SelectionDAGBuilder.cpp revision 167bea71a4bd19329a218f5e1bd8facfd90a0cf9
1//===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements routines for translating from LLVM IR into SelectionDAG IR.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "SelectionDAGBuilder.h"
16#include "FunctionLoweringInfo.h"
17#include "llvm/ADT/BitVector.h"
18#include "llvm/ADT/SmallSet.h"
19#include "llvm/Analysis/AliasAnalysis.h"
20#include "llvm/Constants.h"
21#include "llvm/CallingConv.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/Function.h"
24#include "llvm/GlobalVariable.h"
25#include "llvm/InlineAsm.h"
26#include "llvm/Instructions.h"
27#include "llvm/Intrinsics.h"
28#include "llvm/IntrinsicInst.h"
29#include "llvm/LLVMContext.h"
30#include "llvm/Module.h"
31#include "llvm/CodeGen/FastISel.h"
32#include "llvm/CodeGen/GCStrategy.h"
33#include "llvm/CodeGen/GCMetadata.h"
34#include "llvm/CodeGen/MachineFunction.h"
35#include "llvm/CodeGen/MachineFrameInfo.h"
36#include "llvm/CodeGen/MachineInstrBuilder.h"
37#include "llvm/CodeGen/MachineJumpTableInfo.h"
38#include "llvm/CodeGen/MachineModuleInfo.h"
39#include "llvm/CodeGen/MachineRegisterInfo.h"
40#include "llvm/CodeGen/PseudoSourceValue.h"
41#include "llvm/CodeGen/SelectionDAG.h"
42#include "llvm/CodeGen/DwarfWriter.h"
43#include "llvm/Analysis/DebugInfo.h"
44#include "llvm/Target/TargetRegisterInfo.h"
45#include "llvm/Target/TargetData.h"
46#include "llvm/Target/TargetFrameInfo.h"
47#include "llvm/Target/TargetInstrInfo.h"
48#include "llvm/Target/TargetIntrinsicInfo.h"
49#include "llvm/Target/TargetLowering.h"
50#include "llvm/Target/TargetOptions.h"
51#include "llvm/Support/Compiler.h"
52#include "llvm/Support/CommandLine.h"
53#include "llvm/Support/Debug.h"
54#include "llvm/Support/ErrorHandling.h"
55#include "llvm/Support/MathExtras.h"
56#include "llvm/Support/raw_ostream.h"
57#include <algorithm>
58using namespace llvm;
59
60/// LimitFloatPrecision - Generate low-precision inline sequences for
61/// some float libcalls (6, 8 or 12 bits).
62static unsigned LimitFloatPrecision;
63
64static cl::opt<unsigned, true>
65LimitFPPrecision("limit-float-precision",
66                 cl::desc("Generate low-precision inline sequences "
67                          "for some float libcalls"),
68                 cl::location(LimitFloatPrecision),
69                 cl::init(0));
70
71namespace {
72  /// RegsForValue - This struct represents the registers (physical or virtual)
73  /// that a particular set of values is assigned, and the type information about
74  /// the value. The most common situation is to represent one value at a time,
75  /// but struct or array values are handled element-wise as multiple values.
76  /// The splitting of aggregates is performed recursively, so that we never
77  /// have aggregate-typed registers. The values at this point do not necessarily
78  /// have legal types, so each value may require one or more registers of some
79  /// legal type.
80  ///
81  struct RegsForValue {
82    /// TLI - The TargetLowering object.
83    ///
84    const TargetLowering *TLI;
85
86    /// ValueVTs - The value types of the values, which may not be legal, and
87    /// may need be promoted or synthesized from one or more registers.
88    ///
89    SmallVector<EVT, 4> ValueVTs;
90
91    /// RegVTs - The value types of the registers. This is the same size as
92    /// ValueVTs and it records, for each value, what the type of the assigned
93    /// register or registers are. (Individual values are never synthesized
94    /// from more than one type of register.)
95    ///
96    /// With virtual registers, the contents of RegVTs is redundant with TLI's
97    /// getRegisterType member function, however when with physical registers
98    /// it is necessary to have a separate record of the types.
99    ///
100    SmallVector<EVT, 4> RegVTs;
101
102    /// Regs - This list holds the registers assigned to the values.
103    /// Each legal or promoted value requires one register, and each
104    /// expanded value requires multiple registers.
105    ///
106    SmallVector<unsigned, 4> Regs;
107
108    RegsForValue() : TLI(0) {}
109
110    RegsForValue(const TargetLowering &tli,
111                 const SmallVector<unsigned, 4> &regs,
112                 EVT regvt, EVT valuevt)
113      : TLI(&tli),  ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
114    RegsForValue(const TargetLowering &tli,
115                 const SmallVector<unsigned, 4> &regs,
116                 const SmallVector<EVT, 4> &regvts,
117                 const SmallVector<EVT, 4> &valuevts)
118      : TLI(&tli), ValueVTs(valuevts), RegVTs(regvts), Regs(regs) {}
119    RegsForValue(LLVMContext &Context, const TargetLowering &tli,
120                 unsigned Reg, const Type *Ty) : TLI(&tli) {
121      ComputeValueVTs(tli, Ty, ValueVTs);
122
123      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
124        EVT ValueVT = ValueVTs[Value];
125        unsigned NumRegs = TLI->getNumRegisters(Context, ValueVT);
126        EVT RegisterVT = TLI->getRegisterType(Context, ValueVT);
127        for (unsigned i = 0; i != NumRegs; ++i)
128          Regs.push_back(Reg + i);
129        RegVTs.push_back(RegisterVT);
130        Reg += NumRegs;
131      }
132    }
133
134    /// append - Add the specified values to this one.
135    void append(const RegsForValue &RHS) {
136      TLI = RHS.TLI;
137      ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
138      RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
139      Regs.append(RHS.Regs.begin(), RHS.Regs.end());
140    }
141
142
143    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
144    /// this value and returns the result as a ValueVTs value.  This uses
145    /// Chain/Flag as the input and updates them for the output Chain/Flag.
146    /// If the Flag pointer is NULL, no flag is used.
147    SDValue getCopyFromRegs(SelectionDAG &DAG, DebugLoc dl, unsigned Order,
148                            SDValue &Chain, SDValue *Flag) const;
149
150    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
151    /// specified value into the registers specified by this object.  This uses
152    /// Chain/Flag as the input and updates them for the output Chain/Flag.
153    /// If the Flag pointer is NULL, no flag is used.
154    void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
155                       unsigned Order, SDValue &Chain, SDValue *Flag) const;
156
157    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
158    /// operand list.  This adds the code marker, matching input operand index
159    /// (if applicable), and includes the number of values added into it.
160    void AddInlineAsmOperands(unsigned Code,
161                              bool HasMatching, unsigned MatchingIdx,
162                              SelectionDAG &DAG, unsigned Order,
163                              std::vector<SDValue> &Ops) const;
164  };
165}
166
167/// getCopyFromParts - Create a value that contains the specified legal parts
168/// combined into the value they represent.  If the parts combine to a type
169/// larger then ValueVT then AssertOp can be used to specify whether the extra
170/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
171/// (ISD::AssertSext).
172static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc dl, unsigned Order,
173                                const SDValue *Parts,
174                                unsigned NumParts, EVT PartVT, EVT ValueVT,
175                                ISD::NodeType AssertOp = ISD::DELETED_NODE) {
176  assert(NumParts > 0 && "No parts to assemble!");
177  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
178  SDValue Val = Parts[0];
179  if (DisableScheduling) DAG.AssignOrdering(Val.getNode(), Order);
180
181  if (NumParts > 1) {
182    // Assemble the value from multiple parts.
183    if (!ValueVT.isVector() && ValueVT.isInteger()) {
184      unsigned PartBits = PartVT.getSizeInBits();
185      unsigned ValueBits = ValueVT.getSizeInBits();
186
187      // Assemble the power of 2 part.
188      unsigned RoundParts = NumParts & (NumParts - 1) ?
189        1 << Log2_32(NumParts) : NumParts;
190      unsigned RoundBits = PartBits * RoundParts;
191      EVT RoundVT = RoundBits == ValueBits ?
192        ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
193      SDValue Lo, Hi;
194
195      EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
196
197      if (RoundParts > 2) {
198        Lo = getCopyFromParts(DAG, dl, Order, Parts, RoundParts / 2,
199                              PartVT, HalfVT);
200        Hi = getCopyFromParts(DAG, dl, Order, Parts + RoundParts / 2,
201                              RoundParts / 2, PartVT, HalfVT);
202      } else {
203        Lo = DAG.getNode(ISD::BIT_CONVERT, dl, HalfVT, Parts[0]);
204        Hi = DAG.getNode(ISD::BIT_CONVERT, dl, HalfVT, Parts[1]);
205      }
206
207      if (TLI.isBigEndian())
208        std::swap(Lo, Hi);
209
210      Val = DAG.getNode(ISD::BUILD_PAIR, dl, RoundVT, Lo, Hi);
211
212      if (DisableScheduling) {
213        DAG.AssignOrdering(Lo.getNode(), Order);
214        DAG.AssignOrdering(Hi.getNode(), Order);
215        DAG.AssignOrdering(Val.getNode(), Order);
216      }
217
218      if (RoundParts < NumParts) {
219        // Assemble the trailing non-power-of-2 part.
220        unsigned OddParts = NumParts - RoundParts;
221        EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
222        Hi = getCopyFromParts(DAG, dl, Order,
223                              Parts + RoundParts, OddParts, PartVT, OddVT);
224
225        // Combine the round and odd parts.
226        Lo = Val;
227        if (TLI.isBigEndian())
228          std::swap(Lo, Hi);
229        EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
230        Hi = DAG.getNode(ISD::ANY_EXTEND, dl, TotalVT, Hi);
231        if (DisableScheduling) DAG.AssignOrdering(Hi.getNode(), Order);
232        Hi = DAG.getNode(ISD::SHL, dl, TotalVT, Hi,
233                         DAG.getConstant(Lo.getValueType().getSizeInBits(),
234                                         TLI.getPointerTy()));
235        if (DisableScheduling) DAG.AssignOrdering(Hi.getNode(), Order);
236        Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, TotalVT, Lo);
237        if (DisableScheduling) DAG.AssignOrdering(Lo.getNode(), Order);
238        Val = DAG.getNode(ISD::OR, dl, TotalVT, Lo, Hi);
239        if (DisableScheduling) DAG.AssignOrdering(Val.getNode(), Order);
240      }
241    } else if (ValueVT.isVector()) {
242      // Handle a multi-element vector.
243      EVT IntermediateVT, RegisterVT;
244      unsigned NumIntermediates;
245      unsigned NumRegs =
246        TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
247                                   NumIntermediates, RegisterVT);
248      assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
249      NumParts = NumRegs; // Silence a compiler warning.
250      assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
251      assert(RegisterVT == Parts[0].getValueType() &&
252             "Part type doesn't match part!");
253
254      // Assemble the parts into intermediate operands.
255      SmallVector<SDValue, 8> Ops(NumIntermediates);
256      if (NumIntermediates == NumParts) {
257        // If the register was not expanded, truncate or copy the value,
258        // as appropriate.
259        for (unsigned i = 0; i != NumParts; ++i)
260          Ops[i] = getCopyFromParts(DAG, dl, Order, &Parts[i], 1,
261                                    PartVT, IntermediateVT);
262      } else if (NumParts > 0) {
263        // If the intermediate type was expanded, build the intermediate operands
264        // from the parts.
265        assert(NumParts % NumIntermediates == 0 &&
266               "Must expand into a divisible number of parts!");
267        unsigned Factor = NumParts / NumIntermediates;
268        for (unsigned i = 0; i != NumIntermediates; ++i)
269          Ops[i] = getCopyFromParts(DAG, dl, Order, &Parts[i * Factor], Factor,
270                                    PartVT, IntermediateVT);
271      }
272
273      // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the intermediate
274      // operands.
275      Val = DAG.getNode(IntermediateVT.isVector() ?
276                        ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, dl,
277                        ValueVT, &Ops[0], NumIntermediates);
278      if (DisableScheduling) DAG.AssignOrdering(Val.getNode(), Order);
279    } else if (PartVT.isFloatingPoint()) {
280      // FP split into multiple FP parts (for ppcf128)
281      assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) &&
282             "Unexpected split");
283      SDValue Lo, Hi;
284      Lo = DAG.getNode(ISD::BIT_CONVERT, dl, EVT(MVT::f64), Parts[0]);
285      Hi = DAG.getNode(ISD::BIT_CONVERT, dl, EVT(MVT::f64), Parts[1]);
286      if (TLI.isBigEndian())
287        std::swap(Lo, Hi);
288      Val = DAG.getNode(ISD::BUILD_PAIR, dl, ValueVT, Lo, Hi);
289
290      if (DisableScheduling) {
291        DAG.AssignOrdering(Hi.getNode(), Order);
292        DAG.AssignOrdering(Lo.getNode(), Order);
293        DAG.AssignOrdering(Val.getNode(), Order);
294      }
295    } else {
296      // FP split into integer parts (soft fp)
297      assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
298             !PartVT.isVector() && "Unexpected split");
299      EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
300      Val = getCopyFromParts(DAG, dl, Order, Parts, NumParts, PartVT, IntVT);
301    }
302  }
303
304  // There is now one part, held in Val.  Correct it to match ValueVT.
305  PartVT = Val.getValueType();
306
307  if (PartVT == ValueVT)
308    return Val;
309
310  if (PartVT.isVector()) {
311    assert(ValueVT.isVector() && "Unknown vector conversion!");
312    SDValue Res = DAG.getNode(ISD::BIT_CONVERT, dl, ValueVT, Val);
313    if (DisableScheduling)
314      DAG.AssignOrdering(Res.getNode(), Order);
315    return Res;
316  }
317
318  if (ValueVT.isVector()) {
319    assert(ValueVT.getVectorElementType() == PartVT &&
320           ValueVT.getVectorNumElements() == 1 &&
321           "Only trivial scalar-to-vector conversions should get here!");
322    SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, ValueVT, Val);
323    if (DisableScheduling)
324      DAG.AssignOrdering(Res.getNode(), Order);
325    return Res;
326  }
327
328  if (PartVT.isInteger() &&
329      ValueVT.isInteger()) {
330    if (ValueVT.bitsLT(PartVT)) {
331      // For a truncate, see if we have any information to
332      // indicate whether the truncated bits will always be
333      // zero or sign-extension.
334      if (AssertOp != ISD::DELETED_NODE)
335        Val = DAG.getNode(AssertOp, dl, PartVT, Val,
336                          DAG.getValueType(ValueVT));
337      if (DisableScheduling) DAG.AssignOrdering(Val.getNode(), Order);
338      Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val);
339      if (DisableScheduling) DAG.AssignOrdering(Val.getNode(), Order);
340      return Val;
341    } else {
342      Val = DAG.getNode(ISD::ANY_EXTEND, dl, ValueVT, Val);
343      if (DisableScheduling) DAG.AssignOrdering(Val.getNode(), Order);
344      return Val;
345    }
346  }
347
348  if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
349    if (ValueVT.bitsLT(Val.getValueType())) {
350      // FP_ROUND's are always exact here.
351      Val = DAG.getNode(ISD::FP_ROUND, dl, ValueVT, Val,
352                        DAG.getIntPtrConstant(1));
353      if (DisableScheduling) DAG.AssignOrdering(Val.getNode(), Order);
354      return Val;
355    }
356
357    Val = DAG.getNode(ISD::FP_EXTEND, dl, ValueVT, Val);
358    if (DisableScheduling) DAG.AssignOrdering(Val.getNode(), Order);
359    return Val;
360  }
361
362  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
363    Val = DAG.getNode(ISD::BIT_CONVERT, dl, ValueVT, Val);
364    if (DisableScheduling) DAG.AssignOrdering(Val.getNode(), Order);
365    return Val;
366  }
367
368  llvm_unreachable("Unknown mismatch!");
369  return SDValue();
370}
371
372/// getCopyToParts - Create a series of nodes that contain the specified value
373/// split into legal parts.  If the parts contain more bits than Val, then, for
374/// integers, ExtendKind can be used to specify how to generate the extra bits.
375static void getCopyToParts(SelectionDAG &DAG, DebugLoc dl, unsigned Order,
376                           SDValue Val, SDValue *Parts, unsigned NumParts,
377                           EVT PartVT,
378                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
379  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
380  EVT PtrVT = TLI.getPointerTy();
381  EVT ValueVT = Val.getValueType();
382  unsigned PartBits = PartVT.getSizeInBits();
383  unsigned OrigNumParts = NumParts;
384  assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
385
386  if (!NumParts)
387    return;
388
389  if (!ValueVT.isVector()) {
390    if (PartVT == ValueVT) {
391      assert(NumParts == 1 && "No-op copy with multiple parts!");
392      Parts[0] = Val;
393      return;
394    }
395
396    if (NumParts * PartBits > ValueVT.getSizeInBits()) {
397      // If the parts cover more bits than the value has, promote the value.
398      if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
399        assert(NumParts == 1 && "Do not know what to promote to!");
400        Val = DAG.getNode(ISD::FP_EXTEND, dl, PartVT, Val);
401      } else if (PartVT.isInteger() && ValueVT.isInteger()) {
402        ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
403        Val = DAG.getNode(ExtendKind, dl, ValueVT, Val);
404      } else {
405        llvm_unreachable("Unknown mismatch!");
406      }
407    } else if (PartBits == ValueVT.getSizeInBits()) {
408      // Different types of the same size.
409      assert(NumParts == 1 && PartVT != ValueVT);
410      Val = DAG.getNode(ISD::BIT_CONVERT, dl, PartVT, Val);
411    } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
412      // If the parts cover less bits than value has, truncate the value.
413      if (PartVT.isInteger() && ValueVT.isInteger()) {
414        ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
415        Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val);
416      } else {
417        llvm_unreachable("Unknown mismatch!");
418      }
419    }
420
421    if (DisableScheduling) DAG.AssignOrdering(Val.getNode(), Order);
422
423    // The value may have changed - recompute ValueVT.
424    ValueVT = Val.getValueType();
425    assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
426           "Failed to tile the value with PartVT!");
427
428    if (NumParts == 1) {
429      assert(PartVT == ValueVT && "Type conversion failed!");
430      Parts[0] = Val;
431      return;
432    }
433
434    // Expand the value into multiple parts.
435    if (NumParts & (NumParts - 1)) {
436      // The number of parts is not a power of 2.  Split off and copy the tail.
437      assert(PartVT.isInteger() && ValueVT.isInteger() &&
438             "Do not know what to expand to!");
439      unsigned RoundParts = 1 << Log2_32(NumParts);
440      unsigned RoundBits = RoundParts * PartBits;
441      unsigned OddParts = NumParts - RoundParts;
442      SDValue OddVal = DAG.getNode(ISD::SRL, dl, ValueVT, Val,
443                                   DAG.getConstant(RoundBits,
444                                                   TLI.getPointerTy()));
445      getCopyToParts(DAG, dl, Order, OddVal, Parts + RoundParts,
446                     OddParts, PartVT);
447
448      if (TLI.isBigEndian())
449        // The odd parts were reversed by getCopyToParts - unreverse them.
450        std::reverse(Parts + RoundParts, Parts + NumParts);
451
452      NumParts = RoundParts;
453      ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
454      Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val);
455
456      if (DisableScheduling) {
457        DAG.AssignOrdering(OddVal.getNode(), Order);
458        DAG.AssignOrdering(Val.getNode(), Order);
459      }
460    }
461
462    // The number of parts is a power of 2.  Repeatedly bisect the value using
463    // EXTRACT_ELEMENT.
464    Parts[0] = DAG.getNode(ISD::BIT_CONVERT, dl,
465                           EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()),
466                           Val);
467
468    if (DisableScheduling)
469      DAG.AssignOrdering(Parts[0].getNode(), Order);
470
471    for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
472      for (unsigned i = 0; i < NumParts; i += StepSize) {
473        unsigned ThisBits = StepSize * PartBits / 2;
474        EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
475        SDValue &Part0 = Parts[i];
476        SDValue &Part1 = Parts[i+StepSize/2];
477
478        Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
479                            ThisVT, Part0,
480                            DAG.getConstant(1, PtrVT));
481        Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
482                            ThisVT, Part0,
483                            DAG.getConstant(0, PtrVT));
484
485        if (DisableScheduling) {
486          DAG.AssignOrdering(Part0.getNode(), Order);
487          DAG.AssignOrdering(Part1.getNode(), Order);
488        }
489
490        if (ThisBits == PartBits && ThisVT != PartVT) {
491          Part0 = DAG.getNode(ISD::BIT_CONVERT, dl,
492                                                PartVT, Part0);
493          Part1 = DAG.getNode(ISD::BIT_CONVERT, dl,
494                                                PartVT, Part1);
495          if (DisableScheduling) {
496            DAG.AssignOrdering(Part0.getNode(), Order);
497            DAG.AssignOrdering(Part1.getNode(), Order);
498          }
499        }
500      }
501    }
502
503    if (TLI.isBigEndian())
504      std::reverse(Parts, Parts + OrigNumParts);
505
506    return;
507  }
508
509  // Vector ValueVT.
510  if (NumParts == 1) {
511    if (PartVT != ValueVT) {
512      if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
513        Val = DAG.getNode(ISD::BIT_CONVERT, dl, PartVT, Val);
514      } else {
515        assert(ValueVT.getVectorElementType() == PartVT &&
516               ValueVT.getVectorNumElements() == 1 &&
517               "Only trivial vector-to-scalar conversions should get here!");
518        Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
519                          PartVT, Val,
520                          DAG.getConstant(0, PtrVT));
521      }
522    }
523
524    if (DisableScheduling)
525      DAG.AssignOrdering(Val.getNode(), Order);
526
527    Parts[0] = Val;
528    return;
529  }
530
531  // Handle a multi-element vector.
532  EVT IntermediateVT, RegisterVT;
533  unsigned NumIntermediates;
534  unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
535                              IntermediateVT, NumIntermediates, RegisterVT);
536  unsigned NumElements = ValueVT.getVectorNumElements();
537
538  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
539  NumParts = NumRegs; // Silence a compiler warning.
540  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
541
542  // Split the vector into intermediate operands.
543  SmallVector<SDValue, 8> Ops(NumIntermediates);
544  for (unsigned i = 0; i != NumIntermediates; ++i) {
545    if (IntermediateVT.isVector())
546      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl,
547                           IntermediateVT, Val,
548                           DAG.getConstant(i * (NumElements / NumIntermediates),
549                                           PtrVT));
550    else
551      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
552                           IntermediateVT, Val,
553                           DAG.getConstant(i, PtrVT));
554
555    if (DisableScheduling)
556      DAG.AssignOrdering(Ops[i].getNode(), Order);
557  }
558
559  // Split the intermediate operands into legal parts.
560  if (NumParts == NumIntermediates) {
561    // If the register was not expanded, promote or copy the value,
562    // as appropriate.
563    for (unsigned i = 0; i != NumParts; ++i)
564      getCopyToParts(DAG, dl, Order, Ops[i], &Parts[i], 1, PartVT);
565  } else if (NumParts > 0) {
566    // If the intermediate type was expanded, split each the value into
567    // legal parts.
568    assert(NumParts % NumIntermediates == 0 &&
569           "Must expand into a divisible number of parts!");
570    unsigned Factor = NumParts / NumIntermediates;
571    for (unsigned i = 0; i != NumIntermediates; ++i)
572      getCopyToParts(DAG, dl, Order, Ops[i], &Parts[i*Factor], Factor, PartVT);
573  }
574}
575
576
577void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) {
578  AA = &aa;
579  GFI = gfi;
580  TD = DAG.getTarget().getTargetData();
581}
582
583/// clear - Clear out the curret SelectionDAG and the associated
584/// state and prepare this SelectionDAGBuilder object to be used
585/// for a new block. This doesn't clear out information about
586/// additional blocks that are needed to complete switch lowering
587/// or PHI node updating; that information is cleared out as it is
588/// consumed.
589void SelectionDAGBuilder::clear() {
590  NodeMap.clear();
591  PendingLoads.clear();
592  PendingExports.clear();
593  EdgeMapping.clear();
594  DAG.clear();
595  CurDebugLoc = DebugLoc::getUnknownLoc();
596  HasTailCall = false;
597}
598
599/// getRoot - Return the current virtual root of the Selection DAG,
600/// flushing any PendingLoad items. This must be done before emitting
601/// a store or any other node that may need to be ordered after any
602/// prior load instructions.
603///
604SDValue SelectionDAGBuilder::getRoot() {
605  if (PendingLoads.empty())
606    return DAG.getRoot();
607
608  if (PendingLoads.size() == 1) {
609    SDValue Root = PendingLoads[0];
610    DAG.setRoot(Root);
611    PendingLoads.clear();
612    return Root;
613  }
614
615  // Otherwise, we have to make a token factor node.
616  SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
617                               &PendingLoads[0], PendingLoads.size());
618  PendingLoads.clear();
619  DAG.setRoot(Root);
620  return Root;
621}
622
623/// getControlRoot - Similar to getRoot, but instead of flushing all the
624/// PendingLoad items, flush all the PendingExports items. It is necessary
625/// to do this before emitting a terminator instruction.
626///
627SDValue SelectionDAGBuilder::getControlRoot() {
628  SDValue Root = DAG.getRoot();
629
630  if (PendingExports.empty())
631    return Root;
632
633  // Turn all of the CopyToReg chains into one factored node.
634  if (Root.getOpcode() != ISD::EntryToken) {
635    unsigned i = 0, e = PendingExports.size();
636    for (; i != e; ++i) {
637      assert(PendingExports[i].getNode()->getNumOperands() > 1);
638      if (PendingExports[i].getNode()->getOperand(0) == Root)
639        break;  // Don't add the root if we already indirectly depend on it.
640    }
641
642    if (i == e)
643      PendingExports.push_back(Root);
644  }
645
646  Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
647                     &PendingExports[0],
648                     PendingExports.size());
649  PendingExports.clear();
650  DAG.setRoot(Root);
651  if (DisableScheduling) DAG.AssignOrdering(Root.getNode(), SDNodeOrder);
652  return Root;
653}
654
655void SelectionDAGBuilder::visit(Instruction &I) {
656  visit(I.getOpcode(), I);
657}
658
659void SelectionDAGBuilder::visit(unsigned Opcode, User &I) {
660  // We're processing a new instruction.
661  ++SDNodeOrder;
662
663  // Note: this doesn't use InstVisitor, because it has to work with
664  // ConstantExpr's in addition to instructions.
665  switch (Opcode) {
666  default: llvm_unreachable("Unknown instruction type encountered!");
667    // Build the switch statement using the Instruction.def file.
668#define HANDLE_INST(NUM, OPCODE, CLASS) \
669  case Instruction::OPCODE: return visit##OPCODE((CLASS&)I);
670#include "llvm/Instruction.def"
671  }
672}
673
674SDValue SelectionDAGBuilder::getValue(const Value *V) {
675  SDValue &N = NodeMap[V];
676  if (N.getNode()) return N;
677
678  if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) {
679    EVT VT = TLI.getValueType(V->getType(), true);
680
681    if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
682      return N = DAG.getConstant(*CI, VT);
683
684    if (GlobalValue *GV = dyn_cast<GlobalValue>(C))
685      return N = DAG.getGlobalAddress(GV, VT);
686
687    if (isa<ConstantPointerNull>(C))
688      return N = DAG.getConstant(0, TLI.getPointerTy());
689
690    if (ConstantFP *CFP = dyn_cast<ConstantFP>(C))
691      return N = DAG.getConstantFP(*CFP, VT);
692
693    if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
694      return N = DAG.getUNDEF(VT);
695
696    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
697      visit(CE->getOpcode(), *CE);
698      SDValue N1 = NodeMap[V];
699      assert(N1.getNode() && "visit didn't populate the ValueMap!");
700      return N1;
701    }
702
703    if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
704      SmallVector<SDValue, 4> Constants;
705      for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
706           OI != OE; ++OI) {
707        SDNode *Val = getValue(*OI).getNode();
708        // If the operand is an empty aggregate, there are no values.
709        if (!Val) continue;
710        // Add each leaf value from the operand to the Constants list
711        // to form a flattened list of all the values.
712        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
713          Constants.push_back(SDValue(Val, i));
714      }
715
716      SDValue Res = DAG.getMergeValues(&Constants[0], Constants.size(),
717                                       getCurDebugLoc());
718      if (DisableScheduling)
719        DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
720      return Res;
721    }
722
723    if (isa<StructType>(C->getType()) || isa<ArrayType>(C->getType())) {
724      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
725             "Unknown struct or array constant!");
726
727      SmallVector<EVT, 4> ValueVTs;
728      ComputeValueVTs(TLI, C->getType(), ValueVTs);
729      unsigned NumElts = ValueVTs.size();
730      if (NumElts == 0)
731        return SDValue(); // empty struct
732      SmallVector<SDValue, 4> Constants(NumElts);
733      for (unsigned i = 0; i != NumElts; ++i) {
734        EVT EltVT = ValueVTs[i];
735        if (isa<UndefValue>(C))
736          Constants[i] = DAG.getUNDEF(EltVT);
737        else if (EltVT.isFloatingPoint())
738          Constants[i] = DAG.getConstantFP(0, EltVT);
739        else
740          Constants[i] = DAG.getConstant(0, EltVT);
741      }
742
743      SDValue Res = DAG.getMergeValues(&Constants[0], NumElts,
744                                       getCurDebugLoc());
745      if (DisableScheduling)
746        DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
747      return Res;
748    }
749
750    if (BlockAddress *BA = dyn_cast<BlockAddress>(C))
751      return DAG.getBlockAddress(BA, VT);
752
753    const VectorType *VecTy = cast<VectorType>(V->getType());
754    unsigned NumElements = VecTy->getNumElements();
755
756    // Now that we know the number and type of the elements, get that number of
757    // elements into the Ops array based on what kind of constant it is.
758    SmallVector<SDValue, 16> Ops;
759    if (ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
760      for (unsigned i = 0; i != NumElements; ++i)
761        Ops.push_back(getValue(CP->getOperand(i)));
762    } else {
763      assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
764      EVT EltVT = TLI.getValueType(VecTy->getElementType());
765
766      SDValue Op;
767      if (EltVT.isFloatingPoint())
768        Op = DAG.getConstantFP(0, EltVT);
769      else
770        Op = DAG.getConstant(0, EltVT);
771      Ops.assign(NumElements, Op);
772    }
773
774    // Create a BUILD_VECTOR node.
775    SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
776                              VT, &Ops[0], Ops.size());
777    if (DisableScheduling)
778      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
779
780    return NodeMap[V] = Res;
781  }
782
783  // If this is a static alloca, generate it as the frameindex instead of
784  // computation.
785  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
786    DenseMap<const AllocaInst*, int>::iterator SI =
787      FuncInfo.StaticAllocaMap.find(AI);
788    if (SI != FuncInfo.StaticAllocaMap.end())
789      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
790  }
791
792  unsigned InReg = FuncInfo.ValueMap[V];
793  assert(InReg && "Value not in map!");
794
795  RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
796  SDValue Chain = DAG.getEntryNode();
797  return RFV.getCopyFromRegs(DAG, getCurDebugLoc(),
798                             SDNodeOrder, Chain, NULL);
799}
800
801/// Get the EVTs and ArgFlags collections that represent the return type
802/// of the given function.  This does not require a DAG or a return value, and
803/// is suitable for use before any DAGs for the function are constructed.
804static void getReturnInfo(const Type* ReturnType,
805                   Attributes attr, SmallVectorImpl<EVT> &OutVTs,
806                   SmallVectorImpl<ISD::ArgFlagsTy> &OutFlags,
807                   TargetLowering &TLI,
808                   SmallVectorImpl<uint64_t> *Offsets = 0) {
809  SmallVector<EVT, 4> ValueVTs;
810  ComputeValueVTs(TLI, ReturnType, ValueVTs, Offsets);
811  unsigned NumValues = ValueVTs.size();
812  if ( NumValues == 0 ) return;
813
814  for (unsigned j = 0, f = NumValues; j != f; ++j) {
815    EVT VT = ValueVTs[j];
816    ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
817
818    if (attr & Attribute::SExt)
819      ExtendKind = ISD::SIGN_EXTEND;
820    else if (attr & Attribute::ZExt)
821      ExtendKind = ISD::ZERO_EXTEND;
822
823    // FIXME: C calling convention requires the return type to be promoted to
824    // at least 32-bit. But this is not necessary for non-C calling
825    // conventions. The frontend should mark functions whose return values
826    // require promoting with signext or zeroext attributes.
