SelectionDAGBuilder.cpp revision 10c6d12a9fd4dab411091f64db4db69670b88850
1f94e0fb97765a9927e21028499f43771264f37cbSarthak Aggarwal//===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2f94e0fb97765a9927e21028499f43771264f37cbSarthak Aggarwal//
3f94e0fb97765a9927e21028499f43771264f37cbSarthak Aggarwal//                     The LLVM Compiler Infrastructure
4f94e0fb97765a9927e21028499f43771264f37cbSarthak Aggarwal//
5f94e0fb97765a9927e21028499f43771264f37cbSarthak Aggarwal// This file is distributed under the University of Illinois Open Source
63cf002e003ada481d0aae4ba77bb05f95be216c7Sarthak Aggarwal// License. See LICENSE.TXT for details.
73cf002e003ada481d0aae4ba77bb05f95be216c7Sarthak Aggarwal//
83cf002e003ada481d0aae4ba77bb05f95be216c7Sarthak Aggarwal//===----------------------------------------------------------------------===//
93cf002e003ada481d0aae4ba77bb05f95be216c7Sarthak Aggarwal//
10f94e0fb97765a9927e21028499f43771264f37cbSarthak Aggarwal// This implements routines for translating from LLVM IR into SelectionDAG IR.
11f94e0fb97765a9927e21028499f43771264f37cbSarthak Aggarwal//
12f94e0fb97765a9927e21028499f43771264f37cbSarthak Aggarwal//===----------------------------------------------------------------------===//
133cf002e003ada481d0aae4ba77bb05f95be216c7Sarthak Aggarwal
143cf002e003ada481d0aae4ba77bb05f95be216c7Sarthak Aggarwal#define DEBUG_TYPE "isel"
153cf002e003ada481d0aae4ba77bb05f95be216c7Sarthak Aggarwal#include "SDNodeDbgValue.h"
163cf002e003ada481d0aae4ba77bb05f95be216c7Sarthak Aggarwal#include "SelectionDAGBuilder.h"
173cf002e003ada481d0aae4ba77bb05f95be216c7Sarthak Aggarwal#include "llvm/ADT/BitVector.h"
183cf002e003ada481d0aae4ba77bb05f95be216c7Sarthak Aggarwal#include "llvm/ADT/PostOrderIterator.h"
19f94e0fb97765a9927e21028499f43771264f37cbSarthak Aggarwal#include "llvm/ADT/SmallSet.h"
20f94e0fb97765a9927e21028499f43771264f37cbSarthak Aggarwal#include "llvm/Analysis/AliasAnalysis.h"
21f94e0fb97765a9927e21028499f43771264f37cbSarthak Aggarwal#include "llvm/Analysis/ConstantFolding.h"
22f94e0fb97765a9927e21028499f43771264f37cbSarthak Aggarwal#include "llvm/Constants.h"
23f94e0fb97765a9927e21028499f43771264f37cbSarthak Aggarwal#include "llvm/CallingConv.h"
242a0736ac288d2057129b5b8961cc5536066493c6Sarthak Aggarwal#include "llvm/DerivedTypes.h"
252a0736ac288d2057129b5b8961cc5536066493c6Sarthak Aggarwal#include "llvm/Function.h"
263cf002e003ada481d0aae4ba77bb05f95be216c7Sarthak Aggarwal#include "llvm/GlobalVariable.h"
273cf002e003ada481d0aae4ba77bb05f95be216c7Sarthak Aggarwal#include "llvm/InlineAsm.h"
28f94e0fb97765a9927e21028499f43771264f37cbSarthak Aggarwal#include "llvm/Instructions.h"
29f94e0fb97765a9927e21028499f43771264f37cbSarthak Aggarwal#include "llvm/Intrinsics.h"
30f94e0fb97765a9927e21028499f43771264f37cbSarthak Aggarwal#include "llvm/IntrinsicInst.h"
31f94e0fb97765a9927e21028499f43771264f37cbSarthak Aggarwal#include "llvm/LLVMContext.h"
32f94e0fb97765a9927e21028499f43771264f37cbSarthak Aggarwal#include "llvm/Module.h"
33f94e0fb97765a9927e21028499f43771264f37cbSarthak Aggarwal#include "llvm/CodeGen/Analysis.h"
34f94e0fb97765a9927e21028499f43771264f37cbSarthak Aggarwal#include "llvm/CodeGen/FastISel.h"
35f94e0fb97765a9927e21028499f43771264f37cbSarthak Aggarwal#include "llvm/CodeGen/FunctionLoweringInfo.h"
36f94e0fb97765a9927e21028499f43771264f37cbSarthak Aggarwal#include "llvm/CodeGen/GCStrategy.h"
37f94e0fb97765a9927e21028499f43771264f37cbSarthak Aggarwal#include "llvm/CodeGen/GCMetadata.h"
38f94e0fb97765a9927e21028499f43771264f37cbSarthak Aggarwal#include "llvm/CodeGen/MachineFunction.h"
39f94e0fb97765a9927e21028499f43771264f37cbSarthak Aggarwal#include "llvm/CodeGen/MachineFrameInfo.h"
40f94e0fb97765a9927e21028499f43771264f37cbSarthak Aggarwal#include "llvm/CodeGen/MachineInstrBuilder.h"
41f94e0fb97765a9927e21028499f43771264f37cbSarthak Aggarwal#include "llvm/CodeGen/MachineJumpTableInfo.h"
42f94e0fb97765a9927e21028499f43771264f37cbSarthak Aggarwal#include "llvm/CodeGen/MachineModuleInfo.h"
43f94e0fb97765a9927e21028499f43771264f37cbSarthak Aggarwal#include "llvm/CodeGen/MachineRegisterInfo.h"
44f94e0fb97765a9927e21028499f43771264f37cbSarthak Aggarwal#include "llvm/CodeGen/PseudoSourceValue.h"
45f94e0fb97765a9927e21028499f43771264f37cbSarthak Aggarwal#include "llvm/CodeGen/SelectionDAG.h"
46f94e0fb97765a9927e21028499f43771264f37cbSarthak Aggarwal#include "llvm/Analysis/DebugInfo.h"
47f94e0fb97765a9927e21028499f43771264f37cbSarthak Aggarwal#include "llvm/Target/TargetData.h"
48f94e0fb97765a9927e21028499f43771264f37cbSarthak Aggarwal#include "llvm/Target/TargetFrameLowering.h"
49f94e0fb97765a9927e21028499f43771264f37cbSarthak Aggarwal#include "llvm/Target/TargetInstrInfo.h"
50f94e0fb97765a9927e21028499f43771264f37cbSarthak Aggarwal#include "llvm/Target/TargetIntrinsicInfo.h"
51f94e0fb97765a9927e21028499f43771264f37cbSarthak Aggarwal#include "llvm/Target/TargetLowering.h"
52f94e0fb97765a9927e21028499f43771264f37cbSarthak Aggarwal#include "llvm/Target/TargetOptions.h"
53f94e0fb97765a9927e21028499f43771264f37cbSarthak Aggarwal#include "llvm/Support/CommandLine.h"
54f94e0fb97765a9927e21028499f43771264f37cbSarthak Aggarwal#include "llvm/Support/Debug.h"
55f94e0fb97765a9927e21028499f43771264f37cbSarthak Aggarwal#include "llvm/Support/ErrorHandling.h"
56f94e0fb97765a9927e21028499f43771264f37cbSarthak Aggarwal#include "llvm/Support/MathExtras.h"
57f94e0fb97765a9927e21028499f43771264f37cbSarthak Aggarwal#include "llvm/Support/raw_ostream.h"
58f94e0fb97765a9927e21028499f43771264f37cbSarthak Aggarwal#include <algorithm>
59f94e0fb97765a9927e21028499f43771264f37cbSarthak Aggarwalusing namespace llvm;
60f94e0fb97765a9927e21028499f43771264f37cbSarthak Aggarwal
61f94e0fb97765a9927e21028499f43771264f37cbSarthak Aggarwal/// LimitFloatPrecision - Generate low-precision inline sequences for
62f94e0fb97765a9927e21028499f43771264f37cbSarthak Aggarwal/// some float libcalls (6, 8 or 12 bits).
63f94e0fb97765a9927e21028499f43771264f37cbSarthak Aggarwalstatic unsigned LimitFloatPrecision;
642a0736ac288d2057129b5b8961cc5536066493c6Sarthak Aggarwal
652a0736ac288d2057129b5b8961cc5536066493c6Sarthak Aggarwalstatic cl::opt<unsigned, true>
663cf002e003ada481d0aae4ba77bb05f95be216c7Sarthak AggarwalLimitFPPrecision("limit-float-precision",
672a0736ac288d2057129b5b8961cc5536066493c6Sarthak Aggarwal                 cl::desc("Generate low-precision inline sequences "
682a0736ac288d2057129b5b8961cc5536066493c6Sarthak Aggarwal                          "for some float libcalls"),
693cf002e003ada481d0aae4ba77bb05f95be216c7Sarthak Aggarwal                 cl::location(LimitFloatPrecision),
703cf002e003ada481d0aae4ba77bb05f95be216c7Sarthak Aggarwal                 cl::init(0));
712a0736ac288d2057129b5b8961cc5536066493c6Sarthak Aggarwal
722a0736ac288d2057129b5b8961cc5536066493c6Sarthak Aggarwal// Limit the width of DAG chains. This is important in general to prevent
732a0736ac288d2057129b5b8961cc5536066493c6Sarthak Aggarwal// prevent DAG-based analysis from blowing up. For example, alias analysis and
742a0736ac288d2057129b5b8961cc5536066493c6Sarthak Aggarwal// load clustering may not complete in reasonable time. It is difficult to
752a0736ac288d2057129b5b8961cc5536066493c6Sarthak Aggarwal// recognize and avoid this situation within each individual analysis, and
762a0736ac288d2057129b5b8961cc5536066493c6Sarthak Aggarwal// future analyses are likely to have the same behavior. Limiting DAG width is
772a0736ac288d2057129b5b8961cc5536066493c6Sarthak Aggarwal// the safe approach, and will be especially important with global DAGs.
782a0736ac288d2057129b5b8961cc5536066493c6Sarthak Aggarwal//
792a0736ac288d2057129b5b8961cc5536066493c6Sarthak Aggarwal// MaxParallelChains default is arbitrarily high to avoid affecting
802a0736ac288d2057129b5b8961cc5536066493c6Sarthak Aggarwal// optimization, but could be lowered to improve compile time. Any ld-ld-st-st
812a0736ac288d2057129b5b8961cc5536066493c6Sarthak Aggarwal// sequence over this should have been converted to llvm.memcpy by the
822a0736ac288d2057129b5b8961cc5536066493c6Sarthak Aggarwal// frontend. It easy to induce this behavior with .ll code such as:
832a0736ac288d2057129b5b8961cc5536066493c6Sarthak Aggarwal// %buffer = alloca [4096 x i8]
842a0736ac288d2057129b5b8961cc5536066493c6Sarthak Aggarwal// %data = load [4096 x i8]* %argPtr
852a0736ac288d2057129b5b8961cc5536066493c6Sarthak Aggarwal// store [4096 x i8] %data, [4096 x i8]* %buffer
862a0736ac288d2057129b5b8961cc5536066493c6Sarthak Aggarwalstatic const unsigned MaxParallelChains = 64;
872a0736ac288d2057129b5b8961cc5536066493c6Sarthak Aggarwal
882a0736ac288d2057129b5b8961cc5536066493c6Sarthak Aggarwalstatic SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
892a0736ac288d2057129b5b8961cc5536066493c6Sarthak Aggarwal                                      const SDValue *Parts, unsigned NumParts,
902a0736ac288d2057129b5b8961cc5536066493c6Sarthak Aggarwal                                      EVT PartVT, EVT ValueVT);
912a0736ac288d2057129b5b8961cc5536066493c6Sarthak Aggarwal
922a0736ac288d2057129b5b8961cc5536066493c6Sarthak Aggarwal/// getCopyFromParts - Create a value that contains the specified legal parts
933cf002e003ada481d0aae4ba77bb05f95be216c7Sarthak Aggarwal/// combined into the value they represent.  If the parts combine to a type
94f94e0fb97765a9927e21028499f43771264f37cbSarthak Aggarwal/// larger then ValueVT then AssertOp can be used to specify whether the extra
953cf002e003ada481d0aae4ba77bb05f95be216c7Sarthak Aggarwal/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
96f94e0fb97765a9927e21028499f43771264f37cbSarthak Aggarwal/// (ISD::AssertSext).
97f94e0fb97765a9927e21028499f43771264f37cbSarthak Aggarwalstatic SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL,
98f94e0fb97765a9927e21028499f43771264f37cbSarthak Aggarwal                                const SDValue *Parts,
99f94e0fb97765a9927e21028499f43771264f37cbSarthak Aggarwal                                unsigned NumParts, EVT PartVT, EVT ValueVT,
100f94e0fb97765a9927e21028499f43771264f37cbSarthak Aggarwal                                ISD::NodeType AssertOp = ISD::DELETED_NODE) {
101f94e0fb97765a9927e21028499f43771264f37cbSarthak Aggarwal  if (ValueVT.isVector())
1022a0736ac288d2057129b5b8961cc5536066493c6Sarthak Aggarwal    return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT);
1032a0736ac288d2057129b5b8961cc5536066493c6Sarthak Aggarwal
1042a0736ac288d2057129b5b8961cc5536066493c6Sarthak Aggarwal  assert(NumParts > 0 && "No parts to assemble!");
1052a0736ac288d2057129b5b8961cc5536066493c6Sarthak Aggarwal  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1062a0736ac288d2057129b5b8961cc5536066493c6Sarthak Aggarwal  SDValue Val = Parts[0];
107f94e0fb97765a9927e21028499f43771264f37cbSarthak Aggarwal
108f94e0fb97765a9927e21028499f43771264f37cbSarthak Aggarwal  if (NumParts > 1) {
1093cf002e003ada481d0aae4ba77bb05f95be216c7Sarthak Aggarwal    // Assemble the value from multiple parts.
1103cf002e003ada481d0aae4ba77bb05f95be216c7Sarthak Aggarwal    if (ValueVT.isInteger()) {
1113cf002e003ada481d0aae4ba77bb05f95be216c7Sarthak Aggarwal      unsigned PartBits = PartVT.getSizeInBits();
1123cf002e003ada481d0aae4ba77bb05f95be216c7Sarthak Aggarwal      unsigned ValueBits = ValueVT.getSizeInBits();
1133cf002e003ada481d0aae4ba77bb05f95be216c7Sarthak Aggarwal
1143cf002e003ada481d0aae4ba77bb05f95be216c7Sarthak Aggarwal      // Assemble the power of 2 part.
1153cf002e003ada481d0aae4ba77bb05f95be216c7Sarthak Aggarwal      unsigned RoundParts = NumParts & (NumParts - 1) ?
1162a0736ac288d2057129b5b8961cc5536066493c6Sarthak Aggarwal        1 << Log2_32(NumParts) : NumParts;
1173cf002e003ada481d0aae4ba77bb05f95be216c7Sarthak Aggarwal      unsigned RoundBits = PartBits * RoundParts;
1183cf002e003ada481d0aae4ba77bb05f95be216c7Sarthak Aggarwal      EVT RoundVT = RoundBits == ValueBits ?
1193cf002e003ada481d0aae4ba77bb05f95be216c7Sarthak Aggarwal        ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
1203cf002e003ada481d0aae4ba77bb05f95be216c7Sarthak Aggarwal      SDValue Lo, Hi;
1213cf002e003ada481d0aae4ba77bb05f95be216c7Sarthak Aggarwal
1223cf002e003ada481d0aae4ba77bb05f95be216c7Sarthak Aggarwal      EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
1233cf002e003ada481d0aae4ba77bb05f95be216c7Sarthak Aggarwal
1243cf002e003ada481d0aae4ba77bb05f95be216c7Sarthak Aggarwal      if (RoundParts > 2) {
1253cf002e003ada481d0aae4ba77bb05f95be216c7Sarthak Aggarwal        Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
1263cf002e003ada481d0aae4ba77bb05f95be216c7Sarthak Aggarwal                              PartVT, HalfVT);
1273cf002e003ada481d0aae4ba77bb05f95be216c7Sarthak Aggarwal        Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
1283cf002e003ada481d0aae4ba77bb05f95be216c7Sarthak Aggarwal                              RoundParts / 2, PartVT, HalfVT);
1293cf002e003ada481d0aae4ba77bb05f95be216c7Sarthak Aggarwal      } else {
1303cf002e003ada481d0aae4ba77bb05f95be216c7Sarthak Aggarwal        Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
1313cf002e003ada481d0aae4ba77bb05f95be216c7Sarthak Aggarwal        Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
1323cf002e003ada481d0aae4ba77bb05f95be216c7Sarthak Aggarwal      }
1332a0736ac288d2057129b5b8961cc5536066493c6Sarthak Aggarwal
1342a0736ac288d2057129b5b8961cc5536066493c6Sarthak Aggarwal      if (TLI.isBigEndian())
1353cf002e003ada481d0aae4ba77bb05f95be216c7Sarthak Aggarwal        std::swap(Lo, Hi);
1362a0736ac288d2057129b5b8961cc5536066493c6Sarthak Aggarwal
1372a0736ac288d2057129b5b8961cc5536066493c6Sarthak Aggarwal      Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
1383cf002e003ada481d0aae4ba77bb05f95be216c7Sarthak Aggarwal
1392a0736ac288d2057129b5b8961cc5536066493c6Sarthak Aggarwal      if (RoundParts < NumParts) {
1402a0736ac288d2057129b5b8961cc5536066493c6Sarthak Aggarwal        // Assemble the trailing non-power-of-2 part.
1412a0736ac288d2057129b5b8961cc5536066493c6Sarthak Aggarwal        unsigned OddParts = NumParts - RoundParts;
1422a0736ac288d2057129b5b8961cc5536066493c6Sarthak Aggarwal        EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
1432a0736ac288d2057129b5b8961cc5536066493c6Sarthak Aggarwal        Hi = getCopyFromParts(DAG, DL,
1443cf002e003ada481d0aae4ba77bb05f95be216c7Sarthak Aggarwal                              Parts + RoundParts, OddParts, PartVT, OddVT);
1453cf002e003ada481d0aae4ba77bb05f95be216c7Sarthak Aggarwal
1463cf002e003ada481d0aae4ba77bb05f95be216c7Sarthak Aggarwal        // Combine the round and odd parts.
1473cf002e003ada481d0aae4ba77bb05f95be216c7Sarthak Aggarwal        Lo = Val;
148        if (TLI.isBigEndian())
149          std::swap(Lo, Hi);
150        EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
151        Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
152        Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
153                         DAG.getConstant(Lo.getValueType().getSizeInBits(),
154                                         TLI.getPointerTy()));
155        Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
156        Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
157      }
158    } else if (PartVT.isFloatingPoint()) {
159      // FP split into multiple FP parts (for ppcf128)
160      assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) &&
161             "Unexpected split");
162      SDValue Lo, Hi;
163      Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
164      Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
165      if (TLI.isBigEndian())
166        std::swap(Lo, Hi);
167      Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
168    } else {
169      // FP split into integer parts (soft fp)
170      assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
171             !PartVT.isVector() && "Unexpected split");
172      EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
173      Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT);
174    }
175  }
176
177  // There is now one part, held in Val.  Correct it to match ValueVT.
178  PartVT = Val.getValueType();
179
180  if (PartVT == ValueVT)
181    return Val;
182
183  if (PartVT.isInteger() && ValueVT.isInteger()) {
184    if (ValueVT.bitsLT(PartVT)) {
185      // For a truncate, see if we have any information to
186      // indicate whether the truncated bits will always be
187      // zero or sign-extension.
188      if (AssertOp != ISD::DELETED_NODE)
189        Val = DAG.getNode(AssertOp, DL, PartVT, Val,
190                          DAG.getValueType(ValueVT));
191      return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
192    }
193    return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
194  }
195
196  if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
197    // FP_ROUND's are always exact here.
198    if (ValueVT.bitsLT(Val.getValueType()))
199      return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val,
200                         DAG.getIntPtrConstant(1));
201
202    return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
203  }
204
205  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
206    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
207
208  llvm_unreachable("Unknown mismatch!");
209  return SDValue();
210}
211
212/// getCopyFromParts - Create a value that contains the specified legal parts
213/// combined into the value they represent.  If the parts combine to a type
214/// larger then ValueVT then AssertOp can be used to specify whether the extra
215/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
216/// (ISD::AssertSext).
217static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
218                                      const SDValue *Parts, unsigned NumParts,
219                                      EVT PartVT, EVT ValueVT) {
220  assert(ValueVT.isVector() && "Not a vector value");
221  assert(NumParts > 0 && "No parts to assemble!");
222  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
223  SDValue Val = Parts[0];
224
225  // Handle a multi-element vector.
226  if (NumParts > 1) {
227    EVT IntermediateVT, RegisterVT;
228    unsigned NumIntermediates;
229    unsigned NumRegs =
230    TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
231                               NumIntermediates, RegisterVT);
232    assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
233    NumParts = NumRegs; // Silence a compiler warning.
234    assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
235    assert(RegisterVT == Parts[0].getValueType() &&
236           "Part type doesn't match part!");
237
238    // Assemble the parts into intermediate operands.
239    SmallVector<SDValue, 8> Ops(NumIntermediates);
240    if (NumIntermediates == NumParts) {
241      // If the register was not expanded, truncate or copy the value,
242      // as appropriate.
243      for (unsigned i = 0; i != NumParts; ++i)
244        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
245                                  PartVT, IntermediateVT);
246    } else if (NumParts > 0) {
247      // If the intermediate type was expanded, build the intermediate
248      // operands from the parts.
249      assert(NumParts % NumIntermediates == 0 &&
250             "Must expand into a divisible number of parts!");
251      unsigned Factor = NumParts / NumIntermediates;
252      for (unsigned i = 0; i != NumIntermediates; ++i)
253        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
254                                  PartVT, IntermediateVT);
255    }
256
257    // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
258    // intermediate operands.
259    Val = DAG.getNode(IntermediateVT.isVector() ?
260                      ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL,
261                      ValueVT, &Ops[0], NumIntermediates);
262  }
263
264  // There is now one part, held in Val.  Correct it to match ValueVT.
265  PartVT = Val.getValueType();
266
267  if (PartVT == ValueVT)
268    return Val;
269
270  if (PartVT.isVector()) {
271    // If the element type of the source/dest vectors are the same, but the
272    // parts vector has more elements than the value vector, then we have a
273    // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
274    // elements we want.
275    if (PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
276      assert(PartVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
277             "Cannot narrow, it would be a lossy transformation");
278      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
279                         DAG.getIntPtrConstant(0));
280    }
281
282    // Vector/Vector bitcast.
283    if (ValueVT.getSizeInBits() == PartVT.getSizeInBits())
284      return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
285
286    assert(PartVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
287      "Cannot handle this kind of promotion");
288    // Promoted vector extract
289    bool Smaller = ValueVT.bitsLE(PartVT);
290    return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
291                       DL, ValueVT, Val);
292
293  }
294
295  // Trivial bitcast if the types are the same size and the destination
296  // vector type is legal.
297  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits() &&
298      TLI.isTypeLegal(ValueVT))
299    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
300
301  // Handle cases such as i8 -> <1 x i1>
302  assert(ValueVT.getVectorNumElements() == 1 &&
303         "Only trivial scalar-to-vector conversions should get here!");
304
305  if (ValueVT.getVectorNumElements() == 1 &&
306      ValueVT.getVectorElementType() != PartVT) {
307    bool Smaller = ValueVT.bitsLE(PartVT);
308    Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
309                       DL, ValueVT.getScalarType(), Val);
310  }
311
312  return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
313}
314
315
316
317
318static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl,
319                                 SDValue Val, SDValue *Parts, unsigned NumParts,
320                                 EVT PartVT);
321
322/// getCopyToParts - Create a series of nodes that contain the specified value
323/// split into legal parts.  If the parts contain more bits than Val, then, for
324/// integers, ExtendKind can be used to specify how to generate the extra bits.
325static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL,
326                           SDValue Val, SDValue *Parts, unsigned NumParts,
327                           EVT PartVT,
328                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
329  EVT ValueVT = Val.getValueType();
330
331  // Handle the vector case separately.
332  if (ValueVT.isVector())
333    return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT);
334
335  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
336  unsigned PartBits = PartVT.getSizeInBits();
337  unsigned OrigNumParts = NumParts;
338  assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
339
340  if (NumParts == 0)
341    return;
342
343  assert(!ValueVT.isVector() && "Vector case handled elsewhere");
344  if (PartVT == ValueVT) {
345    assert(NumParts == 1 && "No-op copy with multiple parts!");
346    Parts[0] = Val;
347    return;
348  }
349
350  if (NumParts * PartBits > ValueVT.getSizeInBits()) {
351    // If the parts cover more bits than the value has, promote the value.
352    if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
353      assert(NumParts == 1 && "Do not know what to promote to!");
354      Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
355    } else {
356      assert(PartVT.isInteger() && ValueVT.isInteger() &&
357             "Unknown mismatch!");
358      ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
359      Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
360    }
361  } else if (PartBits == ValueVT.getSizeInBits()) {
362    // Different types of the same size.
363    assert(NumParts == 1 && PartVT != ValueVT);
364    Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
365  } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
366    // If the parts cover less bits than value has, truncate the value.
367    assert(PartVT.isInteger() && ValueVT.isInteger() &&
368           "Unknown mismatch!");
369    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
370    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
371  }
372
373  // The value may have changed - recompute ValueVT.
374  ValueVT = Val.getValueType();
375  assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
376         "Failed to tile the value with PartVT!");
377
378  if (NumParts == 1) {
379    assert(PartVT == ValueVT && "Type conversion failed!");
380    Parts[0] = Val;
381    return;
382  }
383
384  // Expand the value into multiple parts.
385  if (NumParts & (NumParts - 1)) {
386    // The number of parts is not a power of 2.  Split off and copy the tail.
387    assert(PartVT.isInteger() && ValueVT.isInteger() &&
388           "Do not know what to expand to!");
389    unsigned RoundParts = 1 << Log2_32(NumParts);
390    unsigned RoundBits = RoundParts * PartBits;
391    unsigned OddParts = NumParts - RoundParts;
392    SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
393                                 DAG.getIntPtrConstant(RoundBits));
394    getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT);
395
396    if (TLI.isBigEndian())
397      // The odd parts were reversed by getCopyToParts - unreverse them.
398      std::reverse(Parts + RoundParts, Parts + NumParts);
399
400    NumParts = RoundParts;
401    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
402    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
403  }
404
405  // The number of parts is a power of 2.  Repeatedly bisect the value using
406  // EXTRACT_ELEMENT.
407  Parts[0] = DAG.getNode(ISD::BITCAST, DL,
408                         EVT::getIntegerVT(*DAG.getContext(),
409                                           ValueVT.getSizeInBits()),
410                         Val);
411
412  for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
413    for (unsigned i = 0; i < NumParts; i += StepSize) {
414      unsigned ThisBits = StepSize * PartBits / 2;
415      EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
416      SDValue &Part0 = Parts[i];
417      SDValue &Part1 = Parts[i+StepSize/2];
418
419      Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
420                          ThisVT, Part0, DAG.getIntPtrConstant(1));
421      Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
422                          ThisVT, Part0, DAG.getIntPtrConstant(0));
423
424      if (ThisBits == PartBits && ThisVT != PartVT) {
425        Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
426        Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
427      }
428    }
429  }
430
431  if (TLI.isBigEndian())
432    std::reverse(Parts, Parts + OrigNumParts);
433}
434
435
436/// getCopyToPartsVector - Create a series of nodes that contain the specified
437/// value split into legal parts.
438static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL,
439                                 SDValue Val, SDValue *Parts, unsigned NumParts,
440                                 EVT PartVT) {
441  EVT ValueVT = Val.getValueType();
442  assert(ValueVT.isVector() && "Not a vector");
443  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
444
445  if (NumParts == 1) {
446    if (PartVT == ValueVT) {
447      // Nothing to do.
448    } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
449      // Bitconvert vector->vector case.
450      Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
451    } else if (PartVT.isVector() &&
452               PartVT.getVectorElementType() == ValueVT.getVectorElementType() &&
453               PartVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
454      EVT ElementVT = PartVT.getVectorElementType();
455      // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
456      // undef elements.
457      SmallVector<SDValue, 16> Ops;
458      for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
459        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
460                                  ElementVT, Val, DAG.getIntPtrConstant(i)));
461
462      for (unsigned i = ValueVT.getVectorNumElements(),
463           e = PartVT.getVectorNumElements(); i != e; ++i)
464        Ops.push_back(DAG.getUNDEF(ElementVT));
465
466      Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size());
467
468      // FIXME: Use CONCAT for 2x -> 4x.
469
470      //SDValue UndefElts = DAG.getUNDEF(VectorTy);
471      //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
472    } else if (PartVT.isVector() &&
473               PartVT.getVectorElementType().bitsGE(
474                 ValueVT.getVectorElementType()) &&
475               PartVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
476
477      // Promoted vector extract
478      bool Smaller = PartVT.bitsLE(ValueVT);
479      Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
480                        DL, PartVT, Val);
481    } else{
482      // Vector -> scalar conversion.
483      assert(ValueVT.getVectorNumElements() == 1 &&
484             "Only trivial vector-to-scalar conversions should get here!");
485      Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
486                        PartVT, Val, DAG.getIntPtrConstant(0));
487
488      bool Smaller = ValueVT.bitsLE(PartVT);
489      Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
490                         DL, PartVT, Val);
491    }
492
493    Parts[0] = Val;
494    return;
495  }
496
497  // Handle a multi-element vector.
498  EVT IntermediateVT, RegisterVT;
499  unsigned NumIntermediates;
500  unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
501                                                IntermediateVT,
502                                                NumIntermediates, RegisterVT);
503  unsigned NumElements = ValueVT.getVectorNumElements();
504
505  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
506  NumParts = NumRegs; // Silence a compiler warning.
507  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
508
509  // Split the vector into intermediate operands.
510  SmallVector<SDValue, 8> Ops(NumIntermediates);
511  for (unsigned i = 0; i != NumIntermediates; ++i) {
512    if (IntermediateVT.isVector())
513      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
514                           IntermediateVT, Val,
515                   DAG.getIntPtrConstant(i * (NumElements / NumIntermediates)));
516    else
517      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
518                           IntermediateVT, Val, DAG.getIntPtrConstant(i));
519  }
520
521  // Split the intermediate operands into legal parts.
522  if (NumParts == NumIntermediates) {
523    // If the register was not expanded, promote or copy the value,
524    // as appropriate.
