SelectionDAGBuilder.cpp revision 16c29b5f285f375be53dabaa73e3e91107485fe4
1//===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements routines for translating from LLVM IR into SelectionDAG IR.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "SDNodeDbgValue.h"
16#include "SelectionDAGBuilder.h"
17#include "llvm/ADT/BitVector.h"
18#include "llvm/ADT/PostOrderIterator.h"
19#include "llvm/ADT/SmallSet.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/ConstantFolding.h"
22#include "llvm/Constants.h"
23#include "llvm/CallingConv.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Function.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/InlineAsm.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/IntrinsicInst.h"
31#include "llvm/LLVMContext.h"
32#include "llvm/Module.h"
33#include "llvm/CodeGen/Analysis.h"
34#include "llvm/CodeGen/FastISel.h"
35#include "llvm/CodeGen/FunctionLoweringInfo.h"
36#include "llvm/CodeGen/GCStrategy.h"
37#include "llvm/CodeGen/GCMetadata.h"
38#include "llvm/CodeGen/MachineFunction.h"
39#include "llvm/CodeGen/MachineFrameInfo.h"
40#include "llvm/CodeGen/MachineInstrBuilder.h"
41#include "llvm/CodeGen/MachineJumpTableInfo.h"
42#include "llvm/CodeGen/MachineModuleInfo.h"
43#include "llvm/CodeGen/MachineRegisterInfo.h"
44#include "llvm/CodeGen/PseudoSourceValue.h"
45#include "llvm/CodeGen/SelectionDAG.h"
46#include "llvm/Analysis/DebugInfo.h"
47#include "llvm/Target/TargetData.h"
48#include "llvm/Target/TargetFrameLowering.h"
49#include "llvm/Target/TargetInstrInfo.h"
50#include "llvm/Target/TargetIntrinsicInfo.h"
51#include "llvm/Target/TargetLowering.h"
52#include "llvm/Target/TargetOptions.h"
53#include "llvm/Support/Compiler.h"
54#include "llvm/Support/CommandLine.h"
55#include "llvm/Support/Debug.h"
56#include "llvm/Support/ErrorHandling.h"
57#include "llvm/Support/MathExtras.h"
58#include "llvm/Support/raw_ostream.h"
59#include <algorithm>
60using namespace llvm;
61
62/// LimitFloatPrecision - Generate low-precision inline sequences for
63/// some float libcalls (6, 8 or 12 bits).
64static unsigned LimitFloatPrecision;
65
66static cl::opt<unsigned, true>
67LimitFPPrecision("limit-float-precision",
68                 cl::desc("Generate low-precision inline sequences "
69                          "for some float libcalls"),
70                 cl::location(LimitFloatPrecision),
71                 cl::init(0));
72
73// Limit the width of DAG chains. This is important in general to prevent
74// prevent DAG-based analysis from blowing up. For example, alias analysis and
75// load clustering may not complete in reasonable time. It is difficult to
76// recognize and avoid this situation within each individual analysis, and
77// future analyses are likely to have the same behavior. Limiting DAG width is
78// the safe approach, and will be especially important with global DAGs.
79//
80// MaxParallelChains default is arbitrarily high to avoid affecting
81// optimization, but could be lowered to improve compile time. Any ld-ld-st-st
82// sequence over this should have been converted to llvm.memcpy by the
83// frontend. It easy to induce this behavior with .ll code such as:
84// %buffer = alloca [4096 x i8]
85// %data = load [4096 x i8]* %argPtr
86// store [4096 x i8] %data, [4096 x i8]* %buffer
87static cl::opt<unsigned>
88MaxParallelChains("dag-chain-limit", cl::desc("Max parallel isel dag chains"),
89                  cl::init(64), cl::Hidden);
90
91static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
92                                      const SDValue *Parts, unsigned NumParts,
93                                      EVT PartVT, EVT ValueVT);
94
95/// getCopyFromParts - Create a value that contains the specified legal parts
96/// combined into the value they represent.  If the parts combine to a type
97/// larger then ValueVT then AssertOp can be used to specify whether the extra
98/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
99/// (ISD::AssertSext).
100static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL,
101                                const SDValue *Parts,
102                                unsigned NumParts, EVT PartVT, EVT ValueVT,
103                                ISD::NodeType AssertOp = ISD::DELETED_NODE) {
104  if (ValueVT.isVector())
105    return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT);
106
107  assert(NumParts > 0 && "No parts to assemble!");
108  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
109  SDValue Val = Parts[0];
110
111  if (NumParts > 1) {
112    // Assemble the value from multiple parts.
113    if (ValueVT.isInteger()) {
114      unsigned PartBits = PartVT.getSizeInBits();
115      unsigned ValueBits = ValueVT.getSizeInBits();
116
117      // Assemble the power of 2 part.
118      unsigned RoundParts = NumParts & (NumParts - 1) ?
119        1 << Log2_32(NumParts) : NumParts;
120      unsigned RoundBits = PartBits * RoundParts;
121      EVT RoundVT = RoundBits == ValueBits ?
122        ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
123      SDValue Lo, Hi;
124
125      EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
126
127      if (RoundParts > 2) {
128        Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
129                              PartVT, HalfVT);
130        Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
131                              RoundParts / 2, PartVT, HalfVT);
132      } else {
133        Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
134        Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
135      }
136
137      if (TLI.isBigEndian())
138        std::swap(Lo, Hi);
139
140      Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
141
142      if (RoundParts < NumParts) {
143        // Assemble the trailing non-power-of-2 part.
144        unsigned OddParts = NumParts - RoundParts;
145        EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
146        Hi = getCopyFromParts(DAG, DL,
147                              Parts + RoundParts, OddParts, PartVT, OddVT);
148
149        // Combine the round and odd parts.
150        Lo = Val;
151        if (TLI.isBigEndian())
152          std::swap(Lo, Hi);
153        EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
154        Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
155        Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
156                         DAG.getConstant(Lo.getValueType().getSizeInBits(),
157                                         TLI.getPointerTy()));
158        Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
159        Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
160      }
161    } else if (PartVT.isFloatingPoint()) {
162      // FP split into multiple FP parts (for ppcf128)
163      assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) &&
164             "Unexpected split");
165      SDValue Lo, Hi;
166      Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
167      Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
168      if (TLI.isBigEndian())
169        std::swap(Lo, Hi);
170      Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
171    } else {
172      // FP split into integer parts (soft fp)
173      assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
174             !PartVT.isVector() && "Unexpected split");
175      EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
176      Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT);
177    }
178  }
179
180  // There is now one part, held in Val.  Correct it to match ValueVT.
181  PartVT = Val.getValueType();
182
183  if (PartVT == ValueVT)
184    return Val;
185
186  if (PartVT.isInteger() && ValueVT.isInteger()) {
187    if (ValueVT.bitsLT(PartVT)) {
188      // For a truncate, see if we have any information to
189      // indicate whether the truncated bits will always be
190      // zero or sign-extension.
191      if (AssertOp != ISD::DELETED_NODE)
192        Val = DAG.getNode(AssertOp, DL, PartVT, Val,
193                          DAG.getValueType(ValueVT));
194      return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
195    }
196    return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
197  }
198
199  if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
200    // FP_ROUND's are always exact here.
201    if (ValueVT.bitsLT(Val.getValueType()))
202      return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val,
203                         DAG.getIntPtrConstant(1));
204
205    return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
206  }
207
208  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
209    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
210
211  llvm_unreachable("Unknown mismatch!");
212  return SDValue();
213}
214
215/// getCopyFromParts - Create a value that contains the specified legal parts
216/// combined into the value they represent.  If the parts combine to a type
217/// larger then ValueVT then AssertOp can be used to specify whether the extra
218/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
219/// (ISD::AssertSext).
220static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
221                                      const SDValue *Parts, unsigned NumParts,
222                                      EVT PartVT, EVT ValueVT) {
223  assert(ValueVT.isVector() && "Not a vector value");
224  assert(NumParts > 0 && "No parts to assemble!");
225  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
226  SDValue Val = Parts[0];
227
228  // Handle a multi-element vector.
229  if (NumParts > 1) {
230    EVT IntermediateVT, RegisterVT;
231    unsigned NumIntermediates;
232    unsigned NumRegs =
233    TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
234                               NumIntermediates, RegisterVT);
235    assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
236    NumParts = NumRegs; // Silence a compiler warning.
237    assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
238    assert(RegisterVT == Parts[0].getValueType() &&
239           "Part type doesn't match part!");
240
241    // Assemble the parts into intermediate operands.
242    SmallVector<SDValue, 8> Ops(NumIntermediates);
243    if (NumIntermediates == NumParts) {
244      // If the register was not expanded, truncate or copy the value,
245      // as appropriate.
246      for (unsigned i = 0; i != NumParts; ++i)
247        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
248                                  PartVT, IntermediateVT);
249    } else if (NumParts > 0) {
250      // If the intermediate type was expanded, build the intermediate
251      // operands from the parts.
252      assert(NumParts % NumIntermediates == 0 &&
253             "Must expand into a divisible number of parts!");
254      unsigned Factor = NumParts / NumIntermediates;
255      for (unsigned i = 0; i != NumIntermediates; ++i)
256        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
257                                  PartVT, IntermediateVT);
258    }
259
260    // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
261    // intermediate operands.
262    Val = DAG.getNode(IntermediateVT.isVector() ?
263                      ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL,
264                      ValueVT, &Ops[0], NumIntermediates);
265  }
266
267  // There is now one part, held in Val.  Correct it to match ValueVT.
268  PartVT = Val.getValueType();
269
270  if (PartVT == ValueVT)
271    return Val;
272
273  if (PartVT.isVector()) {
274    // If the element type of the source/dest vectors are the same, but the
275    // parts vector has more elements than the value vector, then we have a
276    // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
277    // elements we want.
278    if (PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
279      assert(PartVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
280             "Cannot narrow, it would be a lossy transformation");
281      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
282                         DAG.getIntPtrConstant(0));
283    }
284
285    // Vector/Vector bitcast.
286    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
287  }
288
289  assert(ValueVT.getVectorElementType() == PartVT &&
290         ValueVT.getVectorNumElements() == 1 &&
291         "Only trivial scalar-to-vector conversions should get here!");
292  return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
293}
294
295
296
297
298static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl,
299                                 SDValue Val, SDValue *Parts, unsigned NumParts,
300                                 EVT PartVT);
301
302/// getCopyToParts - Create a series of nodes that contain the specified value
303/// split into legal parts.  If the parts contain more bits than Val, then, for
304/// integers, ExtendKind can be used to specify how to generate the extra bits.
305static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL,
306                           SDValue Val, SDValue *Parts, unsigned NumParts,
307                           EVT PartVT,
308                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
309  EVT ValueVT = Val.getValueType();
310
311  // Handle the vector case separately.
312  if (ValueVT.isVector())
313    return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT);
314
315  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
316  unsigned PartBits = PartVT.getSizeInBits();
317  unsigned OrigNumParts = NumParts;
318  assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
319
320  if (NumParts == 0)
321    return;
322
323  assert(!ValueVT.isVector() && "Vector case handled elsewhere");
324  if (PartVT == ValueVT) {
325    assert(NumParts == 1 && "No-op copy with multiple parts!");
326    Parts[0] = Val;
327    return;
328  }
329
330  if (NumParts * PartBits > ValueVT.getSizeInBits()) {
331    // If the parts cover more bits than the value has, promote the value.
332    if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
333      assert(NumParts == 1 && "Do not know what to promote to!");
334      Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
335    } else {
336      assert(PartVT.isInteger() && ValueVT.isInteger() &&
337             "Unknown mismatch!");
338      ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
339      Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
340    }
341  } else if (PartBits == ValueVT.getSizeInBits()) {
342    // Different types of the same size.
343    assert(NumParts == 1 && PartVT != ValueVT);
344    Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
345  } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
346    // If the parts cover less bits than value has, truncate the value.
347    assert(PartVT.isInteger() && ValueVT.isInteger() &&
348           "Unknown mismatch!");
349    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
350    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
351  }
352
353  // The value may have changed - recompute ValueVT.
354  ValueVT = Val.getValueType();
355  assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
356         "Failed to tile the value with PartVT!");
357
358  if (NumParts == 1) {
359    assert(PartVT == ValueVT && "Type conversion failed!");
360    Parts[0] = Val;
361    return;
362  }
363
364  // Expand the value into multiple parts.
365  if (NumParts & (NumParts - 1)) {
366    // The number of parts is not a power of 2.  Split off and copy the tail.
367    assert(PartVT.isInteger() && ValueVT.isInteger() &&
368           "Do not know what to expand to!");
369    unsigned RoundParts = 1 << Log2_32(NumParts);
370    unsigned RoundBits = RoundParts * PartBits;
371    unsigned OddParts = NumParts - RoundParts;
372    SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
373                                 DAG.getIntPtrConstant(RoundBits));
374    getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT);
375
376    if (TLI.isBigEndian())
377      // The odd parts were reversed by getCopyToParts - unreverse them.
378      std::reverse(Parts + RoundParts, Parts + NumParts);
379
380    NumParts = RoundParts;
381    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
382    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
383  }
384
385  // The number of parts is a power of 2.  Repeatedly bisect the value using
386  // EXTRACT_ELEMENT.
387  Parts[0] = DAG.getNode(ISD::BITCAST, DL,
388                         EVT::getIntegerVT(*DAG.getContext(),
389                                           ValueVT.getSizeInBits()),
390                         Val);
391
392  for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
393    for (unsigned i = 0; i < NumParts; i += StepSize) {
394      unsigned ThisBits = StepSize * PartBits / 2;
395      EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
396      SDValue &Part0 = Parts[i];
397      SDValue &Part1 = Parts[i+StepSize/2];
398
399      Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
400                          ThisVT, Part0, DAG.getIntPtrConstant(1));
401      Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
402                          ThisVT, Part0, DAG.getIntPtrConstant(0));
403
404      if (ThisBits == PartBits && ThisVT != PartVT) {
405        Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
406        Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
407      }
408    }
409  }
410
411  if (TLI.isBigEndian())
412    std::reverse(Parts, Parts + OrigNumParts);
413}
414
415
416/// getCopyToPartsVector - Create a series of nodes that contain the specified
417/// value split into legal parts.
418static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL,
419                                 SDValue Val, SDValue *Parts, unsigned NumParts,
420                                 EVT PartVT) {
421  EVT ValueVT = Val.getValueType();
422  assert(ValueVT.isVector() && "Not a vector");
423  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
424
425  if (NumParts == 1) {
426    if (PartVT == ValueVT) {
427      // Nothing to do.
428    } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
429      // Bitconvert vector->vector case.
430      Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
431    } else if (PartVT.isVector() &&
432               PartVT.getVectorElementType() == ValueVT.getVectorElementType()&&
433               PartVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
434      EVT ElementVT = PartVT.getVectorElementType();
435      // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
436      // undef elements.
437      SmallVector<SDValue, 16> Ops;
438      for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
439        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
440                                  ElementVT, Val, DAG.getIntPtrConstant(i)));
441
442      for (unsigned i = ValueVT.getVectorNumElements(),
443           e = PartVT.getVectorNumElements(); i != e; ++i)
444        Ops.push_back(DAG.getUNDEF(ElementVT));
445
446      Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size());
447
448      // FIXME: Use CONCAT for 2x -> 4x.
449
450      //SDValue UndefElts = DAG.getUNDEF(VectorTy);
451      //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
452    } else {
453      // Vector -> scalar conversion.
454      assert(ValueVT.getVectorElementType() == PartVT &&
455             ValueVT.getVectorNumElements() == 1 &&
456             "Only trivial vector-to-scalar conversions should get here!");
457      Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
458                        PartVT, Val, DAG.getIntPtrConstant(0));
459    }
460
461    Parts[0] = Val;
462    return;
463  }
464
465  // Handle a multi-element vector.
466  EVT IntermediateVT, RegisterVT;
467  unsigned NumIntermediates;
468  unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
469                                                IntermediateVT,
470                                                NumIntermediates, RegisterVT);
471  unsigned NumElements = ValueVT.getVectorNumElements();
472
473  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
474  NumParts = NumRegs; // Silence a compiler warning.
475  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
476
477  // Split the vector into intermediate operands.
478  SmallVector<SDValue, 8> Ops(NumIntermediates);
479  for (unsigned i = 0; i != NumIntermediates; ++i) {
480    if (IntermediateVT.isVector())
481      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
482                           IntermediateVT, Val,
483                   DAG.getIntPtrConstant(i * (NumElements / NumIntermediates)));
484    else
485      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
486                           IntermediateVT, Val, DAG.getIntPtrConstant(i));
487  }
488
489  // Split the intermediate operands into legal parts.
490  if (NumParts == NumIntermediates) {
491    // If the register was not expanded, promote or copy the value,
492    // as appropriate.
493    for (unsigned i = 0; i != NumParts; ++i)
494      getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT);
495  } else if (NumParts > 0) {
496    // If the intermediate type was expanded, split each the value into
497    // legal parts.
498    assert(NumParts % NumIntermediates == 0 &&
499           "Must expand into a divisible number of parts!");
500    unsigned Factor = NumParts / NumIntermediates;
501    for (unsigned i = 0; i != NumIntermediates; ++i)
502      getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT);
503  }
504}
505
506
507
508
509namespace {
510  /// RegsForValue - This struct represents the registers (physical or virtual)
511  /// that a particular set of values is assigned, and the type information
512  /// about the value. The most common situation is to represent one value at a
513  /// time, but struct or array values are handled element-wise as multiple
514  /// values.  The splitting of aggregates is performed recursively, so that we
515  /// never have aggregate-typed registers. The values at this point do not
516  /// necessarily have legal types, so each value may require one or more
517  /// registers of some legal type.
518  ///
519  struct RegsForValue {
520    /// ValueVTs - The value types of the values, which may not be legal, and
521    /// may need be promoted or synthesized from one or more registers.
522    ///
523    SmallVector<EVT, 4> ValueVTs;
524
525    /// RegVTs - The value types of the registers. This is the same size as
526    /// ValueVTs and it records, for each value, what the type of the assigned
527    /// register or registers are. (Individual values are never synthesized
528    /// from more than one type of register.)
529    ///
530    /// With virtual registers, the contents of RegVTs is redundant with TLI's
531    /// getRegisterType member function, however when with physical registers
532    /// it is necessary to have a separate record of the types.
533    ///
534    SmallVector<EVT, 4> RegVTs;
535
536    /// Regs - This list holds the registers assigned to the values.
537    /// Each legal or promoted value requires one register, and each
538    /// expanded value requires multiple registers.
539    ///
540    SmallVector<unsigned, 4> Regs;
541
542    RegsForValue() {}
543
544    RegsForValue(const SmallVector<unsigned, 4> &regs,
545                 EVT regvt, EVT valuevt)
546      : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
547
548    RegsForValue(LLVMContext &Context, const TargetLowering &tli,
549                 unsigned Reg, const Type *Ty) {
550      ComputeValueVTs(tli, Ty, ValueVTs);
551
552      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
553        EVT ValueVT = ValueVTs[Value];
554        unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
555        EVT RegisterVT = tli.getRegisterType(Context, ValueVT);
556        for (unsigned i = 0; i != NumRegs; ++i)
557          Regs.push_back(Reg + i);
558        RegVTs.push_back(RegisterVT);
559        Reg += NumRegs;
560      }
561    }
562
563    /// areValueTypesLegal - Return true if types of all the values are legal.
564    bool areValueTypesLegal(const TargetLowering &TLI) {
565      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
566        EVT RegisterVT = RegVTs[Value];
567        if (!TLI.isTypeLegal(RegisterVT))
568          return false;
569      }
570      return true;
571    }
572
573    /// append - Add the specified values to this one.
574    void append(const RegsForValue &RHS) {
575      ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
576      RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
577      Regs.append(RHS.Regs.begin(), RHS.Regs.end());
578    }
579
580    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
581    /// this value and returns the result as a ValueVTs value.  This uses
582    /// Chain/Flag as the input and updates them for the output Chain/Flag.
583    /// If the Flag pointer is NULL, no flag is used.
584    SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
585                            DebugLoc dl,
586                            SDValue &Chain, SDValue *Flag) const;
587
588    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
589    /// specified value into the registers specified by this object.  This uses
590    /// Chain/Flag as the input and updates them for the output Chain/Flag.
591    /// If the Flag pointer is NULL, no flag is used.
592    void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
593                       SDValue &Chain, SDValue *Flag) const;
594
595    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
596    /// operand list.  This adds the code marker, matching input operand index
597    /// (if applicable), and includes the number of values added into it.
598    void AddInlineAsmOperands(unsigned Kind,
599                              bool HasMatching, unsigned MatchingIdx,
600                              SelectionDAG &DAG,
601                              std::vector<SDValue> &Ops) const;
602  };
603}
604
605/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
606/// this value and returns the result as a ValueVT value.  This uses
607/// Chain/Flag as the input and updates them for the output Chain/Flag.
608/// If the Flag pointer is NULL, no flag is used.
609SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
610                                      FunctionLoweringInfo &FuncInfo,
611                                      DebugLoc dl,
612                                      SDValue &Chain, SDValue *Flag) const {
613  // A Value with type {} or [0 x %t] needs no registers.
614  if (ValueVTs.empty())
615    return SDValue();
616
617  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
618
619  // Assemble the legal parts into the final values.
620  SmallVector<SDValue, 4> Values(ValueVTs.size());
621  SmallVector<SDValue, 8> Parts;
622  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
623    // Copy the legal parts from the registers.
624    EVT ValueVT = ValueVTs[Value];
625    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
626    EVT RegisterVT = RegVTs[Value];
627
628    Parts.resize(NumRegs);
629    for (unsigned i = 0; i != NumRegs; ++i) {
630      SDValue P;
631      if (Flag == 0) {
632        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
633      } else {
634        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
635        *Flag = P.getValue(2);
636      }
637
638      Chain = P.getValue(1);
639      Parts[i] = P;
640
641      // If the source register was virtual and if we know something about it,
642      // add an assert node.
643      if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
644          !RegisterVT.isInteger() || RegisterVT.isVector() ||
645          !FuncInfo.LiveOutRegInfo.inBounds(Regs[Part+i]))
646        continue;
647
648      const FunctionLoweringInfo::LiveOutInfo &LOI =
649        FuncInfo.LiveOutRegInfo[Regs[Part+i]];
650
651      unsigned RegSize = RegisterVT.getSizeInBits();
652      unsigned NumSignBits = LOI.NumSignBits;
653      unsigned NumZeroBits = LOI.KnownZero.countLeadingOnes();
654
655      // FIXME: We capture more information than the dag can represent.  For
656      // now, just use the tightest assertzext/assertsext possible.
657      bool isSExt = true;
658      EVT FromVT(MVT::Other);
659      if (NumSignBits == RegSize)
660        isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
661      else if (NumZeroBits >= RegSize-1)
662        isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
663      else if (NumSignBits > RegSize-8)
664        isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
665      else if (NumZeroBits >= RegSize-8)
666        isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
667      else if (NumSignBits > RegSize-16)
668        isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
669      else if (NumZeroBits >= RegSize-16)
670        isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
671      else if (NumSignBits > RegSize-32)
672        isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
673      else if (NumZeroBits >= RegSize-32)
674        isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
675      else
676        continue;
677
678      // Add an assertion node.
679      assert(FromVT != MVT::Other);
680      Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
681                             RegisterVT, P, DAG.getValueType(FromVT));
682    }
683
684    Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
685                                     NumRegs, RegisterVT, ValueVT);
686    Part += NumRegs;
687    Parts.clear();
688  }
689
690  return DAG.getNode(ISD::MERGE_VALUES, dl,
691                     DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
692                     &Values[0], ValueVTs.size());
693}
694
695/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
696/// specified value into the registers specified by this object.  This uses
697/// Chain/Flag as the input and updates them for the output Chain/Flag.
698/// If the Flag pointer is NULL, no flag is used.
699void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
700                                 SDValue &Chain, SDValue *Flag) const {
701  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
702
703  // Get the list of the values's legal parts.
704  unsigned NumRegs = Regs.size();
705  SmallVector<SDValue, 8> Parts(NumRegs);
706  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
707    EVT ValueVT = ValueVTs[Value];
708    unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
709    EVT RegisterVT = RegVTs[Value];
710
711    getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
712                   &Parts[Part], NumParts, RegisterVT);
713    Part += NumParts;
714  }
715
716  // Copy the parts into the registers.
717  SmallVector<SDValue, 8> Chains(NumRegs);
718  for (unsigned i = 0; i != NumRegs; ++i) {
719    SDValue Part;
720    if (Flag == 0) {
721      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
722    } else {
723      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
724      *Flag = Part.getValue(1);
725    }
726
727    Chains[i] = Part.getValue(0);
728  }
729
730  if (NumRegs == 1 || Flag)
731    // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
732    // flagged to it. That is the CopyToReg nodes and the user are considered
733    // a single scheduling unit. If we create a TokenFactor and return it as
734    // chain, then the TokenFactor is both a predecessor (operand) of the
735    // user as well as a successor (the TF operands are flagged to the user).
736    // c1, f1 = CopyToReg
737    // c2, f2 = CopyToReg
738    // c3     = TokenFactor c1, c2
739    // ...
740    //        = op c3, ..., f2
741    Chain = Chains[NumRegs-1];
742  else
743    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
744}
745
746/// AddInlineAsmOperands - Add this value to the specified inlineasm node
747/// operand list.  This adds the code marker and includes the number of
748/// values added into it.
749void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
750                                        unsigned MatchingIdx,
751                                        SelectionDAG &DAG,
752                                        std::vector<SDValue> &Ops) const {
753  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
754
755  unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
756  if (HasMatching)
757    Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
758  SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
759  Ops.push_back(Res);
760
761  for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
762    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
763    EVT RegisterVT = RegVTs[Value];
764    for (unsigned i = 0; i != NumRegs; ++i) {
765      assert(Reg < Regs.size() && "Mismatch in # registers expected");
766      Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
767    }
768  }
769}
770
771void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) {
772  AA = &aa;
773  GFI = gfi;
774  TD = DAG.getTarget().getTargetData();
775}
776
777/// clear - Clear out the current SelectionDAG and the associated
778/// state and prepare this SelectionDAGBuilder object to be used
779/// for a new block. This doesn't clear out information about
780/// additional blocks that are needed to complete switch lowering
781/// or PHI node updating; that information is cleared out as it is
782/// consumed.
783void SelectionDAGBuilder::clear() {
784  NodeMap.clear();
785  UnusedArgNodeMap.clear();
786  PendingLoads.clear();
787  PendingExports.clear();
788  DanglingDebugInfoMap.clear();
789  CurDebugLoc = DebugLoc();
790  HasTailCall = false;
791}
792
793/// getRoot - Return the current virtual root of the Selection DAG,
794/// flushing any PendingLoad items. This must be done before emitting
795/// a store or any other node that may need to be ordered after any
796/// prior load instructions.
797///
798SDValue SelectionDAGBuilder::getRoot() {
799  if (PendingLoads.empty())
800    return DAG.getRoot();
801
802  if (PendingLoads.size() == 1) {
803    SDValue Root = PendingLoads[0];
804    DAG.setRoot(Root);
805    PendingLoads.clear();
806    return Root;
807  }
808
809  // Otherwise, we have to make a token factor node.