827    if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
828      EVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
829      if (VT.bitsLT(MinVT))
830        VT = MinVT;
831    }
832
833    unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT);
834    EVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT);
835    // 'inreg' on function refers to return value
836    ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
837    if (attr & Attribute::InReg)
838      Flags.setInReg();
839
840    // Propagate extension type if any
841    if (attr & Attribute::SExt)
842      Flags.setSExt();
843    else if (attr & Attribute::ZExt)
844      Flags.setZExt();
845
846    for (unsigned i = 0; i < NumParts; ++i) {
847      OutVTs.push_back(PartVT);
848      OutFlags.push_back(Flags);
849    }
850  }
851}
852
853void SelectionDAGBuilder::visitRet(ReturnInst &I) {
854  SDValue Chain = getControlRoot();
855  SmallVector<ISD::OutputArg, 8> Outs;
856  FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo();
857
858  if (!FLI.CanLowerReturn) {
859    unsigned DemoteReg = FLI.DemoteRegister;
860    const Function *F = I.getParent()->getParent();
861
862    // Emit a store of the return value through the virtual register.
863    // Leave Outs empty so that LowerReturn won't try to load return
864    // registers the usual way.
865    SmallVector<EVT, 1> PtrValueVTs;
866    ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
867                    PtrValueVTs);
868
869    SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
870    SDValue RetOp = getValue(I.getOperand(0));
871
872    SmallVector<EVT, 4> ValueVTs;
873    SmallVector<uint64_t, 4> Offsets;
874    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
875    unsigned NumValues = ValueVTs.size();
876
877    SmallVector<SDValue, 4> Chains(NumValues);
878    EVT PtrVT = PtrValueVTs[0];
879    for (unsigned i = 0; i != NumValues; ++i) {
880      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, RetPtr,
881                                DAG.getConstant(Offsets[i], PtrVT));
882      Chains[i] =
883        DAG.getStore(Chain, getCurDebugLoc(),
884                     SDValue(RetOp.getNode(), RetOp.getResNo() + i),
885                     Add, NULL, Offsets[i], false, 0);
886
887      if (DisableScheduling) {
888        DAG.AssignOrdering(Add.getNode(), SDNodeOrder);
889        DAG.AssignOrdering(Chains[i].getNode(), SDNodeOrder);
890      }
891    }
892
893    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
894                        MVT::Other, &Chains[0], NumValues);
895
896    if (DisableScheduling)
897      DAG.AssignOrdering(Chain.getNode(), SDNodeOrder);
898  } else {
899    for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
900      SmallVector<EVT, 4> ValueVTs;
901      ComputeValueVTs(TLI, I.getOperand(i)->getType(), ValueVTs);
902      unsigned NumValues = ValueVTs.size();
903      if (NumValues == 0) continue;
904
905      SDValue RetOp = getValue(I.getOperand(i));
906      for (unsigned j = 0, f = NumValues; j != f; ++j) {
907        EVT VT = ValueVTs[j];
908
909        ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
910
911        const Function *F = I.getParent()->getParent();
912        if (F->paramHasAttr(0, Attribute::SExt))
913          ExtendKind = ISD::SIGN_EXTEND;
914        else if (F->paramHasAttr(0, Attribute::ZExt))
915          ExtendKind = ISD::ZERO_EXTEND;
916
917        // FIXME: C calling convention requires the return type to be promoted to
918        // at least 32-bit. But this is not necessary for non-C calling
919        // conventions. The frontend should mark functions whose return values
920        // require promoting with signext or zeroext attributes.
921        if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
922          EVT MinVT = TLI.getRegisterType(*DAG.getContext(), MVT::i32);
923          if (VT.bitsLT(MinVT))
924            VT = MinVT;
925        }
926
927        unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
928        EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
929        SmallVector<SDValue, 4> Parts(NumParts);
930        getCopyToParts(DAG, getCurDebugLoc(), SDNodeOrder,
931                       SDValue(RetOp.getNode(), RetOp.getResNo() + j),
932                       &Parts[0], NumParts, PartVT, ExtendKind);
933
934        // 'inreg' on function refers to return value
935        ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
936        if (F->paramHasAttr(0, Attribute::InReg))
937          Flags.setInReg();
938
939        // Propagate extension type if any
940        if (F->paramHasAttr(0, Attribute::SExt))
941          Flags.setSExt();
942        else if (F->paramHasAttr(0, Attribute::ZExt))
943          Flags.setZExt();
944
945        for (unsigned i = 0; i < NumParts; ++i)
946          Outs.push_back(ISD::OutputArg(Flags, Parts[i], /*isfixed=*/true));
947      }
948    }
949  }
950
951  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
952  CallingConv::ID CallConv =
953    DAG.getMachineFunction().getFunction()->getCallingConv();
954  Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
955                          Outs, getCurDebugLoc(), DAG);
956
957  // Verify that the target's LowerReturn behaved as expected.
958  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
959         "LowerReturn didn't return a valid chain!");
960
961  // Update the DAG with the new chain value resulting from return lowering.
962  DAG.setRoot(Chain);
963
964  if (DisableScheduling)
965    DAG.AssignOrdering(Chain.getNode(), SDNodeOrder);
966}
967
968/// CopyToExportRegsIfNeeded - If the given value has virtual registers
969/// created for it, emit nodes to copy the value into the virtual
970/// registers.
971void SelectionDAGBuilder::CopyToExportRegsIfNeeded(Value *V) {
972  if (!V->use_empty()) {
973    DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
974    if (VMI != FuncInfo.ValueMap.end())
975      CopyValueToVirtualRegister(V, VMI->second);
976  }
977}
978
979/// ExportFromCurrentBlock - If this condition isn't known to be exported from
980/// the current basic block, add it to ValueMap now so that we'll get a
981/// CopyTo/FromReg.
982void SelectionDAGBuilder::ExportFromCurrentBlock(Value *V) {
983  // No need to export constants.
984  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
985
986  // Already exported?
987  if (FuncInfo.isExportedInst(V)) return;
988
989  unsigned Reg = FuncInfo.InitializeRegForValue(V);
990  CopyValueToVirtualRegister(V, Reg);
991}
992
993bool SelectionDAGBuilder::isExportableFromCurrentBlock(Value *V,
994                                                     const BasicBlock *FromBB) {
995  // The operands of the setcc have to be in this block.  We don't know
996  // how to export them from some other block.
997  if (Instruction *VI = dyn_cast<Instruction>(V)) {
998    // Can export from current BB.
999    if (VI->getParent() == FromBB)
1000      return true;
1001
1002    // Is already exported, noop.
1003    return FuncInfo.isExportedInst(V);
1004  }
1005
1006  // If this is an argument, we can export it if the BB is the entry block or
1007  // if it is already exported.
1008  if (isa<Argument>(V)) {
1009    if (FromBB == &FromBB->getParent()->getEntryBlock())
1010      return true;
1011
1012    // Otherwise, can only export this if it is already exported.
1013    return FuncInfo.isExportedInst(V);
1014  }
1015
1016  // Otherwise, constants can always be exported.
1017  return true;
1018}
1019
1020static bool InBlock(const Value *V, const BasicBlock *BB) {
1021  if (const Instruction *I = dyn_cast<Instruction>(V))
1022    return I->getParent() == BB;
1023  return true;
1024}
1025
1026/// getFCmpCondCode - Return the ISD condition code corresponding to
1027/// the given LLVM IR floating-point condition code.  This includes
1028/// consideration of global floating-point math flags.
1029///
1030static ISD::CondCode getFCmpCondCode(FCmpInst::Predicate Pred) {
1031  ISD::CondCode FPC, FOC;
1032  switch (Pred) {
1033  case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
1034  case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
1035  case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
1036  case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
1037  case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
1038  case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
1039  case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
1040  case FCmpInst::FCMP_ORD:   FOC = FPC = ISD::SETO;   break;
1041  case FCmpInst::FCMP_UNO:   FOC = FPC = ISD::SETUO;  break;
1042  case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
1043  case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
1044  case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
1045  case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
1046  case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
1047  case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
1048  case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
1049  default:
1050    llvm_unreachable("Invalid FCmp predicate opcode!");
1051    FOC = FPC = ISD::SETFALSE;
1052    break;
1053  }
1054  if (FiniteOnlyFPMath())
1055    return FOC;
1056  else
1057    return FPC;
1058}
1059
1060/// getICmpCondCode - Return the ISD condition code corresponding to
1061/// the given LLVM IR integer condition code.
1062///
1063static ISD::CondCode getICmpCondCode(ICmpInst::Predicate Pred) {
1064  switch (Pred) {
1065  case ICmpInst::ICMP_EQ:  return ISD::SETEQ;
1066  case ICmpInst::ICMP_NE:  return ISD::SETNE;
1067  case ICmpInst::ICMP_SLE: return ISD::SETLE;
1068  case ICmpInst::ICMP_ULE: return ISD::SETULE;
1069  case ICmpInst::ICMP_SGE: return ISD::SETGE;
1070  case ICmpInst::ICMP_UGE: return ISD::SETUGE;
1071  case ICmpInst::ICMP_SLT: return ISD::SETLT;
1072  case ICmpInst::ICMP_ULT: return ISD::SETULT;
1073  case ICmpInst::ICMP_SGT: return ISD::SETGT;
1074  case ICmpInst::ICMP_UGT: return ISD::SETUGT;
1075  default:
1076    llvm_unreachable("Invalid ICmp predicate opcode!");
1077    return ISD::SETNE;
1078  }
1079}
1080
1081/// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1082/// This function emits a branch and is used at the leaves of an OR or an
1083/// AND operator tree.
1084///
1085void
1086SelectionDAGBuilder::EmitBranchForMergedCondition(Value *Cond,
1087                                                  MachineBasicBlock *TBB,
1088                                                  MachineBasicBlock *FBB,
1089                                                  MachineBasicBlock *CurBB) {
1090  const BasicBlock *BB = CurBB->getBasicBlock();
1091
1092  // If the leaf of the tree is a comparison, merge the condition into
1093  // the caseblock.
1094  if (CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1095    // The operands of the cmp have to be in this block.  We don't know
1096    // how to export them from some other block.  If this is the first block
1097    // of the sequence, no exporting is needed.
1098    if (CurBB == CurMBB ||
1099        (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1100         isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1101      ISD::CondCode Condition;
1102      if (ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1103        Condition = getICmpCondCode(IC->getPredicate());
1104      } else if (FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1105        Condition = getFCmpCondCode(FC->getPredicate());
1106      } else {
1107        Condition = ISD::SETEQ; // silence warning.
1108        llvm_unreachable("Unknown compare instruction");
1109      }
1110
1111      CaseBlock CB(Condition, BOp->getOperand(0),
1112                   BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1113      SwitchCases.push_back(CB);
1114      return;
1115    }
1116  }
1117
1118  // Create a CaseBlock record representing this branch.
1119  CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1120               NULL, TBB, FBB, CurBB);
1121  SwitchCases.push_back(CB);
1122}
1123
1124/// FindMergedConditions - If Cond is an expression like
1125void SelectionDAGBuilder::FindMergedConditions(Value *Cond,
1126                                               MachineBasicBlock *TBB,
1127                                               MachineBasicBlock *FBB,
1128                                               MachineBasicBlock *CurBB,
1129                                               unsigned Opc) {
1130  // If this node is not part of the or/and tree, emit it as a branch.
1131  Instruction *BOp = dyn_cast<Instruction>(Cond);
1132  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1133      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1134      BOp->getParent() != CurBB->getBasicBlock() ||
1135      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1136      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1137    EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB);
1138    return;
1139  }
1140
1141  //  Create TmpBB after CurBB.
1142  MachineFunction::iterator BBI = CurBB;
1143  MachineFunction &MF = DAG.getMachineFunction();
1144  MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1145  CurBB->getParent()->insert(++BBI, TmpBB);
1146
1147  if (Opc == Instruction::Or) {
1148    // Codegen X | Y as:
1149    //   jmp_if_X TBB
1150    //   jmp TmpBB
1151    // TmpBB:
1152    //   jmp_if_Y TBB
1153    //   jmp FBB
1154    //
1155
1156    // Emit the LHS condition.
1157    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, Opc);
1158
1159    // Emit the RHS condition into TmpBB.
1160    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1161  } else {
1162    assert(Opc == Instruction::And && "Unknown merge op!");
1163    // Codegen X & Y as:
1164    //   jmp_if_X TmpBB
1165    //   jmp FBB
1166    // TmpBB:
1167    //   jmp_if_Y TBB
1168    //   jmp FBB
1169    //
1170    //  This requires creation of TmpBB after CurBB.
1171
1172    // Emit the LHS condition.
1173    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, Opc);
1174
1175    // Emit the RHS condition into TmpBB.
1176    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1177  }
1178}
1179
1180/// If the set of cases should be emitted as a series of branches, return true.
1181/// If we should emit this as a bunch of and/or'd together conditions, return
1182/// false.
1183bool
1184SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
1185  if (Cases.size() != 2) return true;
1186
1187  // If this is two comparisons of the same values or'd or and'd together, they
1188  // will get folded into a single comparison, so don't emit two blocks.
1189  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1190       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1191      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1192       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1193    return false;
1194  }
1195
1196  return true;
1197}
1198
1199void SelectionDAGBuilder::visitBr(BranchInst &I) {
1200  // Update machine-CFG edges.
1201  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1202
1203  // Figure out which block is immediately after the current one.
1204  MachineBasicBlock *NextBlock = 0;
1205  MachineFunction::iterator BBI = CurMBB;
1206  if (++BBI != FuncInfo.MF->end())
1207    NextBlock = BBI;
1208
1209  if (I.isUnconditional()) {
1210    // Update machine-CFG edges.
1211    CurMBB->addSuccessor(Succ0MBB);
1212
1213    // If this is not a fall-through branch, emit the branch.
1214    if (Succ0MBB != NextBlock) {
1215      SDValue V = DAG.getNode(ISD::BR, getCurDebugLoc(),
1216                              MVT::Other, getControlRoot(),
1217                              DAG.getBasicBlock(Succ0MBB));
1218      DAG.setRoot(V);
1219
1220      if (DisableScheduling)
1221        DAG.AssignOrdering(V.getNode(), SDNodeOrder);
1222    }
1223
1224    return;
1225  }
1226
1227  // If this condition is one of the special cases we handle, do special stuff
1228  // now.
1229  Value *CondVal = I.getCondition();
1230  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1231
1232  // If this is a series of conditions that are or'd or and'd together, emit
1233  // this as a sequence of branches instead of setcc's with and/or operations.
1234  // For example, instead of something like:
1235  //     cmp A, B
1236  //     C = seteq
1237  //     cmp D, E
1238  //     F = setle
1239  //     or C, F
1240  //     jnz foo
1241  // Emit:
1242  //     cmp A, B
1243  //     je foo
1244  //     cmp D, E
1245  //     jle foo
1246  //
1247  if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1248    if (BOp->hasOneUse() &&
1249        (BOp->getOpcode() == Instruction::And ||
1250         BOp->getOpcode() == Instruction::Or)) {
1251      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, CurMBB, BOp->getOpcode());
1252      // If the compares in later blocks need to use values not currently
1253      // exported from this block, export them now.  This block should always
1254      // be the first entry.
1255      assert(SwitchCases[0].ThisBB == CurMBB && "Unexpected lowering!");
1256
1257      // Allow some cases to be rejected.
1258      if (ShouldEmitAsBranches(SwitchCases)) {
1259        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1260          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1261          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1262        }
1263
1264        // Emit the branch for this block.
1265        visitSwitchCase(SwitchCases[0]);
1266        SwitchCases.erase(SwitchCases.begin());
1267        return;
1268      }
1269
1270      // Okay, we decided not to do this, remove any inserted MBB's and clear
1271      // SwitchCases.
1272      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1273        FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1274
1275      SwitchCases.clear();
1276    }
1277  }
1278
1279  // Create a CaseBlock record representing this branch.
1280  CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1281               NULL, Succ0MBB, Succ1MBB, CurMBB);
1282
1283  // Use visitSwitchCase to actually insert the fast branch sequence for this
1284  // cond branch.
1285  visitSwitchCase(CB);
1286}
1287
1288/// visitSwitchCase - Emits the necessary code to represent a single node in
1289/// the binary search tree resulting from lowering a switch instruction.
1290void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB) {
1291  SDValue Cond;
1292  SDValue CondLHS = getValue(CB.CmpLHS);
1293  DebugLoc dl = getCurDebugLoc();
1294
1295  // Build the setcc now.
1296  if (CB.CmpMHS == NULL) {
1297    // Fold "(X == true)" to X and "(X == false)" to !X to
1298    // handle common cases produced by branch lowering.
1299    if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1300        CB.CC == ISD::SETEQ)
1301      Cond = CondLHS;
1302    else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1303             CB.CC == ISD::SETEQ) {
1304      SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1305      Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1306    } else
1307      Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1308  } else {
1309    assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1310
1311    const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1312    const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
1313
1314    SDValue CmpOp = getValue(CB.CmpMHS);
1315    EVT VT = CmpOp.getValueType();
1316
1317    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1318      Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1319                          ISD::SETLE);
1320    } else {
1321      SDValue SUB = DAG.getNode(ISD::SUB, dl,
1322                                VT, CmpOp, DAG.getConstant(Low, VT));
1323      Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1324                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1325    }
1326  }
1327
1328  if (DisableScheduling)
1329    DAG.AssignOrdering(Cond.getNode(), SDNodeOrder);
1330
1331  // Update successor info
1332  CurMBB->addSuccessor(CB.TrueBB);
1333  CurMBB->addSuccessor(CB.FalseBB);
1334
1335  // Set NextBlock to be the MBB immediately after the current one, if any.
1336  // This is used to avoid emitting unnecessary branches to the next block.
1337  MachineBasicBlock *NextBlock = 0;
1338  MachineFunction::iterator BBI = CurMBB;
1339  if (++BBI != FuncInfo.MF->end())
1340    NextBlock = BBI;
1341
1342  // If the lhs block is the next block, invert the condition so that we can
1343  // fall through to the lhs instead of the rhs block.
1344  if (CB.TrueBB == NextBlock) {
1345    std::swap(CB.TrueBB, CB.FalseBB);
1346    SDValue True = DAG.getConstant(1, Cond.getValueType());
1347    Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1348
1349    if (DisableScheduling)
1350      DAG.AssignOrdering(Cond.getNode(), SDNodeOrder);
1351  }
1352
1353  SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1354                               MVT::Other, getControlRoot(), Cond,
1355                               DAG.getBasicBlock(CB.TrueBB));
1356
1357  if (DisableScheduling)
1358    DAG.AssignOrdering(BrCond.getNode(), SDNodeOrder);
1359
1360  // If the branch was constant folded, fix up the CFG.
1361  if (BrCond.getOpcode() == ISD::BR) {
1362    CurMBB->removeSuccessor(CB.FalseBB);
1363  } else {
1364    // Otherwise, go ahead and insert the false branch.
1365    if (BrCond == getControlRoot())
1366      CurMBB->removeSuccessor(CB.TrueBB);
1367
1368    if (CB.FalseBB != NextBlock) {
1369      BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1370                           DAG.getBasicBlock(CB.FalseBB));
1371
1372      if (DisableScheduling)
1373        DAG.AssignOrdering(BrCond.getNode(), SDNodeOrder);
1374    }
1375  }
1376
1377  DAG.setRoot(BrCond);
1378}
1379
1380/// visitJumpTable - Emit JumpTable node in the current MBB
1381void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1382  // Emit the code for the jump table
1383  assert(JT.Reg != -1U && "Should lower JT Header first!");
1384  EVT PTy = TLI.getPointerTy();
1385  SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1386                                     JT.Reg, PTy);
1387  SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1388  SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(),
1389                                    MVT::Other, Index.getValue(1),
1390                                    Table, Index);
1391  DAG.setRoot(BrJumpTable);
1392
1393  if (DisableScheduling) {
1394    DAG.AssignOrdering(Index.getNode(), SDNodeOrder);
1395    DAG.AssignOrdering(Table.getNode(), SDNodeOrder);
1396    DAG.AssignOrdering(BrJumpTable.getNode(), SDNodeOrder);
1397  }
1398}
1399
1400/// visitJumpTableHeader - This function emits necessary code to produce index
1401/// in the JumpTable from switch case.
1402void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1403                                               JumpTableHeader &JTH) {
1404  // Subtract the lowest switch case value from the value being switched on and
1405  // conditional branch to default mbb if the result is greater than the
1406  // difference between smallest and largest cases.
1407  SDValue SwitchOp = getValue(JTH.SValue);
1408  EVT VT = SwitchOp.getValueType();
1409  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1410                            DAG.getConstant(JTH.First, VT));
1411
1412  // The SDNode we just created, which holds the value being switched on minus
1413  // the the smallest case value, needs to be copied to a virtual register so it
1414  // can be used as an index into the jump table in a subsequent basic block.
1415  // This value may be smaller or larger than the target's pointer type, and
1416  // therefore require extension or truncating.
1417  SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy());
1418
1419  unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy());
1420  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1421                                    JumpTableReg, SwitchOp);
1422  JT.Reg = JumpTableReg;
1423
1424  // Emit the range check for the jump table, and branch to the default block
1425  // for the switch statement if the value being switched on exceeds the largest
1426  // case in the switch.
1427  SDValue CMP = DAG.getSetCC(getCurDebugLoc(),
1428                             TLI.getSetCCResultType(Sub.getValueType()), Sub,
1429                             DAG.getConstant(JTH.Last-JTH.First,VT),
1430                             ISD::SETUGT);
1431
1432  if (DisableScheduling) {
1433    DAG.AssignOrdering(Sub.getNode(), SDNodeOrder);
1434    DAG.AssignOrdering(SwitchOp.getNode(), SDNodeOrder);
1435    DAG.AssignOrdering(CopyTo.getNode(), SDNodeOrder);
1436    DAG.AssignOrdering(CMP.getNode(), SDNodeOrder);
1437  }
1438
1439  // Set NextBlock to be the MBB immediately after the current one, if any.
1440  // This is used to avoid emitting unnecessary branches to the next block.
1441  MachineBasicBlock *NextBlock = 0;
1442  MachineFunction::iterator BBI = CurMBB;
1443
1444  if (++BBI != FuncInfo.MF->end())
1445    NextBlock = BBI;
1446
1447  SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1448                               MVT::Other, CopyTo, CMP,
1449                               DAG.getBasicBlock(JT.Default));
1450
1451  if (DisableScheduling)
1452    DAG.AssignOrdering(BrCond.getNode(), SDNodeOrder);
1453
1454  if (JT.MBB != NextBlock) {
1455    BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond,
1456                         DAG.getBasicBlock(JT.MBB));
1457
1458    if (DisableScheduling)
1459      DAG.AssignOrdering(BrCond.getNode(), SDNodeOrder);
1460  }
1461
1462  DAG.setRoot(BrCond);
1463}
1464
1465/// visitBitTestHeader - This function emits necessary code to produce value
1466/// suitable for "bit tests"
1467void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B) {
1468  // Subtract the minimum value
1469  SDValue SwitchOp = getValue(B.SValue);
1470  EVT VT = SwitchOp.getValueType();
1471  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1472                            DAG.getConstant(B.First, VT));
1473
1474  // Check range
1475  SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(),
1476                                  TLI.getSetCCResultType(Sub.getValueType()),
1477                                  Sub, DAG.getConstant(B.Range, VT),
1478                                  ISD::SETUGT);
1479
1480  SDValue ShiftOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(),
1481                                       TLI.getPointerTy());
1482
1483  B.Reg = FuncInfo.MakeReg(TLI.getPointerTy());
1484  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1485                                    B.Reg, ShiftOp);
1486
1487  if (DisableScheduling) {
1488    DAG.AssignOrdering(Sub.getNode(), SDNodeOrder);
1489    DAG.AssignOrdering(RangeCmp.getNode(), SDNodeOrder);
1490    DAG.AssignOrdering(ShiftOp.getNode(), SDNodeOrder);
1491    DAG.AssignOrdering(CopyTo.getNode(), SDNodeOrder);
1492  }
1493
1494  // Set NextBlock to be the MBB immediately after the current one, if any.
1495  // This is used to avoid emitting unnecessary branches to the next block.
1496  MachineBasicBlock *NextBlock = 0;
1497  MachineFunction::iterator BBI = CurMBB;
1498  if (++BBI != FuncInfo.MF->end())
1499    NextBlock = BBI;
1500
1501  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1502
1503  CurMBB->addSuccessor(B.Default);
1504  CurMBB->addSuccessor(MBB);
1505
1506  SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1507                                MVT::Other, CopyTo, RangeCmp,
1508                                DAG.getBasicBlock(B.Default));
1509
1510  if (DisableScheduling)
1511    DAG.AssignOrdering(BrRange.getNode(), SDNodeOrder);
1512
1513  if (MBB != NextBlock) {
1514    BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo,
1515                          DAG.getBasicBlock(MBB));
1516
1517    if (DisableScheduling)
1518      DAG.AssignOrdering(BrRange.getNode(), SDNodeOrder);
1519  }
1520
1521  DAG.setRoot(BrRange);
1522}
1523
1524/// visitBitTestCase - this function produces one "bit test"
1525void SelectionDAGBuilder::visitBitTestCase(MachineBasicBlock* NextMBB,
1526                                           unsigned Reg,
1527                                           BitTestCase &B) {
1528  // Make desired shift
1529  SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), Reg,
1530                                       TLI.getPointerTy());
1531  SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(),
1532                                  TLI.getPointerTy(),
1533                                  DAG.getConstant(1, TLI.getPointerTy()),
1534                                  ShiftOp);
1535
1536  // Emit bit tests and jumps
1537  SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(),
1538                              TLI.getPointerTy(), SwitchVal,
1539                              DAG.getConstant(B.Mask, TLI.getPointerTy()));
1540  SDValue AndCmp = DAG.getSetCC(getCurDebugLoc(),
1541                                TLI.getSetCCResultType(AndOp.getValueType()),
1542                                AndOp, DAG.getConstant(0, TLI.getPointerTy()),
1543                                ISD::SETNE);
1544
1545  if (DisableScheduling) {
1546    DAG.AssignOrdering(ShiftOp.getNode(), SDNodeOrder);
1547    DAG.AssignOrdering(SwitchVal.getNode(), SDNodeOrder);
1548    DAG.AssignOrdering(AndOp.getNode(), SDNodeOrder);
1549    DAG.AssignOrdering(AndCmp.getNode(), SDNodeOrder);
1550  }
1551
1552  CurMBB->addSuccessor(B.TargetBB);
1553  CurMBB->addSuccessor(NextMBB);
1554
1555  SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1556                              MVT::Other, getControlRoot(),
1557                              AndCmp, DAG.getBasicBlock(B.TargetBB));
1558
1559  if (DisableScheduling)
1560    DAG.AssignOrdering(BrAnd.getNode(), SDNodeOrder);
1561
1562  // Set NextBlock to be the MBB immediately after the current one, if any.
1563  // This is used to avoid emitting unnecessary branches to the next block.
1564  MachineBasicBlock *NextBlock = 0;
1565  MachineFunction::iterator BBI = CurMBB;
1566  if (++BBI != FuncInfo.MF->end())
1567    NextBlock = BBI;
1568
1569  if (NextMBB != NextBlock) {
1570    BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd,
1571                        DAG.getBasicBlock(NextMBB));
1572
1573    if (DisableScheduling)
1574      DAG.AssignOrdering(BrAnd.getNode(), SDNodeOrder);
1575  }
1576
1577  DAG.setRoot(BrAnd);
1578}
1579
1580void SelectionDAGBuilder::visitInvoke(InvokeInst &I) {
1581  // Retrieve successors.
1582  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1583  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1584
1585  const Value *Callee(I.getCalledValue());
1586  if (isa<InlineAsm>(Callee))
1587    visitInlineAsm(&I);
1588  else
1589    LowerCallTo(&I, getValue(Callee), false, LandingPad);
1590
1591  // If the value of the invoke is used outside of its defining block, make it
1592  // available as a virtual register.
1593  CopyToExportRegsIfNeeded(&I);
1594
1595  // Update successor info
1596  CurMBB->addSuccessor(Return);
1597  CurMBB->addSuccessor(LandingPad);
1598
1599  // Drop into normal successor.
1600  SDValue Branch = DAG.getNode(ISD::BR, getCurDebugLoc(),
1601                               MVT::Other, getControlRoot(),
1602                               DAG.getBasicBlock(Return));
1603  DAG.setRoot(Branch);
1604
1605  if (DisableScheduling)
1606    DAG.AssignOrdering(Branch.getNode(), SDNodeOrder);
1607}
1608
1609void SelectionDAGBuilder::visitUnwind(UnwindInst &I) {
1610}
1611
1612/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1613/// small case ranges).
1614bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
1615                                                 CaseRecVector& WorkList,
1616                                                 Value* SV,
1617                                                 MachineBasicBlock* Default) {
1618  Case& BackCase  = *(CR.Range.second-1);
1619
1620  // Size is the number of Cases represented by this range.
1621  size_t Size = CR.Range.second - CR.Range.first;
1622  if (Size > 3)
1623    return false;
1624
1625  // Get the MachineFunction which holds the current MBB.  This is used when
1626  // inserting any additional MBBs necessary to represent the switch.
1627  MachineFunction *CurMF = FuncInfo.MF;
1628
1629  // Figure out which block is immediately after the current one.
1630  MachineBasicBlock *NextBlock = 0;
1631  MachineFunction::iterator BBI = CR.CaseBB;
1632
1633  if (++BBI != FuncInfo.MF->end())
1634    NextBlock = BBI;
1635
1636  // TODO: If any two of the cases has the same destination, and if one value
1637  // is the same as the other, but has one bit unset that the other has set,
1638  // use bit manipulation to do two compares at once.  For example:
1639  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1640
1641  // Rearrange the case blocks so that the last one falls through if possible.
1642  if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1643    // The last case block won't fall through into 'NextBlock' if we emit the
1644    // branches in this order.  See if rearranging a case value would help.
1645    for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1646      if (I->BB == NextBlock) {
1647        std::swap(*I, BackCase);
1648        break;
1649      }
1650    }
1651  }
1652
1653  // Create a CaseBlock record representing a conditional branch to
1654  // the Case's target mbb if the value being switched on SV is equal
1655  // to C.
1656  MachineBasicBlock *CurBlock = CR.CaseBB;
1657  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1658    MachineBasicBlock *FallThrough;
1659    if (I != E-1) {
1660      FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
1661      CurMF->insert(BBI, FallThrough);
1662
1663      // Put SV in a virtual register to make it available from the new blocks.
1664      ExportFromCurrentBlock(SV);
1665    } else {
1666      // If the last case doesn't match, go to the default block.
1667      FallThrough = Default;
1668    }
1669
1670    Value *RHS, *LHS, *MHS;
1671    ISD::CondCode CC;
1672    if (I->High == I->Low) {
1673      // This is just small small case range :) containing exactly 1 case
1674      CC = ISD::SETEQ;
1675      LHS = SV; RHS = I->High; MHS = NULL;
1676    } else {
1677      CC = ISD::SETLE;
1678      LHS = I->Low; MHS = SV; RHS = I->High;
1679    }
1680    CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock);
1681
1682    // If emitting the first comparison, just call visitSwitchCase to emit the
1683    // code into the current block.  Otherwise, push the CaseBlock onto the
1684    // vector to be later processed by SDISel, and insert the node's MBB
1685    // before the next MBB.
