SelectionDAGBuilder.cpp revision 0d881dabc1a4e1aefad6dd38de166d8358285638
1//===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements routines for translating from LLVM IR into SelectionDAG IR.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "SDNodeDbgValue.h"
16#include "SelectionDAGBuilder.h"
17#include "FunctionLoweringInfo.h"
18#include "llvm/ADT/BitVector.h"
19#include "llvm/ADT/SmallSet.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/ConstantFolding.h"
22#include "llvm/Constants.h"
23#include "llvm/CallingConv.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Function.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/InlineAsm.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/IntrinsicInst.h"
31#include "llvm/LLVMContext.h"
32#include "llvm/Module.h"
33#include "llvm/CodeGen/Analysis.h"
34#include "llvm/CodeGen/FastISel.h"
35#include "llvm/CodeGen/GCStrategy.h"
36#include "llvm/CodeGen/GCMetadata.h"
37#include "llvm/CodeGen/MachineFunction.h"
38#include "llvm/CodeGen/MachineFrameInfo.h"
39#include "llvm/CodeGen/MachineInstrBuilder.h"
40#include "llvm/CodeGen/MachineJumpTableInfo.h"
41#include "llvm/CodeGen/MachineModuleInfo.h"
42#include "llvm/CodeGen/MachineRegisterInfo.h"
43#include "llvm/CodeGen/PseudoSourceValue.h"
44#include "llvm/CodeGen/SelectionDAG.h"
45#include "llvm/Analysis/DebugInfo.h"
46#include "llvm/Target/TargetRegisterInfo.h"
47#include "llvm/Target/TargetData.h"
48#include "llvm/Target/TargetFrameInfo.h"
49#include "llvm/Target/TargetInstrInfo.h"
50#include "llvm/Target/TargetIntrinsicInfo.h"
51#include "llvm/Target/TargetLowering.h"
52#include "llvm/Target/TargetOptions.h"
53#include "llvm/Support/Compiler.h"
54#include "llvm/Support/CommandLine.h"
55#include "llvm/Support/Debug.h"
56#include "llvm/Support/ErrorHandling.h"
57#include "llvm/Support/MathExtras.h"
58#include "llvm/Support/raw_ostream.h"
59#include <algorithm>
60using namespace llvm;
61
62/// LimitFloatPrecision - Generate low-precision inline sequences for
63/// some float libcalls (6, 8 or 12 bits).
64static unsigned LimitFloatPrecision;
65
66static cl::opt<unsigned, true>
67LimitFPPrecision("limit-float-precision",
68                 cl::desc("Generate low-precision inline sequences "
69                          "for some float libcalls"),
70                 cl::location(LimitFloatPrecision),
71                 cl::init(0));
72
73/// getCopyFromParts - Create a value that contains the specified legal parts
74/// combined into the value they represent.  If the parts combine to a type
75/// larger then ValueVT then AssertOp can be used to specify whether the extra
76/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
77/// (ISD::AssertSext).
78static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc dl,
79                                const SDValue *Parts,
80                                unsigned NumParts, EVT PartVT, EVT ValueVT,
81                                ISD::NodeType AssertOp = ISD::DELETED_NODE) {
82  assert(NumParts > 0 && "No parts to assemble!");
83  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
84  SDValue Val = Parts[0];
85
86  if (NumParts > 1) {
87    // Assemble the value from multiple parts.
88    if (!ValueVT.isVector() && ValueVT.isInteger()) {
89      unsigned PartBits = PartVT.getSizeInBits();
90      unsigned ValueBits = ValueVT.getSizeInBits();
91
92      // Assemble the power of 2 part.
93      unsigned RoundParts = NumParts & (NumParts - 1) ?
94        1 << Log2_32(NumParts) : NumParts;
95      unsigned RoundBits = PartBits * RoundParts;
96      EVT RoundVT = RoundBits == ValueBits ?
97        ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
98      SDValue Lo, Hi;
99
100      EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
101
102      if (RoundParts > 2) {
103        Lo = getCopyFromParts(DAG, dl, Parts, RoundParts / 2,
104                              PartVT, HalfVT);
105        Hi = getCopyFromParts(DAG, dl, Parts + RoundParts / 2,
106                              RoundParts / 2, PartVT, HalfVT);
107      } else {
108        Lo = DAG.getNode(ISD::BIT_CONVERT, dl, HalfVT, Parts[0]);
109        Hi = DAG.getNode(ISD::BIT_CONVERT, dl, HalfVT, Parts[1]);
110      }
111
112      if (TLI.isBigEndian())
113        std::swap(Lo, Hi);
114
115      Val = DAG.getNode(ISD::BUILD_PAIR, dl, RoundVT, Lo, Hi);
116
117      if (RoundParts < NumParts) {
118        // Assemble the trailing non-power-of-2 part.
119        unsigned OddParts = NumParts - RoundParts;
120        EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
121        Hi = getCopyFromParts(DAG, dl,
122                              Parts + RoundParts, OddParts, PartVT, OddVT);
123
124        // Combine the round and odd parts.
125        Lo = Val;
126        if (TLI.isBigEndian())
127          std::swap(Lo, Hi);
128        EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
129        Hi = DAG.getNode(ISD::ANY_EXTEND, dl, TotalVT, Hi);
130        Hi = DAG.getNode(ISD::SHL, dl, TotalVT, Hi,
131                         DAG.getConstant(Lo.getValueType().getSizeInBits(),
132                                         TLI.getPointerTy()));
133        Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, TotalVT, Lo);
134        Val = DAG.getNode(ISD::OR, dl, TotalVT, Lo, Hi);
135      }
136    } else if (ValueVT.isVector()) {
137      // Handle a multi-element vector.
138      EVT IntermediateVT, RegisterVT;
139      unsigned NumIntermediates;
140      unsigned NumRegs =
141        TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
142                                   NumIntermediates, RegisterVT);
143      assert(NumRegs == NumParts
144             && "Part count doesn't match vector breakdown!");
145      NumParts = NumRegs; // Silence a compiler warning.
146      assert(RegisterVT == PartVT
147             && "Part type doesn't match vector breakdown!");
148      assert(RegisterVT == Parts[0].getValueType() &&
149             "Part type doesn't match part!");
150
151      // Assemble the parts into intermediate operands.
152      SmallVector<SDValue, 8> Ops(NumIntermediates);
153      if (NumIntermediates == NumParts) {
154        // If the register was not expanded, truncate or copy the value,
155        // as appropriate.
156        for (unsigned i = 0; i != NumParts; ++i)
157          Ops[i] = getCopyFromParts(DAG, dl, &Parts[i], 1,
158                                    PartVT, IntermediateVT);
159      } else if (NumParts > 0) {
160        // If the intermediate type was expanded, build the intermediate
161        // operands from the parts.
162        assert(NumParts % NumIntermediates == 0 &&
163               "Must expand into a divisible number of parts!");
164        unsigned Factor = NumParts / NumIntermediates;
165        for (unsigned i = 0; i != NumIntermediates; ++i)
166          Ops[i] = getCopyFromParts(DAG, dl, &Parts[i * Factor], Factor,
167                                    PartVT, IntermediateVT);
168      }
169
170      // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
171      // intermediate operands.
172      Val = DAG.getNode(IntermediateVT.isVector() ?
173                        ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, dl,
174                        ValueVT, &Ops[0], NumIntermediates);
175    } else if (PartVT.isFloatingPoint()) {
176      // FP split into multiple FP parts (for ppcf128)
177      assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) &&
178             "Unexpected split");
179      SDValue Lo, Hi;
180      Lo = DAG.getNode(ISD::BIT_CONVERT, dl, EVT(MVT::f64), Parts[0]);
181      Hi = DAG.getNode(ISD::BIT_CONVERT, dl, EVT(MVT::f64), Parts[1]);
182      if (TLI.isBigEndian())
183        std::swap(Lo, Hi);
184      Val = DAG.getNode(ISD::BUILD_PAIR, dl, ValueVT, Lo, Hi);
185    } else {
186      // FP split into integer parts (soft fp)
187      assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
188             !PartVT.isVector() && "Unexpected split");
189      EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
190      Val = getCopyFromParts(DAG, dl, Parts, NumParts, PartVT, IntVT);
191    }
192  }
193
194  // There is now one part, held in Val.  Correct it to match ValueVT.
195  PartVT = Val.getValueType();
196
197  if (PartVT == ValueVT)
198    return Val;
199
200  if (PartVT.isVector()) {
201    assert(ValueVT.isVector() && "Unknown vector conversion!");
202    return DAG.getNode(ISD::BIT_CONVERT, dl, ValueVT, Val);
203  }
204
205  if (ValueVT.isVector()) {
206    assert(ValueVT.getVectorElementType() == PartVT &&
207           ValueVT.getVectorNumElements() == 1 &&
208           "Only trivial scalar-to-vector conversions should get here!");
209    return DAG.getNode(ISD::BUILD_VECTOR, dl, ValueVT, Val);
210  }
211
212  if (PartVT.isInteger() &&
213      ValueVT.isInteger()) {
214    if (ValueVT.bitsLT(PartVT)) {
215      // For a truncate, see if we have any information to
216      // indicate whether the truncated bits will always be
217      // zero or sign-extension.
218      if (AssertOp != ISD::DELETED_NODE)
219        Val = DAG.getNode(AssertOp, dl, PartVT, Val,
220                          DAG.getValueType(ValueVT));
221      return DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val);
222    } else {
223      return DAG.getNode(ISD::ANY_EXTEND, dl, ValueVT, Val);
224    }
225  }
226
227  if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
228    if (ValueVT.bitsLT(Val.getValueType())) {
229      // FP_ROUND's are always exact here.
230      return DAG.getNode(ISD::FP_ROUND, dl, ValueVT, Val,
231                         DAG.getIntPtrConstant(1));
232    }
233
234    return DAG.getNode(ISD::FP_EXTEND, dl, ValueVT, Val);
235  }
236
237  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
238    return DAG.getNode(ISD::BIT_CONVERT, dl, ValueVT, Val);
239
240  llvm_unreachable("Unknown mismatch!");
241  return SDValue();
242}
243
244/// getCopyToParts - Create a series of nodes that contain the specified value
245/// split into legal parts.  If the parts contain more bits than Val, then, for
246/// integers, ExtendKind can be used to specify how to generate the extra bits.
247static void getCopyToParts(SelectionDAG &DAG, DebugLoc dl,
248                           SDValue Val, SDValue *Parts, unsigned NumParts,
249                           EVT PartVT,
250                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
251  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
252  EVT PtrVT = TLI.getPointerTy();
253  EVT ValueVT = Val.getValueType();
254  unsigned PartBits = PartVT.getSizeInBits();
255  unsigned OrigNumParts = NumParts;
256  assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
257
258  if (!NumParts)
259    return;
260
261  if (!ValueVT.isVector()) {
262    if (PartVT == ValueVT) {
263      assert(NumParts == 1 && "No-op copy with multiple parts!");
264      Parts[0] = Val;
265      return;
266    }
267
268    if (NumParts * PartBits > ValueVT.getSizeInBits()) {
269      // If the parts cover more bits than the value has, promote the value.
270      if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
271        assert(NumParts == 1 && "Do not know what to promote to!");
272        Val = DAG.getNode(ISD::FP_EXTEND, dl, PartVT, Val);
273      } else if (PartVT.isInteger() && ValueVT.isInteger()) {
274        ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
275        Val = DAG.getNode(ExtendKind, dl, ValueVT, Val);
276      } else {
277        llvm_unreachable("Unknown mismatch!");
278      }
279    } else if (PartBits == ValueVT.getSizeInBits()) {
280      // Different types of the same size.
281      assert(NumParts == 1 && PartVT != ValueVT);
282      Val = DAG.getNode(ISD::BIT_CONVERT, dl, PartVT, Val);
283    } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
284      // If the parts cover less bits than value has, truncate the value.
285      if (PartVT.isInteger() && ValueVT.isInteger()) {
286        ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
287        Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val);
288      } else {
289        llvm_unreachable("Unknown mismatch!");
290      }
291    }
292
293    // The value may have changed - recompute ValueVT.
294    ValueVT = Val.getValueType();
295    assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
296           "Failed to tile the value with PartVT!");
297
298    if (NumParts == 1) {
299      assert(PartVT == ValueVT && "Type conversion failed!");
300      Parts[0] = Val;
301      return;
302    }
303
304    // Expand the value into multiple parts.
305    if (NumParts & (NumParts - 1)) {
306      // The number of parts is not a power of 2.  Split off and copy the tail.
307      assert(PartVT.isInteger() && ValueVT.isInteger() &&
308             "Do not know what to expand to!");
309      unsigned RoundParts = 1 << Log2_32(NumParts);
310      unsigned RoundBits = RoundParts * PartBits;
311      unsigned OddParts = NumParts - RoundParts;
312      SDValue OddVal = DAG.getNode(ISD::SRL, dl, ValueVT, Val,
313                                   DAG.getConstant(RoundBits,
314                                                   TLI.getPointerTy()));
315      getCopyToParts(DAG, dl, OddVal, Parts + RoundParts,
316                     OddParts, PartVT);
317
318      if (TLI.isBigEndian())
319        // The odd parts were reversed by getCopyToParts - unreverse them.
320        std::reverse(Parts + RoundParts, Parts + NumParts);
321
322      NumParts = RoundParts;
323      ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
324      Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val);
325    }
326
327    // The number of parts is a power of 2.  Repeatedly bisect the value using
328    // EXTRACT_ELEMENT.
329    Parts[0] = DAG.getNode(ISD::BIT_CONVERT, dl,
330                           EVT::getIntegerVT(*DAG.getContext(),
331                                             ValueVT.getSizeInBits()),
332                           Val);
333
334    for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
335      for (unsigned i = 0; i < NumParts; i += StepSize) {
336        unsigned ThisBits = StepSize * PartBits / 2;
337        EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
338        SDValue &Part0 = Parts[i];
339        SDValue &Part1 = Parts[i+StepSize/2];
340
341        Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
342                            ThisVT, Part0,
343                            DAG.getConstant(1, PtrVT));
344        Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
345                            ThisVT, Part0,
346                            DAG.getConstant(0, PtrVT));
347
348        if (ThisBits == PartBits && ThisVT != PartVT) {
349          Part0 = DAG.getNode(ISD::BIT_CONVERT, dl,
350                                                PartVT, Part0);
351          Part1 = DAG.getNode(ISD::BIT_CONVERT, dl,
352                                                PartVT, Part1);
353        }
354      }
355    }
356
357    if (TLI.isBigEndian())
358      std::reverse(Parts, Parts + OrigNumParts);
359
360    return;
361  }
362
363  // Vector ValueVT.
364  if (NumParts == 1) {
365    if (PartVT != ValueVT) {
366      if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
367        Val = DAG.getNode(ISD::BIT_CONVERT, dl, PartVT, Val);
368      } else {
369        assert(ValueVT.getVectorElementType() == PartVT &&
370               ValueVT.getVectorNumElements() == 1 &&
371               "Only trivial vector-to-scalar conversions should get here!");
372        Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
373                          PartVT, Val,
374                          DAG.getConstant(0, PtrVT));
375      }
376    }
377
378    Parts[0] = Val;
379    return;
380  }
381
382  // Handle a multi-element vector.
383  EVT IntermediateVT, RegisterVT;
384  unsigned NumIntermediates;
385  unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
386                              IntermediateVT, NumIntermediates, RegisterVT);
387  unsigned NumElements = ValueVT.getVectorNumElements();
388
389  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
390  NumParts = NumRegs; // Silence a compiler warning.
391  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
392
393  // Split the vector into intermediate operands.
394  SmallVector<SDValue, 8> Ops(NumIntermediates);
395  for (unsigned i = 0; i != NumIntermediates; ++i) {
396    if (IntermediateVT.isVector())
397      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl,
398                           IntermediateVT, Val,
399                           DAG.getConstant(i * (NumElements / NumIntermediates),
400                                           PtrVT));
401    else
402      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
403                           IntermediateVT, Val,
404                           DAG.getConstant(i, PtrVT));
405  }
406
407  // Split the intermediate operands into legal parts.
408  if (NumParts == NumIntermediates) {
409    // If the register was not expanded, promote or copy the value,
410    // as appropriate.
411    for (unsigned i = 0; i != NumParts; ++i)
412      getCopyToParts(DAG, dl, Ops[i], &Parts[i], 1, PartVT);
413  } else if (NumParts > 0) {
414    // If the intermediate type was expanded, split each the value into
415    // legal parts.
416    assert(NumParts % NumIntermediates == 0 &&
417           "Must expand into a divisible number of parts!");
418    unsigned Factor = NumParts / NumIntermediates;
419    for (unsigned i = 0; i != NumIntermediates; ++i)
420      getCopyToParts(DAG, dl, Ops[i], &Parts[i*Factor], Factor, PartVT);
421  }
422}
423
424namespace {
425  /// RegsForValue - This struct represents the registers (physical or virtual)
426  /// that a particular set of values is assigned, and the type information
427  /// about the value. The most common situation is to represent one value at a
428  /// time, but struct or array values are handled element-wise as multiple
429  /// values.  The splitting of aggregates is performed recursively, so that we
430  /// never have aggregate-typed registers. The values at this point do not
431  /// necessarily have legal types, so each value may require one or more
432  /// registers of some legal type.
433  ///
434  struct RegsForValue {
435    /// ValueVTs - The value types of the values, which may not be legal, and
436    /// may need be promoted or synthesized from one or more registers.
437    ///
438    SmallVector<EVT, 4> ValueVTs;
439
440    /// RegVTs - The value types of the registers. This is the same size as
441    /// ValueVTs and it records, for each value, what the type of the assigned
442    /// register or registers are. (Individual values are never synthesized
443    /// from more than one type of register.)
444    ///
445    /// With virtual registers, the contents of RegVTs is redundant with TLI's
446    /// getRegisterType member function, however when with physical registers
447    /// it is necessary to have a separate record of the types.
448    ///
449    SmallVector<EVT, 4> RegVTs;
450
451    /// Regs - This list holds the registers assigned to the values.
452    /// Each legal or promoted value requires one register, and each
453    /// expanded value requires multiple registers.
454    ///
455    SmallVector<unsigned, 4> Regs;
456
457    RegsForValue() {}
458
459    RegsForValue(const SmallVector<unsigned, 4> &regs,
460                 EVT regvt, EVT valuevt)
461      : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
462
463    RegsForValue(const SmallVector<unsigned, 4> &regs,
464                 const SmallVector<EVT, 4> &regvts,
465                 const SmallVector<EVT, 4> &valuevts)
466      : ValueVTs(valuevts), RegVTs(regvts), Regs(regs) {}
467
468    RegsForValue(LLVMContext &Context, const TargetLowering &tli,
469                 unsigned Reg, const Type *Ty) {
470      ComputeValueVTs(tli, Ty, ValueVTs);
471
472      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
473        EVT ValueVT = ValueVTs[Value];
474        unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
475        EVT RegisterVT = tli.getRegisterType(Context, ValueVT);
476        for (unsigned i = 0; i != NumRegs; ++i)
477          Regs.push_back(Reg + i);
478        RegVTs.push_back(RegisterVT);
479        Reg += NumRegs;
480      }
481    }
482
483    /// areValueTypesLegal - Return true if types of all the values are legal.
484    bool areValueTypesLegal(const TargetLowering &TLI) {
485      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
486        EVT RegisterVT = RegVTs[Value];
487        if (!TLI.isTypeLegal(RegisterVT))
488          return false;
489      }
490      return true;
491    }
492
493    /// append - Add the specified values to this one.
494    void append(const RegsForValue &RHS) {
495      ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
496      RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
497      Regs.append(RHS.Regs.begin(), RHS.Regs.end());
498    }
499
500    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
501    /// this value and returns the result as a ValueVTs value.  This uses
502    /// Chain/Flag as the input and updates them for the output Chain/Flag.
503    /// If the Flag pointer is NULL, no flag is used.
504    SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
505                            DebugLoc dl,
506                            SDValue &Chain, SDValue *Flag) const;
507
508    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
509    /// specified value into the registers specified by this object.  This uses
510    /// Chain/Flag as the input and updates them for the output Chain/Flag.
511    /// If the Flag pointer is NULL, no flag is used.
512    void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
513                       SDValue &Chain, SDValue *Flag) const;
514
515    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
516    /// operand list.  This adds the code marker, matching input operand index
517    /// (if applicable), and includes the number of values added into it.
518    void AddInlineAsmOperands(unsigned Kind,
519                              bool HasMatching, unsigned MatchingIdx,
520                              SelectionDAG &DAG,
521                              std::vector<SDValue> &Ops) const;
522  };
523}
524
525/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
526/// this value and returns the result as a ValueVT value.  This uses
527/// Chain/Flag as the input and updates them for the output Chain/Flag.
528/// If the Flag pointer is NULL, no flag is used.
529SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
530                                      FunctionLoweringInfo &FuncInfo,
531                                      DebugLoc dl,
532                                      SDValue &Chain, SDValue *Flag) const {
533  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
534
535  // Assemble the legal parts into the final values.
536  SmallVector<SDValue, 4> Values(ValueVTs.size());
537  SmallVector<SDValue, 8> Parts;
538  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
539    // Copy the legal parts from the registers.
540    EVT ValueVT = ValueVTs[Value];
541    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
542    EVT RegisterVT = RegVTs[Value];
543
544    Parts.resize(NumRegs);
545    for (unsigned i = 0; i != NumRegs; ++i) {
546      SDValue P;
547      if (Flag == 0) {
548        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
549      } else {
550        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
551        *Flag = P.getValue(2);
552      }
553
554      Chain = P.getValue(1);
555
556      // If the source register was virtual and if we know something about it,
557      // add an assert node.
558      if (TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) &&
559          RegisterVT.isInteger() && !RegisterVT.isVector()) {
560        unsigned SlotNo = Regs[Part+i]-TargetRegisterInfo::FirstVirtualRegister;
561        if (FuncInfo.LiveOutRegInfo.size() > SlotNo) {
562          const FunctionLoweringInfo::LiveOutInfo &LOI =
563            FuncInfo.LiveOutRegInfo[SlotNo];
564
565          unsigned RegSize = RegisterVT.getSizeInBits();
566          unsigned NumSignBits = LOI.NumSignBits;
567          unsigned NumZeroBits = LOI.KnownZero.countLeadingOnes();
568
569          // FIXME: We capture more information than the dag can represent.  For
570          // now, just use the tightest assertzext/assertsext possible.
571          bool isSExt = true;
572          EVT FromVT(MVT::Other);
573          if (NumSignBits == RegSize)
574            isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
575          else if (NumZeroBits >= RegSize-1)
576            isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
577          else if (NumSignBits > RegSize-8)
578            isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
579          else if (NumZeroBits >= RegSize-8)
580            isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
581          else if (NumSignBits > RegSize-16)
582            isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
583          else if (NumZeroBits >= RegSize-16)
584            isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
585          else if (NumSignBits > RegSize-32)
586            isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
587          else if (NumZeroBits >= RegSize-32)
588            isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
589
590          if (FromVT != MVT::Other)
591            P = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
592                            RegisterVT, P, DAG.getValueType(FromVT));
593        }
594      }
595
596      Parts[i] = P;
597    }
598
599    Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
600                                     NumRegs, RegisterVT, ValueVT);
601    Part += NumRegs;
602    Parts.clear();
603  }
604
605  return DAG.getNode(ISD::MERGE_VALUES, dl,
606                     DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
607                     &Values[0], ValueVTs.size());
608}
609
610/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
611/// specified value into the registers specified by this object.  This uses
612/// Chain/Flag as the input and updates them for the output Chain/Flag.
613/// If the Flag pointer is NULL, no flag is used.
614void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
615                                 SDValue &Chain, SDValue *Flag) const {
616  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
617
618  // Get the list of the values's legal parts.
619  unsigned NumRegs = Regs.size();
620  SmallVector<SDValue, 8> Parts(NumRegs);
621  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
622    EVT ValueVT = ValueVTs[Value];
623    unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
624    EVT RegisterVT = RegVTs[Value];
625
626    getCopyToParts(DAG, dl,
627                   Val.getValue(Val.getResNo() + Value),
628                   &Parts[Part], NumParts, RegisterVT);
629    Part += NumParts;
630  }
631
632  // Copy the parts into the registers.
633  SmallVector<SDValue, 8> Chains(NumRegs);
634  for (unsigned i = 0; i != NumRegs; ++i) {
635    SDValue Part;
636    if (Flag == 0) {
637      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
638    } else {
639      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
640      *Flag = Part.getValue(1);
641    }
642
643    Chains[i] = Part.getValue(0);
644  }
645
646  if (NumRegs == 1 || Flag)
647    // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
648    // flagged to it. That is the CopyToReg nodes and the user are considered
649    // a single scheduling unit. If we create a TokenFactor and return it as
650    // chain, then the TokenFactor is both a predecessor (operand) of the
651    // user as well as a successor (the TF operands are flagged to the user).
652    // c1, f1 = CopyToReg
653    // c2, f2 = CopyToReg
654    // c3     = TokenFactor c1, c2
655    // ...
656    //        = op c3, ..., f2
657    Chain = Chains[NumRegs-1];
658  else
659    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
660}
661
662/// AddInlineAsmOperands - Add this value to the specified inlineasm node
663/// operand list.  This adds the code marker and includes the number of
664/// values added into it.
665void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
666                                        unsigned MatchingIdx,
667                                        SelectionDAG &DAG,
668                                        std::vector<SDValue> &Ops) const {
669  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
670
671  unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
672  if (HasMatching)
673    Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
674  SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
675  Ops.push_back(Res);
676
677  for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
678    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
679    EVT RegisterVT = RegVTs[Value];
680    for (unsigned i = 0; i != NumRegs; ++i) {
681      assert(Reg < Regs.size() && "Mismatch in # registers expected");
682      Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
683    }
684  }
685}
686
687void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) {
688  AA = &aa;
689  GFI = gfi;
690  TD = DAG.getTarget().getTargetData();
691}
692
693/// clear - Clear out the current SelectionDAG and the associated
694/// state and prepare this SelectionDAGBuilder object to be used
695/// for a new block. This doesn't clear out information about
696/// additional blocks that are needed to complete switch lowering
697/// or PHI node updating; that information is cleared out as it is
698/// consumed.
699void SelectionDAGBuilder::clear() {
700  NodeMap.clear();
701  UnusedArgNodeMap.clear();
702  PendingLoads.clear();
703  PendingExports.clear();
704  CurDebugLoc = DebugLoc();
705  HasTailCall = false;
706}
707
708/// getRoot - Return the current virtual root of the Selection DAG,
709/// flushing any PendingLoad items. This must be done before emitting
710/// a store or any other node that may need to be ordered after any
711/// prior load instructions.
712///
713SDValue SelectionDAGBuilder::getRoot() {
714  if (PendingLoads.empty())
715    return DAG.getRoot();
716
717  if (PendingLoads.size() == 1) {
718    SDValue Root = PendingLoads[0];
719    DAG.setRoot(Root);
720    PendingLoads.clear();
721    return Root;
722  }
723
724  // Otherwise, we have to make a token factor node.
725  SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
726                               &PendingLoads[0], PendingLoads.size());
727  PendingLoads.clear();
728  DAG.setRoot(Root);
729  return Root;
730}
731
732/// getControlRoot - Similar to getRoot, but instead of flushing all the
733/// PendingLoad items, flush all the PendingExports items. It is necessary
734/// to do this before emitting a terminator instruction.