810  SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
811                               &PendingLoads[0], PendingLoads.size());
812  PendingLoads.clear();
813  DAG.setRoot(Root);
814  return Root;
815}
816
817/// getControlRoot - Similar to getRoot, but instead of flushing all the
818/// PendingLoad items, flush all the PendingExports items. It is necessary
819/// to do this before emitting a terminator instruction.
820///
821SDValue SelectionDAGBuilder::getControlRoot() {
822  SDValue Root = DAG.getRoot();
823
824  if (PendingExports.empty())
825    return Root;
826
827  // Turn all of the CopyToReg chains into one factored node.
828  if (Root.getOpcode() != ISD::EntryToken) {
829    unsigned i = 0, e = PendingExports.size();
830    for (; i != e; ++i) {
831      assert(PendingExports[i].getNode()->getNumOperands() > 1);
832      if (PendingExports[i].getNode()->getOperand(0) == Root)
833        break;  // Don't add the root if we already indirectly depend on it.
834    }
835
836    if (i == e)
837      PendingExports.push_back(Root);
838  }
839
840  Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
841                     &PendingExports[0],
842                     PendingExports.size());
843  PendingExports.clear();
844  DAG.setRoot(Root);
845  return Root;
846}
847
848void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) {
849  if (DAG.GetOrdering(Node) != 0) return; // Already has ordering.
850  DAG.AssignOrdering(Node, SDNodeOrder);
851
852  for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I)
853    AssignOrderingToNode(Node->getOperand(I).getNode());
854}
855
856void SelectionDAGBuilder::visit(const Instruction &I) {
857  // Set up outgoing PHI node register values before emitting the terminator.
858  if (isa<TerminatorInst>(&I))
859    HandlePHINodesInSuccessorBlocks(I.getParent());
860
861  CurDebugLoc = I.getDebugLoc();
862
863  visit(I.getOpcode(), I);
864
865  if (!isa<TerminatorInst>(&I) && !HasTailCall)
866    CopyToExportRegsIfNeeded(&I);
867
868  CurDebugLoc = DebugLoc();
869}
870
871void SelectionDAGBuilder::visitPHI(const PHINode &) {
872  llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
873}
874
875void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
876  // Note: this doesn't use InstVisitor, because it has to work with
877  // ConstantExpr's in addition to instructions.
878  switch (Opcode) {
879  default: llvm_unreachable("Unknown instruction type encountered!");
880    // Build the switch statement using the Instruction.def file.
881#define HANDLE_INST(NUM, OPCODE, CLASS) \
882    case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break;
883#include "llvm/Instruction.def"
884  }
885
886  // Assign the ordering to the freshly created DAG nodes.
887  if (NodeMap.count(&I)) {
888    ++SDNodeOrder;
889    AssignOrderingToNode(getValue(&I).getNode());
890  }
891}
892
893// resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
894// generate the debug data structures now that we've seen its definition.
895void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
896                                                   SDValue Val) {
897  DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
898  if (DDI.getDI()) {
899    const DbgValueInst *DI = DDI.getDI();
900    DebugLoc dl = DDI.getdl();
901    unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
902    MDNode *Variable = DI->getVariable();
903    uint64_t Offset = DI->getOffset();
904    SDDbgValue *SDV;
905    if (Val.getNode()) {
906      if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) {
907        SDV = DAG.getDbgValue(Variable, Val.getNode(),
908                              Val.getResNo(), Offset, dl, DbgSDNodeOrder);
909        DAG.AddDbgValue(SDV, Val.getNode(), false);
910      }
911    } else
912      DEBUG(dbgs() << "Dropping debug info for " << DI);
913    DanglingDebugInfoMap[V] = DanglingDebugInfo();
914  }
915}
916
917// getValue - Return an SDValue for the given Value.
918SDValue SelectionDAGBuilder::getValue(const Value *V) {
919  // If we already have an SDValue for this value, use it. It's important
920  // to do this first, so that we don't create a CopyFromReg if we already
921  // have a regular SDValue.
922  SDValue &N = NodeMap[V];
923  if (N.getNode()) return N;
924
925  // If there's a virtual register allocated and initialized for this
926  // value, use it.
927  DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
928  if (It != FuncInfo.ValueMap.end()) {
929    unsigned InReg = It->second;
930    RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
931    SDValue Chain = DAG.getEntryNode();
932    return N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain,NULL);
933  }
934
935  // Otherwise create a new SDValue and remember it.
936  SDValue Val = getValueImpl(V);
937  NodeMap[V] = Val;
938  resolveDanglingDebugInfo(V, Val);
939  return Val;
940}
941
942/// getNonRegisterValue - Return an SDValue for the given Value, but
943/// don't look in FuncInfo.ValueMap for a virtual register.
944SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
945  // If we already have an SDValue for this value, use it.
946  SDValue &N = NodeMap[V];
947  if (N.getNode()) return N;
948
949  // Otherwise create a new SDValue and remember it.
950  SDValue Val = getValueImpl(V);
951  NodeMap[V] = Val;
952  resolveDanglingDebugInfo(V, Val);
953  return Val;
954}
955
956/// getValueImpl - Helper function for getValue and getNonRegisterValue.
957/// Create an SDValue for the given value.
958SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
959  if (const Constant *C = dyn_cast<Constant>(V)) {
960    EVT VT = TLI.getValueType(V->getType(), true);
961
962    if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
963      return DAG.getConstant(*CI, VT);
964
965    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
966      return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT);
967
968    if (isa<ConstantPointerNull>(C))
969      return DAG.getConstant(0, TLI.getPointerTy());
970
971    if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
972      return DAG.getConstantFP(*CFP, VT);
973
974    if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
975      return DAG.getUNDEF(VT);
976
977    if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
978      visit(CE->getOpcode(), *CE);
979      SDValue N1 = NodeMap[V];
980      assert(N1.getNode() && "visit didn't populate the NodeMap!");
981      return N1;
982    }
983
984    if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
985      SmallVector<SDValue, 4> Constants;
986      for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
987           OI != OE; ++OI) {
988        SDNode *Val = getValue(*OI).getNode();
989        // If the operand is an empty aggregate, there are no values.
990        if (!Val) continue;
991        // Add each leaf value from the operand to the Constants list
992        // to form a flattened list of all the values.
993        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
994          Constants.push_back(SDValue(Val, i));
995      }
996
997      return DAG.getMergeValues(&Constants[0], Constants.size(),
998                                getCurDebugLoc());
999    }
1000
1001    if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1002      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1003             "Unknown struct or array constant!");
1004
1005      SmallVector<EVT, 4> ValueVTs;
1006      ComputeValueVTs(TLI, C->getType(), ValueVTs);
1007      unsigned NumElts = ValueVTs.size();
1008      if (NumElts == 0)
1009        return SDValue(); // empty struct
1010      SmallVector<SDValue, 4> Constants(NumElts);
1011      for (unsigned i = 0; i != NumElts; ++i) {
1012        EVT EltVT = ValueVTs[i];
1013        if (isa<UndefValue>(C))
1014          Constants[i] = DAG.getUNDEF(EltVT);
1015        else if (EltVT.isFloatingPoint())
1016          Constants[i] = DAG.getConstantFP(0, EltVT);
1017        else
1018          Constants[i] = DAG.getConstant(0, EltVT);
1019      }
1020
1021      return DAG.getMergeValues(&Constants[0], NumElts,
1022                                getCurDebugLoc());
1023    }
1024
1025    if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1026      return DAG.getBlockAddress(BA, VT);
1027
1028    const VectorType *VecTy = cast<VectorType>(V->getType());
1029    unsigned NumElements = VecTy->getNumElements();
1030
1031    // Now that we know the number and type of the elements, get that number of
1032    // elements into the Ops array based on what kind of constant it is.
1033    SmallVector<SDValue, 16> Ops;
1034    if (const ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
1035      for (unsigned i = 0; i != NumElements; ++i)
1036        Ops.push_back(getValue(CP->getOperand(i)));
1037    } else {
1038      assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1039      EVT EltVT = TLI.getValueType(VecTy->getElementType());
1040
1041      SDValue Op;
1042      if (EltVT.isFloatingPoint())
1043        Op = DAG.getConstantFP(0, EltVT);
1044      else
1045        Op = DAG.getConstant(0, EltVT);
1046      Ops.assign(NumElements, Op);
1047    }
1048
1049    // Create a BUILD_VECTOR node.
1050    return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
1051                                    VT, &Ops[0], Ops.size());
1052  }
1053
1054  // If this is a static alloca, generate it as the frameindex instead of
1055  // computation.
1056  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1057    DenseMap<const AllocaInst*, int>::iterator SI =
1058      FuncInfo.StaticAllocaMap.find(AI);
1059    if (SI != FuncInfo.StaticAllocaMap.end())
1060      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
1061  }
1062
1063  // If this is an instruction which fast-isel has deferred, select it now.
1064  if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1065    unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1066    RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType());
1067    SDValue Chain = DAG.getEntryNode();
1068    return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL);
1069  }
1070
1071  llvm_unreachable("Can't get register for value!");
1072  return SDValue();
1073}
1074
1075void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1076  SDValue Chain = getControlRoot();
1077  SmallVector<ISD::OutputArg, 8> Outs;
1078  SmallVector<SDValue, 8> OutVals;
1079
1080  if (!FuncInfo.CanLowerReturn) {
1081    unsigned DemoteReg = FuncInfo.DemoteRegister;
1082    const Function *F = I.getParent()->getParent();
1083
1084    // Emit a store of the return value through the virtual register.
1085    // Leave Outs empty so that LowerReturn won't try to load return
1086    // registers the usual way.
1087    SmallVector<EVT, 1> PtrValueVTs;
1088    ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
1089                    PtrValueVTs);
1090
1091    SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
1092    SDValue RetOp = getValue(I.getOperand(0));
1093
1094    SmallVector<EVT, 4> ValueVTs;
1095    SmallVector<uint64_t, 4> Offsets;
1096    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1097    unsigned NumValues = ValueVTs.size();
1098
1099    SmallVector<SDValue, 4> Chains(NumValues);
1100    for (unsigned i = 0; i != NumValues; ++i) {
1101      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(),
1102                                RetPtr.getValueType(), RetPtr,
1103                                DAG.getIntPtrConstant(Offsets[i]));
1104      Chains[i] =
1105        DAG.getStore(Chain, getCurDebugLoc(),
1106                     SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1107                     // FIXME: better loc info would be nice.
1108                     Add, MachinePointerInfo(), false, false, 0);
1109    }
1110
1111    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
1112                        MVT::Other, &Chains[0], NumValues);
1113  } else if (I.getNumOperands() != 0) {
1114    SmallVector<EVT, 4> ValueVTs;
1115    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
1116    unsigned NumValues = ValueVTs.size();
1117    if (NumValues) {
1118      SDValue RetOp = getValue(I.getOperand(0));
1119      for (unsigned j = 0, f = NumValues; j != f; ++j) {
1120        EVT VT = ValueVTs[j];
1121
1122        ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1123
1124        const Function *F = I.getParent()->getParent();
1125        if (F->paramHasAttr(0, Attribute::SExt))
1126          ExtendKind = ISD::SIGN_EXTEND;
1127        else if (F->paramHasAttr(0, Attribute::ZExt))
1128          ExtendKind = ISD::ZERO_EXTEND;
1129
1130        // FIXME: C calling convention requires the return type to be promoted
1131        // to at least 32-bit. But this is not necessary for non-C calling
1132        // conventions. The frontend should mark functions whose return values
1133        // require promoting with signext or zeroext attributes.
1134        if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
1135          EVT MinVT = TLI.getRegisterType(*DAG.getContext(), MVT::i32);
1136          if (VT.bitsLT(MinVT))
1137            VT = MinVT;
1138        }
1139
1140        unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
1141        EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
1142        SmallVector<SDValue, 4> Parts(NumParts);
1143        getCopyToParts(DAG, getCurDebugLoc(),
1144                       SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1145                       &Parts[0], NumParts, PartVT, ExtendKind);
1146
1147        // 'inreg' on function refers to return value
1148        ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1149        if (F->paramHasAttr(0, Attribute::InReg))
1150          Flags.setInReg();
1151
1152        // Propagate extension type if any
1153        if (F->paramHasAttr(0, Attribute::SExt))
1154          Flags.setSExt();
1155        else if (F->paramHasAttr(0, Attribute::ZExt))
1156          Flags.setZExt();
1157
1158        for (unsigned i = 0; i < NumParts; ++i) {
1159          Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1160                                        /*isfixed=*/true));
1161          OutVals.push_back(Parts[i]);
1162        }
1163      }
1164    }
1165  }
1166
1167  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1168  CallingConv::ID CallConv =
1169    DAG.getMachineFunction().getFunction()->getCallingConv();
1170  Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
1171                          Outs, OutVals, getCurDebugLoc(), DAG);
1172
1173  // Verify that the target's LowerReturn behaved as expected.
1174  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1175         "LowerReturn didn't return a valid chain!");
1176
1177  // Update the DAG with the new chain value resulting from return lowering.
1178  DAG.setRoot(Chain);
1179}
1180
1181/// CopyToExportRegsIfNeeded - If the given value has virtual registers
1182/// created for it, emit nodes to copy the value into the virtual
1183/// registers.
1184void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1185  DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1186  if (VMI != FuncInfo.ValueMap.end()) {
1187    assert(!V->use_empty() && "Unused value assigned virtual registers!");
1188    CopyValueToVirtualRegister(V, VMI->second);
1189  }
1190}
1191
1192/// ExportFromCurrentBlock - If this condition isn't known to be exported from
1193/// the current basic block, add it to ValueMap now so that we'll get a
1194/// CopyTo/FromReg.
1195void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1196  // No need to export constants.
1197  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1198
1199  // Already exported?
1200  if (FuncInfo.isExportedInst(V)) return;
1201
1202  unsigned Reg = FuncInfo.InitializeRegForValue(V);
1203  CopyValueToVirtualRegister(V, Reg);
1204}
1205
1206bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1207                                                     const BasicBlock *FromBB) {
1208  // The operands of the setcc have to be in this block.  We don't know
1209  // how to export them from some other block.
1210  if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1211    // Can export from current BB.
1212    if (VI->getParent() == FromBB)
1213      return true;
1214
1215    // Is already exported, noop.
1216    return FuncInfo.isExportedInst(V);
1217  }
1218
1219  // If this is an argument, we can export it if the BB is the entry block or
1220  // if it is already exported.
1221  if (isa<Argument>(V)) {
1222    if (FromBB == &FromBB->getParent()->getEntryBlock())
1223      return true;
1224
1225    // Otherwise, can only export this if it is already exported.
1226    return FuncInfo.isExportedInst(V);
1227  }
1228
1229  // Otherwise, constants can always be exported.
1230  return true;
1231}
1232
1233static bool InBlock(const Value *V, const BasicBlock *BB) {
1234  if (const Instruction *I = dyn_cast<Instruction>(V))
1235    return I->getParent() == BB;
1236  return true;
1237}
1238
1239/// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1240/// This function emits a branch and is used at the leaves of an OR or an
1241/// AND operator tree.
1242///
1243void
1244SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1245                                                  MachineBasicBlock *TBB,
1246                                                  MachineBasicBlock *FBB,
1247                                                  MachineBasicBlock *CurBB,
1248                                                  MachineBasicBlock *SwitchBB) {
1249  const BasicBlock *BB = CurBB->getBasicBlock();
1250
1251  // If the leaf of the tree is a comparison, merge the condition into
1252  // the caseblock.
1253  if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1254    // The operands of the cmp have to be in this block.  We don't know
1255    // how to export them from some other block.  If this is the first block
1256    // of the sequence, no exporting is needed.
1257    if (CurBB == SwitchBB ||
1258        (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1259         isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1260      ISD::CondCode Condition;
1261      if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1262        Condition = getICmpCondCode(IC->getPredicate());
1263      } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1264        Condition = getFCmpCondCode(FC->getPredicate());
1265      } else {
1266        Condition = ISD::SETEQ; // silence warning.
1267        llvm_unreachable("Unknown compare instruction");
1268      }
1269
1270      CaseBlock CB(Condition, BOp->getOperand(0),
1271                   BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1272      SwitchCases.push_back(CB);
1273      return;
1274    }
1275  }
1276
1277  // Create a CaseBlock record representing this branch.
1278  CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1279               NULL, TBB, FBB, CurBB);
1280  SwitchCases.push_back(CB);
1281}
1282
1283/// FindMergedConditions - If Cond is an expression like
1284void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1285                                               MachineBasicBlock *TBB,
1286                                               MachineBasicBlock *FBB,
1287                                               MachineBasicBlock *CurBB,
1288                                               MachineBasicBlock *SwitchBB,
1289                                               unsigned Opc) {
1290  // If this node is not part of the or/and tree, emit it as a branch.
1291  const Instruction *BOp = dyn_cast<Instruction>(Cond);
1292  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1293      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1294      BOp->getParent() != CurBB->getBasicBlock() ||
1295      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1296      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1297    EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB);
1298    return;
1299  }
1300
1301  //  Create TmpBB after CurBB.
1302  MachineFunction::iterator BBI = CurBB;
1303  MachineFunction &MF = DAG.getMachineFunction();
1304  MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1305  CurBB->getParent()->insert(++BBI, TmpBB);
1306
1307  if (Opc == Instruction::Or) {
1308    // Codegen X | Y as:
1309    //   jmp_if_X TBB
1310    //   jmp TmpBB
1311    // TmpBB:
1312    //   jmp_if_Y TBB
1313    //   jmp FBB
1314    //
1315
1316    // Emit the LHS condition.
1317    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc);
1318
1319    // Emit the RHS condition into TmpBB.
1320    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1321  } else {
1322    assert(Opc == Instruction::And && "Unknown merge op!");
1323    // Codegen X & Y as:
1324    //   jmp_if_X TmpBB
1325    //   jmp FBB
1326    // TmpBB:
1327    //   jmp_if_Y TBB
1328    //   jmp FBB
1329    //
1330    //  This requires creation of TmpBB after CurBB.
1331
1332    // Emit the LHS condition.
1333    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc);
1334
1335    // Emit the RHS condition into TmpBB.
1336    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1337  }
1338}
1339
1340/// If the set of cases should be emitted as a series of branches, return true.
1341/// If we should emit this as a bunch of and/or'd together conditions, return
1342/// false.
1343bool
1344SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
1345  if (Cases.size() != 2) return true;
1346
1347  // If this is two comparisons of the same values or'd or and'd together, they
1348  // will get folded into a single comparison, so don't emit two blocks.
1349  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1350       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1351      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1352       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1353    return false;
1354  }
1355
1356  // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1357  // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1358  if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1359      Cases[0].CC == Cases[1].CC &&
1360      isa<Constant>(Cases[0].CmpRHS) &&
1361      cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1362    if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1363      return false;
1364    if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1365      return false;
1366  }
1367
1368  return true;
1369}
1370
1371void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1372  MachineBasicBlock *BrMBB = FuncInfo.MBB;
1373
1374  // Update machine-CFG edges.
1375  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1376
1377  // Figure out which block is immediately after the current one.
1378  MachineBasicBlock *NextBlock = 0;
1379  MachineFunction::iterator BBI = BrMBB;
1380  if (++BBI != FuncInfo.MF->end())
1381    NextBlock = BBI;
1382
1383  if (I.isUnconditional()) {
1384    // Update machine-CFG edges.
1385    BrMBB->addSuccessor(Succ0MBB);
1386
1387    // If this is not a fall-through branch, emit the branch.
1388    if (Succ0MBB != NextBlock)
1389      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1390                              MVT::Other, getControlRoot(),
1391                              DAG.getBasicBlock(Succ0MBB)));
1392
1393    return;
1394  }
1395
1396  // If this condition is one of the special cases we handle, do special stuff
1397  // now.
1398  const Value *CondVal = I.getCondition();
1399  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1400
1401  // If this is a series of conditions that are or'd or and'd together, emit
1402  // this as a sequence of branches instead of setcc's with and/or operations.
1403  // As long as jumps are not expensive, this should improve performance.
1404  // For example, instead of something like:
1405  //     cmp A, B
1406  //     C = seteq
1407  //     cmp D, E
1408  //     F = setle
1409  //     or C, F
1410  //     jnz foo
1411  // Emit:
1412  //     cmp A, B
1413  //     je foo
1414  //     cmp D, E
1415  //     jle foo
1416  //
1417  if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1418    if (!TLI.isJumpExpensive() &&
1419        BOp->hasOneUse() &&
1420        (BOp->getOpcode() == Instruction::And ||
1421         BOp->getOpcode() == Instruction::Or)) {
1422      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1423                           BOp->getOpcode());
1424      // If the compares in later blocks need to use values not currently
1425      // exported from this block, export them now.  This block should always
1426      // be the first entry.
1427      assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1428
1429      // Allow some cases to be rejected.
1430      if (ShouldEmitAsBranches(SwitchCases)) {
1431        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1432          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1433          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1434        }
1435
1436        // Emit the branch for this block.
1437        visitSwitchCase(SwitchCases[0], BrMBB);
1438        SwitchCases.erase(SwitchCases.begin());
1439        return;
1440      }
1441
1442      // Okay, we decided not to do this, remove any inserted MBB's and clear
1443      // SwitchCases.
1444      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1445        FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1446
1447      SwitchCases.clear();
1448    }
1449  }
1450
1451  // Create a CaseBlock record representing this branch.
1452  CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1453               NULL, Succ0MBB, Succ1MBB, BrMBB);
1454
1455  // Use visitSwitchCase to actually insert the fast branch sequence for this
1456  // cond branch.
1457  visitSwitchCase(CB, BrMBB);
1458}
1459
1460/// visitSwitchCase - Emits the necessary code to represent a single node in
1461/// the binary search tree resulting from lowering a switch instruction.
1462void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1463                                          MachineBasicBlock *SwitchBB) {
1464  SDValue Cond;
1465  SDValue CondLHS = getValue(CB.CmpLHS);
1466  DebugLoc dl = getCurDebugLoc();
1467
1468  // Build the setcc now.
1469  if (CB.CmpMHS == NULL) {
1470    // Fold "(X == true)" to X and "(X == false)" to !X to
1471    // handle common cases produced by branch lowering.
1472    if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1473        CB.CC == ISD::SETEQ)
1474      Cond = CondLHS;
1475    else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1476             CB.CC == ISD::SETEQ) {
1477      SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1478      Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1479    } else
1480      Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1481  } else {
1482    assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1483
1484    const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1485    const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
1486
1487    SDValue CmpOp = getValue(CB.CmpMHS);
1488    EVT VT = CmpOp.getValueType();
1489
1490    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1491      Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1492                          ISD::SETLE);
1493    } else {
1494      SDValue SUB = DAG.getNode(ISD::SUB, dl,
1495                                VT, CmpOp, DAG.getConstant(Low, VT));
1496      Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1497                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1498    }
1499  }
1500
1501  // Update successor info
1502  SwitchBB->addSuccessor(CB.TrueBB);
1503  SwitchBB->addSuccessor(CB.FalseBB);
1504
1505  // Set NextBlock to be the MBB immediately after the current one, if any.
1506  // This is used to avoid emitting unnecessary branches to the next block.
1507  MachineBasicBlock *NextBlock = 0;
1508  MachineFunction::iterator BBI = SwitchBB;
1509  if (++BBI != FuncInfo.MF->end())
1510    NextBlock = BBI;
1511
1512  // If the lhs block is the next block, invert the condition so that we can
1513  // fall through to the lhs instead of the rhs block.
1514  if (CB.TrueBB == NextBlock) {
1515    std::swap(CB.TrueBB, CB.FalseBB);
1516    SDValue True = DAG.getConstant(1, Cond.getValueType());
1517    Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1518  }
1519
1520  SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1521                               MVT::Other, getControlRoot(), Cond,
1522                               DAG.getBasicBlock(CB.TrueBB));
1523
1524  // Insert the false branch. Do this even if it's a fall through branch,
1525  // this makes it easier to do DAG optimizations which require inverting
1526  // the branch condition.
1527  BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1528                       DAG.getBasicBlock(CB.FalseBB));
1529
1530  DAG.setRoot(BrCond);
1531}
1532
1533/// visitJumpTable - Emit JumpTable node in the current MBB
1534void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1535  // Emit the code for the jump table
1536  assert(JT.Reg != -1U && "Should lower JT Header first!");
1537  EVT PTy = TLI.getPointerTy();
1538  SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1539                                     JT.Reg, PTy);
1540  SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1541  SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(),
1542                                    MVT::Other, Index.getValue(1),
1543                                    Table, Index);
1544  DAG.setRoot(BrJumpTable);
1545}
1546
1547/// visitJumpTableHeader - This function emits necessary code to produce index
1548/// in the JumpTable from switch case.
1549void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1550                                               JumpTableHeader &JTH,
1551                                               MachineBasicBlock *SwitchBB) {
1552  // Subtract the lowest switch case value from the value being switched on and
1553  // conditional branch to default mbb if the result is greater than the
1554  // difference between smallest and largest cases.
1555  SDValue SwitchOp = getValue(JTH.SValue);
1556  EVT VT = SwitchOp.getValueType();
1557  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1558                            DAG.getConstant(JTH.First, VT));
1559
1560  // The SDNode we just created, which holds the value being switched on minus
1561  // the smallest case value, needs to be copied to a virtual register so it
1562  // can be used as an index into the jump table in a subsequent basic block.
1563  // This value may be smaller or larger than the target's pointer type, and
1564  // therefore require extension or truncating.
1565  SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy());
1566
1567  unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy());
1568  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1569                                    JumpTableReg, SwitchOp);
1570  JT.Reg = JumpTableReg;
1571
1572  // Emit the range check for the jump table, and branch to the default block
1573  // for the switch statement if the value being switched on exceeds the largest
1574  // case in the switch.
1575  SDValue CMP = DAG.getSetCC(getCurDebugLoc(),
1576                             TLI.getSetCCResultType(Sub.getValueType()), Sub,
1577                             DAG.getConstant(JTH.Last-JTH.First,VT),
1578                             ISD::SETUGT);
1579
1580  // Set NextBlock to be the MBB immediately after the current one, if any.
1581  // This is used to avoid emitting unnecessary branches to the next block.
1582  MachineBasicBlock *NextBlock = 0;
1583  MachineFunction::iterator BBI = SwitchBB;
1584
1585  if (++BBI != FuncInfo.MF->end())
1586    NextBlock = BBI;
1587
1588  SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1589                               MVT::Other, CopyTo, CMP,
1590                               DAG.getBasicBlock(JT.Default));
1591
1592  if (JT.MBB != NextBlock)
1593    BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond,
1594                         DAG.getBasicBlock(JT.MBB));
1595
1596  DAG.setRoot(BrCond);
1597}
1598
1599/// visitBitTestHeader - This function emits necessary code to produce value
1600/// suitable for "bit tests"
1601void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1602                                             MachineBasicBlock *SwitchBB) {
1603  // Subtract the minimum value
1604  SDValue SwitchOp = getValue(B.SValue);
1605  EVT VT = SwitchOp.getValueType();
1606  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1607                            DAG.getConstant(B.First, VT));
1608
1609  // Check range
1610  SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(),
1611                                  TLI.getSetCCResultType(Sub.getValueType()),
1612                                  Sub, DAG.getConstant(B.Range, VT),
1613                                  ISD::SETUGT);
1614
1615  // Determine the type of the test operands.