1686    if (CurBlock == CurMBB)
1687      visitSwitchCase(CB);
1688    else
1689      SwitchCases.push_back(CB);
1690
1691    CurBlock = FallThrough;
1692  }
1693
1694  return true;
1695}
1696
1697static inline bool areJTsAllowed(const TargetLowering &TLI) {
1698  return !DisableJumpTables &&
1699          (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
1700           TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
1701}
1702
1703static APInt ComputeRange(const APInt &First, const APInt &Last) {
1704  APInt LastExt(Last), FirstExt(First);
1705  uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
1706  LastExt.sext(BitWidth); FirstExt.sext(BitWidth);
1707  return (LastExt - FirstExt + 1ULL);
1708}
1709
1710/// handleJTSwitchCase - Emit jumptable for current switch case range
1711bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec& CR,
1712                                             CaseRecVector& WorkList,
1713                                             Value* SV,
1714                                             MachineBasicBlock* Default) {
1715  Case& FrontCase = *CR.Range.first;
1716  Case& BackCase  = *(CR.Range.second-1);
1717
1718  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
1719  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
1720
1721  APInt TSize(First.getBitWidth(), 0);
1722  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1723       I!=E; ++I)
1724    TSize += I->size();
1725
1726  if (!areJTsAllowed(TLI) || TSize.ult(APInt(First.getBitWidth(), 4)))
1727    return false;
1728
1729  APInt Range = ComputeRange(First, Last);
1730  double Density = TSize.roundToDouble() / Range.roundToDouble();
1731  if (Density < 0.4)
1732    return false;
1733
1734  DEBUG(errs() << "Lowering jump table\n"
1735               << "First entry: " << First << ". Last entry: " << Last << '\n'
1736               << "Range: " << Range
1737               << "Size: " << TSize << ". Density: " << Density << "\n\n");
1738
1739  // Get the MachineFunction which holds the current MBB.  This is used when
1740  // inserting any additional MBBs necessary to represent the switch.
1741  MachineFunction *CurMF = FuncInfo.MF;
1742
1743  // Figure out which block is immediately after the current one.
1744  MachineFunction::iterator BBI = CR.CaseBB;
1745  ++BBI;
1746
1747  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1748
1749  // Create a new basic block to hold the code for loading the address
1750  // of the jump table, and jumping to it.  Update successor information;
1751  // we will either branch to the default case for the switch, or the jump
1752  // table.
1753  MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1754  CurMF->insert(BBI, JumpTableBB);
1755  CR.CaseBB->addSuccessor(Default);
1756  CR.CaseBB->addSuccessor(JumpTableBB);
1757
1758  // Build a vector of destination BBs, corresponding to each target
1759  // of the jump table. If the value of the jump table slot corresponds to
1760  // a case statement, push the case's BB onto the vector, otherwise, push
1761  // the default BB.
1762  std::vector<MachineBasicBlock*> DestBBs;
1763  APInt TEI = First;
1764  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
1765    const APInt& Low = cast<ConstantInt>(I->Low)->getValue();
1766    const APInt& High = cast<ConstantInt>(I->High)->getValue();
1767
1768    if (Low.sle(TEI) && TEI.sle(High)) {
1769      DestBBs.push_back(I->BB);
1770      if (TEI==High)
1771        ++I;
1772    } else {
1773      DestBBs.push_back(Default);
1774    }
1775  }
1776
1777  // Update successor info. Add one edge to each unique successor.
1778  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
1779  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
1780         E = DestBBs.end(); I != E; ++I) {
1781    if (!SuccsHandled[(*I)->getNumber()]) {
1782      SuccsHandled[(*I)->getNumber()] = true;
1783      JumpTableBB->addSuccessor(*I);
1784    }
1785  }
1786
1787  // Create a jump table index for this jump table, or return an existing
1788  // one.
1789  unsigned JTI = CurMF->getJumpTableInfo()->getJumpTableIndex(DestBBs);
1790
1791  // Set the jump table information so that we can codegen it as a second
1792  // MachineBasicBlock
1793  JumpTable JT(-1U, JTI, JumpTableBB, Default);
1794  JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == CurMBB));
1795  if (CR.CaseBB == CurMBB)
1796    visitJumpTableHeader(JT, JTH);
1797
1798  JTCases.push_back(JumpTableBlock(JTH, JT));
1799
1800  return true;
1801}
1802
1803/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
1804/// 2 subtrees.
1805bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
1806                                                  CaseRecVector& WorkList,
1807                                                  Value* SV,
1808                                                  MachineBasicBlock* Default) {
1809  // Get the MachineFunction which holds the current MBB.  This is used when
1810  // inserting any additional MBBs necessary to represent the switch.
1811  MachineFunction *CurMF = FuncInfo.MF;
1812
1813  // Figure out which block is immediately after the current one.
1814  MachineFunction::iterator BBI = CR.CaseBB;
1815  ++BBI;
1816
1817  Case& FrontCase = *CR.Range.first;
1818  Case& BackCase  = *(CR.Range.second-1);
1819  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1820
1821  // Size is the number of Cases represented by this range.
1822  unsigned Size = CR.Range.second - CR.Range.first;
1823
1824  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
1825  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
1826  double FMetric = 0;
1827  CaseItr Pivot = CR.Range.first + Size/2;
1828
1829  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
1830  // (heuristically) allow us to emit JumpTable's later.
1831  APInt TSize(First.getBitWidth(), 0);
1832  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1833       I!=E; ++I)
1834    TSize += I->size();
1835
1836  APInt LSize = FrontCase.size();
1837  APInt RSize = TSize-LSize;
1838  DEBUG(errs() << "Selecting best pivot: \n"
1839               << "First: " << First << ", Last: " << Last <<'\n'
1840               << "LSize: " << LSize << ", RSize: " << RSize << '\n');
1841  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
1842       J!=E; ++I, ++J) {
1843    const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
1844    const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
1845    APInt Range = ComputeRange(LEnd, RBegin);
1846    assert((Range - 2ULL).isNonNegative() &&
1847           "Invalid case distance");
1848    double LDensity = (double)LSize.roundToDouble() /
1849                           (LEnd - First + 1ULL).roundToDouble();
1850    double RDensity = (double)RSize.roundToDouble() /
1851                           (Last - RBegin + 1ULL).roundToDouble();
1852    double Metric = Range.logBase2()*(LDensity+RDensity);
1853    // Should always split in some non-trivial place
1854    DEBUG(errs() <<"=>Step\n"
1855                 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
1856                 << "LDensity: " << LDensity
1857                 << ", RDensity: " << RDensity << '\n'
1858                 << "Metric: " << Metric << '\n');
1859    if (FMetric < Metric) {
1860      Pivot = J;
1861      FMetric = Metric;
1862      DEBUG(errs() << "Current metric set to: " << FMetric << '\n');
1863    }
1864
1865    LSize += J->size();
1866    RSize -= J->size();
1867  }
1868  if (areJTsAllowed(TLI)) {
1869    // If our case is dense we *really* should handle it earlier!
1870    assert((FMetric > 0) && "Should handle dense range earlier!");
1871  } else {
1872    Pivot = CR.Range.first + Size/2;
1873  }
1874
1875  CaseRange LHSR(CR.Range.first, Pivot);
1876  CaseRange RHSR(Pivot, CR.Range.second);
1877  Constant *C = Pivot->Low;
1878  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
1879
1880  // We know that we branch to the LHS if the Value being switched on is
1881  // less than the Pivot value, C.  We use this to optimize our binary
1882  // tree a bit, by recognizing that if SV is greater than or equal to the
1883  // LHS's Case Value, and that Case Value is exactly one less than the
1884  // Pivot's Value, then we can branch directly to the LHS's Target,
1885  // rather than creating a leaf node for it.
1886  if ((LHSR.second - LHSR.first) == 1 &&
1887      LHSR.first->High == CR.GE &&
1888      cast<ConstantInt>(C)->getValue() ==
1889      (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
1890    TrueBB = LHSR.first->BB;
1891  } else {
1892    TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1893    CurMF->insert(BBI, TrueBB);
1894    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
1895
1896    // Put SV in a virtual register to make it available from the new blocks.
1897    ExportFromCurrentBlock(SV);
1898  }
1899
1900  // Similar to the optimization above, if the Value being switched on is
1901  // known to be less than the Constant CR.LT, and the current Case Value
1902  // is CR.LT - 1, then we can branch directly to the target block for
1903  // the current Case Value, rather than emitting a RHS leaf node for it.
1904  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
1905      cast<ConstantInt>(RHSR.first->Low)->getValue() ==
1906      (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
1907    FalseBB = RHSR.first->BB;
1908  } else {
1909    FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1910    CurMF->insert(BBI, FalseBB);
1911    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
1912
1913    // Put SV in a virtual register to make it available from the new blocks.
1914    ExportFromCurrentBlock(SV);
1915  }
1916
1917  // Create a CaseBlock record representing a conditional branch to
1918  // the LHS node if the value being switched on SV is less than C.
1919  // Otherwise, branch to LHS.
1920  CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
1921
1922  if (CR.CaseBB == CurMBB)
1923    visitSwitchCase(CB);
1924  else
1925    SwitchCases.push_back(CB);
1926
1927  return true;
1928}
1929
1930/// handleBitTestsSwitchCase - if current case range has few destination and
1931/// range span less, than machine word bitwidth, encode case range into series
1932/// of masks and emit bit tests with these masks.
1933bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
1934                                                   CaseRecVector& WorkList,
1935                                                   Value* SV,
1936                                                   MachineBasicBlock* Default){
1937  EVT PTy = TLI.getPointerTy();
1938  unsigned IntPtrBits = PTy.getSizeInBits();
1939
1940  Case& FrontCase = *CR.Range.first;
1941  Case& BackCase  = *(CR.Range.second-1);
1942
1943  // Get the MachineFunction which holds the current MBB.  This is used when
1944  // inserting any additional MBBs necessary to represent the switch.
1945  MachineFunction *CurMF = FuncInfo.MF;
1946
1947  // If target does not have legal shift left, do not emit bit tests at all.
1948  if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
1949    return false;
1950
1951  size_t numCmps = 0;
1952  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1953       I!=E; ++I) {
1954    // Single case counts one, case range - two.
1955    numCmps += (I->Low == I->High ? 1 : 2);
1956  }
1957
1958  // Count unique destinations
1959  SmallSet<MachineBasicBlock*, 4> Dests;
1960  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
1961    Dests.insert(I->BB);
1962    if (Dests.size() > 3)
1963      // Don't bother the code below, if there are too much unique destinations
1964      return false;
1965  }
1966  DEBUG(errs() << "Total number of unique destinations: " << Dests.size() << '\n'
1967               << "Total number of comparisons: " << numCmps << '\n');
1968
1969  // Compute span of values.
1970  const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
1971  const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
1972  APInt cmpRange = maxValue - minValue;
1973
1974  DEBUG(errs() << "Compare range: " << cmpRange << '\n'
1975               << "Low bound: " << minValue << '\n'
1976               << "High bound: " << maxValue << '\n');
1977
1978  if (cmpRange.uge(APInt(cmpRange.getBitWidth(), IntPtrBits)) ||
1979      (!(Dests.size() == 1 && numCmps >= 3) &&
1980       !(Dests.size() == 2 && numCmps >= 5) &&
1981       !(Dests.size() >= 3 && numCmps >= 6)))
1982    return false;
1983
1984  DEBUG(errs() << "Emitting bit tests\n");
1985  APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
1986
1987  // Optimize the case where all the case values fit in a
1988  // word without having to subtract minValue. In this case,
1989  // we can optimize away the subtraction.
1990  if (minValue.isNonNegative() &&
1991      maxValue.slt(APInt(maxValue.getBitWidth(), IntPtrBits))) {
1992    cmpRange = maxValue;
1993  } else {
1994    lowBound = minValue;
1995  }
1996
1997  CaseBitsVector CasesBits;
1998  unsigned i, count = 0;
1999
2000  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2001    MachineBasicBlock* Dest = I->BB;
2002    for (i = 0; i < count; ++i)
2003      if (Dest == CasesBits[i].BB)
2004        break;
2005
2006    if (i == count) {
2007      assert((count < 3) && "Too much destinations to test!");
2008      CasesBits.push_back(CaseBits(0, Dest, 0));
2009      count++;
2010    }
2011
2012    const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
2013    const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
2014
2015    uint64_t lo = (lowValue - lowBound).getZExtValue();
2016    uint64_t hi = (highValue - lowBound).getZExtValue();
2017
2018    for (uint64_t j = lo; j <= hi; j++) {
2019      CasesBits[i].Mask |=  1ULL << j;
2020      CasesBits[i].Bits++;
2021    }
2022
2023  }
2024  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2025
2026  BitTestInfo BTC;
2027
2028  // Figure out which block is immediately after the current one.
2029  MachineFunction::iterator BBI = CR.CaseBB;
2030  ++BBI;
2031
2032  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2033
2034  DEBUG(errs() << "Cases:\n");
2035  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2036    DEBUG(errs() << "Mask: " << CasesBits[i].Mask
2037                 << ", Bits: " << CasesBits[i].Bits
2038                 << ", BB: " << CasesBits[i].BB << '\n');
2039
2040    MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2041    CurMF->insert(BBI, CaseBB);
2042    BTC.push_back(BitTestCase(CasesBits[i].Mask,
2043                              CaseBB,
2044                              CasesBits[i].BB));
2045
2046    // Put SV in a virtual register to make it available from the new blocks.
2047    ExportFromCurrentBlock(SV);
2048  }
2049
2050  BitTestBlock BTB(lowBound, cmpRange, SV,
2051                   -1U, (CR.CaseBB == CurMBB),
2052                   CR.CaseBB, Default, BTC);
2053
2054  if (CR.CaseBB == CurMBB)
2055    visitBitTestHeader(BTB);
2056
2057  BitTestCases.push_back(BTB);
2058
2059  return true;
2060}
2061
2062/// Clusterify - Transform simple list of Cases into list of CaseRange's
2063size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
2064                                       const SwitchInst& SI) {
2065  size_t numCmps = 0;
2066
2067  // Start with "simple" cases
2068  for (size_t i = 1; i < SI.getNumSuccessors(); ++i) {
2069    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
2070    Cases.push_back(Case(SI.getSuccessorValue(i),
2071                         SI.getSuccessorValue(i),
2072                         SMBB));
2073  }
2074  std::sort(Cases.begin(), Cases.end(), CaseCmp());
2075
2076  // Merge case into clusters
2077  if (Cases.size() >= 2)
2078    // Must recompute end() each iteration because it may be
2079    // invalidated by erase if we hold on to it
2080    for (CaseItr I = Cases.begin(), J = ++(Cases.begin()); J != Cases.end(); ) {
2081      const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
2082      const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
2083      MachineBasicBlock* nextBB = J->BB;
2084      MachineBasicBlock* currentBB = I->BB;
2085
2086      // If the two neighboring cases go to the same destination, merge them
2087      // into a single case.
2088      if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
2089        I->High = J->High;
2090        J = Cases.erase(J);
2091      } else {
2092        I = J++;
2093      }
2094    }
2095
2096  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
2097    if (I->Low != I->High)
2098      // A range counts double, since it requires two compares.
2099      ++numCmps;
2100  }
2101
2102  return numCmps;
2103}
2104
2105void SelectionDAGBuilder::visitSwitch(SwitchInst &SI) {
2106  // Figure out which block is immediately after the current one.
2107  MachineBasicBlock *NextBlock = 0;
2108  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2109
2110  // If there is only the default destination, branch to it if it is not the
2111  // next basic block.  Otherwise, just fall through.
2112  if (SI.getNumOperands() == 2) {
2113    // Update machine-CFG edges.
2114
2115    // If this is not a fall-through branch, emit the branch.
2116    CurMBB->addSuccessor(Default);
2117    if (Default != NextBlock) {
2118      SDValue Res = DAG.getNode(ISD::BR, getCurDebugLoc(),
2119                                MVT::Other, getControlRoot(),
2120                                DAG.getBasicBlock(Default));
2121      DAG.setRoot(Res);
2122
2123      if (DisableScheduling)
2124        DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2125    }
2126
2127    return;
2128  }
2129
2130  // If there are any non-default case statements, create a vector of Cases
2131  // representing each one, and sort the vector so that we can efficiently
2132  // create a binary search tree from them.
2133  CaseVector Cases;
2134  size_t numCmps = Clusterify(Cases, SI);
2135  DEBUG(errs() << "Clusterify finished. Total clusters: " << Cases.size()
2136               << ". Total compares: " << numCmps << '\n');
2137  numCmps = 0;
2138
2139  // Get the Value to be switched on and default basic blocks, which will be
2140  // inserted into CaseBlock records, representing basic blocks in the binary
2141  // search tree.
2142  Value *SV = SI.getOperand(0);
2143
2144  // Push the initial CaseRec onto the worklist
2145  CaseRecVector WorkList;
2146  WorkList.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end())));
2147
2148  while (!WorkList.empty()) {
2149    // Grab a record representing a case range to process off the worklist
2150    CaseRec CR = WorkList.back();
2151    WorkList.pop_back();
2152
2153    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default))
2154      continue;
2155
2156    // If the range has few cases (two or less) emit a series of specific
2157    // tests.
2158    if (handleSmallSwitchRange(CR, WorkList, SV, Default))
2159      continue;
2160
2161    // If the switch has more than 5 blocks, and at least 40% dense, and the
2162    // target supports indirect branches, then emit a jump table rather than
2163    // lowering the switch to a binary tree of conditional branches.
2164    if (handleJTSwitchCase(CR, WorkList, SV, Default))
2165      continue;
2166
2167    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2168    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2169    handleBTSplitSwitchCase(CR, WorkList, SV, Default);
2170  }
2171}
2172
2173void SelectionDAGBuilder::visitIndirectBr(IndirectBrInst &I) {
2174  // Update machine-CFG edges.
2175  for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i)
2176    CurMBB->addSuccessor(FuncInfo.MBBMap[I.getSuccessor(i)]);
2177
2178  SDValue Res = DAG.getNode(ISD::BRIND, getCurDebugLoc(),
2179                            MVT::Other, getControlRoot(),
2180                            getValue(I.getAddress()));
2181  DAG.setRoot(Res);
2182
2183  if (DisableScheduling)
2184    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2185}
2186
2187void SelectionDAGBuilder::visitFSub(User &I) {
2188  // -0.0 - X --> fneg
2189  const Type *Ty = I.getType();
2190  if (isa<VectorType>(Ty)) {
2191    if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) {
2192      const VectorType *DestTy = cast<VectorType>(I.getType());
2193      const Type *ElTy = DestTy->getElementType();
2194      unsigned VL = DestTy->getNumElements();
2195      std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy));
2196      Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size());
2197      if (CV == CNZ) {
2198        SDValue Op2 = getValue(I.getOperand(1));
2199        SDValue Res = DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2200                                  Op2.getValueType(), Op2);
2201        setValue(&I, Res);
2202
2203        if (DisableScheduling)
2204          DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2205
2206        return;
2207      }
2208    }
2209  }
2210
2211  if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
2212    if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) {
2213      SDValue Op2 = getValue(I.getOperand(1));
2214      SDValue Res = DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2215                                Op2.getValueType(), Op2);
2216      setValue(&I, Res);
2217
2218      if (DisableScheduling)
2219        DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2220
2221      return;
2222    }
2223
2224  visitBinary(I, ISD::FSUB);
2225}
2226
2227void SelectionDAGBuilder::visitBinary(User &I, unsigned OpCode) {
2228  SDValue Op1 = getValue(I.getOperand(0));
2229  SDValue Op2 = getValue(I.getOperand(1));
2230  SDValue Res = DAG.getNode(OpCode, getCurDebugLoc(),
2231                            Op1.getValueType(), Op1, Op2);
2232  setValue(&I, Res);
2233
2234  if (DisableScheduling)
2235    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2236}
2237
2238void SelectionDAGBuilder::visitShift(User &I, unsigned Opcode) {
2239  SDValue Op1 = getValue(I.getOperand(0));
2240  SDValue Op2 = getValue(I.getOperand(1));
2241  if (!isa<VectorType>(I.getType()) &&
2242      Op2.getValueType() != TLI.getShiftAmountTy()) {
2243    // If the operand is smaller than the shift count type, promote it.
2244    EVT PTy = TLI.getPointerTy();
2245    EVT STy = TLI.getShiftAmountTy();
2246    if (STy.bitsGT(Op2.getValueType()))
2247      Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(),
2248                        TLI.getShiftAmountTy(), Op2);
2249    // If the operand is larger than the shift count type but the shift
2250    // count type has enough bits to represent any shift value, truncate
2251    // it now. This is a common case and it exposes the truncate to
2252    // optimization early.
2253    else if (STy.getSizeInBits() >=
2254             Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2255      Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2256                        TLI.getShiftAmountTy(), Op2);
2257    // Otherwise we'll need to temporarily settle for some other
2258    // convenient type; type legalization will make adjustments as
2259    // needed.
2260    else if (PTy.bitsLT(Op2.getValueType()))
2261      Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2262                        TLI.getPointerTy(), Op2);
2263    else if (PTy.bitsGT(Op2.getValueType()))
2264      Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(),
2265                        TLI.getPointerTy(), Op2);
2266  }
2267
2268  SDValue Res = DAG.getNode(Opcode, getCurDebugLoc(),
2269                            Op1.getValueType(), Op1, Op2);
2270  setValue(&I, Res);
2271
2272  if (DisableScheduling) {
2273    DAG.AssignOrdering(Op1.getNode(), SDNodeOrder);
2274    DAG.AssignOrdering(Op2.getNode(), SDNodeOrder);
2275    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2276  }
2277}
2278
2279void SelectionDAGBuilder::visitICmp(User &I) {
2280  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2281  if (ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2282    predicate = IC->getPredicate();
2283  else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2284    predicate = ICmpInst::Predicate(IC->getPredicate());
2285  SDValue Op1 = getValue(I.getOperand(0));
2286  SDValue Op2 = getValue(I.getOperand(1));
2287  ISD::CondCode Opcode = getICmpCondCode(predicate);
2288
2289  EVT DestVT = TLI.getValueType(I.getType());
2290  SDValue Res = DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode);
2291  setValue(&I, Res);
2292
2293  if (DisableScheduling)
2294    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2295}
2296
2297void SelectionDAGBuilder::visitFCmp(User &I) {
2298  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2299  if (FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2300    predicate = FC->getPredicate();
2301  else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2302    predicate = FCmpInst::Predicate(FC->getPredicate());
2303  SDValue Op1 = getValue(I.getOperand(0));
2304  SDValue Op2 = getValue(I.getOperand(1));
2305  ISD::CondCode Condition = getFCmpCondCode(predicate);
2306  EVT DestVT = TLI.getValueType(I.getType());
2307  SDValue Res = DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition);
2308  setValue(&I, Res);
2309
2310  if (DisableScheduling)
2311    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2312}
2313
2314void SelectionDAGBuilder::visitSelect(User &I) {
2315  SmallVector<EVT, 4> ValueVTs;
2316  ComputeValueVTs(TLI, I.getType(), ValueVTs);
2317  unsigned NumValues = ValueVTs.size();
2318  if (NumValues == 0) return;
2319
2320  SmallVector<SDValue, 4> Values(NumValues);
2321  SDValue Cond     = getValue(I.getOperand(0));
2322  SDValue TrueVal  = getValue(I.getOperand(1));
2323  SDValue FalseVal = getValue(I.getOperand(2));
2324
2325  for (unsigned i = 0; i != NumValues; ++i) {
2326    Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(),
2327                            TrueVal.getNode()->getValueType(i), Cond,
2328                            SDValue(TrueVal.getNode(),
2329                                    TrueVal.getResNo() + i),
2330                            SDValue(FalseVal.getNode(),
2331                                    FalseVal.getResNo() + i));
2332
2333    if (DisableScheduling)
2334      DAG.AssignOrdering(Values[i].getNode(), SDNodeOrder);
2335  }
2336
2337  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2338                            DAG.getVTList(&ValueVTs[0], NumValues),
2339                            &Values[0], NumValues);
2340  setValue(&I, Res);
2341
2342  if (DisableScheduling)
2343    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2344}
2345
2346void SelectionDAGBuilder::visitTrunc(User &I) {
2347  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2348  SDValue N = getValue(I.getOperand(0));
2349  EVT DestVT = TLI.getValueType(I.getType());
2350  SDValue Res = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N);
2351  setValue(&I, Res);
2352
2353  if (DisableScheduling)
2354    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2355}
2356
2357void SelectionDAGBuilder::visitZExt(User &I) {
2358  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2359  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2360  SDValue N = getValue(I.getOperand(0));
2361  EVT DestVT = TLI.getValueType(I.getType());
2362  SDValue Res = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N);
2363  setValue(&I, Res);
2364
2365  if (DisableScheduling)
2366    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2367}
2368
2369void SelectionDAGBuilder::visitSExt(User &I) {
2370  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2371  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2372  SDValue N = getValue(I.getOperand(0));
2373  EVT DestVT = TLI.getValueType(I.getType());
2374  SDValue Res = DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N);
2375  setValue(&I, Res);
2376
2377  if (DisableScheduling)
2378    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2379}
2380
2381void SelectionDAGBuilder::visitFPTrunc(User &I) {
2382  // FPTrunc is never a no-op cast, no need to check
2383  SDValue N = getValue(I.getOperand(0));
2384  EVT DestVT = TLI.getValueType(I.getType());
2385  SDValue Res = DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(),
2386                            DestVT, N, DAG.getIntPtrConstant(0));
2387  setValue(&I, Res);
2388
2389  if (DisableScheduling)
2390    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2391}
2392
2393void SelectionDAGBuilder::visitFPExt(User &I){
2394  // FPTrunc is never a no-op cast, no need to check
2395  SDValue N = getValue(I.getOperand(0));
2396  EVT DestVT = TLI.getValueType(I.getType());
2397  SDValue Res = DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N);
2398  setValue(&I, Res);
2399
2400  if (DisableScheduling)
2401    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2402}
2403
2404void SelectionDAGBuilder::visitFPToUI(User &I) {
2405  // FPToUI is never a no-op cast, no need to check
2406  SDValue N = getValue(I.getOperand(0));
2407  EVT DestVT = TLI.getValueType(I.getType());
2408  SDValue Res = DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N);
2409  setValue(&I, Res);
2410
2411  if (DisableScheduling)
2412    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2413}
2414
2415void SelectionDAGBuilder::visitFPToSI(User &I) {
2416  // FPToSI is never a no-op cast, no need to check
2417  SDValue N = getValue(I.getOperand(0));
2418  EVT DestVT = TLI.getValueType(I.getType());
2419  SDValue Res = DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N);
2420  setValue(&I, Res);
2421
2422  if (DisableScheduling)
2423    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2424}
2425
2426void SelectionDAGBuilder::visitUIToFP(User &I) {
2427  // UIToFP is never a no-op cast, no need to check
2428  SDValue N = getValue(I.getOperand(0));
2429  EVT DestVT = TLI.getValueType(I.getType());
2430  SDValue Res = DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N);
2431  setValue(&I, Res);
2432
2433  if (DisableScheduling)
2434    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2435}
2436
2437void SelectionDAGBuilder::visitSIToFP(User &I){
2438  // SIToFP is never a no-op cast, no need to check
2439  SDValue N = getValue(I.getOperand(0));
2440  EVT DestVT = TLI.getValueType(I.getType());
2441  SDValue Res = DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N);
2442  setValue(&I, Res);
2443
2444  if (DisableScheduling)
2445    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2446}
2447
2448void SelectionDAGBuilder::visitPtrToInt(User &I) {
2449  // What to do depends on the size of the integer and the size of the pointer.
2450  // We can either truncate, zero extend, or no-op, accordingly.
2451  SDValue N = getValue(I.getOperand(0));
2452  EVT SrcVT = N.getValueType();
2453  EVT DestVT = TLI.getValueType(I.getType());
2454  SDValue Res = DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT);
2455  setValue(&I, Res);
2456
2457  if (DisableScheduling)
2458    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2459}
2460
2461void SelectionDAGBuilder::visitIntToPtr(User &I) {
2462  // What to do depends on the size of the integer and the size of the pointer.
2463  // We can either truncate, zero extend, or no-op, accordingly.
2464  SDValue N = getValue(I.getOperand(0));
2465  EVT SrcVT = N.getValueType();
2466  EVT DestVT = TLI.getValueType(I.getType());
2467  SDValue Res = DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT);
2468  setValue(&I, Res);
2469
2470  if (DisableScheduling)
2471    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2472}
2473
2474void SelectionDAGBuilder::visitBitCast(User &I) {
2475  SDValue N = getValue(I.getOperand(0));
2476  EVT DestVT = TLI.getValueType(I.getType());
2477
2478  // BitCast assures us that source and destination are the same size so this is
2479  // either a BIT_CONVERT or a no-op.
2480  if (DestVT != N.getValueType()) {
2481    SDValue Res = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
2482                              DestVT, N); // convert types.
2483    setValue(&I, Res);
2484
2485    if (DisableScheduling)
2486      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2487  } else {
2488    setValue(&I, N);            // noop cast.
2489  }
2490}
2491
2492void SelectionDAGBuilder::visitInsertElement(User &I) {
2493  SDValue InVec = getValue(I.getOperand(0));
2494  SDValue InVal = getValue(I.getOperand(1));
2495  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2496                              TLI.getPointerTy(),
2497                              getValue(I.getOperand(2)));
2498  SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(),
2499                            TLI.getValueType(I.getType()),
2500                            InVec, InVal, InIdx);
2501  setValue(&I, Res);
2502
2503  if (DisableScheduling) {
2504    DAG.AssignOrdering(InIdx.getNode(), SDNodeOrder);
2505    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2506  }
2507}
2508
2509void SelectionDAGBuilder::visitExtractElement(User &I) {
2510  SDValue InVec = getValue(I.getOperand(0));
2511  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2512                              TLI.getPointerTy(),
2513                              getValue(I.getOperand(1)));
2514  SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2515                            TLI.getValueType(I.getType()), InVec, InIdx);
2516  setValue(&I, Res);
2517
2518  if (DisableScheduling) {
2519    DAG.AssignOrdering(InIdx.getNode(), SDNodeOrder);
2520    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2521  }
2522}
2523
2524
2525// Utility for visitShuffleVector - Returns true if the mask is mask starting
2526// from SIndx and increasing to the element length (undefs are allowed).
2527static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) {
2528  unsigned MaskNumElts = Mask.size();
2529  for (unsigned i = 0; i != MaskNumElts; ++i)
2530    if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx)))
2531      return false;
2532  return true;
2533}
2534
2535void SelectionDAGBuilder::visitShuffleVector(User &I) {
2536  SmallVector<int, 8> Mask;
2537  SDValue Src1 = getValue(I.getOperand(0));
2538  SDValue Src2 = getValue(I.getOperand(1));
2539
2540  // Convert the ConstantVector mask operand into an array of ints, with -1
2541  // representing undef values.
2542  SmallVector<Constant*, 8> MaskElts;
2543  cast<Constant>(I.getOperand(2))->getVectorElements(*DAG.getContext(),
2544                                                     MaskElts);
2545  unsigned MaskNumElts = MaskElts.size();
2546  for (unsigned i = 0; i != MaskNumElts; ++i) {
2547    if (isa<UndefValue>(MaskElts[i]))
2548      Mask.push_back(-1);
2549    else
2550      Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue());
2551  }
2552
2553  EVT VT = TLI.getValueType(I.getType());
2554  EVT SrcVT = Src1.getValueType();
2555  unsigned SrcNumElts = SrcVT.getVectorNumElements();
2556
2557  if (SrcNumElts == MaskNumElts) {
2558    SDValue Res = DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2559                                       &Mask[0]);
2560    setValue(&I, Res);
2561
2562    if (DisableScheduling)
2563      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2564
2565    return;
2566  }
2567
2568  // Normalize the shuffle vector since mask and vector length don't match.
2569  if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2570    // Mask is longer than the source vectors and is a multiple of the source
2571    // vectors.  We can use concatenate vector to make the mask and vectors
2572    // lengths match.