735///
736SDValue SelectionDAGBuilder::getControlRoot() {
737  SDValue Root = DAG.getRoot();
738
739  if (PendingExports.empty())
740    return Root;
741
742  // Turn all of the CopyToReg chains into one factored node.
743  if (Root.getOpcode() != ISD::EntryToken) {
744    unsigned i = 0, e = PendingExports.size();
745    for (; i != e; ++i) {
746      assert(PendingExports[i].getNode()->getNumOperands() > 1);
747      if (PendingExports[i].getNode()->getOperand(0) == Root)
748        break;  // Don't add the root if we already indirectly depend on it.
749    }
750
751    if (i == e)
752      PendingExports.push_back(Root);
753  }
754
755  Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
756                     &PendingExports[0],
757                     PendingExports.size());
758  PendingExports.clear();
759  DAG.setRoot(Root);
760  return Root;
761}
762
763void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) {
764  if (DAG.GetOrdering(Node) != 0) return; // Already has ordering.
765  DAG.AssignOrdering(Node, SDNodeOrder);
766
767  for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I)
768    AssignOrderingToNode(Node->getOperand(I).getNode());
769}
770
771void SelectionDAGBuilder::visit(const Instruction &I) {
772  // Set up outgoing PHI node register values before emitting the terminator.
773  if (isa<TerminatorInst>(&I))
774    HandlePHINodesInSuccessorBlocks(I.getParent());
775
776  CurDebugLoc = I.getDebugLoc();
777
778  visit(I.getOpcode(), I);
779
780  if (!isa<TerminatorInst>(&I) && !HasTailCall)
781    CopyToExportRegsIfNeeded(&I);
782
783  CurDebugLoc = DebugLoc();
784}
785
786void SelectionDAGBuilder::visitPHI(const PHINode &) {
787  llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
788}
789
790void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
791  // Note: this doesn't use InstVisitor, because it has to work with
792  // ConstantExpr's in addition to instructions.
793  switch (Opcode) {
794  default: llvm_unreachable("Unknown instruction type encountered!");
795    // Build the switch statement using the Instruction.def file.
796#define HANDLE_INST(NUM, OPCODE, CLASS) \
797    case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break;
798#include "llvm/Instruction.def"
799  }
800
801  // Assign the ordering to the freshly created DAG nodes.
802  if (NodeMap.count(&I)) {
803    ++SDNodeOrder;
804    AssignOrderingToNode(getValue(&I).getNode());
805  }
806}
807
808// getValue - Return an SDValue for the given Value.
809SDValue SelectionDAGBuilder::getValue(const Value *V) {
810  // If we already have an SDValue for this value, use it. It's important
811  // to do this first, so that we don't create a CopyFromReg if we already
812  // have a regular SDValue.
813  SDValue &N = NodeMap[V];
814  if (N.getNode()) return N;
815
816  // If there's a virtual register allocated and initialized for this
817  // value, use it.
818  DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
819  if (It != FuncInfo.ValueMap.end()) {
820    unsigned InReg = It->second;
821    RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
822    SDValue Chain = DAG.getEntryNode();
823    return N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL);
824  }
825
826  // Otherwise create a new SDValue and remember it.
827  SDValue Val = getValueImpl(V);
828  NodeMap[V] = Val;
829  return Val;
830}
831
832/// getNonRegisterValue - Return an SDValue for the given Value, but
833/// don't look in FuncInfo.ValueMap for a virtual register.
834SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
835  // If we already have an SDValue for this value, use it.
836  SDValue &N = NodeMap[V];
837  if (N.getNode()) return N;
838
839  // Otherwise create a new SDValue and remember it.
840  SDValue Val = getValueImpl(V);
841  NodeMap[V] = Val;
842  return Val;
843}
844
845/// getValueImpl - Helper function for getValue and getMaterializedValue.
846/// Create an SDValue for the given value.
847SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
848  if (const Constant *C = dyn_cast<Constant>(V)) {
849    EVT VT = TLI.getValueType(V->getType(), true);
850
851    if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
852      return DAG.getConstant(*CI, VT);
853
854    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
855      return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT);
856
857    if (isa<ConstantPointerNull>(C))
858      return DAG.getConstant(0, TLI.getPointerTy());
859
860    if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
861      return DAG.getConstantFP(*CFP, VT);
862
863    if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
864      return DAG.getUNDEF(VT);
865
866    if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
867      visit(CE->getOpcode(), *CE);
868      SDValue N1 = NodeMap[V];
869      assert(N1.getNode() && "visit didn't populate the NodeMap!");
870      return N1;
871    }
872
873    if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
874      SmallVector<SDValue, 4> Constants;
875      for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
876           OI != OE; ++OI) {
877        SDNode *Val = getValue(*OI).getNode();
878        // If the operand is an empty aggregate, there are no values.
879        if (!Val) continue;
880        // Add each leaf value from the operand to the Constants list
881        // to form a flattened list of all the values.
882        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
883          Constants.push_back(SDValue(Val, i));
884      }
885
886      return DAG.getMergeValues(&Constants[0], Constants.size(),
887                                getCurDebugLoc());
888    }
889
890    if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
891      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
892             "Unknown struct or array constant!");
893
894      SmallVector<EVT, 4> ValueVTs;
895      ComputeValueVTs(TLI, C->getType(), ValueVTs);
896      unsigned NumElts = ValueVTs.size();
897      if (NumElts == 0)
898        return SDValue(); // empty struct
899      SmallVector<SDValue, 4> Constants(NumElts);
900      for (unsigned i = 0; i != NumElts; ++i) {
901        EVT EltVT = ValueVTs[i];
902        if (isa<UndefValue>(C))
903          Constants[i] = DAG.getUNDEF(EltVT);
904        else if (EltVT.isFloatingPoint())
905          Constants[i] = DAG.getConstantFP(0, EltVT);
906        else
907          Constants[i] = DAG.getConstant(0, EltVT);
908      }
909
910      return DAG.getMergeValues(&Constants[0], NumElts,
911                                getCurDebugLoc());
912    }
913
914    if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
915      return DAG.getBlockAddress(BA, VT);
916
917    const VectorType *VecTy = cast<VectorType>(V->getType());
918    unsigned NumElements = VecTy->getNumElements();
919
920    // Now that we know the number and type of the elements, get that number of
921    // elements into the Ops array based on what kind of constant it is.
922    SmallVector<SDValue, 16> Ops;
923    if (const ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
924      for (unsigned i = 0; i != NumElements; ++i)
925        Ops.push_back(getValue(CP->getOperand(i)));
926    } else {
927      assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
928      EVT EltVT = TLI.getValueType(VecTy->getElementType());
929
930      SDValue Op;
931      if (EltVT.isFloatingPoint())
932        Op = DAG.getConstantFP(0, EltVT);
933      else
934        Op = DAG.getConstant(0, EltVT);
935      Ops.assign(NumElements, Op);
936    }
937
938    // Create a BUILD_VECTOR node.
939    return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
940                                    VT, &Ops[0], Ops.size());
941  }
942
943  // If this is a static alloca, generate it as the frameindex instead of
944  // computation.
945  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
946    DenseMap<const AllocaInst*, int>::iterator SI =
947      FuncInfo.StaticAllocaMap.find(AI);
948    if (SI != FuncInfo.StaticAllocaMap.end())
949      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
950  }
951
952  // If this is an instruction which fast-isel has deferred, select it now.
953  if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
954    assert(Inst->isSafeToSpeculativelyExecute() &&
955           "Instruction with side effects deferred!");
956    visit(*Inst);
957    DenseMap<const Value *, SDValue>::iterator NIt = NodeMap.find(Inst);
958    if (NIt != NodeMap.end() && NIt->second.getNode())
959      return NIt->second;
960  }
961
962  llvm_unreachable("Can't get register for value!");
963  return SDValue();
964}
965
966/// Get the EVTs and ArgFlags collections that represent the legalized return
967/// type of the given function.  This does not require a DAG or a return value,
968/// and is suitable for use before any DAGs for the function are constructed.
969static void getReturnInfo(const Type* ReturnType,
970                   Attributes attr, SmallVectorImpl<EVT> &OutVTs,
971                   SmallVectorImpl<ISD::ArgFlagsTy> &OutFlags,
972                   const TargetLowering &TLI,
973                   SmallVectorImpl<uint64_t> *Offsets = 0) {
974  SmallVector<EVT, 4> ValueVTs;
975  ComputeValueVTs(TLI, ReturnType, ValueVTs);
976  unsigned NumValues = ValueVTs.size();
977  if (NumValues == 0) return;
978  unsigned Offset = 0;
979
980  for (unsigned j = 0, f = NumValues; j != f; ++j) {
981    EVT VT = ValueVTs[j];
982    ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
983
984    if (attr & Attribute::SExt)
985      ExtendKind = ISD::SIGN_EXTEND;
986    else if (attr & Attribute::ZExt)
987      ExtendKind = ISD::ZERO_EXTEND;
988
989    // FIXME: C calling convention requires the return type to be promoted to
990    // at least 32-bit. But this is not necessary for non-C calling
991    // conventions. The frontend should mark functions whose return values
992    // require promoting with signext or zeroext attributes.
993    if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
994      EVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
995      if (VT.bitsLT(MinVT))
996        VT = MinVT;
997    }
998
999    unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT);
1000    EVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT);
1001    unsigned PartSize = TLI.getTargetData()->getTypeAllocSize(
1002                        PartVT.getTypeForEVT(ReturnType->getContext()));
1003
1004    // 'inreg' on function refers to return value
1005    ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1006    if (attr & Attribute::InReg)
1007      Flags.setInReg();
1008
1009    // Propagate extension type if any
1010    if (attr & Attribute::SExt)
1011      Flags.setSExt();
1012    else if (attr & Attribute::ZExt)
1013      Flags.setZExt();
1014
1015    for (unsigned i = 0; i < NumParts; ++i) {
1016      OutVTs.push_back(PartVT);
1017      OutFlags.push_back(Flags);
1018      if (Offsets)
1019      {
1020        Offsets->push_back(Offset);
1021        Offset += PartSize;
1022      }
1023    }
1024  }
1025}
1026
1027void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1028  SDValue Chain = getControlRoot();
1029  SmallVector<ISD::OutputArg, 8> Outs;
1030
1031  if (!FuncInfo.CanLowerReturn) {
1032    unsigned DemoteReg = FuncInfo.DemoteRegister;
1033    const Function *F = I.getParent()->getParent();
1034
1035    // Emit a store of the return value through the virtual register.
1036    // Leave Outs empty so that LowerReturn won't try to load return
1037    // registers the usual way.
1038    SmallVector<EVT, 1> PtrValueVTs;
1039    ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
1040                    PtrValueVTs);
1041
1042    SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
1043    SDValue RetOp = getValue(I.getOperand(0));
1044
1045    SmallVector<EVT, 4> ValueVTs;
1046    SmallVector<uint64_t, 4> Offsets;
1047    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1048    unsigned NumValues = ValueVTs.size();
1049
1050    SmallVector<SDValue, 4> Chains(NumValues);
1051    EVT PtrVT = PtrValueVTs[0];
1052    for (unsigned i = 0; i != NumValues; ++i) {
1053      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, RetPtr,
1054                                DAG.getConstant(Offsets[i], PtrVT));
1055      Chains[i] =
1056        DAG.getStore(Chain, getCurDebugLoc(),
1057                     SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1058                     Add, NULL, Offsets[i], false, false, 0);
1059    }
1060
1061    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
1062                        MVT::Other, &Chains[0], NumValues);
1063  } else if (I.getNumOperands() != 0) {
1064    SmallVector<EVT, 4> ValueVTs;
1065    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
1066    unsigned NumValues = ValueVTs.size();
1067    if (NumValues) {
1068      SDValue RetOp = getValue(I.getOperand(0));
1069      for (unsigned j = 0, f = NumValues; j != f; ++j) {
1070        EVT VT = ValueVTs[j];
1071
1072        ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1073
1074        const Function *F = I.getParent()->getParent();
1075        if (F->paramHasAttr(0, Attribute::SExt))
1076          ExtendKind = ISD::SIGN_EXTEND;
1077        else if (F->paramHasAttr(0, Attribute::ZExt))
1078          ExtendKind = ISD::ZERO_EXTEND;
1079
1080        // FIXME: C calling convention requires the return type to be promoted
1081        // to at least 32-bit. But this is not necessary for non-C calling
1082        // conventions. The frontend should mark functions whose return values
1083        // require promoting with signext or zeroext attributes.
1084        if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
1085          EVT MinVT = TLI.getRegisterType(*DAG.getContext(), MVT::i32);
1086          if (VT.bitsLT(MinVT))
1087            VT = MinVT;
1088        }
1089
1090        unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
1091        EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
1092        SmallVector<SDValue, 4> Parts(NumParts);
1093        getCopyToParts(DAG, getCurDebugLoc(),
1094                       SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1095                       &Parts[0], NumParts, PartVT, ExtendKind);
1096
1097        // 'inreg' on function refers to return value
1098        ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1099        if (F->paramHasAttr(0, Attribute::InReg))
1100          Flags.setInReg();
1101
1102        // Propagate extension type if any
1103        if (F->paramHasAttr(0, Attribute::SExt))
1104          Flags.setSExt();
1105        else if (F->paramHasAttr(0, Attribute::ZExt))
1106          Flags.setZExt();
1107
1108        for (unsigned i = 0; i < NumParts; ++i)
1109          Outs.push_back(ISD::OutputArg(Flags, Parts[i], /*isfixed=*/true));
1110      }
1111    }
1112  }
1113
1114  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1115  CallingConv::ID CallConv =
1116    DAG.getMachineFunction().getFunction()->getCallingConv();
1117  Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
1118                          Outs, getCurDebugLoc(), DAG);
1119
1120  // Verify that the target's LowerReturn behaved as expected.
1121  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1122         "LowerReturn didn't return a valid chain!");
1123
1124  // Update the DAG with the new chain value resulting from return lowering.
1125  DAG.setRoot(Chain);
1126}
1127
1128/// CopyToExportRegsIfNeeded - If the given value has virtual registers
1129/// created for it, emit nodes to copy the value into the virtual
1130/// registers.
1131void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1132  DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1133  if (VMI != FuncInfo.ValueMap.end()) {
1134    assert(!V->use_empty() && "Unused value assigned virtual registers!");
1135    CopyValueToVirtualRegister(V, VMI->second);
1136  }
1137}
1138
1139/// ExportFromCurrentBlock - If this condition isn't known to be exported from
1140/// the current basic block, add it to ValueMap now so that we'll get a
1141/// CopyTo/FromReg.
1142void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1143  // No need to export constants.
1144  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1145
1146  // Already exported?
1147  if (FuncInfo.isExportedInst(V)) return;
1148
1149  unsigned Reg = FuncInfo.InitializeRegForValue(V);
1150  CopyValueToVirtualRegister(V, Reg);
1151}
1152
1153bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1154                                                     const BasicBlock *FromBB) {
1155  // The operands of the setcc have to be in this block.  We don't know
1156  // how to export them from some other block.
1157  if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1158    // Can export from current BB.
1159    if (VI->getParent() == FromBB)
1160      return true;
1161
1162    // Is already exported, noop.
1163    return FuncInfo.isExportedInst(V);
1164  }
1165
1166  // If this is an argument, we can export it if the BB is the entry block or
1167  // if it is already exported.
1168  if (isa<Argument>(V)) {
1169    if (FromBB == &FromBB->getParent()->getEntryBlock())
1170      return true;
1171
1172    // Otherwise, can only export this if it is already exported.
1173    return FuncInfo.isExportedInst(V);
1174  }
1175
1176  // Otherwise, constants can always be exported.
1177  return true;
1178}
1179
1180static bool InBlock(const Value *V, const BasicBlock *BB) {
1181  if (const Instruction *I = dyn_cast<Instruction>(V))
1182    return I->getParent() == BB;
1183  return true;
1184}
1185
1186/// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1187/// This function emits a branch and is used at the leaves of an OR or an
1188/// AND operator tree.
1189///
1190void
1191SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1192                                                  MachineBasicBlock *TBB,
1193                                                  MachineBasicBlock *FBB,
1194                                                  MachineBasicBlock *CurBB,
1195                                                  MachineBasicBlock *SwitchBB) {
1196  const BasicBlock *BB = CurBB->getBasicBlock();
1197
1198  // If the leaf of the tree is a comparison, merge the condition into
1199  // the caseblock.
1200  if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1201    // The operands of the cmp have to be in this block.  We don't know
1202    // how to export them from some other block.  If this is the first block
1203    // of the sequence, no exporting is needed.
1204    if (CurBB == SwitchBB ||
1205        (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1206         isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1207      ISD::CondCode Condition;
1208      if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1209        Condition = getICmpCondCode(IC->getPredicate());
1210      } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1211        Condition = getFCmpCondCode(FC->getPredicate());
1212      } else {
1213        Condition = ISD::SETEQ; // silence warning.
1214        llvm_unreachable("Unknown compare instruction");
1215      }
1216
1217      CaseBlock CB(Condition, BOp->getOperand(0),
1218                   BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1219      SwitchCases.push_back(CB);
1220      return;
1221    }
1222  }
1223
1224  // Create a CaseBlock record representing this branch.
1225  CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1226               NULL, TBB, FBB, CurBB);
1227  SwitchCases.push_back(CB);
1228}
1229
1230/// FindMergedConditions - If Cond is an expression like
1231void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1232                                               MachineBasicBlock *TBB,
1233                                               MachineBasicBlock *FBB,
1234                                               MachineBasicBlock *CurBB,
1235                                               MachineBasicBlock *SwitchBB,
1236                                               unsigned Opc) {
1237  // If this node is not part of the or/and tree, emit it as a branch.
1238  const Instruction *BOp = dyn_cast<Instruction>(Cond);
1239  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1240      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1241      BOp->getParent() != CurBB->getBasicBlock() ||
1242      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1243      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1244    EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB);
1245    return;
1246  }
1247
1248  //  Create TmpBB after CurBB.
1249  MachineFunction::iterator BBI = CurBB;
1250  MachineFunction &MF = DAG.getMachineFunction();
1251  MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1252  CurBB->getParent()->insert(++BBI, TmpBB);
1253
1254  if (Opc == Instruction::Or) {
1255    // Codegen X | Y as:
1256    //   jmp_if_X TBB
1257    //   jmp TmpBB
1258    // TmpBB:
1259    //   jmp_if_Y TBB
1260    //   jmp FBB
1261    //
1262
1263    // Emit the LHS condition.
1264    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc);
1265
1266    // Emit the RHS condition into TmpBB.
1267    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1268  } else {
1269    assert(Opc == Instruction::And && "Unknown merge op!");
1270    // Codegen X & Y as:
1271    //   jmp_if_X TmpBB
1272    //   jmp FBB
1273    // TmpBB:
1274    //   jmp_if_Y TBB
1275    //   jmp FBB
1276    //
1277    //  This requires creation of TmpBB after CurBB.
1278
1279    // Emit the LHS condition.
1280    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc);
1281
1282    // Emit the RHS condition into TmpBB.
1283    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1284  }
1285}
1286
1287/// If the set of cases should be emitted as a series of branches, return true.
1288/// If we should emit this as a bunch of and/or'd together conditions, return
1289/// false.
1290bool
1291SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
1292  if (Cases.size() != 2) return true;
1293
1294  // If this is two comparisons of the same values or'd or and'd together, they
1295  // will get folded into a single comparison, so don't emit two blocks.
1296  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1297       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1298      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1299       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1300    return false;
1301  }
1302
1303  // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1304  // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1305  if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1306      Cases[0].CC == Cases[1].CC &&
1307      isa<Constant>(Cases[0].CmpRHS) &&
1308      cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1309    if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1310      return false;
1311    if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1312      return false;
1313  }
1314
1315  return true;
1316}
1317
1318void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1319  MachineBasicBlock *BrMBB = FuncInfo.MBBMap[I.getParent()];
1320
1321  // Update machine-CFG edges.
1322  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1323
1324  // Figure out which block is immediately after the current one.
1325  MachineBasicBlock *NextBlock = 0;
1326  MachineFunction::iterator BBI = BrMBB;
1327  if (++BBI != FuncInfo.MF->end())
1328    NextBlock = BBI;
1329
1330  if (I.isUnconditional()) {
1331    // Update machine-CFG edges.
1332    BrMBB->addSuccessor(Succ0MBB);
1333
1334    // If this is not a fall-through branch, emit the branch.
1335    if (Succ0MBB != NextBlock)
1336      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1337                              MVT::Other, getControlRoot(),
1338                              DAG.getBasicBlock(Succ0MBB)));
1339
1340    return;
1341  }
1342
1343  // If this condition is one of the special cases we handle, do special stuff
1344  // now.
1345  const Value *CondVal = I.getCondition();
1346  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1347
1348  // If this is a series of conditions that are or'd or and'd together, emit
1349  // this as a sequence of branches instead of setcc's with and/or operations.
1350  // For example, instead of something like:
1351  //     cmp A, B
1352  //     C = seteq
1353  //     cmp D, E
1354  //     F = setle
1355  //     or C, F
1356  //     jnz foo
1357  // Emit:
1358  //     cmp A, B
1359  //     je foo
1360  //     cmp D, E
1361  //     jle foo
1362  //
1363  if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1364    if (BOp->hasOneUse() &&
1365        (BOp->getOpcode() == Instruction::And ||
1366         BOp->getOpcode() == Instruction::Or)) {
1367      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1368                           BOp->getOpcode());
1369      // If the compares in later blocks need to use values not currently
1370      // exported from this block, export them now.  This block should always
1371      // be the first entry.
1372      assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1373
1374      // Allow some cases to be rejected.
1375      if (ShouldEmitAsBranches(SwitchCases)) {
1376        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1377          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1378          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1379        }
1380
1381        // Emit the branch for this block.
1382        visitSwitchCase(SwitchCases[0], BrMBB);
1383        SwitchCases.erase(SwitchCases.begin());
1384        return;
1385      }
1386
1387      // Okay, we decided not to do this, remove any inserted MBB's and clear
1388      // SwitchCases.
1389      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1390        FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1391
1392      SwitchCases.clear();
1393    }
1394  }
1395
1396  // Create a CaseBlock record representing this branch.
1397  CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1398               NULL, Succ0MBB, Succ1MBB, BrMBB);
1399
1400  // Use visitSwitchCase to actually insert the fast branch sequence for this
1401  // cond branch.
1402  visitSwitchCase(CB, BrMBB);
1403}
1404
1405/// visitSwitchCase - Emits the necessary code to represent a single node in
1406/// the binary search tree resulting from lowering a switch instruction.
1407void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1408                                          MachineBasicBlock *SwitchBB) {
1409  SDValue Cond;
1410  SDValue CondLHS = getValue(CB.CmpLHS);
1411  DebugLoc dl = getCurDebugLoc();
1412
1413  // Build the setcc now.
1414  if (CB.CmpMHS == NULL) {
1415    // Fold "(X == true)" to X and "(X == false)" to !X to
1416    // handle common cases produced by branch lowering.
1417    if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1418        CB.CC == ISD::SETEQ)
1419      Cond = CondLHS;
1420    else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1421             CB.CC == ISD::SETEQ) {
1422      SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1423      Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1424    } else
1425      Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1426  } else {
1427    assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1428
1429    const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1430    const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
1431
1432    SDValue CmpOp = getValue(CB.CmpMHS);
1433    EVT VT = CmpOp.getValueType();
1434
1435    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1436      Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1437                          ISD::SETLE);
1438    } else {
1439      SDValue SUB = DAG.getNode(ISD::SUB, dl,
1440                                VT, CmpOp, DAG.getConstant(Low, VT));
1441      Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1442                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1443    }
1444  }
1445
1446  // Update successor info
1447  SwitchBB->addSuccessor(CB.TrueBB);
1448  SwitchBB->addSuccessor(CB.FalseBB);
1449
1450  // Set NextBlock to be the MBB immediately after the current one, if any.
1451  // This is used to avoid emitting unnecessary branches to the next block.
1452  MachineBasicBlock *NextBlock = 0;
1453  MachineFunction::iterator BBI = SwitchBB;
1454  if (++BBI != FuncInfo.MF->end())
1455    NextBlock = BBI;
1456
1457  // If the lhs block is the next block, invert the condition so that we can
1458  // fall through to the lhs instead of the rhs block.
1459  if (CB.TrueBB == NextBlock) {
1460    std::swap(CB.TrueBB, CB.FalseBB);
1461    SDValue True = DAG.getConstant(1, Cond.getValueType());
1462    Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1463  }
1464
1465  SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1466                               MVT::Other, getControlRoot(), Cond,
1467                               DAG.getBasicBlock(CB.TrueBB));
1468
1469  // Insert the false branch.
1470  if (CB.FalseBB != NextBlock)
1471    BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1472                         DAG.getBasicBlock(CB.FalseBB));
1473
1474  DAG.setRoot(BrCond);
1475}
1476
1477/// visitJumpTable - Emit JumpTable node in the current MBB
1478void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1479  // Emit the code for the jump table
1480  assert(JT.Reg != -1U && "Should lower JT Header first!");
1481  EVT PTy = TLI.getPointerTy();
1482  SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1483                                     JT.Reg, PTy);
1484  SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1485  SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(),
1486                                    MVT::Other, Index.getValue(1),
1487                                    Table, Index);
1488  DAG.setRoot(BrJumpTable);
1489}
1490
1491/// visitJumpTableHeader - This function emits necessary code to produce index
1492/// in the JumpTable from switch case.
1493void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1494                                               JumpTableHeader &JTH,
1495                                               MachineBasicBlock *SwitchBB) {
1496  // Subtract the lowest switch case value from the value being switched on and
1497  // conditional branch to default mbb if the result is greater than the
1498  // difference between smallest and largest cases.
1499  SDValue SwitchOp = getValue(JTH.SValue);
1500  EVT VT = SwitchOp.getValueType();
1501  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1502                            DAG.getConstant(JTH.First, VT));
1503
1504  // The SDNode we just created, which holds the value being switched on minus
1505  // the smallest case value, needs to be copied to a virtual register so it
1506  // can be used as an index into the jump table in a subsequent basic block.
1507  // This value may be smaller or larger than the target's pointer type, and
1508  // therefore require extension or truncating.
1509  SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy());
1510
1511  unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy());
1512  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1513                                    JumpTableReg, SwitchOp);
1514  JT.Reg = JumpTableReg;
1515
1516  // Emit the range check for the jump table, and branch to the default block
1517  // for the switch statement if the value being switched on exceeds the largest
1518  // case in the switch.
1519  SDValue CMP = DAG.getSetCC(getCurDebugLoc(),
1520                             TLI.getSetCCResultType(Sub.getValueType()), Sub,
1521                             DAG.getConstant(JTH.Last-JTH.First,VT),
1522                             ISD::SETUGT);
1523
1524  // Set NextBlock to be the MBB immediately after the current one, if any.
1525  // This is used to avoid emitting unnecessary branches to the next block.