525    for (unsigned i = 0; i != NumParts; ++i)
526      getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT);
527  } else if (NumParts > 0) {
528    // If the intermediate type was expanded, split each the value into
529    // legal parts.
530    assert(NumParts % NumIntermediates == 0 &&
531           "Must expand into a divisible number of parts!");
532    unsigned Factor = NumParts / NumIntermediates;
533    for (unsigned i = 0; i != NumIntermediates; ++i)
534      getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT);
535  }
536}
537
538
539
540
541namespace {
542  /// RegsForValue - This struct represents the registers (physical or virtual)
543  /// that a particular set of values is assigned, and the type information
544  /// about the value. The most common situation is to represent one value at a
545  /// time, but struct or array values are handled element-wise as multiple
546  /// values.  The splitting of aggregates is performed recursively, so that we
547  /// never have aggregate-typed registers. The values at this point do not
548  /// necessarily have legal types, so each value may require one or more
549  /// registers of some legal type.
550  ///
551  struct RegsForValue {
552    /// ValueVTs - The value types of the values, which may not be legal, and
553    /// may need be promoted or synthesized from one or more registers.
554    ///
555    SmallVector<EVT, 4> ValueVTs;
556
557    /// RegVTs - The value types of the registers. This is the same size as
558    /// ValueVTs and it records, for each value, what the type of the assigned
559    /// register or registers are. (Individual values are never synthesized
560    /// from more than one type of register.)
561    ///
562    /// With virtual registers, the contents of RegVTs is redundant with TLI's
563    /// getRegisterType member function, however when with physical registers
564    /// it is necessary to have a separate record of the types.
565    ///
566    SmallVector<EVT, 4> RegVTs;
567
568    /// Regs - This list holds the registers assigned to the values.
569    /// Each legal or promoted value requires one register, and each
570    /// expanded value requires multiple registers.
571    ///
572    SmallVector<unsigned, 4> Regs;
573
574    RegsForValue() {}
575
576    RegsForValue(const SmallVector<unsigned, 4> &regs,
577                 EVT regvt, EVT valuevt)
578      : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
579
580    RegsForValue(LLVMContext &Context, const TargetLowering &tli,
581                 unsigned Reg, Type *Ty) {
582      ComputeValueVTs(tli, Ty, ValueVTs);
583
584      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
585        EVT ValueVT = ValueVTs[Value];
586        unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
587        EVT RegisterVT = tli.getRegisterType(Context, ValueVT);
588        for (unsigned i = 0; i != NumRegs; ++i)
589          Regs.push_back(Reg + i);
590        RegVTs.push_back(RegisterVT);
591        Reg += NumRegs;
592      }
593    }
594
595    /// areValueTypesLegal - Return true if types of all the values are legal.
596    bool areValueTypesLegal(const TargetLowering &TLI) {
597      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
598        EVT RegisterVT = RegVTs[Value];
599        if (!TLI.isTypeLegal(RegisterVT))
600          return false;
601      }
602      return true;
603    }
604
605    /// append - Add the specified values to this one.
606    void append(const RegsForValue &RHS) {
607      ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
608      RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
609      Regs.append(RHS.Regs.begin(), RHS.Regs.end());
610    }
611
612    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
613    /// this value and returns the result as a ValueVTs value.  This uses
614    /// Chain/Flag as the input and updates them for the output Chain/Flag.
615    /// If the Flag pointer is NULL, no flag is used.
616    SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
617                            DebugLoc dl,
618                            SDValue &Chain, SDValue *Flag) const;
619
620    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
621    /// specified value into the registers specified by this object.  This uses
622    /// Chain/Flag as the input and updates them for the output Chain/Flag.
623    /// If the Flag pointer is NULL, no flag is used.
624    void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
625                       SDValue &Chain, SDValue *Flag) const;
626
627    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
628    /// operand list.  This adds the code marker, matching input operand index
629    /// (if applicable), and includes the number of values added into it.
630    void AddInlineAsmOperands(unsigned Kind,
631                              bool HasMatching, unsigned MatchingIdx,
632                              SelectionDAG &DAG,
633                              std::vector<SDValue> &Ops) const;
634  };
635}
636
637/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
638/// this value and returns the result as a ValueVT value.  This uses
639/// Chain/Flag as the input and updates them for the output Chain/Flag.
640/// If the Flag pointer is NULL, no flag is used.
641SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
642                                      FunctionLoweringInfo &FuncInfo,
643                                      DebugLoc dl,
644                                      SDValue &Chain, SDValue *Flag) const {
645  // A Value with type {} or [0 x %t] needs no registers.
646  if (ValueVTs.empty())
647    return SDValue();
648
649  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
650
651  // Assemble the legal parts into the final values.
652  SmallVector<SDValue, 4> Values(ValueVTs.size());
653  SmallVector<SDValue, 8> Parts;
654  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
655    // Copy the legal parts from the registers.
656    EVT ValueVT = ValueVTs[Value];
657    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
658    EVT RegisterVT = RegVTs[Value];
659
660    Parts.resize(NumRegs);
661    for (unsigned i = 0; i != NumRegs; ++i) {
662      SDValue P;
663      if (Flag == 0) {
664        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
665      } else {
666        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
667        *Flag = P.getValue(2);
668      }
669
670      Chain = P.getValue(1);
671      Parts[i] = P;
672
673      // If the source register was virtual and if we know something about it,
674      // add an assert node.
675      if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
676          !RegisterVT.isInteger() || RegisterVT.isVector())
677        continue;
678
679      const FunctionLoweringInfo::LiveOutInfo *LOI =
680        FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
681      if (!LOI)
682        continue;
683
684      unsigned RegSize = RegisterVT.getSizeInBits();
685      unsigned NumSignBits = LOI->NumSignBits;
686      unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
687
688      // FIXME: We capture more information than the dag can represent.  For
689      // now, just use the tightest assertzext/assertsext possible.
690      bool isSExt = true;
691      EVT FromVT(MVT::Other);
692      if (NumSignBits == RegSize)
693        isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
694      else if (NumZeroBits >= RegSize-1)
695        isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
696      else if (NumSignBits > RegSize-8)
697        isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
698      else if (NumZeroBits >= RegSize-8)
699        isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
700      else if (NumSignBits > RegSize-16)
701        isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
702      else if (NumZeroBits >= RegSize-16)
703        isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
704      else if (NumSignBits > RegSize-32)
705        isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
706      else if (NumZeroBits >= RegSize-32)
707        isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
708      else
709        continue;
710
711      // Add an assertion node.
712      assert(FromVT != MVT::Other);
713      Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
714                             RegisterVT, P, DAG.getValueType(FromVT));
715    }
716
717    Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
718                                     NumRegs, RegisterVT, ValueVT);
719    Part += NumRegs;
720    Parts.clear();
721  }
722
723  return DAG.getNode(ISD::MERGE_VALUES, dl,
724                     DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
725                     &Values[0], ValueVTs.size());
726}
727
728/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
729/// specified value into the registers specified by this object.  This uses
730/// Chain/Flag as the input and updates them for the output Chain/Flag.
731/// If the Flag pointer is NULL, no flag is used.
732void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
733                                 SDValue &Chain, SDValue *Flag) const {
734  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
735
736  // Get the list of the values's legal parts.
737  unsigned NumRegs = Regs.size();
738  SmallVector<SDValue, 8> Parts(NumRegs);
739  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
740    EVT ValueVT = ValueVTs[Value];
741    unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
742    EVT RegisterVT = RegVTs[Value];
743
744    getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
745                   &Parts[Part], NumParts, RegisterVT);
746    Part += NumParts;
747  }
748
749  // Copy the parts into the registers.
750  SmallVector<SDValue, 8> Chains(NumRegs);
751  for (unsigned i = 0; i != NumRegs; ++i) {
752    SDValue Part;
753    if (Flag == 0) {
754      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
755    } else {
756      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
757      *Flag = Part.getValue(1);
758    }
759
760    Chains[i] = Part.getValue(0);
761  }
762
763  if (NumRegs == 1 || Flag)
764    // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
765    // flagged to it. That is the CopyToReg nodes and the user are considered
766    // a single scheduling unit. If we create a TokenFactor and return it as
767    // chain, then the TokenFactor is both a predecessor (operand) of the
768    // user as well as a successor (the TF operands are flagged to the user).
769    // c1, f1 = CopyToReg
770    // c2, f2 = CopyToReg
771    // c3     = TokenFactor c1, c2
772    // ...
773    //        = op c3, ..., f2
774    Chain = Chains[NumRegs-1];
775  else
776    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
777}
778
779/// AddInlineAsmOperands - Add this value to the specified inlineasm node
780/// operand list.  This adds the code marker and includes the number of
781/// values added into it.
782void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
783                                        unsigned MatchingIdx,
784                                        SelectionDAG &DAG,
785                                        std::vector<SDValue> &Ops) const {
786  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
787
788  unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
789  if (HasMatching)
790    Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
791  SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
792  Ops.push_back(Res);
793
794  for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
795    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
796    EVT RegisterVT = RegVTs[Value];
797    for (unsigned i = 0; i != NumRegs; ++i) {
798      assert(Reg < Regs.size() && "Mismatch in # registers expected");
799      Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
800    }
801  }
802}
803
804void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) {
805  AA = &aa;
806  GFI = gfi;
807  TD = DAG.getTarget().getTargetData();
808}
809
810/// clear - Clear out the current SelectionDAG and the associated
811/// state and prepare this SelectionDAGBuilder object to be used
812/// for a new block. This doesn't clear out information about
813/// additional blocks that are needed to complete switch lowering
814/// or PHI node updating; that information is cleared out as it is
815/// consumed.
816void SelectionDAGBuilder::clear() {
817  NodeMap.clear();
818  UnusedArgNodeMap.clear();
819  PendingLoads.clear();
820  PendingExports.clear();
821  CurDebugLoc = DebugLoc();
822  HasTailCall = false;
823}
824
825/// clearDanglingDebugInfo - Clear the dangling debug information
826/// map. This function is seperated from the clear so that debug
827/// information that is dangling in a basic block can be properly
828/// resolved in a different basic block. This allows the
829/// SelectionDAG to resolve dangling debug information attached
830/// to PHI nodes.
831void SelectionDAGBuilder::clearDanglingDebugInfo() {
832  DanglingDebugInfoMap.clear();
833}
834
835/// getRoot - Return the current virtual root of the Selection DAG,
836/// flushing any PendingLoad items. This must be done before emitting
837/// a store or any other node that may need to be ordered after any
838/// prior load instructions.
839///
840SDValue SelectionDAGBuilder::getRoot() {
841  if (PendingLoads.empty())
842    return DAG.getRoot();
843
844  if (PendingLoads.size() == 1) {
845    SDValue Root = PendingLoads[0];
846    DAG.setRoot(Root);
847    PendingLoads.clear();
848    return Root;
849  }
850
851  // Otherwise, we have to make a token factor node.
852  SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
853                               &PendingLoads[0], PendingLoads.size());
854  PendingLoads.clear();
855  DAG.setRoot(Root);
856  return Root;
857}
858
859/// getControlRoot - Similar to getRoot, but instead of flushing all the
860/// PendingLoad items, flush all the PendingExports items. It is necessary
861/// to do this before emitting a terminator instruction.
862///
863SDValue SelectionDAGBuilder::getControlRoot() {
864  SDValue Root = DAG.getRoot();
865
866  if (PendingExports.empty())
867    return Root;
868
869  // Turn all of the CopyToReg chains into one factored node.
870  if (Root.getOpcode() != ISD::EntryToken) {
871    unsigned i = 0, e = PendingExports.size();
872    for (; i != e; ++i) {
873      assert(PendingExports[i].getNode()->getNumOperands() > 1);
874      if (PendingExports[i].getNode()->getOperand(0) == Root)
875        break;  // Don't add the root if we already indirectly depend on it.
876    }
877
878    if (i == e)
879      PendingExports.push_back(Root);
880  }
881
882  Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
883                     &PendingExports[0],
884                     PendingExports.size());
885  PendingExports.clear();
886  DAG.setRoot(Root);
887  return Root;
888}
889
890void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) {
891  if (DAG.GetOrdering(Node) != 0) return; // Already has ordering.
892  DAG.AssignOrdering(Node, SDNodeOrder);
893
894  for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I)
895    AssignOrderingToNode(Node->getOperand(I).getNode());
896}
897
898void SelectionDAGBuilder::visit(const Instruction &I) {
899  // Set up outgoing PHI node register values before emitting the terminator.
900  if (isa<TerminatorInst>(&I))
901    HandlePHINodesInSuccessorBlocks(I.getParent());
902
903  CurDebugLoc = I.getDebugLoc();
904
905  visit(I.getOpcode(), I);
906
907  if (!isa<TerminatorInst>(&I) && !HasTailCall)
908    CopyToExportRegsIfNeeded(&I);
909
910  CurDebugLoc = DebugLoc();
911}
912
913void SelectionDAGBuilder::visitPHI(const PHINode &) {
914  llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
915}
916
917void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
918  // Note: this doesn't use InstVisitor, because it has to work with
919  // ConstantExpr's in addition to instructions.
920  switch (Opcode) {
921  default: llvm_unreachable("Unknown instruction type encountered!");
922    // Build the switch statement using the Instruction.def file.
923#define HANDLE_INST(NUM, OPCODE, CLASS) \
924    case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break;
925#include "llvm/Instruction.def"
926  }
927
928  // Assign the ordering to the freshly created DAG nodes.
929  if (NodeMap.count(&I)) {
930    ++SDNodeOrder;
931    AssignOrderingToNode(getValue(&I).getNode());
932  }
933}
934
935// resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
936// generate the debug data structures now that we've seen its definition.
937void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
938                                                   SDValue Val) {
939  DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
940  if (DDI.getDI()) {
941    const DbgValueInst *DI = DDI.getDI();
942    DebugLoc dl = DDI.getdl();
943    unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
944    MDNode *Variable = DI->getVariable();
945    uint64_t Offset = DI->getOffset();
946    SDDbgValue *SDV;
947    if (Val.getNode()) {
948      if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) {
949        SDV = DAG.getDbgValue(Variable, Val.getNode(),
950                              Val.getResNo(), Offset, dl, DbgSDNodeOrder);
951        DAG.AddDbgValue(SDV, Val.getNode(), false);
952      }
953    } else
954      DEBUG(dbgs() << "Dropping debug info for " << DI);
955    DanglingDebugInfoMap[V] = DanglingDebugInfo();
956  }
957}
958
959// getValue - Return an SDValue for the given Value.
960SDValue SelectionDAGBuilder::getValue(const Value *V) {
961  // If we already have an SDValue for this value, use it. It's important
962  // to do this first, so that we don't create a CopyFromReg if we already
963  // have a regular SDValue.
964  SDValue &N = NodeMap[V];
965  if (N.getNode()) return N;
966
967  // If there's a virtual register allocated and initialized for this
968  // value, use it.
969  DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
970  if (It != FuncInfo.ValueMap.end()) {
971    unsigned InReg = It->second;
972    RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
973    SDValue Chain = DAG.getEntryNode();
974    N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain,NULL);
975    resolveDanglingDebugInfo(V, N);
976    return N;
977  }
978
979  // Otherwise create a new SDValue and remember it.
980  SDValue Val = getValueImpl(V);
981  NodeMap[V] = Val;
982  resolveDanglingDebugInfo(V, Val);
983  return Val;
984}
985
986/// getNonRegisterValue - Return an SDValue for the given Value, but
987/// don't look in FuncInfo.ValueMap for a virtual register.
988SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
989  // If we already have an SDValue for this value, use it.
990  SDValue &N = NodeMap[V];
991  if (N.getNode()) return N;
992
993  // Otherwise create a new SDValue and remember it.
994  SDValue Val = getValueImpl(V);
995  NodeMap[V] = Val;
996  resolveDanglingDebugInfo(V, Val);
997  return Val;
998}
999
1000/// getValueImpl - Helper function for getValue and getNonRegisterValue.
1001/// Create an SDValue for the given value.
1002SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1003  if (const Constant *C = dyn_cast<Constant>(V)) {
1004    EVT VT = TLI.getValueType(V->getType(), true);
1005
1006    if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1007      return DAG.getConstant(*CI, VT);
1008
1009    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1010      return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT);
1011
1012    if (isa<ConstantPointerNull>(C))
1013      return DAG.getConstant(0, TLI.getPointerTy());
1014
1015    if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1016      return DAG.getConstantFP(*CFP, VT);
1017
1018    if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1019      return DAG.getUNDEF(VT);
1020
1021    if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1022      visit(CE->getOpcode(), *CE);
1023      SDValue N1 = NodeMap[V];
1024      assert(N1.getNode() && "visit didn't populate the NodeMap!");
1025      return N1;
1026    }
1027
1028    if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1029      SmallVector<SDValue, 4> Constants;
1030      for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1031           OI != OE; ++OI) {
1032        SDNode *Val = getValue(*OI).getNode();
1033        // If the operand is an empty aggregate, there are no values.
1034        if (!Val) continue;
1035        // Add each leaf value from the operand to the Constants list
1036        // to form a flattened list of all the values.
1037        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1038          Constants.push_back(SDValue(Val, i));
1039      }
1040
1041      return DAG.getMergeValues(&Constants[0], Constants.size(),
1042                                getCurDebugLoc());
1043    }
1044
1045    if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1046      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1047             "Unknown struct or array constant!");
1048
1049      SmallVector<EVT, 4> ValueVTs;
1050      ComputeValueVTs(TLI, C->getType(), ValueVTs);
1051      unsigned NumElts = ValueVTs.size();
1052      if (NumElts == 0)
1053        return SDValue(); // empty struct
1054      SmallVector<SDValue, 4> Constants(NumElts);
1055      for (unsigned i = 0; i != NumElts; ++i) {
1056        EVT EltVT = ValueVTs[i];
1057        if (isa<UndefValue>(C))
1058          Constants[i] = DAG.getUNDEF(EltVT);
1059        else if (EltVT.isFloatingPoint())
1060          Constants[i] = DAG.getConstantFP(0, EltVT);
1061        else
1062          Constants[i] = DAG.getConstant(0, EltVT);
1063      }
1064
1065      return DAG.getMergeValues(&Constants[0], NumElts,
1066                                getCurDebugLoc());
1067    }
1068
1069    if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1070      return DAG.getBlockAddress(BA, VT);
1071
1072    VectorType *VecTy = cast<VectorType>(V->getType());
1073    unsigned NumElements = VecTy->getNumElements();
1074
1075    // Now that we know the number and type of the elements, get that number of
1076    // elements into the Ops array based on what kind of constant it is.
1077    SmallVector<SDValue, 16> Ops;
1078    if (const ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
1079      for (unsigned i = 0; i != NumElements; ++i)
1080        Ops.push_back(getValue(CP->getOperand(i)));
1081    } else {
1082      assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1083      EVT EltVT = TLI.getValueType(VecTy->getElementType());
1084
1085      SDValue Op;
1086      if (EltVT.isFloatingPoint())
1087        Op = DAG.getConstantFP(0, EltVT);
1088      else
1089        Op = DAG.getConstant(0, EltVT);
1090      Ops.assign(NumElements, Op);
1091    }
1092
1093    // Create a BUILD_VECTOR node.
1094    return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
1095                                    VT, &Ops[0], Ops.size());
1096  }
1097
1098  // If this is a static alloca, generate it as the frameindex instead of
1099  // computation.
1100  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1101    DenseMap<const AllocaInst*, int>::iterator SI =
1102      FuncInfo.StaticAllocaMap.find(AI);
1103    if (SI != FuncInfo.StaticAllocaMap.end())
1104      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
1105  }
1106
1107  // If this is an instruction which fast-isel has deferred, select it now.
1108  if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1109    unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1110    RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType());
1111    SDValue Chain = DAG.getEntryNode();
1112    return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL);
1113  }
1114
1115  llvm_unreachable("Can't get register for value!");
1116  return SDValue();
1117}
1118
1119void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1120  SDValue Chain = getControlRoot();
1121  SmallVector<ISD::OutputArg, 8> Outs;
1122  SmallVector<SDValue, 8> OutVals;
1123
1124  if (!FuncInfo.CanLowerReturn) {
1125    unsigned DemoteReg = FuncInfo.DemoteRegister;
1126    const Function *F = I.getParent()->getParent();
1127
1128    // Emit a store of the return value through the virtual register.
1129    // Leave Outs empty so that LowerReturn won't try to load return
1130    // registers the usual way.
1131    SmallVector<EVT, 1> PtrValueVTs;
1132    ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
1133                    PtrValueVTs);
1134
1135    SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
1136    SDValue RetOp = getValue(I.getOperand(0));
1137
1138    SmallVector<EVT, 4> ValueVTs;
1139    SmallVector<uint64_t, 4> Offsets;
1140    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1141    unsigned NumValues = ValueVTs.size();
1142
1143    SmallVector<SDValue, 4> Chains(NumValues);
1144    for (unsigned i = 0; i != NumValues; ++i) {
1145      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(),
1146                                RetPtr.getValueType(), RetPtr,
1147                                DAG.getIntPtrConstant(Offsets[i]));
1148      Chains[i] =
1149        DAG.getStore(Chain, getCurDebugLoc(),
1150                     SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1151                     // FIXME: better loc info would be nice.
1152                     Add, MachinePointerInfo(), false, false, 0);
1153    }
1154
1155    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
1156                        MVT::Other, &Chains[0], NumValues);
1157  } else if (I.getNumOperands() != 0) {
1158    SmallVector<EVT, 4> ValueVTs;
1159    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
1160    unsigned NumValues = ValueVTs.size();
1161    if (NumValues) {
1162      SDValue RetOp = getValue(I.getOperand(0));
1163      for (unsigned j = 0, f = NumValues; j != f; ++j) {
1164        EVT VT = ValueVTs[j];
1165
1166        ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1167
1168        const Function *F = I.getParent()->getParent();
1169        if (F->paramHasAttr(0, Attribute::SExt))
1170          ExtendKind = ISD::SIGN_EXTEND;
1171        else if (F->paramHasAttr(0, Attribute::ZExt))
1172          ExtendKind = ISD::ZERO_EXTEND;
1173
1174        if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1175          VT = TLI.getTypeForExtArgOrReturn(*DAG.getContext(), VT, ExtendKind);
1176
1177        unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
1178        EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
1179        SmallVector<SDValue, 4> Parts(NumParts);
1180        getCopyToParts(DAG, getCurDebugLoc(),
1181                       SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1182                       &Parts[0], NumParts, PartVT, ExtendKind);
1183
1184        // 'inreg' on function refers to return value
1185        ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1186        if (F->paramHasAttr(0, Attribute::InReg))
1187          Flags.setInReg();
1188
1189        // Propagate extension type if any
1190        if (ExtendKind == ISD::SIGN_EXTEND)
1191          Flags.setSExt();
1192        else if (ExtendKind == ISD::ZERO_EXTEND)
1193          Flags.setZExt();
1194
1195        for (unsigned i = 0; i < NumParts; ++i) {
1196          Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1197                                        /*isfixed=*/true));
1198          OutVals.push_back(Parts[i]);
1199        }
1200      }
1201    }
1202  }
1203
1204  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1205  CallingConv::ID CallConv =
1206    DAG.getMachineFunction().getFunction()->getCallingConv();
1207  Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
1208                          Outs, OutVals, getCurDebugLoc(), DAG);
1209
1210  // Verify that the target's LowerReturn behaved as expected.
1211  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1212         "LowerReturn didn't return a valid chain!");
1213
1214  // Update the DAG with the new chain value resulting from return lowering.
1215  DAG.setRoot(Chain);
1216}
1217
1218/// CopyToExportRegsIfNeeded - If the given value has virtual registers
1219/// created for it, emit nodes to copy the value into the virtual
1220/// registers.
1221void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1222  // Skip empty types
1223  if (V->getType()->isEmptyTy())
1224    return;
1225
1226  DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1227  if (VMI != FuncInfo.ValueMap.end()) {
1228    assert(!V->use_empty() && "Unused value assigned virtual registers!");
1229    CopyValueToVirtualRegister(V, VMI->second);
1230  }
1231}
1232
1233/// ExportFromCurrentBlock - If this condition isn't known to be exported from
1234/// the current basic block, add it to ValueMap now so that we'll get a
1235/// CopyTo/FromReg.
1236void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1237  // No need to export constants.
1238  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1239
1240  // Already exported?
1241  if (FuncInfo.isExportedInst(V)) return;
1242
1243  unsigned Reg = FuncInfo.InitializeRegForValue(V);
1244  CopyValueToVirtualRegister(V, Reg);
1245}
1246
1247bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1248                                                     const BasicBlock *FromBB) {
1249  // The operands of the setcc have to be in this block.  We don't know
1250  // how to export them from some other block.
1251  if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1252    // Can export from current BB.
1253    if (VI->getParent() == FromBB)
1254      return true;
1255
1256    // Is already exported, noop.
1257    return FuncInfo.isExportedInst(V);
1258  }
1259
1260  // If this is an argument, we can export it if the BB is the entry block or
1261  // if it is already exported.
1262  if (isa<Argument>(V)) {
1263    if (FromBB == &FromBB->getParent()->getEntryBlock())
1264      return true;
1265
1266    // Otherwise, can only export this if it is already exported.
1267    return FuncInfo.isExportedInst(V);
1268  }
1269
1270  // Otherwise, constants can always be exported.
1271  return true;
1272}
1273
1274/// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1275uint32_t SelectionDAGBuilder::getEdgeWeight(MachineBasicBlock *Src,
1276                                            MachineBasicBlock *Dst) {
1277  BranchProbabilityInfo *BPI = FuncInfo.BPI;
1278  if (!BPI)
1279    return 0;
1280  const BasicBlock *SrcBB = Src->getBasicBlock();
1281  const BasicBlock *DstBB = Dst->getBasicBlock();
1282  return BPI->getEdgeWeight(SrcBB, DstBB);
1283}
1284
1285void SelectionDAGBuilder::
1286addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst,
1287                       uint32_t Weight /* = 0 */) {
1288  if (!Weight)
1289    Weight = getEdgeWeight(Src, Dst);
1290  Src->addSuccessor(Dst, Weight);
1291}
1292
1293
1294static bool InBlock(const Value *V, const BasicBlock *BB) {
1295  if (const Instruction *I = dyn_cast<Instruction>(V))
1296    return I->getParent() == BB;
1297  return true;
1298}
1299
1300/// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1301/// This function emits a branch and is used at the leaves of an OR or an
1302/// AND operator tree.
1303///
1304void
1305SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1306                                                  MachineBasicBlock *TBB,
1307                                                  MachineBasicBlock *FBB,
1308                                                  MachineBasicBlock *CurBB,
1309                                                  MachineBasicBlock *SwitchBB) {
1310  const BasicBlock *BB = CurBB->getBasicBlock();
1311
1312  // If the leaf of the tree is a comparison, merge the condition into
1313  // the caseblock.
1314  if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1315    // The operands of the cmp have to be in this block.  We don't know
1316    // how to export them from some other block.  If this is the first block
1317    // of the sequence, no exporting is needed.
1318    if (CurBB == SwitchBB ||
1319        (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1320         isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1321      ISD::CondCode Condition;
1322      if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1323        Condition = getICmpCondCode(IC->getPredicate());
1324      } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1325        Condition = getFCmpCondCode(FC->getPredicate());
1326      } else {
1327        Condition = ISD::SETEQ; // silence warning.
1328        llvm_unreachable("Unknown compare instruction");
1329      }
1330
1331      CaseBlock CB(Condition, BOp->getOperand(0),
1332                   BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1333      SwitchCases.push_back(CB);
1334      return;
1335    }
1336  }
1337
1338  // Create a CaseBlock record representing this branch.
1339  CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1340               NULL, TBB, FBB, CurBB);
1341  SwitchCases.push_back(CB);
1342}
1343
1344/// FindMergedConditions - If Cond is an expression like
1345void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1346                                               MachineBasicBlock *TBB,
1347                                               MachineBasicBlock *FBB,
1348                                               MachineBasicBlock *CurBB,
1349                                               MachineBasicBlock *SwitchBB,
1350                                               unsigned Opc) {
1351  // If this node is not part of the or/and tree, emit it as a branch.
1352  const Instruction *BOp = dyn_cast<Instruction>(Cond);
1353  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1354      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1355      BOp->getParent() != CurBB->getBasicBlock() ||
1356      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1357      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1358    EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB);
1359    return;
1360  }
1361
1362  //  Create TmpBB after CurBB.
1363  MachineFunction::iterator BBI = CurBB;
1364  MachineFunction &MF = DAG.getMachineFunction();
1365  MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1366  CurBB->getParent()->insert(++BBI, TmpBB);
1367
1368  if (Opc == Instruction::Or) {
1369    // Codegen X | Y as:
1370    //   jmp_if_X TBB
1371    //   jmp TmpBB
1372    // TmpBB:
1373    //   jmp_if_Y TBB
1374    //   jmp FBB
1375    //
1376
1377    // Emit the LHS condition.
1378    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc);
1379
1380    // Emit the RHS condition into TmpBB.
1381    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1382  } else {
1383    assert(Opc == Instruction::And && "Unknown merge op!");
1384    // Codegen X & Y as:
1385    //   jmp_if_X TmpBB
1386    //   jmp FBB
1387    // TmpBB:
1388    //   jmp_if_Y TBB
1389    //   jmp FBB
1390    //
1391    //  This requires creation of TmpBB after CurBB.
1392
1393    // Emit the LHS condition.
1394    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc);
1395
1396    // Emit the RHS condition into TmpBB.
1397    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1398  }
1399}
1400
1401/// If the set of cases should be emitted as a series of branches, return true.
1402/// If we should emit this as a bunch of and/or'd together conditions, return
1403/// false.
1404bool
1405SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
1406  if (Cases.size() != 2) return true;
1407
1408  // If this is two comparisons of the same values or'd or and'd together, they
1409  // will get folded into a single comparison, so don't emit two blocks.
1410  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1411       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1412      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1413       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1414    return false;
1415  }
1416
1417  // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1418  // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1419  if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1420      Cases[0].CC == Cases[1].CC &&
1421      isa<Constant>(Cases[0].CmpRHS) &&
1422      cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1423    if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1424      return false;
1425    if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1426      return false;
1427  }
1428
1429  return true;
1430}
1431
1432void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1433  MachineBasicBlock *BrMBB = FuncInfo.MBB;
1434
1435  // Update machine-CFG edges.
1436  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1437
1438  // Figure out which block is immediately after the current one.