2573    if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) {
2574      // The shuffle is concatenating two vectors together.
2575      SDValue Res = DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2576                                VT, Src1, Src2);
2577      setValue(&I, Res);
2578
2579      if (DisableScheduling)
2580        DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2581
2582      return;
2583    }
2584
2585    // Pad both vectors with undefs to make them the same length as the mask.
2586    unsigned NumConcat = MaskNumElts / SrcNumElts;
2587    bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2588    bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2589    SDValue UndefVal = DAG.getUNDEF(SrcVT);
2590
2591    SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2592    SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2593    MOps1[0] = Src1;
2594    MOps2[0] = Src2;
2595
2596    Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2597                                                  getCurDebugLoc(), VT,
2598                                                  &MOps1[0], NumConcat);
2599    Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2600                                                  getCurDebugLoc(), VT,
2601                                                  &MOps2[0], NumConcat);
2602
2603    // Readjust mask for new input vector length.
2604    SmallVector<int, 8> MappedOps;
2605    for (unsigned i = 0; i != MaskNumElts; ++i) {
2606      int Idx = Mask[i];
2607      if (Idx < (int)SrcNumElts)
2608        MappedOps.push_back(Idx);
2609      else
2610        MappedOps.push_back(Idx + MaskNumElts - SrcNumElts);
2611    }
2612
2613    SDValue Res = DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2614                                       &MappedOps[0]);
2615    setValue(&I, Res);
2616
2617    if (DisableScheduling) {
2618      DAG.AssignOrdering(Src1.getNode(), SDNodeOrder);
2619      DAG.AssignOrdering(Src2.getNode(), SDNodeOrder);
2620      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2621    }
2622
2623    return;
2624  }
2625
2626  if (SrcNumElts > MaskNumElts) {
2627    // Analyze the access pattern of the vector to see if we can extract
2628    // two subvectors and do the shuffle. The analysis is done by calculating
2629    // the range of elements the mask access on both vectors.
2630    int MinRange[2] = { SrcNumElts+1, SrcNumElts+1};
2631    int MaxRange[2] = {-1, -1};
2632
2633    for (unsigned i = 0; i != MaskNumElts; ++i) {
2634      int Idx = Mask[i];
2635      int Input = 0;
2636      if (Idx < 0)
2637        continue;
2638
2639      if (Idx >= (int)SrcNumElts) {
2640        Input = 1;
2641        Idx -= SrcNumElts;
2642      }
2643      if (Idx > MaxRange[Input])
2644        MaxRange[Input] = Idx;
2645      if (Idx < MinRange[Input])
2646        MinRange[Input] = Idx;
2647    }
2648
2649    // Check if the access is smaller than the vector size and can we find
2650    // a reasonable extract index.
2651    int RangeUse[2] = { 2, 2 };  // 0 = Unused, 1 = Extract, 2 = Can not Extract.
2652    int StartIdx[2];  // StartIdx to extract from
2653    for (int Input=0; Input < 2; ++Input) {
2654      if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) {
2655        RangeUse[Input] = 0; // Unused
2656        StartIdx[Input] = 0;
2657      } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) {
2658        // Fits within range but we should see if we can find a good
2659        // start index that is a multiple of the mask length.
2660        if (MaxRange[Input] < (int)MaskNumElts) {
2661          RangeUse[Input] = 1; // Extract from beginning of the vector
2662          StartIdx[Input] = 0;
2663        } else {
2664          StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2665          if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2666              StartIdx[Input] + MaskNumElts < SrcNumElts)
2667            RangeUse[Input] = 1; // Extract from a multiple of the mask length.
2668        }
2669      }
2670    }
2671
2672    if (RangeUse[0] == 0 && RangeUse[1] == 0) {
2673      SDValue Res = DAG.getUNDEF(VT);
2674      setValue(&I, Res);  // Vectors are not used.
2675
2676      if (DisableScheduling)
2677        DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2678
2679      return;
2680    }
2681    else if (RangeUse[0] < 2 && RangeUse[1] < 2) {
2682      // Extract appropriate subvector and generate a vector shuffle
2683      for (int Input=0; Input < 2; ++Input) {
2684        SDValue &Src = Input == 0 ? Src1 : Src2;
2685        if (RangeUse[Input] == 0)
2686          Src = DAG.getUNDEF(VT);
2687        else
2688          Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT,
2689                            Src, DAG.getIntPtrConstant(StartIdx[Input]));
2690
2691        if (DisableScheduling)
2692          DAG.AssignOrdering(Src.getNode(), SDNodeOrder);
2693      }
2694
2695      // Calculate new mask.
2696      SmallVector<int, 8> MappedOps;
2697      for (unsigned i = 0; i != MaskNumElts; ++i) {
2698        int Idx = Mask[i];
2699        if (Idx < 0)
2700          MappedOps.push_back(Idx);
2701        else if (Idx < (int)SrcNumElts)
2702          MappedOps.push_back(Idx - StartIdx[0]);
2703        else
2704          MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts);
2705      }
2706
2707      SDValue Res = DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2708                                         &MappedOps[0]);
2709      setValue(&I, Res);
2710
2711      if (DisableScheduling)
2712        DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2713
2714      return;
2715    }
2716  }
2717
2718  // We can't use either concat vectors or extract subvectors so fall back to
2719  // replacing the shuffle with extract and build vector.
2720  // to insert and build vector.
2721  EVT EltVT = VT.getVectorElementType();
2722  EVT PtrVT = TLI.getPointerTy();
2723  SmallVector<SDValue,8> Ops;
2724  for (unsigned i = 0; i != MaskNumElts; ++i) {
2725    if (Mask[i] < 0) {
2726      Ops.push_back(DAG.getUNDEF(EltVT));
2727    } else {
2728      int Idx = Mask[i];
2729      SDValue Res;
2730
2731      if (Idx < (int)SrcNumElts)
2732        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2733                          EltVT, Src1, DAG.getConstant(Idx, PtrVT));
2734      else
2735        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2736                          EltVT, Src2,
2737                          DAG.getConstant(Idx - SrcNumElts, PtrVT));
2738
2739      Ops.push_back(Res);
2740
2741      if (DisableScheduling)
2742        DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2743    }
2744  }
2745
2746  SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
2747                            VT, &Ops[0], Ops.size());
2748  setValue(&I, Res);
2749
2750  if (DisableScheduling)
2751    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2752}
2753
2754void SelectionDAGBuilder::visitInsertValue(InsertValueInst &I) {
2755  const Value *Op0 = I.getOperand(0);
2756  const Value *Op1 = I.getOperand(1);
2757  const Type *AggTy = I.getType();
2758  const Type *ValTy = Op1->getType();
2759  bool IntoUndef = isa<UndefValue>(Op0);
2760  bool FromUndef = isa<UndefValue>(Op1);
2761
2762  unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
2763                                            I.idx_begin(), I.idx_end());
2764
2765  SmallVector<EVT, 4> AggValueVTs;
2766  ComputeValueVTs(TLI, AggTy, AggValueVTs);
2767  SmallVector<EVT, 4> ValValueVTs;
2768  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2769
2770  unsigned NumAggValues = AggValueVTs.size();
2771  unsigned NumValValues = ValValueVTs.size();
2772  SmallVector<SDValue, 4> Values(NumAggValues);
2773
2774  SDValue Agg = getValue(Op0);
2775  SDValue Val = getValue(Op1);
2776  unsigned i = 0;
2777  // Copy the beginning value(s) from the original aggregate.
2778  for (; i != LinearIndex; ++i)
2779    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2780                SDValue(Agg.getNode(), Agg.getResNo() + i);
2781  // Copy values from the inserted value(s).
2782  for (; i != LinearIndex + NumValValues; ++i)
2783    Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2784                SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
2785  // Copy remaining value(s) from the original aggregate.
2786  for (; i != NumAggValues; ++i)
2787    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2788                SDValue(Agg.getNode(), Agg.getResNo() + i);
2789
2790  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2791                            DAG.getVTList(&AggValueVTs[0], NumAggValues),
2792                            &Values[0], NumAggValues);
2793  setValue(&I, Res);
2794
2795  if (DisableScheduling)
2796    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2797}
2798
2799void SelectionDAGBuilder::visitExtractValue(ExtractValueInst &I) {
2800  const Value *Op0 = I.getOperand(0);
2801  const Type *AggTy = Op0->getType();
2802  const Type *ValTy = I.getType();
2803  bool OutOfUndef = isa<UndefValue>(Op0);
2804
2805  unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
2806                                            I.idx_begin(), I.idx_end());
2807
2808  SmallVector<EVT, 4> ValValueVTs;
2809  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2810
2811  unsigned NumValValues = ValValueVTs.size();
2812  SmallVector<SDValue, 4> Values(NumValValues);
2813
2814  SDValue Agg = getValue(Op0);
2815  // Copy out the selected value(s).
2816  for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
2817    Values[i - LinearIndex] =
2818      OutOfUndef ?
2819        DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
2820        SDValue(Agg.getNode(), Agg.getResNo() + i);
2821
2822  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2823                            DAG.getVTList(&ValValueVTs[0], NumValValues),
2824                            &Values[0], NumValValues);
2825  setValue(&I, Res);
2826
2827  if (DisableScheduling)
2828    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2829}
2830
2831void SelectionDAGBuilder::visitGetElementPtr(User &I) {
2832  SDValue N = getValue(I.getOperand(0));
2833  const Type *Ty = I.getOperand(0)->getType();
2834
2835  for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
2836       OI != E; ++OI) {
2837    Value *Idx = *OI;
2838    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2839      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2840      if (Field) {
2841        // N = N + Offset
2842        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
2843        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2844                        DAG.getIntPtrConstant(Offset));
2845
2846        if (DisableScheduling)
2847          DAG.AssignOrdering(N.getNode(), SDNodeOrder);
2848      }
2849
2850      Ty = StTy->getElementType(Field);
2851    } else {
2852      Ty = cast<SequentialType>(Ty)->getElementType();
2853
2854      // If this is a constant subscript, handle it quickly.
2855      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2856        if (CI->getZExtValue() == 0) continue;
2857        uint64_t Offs =
2858            TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
2859        SDValue OffsVal;
2860        EVT PTy = TLI.getPointerTy();
2861        unsigned PtrBits = PTy.getSizeInBits();
2862        if (PtrBits < 64)
2863          OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2864                                TLI.getPointerTy(),
2865                                DAG.getConstant(Offs, MVT::i64));
2866        else
2867          OffsVal = DAG.getIntPtrConstant(Offs);
2868
2869        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2870                        OffsVal);
2871
2872        if (DisableScheduling) {
2873          DAG.AssignOrdering(OffsVal.getNode(), SDNodeOrder);
2874          DAG.AssignOrdering(N.getNode(), SDNodeOrder);
2875        }
2876
2877        continue;
2878      }
2879
2880      // N = N + Idx * ElementSize;
2881      APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
2882                                TD->getTypeAllocSize(Ty));
2883      SDValue IdxN = getValue(Idx);
2884
2885      // If the index is smaller or larger than intptr_t, truncate or extend
2886      // it.
2887      IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType());
2888
2889      // If this is a multiply by a power of two, turn it into a shl
2890      // immediately.  This is a very common case.
2891      if (ElementSize != 1) {
2892        if (ElementSize.isPowerOf2()) {
2893          unsigned Amt = ElementSize.logBase2();
2894          IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(),
2895                             N.getValueType(), IdxN,
2896                             DAG.getConstant(Amt, TLI.getPointerTy()));
2897        } else {
2898          SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy());
2899          IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(),
2900                             N.getValueType(), IdxN, Scale);
2901        }
2902
2903        if (DisableScheduling)
2904          DAG.AssignOrdering(IdxN.getNode(), SDNodeOrder);
2905      }
2906
2907      N = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2908                      N.getValueType(), N, IdxN);
2909
2910      if (DisableScheduling)
2911        DAG.AssignOrdering(N.getNode(), SDNodeOrder);
2912    }
2913  }
2914
2915  setValue(&I, N);
2916}
2917
2918void SelectionDAGBuilder::visitAlloca(AllocaInst &I) {
2919  // If this is a fixed sized alloca in the entry block of the function,
2920  // allocate it statically on the stack.
2921  if (FuncInfo.StaticAllocaMap.count(&I))
2922    return;   // getValue will auto-populate this.
2923
2924  const Type *Ty = I.getAllocatedType();
2925  uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
2926  unsigned Align =
2927    std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
2928             I.getAlignment());
2929
2930  SDValue AllocSize = getValue(I.getArraySize());
2931
2932  AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), AllocSize.getValueType(),
2933                          AllocSize,
2934                          DAG.getConstant(TySize, AllocSize.getValueType()));
2935
2936  if (DisableScheduling)
2937    DAG.AssignOrdering(AllocSize.getNode(), SDNodeOrder);
2938
2939  EVT IntPtr = TLI.getPointerTy();
2940  AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr);
2941
2942  if (DisableScheduling)
2943    DAG.AssignOrdering(AllocSize.getNode(), SDNodeOrder);
2944
2945  // Handle alignment.  If the requested alignment is less than or equal to
2946  // the stack alignment, ignore it.  If the size is greater than or equal to
2947  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
2948  unsigned StackAlign =
2949    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
2950  if (Align <= StackAlign)
2951    Align = 0;
2952
2953  // Round the size of the allocation up to the stack alignment size
2954  // by add SA-1 to the size.
2955  AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2956                          AllocSize.getValueType(), AllocSize,
2957                          DAG.getIntPtrConstant(StackAlign-1));
2958  if (DisableScheduling)
2959    DAG.AssignOrdering(AllocSize.getNode(), SDNodeOrder);
2960
2961  // Mask out the low bits for alignment purposes.
2962  AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(),
2963                          AllocSize.getValueType(), AllocSize,
2964                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
2965  if (DisableScheduling)
2966    DAG.AssignOrdering(AllocSize.getNode(), SDNodeOrder);
2967
2968  SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
2969  SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
2970  SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(),
2971                            VTs, Ops, 3);
2972  setValue(&I, DSA);
2973  DAG.setRoot(DSA.getValue(1));
2974
2975  if (DisableScheduling)
2976    DAG.AssignOrdering(DSA.getNode(), SDNodeOrder);
2977
2978  // Inform the Frame Information that we have just allocated a variable-sized
2979  // object.
2980  FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject();
2981}
2982
2983void SelectionDAGBuilder::visitLoad(LoadInst &I) {
2984  const Value *SV = I.getOperand(0);
2985  SDValue Ptr = getValue(SV);
2986
2987  const Type *Ty = I.getType();
2988  bool isVolatile = I.isVolatile();
2989  unsigned Alignment = I.getAlignment();
2990
2991  SmallVector<EVT, 4> ValueVTs;
2992  SmallVector<uint64_t, 4> Offsets;
2993  ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
2994  unsigned NumValues = ValueVTs.size();
2995  if (NumValues == 0)
2996    return;
2997
2998  SDValue Root;
2999  bool ConstantMemory = false;
3000  if (I.isVolatile())
3001    // Serialize volatile loads with other side effects.
3002    Root = getRoot();
3003  else if (AA->pointsToConstantMemory(SV)) {
3004    // Do not serialize (non-volatile) loads of constant memory with anything.
3005    Root = DAG.getEntryNode();
3006    ConstantMemory = true;
3007  } else {
3008    // Do not serialize non-volatile loads against each other.
3009    Root = DAG.getRoot();
3010  }
3011
3012  SmallVector<SDValue, 4> Values(NumValues);
3013  SmallVector<SDValue, 4> Chains(NumValues);
3014  EVT PtrVT = Ptr.getValueType();
3015  for (unsigned i = 0; i != NumValues; ++i) {
3016    SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3017                            PtrVT, Ptr,
3018                            DAG.getConstant(Offsets[i], PtrVT));
3019    SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root,
3020                            A, SV, Offsets[i], isVolatile, Alignment);
3021
3022    Values[i] = L;
3023    Chains[i] = L.getValue(1);
3024
3025    if (DisableScheduling) {
3026      DAG.AssignOrdering(A.getNode(), SDNodeOrder);
3027      DAG.AssignOrdering(L.getNode(), SDNodeOrder);
3028    }
3029  }
3030
3031  if (!ConstantMemory) {
3032    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3033                                MVT::Other, &Chains[0], NumValues);
3034    if (isVolatile)
3035      DAG.setRoot(Chain);
3036    else
3037      PendingLoads.push_back(Chain);
3038
3039    if (DisableScheduling)
3040      DAG.AssignOrdering(Chain.getNode(), SDNodeOrder);
3041  }
3042
3043  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3044                            DAG.getVTList(&ValueVTs[0], NumValues),
3045                            &Values[0], NumValues);
3046  setValue(&I, Res);
3047
3048  if (DisableScheduling)
3049    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
3050}
3051
3052void SelectionDAGBuilder::visitStore(StoreInst &I) {
3053  Value *SrcV = I.getOperand(0);
3054  Value *PtrV = I.getOperand(1);
3055
3056  SmallVector<EVT, 4> ValueVTs;
3057  SmallVector<uint64_t, 4> Offsets;
3058  ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
3059  unsigned NumValues = ValueVTs.size();
3060  if (NumValues == 0)
3061    return;
3062
3063  // Get the lowered operands. Note that we do this after
3064  // checking if NumResults is zero, because with zero results
3065  // the operands won't have values in the map.
3066  SDValue Src = getValue(SrcV);
3067  SDValue Ptr = getValue(PtrV);
3068
3069  SDValue Root = getRoot();
3070  SmallVector<SDValue, 4> Chains(NumValues);
3071  EVT PtrVT = Ptr.getValueType();
3072  bool isVolatile = I.isVolatile();
3073  unsigned Alignment = I.getAlignment();
3074
3075  for (unsigned i = 0; i != NumValues; ++i) {
3076    SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr,
3077                              DAG.getConstant(Offsets[i], PtrVT));
3078    Chains[i] = DAG.getStore(Root, getCurDebugLoc(),
3079                             SDValue(Src.getNode(), Src.getResNo() + i),
3080                             Add, PtrV, Offsets[i], isVolatile, Alignment);
3081
3082    if (DisableScheduling) {
3083      DAG.AssignOrdering(Add.getNode(), SDNodeOrder);
3084      DAG.AssignOrdering(Chains[i].getNode(), SDNodeOrder);
3085    }
3086  }
3087
3088  SDValue Res = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3089                            MVT::Other, &Chains[0], NumValues);
3090  DAG.setRoot(Res);
3091
3092  if (DisableScheduling)
3093    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
3094}
3095
3096/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3097/// node.
3098void SelectionDAGBuilder::visitTargetIntrinsic(CallInst &I,
3099                                               unsigned Intrinsic) {
3100  bool HasChain = !I.doesNotAccessMemory();
3101  bool OnlyLoad = HasChain && I.onlyReadsMemory();
3102
3103  // Build the operand list.
3104  SmallVector<SDValue, 8> Ops;
3105  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
3106    if (OnlyLoad) {
3107      // We don't need to serialize loads against other loads.
3108      Ops.push_back(DAG.getRoot());
3109    } else {
3110      Ops.push_back(getRoot());
3111    }
3112  }
3113
3114  // Info is set by getTgtMemInstrinsic
3115  TargetLowering::IntrinsicInfo Info;
3116  bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
3117
3118  // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3119  if (!IsTgtIntrinsic)
3120    Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
3121
3122  // Add all operands of the call to the operand list.
3123  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
3124    SDValue Op = getValue(I.getOperand(i));
3125    assert(TLI.isTypeLegal(Op.getValueType()) &&
3126           "Intrinsic uses a non-legal type?");
3127    Ops.push_back(Op);
3128  }
3129
3130  SmallVector<EVT, 4> ValueVTs;
3131  ComputeValueVTs(TLI, I.getType(), ValueVTs);
3132#ifndef NDEBUG
3133  for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) {
3134    assert(TLI.isTypeLegal(ValueVTs[Val]) &&
3135           "Intrinsic uses a non-legal type?");
3136  }
3137#endif // NDEBUG
3138
3139  if (HasChain)
3140    ValueVTs.push_back(MVT::Other);
3141
3142  SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
3143
3144  // Create the node.
3145  SDValue Result;
3146  if (IsTgtIntrinsic) {
3147    // This is target intrinsic that touches memory
3148    Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(),
3149                                     VTs, &Ops[0], Ops.size(),
3150                                     Info.memVT, Info.ptrVal, Info.offset,
3151                                     Info.align, Info.vol,
3152                                     Info.readMem, Info.writeMem);
3153  } else if (!HasChain) {
3154    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
3155                         VTs, &Ops[0], Ops.size());
3156  } else if (I.getType() != Type::getVoidTy(*DAG.getContext())) {
3157    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
3158                         VTs, &Ops[0], Ops.size());
3159  } else {
3160    Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(),
3161                         VTs, &Ops[0], Ops.size());
3162  }
3163
3164  if (DisableScheduling)
3165    DAG.AssignOrdering(Result.getNode(), SDNodeOrder);
3166
3167  if (HasChain) {
3168    SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3169    if (OnlyLoad)
3170      PendingLoads.push_back(Chain);
3171    else
3172      DAG.setRoot(Chain);
3173  }
3174
3175  if (I.getType() != Type::getVoidTy(*DAG.getContext())) {
3176    if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3177      EVT VT = TLI.getValueType(PTy);
3178      Result = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), VT, Result);
3179
3180      if (DisableScheduling)
3181        DAG.AssignOrdering(Result.getNode(), SDNodeOrder);
3182    }
3183
3184    setValue(&I, Result);
3185  }
3186}
3187
3188/// GetSignificand - Get the significand and build it into a floating-point
3189/// number with exponent of 1:
3190///
3191///   Op = (Op & 0x007fffff) | 0x3f800000;
3192///
3193/// where Op is the hexidecimal representation of floating point value.
3194static SDValue
3195GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl, unsigned Order) {
3196  SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3197                           DAG.getConstant(0x007fffff, MVT::i32));
3198  SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3199                           DAG.getConstant(0x3f800000, MVT::i32));
3200  SDValue Res = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t2);
3201
3202  if (DisableScheduling) {
3203    DAG.AssignOrdering(t1.getNode(), Order);
3204    DAG.AssignOrdering(t2.getNode(), Order);
3205    DAG.AssignOrdering(Res.getNode(), Order);
3206  }
3207
3208  return Res;
3209}
3210
3211/// GetExponent - Get the exponent:
3212///
3213///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3214///
3215/// where Op is the hexidecimal representation of floating point value.
3216static SDValue
3217GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3218            DebugLoc dl, unsigned Order) {
3219  SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3220                           DAG.getConstant(0x7f800000, MVT::i32));
3221  SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3222                           DAG.getConstant(23, TLI.getPointerTy()));
3223  SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3224                           DAG.getConstant(127, MVT::i32));
3225  SDValue Res = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3226
3227  if (DisableScheduling) {
3228    DAG.AssignOrdering(t0.getNode(), Order);
3229    DAG.AssignOrdering(t1.getNode(), Order);
3230    DAG.AssignOrdering(t2.getNode(), Order);
3231    DAG.AssignOrdering(Res.getNode(), Order);
3232  }
3233
3234  return Res;
3235}
3236
3237/// getF32Constant - Get 32-bit floating point constant.
3238static SDValue
3239getF32Constant(SelectionDAG &DAG, unsigned Flt) {
3240  return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32);
3241}
3242
3243/// Inlined utility function to implement binary input atomic intrinsics for
3244/// visitIntrinsicCall: I is a call instruction
3245///                     Op is the associated NodeType for I
3246const char *
3247SelectionDAGBuilder::implVisitBinaryAtomic(CallInst& I, ISD::NodeType Op) {
3248  SDValue Root = getRoot();
3249  SDValue L =
3250    DAG.getAtomic(Op, getCurDebugLoc(),
3251                  getValue(I.getOperand(2)).getValueType().getSimpleVT(),
3252                  Root,
3253                  getValue(I.getOperand(1)),
3254                  getValue(I.getOperand(2)),
3255                  I.getOperand(1));
3256  setValue(&I, L);
3257  DAG.setRoot(L.getValue(1));
3258
3259  if (DisableScheduling)
3260    DAG.AssignOrdering(L.getNode(), SDNodeOrder);
3261
3262  return 0;
3263}
3264
3265// implVisitAluOverflow - Lower arithmetic overflow instrinsics.
3266const char *
3267SelectionDAGBuilder::implVisitAluOverflow(CallInst &I, ISD::NodeType Op) {
3268  SDValue Op1 = getValue(I.getOperand(1));
3269  SDValue Op2 = getValue(I.getOperand(2));
3270
3271  SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
3272  SDValue Result = DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2);
3273
3274  setValue(&I, Result);
3275
3276  if (DisableScheduling)
3277    DAG.AssignOrdering(Result.getNode(), SDNodeOrder);
3278
3279  return 0;
3280}
3281
3282/// visitExp - Lower an exp intrinsic. Handles the special sequences for
3283/// limited-precision mode.
3284void
3285SelectionDAGBuilder::visitExp(CallInst &I) {
3286  SDValue result;
3287  DebugLoc dl = getCurDebugLoc();
3288
3289  if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
3290      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3291    SDValue Op = getValue(I.getOperand(1));
3292
3293    // Put the exponent in the right bit position for later addition to the
3294    // final result:
3295    //
3296    //   #define LOG2OFe 1.4426950f
3297    //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3298    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3299                             getF32Constant(DAG, 0x3fb8aa3b));
3300    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3301
3302    //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3303    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3304    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3305
3306    if (DisableScheduling) {
3307      DAG.AssignOrdering(t0.getNode(), SDNodeOrder);
3308      DAG.AssignOrdering(IntegerPartOfX.getNode(), SDNodeOrder);
3309      DAG.AssignOrdering(t1.getNode(), SDNodeOrder);
3310      DAG.AssignOrdering(X.getNode(), SDNodeOrder);
3311    }
3312
3313    //   IntegerPartOfX <<= 23;
3314    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3315                                 DAG.getConstant(23, TLI.getPointerTy()));
3316
3317    if (DisableScheduling)
3318      DAG.AssignOrdering(IntegerPartOfX.getNode(), SDNodeOrder);
3319
3320    if (LimitFloatPrecision <= 6) {
3321      // For floating-point precision of 6:
3322      //
3323      //   TwoToFractionalPartOfX =
3324      //     0.997535578f +
3325      //       (0.735607626f + 0.252464424f * x) * x;
3326      //
3327      // error 0.0144103317, which is 6 bits
3328      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3329                               getF32Constant(DAG, 0x3e814304));
3330      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3331                               getF32Constant(DAG, 0x3f3c50c8));
3332      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3333      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3334                               getF32Constant(DAG, 0x3f7f5e7e));
3335      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t5);
3336
3337      // Add the exponent into the result in integer domain.
3338      SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3339                               TwoToFracPartOfX, IntegerPartOfX);
3340
3341      result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t6);
3342
3343      if (DisableScheduling) {
3344        DAG.AssignOrdering(t2.getNode(), SDNodeOrder);
3345        DAG.AssignOrdering(t3.getNode(), SDNodeOrder);
3346        DAG.AssignOrdering(t4.getNode(), SDNodeOrder);
3347        DAG.AssignOrdering(t5.getNode(), SDNodeOrder);
3348        DAG.AssignOrdering(t6.getNode(), SDNodeOrder);
3349        DAG.AssignOrdering(TwoToFracPartOfX.getNode(), SDNodeOrder);
3350        DAG.AssignOrdering(result.getNode(), SDNodeOrder);
3351      }
3352    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3353      // For floating-point precision of 12:
3354      //
3355      //   TwoToFractionalPartOfX =
3356      //     0.999892986f +
3357      //       (0.696457318f +
3358      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3359      //
3360      // 0.000107046256 error, which is 13 to 14 bits
3361      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3362                               getF32Constant(DAG, 0x3da235e3));
3363      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3364                               getF32Constant(DAG, 0x3e65b8f3));
3365      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3366      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3367                               getF32Constant(DAG, 0x3f324b07));
3368      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3369      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3370                               getF32Constant(DAG, 0x3f7ff8fd));
3371      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t7);
3372
3373      // Add the exponent into the result in integer domain.
3374      SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3375                               TwoToFracPartOfX, IntegerPartOfX);
3376
3377      result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t8);
3378
3379      if (DisableScheduling) {
3380        DAG.AssignOrdering(t2.getNode(), SDNodeOrder);
3381        DAG.AssignOrdering(t3.getNode(), SDNodeOrder);
3382        DAG.AssignOrdering(t4.getNode(), SDNodeOrder);
3383        DAG.AssignOrdering(t5.getNode(), SDNodeOrder);
3384        DAG.AssignOrdering(t6.getNode(), SDNodeOrder);
3385        DAG.AssignOrdering(t7.getNode(), SDNodeOrder);
3386        DAG.AssignOrdering(t8.getNode(), SDNodeOrder);
3387        DAG.AssignOrdering(TwoToFracPartOfX.getNode(), SDNodeOrder);
3388        DAG.AssignOrdering(result.getNode(), SDNodeOrder);
3389      }
3390    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3391      // For floating-point precision of 18:
3392      //
3393      //   TwoToFractionalPartOfX =
3394      //     0.999999982f +
3395      //       (0.693148872f +
3396      //         (0.240227044f +
3397      //           (0.554906021e-1f +
3398      //             (0.961591928e-2f +
3399      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3400      //
3401      // error 2.47208000*10^(-7), which is better than 18 bits
3402      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3403                               getF32Constant(DAG, 0x3924b03e));
3404      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3405                               getF32Constant(DAG, 0x3ab24b87));
3406      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3407      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3408                               getF32Constant(DAG, 0x3c1d8c17));
3409      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3410      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3411                               getF32Constant(DAG, 0x3d634a1d));
3412      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3413      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3414                               getF32Constant(DAG, 0x3e75fe14));
3415      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3416      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3417                                getF32Constant(DAG, 0x3f317234));
3418      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3419      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3420                                getF32Constant(DAG, 0x3f800000));
3421      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,
3422                                             MVT::i32, t13);
3423
3424      // Add the exponent into the result in integer domain.
3425      SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3426                                TwoToFracPartOfX, IntegerPartOfX);
3427
3428      result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t14);
3429
3430      if (DisableScheduling) {
3431        DAG.AssignOrdering(t2.getNode(), SDNodeOrder);
3432        DAG.AssignOrdering(t3.getNode(), SDNodeOrder);
3433        DAG.AssignOrdering(t4.getNode(), SDNodeOrder);
3434        DAG.AssignOrdering(t5.getNode(), SDNodeOrder);
3435        DAG.AssignOrdering(t6.getNode(), SDNodeOrder);
3436        DAG.AssignOrdering(t7.getNode(), SDNodeOrder);
3437        DAG.AssignOrdering(t8.getNode(), SDNodeOrder);
3438        DAG.AssignOrdering(t9.getNode(), SDNodeOrder);
3439        DAG.AssignOrdering(t10.getNode(), SDNodeOrder);
3440        DAG.AssignOrdering(t11.getNode(), SDNodeOrder);
3441        DAG.AssignOrdering(t12.getNode(), SDNodeOrder);
3442        DAG.AssignOrdering(t13.getNode(), SDNodeOrder);
3443        DAG.AssignOrdering(t14.getNode(), SDNodeOrder);
3444        DAG.AssignOrdering(TwoToFracPartOfX.getNode(), SDNodeOrder);
3445        DAG.AssignOrdering(result.getNode(), SDNodeOrder);
3446      }
3447    }
3448  } else {
3449    // No special expansion.
3450    result = DAG.getNode(ISD::FEXP, dl,
3451                         getValue(I.getOperand(1)).getValueType(),
3452                         getValue(I.getOperand(1)));
3453    if (DisableScheduling)
3454      DAG.AssignOrdering(result.getNode(), SDNodeOrder);
3455  }
3456
3457  setValue(&I, result);
3458}
3459
3460/// visitLog - Lower a log intrinsic. Handles the special sequences for
3461/// limited-precision mode.