1616  bool UsePtrType = false;
1617  if (!TLI.isTypeLegal(VT))
1618    UsePtrType = true;
1619  else {
1620    for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
1621      if ((uint64_t)((int64_t)B.Cases[i].Mask >> VT.getSizeInBits()) + 1 >= 2) {
1622        // Switch table case range are encoded into series of masks.
1623        // Just use pointer type, it's guaranteed to fit.
1624        UsePtrType = true;
1625        break;
1626      }
1627  }
1628  if (UsePtrType) {
1629    VT = TLI.getPointerTy();
1630    Sub = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), VT);
1631  }
1632
1633  B.RegVT = VT;
1634  B.Reg = FuncInfo.CreateReg(VT);
1635  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1636                                    B.Reg, Sub);
1637
1638  // Set NextBlock to be the MBB immediately after the current one, if any.
1639  // This is used to avoid emitting unnecessary branches to the next block.
1640  MachineBasicBlock *NextBlock = 0;
1641  MachineFunction::iterator BBI = SwitchBB;
1642  if (++BBI != FuncInfo.MF->end())
1643    NextBlock = BBI;
1644
1645  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1646
1647  SwitchBB->addSuccessor(B.Default);
1648  SwitchBB->addSuccessor(MBB);
1649
1650  SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1651                                MVT::Other, CopyTo, RangeCmp,
1652                                DAG.getBasicBlock(B.Default));
1653
1654  if (MBB != NextBlock)
1655    BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo,
1656                          DAG.getBasicBlock(MBB));
1657
1658  DAG.setRoot(BrRange);
1659}
1660
1661/// visitBitTestCase - this function produces one "bit test"
1662void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
1663                                           MachineBasicBlock* NextMBB,
1664                                           unsigned Reg,
1665                                           BitTestCase &B,
1666                                           MachineBasicBlock *SwitchBB) {
1667  EVT VT = BB.RegVT;
1668  SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1669                                       Reg, VT);
1670  SDValue Cmp;
1671  if (CountPopulation_64(B.Mask) == 1) {
1672    // Testing for a single bit; just compare the shift count with what it
1673    // would need to be to shift a 1 bit in that position.
1674    Cmp = DAG.getSetCC(getCurDebugLoc(),
1675                       TLI.getSetCCResultType(VT),
1676                       ShiftOp,
1677                       DAG.getConstant(CountTrailingZeros_64(B.Mask), VT),
1678                       ISD::SETEQ);
1679  } else {
1680    // Make desired shift
1681    SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), VT,
1682                                    DAG.getConstant(1, VT), ShiftOp);
1683
1684    // Emit bit tests and jumps
1685    SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(),
1686                                VT, SwitchVal, DAG.getConstant(B.Mask, VT));
1687    Cmp = DAG.getSetCC(getCurDebugLoc(),
1688                       TLI.getSetCCResultType(VT),
1689                       AndOp, DAG.getConstant(0, VT),
1690                       ISD::SETNE);
1691  }
1692
1693  SwitchBB->addSuccessor(B.TargetBB);
1694  SwitchBB->addSuccessor(NextMBB);
1695
1696  SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1697                              MVT::Other, getControlRoot(),
1698                              Cmp, DAG.getBasicBlock(B.TargetBB));
1699
1700  // Set NextBlock to be the MBB immediately after the current one, if any.
1701  // This is used to avoid emitting unnecessary branches to the next block.
1702  MachineBasicBlock *NextBlock = 0;
1703  MachineFunction::iterator BBI = SwitchBB;
1704  if (++BBI != FuncInfo.MF->end())
1705    NextBlock = BBI;
1706
1707  if (NextMBB != NextBlock)
1708    BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd,
1709                        DAG.getBasicBlock(NextMBB));
1710
1711  DAG.setRoot(BrAnd);
1712}
1713
1714void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1715  MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
1716
1717  // Retrieve successors.
1718  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1719  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1720
1721  const Value *Callee(I.getCalledValue());
1722  if (isa<InlineAsm>(Callee))
1723    visitInlineAsm(&I);
1724  else
1725    LowerCallTo(&I, getValue(Callee), false, LandingPad);
1726
1727  // If the value of the invoke is used outside of its defining block, make it
1728  // available as a virtual register.
1729  CopyToExportRegsIfNeeded(&I);
1730
1731  // Update successor info
1732  InvokeMBB->addSuccessor(Return);
1733  InvokeMBB->addSuccessor(LandingPad);
1734
1735  // Drop into normal successor.
1736  DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1737                          MVT::Other, getControlRoot(),
1738                          DAG.getBasicBlock(Return)));
1739}
1740
1741void SelectionDAGBuilder::visitUnwind(const UnwindInst &I) {
1742}
1743
1744/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1745/// small case ranges).
1746bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
1747                                                 CaseRecVector& WorkList,
1748                                                 const Value* SV,
1749                                                 MachineBasicBlock *Default,
1750                                                 MachineBasicBlock *SwitchBB) {
1751  Case& BackCase  = *(CR.Range.second-1);
1752
1753  // Size is the number of Cases represented by this range.
1754  size_t Size = CR.Range.second - CR.Range.first;
1755  if (Size > 3)
1756    return false;
1757
1758  // Get the MachineFunction which holds the current MBB.  This is used when
1759  // inserting any additional MBBs necessary to represent the switch.
1760  MachineFunction *CurMF = FuncInfo.MF;
1761
1762  // Figure out which block is immediately after the current one.
1763  MachineBasicBlock *NextBlock = 0;
1764  MachineFunction::iterator BBI = CR.CaseBB;
1765
1766  if (++BBI != FuncInfo.MF->end())
1767    NextBlock = BBI;
1768
1769  // If any two of the cases has the same destination, and if one value
1770  // is the same as the other, but has one bit unset that the other has set,
1771  // use bit manipulation to do two compares at once.  For example:
1772  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1773  // TODO: This could be extended to merge any 2 cases in switches with 3 cases.
1774  // TODO: Handle cases where CR.CaseBB != SwitchBB.
1775  if (Size == 2 && CR.CaseBB == SwitchBB) {
1776    Case &Small = *CR.Range.first;
1777    Case &Big = *(CR.Range.second-1);
1778
1779    if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) {
1780      const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue();
1781      const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue();
1782
1783      // Check that there is only one bit different.
1784      if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 &&
1785          (SmallValue | BigValue) == BigValue) {
1786        // Isolate the common bit.
1787        APInt CommonBit = BigValue & ~SmallValue;
1788        assert((SmallValue | CommonBit) == BigValue &&
1789               CommonBit.countPopulation() == 1 && "Not a common bit?");
1790
1791        SDValue CondLHS = getValue(SV);
1792        EVT VT = CondLHS.getValueType();
1793        DebugLoc DL = getCurDebugLoc();
1794
1795        SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
1796                                 DAG.getConstant(CommonBit, VT));
1797        SDValue Cond = DAG.getSetCC(DL, MVT::i1,
1798                                    Or, DAG.getConstant(BigValue, VT),
1799                                    ISD::SETEQ);
1800
1801        // Update successor info.
1802        SwitchBB->addSuccessor(Small.BB);
1803        SwitchBB->addSuccessor(Default);
1804
1805        // Insert the true branch.
1806        SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other,
1807                                     getControlRoot(), Cond,
1808                                     DAG.getBasicBlock(Small.BB));
1809
1810        // Insert the false branch.
1811        BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
1812                             DAG.getBasicBlock(Default));
1813
1814        DAG.setRoot(BrCond);
1815        return true;
1816      }
1817    }
1818  }
1819
1820  // Rearrange the case blocks so that the last one falls through if possible.
1821  if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1822    // The last case block won't fall through into 'NextBlock' if we emit the
1823    // branches in this order.  See if rearranging a case value would help.
1824    for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1825      if (I->BB == NextBlock) {
1826        std::swap(*I, BackCase);
1827        break;
1828      }
1829    }
1830  }
1831
1832  // Create a CaseBlock record representing a conditional branch to
1833  // the Case's target mbb if the value being switched on SV is equal
1834  // to C.
1835  MachineBasicBlock *CurBlock = CR.CaseBB;
1836  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1837    MachineBasicBlock *FallThrough;
1838    if (I != E-1) {
1839      FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
1840      CurMF->insert(BBI, FallThrough);
1841
1842      // Put SV in a virtual register to make it available from the new blocks.
1843      ExportFromCurrentBlock(SV);
1844    } else {
1845      // If the last case doesn't match, go to the default block.
1846      FallThrough = Default;
1847    }
1848
1849    const Value *RHS, *LHS, *MHS;
1850    ISD::CondCode CC;
1851    if (I->High == I->Low) {
1852      // This is just small small case range :) containing exactly 1 case
1853      CC = ISD::SETEQ;
1854      LHS = SV; RHS = I->High; MHS = NULL;
1855    } else {
1856      CC = ISD::SETLE;
1857      LHS = I->Low; MHS = SV; RHS = I->High;
1858    }
1859    CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock);
1860
1861    // If emitting the first comparison, just call visitSwitchCase to emit the
1862    // code into the current block.  Otherwise, push the CaseBlock onto the
1863    // vector to be later processed by SDISel, and insert the node's MBB
1864    // before the next MBB.
1865    if (CurBlock == SwitchBB)
1866      visitSwitchCase(CB, SwitchBB);
1867    else
1868      SwitchCases.push_back(CB);
1869
1870    CurBlock = FallThrough;
1871  }
1872
1873  return true;
1874}
1875
1876static inline bool areJTsAllowed(const TargetLowering &TLI) {
1877  return !DisableJumpTables &&
1878          (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
1879           TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
1880}
1881
1882static APInt ComputeRange(const APInt &First, const APInt &Last) {
1883  uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
1884  APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth);
1885  return (LastExt - FirstExt + 1ULL);
1886}
1887
1888/// handleJTSwitchCase - Emit jumptable for current switch case range
1889bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec& CR,
1890                                             CaseRecVector& WorkList,
1891                                             const Value* SV,
1892                                             MachineBasicBlock* Default,
1893                                             MachineBasicBlock *SwitchBB) {
1894  Case& FrontCase = *CR.Range.first;
1895  Case& BackCase  = *(CR.Range.second-1);
1896
1897  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
1898  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
1899
1900  APInt TSize(First.getBitWidth(), 0);
1901  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1902       I!=E; ++I)
1903    TSize += I->size();
1904
1905  if (!areJTsAllowed(TLI) || TSize.ult(4))
1906    return false;
1907
1908  APInt Range = ComputeRange(First, Last);
1909  double Density = TSize.roundToDouble() / Range.roundToDouble();
1910  if (Density < 0.4)
1911    return false;
1912
1913  DEBUG(dbgs() << "Lowering jump table\n"
1914               << "First entry: " << First << ". Last entry: " << Last << '\n'
1915               << "Range: " << Range
1916               << "Size: " << TSize << ". Density: " << Density << "\n\n");
1917
1918  // Get the MachineFunction which holds the current MBB.  This is used when
1919  // inserting any additional MBBs necessary to represent the switch.
1920  MachineFunction *CurMF = FuncInfo.MF;
1921
1922  // Figure out which block is immediately after the current one.
1923  MachineFunction::iterator BBI = CR.CaseBB;
1924  ++BBI;
1925
1926  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1927
1928  // Create a new basic block to hold the code for loading the address
1929  // of the jump table, and jumping to it.  Update successor information;
1930  // we will either branch to the default case for the switch, or the jump
1931  // table.
1932  MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1933  CurMF->insert(BBI, JumpTableBB);
1934  CR.CaseBB->addSuccessor(Default);
1935  CR.CaseBB->addSuccessor(JumpTableBB);
1936
1937  // Build a vector of destination BBs, corresponding to each target
1938  // of the jump table. If the value of the jump table slot corresponds to
1939  // a case statement, push the case's BB onto the vector, otherwise, push
1940  // the default BB.
1941  std::vector<MachineBasicBlock*> DestBBs;
1942  APInt TEI = First;
1943  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
1944    const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
1945    const APInt &High = cast<ConstantInt>(I->High)->getValue();
1946
1947    if (Low.sle(TEI) && TEI.sle(High)) {
1948      DestBBs.push_back(I->BB);
1949      if (TEI==High)
1950        ++I;
1951    } else {
1952      DestBBs.push_back(Default);
1953    }
1954  }
1955
1956  // Update successor info. Add one edge to each unique successor.
1957  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
1958  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
1959         E = DestBBs.end(); I != E; ++I) {
1960    if (!SuccsHandled[(*I)->getNumber()]) {
1961      SuccsHandled[(*I)->getNumber()] = true;
1962      JumpTableBB->addSuccessor(*I);
1963    }
1964  }
1965
1966  // Create a jump table index for this jump table.
1967  unsigned JTEncoding = TLI.getJumpTableEncoding();
1968  unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
1969                       ->createJumpTableIndex(DestBBs);
1970
1971  // Set the jump table information so that we can codegen it as a second
1972  // MachineBasicBlock
1973  JumpTable JT(-1U, JTI, JumpTableBB, Default);
1974  JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
1975  if (CR.CaseBB == SwitchBB)
1976    visitJumpTableHeader(JT, JTH, SwitchBB);
1977
1978  JTCases.push_back(JumpTableBlock(JTH, JT));
1979
1980  return true;
1981}
1982
1983/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
1984/// 2 subtrees.
1985bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
1986                                                  CaseRecVector& WorkList,
1987                                                  const Value* SV,
1988                                                  MachineBasicBlock *Default,
1989                                                  MachineBasicBlock *SwitchBB) {
1990  // Get the MachineFunction which holds the current MBB.  This is used when
1991  // inserting any additional MBBs necessary to represent the switch.
1992  MachineFunction *CurMF = FuncInfo.MF;
1993
1994  // Figure out which block is immediately after the current one.
1995  MachineFunction::iterator BBI = CR.CaseBB;
1996  ++BBI;
1997
1998  Case& FrontCase = *CR.Range.first;
1999  Case& BackCase  = *(CR.Range.second-1);
2000  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2001
2002  // Size is the number of Cases represented by this range.
2003  unsigned Size = CR.Range.second - CR.Range.first;
2004
2005  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2006  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2007  double FMetric = 0;
2008  CaseItr Pivot = CR.Range.first + Size/2;
2009
2010  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
2011  // (heuristically) allow us to emit JumpTable's later.
2012  APInt TSize(First.getBitWidth(), 0);
2013  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2014       I!=E; ++I)
2015    TSize += I->size();
2016
2017  APInt LSize = FrontCase.size();
2018  APInt RSize = TSize-LSize;
2019  DEBUG(dbgs() << "Selecting best pivot: \n"
2020               << "First: " << First << ", Last: " << Last <<'\n'
2021               << "LSize: " << LSize << ", RSize: " << RSize << '\n');
2022  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
2023       J!=E; ++I, ++J) {
2024    const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
2025    const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
2026    APInt Range = ComputeRange(LEnd, RBegin);
2027    assert((Range - 2ULL).isNonNegative() &&
2028           "Invalid case distance");
2029    double LDensity = (double)LSize.roundToDouble() /
2030                           (LEnd - First + 1ULL).roundToDouble();
2031    double RDensity = (double)RSize.roundToDouble() /
2032                           (Last - RBegin + 1ULL).roundToDouble();
2033    double Metric = Range.logBase2()*(LDensity+RDensity);
2034    // Should always split in some non-trivial place
2035    DEBUG(dbgs() <<"=>Step\n"
2036                 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
2037                 << "LDensity: " << LDensity
2038                 << ", RDensity: " << RDensity << '\n'
2039                 << "Metric: " << Metric << '\n');
2040    if (FMetric < Metric) {
2041      Pivot = J;
2042      FMetric = Metric;
2043      DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
2044    }
2045
2046    LSize += J->size();
2047    RSize -= J->size();
2048  }
2049  if (areJTsAllowed(TLI)) {
2050    // If our case is dense we *really* should handle it earlier!
2051    assert((FMetric > 0) && "Should handle dense range earlier!");
2052  } else {
2053    Pivot = CR.Range.first + Size/2;
2054  }
2055
2056  CaseRange LHSR(CR.Range.first, Pivot);
2057  CaseRange RHSR(Pivot, CR.Range.second);
2058  Constant *C = Pivot->Low;
2059  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
2060
2061  // We know that we branch to the LHS if the Value being switched on is
2062  // less than the Pivot value, C.  We use this to optimize our binary
2063  // tree a bit, by recognizing that if SV is greater than or equal to the
2064  // LHS's Case Value, and that Case Value is exactly one less than the
2065  // Pivot's Value, then we can branch directly to the LHS's Target,
2066  // rather than creating a leaf node for it.
2067  if ((LHSR.second - LHSR.first) == 1 &&
2068      LHSR.first->High == CR.GE &&
2069      cast<ConstantInt>(C)->getValue() ==
2070      (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
2071    TrueBB = LHSR.first->BB;
2072  } else {
2073    TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2074    CurMF->insert(BBI, TrueBB);
2075    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
2076
2077    // Put SV in a virtual register to make it available from the new blocks.
2078    ExportFromCurrentBlock(SV);
2079  }
2080
2081  // Similar to the optimization above, if the Value being switched on is
2082  // known to be less than the Constant CR.LT, and the current Case Value
2083  // is CR.LT - 1, then we can branch directly to the target block for
2084  // the current Case Value, rather than emitting a RHS leaf node for it.
2085  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
2086      cast<ConstantInt>(RHSR.first->Low)->getValue() ==
2087      (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
2088    FalseBB = RHSR.first->BB;
2089  } else {
2090    FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2091    CurMF->insert(BBI, FalseBB);
2092    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
2093
2094    // Put SV in a virtual register to make it available from the new blocks.
2095    ExportFromCurrentBlock(SV);
2096  }
2097
2098  // Create a CaseBlock record representing a conditional branch to
2099  // the LHS node if the value being switched on SV is less than C.
2100  // Otherwise, branch to LHS.
2101  CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
2102
2103  if (CR.CaseBB == SwitchBB)
2104    visitSwitchCase(CB, SwitchBB);
2105  else
2106    SwitchCases.push_back(CB);
2107
2108  return true;
2109}
2110
2111/// handleBitTestsSwitchCase - if current case range has few destination and
2112/// range span less, than machine word bitwidth, encode case range into series
2113/// of masks and emit bit tests with these masks.
2114bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
2115                                                   CaseRecVector& WorkList,
2116                                                   const Value* SV,
2117                                                   MachineBasicBlock* Default,
2118                                                   MachineBasicBlock *SwitchBB){
2119  EVT PTy = TLI.getPointerTy();
2120  unsigned IntPtrBits = PTy.getSizeInBits();
2121
2122  Case& FrontCase = *CR.Range.first;
2123  Case& BackCase  = *(CR.Range.second-1);
2124
2125  // Get the MachineFunction which holds the current MBB.  This is used when
2126  // inserting any additional MBBs necessary to represent the switch.
2127  MachineFunction *CurMF = FuncInfo.MF;
2128
2129  // If target does not have legal shift left, do not emit bit tests at all.
2130  if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
2131    return false;
2132
2133  size_t numCmps = 0;
2134  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2135       I!=E; ++I) {
2136    // Single case counts one, case range - two.
2137    numCmps += (I->Low == I->High ? 1 : 2);
2138  }
2139
2140  // Count unique destinations
2141  SmallSet<MachineBasicBlock*, 4> Dests;
2142  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2143    Dests.insert(I->BB);
2144    if (Dests.size() > 3)
2145      // Don't bother the code below, if there are too much unique destinations
2146      return false;
2147  }
2148  DEBUG(dbgs() << "Total number of unique destinations: "
2149        << Dests.size() << '\n'
2150        << "Total number of comparisons: " << numCmps << '\n');
2151
2152  // Compute span of values.
2153  const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
2154  const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
2155  APInt cmpRange = maxValue - minValue;
2156
2157  DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
2158               << "Low bound: " << minValue << '\n'
2159               << "High bound: " << maxValue << '\n');
2160
2161  if (cmpRange.uge(IntPtrBits) ||
2162      (!(Dests.size() == 1 && numCmps >= 3) &&
2163       !(Dests.size() == 2 && numCmps >= 5) &&
2164       !(Dests.size() >= 3 && numCmps >= 6)))
2165    return false;
2166
2167  DEBUG(dbgs() << "Emitting bit tests\n");
2168  APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
2169
2170  // Optimize the case where all the case values fit in a
2171  // word without having to subtract minValue. In this case,
2172  // we can optimize away the subtraction.
2173  if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) {
2174    cmpRange = maxValue;
2175  } else {
2176    lowBound = minValue;
2177  }
2178
2179  CaseBitsVector CasesBits;
2180  unsigned i, count = 0;
2181
2182  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2183    MachineBasicBlock* Dest = I->BB;
2184    for (i = 0; i < count; ++i)
2185      if (Dest == CasesBits[i].BB)
2186        break;
2187
2188    if (i == count) {
2189      assert((count < 3) && "Too much destinations to test!");
2190      CasesBits.push_back(CaseBits(0, Dest, 0));
2191      count++;
2192    }
2193
2194    const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
2195    const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
2196
2197    uint64_t lo = (lowValue - lowBound).getZExtValue();
2198    uint64_t hi = (highValue - lowBound).getZExtValue();
2199
2200    for (uint64_t j = lo; j <= hi; j++) {
2201      CasesBits[i].Mask |=  1ULL << j;
2202      CasesBits[i].Bits++;
2203    }
2204
2205  }
2206  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2207
2208  BitTestInfo BTC;
2209
2210  // Figure out which block is immediately after the current one.
2211  MachineFunction::iterator BBI = CR.CaseBB;
2212  ++BBI;
2213
2214  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2215
2216  DEBUG(dbgs() << "Cases:\n");
2217  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2218    DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
2219                 << ", Bits: " << CasesBits[i].Bits
2220                 << ", BB: " << CasesBits[i].BB << '\n');
2221
2222    MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2223    CurMF->insert(BBI, CaseBB);
2224    BTC.push_back(BitTestCase(CasesBits[i].Mask,
2225                              CaseBB,
2226                              CasesBits[i].BB));
2227
2228    // Put SV in a virtual register to make it available from the new blocks.
2229    ExportFromCurrentBlock(SV);
2230  }
2231
2232  BitTestBlock BTB(lowBound, cmpRange, SV,
2233                   -1U, MVT::Other, (CR.CaseBB == SwitchBB),
2234                   CR.CaseBB, Default, BTC);
2235
2236  if (CR.CaseBB == SwitchBB)
2237    visitBitTestHeader(BTB, SwitchBB);
2238
2239  BitTestCases.push_back(BTB);
2240
2241  return true;
2242}
2243
2244/// Clusterify - Transform simple list of Cases into list of CaseRange's
2245size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
2246                                       const SwitchInst& SI) {
2247  size_t numCmps = 0;
2248
2249  // Start with "simple" cases
2250  for (size_t i = 1; i < SI.getNumSuccessors(); ++i) {
2251    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
2252    Cases.push_back(Case(SI.getSuccessorValue(i),
2253                         SI.getSuccessorValue(i),
2254                         SMBB));
2255  }
2256  std::sort(Cases.begin(), Cases.end(), CaseCmp());
2257
2258  // Merge case into clusters
2259  if (Cases.size() >= 2)
2260    // Must recompute end() each iteration because it may be
2261    // invalidated by erase if we hold on to it
2262    for (CaseItr I = Cases.begin(), J = ++(Cases.begin()); J != Cases.end(); ) {
2263      const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
2264      const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
2265      MachineBasicBlock* nextBB = J->BB;
2266      MachineBasicBlock* currentBB = I->BB;
2267
2268      // If the two neighboring cases go to the same destination, merge them
2269      // into a single case.
2270      if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
2271        I->High = J->High;
2272        J = Cases.erase(J);
2273      } else {
2274        I = J++;
2275      }
2276    }
2277
2278  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
2279    if (I->Low != I->High)
2280      // A range counts double, since it requires two compares.
2281      ++numCmps;
2282  }
2283
2284  return numCmps;
2285}
2286
2287void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2288                                           MachineBasicBlock *Last) {
2289  // Update JTCases.
2290  for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2291    if (JTCases[i].first.HeaderBB == First)
2292      JTCases[i].first.HeaderBB = Last;
2293
2294  // Update BitTestCases.
2295  for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2296    if (BitTestCases[i].Parent == First)
2297      BitTestCases[i].Parent = Last;
2298}
2299
2300void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
2301  MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
2302
2303  // Figure out which block is immediately after the current one.
2304  MachineBasicBlock *NextBlock = 0;
2305  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2306
2307  // If there is only the default destination, branch to it if it is not the
2308  // next basic block.  Otherwise, just fall through.
2309  if (SI.getNumOperands() == 2) {
2310    // Update machine-CFG edges.
2311
2312    // If this is not a fall-through branch, emit the branch.
2313    SwitchMBB->addSuccessor(Default);
2314    if (Default != NextBlock)
2315      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
2316                              MVT::Other, getControlRoot(),
2317                              DAG.getBasicBlock(Default)));
2318
2319    return;
2320  }
2321
2322  // If there are any non-default case statements, create a vector of Cases
2323  // representing each one, and sort the vector so that we can efficiently
2324  // create a binary search tree from them.
2325  CaseVector Cases;
2326  size_t numCmps = Clusterify(Cases, SI);
2327  DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2328               << ". Total compares: " << numCmps << '\n');
2329  numCmps = 0;
2330
2331  // Get the Value to be switched on and default basic blocks, which will be
2332  // inserted into CaseBlock records, representing basic blocks in the binary
2333  // search tree.
2334  const Value *SV = SI.getOperand(0);
2335
2336  // Push the initial CaseRec onto the worklist
2337  CaseRecVector WorkList;
2338  WorkList.push_back(CaseRec(SwitchMBB,0,0,
2339                             CaseRange(Cases.begin(),Cases.end())));
2340
2341  while (!WorkList.empty()) {
2342    // Grab a record representing a case range to process off the worklist
2343    CaseRec CR = WorkList.back();
2344    WorkList.pop_back();
2345
2346    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2347      continue;
2348
2349    // If the range has few cases (two or less) emit a series of specific
2350    // tests.
2351    if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
2352      continue;
2353
2354    // If the switch has more than 5 blocks, and at least 40% dense, and the
2355    // target supports indirect branches, then emit a jump table rather than
2356    // lowering the switch to a binary tree of conditional branches.
2357    if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2358      continue;
2359
2360    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2361    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2362    handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
2363  }
2364}
2365
2366void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2367  MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2368
2369  // Update machine-CFG edges with unique successors.