1526  MachineBasicBlock *NextBlock = 0;
1527  MachineFunction::iterator BBI = SwitchBB;
1528
1529  if (++BBI != FuncInfo.MF->end())
1530    NextBlock = BBI;
1531
1532  SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1533                               MVT::Other, CopyTo, CMP,
1534                               DAG.getBasicBlock(JT.Default));
1535
1536  if (JT.MBB != NextBlock)
1537    BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond,
1538                         DAG.getBasicBlock(JT.MBB));
1539
1540  DAG.setRoot(BrCond);
1541}
1542
1543/// visitBitTestHeader - This function emits necessary code to produce value
1544/// suitable for "bit tests"
1545void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1546                                             MachineBasicBlock *SwitchBB) {
1547  // Subtract the minimum value
1548  SDValue SwitchOp = getValue(B.SValue);
1549  EVT VT = SwitchOp.getValueType();
1550  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1551                            DAG.getConstant(B.First, VT));
1552
1553  // Check range
1554  SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(),
1555                                  TLI.getSetCCResultType(Sub.getValueType()),
1556                                  Sub, DAG.getConstant(B.Range, VT),
1557                                  ISD::SETUGT);
1558
1559  SDValue ShiftOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(),
1560                                       TLI.getPointerTy());
1561
1562  B.Reg = FuncInfo.CreateReg(TLI.getPointerTy());
1563  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1564                                    B.Reg, ShiftOp);
1565
1566  // Set NextBlock to be the MBB immediately after the current one, if any.
1567  // This is used to avoid emitting unnecessary branches to the next block.
1568  MachineBasicBlock *NextBlock = 0;
1569  MachineFunction::iterator BBI = SwitchBB;
1570  if (++BBI != FuncInfo.MF->end())
1571    NextBlock = BBI;
1572
1573  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1574
1575  SwitchBB->addSuccessor(B.Default);
1576  SwitchBB->addSuccessor(MBB);
1577
1578  SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1579                                MVT::Other, CopyTo, RangeCmp,
1580                                DAG.getBasicBlock(B.Default));
1581
1582  if (MBB != NextBlock)
1583    BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo,
1584                          DAG.getBasicBlock(MBB));
1585
1586  DAG.setRoot(BrRange);
1587}
1588
1589/// visitBitTestCase - this function produces one "bit test"
1590void SelectionDAGBuilder::visitBitTestCase(MachineBasicBlock* NextMBB,
1591                                           unsigned Reg,
1592                                           BitTestCase &B,
1593                                           MachineBasicBlock *SwitchBB) {
1594  SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), Reg,
1595                                       TLI.getPointerTy());
1596  SDValue Cmp;
1597  if (CountPopulation_64(B.Mask) == 1) {
1598    // Testing for a single bit; just compare the shift count with what it
1599    // would need to be to shift a 1 bit in that position.
1600    Cmp = DAG.getSetCC(getCurDebugLoc(),
1601                       TLI.getSetCCResultType(ShiftOp.getValueType()),
1602                       ShiftOp,
1603                       DAG.getConstant(CountTrailingZeros_64(B.Mask),
1604                                       TLI.getPointerTy()),
1605                       ISD::SETEQ);
1606  } else {
1607    // Make desired shift
1608    SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(),
1609                                    TLI.getPointerTy(),
1610                                    DAG.getConstant(1, TLI.getPointerTy()),
1611                                    ShiftOp);
1612
1613    // Emit bit tests and jumps
1614    SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(),
1615                                TLI.getPointerTy(), SwitchVal,
1616                                DAG.getConstant(B.Mask, TLI.getPointerTy()));
1617    Cmp = DAG.getSetCC(getCurDebugLoc(),
1618                       TLI.getSetCCResultType(AndOp.getValueType()),
1619                       AndOp, DAG.getConstant(0, TLI.getPointerTy()),
1620                       ISD::SETNE);
1621  }
1622
1623  SwitchBB->addSuccessor(B.TargetBB);
1624  SwitchBB->addSuccessor(NextMBB);
1625
1626  SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1627                              MVT::Other, getControlRoot(),
1628                              Cmp, DAG.getBasicBlock(B.TargetBB));
1629
1630  // Set NextBlock to be the MBB immediately after the current one, if any.
1631  // This is used to avoid emitting unnecessary branches to the next block.
1632  MachineBasicBlock *NextBlock = 0;
1633  MachineFunction::iterator BBI = SwitchBB;
1634  if (++BBI != FuncInfo.MF->end())
1635    NextBlock = BBI;
1636
1637  if (NextMBB != NextBlock)
1638    BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd,
1639                        DAG.getBasicBlock(NextMBB));
1640
1641  DAG.setRoot(BrAnd);
1642}
1643
1644void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1645  MachineBasicBlock *InvokeMBB = FuncInfo.MBBMap[I.getParent()];
1646
1647  // Retrieve successors.
1648  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1649  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1650
1651  const Value *Callee(I.getCalledValue());
1652  if (isa<InlineAsm>(Callee))
1653    visitInlineAsm(&I);
1654  else
1655    LowerCallTo(&I, getValue(Callee), false, LandingPad);
1656
1657  // If the value of the invoke is used outside of its defining block, make it
1658  // available as a virtual register.
1659  CopyToExportRegsIfNeeded(&I);
1660
1661  // Update successor info
1662  InvokeMBB->addSuccessor(Return);
1663  InvokeMBB->addSuccessor(LandingPad);
1664
1665  // Drop into normal successor.
1666  DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1667                          MVT::Other, getControlRoot(),
1668                          DAG.getBasicBlock(Return)));
1669}
1670
1671void SelectionDAGBuilder::visitUnwind(const UnwindInst &I) {
1672}
1673
1674/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1675/// small case ranges).
1676bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
1677                                                 CaseRecVector& WorkList,
1678                                                 const Value* SV,
1679                                                 MachineBasicBlock *Default,
1680                                                 MachineBasicBlock *SwitchBB) {
1681  Case& BackCase  = *(CR.Range.second-1);
1682
1683  // Size is the number of Cases represented by this range.
1684  size_t Size = CR.Range.second - CR.Range.first;
1685  if (Size > 3)
1686    return false;
1687
1688  // Get the MachineFunction which holds the current MBB.  This is used when
1689  // inserting any additional MBBs necessary to represent the switch.
1690  MachineFunction *CurMF = FuncInfo.MF;
1691
1692  // Figure out which block is immediately after the current one.
1693  MachineBasicBlock *NextBlock = 0;
1694  MachineFunction::iterator BBI = CR.CaseBB;
1695
1696  if (++BBI != FuncInfo.MF->end())
1697    NextBlock = BBI;
1698
1699  // TODO: If any two of the cases has the same destination, and if one value
1700  // is the same as the other, but has one bit unset that the other has set,
1701  // use bit manipulation to do two compares at once.  For example:
1702  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1703
1704  // Rearrange the case blocks so that the last one falls through if possible.
1705  if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1706    // The last case block won't fall through into 'NextBlock' if we emit the
1707    // branches in this order.  See if rearranging a case value would help.
1708    for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1709      if (I->BB == NextBlock) {
1710        std::swap(*I, BackCase);
1711        break;
1712      }
1713    }
1714  }
1715
1716  // Create a CaseBlock record representing a conditional branch to
1717  // the Case's target mbb if the value being switched on SV is equal
1718  // to C.
1719  MachineBasicBlock *CurBlock = CR.CaseBB;
1720  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1721    MachineBasicBlock *FallThrough;
1722    if (I != E-1) {
1723      FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
1724      CurMF->insert(BBI, FallThrough);
1725
1726      // Put SV in a virtual register to make it available from the new blocks.
1727      ExportFromCurrentBlock(SV);
1728    } else {
1729      // If the last case doesn't match, go to the default block.
1730      FallThrough = Default;
1731    }
1732
1733    const Value *RHS, *LHS, *MHS;
1734    ISD::CondCode CC;
1735    if (I->High == I->Low) {
1736      // This is just small small case range :) containing exactly 1 case
1737      CC = ISD::SETEQ;
1738      LHS = SV; RHS = I->High; MHS = NULL;
1739    } else {
1740      CC = ISD::SETLE;
1741      LHS = I->Low; MHS = SV; RHS = I->High;
1742    }
1743    CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock);
1744
1745    // If emitting the first comparison, just call visitSwitchCase to emit the
1746    // code into the current block.  Otherwise, push the CaseBlock onto the
1747    // vector to be later processed by SDISel, and insert the node's MBB
1748    // before the next MBB.
1749    if (CurBlock == SwitchBB)
1750      visitSwitchCase(CB, SwitchBB);
1751    else
1752      SwitchCases.push_back(CB);
1753
1754    CurBlock = FallThrough;
1755  }
1756
1757  return true;
1758}
1759
1760static inline bool areJTsAllowed(const TargetLowering &TLI) {
1761  return !DisableJumpTables &&
1762          (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
1763           TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
1764}
1765
1766static APInt ComputeRange(const APInt &First, const APInt &Last) {
1767  APInt LastExt(Last), FirstExt(First);
1768  uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
1769  LastExt.sext(BitWidth); FirstExt.sext(BitWidth);
1770  return (LastExt - FirstExt + 1ULL);
1771}
1772
1773/// handleJTSwitchCase - Emit jumptable for current switch case range
1774bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec& CR,
1775                                             CaseRecVector& WorkList,
1776                                             const Value* SV,
1777                                             MachineBasicBlock* Default,
1778                                             MachineBasicBlock *SwitchBB) {
1779  Case& FrontCase = *CR.Range.first;
1780  Case& BackCase  = *(CR.Range.second-1);
1781
1782  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
1783  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
1784
1785  APInt TSize(First.getBitWidth(), 0);
1786  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1787       I!=E; ++I)
1788    TSize += I->size();
1789
1790  if (!areJTsAllowed(TLI) || TSize.ult(4))
1791    return false;
1792
1793  APInt Range = ComputeRange(First, Last);
1794  double Density = TSize.roundToDouble() / Range.roundToDouble();
1795  if (Density < 0.4)
1796    return false;
1797
1798  DEBUG(dbgs() << "Lowering jump table\n"
1799               << "First entry: " << First << ". Last entry: " << Last << '\n'
1800               << "Range: " << Range
1801               << "Size: " << TSize << ". Density: " << Density << "\n\n");
1802
1803  // Get the MachineFunction which holds the current MBB.  This is used when
1804  // inserting any additional MBBs necessary to represent the switch.
1805  MachineFunction *CurMF = FuncInfo.MF;
1806
1807  // Figure out which block is immediately after the current one.
1808  MachineFunction::iterator BBI = CR.CaseBB;
1809  ++BBI;
1810
1811  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1812
1813  // Create a new basic block to hold the code for loading the address
1814  // of the jump table, and jumping to it.  Update successor information;
1815  // we will either branch to the default case for the switch, or the jump
1816  // table.
1817  MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1818  CurMF->insert(BBI, JumpTableBB);
1819  CR.CaseBB->addSuccessor(Default);
1820  CR.CaseBB->addSuccessor(JumpTableBB);
1821
1822  // Build a vector of destination BBs, corresponding to each target
1823  // of the jump table. If the value of the jump table slot corresponds to
1824  // a case statement, push the case's BB onto the vector, otherwise, push
1825  // the default BB.
1826  std::vector<MachineBasicBlock*> DestBBs;
1827  APInt TEI = First;
1828  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
1829    const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
1830    const APInt &High = cast<ConstantInt>(I->High)->getValue();
1831
1832    if (Low.sle(TEI) && TEI.sle(High)) {
1833      DestBBs.push_back(I->BB);
1834      if (TEI==High)
1835        ++I;
1836    } else {
1837      DestBBs.push_back(Default);
1838    }
1839  }
1840
1841  // Update successor info. Add one edge to each unique successor.
1842  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
1843  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
1844         E = DestBBs.end(); I != E; ++I) {
1845    if (!SuccsHandled[(*I)->getNumber()]) {
1846      SuccsHandled[(*I)->getNumber()] = true;
1847      JumpTableBB->addSuccessor(*I);
1848    }
1849  }
1850
1851  // Create a jump table index for this jump table.
1852  unsigned JTEncoding = TLI.getJumpTableEncoding();
1853  unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
1854                       ->createJumpTableIndex(DestBBs);
1855
1856  // Set the jump table information so that we can codegen it as a second
1857  // MachineBasicBlock
1858  JumpTable JT(-1U, JTI, JumpTableBB, Default);
1859  JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
1860  if (CR.CaseBB == SwitchBB)
1861    visitJumpTableHeader(JT, JTH, SwitchBB);
1862
1863  JTCases.push_back(JumpTableBlock(JTH, JT));
1864
1865  return true;
1866}
1867
1868/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
1869/// 2 subtrees.
1870bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
1871                                                  CaseRecVector& WorkList,
1872                                                  const Value* SV,
1873                                                  MachineBasicBlock *Default,
1874                                                  MachineBasicBlock *SwitchBB) {
1875  // Get the MachineFunction which holds the current MBB.  This is used when
1876  // inserting any additional MBBs necessary to represent the switch.
1877  MachineFunction *CurMF = FuncInfo.MF;
1878
1879  // Figure out which block is immediately after the current one.
1880  MachineFunction::iterator BBI = CR.CaseBB;
1881  ++BBI;
1882
1883  Case& FrontCase = *CR.Range.first;
1884  Case& BackCase  = *(CR.Range.second-1);
1885  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1886
1887  // Size is the number of Cases represented by this range.
1888  unsigned Size = CR.Range.second - CR.Range.first;
1889
1890  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
1891  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
1892  double FMetric = 0;
1893  CaseItr Pivot = CR.Range.first + Size/2;
1894
1895  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
1896  // (heuristically) allow us to emit JumpTable's later.
1897  APInt TSize(First.getBitWidth(), 0);
1898  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1899       I!=E; ++I)
1900    TSize += I->size();
1901
1902  APInt LSize = FrontCase.size();
1903  APInt RSize = TSize-LSize;
1904  DEBUG(dbgs() << "Selecting best pivot: \n"
1905               << "First: " << First << ", Last: " << Last <<'\n'
1906               << "LSize: " << LSize << ", RSize: " << RSize << '\n');
1907  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
1908       J!=E; ++I, ++J) {
1909    const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
1910    const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
1911    APInt Range = ComputeRange(LEnd, RBegin);
1912    assert((Range - 2ULL).isNonNegative() &&
1913           "Invalid case distance");
1914    double LDensity = (double)LSize.roundToDouble() /
1915                           (LEnd - First + 1ULL).roundToDouble();
1916    double RDensity = (double)RSize.roundToDouble() /
1917                           (Last - RBegin + 1ULL).roundToDouble();
1918    double Metric = Range.logBase2()*(LDensity+RDensity);
1919    // Should always split in some non-trivial place
1920    DEBUG(dbgs() <<"=>Step\n"
1921                 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
1922                 << "LDensity: " << LDensity
1923                 << ", RDensity: " << RDensity << '\n'
1924                 << "Metric: " << Metric << '\n');
1925    if (FMetric < Metric) {
1926      Pivot = J;
1927      FMetric = Metric;
1928      DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
1929    }
1930
1931    LSize += J->size();
1932    RSize -= J->size();
1933  }
1934  if (areJTsAllowed(TLI)) {
1935    // If our case is dense we *really* should handle it earlier!
1936    assert((FMetric > 0) && "Should handle dense range earlier!");
1937  } else {
1938    Pivot = CR.Range.first + Size/2;
1939  }
1940
1941  CaseRange LHSR(CR.Range.first, Pivot);
1942  CaseRange RHSR(Pivot, CR.Range.second);
1943  Constant *C = Pivot->Low;
1944  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
1945
1946  // We know that we branch to the LHS if the Value being switched on is
1947  // less than the Pivot value, C.  We use this to optimize our binary
1948  // tree a bit, by recognizing that if SV is greater than or equal to the
1949  // LHS's Case Value, and that Case Value is exactly one less than the
1950  // Pivot's Value, then we can branch directly to the LHS's Target,
1951  // rather than creating a leaf node for it.
1952  if ((LHSR.second - LHSR.first) == 1 &&
1953      LHSR.first->High == CR.GE &&
1954      cast<ConstantInt>(C)->getValue() ==
1955      (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
1956    TrueBB = LHSR.first->BB;
1957  } else {
1958    TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1959    CurMF->insert(BBI, TrueBB);
1960    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
1961
1962    // Put SV in a virtual register to make it available from the new blocks.
1963    ExportFromCurrentBlock(SV);
1964  }
1965
1966  // Similar to the optimization above, if the Value being switched on is
1967  // known to be less than the Constant CR.LT, and the current Case Value
1968  // is CR.LT - 1, then we can branch directly to the target block for
1969  // the current Case Value, rather than emitting a RHS leaf node for it.
1970  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
1971      cast<ConstantInt>(RHSR.first->Low)->getValue() ==
1972      (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
1973    FalseBB = RHSR.first->BB;
1974  } else {
1975    FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1976    CurMF->insert(BBI, FalseBB);
1977    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
1978
1979    // Put SV in a virtual register to make it available from the new blocks.
1980    ExportFromCurrentBlock(SV);
1981  }
1982
1983  // Create a CaseBlock record representing a conditional branch to
1984  // the LHS node if the value being switched on SV is less than C.
1985  // Otherwise, branch to LHS.
1986  CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
1987
1988  if (CR.CaseBB == SwitchBB)
1989    visitSwitchCase(CB, SwitchBB);
1990  else
1991    SwitchCases.push_back(CB);
1992
1993  return true;
1994}
1995
1996/// handleBitTestsSwitchCase - if current case range has few destination and
1997/// range span less, than machine word bitwidth, encode case range into series
1998/// of masks and emit bit tests with these masks.
1999bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
2000                                                   CaseRecVector& WorkList,
2001                                                   const Value* SV,
2002                                                   MachineBasicBlock* Default,
2003                                                   MachineBasicBlock *SwitchBB){
2004  EVT PTy = TLI.getPointerTy();
2005  unsigned IntPtrBits = PTy.getSizeInBits();
2006
2007  Case& FrontCase = *CR.Range.first;
2008  Case& BackCase  = *(CR.Range.second-1);
2009
2010  // Get the MachineFunction which holds the current MBB.  This is used when
2011  // inserting any additional MBBs necessary to represent the switch.
2012  MachineFunction *CurMF = FuncInfo.MF;
2013
2014  // If target does not have legal shift left, do not emit bit tests at all.
2015  if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
2016    return false;
2017
2018  size_t numCmps = 0;
2019  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2020       I!=E; ++I) {
2021    // Single case counts one, case range - two.
2022    numCmps += (I->Low == I->High ? 1 : 2);
2023  }
2024
2025  // Count unique destinations
2026  SmallSet<MachineBasicBlock*, 4> Dests;
2027  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2028    Dests.insert(I->BB);
2029    if (Dests.size() > 3)
2030      // Don't bother the code below, if there are too much unique destinations
2031      return false;
2032  }
2033  DEBUG(dbgs() << "Total number of unique destinations: "
2034        << Dests.size() << '\n'
2035        << "Total number of comparisons: " << numCmps << '\n');
2036
2037  // Compute span of values.
2038  const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
2039  const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
2040  APInt cmpRange = maxValue - minValue;
2041
2042  DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
2043               << "Low bound: " << minValue << '\n'
2044               << "High bound: " << maxValue << '\n');
2045
2046  if (cmpRange.uge(IntPtrBits) ||
2047      (!(Dests.size() == 1 && numCmps >= 3) &&
2048       !(Dests.size() == 2 && numCmps >= 5) &&
2049       !(Dests.size() >= 3 && numCmps >= 6)))
2050    return false;
2051
2052  DEBUG(dbgs() << "Emitting bit tests\n");
2053  APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
2054
2055  // Optimize the case where all the case values fit in a
2056  // word without having to subtract minValue. In this case,
2057  // we can optimize away the subtraction.
2058  if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) {
2059    cmpRange = maxValue;
2060  } else {
2061    lowBound = minValue;
2062  }
2063
2064  CaseBitsVector CasesBits;
2065  unsigned i, count = 0;
2066
2067  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2068    MachineBasicBlock* Dest = I->BB;
2069    for (i = 0; i < count; ++i)
2070      if (Dest == CasesBits[i].BB)
2071        break;
2072
2073    if (i == count) {
2074      assert((count < 3) && "Too much destinations to test!");
2075      CasesBits.push_back(CaseBits(0, Dest, 0));
2076      count++;
2077    }
2078
2079    const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
2080    const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
2081
2082    uint64_t lo = (lowValue - lowBound).getZExtValue();
2083    uint64_t hi = (highValue - lowBound).getZExtValue();
2084
2085    for (uint64_t j = lo; j <= hi; j++) {
2086      CasesBits[i].Mask |=  1ULL << j;
2087      CasesBits[i].Bits++;
2088    }
2089
2090  }
2091  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2092
2093  BitTestInfo BTC;
2094
2095  // Figure out which block is immediately after the current one.
2096  MachineFunction::iterator BBI = CR.CaseBB;
2097  ++BBI;
2098
2099  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2100
2101  DEBUG(dbgs() << "Cases:\n");
2102  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2103    DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
2104                 << ", Bits: " << CasesBits[i].Bits
2105                 << ", BB: " << CasesBits[i].BB << '\n');
2106
2107    MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2108    CurMF->insert(BBI, CaseBB);
2109    BTC.push_back(BitTestCase(CasesBits[i].Mask,
2110                              CaseBB,
2111                              CasesBits[i].BB));
2112
2113    // Put SV in a virtual register to make it available from the new blocks.
2114    ExportFromCurrentBlock(SV);
2115  }
2116
2117  BitTestBlock BTB(lowBound, cmpRange, SV,
2118                   -1U, (CR.CaseBB == SwitchBB),
2119                   CR.CaseBB, Default, BTC);
2120
2121  if (CR.CaseBB == SwitchBB)
2122    visitBitTestHeader(BTB, SwitchBB);
2123
2124  BitTestCases.push_back(BTB);
2125
2126  return true;
2127}
2128
2129/// Clusterify - Transform simple list of Cases into list of CaseRange's
2130size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
2131                                       const SwitchInst& SI) {
2132  size_t numCmps = 0;
2133
2134  // Start with "simple" cases
2135  for (size_t i = 1; i < SI.getNumSuccessors(); ++i) {
2136    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
2137    Cases.push_back(Case(SI.getSuccessorValue(i),
2138                         SI.getSuccessorValue(i),
2139                         SMBB));
2140  }
2141  std::sort(Cases.begin(), Cases.end(), CaseCmp());
2142
2143  // Merge case into clusters
2144  if (Cases.size() >= 2)
2145    // Must recompute end() each iteration because it may be
2146    // invalidated by erase if we hold on to it
2147    for (CaseItr I = Cases.begin(), J = ++(Cases.begin()); J != Cases.end(); ) {
2148      const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
2149      const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
2150      MachineBasicBlock* nextBB = J->BB;
2151      MachineBasicBlock* currentBB = I->BB;
2152
2153      // If the two neighboring cases go to the same destination, merge them
2154      // into a single case.
2155      if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
2156        I->High = J->High;
2157        J = Cases.erase(J);
2158      } else {
2159        I = J++;
2160      }
2161    }
2162
2163  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
2164    if (I->Low != I->High)
2165      // A range counts double, since it requires two compares.
2166      ++numCmps;
2167  }
2168
2169  return numCmps;
2170}
2171
2172void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
2173  MachineBasicBlock *SwitchMBB = FuncInfo.MBBMap[SI.getParent()];
2174
2175  // Figure out which block is immediately after the current one.
2176  MachineBasicBlock *NextBlock = 0;
2177  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2178
2179  // If there is only the default destination, branch to it if it is not the
2180  // next basic block.  Otherwise, just fall through.
2181  if (SI.getNumOperands() == 2) {
2182    // Update machine-CFG edges.
2183
2184    // If this is not a fall-through branch, emit the branch.
2185    SwitchMBB->addSuccessor(Default);
2186    if (Default != NextBlock)
2187      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
2188                              MVT::Other, getControlRoot(),
2189                              DAG.getBasicBlock(Default)));
2190
2191    return;
2192  }
2193
2194  // If there are any non-default case statements, create a vector of Cases
2195  // representing each one, and sort the vector so that we can efficiently
2196  // create a binary search tree from them.
2197  CaseVector Cases;
2198  size_t numCmps = Clusterify(Cases, SI);
2199  DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2200               << ". Total compares: " << numCmps << '\n');
2201  numCmps = 0;
2202
2203  // Get the Value to be switched on and default basic blocks, which will be
2204  // inserted into CaseBlock records, representing basic blocks in the binary
2205  // search tree.
2206  const Value *SV = SI.getOperand(0);
2207
2208  // Push the initial CaseRec onto the worklist
2209  CaseRecVector WorkList;
2210  WorkList.push_back(CaseRec(SwitchMBB,0,0,
2211                             CaseRange(Cases.begin(),Cases.end())));
2212
2213  while (!WorkList.empty()) {
2214    // Grab a record representing a case range to process off the worklist
2215    CaseRec CR = WorkList.back();
2216    WorkList.pop_back();
2217
2218    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2219      continue;
2220
2221    // If the range has few cases (two or less) emit a series of specific
2222    // tests.
2223    if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
2224      continue;
2225
2226    // If the switch has more than 5 blocks, and at least 40% dense, and the
2227    // target supports indirect branches, then emit a jump table rather than
2228    // lowering the switch to a binary tree of conditional branches.
2229    if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2230      continue;
2231
2232    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2233    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2234    handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
2235  }
2236}
2237
2238void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2239  MachineBasicBlock *IndirectBrMBB = FuncInfo.MBBMap[I.getParent()];
2240
2241  // Update machine-CFG edges with unique successors.
2242  SmallVector<BasicBlock*, 32> succs;
2243  succs.reserve(I.getNumSuccessors());
2244  for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i)
2245    succs.push_back(I.getSuccessor(i));
2246  array_pod_sort(succs.begin(), succs.end());
2247  succs.erase(std::unique(succs.begin(), succs.end()), succs.end());
2248  for (unsigned i = 0, e = succs.size(); i != e; ++i)
2249    IndirectBrMBB->addSuccessor(FuncInfo.MBBMap[succs[i]]);
2250
2251  DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(),
2252                          MVT::Other, getControlRoot(),
2253                          getValue(I.getAddress())));
2254}
2255
2256void SelectionDAGBuilder::visitFSub(const User &I) {
2257  // -0.0 - X --> fneg
2258  const Type *Ty = I.getType();
2259  if (Ty->isVectorTy()) {
2260    if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) {
2261      const VectorType *DestTy = cast<VectorType>(I.getType());
2262      const Type *ElTy = DestTy->getElementType();
2263      unsigned VL = DestTy->getNumElements();
2264      std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy));
2265      Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size());
2266      if (CV == CNZ) {
2267        SDValue Op2 = getValue(I.getOperand(1));
2268        setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2269                                 Op2.getValueType(), Op2));
2270        return;
2271      }
2272    }
2273  }
2274
2275  if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
2276    if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) {
2277      SDValue Op2 = getValue(I.getOperand(1));
2278      setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2279                               Op2.getValueType(), Op2));
2280      return;
2281    }
2282
2283  visitBinary(I, ISD::FSUB);
2284}
2285
2286void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2287  SDValue Op1 = getValue(I.getOperand(0));
2288  SDValue Op2 = getValue(I.getOperand(1));
2289  setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(),
2290                           Op1.getValueType(), Op1, Op2));
2291}
2292
2293void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2294  SDValue Op1 = getValue(I.getOperand(0));
2295  SDValue Op2 = getValue(I.getOperand(1));
2296  if (!I.getType()->isVectorTy() &&
2297      Op2.getValueType() != TLI.getShiftAmountTy()) {
2298    // If the operand is smaller than the shift count type, promote it.
