsigned Val = 0; Val != NumValues; ++Val) {
6724      EVT VT = ValueVTs[Val];
6725      MVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6726      unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6727
6728      if (!I->use_empty()) {
6729        ISD::NodeType AssertOp = ISD::DELETED_NODE;
6730        if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
6731          AssertOp = ISD::AssertSext;
6732        else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
6733          AssertOp = ISD::AssertZext;
6734
6735        ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
6736                                             NumParts, PartVT, VT,
6737                                             NULL, AssertOp));
6738      }
6739
6740      i += NumParts;
6741    }
6742
6743    // We don't need to do anything else for unused arguments.
6744    if (ArgValues.empty())
6745      continue;
6746
6747    // Note down frame index.
6748    if (FrameIndexSDNode *FI =
6749        dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
6750      FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
6751
6752    SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues,
6753                                     SDB->getCurDebugLoc());
6754
6755    SDB->setValue(I, Res);
6756    if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
6757      if (LoadSDNode *LNode =
6758          dyn_cast<LoadSDNode>(Res.getOperand(0).getNode()))
6759        if (FrameIndexSDNode *FI =
6760            dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
6761        FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
6762    }
6763
6764    // If this argument is live outside of the entry block, insert a copy from
6765    // wherever we got it to the vreg that other BB's will reference it as.
6766    if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
6767      // If we can, though, try to skip creating an unnecessary vreg.
6768      // FIXME: This isn't very clean... it would be nice to make this more
6769      // general.  It's also subtly incompatible with the hacks FastISel
6770      // uses with vregs.
6771      unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
6772      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
6773        FuncInfo->ValueMap[I] = Reg;
6774        continue;
6775      }
6776    }
6777    if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) {
6778      FuncInfo->InitializeRegForValue(I);
6779      SDB->CopyToExportRegsIfNeeded(I);
6780    }
6781  }
6782
6783  assert(i == InVals.size() && "Argument register count mismatch!");
6784
6785  // Finally, if the target has anything special to do, allow it to do so.
6786  // FIXME: this should insert code into the DAG!
6787  EmitFunctionEntryCode();
6788}
6789
6790/// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
6791/// ensure constants are generated when needed.  Remember the virtual registers
6792/// that need to be added to the Machine PHI nodes as input.  We cannot just
6793/// directly add them, because expansion might result in multiple MBB's for one
6794/// BB.  As such, the start of the BB might correspond to a different MBB than
6795/// the end.
6796///
6797void
6798SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
6799  const TerminatorInst *TI = LLVMBB->getTerminator();
6800
6801  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6802
6803  // Check successor nodes' PHI nodes that expect a constant to be available
6804  // from this block.
6805  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6806    const BasicBlock *SuccBB = TI->getSuccessor(succ);
6807    if (!isa<PHINode>(SuccBB->begin())) continue;
6808    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
6809
6810    // If this terminator has multiple identical successors (common for
6811    // switches), only handle each succ once.
6812    if (!SuccsHandled.insert(SuccMBB)) continue;
6813
6814    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6815
6816    // At this point we know that there is a 1-1 correspondence between LLVM PHI
6817    // nodes and Machine PHI nodes, but the incoming operands have not been
6818    // emitted yet.
6819    for (BasicBlock::const_iterator I = SuccBB->begin();
6820         const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
6821      // Ignore dead phi's.
6822      if (PN->use_empty()) continue;
6823
6824      // Skip empty types
6825      if (PN->getType()->isEmptyTy())
6826        continue;
6827
6828      unsigned Reg;
6829      const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6830
6831      if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
6832        unsigned &RegOut = ConstantsOut[C];
6833        if (RegOut == 0) {
6834          RegOut = FuncInfo.CreateRegs(C->getType());
6835          CopyValueToVirtualRegister(C, RegOut);
6836        }
6837        Reg = RegOut;
6838      } else {
6839        DenseMap<const Value *, unsigned>::iterator I =
6840          FuncInfo.ValueMap.find(PHIOp);
6841        if (I != FuncInfo.ValueMap.end())
6842          Reg = I->second;
6843        else {
6844          assert(isa<AllocaInst>(PHIOp) &&
6845                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
6846                 "Didn't codegen value into a register!??");
6847          Reg = FuncInfo.CreateRegs(PHIOp->getType());
6848          CopyValueToVirtualRegister(PHIOp, Reg);
6849        }
6850      }
6851
6852      // Remember that this register needs to added to the machine PHI node as
6853      // the input for this MBB.
6854      SmallVector<EVT, 4> ValueVTs;
6855      ComputeValueVTs(TLI, PN->getType(), ValueVTs);
6856      for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
6857        EVT VT = ValueVTs[vti];
6858        unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
6859        for (unsigned i = 0, e = NumRegisters; i != e; ++i)
6860          FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
6861        Reg += NumRegisters;
6862      }
6863    }
6864  }
6865  ConstantsOut.clear();
6866}
6867