2370  SmallVector<BasicBlock*, 32> succs;
2371  succs.reserve(I.getNumSuccessors());
2372  for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i)
2373    succs.push_back(I.getSuccessor(i));
2374  array_pod_sort(succs.begin(), succs.end());
2375  succs.erase(std::unique(succs.begin(), succs.end()), succs.end());
2376  for (unsigned i = 0, e = succs.size(); i != e; ++i)
2377    IndirectBrMBB->addSuccessor(FuncInfo.MBBMap[succs[i]]);
2378
2379  DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(),
2380                          MVT::Other, getControlRoot(),
2381                          getValue(I.getAddress())));
2382}
2383
2384void SelectionDAGBuilder::visitFSub(const User &I) {
2385  // -0.0 - X --> fneg
2386  const Type *Ty = I.getType();
2387  if (Ty->isVectorTy()) {
2388    if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) {
2389      const VectorType *DestTy = cast<VectorType>(I.getType());
2390      const Type *ElTy = DestTy->getElementType();
2391      unsigned VL = DestTy->getNumElements();
2392      std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy));
2393      Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size());
2394      if (CV == CNZ) {
2395        SDValue Op2 = getValue(I.getOperand(1));
2396        setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2397                                 Op2.getValueType(), Op2));
2398        return;
2399      }
2400    }
2401  }
2402
2403  if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
2404    if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) {
2405      SDValue Op2 = getValue(I.getOperand(1));
2406      setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2407                               Op2.getValueType(), Op2));
2408      return;
2409    }
2410
2411  visitBinary(I, ISD::FSUB);
2412}
2413
2414void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2415  SDValue Op1 = getValue(I.getOperand(0));
2416  SDValue Op2 = getValue(I.getOperand(1));
2417  setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(),
2418                           Op1.getValueType(), Op1, Op2));
2419}
2420
2421void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2422  SDValue Op1 = getValue(I.getOperand(0));
2423  SDValue Op2 = getValue(I.getOperand(1));
2424  if (!I.getType()->isVectorTy() &&
2425      Op2.getValueType() != TLI.getShiftAmountTy()) {
2426    // If the operand is smaller than the shift count type, promote it.
2427    EVT PTy = TLI.getPointerTy();
2428    EVT STy = TLI.getShiftAmountTy();
2429    if (STy.bitsGT(Op2.getValueType()))
2430      Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(),
2431                        TLI.getShiftAmountTy(), Op2);
2432    // If the operand is larger than the shift count type but the shift
2433    // count type has enough bits to represent any shift value, truncate
2434    // it now. This is a common case and it exposes the truncate to
2435    // optimization early.
2436    else if (STy.getSizeInBits() >=
2437             Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2438      Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2439                        TLI.getShiftAmountTy(), Op2);
2440    // Otherwise we'll need to temporarily settle for some other
2441    // convenient type; type legalization will make adjustments as
2442    // needed.
2443    else if (PTy.bitsLT(Op2.getValueType()))
2444      Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2445                        TLI.getPointerTy(), Op2);
2446    else if (PTy.bitsGT(Op2.getValueType()))
2447      Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(),
2448                        TLI.getPointerTy(), Op2);
2449  }
2450
2451  setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(),
2452                           Op1.getValueType(), Op1, Op2));
2453}
2454
2455void SelectionDAGBuilder::visitICmp(const User &I) {
2456  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2457  if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2458    predicate = IC->getPredicate();
2459  else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2460    predicate = ICmpInst::Predicate(IC->getPredicate());
2461  SDValue Op1 = getValue(I.getOperand(0));
2462  SDValue Op2 = getValue(I.getOperand(1));
2463  ISD::CondCode Opcode = getICmpCondCode(predicate);
2464
2465  EVT DestVT = TLI.getValueType(I.getType());
2466  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode));
2467}
2468
2469void SelectionDAGBuilder::visitFCmp(const User &I) {
2470  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2471  if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2472    predicate = FC->getPredicate();
2473  else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2474    predicate = FCmpInst::Predicate(FC->getPredicate());
2475  SDValue Op1 = getValue(I.getOperand(0));
2476  SDValue Op2 = getValue(I.getOperand(1));
2477  ISD::CondCode Condition = getFCmpCondCode(predicate);
2478  EVT DestVT = TLI.getValueType(I.getType());
2479  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition));
2480}
2481
2482void SelectionDAGBuilder::visitSelect(const User &I) {
2483  SmallVector<EVT, 4> ValueVTs;
2484  ComputeValueVTs(TLI, I.getType(), ValueVTs);
2485  unsigned NumValues = ValueVTs.size();
2486  if (NumValues == 0) return;
2487
2488  SmallVector<SDValue, 4> Values(NumValues);
2489  SDValue Cond     = getValue(I.getOperand(0));
2490  SDValue TrueVal  = getValue(I.getOperand(1));
2491  SDValue FalseVal = getValue(I.getOperand(2));
2492
2493  for (unsigned i = 0; i != NumValues; ++i)
2494    Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(),
2495                          TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2496                            Cond,
2497                            SDValue(TrueVal.getNode(),
2498                                    TrueVal.getResNo() + i),
2499                            SDValue(FalseVal.getNode(),
2500                                    FalseVal.getResNo() + i));
2501
2502  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2503                           DAG.getVTList(&ValueVTs[0], NumValues),
2504                           &Values[0], NumValues));
2505}
2506
2507void SelectionDAGBuilder::visitTrunc(const User &I) {
2508  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2509  SDValue N = getValue(I.getOperand(0));
2510  EVT DestVT = TLI.getValueType(I.getType());
2511  setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N));
2512}
2513
2514void SelectionDAGBuilder::visitZExt(const User &I) {
2515  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2516  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2517  SDValue N = getValue(I.getOperand(0));
2518  EVT DestVT = TLI.getValueType(I.getType());
2519  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N));
2520}
2521
2522void SelectionDAGBuilder::visitSExt(const User &I) {
2523  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2524  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2525  SDValue N = getValue(I.getOperand(0));
2526  EVT DestVT = TLI.getValueType(I.getType());
2527  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N));
2528}
2529
2530void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2531  // FPTrunc is never a no-op cast, no need to check
2532  SDValue N = getValue(I.getOperand(0));
2533  EVT DestVT = TLI.getValueType(I.getType());
2534  setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(),
2535                           DestVT, N, DAG.getIntPtrConstant(0)));
2536}
2537
2538void SelectionDAGBuilder::visitFPExt(const User &I){
2539  // FPTrunc is never a no-op cast, no need to check
2540  SDValue N = getValue(I.getOperand(0));
2541  EVT DestVT = TLI.getValueType(I.getType());
2542  setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N));
2543}
2544
2545void SelectionDAGBuilder::visitFPToUI(const User &I) {
2546  // FPToUI is never a no-op cast, no need to check
2547  SDValue N = getValue(I.getOperand(0));
2548  EVT DestVT = TLI.getValueType(I.getType());
2549  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N));
2550}
2551
2552void SelectionDAGBuilder::visitFPToSI(const User &I) {
2553  // FPToSI is never a no-op cast, no need to check
2554  SDValue N = getValue(I.getOperand(0));
2555  EVT DestVT = TLI.getValueType(I.getType());
2556  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N));
2557}
2558
2559void SelectionDAGBuilder::visitUIToFP(const User &I) {
2560  // UIToFP is never a no-op cast, no need to check
2561  SDValue N = getValue(I.getOperand(0));
2562  EVT DestVT = TLI.getValueType(I.getType());
2563  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N));
2564}
2565
2566void SelectionDAGBuilder::visitSIToFP(const User &I){
2567  // SIToFP is never a no-op cast, no need to check
2568  SDValue N = getValue(I.getOperand(0));
2569  EVT DestVT = TLI.getValueType(I.getType());
2570  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N));
2571}
2572
2573void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2574  // What to do depends on the size of the integer and the size of the pointer.
2575  // We can either truncate, zero extend, or no-op, accordingly.
2576  SDValue N = getValue(I.getOperand(0));
2577  EVT DestVT = TLI.getValueType(I.getType());
2578  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2579}
2580
2581void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2582  // What to do depends on the size of the integer and the size of the pointer.
2583  // We can either truncate, zero extend, or no-op, accordingly.
2584  SDValue N = getValue(I.getOperand(0));
2585  EVT DestVT = TLI.getValueType(I.getType());
2586  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2587}
2588
2589void SelectionDAGBuilder::visitBitCast(const User &I) {
2590  SDValue N = getValue(I.getOperand(0));
2591  EVT DestVT = TLI.getValueType(I.getType());
2592
2593  // BitCast assures us that source and destination are the same size so this is
2594  // either a BITCAST or a no-op.
2595  if (DestVT != N.getValueType())
2596    setValue(&I, DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
2597                             DestVT, N)); // convert types.
2598  else
2599    setValue(&I, N);            // noop cast.
2600}
2601
2602void SelectionDAGBuilder::visitInsertElement(const User &I) {
2603  SDValue InVec = getValue(I.getOperand(0));
2604  SDValue InVal = getValue(I.getOperand(1));
2605  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2606                              TLI.getPointerTy(),
2607                              getValue(I.getOperand(2)));
2608  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(),
2609                           TLI.getValueType(I.getType()),
2610                           InVec, InVal, InIdx));
2611}
2612
2613void SelectionDAGBuilder::visitExtractElement(const User &I) {
2614  SDValue InVec = getValue(I.getOperand(0));
2615  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2616                              TLI.getPointerTy(),
2617                              getValue(I.getOperand(1)));
2618  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2619                           TLI.getValueType(I.getType()), InVec, InIdx));
2620}
2621
2622// Utility for visitShuffleVector - Returns true if the mask is mask starting
2623// from SIndx and increasing to the element length (undefs are allowed).
2624static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) {
2625  unsigned MaskNumElts = Mask.size();
2626  for (unsigned i = 0; i != MaskNumElts; ++i)
2627    if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx)))
2628      return false;
2629  return true;
2630}
2631
2632void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2633  SmallVector<int, 8> Mask;
2634  SDValue Src1 = getValue(I.getOperand(0));
2635  SDValue Src2 = getValue(I.getOperand(1));
2636
2637  // Convert the ConstantVector mask operand into an array of ints, with -1
2638  // representing undef values.
2639  SmallVector<Constant*, 8> MaskElts;
2640  cast<Constant>(I.getOperand(2))->getVectorElements(MaskElts);
2641  unsigned MaskNumElts = MaskElts.size();
2642  for (unsigned i = 0; i != MaskNumElts; ++i) {
2643    if (isa<UndefValue>(MaskElts[i]))
2644      Mask.push_back(-1);
2645    else
2646      Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue());
2647  }
2648
2649  EVT VT = TLI.getValueType(I.getType());
2650  EVT SrcVT = Src1.getValueType();
2651  unsigned SrcNumElts = SrcVT.getVectorNumElements();
2652
2653  if (SrcNumElts == MaskNumElts) {
2654    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2655                                      &Mask[0]));
2656    return;
2657  }
2658
2659  // Normalize the shuffle vector since mask and vector length don't match.
2660  if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2661    // Mask is longer than the source vectors and is a multiple of the source
2662    // vectors.  We can use concatenate vector to make the mask and vectors
2663    // lengths match.
2664    if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) {
2665      // The shuffle is concatenating two vectors together.
2666      setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2667                               VT, Src1, Src2));
2668      return;
2669    }
2670
2671    // Pad both vectors with undefs to make them the same length as the mask.
2672    unsigned NumConcat = MaskNumElts / SrcNumElts;
2673    bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2674    bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2675    SDValue UndefVal = DAG.getUNDEF(SrcVT);
2676
2677    SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2678    SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2679    MOps1[0] = Src1;
2680    MOps2[0] = Src2;
2681
2682    Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2683                                                  getCurDebugLoc(), VT,
2684                                                  &MOps1[0], NumConcat);
2685    Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2686                                                  getCurDebugLoc(), VT,
2687                                                  &MOps2[0], NumConcat);
2688
2689    // Readjust mask for new input vector length.
2690    SmallVector<int, 8> MappedOps;
2691    for (unsigned i = 0; i != MaskNumElts; ++i) {
2692      int Idx = Mask[i];
2693      if (Idx < (int)SrcNumElts)
2694        MappedOps.push_back(Idx);
2695      else
2696        MappedOps.push_back(Idx + MaskNumElts - SrcNumElts);
2697    }
2698
2699    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2700                                      &MappedOps[0]));
2701    return;
2702  }
2703
2704  if (SrcNumElts > MaskNumElts) {
2705    // Analyze the access pattern of the vector to see if we can extract
2706    // two subvectors and do the shuffle. The analysis is done by calculating
2707    // the range of elements the mask access on both vectors.
2708    int MinRange[2] = { SrcNumElts+1, SrcNumElts+1};
2709    int MaxRange[2] = {-1, -1};
2710
2711    for (unsigned i = 0; i != MaskNumElts; ++i) {
2712      int Idx = Mask[i];
2713      int Input = 0;
2714      if (Idx < 0)
2715        continue;
2716
2717      if (Idx >= (int)SrcNumElts) {
2718        Input = 1;
2719        Idx -= SrcNumElts;
2720      }
2721      if (Idx > MaxRange[Input])
2722        MaxRange[Input] = Idx;
2723      if (Idx < MinRange[Input])
2724        MinRange[Input] = Idx;
2725    }
2726
2727    // Check if the access is smaller than the vector size and can we find
2728    // a reasonable extract index.
2729    int RangeUse[2] = { 2, 2 };  // 0 = Unused, 1 = Extract, 2 = Can not
2730                                 // Extract.
2731    int StartIdx[2];  // StartIdx to extract from
2732    for (int Input=0; Input < 2; ++Input) {
2733      if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) {
2734        RangeUse[Input] = 0; // Unused
2735        StartIdx[Input] = 0;
2736      } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) {
2737        // Fits within range but we should see if we can find a good
2738        // start index that is a multiple of the mask length.
2739        if (MaxRange[Input] < (int)MaskNumElts) {
2740          RangeUse[Input] = 1; // Extract from beginning of the vector
2741          StartIdx[Input] = 0;
2742        } else {
2743          StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2744          if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2745              StartIdx[Input] + MaskNumElts <= SrcNumElts)
2746            RangeUse[Input] = 1; // Extract from a multiple of the mask length.
2747        }
2748      }
2749    }
2750
2751    if (RangeUse[0] == 0 && RangeUse[1] == 0) {
2752      setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
2753      return;
2754    }
2755    else if (RangeUse[0] < 2 && RangeUse[1] < 2) {
2756      // Extract appropriate subvector and generate a vector shuffle
2757      for (int Input=0; Input < 2; ++Input) {
2758        SDValue &Src = Input == 0 ? Src1 : Src2;
2759        if (RangeUse[Input] == 0)
2760          Src = DAG.getUNDEF(VT);
2761        else
2762          Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT,
2763                            Src, DAG.getIntPtrConstant(StartIdx[Input]));
2764      }
2765
2766      // Calculate new mask.
2767      SmallVector<int, 8> MappedOps;
2768      for (unsigned i = 0; i != MaskNumElts; ++i) {
2769        int Idx = Mask[i];
2770        if (Idx < 0)
2771          MappedOps.push_back(Idx);
2772        else if (Idx < (int)SrcNumElts)
2773          MappedOps.push_back(Idx - StartIdx[0]);
2774        else
2775          MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts);
2776      }
2777
2778      setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2779                                        &MappedOps[0]));
2780      return;
2781    }
2782  }
2783
2784  // We can't use either concat vectors or extract subvectors so fall back to
2785  // replacing the shuffle with extract and build vector.
2786  // to insert and build vector.
2787  EVT EltVT = VT.getVectorElementType();
2788  EVT PtrVT = TLI.getPointerTy();
2789  SmallVector<SDValue,8> Ops;
2790  for (unsigned i = 0; i != MaskNumElts; ++i) {
2791    if (Mask[i] < 0) {
2792      Ops.push_back(DAG.getUNDEF(EltVT));
2793    } else {
2794      int Idx = Mask[i];
2795      SDValue Res;
2796
2797      if (Idx < (int)SrcNumElts)
2798        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2799                          EltVT, Src1, DAG.getConstant(Idx, PtrVT));
2800      else
2801        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2802                          EltVT, Src2,
2803                          DAG.getConstant(Idx - SrcNumElts, PtrVT));
2804
2805      Ops.push_back(Res);
2806    }
2807  }
2808
2809  setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
2810                           VT, &Ops[0], Ops.size()));
2811}
2812
2813void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
2814  const Value *Op0 = I.getOperand(0);
2815  const Value *Op1 = I.getOperand(1);
2816  const Type *AggTy = I.getType();
2817  const Type *ValTy = Op1->getType();
2818  bool IntoUndef = isa<UndefValue>(Op0);
2819  bool FromUndef = isa<UndefValue>(Op1);
2820
2821  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.idx_begin(), I.idx_end());
2822
2823  SmallVector<EVT, 4> AggValueVTs;
2824  ComputeValueVTs(TLI, AggTy, AggValueVTs);
2825  SmallVector<EVT, 4> ValValueVTs;
2826  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2827
2828  unsigned NumAggValues = AggValueVTs.size();
2829  unsigned NumValValues = ValValueVTs.size();
2830  SmallVector<SDValue, 4> Values(NumAggValues);
2831
2832  SDValue Agg = getValue(Op0);
2833  SDValue Val = getValue(Op1);
2834  unsigned i = 0;
2835  // Copy the beginning value(s) from the original aggregate.
2836  for (; i != LinearIndex; ++i)
2837    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2838                SDValue(Agg.getNode(), Agg.getResNo() + i);
2839  // Copy values from the inserted value(s).
2840  for (; i != LinearIndex + NumValValues; ++i)
2841    Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2842                SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
2843  // Copy remaining value(s) from the original aggregate.
2844  for (; i != NumAggValues; ++i)
2845    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2846                SDValue(Agg.getNode(), Agg.getResNo() + i);
2847
2848  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2849                           DAG.getVTList(&AggValueVTs[0], NumAggValues),
2850                           &Values[0], NumAggValues));
2851}
2852
2853void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
2854  const Value *Op0 = I.getOperand(0);
2855  const Type *AggTy = Op0->getType();
2856  const Type *ValTy = I.getType();
2857  bool OutOfUndef = isa<UndefValue>(Op0);
2858
2859  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.idx_begin(), I.idx_end());
2860
2861  SmallVector<EVT, 4> ValValueVTs;
2862  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2863
2864  unsigned NumValValues = ValValueVTs.size();
2865  SmallVector<SDValue, 4> Values(NumValValues);
2866
2867  SDValue Agg = getValue(Op0);
2868  // Copy out the selected value(s).
2869  for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
2870    Values[i - LinearIndex] =
2871      OutOfUndef ?
2872        DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
2873        SDValue(Agg.getNode(), Agg.getResNo() + i);
2874
2875  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2876                           DAG.getVTList(&ValValueVTs[0], NumValValues),
2877                           &Values[0], NumValValues));
2878}
2879
2880void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
2881  SDValue N = getValue(I.getOperand(0));
2882  const Type *Ty = I.getOperand(0)->getType();
2883
2884  for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
2885       OI != E; ++OI) {
2886    const Value *Idx = *OI;
2887    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2888      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2889      if (Field) {
2890        // N = N + Offset
2891        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
2892        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2893                        DAG.getIntPtrConstant(Offset));
2894      }
2895
2896      Ty = StTy->getElementType(Field);
2897    } else {
2898      Ty = cast<SequentialType>(Ty)->getElementType();
2899
2900      // If this is a constant subscript, handle it quickly.
2901      if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2902        if (CI->isZero()) continue;
2903        uint64_t Offs =
2904            TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
2905        SDValue OffsVal;
2906        EVT PTy = TLI.getPointerTy();
2907        unsigned PtrBits = PTy.getSizeInBits();
2908        if (PtrBits < 64)
2909          OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2910                                TLI.getPointerTy(),
2911                                DAG.getConstant(Offs, MVT::i64));
2912        else
2913          OffsVal = DAG.getIntPtrConstant(Offs);
2914
2915        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2916                        OffsVal);
2917        continue;
2918      }
2919
2920      // N = N + Idx * ElementSize;
2921      APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
2922                                TD->getTypeAllocSize(Ty));
2923      SDValue IdxN = getValue(Idx);
2924
2925      // If the index is smaller or larger than intptr_t, truncate or extend
2926      // it.
2927      IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType());
2928
2929      // If this is a multiply by a power of two, turn it into a shl
2930      // immediately.  This is a very common case.
2931      if (ElementSize != 1) {
2932        if (ElementSize.isPowerOf2()) {
2933          unsigned Amt = ElementSize.logBase2();
2934          IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(),
2935                             N.getValueType(), IdxN,
2936                             DAG.getConstant(Amt, TLI.getPointerTy()));
2937        } else {
2938          SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy());
2939          IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(),
2940                             N.getValueType(), IdxN, Scale);
2941        }
2942      }
2943
2944      N = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2945                      N.getValueType(), N, IdxN);
2946    }
2947  }
2948
2949  setValue(&I, N);
2950}
2951
2952void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
2953  // If this is a fixed sized alloca in the entry block of the function,
2954  // allocate it statically on the stack.
2955  if (FuncInfo.StaticAllocaMap.count(&I))
2956    return;   // getValue will auto-populate this.
2957
2958  const Type *Ty = I.getAllocatedType();
2959  uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
2960  unsigned Align =
2961    std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
2962             I.getAlignment());
2963
2964  SDValue AllocSize = getValue(I.getArraySize());
2965
2966  EVT IntPtr = TLI.getPointerTy();
2967  if (AllocSize.getValueType() != IntPtr)
2968    AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr);
2969
2970  AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr,
2971                          AllocSize,
2972                          DAG.getConstant(TySize, IntPtr));
2973
2974  // Handle alignment.  If the requested alignment is less than or equal to
2975  // the stack alignment, ignore it.  If the size is greater than or equal to
2976  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
2977  unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
2978  if (Align <= StackAlign)
2979    Align = 0;
2980
2981  // Round the size of the allocation up to the stack alignment size
2982  // by add SA-1 to the size.
2983  AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2984                          AllocSize.getValueType(), AllocSize,
2985                          DAG.getIntPtrConstant(StackAlign-1));
2986
2987  // Mask out the low bits for alignment purposes.
2988  AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(),
2989                          AllocSize.getValueType(), AllocSize,
2990                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
2991
2992  SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
2993  SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
2994  SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(),
2995                            VTs, Ops, 3);
2996  setValue(&I, DSA);
2997  DAG.setRoot(DSA.getValue(1));
2998
2999  // Inform the Frame Information that we have just allocated a variable-sized
3000  // object.
3001  FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1);
3002}
3003
3004void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3005  const Value *SV = I.getOperand(0);
3006  SDValue Ptr = getValue(SV);
3007
3008  const Type *Ty = I.getType();
3009
3010  bool isVolatile = I.isVolatile();
3011  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3012  unsigned Alignment = I.getAlignment();
3013  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3014
3015  SmallVector<EVT, 4> ValueVTs;
3016  SmallVector<uint64_t, 4> Offsets;
3017  ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
3018  unsigned NumValues = ValueVTs.size();
3019  if (NumValues == 0)
3020    return;
3021
3022  SDValue Root;
3023  bool ConstantMemory = false;
3024  if (I.isVolatile() || NumValues > MaxParallelChains)
3025    // Serialize volatile loads with other side effects.
3026    Root = getRoot();
3027  else if (AA->pointsToConstantMemory(
3028             AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) {
3029    // Do not serialize (non-volatile) loads of constant memory with anything.
3030    Root = DAG.getEntryNode();
3031    ConstantMemory = true;
3032  } else {
3033    // Do not serialize non-volatile loads against each other.
3034    Root = DAG.getRoot();
3035  }
3036
3037  SmallVector<SDValue, 4> Values(NumValues);
3038  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3039                                          NumValues));
3040  EVT PtrVT = Ptr.getValueType();
3041  unsigned ChainI = 0;
3042  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3043    // Serializing loads here may result in excessive register pressure, and
3044    // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3045    // could recover a bit by hoisting nodes upward in the chain by recognizing
3046    // they are side-effect free or do not alias. The optimizer should really
3047    // avoid this case by converting large object/array copies to llvm.memcpy
3048    // (MaxParallelChains should always remain as failsafe).
3049    if (ChainI == MaxParallelChains) {
3050      assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3051      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3052                                  MVT::Other, &Chains[0], ChainI);
3053      Root = Chain;
3054      ChainI = 0;
3055    }
3056    SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3057                            PtrVT, Ptr,
3058                            DAG.getConstant(Offsets[i], PtrVT));
3059    SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root,
3060                            A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
3061                            isNonTemporal, Alignment, TBAAInfo);
3062
3063    Values[i] = L;
3064    Chains[ChainI] = L.getValue(1);
3065  }
3066
3067  if (!ConstantMemory) {
3068    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3069                                MVT::Other, &Chains[0], ChainI);
3070    if (isVolatile)
3071      DAG.setRoot(Chain);
3072    else
3073      PendingLoads.push_back(Chain);
3074  }
3075
3076  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3077                           DAG.getVTList(&ValueVTs[0], NumValues),
3078                           &Values[0], NumValues));
3079}
3080
3081void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3082  const Value *SrcV = I.getOperand(0);
3083  const Value *PtrV = I.getOperand(1);
3084
3085  SmallVector<EVT, 4> ValueVTs;
3086  SmallVector<uint64_t, 4> Offsets;
3087  ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
3088  unsigned NumValues = ValueVTs.size();
3089  if (NumValues == 0)
3090    return;
3091
3092  // Get the lowered operands. Note that we do this after
3093  // checking if NumResults is zero, because with zero results
3094  // the operands won't have values in the map.
3095  SDValue Src = getValue(SrcV);
3096  SDValue Ptr = getValue(PtrV);
3097
3098  SDValue Root = getRoot();
3099  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3100                                          NumValues));
3101  EVT PtrVT = Ptr.getValueType();
3102  bool isVolatile = I.isVolatile();
3103  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3104  unsigned Alignment = I.getAlignment();
3105  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3106
3107  unsigned ChainI = 0;
3108  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3109    // See visitLoad comments.
3110    if (ChainI == MaxParallelChains) {
3111      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3112                                  MVT::Other, &Chains[0], ChainI);
3113      Root = Chain;
3114      ChainI = 0;
3115    }
3116    SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr,
3117                              DAG.getConstant(Offsets[i], PtrVT));
3118    SDValue St = DAG.getStore(Root, getCurDebugLoc(),
3119                              SDValue(Src.getNode(), Src.getResNo() + i),
3120                              Add, MachinePointerInfo(PtrV, Offsets[i]),
3121                              isVolatile, isNonTemporal, Alignment, TBAAInfo);
3122    Chains[ChainI] = St;
3123  }
3124
3125  SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3126                                  MVT::Other, &Chains[0], ChainI);
3127  ++SDNodeOrder;
3128  AssignOrderingToNode(StoreNode.getNode());
3129  DAG.setRoot(StoreNode);
3130}
3131
3132/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3133/// node.
3134void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3135                                               unsigned Intrinsic) {
3136  bool HasChain = !I.doesNotAccessMemory();
3137  bool OnlyLoad = HasChain && I.onlyReadsMemory();
3138
3139  // Build the operand list.
3140  SmallVector<SDValue, 8> Ops;
3141  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
3142    if (OnlyLoad) {
3143      // We don't need to serialize loads against other loads.
3144      Ops.push_back(DAG.getRoot());
3145    } else {
3146      Ops.push_back(getRoot());
3147    }
3148  }
3149
3150  // Info is set by getTgtMemInstrinsic
3151  TargetLowering::IntrinsicInfo Info;
3152  bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
3153
3154  // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3155  if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
3156      Info.opc == ISD::INTRINSIC_W_CHAIN)
3157    Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
3158
3159  // Add all operands of the call to the operand list.