2299    EVT PTy = TLI.getPointerTy();
2300    EVT STy = TLI.getShiftAmountTy();
2301    if (STy.bitsGT(Op2.getValueType()))
2302      Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(),
2303                        TLI.getShiftAmountTy(), Op2);
2304    // If the operand is larger than the shift count type but the shift
2305    // count type has enough bits to represent any shift value, truncate
2306    // it now. This is a common case and it exposes the truncate to
2307    // optimization early.
2308    else if (STy.getSizeInBits() >=
2309             Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2310      Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2311                        TLI.getShiftAmountTy(), Op2);
2312    // Otherwise we'll need to temporarily settle for some other
2313    // convenient type; type legalization will make adjustments as
2314    // needed.
2315    else if (PTy.bitsLT(Op2.getValueType()))
2316      Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2317                        TLI.getPointerTy(), Op2);
2318    else if (PTy.bitsGT(Op2.getValueType()))
2319      Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(),
2320                        TLI.getPointerTy(), Op2);
2321  }
2322
2323  setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(),
2324                           Op1.getValueType(), Op1, Op2));
2325}
2326
2327void SelectionDAGBuilder::visitICmp(const User &I) {
2328  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2329  if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2330    predicate = IC->getPredicate();
2331  else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2332    predicate = ICmpInst::Predicate(IC->getPredicate());
2333  SDValue Op1 = getValue(I.getOperand(0));
2334  SDValue Op2 = getValue(I.getOperand(1));
2335  ISD::CondCode Opcode = getICmpCondCode(predicate);
2336
2337  EVT DestVT = TLI.getValueType(I.getType());
2338  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode));
2339}
2340
2341void SelectionDAGBuilder::visitFCmp(const User &I) {
2342  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2343  if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2344    predicate = FC->getPredicate();
2345  else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2346    predicate = FCmpInst::Predicate(FC->getPredicate());
2347  SDValue Op1 = getValue(I.getOperand(0));
2348  SDValue Op2 = getValue(I.getOperand(1));
2349  ISD::CondCode Condition = getFCmpCondCode(predicate);
2350  EVT DestVT = TLI.getValueType(I.getType());
2351  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition));
2352}
2353
2354void SelectionDAGBuilder::visitSelect(const User &I) {
2355  SmallVector<EVT, 4> ValueVTs;
2356  ComputeValueVTs(TLI, I.getType(), ValueVTs);
2357  unsigned NumValues = ValueVTs.size();
2358  if (NumValues == 0) return;
2359
2360  SmallVector<SDValue, 4> Values(NumValues);
2361  SDValue Cond     = getValue(I.getOperand(0));
2362  SDValue TrueVal  = getValue(I.getOperand(1));
2363  SDValue FalseVal = getValue(I.getOperand(2));
2364
2365  for (unsigned i = 0; i != NumValues; ++i)
2366    Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(),
2367                          TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2368                            Cond,
2369                            SDValue(TrueVal.getNode(),
2370                                    TrueVal.getResNo() + i),
2371                            SDValue(FalseVal.getNode(),
2372                                    FalseVal.getResNo() + i));
2373
2374  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2375                           DAG.getVTList(&ValueVTs[0], NumValues),
2376                           &Values[0], NumValues));
2377}
2378
2379void SelectionDAGBuilder::visitTrunc(const User &I) {
2380  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2381  SDValue N = getValue(I.getOperand(0));
2382  EVT DestVT = TLI.getValueType(I.getType());
2383  setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N));
2384}
2385
2386void SelectionDAGBuilder::visitZExt(const User &I) {
2387  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2388  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2389  SDValue N = getValue(I.getOperand(0));
2390  EVT DestVT = TLI.getValueType(I.getType());
2391  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N));
2392}
2393
2394void SelectionDAGBuilder::visitSExt(const User &I) {
2395  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2396  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2397  SDValue N = getValue(I.getOperand(0));
2398  EVT DestVT = TLI.getValueType(I.getType());
2399  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N));
2400}
2401
2402void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2403  // FPTrunc is never a no-op cast, no need to check
2404  SDValue N = getValue(I.getOperand(0));
2405  EVT DestVT = TLI.getValueType(I.getType());
2406  setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(),
2407                           DestVT, N, DAG.getIntPtrConstant(0)));
2408}
2409
2410void SelectionDAGBuilder::visitFPExt(const User &I){
2411  // FPTrunc is never a no-op cast, no need to check
2412  SDValue N = getValue(I.getOperand(0));
2413  EVT DestVT = TLI.getValueType(I.getType());
2414  setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N));
2415}
2416
2417void SelectionDAGBuilder::visitFPToUI(const User &I) {
2418  // FPToUI is never a no-op cast, no need to check
2419  SDValue N = getValue(I.getOperand(0));
2420  EVT DestVT = TLI.getValueType(I.getType());
2421  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N));
2422}
2423
2424void SelectionDAGBuilder::visitFPToSI(const User &I) {
2425  // FPToSI is never a no-op cast, no need to check
2426  SDValue N = getValue(I.getOperand(0));
2427  EVT DestVT = TLI.getValueType(I.getType());
2428  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N));
2429}
2430
2431void SelectionDAGBuilder::visitUIToFP(const User &I) {
2432  // UIToFP is never a no-op cast, no need to check
2433  SDValue N = getValue(I.getOperand(0));
2434  EVT DestVT = TLI.getValueType(I.getType());
2435  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N));
2436}
2437
2438void SelectionDAGBuilder::visitSIToFP(const User &I){
2439  // SIToFP is never a no-op cast, no need to check
2440  SDValue N = getValue(I.getOperand(0));
2441  EVT DestVT = TLI.getValueType(I.getType());
2442  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N));
2443}
2444
2445void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2446  // What to do depends on the size of the integer and the size of the pointer.
2447  // We can either truncate, zero extend, or no-op, accordingly.
2448  SDValue N = getValue(I.getOperand(0));
2449  EVT DestVT = TLI.getValueType(I.getType());
2450  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2451}
2452
2453void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2454  // What to do depends on the size of the integer and the size of the pointer.
2455  // We can either truncate, zero extend, or no-op, accordingly.
2456  SDValue N = getValue(I.getOperand(0));
2457  EVT DestVT = TLI.getValueType(I.getType());
2458  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2459}
2460
2461void SelectionDAGBuilder::visitBitCast(const User &I) {
2462  SDValue N = getValue(I.getOperand(0));
2463  EVT DestVT = TLI.getValueType(I.getType());
2464
2465  // BitCast assures us that source and destination are the same size so this is
2466  // either a BIT_CONVERT or a no-op.
2467  if (DestVT != N.getValueType())
2468    setValue(&I, DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
2469                             DestVT, N)); // convert types.
2470  else
2471    setValue(&I, N);            // noop cast.
2472}
2473
2474void SelectionDAGBuilder::visitInsertElement(const User &I) {
2475  SDValue InVec = getValue(I.getOperand(0));
2476  SDValue InVal = getValue(I.getOperand(1));
2477  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2478                              TLI.getPointerTy(),
2479                              getValue(I.getOperand(2)));
2480  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(),
2481                           TLI.getValueType(I.getType()),
2482                           InVec, InVal, InIdx));
2483}
2484
2485void SelectionDAGBuilder::visitExtractElement(const User &I) {
2486  SDValue InVec = getValue(I.getOperand(0));
2487  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2488                              TLI.getPointerTy(),
2489                              getValue(I.getOperand(1)));
2490  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2491                           TLI.getValueType(I.getType()), InVec, InIdx));
2492}
2493
2494// Utility for visitShuffleVector - Returns true if the mask is mask starting
2495// from SIndx and increasing to the element length (undefs are allowed).
2496static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) {
2497  unsigned MaskNumElts = Mask.size();
2498  for (unsigned i = 0; i != MaskNumElts; ++i)
2499    if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx)))
2500      return false;
2501  return true;
2502}
2503
2504void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2505  SmallVector<int, 8> Mask;
2506  SDValue Src1 = getValue(I.getOperand(0));
2507  SDValue Src2 = getValue(I.getOperand(1));
2508
2509  // Convert the ConstantVector mask operand into an array of ints, with -1
2510  // representing undef values.
2511  SmallVector<Constant*, 8> MaskElts;
2512  cast<Constant>(I.getOperand(2))->getVectorElements(MaskElts);
2513  unsigned MaskNumElts = MaskElts.size();
2514  for (unsigned i = 0; i != MaskNumElts; ++i) {
2515    if (isa<UndefValue>(MaskElts[i]))
2516      Mask.push_back(-1);
2517    else
2518      Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue());
2519  }
2520
2521  EVT VT = TLI.getValueType(I.getType());
2522  EVT SrcVT = Src1.getValueType();
2523  unsigned SrcNumElts = SrcVT.getVectorNumElements();
2524
2525  if (SrcNumElts == MaskNumElts) {
2526    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2527                                      &Mask[0]));
2528    return;
2529  }
2530
2531  // Normalize the shuffle vector since mask and vector length don't match.
2532  if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2533    // Mask is longer than the source vectors and is a multiple of the source
2534    // vectors.  We can use concatenate vector to make the mask and vectors
2535    // lengths match.
2536    if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) {
2537      // The shuffle is concatenating two vectors together.
2538      setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2539                               VT, Src1, Src2));
2540      return;
2541    }
2542
2543    // Pad both vectors with undefs to make them the same length as the mask.
2544    unsigned NumConcat = MaskNumElts / SrcNumElts;
2545    bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2546    bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2547    SDValue UndefVal = DAG.getUNDEF(SrcVT);
2548
2549    SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2550    SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2551    MOps1[0] = Src1;
2552    MOps2[0] = Src2;
2553
2554    Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2555                                                  getCurDebugLoc(), VT,
2556                                                  &MOps1[0], NumConcat);
2557    Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2558                                                  getCurDebugLoc(), VT,
2559                                                  &MOps2[0], NumConcat);
2560
2561    // Readjust mask for new input vector length.
2562    SmallVector<int, 8> MappedOps;
2563    for (unsigned i = 0; i != MaskNumElts; ++i) {
2564      int Idx = Mask[i];
2565      if (Idx < (int)SrcNumElts)
2566        MappedOps.push_back(Idx);
2567      else
2568        MappedOps.push_back(Idx + MaskNumElts - SrcNumElts);
2569    }
2570
2571    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2572                                      &MappedOps[0]));
2573    return;
2574  }
2575
2576  if (SrcNumElts > MaskNumElts) {
2577    // Analyze the access pattern of the vector to see if we can extract
2578    // two subvectors and do the shuffle. The analysis is done by calculating
2579    // the range of elements the mask access on both vectors.
2580    int MinRange[2] = { SrcNumElts+1, SrcNumElts+1};
2581    int MaxRange[2] = {-1, -1};
2582
2583    for (unsigned i = 0; i != MaskNumElts; ++i) {
2584      int Idx = Mask[i];
2585      int Input = 0;
2586      if (Idx < 0)
2587        continue;
2588
2589      if (Idx >= (int)SrcNumElts) {
2590        Input = 1;
2591        Idx -= SrcNumElts;
2592      }
2593      if (Idx > MaxRange[Input])
2594        MaxRange[Input] = Idx;
2595      if (Idx < MinRange[Input])
2596        MinRange[Input] = Idx;
2597    }
2598
2599    // Check if the access is smaller than the vector size and can we find
2600    // a reasonable extract index.
2601    int RangeUse[2] = { 2, 2 };  // 0 = Unused, 1 = Extract, 2 = Can not
2602                                 // Extract.
2603    int StartIdx[2];  // StartIdx to extract from
2604    for (int Input=0; Input < 2; ++Input) {
2605      if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) {
2606        RangeUse[Input] = 0; // Unused
2607        StartIdx[Input] = 0;
2608      } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) {
2609        // Fits within range but we should see if we can find a good
2610        // start index that is a multiple of the mask length.
2611        if (MaxRange[Input] < (int)MaskNumElts) {
2612          RangeUse[Input] = 1; // Extract from beginning of the vector
2613          StartIdx[Input] = 0;
2614        } else {
2615          StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2616          if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2617              StartIdx[Input] + MaskNumElts < SrcNumElts)
2618            RangeUse[Input] = 1; // Extract from a multiple of the mask length.
2619        }
2620      }
2621    }
2622
2623    if (RangeUse[0] == 0 && RangeUse[1] == 0) {
2624      setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
2625      return;
2626    }
2627    else if (RangeUse[0] < 2 && RangeUse[1] < 2) {
2628      // Extract appropriate subvector and generate a vector shuffle
2629      for (int Input=0; Input < 2; ++Input) {
2630        SDValue &Src = Input == 0 ? Src1 : Src2;
2631        if (RangeUse[Input] == 0)
2632          Src = DAG.getUNDEF(VT);
2633        else
2634          Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT,
2635                            Src, DAG.getIntPtrConstant(StartIdx[Input]));
2636      }
2637
2638      // Calculate new mask.
2639      SmallVector<int, 8> MappedOps;
2640      for (unsigned i = 0; i != MaskNumElts; ++i) {
2641        int Idx = Mask[i];
2642        if (Idx < 0)
2643          MappedOps.push_back(Idx);
2644        else if (Idx < (int)SrcNumElts)
2645          MappedOps.push_back(Idx - StartIdx[0]);
2646        else
2647          MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts);
2648      }
2649
2650      setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2651                                        &MappedOps[0]));
2652      return;
2653    }
2654  }
2655
2656  // We can't use either concat vectors or extract subvectors so fall back to
2657  // replacing the shuffle with extract and build vector.
2658  // to insert and build vector.
2659  EVT EltVT = VT.getVectorElementType();
2660  EVT PtrVT = TLI.getPointerTy();
2661  SmallVector<SDValue,8> Ops;
2662  for (unsigned i = 0; i != MaskNumElts; ++i) {
2663    if (Mask[i] < 0) {
2664      Ops.push_back(DAG.getUNDEF(EltVT));
2665    } else {
2666      int Idx = Mask[i];
2667      SDValue Res;
2668
2669      if (Idx < (int)SrcNumElts)
2670        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2671                          EltVT, Src1, DAG.getConstant(Idx, PtrVT));
2672      else
2673        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2674                          EltVT, Src2,
2675                          DAG.getConstant(Idx - SrcNumElts, PtrVT));
2676
2677      Ops.push_back(Res);
2678    }
2679  }
2680
2681  setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
2682                           VT, &Ops[0], Ops.size()));
2683}
2684
2685void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
2686  const Value *Op0 = I.getOperand(0);
2687  const Value *Op1 = I.getOperand(1);
2688  const Type *AggTy = I.getType();
2689  const Type *ValTy = Op1->getType();
2690  bool IntoUndef = isa<UndefValue>(Op0);
2691  bool FromUndef = isa<UndefValue>(Op1);
2692
2693  unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
2694                                            I.idx_begin(), I.idx_end());
2695
2696  SmallVector<EVT, 4> AggValueVTs;
2697  ComputeValueVTs(TLI, AggTy, AggValueVTs);
2698  SmallVector<EVT, 4> ValValueVTs;
2699  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2700
2701  unsigned NumAggValues = AggValueVTs.size();
2702  unsigned NumValValues = ValValueVTs.size();
2703  SmallVector<SDValue, 4> Values(NumAggValues);
2704
2705  SDValue Agg = getValue(Op0);
2706  SDValue Val = getValue(Op1);
2707  unsigned i = 0;
2708  // Copy the beginning value(s) from the original aggregate.
2709  for (; i != LinearIndex; ++i)
2710    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2711                SDValue(Agg.getNode(), Agg.getResNo() + i);
2712  // Copy values from the inserted value(s).
2713  for (; i != LinearIndex + NumValValues; ++i)
2714    Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2715                SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
2716  // Copy remaining value(s) from the original aggregate.
2717  for (; i != NumAggValues; ++i)
2718    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2719                SDValue(Agg.getNode(), Agg.getResNo() + i);
2720
2721  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2722                           DAG.getVTList(&AggValueVTs[0], NumAggValues),
2723                           &Values[0], NumAggValues));
2724}
2725
2726void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
2727  const Value *Op0 = I.getOperand(0);
2728  const Type *AggTy = Op0->getType();
2729  const Type *ValTy = I.getType();
2730  bool OutOfUndef = isa<UndefValue>(Op0);
2731
2732  unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
2733                                            I.idx_begin(), I.idx_end());
2734
2735  SmallVector<EVT, 4> ValValueVTs;
2736  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2737
2738  unsigned NumValValues = ValValueVTs.size();
2739  SmallVector<SDValue, 4> Values(NumValValues);
2740
2741  SDValue Agg = getValue(Op0);
2742  // Copy out the selected value(s).
2743  for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
2744    Values[i - LinearIndex] =
2745      OutOfUndef ?
2746        DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
2747        SDValue(Agg.getNode(), Agg.getResNo() + i);
2748
2749  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2750                           DAG.getVTList(&ValValueVTs[0], NumValValues),
2751                           &Values[0], NumValValues));
2752}
2753
2754void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
2755  SDValue N = getValue(I.getOperand(0));
2756  const Type *Ty = I.getOperand(0)->getType();
2757
2758  for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
2759       OI != E; ++OI) {
2760    const Value *Idx = *OI;
2761    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2762      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2763      if (Field) {
2764        // N = N + Offset
2765        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
2766        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2767                        DAG.getIntPtrConstant(Offset));
2768      }
2769
2770      Ty = StTy->getElementType(Field);
2771    } else if (const UnionType *UnTy = dyn_cast<UnionType>(Ty)) {
2772      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2773
2774      // Offset canonically 0 for unions, but type changes
2775      Ty = UnTy->getElementType(Field);
2776    } else {
2777      Ty = cast<SequentialType>(Ty)->getElementType();
2778
2779      // If this is a constant subscript, handle it quickly.
2780      if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2781        if (CI->isZero()) continue;
2782        uint64_t Offs =
2783            TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
2784        SDValue OffsVal;
2785        EVT PTy = TLI.getPointerTy();
2786        unsigned PtrBits = PTy.getSizeInBits();
2787        if (PtrBits < 64)
2788          OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2789                                TLI.getPointerTy(),
2790                                DAG.getConstant(Offs, MVT::i64));
2791        else
2792          OffsVal = DAG.getIntPtrConstant(Offs);
2793
2794        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2795                        OffsVal);
2796        continue;
2797      }
2798
2799      // N = N + Idx * ElementSize;
2800      APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
2801                                TD->getTypeAllocSize(Ty));
2802      SDValue IdxN = getValue(Idx);
2803
2804      // If the index is smaller or larger than intptr_t, truncate or extend
2805      // it.
2806      IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType());
2807
2808      // If this is a multiply by a power of two, turn it into a shl
2809      // immediately.  This is a very common case.
2810      if (ElementSize != 1) {
2811        if (ElementSize.isPowerOf2()) {
2812          unsigned Amt = ElementSize.logBase2();
2813          IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(),
2814                             N.getValueType(), IdxN,
2815                             DAG.getConstant(Amt, TLI.getPointerTy()));
2816        } else {
2817          SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy());
2818          IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(),
2819                             N.getValueType(), IdxN, Scale);
2820        }
2821      }
2822
2823      N = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2824                      N.getValueType(), N, IdxN);
2825    }
2826  }
2827
2828  setValue(&I, N);
2829}
2830
2831void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
2832  // If this is a fixed sized alloca in the entry block of the function,
2833  // allocate it statically on the stack.
2834  if (FuncInfo.StaticAllocaMap.count(&I))
2835    return;   // getValue will auto-populate this.
2836
2837  const Type *Ty = I.getAllocatedType();
2838  uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
2839  unsigned Align =
2840    std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
2841             I.getAlignment());
2842
2843  SDValue AllocSize = getValue(I.getArraySize());
2844
2845  EVT IntPtr = TLI.getPointerTy();
2846  if (AllocSize.getValueType() != IntPtr)
2847    AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr);
2848
2849  AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr,
2850                          AllocSize,
2851                          DAG.getConstant(TySize, IntPtr));
2852
2853  // Handle alignment.  If the requested alignment is less than or equal to
2854  // the stack alignment, ignore it.  If the size is greater than or equal to
2855  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
2856  unsigned StackAlign = TM.getFrameInfo()->getStackAlignment();
2857  if (Align <= StackAlign)
2858    Align = 0;
2859
2860  // Round the size of the allocation up to the stack alignment size
2861  // by add SA-1 to the size.
2862  AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2863                          AllocSize.getValueType(), AllocSize,
2864                          DAG.getIntPtrConstant(StackAlign-1));
2865
2866  // Mask out the low bits for alignment purposes.
2867  AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(),
2868                          AllocSize.getValueType(), AllocSize,
2869                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
2870
2871  SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
2872  SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
2873  SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(),
2874                            VTs, Ops, 3);
2875  setValue(&I, DSA);
2876  DAG.setRoot(DSA.getValue(1));
2877
2878  // Inform the Frame Information that we have just allocated a variable-sized
2879  // object.
2880  FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject();
2881}
2882
2883void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
2884  const Value *SV = I.getOperand(0);
2885  SDValue Ptr = getValue(SV);
2886
2887  const Type *Ty = I.getType();
2888
2889  bool isVolatile = I.isVolatile();
2890  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
2891  unsigned Alignment = I.getAlignment();
2892
2893  SmallVector<EVT, 4> ValueVTs;
2894  SmallVector<uint64_t, 4> Offsets;
2895  ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
2896  unsigned NumValues = ValueVTs.size();
2897  if (NumValues == 0)
2898    return;
2899
2900  SDValue Root;
2901  bool ConstantMemory = false;
2902  if (I.isVolatile())
2903    // Serialize volatile loads with other side effects.
2904    Root = getRoot();
2905  else if (AA->pointsToConstantMemory(SV)) {
2906    // Do not serialize (non-volatile) loads of constant memory with anything.
2907    Root = DAG.getEntryNode();
2908    ConstantMemory = true;
2909  } else {
2910    // Do not serialize non-volatile loads against each other.
2911    Root = DAG.getRoot();
2912  }
2913
2914  SmallVector<SDValue, 4> Values(NumValues);
2915  SmallVector<SDValue, 4> Chains(NumValues);
2916  EVT PtrVT = Ptr.getValueType();
2917  for (unsigned i = 0; i != NumValues; ++i) {
2918    SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2919                            PtrVT, Ptr,
2920                            DAG.getConstant(Offsets[i], PtrVT));
2921    SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root,
2922                            A, SV, Offsets[i], isVolatile,
2923                            isNonTemporal, Alignment);
2924
2925    Values[i] = L;
2926    Chains[i] = L.getValue(1);
2927  }
2928
2929  if (!ConstantMemory) {
2930    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
2931                                MVT::Other, &Chains[0], NumValues);
2932    if (isVolatile)
2933      DAG.setRoot(Chain);
2934    else
2935      PendingLoads.push_back(Chain);
2936  }
2937
2938  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2939                           DAG.getVTList(&ValueVTs[0], NumValues),
2940                           &Values[0], NumValues));
2941}
2942
2943void SelectionDAGBuilder::visitStore(const StoreInst &I) {
2944  const Value *SrcV = I.getOperand(0);
2945  const Value *PtrV = I.getOperand(1);
2946
2947  SmallVector<EVT, 4> ValueVTs;
2948  SmallVector<uint64_t, 4> Offsets;
2949  ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
2950  unsigned NumValues = ValueVTs.size();
2951  if (NumValues == 0)
2952    return;
2953
2954  // Get the lowered operands. Note that we do this after
2955  // checking if NumResults is zero, because with zero results
2956  // the operands won't have values in the map.
2957  SDValue Src = getValue(SrcV);
2958  SDValue Ptr = getValue(PtrV);
2959
2960  SDValue Root = getRoot();
2961  SmallVector<SDValue, 4> Chains(NumValues);
2962  EVT PtrVT = Ptr.getValueType();
2963  bool isVolatile = I.isVolatile();
2964  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
2965  unsigned Alignment = I.getAlignment();
2966
2967  for (unsigned i = 0; i != NumValues; ++i) {
2968    SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr,
2969                              DAG.getConstant(Offsets[i], PtrVT));
2970    Chains[i] = DAG.getStore(Root, getCurDebugLoc(),
2971                             SDValue(Src.getNode(), Src.getResNo() + i),
2972                             Add, PtrV, Offsets[i], isVolatile,
2973                             isNonTemporal, Alignment);
2974  }
2975
2976  DAG.setRoot(DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
2977                          MVT::Other, &Chains[0], NumValues));
2978}
2979
2980/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
2981/// node.
2982void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
2983                                               unsigned Intrinsic) {
2984  bool HasChain = !I.doesNotAccessMemory();
2985  bool OnlyLoad = HasChain && I.onlyReadsMemory();
2986
2987  // Build the operand list.
2988  SmallVector<SDValue, 8> Ops;
2989  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
2990    if (OnlyLoad) {
2991      // We don't need to serialize loads against other loads.
2992      Ops.push_back(DAG.getRoot());
2993    } else {
2994      Ops.push_back(getRoot());
2995    }
2996  }
2997
2998  // Info is set by getTgtMemInstrinsic
2999  TargetLowering::IntrinsicInfo Info;
3000  bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
3001
3002  // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3003  if (!IsTgtIntrinsic)
3004    Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
3005
3006  // Add all operands of the call to the operand list.
3007  for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
3008    SDValue Op = getValue(I.getArgOperand(i));
3009    assert(TLI.isTypeLegal(Op.getValueType()) &&
3010           "Intrinsic uses a non-legal type?");
3011    Ops.push_back(Op);
3012  }
3013
3014  SmallVector<EVT, 4> ValueVTs;
3015  ComputeValueVTs(TLI, I.getType(), ValueVTs);
3016#ifndef NDEBUG
3017  for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) {
3018    assert(TLI.isTypeLegal(ValueVTs[Val]) &&
3019           "Intrinsic uses a non-legal type?");
3020  }
3021#endif // NDEBUG
3022
3023  if (HasChain)
3024    ValueVTs.push_back(MVT::Other);
3025
3026  SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
3027
3028  // Create the node.
3029  SDValue Result;
3030  if (IsTgtIntrinsic) {
3031    // This is target intrinsic that touches memory
3032    Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(),
3033                                     VTs, &Ops[0], Ops.size(),
3034                                     Info.memVT, Info.ptrVal, Info.offset,
3035                                     Info.align, Info.vol,
3036                                     Info.readMem, Info.writeMem);
3037  } else if (!HasChain) {
3038    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
3039                         VTs, &Ops[0], Ops.size());
3040  } else if (!I.getType()->isVoidTy()) {
3041    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
3042                         VTs, &Ops[0], Ops.size());
3043  } else {
3044    Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(),
3045                         VTs, &Ops[0], Ops.size());
3046  }
3047
3048  if (HasChain) {
3049    SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3050    if (OnlyLoad)
3051      PendingLoads.push_back(Chain);
3052    else
3053      DAG.setRoot(Chain);
3054  }
3055
3056  if (!I.getType()->isVoidTy()) {
3057    if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3058      EVT VT = TLI.getValueType(PTy);
3059      Result = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), VT, Result);
3060    }
3061
3062    setValue(&I, Result);
3063  }
3064}
3065
3066/// GetSignificand - Get the significand and build it into a floating-point
3067/// number with exponent of 1:
3068///
3069///   Op = (Op & 0x007fffff) | 0x3f800000;
3070///
3071/// where Op is the hexidecimal representation of floating point value.