1439  MachineBasicBlock *NextBlock = 0;
1440  MachineFunction::iterator BBI = BrMBB;
1441  if (++BBI != FuncInfo.MF->end())
1442    NextBlock = BBI;
1443
1444  if (I.isUnconditional()) {
1445    // Update machine-CFG edges.
1446    BrMBB->addSuccessor(Succ0MBB);
1447
1448    // If this is not a fall-through branch, emit the branch.
1449    if (Succ0MBB != NextBlock)
1450      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1451                              MVT::Other, getControlRoot(),
1452                              DAG.getBasicBlock(Succ0MBB)));
1453
1454    return;
1455  }
1456
1457  // If this condition is one of the special cases we handle, do special stuff
1458  // now.
1459  const Value *CondVal = I.getCondition();
1460  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1461
1462  // If this is a series of conditions that are or'd or and'd together, emit
1463  // this as a sequence of branches instead of setcc's with and/or operations.
1464  // As long as jumps are not expensive, this should improve performance.
1465  // For example, instead of something like:
1466  //     cmp A, B
1467  //     C = seteq
1468  //     cmp D, E
1469  //     F = setle
1470  //     or C, F
1471  //     jnz foo
1472  // Emit:
1473  //     cmp A, B
1474  //     je foo
1475  //     cmp D, E
1476  //     jle foo
1477  //
1478  if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1479    if (!TLI.isJumpExpensive() &&
1480        BOp->hasOneUse() &&
1481        (BOp->getOpcode() == Instruction::And ||
1482         BOp->getOpcode() == Instruction::Or)) {
1483      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1484                           BOp->getOpcode());
1485      // If the compares in later blocks need to use values not currently
1486      // exported from this block, export them now.  This block should always
1487      // be the first entry.
1488      assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1489
1490      // Allow some cases to be rejected.
1491      if (ShouldEmitAsBranches(SwitchCases)) {
1492        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1493          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1494          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1495        }
1496
1497        // Emit the branch for this block.
1498        visitSwitchCase(SwitchCases[0], BrMBB);
1499        SwitchCases.erase(SwitchCases.begin());
1500        return;
1501      }
1502
1503      // Okay, we decided not to do this, remove any inserted MBB's and clear
1504      // SwitchCases.
1505      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1506        FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1507
1508      SwitchCases.clear();
1509    }
1510  }
1511
1512  // Create a CaseBlock record representing this branch.
1513  CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1514               NULL, Succ0MBB, Succ1MBB, BrMBB);
1515
1516  // Use visitSwitchCase to actually insert the fast branch sequence for this
1517  // cond branch.
1518  visitSwitchCase(CB, BrMBB);
1519}
1520
1521/// visitSwitchCase - Emits the necessary code to represent a single node in
1522/// the binary search tree resulting from lowering a switch instruction.
1523void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1524                                          MachineBasicBlock *SwitchBB) {
1525  SDValue Cond;
1526  SDValue CondLHS = getValue(CB.CmpLHS);
1527  DebugLoc dl = getCurDebugLoc();
1528
1529  // Build the setcc now.
1530  if (CB.CmpMHS == NULL) {
1531    // Fold "(X == true)" to X and "(X == false)" to !X to
1532    // handle common cases produced by branch lowering.
1533    if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1534        CB.CC == ISD::SETEQ)
1535      Cond = CondLHS;
1536    else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1537             CB.CC == ISD::SETEQ) {
1538      SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1539      Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1540    } else
1541      Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1542  } else {
1543    assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1544
1545    const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1546    const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
1547
1548    SDValue CmpOp = getValue(CB.CmpMHS);
1549    EVT VT = CmpOp.getValueType();
1550
1551    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1552      Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1553                          ISD::SETLE);
1554    } else {
1555      SDValue SUB = DAG.getNode(ISD::SUB, dl,
1556                                VT, CmpOp, DAG.getConstant(Low, VT));
1557      Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1558                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1559    }
1560  }
1561
1562  // Update successor info
1563  addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight);
1564  addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight);
1565
1566  // Set NextBlock to be the MBB immediately after the current one, if any.
1567  // This is used to avoid emitting unnecessary branches to the next block.
1568  MachineBasicBlock *NextBlock = 0;
1569  MachineFunction::iterator BBI = SwitchBB;
1570  if (++BBI != FuncInfo.MF->end())
1571    NextBlock = BBI;
1572
1573  // If the lhs block is the next block, invert the condition so that we can
1574  // fall through to the lhs instead of the rhs block.
1575  if (CB.TrueBB == NextBlock) {
1576    std::swap(CB.TrueBB, CB.FalseBB);
1577    SDValue True = DAG.getConstant(1, Cond.getValueType());
1578    Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1579  }
1580
1581  SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1582                               MVT::Other, getControlRoot(), Cond,
1583                               DAG.getBasicBlock(CB.TrueBB));
1584
1585  // Insert the false branch. Do this even if it's a fall through branch,
1586  // this makes it easier to do DAG optimizations which require inverting
1587  // the branch condition.
1588  BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1589                       DAG.getBasicBlock(CB.FalseBB));
1590
1591  DAG.setRoot(BrCond);
1592}
1593
1594/// visitJumpTable - Emit JumpTable node in the current MBB
1595void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1596  // Emit the code for the jump table
1597  assert(JT.Reg != -1U && "Should lower JT Header first!");
1598  EVT PTy = TLI.getPointerTy();
1599  SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1600                                     JT.Reg, PTy);
1601  SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1602  SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(),
1603                                    MVT::Other, Index.getValue(1),
1604                                    Table, Index);
1605  DAG.setRoot(BrJumpTable);
1606}
1607
1608/// visitJumpTableHeader - This function emits necessary code to produce index
1609/// in the JumpTable from switch case.
1610void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1611                                               JumpTableHeader &JTH,
1612                                               MachineBasicBlock *SwitchBB) {
1613  // Subtract the lowest switch case value from the value being switched on and
1614  // conditional branch to default mbb if the result is greater than the
1615  // difference between smallest and largest cases.
1616  SDValue SwitchOp = getValue(JTH.SValue);
1617  EVT VT = SwitchOp.getValueType();
1618  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1619                            DAG.getConstant(JTH.First, VT));
1620
1621  // The SDNode we just created, which holds the value being switched on minus
1622  // the smallest case value, needs to be copied to a virtual register so it
1623  // can be used as an index into the jump table in a subsequent basic block.
1624  // This value may be smaller or larger than the target's pointer type, and
1625  // therefore require extension or truncating.
1626  SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy());
1627
1628  unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy());
1629  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1630                                    JumpTableReg, SwitchOp);
1631  JT.Reg = JumpTableReg;
1632
1633  // Emit the range check for the jump table, and branch to the default block
1634  // for the switch statement if the value being switched on exceeds the largest
1635  // case in the switch.
1636  SDValue CMP = DAG.getSetCC(getCurDebugLoc(),
1637                             TLI.getSetCCResultType(Sub.getValueType()), Sub,
1638                             DAG.getConstant(JTH.Last-JTH.First,VT),
1639                             ISD::SETUGT);
1640
1641  // Set NextBlock to be the MBB immediately after the current one, if any.
1642  // This is used to avoid emitting unnecessary branches to the next block.
1643  MachineBasicBlock *NextBlock = 0;
1644  MachineFunction::iterator BBI = SwitchBB;
1645
1646  if (++BBI != FuncInfo.MF->end())
1647    NextBlock = BBI;
1648
1649  SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1650                               MVT::Other, CopyTo, CMP,
1651                               DAG.getBasicBlock(JT.Default));
1652
1653  if (JT.MBB != NextBlock)
1654    BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond,
1655                         DAG.getBasicBlock(JT.MBB));
1656
1657  DAG.setRoot(BrCond);
1658}
1659
1660/// visitBitTestHeader - This function emits necessary code to produce value
1661/// suitable for "bit tests"
1662void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1663                                             MachineBasicBlock *SwitchBB) {
1664  // Subtract the minimum value
1665  SDValue SwitchOp = getValue(B.SValue);
1666  EVT VT = SwitchOp.getValueType();
1667  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1668                            DAG.getConstant(B.First, VT));
1669
1670  // Check range
1671  SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(),
1672                                  TLI.getSetCCResultType(Sub.getValueType()),
1673                                  Sub, DAG.getConstant(B.Range, VT),
1674                                  ISD::SETUGT);
1675
1676  // Determine the type of the test operands.
1677  bool UsePtrType = false;
1678  if (!TLI.isTypeLegal(VT))
1679    UsePtrType = true;
1680  else {
1681    for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
1682      if ((uint64_t)((int64_t)B.Cases[i].Mask >> VT.getSizeInBits()) + 1 >= 2) {
1683        // Switch table case range are encoded into series of masks.
1684        // Just use pointer type, it's guaranteed to fit.
1685        UsePtrType = true;
1686        break;
1687      }
1688  }
1689  if (UsePtrType) {
1690    VT = TLI.getPointerTy();
1691    Sub = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), VT);
1692  }
1693
1694  B.RegVT = VT;
1695  B.Reg = FuncInfo.CreateReg(VT);
1696  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1697                                    B.Reg, Sub);
1698
1699  // Set NextBlock to be the MBB immediately after the current one, if any.
1700  // This is used to avoid emitting unnecessary branches to the next block.
1701  MachineBasicBlock *NextBlock = 0;
1702  MachineFunction::iterator BBI = SwitchBB;
1703  if (++BBI != FuncInfo.MF->end())
1704    NextBlock = BBI;
1705
1706  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1707
1708  addSuccessorWithWeight(SwitchBB, B.Default);
1709  addSuccessorWithWeight(SwitchBB, MBB);
1710
1711  SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1712                                MVT::Other, CopyTo, RangeCmp,
1713                                DAG.getBasicBlock(B.Default));
1714
1715  if (MBB != NextBlock)
1716    BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo,
1717                          DAG.getBasicBlock(MBB));
1718
1719  DAG.setRoot(BrRange);
1720}
1721
1722/// visitBitTestCase - this function produces one "bit test"
1723void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
1724                                           MachineBasicBlock* NextMBB,
1725                                           unsigned Reg,
1726                                           BitTestCase &B,
1727                                           MachineBasicBlock *SwitchBB) {
1728  EVT VT = BB.RegVT;
1729  SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1730                                       Reg, VT);
1731  SDValue Cmp;
1732  unsigned PopCount = CountPopulation_64(B.Mask);
1733  if (PopCount == 1) {
1734    // Testing for a single bit; just compare the shift count with what it
1735    // would need to be to shift a 1 bit in that position.
1736    Cmp = DAG.getSetCC(getCurDebugLoc(),
1737                       TLI.getSetCCResultType(VT),
1738                       ShiftOp,
1739                       DAG.getConstant(CountTrailingZeros_64(B.Mask), VT),
1740                       ISD::SETEQ);
1741  } else if (PopCount == BB.Range) {
1742    // There is only one zero bit in the range, test for it directly.
1743    Cmp = DAG.getSetCC(getCurDebugLoc(),
1744                       TLI.getSetCCResultType(VT),
1745                       ShiftOp,
1746                       DAG.getConstant(CountTrailingOnes_64(B.Mask), VT),
1747                       ISD::SETNE);
1748  } else {
1749    // Make desired shift
1750    SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), VT,
1751                                    DAG.getConstant(1, VT), ShiftOp);
1752
1753    // Emit bit tests and jumps
1754    SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(),
1755                                VT, SwitchVal, DAG.getConstant(B.Mask, VT));
1756    Cmp = DAG.getSetCC(getCurDebugLoc(),
1757                       TLI.getSetCCResultType(VT),
1758                       AndOp, DAG.getConstant(0, VT),
1759                       ISD::SETNE);
1760  }
1761
1762  addSuccessorWithWeight(SwitchBB, B.TargetBB);
1763  addSuccessorWithWeight(SwitchBB, NextMBB);
1764
1765  SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1766                              MVT::Other, getControlRoot(),
1767                              Cmp, DAG.getBasicBlock(B.TargetBB));
1768
1769  // Set NextBlock to be the MBB immediately after the current one, if any.
1770  // This is used to avoid emitting unnecessary branches to the next block.
1771  MachineBasicBlock *NextBlock = 0;
1772  MachineFunction::iterator BBI = SwitchBB;
1773  if (++BBI != FuncInfo.MF->end())
1774    NextBlock = BBI;
1775
1776  if (NextMBB != NextBlock)
1777    BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd,
1778                        DAG.getBasicBlock(NextMBB));
1779
1780  DAG.setRoot(BrAnd);
1781}
1782
1783void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1784  MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
1785
1786  // Retrieve successors.
1787  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1788  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1789
1790  const Value *Callee(I.getCalledValue());
1791  if (isa<InlineAsm>(Callee))
1792    visitInlineAsm(&I);
1793  else
1794    LowerCallTo(&I, getValue(Callee), false, LandingPad);
1795
1796  // If the value of the invoke is used outside of its defining block, make it
1797  // available as a virtual register.
1798  CopyToExportRegsIfNeeded(&I);
1799
1800  // Update successor info
1801  InvokeMBB->addSuccessor(Return);
1802  InvokeMBB->addSuccessor(LandingPad);
1803
1804  // Drop into normal successor.
1805  DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1806                          MVT::Other, getControlRoot(),
1807                          DAG.getBasicBlock(Return)));
1808}
1809
1810void SelectionDAGBuilder::visitUnwind(const UnwindInst &I) {
1811}
1812
1813/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1814/// small case ranges).
1815bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
1816                                                 CaseRecVector& WorkList,
1817                                                 const Value* SV,
1818                                                 MachineBasicBlock *Default,
1819                                                 MachineBasicBlock *SwitchBB) {
1820  Case& BackCase  = *(CR.Range.second-1);
1821
1822  // Size is the number of Cases represented by this range.
1823  size_t Size = CR.Range.second - CR.Range.first;
1824  if (Size > 3)
1825    return false;
1826
1827  // Get the MachineFunction which holds the current MBB.  This is used when
1828  // inserting any additional MBBs necessary to represent the switch.
1829  MachineFunction *CurMF = FuncInfo.MF;
1830
1831  // Figure out which block is immediately after the current one.
1832  MachineBasicBlock *NextBlock = 0;
1833  MachineFunction::iterator BBI = CR.CaseBB;
1834
1835  if (++BBI != FuncInfo.MF->end())
1836    NextBlock = BBI;
1837
1838  // If any two of the cases has the same destination, and if one value
1839  // is the same as the other, but has one bit unset that the other has set,
1840  // use bit manipulation to do two compares at once.  For example:
1841  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1842  // TODO: This could be extended to merge any 2 cases in switches with 3 cases.
1843  // TODO: Handle cases where CR.CaseBB != SwitchBB.
1844  if (Size == 2 && CR.CaseBB == SwitchBB) {
1845    Case &Small = *CR.Range.first;
1846    Case &Big = *(CR.Range.second-1);
1847
1848    if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) {
1849      const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue();
1850      const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue();
1851
1852      // Check that there is only one bit different.
1853      if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 &&
1854          (SmallValue | BigValue) == BigValue) {
1855        // Isolate the common bit.
1856        APInt CommonBit = BigValue & ~SmallValue;
1857        assert((SmallValue | CommonBit) == BigValue &&
1858               CommonBit.countPopulation() == 1 && "Not a common bit?");
1859
1860        SDValue CondLHS = getValue(SV);
1861        EVT VT = CondLHS.getValueType();
1862        DebugLoc DL = getCurDebugLoc();
1863
1864        SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
1865                                 DAG.getConstant(CommonBit, VT));
1866        SDValue Cond = DAG.getSetCC(DL, MVT::i1,
1867                                    Or, DAG.getConstant(BigValue, VT),
1868                                    ISD::SETEQ);
1869
1870        // Update successor info.
1871        addSuccessorWithWeight(SwitchBB, Small.BB);
1872        addSuccessorWithWeight(SwitchBB, Default);
1873
1874        // Insert the true branch.
1875        SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other,
1876                                     getControlRoot(), Cond,
1877                                     DAG.getBasicBlock(Small.BB));
1878
1879        // Insert the false branch.
1880        BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
1881                             DAG.getBasicBlock(Default));
1882
1883        DAG.setRoot(BrCond);
1884        return true;
1885      }
1886    }
1887  }
1888
1889  // Rearrange the case blocks so that the last one falls through if possible.
1890  if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1891    // The last case block won't fall through into 'NextBlock' if we emit the
1892    // branches in this order.  See if rearranging a case value would help.
1893    for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1894      if (I->BB == NextBlock) {
1895        std::swap(*I, BackCase);
1896        break;
1897      }
1898    }
1899  }
1900
1901  // Create a CaseBlock record representing a conditional branch to
1902  // the Case's target mbb if the value being switched on SV is equal
1903  // to C.
1904  MachineBasicBlock *CurBlock = CR.CaseBB;
1905  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1906    MachineBasicBlock *FallThrough;
1907    if (I != E-1) {
1908      FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
1909      CurMF->insert(BBI, FallThrough);
1910
1911      // Put SV in a virtual register to make it available from the new blocks.
1912      ExportFromCurrentBlock(SV);
1913    } else {
1914      // If the last case doesn't match, go to the default block.
1915      FallThrough = Default;
1916    }
1917
1918    const Value *RHS, *LHS, *MHS;
1919    ISD::CondCode CC;
1920    if (I->High == I->Low) {
1921      // This is just small small case range :) containing exactly 1 case
1922      CC = ISD::SETEQ;
1923      LHS = SV; RHS = I->High; MHS = NULL;
1924    } else {
1925      CC = ISD::SETLE;
1926      LHS = I->Low; MHS = SV; RHS = I->High;
1927    }
1928
1929    uint32_t ExtraWeight = I->ExtraWeight;
1930    CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough,
1931                 /* me */ CurBlock,
1932                 /* trueweight */ ExtraWeight / 2, /* falseweight */ ExtraWeight / 2);
1933
1934    // If emitting the first comparison, just call visitSwitchCase to emit the
1935    // code into the current block.  Otherwise, push the CaseBlock onto the
1936    // vector to be later processed by SDISel, and insert the node's MBB
1937    // before the next MBB.
1938    if (CurBlock == SwitchBB)
1939      visitSwitchCase(CB, SwitchBB);
1940    else
1941      SwitchCases.push_back(CB);
1942
1943    CurBlock = FallThrough;
1944  }
1945
1946  return true;
1947}
1948
1949static inline bool areJTsAllowed(const TargetLowering &TLI) {
1950  return !DisableJumpTables &&
1951          (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
1952           TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
1953}
1954
1955static APInt ComputeRange(const APInt &First, const APInt &Last) {
1956  uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
1957  APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth);
1958  return (LastExt - FirstExt + 1ULL);
1959}
1960
1961/// handleJTSwitchCase - Emit jumptable for current switch case range
1962bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec& CR,
1963                                             CaseRecVector& WorkList,
1964                                             const Value* SV,
1965                                             MachineBasicBlock* Default,
1966                                             MachineBasicBlock *SwitchBB) {
1967  Case& FrontCase = *CR.Range.first;
1968  Case& BackCase  = *(CR.Range.second-1);
1969
1970  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
1971  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
1972
1973  APInt TSize(First.getBitWidth(), 0);
1974  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1975       I!=E; ++I)
1976    TSize += I->size();
1977
1978  if (!areJTsAllowed(TLI) || TSize.ult(4))
1979    return false;
1980
1981  APInt Range = ComputeRange(First, Last);
1982  double Density = TSize.roundToDouble() / Range.roundToDouble();
1983  if (Density < 0.4)
1984    return false;
1985
1986  DEBUG(dbgs() << "Lowering jump table\n"
1987               << "First entry: " << First << ". Last entry: " << Last << '\n'
1988               << "Range: " << Range
1989               << ". Size: " << TSize << ". Density: " << Density << "\n\n");
1990
1991  // Get the MachineFunction which holds the current MBB.  This is used when
1992  // inserting any additional MBBs necessary to represent the switch.
1993  MachineFunction *CurMF = FuncInfo.MF;
1994
1995  // Figure out which block is immediately after the current one.
1996  MachineFunction::iterator BBI = CR.CaseBB;
1997  ++BBI;
1998
1999  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2000
2001  // Create a new basic block to hold the code for loading the address
2002  // of the jump table, and jumping to it.  Update successor information;
2003  // we will either branch to the default case for the switch, or the jump
2004  // table.
2005  MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2006  CurMF->insert(BBI, JumpTableBB);
2007
2008  addSuccessorWithWeight(CR.CaseBB, Default);
2009  addSuccessorWithWeight(CR.CaseBB, JumpTableBB);
2010
2011  // Build a vector of destination BBs, corresponding to each target
2012  // of the jump table. If the value of the jump table slot corresponds to
2013  // a case statement, push the case's BB onto the vector, otherwise, push
2014  // the default BB.
2015  std::vector<MachineBasicBlock*> DestBBs;
2016  APInt TEI = First;
2017  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
2018    const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
2019    const APInt &High = cast<ConstantInt>(I->High)->getValue();
2020
2021    if (Low.sle(TEI) && TEI.sle(High)) {
2022      DestBBs.push_back(I->BB);
2023      if (TEI==High)
2024        ++I;
2025    } else {
2026      DestBBs.push_back(Default);
2027    }
2028  }
2029
2030  // Update successor info. Add one edge to each unique successor.
2031  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
2032  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
2033         E = DestBBs.end(); I != E; ++I) {
2034    if (!SuccsHandled[(*I)->getNumber()]) {
2035      SuccsHandled[(*I)->getNumber()] = true;
2036      addSuccessorWithWeight(JumpTableBB, *I);
2037    }
2038  }
2039
2040  // Create a jump table index for this jump table.
2041  unsigned JTEncoding = TLI.getJumpTableEncoding();
2042  unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
2043                       ->createJumpTableIndex(DestBBs);
2044
2045  // Set the jump table information so that we can codegen it as a second
2046  // MachineBasicBlock
2047  JumpTable JT(-1U, JTI, JumpTableBB, Default);
2048  JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
2049  if (CR.CaseBB == SwitchBB)
2050    visitJumpTableHeader(JT, JTH, SwitchBB);
2051
2052  JTCases.push_back(JumpTableBlock(JTH, JT));
2053
2054  return true;
2055}
2056
2057/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
2058/// 2 subtrees.
2059bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
2060                                                  CaseRecVector& WorkList,
2061                                                  const Value* SV,
2062                                                  MachineBasicBlock *Default,
2063                                                  MachineBasicBlock *SwitchBB) {
2064  // Get the MachineFunction which holds the current MBB.  This is used when
2065  // inserting any additional MBBs necessary to represent the switch.
2066  MachineFunction *CurMF = FuncInfo.MF;
2067
2068  // Figure out which block is immediately after the current one.
2069  MachineFunction::iterator BBI = CR.CaseBB;
2070  ++BBI;
2071
2072  Case& FrontCase = *CR.Range.first;
2073  Case& BackCase  = *(CR.Range.second-1);
2074  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2075
2076  // Size is the number of Cases represented by this range.
2077  unsigned Size = CR.Range.second - CR.Range.first;
2078
2079  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2080  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2081  double FMetric = 0;
2082  CaseItr Pivot = CR.Range.first + Size/2;
2083
2084  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
2085  // (heuristically) allow us to emit JumpTable's later.
2086  APInt TSize(First.getBitWidth(), 0);
2087  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2088       I!=E; ++I)
2089    TSize += I->size();
2090
2091  APInt LSize = FrontCase.size();
2092  APInt RSize = TSize-LSize;
2093  DEBUG(dbgs() << "Selecting best pivot: \n"
2094               << "First: " << First << ", Last: " << Last <<'\n'
2095               << "LSize: " << LSize << ", RSize: " << RSize << '\n');
2096  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
2097       J!=E; ++I, ++J) {
2098    const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
2099    const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
2100    APInt Range = ComputeRange(LEnd, RBegin);
2101    assert((Range - 2ULL).isNonNegative() &&
2102           "Invalid case distance");
2103    // Use volatile double here to avoid excess precision issues on some hosts,
2104    // e.g. that use 80-bit X87 registers.
2105    volatile double LDensity =
2106       (double)LSize.roundToDouble() /
2107                           (LEnd - First + 1ULL).roundToDouble();
2108    volatile double RDensity =
2109      (double)RSize.roundToDouble() /
2110                           (Last - RBegin + 1ULL).roundToDouble();
2111    double Metric = Range.logBase2()*(LDensity+RDensity);
2112    // Should always split in some non-trivial place
2113    DEBUG(dbgs() <<"=>Step\n"
2114                 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
2115                 << "LDensity: " << LDensity
2116                 << ", RDensity: " << RDensity << '\n'
2117                 << "Metric: " << Metric << '\n');
2118    if (FMetric < Metric) {
2119      Pivot = J;
2120      FMetric = Metric;
2121      DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
2122    }
2123
2124    LSize += J->size();
2125    RSize -= J->size();
2126  }
2127  if (areJTsAllowed(TLI)) {
2128    // If our case is dense we *really* should handle it earlier!
2129    assert((FMetric > 0) && "Should handle dense range earlier!");
2130  } else {
2131    Pivot = CR.Range.first + Size/2;
2132  }
2133
2134  CaseRange LHSR(CR.Range.first, Pivot);
2135  CaseRange RHSR(Pivot, CR.Range.second);
2136  Constant *C = Pivot->Low;
2137  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
2138
2139  // We know that we branch to the LHS if the Value being switched on is
2140  // less than the Pivot value, C.  We use this to optimize our binary
2141  // tree a bit, by recognizing that if SV is greater than or equal to the
2142  // LHS's Case Value, and that Case Value is exactly one less than the
2143  // Pivot's Value, then we can branch directly to the LHS's Target,
2144  // rather than creating a leaf node for it.
2145  if ((LHSR.second - LHSR.first) == 1 &&
2146      LHSR.first->High == CR.GE &&
2147      cast<ConstantInt>(C)->getValue() ==
2148      (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
2149    TrueBB = LHSR.first->BB;
2150  } else {
2151    TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2152    CurMF->insert(BBI, TrueBB);
2153    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
2154
2155    // Put SV in a virtual register to make it available from the new blocks.
2156    ExportFromCurrentBlock(SV);
2157  }
2158
2159  // Similar to the optimization above, if the Value being switched on is
2160  // known to be less than the Constant CR.LT, and the current Case Value
2161  // is CR.LT - 1, then we can branch directly to the target block for
2162  // the current Case Value, rather than emitting a RHS leaf node for it.
2163  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
2164      cast<ConstantInt>(RHSR.first->Low)->getValue() ==
2165      (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
2166    FalseBB = RHSR.first->BB;
2167  } else {
2168    FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2169    CurMF->insert(BBI, FalseBB);
2170    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
2171
2172    // Put SV in a virtual register to make it available from the new blocks.
2173    ExportFromCurrentBlock(SV);
2174  }
2175
2176  // Create a CaseBlock record representing a conditional branch to
2177  // the LHS node if the value being switched on SV is less than C.
2178  // Otherwise, branch to LHS.
2179  CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
2180
2181  if (CR.CaseBB == SwitchBB)
2182    visitSwitchCase(CB, SwitchBB);
2183  else
2184    SwitchCases.push_back(CB);
2185
2186  return true;
2187}
2188
2189/// handleBitTestsSwitchCase - if current case range has few destination and
2190/// range span less, than machine word bitwidth, encode case range into series
2191/// of masks and emit bit tests with these masks.
2192bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
2193                                                   CaseRecVector& WorkList,
2194                                                   const Value* SV,
2195                                                   MachineBasicBlock* Default,
2196                                                   MachineBasicBlock *SwitchBB){
2197  EVT PTy = TLI.getPointerTy();
2198  unsigned IntPtrBits = PTy.getSizeInBits();
2199
2200  Case& FrontCase = *CR.Range.first;
2201  Case& BackCase  = *(CR.Range.second-1);
2202
2203  // Get the MachineFunction which holds the current MBB.  This is used when
2204  // inserting any additional MBBs necessary to represent the switch.
2205  MachineFunction *CurMF = FuncInfo.MF;
2206
2207  // If target does not have legal shift left, do not emit bit tests at all.
2208  if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
2209    return false;
2210
2211  size_t numCmps = 0;
2212  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2213       I!=E; ++I) {
2214    // Single case counts one, case range - two.
2215    numCmps += (I->Low == I->High ? 1 : 2);
2216  }
2217
2218  // Count unique destinations
2219  SmallSet<MachineBasicBlock*, 4> Dests;
2220  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2221    Dests.insert(I->BB);
2222    if (Dests.size() > 3)
2223      // Don't bother the code below, if there are too much unique destinations
2224      return false;
2225  }
2226  DEBUG(dbgs() << "Total number of unique destinations: "
2227        << Dests.size() << '\n'
2228        << "Total number of comparisons: " << numCmps << '\n');
2229
2230  // Compute span of values.
2231  const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
2232  const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
2233  APInt cmpRange = maxValue - minValue;
2234
2235  DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
2236               << "Low bound: " << minValue << '\n'
2237               << "High bound: " << maxValue << '\n');
2238
2239  if (cmpRange.uge(IntPtrBits) ||
2240      (!(Dests.size() == 1 && numCmps >= 3) &&
2241       !(Dests.size() == 2 && numCmps >= 5) &&
2242       !(Dests.size() >= 3 && numCmps >= 6)))
2243    return false;
2244
2245  DEBUG(dbgs() << "Emitting bit tests\n");
2246  APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
2247
2248  // Optimize the case where all the case values fit in a
2249  // word without having to subtract minValue. In this case,
2250  // we can optimize away the subtraction.
2251  if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) {
2252    cmpRange = maxValue;
2253  } else {
2254    lowBound = minValue;
2255  }
2256
2257  CaseBitsVector CasesBits;
2258  unsigned i, count = 0;
2259
2260  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2261    MachineBasicBlock* Dest = I->BB;
2262    for (i = 0; i < count; ++i)
2263      if (Dest == CasesBits[i].BB)
2264        break;
2265
2266    if (i == count) {
2267      assert((count < 3) && "Too much destinations to test!");
2268      CasesBits.push_back(CaseBits(0, Dest, 0));
2269      count++;
2270    }
2271
2272    const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
2273    const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
2274
2275    uint64_t lo = (lowValue - lowBound).getZExtValue();
2276    uint64_t hi = (highValue - lowBound).getZExtValue();
2277
2278    for (uint64_t j = lo; j <= hi; j++) {
2279      CasesBits[i].Mask |=  1ULL << j;
2280      CasesBits[i].Bits++;
2281    }
2282
2283  }
2284  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2285
2286  BitTestInfo BTC;
2287
2288  // Figure out which block is immediately after the current one.