3160  for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
3161    SDValue Op = getValue(I.getArgOperand(i));
3162    assert(TLI.isTypeLegal(Op.getValueType()) &&
3163           "Intrinsic uses a non-legal type?");
3164    Ops.push_back(Op);
3165  }
3166
3167  SmallVector<EVT, 4> ValueVTs;
3168  ComputeValueVTs(TLI, I.getType(), ValueVTs);
3169#ifndef NDEBUG
3170  for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) {
3171    assert(TLI.isTypeLegal(ValueVTs[Val]) &&
3172           "Intrinsic uses a non-legal type?");
3173  }
3174#endif // NDEBUG
3175
3176  if (HasChain)
3177    ValueVTs.push_back(MVT::Other);
3178
3179  SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
3180
3181  // Create the node.
3182  SDValue Result;
3183  if (IsTgtIntrinsic) {
3184    // This is target intrinsic that touches memory
3185    Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(),
3186                                     VTs, &Ops[0], Ops.size(),
3187                                     Info.memVT,
3188                                   MachinePointerInfo(Info.ptrVal, Info.offset),
3189                                     Info.align, Info.vol,
3190                                     Info.readMem, Info.writeMem);
3191  } else if (!HasChain) {
3192    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
3193                         VTs, &Ops[0], Ops.size());
3194  } else if (!I.getType()->isVoidTy()) {
3195    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
3196                         VTs, &Ops[0], Ops.size());
3197  } else {
3198    Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(),
3199                         VTs, &Ops[0], Ops.size());
3200  }
3201
3202  if (HasChain) {
3203    SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3204    if (OnlyLoad)
3205      PendingLoads.push_back(Chain);
3206    else
3207      DAG.setRoot(Chain);
3208  }
3209
3210  if (!I.getType()->isVoidTy()) {
3211    if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3212      EVT VT = TLI.getValueType(PTy);
3213      Result = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), VT, Result);
3214    }
3215
3216    setValue(&I, Result);
3217  }
3218}
3219
3220/// GetSignificand - Get the significand and build it into a floating-point
3221/// number with exponent of 1:
3222///
3223///   Op = (Op & 0x007fffff) | 0x3f800000;
3224///
3225/// where Op is the hexidecimal representation of floating point value.
3226static SDValue
3227GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) {
3228  SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3229                           DAG.getConstant(0x007fffff, MVT::i32));
3230  SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3231                           DAG.getConstant(0x3f800000, MVT::i32));
3232  return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
3233}
3234
3235/// GetExponent - Get the exponent:
3236///
3237///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3238///
3239/// where Op is the hexidecimal representation of floating point value.
3240static SDValue
3241GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3242            DebugLoc dl) {
3243  SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3244                           DAG.getConstant(0x7f800000, MVT::i32));
3245  SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3246                           DAG.getConstant(23, TLI.getPointerTy()));
3247  SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3248                           DAG.getConstant(127, MVT::i32));
3249  return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3250}
3251
3252/// getF32Constant - Get 32-bit floating point constant.
3253static SDValue
3254getF32Constant(SelectionDAG &DAG, unsigned Flt) {
3255  return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32);
3256}
3257
3258/// Inlined utility function to implement binary input atomic intrinsics for
3259/// visitIntrinsicCall: I is a call instruction
3260///                     Op is the associated NodeType for I
3261const char *
3262SelectionDAGBuilder::implVisitBinaryAtomic(const CallInst& I,
3263                                           ISD::NodeType Op) {
3264  SDValue Root = getRoot();
3265  SDValue L =
3266    DAG.getAtomic(Op, getCurDebugLoc(),
3267                  getValue(I.getArgOperand(1)).getValueType().getSimpleVT(),
3268                  Root,
3269                  getValue(I.getArgOperand(0)),
3270                  getValue(I.getArgOperand(1)),
3271                  I.getArgOperand(0));
3272  setValue(&I, L);
3273  DAG.setRoot(L.getValue(1));
3274  return 0;
3275}
3276
3277// implVisitAluOverflow - Lower arithmetic overflow instrinsics.
3278const char *
3279SelectionDAGBuilder::implVisitAluOverflow(const CallInst &I, ISD::NodeType Op) {
3280  SDValue Op1 = getValue(I.getArgOperand(0));
3281  SDValue Op2 = getValue(I.getArgOperand(1));
3282
3283  SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
3284  setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2));
3285  return 0;
3286}
3287
3288/// visitExp - Lower an exp intrinsic. Handles the special sequences for
3289/// limited-precision mode.
3290void
3291SelectionDAGBuilder::visitExp(const CallInst &I) {
3292  SDValue result;
3293  DebugLoc dl = getCurDebugLoc();
3294
3295  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3296      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3297    SDValue Op = getValue(I.getArgOperand(0));
3298
3299    // Put the exponent in the right bit position for later addition to the
3300    // final result:
3301    //
3302    //   #define LOG2OFe 1.4426950f
3303    //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3304    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3305                             getF32Constant(DAG, 0x3fb8aa3b));
3306    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3307
3308    //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3309    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3310    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3311
3312    //   IntegerPartOfX <<= 23;
3313    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3314                                 DAG.getConstant(23, TLI.getPointerTy()));
3315
3316    if (LimitFloatPrecision <= 6) {
3317      // For floating-point precision of 6:
3318      //
3319      //   TwoToFractionalPartOfX =
3320      //     0.997535578f +
3321      //       (0.735607626f + 0.252464424f * x) * x;
3322      //
3323      // error 0.0144103317, which is 6 bits
3324      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3325                               getF32Constant(DAG, 0x3e814304));
3326      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3327                               getF32Constant(DAG, 0x3f3c50c8));
3328      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3329      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3330                               getF32Constant(DAG, 0x3f7f5e7e));
3331      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t5);
3332
3333      // Add the exponent into the result in integer domain.
3334      SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3335                               TwoToFracPartOfX, IntegerPartOfX);
3336
3337      result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t6);
3338    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3339      // For floating-point precision of 12:
3340      //
3341      //   TwoToFractionalPartOfX =
3342      //     0.999892986f +
3343      //       (0.696457318f +
3344      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3345      //
3346      // 0.000107046256 error, which is 13 to 14 bits
3347      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3348                               getF32Constant(DAG, 0x3da235e3));
3349      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3350                               getF32Constant(DAG, 0x3e65b8f3));
3351      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3352      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3353                               getF32Constant(DAG, 0x3f324b07));
3354      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3355      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3356                               getF32Constant(DAG, 0x3f7ff8fd));
3357      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t7);
3358
3359      // Add the exponent into the result in integer domain.
3360      SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3361                               TwoToFracPartOfX, IntegerPartOfX);
3362
3363      result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t8);
3364    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3365      // For floating-point precision of 18:
3366      //
3367      //   TwoToFractionalPartOfX =
3368      //     0.999999982f +
3369      //       (0.693148872f +
3370      //         (0.240227044f +
3371      //           (0.554906021e-1f +
3372      //             (0.961591928e-2f +
3373      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3374      //
3375      // error 2.47208000*10^(-7), which is better than 18 bits
3376      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3377                               getF32Constant(DAG, 0x3924b03e));
3378      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3379                               getF32Constant(DAG, 0x3ab24b87));
3380      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3381      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3382                               getF32Constant(DAG, 0x3c1d8c17));
3383      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3384      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3385                               getF32Constant(DAG, 0x3d634a1d));
3386      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3387      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3388                               getF32Constant(DAG, 0x3e75fe14));
3389      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3390      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3391                                getF32Constant(DAG, 0x3f317234));
3392      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3393      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3394                                getF32Constant(DAG, 0x3f800000));
3395      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,
3396                                             MVT::i32, t13);
3397
3398      // Add the exponent into the result in integer domain.
3399      SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3400                                TwoToFracPartOfX, IntegerPartOfX);
3401
3402      result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t14);
3403    }
3404  } else {
3405    // No special expansion.
3406    result = DAG.getNode(ISD::FEXP, dl,
3407                         getValue(I.getArgOperand(0)).getValueType(),
3408                         getValue(I.getArgOperand(0)));
3409  }
3410
3411  setValue(&I, result);
3412}
3413
3414/// visitLog - Lower a log intrinsic. Handles the special sequences for
3415/// limited-precision mode.
3416void
3417SelectionDAGBuilder::visitLog(const CallInst &I) {
3418  SDValue result;
3419  DebugLoc dl = getCurDebugLoc();
3420
3421  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3422      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3423    SDValue Op = getValue(I.getArgOperand(0));
3424    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3425
3426    // Scale the exponent by log(2) [0.69314718f].
3427    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3428    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3429                                        getF32Constant(DAG, 0x3f317218));
3430
3431    // Get the significand and build it into a floating-point number with
3432    // exponent of 1.
3433    SDValue X = GetSignificand(DAG, Op1, dl);
3434
3435    if (LimitFloatPrecision <= 6) {
3436      // For floating-point precision of 6:
3437      //
3438      //   LogofMantissa =
3439      //     -1.1609546f +
3440      //       (1.4034025f - 0.23903021f * x) * x;
3441      //
3442      // error 0.0034276066, which is better than 8 bits
3443      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3444                               getF32Constant(DAG, 0xbe74c456));
3445      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3446                               getF32Constant(DAG, 0x3fb3a2b1));
3447      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3448      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3449                                          getF32Constant(DAG, 0x3f949a29));
3450
3451      result = DAG.getNode(ISD::FADD, dl,
3452                           MVT::f32, LogOfExponent, LogOfMantissa);
3453    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3454      // For floating-point precision of 12:
3455      //
3456      //   LogOfMantissa =
3457      //     -1.7417939f +
3458      //       (2.8212026f +
3459      //         (-1.4699568f +
3460      //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3461      //
3462      // error 0.000061011436, which is 14 bits
3463      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3464                               getF32Constant(DAG, 0xbd67b6d6));
3465      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3466                               getF32Constant(DAG, 0x3ee4f4b8));
3467      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3468      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3469                               getF32Constant(DAG, 0x3fbc278b));
3470      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3471      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3472                               getF32Constant(DAG, 0x40348e95));
3473      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3474      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3475                                          getF32Constant(DAG, 0x3fdef31a));
3476
3477      result = DAG.getNode(ISD::FADD, dl,
3478                           MVT::f32, LogOfExponent, LogOfMantissa);
3479    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3480      // For floating-point precision of 18:
3481      //
3482      //   LogOfMantissa =
3483      //     -2.1072184f +
3484      //       (4.2372794f +
3485      //         (-3.7029485f +
3486      //           (2.2781945f +
3487      //             (-0.87823314f +
3488      //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3489      //
3490      // error 0.0000023660568, which is better than 18 bits
3491      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3492                               getF32Constant(DAG, 0xbc91e5ac));
3493      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3494                               getF32Constant(DAG, 0x3e4350aa));
3495      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3496      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3497                               getF32Constant(DAG, 0x3f60d3e3));
3498      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3499      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3500                               getF32Constant(DAG, 0x4011cdf0));
3501      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3502      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3503                               getF32Constant(DAG, 0x406cfd1c));
3504      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3505      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3506                               getF32Constant(DAG, 0x408797cb));
3507      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3508      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3509                                          getF32Constant(DAG, 0x4006dcab));
3510
3511      result = DAG.getNode(ISD::FADD, dl,
3512                           MVT::f32, LogOfExponent, LogOfMantissa);
3513    }
3514  } else {
3515    // No special expansion.
3516    result = DAG.getNode(ISD::FLOG, dl,
3517                         getValue(I.getArgOperand(0)).getValueType(),
3518                         getValue(I.getArgOperand(0)));
3519  }
3520
3521  setValue(&I, result);
3522}
3523
3524/// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for
3525/// limited-precision mode.
3526void
3527SelectionDAGBuilder::visitLog2(const CallInst &I) {
3528  SDValue result;
3529  DebugLoc dl = getCurDebugLoc();
3530
3531  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3532      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3533    SDValue Op = getValue(I.getArgOperand(0));
3534    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3535
3536    // Get the exponent.
3537    SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3538
3539    // Get the significand and build it into a floating-point number with
3540    // exponent of 1.
3541    SDValue X = GetSignificand(DAG, Op1, dl);
3542
3543    // Different possible minimax approximations of significand in
3544    // floating-point for various degrees of accuracy over [1,2].
3545    if (LimitFloatPrecision <= 6) {
3546      // For floating-point precision of 6:
3547      //
3548      //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3549      //
3550      // error 0.0049451742, which is more than 7 bits
3551      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3552                               getF32Constant(DAG, 0xbeb08fe0));
3553      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3554                               getF32Constant(DAG, 0x40019463));
3555      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3556      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3557                                           getF32Constant(DAG, 0x3fd6633d));
3558
3559      result = DAG.getNode(ISD::FADD, dl,
3560                           MVT::f32, LogOfExponent, Log2ofMantissa);
3561    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3562      // For floating-point precision of 12:
3563      //
3564      //   Log2ofMantissa =
3565      //     -2.51285454f +
3566      //       (4.07009056f +
3567      //         (-2.12067489f +
3568      //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3569      //
3570      // error 0.0000876136000, which is better than 13 bits
3571      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3572                               getF32Constant(DAG, 0xbda7262e));
3573      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3574                               getF32Constant(DAG, 0x3f25280b));
3575      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3576      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3577                               getF32Constant(DAG, 0x4007b923));
3578      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3579      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3580                               getF32Constant(DAG, 0x40823e2f));
3581      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3582      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3583                                           getF32Constant(DAG, 0x4020d29c));
3584
3585      result = DAG.getNode(ISD::FADD, dl,
3586                           MVT::f32, LogOfExponent, Log2ofMantissa);
3587    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3588      // For floating-point precision of 18:
3589      //
3590      //   Log2ofMantissa =
3591      //     -3.0400495f +
3592      //       (6.1129976f +
3593      //         (-5.3420409f +
3594      //           (3.2865683f +
3595      //             (-1.2669343f +
3596      //               (0.27515199f -
3597      //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3598      //
3599      // error 0.0000018516, which is better than 18 bits
3600      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3601                               getF32Constant(DAG, 0xbcd2769e));
3602      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3603                               getF32Constant(DAG, 0x3e8ce0b9));
3604      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3605      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3606                               getF32Constant(DAG, 0x3fa22ae7));
3607      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3608      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3609                               getF32Constant(DAG, 0x40525723));
3610      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3611      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3612                               getF32Constant(DAG, 0x40aaf200));
3613      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3614      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3615                               getF32Constant(DAG, 0x40c39dad));
3616      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3617      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3618                                           getF32Constant(DAG, 0x4042902c));
3619
3620      result = DAG.getNode(ISD::FADD, dl,
3621                           MVT::f32, LogOfExponent, Log2ofMantissa);
3622    }
3623  } else {
3624    // No special expansion.
3625    result = DAG.getNode(ISD::FLOG2, dl,
3626                         getValue(I.getArgOperand(0)).getValueType(),
3627                         getValue(I.getArgOperand(0)));
3628  }
3629
3630  setValue(&I, result);
3631}
3632
3633/// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for
3634/// limited-precision mode.
3635void
3636SelectionDAGBuilder::visitLog10(const CallInst &I) {
3637  SDValue result;
3638  DebugLoc dl = getCurDebugLoc();
3639
3640  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3641      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3642    SDValue Op = getValue(I.getArgOperand(0));
3643    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3644
3645    // Scale the exponent by log10(2) [0.30102999f].
3646    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3647    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3648                                        getF32Constant(DAG, 0x3e9a209a));
3649
3650    // Get the significand and build it into a floating-point number with
3651    // exponent of 1.
3652    SDValue X = GetSignificand(DAG, Op1, dl);
3653
3654    if (LimitFloatPrecision <= 6) {
3655      // For floating-point precision of 6:
3656      //
3657      //   Log10ofMantissa =
3658      //     -0.50419619f +
3659      //       (0.60948995f - 0.10380950f * x) * x;
3660      //
3661      // error 0.0014886165, which is 6 bits
3662      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3663                               getF32Constant(DAG, 0xbdd49a13));
3664      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3665                               getF32Constant(DAG, 0x3f1c0789));
3666      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3667      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3668                                            getF32Constant(DAG, 0x3f011300));
3669
3670      result = DAG.getNode(ISD::FADD, dl,
3671                           MVT::f32, LogOfExponent, Log10ofMantissa);
3672    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3673      // For floating-point precision of 12:
3674      //
3675      //   Log10ofMantissa =
3676      //     -0.64831180f +
3677      //       (0.91751397f +
3678      //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
3679      //
3680      // error 0.00019228036, which is better than 12 bits
3681      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3682                               getF32Constant(DAG, 0x3d431f31));
3683      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3684                               getF32Constant(DAG, 0x3ea21fb2));
3685      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3686      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3687                               getF32Constant(DAG, 0x3f6ae232));
3688      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3689      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3690                                            getF32Constant(DAG, 0x3f25f7c3));
3691
3692      result = DAG.getNode(ISD::FADD, dl,
3693                           MVT::f32, LogOfExponent, Log10ofMantissa);
3694    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3695      // For floating-point precision of 18:
3696      //
3697      //   Log10ofMantissa =
3698      //     -0.84299375f +
3699      //       (1.5327582f +
3700      //         (-1.0688956f +
3701      //           (0.49102474f +
3702      //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
3703      //
3704      // error 0.0000037995730, which is better than 18 bits
3705      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3706                               getF32Constant(DAG, 0x3c5d51ce));
3707      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3708                               getF32Constant(DAG, 0x3e00685a));
3709      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3710      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3711                               getF32Constant(DAG, 0x3efb6798));
3712      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3713      SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3714                               getF32Constant(DAG, 0x3f88d192));
3715      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3716      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3717                               getF32Constant(DAG, 0x3fc4316c));
3718      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3719      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
3720                                            getF32Constant(DAG, 0x3f57ce70));
3721
3722      result = DAG.getNode(ISD::FADD, dl,
3723                           MVT::f32, LogOfExponent, Log10ofMantissa);
3724    }
3725  } else {
3726    // No special expansion.
3727    result = DAG.getNode(ISD::FLOG10, dl,
3728                         getValue(I.getArgOperand(0)).getValueType(),
3729                         getValue(I.getArgOperand(0)));
3730  }
3731
3732  setValue(&I, result);
3733}
3734
3735/// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for
3736/// limited-precision mode.
3737void
3738SelectionDAGBuilder::visitExp2(const CallInst &I) {
3739  SDValue result;
3740  DebugLoc dl = getCurDebugLoc();
3741
3742  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3743      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3744    SDValue Op = getValue(I.getArgOperand(0));
3745
3746    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
3747
3748    //   FractionalPartOfX = x - (float)IntegerPartOfX;
3749    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3750    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
3751
3752    //   IntegerPartOfX <<= 23;
3753    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3754                                 DAG.getConstant(23, TLI.getPointerTy()));
3755
3756    if (LimitFloatPrecision <= 6) {
3757      // For floating-point precision of 6:
3758      //
3759      //   TwoToFractionalPartOfX =
3760      //     0.997535578f +
3761      //       (0.735607626f + 0.252464424f * x) * x;
3762      //
3763      // error 0.0144103317, which is 6 bits
3764      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3765                               getF32Constant(DAG, 0x3e814304));
3766      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3767                               getF32Constant(DAG, 0x3f3c50c8));
3768      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3769      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3770                               getF32Constant(DAG, 0x3f7f5e7e));
3771      SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
3772      SDValue TwoToFractionalPartOfX =
3773        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3774
3775      result = DAG.getNode(ISD::BITCAST, dl,
3776                           MVT::f32, TwoToFractionalPartOfX);
3777    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3778      // For floating-point precision of 12:
3779      //
3780      //   TwoToFractionalPartOfX =
3781      //     0.999892986f +
3782      //       (0.696457318f +
3783      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3784      //
3785      // error 0.000107046256, which is 13 to 14 bits
3786      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3787                               getF32Constant(DAG, 0x3da235e3));
3788      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3789                               getF32Constant(DAG, 0x3e65b8f3));
3790      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3791      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3792                               getF32Constant(DAG, 0x3f324b07));
3793      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3794      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3795                               getF32Constant(DAG, 0x3f7ff8fd));
3796      SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
3797      SDValue TwoToFractionalPartOfX =
3798        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
3799
3800      result = DAG.getNode(ISD::BITCAST, dl,
3801                           MVT::f32, TwoToFractionalPartOfX);
3802    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3803      // For floating-point precision of 18:
3804      //
3805      //   TwoToFractionalPartOfX =
3806      //     0.999999982f +
3807      //       (0.693148872f +
3808      //         (0.240227044f +
3809      //           (0.554906021e-1f +
3810      //             (0.961591928e-2f +
3811      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3812      // error 2.47208000*10^(-7), which is better than 18 bits
3813      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3814                               getF32Constant(DAG, 0x3924b03e));
3815      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3816                               getF32Constant(DAG, 0x3ab24b87));
3817      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3818      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3819                               getF32Constant(DAG, 0x3c1d8c17));
3820      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3821      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3822                               getF32Constant(DAG, 0x3d634a1d));
3823      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3824      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3825                               getF32Constant(DAG, 0x3e75fe14));
3826      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3827      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3828                                getF32Constant(DAG, 0x3f317234));
3829      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3830      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3831                                getF32Constant(DAG, 0x3f800000));
3832      SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
3833      SDValue TwoToFractionalPartOfX =
3834        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
3835
3836      result = DAG.getNode(ISD::BITCAST, dl,
3837                           MVT::f32, TwoToFractionalPartOfX);
3838    }
3839  } else {
3840    // No special expansion.
3841    result = DAG.getNode(ISD::FEXP2, dl,
3842                         getValue(I.getArgOperand(0)).getValueType(),
3843                         getValue(I.getArgOperand(0)));
3844  }
3845
3846  setValue(&I, result);
3847}
3848
3849/// visitPow - Lower a pow intrinsic. Handles the special sequences for
3850/// limited-precision mode with x == 10.0f.
3851void
3852SelectionDAGBuilder::visitPow(const CallInst &I) {
3853  SDValue result;
3854  const Value *Val = I.getArgOperand(0);
3855  DebugLoc dl = getCurDebugLoc();
3856  bool IsExp10 = false;
3857
3858  if (getValue(Val).getValueType() == MVT::f32 &&
3859      getValue(I.getArgOperand(1)).getValueType() == MVT::f32 &&
3860      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3861    if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) {
3862      if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
3863        APFloat Ten(10.0f);
3864        IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten);
3865      }
3866    }
3867  }
3868
3869  if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3870    SDValue Op = getValue(I.getArgOperand(1));
3871
3872    // Put the exponent in the right bit position for later addition to the
3873    // final result:
3874    //
3875    //   #define LOG2OF10 3.3219281f
3876    //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
3877    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3878                             getF32Constant(DAG, 0x40549a78));
3879    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3880
3881    //   FractionalPartOfX = x - (float)IntegerPartOfX;
3882    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3883    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3884
3885    //   IntegerPartOfX <<= 23;
3886    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3887                                 DAG.getConstant(23, TLI.getPointerTy()));
3888
3889    if (LimitFloatPrecision <= 6) {
3890      // For floating-point precision of 6:
3891      //
3892      //   twoToFractionalPartOfX =
3893      //     0.997535578f +
3894      //       (0.735607626f + 0.252464424f * x) * x;
3895      //
3896      // error 0.0144103317, which is 6 bits
3897      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3898                               getF32Constant(DAG, 0x3e814304));
3899      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3900                               getF32Constant(DAG, 0x3f3c50c8));
3901      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3902      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3903                               getF32Constant(DAG, 0x3f7f5e7e));
3904      SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
3905      SDValue TwoToFractionalPartOfX =
3906        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3907
3908      result = DAG.getNode(ISD::BITCAST, dl,
3909                           MVT::f32, TwoToFractionalPartOfX);
3910    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3911      // For floating-point precision of 12:
3912      //
3913      //   TwoToFractionalPartOfX =
3914      //     0.999892986f +
3915      //       (0.696457318f +
3916      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3917      //
3918      // error 0.000107046256, which is 13 to 14 bits
3919      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3920                               getF32Constant(DAG, 0x3da235e3));
3921      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3922                               getF32Constant(DAG, 0x3e65b8f3));
3923      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3924      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3925                               getF32Constant(DAG, 0x3f324b07));
3926      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3927      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3928                               getF32Constant(DAG, 0x3f7ff8fd));
3929      SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
3930      SDValue TwoToFractionalPartOfX =
3931        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
3932
3933      result = DAG.getNode(ISD::BITCAST, dl,
3934                           MVT::f32, TwoToFractionalPartOfX);
3935    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3936      // For floating-point precision of 18:
3937      //
3938      //   TwoToFractionalPartOfX =
3939      //     0.999999982f +
3940      //       (0.693148872f +
3941      //         (0.240227044f +
3942      //           (0.554906021e-1f +
3943      //             (0.961591928e-2f +
3944      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3945      // error 2.47208000*10^(-7), which is better than 18 bits
3946      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3947                               getF32Constant(DAG, 0x3924b03e));
3948      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3949                               getF32Constant(DAG, 0x3ab24b87));
3950      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3951      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3952                               getF32Constant(DAG, 0x3c1d8c17));
3953      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3954      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3955                               getF32Constant(DAG, 0x3d634a1d));
3956      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3957      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3958                               getF32Constant(DAG, 0x3e75fe14));
3959      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3960      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3961                                getF32Constant(DAG, 0x3f317234));
3962      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3963      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3964                                getF32Constant(DAG, 0x3f800000));
3965      SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
3966      SDValue TwoToFractionalPartOfX =
3967        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
3968
3969      result = DAG.getNode(ISD::BITCAST, dl,
3970                           MVT::f32, TwoToFractionalPartOfX);
3971    }
3972  } else {
3973    // No special expansion.
3974    result = DAG.getNode(ISD::FPOW, dl,
3975                         getValue(I.getArgOperand(0)).getValueType(),
3976                         getValue(I.getArgOperand(0)),
3977                         getValue(I.getArgOperand(1)));
3978  }
3979
3980  setValue(&I, result);
3981}
3982
3983
3984/// ExpandPowI - Expand a llvm.powi intrinsic.
3985static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS,
3986                          SelectionDAG &DAG) {
3987  // If RHS is a constant, we can expand this out to a multiplication tree,
3988  // otherwise we end up lowering to a call to __powidf2 (for example).  When
3989  // optimizing for size, we only want to do this if the expansion would produce
3990  // a small number of multiplies, otherwise we do the full expansion.
3991  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3992    // Get the exponent as a positive value.
3993    unsigned Val = RHSC->getSExtValue();
3994    if ((int)Val < 0) Val = -Val;
3995
3996    // powi(x, 0) -> 1.0
3997    if (Val == 0)
3998      return DAG.getConstantFP(1.0, LHS.getValueType());
3999
4000    const Function *F = DAG.getMachineFunction().getFunction();
4001    if (!F->hasFnAttr(Attribute::OptimizeForSize) ||
4002        // If optimizing for size, don't insert too many multiplies.  This
4003        // inserts up to 5 multiplies.
4004        CountPopulation_32(Val)+Log2_32(Val) < 7) {
4005      // We use the simple binary decomposition method to generate the multiply
4006      // sequence.  There are more optimal ways to do this (for example,
4007      // powi(x,15) generates one more multiply than it should), but this has
4008      // the benefit of being both really simple and much better than a libcall.