3462void
3463SelectionDAGBuilder::visitLog(CallInst &I) {
3464  SDValue result;
3465  DebugLoc dl = getCurDebugLoc();
3466
3467  if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
3468      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3469    SDValue Op = getValue(I.getOperand(1));
3470    SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
3471
3472    if (DisableScheduling)
3473      DAG.AssignOrdering(Op1.getNode(), SDNodeOrder);
3474
3475    // Scale the exponent by log(2) [0.69314718f].
3476    SDValue Exp = GetExponent(DAG, Op1, TLI, dl, SDNodeOrder);
3477    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3478                                        getF32Constant(DAG, 0x3f317218));
3479
3480    if (DisableScheduling)
3481      DAG.AssignOrdering(LogOfExponent.getNode(), SDNodeOrder);
3482
3483    // Get the significand and build it into a floating-point number with
3484    // exponent of 1.
3485    SDValue X = GetSignificand(DAG, Op1, dl, SDNodeOrder);
3486
3487    if (LimitFloatPrecision <= 6) {
3488      // For floating-point precision of 6:
3489      //
3490      //   LogofMantissa =
3491      //     -1.1609546f +
3492      //       (1.4034025f - 0.23903021f * x) * x;
3493      //
3494      // error 0.0034276066, which is better than 8 bits
3495      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3496                               getF32Constant(DAG, 0xbe74c456));
3497      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3498                               getF32Constant(DAG, 0x3fb3a2b1));
3499      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3500      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3501                                          getF32Constant(DAG, 0x3f949a29));
3502
3503      result = DAG.getNode(ISD::FADD, dl,
3504                           MVT::f32, LogOfExponent, LogOfMantissa);
3505
3506      if (DisableScheduling) {
3507        DAG.AssignOrdering(t0.getNode(), SDNodeOrder);
3508        DAG.AssignOrdering(t1.getNode(), SDNodeOrder);
3509        DAG.AssignOrdering(t2.getNode(), SDNodeOrder);
3510        DAG.AssignOrdering(LogOfMantissa.getNode(), SDNodeOrder);
3511        DAG.AssignOrdering(result.getNode(), SDNodeOrder);
3512      }
3513    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3514      // For floating-point precision of 12:
3515      //
3516      //   LogOfMantissa =
3517      //     -1.7417939f +
3518      //       (2.8212026f +
3519      //         (-1.4699568f +
3520      //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3521      //
3522      // error 0.000061011436, which is 14 bits
3523      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3524                               getF32Constant(DAG, 0xbd67b6d6));
3525      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3526                               getF32Constant(DAG, 0x3ee4f4b8));
3527      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3528      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3529                               getF32Constant(DAG, 0x3fbc278b));
3530      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3531      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3532                               getF32Constant(DAG, 0x40348e95));
3533      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3534      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3535                                          getF32Constant(DAG, 0x3fdef31a));
3536
3537      result = DAG.getNode(ISD::FADD, dl,
3538                           MVT::f32, LogOfExponent, LogOfMantissa);
3539
3540      if (DisableScheduling) {
3541        DAG.AssignOrdering(t0.getNode(), SDNodeOrder);
3542        DAG.AssignOrdering(t1.getNode(), SDNodeOrder);
3543        DAG.AssignOrdering(t2.getNode(), SDNodeOrder);
3544        DAG.AssignOrdering(t3.getNode(), SDNodeOrder);
3545        DAG.AssignOrdering(t4.getNode(), SDNodeOrder);
3546        DAG.AssignOrdering(t5.getNode(), SDNodeOrder);
3547        DAG.AssignOrdering(t6.getNode(), SDNodeOrder);
3548        DAG.AssignOrdering(LogOfMantissa.getNode(), SDNodeOrder);
3549        DAG.AssignOrdering(result.getNode(), SDNodeOrder);
3550      }
3551    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3552      // For floating-point precision of 18:
3553      //
3554      //   LogOfMantissa =
3555      //     -2.1072184f +
3556      //       (4.2372794f +
3557      //         (-3.7029485f +
3558      //           (2.2781945f +
3559      //             (-0.87823314f +
3560      //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3561      //
3562      // error 0.0000023660568, which is better than 18 bits
3563      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3564                               getF32Constant(DAG, 0xbc91e5ac));
3565      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3566                               getF32Constant(DAG, 0x3e4350aa));
3567      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3568      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3569                               getF32Constant(DAG, 0x3f60d3e3));
3570      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3571      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3572                               getF32Constant(DAG, 0x4011cdf0));
3573      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3574      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3575                               getF32Constant(DAG, 0x406cfd1c));
3576      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3577      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3578                               getF32Constant(DAG, 0x408797cb));
3579      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3580      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3581                                          getF32Constant(DAG, 0x4006dcab));
3582
3583      result = DAG.getNode(ISD::FADD, dl,
3584                           MVT::f32, LogOfExponent, LogOfMantissa);
3585
3586      if (DisableScheduling) {
3587        DAG.AssignOrdering(t0.getNode(), SDNodeOrder);
3588        DAG.AssignOrdering(t1.getNode(), SDNodeOrder);
3589        DAG.AssignOrdering(t2.getNode(), SDNodeOrder);
3590        DAG.AssignOrdering(t3.getNode(), SDNodeOrder);
3591        DAG.AssignOrdering(t4.getNode(), SDNodeOrder);
3592        DAG.AssignOrdering(t5.getNode(), SDNodeOrder);
3593        DAG.AssignOrdering(t6.getNode(), SDNodeOrder);
3594        DAG.AssignOrdering(t7.getNode(), SDNodeOrder);
3595        DAG.AssignOrdering(t8.getNode(), SDNodeOrder);
3596        DAG.AssignOrdering(t9.getNode(), SDNodeOrder);
3597        DAG.AssignOrdering(t10.getNode(), SDNodeOrder);
3598        DAG.AssignOrdering(LogOfMantissa.getNode(), SDNodeOrder);
3599        DAG.AssignOrdering(result.getNode(), SDNodeOrder);
3600      }
3601    }
3602  } else {
3603    // No special expansion.
3604    result = DAG.getNode(ISD::FLOG, dl,
3605                         getValue(I.getOperand(1)).getValueType(),
3606                         getValue(I.getOperand(1)));
3607
3608    if (DisableScheduling)
3609      DAG.AssignOrdering(result.getNode(), SDNodeOrder);
3610  }
3611
3612  setValue(&I, result);
3613}
3614
3615/// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for
3616/// limited-precision mode.
3617void
3618SelectionDAGBuilder::visitLog2(CallInst &I) {
3619  SDValue result;
3620  DebugLoc dl = getCurDebugLoc();
3621
3622  if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
3623      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3624    SDValue Op = getValue(I.getOperand(1));
3625    SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
3626
3627    if (DisableScheduling)
3628      DAG.AssignOrdering(Op1.getNode(), SDNodeOrder);
3629
3630    // Get the exponent.
3631    SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl, SDNodeOrder);
3632
3633    if (DisableScheduling)
3634      DAG.AssignOrdering(LogOfExponent.getNode(), SDNodeOrder);
3635
3636    // Get the significand and build it into a floating-point number with
3637    // exponent of 1.
3638    SDValue X = GetSignificand(DAG, Op1, dl, SDNodeOrder);
3639
3640    // Different possible minimax approximations of significand in
3641    // floating-point for various degrees of accuracy over [1,2].
3642    if (LimitFloatPrecision <= 6) {
3643      // For floating-point precision of 6:
3644      //
3645      //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3646      //
3647      // error 0.0049451742, which is more than 7 bits
3648      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3649                               getF32Constant(DAG, 0xbeb08fe0));
3650      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3651                               getF32Constant(DAG, 0x40019463));
3652      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3653      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3654                                           getF32Constant(DAG, 0x3fd6633d));
3655
3656      result = DAG.getNode(ISD::FADD, dl,
3657                           MVT::f32, LogOfExponent, Log2ofMantissa);
3658
3659      if (DisableScheduling) {
3660        DAG.AssignOrdering(t0.getNode(), SDNodeOrder);
3661        DAG.AssignOrdering(t1.getNode(), SDNodeOrder);
3662        DAG.AssignOrdering(t2.getNode(), SDNodeOrder);
3663        DAG.AssignOrdering(Log2ofMantissa.getNode(), SDNodeOrder);
3664        DAG.AssignOrdering(result.getNode(), SDNodeOrder);
3665      }
3666    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3667      // For floating-point precision of 12:
3668      //
3669      //   Log2ofMantissa =
3670      //     -2.51285454f +
3671      //       (4.07009056f +
3672      //         (-2.12067489f +
3673      //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3674      //
3675      // error 0.0000876136000, which is better than 13 bits
3676      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3677                               getF32Constant(DAG, 0xbda7262e));
3678      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3679                               getF32Constant(DAG, 0x3f25280b));
3680      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3681      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3682                               getF32Constant(DAG, 0x4007b923));
3683      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3684      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3685                               getF32Constant(DAG, 0x40823e2f));
3686      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3687      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3688                                           getF32Constant(DAG, 0x4020d29c));
3689
3690      result = DAG.getNode(ISD::FADD, dl,
3691                           MVT::f32, LogOfExponent, Log2ofMantissa);
3692
3693      if (DisableScheduling) {
3694        DAG.AssignOrdering(t0.getNode(), SDNodeOrder);
3695        DAG.AssignOrdering(t1.getNode(), SDNodeOrder);
3696        DAG.AssignOrdering(t2.getNode(), SDNodeOrder);
3697        DAG.AssignOrdering(t3.getNode(), SDNodeOrder);
3698        DAG.AssignOrdering(t4.getNode(), SDNodeOrder);
3699        DAG.AssignOrdering(t5.getNode(), SDNodeOrder);
3700        DAG.AssignOrdering(t6.getNode(), SDNodeOrder);
3701        DAG.AssignOrdering(Log2ofMantissa.getNode(), SDNodeOrder);
3702        DAG.AssignOrdering(result.getNode(), SDNodeOrder);
3703      }
3704    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3705      // For floating-point precision of 18:
3706      //
3707      //   Log2ofMantissa =
3708      //     -3.0400495f +
3709      //       (6.1129976f +
3710      //         (-5.3420409f +
3711      //           (3.2865683f +
3712      //             (-1.2669343f +
3713      //               (0.27515199f -
3714      //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3715      //
3716      // error 0.0000018516, which is better than 18 bits
3717      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3718                               getF32Constant(DAG, 0xbcd2769e));
3719      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3720                               getF32Constant(DAG, 0x3e8ce0b9));
3721      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3722      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3723                               getF32Constant(DAG, 0x3fa22ae7));
3724      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3725      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3726                               getF32Constant(DAG, 0x40525723));
3727      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3728      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3729                               getF32Constant(DAG, 0x40aaf200));
3730      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3731      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3732                               getF32Constant(DAG, 0x40c39dad));
3733      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3734      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3735                                           getF32Constant(DAG, 0x4042902c));
3736
3737      result = DAG.getNode(ISD::FADD, dl,
3738                           MVT::f32, LogOfExponent, Log2ofMantissa);
3739
3740      if (DisableScheduling) {
3741        DAG.AssignOrdering(t0.getNode(), SDNodeOrder);
3742        DAG.AssignOrdering(t1.getNode(), SDNodeOrder);
3743        DAG.AssignOrdering(t2.getNode(), SDNodeOrder);
3744        DAG.AssignOrdering(t3.getNode(), SDNodeOrder);
3745        DAG.AssignOrdering(t4.getNode(), SDNodeOrder);
3746        DAG.AssignOrdering(t5.getNode(), SDNodeOrder);
3747        DAG.AssignOrdering(t6.getNode(), SDNodeOrder);
3748        DAG.AssignOrdering(t7.getNode(), SDNodeOrder);
3749        DAG.AssignOrdering(t8.getNode(), SDNodeOrder);
3750        DAG.AssignOrdering(t9.getNode(), SDNodeOrder);
3751        DAG.AssignOrdering(t10.getNode(), SDNodeOrder);
3752        DAG.AssignOrdering(Log2ofMantissa.getNode(), SDNodeOrder);
3753        DAG.AssignOrdering(result.getNode(), SDNodeOrder);
3754      }
3755    }
3756  } else {
3757    // No special expansion.
3758    result = DAG.getNode(ISD::FLOG2, dl,
3759                         getValue(I.getOperand(1)).getValueType(),
3760                         getValue(I.getOperand(1)));
3761
3762    if (DisableScheduling)
3763      DAG.AssignOrdering(result.getNode(), SDNodeOrder);
3764  }
3765
3766  setValue(&I, result);
3767}
3768
3769/// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for
3770/// limited-precision mode.
3771void
3772SelectionDAGBuilder::visitLog10(CallInst &I) {
3773  SDValue result;
3774  DebugLoc dl = getCurDebugLoc();
3775
3776  if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
3777      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3778    SDValue Op = getValue(I.getOperand(1));
3779    SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
3780
3781    if (DisableScheduling)
3782      DAG.AssignOrdering(Op1.getNode(), SDNodeOrder);
3783
3784    // Scale the exponent by log10(2) [0.30102999f].
3785    SDValue Exp = GetExponent(DAG, Op1, TLI, dl, SDNodeOrder);
3786    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3787                                        getF32Constant(DAG, 0x3e9a209a));
3788
3789    if (DisableScheduling)
3790      DAG.AssignOrdering(LogOfExponent.getNode(), SDNodeOrder);
3791
3792    // Get the significand and build it into a floating-point number with
3793    // exponent of 1.
3794    SDValue X = GetSignificand(DAG, Op1, dl, SDNodeOrder);
3795
3796    if (LimitFloatPrecision <= 6) {
3797      // For floating-point precision of 6:
3798      //
3799      //   Log10ofMantissa =
3800      //     -0.50419619f +
3801      //       (0.60948995f - 0.10380950f * x) * x;
3802      //
3803      // error 0.0014886165, which is 6 bits
3804      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3805                               getF32Constant(DAG, 0xbdd49a13));
3806      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3807                               getF32Constant(DAG, 0x3f1c0789));
3808      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3809      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3810                                            getF32Constant(DAG, 0x3f011300));
3811
3812      result = DAG.getNode(ISD::FADD, dl,
3813                           MVT::f32, LogOfExponent, Log10ofMantissa);
3814
3815      if (DisableScheduling) {
3816        DAG.AssignOrdering(t0.getNode(), SDNodeOrder);
3817        DAG.AssignOrdering(t1.getNode(), SDNodeOrder);
3818        DAG.AssignOrdering(t2.getNode(), SDNodeOrder);
3819        DAG.AssignOrdering(Log10ofMantissa.getNode(), SDNodeOrder);
3820        DAG.AssignOrdering(result.getNode(), SDNodeOrder);
3821      }
3822    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3823      // For floating-point precision of 12:
3824      //
3825      //   Log10ofMantissa =
3826      //     -0.64831180f +
3827      //       (0.91751397f +
3828      //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
3829      //
3830      // error 0.00019228036, which is better than 12 bits
3831      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3832                               getF32Constant(DAG, 0x3d431f31));
3833      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3834                               getF32Constant(DAG, 0x3ea21fb2));
3835      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3836      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3837                               getF32Constant(DAG, 0x3f6ae232));
3838      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3839      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3840                                            getF32Constant(DAG, 0x3f25f7c3));
3841
3842      result = DAG.getNode(ISD::FADD, dl,
3843                           MVT::f32, LogOfExponent, Log10ofMantissa);
3844
3845      if (DisableScheduling) {
3846        DAG.AssignOrdering(t0.getNode(), SDNodeOrder);
3847        DAG.AssignOrdering(t1.getNode(), SDNodeOrder);
3848        DAG.AssignOrdering(t2.getNode(), SDNodeOrder);
3849        DAG.AssignOrdering(t3.getNode(), SDNodeOrder);
3850        DAG.AssignOrdering(t4.getNode(), SDNodeOrder);
3851        DAG.AssignOrdering(Log10ofMantissa.getNode(), SDNodeOrder);
3852        DAG.AssignOrdering(result.getNode(), SDNodeOrder);
3853      }
3854    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3855      // For floating-point precision of 18:
3856      //
3857      //   Log10ofMantissa =
3858      //     -0.84299375f +
3859      //       (1.5327582f +
3860      //         (-1.0688956f +
3861      //           (0.49102474f +
3862      //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
3863      //
3864      // error 0.0000037995730, which is better than 18 bits
3865      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3866                               getF32Constant(DAG, 0x3c5d51ce));
3867      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3868                               getF32Constant(DAG, 0x3e00685a));
3869      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3870      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3871                               getF32Constant(DAG, 0x3efb6798));
3872      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3873      SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3874                               getF32Constant(DAG, 0x3f88d192));
3875      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3876      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3877                               getF32Constant(DAG, 0x3fc4316c));
3878      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3879      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
3880                                            getF32Constant(DAG, 0x3f57ce70));
3881
3882      result = DAG.getNode(ISD::FADD, dl,
3883                           MVT::f32, LogOfExponent, Log10ofMantissa);
3884
3885      if (DisableScheduling) {
3886        DAG.AssignOrdering(t0.getNode(), SDNodeOrder);
3887        DAG.AssignOrdering(t1.getNode(), SDNodeOrder);
3888        DAG.AssignOrdering(t2.getNode(), SDNodeOrder);
3889        DAG.AssignOrdering(t3.getNode(), SDNodeOrder);
3890        DAG.AssignOrdering(t4.getNode(), SDNodeOrder);
3891        DAG.AssignOrdering(t5.getNode(), SDNodeOrder);
3892        DAG.AssignOrdering(t6.getNode(), SDNodeOrder);
3893        DAG.AssignOrdering(t7.getNode(), SDNodeOrder);
3894        DAG.AssignOrdering(t8.getNode(), SDNodeOrder);
3895        DAG.AssignOrdering(Log10ofMantissa.getNode(), SDNodeOrder);
3896        DAG.AssignOrdering(result.getNode(), SDNodeOrder);
3897      }
3898    }
3899  } else {
3900    // No special expansion.
3901    result = DAG.getNode(ISD::FLOG10, dl,
3902                         getValue(I.getOperand(1)).getValueType(),
3903                         getValue(I.getOperand(1)));
3904
3905    if (DisableScheduling)
3906      DAG.AssignOrdering(result.getNode(), SDNodeOrder);
3907  }
3908
3909  setValue(&I, result);
3910}
3911
3912/// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for
3913/// limited-precision mode.
3914void
3915SelectionDAGBuilder::visitExp2(CallInst &I) {
3916  SDValue result;
3917  DebugLoc dl = getCurDebugLoc();
3918
3919  if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
3920      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3921    SDValue Op = getValue(I.getOperand(1));
3922
3923    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
3924
3925    if (DisableScheduling)
3926      DAG.AssignOrdering(IntegerPartOfX.getNode(), SDNodeOrder);
3927
3928    //   FractionalPartOfX = x - (float)IntegerPartOfX;
3929    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3930    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
3931
3932    //   IntegerPartOfX <<= 23;
3933    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3934                                 DAG.getConstant(23, TLI.getPointerTy()));
3935
3936    if (DisableScheduling) {
3937      DAG.AssignOrdering(t1.getNode(), SDNodeOrder);
3938      DAG.AssignOrdering(X.getNode(), SDNodeOrder);
3939      DAG.AssignOrdering(IntegerPartOfX.getNode(), SDNodeOrder);
3940    }
3941
3942    if (LimitFloatPrecision <= 6) {
3943      // For floating-point precision of 6:
3944      //
3945      //   TwoToFractionalPartOfX =
3946      //     0.997535578f +
3947      //       (0.735607626f + 0.252464424f * x) * x;
3948      //
3949      // error 0.0144103317, which is 6 bits
3950      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3951                               getF32Constant(DAG, 0x3e814304));
3952      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3953                               getF32Constant(DAG, 0x3f3c50c8));
3954      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3955      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3956                               getF32Constant(DAG, 0x3f7f5e7e));
3957      SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5);
3958      SDValue TwoToFractionalPartOfX =
3959        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3960
3961      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3962                           MVT::f32, TwoToFractionalPartOfX);
3963
3964      if (DisableScheduling) {
3965        DAG.AssignOrdering(t2.getNode(), SDNodeOrder);
3966        DAG.AssignOrdering(t3.getNode(), SDNodeOrder);
3967        DAG.AssignOrdering(t4.getNode(), SDNodeOrder);
3968        DAG.AssignOrdering(t5.getNode(), SDNodeOrder);
3969        DAG.AssignOrdering(t6.getNode(), SDNodeOrder);
3970        DAG.AssignOrdering(TwoToFractionalPartOfX.getNode(), SDNodeOrder);
3971        DAG.AssignOrdering(result.getNode(), SDNodeOrder);
3972      }
3973    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3974      // For floating-point precision of 12:
3975      //
3976      //   TwoToFractionalPartOfX =
3977      //     0.999892986f +
3978      //       (0.696457318f +
3979      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3980      //
3981      // error 0.000107046256, which is 13 to 14 bits
3982      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3983                               getF32Constant(DAG, 0x3da235e3));
3984      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3985                               getF32Constant(DAG, 0x3e65b8f3));
3986      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3987      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3988                               getF32Constant(DAG, 0x3f324b07));
3989      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3990      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3991                               getF32Constant(DAG, 0x3f7ff8fd));
3992      SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7);
3993      SDValue TwoToFractionalPartOfX =
3994        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
3995
3996      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3997                           MVT::f32, TwoToFractionalPartOfX);
3998
3999      if (DisableScheduling) {
4000        DAG.AssignOrdering(t2.getNode(), SDNodeOrder);
4001        DAG.AssignOrdering(t3.getNode(), SDNodeOrder);
4002        DAG.AssignOrdering(t4.getNode(), SDNodeOrder);
4003        DAG.AssignOrdering(t5.getNode(), SDNodeOrder);
4004        DAG.AssignOrdering(t6.getNode(), SDNodeOrder);
4005        DAG.AssignOrdering(t7.getNode(), SDNodeOrder);
4006        DAG.AssignOrdering(t8.getNode(), SDNodeOrder);
4007        DAG.AssignOrdering(TwoToFractionalPartOfX.getNode(), SDNodeOrder);
4008        DAG.AssignOrdering(result.getNode(), SDNodeOrder);
4009      }
4010    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
4011      // For floating-point precision of 18:
4012      //
4013      //   TwoToFractionalPartOfX =
4014      //     0.999999982f +
4015      //       (0.693148872f +
4016      //         (0.240227044f +
4017      //           (0.554906021e-1f +
4018      //             (0.961591928e-2f +
4019      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4020      // error 2.47208000*10^(-7), which is better than 18 bits
4021      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4022                               getF32Constant(DAG, 0x3924b03e));
4023      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4024                               getF32Constant(DAG, 0x3ab24b87));
4025      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4026      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4027                               getF32Constant(DAG, 0x3c1d8c17));
4028      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4029      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4030                               getF32Constant(DAG, 0x3d634a1d));
4031      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4032      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4033                               getF32Constant(DAG, 0x3e75fe14));
4034      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4035      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4036                                getF32Constant(DAG, 0x3f317234));
4037      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4038      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4039                                getF32Constant(DAG, 0x3f800000));
4040      SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13);
4041      SDValue TwoToFractionalPartOfX =
4042        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
4043
4044      result = DAG.getNode(ISD::BIT_CONVERT, dl,
4045                           MVT::f32, TwoToFractionalPartOfX);
4046
4047      if (DisableScheduling) {
4048        DAG.AssignOrdering(t2.getNode(), SDNodeOrder);
4049        DAG.AssignOrdering(t3.getNode(), SDNodeOrder);
4050        DAG.AssignOrdering(t4.getNode(), SDNodeOrder);
4051        DAG.AssignOrdering(t5.getNode(), SDNodeOrder);
4052        DAG.AssignOrdering(t6.getNode(), SDNodeOrder);
4053        DAG.AssignOrdering(t7.getNode(), SDNodeOrder);
4054        DAG.AssignOrdering(t8.getNode(), SDNodeOrder);
4055        DAG.AssignOrdering(t9.getNode(), SDNodeOrder);
4056        DAG.AssignOrdering(t10.getNode(), SDNodeOrder);
4057        DAG.AssignOrdering(t11.getNode(), SDNodeOrder);
4058        DAG.AssignOrdering(t12.getNode(), SDNodeOrder);
4059        DAG.AssignOrdering(t13.getNode(), SDNodeOrder);
4060        DAG.AssignOrdering(t14.getNode(), SDNodeOrder);
4061        DAG.AssignOrdering(TwoToFractionalPartOfX.getNode(), SDNodeOrder);
4062        DAG.AssignOrdering(result.getNode(), SDNodeOrder);
4063      }
4064    }
4065  } else {
4066    // No special expansion.
4067    result = DAG.getNode(ISD::FEXP2, dl,
4068                         getValue(I.getOperand(1)).getValueType(),
4069                         getValue(I.getOperand(1)));
4070
4071    if (DisableScheduling)
4072      DAG.AssignOrdering(result.getNode(), SDNodeOrder);
4073  }
4074
4075  setValue(&I, result);
4076}
4077
4078/// visitPow - Lower a pow intrinsic. Handles the special sequences for
4079/// limited-precision mode with x == 10.0f.
4080void
4081SelectionDAGBuilder::visitPow(CallInst &I) {
4082  SDValue result;
4083  Value *Val = I.getOperand(1);
4084  DebugLoc dl = getCurDebugLoc();
4085  bool IsExp10 = false;
4086
4087  if (getValue(Val).getValueType() == MVT::f32 &&
4088      getValue(I.getOperand(2)).getValueType() == MVT::f32 &&
4089      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4090    if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) {
4091      if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
4092        APFloat Ten(10.0f);
4093        IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten);
4094      }
4095    }
4096  }
4097
4098  if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4099    SDValue Op = getValue(I.getOperand(2));
4100
4101    // Put the exponent in the right bit position for later addition to the
4102    // final result:
4103    //
4104    //   #define LOG2OF10 3.3219281f
4105    //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
4106    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4107                             getF32Constant(DAG, 0x40549a78));
4108    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4109
4110    //   FractionalPartOfX = x - (float)IntegerPartOfX;
4111    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4112    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4113
4114    if (DisableScheduling) {
4115      DAG.AssignOrdering(t0.getNode(), SDNodeOrder);
4116      DAG.AssignOrdering(t1.getNode(), SDNodeOrder);
4117      DAG.AssignOrdering(IntegerPartOfX.getNode(), SDNodeOrder);
4118      DAG.AssignOrdering(X.getNode(), SDNodeOrder);
4119    }
4120
4121    //   IntegerPartOfX <<= 23;
4122    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4123                                 DAG.getConstant(23, TLI.getPointerTy()));
4124
4125    if (DisableScheduling)
4126      DAG.AssignOrdering(IntegerPartOfX.getNode(), SDNodeOrder);
4127
4128    if (LimitFloatPrecision <= 6) {
4129      // For floating-point precision of 6:
4130      //
4131      //   twoToFractionalPartOfX =
4132      //     0.997535578f +
4133      //       (0.735607626f + 0.252464424f * x) * x;
4134      //
4135      // error 0.0144103317, which is 6 bits
4136      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4137                               getF32Constant(DAG, 0x3e814304));
4138      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4139                               getF32Constant(DAG, 0x3f3c50c8));
4140      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4141      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4142                               getF32Constant(DAG, 0x3f7f5e7e));
4143      SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5);
4144      SDValue TwoToFractionalPartOfX =
4145        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
4146
4147      result = DAG.getNode(ISD::BIT_CONVERT, dl,
4148                           MVT::f32, TwoToFractionalPartOfX);
4149
4150      if (DisableScheduling) {
4151        DAG.AssignOrdering(t2.getNode(), SDNodeOrder);
4152        DAG.AssignOrdering(t3.getNode(), SDNodeOrder);
4153        DAG.AssignOrdering(t4.getNode(), SDNodeOrder);
4154        DAG.AssignOrdering(t5.getNode(), SDNodeOrder);
4155        DAG.AssignOrdering(t6.getNode(), SDNodeOrder);
4156        DAG.AssignOrdering(TwoToFractionalPartOfX.getNode(), SDNodeOrder);
4157        DAG.AssignOrdering(result.getNode(), SDNodeOrder);
4158      }
4159    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
4160      // For floating-point precision of 12:
4161      //
4162      //   TwoToFractionalPartOfX =
4163      //     0.999892986f +
4164      //       (0.696457318f +
4165      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4166      //
4167      // error 0.000107046256, which is 13 to 14 bits
4168      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4169                               getF32Constant(DAG, 0x3da235e3));
4170      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4171                               getF32Constant(DAG, 0x3e65b8f3));
4172      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4173      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4174                               getF32Constant(DAG, 0x3f324b07));
4175      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4176      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4177                               getF32Constant(DAG, 0x3f7ff8fd));
4178      SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7);
4179      SDValue TwoToFractionalPartOfX =
4180        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
4181
4182      result = DAG.getNode(ISD::BIT_CONVERT, dl,
4183                           MVT::f32, TwoToFractionalPartOfX);
4184
4185      if (DisableScheduling) {
4186        DAG.AssignOrdering(t2.getNode(), SDNodeOrder);
4187        DAG.AssignOrdering(t3.getNode(), SDNodeOrder);
4188        DAG.AssignOrdering(t4.getNode(), SDNodeOrder);
4189        DAG.AssignOrdering(t5.getNode(), SDNodeOrder);
4190        DAG.AssignOrdering(t6.getNode(), SDNodeOrder);
4191        DAG.AssignOrdering(t7.getNode(), SDNodeOrder);
4192        DAG.AssignOrdering(t8.getNode(), SDNodeOrder);
4193        DAG.AssignOrdering(TwoToFractionalPartOfX.getNode(), SDNodeOrder);
4194        DAG.AssignOrdering(result.getNode(), SDNodeOrder);
4195      }
4196    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
4197      // For floating-point precision of 18:
4198      //
4199      //   TwoToFractionalPartOfX =
4200      //     0.999999982f +
4201      //       (0.693148872f +
4202      //         (0.240227044f +
4203      //           (0.554906021e-1f +
4204      //             (0.961591928e-2f +
4205      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4206      // error 2.47208000*10^(-7), which is better than 18 bits
4207      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4208                               getF32Constant(DAG, 0x3924b03e));
4209      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4210                               getF32Constant(DAG, 0x3ab24b87));
4211      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4212      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4213                               getF32Constant(DAG, 0x3c1d8c17));
4214      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4215      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4216                               getF32Constant(DAG, 0x3d634a1d));
4217      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4218      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4219                               getF32Constant(DAG, 0x3e75fe14));
4220      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4221      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4222                                getF32Constant(DAG, 0x3f317234));
4223      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4224      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4225                                getF32Constant(DAG, 0x3f800000));
4226      SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13);
4227      SDValue TwoToFractionalPartOfX =
4228        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
4229
4230      result = DAG.getNode(ISD::BIT_CONVERT, dl,
4231                           MVT::f32, TwoToFractionalPartOfX);
4232
4233      if (DisableScheduling) {
4234        DAG.AssignOrdering(t2.getNode(), SDNodeOrder);
4235        DAG.AssignOrdering(t3.getNode(), SDNodeOrder);
4236        DAG.AssignOrdering(t4.getNode(), SDNodeOrder);
4237        DAG.AssignOrdering(t5.getNode(), SDNodeOrder);
4238        DAG.AssignOrdering(t6.getNode(), SDNodeOrder);
4239        DAG.AssignOrdering(t7.getNode(), SDNodeOrder);
4240        DAG.AssignOrdering(t8.getNode(), SDNodeOrder);
4241        DAG.AssignOrdering(t9.getNode(), SDNodeOrder);
4242        DAG.AssignOrdering(t10.getNode(), SDNodeOrder);
4243        DAG.AssignOrdering(t11.getNode(), SDNodeOrder);
4244        DAG.AssignOrdering(t12.getNode(), SDNodeOrder);
4245        DAG.AssignOrdering(t13.getNode(), SDNodeOrder);
4246        DAG.AssignOrdering(t14.getNode(), SDNodeOrder);
4247        DAG.AssignOrdering(TwoToFractionalPartOfX.getNode(), SDNodeOrder);
4248        DAG.AssignOrdering(result.getNode(), SDNodeOrder);
4249      }
4250    }
4251  } else {
4252    // No special expansion.