2289  MachineFunction::iterator BBI = CR.CaseBB;
2290  ++BBI;
2291
2292  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2293
2294  DEBUG(dbgs() << "Cases:\n");
2295  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2296    DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
2297                 << ", Bits: " << CasesBits[i].Bits
2298                 << ", BB: " << CasesBits[i].BB << '\n');
2299
2300    MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2301    CurMF->insert(BBI, CaseBB);
2302    BTC.push_back(BitTestCase(CasesBits[i].Mask,
2303                              CaseBB,
2304                              CasesBits[i].BB));
2305
2306    // Put SV in a virtual register to make it available from the new blocks.
2307    ExportFromCurrentBlock(SV);
2308  }
2309
2310  BitTestBlock BTB(lowBound, cmpRange, SV,
2311                   -1U, MVT::Other, (CR.CaseBB == SwitchBB),
2312                   CR.CaseBB, Default, BTC);
2313
2314  if (CR.CaseBB == SwitchBB)
2315    visitBitTestHeader(BTB, SwitchBB);
2316
2317  BitTestCases.push_back(BTB);
2318
2319  return true;
2320}
2321
2322/// Clusterify - Transform simple list of Cases into list of CaseRange's
2323size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
2324                                       const SwitchInst& SI) {
2325  size_t numCmps = 0;
2326
2327  BranchProbabilityInfo *BPI = FuncInfo.BPI;
2328  // Start with "simple" cases
2329  for (size_t i = 1; i < SI.getNumSuccessors(); ++i) {
2330    BasicBlock *SuccBB = SI.getSuccessor(i);
2331    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB];
2332
2333    uint32_t ExtraWeight = BPI ? BPI->getEdgeWeight(SI.getParent(), SuccBB) : 0;
2334
2335    Cases.push_back(Case(SI.getSuccessorValue(i),
2336                         SI.getSuccessorValue(i),
2337                         SMBB, ExtraWeight));
2338  }
2339  std::sort(Cases.begin(), Cases.end(), CaseCmp());
2340
2341  // Merge case into clusters
2342  if (Cases.size() >= 2)
2343    // Must recompute end() each iteration because it may be
2344    // invalidated by erase if we hold on to it
2345    for (CaseItr I = Cases.begin(), J = llvm::next(Cases.begin());
2346         J != Cases.end(); ) {
2347      const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
2348      const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
2349      MachineBasicBlock* nextBB = J->BB;
2350      MachineBasicBlock* currentBB = I->BB;
2351
2352      // If the two neighboring cases go to the same destination, merge them
2353      // into a single case.
2354      if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
2355        I->High = J->High;
2356        J = Cases.erase(J);
2357
2358        if (BranchProbabilityInfo *BPI = FuncInfo.BPI) {
2359          uint32_t CurWeight = currentBB->getBasicBlock() ?
2360            BPI->getEdgeWeight(SI.getParent(), currentBB->getBasicBlock()) : 16;
2361          uint32_t NextWeight = nextBB->getBasicBlock() ?
2362            BPI->getEdgeWeight(SI.getParent(), nextBB->getBasicBlock()) : 16;
2363
2364          BPI->setEdgeWeight(SI.getParent(), currentBB->getBasicBlock(),
2365                             CurWeight + NextWeight);
2366        }
2367      } else {
2368        I = J++;
2369      }
2370    }
2371
2372  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
2373    if (I->Low != I->High)
2374      // A range counts double, since it requires two compares.
2375      ++numCmps;
2376  }
2377
2378  return numCmps;
2379}
2380
2381void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2382                                           MachineBasicBlock *Last) {
2383  // Update JTCases.
2384  for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2385    if (JTCases[i].first.HeaderBB == First)
2386      JTCases[i].first.HeaderBB = Last;
2387
2388  // Update BitTestCases.
2389  for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2390    if (BitTestCases[i].Parent == First)
2391      BitTestCases[i].Parent = Last;
2392}
2393
2394void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
2395  MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
2396
2397  // Figure out which block is immediately after the current one.
2398  MachineBasicBlock *NextBlock = 0;
2399  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2400
2401  // If there is only the default destination, branch to it if it is not the
2402  // next basic block.  Otherwise, just fall through.
2403  if (SI.getNumOperands() == 2) {
2404    // Update machine-CFG edges.
2405
2406    // If this is not a fall-through branch, emit the branch.
2407    SwitchMBB->addSuccessor(Default);
2408    if (Default != NextBlock)
2409      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
2410                              MVT::Other, getControlRoot(),
2411                              DAG.getBasicBlock(Default)));
2412
2413    return;
2414  }
2415
2416  // If there are any non-default case statements, create a vector of Cases
2417  // representing each one, and sort the vector so that we can efficiently
2418  // create a binary search tree from them.
2419  CaseVector Cases;
2420  size_t numCmps = Clusterify(Cases, SI);
2421  DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2422               << ". Total compares: " << numCmps << '\n');
2423  numCmps = 0;
2424
2425  // Get the Value to be switched on and default basic blocks, which will be
2426  // inserted into CaseBlock records, representing basic blocks in the binary
2427  // search tree.
2428  const Value *SV = SI.getOperand(0);
2429
2430  // Push the initial CaseRec onto the worklist
2431  CaseRecVector WorkList;
2432  WorkList.push_back(CaseRec(SwitchMBB,0,0,
2433                             CaseRange(Cases.begin(),Cases.end())));
2434
2435  while (!WorkList.empty()) {
2436    // Grab a record representing a case range to process off the worklist
2437    CaseRec CR = WorkList.back();
2438    WorkList.pop_back();
2439
2440    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2441      continue;
2442
2443    // If the range has few cases (two or less) emit a series of specific
2444    // tests.
2445    if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
2446      continue;
2447
2448    // If the switch has more than 5 blocks, and at least 40% dense, and the
2449    // target supports indirect branches, then emit a jump table rather than
2450    // lowering the switch to a binary tree of conditional branches.
2451    if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2452      continue;
2453
2454    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2455    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2456    handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
2457  }
2458}
2459
2460void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2461  MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2462
2463  // Update machine-CFG edges with unique successors.
2464  SmallVector<BasicBlock*, 32> succs;
2465  succs.reserve(I.getNumSuccessors());
2466  for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i)
2467    succs.push_back(I.getSuccessor(i));
2468  array_pod_sort(succs.begin(), succs.end());
2469  succs.erase(std::unique(succs.begin(), succs.end()), succs.end());
2470  for (unsigned i = 0, e = succs.size(); i != e; ++i) {
2471    MachineBasicBlock *Succ = FuncInfo.MBBMap[succs[i]];
2472    addSuccessorWithWeight(IndirectBrMBB, Succ);
2473  }
2474
2475  DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(),
2476                          MVT::Other, getControlRoot(),
2477                          getValue(I.getAddress())));
2478}
2479
2480void SelectionDAGBuilder::visitFSub(const User &I) {
2481  // -0.0 - X --> fneg
2482  Type *Ty = I.getType();
2483  if (isa<Constant>(I.getOperand(0)) &&
2484      I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2485    SDValue Op2 = getValue(I.getOperand(1));
2486    setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2487                             Op2.getValueType(), Op2));
2488    return;
2489  }
2490
2491  visitBinary(I, ISD::FSUB);
2492}
2493
2494void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2495  SDValue Op1 = getValue(I.getOperand(0));
2496  SDValue Op2 = getValue(I.getOperand(1));
2497  setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(),
2498                           Op1.getValueType(), Op1, Op2));
2499}
2500
2501void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2502  SDValue Op1 = getValue(I.getOperand(0));
2503  SDValue Op2 = getValue(I.getOperand(1));
2504
2505  MVT ShiftTy = TLI.getShiftAmountTy(Op2.getValueType());
2506
2507  // Coerce the shift amount to the right type if we can.
2508  if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2509    unsigned ShiftSize = ShiftTy.getSizeInBits();
2510    unsigned Op2Size = Op2.getValueType().getSizeInBits();
2511    DebugLoc DL = getCurDebugLoc();
2512
2513    // If the operand is smaller than the shift count type, promote it.
2514    if (ShiftSize > Op2Size)
2515      Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2516
2517    // If the operand is larger than the shift count type but the shift
2518    // count type has enough bits to represent any shift value, truncate
2519    // it now. This is a common case and it exposes the truncate to
2520    // optimization early.
2521    else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2522      Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2523    // Otherwise we'll need to temporarily settle for some other convenient
2524    // type.  Type legalization will make adjustments once the shiftee is split.
2525    else
2526      Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2527  }
2528
2529  setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(),
2530                           Op1.getValueType(), Op1, Op2));
2531}
2532
2533void SelectionDAGBuilder::visitSDiv(const User &I) {
2534  SDValue Op1 = getValue(I.getOperand(0));
2535  SDValue Op2 = getValue(I.getOperand(1));
2536
2537  // Turn exact SDivs into multiplications.
2538  // FIXME: This should be in DAGCombiner, but it doesn't have access to the
2539  // exact bit.
2540  if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() &&
2541      !isa<ConstantSDNode>(Op1) &&
2542      isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue())
2543    setValue(&I, TLI.BuildExactSDIV(Op1, Op2, getCurDebugLoc(), DAG));
2544  else
2545    setValue(&I, DAG.getNode(ISD::SDIV, getCurDebugLoc(), Op1.getValueType(),
2546                             Op1, Op2));
2547}
2548
2549void SelectionDAGBuilder::visitICmp(const User &I) {
2550  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2551  if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2552    predicate = IC->getPredicate();
2553  else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2554    predicate = ICmpInst::Predicate(IC->getPredicate());
2555  SDValue Op1 = getValue(I.getOperand(0));
2556  SDValue Op2 = getValue(I.getOperand(1));
2557  ISD::CondCode Opcode = getICmpCondCode(predicate);
2558
2559  EVT DestVT = TLI.getValueType(I.getType());
2560  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode));
2561}
2562
2563void SelectionDAGBuilder::visitFCmp(const User &I) {
2564  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2565  if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2566    predicate = FC->getPredicate();
2567  else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2568    predicate = FCmpInst::Predicate(FC->getPredicate());
2569  SDValue Op1 = getValue(I.getOperand(0));
2570  SDValue Op2 = getValue(I.getOperand(1));
2571  ISD::CondCode Condition = getFCmpCondCode(predicate);
2572  EVT DestVT = TLI.getValueType(I.getType());
2573  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition));
2574}
2575
2576void SelectionDAGBuilder::visitSelect(const User &I) {
2577  SmallVector<EVT, 4> ValueVTs;
2578  ComputeValueVTs(TLI, I.getType(), ValueVTs);
2579  unsigned NumValues = ValueVTs.size();
2580  if (NumValues == 0) return;
2581
2582  SmallVector<SDValue, 4> Values(NumValues);
2583  SDValue Cond     = getValue(I.getOperand(0));
2584  SDValue TrueVal  = getValue(I.getOperand(1));
2585  SDValue FalseVal = getValue(I.getOperand(2));
2586
2587  for (unsigned i = 0; i != NumValues; ++i)
2588    Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(),
2589                          TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2590                            Cond,
2591                            SDValue(TrueVal.getNode(),
2592                                    TrueVal.getResNo() + i),
2593                            SDValue(FalseVal.getNode(),
2594                                    FalseVal.getResNo() + i));
2595
2596  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2597                           DAG.getVTList(&ValueVTs[0], NumValues),
2598                           &Values[0], NumValues));
2599}
2600
2601void SelectionDAGBuilder::visitTrunc(const User &I) {
2602  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2603  SDValue N = getValue(I.getOperand(0));
2604  EVT DestVT = TLI.getValueType(I.getType());
2605  setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N));
2606}
2607
2608void SelectionDAGBuilder::visitZExt(const User &I) {
2609  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2610  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2611  SDValue N = getValue(I.getOperand(0));
2612  EVT DestVT = TLI.getValueType(I.getType());
2613  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N));
2614}
2615
2616void SelectionDAGBuilder::visitSExt(const User &I) {
2617  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2618  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2619  SDValue N = getValue(I.getOperand(0));
2620  EVT DestVT = TLI.getValueType(I.getType());
2621  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N));
2622}
2623
2624void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2625  // FPTrunc is never a no-op cast, no need to check
2626  SDValue N = getValue(I.getOperand(0));
2627  EVT DestVT = TLI.getValueType(I.getType());
2628  setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(),
2629                           DestVT, N, DAG.getIntPtrConstant(0)));
2630}
2631
2632void SelectionDAGBuilder::visitFPExt(const User &I){
2633  // FPTrunc is never a no-op cast, no need to check
2634  SDValue N = getValue(I.getOperand(0));
2635  EVT DestVT = TLI.getValueType(I.getType());
2636  setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N));
2637}
2638
2639void SelectionDAGBuilder::visitFPToUI(const User &I) {
2640  // FPToUI is never a no-op cast, no need to check
2641  SDValue N = getValue(I.getOperand(0));
2642  EVT DestVT = TLI.getValueType(I.getType());
2643  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N));
2644}
2645
2646void SelectionDAGBuilder::visitFPToSI(const User &I) {
2647  // FPToSI is never a no-op cast, no need to check
2648  SDValue N = getValue(I.getOperand(0));
2649  EVT DestVT = TLI.getValueType(I.getType());
2650  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N));
2651}
2652
2653void SelectionDAGBuilder::visitUIToFP(const User &I) {
2654  // UIToFP is never a no-op cast, no need to check
2655  SDValue N = getValue(I.getOperand(0));
2656  EVT DestVT = TLI.getValueType(I.getType());
2657  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N));
2658}
2659
2660void SelectionDAGBuilder::visitSIToFP(const User &I){
2661  // SIToFP is never a no-op cast, no need to check
2662  SDValue N = getValue(I.getOperand(0));
2663  EVT DestVT = TLI.getValueType(I.getType());
2664  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N));
2665}
2666
2667void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2668  // What to do depends on the size of the integer and the size of the pointer.
2669  // We can either truncate, zero extend, or no-op, accordingly.
2670  SDValue N = getValue(I.getOperand(0));
2671  EVT DestVT = TLI.getValueType(I.getType());
2672  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2673}
2674
2675void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2676  // What to do depends on the size of the integer and the size of the pointer.
2677  // We can either truncate, zero extend, or no-op, accordingly.
2678  SDValue N = getValue(I.getOperand(0));
2679  EVT DestVT = TLI.getValueType(I.getType());
2680  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2681}
2682
2683void SelectionDAGBuilder::visitBitCast(const User &I) {
2684  SDValue N = getValue(I.getOperand(0));
2685  EVT DestVT = TLI.getValueType(I.getType());
2686
2687  // BitCast assures us that source and destination are the same size so this is
2688  // either a BITCAST or a no-op.
2689  if (DestVT != N.getValueType())
2690    setValue(&I, DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
2691                             DestVT, N)); // convert types.
2692  else
2693    setValue(&I, N);            // noop cast.
2694}
2695
2696void SelectionDAGBuilder::visitInsertElement(const User &I) {
2697  SDValue InVec = getValue(I.getOperand(0));
2698  SDValue InVal = getValue(I.getOperand(1));
2699  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2700                              TLI.getPointerTy(),
2701                              getValue(I.getOperand(2)));
2702  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(),
2703                           TLI.getValueType(I.getType()),
2704                           InVec, InVal, InIdx));
2705}
2706
2707void SelectionDAGBuilder::visitExtractElement(const User &I) {
2708  SDValue InVec = getValue(I.getOperand(0));
2709  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2710                              TLI.getPointerTy(),
2711                              getValue(I.getOperand(1)));
2712  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2713                           TLI.getValueType(I.getType()), InVec, InIdx));
2714}
2715
2716// Utility for visitShuffleVector - Returns true if the mask is mask starting
2717// from SIndx and increasing to the element length (undefs are allowed).
2718static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) {
2719  unsigned MaskNumElts = Mask.size();
2720  for (unsigned i = 0; i != MaskNumElts; ++i)
2721    if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx)))
2722      return false;
2723  return true;
2724}
2725
2726void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2727  SmallVector<int, 8> Mask;
2728  SDValue Src1 = getValue(I.getOperand(0));
2729  SDValue Src2 = getValue(I.getOperand(1));
2730
2731  // Convert the ConstantVector mask operand into an array of ints, with -1
2732  // representing undef values.
2733  SmallVector<Constant*, 8> MaskElts;
2734  cast<Constant>(I.getOperand(2))->getVectorElements(MaskElts);
2735  unsigned MaskNumElts = MaskElts.size();
2736  for (unsigned i = 0; i != MaskNumElts; ++i) {
2737    if (isa<UndefValue>(MaskElts[i]))
2738      Mask.push_back(-1);
2739    else
2740      Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue());
2741  }
2742
2743  EVT VT = TLI.getValueType(I.getType());
2744  EVT SrcVT = Src1.getValueType();
2745  unsigned SrcNumElts = SrcVT.getVectorNumElements();
2746
2747  if (SrcNumElts == MaskNumElts) {
2748    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2749                                      &Mask[0]));
2750    return;
2751  }
2752
2753  // Normalize the shuffle vector since mask and vector length don't match.
2754  if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2755    // Mask is longer than the source vectors and is a multiple of the source
2756    // vectors.  We can use concatenate vector to make the mask and vectors
2757    // lengths match.
2758    if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) {
2759      // The shuffle is concatenating two vectors together.
2760      setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2761                               VT, Src1, Src2));
2762      return;
2763    }
2764
2765    // Pad both vectors with undefs to make them the same length as the mask.
2766    unsigned NumConcat = MaskNumElts / SrcNumElts;
2767    bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2768    bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2769    SDValue UndefVal = DAG.getUNDEF(SrcVT);
2770
2771    SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2772    SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2773    MOps1[0] = Src1;
2774    MOps2[0] = Src2;
2775
2776    Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2777                                                  getCurDebugLoc(), VT,
2778                                                  &MOps1[0], NumConcat);
2779    Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2780                                                  getCurDebugLoc(), VT,
2781                                                  &MOps2[0], NumConcat);
2782
2783    // Readjust mask for new input vector length.
2784    SmallVector<int, 8> MappedOps;
2785    for (unsigned i = 0; i != MaskNumElts; ++i) {
2786      int Idx = Mask[i];
2787      if (Idx < (int)SrcNumElts)
2788        MappedOps.push_back(Idx);
2789      else
2790        MappedOps.push_back(Idx + MaskNumElts - SrcNumElts);
2791    }
2792
2793    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2794                                      &MappedOps[0]));
2795    return;
2796  }
2797
2798  if (SrcNumElts > MaskNumElts) {
2799    // Analyze the access pattern of the vector to see if we can extract
2800    // two subvectors and do the shuffle. The analysis is done by calculating
2801    // the range of elements the mask access on both vectors.
2802    int MinRange[2] = { static_cast<int>(SrcNumElts+1),
2803                        static_cast<int>(SrcNumElts+1)};
2804    int MaxRange[2] = {-1, -1};
2805
2806    for (unsigned i = 0; i != MaskNumElts; ++i) {
2807      int Idx = Mask[i];
2808      int Input = 0;
2809      if (Idx < 0)
2810        continue;
2811
2812      if (Idx >= (int)SrcNumElts) {
2813        Input = 1;
2814        Idx -= SrcNumElts;
2815      }
2816      if (Idx > MaxRange[Input])
2817        MaxRange[Input] = Idx;
2818      if (Idx < MinRange[Input])
2819        MinRange[Input] = Idx;
2820    }
2821
2822    // Check if the access is smaller than the vector size and can we find
2823    // a reasonable extract index.
2824    int RangeUse[2] = { 2, 2 };  // 0 = Unused, 1 = Extract, 2 = Can not
2825                                 // Extract.
2826    int StartIdx[2];  // StartIdx to extract from
2827    for (int Input=0; Input < 2; ++Input) {
2828      if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) {
2829        RangeUse[Input] = 0; // Unused
2830        StartIdx[Input] = 0;
2831      } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) {
2832        // Fits within range but we should see if we can find a good
2833        // start index that is a multiple of the mask length.
2834        if (MaxRange[Input] < (int)MaskNumElts) {
2835          RangeUse[Input] = 1; // Extract from beginning of the vector
2836          StartIdx[Input] = 0;
2837        } else {
2838          StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2839          if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2840              StartIdx[Input] + MaskNumElts <= SrcNumElts)
2841            RangeUse[Input] = 1; // Extract from a multiple of the mask length.
2842        }
2843      }
2844    }
2845
2846    if (RangeUse[0] == 0 && RangeUse[1] == 0) {
2847      setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
2848      return;
2849    }
2850    else if (RangeUse[0] < 2 && RangeUse[1] < 2) {
2851      // Extract appropriate subvector and generate a vector shuffle
2852      for (int Input=0; Input < 2; ++Input) {
2853        SDValue &Src = Input == 0 ? Src1 : Src2;
2854        if (RangeUse[Input] == 0)
2855          Src = DAG.getUNDEF(VT);
2856        else
2857          Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT,
2858                            Src, DAG.getIntPtrConstant(StartIdx[Input]));
2859      }
2860
2861      // Calculate new mask.
2862      SmallVector<int, 8> MappedOps;
2863      for (unsigned i = 0; i != MaskNumElts; ++i) {
2864        int Idx = Mask[i];
2865        if (Idx < 0)
2866          MappedOps.push_back(Idx);
2867        else if (Idx < (int)SrcNumElts)
2868          MappedOps.push_back(Idx - StartIdx[0]);
2869        else
2870          MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts);
2871      }
2872
2873      setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2874                                        &MappedOps[0]));
2875      return;
2876    }
2877  }
2878
2879  // We can't use either concat vectors or extract subvectors so fall back to
2880  // replacing the shuffle with extract and build vector.
2881  // to insert and build vector.
2882  EVT EltVT = VT.getVectorElementType();
2883  EVT PtrVT = TLI.getPointerTy();
2884  SmallVector<SDValue,8> Ops;
2885  for (unsigned i = 0; i != MaskNumElts; ++i) {
2886    if (Mask[i] < 0) {
2887      Ops.push_back(DAG.getUNDEF(EltVT));
2888    } else {
2889      int Idx = Mask[i];
2890      SDValue Res;
2891
2892      if (Idx < (int)SrcNumElts)
2893        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2894                          EltVT, Src1, DAG.getConstant(Idx, PtrVT));
2895      else
2896        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2897                          EltVT, Src2,
2898                          DAG.getConstant(Idx - SrcNumElts, PtrVT));
2899
2900      Ops.push_back(Res);
2901    }
2902  }
2903
2904  setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
2905                           VT, &Ops[0], Ops.size()));
2906}
2907
2908void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
2909  const Value *Op0 = I.getOperand(0);
2910  const Value *Op1 = I.getOperand(1);
2911  Type *AggTy = I.getType();
2912  Type *ValTy = Op1->getType();
2913  bool IntoUndef = isa<UndefValue>(Op0);
2914  bool FromUndef = isa<UndefValue>(Op1);
2915
2916  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
2917
2918  SmallVector<EVT, 4> AggValueVTs;
2919  ComputeValueVTs(TLI, AggTy, AggValueVTs);
2920  SmallVector<EVT, 4> ValValueVTs;
2921  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2922
2923  unsigned NumAggValues = AggValueVTs.size();
2924  unsigned NumValValues = ValValueVTs.size();
2925  SmallVector<SDValue, 4> Values(NumAggValues);
2926
2927  SDValue Agg = getValue(Op0);
2928  unsigned i = 0;
2929  // Copy the beginning value(s) from the original aggregate.
2930  for (; i != LinearIndex; ++i)
2931    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2932                SDValue(Agg.getNode(), Agg.getResNo() + i);
2933  // Copy values from the inserted value(s).
2934  if (NumValValues) {
2935    SDValue Val = getValue(Op1);
2936    for (; i != LinearIndex + NumValValues; ++i)
2937      Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2938                  SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
2939  }
2940  // Copy remaining value(s) from the original aggregate.
2941  for (; i != NumAggValues; ++i)
2942    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2943                SDValue(Agg.getNode(), Agg.getResNo() + i);
2944
2945  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2946                           DAG.getVTList(&AggValueVTs[0], NumAggValues),
2947                           &Values[0], NumAggValues));
2948}
2949
2950void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
2951  const Value *Op0 = I.getOperand(0);
2952  Type *AggTy = Op0->getType();
2953  Type *ValTy = I.getType();
2954  bool OutOfUndef = isa<UndefValue>(Op0);
2955
2956  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
2957
2958  SmallVector<EVT, 4> ValValueVTs;
2959  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2960
2961  unsigned NumValValues = ValValueVTs.size();
2962
2963  // Ignore a extractvalue that produces an empty object
2964  if (!NumValValues) {
2965    setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
2966    return;
2967  }
2968
2969  SmallVector<SDValue, 4> Values(NumValValues);
2970
2971  SDValue Agg = getValue(Op0);
2972  // Copy out the selected value(s).
2973  for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
2974    Values[i - LinearIndex] =
2975      OutOfUndef ?
2976        DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
2977        SDValue(Agg.getNode(), Agg.getResNo() + i);
2978
2979  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2980                           DAG.getVTList(&ValValueVTs[0], NumValValues),
2981                           &Values[0], NumValValues));
2982}
2983
2984void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
2985  SDValue N = getValue(I.getOperand(0));
2986  Type *Ty = I.getOperand(0)->getType();
2987
2988  for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
2989       OI != E; ++OI) {
2990    const Value *Idx = *OI;
2991    if (StructType *StTy = dyn_cast<StructType>(Ty)) {
2992      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2993      if (Field) {
2994        // N = N + Offset
2995        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
2996        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2997                        DAG.getIntPtrConstant(Offset));
2998      }
2999
3000      Ty = StTy->getElementType(Field);
3001    } else {
3002      Ty = cast<SequentialType>(Ty)->getElementType();
3003
3004      // If this is a constant subscript, handle it quickly.
3005      if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
3006        if (CI->isZero()) continue;
3007        uint64_t Offs =
3008            TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
3009        SDValue OffsVal;
3010        EVT PTy = TLI.getPointerTy();
3011        unsigned PtrBits = PTy.getSizeInBits();
3012        if (PtrBits < 64)
3013          OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
3014                                TLI.getPointerTy(),
3015                                DAG.getConstant(Offs, MVT::i64));
3016        else
3017          OffsVal = DAG.getIntPtrConstant(Offs);
3018
3019        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
3020                        OffsVal);
3021        continue;
3022      }
3023
3024      // N = N + Idx * ElementSize;
3025      APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
3026                                TD->getTypeAllocSize(Ty));
3027      SDValue IdxN = getValue(Idx);
3028
3029      // If the index is smaller or larger than intptr_t, truncate or extend
3030      // it.
3031      IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType());
3032
3033      // If this is a multiply by a power of two, turn it into a shl
3034      // immediately.  This is a very common case.
3035      if (ElementSize != 1) {
3036        if (ElementSize.isPowerOf2()) {
3037          unsigned Amt = ElementSize.logBase2();
3038          IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(),
3039                             N.getValueType(), IdxN,
3040                             DAG.getConstant(Amt, TLI.getPointerTy()));
3041        } else {
3042          SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy());
3043          IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(),
3044                             N.getValueType(), IdxN, Scale);
3045        }
3046      }
3047
3048      N = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3049                      N.getValueType(), N, IdxN);
3050    }
3051  }
3052
3053  setValue(&I, N);
3054}
3055
3056void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3057  // If this is a fixed sized alloca in the entry block of the function,
3058  // allocate it statically on the stack.
3059  if (FuncInfo.StaticAllocaMap.count(&I))
3060    return;   // getValue will auto-populate this.
3061
3062  Type *Ty = I.getAllocatedType();
3063  uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
3064  unsigned Align =
3065    std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
3066             I.getAlignment());
3067
3068  SDValue AllocSize = getValue(I.getArraySize());
3069
3070  EVT IntPtr = TLI.getPointerTy();
3071  if (AllocSize.getValueType() != IntPtr)
3072    AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr);
3073
3074  AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr,
3075                          AllocSize,
3076                          DAG.getConstant(TySize, IntPtr));
3077
3078  // Handle alignment.  If the requested alignment is less than or equal to
3079  // the stack alignment, ignore it.  If the size is greater than or equal to
3080  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3081  unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
3082  if (Align <= StackAlign)
3083    Align = 0;
3084
3085  // Round the size of the allocation up to the stack alignment size
3086  // by add SA-1 to the size.
3087  AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3088                          AllocSize.getValueType(), AllocSize,
3089                          DAG.getIntPtrConstant(StackAlign-1));
3090
3091  // Mask out the low bits for alignment purposes.
3092  AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(),
3093                          AllocSize.getValueType(), AllocSize,
3094                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
3095
3096  SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
3097  SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3098  SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(),
3099                            VTs, Ops, 3);
3100  setValue(&I, DSA);
3101  DAG.setRoot(DSA.getValue(1));
3102
3103  // Inform the Frame Information that we have just allocated a variable-sized
3104  // object.
3105  FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1);
3106}
3107
3108void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3109  const Value *SV = I.getOperand(0);
3110  SDValue Ptr = getValue(SV);
3111
3112  Type *Ty = I.getType();
3113
3114  bool isVolatile = I.isVolatile();
3115  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3116  unsigned Alignment = I.getAlignment();
3117  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3118
3119  SmallVector<EVT, 4> ValueVTs;
3120  SmallVector<uint64_t, 4> Offsets;
3121  ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
3122  unsigned NumValues = ValueVTs.size();
3123  if (NumValues == 0)
3124    return;
3125
3126  SDValue Root;
3127  bool ConstantMemory = false;
3128  if (I.isVolatile() || NumValues > MaxParallelChains)
3129    // Serialize volatile loads with other side effects.
3130    Root = getRoot();
3131  else if (AA->pointsToConstantMemory(
3132             AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) {
3133    // Do not serialize (non-volatile) loads of constant memory with anything.
3134    Root = DAG.getEntryNode();
3135    ConstantMemory = true;
3136  } else {
3137    // Do not serialize non-volatile loads against each other.
3138    Root = DAG.getRoot();
3139  }
3140
3141  SmallVector<SDValue, 4> Values(NumValues);
3142  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3143                                          NumValues));
3144  EVT PtrVT = Ptr.getValueType();
3145  unsigned ChainI = 0;
3146  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3147    // Serializing loads here may result in excessive register pressure, and
3148    // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3149    // could recover a bit by hoisting nodes upward in the chain by recognizing
3150    // they are side-effect free or do not alias. The optimizer should really
3151    // avoid this case by converting large object/array copies to llvm.memcpy
3152    // (MaxParallelChains should always remain as failsafe).