4009      SDValue Res;  // Logically starts equal to 1.0
4010      SDValue CurSquare = LHS;
4011      while (Val) {
4012        if (Val & 1) {
4013          if (Res.getNode())
4014            Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4015          else
4016            Res = CurSquare;  // 1.0*CurSquare.
4017        }
4018
4019        CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4020                                CurSquare, CurSquare);
4021        Val >>= 1;
4022      }
4023
4024      // If the original was negative, invert the result, producing 1/(x*x*x).
4025      if (RHSC->getSExtValue() < 0)
4026        Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4027                          DAG.getConstantFP(1.0, LHS.getValueType()), Res);
4028      return Res;
4029    }
4030  }
4031
4032  // Otherwise, expand to a libcall.
4033  return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4034}
4035
4036/// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4037/// argument, create the corresponding DBG_VALUE machine instruction for it now.
4038/// At the end of instruction selection, they will be inserted to the entry BB.
4039bool
4040SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
4041                                              int64_t Offset,
4042                                              const SDValue &N) {
4043  const Argument *Arg = dyn_cast<Argument>(V);
4044  if (!Arg)
4045    return false;
4046
4047  MachineFunction &MF = DAG.getMachineFunction();
4048  const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
4049  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
4050
4051  // Ignore inlined function arguments here.
4052  DIVariable DV(Variable);
4053  if (DV.isInlinedFnArgument(MF.getFunction()))
4054    return false;
4055
4056  MachineBasicBlock *MBB = FuncInfo.MBB;
4057  if (MBB != &MF.front())
4058    return false;
4059
4060  unsigned Reg = 0;
4061  if (Arg->hasByValAttr()) {
4062    // Byval arguments' frame index is recorded during argument lowering.
4063    // Use this info directly.
4064    Reg = TRI->getFrameRegister(MF);
4065    Offset = FuncInfo.getByValArgumentFrameIndex(Arg);
4066    // If byval argument ofset is not recorded then ignore this.
4067    if (!Offset)
4068      Reg = 0;
4069  }
4070
4071  if (N.getNode() && N.getOpcode() == ISD::CopyFromReg) {
4072    Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
4073    if (TargetRegisterInfo::isVirtualRegister(Reg)) {
4074      MachineRegisterInfo &RegInfo = MF.getRegInfo();
4075      unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4076      if (PR)
4077        Reg = PR;
4078    }
4079  }
4080
4081  if (!Reg) {
4082    // Check if ValueMap has reg number.
4083    DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4084    if (VMI != FuncInfo.ValueMap.end())
4085      Reg = VMI->second;
4086  }
4087
4088  if (!Reg && N.getNode()) {
4089    // Check if frame index is available.
4090    if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4091      if (FrameIndexSDNode *FINode =
4092          dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) {
4093        Reg = TRI->getFrameRegister(MF);
4094        Offset = FINode->getIndex();
4095      }
4096  }
4097
4098  if (!Reg)
4099    return false;
4100
4101  MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(),
4102                                    TII->get(TargetOpcode::DBG_VALUE))
4103    .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable);
4104  FuncInfo.ArgDbgValues.push_back(&*MIB);
4105  return true;
4106}
4107
4108// VisualStudio defines setjmp as _setjmp
4109#if defined(_MSC_VER) && defined(setjmp) && \
4110                         !defined(setjmp_undefined_for_msvc)
4111#  pragma push_macro("setjmp")
4112#  undef setjmp
4113#  define setjmp_undefined_for_msvc
4114#endif
4115
4116/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4117/// we want to emit this as a call to a named external function, return the name
4118/// otherwise lower it and return null.
4119const char *
4120SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4121  DebugLoc dl = getCurDebugLoc();
4122  SDValue Res;
4123
4124  switch (Intrinsic) {
4125  default:
4126    // By default, turn this into a target intrinsic node.
4127    visitTargetIntrinsic(I, Intrinsic);
4128    return 0;
4129  case Intrinsic::vastart:  visitVAStart(I); return 0;
4130  case Intrinsic::vaend:    visitVAEnd(I); return 0;
4131  case Intrinsic::vacopy:   visitVACopy(I); return 0;
4132  case Intrinsic::returnaddress:
4133    setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(),
4134                             getValue(I.getArgOperand(0))));
4135    return 0;
4136  case Intrinsic::frameaddress:
4137    setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(),
4138                             getValue(I.getArgOperand(0))));
4139    return 0;
4140  case Intrinsic::setjmp:
4141    return "_setjmp"+!TLI.usesUnderscoreSetJmp();
4142  case Intrinsic::longjmp:
4143    return "_longjmp"+!TLI.usesUnderscoreLongJmp();
4144  case Intrinsic::memcpy: {
4145    // Assert for address < 256 since we support only user defined address
4146    // spaces.
4147    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4148           < 256 &&
4149           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4150           < 256 &&
4151           "Unknown address space");
4152    SDValue Op1 = getValue(I.getArgOperand(0));
4153    SDValue Op2 = getValue(I.getArgOperand(1));
4154    SDValue Op3 = getValue(I.getArgOperand(2));
4155    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4156    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4157    DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false,
4158                              MachinePointerInfo(I.getArgOperand(0)),
4159                              MachinePointerInfo(I.getArgOperand(1))));
4160    return 0;
4161  }
4162  case Intrinsic::memset: {
4163    // Assert for address < 256 since we support only user defined address
4164    // spaces.
4165    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4166           < 256 &&
4167           "Unknown address space");
4168    SDValue Op1 = getValue(I.getArgOperand(0));
4169    SDValue Op2 = getValue(I.getArgOperand(1));
4170    SDValue Op3 = getValue(I.getArgOperand(2));
4171    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4172    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4173    DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4174                              MachinePointerInfo(I.getArgOperand(0))));
4175    return 0;
4176  }
4177  case Intrinsic::memmove: {
4178    // Assert for address < 256 since we support only user defined address
4179    // spaces.
4180    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4181           < 256 &&
4182           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4183           < 256 &&
4184           "Unknown address space");
4185    SDValue Op1 = getValue(I.getArgOperand(0));
4186    SDValue Op2 = getValue(I.getArgOperand(1));
4187    SDValue Op3 = getValue(I.getArgOperand(2));
4188    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4189    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4190    DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4191                               MachinePointerInfo(I.getArgOperand(0)),
4192                               MachinePointerInfo(I.getArgOperand(1))));
4193    return 0;
4194  }
4195  case Intrinsic::dbg_declare: {
4196    const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4197    MDNode *Variable = DI.getVariable();
4198    const Value *Address = DI.getAddress();
4199    if (!Address || !DIVariable(DI.getVariable()).Verify())
4200      return 0;
4201
4202    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4203    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4204    // absolute, but not relative, values are different depending on whether
4205    // debug info exists.
4206    ++SDNodeOrder;
4207
4208    // Check if address has undef value.
4209    if (isa<UndefValue>(Address) ||
4210        (Address->use_empty() && !isa<Argument>(Address))) {
4211      DEBUG(dbgs() << "Dropping debug info for " << DI);
4212      return 0;
4213    }
4214
4215    SDValue &N = NodeMap[Address];
4216    if (!N.getNode() && isa<Argument>(Address))
4217      // Check unused arguments map.
4218      N = UnusedArgNodeMap[Address];
4219    SDDbgValue *SDV;
4220    if (N.getNode()) {
4221      // Parameters are handled specially.
4222      bool isParameter =
4223        DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable;
4224      if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4225        Address = BCI->getOperand(0);
4226      const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
4227
4228      if (isParameter && !AI) {
4229        FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4230        if (FINode)
4231          // Byval parameter.  We have a frame index at this point.
4232          SDV = DAG.getDbgValue(Variable, FINode->getIndex(),
4233                                0, dl, SDNodeOrder);
4234        else {
4235          // Can't do anything with other non-AI cases yet.  This might be a
4236          // parameter of a callee function that got inlined, for example.
4237          DEBUG(dbgs() << "Dropping debug info for " << DI);
4238          return 0;
4239        }
4240      } else if (AI)
4241        SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
4242                              0, dl, SDNodeOrder);
4243      else {
4244        // Can't do anything with other non-AI cases yet.
4245        DEBUG(dbgs() << "Dropping debug info for " << DI);
4246        return 0;
4247      }
4248      DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4249    } else {
4250      // If Address is an argument then try to emit its dbg value using
4251      // virtual register info from the FuncInfo.ValueMap.
4252      if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) {
4253        // If variable is pinned by a alloca in dominating bb then
4254        // use StaticAllocaMap.
4255        if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4256          if (AI->getParent() != DI.getParent()) {
4257            DenseMap<const AllocaInst*, int>::iterator SI =
4258              FuncInfo.StaticAllocaMap.find(AI);
4259            if (SI != FuncInfo.StaticAllocaMap.end()) {
4260              SDV = DAG.getDbgValue(Variable, SI->second,
4261                                    0, dl, SDNodeOrder);
4262              DAG.AddDbgValue(SDV, 0, false);
4263              return 0;
4264            }
4265          }
4266        }
4267        DEBUG(dbgs() << "Dropping debug info for " << DI);
4268      }
4269    }
4270    return 0;
4271  }
4272  case Intrinsic::dbg_value: {
4273    const DbgValueInst &DI = cast<DbgValueInst>(I);
4274    if (!DIVariable(DI.getVariable()).Verify())
4275      return 0;
4276
4277    MDNode *Variable = DI.getVariable();
4278    uint64_t Offset = DI.getOffset();
4279    const Value *V = DI.getValue();
4280    if (!V)
4281      return 0;
4282
4283    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4284    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4285    // absolute, but not relative, values are different depending on whether
4286    // debug info exists.
4287    ++SDNodeOrder;
4288    SDDbgValue *SDV;
4289    if (isa<ConstantInt>(V) || isa<ConstantFP>(V)) {
4290      SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder);
4291      DAG.AddDbgValue(SDV, 0, false);
4292    } else {
4293      // Do not use getValue() in here; we don't want to generate code at
4294      // this point if it hasn't been done yet.
4295      SDValue N = NodeMap[V];
4296      if (!N.getNode() && isa<Argument>(V))
4297        // Check unused arguments map.
4298        N = UnusedArgNodeMap[V];
4299      if (N.getNode()) {
4300        if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) {
4301          SDV = DAG.getDbgValue(Variable, N.getNode(),
4302                                N.getResNo(), Offset, dl, SDNodeOrder);
4303          DAG.AddDbgValue(SDV, N.getNode(), false);
4304        }
4305      } else if (isa<PHINode>(V) && !V->use_empty() ) {
4306        // Do not call getValue(V) yet, as we don't want to generate code.
4307        // Remember it for later.
4308        DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4309        DanglingDebugInfoMap[V] = DDI;
4310      } else {
4311        // We may expand this to cover more cases.  One case where we have no
4312        // data available is an unreferenced parameter.
4313        DEBUG(dbgs() << "Dropping debug info for " << DI);
4314      }
4315    }
4316
4317    // Build a debug info table entry.
4318    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4319      V = BCI->getOperand(0);
4320    const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4321    // Don't handle byval struct arguments or VLAs, for example.
4322    if (!AI)
4323      return 0;
4324    DenseMap<const AllocaInst*, int>::iterator SI =
4325      FuncInfo.StaticAllocaMap.find(AI);
4326    if (SI == FuncInfo.StaticAllocaMap.end())
4327      return 0; // VLAs.
4328    int FI = SI->second;
4329
4330    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4331    if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
4332      MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
4333    return 0;
4334  }
4335  case Intrinsic::eh_exception: {
4336    // Insert the EXCEPTIONADDR instruction.
4337    assert(FuncInfo.MBB->isLandingPad() &&
4338           "Call to eh.exception not in landing pad!");
4339    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4340    SDValue Ops[1];
4341    Ops[0] = DAG.getRoot();
4342    SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1);
4343    setValue(&I, Op);
4344    DAG.setRoot(Op.getValue(1));
4345    return 0;
4346  }
4347
4348  case Intrinsic::eh_selector: {
4349    MachineBasicBlock *CallMBB = FuncInfo.MBB;
4350    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4351    if (CallMBB->isLandingPad())
4352      AddCatchInfo(I, &MMI, CallMBB);
4353    else {
4354#ifndef NDEBUG
4355      FuncInfo.CatchInfoLost.insert(&I);
4356#endif
4357      // FIXME: Mark exception selector register as live in.  Hack for PR1508.
4358      unsigned Reg = TLI.getExceptionSelectorRegister();
4359      if (Reg) FuncInfo.MBB->addLiveIn(Reg);
4360    }
4361
4362    // Insert the EHSELECTION instruction.
4363    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4364    SDValue Ops[2];
4365    Ops[0] = getValue(I.getArgOperand(0));
4366    Ops[1] = getRoot();
4367    SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2);
4368    DAG.setRoot(Op.getValue(1));
4369    setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32));
4370    return 0;
4371  }
4372
4373  case Intrinsic::eh_typeid_for: {
4374    // Find the type id for the given typeinfo.
4375    GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0));
4376    unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4377    Res = DAG.getConstant(TypeID, MVT::i32);
4378    setValue(&I, Res);
4379    return 0;
4380  }
4381
4382  case Intrinsic::eh_return_i32:
4383  case Intrinsic::eh_return_i64:
4384    DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4385    DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl,
4386                            MVT::Other,
4387                            getControlRoot(),
4388                            getValue(I.getArgOperand(0)),
4389                            getValue(I.getArgOperand(1))));
4390    return 0;
4391  case Intrinsic::eh_unwind_init:
4392    DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4393    return 0;
4394  case Intrinsic::eh_dwarf_cfa: {
4395    SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl,
4396                                        TLI.getPointerTy());
4397    SDValue Offset = DAG.getNode(ISD::ADD, dl,
4398                                 TLI.getPointerTy(),
4399                                 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
4400                                             TLI.getPointerTy()),
4401                                 CfaArg);
4402    SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl,
4403                             TLI.getPointerTy(),
4404                             DAG.getConstant(0, TLI.getPointerTy()));
4405    setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
4406                             FA, Offset));
4407    return 0;
4408  }
4409  case Intrinsic::eh_sjlj_callsite: {
4410    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4411    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4412    assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4413    assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4414
4415    MMI.setCurrentCallSite(CI->getZExtValue());
4416    return 0;
4417  }
4418  case Intrinsic::eh_sjlj_setjmp: {
4419    setValue(&I, DAG.getNode(ISD::EH_SJLJ_SETJMP, dl, MVT::i32, getRoot(),
4420                             getValue(I.getArgOperand(0))));
4421    return 0;
4422  }
4423  case Intrinsic::eh_sjlj_longjmp: {
4424    DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other,
4425                            getRoot(), getValue(I.getArgOperand(0))));
4426    return 0;
4427  }
4428  case Intrinsic::eh_sjlj_dispatch_setup: {
4429    DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_DISPATCHSETUP, dl, MVT::Other,
4430                            getRoot(), getValue(I.getArgOperand(0))));
4431    return 0;
4432  }
4433
4434  case Intrinsic::x86_mmx_pslli_w:
4435  case Intrinsic::x86_mmx_pslli_d:
4436  case Intrinsic::x86_mmx_pslli_q:
4437  case Intrinsic::x86_mmx_psrli_w:
4438  case Intrinsic::x86_mmx_psrli_d:
4439  case Intrinsic::x86_mmx_psrli_q:
4440  case Intrinsic::x86_mmx_psrai_w:
4441  case Intrinsic::x86_mmx_psrai_d: {
4442    SDValue ShAmt = getValue(I.getArgOperand(1));
4443    if (isa<ConstantSDNode>(ShAmt)) {
4444      visitTargetIntrinsic(I, Intrinsic);
4445      return 0;
4446    }
4447    unsigned NewIntrinsic = 0;
4448    EVT ShAmtVT = MVT::v2i32;
4449    switch (Intrinsic) {
4450    case Intrinsic::x86_mmx_pslli_w:
4451      NewIntrinsic = Intrinsic::x86_mmx_psll_w;
4452      break;
4453    case Intrinsic::x86_mmx_pslli_d:
4454      NewIntrinsic = Intrinsic::x86_mmx_psll_d;
4455      break;
4456    case Intrinsic::x86_mmx_pslli_q:
4457      NewIntrinsic = Intrinsic::x86_mmx_psll_q;
4458      break;
4459    case Intrinsic::x86_mmx_psrli_w:
4460      NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
4461      break;
4462    case Intrinsic::x86_mmx_psrli_d:
4463      NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
4464      break;
4465    case Intrinsic::x86_mmx_psrli_q:
4466      NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
4467      break;
4468    case Intrinsic::x86_mmx_psrai_w:
4469      NewIntrinsic = Intrinsic::x86_mmx_psra_w;
4470      break;
4471    case Intrinsic::x86_mmx_psrai_d:
4472      NewIntrinsic = Intrinsic::x86_mmx_psra_d;
4473      break;
4474    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4475    }
4476
4477    // The vector shift intrinsics with scalars uses 32b shift amounts but
4478    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
4479    // to be zero.
4480    // We must do this early because v2i32 is not a legal type.
4481    DebugLoc dl = getCurDebugLoc();
4482    SDValue ShOps[2];
4483    ShOps[0] = ShAmt;
4484    ShOps[1] = DAG.getConstant(0, MVT::i32);
4485    ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
4486    EVT DestVT = TLI.getValueType(I.getType());
4487    ShAmt = DAG.getNode(ISD::BITCAST, dl, DestVT, ShAmt);
4488    Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
4489                       DAG.getConstant(NewIntrinsic, MVT::i32),
4490                       getValue(I.getArgOperand(0)), ShAmt);
4491    setValue(&I, Res);
4492    return 0;
4493  }
4494  case Intrinsic::convertff:
4495  case Intrinsic::convertfsi:
4496  case Intrinsic::convertfui:
4497  case Intrinsic::convertsif:
4498  case Intrinsic::convertuif:
4499  case Intrinsic::convertss:
4500  case Intrinsic::convertsu:
4501  case Intrinsic::convertus:
4502  case Intrinsic::convertuu: {
4503    ISD::CvtCode Code = ISD::CVT_INVALID;
4504    switch (Intrinsic) {
4505    case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
4506    case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4507    case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4508    case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4509    case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4510    case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
4511    case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
4512    case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4513    case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4514    }
4515    EVT DestVT = TLI.getValueType(I.getType());
4516    const Value *Op1 = I.getArgOperand(0);
4517    Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1),
4518                               DAG.getValueType(DestVT),
4519                               DAG.getValueType(getValue(Op1).getValueType()),
4520                               getValue(I.getArgOperand(1)),
4521                               getValue(I.getArgOperand(2)),
4522                               Code);
4523    setValue(&I, Res);
4524    return 0;
4525  }
4526  case Intrinsic::sqrt:
4527    setValue(&I, DAG.getNode(ISD::FSQRT, dl,
4528                             getValue(I.getArgOperand(0)).getValueType(),
4529                             getValue(I.getArgOperand(0))));
4530    return 0;
4531  case Intrinsic::powi:
4532    setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)),
4533                            getValue(I.getArgOperand(1)), DAG));
4534    return 0;
4535  case Intrinsic::sin:
4536    setValue(&I, DAG.getNode(ISD::FSIN, dl,
4537                             getValue(I.getArgOperand(0)).getValueType(),
4538                             getValue(I.getArgOperand(0))));
4539    return 0;
4540  case Intrinsic::cos:
4541    setValue(&I, DAG.getNode(ISD::FCOS, dl,
4542                             getValue(I.getArgOperand(0)).getValueType(),
4543                             getValue(I.getArgOperand(0))));
4544    return 0;
4545  case Intrinsic::log:
4546    visitLog(I);
4547    return 0;
4548  case Intrinsic::log2:
4549    visitLog2(I);
4550    return 0;
4551  case Intrinsic::log10:
4552    visitLog10(I);
4553    return 0;
4554  case Intrinsic::exp:
4555    visitExp(I);
4556    return 0;
4557  case Intrinsic::exp2:
4558    visitExp2(I);
4559    return 0;
4560  case Intrinsic::pow:
4561    visitPow(I);
4562    return 0;
4563  case Intrinsic::convert_to_fp16:
4564    setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl,
4565                             MVT::i16, getValue(I.getArgOperand(0))));
4566    return 0;
4567  case Intrinsic::convert_from_fp16:
4568    setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl,
4569                             MVT::f32, getValue(I.getArgOperand(0))));
4570    return 0;
4571  case Intrinsic::pcmarker: {
4572    SDValue Tmp = getValue(I.getArgOperand(0));
4573    DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp));
4574    return 0;
4575  }
4576  case Intrinsic::readcyclecounter: {
4577    SDValue Op = getRoot();
4578    Res = DAG.getNode(ISD::READCYCLECOUNTER, dl,
4579                      DAG.getVTList(MVT::i64, MVT::Other),
4580                      &Op, 1);
4581    setValue(&I, Res);
4582    DAG.setRoot(Res.getValue(1));
4583    return 0;
4584  }
4585  case Intrinsic::bswap:
4586    setValue(&I, DAG.getNode(ISD::BSWAP, dl,
4587                             getValue(I.getArgOperand(0)).getValueType(),
4588                             getValue(I.getArgOperand(0))));
4589    return 0;
4590  case Intrinsic::cttz: {
4591    SDValue Arg = getValue(I.getArgOperand(0));
4592    EVT Ty = Arg.getValueType();
4593    setValue(&I, DAG.getNode(ISD::CTTZ, dl, Ty, Arg));
4594    return 0;
4595  }
4596  case Intrinsic::ctlz: {
4597    SDValue Arg = getValue(I.getArgOperand(0));
4598    EVT Ty = Arg.getValueType();
4599    setValue(&I, DAG.getNode(ISD::CTLZ, dl, Ty, Arg));
4600    return 0;
4601  }
4602  case Intrinsic::ctpop: {
4603    SDValue Arg = getValue(I.getArgOperand(0));
4604    EVT Ty = Arg.getValueType();
4605    setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg));
4606    return 0;
4607  }
4608  case Intrinsic::stacksave: {
4609    SDValue Op = getRoot();
4610    Res = DAG.getNode(ISD::STACKSAVE, dl,
4611                      DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
4612    setValue(&I, Res);
4613    DAG.setRoot(Res.getValue(1));
4614    return 0;
4615  }
4616  case Intrinsic::stackrestore: {
4617    Res = getValue(I.getArgOperand(0));
4618    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res));
4619    return 0;
4620  }
4621  case Intrinsic::stackprotector: {
4622    // Emit code into the DAG to store the stack guard onto the stack.
4623    MachineFunction &MF = DAG.getMachineFunction();
4624    MachineFrameInfo *MFI = MF.getFrameInfo();
4625    EVT PtrTy = TLI.getPointerTy();
4626
4627    SDValue Src = getValue(I.getArgOperand(0));   // The guard's value.
4628    AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
4629
4630    int FI = FuncInfo.StaticAllocaMap[Slot];
4631    MFI->setStackProtectorIndex(FI);
4632
4633    SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
4634
4635    // Store the stack protector onto the stack.
4636    Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN,
4637                       MachinePointerInfo::getFixedStack(FI),
4638                       true, false, 0);
4639    setValue(&I, Res);
4640    DAG.setRoot(Res);
4641    return 0;
4642  }
4643  case Intrinsic::objectsize: {
4644    // If we don't know by now, we're never going to know.
4645    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
4646
4647    assert(CI && "Non-constant type in __builtin_object_size?");
4648
4649    SDValue Arg = getValue(I.getCalledValue());
4650    EVT Ty = Arg.getValueType();
4651
4652    if (CI->isZero())
4653      Res = DAG.getConstant(-1ULL, Ty);
4654    else
4655      Res = DAG.getConstant(0, Ty);
4656
4657    setValue(&I, Res);
4658    return 0;
4659  }
4660  case Intrinsic::var_annotation:
4661    // Discard annotate attributes
4662    return 0;
4663
4664  case Intrinsic::init_trampoline: {
4665    const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
4666
4667    SDValue Ops[6];
4668    Ops[0] = getRoot();
4669    Ops[1] = getValue(I.getArgOperand(0));
4670    Ops[2] = getValue(I.getArgOperand(1));
4671    Ops[3] = getValue(I.getArgOperand(2));
4672    Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
4673    Ops[5] = DAG.getSrcValue(F);
4674
4675    Res = DAG.getNode(ISD::TRAMPOLINE, dl,
4676                      DAG.getVTList(TLI.getPointerTy(), MVT::Other),
4677                      Ops, 6);
4678
4679    setValue(&I, Res);
4680    DAG.setRoot(Res.getValue(1));
4681    return 0;
4682  }
4683  case Intrinsic::gcroot:
4684    if (GFI) {
4685      const Value *Alloca = I.getArgOperand(0);
4686      const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
4687
4688      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
4689      GFI->addStackRoot(FI->getIndex(), TypeMap);
4690    }
4691    return 0;
4692  case Intrinsic::gcread:
4693  case Intrinsic::gcwrite:
4694    llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
4695    return 0;
4696  case Intrinsic::flt_rounds:
4697    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32));
4698    return 0;
4699  case Intrinsic::trap:
4700    DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot()));
4701    return 0;
4702  case Intrinsic::uadd_with_overflow:
4703    return implVisitAluOverflow(I, ISD::UADDO);
4704  case Intrinsic::sadd_with_overflow:
4705    return implVisitAluOverflow(I, ISD::SADDO);
4706  case Intrinsic::usub_with_overflow:
4707    return implVisitAluOverflow(I, ISD::USUBO);
4708  case Intrinsic::ssub_with_overflow:
4709    return implVisitAluOverflow(I, ISD::SSUBO);
4710  case Intrinsic::umul_with_overflow:
4711    return implVisitAluOverflow(I, ISD::UMULO);
4712  case Intrinsic::smul_with_overflow:
4713    return implVisitAluOverflow(I, ISD::SMULO);
4714
4715  case Intrinsic::prefetch: {
4716    SDValue Ops[4];
4717    unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
4718    Ops[0] = getRoot();
4719    Ops[1] = getValue(I.getArgOperand(0));
4720    Ops[2] = getValue(I.getArgOperand(1));
4721    Ops[3] = getValue(I.getArgOperand(2));
4722    DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, dl,
4723                                        DAG.getVTList(MVT::Other),
4724                                        &Ops[0], 4,
4725                                        EVT::getIntegerVT(*Context, 8),
4726                                        MachinePointerInfo(I.getArgOperand(0)),
4727                                        0, /* align */
4728                                        false, /* volatile */
4729                                        rw==0, /* read */
4730                                        rw==1)); /* write */
4731    return 0;
4732  }
4733  case Intrinsic::memory_barrier: {
4734    SDValue Ops[6];
4735    Ops[0] = getRoot();
4736    for (int x = 1; x < 6; ++x)
4737      Ops[x] = getValue(I.getArgOperand(x - 1));
4738
4739    DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6));
4740    return 0;
4741  }
4742  case Intrinsic::atomic_cmp_swap: {
4743    SDValue Root = getRoot();
4744    SDValue L =
4745      DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(),
4746                    getValue(I.getArgOperand(1)).getValueType().getSimpleVT(),
4747                    Root,
4748                    getValue(I.getArgOperand(0)),
4749                    getValue(I.getArgOperand(1)),
4750                    getValue(I.getArgOperand(2)),
4751                    MachinePointerInfo(I.getArgOperand(0)));
4752    setValue(&I, L);
4753    DAG.setRoot(L.getValue(1));
4754    return 0;
4755  }
4756  case Intrinsic::atomic_load_add:
4757    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD);
4758  case Intrinsic::atomic_load_sub:
4759    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB);
4760  case Intrinsic::atomic_load_or:
4761    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR);
4762  case Intrinsic::atomic_load_xor:
4763    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR);
4764  case Intrinsic::atomic_load_and:
4765    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND);
4766  case Intrinsic::atomic_load_nand:
4767    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND);
4768  case Intrinsic::atomic_load_max:
4769    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX);
4770  case Intrinsic::atomic_load_min:
4771    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN);
4772  case Intrinsic::atomic_load_umin:
4773    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN);
4774  case Intrinsic::atomic_load_umax:
4775    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX);
4776  case Intrinsic::atomic_swap:
4777    return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP);
4778
4779  case Intrinsic::invariant_start:
4780  case Intrinsic::lifetime_start:
4781    // Discard region information.