4253    result = DAG.getNode(ISD::FPOW, dl,
4254                         getValue(I.getOperand(1)).getValueType(),
4255                         getValue(I.getOperand(1)),
4256                         getValue(I.getOperand(2)));
4257
4258    if (DisableScheduling)
4259      DAG.AssignOrdering(result.getNode(), SDNodeOrder);
4260  }
4261
4262  setValue(&I, result);
4263}
4264
4265/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4266/// we want to emit this as a call to a named external function, return the name
4267/// otherwise lower it and return null.
4268const char *
4269SelectionDAGBuilder::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
4270  DebugLoc dl = getCurDebugLoc();
4271  SDValue Res;
4272
4273  switch (Intrinsic) {
4274  default:
4275    // By default, turn this into a target intrinsic node.
4276    visitTargetIntrinsic(I, Intrinsic);
4277    return 0;
4278  case Intrinsic::vastart:  visitVAStart(I); return 0;
4279  case Intrinsic::vaend:    visitVAEnd(I); return 0;
4280  case Intrinsic::vacopy:   visitVACopy(I); return 0;
4281  case Intrinsic::returnaddress:
4282    Res = DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(),
4283                      getValue(I.getOperand(1)));
4284    setValue(&I, Res);
4285    if (DisableScheduling)
4286      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4287    return 0;
4288  case Intrinsic::frameaddress:
4289    Res = DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(),
4290                      getValue(I.getOperand(1)));
4291    setValue(&I, Res);
4292    if (DisableScheduling)
4293      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4294    return 0;
4295  case Intrinsic::setjmp:
4296    return "_setjmp"+!TLI.usesUnderscoreSetJmp();
4297  case Intrinsic::longjmp:
4298    return "_longjmp"+!TLI.usesUnderscoreLongJmp();
4299  case Intrinsic::memcpy: {
4300    SDValue Op1 = getValue(I.getOperand(1));
4301    SDValue Op2 = getValue(I.getOperand(2));
4302    SDValue Op3 = getValue(I.getOperand(3));
4303    unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
4304    Res = DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, false,
4305                        I.getOperand(1), 0, I.getOperand(2), 0);
4306    DAG.setRoot(Res);
4307    if (DisableScheduling)
4308      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4309    return 0;
4310  }
4311  case Intrinsic::memset: {
4312    SDValue Op1 = getValue(I.getOperand(1));
4313    SDValue Op2 = getValue(I.getOperand(2));
4314    SDValue Op3 = getValue(I.getOperand(3));
4315    unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
4316    Res = DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align,
4317                        I.getOperand(1), 0);
4318    DAG.setRoot(Res);
4319    if (DisableScheduling)
4320      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4321    return 0;
4322  }
4323  case Intrinsic::memmove: {
4324    SDValue Op1 = getValue(I.getOperand(1));
4325    SDValue Op2 = getValue(I.getOperand(2));
4326    SDValue Op3 = getValue(I.getOperand(3));
4327    unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
4328
4329    // If the source and destination are known to not be aliases, we can
4330    // lower memmove as memcpy.
4331    uint64_t Size = -1ULL;
4332    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3))
4333      Size = C->getZExtValue();
4334    if (AA->alias(I.getOperand(1), Size, I.getOperand(2), Size) ==
4335        AliasAnalysis::NoAlias) {
4336      Res = DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, false,
4337                          I.getOperand(1), 0, I.getOperand(2), 0);
4338      DAG.setRoot(Res);
4339      if (DisableScheduling)
4340        DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4341      return 0;
4342    }
4343
4344    Res = DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align,
4345                         I.getOperand(1), 0, I.getOperand(2), 0);
4346    DAG.setRoot(Res);
4347    if (DisableScheduling)
4348      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4349    return 0;
4350  }
4351  case Intrinsic::dbg_stoppoint:
4352  case Intrinsic::dbg_region_start:
4353  case Intrinsic::dbg_region_end:
4354  case Intrinsic::dbg_func_start:
4355    // FIXME - Remove this instructions once the dust settles.
4356    return 0;
4357  case Intrinsic::dbg_declare: {
4358    if (OptLevel != CodeGenOpt::None)
4359      // FIXME: Variable debug info is not supported here.
4360      return 0;
4361    DwarfWriter *DW = DAG.getDwarfWriter();
4362    if (!DW)
4363      return 0;
4364    DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4365    if (!isValidDebugInfoIntrinsic(DI, CodeGenOpt::None))
4366      return 0;
4367
4368    MDNode *Variable = DI.getVariable();
4369    Value *Address = DI.getAddress();
4370    if (BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4371      Address = BCI->getOperand(0);
4372    AllocaInst *AI = dyn_cast<AllocaInst>(Address);
4373    // Don't handle byval struct arguments or VLAs, for example.
4374    if (!AI)
4375      return 0;
4376    DenseMap<const AllocaInst*, int>::iterator SI =
4377      FuncInfo.StaticAllocaMap.find(AI);
4378    if (SI == FuncInfo.StaticAllocaMap.end())
4379      return 0; // VLAs.
4380    int FI = SI->second;
4381
4382    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
4383    if (MMI) {
4384      MetadataContext &TheMetadata =
4385        DI.getParent()->getContext().getMetadata();
4386      unsigned MDDbgKind = TheMetadata.getMDKind("dbg");
4387      MDNode *Dbg = TheMetadata.getMD(MDDbgKind, &DI);
4388      MMI->setVariableDbgInfo(Variable, FI, Dbg);
4389    }
4390    return 0;
4391  }
4392  case Intrinsic::eh_exception: {
4393    // Insert the EXCEPTIONADDR instruction.
4394    assert(CurMBB->isLandingPad() &&"Call to eh.exception not in landing pad!");
4395    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4396    SDValue Ops[1];
4397    Ops[0] = DAG.getRoot();
4398    SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1);
4399    setValue(&I, Op);
4400    DAG.setRoot(Op.getValue(1));
4401    if (DisableScheduling)
4402      DAG.AssignOrdering(Op.getNode(), SDNodeOrder);
4403    return 0;
4404  }
4405
4406  case Intrinsic::eh_selector: {
4407    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
4408
4409    if (CurMBB->isLandingPad())
4410      AddCatchInfo(I, MMI, CurMBB);
4411    else {
4412#ifndef NDEBUG
4413      FuncInfo.CatchInfoLost.insert(&I);
4414#endif
4415      // FIXME: Mark exception selector register as live in.  Hack for PR1508.
4416      unsigned Reg = TLI.getExceptionSelectorRegister();
4417      if (Reg) CurMBB->addLiveIn(Reg);
4418    }
4419
4420    // Insert the EHSELECTION instruction.
4421    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4422    SDValue Ops[2];
4423    Ops[0] = getValue(I.getOperand(1));
4424    Ops[1] = getRoot();
4425    SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2);
4426
4427    DAG.setRoot(Op.getValue(1));
4428
4429    Res = DAG.getSExtOrTrunc(Op, dl, MVT::i32);
4430    setValue(&I, Res);
4431    if (DisableScheduling) {
4432      DAG.AssignOrdering(Op.getNode(), SDNodeOrder);
4433      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4434    }
4435    return 0;
4436  }
4437
4438  case Intrinsic::eh_typeid_for: {
4439    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
4440
4441    if (MMI) {
4442      // Find the type id for the given typeinfo.
4443      GlobalVariable *GV = ExtractTypeInfo(I.getOperand(1));
4444      unsigned TypeID = MMI->getTypeIDFor(GV);
4445      Res = DAG.getConstant(TypeID, MVT::i32);
4446    } else {
4447      // Return something different to eh_selector.
4448      Res = DAG.getConstant(1, MVT::i32);
4449    }
4450
4451    setValue(&I, Res);
4452    if (DisableScheduling)
4453      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4454    return 0;
4455  }
4456
4457  case Intrinsic::eh_return_i32:
4458  case Intrinsic::eh_return_i64:
4459    if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) {
4460      MMI->setCallsEHReturn(true);
4461      Res = DAG.getNode(ISD::EH_RETURN, dl,
4462                        MVT::Other,
4463                        getControlRoot(),
4464                        getValue(I.getOperand(1)),
4465                        getValue(I.getOperand(2)));
4466      DAG.setRoot(Res);
4467      if (DisableScheduling)
4468        DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4469    } else {
4470      setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
4471    }
4472
4473    return 0;
4474  case Intrinsic::eh_unwind_init:
4475    if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) {
4476      MMI->setCallsUnwindInit(true);
4477    }
4478    return 0;
4479  case Intrinsic::eh_dwarf_cfa: {
4480    EVT VT = getValue(I.getOperand(1)).getValueType();
4481    SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), dl,
4482                                        TLI.getPointerTy());
4483    SDValue Offset = DAG.getNode(ISD::ADD, dl,
4484                                 TLI.getPointerTy(),
4485                                 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
4486                                             TLI.getPointerTy()),
4487                                 CfaArg);
4488    SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl,
4489                             TLI.getPointerTy(),
4490                             DAG.getConstant(0, TLI.getPointerTy()));
4491    Res = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
4492                      FA, Offset);
4493    setValue(&I, Res);
4494    if (DisableScheduling) {
4495      DAG.AssignOrdering(CfaArg.getNode(), SDNodeOrder);
4496      DAG.AssignOrdering(Offset.getNode(), SDNodeOrder);
4497      DAG.AssignOrdering(FA.getNode(), SDNodeOrder);
4498      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4499    }
4500    return 0;
4501  }
4502  case Intrinsic::convertff:
4503  case Intrinsic::convertfsi:
4504  case Intrinsic::convertfui:
4505  case Intrinsic::convertsif:
4506  case Intrinsic::convertuif:
4507  case Intrinsic::convertss:
4508  case Intrinsic::convertsu:
4509  case Intrinsic::convertus:
4510  case Intrinsic::convertuu: {
4511    ISD::CvtCode Code = ISD::CVT_INVALID;
4512    switch (Intrinsic) {
4513    case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
4514    case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4515    case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4516    case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4517    case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4518    case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
4519    case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
4520    case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4521    case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4522    }
4523    EVT DestVT = TLI.getValueType(I.getType());
4524    Value *Op1 = I.getOperand(1);
4525    Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1),
4526                               DAG.getValueType(DestVT),
4527                               DAG.getValueType(getValue(Op1).getValueType()),
4528                               getValue(I.getOperand(2)),
4529                               getValue(I.getOperand(3)),
4530                               Code);
4531    setValue(&I, Res);
4532    if (DisableScheduling)
4533      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4534    return 0;
4535  }
4536  case Intrinsic::sqrt:
4537    Res = DAG.getNode(ISD::FSQRT, dl,
4538                      getValue(I.getOperand(1)).getValueType(),
4539                      getValue(I.getOperand(1)));
4540    setValue(&I, Res);
4541    if (DisableScheduling)
4542      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4543    return 0;
4544  case Intrinsic::powi:
4545    Res = DAG.getNode(ISD::FPOWI, dl,
4546                      getValue(I.getOperand(1)).getValueType(),
4547                      getValue(I.getOperand(1)),
4548                      getValue(I.getOperand(2)));
4549    setValue(&I, Res);
4550    if (DisableScheduling)
4551      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4552    return 0;
4553  case Intrinsic::sin:
4554    Res = DAG.getNode(ISD::FSIN, dl,
4555                      getValue(I.getOperand(1)).getValueType(),
4556                      getValue(I.getOperand(1)));
4557    setValue(&I, Res);
4558    if (DisableScheduling)
4559      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4560    return 0;
4561  case Intrinsic::cos:
4562    Res = DAG.getNode(ISD::FCOS, dl,
4563                      getValue(I.getOperand(1)).getValueType(),
4564                      getValue(I.getOperand(1)));
4565    setValue(&I, Res);
4566    if (DisableScheduling)
4567      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4568    return 0;
4569  case Intrinsic::log:
4570    visitLog(I);
4571    return 0;
4572  case Intrinsic::log2:
4573    visitLog2(I);
4574    return 0;
4575  case Intrinsic::log10:
4576    visitLog10(I);
4577    return 0;
4578  case Intrinsic::exp:
4579    visitExp(I);
4580    return 0;
4581  case Intrinsic::exp2:
4582    visitExp2(I);
4583    return 0;
4584  case Intrinsic::pow:
4585    visitPow(I);
4586    return 0;
4587  case Intrinsic::pcmarker: {
4588    SDValue Tmp = getValue(I.getOperand(1));
4589    Res = DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp);
4590    DAG.setRoot(Res);
4591    if (DisableScheduling)
4592      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4593    return 0;
4594  }
4595  case Intrinsic::readcyclecounter: {
4596    SDValue Op = getRoot();
4597    Res = DAG.getNode(ISD::READCYCLECOUNTER, dl,
4598                      DAG.getVTList(MVT::i64, MVT::Other),
4599                      &Op, 1);
4600    setValue(&I, Res);
4601    DAG.setRoot(Res.getValue(1));
4602    if (DisableScheduling)
4603      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4604    return 0;
4605  }
4606  case Intrinsic::bswap:
4607    Res = DAG.getNode(ISD::BSWAP, dl,
4608                      getValue(I.getOperand(1)).getValueType(),
4609                      getValue(I.getOperand(1)));
4610    setValue(&I, Res);
4611    if (DisableScheduling)
4612      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4613    return 0;
4614  case Intrinsic::cttz: {
4615    SDValue Arg = getValue(I.getOperand(1));
4616    EVT Ty = Arg.getValueType();
4617    Res = DAG.getNode(ISD::CTTZ, dl, Ty, Arg);
4618    setValue(&I, Res);
4619    if (DisableScheduling)
4620      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4621    return 0;
4622  }
4623  case Intrinsic::ctlz: {
4624    SDValue Arg = getValue(I.getOperand(1));
4625    EVT Ty = Arg.getValueType();
4626    Res = DAG.getNode(ISD::CTLZ, dl, Ty, Arg);
4627    setValue(&I, Res);
4628    if (DisableScheduling)
4629      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4630    return 0;
4631  }
4632  case Intrinsic::ctpop: {
4633    SDValue Arg = getValue(I.getOperand(1));
4634    EVT Ty = Arg.getValueType();
4635    Res = DAG.getNode(ISD::CTPOP, dl, Ty, Arg);
4636    setValue(&I, Res);
4637    if (DisableScheduling)
4638      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4639    return 0;
4640  }
4641  case Intrinsic::stacksave: {
4642    SDValue Op = getRoot();
4643    Res = DAG.getNode(ISD::STACKSAVE, dl,
4644                      DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
4645    setValue(&I, Res);
4646    DAG.setRoot(Res.getValue(1));
4647    if (DisableScheduling)
4648      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4649    return 0;
4650  }
4651  case Intrinsic::stackrestore: {
4652    Res = getValue(I.getOperand(1));
4653    Res = DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res);
4654    DAG.setRoot(Res);
4655    if (DisableScheduling)
4656      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4657    return 0;
4658  }
4659  case Intrinsic::stackprotector: {
4660    // Emit code into the DAG to store the stack guard onto the stack.
4661    MachineFunction &MF = DAG.getMachineFunction();
4662    MachineFrameInfo *MFI = MF.getFrameInfo();
4663    EVT PtrTy = TLI.getPointerTy();
4664
4665    SDValue Src = getValue(I.getOperand(1));   // The guard's value.
4666    AllocaInst *Slot = cast<AllocaInst>(I.getOperand(2));
4667
4668    int FI = FuncInfo.StaticAllocaMap[Slot];
4669    MFI->setStackProtectorIndex(FI);
4670
4671    SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
4672
4673    // Store the stack protector onto the stack.
4674    Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN,
4675                       PseudoSourceValue::getFixedStack(FI),
4676                       0, true);
4677    setValue(&I, Res);
4678    DAG.setRoot(Res);
4679    if (DisableScheduling)
4680      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4681    return 0;
4682  }
4683  case Intrinsic::objectsize: {
4684    // If we don't know by now, we're never going to know.
4685    ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(2));
4686
4687    assert(CI && "Non-constant type in __builtin_object_size?");
4688
4689    SDValue Arg = getValue(I.getOperand(0));
4690    EVT Ty = Arg.getValueType();
4691
4692    if (CI->getZExtValue() < 2)
4693      Res = DAG.getConstant(-1ULL, Ty);
4694    else
4695      Res = DAG.getConstant(0, Ty);
4696
4697    setValue(&I, Res);
4698    if (DisableScheduling)
4699      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4700    return 0;
4701  }
4702  case Intrinsic::var_annotation:
4703    // Discard annotate attributes
4704    return 0;
4705
4706  case Intrinsic::init_trampoline: {
4707    const Function *F = cast<Function>(I.getOperand(2)->stripPointerCasts());
4708
4709    SDValue Ops[6];
4710    Ops[0] = getRoot();
4711    Ops[1] = getValue(I.getOperand(1));
4712    Ops[2] = getValue(I.getOperand(2));
4713    Ops[3] = getValue(I.getOperand(3));
4714    Ops[4] = DAG.getSrcValue(I.getOperand(1));
4715    Ops[5] = DAG.getSrcValue(F);
4716
4717    Res = DAG.getNode(ISD::TRAMPOLINE, dl,
4718                      DAG.getVTList(TLI.getPointerTy(), MVT::Other),
4719                      Ops, 6);
4720
4721    setValue(&I, Res);
4722    DAG.setRoot(Res.getValue(1));
4723    if (DisableScheduling)
4724      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4725    return 0;
4726  }
4727  case Intrinsic::gcroot:
4728    if (GFI) {
4729      Value *Alloca = I.getOperand(1);
4730      Constant *TypeMap = cast<Constant>(I.getOperand(2));
4731
4732      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
4733      GFI->addStackRoot(FI->getIndex(), TypeMap);
4734    }
4735    return 0;
4736  case Intrinsic::gcread:
4737  case Intrinsic::gcwrite:
4738    llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
4739    return 0;
4740  case Intrinsic::flt_rounds:
4741    Res = DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32);
4742    setValue(&I, Res);
4743    if (DisableScheduling)
4744      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4745    return 0;
4746  case Intrinsic::trap:
4747    Res = DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot());
4748    DAG.setRoot(Res);
4749    if (DisableScheduling)
4750      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4751    return 0;
4752  case Intrinsic::uadd_with_overflow:
4753    return implVisitAluOverflow(I, ISD::UADDO);
4754  case Intrinsic::sadd_with_overflow:
4755    return implVisitAluOverflow(I, ISD::SADDO);
4756  case Intrinsic::usub_with_overflow:
4757    return implVisitAluOverflow(I, ISD::USUBO);
4758  case Intrinsic::ssub_with_overflow:
4759    return implVisitAluOverflow(I, ISD::SSUBO);
4760  case Intrinsic::umul_with_overflow:
4761    return implVisitAluOverflow(I, ISD::UMULO);
4762  case Intrinsic::smul_with_overflow:
4763    return implVisitAluOverflow(I, ISD::SMULO);
4764
4765  case Intrinsic::prefetch: {
4766    SDValue Ops[4];
4767    Ops[0] = getRoot();
4768    Ops[1] = getValue(I.getOperand(1));
4769    Ops[2] = getValue(I.getOperand(2));
4770    Ops[3] = getValue(I.getOperand(3));
4771    Res = DAG.getNode(ISD::PREFETCH, dl, MVT::Other, &Ops[0], 4);
4772    DAG.setRoot(Res);
4773    if (DisableScheduling)
4774      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4775    return 0;
4776  }
4777
4778  case Intrinsic::memory_barrier: {
4779    SDValue Ops[6];
4780    Ops[0] = getRoot();
4781    for (int x = 1; x < 6; ++x)
4782      Ops[x] = getValue(I.getOperand(x));
4783
4784    Res = DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6);
4785    DAG.setRoot(Res);
4786    if (DisableScheduling)
4787      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4788    return 0;
4789  }
4790  case Intrinsic::atomic_cmp_swap: {
4791    SDValue Root = getRoot();
4792    SDValue L =
4793      DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(),
4794                    getValue(I.getOperand(2)).getValueType().getSimpleVT(),
4795                    Root,
4796                    getValue(I.getOperand(1)),
4797                    getValue(I.getOperand(2)),
4798                    getValue(I.getOperand(3)),
4799                    I.getOperand(1));
4800    setValue(&I, L);
4801    DAG.setRoot(L.getValue(1));
4802    if (DisableScheduling)
4803      DAG.AssignOrdering(L.getNode(), SDNodeOrder);
4804    return 0;
4805  }
4806  case Intrinsic::atomic_load_add:
4807    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD);
4808  case Intrinsic::atomic_load_sub:
4809    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB);
4810  case Intrinsic::atomic_load_or:
4811    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR);
4812  case Intrinsic::atomic_load_xor:
4813    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR);
4814  case Intrinsic::atomic_load_and:
4815    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND);
4816  case Intrinsic::atomic_load_nand:
4817    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND);
4818  case Intrinsic::atomic_load_max:
4819    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX);
4820  case Intrinsic::atomic_load_min:
4821    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN);
4822  case Intrinsic::atomic_load_umin:
4823    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN);
4824  case Intrinsic::atomic_load_umax:
4825    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX);
4826  case Intrinsic::atomic_swap:
4827    return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP);
4828
4829  case Intrinsic::invariant_start:
4830  case Intrinsic::lifetime_start:
4831    // Discard region information.
4832    Res = DAG.getUNDEF(TLI.getPointerTy());
4833    setValue(&I, Res);
4834    if (DisableScheduling)
4835      DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
4836    return 0;
4837  case Intrinsic::invariant_end:
4838  case Intrinsic::lifetime_end:
4839    // Discard region information.
4840    return 0;
4841  }
4842}
4843
4844/// Test if the given instruction is in a position to be optimized
4845/// with a tail-call. This roughly means that it's in a block with
4846/// a return and there's nothing that needs to be scheduled
4847/// between it and the return.
4848///
4849/// This function only tests target-independent requirements.
4850/// For target-dependent requirements, a target should override
4851/// TargetLowering::IsEligibleForTailCallOptimization.
4852///
4853static bool
4854isInTailCallPosition(const Instruction *I, Attributes CalleeRetAttr,
4855                     const TargetLowering &TLI) {
4856  const BasicBlock *ExitBB = I->getParent();
4857  const TerminatorInst *Term = ExitBB->getTerminator();
4858  const ReturnInst *Ret = dyn_cast<ReturnInst>(Term);
4859  const Function *F = ExitBB->getParent();
4860
4861  // The block must end in a return statement or an unreachable.
4862  if (!Ret && !isa<UnreachableInst>(Term)) return false;
4863
4864  // If I will have a chain, make sure no other instruction that will have a
4865  // chain interposes between I and the return.
4866  if (I->mayHaveSideEffects() || I->mayReadFromMemory() ||
4867      !I->isSafeToSpeculativelyExecute())
4868    for (BasicBlock::const_iterator BBI = prior(prior(ExitBB->end())); ;
4869         --BBI) {
4870      if (&*BBI == I)
4871        break;
4872      if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() ||
4873          !BBI->isSafeToSpeculativelyExecute())
4874        return false;
4875    }
4876
4877  // If the block ends with a void return or unreachable, it doesn't matter
4878  // what the call's return type is.
4879  if (!Ret || Ret->getNumOperands() == 0) return true;
4880
4881  // If the return value is undef, it doesn't matter what the call's
4882  // return type is.
4883  if (isa<UndefValue>(Ret->getOperand(0))) return true;
4884
4885  // Conservatively require the attributes of the call to match those of
4886  // the return. Ignore noalias because it doesn't affect the call sequence.
4887  unsigned CallerRetAttr = F->getAttributes().getRetAttributes();
4888  if ((CalleeRetAttr ^ CallerRetAttr) & ~Attribute::NoAlias)
4889    return false;
4890
4891  // Otherwise, make sure the unmodified return value of I is the return value.
4892  for (const Instruction *U = dyn_cast<Instruction>(Ret->getOperand(0)); ;
4893       U = dyn_cast<Instruction>(U->getOperand(0))) {
4894    if (!U)
4895      return false;
4896    if (!U->hasOneUse())
4897      return false;
4898    if (U == I)
4899      break;
4900    // Check for a truly no-op truncate.
4901    if (isa<TruncInst>(U) &&
4902        TLI.isTruncateFree(U->getOperand(0)->getType(), U->getType()))
4903      continue;
4904    // Check for a truly no-op bitcast.
4905    if (isa<BitCastInst>(U) &&
4906        (U->getOperand(0)->getType() == U->getType() ||
4907         (isa<PointerType>(U->getOperand(0)->getType()) &&
4908          isa<PointerType>(U->getType()))))
4909      continue;
4910    // Otherwise it's not a true no-op.
4911    return false;
4912  }
4913
4914  return true;
4915}
4916
4917void SelectionDAGBuilder::LowerCallTo(CallSite CS, SDValue Callee,
4918                                      bool isTailCall,
4919                                      MachineBasicBlock *LandingPad) {
4920  const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
4921  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
4922  const Type *RetTy = FTy->getReturnType();
4923  MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
4924  unsigned BeginLabel = 0, EndLabel = 0;
4925
4926  TargetLowering::ArgListTy Args;
4927  TargetLowering::ArgListEntry Entry;
4928  Args.reserve(CS.arg_size());
4929
4930  // Check whether the function can return without sret-demotion.
4931  SmallVector<EVT, 4> OutVTs;
4932  SmallVector<ISD::ArgFlagsTy, 4> OutsFlags;
4933  SmallVector<uint64_t, 4> Offsets;
4934  getReturnInfo(RetTy, CS.getAttributes().getRetAttributes(),
4935                OutVTs, OutsFlags, TLI, &Offsets);
4936
4937  bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
4938                        FTy->isVarArg(), OutVTs, OutsFlags, DAG);
4939
4940  SDValue DemoteStackSlot;
4941
4942  if (!CanLowerReturn) {
4943    uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(
4944                      FTy->getReturnType());
4945    unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(
4946                      FTy->getReturnType());
4947    MachineFunction &MF = DAG.getMachineFunction();
4948    int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
4949    const Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
4950
4951    DemoteStackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
4952    Entry.Node = DemoteStackSlot;
4953    Entry.Ty = StackSlotPtrType;
4954    Entry.isSExt = false;
4955    Entry.isZExt = false;
4956    Entry.isInReg = false;
4957    Entry.isSRet = true;
4958    Entry.isNest = false;
4959    Entry.isByVal = false;
4960    Entry.Alignment = Align;
4961    Args.push_back(Entry);
4962    RetTy = Type::getVoidTy(FTy->getContext());
4963  }
4964
4965  for (CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
4966       i != e; ++i) {
4967    SDValue ArgNode = getValue(*i);
4968    Entry.Node = ArgNode; Entry.Ty = (*i)->getType();
4969
4970    unsigned attrInd = i - CS.arg_begin() + 1;
4971    Entry.isSExt  = CS.paramHasAttr(attrInd, Attribute::SExt);
4972    Entry.isZExt  = CS.paramHasAttr(attrInd, Attribute::ZExt);
4973    Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg);
4974    Entry.isSRet  = CS.paramHasAttr(attrInd, Attribute::StructRet);
4975    Entry.isNest  = CS.paramHasAttr(attrInd, Attribute::Nest);
4976    Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal);
4977    Entry.Alignment = CS.getParamAlignment(attrInd);
4978    Args.push_back(Entry);
4979  }
4980
4981  if (LandingPad && MMI) {
4982    // Insert a label before the invoke call to mark the try range.  This can be
4983    // used to detect deletion of the invoke via the MachineModuleInfo.
4984    BeginLabel = MMI->NextLabelID();
4985
4986    // Both PendingLoads and PendingExports must be flushed here;
4987    // this call might not return.
4988    (void)getRoot();
4989    SDValue Label = DAG.getLabel(ISD::EH_LABEL, getCurDebugLoc(),
4990                                 getControlRoot(), BeginLabel);
4991    DAG.setRoot(Label);
4992    if (DisableScheduling)
4993      DAG.AssignOrdering(Label.getNode(), SDNodeOrder);
4994  }
4995
4996  // Check if target-independent constraints permit a tail call here.
4997  // Target-dependent constraints are checked within TLI.LowerCallTo.
4998  if (isTailCall &&
4999      !isInTailCallPosition(CS.getInstruction(),
5000                            CS.getAttributes().getRetAttributes(),
5001                            TLI))
5002    isTailCall = false;
5003
5004  std::pair<SDValue,SDValue> Result =
5005    TLI.LowerCallTo(getRoot(), RetTy,
5006                    CS.paramHasAttr(0, Attribute::SExt),
5007                    CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(),
5008                    CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(),
5009                    CS.getCallingConv(),
5010                    isTailCall,
5011                    !CS.getInstruction()->use_empty(),
5012                    Callee, Args, DAG, getCurDebugLoc(), SDNodeOrder);
5013  assert((isTailCall || Result.second.getNode()) &&
5014         "Non-null chain expected with non-tail call!");
5015  assert((Result.second.getNode() || !Result.first.getNode()) &&
5016         "Null value expected with tail call!");
5017  if (Result.first.getNode()) {
5018    setValue(CS.getInstruction(), Result.first);
5019    if (DisableScheduling)
5020      DAG.AssignOrdering(Result.first.getNode(), SDNodeOrder);
5021  } else if (!CanLowerReturn && Result.second.getNode()) {
5022    // The instruction result is the result of loading from the
5023    // hidden sret parameter.
5024    SmallVector<EVT, 1> PVTs;
5025    const Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
5026
5027    ComputeValueVTs(TLI, PtrRetTy, PVTs);
5028    assert(PVTs.size() == 1 && "Pointers should fit in one register");
5029    EVT PtrVT = PVTs[0];
5030    unsigned NumValues = OutVTs.size();
5031    SmallVector<SDValue, 4> Values(NumValues);
5032    SmallVector<SDValue, 4> Chains(NumValues);
5033
5034    for (unsigned i = 0; i < NumValues; ++i) {
5035      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT,
5036                                DemoteStackSlot,
5037                                DAG.getConstant(Offsets[i], PtrVT));
5038      SDValue L = DAG.getLoad(OutVTs[i], getCurDebugLoc(), Result.second,
5039                              Add, NULL, Offsets[i], false, 1);
5040      Values[i] = L;
5041      Chains[i] = L.getValue(1);
5042
5043      if (DisableScheduling) {
5044        DAG.AssignOrdering(Add.getNode(), SDNodeOrder);
5045        DAG.AssignOrdering(L.getNode(), SDNodeOrder);
5046      }
5047    }
5048
5049    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
5050                                MVT::Other, &Chains[0], NumValues);
5051    PendingLoads.push_back(Chain);
5052
5053    SDValue MV = DAG.getNode(ISD::MERGE_VALUES,
5054                             getCurDebugLoc(),
5055                             DAG.getVTList(&OutVTs[0], NumValues),
5056                             &Values[0], NumValues);
5057    setValue(CS.getInstruction(), MV);
5058
5059    if (DisableScheduling) {
5060      DAG.AssignOrdering(Chain.getNode(), SDNodeOrder);
5061      DAG.AssignOrdering(MV.getNode(), SDNodeOrder);
5062    }
5063  }
5064
5065  // As a special case, a null chain means that a tail call has been emitted and
5066  // the DAG root is already updated.
5067  if (Result.second.getNode()) {
5068    DAG.setRoot(Result.second);
5069    if (DisableScheduling)
5070      DAG.AssignOrdering(Result.second.getNode(), SDNodeOrder);
5071  } else {
5072    HasTailCall = true;
5073  }
5074
5075  if (LandingPad && MMI) {
5076    // Insert a label at the end of the invoke call to mark the try range.  This
5077    // can be used to detect deletion of the invoke via the MachineModuleInfo.
5078    EndLabel = MMI->NextLabelID();
5079    SDValue Label = DAG.getLabel(ISD::EH_LABEL, getCurDebugLoc(),
5080                                 getRoot(), EndLabel);
5081    DAG.setRoot(Label);
5082
5083    if (DisableScheduling)
5084      DAG.AssignOrdering(Label.getNode(), SDNodeOrder);
5085
5086    // Inform MachineModuleInfo of range.