3153    if (ChainI == MaxParallelChains) {
3154      assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3155      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3156                                  MVT::Other, &Chains[0], ChainI);
3157      Root = Chain;
3158      ChainI = 0;
3159    }
3160    SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3161                            PtrVT, Ptr,
3162                            DAG.getConstant(Offsets[i], PtrVT));
3163    SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root,
3164                            A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
3165                            isNonTemporal, Alignment, TBAAInfo);
3166
3167    Values[i] = L;
3168    Chains[ChainI] = L.getValue(1);
3169  }
3170
3171  if (!ConstantMemory) {
3172    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3173                                MVT::Other, &Chains[0], ChainI);
3174    if (isVolatile)
3175      DAG.setRoot(Chain);
3176    else
3177      PendingLoads.push_back(Chain);
3178  }
3179
3180  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3181                           DAG.getVTList(&ValueVTs[0], NumValues),
3182                           &Values[0], NumValues));
3183}
3184
3185void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3186  const Value *SrcV = I.getOperand(0);
3187  const Value *PtrV = I.getOperand(1);
3188
3189  SmallVector<EVT, 4> ValueVTs;
3190  SmallVector<uint64_t, 4> Offsets;
3191  ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
3192  unsigned NumValues = ValueVTs.size();
3193  if (NumValues == 0)
3194    return;
3195
3196  // Get the lowered operands. Note that we do this after
3197  // checking if NumResults is zero, because with zero results
3198  // the operands won't have values in the map.
3199  SDValue Src = getValue(SrcV);
3200  SDValue Ptr = getValue(PtrV);
3201
3202  SDValue Root = getRoot();
3203  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3204                                          NumValues));
3205  EVT PtrVT = Ptr.getValueType();
3206  bool isVolatile = I.isVolatile();
3207  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3208  unsigned Alignment = I.getAlignment();
3209  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3210
3211  unsigned ChainI = 0;
3212  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3213    // See visitLoad comments.
3214    if (ChainI == MaxParallelChains) {
3215      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3216                                  MVT::Other, &Chains[0], ChainI);
3217      Root = Chain;
3218      ChainI = 0;
3219    }
3220    SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr,
3221                              DAG.getConstant(Offsets[i], PtrVT));
3222    SDValue St = DAG.getStore(Root, getCurDebugLoc(),
3223                              SDValue(Src.getNode(), Src.getResNo() + i),
3224                              Add, MachinePointerInfo(PtrV, Offsets[i]),
3225                              isVolatile, isNonTemporal, Alignment, TBAAInfo);
3226    Chains[ChainI] = St;
3227  }
3228
3229  SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3230                                  MVT::Other, &Chains[0], ChainI);
3231  ++SDNodeOrder;
3232  AssignOrderingToNode(StoreNode.getNode());
3233  DAG.setRoot(StoreNode);
3234}
3235
3236void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
3237  SDValue Root = getRoot();
3238  SDValue L =
3239    DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(),
3240                  getValue(I.getCompareOperand()).getValueType().getSimpleVT(),
3241                  Root,
3242                  getValue(I.getPointerOperand()),
3243                  getValue(I.getCompareOperand()),
3244                  getValue(I.getNewValOperand()),
3245                  MachinePointerInfo(I.getPointerOperand()), 0 /* Alignment */,
3246                  I.getOrdering(), I.getSynchScope());
3247  setValue(&I, L);
3248  DAG.setRoot(L.getValue(1));
3249}
3250
3251void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
3252  ISD::NodeType NT;
3253  switch (I.getOperation()) {
3254  default: llvm_unreachable("Unknown atomicrmw operation"); return;
3255  case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
3256  case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
3257  case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
3258  case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
3259  case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
3260  case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
3261  case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
3262  case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
3263  case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
3264  case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
3265  case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
3266  }
3267  SDValue L =
3268    DAG.getAtomic(NT, getCurDebugLoc(),
3269                  getValue(I.getValOperand()).getValueType().getSimpleVT(),
3270                  getRoot(),
3271                  getValue(I.getPointerOperand()),
3272                  getValue(I.getValOperand()),
3273                  I.getPointerOperand(), 0 /* Alignment */,
3274                  I.getOrdering(), I.getSynchScope());
3275  setValue(&I, L);
3276  DAG.setRoot(L.getValue(1));
3277}
3278
3279void SelectionDAGBuilder::visitFence(const FenceInst &I) {
3280  DebugLoc dl = getCurDebugLoc();
3281  SDValue Ops[3];
3282  Ops[0] = getRoot();
3283  Ops[1] = DAG.getConstant(I.getOrdering(), TLI.getPointerTy());
3284  Ops[2] = DAG.getConstant(I.getSynchScope(), TLI.getPointerTy());
3285  DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3));
3286}
3287
3288/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3289/// node.
3290void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3291                                               unsigned Intrinsic) {
3292  bool HasChain = !I.doesNotAccessMemory();
3293  bool OnlyLoad = HasChain && I.onlyReadsMemory();
3294
3295  // Build the operand list.
3296  SmallVector<SDValue, 8> Ops;
3297  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
3298    if (OnlyLoad) {
3299      // We don't need to serialize loads against other loads.
3300      Ops.push_back(DAG.getRoot());
3301    } else {
3302      Ops.push_back(getRoot());
3303    }
3304  }
3305
3306  // Info is set by getTgtMemInstrinsic
3307  TargetLowering::IntrinsicInfo Info;
3308  bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
3309
3310  // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3311  if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
3312      Info.opc == ISD::INTRINSIC_W_CHAIN)
3313    Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
3314
3315  // Add all operands of the call to the operand list.
3316  for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
3317    SDValue Op = getValue(I.getArgOperand(i));
3318    assert(TLI.isTypeLegal(Op.getValueType()) &&
3319           "Intrinsic uses a non-legal type?");
3320    Ops.push_back(Op);
3321  }
3322
3323  SmallVector<EVT, 4> ValueVTs;
3324  ComputeValueVTs(TLI, I.getType(), ValueVTs);
3325#ifndef NDEBUG
3326  for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) {
3327    assert(TLI.isTypeLegal(ValueVTs[Val]) &&
3328           "Intrinsic uses a non-legal type?");
3329  }
3330#endif // NDEBUG
3331
3332  if (HasChain)
3333    ValueVTs.push_back(MVT::Other);
3334
3335  SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
3336
3337  // Create the node.
3338  SDValue Result;
3339  if (IsTgtIntrinsic) {
3340    // This is target intrinsic that touches memory
3341    Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(),
3342                                     VTs, &Ops[0], Ops.size(),
3343                                     Info.memVT,
3344                                   MachinePointerInfo(Info.ptrVal, Info.offset),
3345                                     Info.align, Info.vol,
3346                                     Info.readMem, Info.writeMem);
3347  } else if (!HasChain) {
3348    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
3349                         VTs, &Ops[0], Ops.size());
3350  } else if (!I.getType()->isVoidTy()) {
3351    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
3352                         VTs, &Ops[0], Ops.size());
3353  } else {
3354    Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(),
3355                         VTs, &Ops[0], Ops.size());
3356  }
3357
3358  if (HasChain) {
3359    SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3360    if (OnlyLoad)
3361      PendingLoads.push_back(Chain);
3362    else
3363      DAG.setRoot(Chain);
3364  }
3365
3366  if (!I.getType()->isVoidTy()) {
3367    if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3368      EVT VT = TLI.getValueType(PTy);
3369      Result = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), VT, Result);
3370    }
3371
3372    setValue(&I, Result);
3373  }
3374}
3375
3376/// GetSignificand - Get the significand and build it into a floating-point
3377/// number with exponent of 1:
3378///
3379///   Op = (Op & 0x007fffff) | 0x3f800000;
3380///
3381/// where Op is the hexidecimal representation of floating point value.
3382static SDValue
3383GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) {
3384  SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3385                           DAG.getConstant(0x007fffff, MVT::i32));
3386  SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3387                           DAG.getConstant(0x3f800000, MVT::i32));
3388  return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
3389}
3390
3391/// GetExponent - Get the exponent:
3392///
3393///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3394///
3395/// where Op is the hexidecimal representation of floating point value.
3396static SDValue
3397GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3398            DebugLoc dl) {
3399  SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3400                           DAG.getConstant(0x7f800000, MVT::i32));
3401  SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3402                           DAG.getConstant(23, TLI.getPointerTy()));
3403  SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3404                           DAG.getConstant(127, MVT::i32));
3405  return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3406}
3407
3408/// getF32Constant - Get 32-bit floating point constant.
3409static SDValue
3410getF32Constant(SelectionDAG &DAG, unsigned Flt) {
3411  return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32);
3412}
3413
3414/// Inlined utility function to implement binary input atomic intrinsics for
3415/// visitIntrinsicCall: I is a call instruction
3416///                     Op is the associated NodeType for I
3417const char *
3418SelectionDAGBuilder::implVisitBinaryAtomic(const CallInst& I,
3419                                           ISD::NodeType Op) {
3420  SDValue Root = getRoot();
3421  SDValue L =
3422    DAG.getAtomic(Op, getCurDebugLoc(),
3423                  getValue(I.getArgOperand(1)).getValueType().getSimpleVT(),
3424                  Root,
3425                  getValue(I.getArgOperand(0)),
3426                  getValue(I.getArgOperand(1)),
3427                  I.getArgOperand(0), 0 /* Alignment */,
3428                  Monotonic, CrossThread);
3429  setValue(&I, L);
3430  DAG.setRoot(L.getValue(1));
3431  return 0;
3432}
3433
3434// implVisitAluOverflow - Lower arithmetic overflow instrinsics.
3435const char *
3436SelectionDAGBuilder::implVisitAluOverflow(const CallInst &I, ISD::NodeType Op) {
3437  SDValue Op1 = getValue(I.getArgOperand(0));
3438  SDValue Op2 = getValue(I.getArgOperand(1));
3439
3440  SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
3441  setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2));
3442  return 0;
3443}
3444
3445/// visitExp - Lower an exp intrinsic. Handles the special sequences for
3446/// limited-precision mode.
3447void
3448SelectionDAGBuilder::visitExp(const CallInst &I) {
3449  SDValue result;
3450  DebugLoc dl = getCurDebugLoc();
3451
3452  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3453      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3454    SDValue Op = getValue(I.getArgOperand(0));
3455
3456    // Put the exponent in the right bit position for later addition to the
3457    // final result:
3458    //
3459    //   #define LOG2OFe 1.4426950f
3460    //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3461    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3462                             getF32Constant(DAG, 0x3fb8aa3b));
3463    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3464
3465    //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3466    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3467    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3468
3469    //   IntegerPartOfX <<= 23;
3470    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3471                                 DAG.getConstant(23, TLI.getPointerTy()));
3472
3473    if (LimitFloatPrecision <= 6) {
3474      // For floating-point precision of 6:
3475      //
3476      //   TwoToFractionalPartOfX =
3477      //     0.997535578f +
3478      //       (0.735607626f + 0.252464424f * x) * x;
3479      //
3480      // error 0.0144103317, which is 6 bits
3481      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3482                               getF32Constant(DAG, 0x3e814304));
3483      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3484                               getF32Constant(DAG, 0x3f3c50c8));
3485      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3486      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3487                               getF32Constant(DAG, 0x3f7f5e7e));
3488      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t5);
3489
3490      // Add the exponent into the result in integer domain.
3491      SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3492                               TwoToFracPartOfX, IntegerPartOfX);
3493
3494      result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t6);
3495    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3496      // For floating-point precision of 12:
3497      //
3498      //   TwoToFractionalPartOfX =
3499      //     0.999892986f +
3500      //       (0.696457318f +
3501      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3502      //
3503      // 0.000107046256 error, which is 13 to 14 bits
3504      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3505                               getF32Constant(DAG, 0x3da235e3));
3506      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3507                               getF32Constant(DAG, 0x3e65b8f3));
3508      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3509      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3510                               getF32Constant(DAG, 0x3f324b07));
3511      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3512      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3513                               getF32Constant(DAG, 0x3f7ff8fd));
3514      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t7);
3515
3516      // Add the exponent into the result in integer domain.
3517      SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3518                               TwoToFracPartOfX, IntegerPartOfX);
3519
3520      result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t8);
3521    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3522      // For floating-point precision of 18:
3523      //
3524      //   TwoToFractionalPartOfX =
3525      //     0.999999982f +
3526      //       (0.693148872f +
3527      //         (0.240227044f +
3528      //           (0.554906021e-1f +
3529      //             (0.961591928e-2f +
3530      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3531      //
3532      // error 2.47208000*10^(-7), which is better than 18 bits
3533      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3534                               getF32Constant(DAG, 0x3924b03e));
3535      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3536                               getF32Constant(DAG, 0x3ab24b87));
3537      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3538      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3539                               getF32Constant(DAG, 0x3c1d8c17));
3540      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3541      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3542                               getF32Constant(DAG, 0x3d634a1d));
3543      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3544      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3545                               getF32Constant(DAG, 0x3e75fe14));
3546      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3547      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3548                                getF32Constant(DAG, 0x3f317234));
3549      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3550      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3551                                getF32Constant(DAG, 0x3f800000));
3552      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,
3553                                             MVT::i32, t13);
3554
3555      // Add the exponent into the result in integer domain.
3556      SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3557                                TwoToFracPartOfX, IntegerPartOfX);
3558
3559      result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t14);
3560    }
3561  } else {
3562    // No special expansion.
3563    result = DAG.getNode(ISD::FEXP, dl,
3564                         getValue(I.getArgOperand(0)).getValueType(),
3565                         getValue(I.getArgOperand(0)));
3566  }
3567
3568  setValue(&I, result);
3569}
3570
3571/// visitLog - Lower a log intrinsic. Handles the special sequences for
3572/// limited-precision mode.
3573void
3574SelectionDAGBuilder::visitLog(const CallInst &I) {
3575  SDValue result;
3576  DebugLoc dl = getCurDebugLoc();
3577
3578  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3579      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3580    SDValue Op = getValue(I.getArgOperand(0));
3581    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3582
3583    // Scale the exponent by log(2) [0.69314718f].
3584    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3585    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3586                                        getF32Constant(DAG, 0x3f317218));
3587
3588    // Get the significand and build it into a floating-point number with
3589    // exponent of 1.
3590    SDValue X = GetSignificand(DAG, Op1, dl);
3591
3592    if (LimitFloatPrecision <= 6) {
3593      // For floating-point precision of 6:
3594      //
3595      //   LogofMantissa =
3596      //     -1.1609546f +
3597      //       (1.4034025f - 0.23903021f * x) * x;
3598      //
3599      // error 0.0034276066, which is better than 8 bits
3600      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3601                               getF32Constant(DAG, 0xbe74c456));
3602      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3603                               getF32Constant(DAG, 0x3fb3a2b1));
3604      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3605      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3606                                          getF32Constant(DAG, 0x3f949a29));
3607
3608      result = DAG.getNode(ISD::FADD, dl,
3609                           MVT::f32, LogOfExponent, LogOfMantissa);
3610    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3611      // For floating-point precision of 12:
3612      //
3613      //   LogOfMantissa =
3614      //     -1.7417939f +
3615      //       (2.8212026f +
3616      //         (-1.4699568f +
3617      //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3618      //
3619      // error 0.000061011436, which is 14 bits
3620      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3621                               getF32Constant(DAG, 0xbd67b6d6));
3622      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3623                               getF32Constant(DAG, 0x3ee4f4b8));
3624      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3625      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3626                               getF32Constant(DAG, 0x3fbc278b));
3627      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3628      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3629                               getF32Constant(DAG, 0x40348e95));
3630      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3631      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3632                                          getF32Constant(DAG, 0x3fdef31a));
3633
3634      result = DAG.getNode(ISD::FADD, dl,
3635                           MVT::f32, LogOfExponent, LogOfMantissa);
3636    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3637      // For floating-point precision of 18:
3638      //
3639      //   LogOfMantissa =
3640      //     -2.1072184f +
3641      //       (4.2372794f +
3642      //         (-3.7029485f +
3643      //           (2.2781945f +
3644      //             (-0.87823314f +
3645      //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3646      //
3647      // error 0.0000023660568, which is better than 18 bits
3648      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3649                               getF32Constant(DAG, 0xbc91e5ac));
3650      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3651                               getF32Constant(DAG, 0x3e4350aa));
3652      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3653      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3654                               getF32Constant(DAG, 0x3f60d3e3));
3655      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3656      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3657                               getF32Constant(DAG, 0x4011cdf0));
3658      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3659      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3660                               getF32Constant(DAG, 0x406cfd1c));
3661      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3662      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3663                               getF32Constant(DAG, 0x408797cb));
3664      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3665      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3666                                          getF32Constant(DAG, 0x4006dcab));
3667
3668      result = DAG.getNode(ISD::FADD, dl,
3669                           MVT::f32, LogOfExponent, LogOfMantissa);
3670    }
3671  } else {
3672    // No special expansion.
3673    result = DAG.getNode(ISD::FLOG, dl,
3674                         getValue(I.getArgOperand(0)).getValueType(),
3675                         getValue(I.getArgOperand(0)));
3676  }
3677
3678  setValue(&I, result);
3679}
3680
3681/// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for
3682/// limited-precision mode.
3683void
3684SelectionDAGBuilder::visitLog2(const CallInst &I) {
3685  SDValue result;
3686  DebugLoc dl = getCurDebugLoc();
3687
3688  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3689      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3690    SDValue Op = getValue(I.getArgOperand(0));
3691    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3692
3693    // Get the exponent.
3694    SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3695
3696    // Get the significand and build it into a floating-point number with
3697    // exponent of 1.
3698    SDValue X = GetSignificand(DAG, Op1, dl);
3699
3700    // Different possible minimax approximations of significand in
3701    // floating-point for various degrees of accuracy over [1,2].
3702    if (LimitFloatPrecision <= 6) {
3703      // For floating-point precision of 6:
3704      //
3705      //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3706      //
3707      // error 0.0049451742, which is more than 7 bits
3708      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3709                               getF32Constant(DAG, 0xbeb08fe0));
3710      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3711                               getF32Constant(DAG, 0x40019463));
3712      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3713      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3714                                           getF32Constant(DAG, 0x3fd6633d));
3715
3716      result = DAG.getNode(ISD::FADD, dl,
3717                           MVT::f32, LogOfExponent, Log2ofMantissa);
3718    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3719      // For floating-point precision of 12:
3720      //
3721      //   Log2ofMantissa =
3722      //     -2.51285454f +
3723      //       (4.07009056f +
3724      //         (-2.12067489f +
3725      //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3726      //
3727      // error 0.0000876136000, which is better than 13 bits
3728      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3729                               getF32Constant(DAG, 0xbda7262e));
3730      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3731                               getF32Constant(DAG, 0x3f25280b));
3732      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3733      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3734                               getF32Constant(DAG, 0x4007b923));
3735      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3736      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3737                               getF32Constant(DAG, 0x40823e2f));
3738      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3739      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3740                                           getF32Constant(DAG, 0x4020d29c));
3741
3742      result = DAG.getNode(ISD::FADD, dl,
3743                           MVT::f32, LogOfExponent, Log2ofMantissa);
3744    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3745      // For floating-point precision of 18:
3746      //
3747      //   Log2ofMantissa =
3748      //     -3.0400495f +
3749      //       (6.1129976f +
3750      //         (-5.3420409f +
3751      //           (3.2865683f +
3752      //             (-1.2669343f +
3753      //               (0.27515199f -
3754      //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3755      //
3756      // error 0.0000018516, which is better than 18 bits
3757      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3758                               getF32Constant(DAG, 0xbcd2769e));
3759      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3760                               getF32Constant(DAG, 0x3e8ce0b9));
3761      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3762      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3763                               getF32Constant(DAG, 0x3fa22ae7));
3764      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3765      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3766                               getF32Constant(DAG, 0x40525723));
3767      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3768      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3769                               getF32Constant(DAG, 0x40aaf200));
3770      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3771      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3772                               getF32Constant(DAG, 0x40c39dad));
3773      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3774      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3775                                           getF32Constant(DAG, 0x4042902c));
3776
3777      result = DAG.getNode(ISD::FADD, dl,
3778                           MVT::f32, LogOfExponent, Log2ofMantissa);
3779    }
3780  } else {
3781    // No special expansion.
3782    result = DAG.getNode(ISD::FLOG2, dl,
3783                         getValue(I.getArgOperand(0)).getValueType(),
3784                         getValue(I.getArgOperand(0)));
3785  }
3786
3787  setValue(&I, result);
3788}
3789
3790/// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for
3791/// limited-precision mode.
3792void
3793SelectionDAGBuilder::visitLog10(const CallInst &I) {
3794  SDValue result;
3795  DebugLoc dl = getCurDebugLoc();
3796
3797  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3798      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3799    SDValue Op = getValue(I.getArgOperand(0));
3800    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3801
3802    // Scale the exponent by log10(2) [0.30102999f].
3803    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3804    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3805                                        getF32Constant(DAG, 0x3e9a209a));
3806
3807    // Get the significand and build it into a floating-point number with
3808    // exponent of 1.
3809    SDValue X = GetSignificand(DAG, Op1, dl);
3810
3811    if (LimitFloatPrecision <= 6) {
3812      // For floating-point precision of 6:
3813      //
3814      //   Log10ofMantissa =
3815      //     -0.50419619f +
3816      //       (0.60948995f - 0.10380950f * x) * x;
3817      //
3818      // error 0.0014886165, which is 6 bits
3819      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3820                               getF32Constant(DAG, 0xbdd49a13));
3821      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3822                               getF32Constant(DAG, 0x3f1c0789));
3823      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3824      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3825                                            getF32Constant(DAG, 0x3f011300));
3826
3827      result = DAG.getNode(ISD::FADD, dl,
3828                           MVT::f32, LogOfExponent, Log10ofMantissa);
3829    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3830      // For floating-point precision of 12:
3831      //
3832      //   Log10ofMantissa =
3833      //     -0.64831180f +
3834      //       (0.91751397f +
3835      //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
3836      //
3837      // error 0.00019228036, which is better than 12 bits
3838      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3839                               getF32Constant(DAG, 0x3d431f31));
3840      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3841                               getF32Constant(DAG, 0x3ea21fb2));
3842      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3843      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3844                               getF32Constant(DAG, 0x3f6ae232));
3845      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3846      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3847                                            getF32Constant(DAG, 0x3f25f7c3));
3848
3849      result = DAG.getNode(ISD::FADD, dl,
3850                           MVT::f32, LogOfExponent, Log10ofMantissa);
3851    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3852      // For floating-point precision of 18:
3853      //
3854      //   Log10ofMantissa =
3855      //     -0.84299375f +
3856      //       (1.5327582f +
3857      //         (-1.0688956f +
3858      //           (0.49102474f +
3859      //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
3860      //
3861      // error 0.0000037995730, which is better than 18 bits
3862      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3863                               getF32Constant(DAG, 0x3c5d51ce));
3864      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3865                               getF32Constant(DAG, 0x3e00685a));
3866      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3867      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3868                               getF32Constant(DAG, 0x3efb6798));
3869      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3870      SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3871                               getF32Constant(DAG, 0x3f88d192));
3872      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3873      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3874                               getF32Constant(DAG, 0x3fc4316c));
3875      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3876      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
3877                                            getF32Constant(DAG, 0x3f57ce70));
3878
3879      result = DAG.getNode(ISD::FADD, dl,
3880                           MVT::f32, LogOfExponent, Log10ofMantissa);
3881    }
3882  } else {
3883    // No special expansion.
3884    result = DAG.getNode(ISD::FLOG10, dl,
3885                         getValue(I.getArgOperand(0)).getValueType(),
3886                         getValue(I.getArgOperand(0)));
3887  }
3888
3889  setValue(&I, result);
3890}
3891
3892/// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for
3893/// limited-precision mode.
3894void
3895SelectionDAGBuilder::visitExp2(const CallInst &I) {
3896  SDValue result;
3897  DebugLoc dl = getCurDebugLoc();
3898
3899  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3900      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3901    SDValue Op = getValue(I.getArgOperand(0));
3902
3903    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
3904
3905    //   FractionalPartOfX = x - (float)IntegerPartOfX;
3906    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3907    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
3908
3909    //   IntegerPartOfX <<= 23;
3910    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3911                                 DAG.getConstant(23, TLI.getPointerTy()));
3912
3913    if (LimitFloatPrecision <= 6) {
3914      // For floating-point precision of 6:
3915      //
3916      //   TwoToFractionalPartOfX =
3917      //     0.997535578f +
3918      //       (0.735607626f + 0.252464424f * x) * x;
3919      //
3920      // error 0.0144103317, which is 6 bits
3921      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3922                               getF32Constant(DAG, 0x3e814304));
3923      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3924                               getF32Constant(DAG, 0x3f3c50c8));
3925      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3926      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3927                               getF32Constant(DAG, 0x3f7f5e7e));
3928      SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
3929      SDValue TwoToFractionalPartOfX =
3930        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3931
3932      result = DAG.getNode(ISD::BITCAST, dl,
3933                           MVT::f32, TwoToFractionalPartOfX);
3934    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3935      // For floating-point precision of 12:
3936      //
3937      //   TwoToFractionalPartOfX =
3938      //     0.999892986f +
3939      //       (0.696457318f +
3940      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3941      //
3942      // error 0.000107046256, which is 13 to 14 bits
3943      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3944                               getF32Constant(DAG, 0x3da235e3));
3945      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3946                               getF32Constant(DAG, 0x3e65b8f3));
3947      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3948      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3949                               getF32Constant(DAG, 0x3f324b07));
3950      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3951      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3952                               getF32Constant(DAG, 0x3f7ff8fd));
3953      SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
3954      SDValue TwoToFractionalPartOfX =
3955        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
3956
3957      result = DAG.getNode(ISD::BITCAST, dl,
3958                           MVT::f32, TwoToFractionalPartOfX);
3959    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3960      // For floating-point precision of 18:
3961      //
3962      //   TwoToFractionalPartOfX =
3963      //     0.999999982f +
3964      //       (0.693148872f +
3965      //         (0.240227044f +
3966      //           (0.554906021e-1f +
3967      //             (0.961591928e-2f +
3968      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3969      // error 2.47208000*10^(-7), which is better than 18 bits
3970      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3971                               getF32Constant(DAG, 0x3924b03e));
3972      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3973                               getF32Constant(DAG, 0x3ab24b87));
3974      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3975      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3976                               getF32Constant(DAG, 0x3c1d8c17));
3977      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3978      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3979                               getF32Constant(DAG, 0x3d634a1d));
3980      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3981      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3982                               getF32Constant(DAG, 0x3e75fe14));
3983      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3984      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3985                                getF32Constant(DAG, 0x3f317234));
3986      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3987      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3988                                getF32Constant(DAG, 0x3f800000));
3989      SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
3990      SDValue TwoToFractionalPartOfX =
3991        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
3992
3993      result = DAG.getNode(ISD::BITCAST, dl,
3994                           MVT::f32, TwoToFractionalPartOfX);
3995    }
3996  } else {
3997    // No special expansion.
3998    result = DAG.getNode(ISD::FEXP2, dl,
3999                         getValue(I.getArgOperand(0)).getValueType(),
4000                         getValue(I.getArgOperand(0)));
4001  }
4002
4003  setValue(&I, result);
4004}
4005
4006/// visitPow - Lower a pow intrinsic. Handles the special sequences for
4007/// limited-precision mode with x == 10.0f.
4008void
4009SelectionDAGBuilder::visitPow(const CallInst &I) {
4010  SDValue result;
4011  const Value *Val = I.getArgOperand(0);
4012  DebugLoc dl = getCurDebugLoc();
4013  bool IsExp10 = false;
4014
4015  if (getValue(Val).getValueType() == MVT::f32 &&
4016      getValue(I.getArgOperand(1)).getValueType() == MVT::f32 &&
4017      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4018    if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) {
4019      if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
4020        APFloat Ten(10.0f);
4021        IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten);
4022      }
4023    }
4024  }
4025
4026  if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4027    SDValue Op = getValue(I.getArgOperand(1));
4028
4029    // Put the exponent in the right bit position for later addition to the
4030    // final result:
4031    //
4032    //   #define LOG2OF10 3.3219281f
4033    //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
4034    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4035                             getF32Constant(DAG, 0x40549a78));
4036    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4037
4038    //   FractionalPartOfX = x - (float)IntegerPartOfX;
4039    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4040    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4041
4042    //   IntegerPartOfX <<= 23;
4043    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4044                                 DAG.getConstant(23, TLI.getPointerTy()));
4045
4046    if (LimitFloatPrecision <= 6) {
4047      // For floating-point precision of 6:
4048      //
4049      //   twoToFractionalPartOfX =
4050      //     0.997535578f +
4051      //       (0.735607626f + 0.252464424f * x) * x;
4052      //
4053      // error 0.0144103317, which is 6 bits
4054      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4055                               getF32Constant(DAG, 0x3e814304));
4056      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4057                               getF32Constant(DAG, 0x3f3c50c8));
4058      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4059      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4060                               getF32Constant(DAG, 0x3f7f5e7e));
4061      SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
4062      SDValue TwoToFractionalPartOfX =
4063        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
4064
4065      result = DAG.getNode(ISD::BITCAST, dl,
4066                           MVT::f32, TwoToFractionalPartOfX);
4067    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
4068      // For floating-point precision of 12:
4069      //
4070      //   TwoToFractionalPartOfX =
4071      //     0.999892986f +
4072      //       (0.696457318f +
4073      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4074      //
4075      // error 0.000107046256, which is 13 to 14 bits
4076      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4077                               getF32Constant(DAG, 0x3da235e3));
4078      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4079                               getF32Constant(DAG, 0x3e65b8f3));
4080      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4081      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4082                               getF32Constant(DAG, 0x3f324b07));
4083      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4084      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4085                               getF32Constant(DAG, 0x3f7ff8fd));
4086      SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
4087      SDValue TwoToFractionalPartOfX =
4088        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
4089
4090      result = DAG.getNode(ISD::BITCAST, dl,
4091                           MVT::f32, TwoToFractionalPartOfX);
4092    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
4093      // For floating-point precision of 18:
4094      //
4095      //   TwoToFractionalPartOfX =
4096      //     0.999999982f +
4097      //       (0.693148872f +
4098      //         (0.240227044f +
4099      //           (0.554906021e-1f +
4100      //             (0.961591928e-2f +
4101      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4102      // error 2.47208000*10^(-7), which is better than 18 bits
4103      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4104                               getF32Constant(DAG, 0x3924b03e));
4105      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4106                               getF32Constant(DAG, 0x3ab24b87));
4107      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4108      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4109                               getF32Constant(DAG, 0x3c1d8c17));
4110      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4111      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4112                               getF32Constant(DAG, 0x3d634a1d));
4113      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4114      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4115                               getF32Constant(DAG, 0x3e75fe14));
4116      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4117      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4118                                getF32Constant(DAG, 0x3f317234));
4119      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4120      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4121                                getF32Constant(DAG, 0x3f800000));
4122      SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
4123      SDValue TwoToFractionalPartOfX =
4124        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
4125
4126      result = DAG.getNode(ISD::BITCAST, dl,
4127                           MVT::f32, TwoToFractionalPartOfX);
4128    }
4129  } else {
4130    // No special expansion.