4782    setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
4783    return 0;
4784  case Intrinsic::invariant_end:
4785  case Intrinsic::lifetime_end:
4786    // Discard region information.
4787    return 0;
4788  }
4789}
4790
4791void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
4792                                      bool isTailCall,
4793                                      MachineBasicBlock *LandingPad) {
4794  const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
4795  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
4796  const Type *RetTy = FTy->getReturnType();
4797  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4798  MCSymbol *BeginLabel = 0;
4799
4800  TargetLowering::ArgListTy Args;
4801  TargetLowering::ArgListEntry Entry;
4802  Args.reserve(CS.arg_size());
4803
4804  // Check whether the function can return without sret-demotion.
4805  SmallVector<ISD::OutputArg, 4> Outs;
4806  SmallVector<uint64_t, 4> Offsets;
4807  GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(),
4808                Outs, TLI, &Offsets);
4809
4810  bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
4811                        FTy->isVarArg(), Outs, FTy->getContext());
4812
4813  SDValue DemoteStackSlot;
4814  int DemoteStackIdx = -100;
4815
4816  if (!CanLowerReturn) {
4817    uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(
4818                      FTy->getReturnType());
4819    unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(
4820                      FTy->getReturnType());
4821    MachineFunction &MF = DAG.getMachineFunction();
4822    DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
4823    const Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
4824
4825    DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI.getPointerTy());
4826    Entry.Node = DemoteStackSlot;
4827    Entry.Ty = StackSlotPtrType;
4828    Entry.isSExt = false;
4829    Entry.isZExt = false;
4830    Entry.isInReg = false;
4831    Entry.isSRet = true;
4832    Entry.isNest = false;
4833    Entry.isByVal = false;
4834    Entry.Alignment = Align;
4835    Args.push_back(Entry);
4836    RetTy = Type::getVoidTy(FTy->getContext());
4837  }
4838
4839  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
4840       i != e; ++i) {
4841    SDValue ArgNode = getValue(*i);
4842    Entry.Node = ArgNode; Entry.Ty = (*i)->getType();
4843
4844    unsigned attrInd = i - CS.arg_begin() + 1;
4845    Entry.isSExt  = CS.paramHasAttr(attrInd, Attribute::SExt);
4846    Entry.isZExt  = CS.paramHasAttr(attrInd, Attribute::ZExt);
4847    Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg);
4848    Entry.isSRet  = CS.paramHasAttr(attrInd, Attribute::StructRet);
4849    Entry.isNest  = CS.paramHasAttr(attrInd, Attribute::Nest);
4850    Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal);
4851    Entry.Alignment = CS.getParamAlignment(attrInd);
4852    Args.push_back(Entry);
4853  }
4854
4855  if (LandingPad) {
4856    // Insert a label before the invoke call to mark the try range.  This can be
4857    // used to detect deletion of the invoke via the MachineModuleInfo.
4858    BeginLabel = MMI.getContext().CreateTempSymbol();
4859
4860    // For SjLj, keep track of which landing pads go with which invokes
4861    // so as to maintain the ordering of pads in the LSDA.
4862    unsigned CallSiteIndex = MMI.getCurrentCallSite();
4863    if (CallSiteIndex) {
4864      MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
4865      // Now that the call site is handled, stop tracking it.
4866      MMI.setCurrentCallSite(0);
4867    }
4868
4869    // Both PendingLoads and PendingExports must be flushed here;
4870    // this call might not return.
4871    (void)getRoot();
4872    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel));
4873  }
4874
4875  // Check if target-independent constraints permit a tail call here.
4876  // Target-dependent constraints are checked within TLI.LowerCallTo.
4877  if (isTailCall &&
4878      !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI))
4879    isTailCall = false;
4880
4881  // If there's a possibility that fast-isel has already selected some amount
4882  // of the current basic block, don't emit a tail call.
4883  if (isTailCall && EnableFastISel)
4884    isTailCall = false;
4885
4886  std::pair<SDValue,SDValue> Result =
4887    TLI.LowerCallTo(getRoot(), RetTy,
4888                    CS.paramHasAttr(0, Attribute::SExt),
4889                    CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(),
4890                    CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(),
4891                    CS.getCallingConv(),
4892                    isTailCall,
4893                    !CS.getInstruction()->use_empty(),
4894                    Callee, Args, DAG, getCurDebugLoc());
4895  assert((isTailCall || Result.second.getNode()) &&
4896         "Non-null chain expected with non-tail call!");
4897  assert((Result.second.getNode() || !Result.first.getNode()) &&
4898         "Null value expected with tail call!");
4899  if (Result.first.getNode()) {
4900    setValue(CS.getInstruction(), Result.first);
4901  } else if (!CanLowerReturn && Result.second.getNode()) {
4902    // The instruction result is the result of loading from the
4903    // hidden sret parameter.
4904    SmallVector<EVT, 1> PVTs;
4905    const Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
4906
4907    ComputeValueVTs(TLI, PtrRetTy, PVTs);
4908    assert(PVTs.size() == 1 && "Pointers should fit in one register");
4909    EVT PtrVT = PVTs[0];
4910    unsigned NumValues = Outs.size();
4911    SmallVector<SDValue, 4> Values(NumValues);
4912    SmallVector<SDValue, 4> Chains(NumValues);
4913
4914    for (unsigned i = 0; i < NumValues; ++i) {
4915      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT,
4916                                DemoteStackSlot,
4917                                DAG.getConstant(Offsets[i], PtrVT));
4918      SDValue L = DAG.getLoad(Outs[i].VT, getCurDebugLoc(), Result.second,
4919                              Add,
4920                  MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]),
4921                              false, false, 1);
4922      Values[i] = L;
4923      Chains[i] = L.getValue(1);
4924    }
4925
4926    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
4927                                MVT::Other, &Chains[0], NumValues);
4928    PendingLoads.push_back(Chain);
4929
4930    // Collect the legal value parts into potentially illegal values
4931    // that correspond to the original function's return values.
4932    SmallVector<EVT, 4> RetTys;
4933    RetTy = FTy->getReturnType();
4934    ComputeValueVTs(TLI, RetTy, RetTys);
4935    ISD::NodeType AssertOp = ISD::DELETED_NODE;
4936    SmallVector<SDValue, 4> ReturnValues;
4937    unsigned CurReg = 0;
4938    for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
4939      EVT VT = RetTys[I];
4940      EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT);
4941      unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT);
4942
4943      SDValue ReturnValue =
4944        getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs,
4945                         RegisterVT, VT, AssertOp);
4946      ReturnValues.push_back(ReturnValue);
4947      CurReg += NumRegs;
4948    }
4949
4950    setValue(CS.getInstruction(),
4951             DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
4952                         DAG.getVTList(&RetTys[0], RetTys.size()),
4953                         &ReturnValues[0], ReturnValues.size()));
4954
4955  }
4956
4957  // As a special case, a null chain means that a tail call has been emitted and
4958  // the DAG root is already updated.
4959  if (Result.second.getNode())
4960    DAG.setRoot(Result.second);
4961  else
4962    HasTailCall = true;
4963
4964  if (LandingPad) {
4965    // Insert a label at the end of the invoke call to mark the try range.  This
4966    // can be used to detect deletion of the invoke via the MachineModuleInfo.
4967    MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
4968    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel));
4969
4970    // Inform MachineModuleInfo of range.
4971    MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
4972  }
4973}
4974
4975/// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
4976/// value is equal or not-equal to zero.
4977static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
4978  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
4979       UI != E; ++UI) {
4980    if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
4981      if (IC->isEquality())
4982        if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
4983          if (C->isNullValue())
4984            continue;
4985    // Unknown instruction.
4986    return false;
4987  }
4988  return true;
4989}
4990
4991static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
4992                             const Type *LoadTy,
4993                             SelectionDAGBuilder &Builder) {
4994
4995  // Check to see if this load can be trivially constant folded, e.g. if the
4996  // input is from a string literal.
4997  if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
4998    // Cast pointer to the type we really want to load.
4999    LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5000                                         PointerType::getUnqual(LoadTy));
5001
5002    if (const Constant *LoadCst =
5003          ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
5004                                       Builder.TD))
5005      return Builder.getValue(LoadCst);
5006  }
5007
5008  // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
5009  // still constant memory, the input chain can be the entry node.
5010  SDValue Root;
5011  bool ConstantMemory = false;
5012
5013  // Do not serialize (non-volatile) loads of constant memory with anything.
5014  if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5015    Root = Builder.DAG.getEntryNode();
5016    ConstantMemory = true;
5017  } else {
5018    // Do not serialize non-volatile loads against each other.
5019    Root = Builder.DAG.getRoot();
5020  }
5021
5022  SDValue Ptr = Builder.getValue(PtrVal);
5023  SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root,
5024                                        Ptr, MachinePointerInfo(PtrVal),
5025                                        false /*volatile*/,
5026                                        false /*nontemporal*/, 1 /* align=1 */);
5027
5028  if (!ConstantMemory)
5029    Builder.PendingLoads.push_back(LoadVal.getValue(1));
5030  return LoadVal;
5031}
5032
5033
5034/// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5035/// If so, return true and lower it, otherwise return false and it will be
5036/// lowered like a normal call.
5037bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5038  // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
5039  if (I.getNumArgOperands() != 3)
5040    return false;
5041
5042  const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5043  if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5044      !I.getArgOperand(2)->getType()->isIntegerTy() ||
5045      !I.getType()->isIntegerTy())
5046    return false;
5047
5048  const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2));
5049
5050  // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
5051  // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
5052  if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) {
5053    bool ActuallyDoIt = true;
5054    MVT LoadVT;
5055    const Type *LoadTy;
5056    switch (Size->getZExtValue()) {
5057    default:
5058      LoadVT = MVT::Other;
5059      LoadTy = 0;
5060      ActuallyDoIt = false;
5061      break;
5062    case 2:
5063      LoadVT = MVT::i16;
5064      LoadTy = Type::getInt16Ty(Size->getContext());
5065      break;
5066    case 4:
5067      LoadVT = MVT::i32;
5068      LoadTy = Type::getInt32Ty(Size->getContext());
5069      break;
5070    case 8:
5071      LoadVT = MVT::i64;
5072      LoadTy = Type::getInt64Ty(Size->getContext());
5073      break;
5074        /*
5075    case 16:
5076      LoadVT = MVT::v4i32;
5077      LoadTy = Type::getInt32Ty(Size->getContext());
5078      LoadTy = VectorType::get(LoadTy, 4);
5079      break;
5080         */
5081    }
5082
5083    // This turns into unaligned loads.  We only do this if the target natively
5084    // supports the MVT we'll be loading or if it is small enough (<= 4) that
5085    // we'll only produce a small number of byte loads.
5086
5087    // Require that we can find a legal MVT, and only do this if the target
5088    // supports unaligned loads of that type.  Expanding into byte loads would
5089    // bloat the code.
5090    if (ActuallyDoIt && Size->getZExtValue() > 4) {
5091      // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5092      // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5093      if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT))
5094        ActuallyDoIt = false;
5095    }
5096
5097    if (ActuallyDoIt) {
5098      SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5099      SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5100
5101      SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal,
5102                                 ISD::SETNE);
5103      EVT CallVT = TLI.getValueType(I.getType(), true);
5104      setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT));
5105      return true;
5106    }
5107  }
5108
5109
5110  return false;
5111}
5112
5113
5114void SelectionDAGBuilder::visitCall(const CallInst &I) {
5115  // Handle inline assembly differently.
5116  if (isa<InlineAsm>(I.getCalledValue())) {
5117    visitInlineAsm(&I);
5118    return;
5119  }
5120
5121  // See if any floating point values are being passed to this function. This is
5122  // used to emit an undefined reference to fltused on Windows.
5123  const FunctionType *FT =
5124    cast<FunctionType>(I.getCalledValue()->getType()->getContainedType(0));
5125  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5126  if (FT->isVarArg() &&
5127      !MMI.callsExternalVAFunctionWithFloatingPointArguments()) {
5128    for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
5129      const Type* T = I.getArgOperand(i)->getType();
5130      for (po_iterator<const Type*> i = po_begin(T), e = po_end(T);
5131           i != e; ++i) {
5132        if (!i->isFloatingPointTy()) continue;
5133        MMI.setCallsExternalVAFunctionWithFloatingPointArguments(true);
5134        break;
5135      }
5136    }
5137  }
5138
5139  const char *RenameFn = 0;
5140  if (Function *F = I.getCalledFunction()) {
5141    if (F->isDeclaration()) {
5142      if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
5143        if (unsigned IID = II->getIntrinsicID(F)) {
5144          RenameFn = visitIntrinsicCall(I, IID);
5145          if (!RenameFn)
5146            return;
5147        }
5148      }
5149      if (unsigned IID = F->getIntrinsicID()) {
5150        RenameFn = visitIntrinsicCall(I, IID);
5151        if (!RenameFn)
5152          return;
5153      }
5154    }
5155
5156    // Check for well-known libc/libm calls.  If the function is internal, it
5157    // can't be a library call.
5158    if (!F->hasLocalLinkage() && F->hasName()) {
5159      StringRef Name = F->getName();
5160      if (Name == "copysign" || Name == "copysignf" || Name == "copysignl") {
5161        if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
5162            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5163            I.getType() == I.getArgOperand(0)->getType() &&
5164            I.getType() == I.getArgOperand(1)->getType()) {
5165          SDValue LHS = getValue(I.getArgOperand(0));
5166          SDValue RHS = getValue(I.getArgOperand(1));
5167          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(),
5168                                   LHS.getValueType(), LHS, RHS));
5169          return;
5170        }
5171      } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") {
5172        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5173            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5174            I.getType() == I.getArgOperand(0)->getType()) {
5175          SDValue Tmp = getValue(I.getArgOperand(0));
5176          setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(),
5177                                   Tmp.getValueType(), Tmp));
5178          return;
5179        }
5180      } else if (Name == "sin" || Name == "sinf" || Name == "sinl") {
5181        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5182            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5183            I.getType() == I.getArgOperand(0)->getType() &&
5184            I.onlyReadsMemory()) {
5185          SDValue Tmp = getValue(I.getArgOperand(0));
5186          setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(),
5187                                   Tmp.getValueType(), Tmp));
5188          return;
5189        }
5190      } else if (Name == "cos" || Name == "cosf" || Name == "cosl") {
5191        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5192            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5193            I.getType() == I.getArgOperand(0)->getType() &&
5194            I.onlyReadsMemory()) {
5195          SDValue Tmp = getValue(I.getArgOperand(0));
5196          setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(),
5197                                   Tmp.getValueType(), Tmp));
5198          return;
5199        }
5200      } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") {
5201        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5202            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5203            I.getType() == I.getArgOperand(0)->getType() &&
5204            I.onlyReadsMemory()) {
5205          SDValue Tmp = getValue(I.getArgOperand(0));
5206          setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(),
5207                                   Tmp.getValueType(), Tmp));
5208          return;
5209        }
5210      } else if (Name == "memcmp") {
5211        if (visitMemCmpCall(I))
5212          return;
5213      }
5214    }
5215  }
5216
5217  SDValue Callee;
5218  if (!RenameFn)
5219    Callee = getValue(I.getCalledValue());
5220  else
5221    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
5222
5223  // Check if we can potentially perform a tail call. More detailed checking is
5224  // be done within LowerCallTo, after more information about the call is known.
5225  LowerCallTo(&I, Callee, I.isTailCall());
5226}
5227
5228namespace llvm {
5229
5230/// AsmOperandInfo - This contains information for each constraint that we are
5231/// lowering.
5232class LLVM_LIBRARY_VISIBILITY SDISelAsmOperandInfo :
5233    public TargetLowering::AsmOperandInfo {
5234public:
5235  /// CallOperand - If this is the result output operand or a clobber
5236  /// this is null, otherwise it is the incoming operand to the CallInst.
5237  /// This gets modified as the asm is processed.
5238  SDValue CallOperand;
5239
5240  /// AssignedRegs - If this is a register or register class operand, this
5241  /// contains the set of register corresponding to the operand.
5242  RegsForValue AssignedRegs;
5243
5244  explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
5245    : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
5246  }
5247
5248  /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
5249  /// busy in OutputRegs/InputRegs.
5250  void MarkAllocatedRegs(bool isOutReg, bool isInReg,
5251                         std::set<unsigned> &OutputRegs,
5252                         std::set<unsigned> &InputRegs,
5253                         const TargetRegisterInfo &TRI) const {
5254    if (isOutReg) {
5255      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
5256        MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
5257    }
5258    if (isInReg) {
5259      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
5260        MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
5261    }
5262  }
5263
5264  /// getCallOperandValEVT - Return the EVT of the Value* that this operand
5265  /// corresponds to.  If there is no Value* for this operand, it returns
5266  /// MVT::Other.
5267  EVT getCallOperandValEVT(LLVMContext &Context,
5268                           const TargetLowering &TLI,
5269                           const TargetData *TD) const {
5270    if (CallOperandVal == 0) return MVT::Other;
5271
5272    if (isa<BasicBlock>(CallOperandVal))
5273      return TLI.getPointerTy();
5274
5275    const llvm::Type *OpTy = CallOperandVal->getType();
5276
5277    // If this is an indirect operand, the operand is a pointer to the
5278    // accessed type.
5279    if (isIndirect) {
5280      const llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
5281      if (!PtrTy)
5282        report_fatal_error("Indirect operand for inline asm not a pointer!");
5283      OpTy = PtrTy->getElementType();
5284    }
5285
5286    // If OpTy is not a single value, it may be a struct/union that we
5287    // can tile with integers.
5288    if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5289      unsigned BitSize = TD->getTypeSizeInBits(OpTy);
5290      switch (BitSize) {
5291      default: break;
5292      case 1:
5293      case 8:
5294      case 16:
5295      case 32:
5296      case 64:
5297      case 128:
5298        OpTy = IntegerType::get(Context, BitSize);
5299        break;
5300      }
5301    }
5302
5303    return TLI.getValueType(OpTy, true);
5304  }
5305
5306private:
5307  /// MarkRegAndAliases - Mark the specified register and all aliases in the
5308  /// specified set.
5309  static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
5310                                const TargetRegisterInfo &TRI) {
5311    assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
5312    Regs.insert(Reg);
5313    if (const unsigned *Aliases = TRI.getAliasSet(Reg))
5314      for (; *Aliases; ++Aliases)
5315        Regs.insert(*Aliases);
5316  }
5317};
5318
5319typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
5320
5321} // end llvm namespace.
5322
5323/// isAllocatableRegister - If the specified register is safe to allocate,
5324/// i.e. it isn't a stack pointer or some other special register, return the
5325/// register class for the register.  Otherwise, return null.
5326static const TargetRegisterClass *
5327isAllocatableRegister(unsigned Reg, MachineFunction &MF,
5328                      const TargetLowering &TLI,
5329                      const TargetRegisterInfo *TRI) {
5330  EVT FoundVT = MVT::Other;
5331  const TargetRegisterClass *FoundRC = 0;
5332  for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(),
5333       E = TRI->regclass_end(); RCI != E; ++RCI) {
5334    EVT ThisVT = MVT::Other;
5335
5336    const TargetRegisterClass *RC = *RCI;
5337    // If none of the value types for this register class are valid, we
5338    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
5339    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
5340         I != E; ++I) {
5341      if (TLI.isTypeLegal(*I)) {
5342        // If we have already found this register in a different register class,
5343        // choose the one with the largest VT specified.  For example, on
5344        // PowerPC, we favor f64 register classes over f32.
5345        if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) {
5346          ThisVT = *I;
5347          break;
5348        }
5349      }
5350    }
5351
5352    if (ThisVT == MVT::Other) continue;
5353
5354    // NOTE: This isn't ideal.  In particular, this might allocate the
5355    // frame pointer in functions that need it (due to them not being taken
5356    // out of allocation, because a variable sized allocation hasn't been seen
5357    // yet).  This is a slight code pessimization, but should still work.
5358    for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
5359         E = RC->allocation_order_end(MF); I != E; ++I)
5360      if (*I == Reg) {
5361        // We found a matching register class.  Keep looking at others in case
5362        // we find one with larger registers that this physreg is also in.
5363        FoundRC = RC;
5364        FoundVT = ThisVT;
5365        break;
5366      }
5367  }
5368  return FoundRC;
5369}
5370
5371/// GetRegistersForValue - Assign registers (virtual or physical) for the
5372/// specified operand.  We prefer to assign virtual registers, to allow the
5373/// register allocator to handle the assignment process.  However, if the asm
5374/// uses features that we can't model on machineinstrs, we have SDISel do the
5375/// allocation.  This produces generally horrible, but correct, code.
5376///
5377///   OpInfo describes the operand.
5378///   Input and OutputRegs are the set of already allocated physical registers.
5379///
5380void SelectionDAGBuilder::
5381GetRegistersForValue(SDISelAsmOperandInfo &OpInfo,
5382                     std::set<unsigned> &OutputRegs,
5383                     std::set<unsigned> &InputRegs) {
5384  LLVMContext &Context = FuncInfo.Fn->getContext();
5385
5386  // Compute whether this value requires an input register, an output register,
5387  // or both.
5388  bool isOutReg = false;
5389  bool isInReg = false;
5390  switch (OpInfo.Type) {
5391  case InlineAsm::isOutput:
5392    isOutReg = true;
5393
5394    // If there is an input constraint that matches this, we need to reserve
5395    // the input register so no other inputs allocate to it.
5396    isInReg = OpInfo.hasMatchingInput();
5397    break;
5398  case InlineAsm::isInput:
5399    isInReg = true;
5400    isOutReg = false;
5401    break;
5402  case InlineAsm::isClobber:
5403    isOutReg = true;
5404    isInReg = true;
5405    break;
5406  }
5407
5408
5409  MachineFunction &MF = DAG.getMachineFunction();
5410  SmallVector<unsigned, 4> Regs;
5411
5412  // If this is a constraint for a single physreg, or a constraint for a
5413  // register class, find it.
5414  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
5415    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5416                                     OpInfo.ConstraintVT);
5417
5418  unsigned NumRegs = 1;
5419  if (OpInfo.ConstraintVT != MVT::Other) {
5420    // If this is a FP input in an integer register (or visa versa) insert a bit
5421    // cast of the input value.  More generally, handle any case where the input
5422    // value disagrees with the register class we plan to stick this in.
5423    if (OpInfo.Type == InlineAsm::isInput &&
5424        PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
5425      // Try to convert to the first EVT that the reg class contains.  If the
5426      // types are identical size, use a bitcast to convert (e.g. two differing
5427      // vector types).
5428      EVT RegVT = *PhysReg.second->vt_begin();
5429      if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
5430        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
5431                                         RegVT, OpInfo.CallOperand);
5432        OpInfo.ConstraintVT = RegVT;
5433      } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
5434        // If the input is a FP value and we want it in FP registers, do a
5435        // bitcast to the corresponding integer type.  This turns an f64 value
5436        // into i64, which can be passed with two i32 values on a 32-bit
5437        // machine.
5438        RegVT = EVT::getIntegerVT(Context,
5439                                  OpInfo.ConstraintVT.getSizeInBits());
5440        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
5441                                         RegVT, OpInfo.CallOperand);
5442        OpInfo.ConstraintVT = RegVT;
5443      }
5444    }
5445
5446    NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
5447  }
5448
5449  EVT RegVT;
5450  EVT ValueVT = OpInfo.ConstraintVT;
5451
5452  // If this is a constraint for a specific physical register, like {r17},
5453  // assign it now.
5454  if (unsigned AssignedReg = PhysReg.first) {
5455    const TargetRegisterClass *RC = PhysReg.second;
5456    if (OpInfo.ConstraintVT == MVT::Other)
5457      ValueVT = *RC->vt_begin();
5458
5459    // Get the actual register value type.  This is important, because the user
5460    // may have asked for (e.g.) the AX register in i32 type.  We need to
5461    // remember that AX is actually i16 to get the right extension.
5462    RegVT = *RC->vt_begin();
5463
5464    // This is a explicit reference to a physical register.
5465    Regs.push_back(AssignedReg);
5466
5467    // If this is an expanded reference, add the rest of the regs to Regs.
5468    if (NumRegs != 1) {
5469      TargetRegisterClass::iterator I = RC->begin();
5470      for (; *I != AssignedReg; ++I)
5471        assert(I != RC->end() && "Didn't find reg!");
5472
5473      // Already added the first reg.
5474      --NumRegs; ++I;
5475      for (; NumRegs; --NumRegs, ++I) {
5476        assert(I != RC->end() && "Ran out of registers to allocate!");
5477        Regs.push_back(*I);
5478      }
5479    }
5480
5481    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5482    const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5483    OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5484    return;
5485  }
5486
5487  // Otherwise, if this was a reference to an LLVM register class, create vregs
5488  // for this reference.
5489  if (const TargetRegisterClass *RC = PhysReg.second) {
5490    RegVT = *RC->vt_begin();
5491    if (OpInfo.ConstraintVT == MVT::Other)
5492      ValueVT = RegVT;
5493
5494    // Create the appropriate number of virtual registers.
5495    MachineRegisterInfo &RegInfo = MF.getRegInfo();
5496    for (; NumRegs; --NumRegs)
5497      Regs.push_back(RegInfo.createVirtualRegister(RC));
5498
5499    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5500    return;
5501  }
5502
5503  // This is a reference to a register class that doesn't directly correspond
5504  // to an LLVM register class.  Allocate NumRegs consecutive, available,
5505  // registers from the class.
5506  std::vector<unsigned> RegClassRegs
5507    = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
5508                                            OpInfo.ConstraintVT);
5509
5510  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5511  unsigned NumAllocated = 0;
5512  for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
5513    unsigned Reg = RegClassRegs[i];
5514    // See if this register is available.
5515    if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
5516        (isInReg  && InputRegs.count(Reg))) {    // Already used.
5517      // Make sure we find consecutive registers.
5518      NumAllocated = 0;
5519      continue;
5520    }
5521
5522    // Check to see if this register is allocatable (i.e. don't give out the
5523    // stack pointer).
5524    const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, TRI);
5525    if (!RC) {        // Couldn't allocate this register.