3072static SDValue
3073GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) {
3074  SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3075                           DAG.getConstant(0x007fffff, MVT::i32));
3076  SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3077                           DAG.getConstant(0x3f800000, MVT::i32));
3078  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t2);
3079}
3080
3081/// GetExponent - Get the exponent:
3082///
3083///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3084///
3085/// where Op is the hexidecimal representation of floating point value.
3086static SDValue
3087GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3088            DebugLoc dl) {
3089  SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3090                           DAG.getConstant(0x7f800000, MVT::i32));
3091  SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3092                           DAG.getConstant(23, TLI.getPointerTy()));
3093  SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3094                           DAG.getConstant(127, MVT::i32));
3095  return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3096}
3097
3098/// getF32Constant - Get 32-bit floating point constant.
3099static SDValue
3100getF32Constant(SelectionDAG &DAG, unsigned Flt) {
3101  return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32);
3102}
3103
3104/// Inlined utility function to implement binary input atomic intrinsics for
3105/// visitIntrinsicCall: I is a call instruction
3106///                     Op is the associated NodeType for I
3107const char *
3108SelectionDAGBuilder::implVisitBinaryAtomic(const CallInst& I,
3109                                           ISD::NodeType Op) {
3110  SDValue Root = getRoot();
3111  SDValue L =
3112    DAG.getAtomic(Op, getCurDebugLoc(),
3113                  getValue(I.getArgOperand(1)).getValueType().getSimpleVT(),
3114                  Root,
3115                  getValue(I.getArgOperand(0)),
3116                  getValue(I.getArgOperand(1)),
3117                  I.getArgOperand(0));
3118  setValue(&I, L);
3119  DAG.setRoot(L.getValue(1));
3120  return 0;
3121}
3122
3123// implVisitAluOverflow - Lower arithmetic overflow instrinsics.
3124const char *
3125SelectionDAGBuilder::implVisitAluOverflow(const CallInst &I, ISD::NodeType Op) {
3126  SDValue Op1 = getValue(I.getArgOperand(0));
3127  SDValue Op2 = getValue(I.getArgOperand(1));
3128
3129  SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
3130  setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2));
3131  return 0;
3132}
3133
3134/// visitExp - Lower an exp intrinsic. Handles the special sequences for
3135/// limited-precision mode.
3136void
3137SelectionDAGBuilder::visitExp(const CallInst &I) {
3138  SDValue result;
3139  DebugLoc dl = getCurDebugLoc();
3140
3141  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3142      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3143    SDValue Op = getValue(I.getArgOperand(0));
3144
3145    // Put the exponent in the right bit position for later addition to the
3146    // final result:
3147    //
3148    //   #define LOG2OFe 1.4426950f
3149    //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3150    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3151                             getF32Constant(DAG, 0x3fb8aa3b));
3152    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3153
3154    //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3155    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3156    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3157
3158    //   IntegerPartOfX <<= 23;
3159    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3160                                 DAG.getConstant(23, TLI.getPointerTy()));
3161
3162    if (LimitFloatPrecision <= 6) {
3163      // For floating-point precision of 6:
3164      //
3165      //   TwoToFractionalPartOfX =
3166      //     0.997535578f +
3167      //       (0.735607626f + 0.252464424f * x) * x;
3168      //
3169      // error 0.0144103317, which is 6 bits
3170      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3171                               getF32Constant(DAG, 0x3e814304));
3172      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3173                               getF32Constant(DAG, 0x3f3c50c8));
3174      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3175      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3176                               getF32Constant(DAG, 0x3f7f5e7e));
3177      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t5);
3178
3179      // Add the exponent into the result in integer domain.
3180      SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3181                               TwoToFracPartOfX, IntegerPartOfX);
3182
3183      result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t6);
3184    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3185      // For floating-point precision of 12:
3186      //
3187      //   TwoToFractionalPartOfX =
3188      //     0.999892986f +
3189      //       (0.696457318f +
3190      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3191      //
3192      // 0.000107046256 error, which is 13 to 14 bits
3193      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3194                               getF32Constant(DAG, 0x3da235e3));
3195      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3196                               getF32Constant(DAG, 0x3e65b8f3));
3197      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3198      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3199                               getF32Constant(DAG, 0x3f324b07));
3200      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3201      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3202                               getF32Constant(DAG, 0x3f7ff8fd));
3203      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t7);
3204
3205      // Add the exponent into the result in integer domain.
3206      SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3207                               TwoToFracPartOfX, IntegerPartOfX);
3208
3209      result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t8);
3210    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3211      // For floating-point precision of 18:
3212      //
3213      //   TwoToFractionalPartOfX =
3214      //     0.999999982f +
3215      //       (0.693148872f +
3216      //         (0.240227044f +
3217      //           (0.554906021e-1f +
3218      //             (0.961591928e-2f +
3219      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3220      //
3221      // error 2.47208000*10^(-7), which is better than 18 bits
3222      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3223                               getF32Constant(DAG, 0x3924b03e));
3224      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3225                               getF32Constant(DAG, 0x3ab24b87));
3226      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3227      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3228                               getF32Constant(DAG, 0x3c1d8c17));
3229      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3230      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3231                               getF32Constant(DAG, 0x3d634a1d));
3232      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3233      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3234                               getF32Constant(DAG, 0x3e75fe14));
3235      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3236      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3237                                getF32Constant(DAG, 0x3f317234));
3238      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3239      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3240                                getF32Constant(DAG, 0x3f800000));
3241      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,
3242                                             MVT::i32, t13);
3243
3244      // Add the exponent into the result in integer domain.
3245      SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3246                                TwoToFracPartOfX, IntegerPartOfX);
3247
3248      result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t14);
3249    }
3250  } else {
3251    // No special expansion.
3252    result = DAG.getNode(ISD::FEXP, dl,
3253                         getValue(I.getArgOperand(0)).getValueType(),
3254                         getValue(I.getArgOperand(0)));
3255  }
3256
3257  setValue(&I, result);
3258}
3259
3260/// visitLog - Lower a log intrinsic. Handles the special sequences for
3261/// limited-precision mode.
3262void
3263SelectionDAGBuilder::visitLog(const CallInst &I) {
3264  SDValue result;
3265  DebugLoc dl = getCurDebugLoc();
3266
3267  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3268      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3269    SDValue Op = getValue(I.getArgOperand(0));
3270    SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
3271
3272    // Scale the exponent by log(2) [0.69314718f].
3273    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3274    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3275                                        getF32Constant(DAG, 0x3f317218));
3276
3277    // Get the significand and build it into a floating-point number with
3278    // exponent of 1.
3279    SDValue X = GetSignificand(DAG, Op1, dl);
3280
3281    if (LimitFloatPrecision <= 6) {
3282      // For floating-point precision of 6:
3283      //
3284      //   LogofMantissa =
3285      //     -1.1609546f +
3286      //       (1.4034025f - 0.23903021f * x) * x;
3287      //
3288      // error 0.0034276066, which is better than 8 bits
3289      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3290                               getF32Constant(DAG, 0xbe74c456));
3291      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3292                               getF32Constant(DAG, 0x3fb3a2b1));
3293      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3294      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3295                                          getF32Constant(DAG, 0x3f949a29));
3296
3297      result = DAG.getNode(ISD::FADD, dl,
3298                           MVT::f32, LogOfExponent, LogOfMantissa);
3299    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3300      // For floating-point precision of 12:
3301      //
3302      //   LogOfMantissa =
3303      //     -1.7417939f +
3304      //       (2.8212026f +
3305      //         (-1.4699568f +
3306      //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3307      //
3308      // error 0.000061011436, which is 14 bits
3309      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3310                               getF32Constant(DAG, 0xbd67b6d6));
3311      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3312                               getF32Constant(DAG, 0x3ee4f4b8));
3313      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3314      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3315                               getF32Constant(DAG, 0x3fbc278b));
3316      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3317      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3318                               getF32Constant(DAG, 0x40348e95));
3319      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3320      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3321                                          getF32Constant(DAG, 0x3fdef31a));
3322
3323      result = DAG.getNode(ISD::FADD, dl,
3324                           MVT::f32, LogOfExponent, LogOfMantissa);
3325    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3326      // For floating-point precision of 18:
3327      //
3328      //   LogOfMantissa =
3329      //     -2.1072184f +
3330      //       (4.2372794f +
3331      //         (-3.7029485f +
3332      //           (2.2781945f +
3333      //             (-0.87823314f +
3334      //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3335      //
3336      // error 0.0000023660568, which is better than 18 bits
3337      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3338                               getF32Constant(DAG, 0xbc91e5ac));
3339      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3340                               getF32Constant(DAG, 0x3e4350aa));
3341      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3342      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3343                               getF32Constant(DAG, 0x3f60d3e3));
3344      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3345      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3346                               getF32Constant(DAG, 0x4011cdf0));
3347      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3348      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3349                               getF32Constant(DAG, 0x406cfd1c));
3350      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3351      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3352                               getF32Constant(DAG, 0x408797cb));
3353      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3354      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3355                                          getF32Constant(DAG, 0x4006dcab));
3356
3357      result = DAG.getNode(ISD::FADD, dl,
3358                           MVT::f32, LogOfExponent, LogOfMantissa);
3359    }
3360  } else {
3361    // No special expansion.
3362    result = DAG.getNode(ISD::FLOG, dl,
3363                         getValue(I.getArgOperand(0)).getValueType(),
3364                         getValue(I.getArgOperand(0)));
3365  }
3366
3367  setValue(&I, result);
3368}
3369
3370/// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for
3371/// limited-precision mode.
3372void
3373SelectionDAGBuilder::visitLog2(const CallInst &I) {
3374  SDValue result;
3375  DebugLoc dl = getCurDebugLoc();
3376
3377  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3378      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3379    SDValue Op = getValue(I.getArgOperand(0));
3380    SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
3381
3382    // Get the exponent.
3383    SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3384
3385    // Get the significand and build it into a floating-point number with
3386    // exponent of 1.
3387    SDValue X = GetSignificand(DAG, Op1, dl);
3388
3389    // Different possible minimax approximations of significand in
3390    // floating-point for various degrees of accuracy over [1,2].
3391    if (LimitFloatPrecision <= 6) {
3392      // For floating-point precision of 6:
3393      //
3394      //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3395      //
3396      // error 0.0049451742, which is more than 7 bits
3397      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3398                               getF32Constant(DAG, 0xbeb08fe0));
3399      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3400                               getF32Constant(DAG, 0x40019463));
3401      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3402      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3403                                           getF32Constant(DAG, 0x3fd6633d));
3404
3405      result = DAG.getNode(ISD::FADD, dl,
3406                           MVT::f32, LogOfExponent, Log2ofMantissa);
3407    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3408      // For floating-point precision of 12:
3409      //
3410      //   Log2ofMantissa =
3411      //     -2.51285454f +
3412      //       (4.07009056f +
3413      //         (-2.12067489f +
3414      //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3415      //
3416      // error 0.0000876136000, which is better than 13 bits
3417      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3418                               getF32Constant(DAG, 0xbda7262e));
3419      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3420                               getF32Constant(DAG, 0x3f25280b));
3421      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3422      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3423                               getF32Constant(DAG, 0x4007b923));
3424      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3425      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3426                               getF32Constant(DAG, 0x40823e2f));
3427      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3428      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3429                                           getF32Constant(DAG, 0x4020d29c));
3430
3431      result = DAG.getNode(ISD::FADD, dl,
3432                           MVT::f32, LogOfExponent, Log2ofMantissa);
3433    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3434      // For floating-point precision of 18:
3435      //
3436      //   Log2ofMantissa =
3437      //     -3.0400495f +
3438      //       (6.1129976f +
3439      //         (-5.3420409f +
3440      //           (3.2865683f +
3441      //             (-1.2669343f +
3442      //               (0.27515199f -
3443      //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3444      //
3445      // error 0.0000018516, which is better than 18 bits
3446      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3447                               getF32Constant(DAG, 0xbcd2769e));
3448      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3449                               getF32Constant(DAG, 0x3e8ce0b9));
3450      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3451      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3452                               getF32Constant(DAG, 0x3fa22ae7));
3453      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3454      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3455                               getF32Constant(DAG, 0x40525723));
3456      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3457      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3458                               getF32Constant(DAG, 0x40aaf200));
3459      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3460      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3461                               getF32Constant(DAG, 0x40c39dad));
3462      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3463      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3464                                           getF32Constant(DAG, 0x4042902c));
3465
3466      result = DAG.getNode(ISD::FADD, dl,
3467                           MVT::f32, LogOfExponent, Log2ofMantissa);
3468    }
3469  } else {
3470    // No special expansion.
3471    result = DAG.getNode(ISD::FLOG2, dl,
3472                         getValue(I.getArgOperand(0)).getValueType(),
3473                         getValue(I.getArgOperand(0)));
3474  }
3475
3476  setValue(&I, result);
3477}
3478
3479/// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for
3480/// limited-precision mode.
3481void
3482SelectionDAGBuilder::visitLog10(const CallInst &I) {
3483  SDValue result;
3484  DebugLoc dl = getCurDebugLoc();
3485
3486  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3487      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3488    SDValue Op = getValue(I.getArgOperand(0));
3489    SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
3490
3491    // Scale the exponent by log10(2) [0.30102999f].
3492    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3493    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3494                                        getF32Constant(DAG, 0x3e9a209a));
3495
3496    // Get the significand and build it into a floating-point number with
3497    // exponent of 1.
3498    SDValue X = GetSignificand(DAG, Op1, dl);
3499
3500    if (LimitFloatPrecision <= 6) {
3501      // For floating-point precision of 6:
3502      //
3503      //   Log10ofMantissa =
3504      //     -0.50419619f +
3505      //       (0.60948995f - 0.10380950f * x) * x;
3506      //
3507      // error 0.0014886165, which is 6 bits
3508      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3509                               getF32Constant(DAG, 0xbdd49a13));
3510      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3511                               getF32Constant(DAG, 0x3f1c0789));
3512      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3513      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3514                                            getF32Constant(DAG, 0x3f011300));
3515
3516      result = DAG.getNode(ISD::FADD, dl,
3517                           MVT::f32, LogOfExponent, Log10ofMantissa);
3518    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3519      // For floating-point precision of 12:
3520      //
3521      //   Log10ofMantissa =
3522      //     -0.64831180f +
3523      //       (0.91751397f +
3524      //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
3525      //
3526      // error 0.00019228036, which is better than 12 bits
3527      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3528                               getF32Constant(DAG, 0x3d431f31));
3529      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3530                               getF32Constant(DAG, 0x3ea21fb2));
3531      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3532      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3533                               getF32Constant(DAG, 0x3f6ae232));
3534      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3535      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3536                                            getF32Constant(DAG, 0x3f25f7c3));
3537
3538      result = DAG.getNode(ISD::FADD, dl,
3539                           MVT::f32, LogOfExponent, Log10ofMantissa);
3540    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3541      // For floating-point precision of 18:
3542      //
3543      //   Log10ofMantissa =
3544      //     -0.84299375f +
3545      //       (1.5327582f +
3546      //         (-1.0688956f +
3547      //           (0.49102474f +
3548      //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
3549      //
3550      // error 0.0000037995730, which is better than 18 bits
3551      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3552                               getF32Constant(DAG, 0x3c5d51ce));
3553      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3554                               getF32Constant(DAG, 0x3e00685a));
3555      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3556      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3557                               getF32Constant(DAG, 0x3efb6798));
3558      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3559      SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3560                               getF32Constant(DAG, 0x3f88d192));
3561      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3562      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3563                               getF32Constant(DAG, 0x3fc4316c));
3564      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3565      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
3566                                            getF32Constant(DAG, 0x3f57ce70));
3567
3568      result = DAG.getNode(ISD::FADD, dl,
3569                           MVT::f32, LogOfExponent, Log10ofMantissa);
3570    }
3571  } else {
3572    // No special expansion.
3573    result = DAG.getNode(ISD::FLOG10, dl,
3574                         getValue(I.getArgOperand(0)).getValueType(),
3575                         getValue(I.getArgOperand(0)));
3576  }
3577
3578  setValue(&I, result);
3579}
3580
3581/// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for
3582/// limited-precision mode.
3583void
3584SelectionDAGBuilder::visitExp2(const CallInst &I) {
3585  SDValue result;
3586  DebugLoc dl = getCurDebugLoc();
3587
3588  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3589      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3590    SDValue Op = getValue(I.getArgOperand(0));
3591
3592    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
3593
3594    //   FractionalPartOfX = x - (float)IntegerPartOfX;
3595    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3596    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
3597
3598    //   IntegerPartOfX <<= 23;
3599    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3600                                 DAG.getConstant(23, TLI.getPointerTy()));
3601
3602    if (LimitFloatPrecision <= 6) {
3603      // For floating-point precision of 6:
3604      //
3605      //   TwoToFractionalPartOfX =
3606      //     0.997535578f +
3607      //       (0.735607626f + 0.252464424f * x) * x;
3608      //
3609      // error 0.0144103317, which is 6 bits
3610      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3611                               getF32Constant(DAG, 0x3e814304));
3612      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3613                               getF32Constant(DAG, 0x3f3c50c8));
3614      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3615      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3616                               getF32Constant(DAG, 0x3f7f5e7e));
3617      SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5);
3618      SDValue TwoToFractionalPartOfX =
3619        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3620
3621      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3622                           MVT::f32, TwoToFractionalPartOfX);
3623    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3624      // For floating-point precision of 12:
3625      //
3626      //   TwoToFractionalPartOfX =
3627      //     0.999892986f +
3628      //       (0.696457318f +
3629      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3630      //
3631      // error 0.000107046256, which is 13 to 14 bits
3632      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3633                               getF32Constant(DAG, 0x3da235e3));
3634      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3635                               getF32Constant(DAG, 0x3e65b8f3));
3636      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3637      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3638                               getF32Constant(DAG, 0x3f324b07));
3639      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3640      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3641                               getF32Constant(DAG, 0x3f7ff8fd));
3642      SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7);
3643      SDValue TwoToFractionalPartOfX =
3644        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
3645
3646      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3647                           MVT::f32, TwoToFractionalPartOfX);
3648    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3649      // For floating-point precision of 18:
3650      //
3651      //   TwoToFractionalPartOfX =
3652      //     0.999999982f +
3653      //       (0.693148872f +
3654      //         (0.240227044f +
3655      //           (0.554906021e-1f +
3656      //             (0.961591928e-2f +
3657      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3658      // error 2.47208000*10^(-7), which is better than 18 bits
3659      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3660                               getF32Constant(DAG, 0x3924b03e));
3661      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3662                               getF32Constant(DAG, 0x3ab24b87));
3663      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3664      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3665                               getF32Constant(DAG, 0x3c1d8c17));
3666      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3667      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3668                               getF32Constant(DAG, 0x3d634a1d));
3669      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3670      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3671                               getF32Constant(DAG, 0x3e75fe14));
3672      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3673      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3674                                getF32Constant(DAG, 0x3f317234));
3675      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3676      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3677                                getF32Constant(DAG, 0x3f800000));
3678      SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13);
3679      SDValue TwoToFractionalPartOfX =
3680        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
3681
3682      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3683                           MVT::f32, TwoToFractionalPartOfX);
3684    }
3685  } else {
3686    // No special expansion.
3687    result = DAG.getNode(ISD::FEXP2, dl,
3688                         getValue(I.getArgOperand(0)).getValueType(),
3689                         getValue(I.getArgOperand(0)));
3690  }
3691
3692  setValue(&I, result);
3693}
3694
3695/// visitPow - Lower a pow intrinsic. Handles the special sequences for
3696/// limited-precision mode with x == 10.0f.
3697void
3698SelectionDAGBuilder::visitPow(const CallInst &I) {
3699  SDValue result;
3700  const Value *Val = I.getArgOperand(0);
3701  DebugLoc dl = getCurDebugLoc();
3702  bool IsExp10 = false;
3703
3704  if (getValue(Val).getValueType() == MVT::f32 &&
3705      getValue(I.getArgOperand(1)).getValueType() == MVT::f32 &&
3706      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3707    if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) {
3708      if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
3709        APFloat Ten(10.0f);
3710        IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten);
3711      }
3712    }
3713  }
3714
3715  if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3716    SDValue Op = getValue(I.getArgOperand(1));
3717
3718    // Put the exponent in the right bit position for later addition to the
3719    // final result:
3720    //
3721    //   #define LOG2OF10 3.3219281f
3722    //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
3723    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3724                             getF32Constant(DAG, 0x40549a78));
3725    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3726
3727    //   FractionalPartOfX = x - (float)IntegerPartOfX;
3728    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3729    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3730
3731    //   IntegerPartOfX <<= 23;
3732    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3733                                 DAG.getConstant(23, TLI.getPointerTy()));
3734
3735    if (LimitFloatPrecision <= 6) {
3736      // For floating-point precision of 6:
3737      //
3738      //   twoToFractionalPartOfX =
3739      //     0.997535578f +
3740      //       (0.735607626f + 0.252464424f * x) * x;
3741      //
3742      // error 0.0144103317, which is 6 bits
3743      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3744                               getF32Constant(DAG, 0x3e814304));
3745      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3746                               getF32Constant(DAG, 0x3f3c50c8));
3747      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3748      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3749                               getF32Constant(DAG, 0x3f7f5e7e));
3750      SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5);
3751      SDValue TwoToFractionalPartOfX =
3752        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3753
3754      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3755                           MVT::f32, TwoToFractionalPartOfX);
3756    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3757      // For floating-point precision of 12:
3758      //
3759      //   TwoToFractionalPartOfX =
3760      //     0.999892986f +
3761      //       (0.696457318f +
3762      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3763      //
3764      // error 0.000107046256, which is 13 to 14 bits
3765      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3766                               getF32Constant(DAG, 0x3da235e3));
3767      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3768                               getF32Constant(DAG, 0x3e65b8f3));
3769      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3770      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3771                               getF32Constant(DAG, 0x3f324b07));
3772      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3773      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3774                               getF32Constant(DAG, 0x3f7ff8fd));
3775      SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7);
3776      SDValue TwoToFractionalPartOfX =
3777        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
3778
3779      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3780                           MVT::f32, TwoToFractionalPartOfX);
3781    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3782      // For floating-point precision of 18:
3783      //
3784      //   TwoToFractionalPartOfX =
3785      //     0.999999982f +
3786      //       (0.693148872f +
3787      //         (0.240227044f +
3788      //           (0.554906021e-1f +
3789      //             (0.961591928e-2f +
3790      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3791      // error 2.47208000*10^(-7), which is better than 18 bits
3792      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3793                               getF32Constant(DAG, 0x3924b03e));
3794      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3795                               getF32Constant(DAG, 0x3ab24b87));
3796      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3797      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3798                               getF32Constant(DAG, 0x3c1d8c17));
3799      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3800      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3801                               getF32Constant(DAG, 0x3d634a1d));
3802      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3803      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3804                               getF32Constant(DAG, 0x3e75fe14));
3805      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3806      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3807                                getF32Constant(DAG, 0x3f317234));
3808      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3809      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3810                                getF32Constant(DAG, 0x3f800000));
3811      SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13);
3812      SDValue TwoToFractionalPartOfX =
3813        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
3814
3815      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3816                           MVT::f32, TwoToFractionalPartOfX);
3817    }
3818  } else {
3819    // No special expansion.
3820    result = DAG.getNode(ISD::FPOW, dl,
3821                         getValue(I.getArgOperand(0)).getValueType(),
3822                         getValue(I.getArgOperand(0)),
3823                         getValue(I.getArgOperand(1)));
3824  }
3825
3826  setValue(&I, result);
3827}
3828
3829
3830/// ExpandPowI - Expand a llvm.powi intrinsic.
3831static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS,
3832                          SelectionDAG &DAG) {
3833  // If RHS is a constant, we can expand this out to a multiplication tree,
3834  // otherwise we end up lowering to a call to __powidf2 (for example).  When
3835  // optimizing for size, we only want to do this if the expansion would produce
3836  // a small number of multiplies, otherwise we do the full expansion.
3837  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3838    // Get the exponent as a positive value.
3839    unsigned Val = RHSC->getSExtValue();
3840    if ((int)Val < 0) Val = -Val;
3841
3842    // powi(x, 0) -> 1.0
3843    if (Val == 0)
3844      return DAG.getConstantFP(1.0, LHS.getValueType());
3845
3846    const Function *F = DAG.getMachineFunction().getFunction();
3847    if (!F->hasFnAttr(Attribute::OptimizeForSize) ||
3848        // If optimizing for size, don't insert too many multiplies.  This
3849        // inserts up to 5 multiplies.
3850        CountPopulation_32(Val)+Log2_32(Val) < 7) {
3851      // We use the simple binary decomposition method to generate the multiply
3852      // sequence.  There are more optimal ways to do this (for example,
3853      // powi(x,15) generates one more multiply than it should), but this has
3854      // the benefit of being both really simple and much better than a libcall.
3855      SDValue Res;  // Logically starts equal to 1.0
3856      SDValue CurSquare = LHS;
3857      while (Val) {
3858        if (Val & 1) {
3859          if (Res.getNode())
3860            Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
3861          else
3862            Res = CurSquare;  // 1.0*CurSquare.
3863        }
3864
3865        CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
3866                                CurSquare, CurSquare);
3867        Val >>= 1;
3868      }
3869
3870      // If the original was negative, invert the result, producing 1/(x*x*x).
3871      if (RHSC->getSExtValue() < 0)
3872        Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
3873                          DAG.getConstantFP(1.0, LHS.getValueType()), Res);
3874      return Res;
3875    }
3876  }
3877
3878  // Otherwise, expand to a libcall.
3879  return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
3880}
3881
3882/// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
3883/// argument, create the corresponding DBG_VALUE machine instruction for it now.
3884/// At the end of instruction selection, they will be inserted to the entry BB.
3885bool
3886SelectionDAGBuilder::EmitFuncArgumentDbgValue(const DbgValueInst &DI,
3887                                              const Value *V, MDNode *Variable,
3888                                              uint64_t Offset,
3889                                              const SDValue &N) {
3890  if (!isa<Argument>(V))
3891    return false;
3892
3893  MachineFunction &MF = DAG.getMachineFunction();
3894  // Ignore inlined function arguments here.
3895  DIVariable DV(Variable);
3896  if (DV.isInlinedFnArgument(MF.getFunction()))
3897    return false;
3898
3899  MachineBasicBlock *MBB = FuncInfo.MBBMap[DI.getParent()];
3900  if (MBB != &MF.front())
3901    return false;
3902
3903  unsigned Reg = 0;
3904  if (N.getOpcode() == ISD::CopyFromReg) {
3905    Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
3906    if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
3907      MachineRegisterInfo &RegInfo = MF.getRegInfo();
3908      unsigned PR = RegInfo.getLiveInPhysReg(Reg);
3909      if (PR)
3910        Reg = PR;
3911    }
3912  }
3913
3914  if (!Reg) {
3915    DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
3916    if (VMI == FuncInfo.ValueMap.end())
3917      return false;
3918    Reg = VMI->second;
3919  }
3920
3921  const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
3922  MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(),
3923                                    TII->get(TargetOpcode::DBG_VALUE))
3924    .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable);
3925  FuncInfo.ArgDbgValues.push_back(&*MIB);
3926  return true;
3927}
3928
3929// VisualStudio defines setjmp as _setjmp
3930#if defined(_MSC_VER) && defined(setjmp)
3931#define setjmp_undefined_for_visual_studio
3932#undef setjmp
3933#endif
3934
3935/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
3936/// we want to emit this as a call to a named external function, return the name
3937/// otherwise lower it and return null.