5087    MMI->addInvoke(LandingPad, BeginLabel, EndLabel);
5088  }
5089}
5090
5091void SelectionDAGBuilder::visitCall(CallInst &I) {
5092  const char *RenameFn = 0;
5093  if (Function *F = I.getCalledFunction()) {
5094    if (F->isDeclaration()) {
5095      const TargetIntrinsicInfo *II = TLI.getTargetMachine().getIntrinsicInfo();
5096      if (II) {
5097        if (unsigned IID = II->getIntrinsicID(F)) {
5098          RenameFn = visitIntrinsicCall(I, IID);
5099          if (!RenameFn)
5100            return;
5101        }
5102      }
5103      if (unsigned IID = F->getIntrinsicID()) {
5104        RenameFn = visitIntrinsicCall(I, IID);
5105        if (!RenameFn)
5106          return;
5107      }
5108    }
5109
5110    // Check for well-known libc/libm calls.  If the function is internal, it
5111    // can't be a library call.
5112    if (!F->hasLocalLinkage() && F->hasName()) {
5113      StringRef Name = F->getName();
5114      if (Name == "copysign" || Name == "copysignf") {
5115        if (I.getNumOperands() == 3 &&   // Basic sanity checks.
5116            I.getOperand(1)->getType()->isFloatingPoint() &&
5117            I.getType() == I.getOperand(1)->getType() &&
5118            I.getType() == I.getOperand(2)->getType()) {
5119          SDValue LHS = getValue(I.getOperand(1));
5120          SDValue RHS = getValue(I.getOperand(2));
5121          SDValue Res = DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(),
5122                                    LHS.getValueType(), LHS, RHS);
5123          setValue(&I, Res);
5124          if (DisableScheduling)
5125            DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
5126          return;
5127        }
5128      } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") {
5129        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
5130            I.getOperand(1)->getType()->isFloatingPoint() &&
5131            I.getType() == I.getOperand(1)->getType()) {
5132          SDValue Tmp = getValue(I.getOperand(1));
5133          SDValue Res = DAG.getNode(ISD::FABS, getCurDebugLoc(),
5134                                    Tmp.getValueType(), Tmp);
5135          setValue(&I, Res);
5136          if (DisableScheduling)
5137            DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
5138          return;
5139        }
5140      } else if (Name == "sin" || Name == "sinf" || Name == "sinl") {
5141        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
5142            I.getOperand(1)->getType()->isFloatingPoint() &&
5143            I.getType() == I.getOperand(1)->getType() &&
5144            I.onlyReadsMemory()) {
5145          SDValue Tmp = getValue(I.getOperand(1));
5146          SDValue Res = DAG.getNode(ISD::FSIN, getCurDebugLoc(),
5147                                    Tmp.getValueType(), Tmp);
5148          setValue(&I, Res);
5149          if (DisableScheduling)
5150            DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
5151          return;
5152        }
5153      } else if (Name == "cos" || Name == "cosf" || Name == "cosl") {
5154        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
5155            I.getOperand(1)->getType()->isFloatingPoint() &&
5156            I.getType() == I.getOperand(1)->getType() &&
5157            I.onlyReadsMemory()) {
5158          SDValue Tmp = getValue(I.getOperand(1));
5159          SDValue Res = DAG.getNode(ISD::FCOS, getCurDebugLoc(),
5160                                    Tmp.getValueType(), Tmp);
5161          setValue(&I, Res);
5162          if (DisableScheduling)
5163            DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
5164          return;
5165        }
5166      } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") {
5167        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
5168            I.getOperand(1)->getType()->isFloatingPoint() &&
5169            I.getType() == I.getOperand(1)->getType() &&
5170            I.onlyReadsMemory()) {
5171          SDValue Tmp = getValue(I.getOperand(1));
5172          SDValue Res = DAG.getNode(ISD::FSQRT, getCurDebugLoc(),
5173                                    Tmp.getValueType(), Tmp);
5174          setValue(&I, Res);
5175          if (DisableScheduling)
5176            DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
5177          return;
5178        }
5179      }
5180    }
5181  } else if (isa<InlineAsm>(I.getOperand(0))) {
5182    visitInlineAsm(&I);
5183    return;
5184  }
5185
5186  SDValue Callee;
5187  if (!RenameFn)
5188    Callee = getValue(I.getOperand(0));
5189  else
5190    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
5191
5192  if (DisableScheduling)
5193    DAG.AssignOrdering(Callee.getNode(), SDNodeOrder);
5194
5195  // Check if we can potentially perform a tail call. More detailed
5196  // checking is be done within LowerCallTo, after more information
5197  // about the call is known.
5198  bool isTailCall = PerformTailCallOpt && I.isTailCall();
5199
5200  LowerCallTo(&I, Callee, isTailCall);
5201}
5202
5203/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
5204/// this value and returns the result as a ValueVT value.  This uses
5205/// Chain/Flag as the input and updates them for the output Chain/Flag.
5206/// If the Flag pointer is NULL, no flag is used.
5207SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, DebugLoc dl,
5208                                      unsigned Order, SDValue &Chain,
5209                                      SDValue *Flag) const {
5210  // Assemble the legal parts into the final values.
5211  SmallVector<SDValue, 4> Values(ValueVTs.size());
5212  SmallVector<SDValue, 8> Parts;
5213  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
5214    // Copy the legal parts from the registers.
5215    EVT ValueVT = ValueVTs[Value];
5216    unsigned NumRegs = TLI->getNumRegisters(*DAG.getContext(), ValueVT);
5217    EVT RegisterVT = RegVTs[Value];
5218
5219    Parts.resize(NumRegs);
5220    for (unsigned i = 0; i != NumRegs; ++i) {
5221      SDValue P;
5222      if (Flag == 0) {
5223        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
5224      } else {
5225        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
5226        *Flag = P.getValue(2);
5227      }
5228
5229      Chain = P.getValue(1);
5230
5231      if (DisableScheduling)
5232        DAG.AssignOrdering(P.getNode(), Order);
5233
5234      // If the source register was virtual and if we know something about it,
5235      // add an assert node.
5236      if (TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) &&
5237          RegisterVT.isInteger() && !RegisterVT.isVector()) {
5238        unsigned SlotNo = Regs[Part+i]-TargetRegisterInfo::FirstVirtualRegister;
5239        FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo();
5240        if (FLI.LiveOutRegInfo.size() > SlotNo) {
5241          FunctionLoweringInfo::LiveOutInfo &LOI = FLI.LiveOutRegInfo[SlotNo];
5242
5243          unsigned RegSize = RegisterVT.getSizeInBits();
5244          unsigned NumSignBits = LOI.NumSignBits;
5245          unsigned NumZeroBits = LOI.KnownZero.countLeadingOnes();
5246
5247          // FIXME: We capture more information than the dag can represent.  For
5248          // now, just use the tightest assertzext/assertsext possible.
5249          bool isSExt = true;
5250          EVT FromVT(MVT::Other);
5251          if (NumSignBits == RegSize)
5252            isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
5253          else if (NumZeroBits >= RegSize-1)
5254            isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
5255          else if (NumSignBits > RegSize-8)
5256            isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
5257          else if (NumZeroBits >= RegSize-8)
5258            isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
5259          else if (NumSignBits > RegSize-16)
5260            isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
5261          else if (NumZeroBits >= RegSize-16)
5262            isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
5263          else if (NumSignBits > RegSize-32)
5264            isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
5265          else if (NumZeroBits >= RegSize-32)
5266            isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
5267
5268          if (FromVT != MVT::Other) {
5269            P = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
5270                            RegisterVT, P, DAG.getValueType(FromVT));
5271
5272            if (DisableScheduling)
5273              DAG.AssignOrdering(P.getNode(), Order);
5274          }
5275        }
5276      }
5277
5278      Parts[i] = P;
5279    }
5280
5281    Values[Value] = getCopyFromParts(DAG, dl, Order, Parts.begin(),
5282                                     NumRegs, RegisterVT, ValueVT);
5283    if (DisableScheduling)
5284      DAG.AssignOrdering(Values[Value].getNode(), Order);
5285    Part += NumRegs;
5286    Parts.clear();
5287  }
5288
5289  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
5290                            DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
5291                            &Values[0], ValueVTs.size());
5292  if (DisableScheduling)
5293    DAG.AssignOrdering(Res.getNode(), Order);
5294  return Res;
5295}
5296
5297/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
5298/// specified value into the registers specified by this object.  This uses
5299/// Chain/Flag as the input and updates them for the output Chain/Flag.
5300/// If the Flag pointer is NULL, no flag is used.
5301void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
5302                                 unsigned Order, SDValue &Chain,
5303                                 SDValue *Flag) const {
5304  // Get the list of the values's legal parts.
5305  unsigned NumRegs = Regs.size();
5306  SmallVector<SDValue, 8> Parts(NumRegs);
5307  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
5308    EVT ValueVT = ValueVTs[Value];
5309    unsigned NumParts = TLI->getNumRegisters(*DAG.getContext(), ValueVT);
5310    EVT RegisterVT = RegVTs[Value];
5311
5312    getCopyToParts(DAG, dl, Order,
5313                   Val.getValue(Val.getResNo() + Value),
5314                   &Parts[Part], NumParts, RegisterVT);
5315    Part += NumParts;
5316  }
5317
5318  // Copy the parts into the registers.
5319  SmallVector<SDValue, 8> Chains(NumRegs);
5320  for (unsigned i = 0; i != NumRegs; ++i) {
5321    SDValue Part;
5322    if (Flag == 0) {
5323      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
5324    } else {
5325      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
5326      *Flag = Part.getValue(1);
5327    }
5328
5329    Chains[i] = Part.getValue(0);
5330
5331    if (DisableScheduling)
5332      DAG.AssignOrdering(Part.getNode(), Order);
5333  }
5334
5335  if (NumRegs == 1 || Flag)
5336    // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
5337    // flagged to it. That is the CopyToReg nodes and the user are considered
5338    // a single scheduling unit. If we create a TokenFactor and return it as
5339    // chain, then the TokenFactor is both a predecessor (operand) of the
5340    // user as well as a successor (the TF operands are flagged to the user).
5341    // c1, f1 = CopyToReg
5342    // c2, f2 = CopyToReg
5343    // c3     = TokenFactor c1, c2
5344    // ...
5345    //        = op c3, ..., f2
5346    Chain = Chains[NumRegs-1];
5347  else
5348    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
5349
5350  if (DisableScheduling)
5351    DAG.AssignOrdering(Chain.getNode(), Order);
5352}
5353
5354/// AddInlineAsmOperands - Add this value to the specified inlineasm node
5355/// operand list.  This adds the code marker and includes the number of
5356/// values added into it.
5357void RegsForValue::AddInlineAsmOperands(unsigned Code,
5358                                        bool HasMatching,unsigned MatchingIdx,
5359                                        SelectionDAG &DAG, unsigned Order,
5360                                        std::vector<SDValue> &Ops) const {
5361  EVT IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
5362  assert(Regs.size() < (1 << 13) && "Too many inline asm outputs!");
5363  unsigned Flag = Code | (Regs.size() << 3);
5364  if (HasMatching)
5365    Flag |= 0x80000000 | (MatchingIdx << 16);
5366
5367  SDValue Res = DAG.getTargetConstant(Flag, IntPtrTy);
5368  Ops.push_back(Res);
5369
5370  if (DisableScheduling)
5371    DAG.AssignOrdering(Res.getNode(), Order);
5372
5373  for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
5374    unsigned NumRegs = TLI->getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
5375    EVT RegisterVT = RegVTs[Value];
5376    for (unsigned i = 0; i != NumRegs; ++i) {
5377      assert(Reg < Regs.size() && "Mismatch in # registers expected");
5378      SDValue Res = DAG.getRegister(Regs[Reg++], RegisterVT);
5379      Ops.push_back(Res);
5380
5381      if (DisableScheduling)
5382        DAG.AssignOrdering(Res.getNode(), Order);
5383    }
5384  }
5385}
5386
5387/// isAllocatableRegister - If the specified register is safe to allocate,
5388/// i.e. it isn't a stack pointer or some other special register, return the
5389/// register class for the register.  Otherwise, return null.
5390static const TargetRegisterClass *
5391isAllocatableRegister(unsigned Reg, MachineFunction &MF,
5392                      const TargetLowering &TLI,
5393                      const TargetRegisterInfo *TRI) {
5394  EVT FoundVT = MVT::Other;
5395  const TargetRegisterClass *FoundRC = 0;
5396  for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(),
5397       E = TRI->regclass_end(); RCI != E; ++RCI) {
5398    EVT ThisVT = MVT::Other;
5399
5400    const TargetRegisterClass *RC = *RCI;
5401    // If none of the the value types for this register class are valid, we
5402    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
5403    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
5404         I != E; ++I) {
5405      if (TLI.isTypeLegal(*I)) {
5406        // If we have already found this register in a different register class,
5407        // choose the one with the largest VT specified.  For example, on
5408        // PowerPC, we favor f64 register classes over f32.
5409        if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) {
5410          ThisVT = *I;
5411          break;
5412        }
5413      }
5414    }
5415
5416    if (ThisVT == MVT::Other) continue;
5417
5418    // NOTE: This isn't ideal.  In particular, this might allocate the
5419    // frame pointer in functions that need it (due to them not being taken
5420    // out of allocation, because a variable sized allocation hasn't been seen
5421    // yet).  This is a slight code pessimization, but should still work.
5422    for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
5423         E = RC->allocation_order_end(MF); I != E; ++I)
5424      if (*I == Reg) {
5425        // We found a matching register class.  Keep looking at others in case
5426        // we find one with larger registers that this physreg is also in.
5427        FoundRC = RC;
5428        FoundVT = ThisVT;
5429        break;
5430      }
5431  }
5432  return FoundRC;
5433}
5434
5435
5436namespace llvm {
5437/// AsmOperandInfo - This contains information for each constraint that we are
5438/// lowering.
5439class VISIBILITY_HIDDEN SDISelAsmOperandInfo :
5440    public TargetLowering::AsmOperandInfo {
5441public:
5442  /// CallOperand - If this is the result output operand or a clobber
5443  /// this is null, otherwise it is the incoming operand to the CallInst.
5444  /// This gets modified as the asm is processed.
5445  SDValue CallOperand;
5446
5447  /// AssignedRegs - If this is a register or register class operand, this
5448  /// contains the set of register corresponding to the operand.
5449  RegsForValue AssignedRegs;
5450
5451  explicit SDISelAsmOperandInfo(const InlineAsm::ConstraintInfo &info)
5452    : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
5453  }
5454
5455  /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
5456  /// busy in OutputRegs/InputRegs.
5457  void MarkAllocatedRegs(bool isOutReg, bool isInReg,
5458                         std::set<unsigned> &OutputRegs,
5459                         std::set<unsigned> &InputRegs,
5460                         const TargetRegisterInfo &TRI) const {
5461    if (isOutReg) {
5462      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
5463        MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
5464    }
5465    if (isInReg) {
5466      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
5467        MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
5468    }
5469  }
5470
5471  /// getCallOperandValEVT - Return the EVT of the Value* that this operand
5472  /// corresponds to.  If there is no Value* for this operand, it returns
5473  /// MVT::Other.
5474  EVT getCallOperandValEVT(LLVMContext &Context,
5475                           const TargetLowering &TLI,
5476                           const TargetData *TD) const {
5477    if (CallOperandVal == 0) return MVT::Other;
5478
5479    if (isa<BasicBlock>(CallOperandVal))
5480      return TLI.getPointerTy();
5481
5482    const llvm::Type *OpTy = CallOperandVal->getType();
5483
5484    // If this is an indirect operand, the operand is a pointer to the
5485    // accessed type.
5486    if (isIndirect) {
5487      const llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
5488      if (!PtrTy)
5489        llvm_report_error("Indirect operand for inline asm not a pointer!");
5490      OpTy = PtrTy->getElementType();
5491    }
5492
5493    // If OpTy is not a single value, it may be a struct/union that we
5494    // can tile with integers.
5495    if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5496      unsigned BitSize = TD->getTypeSizeInBits(OpTy);
5497      switch (BitSize) {
5498      default: break;
5499      case 1:
5500      case 8:
5501      case 16:
5502      case 32:
5503      case 64:
5504      case 128:
5505        OpTy = IntegerType::get(Context, BitSize);
5506        break;
5507      }
5508    }
5509
5510    return TLI.getValueType(OpTy, true);
5511  }
5512
5513private:
5514  /// MarkRegAndAliases - Mark the specified register and all aliases in the
5515  /// specified set.
5516  static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
5517                                const TargetRegisterInfo &TRI) {
5518    assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
5519    Regs.insert(Reg);
5520    if (const unsigned *Aliases = TRI.getAliasSet(Reg))
5521      for (; *Aliases; ++Aliases)
5522        Regs.insert(*Aliases);
5523  }
5524};
5525} // end llvm namespace.
5526
5527
5528/// GetRegistersForValue - Assign registers (virtual or physical) for the
5529/// specified operand.  We prefer to assign virtual registers, to allow the
5530/// register allocator to handle the assignment process.  However, if the asm
5531/// uses features that we can't model on machineinstrs, we have SDISel do the
5532/// allocation.  This produces generally horrible, but correct, code.
5533///
5534///   OpInfo describes the operand.
5535///   Input and OutputRegs are the set of already allocated physical registers.
5536///
5537void SelectionDAGBuilder::
5538GetRegistersForValue(SDISelAsmOperandInfo &OpInfo,
5539                     std::set<unsigned> &OutputRegs,
5540                     std::set<unsigned> &InputRegs) {
5541  LLVMContext &Context = FuncInfo.Fn->getContext();
5542
5543  // Compute whether this value requires an input register, an output register,
5544  // or both.
5545  bool isOutReg = false;
5546  bool isInReg = false;
5547  switch (OpInfo.Type) {
5548  case InlineAsm::isOutput:
5549    isOutReg = true;
5550
5551    // If there is an input constraint that matches this, we need to reserve
5552    // the input register so no other inputs allocate to it.
5553    isInReg = OpInfo.hasMatchingInput();
5554    break;
5555  case InlineAsm::isInput:
5556    isInReg = true;
5557    isOutReg = false;
5558    break;
5559  case InlineAsm::isClobber:
5560    isOutReg = true;
5561    isInReg = true;
5562    break;
5563  }
5564
5565
5566  MachineFunction &MF = DAG.getMachineFunction();
5567  SmallVector<unsigned, 4> Regs;
5568
5569  // If this is a constraint for a single physreg, or a constraint for a
5570  // register class, find it.
5571  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
5572    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5573                                     OpInfo.ConstraintVT);
5574
5575  unsigned NumRegs = 1;
5576  if (OpInfo.ConstraintVT != MVT::Other) {
5577    // If this is a FP input in an integer register (or visa versa) insert a bit
5578    // cast of the input value.  More generally, handle any case where the input
5579    // value disagrees with the register class we plan to stick this in.
5580    if (OpInfo.Type == InlineAsm::isInput &&
5581        PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
5582      // Try to convert to the first EVT that the reg class contains.  If the
5583      // types are identical size, use a bitcast to convert (e.g. two differing
5584      // vector types).
5585      EVT RegVT = *PhysReg.second->vt_begin();
5586      if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
5587        OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
5588                                         RegVT, OpInfo.CallOperand);
5589        OpInfo.ConstraintVT = RegVT;
5590      } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
5591        // If the input is a FP value and we want it in FP registers, do a
5592        // bitcast to the corresponding integer type.  This turns an f64 value
5593        // into i64, which can be passed with two i32 values on a 32-bit
5594        // machine.
5595        RegVT = EVT::getIntegerVT(Context,
5596                                  OpInfo.ConstraintVT.getSizeInBits());
5597        OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
5598                                         RegVT, OpInfo.CallOperand);
5599        OpInfo.ConstraintVT = RegVT;
5600      }
5601
5602      if (DisableScheduling)
5603        DAG.AssignOrdering(OpInfo.CallOperand.getNode(), SDNodeOrder);
5604    }
5605
5606    NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
5607  }
5608
5609  EVT RegVT;
5610  EVT ValueVT = OpInfo.ConstraintVT;
5611
5612  // If this is a constraint for a specific physical register, like {r17},
5613  // assign it now.
5614  if (unsigned AssignedReg = PhysReg.first) {
5615    const TargetRegisterClass *RC = PhysReg.second;
5616    if (OpInfo.ConstraintVT == MVT::Other)
5617      ValueVT = *RC->vt_begin();
5618
5619    // Get the actual register value type.  This is important, because the user
5620    // may have asked for (e.g.) the AX register in i32 type.  We need to
5621    // remember that AX is actually i16 to get the right extension.
5622    RegVT = *RC->vt_begin();
5623
5624    // This is a explicit reference to a physical register.
5625    Regs.push_back(AssignedReg);
5626
5627    // If this is an expanded reference, add the rest of the regs to Regs.
5628    if (NumRegs != 1) {
5629      TargetRegisterClass::iterator I = RC->begin();
5630      for (; *I != AssignedReg; ++I)
5631        assert(I != RC->end() && "Didn't find reg!");
5632
5633      // Already added the first reg.
5634      --NumRegs; ++I;
5635      for (; NumRegs; --NumRegs, ++I) {
5636        assert(I != RC->end() && "Ran out of registers to allocate!");
5637        Regs.push_back(*I);
5638      }
5639    }
5640
5641    OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT);
5642    const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5643    OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5644    return;
5645  }
5646
5647  // Otherwise, if this was a reference to an LLVM register class, create vregs
5648  // for this reference.
5649  if (const TargetRegisterClass *RC = PhysReg.second) {
5650    RegVT = *RC->vt_begin();
5651    if (OpInfo.ConstraintVT == MVT::Other)
5652      ValueVT = RegVT;
5653
5654    // Create the appropriate number of virtual registers.
5655    MachineRegisterInfo &RegInfo = MF.getRegInfo();
5656    for (; NumRegs; --NumRegs)
5657      Regs.push_back(RegInfo.createVirtualRegister(RC));
5658
5659    OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT);
5660    return;
5661  }
5662
5663  // This is a reference to a register class that doesn't directly correspond
5664  // to an LLVM register class.  Allocate NumRegs consecutive, available,
5665  // registers from the class.
5666  std::vector<unsigned> RegClassRegs
5667    = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
5668                                            OpInfo.ConstraintVT);
5669
5670  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5671  unsigned NumAllocated = 0;
5672  for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
5673    unsigned Reg = RegClassRegs[i];
5674    // See if this register is available.
5675    if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
5676        (isInReg  && InputRegs.count(Reg))) {    // Already used.
5677      // Make sure we find consecutive registers.
5678      NumAllocated = 0;
5679      continue;
5680    }
5681
5682    // Check to see if this register is allocatable (i.e. don't give out the
5683    // stack pointer).
5684    const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, TRI);
5685    if (!RC) {        // Couldn't allocate this register.
5686      // Reset NumAllocated to make sure we return consecutive registers.
5687      NumAllocated = 0;
5688      continue;
5689    }
5690
5691    // Okay, this register is good, we can use it.
5692    ++NumAllocated;
5693
5694    // If we allocated enough consecutive registers, succeed.
5695    if (NumAllocated == NumRegs) {
5696      unsigned RegStart = (i-NumAllocated)+1;
5697      unsigned RegEnd   = i+1;
5698      // Mark all of the allocated registers used.
5699      for (unsigned i = RegStart; i != RegEnd; ++i)
5700        Regs.push_back(RegClassRegs[i]);
5701
5702      OpInfo.AssignedRegs = RegsForValue(TLI, Regs, *RC->vt_begin(),
5703                                         OpInfo.ConstraintVT);
5704      OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5705      return;
5706    }
5707  }
5708
5709  // Otherwise, we couldn't allocate enough registers for this.
5710}
5711
5712/// hasInlineAsmMemConstraint - Return true if the inline asm instruction being
5713/// processed uses a memory 'm' constraint.
5714static bool
5715hasInlineAsmMemConstraint(std::vector<InlineAsm::ConstraintInfo> &CInfos,
5716                          const TargetLowering &TLI) {
5717  for (unsigned i = 0, e = CInfos.size(); i != e; ++i) {
5718    InlineAsm::ConstraintInfo &CI = CInfos[i];
5719    for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) {
5720      TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]);
5721      if (CType == TargetLowering::C_Memory)
5722        return true;
5723    }
5724
5725    // Indirect operand accesses access memory.
5726    if (CI.isIndirect)
5727      return true;
5728  }
5729
5730  return false;
5731}
5732
5733/// visitInlineAsm - Handle a call to an InlineAsm object.
5734///
5735void SelectionDAGBuilder::visitInlineAsm(CallSite CS) {
5736  InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
5737
5738  /// ConstraintOperands - Information about all of the constraints.
5739  std::vector<SDISelAsmOperandInfo> ConstraintOperands;
5740
5741  std::set<unsigned> OutputRegs, InputRegs;
5742
5743  // Do a prepass over the constraints, canonicalizing them, and building up the
5744  // ConstraintOperands list.
5745  std::vector<InlineAsm::ConstraintInfo>
5746    ConstraintInfos = IA->ParseConstraints();
5747
5748  bool hasMemory = hasInlineAsmMemConstraint(ConstraintInfos, TLI);
5749
5750  SDValue Chain, Flag;
5751
5752  // We won't need to flush pending loads if this asm doesn't touch
5753  // memory and is nonvolatile.
5754  if (hasMemory || IA->hasSideEffects())
5755    Chain = getRoot();
5756  else
5757    Chain = DAG.getRoot();
5758
5759  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
5760  unsigned ResNo = 0;   // ResNo - The result number of the next output.
5761  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
5762    ConstraintOperands.push_back(SDISelAsmOperandInfo(ConstraintInfos[i]));
5763    SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
5764
5765    EVT OpVT = MVT::Other;
5766
5767    // Compute the value type for each operand.
5768    switch (OpInfo.Type) {
5769    case InlineAsm::isOutput:
5770      // Indirect outputs just consume an argument.
5771      if (OpInfo.isIndirect) {
5772        OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
5773        break;
5774      }
5775
5776      // The return value of the call is this value.  As such, there is no
5777      // corresponding argument.
5778      assert(CS.getType() != Type::getVoidTy(*DAG.getContext()) &&
5779             "Bad inline asm!");
5780      if (const StructType *STy = dyn_cast<StructType>(CS.getType())) {
5781        OpVT = TLI.getValueType(STy->getElementType(ResNo));
5782      } else {
5783        assert(ResNo == 0 && "Asm only has one result!");
5784        OpVT = TLI.getValueType(CS.getType());
5785      }
5786      ++ResNo;
5787      break;
5788    case InlineAsm::isInput:
5789      OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
5790      break;
5791    case InlineAsm::isClobber:
5792      // Nothing to do.
5793      break;
5794    }
5795
5796    // If this is an input or an indirect output, process the call argument.
5797    // BasicBlocks are labels, currently appearing only in asm's.
5798    if (OpInfo.CallOperandVal) {
5799      // Strip bitcasts, if any.  This mostly comes up for functions.
5800      OpInfo.CallOperandVal = OpInfo.CallOperandVal->stripPointerCasts();
5801
5802      if (BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
5803        OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
5804      } else {
5805        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
5806      }
5807
5808      OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD);
5809    }
5810
5811    OpInfo.ConstraintVT = OpVT;
5812  }
5813
5814  // Second pass over the constraints: compute which constraint option to use
5815  // and assign registers to constraints that want a specific physreg.
5816  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
5817    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5818
5819    // If this is an output operand with a matching input operand, look up the
5820    // matching input. If their types mismatch, e.g. one is an integer, the
5821    // other is floating point, or their sizes are different, flag it as an
5822    // error.
5823    if (OpInfo.hasMatchingInput()) {
5824      SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5825      if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5826        if ((OpInfo.ConstraintVT.isInteger() !=
5827             Input.ConstraintVT.isInteger()) ||
5828            (OpInfo.ConstraintVT.getSizeInBits() !=
5829             Input.ConstraintVT.getSizeInBits())) {
5830          llvm_report_error("Unsupported asm: input constraint"
5831                            " with a matching output constraint of incompatible"
5832                            " type!");
5833        }
5834        Input.ConstraintVT = OpInfo.ConstraintVT;
5835      }
5836    }
5837
5838    // Compute the constraint code and ConstraintType to use.
5839    TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, hasMemory, &DAG);
5840
5841    // If this is a memory input, and if the operand is not indirect, do what we
5842    // need to to provide an address for the memory input.
5843    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5844        !OpInfo.isIndirect) {
5845      assert(OpInfo.Type == InlineAsm::isInput &&
5846             "Can only indirectify direct input operands!");
5847
5848      // Memory operands really want the address of the value.  If we don't have
5849      // an indirect input, put it in the constpool if we can, otherwise spill
5850      // it to a stack slot.
5851
5852      // If the operand is a float, integer, or vector constant, spill to a
5853      // constant pool entry to get its address.
5854      Value *OpVal = OpInfo.CallOperandVal;
5855      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
5856          isa<ConstantVector>(OpVal)) {
5857        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
5858                                                 TLI.getPointerTy());
5859      } else {
5860        // Otherwise, create a stack slot and emit a store to it before the
5861        // asm.
5862        const Type *Ty = OpVal->getType();
5863        uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
5864        unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
5865        MachineFunction &MF = DAG.getMachineFunction();
5866        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5867        SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
5868        Chain = DAG.getStore(Chain, getCurDebugLoc(),
5869                             OpInfo.CallOperand, StackSlot, NULL, 0);
5870        OpInfo.CallOperand = StackSlot;
5871        if (DisableScheduling)
5872          DAG.AssignOrdering(Chain.getNode(), SDNodeOrder);
5873      }
5874
5875      // There is no longer a Value* corresponding to this operand.
5876      OpInfo.CallOperandVal = 0;
5877
5878      // It is now an indirect operand.
5879      OpInfo.isIndirect = true;
5880
5881      if (DisableScheduling)
5882        DAG.AssignOrdering(OpInfo.CallOperand.getNode(), SDNodeOrder);
5883    }
5884
5885    // If this constraint is for a specific register, allocate it before
5886    // anything else.
5887    if (OpInfo.ConstraintType == TargetLowering::C_Register)
5888      GetRegistersForValue(OpInfo, OutputRegs, InputRegs);
5889  }
5890
5891  ConstraintInfos.clear();
5892
5893  // Second pass - Loop over all of the operands, assigning virtual or physregs
5894  // to register class operands.
5895  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5896    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5897
5898    // C_Register operands have already been allocated, Other/Memory don't need
5899    // to be.
5900    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
5901      GetRegistersForValue(OpInfo, OutputRegs, InputRegs);
5902  }
5903
5904  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
5905  std::vector<SDValue> AsmNodeOperands;
5906  AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
5907  AsmNodeOperands.push_back(
5908          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), MVT::Other));
5909
5910
5911  // Loop over all of the inputs, copying the operand values into the
5912  // appropriate registers and processing the output regs.
5913  RegsForValue RetValRegs;
5914
5915  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
5916  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
5917
5918  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5919    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5920
5921    switch (OpInfo.Type) {
5922    case InlineAsm::isOutput: {
5923      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
5924          OpInfo.ConstraintType != TargetLowering::C_Register) {
5925        // Memory output, or 'other' output (e.g. 'X' constraint).
5926        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
5927
5928        // Add information to the INLINEASM node to know about this output.
5929        unsigned ResOpType = 4/*MEM*/ | (1<<3);
5930        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5931                                                        TLI.getPointerTy()));
5932        AsmNodeOperands.push_back(OpInfo.CallOperand);
5933        break;
5934      }
5935
5936      // Otherwise, this is a register or register class output.
5937
5938      // Copy the output from the appropriate register.  Find a register that
5939      // we can use.
5940      if (OpInfo.AssignedRegs.Regs.empty()) {
5941        llvm_report_error("Couldn't allocate output reg for"
5942                          " constraint '" + OpInfo.ConstraintCode + "'!");
5943      }
5944
5945      // If this is an indirect operand, store through the pointer after the
5946      // asm.