4131    result = DAG.getNode(ISD::FPOW, dl,
4132                         getValue(I.getArgOperand(0)).getValueType(),
4133                         getValue(I.getArgOperand(0)),
4134                         getValue(I.getArgOperand(1)));
4135  }
4136
4137  setValue(&I, result);
4138}
4139
4140
4141/// ExpandPowI - Expand a llvm.powi intrinsic.
4142static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS,
4143                          SelectionDAG &DAG) {
4144  // If RHS is a constant, we can expand this out to a multiplication tree,
4145  // otherwise we end up lowering to a call to __powidf2 (for example).  When
4146  // optimizing for size, we only want to do this if the expansion would produce
4147  // a small number of multiplies, otherwise we do the full expansion.
4148  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4149    // Get the exponent as a positive value.
4150    unsigned Val = RHSC->getSExtValue();
4151    if ((int)Val < 0) Val = -Val;
4152
4153    // powi(x, 0) -> 1.0
4154    if (Val == 0)
4155      return DAG.getConstantFP(1.0, LHS.getValueType());
4156
4157    const Function *F = DAG.getMachineFunction().getFunction();
4158    if (!F->hasFnAttr(Attribute::OptimizeForSize) ||
4159        // If optimizing for size, don't insert too many multiplies.  This
4160        // inserts up to 5 multiplies.
4161        CountPopulation_32(Val)+Log2_32(Val) < 7) {
4162      // We use the simple binary decomposition method to generate the multiply
4163      // sequence.  There are more optimal ways to do this (for example,
4164      // powi(x,15) generates one more multiply than it should), but this has
4165      // the benefit of being both really simple and much better than a libcall.
4166      SDValue Res;  // Logically starts equal to 1.0
4167      SDValue CurSquare = LHS;
4168      while (Val) {
4169        if (Val & 1) {
4170          if (Res.getNode())
4171            Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4172          else
4173            Res = CurSquare;  // 1.0*CurSquare.
4174        }
4175
4176        CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4177                                CurSquare, CurSquare);
4178        Val >>= 1;
4179      }
4180
4181      // If the original was negative, invert the result, producing 1/(x*x*x).
4182      if (RHSC->getSExtValue() < 0)
4183        Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4184                          DAG.getConstantFP(1.0, LHS.getValueType()), Res);
4185      return Res;
4186    }
4187  }
4188
4189  // Otherwise, expand to a libcall.
4190  return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4191}
4192
4193// getTruncatedArgReg - Find underlying register used for an truncated
4194// argument.
4195static unsigned getTruncatedArgReg(const SDValue &N) {
4196  if (N.getOpcode() != ISD::TRUNCATE)
4197    return 0;
4198
4199  const SDValue &Ext = N.getOperand(0);
4200  if (Ext.getOpcode() == ISD::AssertZext || Ext.getOpcode() == ISD::AssertSext){
4201    const SDValue &CFR = Ext.getOperand(0);
4202    if (CFR.getOpcode() == ISD::CopyFromReg)
4203      return cast<RegisterSDNode>(CFR.getOperand(1))->getReg();
4204    else
4205      if (CFR.getOpcode() == ISD::TRUNCATE)
4206        return getTruncatedArgReg(CFR);
4207  }
4208  return 0;
4209}
4210
4211/// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4212/// argument, create the corresponding DBG_VALUE machine instruction for it now.
4213/// At the end of instruction selection, they will be inserted to the entry BB.
4214bool
4215SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
4216                                              int64_t Offset,
4217                                              const SDValue &N) {
4218  const Argument *Arg = dyn_cast<Argument>(V);
4219  if (!Arg)
4220    return false;
4221
4222  MachineFunction &MF = DAG.getMachineFunction();
4223  const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
4224  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
4225
4226  // Ignore inlined function arguments here.
4227  DIVariable DV(Variable);
4228  if (DV.isInlinedFnArgument(MF.getFunction()))
4229    return false;
4230
4231  unsigned Reg = 0;
4232  if (Arg->hasByValAttr()) {
4233    // Byval arguments' frame index is recorded during argument lowering.
4234    // Use this info directly.
4235    Reg = TRI->getFrameRegister(MF);
4236    Offset = FuncInfo.getByValArgumentFrameIndex(Arg);
4237    // If byval argument ofset is not recorded then ignore this.
4238    if (!Offset)
4239      Reg = 0;
4240  }
4241
4242  if (N.getNode()) {
4243    if (N.getOpcode() == ISD::CopyFromReg)
4244      Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
4245    else
4246      Reg = getTruncatedArgReg(N);
4247    if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4248      MachineRegisterInfo &RegInfo = MF.getRegInfo();
4249      unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4250      if (PR)
4251        Reg = PR;
4252    }
4253  }
4254
4255  if (!Reg) {
4256    // Check if ValueMap has reg number.
4257    DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4258    if (VMI != FuncInfo.ValueMap.end())
4259      Reg = VMI->second;
4260  }
4261
4262  if (!Reg && N.getNode()) {
4263    // Check if frame index is available.
4264    if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4265      if (FrameIndexSDNode *FINode =
4266          dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) {
4267        Reg = TRI->getFrameRegister(MF);
4268        Offset = FINode->getIndex();
4269      }
4270  }
4271
4272  if (!Reg)
4273    return false;
4274
4275  MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(),
4276                                    TII->get(TargetOpcode::DBG_VALUE))
4277    .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable);
4278  FuncInfo.ArgDbgValues.push_back(&*MIB);
4279  return true;
4280}
4281
4282// VisualStudio defines setjmp as _setjmp
4283#if defined(_MSC_VER) && defined(setjmp) && \
4284                         !defined(setjmp_undefined_for_msvc)
4285#  pragma push_macro("setjmp")
4286#  undef setjmp
4287#  define setjmp_undefined_for_msvc
4288#endif
4289
4290/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4291/// we want to emit this as a call to a named external function, return the name
4292/// otherwise lower it and return null.
4293const char *
4294SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4295  DebugLoc dl = getCurDebugLoc();
4296  SDValue Res;
4297
4298  switch (Intrinsic) {
4299  default:
4300    // By default, turn this into a target intrinsic node.
4301    visitTargetIntrinsic(I, Intrinsic);
4302    return 0;
4303  case Intrinsic::vastart:  visitVAStart(I); return 0;
4304  case Intrinsic::vaend:    visitVAEnd(I); return 0;
4305  case Intrinsic::vacopy:   visitVACopy(I); return 0;
4306  case Intrinsic::returnaddress:
4307    setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(),
4308                             getValue(I.getArgOperand(0))));
4309    return 0;
4310  case Intrinsic::frameaddress:
4311    setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(),
4312                             getValue(I.getArgOperand(0))));
4313    return 0;
4314  case Intrinsic::setjmp:
4315    return "_setjmp"+!TLI.usesUnderscoreSetJmp();
4316  case Intrinsic::longjmp:
4317    return "_longjmp"+!TLI.usesUnderscoreLongJmp();
4318  case Intrinsic::memcpy: {
4319    // Assert for address < 256 since we support only user defined address
4320    // spaces.
4321    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4322           < 256 &&
4323           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4324           < 256 &&
4325           "Unknown address space");
4326    SDValue Op1 = getValue(I.getArgOperand(0));
4327    SDValue Op2 = getValue(I.getArgOperand(1));
4328    SDValue Op3 = getValue(I.getArgOperand(2));
4329    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4330    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4331    DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false,
4332                              MachinePointerInfo(I.getArgOperand(0)),
4333                              MachinePointerInfo(I.getArgOperand(1))));
4334    return 0;
4335  }
4336  case Intrinsic::memset: {
4337    // Assert for address < 256 since we support only user defined address
4338    // spaces.
4339    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4340           < 256 &&
4341           "Unknown address space");
4342    SDValue Op1 = getValue(I.getArgOperand(0));
4343    SDValue Op2 = getValue(I.getArgOperand(1));
4344    SDValue Op3 = getValue(I.getArgOperand(2));
4345    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4346    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4347    DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4348                              MachinePointerInfo(I.getArgOperand(0))));
4349    return 0;
4350  }
4351  case Intrinsic::memmove: {
4352    // Assert for address < 256 since we support only user defined address
4353    // spaces.
4354    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4355           < 256 &&
4356           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4357           < 256 &&
4358           "Unknown address space");
4359    SDValue Op1 = getValue(I.getArgOperand(0));
4360    SDValue Op2 = getValue(I.getArgOperand(1));
4361    SDValue Op3 = getValue(I.getArgOperand(2));
4362    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4363    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4364    DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4365                               MachinePointerInfo(I.getArgOperand(0)),
4366                               MachinePointerInfo(I.getArgOperand(1))));
4367    return 0;
4368  }
4369  case Intrinsic::dbg_declare: {
4370    const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4371    MDNode *Variable = DI.getVariable();
4372    const Value *Address = DI.getAddress();
4373    if (!Address || !DIVariable(DI.getVariable()).Verify())
4374      return 0;
4375
4376    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4377    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4378    // absolute, but not relative, values are different depending on whether
4379    // debug info exists.
4380    ++SDNodeOrder;
4381
4382    // Check if address has undef value.
4383    if (isa<UndefValue>(Address) ||
4384        (Address->use_empty() && !isa<Argument>(Address))) {
4385      DEBUG(dbgs() << "Dropping debug info for " << DI);
4386      return 0;
4387    }
4388
4389    SDValue &N = NodeMap[Address];
4390    if (!N.getNode() && isa<Argument>(Address))
4391      // Check unused arguments map.
4392      N = UnusedArgNodeMap[Address];
4393    SDDbgValue *SDV;
4394    if (N.getNode()) {
4395      // Parameters are handled specially.
4396      bool isParameter =
4397        DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable;
4398      if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4399        Address = BCI->getOperand(0);
4400      const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
4401
4402      if (isParameter && !AI) {
4403        FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4404        if (FINode)
4405          // Byval parameter.  We have a frame index at this point.
4406          SDV = DAG.getDbgValue(Variable, FINode->getIndex(),
4407                                0, dl, SDNodeOrder);
4408        else {
4409          // Address is an argument, so try to emit its dbg value using
4410          // virtual register info from the FuncInfo.ValueMap.
4411          EmitFuncArgumentDbgValue(Address, Variable, 0, N);
4412          return 0;
4413        }
4414      } else if (AI)
4415        SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
4416                              0, dl, SDNodeOrder);
4417      else {
4418        // Can't do anything with other non-AI cases yet.
4419        DEBUG(dbgs() << "Dropping debug info for " << DI);
4420        return 0;
4421      }
4422      DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4423    } else {
4424      // If Address is an argument then try to emit its dbg value using
4425      // virtual register info from the FuncInfo.ValueMap.
4426      if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) {
4427        // If variable is pinned by a alloca in dominating bb then
4428        // use StaticAllocaMap.
4429        if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4430          if (AI->getParent() != DI.getParent()) {
4431            DenseMap<const AllocaInst*, int>::iterator SI =
4432              FuncInfo.StaticAllocaMap.find(AI);
4433            if (SI != FuncInfo.StaticAllocaMap.end()) {
4434              SDV = DAG.getDbgValue(Variable, SI->second,
4435                                    0, dl, SDNodeOrder);
4436              DAG.AddDbgValue(SDV, 0, false);
4437              return 0;
4438            }
4439          }
4440        }
4441        DEBUG(dbgs() << "Dropping debug info for " << DI);
4442      }
4443    }
4444    return 0;
4445  }
4446  case Intrinsic::dbg_value: {
4447    const DbgValueInst &DI = cast<DbgValueInst>(I);
4448    if (!DIVariable(DI.getVariable()).Verify())
4449      return 0;
4450
4451    MDNode *Variable = DI.getVariable();
4452    uint64_t Offset = DI.getOffset();
4453    const Value *V = DI.getValue();
4454    if (!V)
4455      return 0;
4456
4457    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4458    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4459    // absolute, but not relative, values are different depending on whether
4460    // debug info exists.
4461    ++SDNodeOrder;
4462    SDDbgValue *SDV;
4463    if (isa<ConstantInt>(V) || isa<ConstantFP>(V)) {
4464      SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder);
4465      DAG.AddDbgValue(SDV, 0, false);
4466    } else {
4467      // Do not use getValue() in here; we don't want to generate code at
4468      // this point if it hasn't been done yet.
4469      SDValue N = NodeMap[V];
4470      if (!N.getNode() && isa<Argument>(V))
4471        // Check unused arguments map.
4472        N = UnusedArgNodeMap[V];
4473      if (N.getNode()) {
4474        if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) {
4475          SDV = DAG.getDbgValue(Variable, N.getNode(),
4476                                N.getResNo(), Offset, dl, SDNodeOrder);
4477          DAG.AddDbgValue(SDV, N.getNode(), false);
4478        }
4479      } else if (!V->use_empty() ) {
4480        // Do not call getValue(V) yet, as we don't want to generate code.
4481        // Remember it for later.
4482        DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4483        DanglingDebugInfoMap[V] = DDI;
4484      } else {
4485        // We may expand this to cover more cases.  One case where we have no
4486        // data available is an unreferenced parameter.
4487        DEBUG(dbgs() << "Dropping debug info for " << DI);
4488      }
4489    }
4490
4491    // Build a debug info table entry.
4492    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4493      V = BCI->getOperand(0);
4494    const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4495    // Don't handle byval struct arguments or VLAs, for example.
4496    if (!AI)
4497      return 0;
4498    DenseMap<const AllocaInst*, int>::iterator SI =
4499      FuncInfo.StaticAllocaMap.find(AI);
4500    if (SI == FuncInfo.StaticAllocaMap.end())
4501      return 0; // VLAs.
4502    int FI = SI->second;
4503
4504    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4505    if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
4506      MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
4507    return 0;
4508  }
4509  case Intrinsic::eh_exception: {
4510    // Insert the EXCEPTIONADDR instruction.
4511    assert(FuncInfo.MBB->isLandingPad() &&
4512           "Call to eh.exception not in landing pad!");
4513    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4514    SDValue Ops[1];
4515    Ops[0] = DAG.getRoot();
4516    SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1);
4517    setValue(&I, Op);
4518    DAG.setRoot(Op.getValue(1));
4519    return 0;
4520  }
4521
4522  case Intrinsic::eh_selector: {
4523    MachineBasicBlock *CallMBB = FuncInfo.MBB;
4524    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4525    if (CallMBB->isLandingPad())
4526      AddCatchInfo(I, &MMI, CallMBB);
4527    else {
4528#ifndef NDEBUG
4529      FuncInfo.CatchInfoLost.insert(&I);
4530#endif
4531      // FIXME: Mark exception selector register as live in.  Hack for PR1508.
4532      unsigned Reg = TLI.getExceptionSelectorRegister();
4533      if (Reg) FuncInfo.MBB->addLiveIn(Reg);
4534    }
4535
4536    // Insert the EHSELECTION instruction.
4537    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4538    SDValue Ops[2];
4539    Ops[0] = getValue(I.getArgOperand(0));
4540    Ops[1] = getRoot();
4541    SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2);
4542    DAG.setRoot(Op.getValue(1));
4543    setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32));
4544    return 0;
4545  }
4546
4547  case Intrinsic::eh_typeid_for: {
4548    // Find the type id for the given typeinfo.
4549    GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0));
4550    unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4551    Res = DAG.getConstant(TypeID, MVT::i32);
4552    setValue(&I, Res);
4553    return 0;
4554  }
4555
4556  case Intrinsic::eh_return_i32:
4557  case Intrinsic::eh_return_i64:
4558    DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4559    DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl,
4560                            MVT::Other,
4561                            getControlRoot(),
4562                            getValue(I.getArgOperand(0)),
4563                            getValue(I.getArgOperand(1))));
4564    return 0;
4565  case Intrinsic::eh_unwind_init:
4566    DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4567    return 0;
4568  case Intrinsic::eh_dwarf_cfa: {
4569    SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl,
4570                                        TLI.getPointerTy());
4571    SDValue Offset = DAG.getNode(ISD::ADD, dl,
4572                                 TLI.getPointerTy(),
4573                                 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
4574                                             TLI.getPointerTy()),
4575                                 CfaArg);
4576    SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl,
4577                             TLI.getPointerTy(),
4578                             DAG.getConstant(0, TLI.getPointerTy()));
4579    setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
4580                             FA, Offset));
4581    return 0;
4582  }
4583  case Intrinsic::eh_sjlj_callsite: {
4584    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4585    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4586    assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4587    assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4588
4589    MMI.setCurrentCallSite(CI->getZExtValue());
4590    return 0;
4591  }
4592  case Intrinsic::eh_sjlj_setjmp: {
4593    setValue(&I, DAG.getNode(ISD::EH_SJLJ_SETJMP, dl, MVT::i32, getRoot(),
4594                             getValue(I.getArgOperand(0))));
4595    return 0;
4596  }
4597  case Intrinsic::eh_sjlj_longjmp: {
4598    DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other,
4599                            getRoot(), getValue(I.getArgOperand(0))));
4600    return 0;
4601  }
4602  case Intrinsic::eh_sjlj_dispatch_setup: {
4603    DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_DISPATCHSETUP, dl, MVT::Other,
4604                            getRoot(), getValue(I.getArgOperand(0))));
4605    return 0;
4606  }
4607
4608  case Intrinsic::x86_mmx_pslli_w:
4609  case Intrinsic::x86_mmx_pslli_d:
4610  case Intrinsic::x86_mmx_pslli_q:
4611  case Intrinsic::x86_mmx_psrli_w:
4612  case Intrinsic::x86_mmx_psrli_d:
4613  case Intrinsic::x86_mmx_psrli_q:
4614  case Intrinsic::x86_mmx_psrai_w:
4615  case Intrinsic::x86_mmx_psrai_d: {
4616    SDValue ShAmt = getValue(I.getArgOperand(1));
4617    if (isa<ConstantSDNode>(ShAmt)) {
4618      visitTargetIntrinsic(I, Intrinsic);
4619      return 0;
4620    }
4621    unsigned NewIntrinsic = 0;
4622    EVT ShAmtVT = MVT::v2i32;
4623    switch (Intrinsic) {
4624    case Intrinsic::x86_mmx_pslli_w:
4625      NewIntrinsic = Intrinsic::x86_mmx_psll_w;
4626      break;
4627    case Intrinsic::x86_mmx_pslli_d:
4628      NewIntrinsic = Intrinsic::x86_mmx_psll_d;
4629      break;
4630    case Intrinsic::x86_mmx_pslli_q:
4631      NewIntrinsic = Intrinsic::x86_mmx_psll_q;
4632      break;
4633    case Intrinsic::x86_mmx_psrli_w:
4634      NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
4635      break;
4636    case Intrinsic::x86_mmx_psrli_d:
4637      NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
4638      break;
4639    case Intrinsic::x86_mmx_psrli_q:
4640      NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
4641      break;
4642    case Intrinsic::x86_mmx_psrai_w:
4643      NewIntrinsic = Intrinsic::x86_mmx_psra_w;
4644      break;
4645    case Intrinsic::x86_mmx_psrai_d:
4646      NewIntrinsic = Intrinsic::x86_mmx_psra_d;
4647      break;
4648    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4649    }
4650
4651    // The vector shift intrinsics with scalars uses 32b shift amounts but
4652    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
4653    // to be zero.
4654    // We must do this early because v2i32 is not a legal type.
4655    DebugLoc dl = getCurDebugLoc();
4656    SDValue ShOps[2];
4657    ShOps[0] = ShAmt;
4658    ShOps[1] = DAG.getConstant(0, MVT::i32);
4659    ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
4660    EVT DestVT = TLI.getValueType(I.getType());
4661    ShAmt = DAG.getNode(ISD::BITCAST, dl, DestVT, ShAmt);
4662    Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
4663                       DAG.getConstant(NewIntrinsic, MVT::i32),
4664                       getValue(I.getArgOperand(0)), ShAmt);
4665    setValue(&I, Res);
4666    return 0;
4667  }
4668  case Intrinsic::convertff:
4669  case Intrinsic::convertfsi:
4670  case Intrinsic::convertfui:
4671  case Intrinsic::convertsif:
4672  case Intrinsic::convertuif:
4673  case Intrinsic::convertss:
4674  case Intrinsic::convertsu:
4675  case Intrinsic::convertus:
4676  case Intrinsic::convertuu: {
4677    ISD::CvtCode Code = ISD::CVT_INVALID;
4678    switch (Intrinsic) {
4679    case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
4680    case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4681    case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4682    case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4683    case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4684    case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
4685    case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
4686    case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4687    case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4688    }
4689    EVT DestVT = TLI.getValueType(I.getType());
4690    const Value *Op1 = I.getArgOperand(0);
4691    Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1),
4692                               DAG.getValueType(DestVT),
4693                               DAG.getValueType(getValue(Op1).getValueType()),
4694                               getValue(I.getArgOperand(1)),
4695                               getValue(I.getArgOperand(2)),
4696                               Code);
4697    setValue(&I, Res);
4698    return 0;
4699  }
4700  case Intrinsic::sqrt:
4701    setValue(&I, DAG.getNode(ISD::FSQRT, dl,
4702                             getValue(I.getArgOperand(0)).getValueType(),
4703                             getValue(I.getArgOperand(0))));
4704    return 0;
4705  case Intrinsic::powi:
4706    setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)),
4707                            getValue(I.getArgOperand(1)), DAG));
4708    return 0;
4709  case Intrinsic::sin:
4710    setValue(&I, DAG.getNode(ISD::FSIN, dl,
4711                             getValue(I.getArgOperand(0)).getValueType(),
4712                             getValue(I.getArgOperand(0))));
4713    return 0;
4714  case Intrinsic::cos:
4715    setValue(&I, DAG.getNode(ISD::FCOS, dl,
4716                             getValue(I.getArgOperand(0)).getValueType(),
4717                             getValue(I.getArgOperand(0))));
4718    return 0;
4719  case Intrinsic::log:
4720    visitLog(I);
4721    return 0;
4722  case Intrinsic::log2:
4723    visitLog2(I);
4724    return 0;
4725  case Intrinsic::log10:
4726    visitLog10(I);
4727    return 0;
4728  case Intrinsic::exp:
4729    visitExp(I);
4730    return 0;
4731  case Intrinsic::exp2:
4732    visitExp2(I);
4733    return 0;
4734  case Intrinsic::pow:
4735    visitPow(I);
4736    return 0;
4737  case Intrinsic::fma:
4738    setValue(&I, DAG.getNode(ISD::FMA, dl,
4739                             getValue(I.getArgOperand(0)).getValueType(),
4740                             getValue(I.getArgOperand(0)),
4741                             getValue(I.getArgOperand(1)),
4742                             getValue(I.getArgOperand(2))));
4743    return 0;
4744  case Intrinsic::convert_to_fp16:
4745    setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl,
4746                             MVT::i16, getValue(I.getArgOperand(0))));
4747    return 0;
4748  case Intrinsic::convert_from_fp16:
4749    setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl,
4750                             MVT::f32, getValue(I.getArgOperand(0))));
4751    return 0;
4752  case Intrinsic::pcmarker: {
4753    SDValue Tmp = getValue(I.getArgOperand(0));
4754    DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp));
4755    return 0;
4756  }
4757  case Intrinsic::readcyclecounter: {
4758    SDValue Op = getRoot();
4759    Res = DAG.getNode(ISD::READCYCLECOUNTER, dl,
4760                      DAG.getVTList(MVT::i64, MVT::Other),
4761                      &Op, 1);
4762    setValue(&I, Res);
4763    DAG.setRoot(Res.getValue(1));
4764    return 0;
4765  }
4766  case Intrinsic::bswap:
4767    setValue(&I, DAG.getNode(ISD::BSWAP, dl,
4768                             getValue(I.getArgOperand(0)).getValueType(),
4769                             getValue(I.getArgOperand(0))));
4770    return 0;
4771  case Intrinsic::cttz: {
4772    SDValue Arg = getValue(I.getArgOperand(0));
4773    EVT Ty = Arg.getValueType();
4774    setValue(&I, DAG.getNode(ISD::CTTZ, dl, Ty, Arg));
4775    return 0;
4776  }
4777  case Intrinsic::ctlz: {
4778    SDValue Arg = getValue(I.getArgOperand(0));
4779    EVT Ty = Arg.getValueType();
4780    setValue(&I, DAG.getNode(ISD::CTLZ, dl, Ty, Arg));
4781    return 0;
4782  }
4783  case Intrinsic::ctpop: {
4784    SDValue Arg = getValue(I.getArgOperand(0));
4785    EVT Ty = Arg.getValueType();
4786    setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg));
4787    return 0;
4788  }
4789  case Intrinsic::stacksave: {
4790    SDValue Op = getRoot();
4791    Res = DAG.getNode(ISD::STACKSAVE, dl,
4792                      DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
4793    setValue(&I, Res);
4794    DAG.setRoot(Res.getValue(1));
4795    return 0;
4796  }
4797  case Intrinsic::stackrestore: {
4798    Res = getValue(I.getArgOperand(0));
4799    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res));
4800    return 0;
4801  }
4802  case Intrinsic::stackprotector: {
4803    // Emit code into the DAG to store the stack guard onto the stack.
4804    MachineFunction &MF = DAG.getMachineFunction();
4805    MachineFrameInfo *MFI = MF.getFrameInfo();
4806    EVT PtrTy = TLI.getPointerTy();
4807
4808    SDValue Src = getValue(I.getArgOperand(0));   // The guard's value.
4809    AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
4810
4811    int FI = FuncInfo.StaticAllocaMap[Slot];
4812    MFI->setStackProtectorIndex(FI);
4813
4814    SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
4815
4816    // Store the stack protector onto the stack.
4817    Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN,
4818                       MachinePointerInfo::getFixedStack(FI),
4819                       true, false, 0);
4820    setValue(&I, Res);
4821    DAG.setRoot(Res);
4822    return 0;
4823  }
4824  case Intrinsic::objectsize: {
4825    // If we don't know by now, we're never going to know.
4826    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
4827
4828    assert(CI && "Non-constant type in __builtin_object_size?");
4829
4830    SDValue Arg = getValue(I.getCalledValue());
4831    EVT Ty = Arg.getValueType();
4832
4833    if (CI->isZero())
4834      Res = DAG.getConstant(-1ULL, Ty);
4835    else
4836      Res = DAG.getConstant(0, Ty);
4837
4838    setValue(&I, Res);
4839    return 0;
4840  }
4841  case Intrinsic::var_annotation:
4842    // Discard annotate attributes
4843    return 0;
4844
4845  case Intrinsic::init_trampoline: {
4846    const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
4847
4848    SDValue Ops[6];
4849    Ops[0] = getRoot();
4850    Ops[1] = getValue(I.getArgOperand(0));
4851    Ops[2] = getValue(I.getArgOperand(1));
4852    Ops[3] = getValue(I.getArgOperand(2));
4853    Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
4854    Ops[5] = DAG.getSrcValue(F);
4855
4856    Res = DAG.getNode(ISD::TRAMPOLINE, dl,
4857                      DAG.getVTList(TLI.getPointerTy(), MVT::Other),
4858                      Ops, 6);
4859
4860    setValue(&I, Res);
4861    DAG.setRoot(Res.getValue(1));
4862    return 0;
4863  }
4864  case Intrinsic::gcroot:
4865    if (GFI) {
4866      const Value *Alloca = I.getArgOperand(0);
4867      const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
4868
4869      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
4870      GFI->addStackRoot(FI->getIndex(), TypeMap);
4871    }
4872    return 0;
4873  case Intrinsic::gcread:
4874  case Intrinsic::gcwrite:
4875    llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
4876    return 0;
4877  case Intrinsic::flt_rounds:
4878    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32));
4879    return 0;
4880
4881  case Intrinsic::expect: {
4882    // Just replace __builtin_expect(exp, c) with EXP.
4883    setValue(&I, getValue(I.getArgOperand(0)));
4884    return 0;
4885  }
4886
4887  case Intrinsic::trap: {
4888    StringRef TrapFuncName = getTrapFunctionName();
4889    if (TrapFuncName.empty()) {
4890      DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot()));
4891      return 0;
4892    }
4893    TargetLowering::ArgListTy Args;
4894    std::pair<SDValue, SDValue> Result =
4895      TLI.LowerCallTo(getRoot(), I.getType(),
4896                 false, false, false, false, 0, CallingConv::C,
4897                 /*isTailCall=*/false, /*isReturnValueUsed=*/true,
4898                 DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()),
4899                 Args, DAG, getCurDebugLoc());
4900    DAG.setRoot(Result.second);
4901    return 0;
4902  }
4903  case Intrinsic::uadd_with_overflow:
4904    return implVisitAluOverflow(I, ISD::UADDO);
4905  case Intrinsic::sadd_with_overflow:
4906    return implVisitAluOverflow(I, ISD::SADDO);
4907  case Intrinsic::usub_with_overflow:
4908    return implVisitAluOverflow(I, ISD::USUBO);
4909  case Intrinsic::ssub_with_overflow:
4910    return implVisitAluOverflow(I, ISD::SSUBO);
4911  case Intrinsic::umul_with_overflow:
4912    return implVisitAluOverflow(I, ISD::UMULO);
4913  case Intrinsic::smul_with_overflow:
4914    return implVisitAluOverflow(I, ISD::SMULO);
4915
4916  case Intrinsic::prefetch: {
4917    SDValue Ops[5];
4918    unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
4919    Ops[0] = getRoot();
4920    Ops[1] = getValue(I.getArgOperand(0));
4921    Ops[2] = getValue(I.getArgOperand(1));
4922    Ops[3] = getValue(I.getArgOperand(2));
4923    Ops[4] = getValue(I.getArgOperand(3));
4924    DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, dl,
4925                                        DAG.getVTList(MVT::Other),
4926                                        &Ops[0], 5,
4927                                        EVT::getIntegerVT(*Context, 8),
4928                                        MachinePointerInfo(I.getArgOperand(0)),
4929                                        0, /* align */
4930                                        false, /* volatile */
4931                                        rw==0, /* read */
4932                                        rw==1)); /* write */
4933    return 0;
4934  }
4935  case Intrinsic::memory_barrier: {
4936    SDValue Ops[6];
4937    Ops[0] = getRoot();
4938    for (int x = 1; x < 6; ++x)
4939      Ops[x] = getValue(I.getArgOperand(x - 1));
4940
4941    DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6));
4942    return 0;
4943  }
4944  case Intrinsic::atomic_cmp_swap: {
4945    SDValue Root = getRoot();
4946    SDValue L =
4947      DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(),
4948                    getValue(I.getArgOperand(1)).getValueType().getSimpleVT(),
4949                    Root,
4950                    getValue(I.getArgOperand(0)),
4951                    getValue(I.getArgOperand(1)),
4952                    getValue(I.getArgOperand(2)),
4953                    MachinePointerInfo(I.getArgOperand(0)), 0 /* Alignment */,
4954                    Monotonic, CrossThread);
4955    setValue(&I, L);
4956    DAG.setRoot(L.getValue(1));
4957    return 0;
4958  }
4959  case Intrinsic::atomic_load_add:
4960    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD);
4961  case Intrinsic::atomic_load_sub:
4962    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB);
4963  case Intrinsic::atomic_load_or:
4964    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR);
4965  case Intrinsic::atomic_load_xor:
4966    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR);
4967  case Intrinsic::atomic_load_and:
4968    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND);
4969  case Intrinsic::atomic_load_nand:
4970    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND);
4971  case Intrinsic::atomic_load_max:
4972    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX);
4973  case Intrinsic::atomic_load_min:
4974    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN);
4975  case Intrinsic::atomic_load_umin:
4976    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN);
4977  case Intrinsic::atomic_load_umax:
4978    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX);
4979  case Intrinsic::atomic_swap:
4980    return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP);
4981
4982  case Intrinsic::invariant_start:
4983  case Intrinsic::lifetime_start:
4984    // Discard region information.