3938const char *
3939SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
3940  DebugLoc dl = getCurDebugLoc();
3941  SDValue Res;
3942
3943  switch (Intrinsic) {
3944  default:
3945    // By default, turn this into a target intrinsic node.
3946    visitTargetIntrinsic(I, Intrinsic);
3947    return 0;
3948  case Intrinsic::vastart:  visitVAStart(I); return 0;
3949  case Intrinsic::vaend:    visitVAEnd(I); return 0;
3950  case Intrinsic::vacopy:   visitVACopy(I); return 0;
3951  case Intrinsic::returnaddress:
3952    setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(),
3953                             getValue(I.getArgOperand(0))));
3954    return 0;
3955  case Intrinsic::frameaddress:
3956    setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(),
3957                             getValue(I.getArgOperand(0))));
3958    return 0;
3959  case Intrinsic::setjmp:
3960    return "_setjmp"+!TLI.usesUnderscoreSetJmp();
3961  case Intrinsic::longjmp:
3962    return "_longjmp"+!TLI.usesUnderscoreLongJmp();
3963  case Intrinsic::memcpy: {
3964    // Assert for address < 256 since we support only user defined address
3965    // spaces.
3966    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
3967           < 256 &&
3968           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
3969           < 256 &&
3970           "Unknown address space");
3971    SDValue Op1 = getValue(I.getArgOperand(0));
3972    SDValue Op2 = getValue(I.getArgOperand(1));
3973    SDValue Op3 = getValue(I.getArgOperand(2));
3974    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
3975    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
3976    DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false,
3977                              I.getArgOperand(0), 0, I.getArgOperand(1), 0));
3978    return 0;
3979  }
3980  case Intrinsic::memset: {
3981    // Assert for address < 256 since we support only user defined address
3982    // spaces.
3983    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
3984           < 256 &&
3985           "Unknown address space");
3986    SDValue Op1 = getValue(I.getArgOperand(0));
3987    SDValue Op2 = getValue(I.getArgOperand(1));
3988    SDValue Op3 = getValue(I.getArgOperand(2));
3989    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
3990    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
3991    DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
3992                              I.getArgOperand(0), 0));
3993    return 0;
3994  }
3995  case Intrinsic::memmove: {
3996    // Assert for address < 256 since we support only user defined address
3997    // spaces.
3998    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
3999           < 256 &&
4000           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4001           < 256 &&
4002           "Unknown address space");
4003    SDValue Op1 = getValue(I.getArgOperand(0));
4004    SDValue Op2 = getValue(I.getArgOperand(1));
4005    SDValue Op3 = getValue(I.getArgOperand(2));
4006    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4007    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4008
4009    // If the source and destination are known to not be aliases, we can
4010    // lower memmove as memcpy.
4011    uint64_t Size = -1ULL;
4012    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3))
4013      Size = C->getZExtValue();
4014    if (AA->alias(I.getArgOperand(0), Size, I.getArgOperand(1), Size) ==
4015        AliasAnalysis::NoAlias) {
4016      DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4017                                false, I.getArgOperand(0), 0, I.getArgOperand(1), 0));
4018      return 0;
4019    }
4020
4021    DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4022                               I.getArgOperand(0), 0, I.getArgOperand(1), 0));
4023    return 0;
4024  }
4025  case Intrinsic::dbg_declare: {
4026    const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4027    if (!DIVariable(DI.getVariable()).Verify())
4028      return 0;
4029
4030    MDNode *Variable = DI.getVariable();
4031    // Parameters are handled specially.
4032    bool isParameter =
4033      DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable;
4034    const Value *Address = DI.getAddress();
4035    if (!Address)
4036      return 0;
4037    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4038      Address = BCI->getOperand(0);
4039    const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
4040    if (AI) {
4041      // Don't handle byval arguments or VLAs, for example.
4042      // Non-byval arguments are handled here (they refer to the stack temporary
4043      // alloca at this point).
4044      DenseMap<const AllocaInst*, int>::iterator SI =
4045        FuncInfo.StaticAllocaMap.find(AI);
4046      if (SI == FuncInfo.StaticAllocaMap.end())
4047        return 0; // VLAs.
4048      int FI = SI->second;
4049
4050      MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4051      if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
4052        MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
4053    }
4054
4055    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4056    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4057    // absolute, but not relative, values are different depending on whether
4058    // debug info exists.
4059    ++SDNodeOrder;
4060    SDValue &N = NodeMap[Address];
4061    SDDbgValue *SDV;
4062    if (N.getNode()) {
4063      if (isParameter && !AI) {
4064        FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4065        if (FINode)
4066          // Byval parameter.  We have a frame index at this point.
4067          SDV = DAG.getDbgValue(Variable, FINode->getIndex(),
4068                                0, dl, SDNodeOrder);
4069        else
4070          // Can't do anything with other non-AI cases yet.  This might be a
4071          // parameter of a callee function that got inlined, for example.
4072          return 0;
4073      } else if (AI)
4074        SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
4075                              0, dl, SDNodeOrder);
4076      else
4077        // Can't do anything with other non-AI cases yet.
4078        return 0;
4079      DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4080    } else {
4081      // This isn't useful, but it shows what we're missing.
4082      SDV = DAG.getDbgValue(Variable, UndefValue::get(Address->getType()),
4083                            0, dl, SDNodeOrder);
4084      DAG.AddDbgValue(SDV, 0, isParameter);
4085    }
4086    return 0;
4087  }
4088  case Intrinsic::dbg_value: {
4089    const DbgValueInst &DI = cast<DbgValueInst>(I);
4090    if (!DIVariable(DI.getVariable()).Verify())
4091      return 0;
4092
4093    MDNode *Variable = DI.getVariable();
4094    uint64_t Offset = DI.getOffset();
4095    const Value *V = DI.getValue();
4096    if (!V)
4097      return 0;
4098
4099    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4100    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4101    // absolute, but not relative, values are different depending on whether
4102    // debug info exists.
4103    ++SDNodeOrder;
4104    SDDbgValue *SDV;
4105    if (isa<ConstantInt>(V) || isa<ConstantFP>(V)) {
4106      SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder);
4107      DAG.AddDbgValue(SDV, 0, false);
4108    } else {
4109      bool createUndef = false;
4110      // FIXME : Why not use getValue() directly ?
4111      SDValue N = NodeMap[V];
4112      if (!N.getNode() && isa<Argument>(V))
4113        // Check unused arguments map.
4114        N = UnusedArgNodeMap[V];
4115      if (N.getNode()) {
4116        if (!EmitFuncArgumentDbgValue(DI, V, Variable, Offset, N)) {
4117          SDV = DAG.getDbgValue(Variable, N.getNode(),
4118                                N.getResNo(), Offset, dl, SDNodeOrder);
4119          DAG.AddDbgValue(SDV, N.getNode(), false);
4120        }
4121      } else if (isa<PHINode>(V) && !V->use_empty()) {
4122        SDValue N = getValue(V);
4123        if (N.getNode()) {
4124          if (!EmitFuncArgumentDbgValue(DI, V, Variable, Offset, N)) {
4125            SDV = DAG.getDbgValue(Variable, N.getNode(),
4126                                  N.getResNo(), Offset, dl, SDNodeOrder);
4127            DAG.AddDbgValue(SDV, N.getNode(), false);
4128          }
4129        } else
4130          createUndef = true;
4131      } else
4132        createUndef = true;
4133      if (createUndef) {
4134        // We may expand this to cover more cases.  One case where we have no
4135        // data available is an unreferenced parameter; we need this fallback.
4136        SDV = DAG.getDbgValue(Variable, UndefValue::get(V->getType()),
4137                              Offset, dl, SDNodeOrder);
4138        DAG.AddDbgValue(SDV, 0, false);
4139      }
4140    }
4141
4142    // Build a debug info table entry.
4143    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4144      V = BCI->getOperand(0);
4145    const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4146    // Don't handle byval struct arguments or VLAs, for example.
4147    if (!AI)
4148      return 0;
4149    DenseMap<const AllocaInst*, int>::iterator SI =
4150      FuncInfo.StaticAllocaMap.find(AI);
4151    if (SI == FuncInfo.StaticAllocaMap.end())
4152      return 0; // VLAs.
4153    int FI = SI->second;
4154
4155    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4156    if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
4157      MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
4158    return 0;
4159  }
4160  case Intrinsic::eh_exception: {
4161    // Insert the EXCEPTIONADDR instruction.
4162    assert(FuncInfo.MBBMap[I.getParent()]->isLandingPad() &&
4163           "Call to eh.exception not in landing pad!");
4164    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4165    SDValue Ops[1];
4166    Ops[0] = DAG.getRoot();
4167    SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1);
4168    setValue(&I, Op);
4169    DAG.setRoot(Op.getValue(1));
4170    return 0;
4171  }
4172
4173  case Intrinsic::eh_selector: {
4174    MachineBasicBlock *CallMBB = FuncInfo.MBBMap[I.getParent()];
4175    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4176    if (CallMBB->isLandingPad())
4177      AddCatchInfo(I, &MMI, CallMBB);
4178    else {
4179#ifndef NDEBUG
4180      FuncInfo.CatchInfoLost.insert(&I);
4181#endif
4182      // FIXME: Mark exception selector register as live in.  Hack for PR1508.
4183      unsigned Reg = TLI.getExceptionSelectorRegister();
4184      if (Reg) FuncInfo.MBBMap[I.getParent()]->addLiveIn(Reg);
4185    }
4186
4187    // Insert the EHSELECTION instruction.
4188    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4189    SDValue Ops[2];
4190    Ops[0] = getValue(I.getArgOperand(0));
4191    Ops[1] = getRoot();
4192    SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2);
4193    DAG.setRoot(Op.getValue(1));
4194    setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32));
4195    return 0;
4196  }
4197
4198  case Intrinsic::eh_typeid_for: {
4199    // Find the type id for the given typeinfo.
4200    GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0));
4201    unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4202    Res = DAG.getConstant(TypeID, MVT::i32);
4203    setValue(&I, Res);
4204    return 0;
4205  }
4206
4207  case Intrinsic::eh_return_i32:
4208  case Intrinsic::eh_return_i64:
4209    DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4210    DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl,
4211                            MVT::Other,
4212                            getControlRoot(),
4213                            getValue(I.getArgOperand(0)),
4214                            getValue(I.getArgOperand(1))));
4215    return 0;
4216  case Intrinsic::eh_unwind_init:
4217    DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4218    return 0;
4219  case Intrinsic::eh_dwarf_cfa: {
4220    SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl,
4221                                        TLI.getPointerTy());
4222    SDValue Offset = DAG.getNode(ISD::ADD, dl,
4223                                 TLI.getPointerTy(),
4224                                 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
4225                                             TLI.getPointerTy()),
4226                                 CfaArg);
4227    SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl,
4228                             TLI.getPointerTy(),
4229                             DAG.getConstant(0, TLI.getPointerTy()));
4230    setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
4231                             FA, Offset));
4232    return 0;
4233  }
4234  case Intrinsic::eh_sjlj_callsite: {
4235    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4236    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4237    assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4238    assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4239
4240    MMI.setCurrentCallSite(CI->getZExtValue());
4241    return 0;
4242  }
4243  case Intrinsic::eh_sjlj_setjmp: {
4244    setValue(&I, DAG.getNode(ISD::EH_SJLJ_SETJMP, dl, MVT::i32, getRoot(),
4245                             getValue(I.getArgOperand(0))));
4246    return 0;
4247  }
4248  case Intrinsic::eh_sjlj_longjmp: {
4249    DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other,
4250                            getRoot(),
4251                            getValue(I.getArgOperand(0))));
4252    return 0;
4253  }
4254
4255  case Intrinsic::convertff:
4256  case Intrinsic::convertfsi:
4257  case Intrinsic::convertfui:
4258  case Intrinsic::convertsif:
4259  case Intrinsic::convertuif:
4260  case Intrinsic::convertss:
4261  case Intrinsic::convertsu:
4262  case Intrinsic::convertus:
4263  case Intrinsic::convertuu: {
4264    ISD::CvtCode Code = ISD::CVT_INVALID;
4265    switch (Intrinsic) {
4266    case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
4267    case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4268    case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4269    case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4270    case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4271    case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
4272    case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
4273    case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4274    case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4275    }
4276    EVT DestVT = TLI.getValueType(I.getType());
4277    const Value *Op1 = I.getArgOperand(0);
4278    Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1),
4279                               DAG.getValueType(DestVT),
4280                               DAG.getValueType(getValue(Op1).getValueType()),
4281                               getValue(I.getArgOperand(1)),
4282                               getValue(I.getArgOperand(2)),
4283                               Code);
4284    setValue(&I, Res);
4285    return 0;
4286  }
4287  case Intrinsic::sqrt:
4288    setValue(&I, DAG.getNode(ISD::FSQRT, dl,
4289                             getValue(I.getArgOperand(0)).getValueType(),
4290                             getValue(I.getArgOperand(0))));
4291    return 0;
4292  case Intrinsic::powi:
4293    setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)),
4294                            getValue(I.getArgOperand(1)), DAG));
4295    return 0;
4296  case Intrinsic::sin:
4297    setValue(&I, DAG.getNode(ISD::FSIN, dl,
4298                             getValue(I.getArgOperand(0)).getValueType(),
4299                             getValue(I.getArgOperand(0))));
4300    return 0;
4301  case Intrinsic::cos:
4302    setValue(&I, DAG.getNode(ISD::FCOS, dl,
4303                             getValue(I.getArgOperand(0)).getValueType(),
4304                             getValue(I.getArgOperand(0))));
4305    return 0;
4306  case Intrinsic::log:
4307    visitLog(I);
4308    return 0;
4309  case Intrinsic::log2:
4310    visitLog2(I);
4311    return 0;
4312  case Intrinsic::log10:
4313    visitLog10(I);
4314    return 0;
4315  case Intrinsic::exp:
4316    visitExp(I);
4317    return 0;
4318  case Intrinsic::exp2:
4319    visitExp2(I);
4320    return 0;
4321  case Intrinsic::pow:
4322    visitPow(I);
4323    return 0;
4324  case Intrinsic::convert_to_fp16:
4325    setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl,
4326                             MVT::i16, getValue(I.getArgOperand(0))));
4327    return 0;
4328  case Intrinsic::convert_from_fp16:
4329    setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl,
4330                             MVT::f32, getValue(I.getArgOperand(0))));
4331    return 0;
4332  case Intrinsic::pcmarker: {
4333    SDValue Tmp = getValue(I.getArgOperand(0));
4334    DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp));
4335    return 0;
4336  }
4337  case Intrinsic::readcyclecounter: {
4338    SDValue Op = getRoot();
4339    Res = DAG.getNode(ISD::READCYCLECOUNTER, dl,
4340                      DAG.getVTList(MVT::i64, MVT::Other),
4341                      &Op, 1);
4342    setValue(&I, Res);
4343    DAG.setRoot(Res.getValue(1));
4344    return 0;
4345  }
4346  case Intrinsic::bswap:
4347    setValue(&I, DAG.getNode(ISD::BSWAP, dl,
4348                             getValue(I.getArgOperand(0)).getValueType(),
4349                             getValue(I.getArgOperand(0))));
4350    return 0;
4351  case Intrinsic::cttz: {
4352    SDValue Arg = getValue(I.getArgOperand(0));
4353    EVT Ty = Arg.getValueType();
4354    setValue(&I, DAG.getNode(ISD::CTTZ, dl, Ty, Arg));
4355    return 0;
4356  }
4357  case Intrinsic::ctlz: {
4358    SDValue Arg = getValue(I.getArgOperand(0));
4359    EVT Ty = Arg.getValueType();
4360    setValue(&I, DAG.getNode(ISD::CTLZ, dl, Ty, Arg));
4361    return 0;
4362  }
4363  case Intrinsic::ctpop: {
4364    SDValue Arg = getValue(I.getArgOperand(0));
4365    EVT Ty = Arg.getValueType();
4366    setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg));
4367    return 0;
4368  }
4369  case Intrinsic::stacksave: {
4370    SDValue Op = getRoot();
4371    Res = DAG.getNode(ISD::STACKSAVE, dl,
4372                      DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
4373    setValue(&I, Res);
4374    DAG.setRoot(Res.getValue(1));
4375    return 0;
4376  }
4377  case Intrinsic::stackrestore: {
4378    Res = getValue(I.getArgOperand(0));
4379    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res));
4380    return 0;
4381  }
4382  case Intrinsic::stackprotector: {
4383    // Emit code into the DAG to store the stack guard onto the stack.
4384    MachineFunction &MF = DAG.getMachineFunction();
4385    MachineFrameInfo *MFI = MF.getFrameInfo();
4386    EVT PtrTy = TLI.getPointerTy();
4387
4388    SDValue Src = getValue(I.getArgOperand(0));   // The guard's value.
4389    AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
4390
4391    int FI = FuncInfo.StaticAllocaMap[Slot];
4392    MFI->setStackProtectorIndex(FI);
4393
4394    SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
4395
4396    // Store the stack protector onto the stack.
4397    Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN,
4398                       PseudoSourceValue::getFixedStack(FI),
4399                       0, true, false, 0);
4400    setValue(&I, Res);
4401    DAG.setRoot(Res);
4402    return 0;
4403  }
4404  case Intrinsic::objectsize: {
4405    // If we don't know by now, we're never going to know.
4406    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
4407
4408    assert(CI && "Non-constant type in __builtin_object_size?");
4409
4410    SDValue Arg = getValue(I.getCalledValue());
4411    EVT Ty = Arg.getValueType();
4412
4413    if (CI->isZero())
4414      Res = DAG.getConstant(-1ULL, Ty);
4415    else
4416      Res = DAG.getConstant(0, Ty);
4417
4418    setValue(&I, Res);
4419    return 0;
4420  }
4421  case Intrinsic::var_annotation:
4422    // Discard annotate attributes
4423    return 0;
4424
4425  case Intrinsic::init_trampoline: {
4426    const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
4427
4428    SDValue Ops[6];
4429    Ops[0] = getRoot();
4430    Ops[1] = getValue(I.getArgOperand(0));
4431    Ops[2] = getValue(I.getArgOperand(1));
4432    Ops[3] = getValue(I.getArgOperand(2));
4433    Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
4434    Ops[5] = DAG.getSrcValue(F);
4435
4436    Res = DAG.getNode(ISD::TRAMPOLINE, dl,
4437                      DAG.getVTList(TLI.getPointerTy(), MVT::Other),
4438                      Ops, 6);
4439
4440    setValue(&I, Res);
4441    DAG.setRoot(Res.getValue(1));
4442    return 0;
4443  }
4444  case Intrinsic::gcroot:
4445    if (GFI) {
4446      const Value *Alloca = I.getArgOperand(0);
4447      const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
4448
4449      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
4450      GFI->addStackRoot(FI->getIndex(), TypeMap);
4451    }
4452    return 0;
4453  case Intrinsic::gcread:
4454  case Intrinsic::gcwrite:
4455    llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
4456    return 0;
4457  case Intrinsic::flt_rounds:
4458    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32));
4459    return 0;
4460  case Intrinsic::trap:
4461    DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot()));
4462    return 0;
4463  case Intrinsic::uadd_with_overflow:
4464    return implVisitAluOverflow(I, ISD::UADDO);
4465  case Intrinsic::sadd_with_overflow:
4466    return implVisitAluOverflow(I, ISD::SADDO);
4467  case Intrinsic::usub_with_overflow:
4468    return implVisitAluOverflow(I, ISD::USUBO);
4469  case Intrinsic::ssub_with_overflow:
4470    return implVisitAluOverflow(I, ISD::SSUBO);
4471  case Intrinsic::umul_with_overflow:
4472    return implVisitAluOverflow(I, ISD::UMULO);
4473  case Intrinsic::smul_with_overflow:
4474    return implVisitAluOverflow(I, ISD::SMULO);
4475
4476  case Intrinsic::prefetch: {
4477    SDValue Ops[4];
4478    Ops[0] = getRoot();
4479    Ops[1] = getValue(I.getArgOperand(0));
4480    Ops[2] = getValue(I.getArgOperand(1));
4481    Ops[3] = getValue(I.getArgOperand(2));
4482    DAG.setRoot(DAG.getNode(ISD::PREFETCH, dl, MVT::Other, &Ops[0], 4));
4483    return 0;
4484  }
4485
4486  case Intrinsic::memory_barrier: {
4487    SDValue Ops[6];
4488    Ops[0] = getRoot();
4489    for (int x = 1; x < 6; ++x)
4490      Ops[x] = getValue(I.getArgOperand(x - 1));
4491
4492    DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6));
4493    return 0;
4494  }
4495  case Intrinsic::atomic_cmp_swap: {
4496    SDValue Root = getRoot();
4497    SDValue L =
4498      DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(),
4499                    getValue(I.getArgOperand(1)).getValueType().getSimpleVT(),
4500                    Root,
4501                    getValue(I.getArgOperand(0)),
4502                    getValue(I.getArgOperand(1)),
4503                    getValue(I.getArgOperand(2)),
4504                    I.getArgOperand(0));
4505    setValue(&I, L);
4506    DAG.setRoot(L.getValue(1));
4507    return 0;
4508  }
4509  case Intrinsic::atomic_load_add:
4510    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD);
4511  case Intrinsic::atomic_load_sub:
4512    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB);
4513  case Intrinsic::atomic_load_or:
4514    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR);
4515  case Intrinsic::atomic_load_xor:
4516    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR);
4517  case Intrinsic::atomic_load_and:
4518    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND);
4519  case Intrinsic::atomic_load_nand:
4520    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND);
4521  case Intrinsic::atomic_load_max:
4522    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX);
4523  case Intrinsic::atomic_load_min:
4524    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN);
4525  case Intrinsic::atomic_load_umin:
4526    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN);
4527  case Intrinsic::atomic_load_umax:
4528    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX);
4529  case Intrinsic::atomic_swap:
4530    return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP);
4531
4532  case Intrinsic::invariant_start:
4533  case Intrinsic::lifetime_start:
4534    // Discard region information.
4535    setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
4536    return 0;
4537  case Intrinsic::invariant_end:
4538  case Intrinsic::lifetime_end:
4539    // Discard region information.
4540    return 0;
4541  }
4542}
4543
4544void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
4545                                      bool isTailCall,
4546                                      MachineBasicBlock *LandingPad) {
4547  const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
4548  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
4549  const Type *RetTy = FTy->getReturnType();
4550  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4551  MCSymbol *BeginLabel = 0;
4552
4553  TargetLowering::ArgListTy Args;
4554  TargetLowering::ArgListEntry Entry;
4555  Args.reserve(CS.arg_size());
4556
4557  // Check whether the function can return without sret-demotion.
4558  SmallVector<EVT, 4> OutVTs;
4559  SmallVector<ISD::ArgFlagsTy, 4> OutsFlags;
4560  SmallVector<uint64_t, 4> Offsets;
4561  getReturnInfo(RetTy, CS.getAttributes().getRetAttributes(),
4562                OutVTs, OutsFlags, TLI, &Offsets);
4563
4564  bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
4565                        FTy->isVarArg(), OutVTs, OutsFlags, DAG);
4566
4567  SDValue DemoteStackSlot;
4568
4569  if (!CanLowerReturn) {
4570    uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(
4571                      FTy->getReturnType());
4572    unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(
4573                      FTy->getReturnType());
4574    MachineFunction &MF = DAG.getMachineFunction();
4575    int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
4576    const Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
4577
4578    DemoteStackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
4579    Entry.Node = DemoteStackSlot;
4580    Entry.Ty = StackSlotPtrType;
4581    Entry.isSExt = false;
4582    Entry.isZExt = false;
4583    Entry.isInReg = false;
4584    Entry.isSRet = true;
4585    Entry.isNest = false;
4586    Entry.isByVal = false;
4587    Entry.Alignment = Align;
4588    Args.push_back(Entry);
4589    RetTy = Type::getVoidTy(FTy->getContext());
4590  }
4591
4592  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
4593       i != e; ++i) {
4594    SDValue ArgNode = getValue(*i);
4595    Entry.Node = ArgNode; Entry.Ty = (*i)->getType();
4596
4597    unsigned attrInd = i - CS.arg_begin() + 1;
4598    Entry.isSExt  = CS.paramHasAttr(attrInd, Attribute::SExt);
4599    Entry.isZExt  = CS.paramHasAttr(attrInd, Attribute::ZExt);
4600    Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg);
4601    Entry.isSRet  = CS.paramHasAttr(attrInd, Attribute::StructRet);
4602    Entry.isNest  = CS.paramHasAttr(attrInd, Attribute::Nest);
4603    Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal);
4604    Entry.Alignment = CS.getParamAlignment(attrInd);
4605    Args.push_back(Entry);
4606  }
4607
4608  if (LandingPad) {
4609    // Insert a label before the invoke call to mark the try range.  This can be
4610    // used to detect deletion of the invoke via the MachineModuleInfo.
4611    BeginLabel = MMI.getContext().CreateTempSymbol();
4612
4613    // For SjLj, keep track of which landing pads go with which invokes
4614    // so as to maintain the ordering of pads in the LSDA.
4615    unsigned CallSiteIndex = MMI.getCurrentCallSite();
4616    if (CallSiteIndex) {
4617      MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
4618      // Now that the call site is handled, stop tracking it.
4619      MMI.setCurrentCallSite(0);
4620    }
4621
4622    // Both PendingLoads and PendingExports must be flushed here;
4623    // this call might not return.
4624    (void)getRoot();
4625    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel));
4626  }
4627
4628  // Check if target-independent constraints permit a tail call here.
4629  // Target-dependent constraints are checked within TLI.LowerCallTo.
4630  if (isTailCall &&
4631      !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI))
4632    isTailCall = false;
4633
4634  std::pair<SDValue,SDValue> Result =
4635    TLI.LowerCallTo(getRoot(), RetTy,
4636                    CS.paramHasAttr(0, Attribute::SExt),
4637                    CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(),
4638                    CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(),
4639                    CS.getCallingConv(),
4640                    isTailCall,
4641                    !CS.getInstruction()->use_empty(),
4642                    Callee, Args, DAG, getCurDebugLoc());
4643  assert((isTailCall || Result.second.getNode()) &&
4644         "Non-null chain expected with non-tail call!");
4645  assert((Result.second.getNode() || !Result.first.getNode()) &&
4646         "Null value expected with tail call!");
4647  if (Result.first.getNode()) {
4648    setValue(CS.getInstruction(), Result.first);
4649  } else if (!CanLowerReturn && Result.second.getNode()) {
4650    // The instruction result is the result of loading from the
4651    // hidden sret parameter.
4652    SmallVector<EVT, 1> PVTs;
4653    const Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
4654
4655    ComputeValueVTs(TLI, PtrRetTy, PVTs);
4656    assert(PVTs.size() == 1 && "Pointers should fit in one register");
4657    EVT PtrVT = PVTs[0];
4658    unsigned NumValues = OutVTs.size();
4659    SmallVector<SDValue, 4> Values(NumValues);
4660    SmallVector<SDValue, 4> Chains(NumValues);
4661
4662    for (unsigned i = 0; i < NumValues; ++i) {
4663      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT,
4664                                DemoteStackSlot,
4665                                DAG.getConstant(Offsets[i], PtrVT));
4666      SDValue L = DAG.getLoad(OutVTs[i], getCurDebugLoc(), Result.second,
4667                              Add, NULL, Offsets[i], false, false, 1);
4668      Values[i] = L;
4669      Chains[i] = L.getValue(1);
4670    }
4671
4672    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
4673                                MVT::Other, &Chains[0], NumValues);
4674    PendingLoads.push_back(Chain);
4675
4676    // Collect the legal value parts into potentially illegal values
4677    // that correspond to the original function's return values.