5947      if (OpInfo.isIndirect) {
5948        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
5949                                                      OpInfo.CallOperandVal));
5950      } else {
5951        // This is the result value of the call.
5952        assert(CS.getType() != Type::getVoidTy(*DAG.getContext()) &&
5953               "Bad inline asm!");
5954        // Concatenate this output onto the outputs list.
5955        RetValRegs.append(OpInfo.AssignedRegs);
5956      }
5957
5958      // Add information to the INLINEASM node to know that this register is
5959      // set.
5960      OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
5961                                               6 /* EARLYCLOBBER REGDEF */ :
5962                                               2 /* REGDEF */ ,
5963                                               false,
5964                                               0,
5965                                               DAG, SDNodeOrder,
5966                                               AsmNodeOperands);
5967      break;
5968    }
5969    case InlineAsm::isInput: {
5970      SDValue InOperandVal = OpInfo.CallOperand;
5971
5972      if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
5973        // If this is required to match an output register we have already set,
5974        // just use its register.
5975        unsigned OperandNo = OpInfo.getMatchedOperand();
5976
5977        // Scan until we find the definition we already emitted of this operand.
5978        // When we find it, create a RegsForValue operand.
5979        unsigned CurOp = 2;  // The first operand.
5980        for (; OperandNo; --OperandNo) {
5981          // Advance to the next operand.
5982          unsigned OpFlag =
5983            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5984          assert(((OpFlag & 7) == 2 /*REGDEF*/ ||
5985                  (OpFlag & 7) == 6 /*EARLYCLOBBER REGDEF*/ ||
5986                  (OpFlag & 7) == 4 /*MEM*/) &&
5987                 "Skipped past definitions?");
5988          CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
5989        }
5990
5991        unsigned OpFlag =
5992          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5993        if ((OpFlag & 7) == 2 /*REGDEF*/
5994            || (OpFlag & 7) == 6 /* EARLYCLOBBER REGDEF */) {
5995          // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
5996          if (OpInfo.isIndirect) {
5997            llvm_report_error("Don't know how to handle tied indirect "
5998                              "register inputs yet!");
5999          }
6000          RegsForValue MatchedRegs;
6001          MatchedRegs.TLI = &TLI;
6002          MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
6003          EVT RegVT = AsmNodeOperands[CurOp+1].getValueType();
6004          MatchedRegs.RegVTs.push_back(RegVT);
6005          MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
6006          for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
6007               i != e; ++i)
6008            MatchedRegs.Regs.
6009              push_back(RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)));
6010
6011          // Use the produced MatchedRegs object to
6012          MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
6013                                    SDNodeOrder, Chain, &Flag);
6014          MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/,
6015                                           true, OpInfo.getMatchedOperand(),
6016                                           DAG, SDNodeOrder, AsmNodeOperands);
6017          break;
6018        } else {
6019          assert(((OpFlag & 7) == 4) && "Unknown matching constraint!");
6020          assert((InlineAsm::getNumOperandRegisters(OpFlag)) == 1 &&
6021                 "Unexpected number of operands");
6022          // Add information to the INLINEASM node to know about this input.
6023          // See InlineAsm.h isUseOperandTiedToDef.
6024          OpFlag |= 0x80000000 | (OpInfo.getMatchedOperand() << 16);
6025          AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
6026                                                          TLI.getPointerTy()));
6027          AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
6028          break;
6029        }
6030      }
6031
6032      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
6033        assert(!OpInfo.isIndirect &&
6034               "Don't know how to handle indirect other inputs yet!");
6035
6036        std::vector<SDValue> Ops;
6037        TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0],
6038                                         hasMemory, Ops, DAG);
6039        if (Ops.empty()) {
6040          llvm_report_error("Invalid operand for inline asm"
6041                            " constraint '" + OpInfo.ConstraintCode + "'!");
6042        }
6043
6044        // Add information to the INLINEASM node to know about this input.
6045        unsigned ResOpType = 3 /*IMM*/ | (Ops.size() << 3);
6046        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6047                                                        TLI.getPointerTy()));
6048        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
6049        break;
6050      } else if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
6051        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
6052        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
6053               "Memory operands expect pointer values");
6054
6055        // Add information to the INLINEASM node to know about this input.
6056        unsigned ResOpType = 4/*MEM*/ | (1<<3);
6057        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6058                                                        TLI.getPointerTy()));
6059        AsmNodeOperands.push_back(InOperandVal);
6060        break;
6061      }
6062
6063      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
6064              OpInfo.ConstraintType == TargetLowering::C_Register) &&
6065             "Unknown constraint type!");
6066      assert(!OpInfo.isIndirect &&
6067             "Don't know how to handle indirect register inputs yet!");
6068
6069      // Copy the input into the appropriate registers.
6070      if (OpInfo.AssignedRegs.Regs.empty()) {
6071        llvm_report_error("Couldn't allocate input reg for"
6072                          " constraint '"+ OpInfo.ConstraintCode +"'!");
6073      }
6074
6075      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
6076                                        SDNodeOrder, Chain, &Flag);
6077
6078      OpInfo.AssignedRegs.AddInlineAsmOperands(1/*REGUSE*/, false, 0,
6079                                               DAG, SDNodeOrder,
6080                                               AsmNodeOperands);
6081      break;
6082    }
6083    case InlineAsm::isClobber: {
6084      // Add the clobbered value to the operand list, so that the register
6085      // allocator is aware that the physreg got clobbered.
6086      if (!OpInfo.AssignedRegs.Regs.empty())
6087        OpInfo.AssignedRegs.AddInlineAsmOperands(6 /* EARLYCLOBBER REGDEF */,
6088                                                 false, 0, DAG, SDNodeOrder,
6089                                                 AsmNodeOperands);
6090      break;
6091    }
6092    }
6093  }
6094
6095  // Finish up input operands.
6096  AsmNodeOperands[0] = Chain;
6097  if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
6098
6099  Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(),
6100                      DAG.getVTList(MVT::Other, MVT::Flag),
6101                      &AsmNodeOperands[0], AsmNodeOperands.size());
6102  Flag = Chain.getValue(1);
6103
6104  if (DisableScheduling)
6105    DAG.AssignOrdering(Chain.getNode(), SDNodeOrder);
6106
6107  // If this asm returns a register value, copy the result from that register
6108  // and set it as the value of the call.
6109  if (!RetValRegs.Regs.empty()) {
6110    SDValue Val = RetValRegs.getCopyFromRegs(DAG, getCurDebugLoc(),
6111                                             SDNodeOrder, Chain, &Flag);
6112
6113    // FIXME: Why don't we do this for inline asms with MRVs?
6114    if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
6115      EVT ResultType = TLI.getValueType(CS.getType());
6116
6117      // If any of the results of the inline asm is a vector, it may have the
6118      // wrong width/num elts.  This can happen for register classes that can
6119      // contain multiple different value types.  The preg or vreg allocated may
6120      // not have the same VT as was expected.  Convert it to the right type
6121      // with bit_convert.
6122      if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
6123        Val = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
6124                          ResultType, Val);
6125
6126      } else if (ResultType != Val.getValueType() &&
6127                 ResultType.isInteger() && Val.getValueType().isInteger()) {
6128        // If a result value was tied to an input value, the computed result may
6129        // have a wider width than the expected result.  Extract the relevant
6130        // portion.
6131        Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val);
6132      }
6133
6134      assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
6135
6136      if (DisableScheduling)
6137        DAG.AssignOrdering(Val.getNode(), SDNodeOrder);
6138    }
6139
6140    setValue(CS.getInstruction(), Val);
6141    // Don't need to use this as a chain in this case.
6142    if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
6143      return;
6144  }
6145
6146  std::vector<std::pair<SDValue, Value*> > StoresToEmit;
6147
6148  // Process indirect outputs, first output all of the flagged copies out of
6149  // physregs.
6150  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
6151    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
6152    Value *Ptr = IndirectStoresToEmit[i].second;
6153    SDValue OutVal = OutRegs.getCopyFromRegs(DAG, getCurDebugLoc(),
6154                                             SDNodeOrder, Chain, &Flag);
6155    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
6156
6157  }
6158
6159  // Emit the non-flagged stores from the physregs.
6160  SmallVector<SDValue, 8> OutChains;
6161  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
6162    SDValue Val = DAG.getStore(Chain, getCurDebugLoc(),
6163                               StoresToEmit[i].first,
6164                               getValue(StoresToEmit[i].second),
6165                               StoresToEmit[i].second, 0);
6166    OutChains.push_back(Val);
6167    if (DisableScheduling)
6168      DAG.AssignOrdering(Val.getNode(), SDNodeOrder);
6169  }
6170
6171  if (!OutChains.empty())
6172    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
6173                        &OutChains[0], OutChains.size());
6174
6175  if (DisableScheduling)
6176    DAG.AssignOrdering(Chain.getNode(), SDNodeOrder);
6177
6178  DAG.setRoot(Chain);
6179}
6180
6181void SelectionDAGBuilder::visitVAStart(CallInst &I) {
6182  SDValue Res = DAG.getNode(ISD::VASTART, getCurDebugLoc(),
6183                            MVT::Other, getRoot(),
6184                            getValue(I.getOperand(1)),
6185                            DAG.getSrcValue(I.getOperand(1)));
6186  DAG.setRoot(Res);
6187  if (DisableScheduling)
6188    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
6189}
6190
6191void SelectionDAGBuilder::visitVAArg(VAArgInst &I) {
6192  SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(),
6193                           getRoot(), getValue(I.getOperand(0)),
6194                           DAG.getSrcValue(I.getOperand(0)));
6195  setValue(&I, V);
6196  DAG.setRoot(V.getValue(1));
6197  if (DisableScheduling)
6198    DAG.AssignOrdering(V.getNode(), SDNodeOrder);
6199}
6200
6201void SelectionDAGBuilder::visitVAEnd(CallInst &I) {
6202  SDValue Res = DAG.getNode(ISD::VAEND, getCurDebugLoc(),
6203                            MVT::Other, getRoot(),
6204                            getValue(I.getOperand(1)),
6205                            DAG.getSrcValue(I.getOperand(1)));
6206  DAG.setRoot(Res);
6207  if (DisableScheduling)
6208    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
6209}
6210
6211void SelectionDAGBuilder::visitVACopy(CallInst &I) {
6212  SDValue Res = DAG.getNode(ISD::VACOPY, getCurDebugLoc(),
6213                            MVT::Other, getRoot(),
6214                            getValue(I.getOperand(1)),
6215                            getValue(I.getOperand(2)),
6216                            DAG.getSrcValue(I.getOperand(1)),
6217                            DAG.getSrcValue(I.getOperand(2)));
6218  DAG.setRoot(Res);
6219  if (DisableScheduling)
6220    DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
6221}
6222
6223/// TargetLowering::LowerCallTo - This is the default LowerCallTo
6224/// implementation, which just calls LowerCall.
6225/// FIXME: When all targets are
6226/// migrated to using LowerCall, this hook should be integrated into SDISel.
6227std::pair<SDValue, SDValue>
6228TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy,
6229                            bool RetSExt, bool RetZExt, bool isVarArg,
6230                            bool isInreg, unsigned NumFixedArgs,
6231                            CallingConv::ID CallConv, bool isTailCall,
6232                            bool isReturnValueUsed,
6233                            SDValue Callee,
6234                            ArgListTy &Args, SelectionDAG &DAG, DebugLoc dl,
6235                            unsigned Order) {
6236  assert((!isTailCall || PerformTailCallOpt) &&
6237         "isTailCall set when tail-call optimizations are disabled!");
6238
6239  // Handle all of the outgoing arguments.
6240  SmallVector<ISD::OutputArg, 32> Outs;
6241  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
6242    SmallVector<EVT, 4> ValueVTs;
6243    ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
6244    for (unsigned Value = 0, NumValues = ValueVTs.size();
6245         Value != NumValues; ++Value) {
6246      EVT VT = ValueVTs[Value];
6247      const Type *ArgTy = VT.getTypeForEVT(RetTy->getContext());
6248      SDValue Op = SDValue(Args[i].Node.getNode(),
6249                           Args[i].Node.getResNo() + Value);
6250      ISD::ArgFlagsTy Flags;
6251      unsigned OriginalAlignment =
6252        getTargetData()->getABITypeAlignment(ArgTy);
6253
6254      if (Args[i].isZExt)
6255        Flags.setZExt();
6256      if (Args[i].isSExt)
6257        Flags.setSExt();
6258      if (Args[i].isInReg)
6259        Flags.setInReg();
6260      if (Args[i].isSRet)
6261        Flags.setSRet();
6262      if (Args[i].isByVal) {
6263        Flags.setByVal();
6264        const PointerType *Ty = cast<PointerType>(Args[i].Ty);
6265        const Type *ElementTy = Ty->getElementType();
6266        unsigned FrameAlign = getByValTypeAlignment(ElementTy);
6267        unsigned FrameSize  = getTargetData()->getTypeAllocSize(ElementTy);
6268        // For ByVal, alignment should come from FE.  BE will guess if this
6269        // info is not there but there are cases it cannot get right.
6270        if (Args[i].Alignment)
6271          FrameAlign = Args[i].Alignment;
6272        Flags.setByValAlign(FrameAlign);
6273        Flags.setByValSize(FrameSize);
6274      }
6275      if (Args[i].isNest)
6276        Flags.setNest();
6277      Flags.setOrigAlign(OriginalAlignment);
6278
6279      EVT PartVT = getRegisterType(RetTy->getContext(), VT);
6280      unsigned NumParts = getNumRegisters(RetTy->getContext(), VT);
6281      SmallVector<SDValue, 4> Parts(NumParts);
6282      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
6283
6284      if (Args[i].isSExt)
6285        ExtendKind = ISD::SIGN_EXTEND;
6286      else if (Args[i].isZExt)
6287        ExtendKind = ISD::ZERO_EXTEND;
6288
6289      getCopyToParts(DAG, dl, Order, Op, &Parts[0], NumParts,
6290                     PartVT, ExtendKind);
6291
6292      for (unsigned j = 0; j != NumParts; ++j) {
6293        // if it isn't first piece, alignment must be 1
6294        ISD::OutputArg MyFlags(Flags, Parts[j], i < NumFixedArgs);
6295        if (NumParts > 1 && j == 0)
6296          MyFlags.Flags.setSplit();
6297        else if (j != 0)
6298          MyFlags.Flags.setOrigAlign(1);
6299
6300        Outs.push_back(MyFlags);
6301      }
6302    }
6303  }
6304
6305  // Handle the incoming return values from the call.
6306  SmallVector<ISD::InputArg, 32> Ins;
6307  SmallVector<EVT, 4> RetTys;
6308  ComputeValueVTs(*this, RetTy, RetTys);
6309  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6310    EVT VT = RetTys[I];
6311    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
6312    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
6313    for (unsigned i = 0; i != NumRegs; ++i) {
6314      ISD::InputArg MyFlags;
6315      MyFlags.VT = RegisterVT;
6316      MyFlags.Used = isReturnValueUsed;
6317      if (RetSExt)
6318        MyFlags.Flags.setSExt();
6319      if (RetZExt)
6320        MyFlags.Flags.setZExt();
6321      if (isInreg)
6322        MyFlags.Flags.setInReg();
6323      Ins.push_back(MyFlags);
6324    }
6325  }
6326
6327  // Check if target-dependent constraints permit a tail call here.
6328  // Target-independent constraints should be checked by the caller.
6329  if (isTailCall &&
6330      !IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, Ins, DAG))
6331    isTailCall = false;
6332
6333  SmallVector<SDValue, 4> InVals;
6334  Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall,
6335                    Outs, Ins, dl, DAG, InVals);
6336
6337  // Verify that the target's LowerCall behaved as expected.
6338  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
6339         "LowerCall didn't return a valid chain!");
6340  assert((!isTailCall || InVals.empty()) &&
6341         "LowerCall emitted a return value for a tail call!");
6342  assert((isTailCall || InVals.size() == Ins.size()) &&
6343         "LowerCall didn't emit the correct number of values!");
6344  DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6345          assert(InVals[i].getNode() &&
6346                 "LowerCall emitted a null value!");
6347          assert(Ins[i].VT == InVals[i].getValueType() &&
6348                 "LowerCall emitted a value with the wrong type!");
6349        });
6350
6351  if (DisableScheduling)
6352    DAG.AssignOrdering(Chain.getNode(), Order);
6353
6354  // For a tail call, the return value is merely live-out and there aren't
6355  // any nodes in the DAG representing it. Return a special value to
6356  // indicate that a tail call has been emitted and no more Instructions
6357  // should be processed in the current block.
6358  if (isTailCall) {
6359    DAG.setRoot(Chain);
6360    return std::make_pair(SDValue(), SDValue());
6361  }
6362
6363  // Collect the legal value parts into potentially illegal values
6364  // that correspond to the original function's return values.
6365  ISD::NodeType AssertOp = ISD::DELETED_NODE;
6366  if (RetSExt)
6367    AssertOp = ISD::AssertSext;
6368  else if (RetZExt)
6369    AssertOp = ISD::AssertZext;
6370  SmallVector<SDValue, 4> ReturnValues;
6371  unsigned CurReg = 0;
6372  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6373    EVT VT = RetTys[I];
6374    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
6375    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
6376
6377    SDValue ReturnValue =
6378      getCopyFromParts(DAG, dl, Order, &InVals[CurReg], NumRegs,
6379                       RegisterVT, VT, AssertOp);
6380    ReturnValues.push_back(ReturnValue);
6381    if (DisableScheduling)
6382      DAG.AssignOrdering(ReturnValue.getNode(), Order);
6383    CurReg += NumRegs;
6384  }
6385
6386  // For a function returning void, there is no return value. We can't create
6387  // such a node, so we just return a null return value in that case. In
6388  // that case, nothing will actualy look at the value.
6389  if (ReturnValues.empty())
6390    return std::make_pair(SDValue(), Chain);
6391
6392  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
6393                            DAG.getVTList(&RetTys[0], RetTys.size()),
6394                            &ReturnValues[0], ReturnValues.size());
6395  if (DisableScheduling)
6396    DAG.AssignOrdering(Res.getNode(), Order);
6397  return std::make_pair(Res, Chain);
6398}
6399
6400void TargetLowering::LowerOperationWrapper(SDNode *N,
6401                                           SmallVectorImpl<SDValue> &Results,
6402                                           SelectionDAG &DAG) {
6403  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
6404  if (Res.getNode())
6405    Results.push_back(Res);
6406}
6407
6408SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
6409  llvm_unreachable("LowerOperation not implemented for this target!");
6410  return SDValue();
6411}
6412
6413void SelectionDAGBuilder::CopyValueToVirtualRegister(Value *V, unsigned Reg) {
6414  SDValue Op = getValue(V);
6415  assert((Op.getOpcode() != ISD::CopyFromReg ||
6416          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
6417         "Copy from a reg to the same reg!");
6418  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
6419
6420  RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
6421  SDValue Chain = DAG.getEntryNode();
6422  RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), SDNodeOrder, Chain, 0);
6423  PendingExports.push_back(Chain);
6424}
6425
6426#include "llvm/CodeGen/SelectionDAGISel.h"
6427
6428void SelectionDAGISel::LowerArguments(BasicBlock *LLVMBB) {
6429  // If this is the entry block, emit arguments.
6430  Function &F = *LLVMBB->getParent();
6431  SelectionDAG &DAG = SDB->DAG;
6432  SDValue OldRoot = DAG.getRoot();
6433  DebugLoc dl = SDB->getCurDebugLoc();
6434  const TargetData *TD = TLI.getTargetData();
6435  SmallVector<ISD::InputArg, 16> Ins;
6436
6437  // Check whether the function can return without sret-demotion.
6438  SmallVector<EVT, 4> OutVTs;
6439  SmallVector<ISD::ArgFlagsTy, 4> OutsFlags;
6440  getReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
6441                OutVTs, OutsFlags, TLI);
6442  FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo();
6443
6444  FLI.CanLowerReturn = TLI.CanLowerReturn(F.getCallingConv(), F.isVarArg(),
6445                                          OutVTs, OutsFlags, DAG);
6446  if (!FLI.CanLowerReturn) {
6447    // Put in an sret pointer parameter before all the other parameters.
6448    SmallVector<EVT, 1> ValueVTs;
6449    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6450
6451    // NOTE: Assuming that a pointer will never break down to more than one VT
6452    // or one register.
6453    ISD::ArgFlagsTy Flags;
6454    Flags.setSRet();
6455    EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), ValueVTs[0]);
6456    ISD::InputArg RetArg(Flags, RegisterVT, true);
6457    Ins.push_back(RetArg);
6458  }
6459
6460  // Set up the incoming argument description vector.
6461  unsigned Idx = 1;
6462  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
6463       I != E; ++I, ++Idx) {
6464    SmallVector<EVT, 4> ValueVTs;
6465    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6466    bool isArgValueUsed = !I->use_empty();
6467    for (unsigned Value = 0, NumValues = ValueVTs.size();
6468         Value != NumValues; ++Value) {
6469      EVT VT = ValueVTs[Value];
6470      const Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
6471      ISD::ArgFlagsTy Flags;
6472      unsigned OriginalAlignment =
6473        TD->getABITypeAlignment(ArgTy);
6474
6475      if (F.paramHasAttr(Idx, Attribute::ZExt))
6476        Flags.setZExt();
6477      if (F.paramHasAttr(Idx, Attribute::SExt))
6478        Flags.setSExt();
6479      if (F.paramHasAttr(Idx, Attribute::InReg))
6480        Flags.setInReg();
6481      if (F.paramHasAttr(Idx, Attribute::StructRet))
6482        Flags.setSRet();
6483      if (F.paramHasAttr(Idx, Attribute::ByVal)) {
6484        Flags.setByVal();
6485        const PointerType *Ty = cast<PointerType>(I->getType());
6486        const Type *ElementTy = Ty->getElementType();
6487        unsigned FrameAlign = TLI.getByValTypeAlignment(ElementTy);
6488        unsigned FrameSize  = TD->getTypeAllocSize(ElementTy);
6489        // For ByVal, alignment should be passed from FE.  BE will guess if
6490        // this info is not there but there are cases it cannot get right.
6491        if (F.getParamAlignment(Idx))
6492          FrameAlign = F.getParamAlignment(Idx);
6493        Flags.setByValAlign(FrameAlign);
6494        Flags.setByValSize(FrameSize);
6495      }
6496      if (F.paramHasAttr(Idx, Attribute::Nest))
6497        Flags.setNest();
6498      Flags.setOrigAlign(OriginalAlignment);
6499
6500      EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6501      unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6502      for (unsigned i = 0; i != NumRegs; ++i) {
6503        ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed);
6504        if (NumRegs > 1 && i == 0)
6505          MyFlags.Flags.setSplit();
6506        // if it isn't first piece, alignment must be 1
6507        else if (i > 0)
6508          MyFlags.Flags.setOrigAlign(1);
6509        Ins.push_back(MyFlags);
6510      }
6511    }
6512  }
6513
6514  // Call the target to set up the argument values.
6515  SmallVector<SDValue, 8> InVals;
6516  SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
6517                                             F.isVarArg(), Ins,
6518                                             dl, DAG, InVals);
6519
6520  // Verify that the target's LowerFormalArguments behaved as expected.
6521  assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
6522         "LowerFormalArguments didn't return a valid chain!");
6523  assert(InVals.size() == Ins.size() &&
6524         "LowerFormalArguments didn't emit the correct number of values!");
6525  DEBUG({
6526      for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6527        assert(InVals[i].getNode() &&
6528               "LowerFormalArguments emitted a null value!");
6529        assert(Ins[i].VT == InVals[i].getValueType() &&
6530               "LowerFormalArguments emitted a value with the wrong type!");
6531      }
6532    });
6533
6534  // Update the DAG with the new chain value resulting from argument lowering.
6535  DAG.setRoot(NewRoot);
6536
6537  // Set up the argument values.
6538  unsigned i = 0;
6539  Idx = 1;
6540  if (!FLI.CanLowerReturn) {
6541    // Create a virtual register for the sret pointer, and put in a copy
6542    // from the sret argument into it.
6543    SmallVector<EVT, 1> ValueVTs;
6544    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6545    EVT VT = ValueVTs[0];
6546    EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6547    ISD::NodeType AssertOp = ISD::DELETED_NODE;
6548    SDValue ArgValue = getCopyFromParts(DAG, dl, 0, &InVals[0], 1,
6549                                        RegVT, VT, AssertOp);
6550
6551    MachineFunction& MF = SDB->DAG.getMachineFunction();
6552    MachineRegisterInfo& RegInfo = MF.getRegInfo();
6553    unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT));
6554    FLI.DemoteRegister = SRetReg;
6555    NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(), SRetReg, ArgValue);
6556    DAG.setRoot(NewRoot);
6557
6558    // i indexes lowered arguments.  Bump it past the hidden sret argument.
6559    // Idx indexes LLVM arguments.  Don't touch it.
6560    ++i;
6561  }
6562
6563  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
6564      ++I, ++Idx) {
6565    SmallVector<SDValue, 4> ArgValues;
6566    SmallVector<EVT, 4> ValueVTs;
6567    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6568    unsigned NumValues = ValueVTs.size();
6569    for (unsigned Value = 0; Value != NumValues; ++Value) {
6570      EVT VT = ValueVTs[Value];
6571      EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6572      unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6573
6574      if (!I->use_empty()) {
6575        ISD::NodeType AssertOp = ISD::DELETED_NODE;
6576        if (F.paramHasAttr(Idx, Attribute::SExt))
6577          AssertOp = ISD::AssertSext;
6578        else if (F.paramHasAttr(Idx, Attribute::ZExt))
6579          AssertOp = ISD::AssertZext;
6580
6581        ArgValues.push_back(getCopyFromParts(DAG, dl, 0, &InVals[i],
6582                                             NumParts, PartVT, VT,
6583                                             AssertOp));
6584      }
6585
6586      i += NumParts;
6587    }
6588
6589    if (!I->use_empty()) {
6590      SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues,
6591                                       SDB->getCurDebugLoc());
6592      SDB->setValue(I, Res);
6593
6594      // If this argument is live outside of the entry block, insert a copy from
6595      // whereever we got it to the vreg that other BB's will reference it as.
6596      SDB->CopyToExportRegsIfNeeded(I);
6597    }
6598  }
6599
6600  assert(i == InVals.size() && "Argument register count mismatch!");
6601
6602  // Finally, if the target has anything special to do, allow it to do so.
6603  // FIXME: this should insert code into the DAG!
6604  EmitFunctionEntryCode(F, SDB->DAG.getMachineFunction());
6605}
6606
6607/// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
6608/// ensure constants are generated when needed.  Remember the virtual registers
6609/// that need to be added to the Machine PHI nodes as input.  We cannot just
6610/// directly add them, because expansion might result in multiple MBB's for one
6611/// BB.  As such, the start of the BB might correspond to a different MBB than
6612/// the end.
6613///
6614void
6615SelectionDAGISel::HandlePHINodesInSuccessorBlocks(BasicBlock *LLVMBB) {
6616  TerminatorInst *TI = LLVMBB->getTerminator();
6617
6618  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6619
6620  // Check successor nodes' PHI nodes that expect a constant to be available
6621  // from this block.
6622  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6623    BasicBlock *SuccBB = TI->getSuccessor(succ);
6624    if (!isa<PHINode>(SuccBB->begin())) continue;
6625    MachineBasicBlock *SuccMBB = FuncInfo->MBBMap[SuccBB];
6626
6627    // If this terminator has multiple identical successors (common for
6628    // switches), only handle each succ once.
6629    if (!SuccsHandled.insert(SuccMBB)) continue;
6630
6631    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6632    PHINode *PN;
6633
6634    // At this point we know that there is a 1-1 correspondence between LLVM PHI
6635    // nodes and Machine PHI nodes, but the incoming operands have not been
6636    // emitted yet.
6637    for (BasicBlock::iterator I = SuccBB->begin();
6638         (PN = dyn_cast<PHINode>(I)); ++I) {
6639      // Ignore dead phi's.
6640      if (PN->use_empty()) continue;
6641
6642      unsigned Reg;
6643      Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6644
6645      if (Constant *C = dyn_cast<Constant>(PHIOp)) {
6646        unsigned &RegOut = SDB->ConstantsOut[C];
6647        if (RegOut == 0) {
6648          RegOut = FuncInfo->CreateRegForValue(C);
6649          SDB->CopyValueToVirtualRegister(C, RegOut);
6650        }
6651        Reg = RegOut;
6652      } else {
6653        Reg = FuncInfo->ValueMap[PHIOp];
6654        if (Reg == 0) {
6655          assert(isa<AllocaInst>(PHIOp) &&
6656                 FuncInfo->StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
6657                 "Didn't codegen value into a register!??");
6658          Reg = FuncInfo->CreateRegForValue(PHIOp);
6659          SDB->CopyValueToVirtualRegister(PHIOp, Reg);
6660        }
6661      }
6662
6663      // Remember that this register needs to added to the machine PHI node as
6664      // the input for this MBB.
6665      SmallVector<EVT, 4> ValueVTs;
6666      ComputeValueVTs(TLI, PN->getType(), ValueVTs);
6667      for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
6668        EVT VT = ValueVTs[vti];
6669        unsigned NumRegisters = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6670        for (unsigned i = 0, e = NumRegisters; i != e; ++i)
6671          SDB->PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
6672        Reg += NumRegisters;
6673      }
6674    }
6675  }
6676  SDB->ConstantsOut.clear();
6677}
6678
6679/// This is the Fast-ISel version of HandlePHINodesInSuccessorBlocks. It only
6680/// supports legal types, and it emits MachineInstrs directly instead of
6681/// creating SelectionDAG nodes.
6682///
6683bool
6684SelectionDAGISel::HandlePHINodesInSuccessorBlocksFast(BasicBlock *LLVMBB,
6685                                                      FastISel *F) {
6686  TerminatorInst *TI = LLVMBB->getTerminator();
6687
6688  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6689  unsigned OrigNumPHINodesToUpdate = SDB->PHINodesToUpdate.size();
6690
6691  // Check successor nodes' PHI nodes that expect a constant to be available
6692  // from this block.
6693  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6694    BasicBlock *SuccBB = TI->getSuccessor(succ);
6695    if (!isa<PHINode>(SuccBB->begin())) continue;
6696    MachineBasicBlock *SuccMBB = FuncInfo->MBBMap[SuccBB];
6697
6698    // If this terminator has multiple identical successors (common for
6699    // switches), only handle each succ once.
6700    if (!SuccsHandled.insert(SuccMBB)) continue;
6701
6702    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6703    PHINode *PN;
6704
6705    // At this point we know that there is a 1-1 correspondence between LLVM PHI
6706    // nodes and Machine PHI nodes, but the incoming operands have not been
6707    // emitted yet.
6708    for (BasicBlock::iterator I = SuccBB->begin();
6709         (PN = dyn_cast<PHINode>(I)); ++I) {
6710      // Ignore dead phi's.
6711      if (PN->use_empty()) continue;
6712
6713      // Only handle legal types. Two interesting things to note here. First,
6714      // by bailing out early, we may leave behind some dead instructions,
6715      // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its
6716      // own moves. Second, this check is necessary becuase FastISel doesn't
6717      // use CreateRegForValue to create registers, so it always creates
6718      // exactly one register for each non-void instruction.
6719      EVT VT = TLI.getValueType(PN->getType(), /*AllowUnknown=*/true);
6720      if (VT == MVT::Other || !TLI.isTypeLegal(VT)) {
6721        // Promote MVT::i1.
6722        if (VT == MVT::i1)
6723          VT = TLI.getTypeToTransformTo(*CurDAG->getContext(), VT);
6724        else {
6725          SDB->PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
6726          return false;
6727        }
6728      }
6729
6730      Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6731
6732      unsigned Reg = F->getRegForValue(PHIOp);
6733      if (Reg == 0) {
6734        SDB->PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
6735        return false;
6736      }
6737      SDB->PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg));
6738    }
6739  }
6740
6741  return true;
6742}
6743