4985    setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
4986    return 0;
4987  case Intrinsic::invariant_end:
4988  case Intrinsic::lifetime_end:
4989    // Discard region information.
4990    return 0;
4991  }
4992}
4993
4994void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
4995                                      bool isTailCall,
4996                                      MachineBasicBlock *LandingPad) {
4997  PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
4998  FunctionType *FTy = cast<FunctionType>(PT->getElementType());
4999  Type *RetTy = FTy->getReturnType();
5000  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5001  MCSymbol *BeginLabel = 0;
5002
5003  TargetLowering::ArgListTy Args;
5004  TargetLowering::ArgListEntry Entry;
5005  Args.reserve(CS.arg_size());
5006
5007  // Check whether the function can return without sret-demotion.
5008  SmallVector<ISD::OutputArg, 4> Outs;
5009  SmallVector<uint64_t, 4> Offsets;
5010  GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(),
5011                Outs, TLI, &Offsets);
5012
5013  bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
5014					   DAG.getMachineFunction(),
5015					   FTy->isVarArg(), Outs,
5016					   FTy->getContext());
5017
5018  SDValue DemoteStackSlot;
5019  int DemoteStackIdx = -100;
5020
5021  if (!CanLowerReturn) {
5022    uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(
5023                      FTy->getReturnType());
5024    unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(
5025                      FTy->getReturnType());
5026    MachineFunction &MF = DAG.getMachineFunction();
5027    DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5028    Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
5029
5030    DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI.getPointerTy());
5031    Entry.Node = DemoteStackSlot;
5032    Entry.Ty = StackSlotPtrType;
5033    Entry.isSExt = false;
5034    Entry.isZExt = false;
5035    Entry.isInReg = false;
5036    Entry.isSRet = true;
5037    Entry.isNest = false;
5038    Entry.isByVal = false;
5039    Entry.Alignment = Align;
5040    Args.push_back(Entry);
5041    RetTy = Type::getVoidTy(FTy->getContext());
5042  }
5043
5044  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
5045       i != e; ++i) {
5046    const Value *V = *i;
5047
5048    // Skip empty types
5049    if (V->getType()->isEmptyTy())
5050      continue;
5051
5052    SDValue ArgNode = getValue(V);
5053    Entry.Node = ArgNode; Entry.Ty = V->getType();
5054
5055    unsigned attrInd = i - CS.arg_begin() + 1;
5056    Entry.isSExt  = CS.paramHasAttr(attrInd, Attribute::SExt);
5057    Entry.isZExt  = CS.paramHasAttr(attrInd, Attribute::ZExt);
5058    Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg);
5059    Entry.isSRet  = CS.paramHasAttr(attrInd, Attribute::StructRet);
5060    Entry.isNest  = CS.paramHasAttr(attrInd, Attribute::Nest);
5061    Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal);
5062    Entry.Alignment = CS.getParamAlignment(attrInd);
5063    Args.push_back(Entry);
5064  }
5065
5066  if (LandingPad) {
5067    // Insert a label before the invoke call to mark the try range.  This can be
5068    // used to detect deletion of the invoke via the MachineModuleInfo.
5069    BeginLabel = MMI.getContext().CreateTempSymbol();
5070
5071    // For SjLj, keep track of which landing pads go with which invokes
5072    // so as to maintain the ordering of pads in the LSDA.
5073    unsigned CallSiteIndex = MMI.getCurrentCallSite();
5074    if (CallSiteIndex) {
5075      MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
5076      // Now that the call site is handled, stop tracking it.
5077      MMI.setCurrentCallSite(0);
5078    }
5079
5080    // Both PendingLoads and PendingExports must be flushed here;
5081    // this call might not return.
5082    (void)getRoot();
5083    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel));
5084  }
5085
5086  // Check if target-independent constraints permit a tail call here.
5087  // Target-dependent constraints are checked within TLI.LowerCallTo.
5088  if (isTailCall &&
5089      !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI))
5090    isTailCall = false;
5091
5092  // If there's a possibility that fast-isel has already selected some amount
5093  // of the current basic block, don't emit a tail call.
5094  if (isTailCall && EnableFastISel)
5095    isTailCall = false;
5096
5097  std::pair<SDValue,SDValue> Result =
5098    TLI.LowerCallTo(getRoot(), RetTy,
5099                    CS.paramHasAttr(0, Attribute::SExt),
5100                    CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(),
5101                    CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(),
5102                    CS.getCallingConv(),
5103                    isTailCall,
5104                    !CS.getInstruction()->use_empty(),
5105                    Callee, Args, DAG, getCurDebugLoc());
5106  assert((isTailCall || Result.second.getNode()) &&
5107         "Non-null chain expected with non-tail call!");
5108  assert((Result.second.getNode() || !Result.first.getNode()) &&
5109         "Null value expected with tail call!");
5110  if (Result.first.getNode()) {
5111    setValue(CS.getInstruction(), Result.first);
5112  } else if (!CanLowerReturn && Result.second.getNode()) {
5113    // The instruction result is the result of loading from the
5114    // hidden sret parameter.
5115    SmallVector<EVT, 1> PVTs;
5116    Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
5117
5118    ComputeValueVTs(TLI, PtrRetTy, PVTs);
5119    assert(PVTs.size() == 1 && "Pointers should fit in one register");
5120    EVT PtrVT = PVTs[0];
5121    unsigned NumValues = Outs.size();
5122    SmallVector<SDValue, 4> Values(NumValues);
5123    SmallVector<SDValue, 4> Chains(NumValues);
5124
5125    for (unsigned i = 0; i < NumValues; ++i) {
5126      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT,
5127                                DemoteStackSlot,
5128                                DAG.getConstant(Offsets[i], PtrVT));
5129      SDValue L = DAG.getLoad(Outs[i].VT, getCurDebugLoc(), Result.second,
5130                              Add,
5131                  MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]),
5132                              false, false, 1);
5133      Values[i] = L;
5134      Chains[i] = L.getValue(1);
5135    }
5136
5137    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
5138                                MVT::Other, &Chains[0], NumValues);
5139    PendingLoads.push_back(Chain);
5140
5141    // Collect the legal value parts into potentially illegal values
5142    // that correspond to the original function's return values.
5143    SmallVector<EVT, 4> RetTys;
5144    RetTy = FTy->getReturnType();
5145    ComputeValueVTs(TLI, RetTy, RetTys);
5146    ISD::NodeType AssertOp = ISD::DELETED_NODE;
5147    SmallVector<SDValue, 4> ReturnValues;
5148    unsigned CurReg = 0;
5149    for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
5150      EVT VT = RetTys[I];
5151      EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT);
5152      unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT);
5153
5154      SDValue ReturnValue =
5155        getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs,
5156                         RegisterVT, VT, AssertOp);
5157      ReturnValues.push_back(ReturnValue);
5158      CurReg += NumRegs;
5159    }
5160
5161    setValue(CS.getInstruction(),
5162             DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
5163                         DAG.getVTList(&RetTys[0], RetTys.size()),
5164                         &ReturnValues[0], ReturnValues.size()));
5165  }
5166
5167  // Assign order to nodes here. If the call does not produce a result, it won't
5168  // be mapped to a SDNode and visit() will not assign it an order number.
5169  if (!Result.second.getNode()) {
5170    // As a special case, a null chain means that a tail call has been emitted and
5171    // the DAG root is already updated.
5172    HasTailCall = true;
5173    ++SDNodeOrder;
5174    AssignOrderingToNode(DAG.getRoot().getNode());
5175  } else {
5176    DAG.setRoot(Result.second);
5177    ++SDNodeOrder;
5178    AssignOrderingToNode(Result.second.getNode());
5179  }
5180
5181  if (LandingPad) {
5182    // Insert a label at the end of the invoke call to mark the try range.  This
5183    // can be used to detect deletion of the invoke via the MachineModuleInfo.
5184    MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
5185    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel));
5186
5187    // Inform MachineModuleInfo of range.
5188    MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
5189  }
5190}
5191
5192/// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
5193/// value is equal or not-equal to zero.
5194static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
5195  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
5196       UI != E; ++UI) {
5197    if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
5198      if (IC->isEquality())
5199        if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
5200          if (C->isNullValue())
5201            continue;
5202    // Unknown instruction.
5203    return false;
5204  }
5205  return true;
5206}
5207
5208static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
5209                             Type *LoadTy,
5210                             SelectionDAGBuilder &Builder) {
5211
5212  // Check to see if this load can be trivially constant folded, e.g. if the
5213  // input is from a string literal.
5214  if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5215    // Cast pointer to the type we really want to load.
5216    LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5217                                         PointerType::getUnqual(LoadTy));
5218
5219    if (const Constant *LoadCst =
5220          ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
5221                                       Builder.TD))
5222      return Builder.getValue(LoadCst);
5223  }
5224
5225  // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
5226  // still constant memory, the input chain can be the entry node.
5227  SDValue Root;
5228  bool ConstantMemory = false;
5229
5230  // Do not serialize (non-volatile) loads of constant memory with anything.
5231  if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5232    Root = Builder.DAG.getEntryNode();
5233    ConstantMemory = true;
5234  } else {
5235    // Do not serialize non-volatile loads against each other.
5236    Root = Builder.DAG.getRoot();
5237  }
5238
5239  SDValue Ptr = Builder.getValue(PtrVal);
5240  SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root,
5241                                        Ptr, MachinePointerInfo(PtrVal),
5242                                        false /*volatile*/,
5243                                        false /*nontemporal*/, 1 /* align=1 */);
5244
5245  if (!ConstantMemory)
5246    Builder.PendingLoads.push_back(LoadVal.getValue(1));
5247  return LoadVal;
5248}
5249
5250
5251/// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5252/// If so, return true and lower it, otherwise return false and it will be
5253/// lowered like a normal call.
5254bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5255  // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
5256  if (I.getNumArgOperands() != 3)
5257    return false;
5258
5259  const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5260  if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5261      !I.getArgOperand(2)->getType()->isIntegerTy() ||
5262      !I.getType()->isIntegerTy())
5263    return false;
5264
5265  const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2));
5266
5267  // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
5268  // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
5269  if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) {
5270    bool ActuallyDoIt = true;
5271    MVT LoadVT;
5272    Type *LoadTy;
5273    switch (Size->getZExtValue()) {
5274    default:
5275      LoadVT = MVT::Other;
5276      LoadTy = 0;
5277      ActuallyDoIt = false;
5278      break;
5279    case 2:
5280      LoadVT = MVT::i16;
5281      LoadTy = Type::getInt16Ty(Size->getContext());
5282      break;
5283    case 4:
5284      LoadVT = MVT::i32;
5285      LoadTy = Type::getInt32Ty(Size->getContext());
5286      break;
5287    case 8:
5288      LoadVT = MVT::i64;
5289      LoadTy = Type::getInt64Ty(Size->getContext());
5290      break;
5291        /*
5292    case 16:
5293      LoadVT = MVT::v4i32;
5294      LoadTy = Type::getInt32Ty(Size->getContext());
5295      LoadTy = VectorType::get(LoadTy, 4);
5296      break;
5297         */
5298    }
5299
5300    // This turns into unaligned loads.  We only do this if the target natively
5301    // supports the MVT we'll be loading or if it is small enough (<= 4) that
5302    // we'll only produce a small number of byte loads.
5303
5304    // Require that we can find a legal MVT, and only do this if the target
5305    // supports unaligned loads of that type.  Expanding into byte loads would
5306    // bloat the code.
5307    if (ActuallyDoIt && Size->getZExtValue() > 4) {
5308      // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5309      // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5310      if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT))
5311        ActuallyDoIt = false;
5312    }
5313
5314    if (ActuallyDoIt) {
5315      SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5316      SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5317
5318      SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal,
5319                                 ISD::SETNE);
5320      EVT CallVT = TLI.getValueType(I.getType(), true);
5321      setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT));
5322      return true;
5323    }
5324  }
5325
5326
5327  return false;
5328}
5329
5330
5331void SelectionDAGBuilder::visitCall(const CallInst &I) {
5332  // Handle inline assembly differently.
5333  if (isa<InlineAsm>(I.getCalledValue())) {
5334    visitInlineAsm(&I);
5335    return;
5336  }
5337
5338  // See if any floating point values are being passed to this function. This is
5339  // used to emit an undefined reference to fltused on Windows.
5340  FunctionType *FT =
5341    cast<FunctionType>(I.getCalledValue()->getType()->getContainedType(0));
5342  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5343  if (FT->isVarArg() &&
5344      !MMI.callsExternalVAFunctionWithFloatingPointArguments()) {
5345    for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
5346      Type* T = I.getArgOperand(i)->getType();
5347      for (po_iterator<Type*> i = po_begin(T), e = po_end(T);
5348           i != e; ++i) {
5349        if (!i->isFloatingPointTy()) continue;
5350        MMI.setCallsExternalVAFunctionWithFloatingPointArguments(true);
5351        break;
5352      }
5353    }
5354  }
5355
5356  const char *RenameFn = 0;
5357  if (Function *F = I.getCalledFunction()) {
5358    if (F->isDeclaration()) {
5359      if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
5360        if (unsigned IID = II->getIntrinsicID(F)) {
5361          RenameFn = visitIntrinsicCall(I, IID);
5362          if (!RenameFn)
5363            return;
5364        }
5365      }
5366      if (unsigned IID = F->getIntrinsicID()) {
5367        RenameFn = visitIntrinsicCall(I, IID);
5368        if (!RenameFn)
5369          return;
5370      }
5371    }
5372
5373    // Check for well-known libc/libm calls.  If the function is internal, it
5374    // can't be a library call.
5375    if (!F->hasLocalLinkage() && F->hasName()) {
5376      StringRef Name = F->getName();
5377      if (Name == "copysign" || Name == "copysignf" || Name == "copysignl") {
5378        if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
5379            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5380            I.getType() == I.getArgOperand(0)->getType() &&
5381            I.getType() == I.getArgOperand(1)->getType()) {
5382          SDValue LHS = getValue(I.getArgOperand(0));
5383          SDValue RHS = getValue(I.getArgOperand(1));
5384          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(),
5385                                   LHS.getValueType(), LHS, RHS));
5386          return;
5387        }
5388      } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") {
5389        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5390            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5391            I.getType() == I.getArgOperand(0)->getType()) {
5392          SDValue Tmp = getValue(I.getArgOperand(0));
5393          setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(),
5394                                   Tmp.getValueType(), Tmp));
5395          return;
5396        }
5397      } else if (Name == "sin" || Name == "sinf" || Name == "sinl") {
5398        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5399            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5400            I.getType() == I.getArgOperand(0)->getType() &&
5401            I.onlyReadsMemory()) {
5402          SDValue Tmp = getValue(I.getArgOperand(0));
5403          setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(),
5404                                   Tmp.getValueType(), Tmp));
5405          return;
5406        }
5407      } else if (Name == "cos" || Name == "cosf" || Name == "cosl") {
5408        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5409            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5410            I.getType() == I.getArgOperand(0)->getType() &&
5411            I.onlyReadsMemory()) {
5412          SDValue Tmp = getValue(I.getArgOperand(0));
5413          setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(),
5414                                   Tmp.getValueType(), Tmp));
5415          return;
5416        }
5417      } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") {
5418        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5419            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5420            I.getType() == I.getArgOperand(0)->getType() &&
5421            I.onlyReadsMemory()) {
5422          SDValue Tmp = getValue(I.getArgOperand(0));
5423          setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(),
5424                                   Tmp.getValueType(), Tmp));
5425          return;
5426        }
5427      } else if (Name == "memcmp") {
5428        if (visitMemCmpCall(I))
5429          return;
5430      }
5431    }
5432  }
5433
5434  SDValue Callee;
5435  if (!RenameFn)
5436    Callee = getValue(I.getCalledValue());
5437  else
5438    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
5439
5440  // Check if we can potentially perform a tail call. More detailed checking is
5441  // be done within LowerCallTo, after more information about the call is known.
5442  LowerCallTo(&I, Callee, I.isTailCall());
5443}
5444
5445namespace {
5446
5447/// AsmOperandInfo - This contains information for each constraint that we are
5448/// lowering.
5449class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
5450public:
5451  /// CallOperand - If this is the result output operand or a clobber
5452  /// this is null, otherwise it is the incoming operand to the CallInst.
5453  /// This gets modified as the asm is processed.
5454  SDValue CallOperand;
5455
5456  /// AssignedRegs - If this is a register or register class operand, this
5457  /// contains the set of register corresponding to the operand.
5458  RegsForValue AssignedRegs;
5459
5460  explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
5461    : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
5462  }
5463
5464  /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
5465  /// busy in OutputRegs/InputRegs.
5466  void MarkAllocatedRegs(bool isOutReg, bool isInReg,
5467                         std::set<unsigned> &OutputRegs,
5468                         std::set<unsigned> &InputRegs,
5469                         const TargetRegisterInfo &TRI) const {
5470    if (isOutReg) {
5471      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
5472        MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
5473    }
5474    if (isInReg) {
5475      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
5476        MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
5477    }
5478  }
5479
5480  /// getCallOperandValEVT - Return the EVT of the Value* that this operand
5481  /// corresponds to.  If there is no Value* for this operand, it returns
5482  /// MVT::Other.
5483  EVT getCallOperandValEVT(LLVMContext &Context,
5484                           const TargetLowering &TLI,
5485                           const TargetData *TD) const {
5486    if (CallOperandVal == 0) return MVT::Other;
5487
5488    if (isa<BasicBlock>(CallOperandVal))
5489      return TLI.getPointerTy();
5490
5491    llvm::Type *OpTy = CallOperandVal->getType();
5492
5493    // FIXME: code duplicated from TargetLowering::ParseConstraints().
5494    // If this is an indirect operand, the operand is a pointer to the
5495    // accessed type.
5496    if (isIndirect) {
5497      llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
5498      if (!PtrTy)
5499        report_fatal_error("Indirect operand for inline asm not a pointer!");
5500      OpTy = PtrTy->getElementType();
5501    }
5502
5503    // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
5504    if (StructType *STy = dyn_cast<StructType>(OpTy))
5505      if (STy->getNumElements() == 1)
5506        OpTy = STy->getElementType(0);
5507
5508    // If OpTy is not a single value, it may be a struct/union that we
5509    // can tile with integers.
5510    if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5511      unsigned BitSize = TD->getTypeSizeInBits(OpTy);
5512      switch (BitSize) {
5513      default: break;
5514      case 1:
5515      case 8:
5516      case 16:
5517      case 32:
5518      case 64:
5519      case 128:
5520        OpTy = IntegerType::get(Context, BitSize);
5521        break;
5522      }
5523    }
5524
5525    return TLI.getValueType(OpTy, true);
5526  }
5527
5528private:
5529  /// MarkRegAndAliases - Mark the specified register and all aliases in the
5530  /// specified set.
5531  static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
5532                                const TargetRegisterInfo &TRI) {
5533    assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
5534    Regs.insert(Reg);
5535    if (const unsigned *Aliases = TRI.getAliasSet(Reg))
5536      for (; *Aliases; ++Aliases)
5537        Regs.insert(*Aliases);
5538  }
5539};
5540
5541typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
5542
5543} // end anonymous namespace
5544
5545/// GetRegistersForValue - Assign registers (virtual or physical) for the
5546/// specified operand.  We prefer to assign virtual registers, to allow the
5547/// register allocator to handle the assignment process.  However, if the asm
5548/// uses features that we can't model on machineinstrs, we have SDISel do the
5549/// allocation.  This produces generally horrible, but correct, code.
5550///
5551///   OpInfo describes the operand.
5552///   Input and OutputRegs are the set of already allocated physical registers.
5553///
5554static void GetRegistersForValue(SelectionDAG &DAG,
5555                                 const TargetLowering &TLI,
5556                                 DebugLoc DL,
5557                                 SDISelAsmOperandInfo &OpInfo,
5558                                 std::set<unsigned> &OutputRegs,
5559                                 std::set<unsigned> &InputRegs) {
5560  LLVMContext &Context = *DAG.getContext();
5561
5562  // Compute whether this value requires an input register, an output register,
5563  // or both.
5564  bool isOutReg = false;
5565  bool isInReg = false;
5566  switch (OpInfo.Type) {
5567  case InlineAsm::isOutput:
5568    isOutReg = true;
5569
5570    // If there is an input constraint that matches this, we need to reserve
5571    // the input register so no other inputs allocate to it.
5572    isInReg = OpInfo.hasMatchingInput();
5573    break;
5574  case InlineAsm::isInput:
5575    isInReg = true;
5576    isOutReg = false;
5577    break;
5578  case InlineAsm::isClobber:
5579    isOutReg = true;
5580    isInReg = true;
5581    break;
5582  }
5583
5584
5585  MachineFunction &MF = DAG.getMachineFunction();
5586  SmallVector<unsigned, 4> Regs;
5587
5588  // If this is a constraint for a single physreg, or a constraint for a
5589  // register class, find it.
5590  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
5591    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5592                                     OpInfo.ConstraintVT);
5593
5594  unsigned NumRegs = 1;
5595  if (OpInfo.ConstraintVT != MVT::Other) {
5596    // If this is a FP input in an integer register (or visa versa) insert a bit
5597    // cast of the input value.  More generally, handle any case where the input
5598    // value disagrees with the register class we plan to stick this in.
5599    if (OpInfo.Type == InlineAsm::isInput &&
5600        PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
5601      // Try to convert to the first EVT that the reg class contains.  If the
5602      // types are identical size, use a bitcast to convert (e.g. two differing
5603      // vector types).
5604      EVT RegVT = *PhysReg.second->vt_begin();
5605      if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
5606        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5607                                         RegVT, OpInfo.CallOperand);
5608        OpInfo.ConstraintVT = RegVT;
5609      } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
5610        // If the input is a FP value and we want it in FP registers, do a
5611        // bitcast to the corresponding integer type.  This turns an f64 value
5612        // into i64, which can be passed with two i32 values on a 32-bit
5613        // machine.
5614        RegVT = EVT::getIntegerVT(Context,
5615                                  OpInfo.ConstraintVT.getSizeInBits());
5616        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5617                                         RegVT, OpInfo.CallOperand);
5618        OpInfo.ConstraintVT = RegVT;
5619      }
5620    }
5621
5622    NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
5623  }
5624
5625  EVT RegVT;
5626  EVT ValueVT = OpInfo.ConstraintVT;
5627
5628  // If this is a constraint for a specific physical register, like {r17},
5629  // assign it now.
5630  if (unsigned AssignedReg = PhysReg.first) {
5631    const TargetRegisterClass *RC = PhysReg.second;
5632    if (OpInfo.ConstraintVT == MVT::Other)
5633      ValueVT = *RC->vt_begin();
5634
5635    // Get the actual register value type.  This is important, because the user
5636    // may have asked for (e.g.) the AX register in i32 type.  We need to
5637    // remember that AX is actually i16 to get the right extension.
5638    RegVT = *RC->vt_begin();
5639
5640    // This is a explicit reference to a physical register.
5641    Regs.push_back(AssignedReg);
5642
5643    // If this is an expanded reference, add the rest of the regs to Regs.
5644    if (NumRegs != 1) {
5645      TargetRegisterClass::iterator I = RC->begin();
5646      for (; *I != AssignedReg; ++I)
5647        assert(I != RC->end() && "Didn't find reg!");
5648
5649      // Already added the first reg.
5650      --NumRegs; ++I;
5651      for (; NumRegs; --NumRegs, ++I) {
5652        assert(I != RC->end() && "Ran out of registers to allocate!");
5653        Regs.push_back(*I);
5654      }
5655    }
5656
5657    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5658    const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5659    OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5660    return;
5661  }
5662
5663  // Otherwise, if this was a reference to an LLVM register class, create vregs
5664  // for this reference.
5665  if (const TargetRegisterClass *RC = PhysReg.second) {
5666    RegVT = *RC->vt_begin();
5667    if (OpInfo.ConstraintVT == MVT::Other)
5668      ValueVT = RegVT;
5669
5670    // Create the appropriate number of virtual registers.
5671    MachineRegisterInfo &RegInfo = MF.getRegInfo();
5672    for (; NumRegs; --NumRegs)
5673      Regs.push_back(RegInfo.createVirtualRegister(RC));
5674
5675    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5676    return;
5677  }
5678
5679  // Otherwise, we couldn't allocate enough registers for this.
5680}
5681
5682/// visitInlineAsm - Handle a call to an InlineAsm object.
5683///
5684void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
5685  const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
5686
5687  /// ConstraintOperands - Information about all of the constraints.
5688  SDISelAsmOperandInfoVector ConstraintOperands;
5689
5690  std::set<unsigned> OutputRegs, InputRegs;
5691
5692  TargetLowering::AsmOperandInfoVector
5693    TargetConstraints = TLI.ParseConstraints(CS);
5694
5695  bool hasMemory = false;
5696
5697  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
5698  unsigned ResNo = 0;   // ResNo - The result number of the next output.
5699  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
5700    ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
5701    SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
5702
5703    EVT OpVT = MVT::Other;
5704
5705    // Compute the value type for each operand.
5706    switch (OpInfo.Type) {
5707    case InlineAsm::isOutput:
5708      // Indirect outputs just consume an argument.
5709      if (OpInfo.isIndirect) {
5710        OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5711        break;
5712      }
5713
5714      // The return value of the call is this value.  As such, there is no
5715      // corresponding argument.
5716      assert(!CS.getType()->isVoidTy() &&
5717             "Bad inline asm!");
5718      if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
5719        OpVT = TLI.getValueType(STy->getElementType(ResNo));
5720      } else {
5721        assert(ResNo == 0 && "Asm only has one result!");
5722        OpVT = TLI.getValueType(CS.getType());
5723      }
5724      ++ResNo;
5725      break;
5726    case InlineAsm::isInput:
5727      OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5728      break;
5729    case InlineAsm::isClobber:
5730      // Nothing to do.
5731      break;
5732    }
5733
5734    // If this is an input or an indirect output, process the call argument.
5735    // BasicBlocks are labels, currently appearing only in asm's.
5736    if (OpInfo.CallOperandVal) {
5737      if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
5738        OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
5739      } else {
5740        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
5741      }
5742
5743      OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD);
5744    }
5745
5746    OpInfo.ConstraintVT = OpVT;
5747
5748    // Indirect operand accesses access memory.
5749    if (OpInfo.isIndirect)
5750      hasMemory = true;
5751    else {
5752      for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
5753        TargetLowering::ConstraintType
5754          CType = TLI.getConstraintType(OpInfo.Codes[j]);
5755        if (CType == TargetLowering::C_Memory) {
5756          hasMemory = true;
5757          break;
5758        }
5759      }
5760    }
5761  }
5762
5763  SDValue Chain, Flag;
5764
5765  // We won't need to flush pending loads if this asm doesn't touch
5766  // memory and is nonvolatile.
5767  if (hasMemory || IA->hasSideEffects())
5768    Chain = getRoot();
5769  else
5770    Chain = DAG.getRoot();
5771
5772  // Second pass over the constraints: compute which constraint option to use
5773  // and assign registers to constraints that want a specific physreg.
5774  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5775    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5776
5777    // If this is an output operand with a matching input operand, look up the
5778    // matching input. If their types mismatch, e.g. one is an integer, the
5779    // other is floating point, or their sizes are different, flag it as an
5780    // error.
5781    if (OpInfo.hasMatchingInput()) {
5782      SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5783
5784      if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5785	std::pair<unsigned, const TargetRegisterClass*> MatchRC =
5786	  TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, OpInfo.ConstraintVT);
5787	std::pair<unsigned, const TargetRegisterClass*> InputRC =
5788	  TLI.getRegForInlineAsmConstraint(Input.ConstraintCode, Input.ConstraintVT);
5789        if ((OpInfo.ConstraintVT.isInteger() !=
5790             Input.ConstraintVT.isInteger()) ||
5791            (MatchRC.second != InputRC.second)) {
5792          report_fatal_error("Unsupported asm: input constraint"
5793                             " with a matching output constraint of"
5794                             " incompatible type!");
5795        }
5796        Input.ConstraintVT = OpInfo.ConstraintVT;
5797      }
5798    }
5799
5800    // Compute the constraint code and ConstraintType to use.
5801    TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
5802
5803    // If this is a memory input, and if the operand is not indirect, do what we
5804    // need to to provide an address for the memory input.
5805    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5806        !OpInfo.isIndirect) {
5807      assert((OpInfo.isMultipleAlternative ||
5808              (OpInfo.Type == InlineAsm::isInput)) &&
5809             "Can only indirectify direct input operands!");
5810
5811      // Memory operands really want the address of the value.  If we don't have
5812      // an indirect input, put it in the constpool if we can, otherwise spill
5813      // it to a stack slot.
5814      // TODO: This isn't quite right. We need to handle these according to
5815      // the addressing mode that the constraint wants. Also, this may take
5816      // an additional register for the computation and we don't want that
5817      // either.
5818
5819      // If the operand is a float, integer, or vector constant, spill to a
5820      // constant pool entry to get its address.