4678    SmallVector<EVT, 4> RetTys;
4679    RetTy = FTy->getReturnType();
4680    ComputeValueVTs(TLI, RetTy, RetTys);
4681    ISD::NodeType AssertOp = ISD::DELETED_NODE;
4682    SmallVector<SDValue, 4> ReturnValues;
4683    unsigned CurReg = 0;
4684    for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
4685      EVT VT = RetTys[I];
4686      EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT);
4687      unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT);
4688
4689      SDValue ReturnValue =
4690        getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs,
4691                         RegisterVT, VT, AssertOp);
4692      ReturnValues.push_back(ReturnValue);
4693      CurReg += NumRegs;
4694    }
4695
4696    setValue(CS.getInstruction(),
4697             DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
4698                         DAG.getVTList(&RetTys[0], RetTys.size()),
4699                         &ReturnValues[0], ReturnValues.size()));
4700
4701  }
4702
4703  // As a special case, a null chain means that a tail call has been emitted and
4704  // the DAG root is already updated.
4705  if (Result.second.getNode())
4706    DAG.setRoot(Result.second);
4707  else
4708    HasTailCall = true;
4709
4710  if (LandingPad) {
4711    // Insert a label at the end of the invoke call to mark the try range.  This
4712    // can be used to detect deletion of the invoke via the MachineModuleInfo.
4713    MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
4714    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel));
4715
4716    // Inform MachineModuleInfo of range.
4717    MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
4718  }
4719}
4720
4721/// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
4722/// value is equal or not-equal to zero.
4723static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
4724  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
4725       UI != E; ++UI) {
4726    if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
4727      if (IC->isEquality())
4728        if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
4729          if (C->isNullValue())
4730            continue;
4731    // Unknown instruction.
4732    return false;
4733  }
4734  return true;
4735}
4736
4737static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
4738                             const Type *LoadTy,
4739                             SelectionDAGBuilder &Builder) {
4740
4741  // Check to see if this load can be trivially constant folded, e.g. if the
4742  // input is from a string literal.
4743  if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
4744    // Cast pointer to the type we really want to load.
4745    LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
4746                                         PointerType::getUnqual(LoadTy));
4747
4748    if (const Constant *LoadCst =
4749          ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
4750                                       Builder.TD))
4751      return Builder.getValue(LoadCst);
4752  }
4753
4754  // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
4755  // still constant memory, the input chain can be the entry node.
4756  SDValue Root;
4757  bool ConstantMemory = false;
4758
4759  // Do not serialize (non-volatile) loads of constant memory with anything.
4760  if (Builder.AA->pointsToConstantMemory(PtrVal)) {
4761    Root = Builder.DAG.getEntryNode();
4762    ConstantMemory = true;
4763  } else {
4764    // Do not serialize non-volatile loads against each other.
4765    Root = Builder.DAG.getRoot();
4766  }
4767
4768  SDValue Ptr = Builder.getValue(PtrVal);
4769  SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root,
4770                                        Ptr, PtrVal /*SrcValue*/, 0/*SVOffset*/,
4771                                        false /*volatile*/,
4772                                        false /*nontemporal*/, 1 /* align=1 */);
4773
4774  if (!ConstantMemory)
4775    Builder.PendingLoads.push_back(LoadVal.getValue(1));
4776  return LoadVal;
4777}
4778
4779
4780/// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
4781/// If so, return true and lower it, otherwise return false and it will be
4782/// lowered like a normal call.
4783bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
4784  // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
4785  if (I.getNumArgOperands() != 3)
4786    return false;
4787
4788  const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
4789  if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
4790      !I.getArgOperand(2)->getType()->isIntegerTy() ||
4791      !I.getType()->isIntegerTy())
4792    return false;
4793
4794  const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2));
4795
4796  // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
4797  // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
4798  if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) {
4799    bool ActuallyDoIt = true;
4800    MVT LoadVT;
4801    const Type *LoadTy;
4802    switch (Size->getZExtValue()) {
4803    default:
4804      LoadVT = MVT::Other;
4805      LoadTy = 0;
4806      ActuallyDoIt = false;
4807      break;
4808    case 2:
4809      LoadVT = MVT::i16;
4810      LoadTy = Type::getInt16Ty(Size->getContext());
4811      break;
4812    case 4:
4813      LoadVT = MVT::i32;
4814      LoadTy = Type::getInt32Ty(Size->getContext());
4815      break;
4816    case 8:
4817      LoadVT = MVT::i64;
4818      LoadTy = Type::getInt64Ty(Size->getContext());
4819      break;
4820        /*
4821    case 16:
4822      LoadVT = MVT::v4i32;
4823      LoadTy = Type::getInt32Ty(Size->getContext());
4824      LoadTy = VectorType::get(LoadTy, 4);
4825      break;
4826         */
4827    }
4828
4829    // This turns into unaligned loads.  We only do this if the target natively
4830    // supports the MVT we'll be loading or if it is small enough (<= 4) that
4831    // we'll only produce a small number of byte loads.
4832
4833    // Require that we can find a legal MVT, and only do this if the target
4834    // supports unaligned loads of that type.  Expanding into byte loads would
4835    // bloat the code.
4836    if (ActuallyDoIt && Size->getZExtValue() > 4) {
4837      // TODO: Handle 5 byte compare as 4-byte + 1 byte.
4838      // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
4839      if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT))
4840        ActuallyDoIt = false;
4841    }
4842
4843    if (ActuallyDoIt) {
4844      SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
4845      SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
4846
4847      SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal,
4848                                 ISD::SETNE);
4849      EVT CallVT = TLI.getValueType(I.getType(), true);
4850      setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT));
4851      return true;
4852    }
4853  }
4854
4855
4856  return false;
4857}
4858
4859
4860void SelectionDAGBuilder::visitCall(const CallInst &I) {
4861  // Handle inline assembly differently.
4862  if (isa<InlineAsm>(I.getCalledValue())) {
4863    visitInlineAsm(&I);
4864    return;
4865  }
4866
4867  const char *RenameFn = 0;
4868  if (Function *F = I.getCalledFunction()) {
4869    if (F->isDeclaration()) {
4870      if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
4871        if (unsigned IID = II->getIntrinsicID(F)) {
4872          RenameFn = visitIntrinsicCall(I, IID);
4873          if (!RenameFn)
4874            return;
4875        }
4876      }
4877      if (unsigned IID = F->getIntrinsicID()) {
4878        RenameFn = visitIntrinsicCall(I, IID);
4879        if (!RenameFn)
4880          return;
4881      }
4882    }
4883
4884    // Check for well-known libc/libm calls.  If the function is internal, it
4885    // can't be a library call.
4886    if (!F->hasLocalLinkage() && F->hasName()) {
4887      StringRef Name = F->getName();
4888      if (Name == "copysign" || Name == "copysignf" || Name == "copysignl") {
4889        if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
4890            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
4891            I.getType() == I.getArgOperand(0)->getType() &&
4892            I.getType() == I.getArgOperand(1)->getType()) {
4893          SDValue LHS = getValue(I.getArgOperand(0));
4894          SDValue RHS = getValue(I.getArgOperand(1));
4895          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(),
4896                                   LHS.getValueType(), LHS, RHS));
4897          return;
4898        }
4899      } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") {
4900        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
4901            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
4902            I.getType() == I.getArgOperand(0)->getType()) {
4903          SDValue Tmp = getValue(I.getArgOperand(0));
4904          setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(),
4905                                   Tmp.getValueType(), Tmp));
4906          return;
4907        }
4908      } else if (Name == "sin" || Name == "sinf" || Name == "sinl") {
4909        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
4910            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
4911            I.getType() == I.getArgOperand(0)->getType() &&
4912            I.onlyReadsMemory()) {
4913          SDValue Tmp = getValue(I.getArgOperand(0));
4914          setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(),
4915                                   Tmp.getValueType(), Tmp));
4916          return;
4917        }
4918      } else if (Name == "cos" || Name == "cosf" || Name == "cosl") {
4919        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
4920            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
4921            I.getType() == I.getArgOperand(0)->getType() &&
4922            I.onlyReadsMemory()) {
4923          SDValue Tmp = getValue(I.getArgOperand(0));
4924          setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(),
4925                                   Tmp.getValueType(), Tmp));
4926          return;
4927        }
4928      } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") {
4929        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
4930            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
4931            I.getType() == I.getArgOperand(0)->getType() &&
4932            I.onlyReadsMemory()) {
4933          SDValue Tmp = getValue(I.getArgOperand(0));
4934          setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(),
4935                                   Tmp.getValueType(), Tmp));
4936          return;
4937        }
4938      } else if (Name == "memcmp") {
4939        if (visitMemCmpCall(I))
4940          return;
4941      }
4942    }
4943  }
4944
4945  SDValue Callee;
4946  if (!RenameFn)
4947    Callee = getValue(I.getCalledValue());
4948  else
4949    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
4950
4951  // Check if we can potentially perform a tail call. More detailed checking is
4952  // be done within LowerCallTo, after more information about the call is known.
4953  LowerCallTo(&I, Callee, I.isTailCall());
4954}
4955
4956namespace llvm {
4957
4958/// AsmOperandInfo - This contains information for each constraint that we are
4959/// lowering.
4960class LLVM_LIBRARY_VISIBILITY SDISelAsmOperandInfo :
4961    public TargetLowering::AsmOperandInfo {
4962public:
4963  /// CallOperand - If this is the result output operand or a clobber
4964  /// this is null, otherwise it is the incoming operand to the CallInst.
4965  /// This gets modified as the asm is processed.
4966  SDValue CallOperand;
4967
4968  /// AssignedRegs - If this is a register or register class operand, this
4969  /// contains the set of register corresponding to the operand.
4970  RegsForValue AssignedRegs;
4971
4972  explicit SDISelAsmOperandInfo(const InlineAsm::ConstraintInfo &info)
4973    : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
4974  }
4975
4976  /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
4977  /// busy in OutputRegs/InputRegs.
4978  void MarkAllocatedRegs(bool isOutReg, bool isInReg,
4979                         std::set<unsigned> &OutputRegs,
4980                         std::set<unsigned> &InputRegs,
4981                         const TargetRegisterInfo &TRI) const {
4982    if (isOutReg) {
4983      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
4984        MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
4985    }
4986    if (isInReg) {
4987      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
4988        MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
4989    }
4990  }
4991
4992  /// getCallOperandValEVT - Return the EVT of the Value* that this operand
4993  /// corresponds to.  If there is no Value* for this operand, it returns
4994  /// MVT::Other.
4995  EVT getCallOperandValEVT(LLVMContext &Context,
4996                           const TargetLowering &TLI,
4997                           const TargetData *TD) const {
4998    if (CallOperandVal == 0) return MVT::Other;
4999
5000    if (isa<BasicBlock>(CallOperandVal))
5001      return TLI.getPointerTy();
5002
5003    const llvm::Type *OpTy = CallOperandVal->getType();
5004
5005    // If this is an indirect operand, the operand is a pointer to the
5006    // accessed type.
5007    if (isIndirect) {
5008      const llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
5009      if (!PtrTy)
5010        report_fatal_error("Indirect operand for inline asm not a pointer!");
5011      OpTy = PtrTy->getElementType();
5012    }
5013
5014    // If OpTy is not a single value, it may be a struct/union that we
5015    // can tile with integers.
5016    if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5017      unsigned BitSize = TD->getTypeSizeInBits(OpTy);
5018      switch (BitSize) {
5019      default: break;
5020      case 1:
5021      case 8:
5022      case 16:
5023      case 32:
5024      case 64:
5025      case 128:
5026        OpTy = IntegerType::get(Context, BitSize);
5027        break;
5028      }
5029    }
5030
5031    return TLI.getValueType(OpTy, true);
5032  }
5033
5034private:
5035  /// MarkRegAndAliases - Mark the specified register and all aliases in the
5036  /// specified set.
5037  static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
5038                                const TargetRegisterInfo &TRI) {
5039    assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
5040    Regs.insert(Reg);
5041    if (const unsigned *Aliases = TRI.getAliasSet(Reg))
5042      for (; *Aliases; ++Aliases)
5043        Regs.insert(*Aliases);
5044  }
5045};
5046
5047} // end llvm namespace.
5048
5049/// isAllocatableRegister - If the specified register is safe to allocate,
5050/// i.e. it isn't a stack pointer or some other special register, return the
5051/// register class for the register.  Otherwise, return null.
5052static const TargetRegisterClass *
5053isAllocatableRegister(unsigned Reg, MachineFunction &MF,
5054                      const TargetLowering &TLI,
5055                      const TargetRegisterInfo *TRI) {
5056  EVT FoundVT = MVT::Other;
5057  const TargetRegisterClass *FoundRC = 0;
5058  for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(),
5059       E = TRI->regclass_end(); RCI != E; ++RCI) {
5060    EVT ThisVT = MVT::Other;
5061
5062    const TargetRegisterClass *RC = *RCI;
5063    // If none of the value types for this register class are valid, we
5064    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
5065    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
5066         I != E; ++I) {
5067      if (TLI.isTypeLegal(*I)) {
5068        // If we have already found this register in a different register class,
5069        // choose the one with the largest VT specified.  For example, on
5070        // PowerPC, we favor f64 register classes over f32.
5071        if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) {
5072          ThisVT = *I;
5073          break;
5074        }
5075      }
5076    }
5077
5078    if (ThisVT == MVT::Other) continue;
5079
5080    // NOTE: This isn't ideal.  In particular, this might allocate the
5081    // frame pointer in functions that need it (due to them not being taken
5082    // out of allocation, because a variable sized allocation hasn't been seen
5083    // yet).  This is a slight code pessimization, but should still work.
5084    for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
5085         E = RC->allocation_order_end(MF); I != E; ++I)
5086      if (*I == Reg) {
5087        // We found a matching register class.  Keep looking at others in case
5088        // we find one with larger registers that this physreg is also in.
5089        FoundRC = RC;
5090        FoundVT = ThisVT;
5091        break;
5092      }
5093  }
5094  return FoundRC;
5095}
5096
5097/// GetRegistersForValue - Assign registers (virtual or physical) for the
5098/// specified operand.  We prefer to assign virtual registers, to allow the
5099/// register allocator to handle the assignment process.  However, if the asm
5100/// uses features that we can't model on machineinstrs, we have SDISel do the
5101/// allocation.  This produces generally horrible, but correct, code.
5102///
5103///   OpInfo describes the operand.
5104///   Input and OutputRegs are the set of already allocated physical registers.
5105///
5106void SelectionDAGBuilder::
5107GetRegistersForValue(SDISelAsmOperandInfo &OpInfo,
5108                     std::set<unsigned> &OutputRegs,
5109                     std::set<unsigned> &InputRegs) {
5110  LLVMContext &Context = FuncInfo.Fn->getContext();
5111
5112  // Compute whether this value requires an input register, an output register,
5113  // or both.
5114  bool isOutReg = false;
5115  bool isInReg = false;
5116  switch (OpInfo.Type) {
5117  case InlineAsm::isOutput:
5118    isOutReg = true;
5119
5120    // If there is an input constraint that matches this, we need to reserve
5121    // the input register so no other inputs allocate to it.
5122    isInReg = OpInfo.hasMatchingInput();
5123    break;
5124  case InlineAsm::isInput:
5125    isInReg = true;
5126    isOutReg = false;
5127    break;
5128  case InlineAsm::isClobber:
5129    isOutReg = true;
5130    isInReg = true;
5131    break;
5132  }
5133
5134
5135  MachineFunction &MF = DAG.getMachineFunction();
5136  SmallVector<unsigned, 4> Regs;
5137
5138  // If this is a constraint for a single physreg, or a constraint for a
5139  // register class, find it.
5140  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
5141    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5142                                     OpInfo.ConstraintVT);
5143
5144  unsigned NumRegs = 1;
5145  if (OpInfo.ConstraintVT != MVT::Other) {
5146    // If this is a FP input in an integer register (or visa versa) insert a bit
5147    // cast of the input value.  More generally, handle any case where the input
5148    // value disagrees with the register class we plan to stick this in.
5149    if (OpInfo.Type == InlineAsm::isInput &&
5150        PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
5151      // Try to convert to the first EVT that the reg class contains.  If the
5152      // types are identical size, use a bitcast to convert (e.g. two differing
5153      // vector types).
5154      EVT RegVT = *PhysReg.second->vt_begin();
5155      if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
5156        OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
5157                                         RegVT, OpInfo.CallOperand);
5158        OpInfo.ConstraintVT = RegVT;
5159      } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
5160        // If the input is a FP value and we want it in FP registers, do a
5161        // bitcast to the corresponding integer type.  This turns an f64 value
5162        // into i64, which can be passed with two i32 values on a 32-bit
5163        // machine.
5164        RegVT = EVT::getIntegerVT(Context,
5165                                  OpInfo.ConstraintVT.getSizeInBits());
5166        OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
5167                                         RegVT, OpInfo.CallOperand);
5168        OpInfo.ConstraintVT = RegVT;
5169      }
5170    }
5171
5172    NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
5173  }
5174
5175  EVT RegVT;
5176  EVT ValueVT = OpInfo.ConstraintVT;
5177
5178  // If this is a constraint for a specific physical register, like {r17},
5179  // assign it now.
5180  if (unsigned AssignedReg = PhysReg.first) {
5181    const TargetRegisterClass *RC = PhysReg.second;
5182    if (OpInfo.ConstraintVT == MVT::Other)
5183      ValueVT = *RC->vt_begin();
5184
5185    // Get the actual register value type.  This is important, because the user
5186    // may have asked for (e.g.) the AX register in i32 type.  We need to
5187    // remember that AX is actually i16 to get the right extension.
5188    RegVT = *RC->vt_begin();
5189
5190    // This is a explicit reference to a physical register.
5191    Regs.push_back(AssignedReg);
5192
5193    // If this is an expanded reference, add the rest of the regs to Regs.
5194    if (NumRegs != 1) {
5195      TargetRegisterClass::iterator I = RC->begin();
5196      for (; *I != AssignedReg; ++I)
5197        assert(I != RC->end() && "Didn't find reg!");
5198
5199      // Already added the first reg.
5200      --NumRegs; ++I;
5201      for (; NumRegs; --NumRegs, ++I) {
5202        assert(I != RC->end() && "Ran out of registers to allocate!");
5203        Regs.push_back(*I);
5204      }
5205    }
5206
5207    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5208    const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5209    OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5210    return;
5211  }
5212
5213  // Otherwise, if this was a reference to an LLVM register class, create vregs
5214  // for this reference.
5215  if (const TargetRegisterClass *RC = PhysReg.second) {
5216    RegVT = *RC->vt_begin();
5217    if (OpInfo.ConstraintVT == MVT::Other)
5218      ValueVT = RegVT;
5219
5220    // Create the appropriate number of virtual registers.
5221    MachineRegisterInfo &RegInfo = MF.getRegInfo();
5222    for (; NumRegs; --NumRegs)
5223      Regs.push_back(RegInfo.createVirtualRegister(RC));
5224
5225    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5226    return;
5227  }
5228
5229  // This is a reference to a register class that doesn't directly correspond
5230  // to an LLVM register class.  Allocate NumRegs consecutive, available,
5231  // registers from the class.
5232  std::vector<unsigned> RegClassRegs
5233    = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
5234                                            OpInfo.ConstraintVT);
5235
5236  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5237  unsigned NumAllocated = 0;
5238  for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
5239    unsigned Reg = RegClassRegs[i];
5240    // See if this register is available.
5241    if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
5242        (isInReg  && InputRegs.count(Reg))) {    // Already used.
5243      // Make sure we find consecutive registers.
5244      NumAllocated = 0;
5245      continue;
5246    }
5247
5248    // Check to see if this register is allocatable (i.e. don't give out the
5249    // stack pointer).
5250    const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, TRI);
5251    if (!RC) {        // Couldn't allocate this register.
5252      // Reset NumAllocated to make sure we return consecutive registers.
5253      NumAllocated = 0;
5254      continue;
5255    }
5256
5257    // Okay, this register is good, we can use it.
5258    ++NumAllocated;
5259
5260    // If we allocated enough consecutive registers, succeed.
5261    if (NumAllocated == NumRegs) {
5262      unsigned RegStart = (i-NumAllocated)+1;
5263      unsigned RegEnd   = i+1;
5264      // Mark all of the allocated registers used.
5265      for (unsigned i = RegStart; i != RegEnd; ++i)
5266        Regs.push_back(RegClassRegs[i]);
5267
5268      OpInfo.AssignedRegs = RegsForValue(Regs, *RC->vt_begin(),
5269                                         OpInfo.ConstraintVT);
5270      OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5271      return;
5272    }
5273  }
5274
5275  // Otherwise, we couldn't allocate enough registers for this.
5276}
5277
5278/// visitInlineAsm - Handle a call to an InlineAsm object.
5279///
5280void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
5281  const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
5282
5283  /// ConstraintOperands - Information about all of the constraints.
5284  std::vector<SDISelAsmOperandInfo> ConstraintOperands;
5285
5286  std::set<unsigned> OutputRegs, InputRegs;
5287
5288  // Do a prepass over the constraints, canonicalizing them, and building up the
5289  // ConstraintOperands list.
5290  std::vector<InlineAsm::ConstraintInfo>
5291    ConstraintInfos = IA->ParseConstraints();
5292
5293  bool hasMemory = hasInlineAsmMemConstraint(ConstraintInfos, TLI);
5294
5295  SDValue Chain, Flag;
5296
5297  // We won't need to flush pending loads if this asm doesn't touch
5298  // memory and is nonvolatile.
5299  if (hasMemory || IA->hasSideEffects())
5300    Chain = getRoot();
5301  else
5302    Chain = DAG.getRoot();
5303
5304  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
5305  unsigned ResNo = 0;   // ResNo - The result number of the next output.
5306  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
5307    ConstraintOperands.push_back(SDISelAsmOperandInfo(ConstraintInfos[i]));
5308    SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
5309
5310    EVT OpVT = MVT::Other;
5311
5312    // Compute the value type for each operand.
5313    switch (OpInfo.Type) {
5314    case InlineAsm::isOutput:
5315      // Indirect outputs just consume an argument.
5316      if (OpInfo.isIndirect) {
5317        OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5318        break;
5319      }
5320
5321      // The return value of the call is this value.  As such, there is no
5322      // corresponding argument.
5323      assert(!CS.getType()->isVoidTy() &&
5324             "Bad inline asm!");
5325      if (const StructType *STy = dyn_cast<StructType>(CS.getType())) {
5326        OpVT = TLI.getValueType(STy->getElementType(ResNo));
5327      } else {
5328        assert(ResNo == 0 && "Asm only has one result!");
5329        OpVT = TLI.getValueType(CS.getType());
5330      }
5331      ++ResNo;
5332      break;
5333    case InlineAsm::isInput:
5334      OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5335      break;
5336    case InlineAsm::isClobber:
5337      // Nothing to do.
5338      break;
5339    }
5340
5341    // If this is an input or an indirect output, process the call argument.
5342    // BasicBlocks are labels, currently appearing only in asm's.
5343    if (OpInfo.CallOperandVal) {
5344      // Strip bitcasts, if any.  This mostly comes up for functions.
5345      OpInfo.CallOperandVal = OpInfo.CallOperandVal->stripPointerCasts();
5346
5347      if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
5348        OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
5349      } else {
5350        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
5351      }
5352
5353      OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD);
5354    }
5355
5356    OpInfo.ConstraintVT = OpVT;
5357  }
5358
5359  // Second pass over the constraints: compute which constraint option to use
5360  // and assign registers to constraints that want a specific physreg.
5361  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
5362    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5363
5364    // If this is an output operand with a matching input operand, look up the
5365    // matching input. If their types mismatch, e.g. one is an integer, the
5366    // other is floating point, or their sizes are different, flag it as an
5367    // error.
5368    if (OpInfo.hasMatchingInput()) {
5369      SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5370
5371      if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5372        if ((OpInfo.ConstraintVT.isInteger() !=
5373             Input.ConstraintVT.isInteger()) ||
5374            (OpInfo.ConstraintVT.getSizeInBits() !=
5375             Input.ConstraintVT.getSizeInBits())) {
5376          report_fatal_error("Unsupported asm: input constraint"
5377                             " with a matching output constraint of"
5378                             " incompatible type!");
5379        }
5380        Input.ConstraintVT = OpInfo.ConstraintVT;
5381      }
5382    }
5383
5384    // Compute the constraint code and ConstraintType to use.
5385    TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
5386
5387    // If this is a memory input, and if the operand is not indirect, do what we
5388    // need to to provide an address for the memory input.
5389    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5390        !OpInfo.isIndirect) {
5391      assert(OpInfo.Type == InlineAsm::isInput &&
5392             "Can only indirectify direct input operands!");
5393
5394      // Memory operands really want the address of the value.  If we don't have
5395      // an indirect input, put it in the constpool if we can, otherwise spill
5396      // it to a stack slot.
5397
5398      // If the operand is a float, integer, or vector constant, spill to a
5399      // constant pool entry to get its address.
5400      const Value *OpVal = OpInfo.CallOperandVal;
5401      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
5402          isa<ConstantVector>(OpVal)) {
5403        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
5404                                                 TLI.getPointerTy());
5405      } else {
5406        // Otherwise, create a stack slot and emit a store to it before the
5407        // asm.
5408        const Type *Ty = OpVal->getType();
5409        uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
5410        unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
5411        MachineFunction &MF = DAG.getMachineFunction();
5412        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5413        SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
5414        Chain = DAG.getStore(Chain, getCurDebugLoc(),
5415                             OpInfo.CallOperand, StackSlot, NULL, 0,
5416                             false, false, 0);
5417        OpInfo.CallOperand = StackSlot;
5418      }
5419
5420      // There is no longer a Value* corresponding to this operand.
5421      OpInfo.CallOperandVal = 0;
5422
5423      // It is now an indirect operand.
5424      OpInfo.isIndirect = true;
5425    }
5426
5427    // If this constraint is for a specific register, allocate it before
5428    // anything else.
5429    if (OpInfo.ConstraintType == TargetLowering::C_Register)
5430      GetRegistersForValue(OpInfo, OutputRegs, InputRegs);
5431  }
5432
5433  ConstraintInfos.clear();
5434
5435  // Second pass - Loop over all of the operands, assigning virtual or physregs
5436  // to register class operands.
5437  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5438    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5439
5440    // C_Register operands have already been allocated, Other/Memory don't need
5441    // to be.
5442    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
5443      GetRegistersForValue(OpInfo, OutputRegs, InputRegs);
5444  }
5445
5446  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
5447  std::vector<SDValue> AsmNodeOperands;
5448  AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
5449  AsmNodeOperands.push_back(
5450          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
5451                                      TLI.getPointerTy()));
5452
5453  // If we have a !srcloc metadata node associated with it, we want to attach
5454  // this to the ultimately generated inline asm machineinstr.  To do this, we
5455  // pass in the third operand as this (potentially null) inline asm MDNode.
5456  const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
5457  AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
5458
5459  // Remember the AlignStack bit as operand 3.