5821      const Value *OpVal = OpInfo.CallOperandVal;
5822      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
5823          isa<ConstantVector>(OpVal)) {
5824        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
5825                                                 TLI.getPointerTy());
5826      } else {
5827        // Otherwise, create a stack slot and emit a store to it before the
5828        // asm.
5829        Type *Ty = OpVal->getType();
5830        uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
5831        unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
5832        MachineFunction &MF = DAG.getMachineFunction();
5833        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5834        SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
5835        Chain = DAG.getStore(Chain, getCurDebugLoc(),
5836                             OpInfo.CallOperand, StackSlot,
5837                             MachinePointerInfo::getFixedStack(SSFI),
5838                             false, false, 0);
5839        OpInfo.CallOperand = StackSlot;
5840      }
5841
5842      // There is no longer a Value* corresponding to this operand.
5843      OpInfo.CallOperandVal = 0;
5844
5845      // It is now an indirect operand.
5846      OpInfo.isIndirect = true;
5847    }
5848
5849    // If this constraint is for a specific register, allocate it before
5850    // anything else.
5851    if (OpInfo.ConstraintType == TargetLowering::C_Register)
5852      GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo, OutputRegs,
5853                           InputRegs);
5854  }
5855
5856  // Second pass - Loop over all of the operands, assigning virtual or physregs
5857  // to register class operands.
5858  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5859    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5860
5861    // C_Register operands have already been allocated, Other/Memory don't need
5862    // to be.
5863    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
5864      GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo, OutputRegs,
5865                           InputRegs);
5866  }
5867
5868  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
5869  std::vector<SDValue> AsmNodeOperands;
5870  AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
5871  AsmNodeOperands.push_back(
5872          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
5873                                      TLI.getPointerTy()));
5874
5875  // If we have a !srcloc metadata node associated with it, we want to attach
5876  // this to the ultimately generated inline asm machineinstr.  To do this, we
5877  // pass in the third operand as this (potentially null) inline asm MDNode.
5878  const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
5879  AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
5880
5881  // Remember the HasSideEffect and AlignStack bits as operand 3.
5882  unsigned ExtraInfo = 0;
5883  if (IA->hasSideEffects())
5884    ExtraInfo |= InlineAsm::Extra_HasSideEffects;
5885  if (IA->isAlignStack())
5886    ExtraInfo |= InlineAsm::Extra_IsAlignStack;
5887  AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo,
5888                                                  TLI.getPointerTy()));
5889
5890  // Loop over all of the inputs, copying the operand values into the
5891  // appropriate registers and processing the output regs.
5892  RegsForValue RetValRegs;
5893
5894  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
5895  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
5896
5897  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5898    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5899
5900    switch (OpInfo.Type) {
5901    case InlineAsm::isOutput: {
5902      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
5903          OpInfo.ConstraintType != TargetLowering::C_Register) {
5904        // Memory output, or 'other' output (e.g. 'X' constraint).
5905        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
5906
5907        // Add information to the INLINEASM node to know about this output.
5908        unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
5909        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
5910                                                        TLI.getPointerTy()));
5911        AsmNodeOperands.push_back(OpInfo.CallOperand);
5912        break;
5913      }
5914
5915      // Otherwise, this is a register or register class output.
5916
5917      // Copy the output from the appropriate register.  Find a register that
5918      // we can use.
5919      if (OpInfo.AssignedRegs.Regs.empty())
5920        report_fatal_error("Couldn't allocate output reg for constraint '" +
5921                           Twine(OpInfo.ConstraintCode) + "'!");
5922
5923      // If this is an indirect operand, store through the pointer after the
5924      // asm.
5925      if (OpInfo.isIndirect) {
5926        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
5927                                                      OpInfo.CallOperandVal));
5928      } else {
5929        // This is the result value of the call.
5930        assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
5931        // Concatenate this output onto the outputs list.
5932        RetValRegs.append(OpInfo.AssignedRegs);
5933      }
5934
5935      // Add information to the INLINEASM node to know that this register is
5936      // set.
5937      OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
5938                                           InlineAsm::Kind_RegDefEarlyClobber :
5939                                               InlineAsm::Kind_RegDef,
5940                                               false,
5941                                               0,
5942                                               DAG,
5943                                               AsmNodeOperands);
5944      break;
5945    }
5946    case InlineAsm::isInput: {
5947      SDValue InOperandVal = OpInfo.CallOperand;
5948
5949      if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
5950        // If this is required to match an output register we have already set,
5951        // just use its register.
5952        unsigned OperandNo = OpInfo.getMatchedOperand();
5953
5954        // Scan until we find the definition we already emitted of this operand.
5955        // When we find it, create a RegsForValue operand.
5956        unsigned CurOp = InlineAsm::Op_FirstOperand;
5957        for (; OperandNo; --OperandNo) {
5958          // Advance to the next operand.
5959          unsigned OpFlag =
5960            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5961          assert((InlineAsm::isRegDefKind(OpFlag) ||
5962                  InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
5963                  InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
5964          CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
5965        }
5966
5967        unsigned OpFlag =
5968          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5969        if (InlineAsm::isRegDefKind(OpFlag) ||
5970            InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
5971          // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
5972          if (OpInfo.isIndirect) {
5973            // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
5974            LLVMContext &Ctx = *DAG.getContext();
5975            Ctx.emitError(CS.getInstruction(),  "inline asm not supported yet:"
5976                          " don't know how to handle tied "
5977                          "indirect register inputs");
5978          }
5979
5980          RegsForValue MatchedRegs;
5981          MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
5982          EVT RegVT = AsmNodeOperands[CurOp+1].getValueType();
5983          MatchedRegs.RegVTs.push_back(RegVT);
5984          MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
5985          for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
5986               i != e; ++i)
5987            MatchedRegs.Regs.push_back
5988              (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)));
5989
5990          // Use the produced MatchedRegs object to
5991          MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
5992                                    Chain, &Flag);
5993          MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
5994                                           true, OpInfo.getMatchedOperand(),
5995                                           DAG, AsmNodeOperands);
5996          break;
5997        }
5998
5999        assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
6000        assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
6001               "Unexpected number of operands");
6002        // Add information to the INLINEASM node to know about this input.
6003        // See InlineAsm.h isUseOperandTiedToDef.
6004        OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
6005                                                    OpInfo.getMatchedOperand());
6006        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
6007                                                        TLI.getPointerTy()));
6008        AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
6009        break;
6010      }
6011
6012      // Treat indirect 'X' constraint as memory.
6013      if (OpInfo.ConstraintType == TargetLowering::C_Other &&
6014          OpInfo.isIndirect)
6015        OpInfo.ConstraintType = TargetLowering::C_Memory;
6016
6017      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
6018        std::vector<SDValue> Ops;
6019        TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
6020                                         Ops, DAG);
6021        if (Ops.empty())
6022          report_fatal_error("Invalid operand for inline asm constraint '" +
6023                             Twine(OpInfo.ConstraintCode) + "'!");
6024
6025        // Add information to the INLINEASM node to know about this input.
6026        unsigned ResOpType =
6027          InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
6028        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6029                                                        TLI.getPointerTy()));
6030        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
6031        break;
6032      }
6033
6034      if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
6035        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
6036        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
6037               "Memory operands expect pointer values");
6038
6039        // Add information to the INLINEASM node to know about this input.
6040        unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6041        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6042                                                        TLI.getPointerTy()));
6043        AsmNodeOperands.push_back(InOperandVal);
6044        break;
6045      }
6046
6047      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
6048              OpInfo.ConstraintType == TargetLowering::C_Register) &&
6049             "Unknown constraint type!");
6050      assert(!OpInfo.isIndirect &&
6051             "Don't know how to handle indirect register inputs yet!");
6052
6053      // Copy the input into the appropriate registers.
6054      if (OpInfo.AssignedRegs.Regs.empty())
6055        report_fatal_error("Couldn't allocate input reg for constraint '" +
6056                           Twine(OpInfo.ConstraintCode) + "'!");
6057
6058      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
6059                                        Chain, &Flag);
6060
6061      OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
6062                                               DAG, AsmNodeOperands);
6063      break;
6064    }
6065    case InlineAsm::isClobber: {
6066      // Add the clobbered value to the operand list, so that the register
6067      // allocator is aware that the physreg got clobbered.
6068      if (!OpInfo.AssignedRegs.Regs.empty())
6069        OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
6070                                                 false, 0, DAG,
6071                                                 AsmNodeOperands);
6072      break;
6073    }
6074    }
6075  }
6076
6077  // Finish up input operands.  Set the input chain and add the flag last.
6078  AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
6079  if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
6080
6081  Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(),
6082                      DAG.getVTList(MVT::Other, MVT::Glue),
6083                      &AsmNodeOperands[0], AsmNodeOperands.size());
6084  Flag = Chain.getValue(1);
6085
6086  // If this asm returns a register value, copy the result from that register
6087  // and set it as the value of the call.
6088  if (!RetValRegs.Regs.empty()) {
6089    SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
6090                                             Chain, &Flag);
6091
6092    // FIXME: Why don't we do this for inline asms with MRVs?
6093    if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
6094      EVT ResultType = TLI.getValueType(CS.getType());
6095
6096      // If any of the results of the inline asm is a vector, it may have the
6097      // wrong width/num elts.  This can happen for register classes that can
6098      // contain multiple different value types.  The preg or vreg allocated may
6099      // not have the same VT as was expected.  Convert it to the right type
6100      // with bit_convert.
6101      if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
6102        Val = DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
6103                          ResultType, Val);
6104
6105      } else if (ResultType != Val.getValueType() &&
6106                 ResultType.isInteger() && Val.getValueType().isInteger()) {
6107        // If a result value was tied to an input value, the computed result may
6108        // have a wider width than the expected result.  Extract the relevant
6109        // portion.
6110        Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val);
6111      }
6112
6113      assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
6114    }
6115
6116    setValue(CS.getInstruction(), Val);
6117    // Don't need to use this as a chain in this case.
6118    if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
6119      return;
6120  }
6121
6122  std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
6123
6124  // Process indirect outputs, first output all of the flagged copies out of
6125  // physregs.
6126  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
6127    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
6128    const Value *Ptr = IndirectStoresToEmit[i].second;
6129    SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
6130                                             Chain, &Flag);
6131    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
6132  }
6133
6134  // Emit the non-flagged stores from the physregs.
6135  SmallVector<SDValue, 8> OutChains;
6136  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
6137    SDValue Val = DAG.getStore(Chain, getCurDebugLoc(),
6138                               StoresToEmit[i].first,
6139                               getValue(StoresToEmit[i].second),
6140                               MachinePointerInfo(StoresToEmit[i].second),
6141                               false, false, 0);
6142    OutChains.push_back(Val);
6143  }
6144
6145  if (!OutChains.empty())
6146    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
6147                        &OutChains[0], OutChains.size());
6148
6149  DAG.setRoot(Chain);
6150}
6151
6152void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
6153  DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(),
6154                          MVT::Other, getRoot(),
6155                          getValue(I.getArgOperand(0)),
6156                          DAG.getSrcValue(I.getArgOperand(0))));
6157}
6158
6159void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
6160  const TargetData &TD = *TLI.getTargetData();
6161  SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(),
6162                           getRoot(), getValue(I.getOperand(0)),
6163                           DAG.getSrcValue(I.getOperand(0)),
6164                           TD.getABITypeAlignment(I.getType()));
6165  setValue(&I, V);
6166  DAG.setRoot(V.getValue(1));
6167}
6168
6169void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
6170  DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(),
6171                          MVT::Other, getRoot(),
6172                          getValue(I.getArgOperand(0)),
6173                          DAG.getSrcValue(I.getArgOperand(0))));
6174}
6175
6176void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
6177  DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(),
6178                          MVT::Other, getRoot(),
6179                          getValue(I.getArgOperand(0)),
6180                          getValue(I.getArgOperand(1)),
6181                          DAG.getSrcValue(I.getArgOperand(0)),
6182                          DAG.getSrcValue(I.getArgOperand(1))));
6183}
6184
6185/// TargetLowering::LowerCallTo - This is the default LowerCallTo
6186/// implementation, which just calls LowerCall.
6187/// FIXME: When all targets are
6188/// migrated to using LowerCall, this hook should be integrated into SDISel.
6189std::pair<SDValue, SDValue>
6190TargetLowering::LowerCallTo(SDValue Chain, Type *RetTy,
6191                            bool RetSExt, bool RetZExt, bool isVarArg,
6192                            bool isInreg, unsigned NumFixedArgs,
6193                            CallingConv::ID CallConv, bool isTailCall,
6194                            bool isReturnValueUsed,
6195                            SDValue Callee,
6196                            ArgListTy &Args, SelectionDAG &DAG,
6197                            DebugLoc dl) const {
6198  // Handle all of the outgoing arguments.
6199  SmallVector<ISD::OutputArg, 32> Outs;
6200  SmallVector<SDValue, 32> OutVals;
6201  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
6202    SmallVector<EVT, 4> ValueVTs;
6203    ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
6204    for (unsigned Value = 0, NumValues = ValueVTs.size();
6205         Value != NumValues; ++Value) {
6206      EVT VT = ValueVTs[Value];
6207      Type *ArgTy = VT.getTypeForEVT(RetTy->getContext());
6208      SDValue Op = SDValue(Args[i].Node.getNode(),
6209                           Args[i].Node.getResNo() + Value);
6210      ISD::ArgFlagsTy Flags;
6211      unsigned OriginalAlignment =
6212        getTargetData()->getABITypeAlignment(ArgTy);
6213
6214      if (Args[i].isZExt)
6215        Flags.setZExt();
6216      if (Args[i].isSExt)
6217        Flags.setSExt();
6218      if (Args[i].isInReg)
6219        Flags.setInReg();
6220      if (Args[i].isSRet)
6221        Flags.setSRet();
6222      if (Args[i].isByVal) {
6223        Flags.setByVal();
6224        PointerType *Ty = cast<PointerType>(Args[i].Ty);
6225        Type *ElementTy = Ty->getElementType();
6226        Flags.setByValSize(getTargetData()->getTypeAllocSize(ElementTy));
6227        // For ByVal, alignment should come from FE.  BE will guess if this
6228        // info is not there but there are cases it cannot get right.
6229        unsigned FrameAlign;
6230        if (Args[i].Alignment)
6231          FrameAlign = Args[i].Alignment;
6232        else
6233          FrameAlign = getByValTypeAlignment(ElementTy);
6234        Flags.setByValAlign(FrameAlign);
6235      }
6236      if (Args[i].isNest)
6237        Flags.setNest();
6238      Flags.setOrigAlign(OriginalAlignment);
6239
6240      EVT PartVT = getRegisterType(RetTy->getContext(), VT);
6241      unsigned NumParts = getNumRegisters(RetTy->getContext(), VT);
6242      SmallVector<SDValue, 4> Parts(NumParts);
6243      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
6244
6245      if (Args[i].isSExt)
6246        ExtendKind = ISD::SIGN_EXTEND;
6247      else if (Args[i].isZExt)
6248        ExtendKind = ISD::ZERO_EXTEND;
6249
6250      getCopyToParts(DAG, dl, Op, &Parts[0], NumParts,
6251                     PartVT, ExtendKind);
6252
6253      for (unsigned j = 0; j != NumParts; ++j) {
6254        // if it isn't first piece, alignment must be 1
6255        ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(),
6256                               i < NumFixedArgs);
6257        if (NumParts > 1 && j == 0)
6258          MyFlags.Flags.setSplit();
6259        else if (j != 0)
6260          MyFlags.Flags.setOrigAlign(1);
6261
6262        Outs.push_back(MyFlags);
6263        OutVals.push_back(Parts[j]);
6264      }
6265    }
6266  }
6267
6268  // Handle the incoming return values from the call.
6269  SmallVector<ISD::InputArg, 32> Ins;
6270  SmallVector<EVT, 4> RetTys;
6271  ComputeValueVTs(*this, RetTy, RetTys);
6272  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6273    EVT VT = RetTys[I];
6274    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
6275    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
6276    for (unsigned i = 0; i != NumRegs; ++i) {
6277      ISD::InputArg MyFlags;
6278      MyFlags.VT = RegisterVT.getSimpleVT();
6279      MyFlags.Used = isReturnValueUsed;
6280      if (RetSExt)
6281        MyFlags.Flags.setSExt();
6282      if (RetZExt)
6283        MyFlags.Flags.setZExt();
6284      if (isInreg)
6285        MyFlags.Flags.setInReg();
6286      Ins.push_back(MyFlags);
6287    }
6288  }
6289
6290  SmallVector<SDValue, 4> InVals;
6291  Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall,
6292                    Outs, OutVals, Ins, dl, DAG, InVals);
6293
6294  // Verify that the target's LowerCall behaved as expected.
6295  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
6296         "LowerCall didn't return a valid chain!");
6297  assert((!isTailCall || InVals.empty()) &&
6298         "LowerCall emitted a return value for a tail call!");
6299  assert((isTailCall || InVals.size() == Ins.size()) &&
6300         "LowerCall didn't emit the correct number of values!");
6301
6302  // For a tail call, the return value is merely live-out and there aren't
6303  // any nodes in the DAG representing it. Return a special value to
6304  // indicate that a tail call has been emitted and no more Instructions
6305  // should be processed in the current block.
6306  if (isTailCall) {
6307    DAG.setRoot(Chain);
6308    return std::make_pair(SDValue(), SDValue());
6309  }
6310
6311  DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6312          assert(InVals[i].getNode() &&
6313                 "LowerCall emitted a null value!");
6314          assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6315                 "LowerCall emitted a value with the wrong type!");
6316        });
6317
6318  // Collect the legal value parts into potentially illegal values
6319  // that correspond to the original function's return values.
6320  ISD::NodeType AssertOp = ISD::DELETED_NODE;
6321  if (RetSExt)
6322    AssertOp = ISD::AssertSext;
6323  else if (RetZExt)
6324    AssertOp = ISD::AssertZext;
6325  SmallVector<SDValue, 4> ReturnValues;
6326  unsigned CurReg = 0;
6327  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6328    EVT VT = RetTys[I];
6329    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
6330    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
6331
6332    ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg],
6333                                            NumRegs, RegisterVT, VT,
6334                                            AssertOp));
6335    CurReg += NumRegs;
6336  }
6337
6338  // For a function returning void, there is no return value. We can't create
6339  // such a node, so we just return a null return value in that case. In
6340  // that case, nothing will actually look at the value.
6341  if (ReturnValues.empty())
6342    return std::make_pair(SDValue(), Chain);
6343
6344  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
6345                            DAG.getVTList(&RetTys[0], RetTys.size()),
6346                            &ReturnValues[0], ReturnValues.size());
6347  return std::make_pair(Res, Chain);
6348}
6349
6350void TargetLowering::LowerOperationWrapper(SDNode *N,
6351                                           SmallVectorImpl<SDValue> &Results,
6352                                           SelectionDAG &DAG) const {
6353  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
6354  if (Res.getNode())
6355    Results.push_back(Res);
6356}
6357
6358SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
6359  llvm_unreachable("LowerOperation not implemented for this target!");
6360  return SDValue();
6361}
6362
6363void
6364SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
6365  SDValue Op = getNonRegisterValue(V);
6366  assert((Op.getOpcode() != ISD::CopyFromReg ||
6367          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
6368         "Copy from a reg to the same reg!");
6369  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
6370
6371  RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
6372  SDValue Chain = DAG.getEntryNode();
6373  RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0);
6374  PendingExports.push_back(Chain);
6375}
6376
6377#include "llvm/CodeGen/SelectionDAGISel.h"
6378
6379/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
6380/// entry block, return true.  This includes arguments used by switches, since
6381/// the switch may expand into multiple basic blocks.
6382static bool isOnlyUsedInEntryBlock(const Argument *A) {
6383  // With FastISel active, we may be splitting blocks, so force creation
6384  // of virtual registers for all non-dead arguments.
6385  if (EnableFastISel)
6386    return A->use_empty();
6387
6388  const BasicBlock *Entry = A->getParent()->begin();
6389  for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end();
6390       UI != E; ++UI) {
6391    const User *U = *UI;
6392    if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U))
6393      return false;  // Use not in entry block.
6394  }
6395  return true;
6396}
6397
6398void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) {
6399  // If this is the entry block, emit arguments.
6400  const Function &F = *LLVMBB->getParent();
6401  SelectionDAG &DAG = SDB->DAG;
6402  DebugLoc dl = SDB->getCurDebugLoc();
6403  const TargetData *TD = TLI.getTargetData();
6404  SmallVector<ISD::InputArg, 16> Ins;
6405
6406  // Check whether the function can return without sret-demotion.
6407  SmallVector<ISD::OutputArg, 4> Outs;
6408  GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
6409                Outs, TLI);
6410
6411  if (!FuncInfo->CanLowerReturn) {
6412    // Put in an sret pointer parameter before all the other parameters.
6413    SmallVector<EVT, 1> ValueVTs;
6414    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6415
6416    // NOTE: Assuming that a pointer will never break down to more than one VT
6417    // or one register.
6418    ISD::ArgFlagsTy Flags;
6419    Flags.setSRet();
6420    EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]);
6421    ISD::InputArg RetArg(Flags, RegisterVT, true);
6422    Ins.push_back(RetArg);
6423  }
6424
6425  // Set up the incoming argument description vector.
6426  unsigned Idx = 1;
6427  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
6428       I != E; ++I, ++Idx) {
6429    SmallVector<EVT, 4> ValueVTs;
6430    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6431    bool isArgValueUsed = !I->use_empty();
6432    for (unsigned Value = 0, NumValues = ValueVTs.size();
6433         Value != NumValues; ++Value) {
6434      EVT VT = ValueVTs[Value];
6435      Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
6436      ISD::ArgFlagsTy Flags;
6437      unsigned OriginalAlignment =
6438        TD->getABITypeAlignment(ArgTy);
6439
6440      if (F.paramHasAttr(Idx, Attribute::ZExt))
6441        Flags.setZExt();
6442      if (F.paramHasAttr(Idx, Attribute::SExt))
6443        Flags.setSExt();
6444      if (F.paramHasAttr(Idx, Attribute::InReg))
6445        Flags.setInReg();
6446      if (F.paramHasAttr(Idx, Attribute::StructRet))
6447        Flags.setSRet();
6448      if (F.paramHasAttr(Idx, Attribute::ByVal)) {
6449        Flags.setByVal();
6450        PointerType *Ty = cast<PointerType>(I->getType());
6451        Type *ElementTy = Ty->getElementType();
6452        Flags.setByValSize(TD->getTypeAllocSize(ElementTy));
6453        // For ByVal, alignment should be passed from FE.  BE will guess if
6454        // this info is not there but there are cases it cannot get right.
6455        unsigned FrameAlign;
6456        if (F.getParamAlignment(Idx))
6457          FrameAlign = F.getParamAlignment(Idx);
6458        else
6459          FrameAlign = TLI.getByValTypeAlignment(ElementTy);
6460        Flags.setByValAlign(FrameAlign);
6461      }
6462      if (F.paramHasAttr(Idx, Attribute::Nest))
6463        Flags.setNest();
6464      Flags.setOrigAlign(OriginalAlignment);
6465
6466      EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6467      unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6468      for (unsigned i = 0; i != NumRegs; ++i) {
6469        ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed);
6470        if (NumRegs > 1 && i == 0)
6471          MyFlags.Flags.setSplit();
6472        // if it isn't first piece, alignment must be 1
6473        else if (i > 0)
6474          MyFlags.Flags.setOrigAlign(1);
6475        Ins.push_back(MyFlags);
6476      }
6477    }
6478  }
6479
6480  // Call the target to set up the argument values.
6481  SmallVector<SDValue, 8> InVals;
6482  SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
6483                                             F.isVarArg(), Ins,
6484                                             dl, DAG, InVals);
6485
6486  // Verify that the target's LowerFormalArguments behaved as expected.
6487  assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
6488         "LowerFormalArguments didn't return a valid chain!");
6489  assert(InVals.size() == Ins.size() &&
6490         "LowerFormalArguments didn't emit the correct number of values!");
6491  DEBUG({
6492      for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6493        assert(InVals[i].getNode() &&
6494               "LowerFormalArguments emitted a null value!");
6495        assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6496               "LowerFormalArguments emitted a value with the wrong type!");
6497      }
6498    });
6499
6500  // Update the DAG with the new chain value resulting from argument lowering.
6501  DAG.setRoot(NewRoot);
6502
6503  // Set up the argument values.
6504  unsigned i = 0;
6505  Idx = 1;
6506  if (!FuncInfo->CanLowerReturn) {
6507    // Create a virtual register for the sret pointer, and put in a copy
6508    // from the sret argument into it.
6509    SmallVector<EVT, 1> ValueVTs;
6510    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6511    EVT VT = ValueVTs[0];
6512    EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6513    ISD::NodeType AssertOp = ISD::DELETED_NODE;
6514    SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
6515                                        RegVT, VT, AssertOp);
6516
6517    MachineFunction& MF = SDB->DAG.getMachineFunction();
6518    MachineRegisterInfo& RegInfo = MF.getRegInfo();
6519    unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT));
6520    FuncInfo->DemoteRegister = SRetReg;
6521    NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(),
6522                                    SRetReg, ArgValue);
6523    DAG.setRoot(NewRoot);
6524
6525    // i indexes lowered arguments.  Bump it past the hidden sret argument.
6526    // Idx indexes LLVM arguments.  Don't touch it.
6527    ++i;
6528  }
6529
6530  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
6531      ++I, ++Idx) {
6532    SmallVector<SDValue, 4> ArgValues;
6533    SmallVector<EVT, 4> ValueVTs;
6534    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6535    unsigned NumValues = ValueVTs.size();
6536
6537    // If this argument is unused then remember its value. It is used to generate
6538    // debugging information.
6539    if (I->use_empty() && NumValues)
6540      SDB->setUnusedArgValue(I, InVals[i]);
6541
6542    for (unsigned Val = 0; Val != NumValues; ++Val) {
6543      EVT VT = ValueVTs[Val];
6544      EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6545      unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6546
6547      if (!I->use_empty()) {
6548        ISD::NodeType AssertOp = ISD::DELETED_NODE;
6549        if (F.paramHasAttr(Idx, Attribute::SExt))
6550          AssertOp = ISD::AssertSext;
6551        else if (F.paramHasAttr(Idx, Attribute::ZExt))
6552          AssertOp = ISD::AssertZext;
6553
6554        ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
6555                                             NumParts, PartVT, VT,
6556                                             AssertOp));
6557      }
6558
6559      i += NumParts;
6560    }
6561
6562    // We don't need to do anything else for unused arguments.
6563    if (ArgValues.empty())
6564      continue;
6565
6566    // Note down frame index for byval arguments.
6567    if (I->hasByValAttr())
6568      if (FrameIndexSDNode *FI =
6569          dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
6570        FuncInfo->setByValArgumentFrameIndex(I, FI->getIndex());
6571
6572    SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues,
6573                                     SDB->getCurDebugLoc());
6574    SDB->setValue(I, Res);
6575
6576    // If this argument is live outside of the entry block, insert a copy from
6577    // wherever we got it to the vreg that other BB's will reference it as.
6578    if (!EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
6579      // If we can, though, try to skip creating an unnecessary vreg.
6580      // FIXME: This isn't very clean... it would be nice to make this more
6581      // general.  It's also subtly incompatible with the hacks FastISel
6582      // uses with vregs.
6583      unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
6584      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
6585        FuncInfo->ValueMap[I] = Reg;
6586        continue;
6587      }
6588    }
6589    if (!isOnlyUsedInEntryBlock(I)) {
6590      FuncInfo->InitializeRegForValue(I);
6591      SDB->CopyToExportRegsIfNeeded(I);
6592    }
6593  }
6594
6595  assert(i == InVals.size() && "Argument register count mismatch!");
6596
6597  // Finally, if the target has anything special to do, allow it to do so.
6598  // FIXME: this should insert code into the DAG!
6599  EmitFunctionEntryCode();
6600}
6601
6602/// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
6603/// ensure constants are generated when needed.  Remember the virtual registers
6604/// that need to be added to the Machine PHI nodes as input.  We cannot just
6605/// directly add them, because expansion might result in multiple MBB's for one
6606/// BB.  As such, the start of the BB might correspond to a different MBB than
6607/// the end.
6608///
6609void
6610SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
6611  const TerminatorInst *TI = LLVMBB->getTerminator();
6612
6613  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6614
6615  // Check successor nodes' PHI nodes that expect a constant to be available
6616  // from this block.
6617  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6618    const BasicBlock *SuccBB = TI->getSuccessor(succ);
6619    if (!isa<PHINode>(SuccBB->begin())) continue;
6620    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
6621
6622    // If this terminator has multiple identical successors (common for
6623    // switches), only handle each succ once.
6624    if (!SuccsHandled.insert(SuccMBB)) continue;
6625
6626    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6627
6628    // At this point we know that there is a 1-1 correspondence between LLVM PHI
6629    // nodes and Machine PHI nodes, but the incoming operands have not been
6630    // emitted yet.
6631    for (BasicBlock::const_iterator I = SuccBB->begin();
6632         const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
6633      // Ignore dead phi's.
6634      if (PN->use_empty()) continue;
6635
6636      // Skip empty types
6637      if (PN->getType()->isEmptyTy())
6638        continue;
6639
6640      unsigned Reg;
6641      const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6642
6643      if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
6644        unsigned &RegOut = ConstantsOut[C];
6645        if (RegOut == 0) {
6646          RegOut = FuncInfo.CreateRegs(C->getType());
6647          CopyValueToVirtualRegister(C, RegOut);
6648        }
6649        Reg = RegOut;
6650      } else {
6651        DenseMap<const Value *, unsigned>::iterator I =
6652          FuncInfo.ValueMap.find(PHIOp);
6653        if (I != FuncInfo.ValueMap.end())
6654          Reg = I->second;
6655        else {
6656          assert(isa<AllocaInst>(PHIOp) &&
6657                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
6658                 "Didn't codegen value into a register!??");
6659          Reg = FuncInfo.CreateRegs(PHIOp->getType());
6660          CopyValueToVirtualRegister(PHIOp, Reg);
6661        }
6662      }
6663
6664      // Remember that this register needs to added to the machine PHI node as
6665      // the input for this MBB.
6666      SmallVector<EVT, 4> ValueVTs;
6667      ComputeValueVTs(TLI, PN->getType(), ValueVTs);
6668      for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
6669        EVT VT = ValueVTs[vti];
6670        unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
6671        for (unsigned i = 0, e = NumRegisters; i != e; ++i)
6672          FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
6673        Reg += NumRegisters;
6674      }
6675    }
6676  }
6677  ConstantsOut.clear();
6678}
6679