5460  AsmNodeOperands.push_back(DAG.getTargetConstant(IA->isAlignStack() ? 1 : 0,
5461                                            MVT::i1));
5462
5463  // Loop over all of the inputs, copying the operand values into the
5464  // appropriate registers and processing the output regs.
5465  RegsForValue RetValRegs;
5466
5467  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
5468  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
5469
5470  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5471    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5472
5473    switch (OpInfo.Type) {
5474    case InlineAsm::isOutput: {
5475      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
5476          OpInfo.ConstraintType != TargetLowering::C_Register) {
5477        // Memory output, or 'other' output (e.g. 'X' constraint).
5478        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
5479
5480        // Add information to the INLINEASM node to know about this output.
5481        unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
5482        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
5483                                                        TLI.getPointerTy()));
5484        AsmNodeOperands.push_back(OpInfo.CallOperand);
5485        break;
5486      }
5487
5488      // Otherwise, this is a register or register class output.
5489
5490      // Copy the output from the appropriate register.  Find a register that
5491      // we can use.
5492      if (OpInfo.AssignedRegs.Regs.empty())
5493        report_fatal_error("Couldn't allocate output reg for constraint '" +
5494                           Twine(OpInfo.ConstraintCode) + "'!");
5495
5496      // If this is an indirect operand, store through the pointer after the
5497      // asm.
5498      if (OpInfo.isIndirect) {
5499        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
5500                                                      OpInfo.CallOperandVal));
5501      } else {
5502        // This is the result value of the call.
5503        assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
5504        // Concatenate this output onto the outputs list.
5505        RetValRegs.append(OpInfo.AssignedRegs);
5506      }
5507
5508      // Add information to the INLINEASM node to know that this register is
5509      // set.
5510      OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
5511                                           InlineAsm::Kind_RegDefEarlyClobber :
5512                                               InlineAsm::Kind_RegDef,
5513                                               false,
5514                                               0,
5515                                               DAG,
5516                                               AsmNodeOperands);
5517      break;
5518    }
5519    case InlineAsm::isInput: {
5520      SDValue InOperandVal = OpInfo.CallOperand;
5521
5522      if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
5523        // If this is required to match an output register we have already set,
5524        // just use its register.
5525        unsigned OperandNo = OpInfo.getMatchedOperand();
5526
5527        // Scan until we find the definition we already emitted of this operand.
5528        // When we find it, create a RegsForValue operand.
5529        unsigned CurOp = InlineAsm::Op_FirstOperand;
5530        for (; OperandNo; --OperandNo) {
5531          // Advance to the next operand.
5532          unsigned OpFlag =
5533            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5534          assert((InlineAsm::isRegDefKind(OpFlag) ||
5535                  InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
5536                  InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
5537          CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
5538        }
5539
5540        unsigned OpFlag =
5541          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5542        if (InlineAsm::isRegDefKind(OpFlag) ||
5543            InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
5544          // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
5545          if (OpInfo.isIndirect) {
5546            // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
5547            LLVMContext &Ctx = *DAG.getContext();
5548            Ctx.emitError(CS.getInstruction(),  "inline asm not supported yet:"
5549                          " don't know how to handle tied "
5550                          "indirect register inputs");
5551          }
5552
5553          RegsForValue MatchedRegs;
5554          MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
5555          EVT RegVT = AsmNodeOperands[CurOp+1].getValueType();
5556          MatchedRegs.RegVTs.push_back(RegVT);
5557          MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
5558          for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
5559               i != e; ++i)
5560            MatchedRegs.Regs.push_back
5561              (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)));
5562
5563          // Use the produced MatchedRegs object to
5564          MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
5565                                    Chain, &Flag);
5566          MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
5567                                           true, OpInfo.getMatchedOperand(),
5568                                           DAG, AsmNodeOperands);
5569          break;
5570        }
5571
5572        assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
5573        assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
5574               "Unexpected number of operands");
5575        // Add information to the INLINEASM node to know about this input.
5576        // See InlineAsm.h isUseOperandTiedToDef.
5577        OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
5578                                                    OpInfo.getMatchedOperand());
5579        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
5580                                                        TLI.getPointerTy()));
5581        AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
5582        break;
5583      }
5584
5585      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
5586        assert(!OpInfo.isIndirect &&
5587               "Don't know how to handle indirect other inputs yet!");
5588
5589        std::vector<SDValue> Ops;
5590        TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0],
5591                                         Ops, DAG);
5592        if (Ops.empty())
5593          report_fatal_error("Invalid operand for inline asm constraint '" +
5594                             Twine(OpInfo.ConstraintCode) + "'!");
5595
5596        // Add information to the INLINEASM node to know about this input.
5597        unsigned ResOpType =
5598          InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
5599        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5600                                                        TLI.getPointerTy()));
5601        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
5602        break;
5603      }
5604
5605      if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
5606        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
5607        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
5608               "Memory operands expect pointer values");
5609
5610        // Add information to the INLINEASM node to know about this input.
5611        unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
5612        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5613                                                        TLI.getPointerTy()));
5614        AsmNodeOperands.push_back(InOperandVal);
5615        break;
5616      }
5617
5618      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
5619              OpInfo.ConstraintType == TargetLowering::C_Register) &&
5620             "Unknown constraint type!");
5621      assert(!OpInfo.isIndirect &&
5622             "Don't know how to handle indirect register inputs yet!");
5623
5624      // Copy the input into the appropriate registers.
5625      if (OpInfo.AssignedRegs.Regs.empty() ||
5626          !OpInfo.AssignedRegs.areValueTypesLegal(TLI))
5627        report_fatal_error("Couldn't allocate input reg for constraint '" +
5628                           Twine(OpInfo.ConstraintCode) + "'!");
5629
5630      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
5631                                        Chain, &Flag);
5632
5633      OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
5634                                               DAG, AsmNodeOperands);
5635      break;
5636    }
5637    case InlineAsm::isClobber: {
5638      // Add the clobbered value to the operand list, so that the register
5639      // allocator is aware that the physreg got clobbered.
5640      if (!OpInfo.AssignedRegs.Regs.empty())
5641        OpInfo.AssignedRegs.AddInlineAsmOperands(
5642                                            InlineAsm::Kind_RegDefEarlyClobber,
5643                                                 false, 0, DAG,
5644                                                 AsmNodeOperands);
5645      break;
5646    }
5647    }
5648  }
5649
5650  // Finish up input operands.  Set the input chain and add the flag last.
5651  AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
5652  if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
5653
5654  Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(),
5655                      DAG.getVTList(MVT::Other, MVT::Flag),
5656                      &AsmNodeOperands[0], AsmNodeOperands.size());
5657  Flag = Chain.getValue(1);
5658
5659  // If this asm returns a register value, copy the result from that register
5660  // and set it as the value of the call.
5661  if (!RetValRegs.Regs.empty()) {
5662    SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
5663                                             Chain, &Flag);
5664
5665    // FIXME: Why don't we do this for inline asms with MRVs?
5666    if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
5667      EVT ResultType = TLI.getValueType(CS.getType());
5668
5669      // If any of the results of the inline asm is a vector, it may have the
5670      // wrong width/num elts.  This can happen for register classes that can
5671      // contain multiple different value types.  The preg or vreg allocated may
5672      // not have the same VT as was expected.  Convert it to the right type
5673      // with bit_convert.
5674      if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
5675        Val = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
5676                          ResultType, Val);
5677
5678      } else if (ResultType != Val.getValueType() &&
5679                 ResultType.isInteger() && Val.getValueType().isInteger()) {
5680        // If a result value was tied to an input value, the computed result may
5681        // have a wider width than the expected result.  Extract the relevant
5682        // portion.
5683        Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val);
5684      }
5685
5686      assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
5687    }
5688
5689    setValue(CS.getInstruction(), Val);
5690    // Don't need to use this as a chain in this case.
5691    if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
5692      return;
5693  }
5694
5695  std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
5696
5697  // Process indirect outputs, first output all of the flagged copies out of
5698  // physregs.
5699  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
5700    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
5701    const Value *Ptr = IndirectStoresToEmit[i].second;
5702    SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
5703                                             Chain, &Flag);
5704    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
5705  }
5706
5707  // Emit the non-flagged stores from the physregs.
5708  SmallVector<SDValue, 8> OutChains;
5709  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
5710    SDValue Val = DAG.getStore(Chain, getCurDebugLoc(),
5711                               StoresToEmit[i].first,
5712                               getValue(StoresToEmit[i].second),
5713                               StoresToEmit[i].second, 0,
5714                               false, false, 0);
5715    OutChains.push_back(Val);
5716  }
5717
5718  if (!OutChains.empty())
5719    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
5720                        &OutChains[0], OutChains.size());
5721
5722  DAG.setRoot(Chain);
5723}
5724
5725void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
5726  DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(),
5727                          MVT::Other, getRoot(),
5728                          getValue(I.getArgOperand(0)),
5729                          DAG.getSrcValue(I.getArgOperand(0))));
5730}
5731
5732void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
5733  SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(),
5734                           getRoot(), getValue(I.getOperand(0)),
5735                           DAG.getSrcValue(I.getOperand(0)));
5736  setValue(&I, V);
5737  DAG.setRoot(V.getValue(1));
5738}
5739
5740void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
5741  DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(),
5742                          MVT::Other, getRoot(),
5743                          getValue(I.getArgOperand(0)),
5744                          DAG.getSrcValue(I.getArgOperand(0))));
5745}
5746
5747void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
5748  DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(),
5749                          MVT::Other, getRoot(),
5750                          getValue(I.getArgOperand(0)),
5751                          getValue(I.getArgOperand(1)),
5752                          DAG.getSrcValue(I.getArgOperand(0)),
5753                          DAG.getSrcValue(I.getArgOperand(1))));
5754}
5755
5756/// TargetLowering::LowerCallTo - This is the default LowerCallTo
5757/// implementation, which just calls LowerCall.
5758/// FIXME: When all targets are
5759/// migrated to using LowerCall, this hook should be integrated into SDISel.
5760std::pair<SDValue, SDValue>
5761TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy,
5762                            bool RetSExt, bool RetZExt, bool isVarArg,
5763                            bool isInreg, unsigned NumFixedArgs,
5764                            CallingConv::ID CallConv, bool isTailCall,
5765                            bool isReturnValueUsed,
5766                            SDValue Callee,
5767                            ArgListTy &Args, SelectionDAG &DAG,
5768                            DebugLoc dl) const {
5769  // Handle all of the outgoing arguments.
5770  SmallVector<ISD::OutputArg, 32> Outs;
5771  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
5772    SmallVector<EVT, 4> ValueVTs;
5773    ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
5774    for (unsigned Value = 0, NumValues = ValueVTs.size();
5775         Value != NumValues; ++Value) {
5776      EVT VT = ValueVTs[Value];
5777      const Type *ArgTy = VT.getTypeForEVT(RetTy->getContext());
5778      SDValue Op = SDValue(Args[i].Node.getNode(),
5779                           Args[i].Node.getResNo() + Value);
5780      ISD::ArgFlagsTy Flags;
5781      unsigned OriginalAlignment =
5782        getTargetData()->getABITypeAlignment(ArgTy);
5783
5784      if (Args[i].isZExt)
5785        Flags.setZExt();
5786      if (Args[i].isSExt)
5787        Flags.setSExt();
5788      if (Args[i].isInReg)
5789        Flags.setInReg();
5790      if (Args[i].isSRet)
5791        Flags.setSRet();
5792      if (Args[i].isByVal) {
5793        Flags.setByVal();
5794        const PointerType *Ty = cast<PointerType>(Args[i].Ty);
5795        const Type *ElementTy = Ty->getElementType();
5796        unsigned FrameAlign = getByValTypeAlignment(ElementTy);
5797        unsigned FrameSize  = getTargetData()->getTypeAllocSize(ElementTy);
5798        // For ByVal, alignment should come from FE.  BE will guess if this
5799        // info is not there but there are cases it cannot get right.
5800        if (Args[i].Alignment)
5801          FrameAlign = Args[i].Alignment;
5802        Flags.setByValAlign(FrameAlign);
5803        Flags.setByValSize(FrameSize);
5804      }
5805      if (Args[i].isNest)
5806        Flags.setNest();
5807      Flags.setOrigAlign(OriginalAlignment);
5808
5809      EVT PartVT = getRegisterType(RetTy->getContext(), VT);
5810      unsigned NumParts = getNumRegisters(RetTy->getContext(), VT);
5811      SmallVector<SDValue, 4> Parts(NumParts);
5812      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
5813
5814      if (Args[i].isSExt)
5815        ExtendKind = ISD::SIGN_EXTEND;
5816      else if (Args[i].isZExt)
5817        ExtendKind = ISD::ZERO_EXTEND;
5818
5819      getCopyToParts(DAG, dl, Op, &Parts[0], NumParts,
5820                     PartVT, ExtendKind);
5821
5822      for (unsigned j = 0; j != NumParts; ++j) {
5823        // if it isn't first piece, alignment must be 1
5824        ISD::OutputArg MyFlags(Flags, Parts[j], i < NumFixedArgs);
5825        if (NumParts > 1 && j == 0)
5826          MyFlags.Flags.setSplit();
5827        else if (j != 0)
5828          MyFlags.Flags.setOrigAlign(1);
5829
5830        Outs.push_back(MyFlags);
5831      }
5832    }
5833  }
5834
5835  // Handle the incoming return values from the call.
5836  SmallVector<ISD::InputArg, 32> Ins;
5837  SmallVector<EVT, 4> RetTys;
5838  ComputeValueVTs(*this, RetTy, RetTys);
5839  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
5840    EVT VT = RetTys[I];
5841    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
5842    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
5843    for (unsigned i = 0; i != NumRegs; ++i) {
5844      ISD::InputArg MyFlags;
5845      MyFlags.VT = RegisterVT;
5846      MyFlags.Used = isReturnValueUsed;
5847      if (RetSExt)
5848        MyFlags.Flags.setSExt();
5849      if (RetZExt)
5850        MyFlags.Flags.setZExt();
5851      if (isInreg)
5852        MyFlags.Flags.setInReg();
5853      Ins.push_back(MyFlags);
5854    }
5855  }
5856
5857  SmallVector<SDValue, 4> InVals;
5858  Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall,
5859                    Outs, Ins, dl, DAG, InVals);
5860
5861  // Verify that the target's LowerCall behaved as expected.
5862  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
5863         "LowerCall didn't return a valid chain!");
5864  assert((!isTailCall || InVals.empty()) &&
5865         "LowerCall emitted a return value for a tail call!");
5866  assert((isTailCall || InVals.size() == Ins.size()) &&
5867         "LowerCall didn't emit the correct number of values!");
5868
5869  // For a tail call, the return value is merely live-out and there aren't
5870  // any nodes in the DAG representing it. Return a special value to
5871  // indicate that a tail call has been emitted and no more Instructions
5872  // should be processed in the current block.
5873  if (isTailCall) {
5874    DAG.setRoot(Chain);
5875    return std::make_pair(SDValue(), SDValue());
5876  }
5877
5878  DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
5879          assert(InVals[i].getNode() &&
5880                 "LowerCall emitted a null value!");
5881          assert(Ins[i].VT == InVals[i].getValueType() &&
5882                 "LowerCall emitted a value with the wrong type!");
5883        });
5884
5885  // Collect the legal value parts into potentially illegal values
5886  // that correspond to the original function's return values.
5887  ISD::NodeType AssertOp = ISD::DELETED_NODE;
5888  if (RetSExt)
5889    AssertOp = ISD::AssertSext;
5890  else if (RetZExt)
5891    AssertOp = ISD::AssertZext;
5892  SmallVector<SDValue, 4> ReturnValues;
5893  unsigned CurReg = 0;
5894  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
5895    EVT VT = RetTys[I];
5896    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
5897    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
5898
5899    ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg],
5900                                            NumRegs, RegisterVT, VT,
5901                                            AssertOp));
5902    CurReg += NumRegs;
5903  }
5904
5905  // For a function returning void, there is no return value. We can't create
5906  // such a node, so we just return a null return value in that case. In
5907  // that case, nothing will actualy look at the value.
5908  if (ReturnValues.empty())
5909    return std::make_pair(SDValue(), Chain);
5910
5911  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
5912                            DAG.getVTList(&RetTys[0], RetTys.size()),
5913                            &ReturnValues[0], ReturnValues.size());
5914  return std::make_pair(Res, Chain);
5915}
5916
5917void TargetLowering::LowerOperationWrapper(SDNode *N,
5918                                           SmallVectorImpl<SDValue> &Results,
5919                                           SelectionDAG &DAG) const {
5920  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
5921  if (Res.getNode())
5922    Results.push_back(Res);
5923}
5924
5925SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
5926  llvm_unreachable("LowerOperation not implemented for this target!");
5927  return SDValue();
5928}
5929
5930void
5931SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
5932  SDValue Op = getNonRegisterValue(V);
5933  assert((Op.getOpcode() != ISD::CopyFromReg ||
5934          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
5935         "Copy from a reg to the same reg!");
5936  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
5937
5938  RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
5939  SDValue Chain = DAG.getEntryNode();
5940  RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0);
5941  PendingExports.push_back(Chain);
5942}
5943
5944#include "llvm/CodeGen/SelectionDAGISel.h"
5945
5946void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) {
5947  // If this is the entry block, emit arguments.
5948  const Function &F = *LLVMBB->getParent();
5949  SelectionDAG &DAG = SDB->DAG;
5950  DebugLoc dl = SDB->getCurDebugLoc();
5951  const TargetData *TD = TLI.getTargetData();
5952  SmallVector<ISD::InputArg, 16> Ins;
5953
5954  // Check whether the function can return without sret-demotion.
5955  SmallVector<EVT, 4> OutVTs;
5956  SmallVector<ISD::ArgFlagsTy, 4> OutsFlags;
5957  getReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
5958                OutVTs, OutsFlags, TLI);
5959
5960  FuncInfo->CanLowerReturn = TLI.CanLowerReturn(F.getCallingConv(),
5961                                                F.isVarArg(),
5962                                                OutVTs, OutsFlags, DAG);
5963  if (!FuncInfo->CanLowerReturn) {
5964    // Put in an sret pointer parameter before all the other parameters.
5965    SmallVector<EVT, 1> ValueVTs;
5966    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
5967
5968    // NOTE: Assuming that a pointer will never break down to more than one VT
5969    // or one register.
5970    ISD::ArgFlagsTy Flags;
5971    Flags.setSRet();
5972    EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]);
5973    ISD::InputArg RetArg(Flags, RegisterVT, true);
5974    Ins.push_back(RetArg);
5975  }
5976
5977  // Set up the incoming argument description vector.
5978  unsigned Idx = 1;
5979  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
5980       I != E; ++I, ++Idx) {
5981    SmallVector<EVT, 4> ValueVTs;
5982    ComputeValueVTs(TLI, I->getType(), ValueVTs);
5983    bool isArgValueUsed = !I->use_empty();
5984    for (unsigned Value = 0, NumValues = ValueVTs.size();
5985         Value != NumValues; ++Value) {
5986      EVT VT = ValueVTs[Value];
5987      const Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
5988      ISD::ArgFlagsTy Flags;
5989      unsigned OriginalAlignment =
5990        TD->getABITypeAlignment(ArgTy);
5991
5992      if (F.paramHasAttr(Idx, Attribute::ZExt))
5993        Flags.setZExt();
5994      if (F.paramHasAttr(Idx, Attribute::SExt))
5995        Flags.setSExt();
5996      if (F.paramHasAttr(Idx, Attribute::InReg))
5997        Flags.setInReg();
5998      if (F.paramHasAttr(Idx, Attribute::StructRet))
5999        Flags.setSRet();
6000      if (F.paramHasAttr(Idx, Attribute::ByVal)) {
6001        Flags.setByVal();
6002        const PointerType *Ty = cast<PointerType>(I->getType());
6003        const Type *ElementTy = Ty->getElementType();
6004        unsigned FrameAlign = TLI.getByValTypeAlignment(ElementTy);
6005        unsigned FrameSize  = TD->getTypeAllocSize(ElementTy);
6006        // For ByVal, alignment should be passed from FE.  BE will guess if
6007        // this info is not there but there are cases it cannot get right.
6008        if (F.getParamAlignment(Idx))
6009          FrameAlign = F.getParamAlignment(Idx);
6010        Flags.setByValAlign(FrameAlign);
6011        Flags.setByValSize(FrameSize);
6012      }
6013      if (F.paramHasAttr(Idx, Attribute::Nest))
6014        Flags.setNest();
6015      Flags.setOrigAlign(OriginalAlignment);
6016
6017      EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6018      unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6019      for (unsigned i = 0; i != NumRegs; ++i) {
6020        ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed);
6021        if (NumRegs > 1 && i == 0)
6022          MyFlags.Flags.setSplit();
6023        // if it isn't first piece, alignment must be 1
6024        else if (i > 0)
6025          MyFlags.Flags.setOrigAlign(1);
6026        Ins.push_back(MyFlags);
6027      }
6028    }
6029  }
6030
6031  // Call the target to set up the argument values.
6032  SmallVector<SDValue, 8> InVals;
6033  SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
6034                                             F.isVarArg(), Ins,
6035                                             dl, DAG, InVals);
6036
6037  // Verify that the target's LowerFormalArguments behaved as expected.
6038  assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
6039         "LowerFormalArguments didn't return a valid chain!");
6040  assert(InVals.size() == Ins.size() &&
6041         "LowerFormalArguments didn't emit the correct number of values!");
6042  DEBUG({
6043      for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6044        assert(InVals[i].getNode() &&
6045               "LowerFormalArguments emitted a null value!");
6046        assert(Ins[i].VT == InVals[i].getValueType() &&
6047               "LowerFormalArguments emitted a value with the wrong type!");
6048      }
6049    });
6050
6051  // Update the DAG with the new chain value resulting from argument lowering.
6052  DAG.setRoot(NewRoot);
6053
6054  // Set up the argument values.
6055  unsigned i = 0;
6056  Idx = 1;
6057  if (!FuncInfo->CanLowerReturn) {
6058    // Create a virtual register for the sret pointer, and put in a copy
6059    // from the sret argument into it.
6060    SmallVector<EVT, 1> ValueVTs;
6061    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6062    EVT VT = ValueVTs[0];
6063    EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6064    ISD::NodeType AssertOp = ISD::DELETED_NODE;
6065    SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
6066                                        RegVT, VT, AssertOp);
6067
6068    MachineFunction& MF = SDB->DAG.getMachineFunction();
6069    MachineRegisterInfo& RegInfo = MF.getRegInfo();
6070    unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT));
6071    FuncInfo->DemoteRegister = SRetReg;
6072    NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(),
6073                                    SRetReg, ArgValue);
6074    DAG.setRoot(NewRoot);
6075
6076    // i indexes lowered arguments.  Bump it past the hidden sret argument.
6077    // Idx indexes LLVM arguments.  Don't touch it.
6078    ++i;
6079  }
6080
6081  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
6082      ++I, ++Idx) {
6083    SmallVector<SDValue, 4> ArgValues;
6084    SmallVector<EVT, 4> ValueVTs;
6085    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6086    unsigned NumValues = ValueVTs.size();
6087
6088    // If this argument is unused then remember its value. It is used to generate
6089    // debugging information.
6090    if (I->use_empty() && NumValues)
6091      SDB->setUnusedArgValue(I, InVals[i]);
6092
6093    for (unsigned Value = 0; Value != NumValues; ++Value) {
6094      EVT VT = ValueVTs[Value];
6095      EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6096      unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6097
6098      if (!I->use_empty()) {
6099        ISD::NodeType AssertOp = ISD::DELETED_NODE;
6100        if (F.paramHasAttr(Idx, Attribute::SExt))
6101          AssertOp = ISD::AssertSext;
6102        else if (F.paramHasAttr(Idx, Attribute::ZExt))
6103          AssertOp = ISD::AssertZext;
6104
6105        ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
6106                                             NumParts, PartVT, VT,
6107                                             AssertOp));
6108      }
6109
6110      i += NumParts;
6111    }
6112
6113    if (!I->use_empty()) {
6114      SDValue Res;
6115      if (!ArgValues.empty())
6116        Res = DAG.getMergeValues(&ArgValues[0], NumValues,
6117                                 SDB->getCurDebugLoc());
6118      SDB->setValue(I, Res);
6119
6120      // If this argument is live outside of the entry block, insert a copy from
6121      // whereever we got it to the vreg that other BB's will reference it as.
6122      SDB->CopyToExportRegsIfNeeded(I);
6123    }
6124  }
6125
6126  assert(i == InVals.size() && "Argument register count mismatch!");
6127
6128  // Finally, if the target has anything special to do, allow it to do so.
6129  // FIXME: this should insert code into the DAG!
6130  EmitFunctionEntryCode();
6131}
6132
6133/// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
6134/// ensure constants are generated when needed.  Remember the virtual registers
6135/// that need to be added to the Machine PHI nodes as input.  We cannot just
6136/// directly add them, because expansion might result in multiple MBB's for one
6137/// BB.  As such, the start of the BB might correspond to a different MBB than
6138/// the end.
6139///
6140void
6141SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
6142  const TerminatorInst *TI = LLVMBB->getTerminator();
6143
6144  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6145
6146  // Check successor nodes' PHI nodes that expect a constant to be available
6147  // from this block.
6148  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6149    const BasicBlock *SuccBB = TI->getSuccessor(succ);
6150    if (!isa<PHINode>(SuccBB->begin())) continue;
6151    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
6152
6153    // If this terminator has multiple identical successors (common for
6154    // switches), only handle each succ once.
6155    if (!SuccsHandled.insert(SuccMBB)) continue;
6156
6157    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6158
6159    // At this point we know that there is a 1-1 correspondence between LLVM PHI
6160    // nodes and Machine PHI nodes, but the incoming operands have not been
6161    // emitted yet.
6162    for (BasicBlock::const_iterator I = SuccBB->begin();
6163         const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
6164      // Ignore dead phi's.
6165      if (PN->use_empty()) continue;
6166
6167      unsigned Reg;
6168      const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6169
6170      if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
6171        unsigned &RegOut = ConstantsOut[C];
6172        if (RegOut == 0) {
6173          RegOut = FuncInfo.CreateRegs(C->getType());
6174          CopyValueToVirtualRegister(C, RegOut);
6175        }
6176        Reg = RegOut;
6177      } else {
6178        DenseMap<const Value *, unsigned>::iterator I =
6179          FuncInfo.ValueMap.find(PHIOp);
6180        if (I != FuncInfo.ValueMap.end())
6181          Reg = I->second;
6182        else {
6183          assert(isa<AllocaInst>(PHIOp) &&
6184                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
6185                 "Didn't codegen value into a register!??");
6186          Reg = FuncInfo.CreateRegs(PHIOp->getType());
6187          CopyValueToVirtualRegister(PHIOp, Reg);
6188        }
6189      }
6190
6191      // Remember that this register needs to added to the machine PHI node as
6192      // the input for this MBB.
6193      SmallVector<EVT, 4> ValueVTs;
6194      ComputeValueVTs(TLI, PN->getType(), ValueVTs);
6195      for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
6196        EVT VT = ValueVTs[vti];
6197        unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
6198        for (unsigned i = 0, e = NumRegisters; i != e; ++i)
6199          FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
6200        Reg += NumRegisters;
6201      }
6202    }
6203  }
6204  ConstantsOut.clear();
6205}
6206