5526      // Reset NumAllocated to make sure we return consecutive registers.
5527      NumAllocated = 0;
5528      continue;
5529    }
5530
5531    // Okay, this register is good, we can use it.
5532    ++NumAllocated;
5533
5534    // If we allocated enough consecutive registers, succeed.
5535    if (NumAllocated == NumRegs) {
5536      unsigned RegStart = (i-NumAllocated)+1;
5537      unsigned RegEnd   = i+1;
5538      // Mark all of the allocated registers used.
5539      for (unsigned i = RegStart; i != RegEnd; ++i)
5540        Regs.push_back(RegClassRegs[i]);
5541
5542      OpInfo.AssignedRegs = RegsForValue(Regs, *RC->vt_begin(),
5543                                         OpInfo.ConstraintVT);
5544      OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5545      return;
5546    }
5547  }
5548
5549  // Otherwise, we couldn't allocate enough registers for this.
5550}
5551
5552/// visitInlineAsm - Handle a call to an InlineAsm object.
5553///
5554void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
5555  const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
5556
5557  /// ConstraintOperands - Information about all of the constraints.
5558  SDISelAsmOperandInfoVector ConstraintOperands;
5559
5560  std::set<unsigned> OutputRegs, InputRegs;
5561
5562  TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(CS);
5563  bool hasMemory = false;
5564
5565  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
5566  unsigned ResNo = 0;   // ResNo - The result number of the next output.
5567  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
5568    ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
5569    SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
5570
5571    EVT OpVT = MVT::Other;
5572
5573    // Compute the value type for each operand.
5574    switch (OpInfo.Type) {
5575    case InlineAsm::isOutput:
5576      // Indirect outputs just consume an argument.
5577      if (OpInfo.isIndirect) {
5578        OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5579        break;
5580      }
5581
5582      // The return value of the call is this value.  As such, there is no
5583      // corresponding argument.
5584      assert(!CS.getType()->isVoidTy() &&
5585             "Bad inline asm!");
5586      if (const StructType *STy = dyn_cast<StructType>(CS.getType())) {
5587        OpVT = TLI.getValueType(STy->getElementType(ResNo));
5588      } else {
5589        assert(ResNo == 0 && "Asm only has one result!");
5590        OpVT = TLI.getValueType(CS.getType());
5591      }
5592      ++ResNo;
5593      break;
5594    case InlineAsm::isInput:
5595      OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5596      break;
5597    case InlineAsm::isClobber:
5598      // Nothing to do.
5599      break;
5600    }
5601
5602    // If this is an input or an indirect output, process the call argument.
5603    // BasicBlocks are labels, currently appearing only in asm's.
5604    if (OpInfo.CallOperandVal) {
5605      if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
5606        OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
5607      } else {
5608        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
5609      }
5610
5611      OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD);
5612    }
5613
5614    OpInfo.ConstraintVT = OpVT;
5615
5616    // Indirect operand accesses access memory.
5617    if (OpInfo.isIndirect)
5618      hasMemory = true;
5619    else {
5620      for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
5621        TargetLowering::ConstraintType CType = TLI.getConstraintType(OpInfo.Codes[j]);
5622        if (CType == TargetLowering::C_Memory) {
5623          hasMemory = true;
5624          break;
5625        }
5626      }
5627    }
5628  }
5629
5630  SDValue Chain, Flag;
5631
5632  // We won't need to flush pending loads if this asm doesn't touch
5633  // memory and is nonvolatile.
5634  if (hasMemory || IA->hasSideEffects())
5635    Chain = getRoot();
5636  else
5637    Chain = DAG.getRoot();
5638
5639  // Second pass over the constraints: compute which constraint option to use
5640  // and assign registers to constraints that want a specific physreg.
5641  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5642    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5643
5644    // If this is an output operand with a matching input operand, look up the
5645    // matching input. If their types mismatch, e.g. one is an integer, the
5646    // other is floating point, or their sizes are different, flag it as an
5647    // error.
5648    if (OpInfo.hasMatchingInput()) {
5649      SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5650
5651      if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5652        if ((OpInfo.ConstraintVT.isInteger() !=
5653             Input.ConstraintVT.isInteger()) ||
5654            (OpInfo.ConstraintVT.getSizeInBits() !=
5655             Input.ConstraintVT.getSizeInBits())) {
5656          report_fatal_error("Unsupported asm: input constraint"
5657                             " with a matching output constraint of"
5658                             " incompatible type!");
5659        }
5660        Input.ConstraintVT = OpInfo.ConstraintVT;
5661      }
5662    }
5663
5664    // Compute the constraint code and ConstraintType to use.
5665    TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
5666
5667    // If this is a memory input, and if the operand is not indirect, do what we
5668    // need to to provide an address for the memory input.
5669    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5670        !OpInfo.isIndirect) {
5671      assert((OpInfo.isMultipleAlternative || (OpInfo.Type == InlineAsm::isInput)) &&
5672             "Can only indirectify direct input operands!");
5673
5674      // Memory operands really want the address of the value.  If we don't have
5675      // an indirect input, put it in the constpool if we can, otherwise spill
5676      // it to a stack slot.
5677
5678      // If the operand is a float, integer, or vector constant, spill to a
5679      // constant pool entry to get its address.
5680      const Value *OpVal = OpInfo.CallOperandVal;
5681      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
5682          isa<ConstantVector>(OpVal)) {
5683        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
5684                                                 TLI.getPointerTy());
5685      } else {
5686        // Otherwise, create a stack slot and emit a store to it before the
5687        // asm.
5688        const Type *Ty = OpVal->getType();
5689        uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
5690        unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
5691        MachineFunction &MF = DAG.getMachineFunction();
5692        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5693        SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
5694        Chain = DAG.getStore(Chain, getCurDebugLoc(),
5695                             OpInfo.CallOperand, StackSlot,
5696                             MachinePointerInfo::getFixedStack(SSFI),
5697                             false, false, 0);
5698        OpInfo.CallOperand = StackSlot;
5699      }
5700
5701      // There is no longer a Value* corresponding to this operand.
5702      OpInfo.CallOperandVal = 0;
5703
5704      // It is now an indirect operand.
5705      OpInfo.isIndirect = true;
5706    }
5707
5708    // If this constraint is for a specific register, allocate it before
5709    // anything else.
5710    if (OpInfo.ConstraintType == TargetLowering::C_Register)
5711      GetRegistersForValue(OpInfo, OutputRegs, InputRegs);
5712  }
5713
5714  // Second pass - Loop over all of the operands, assigning virtual or physregs
5715  // to register class operands.
5716  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5717    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5718
5719    // C_Register operands have already been allocated, Other/Memory don't need
5720    // to be.
5721    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
5722      GetRegistersForValue(OpInfo, OutputRegs, InputRegs);
5723  }
5724
5725  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
5726  std::vector<SDValue> AsmNodeOperands;
5727  AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
5728  AsmNodeOperands.push_back(
5729          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
5730                                      TLI.getPointerTy()));
5731
5732  // If we have a !srcloc metadata node associated with it, we want to attach
5733  // this to the ultimately generated inline asm machineinstr.  To do this, we
5734  // pass in the third operand as this (potentially null) inline asm MDNode.
5735  const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
5736  AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
5737
5738  // Remember the HasSideEffect and AlignStack bits as operand 3.
5739  unsigned ExtraInfo = 0;
5740  if (IA->hasSideEffects())
5741    ExtraInfo |= InlineAsm::Extra_HasSideEffects;
5742  if (IA->isAlignStack())
5743    ExtraInfo |= InlineAsm::Extra_IsAlignStack;
5744  AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo,
5745                                                  TLI.getPointerTy()));
5746
5747  // Loop over all of the inputs, copying the operand values into the
5748  // appropriate registers and processing the output regs.
5749  RegsForValue RetValRegs;
5750
5751  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
5752  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
5753
5754  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5755    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5756
5757    switch (OpInfo.Type) {
5758    case InlineAsm::isOutput: {
5759      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
5760          OpInfo.ConstraintType != TargetLowering::C_Register) {
5761        // Memory output, or 'other' output (e.g. 'X' constraint).
5762        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
5763
5764        // Add information to the INLINEASM node to know about this output.
5765        unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
5766        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
5767                                                        TLI.getPointerTy()));
5768        AsmNodeOperands.push_back(OpInfo.CallOperand);
5769        break;
5770      }
5771
5772      // Otherwise, this is a register or register class output.
5773
5774      // Copy the output from the appropriate register.  Find a register that
5775      // we can use.
5776      if (OpInfo.AssignedRegs.Regs.empty())
5777        report_fatal_error("Couldn't allocate output reg for constraint '" +
5778                           Twine(OpInfo.ConstraintCode) + "'!");
5779
5780      // If this is an indirect operand, store through the pointer after the
5781      // asm.
5782      if (OpInfo.isIndirect) {
5783        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
5784                                                      OpInfo.CallOperandVal));
5785      } else {
5786        // This is the result value of the call.
5787        assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
5788        // Concatenate this output onto the outputs list.
5789        RetValRegs.append(OpInfo.AssignedRegs);
5790      }
5791
5792      // Add information to the INLINEASM node to know that this register is
5793      // set.
5794      OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
5795                                           InlineAsm::Kind_RegDefEarlyClobber :
5796                                               InlineAsm::Kind_RegDef,
5797                                               false,
5798                                               0,
5799                                               DAG,
5800                                               AsmNodeOperands);
5801      break;
5802    }
5803    case InlineAsm::isInput: {
5804      SDValue InOperandVal = OpInfo.CallOperand;
5805
5806      if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
5807        // If this is required to match an output register we have already set,
5808        // just use its register.
5809        unsigned OperandNo = OpInfo.getMatchedOperand();
5810
5811        // Scan until we find the definition we already emitted of this operand.
5812        // When we find it, create a RegsForValue operand.
5813        unsigned CurOp = InlineAsm::Op_FirstOperand;
5814        for (; OperandNo; --OperandNo) {
5815          // Advance to the next operand.
5816          unsigned OpFlag =
5817            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5818          assert((InlineAsm::isRegDefKind(OpFlag) ||
5819                  InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
5820                  InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
5821          CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
5822        }
5823
5824        unsigned OpFlag =
5825          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5826        if (InlineAsm::isRegDefKind(OpFlag) ||
5827            InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
5828          // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
5829          if (OpInfo.isIndirect) {
5830            // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
5831            LLVMContext &Ctx = *DAG.getContext();
5832            Ctx.emitError(CS.getInstruction(),  "inline asm not supported yet:"
5833                          " don't know how to handle tied "
5834                          "indirect register inputs");
5835          }
5836
5837          RegsForValue MatchedRegs;
5838          MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
5839          EVT RegVT = AsmNodeOperands[CurOp+1].getValueType();
5840          MatchedRegs.RegVTs.push_back(RegVT);
5841          MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
5842          for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
5843               i != e; ++i)
5844            MatchedRegs.Regs.push_back
5845              (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)));
5846
5847          // Use the produced MatchedRegs object to
5848          MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
5849                                    Chain, &Flag);
5850          MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
5851                                           true, OpInfo.getMatchedOperand(),
5852                                           DAG, AsmNodeOperands);
5853          break;
5854        }
5855
5856        assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
5857        assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
5858               "Unexpected number of operands");
5859        // Add information to the INLINEASM node to know about this input.
5860        // See InlineAsm.h isUseOperandTiedToDef.
5861        OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
5862                                                    OpInfo.getMatchedOperand());
5863        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
5864                                                        TLI.getPointerTy()));
5865        AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
5866        break;
5867      }
5868
5869      // Treat indirect 'X' constraint as memory.
5870      if (OpInfo.ConstraintType == TargetLowering::C_Other &&
5871          OpInfo.isIndirect)
5872        OpInfo.ConstraintType = TargetLowering::C_Memory;
5873
5874      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
5875        std::vector<SDValue> Ops;
5876        TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0],
5877                                         Ops, DAG);
5878        if (Ops.empty())
5879          report_fatal_error("Invalid operand for inline asm constraint '" +
5880                             Twine(OpInfo.ConstraintCode) + "'!");
5881
5882        // Add information to the INLINEASM node to know about this input.
5883        unsigned ResOpType =
5884          InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
5885        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5886                                                        TLI.getPointerTy()));
5887        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
5888        break;
5889      }
5890
5891      if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
5892        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
5893        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
5894               "Memory operands expect pointer values");
5895
5896        // Add information to the INLINEASM node to know about this input.
5897        unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
5898        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5899                                                        TLI.getPointerTy()));
5900        AsmNodeOperands.push_back(InOperandVal);
5901        break;
5902      }
5903
5904      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
5905              OpInfo.ConstraintType == TargetLowering::C_Register) &&
5906             "Unknown constraint type!");
5907      assert(!OpInfo.isIndirect &&
5908             "Don't know how to handle indirect register inputs yet!");
5909
5910      // Copy the input into the appropriate registers.
5911      if (OpInfo.AssignedRegs.Regs.empty() ||
5912          !OpInfo.AssignedRegs.areValueTypesLegal(TLI))
5913        report_fatal_error("Couldn't allocate input reg for constraint '" +
5914                           Twine(OpInfo.ConstraintCode) + "'!");
5915
5916      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
5917                                        Chain, &Flag);
5918
5919      OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
5920                                               DAG, AsmNodeOperands);
5921      break;
5922    }
5923    case InlineAsm::isClobber: {
5924      // Add the clobbered value to the operand list, so that the register
5925      // allocator is aware that the physreg got clobbered.
5926      if (!OpInfo.AssignedRegs.Regs.empty())
5927        OpInfo.AssignedRegs.AddInlineAsmOperands(
5928                                            InlineAsm::Kind_RegDefEarlyClobber,
5929                                                 false, 0, DAG,
5930                                                 AsmNodeOperands);
5931      break;
5932    }
5933    }
5934  }
5935
5936  // Finish up input operands.  Set the input chain and add the flag last.
5937  AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
5938  if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
5939
5940  Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(),
5941                      DAG.getVTList(MVT::Other, MVT::Glue),
5942                      &AsmNodeOperands[0], AsmNodeOperands.size());
5943  Flag = Chain.getValue(1);
5944
5945  // If this asm returns a register value, copy the result from that register
5946  // and set it as the value of the call.
5947  if (!RetValRegs.Regs.empty()) {
5948    SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
5949                                             Chain, &Flag);
5950
5951    // FIXME: Why don't we do this for inline asms with MRVs?
5952    if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
5953      EVT ResultType = TLI.getValueType(CS.getType());
5954
5955      // If any of the results of the inline asm is a vector, it may have the
5956      // wrong width/num elts.  This can happen for register classes that can
5957      // contain multiple different value types.  The preg or vreg allocated may
5958      // not have the same VT as was expected.  Convert it to the right type
5959      // with bit_convert.
5960      if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
5961        Val = DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
5962                          ResultType, Val);
5963
5964      } else if (ResultType != Val.getValueType() &&
5965                 ResultType.isInteger() && Val.getValueType().isInteger()) {
5966        // If a result value was tied to an input value, the computed result may
5967        // have a wider width than the expected result.  Extract the relevant
5968        // portion.
5969        Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val);
5970      }
5971
5972      assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
5973    }
5974
5975    setValue(CS.getInstruction(), Val);
5976    // Don't need to use this as a chain in this case.
5977    if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
5978      return;
5979  }
5980
5981  std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
5982
5983  // Process indirect outputs, first output all of the flagged copies out of
5984  // physregs.
5985  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
5986    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
5987    const Value *Ptr = IndirectStoresToEmit[i].second;
5988    SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
5989                                             Chain, &Flag);
5990    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
5991  }
5992
5993  // Emit the non-flagged stores from the physregs.
5994  SmallVector<SDValue, 8> OutChains;
5995  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
5996    SDValue Val = DAG.getStore(Chain, getCurDebugLoc(),
5997                               StoresToEmit[i].first,
5998                               getValue(StoresToEmit[i].second),
5999                               MachinePointerInfo(StoresToEmit[i].second),
6000                               false, false, 0);
6001    OutChains.push_back(Val);
6002  }
6003
6004  if (!OutChains.empty())
6005    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
6006                        &OutChains[0], OutChains.size());
6007
6008  DAG.setRoot(Chain);
6009}
6010
6011void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
6012  DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(),
6013                          MVT::Other, getRoot(),
6014                          getValue(I.getArgOperand(0)),
6015                          DAG.getSrcValue(I.getArgOperand(0))));
6016}
6017
6018void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
6019  const TargetData &TD = *TLI.getTargetData();
6020  SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(),
6021                           getRoot(), getValue(I.getOperand(0)),
6022                           DAG.getSrcValue(I.getOperand(0)),
6023                           TD.getABITypeAlignment(I.getType()));
6024  setValue(&I, V);
6025  DAG.setRoot(V.getValue(1));
6026}
6027
6028void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
6029  DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(),
6030                          MVT::Other, getRoot(),
6031                          getValue(I.getArgOperand(0)),
6032                          DAG.getSrcValue(I.getArgOperand(0))));
6033}
6034
6035void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
6036  DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(),
6037                          MVT::Other, getRoot(),
6038                          getValue(I.getArgOperand(0)),
6039                          getValue(I.getArgOperand(1)),
6040                          DAG.getSrcValue(I.getArgOperand(0)),
6041                          DAG.getSrcValue(I.getArgOperand(1))));
6042}
6043
6044/// TargetLowering::LowerCallTo - This is the default LowerCallTo
6045/// implementation, which just calls LowerCall.
6046/// FIXME: When all targets are
6047/// migrated to using LowerCall, this hook should be integrated into SDISel.
6048std::pair<SDValue, SDValue>
6049TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy,
6050                            bool RetSExt, bool RetZExt, bool isVarArg,
6051                            bool isInreg, unsigned NumFixedArgs,
6052                            CallingConv::ID CallConv, bool isTailCall,
6053                            bool isReturnValueUsed,
6054                            SDValue Callee,
6055                            ArgListTy &Args, SelectionDAG &DAG,
6056                            DebugLoc dl) const {
6057  // Handle all of the outgoing arguments.
6058  SmallVector<ISD::OutputArg, 32> Outs;
6059  SmallVector<SDValue, 32> OutVals;
6060  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
6061    SmallVector<EVT, 4> ValueVTs;
6062    ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
6063    for (unsigned Value = 0, NumValues = ValueVTs.size();
6064         Value != NumValues; ++Value) {
6065      EVT VT = ValueVTs[Value];
6066      const Type *ArgTy = VT.getTypeForEVT(RetTy->getContext());
6067      SDValue Op = SDValue(Args[i].Node.getNode(),
6068                           Args[i].Node.getResNo() + Value);
6069      ISD::ArgFlagsTy Flags;
6070      unsigned OriginalAlignment =
6071        getTargetData()->getABITypeAlignment(ArgTy);
6072
6073      if (Args[i].isZExt)
6074        Flags.setZExt();
6075      if (Args[i].isSExt)
6076        Flags.setSExt();
6077      if (Args[i].isInReg)
6078        Flags.setInReg();
6079      if (Args[i].isSRet)
6080        Flags.setSRet();
6081      if (Args[i].isByVal) {
6082        Flags.setByVal();
6083        const PointerType *Ty = cast<PointerType>(Args[i].Ty);
6084        const Type *ElementTy = Ty->getElementType();
6085        unsigned FrameAlign = getByValTypeAlignment(ElementTy);
6086        unsigned FrameSize  = getTargetData()->getTypeAllocSize(ElementTy);
6087        // For ByVal, alignment should come from FE.  BE will guess if this
6088        // info is not there but there are cases it cannot get right.
6089        if (Args[i].Alignment)
6090          FrameAlign = Args[i].Alignment;
6091        Flags.setByValAlign(FrameAlign);
6092        Flags.setByValSize(FrameSize);
6093      }
6094      if (Args[i].isNest)
6095        Flags.setNest();
6096      Flags.setOrigAlign(OriginalAlignment);
6097
6098      EVT PartVT = getRegisterType(RetTy->getContext(), VT);
6099      unsigned NumParts = getNumRegisters(RetTy->getContext(), VT);
6100      SmallVector<SDValue, 4> Parts(NumParts);
6101      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
6102
6103      if (Args[i].isSExt)
6104        ExtendKind = ISD::SIGN_EXTEND;
6105      else if (Args[i].isZExt)
6106        ExtendKind = ISD::ZERO_EXTEND;
6107
6108      getCopyToParts(DAG, dl, Op, &Parts[0], NumParts,
6109                     PartVT, ExtendKind);
6110
6111      for (unsigned j = 0; j != NumParts; ++j) {
6112        // if it isn't first piece, alignment must be 1
6113        ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(),
6114                               i < NumFixedArgs);
6115        if (NumParts > 1 && j == 0)
6116          MyFlags.Flags.setSplit();
6117        else if (j != 0)
6118          MyFlags.Flags.setOrigAlign(1);
6119
6120        Outs.push_back(MyFlags);
6121        OutVals.push_back(Parts[j]);
6122      }
6123    }
6124  }
6125
6126  // Handle the incoming return values from the call.
6127  SmallVector<ISD::InputArg, 32> Ins;
6128  SmallVector<EVT, 4> RetTys;
6129  ComputeValueVTs(*this, RetTy, RetTys);
6130  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6131    EVT VT = RetTys[I];
6132    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
6133    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
6134    for (unsigned i = 0; i != NumRegs; ++i) {
6135      ISD::InputArg MyFlags;
6136      MyFlags.VT = RegisterVT.getSimpleVT();
6137      MyFlags.Used = isReturnValueUsed;
6138      if (RetSExt)
6139        MyFlags.Flags.setSExt();
6140      if (RetZExt)
6141        MyFlags.Flags.setZExt();
6142      if (isInreg)
6143        MyFlags.Flags.setInReg();
6144      Ins.push_back(MyFlags);
6145    }
6146  }
6147
6148  SmallVector<SDValue, 4> InVals;
6149  Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall,
6150                    Outs, OutVals, Ins, dl, DAG, InVals);
6151
6152  // Verify that the target's LowerCall behaved as expected.
6153  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
6154         "LowerCall didn't return a valid chain!");
6155  assert((!isTailCall || InVals.empty()) &&
6156         "LowerCall emitted a return value for a tail call!");
6157  assert((isTailCall || InVals.size() == Ins.size()) &&
6158         "LowerCall didn't emit the correct number of values!");
6159
6160  // For a tail call, the return value is merely live-out and there aren't
6161  // any nodes in the DAG representing it. Return a special value to
6162  // indicate that a tail call has been emitted and no more Instructions
6163  // should be processed in the current block.
6164  if (isTailCall) {
6165    DAG.setRoot(Chain);
6166    return std::make_pair(SDValue(), SDValue());
6167  }
6168
6169  DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6170          assert(InVals[i].getNode() &&
6171                 "LowerCall emitted a null value!");
6172          assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6173                 "LowerCall emitted a value with the wrong type!");
6174        });
6175
6176  // Collect the legal value parts into potentially illegal values
6177  // that correspond to the original function's return values.
6178  ISD::NodeType AssertOp = ISD::DELETED_NODE;
6179  if (RetSExt)
6180    AssertOp = ISD::AssertSext;
6181  else if (RetZExt)
6182    AssertOp = ISD::AssertZext;
6183  SmallVector<SDValue, 4> ReturnValues;
6184  unsigned CurReg = 0;
6185  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6186    EVT VT = RetTys[I];
6187    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
6188    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
6189
6190    ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg],
6191                                            NumRegs, RegisterVT, VT,
6192                                            AssertOp));
6193    CurReg += NumRegs;
6194  }
6195
6196  // For a function returning void, there is no return value. We can't create
6197  // such a node, so we just return a null return value in that case. In
6198  // that case, nothing will actualy look at the value.
6199  if (ReturnValues.empty())
6200    return std::make_pair(SDValue(), Chain);
6201
6202  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
6203                            DAG.getVTList(&RetTys[0], RetTys.size()),
6204                            &ReturnValues[0], ReturnValues.size());
6205  return std::make_pair(Res, Chain);
6206}
6207
6208void TargetLowering::LowerOperationWrapper(SDNode *N,
6209                                           SmallVectorImpl<SDValue> &Results,
6210                                           SelectionDAG &DAG) const {
6211  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
6212  if (Res.getNode())
6213    Results.push_back(Res);
6214}
6215
6216SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
6217  llvm_unreachable("LowerOperation not implemented for this target!");
6218  return SDValue();
6219}
6220
6221void
6222SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
6223  SDValue Op = getNonRegisterValue(V);
6224  assert((Op.getOpcode() != ISD::CopyFromReg ||
6225          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
6226         "Copy from a reg to the same reg!");
6227  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
6228
6229  RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
6230  SDValue Chain = DAG.getEntryNode();
6231  RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0);
6232  PendingExports.push_back(Chain);
6233}
6234
6235#include "llvm/CodeGen/SelectionDAGISel.h"
6236
6237void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) {
6238  // If this is the entry block, emit arguments.
6239  const Function &F = *LLVMBB->getParent();
6240  SelectionDAG &DAG = SDB->DAG;
6241  DebugLoc dl = SDB->getCurDebugLoc();
6242  const TargetData *TD = TLI.getTargetData();
6243  SmallVector<ISD::InputArg, 16> Ins;
6244
6245  // Check whether the function can return without sret-demotion.
6246  SmallVector<ISD::OutputArg, 4> Outs;
6247  GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
6248                Outs, TLI);
6249
6250  if (!FuncInfo->CanLowerReturn) {
6251    // Put in an sret pointer parameter before all the other parameters.
6252    SmallVector<EVT, 1> ValueVTs;
6253    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6254
6255    // NOTE: Assuming that a pointer will never break down to more than one VT
6256    // or one register.
6257    ISD::ArgFlagsTy Flags;
6258    Flags.setSRet();
6259    EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]);
6260    ISD::InputArg RetArg(Flags, RegisterVT, true);
6261    Ins.push_back(RetArg);
6262  }
6263
6264  // Set up the incoming argument description vector.
6265  unsigned Idx = 1;
6266  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
6267       I != E; ++I, ++Idx) {
6268    SmallVector<EVT, 4> ValueVTs;
6269    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6270    bool isArgValueUsed = !I->use_empty();
6271    for (unsigned Value = 0, NumValues = ValueVTs.size();
6272         Value != NumValues; ++Value) {
6273      EVT VT = ValueVTs[Value];
6274      const Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
6275      ISD::ArgFlagsTy Flags;
6276      unsigned OriginalAlignment =
6277        TD->getABITypeAlignment(ArgTy);
6278
6279      if (F.paramHasAttr(Idx, Attribute::ZExt))
6280        Flags.setZExt();
6281      if (F.paramHasAttr(Idx, Attribute::SExt))
6282        Flags.setSExt();
6283      if (F.paramHasAttr(Idx, Attribute::InReg))
6284        Flags.setInReg();
6285      if (F.paramHasAttr(Idx, Attribute::StructRet))
6286        Flags.setSRet();
6287      if (F.paramHasAttr(Idx, Attribute::ByVal)) {
6288        Flags.setByVal();
6289        const PointerType *Ty = cast<PointerType>(I->getType());
6290        const Type *ElementTy = Ty->getElementType();
6291        unsigned FrameAlign = TLI.getByValTypeAlignment(ElementTy);
6292        unsigned FrameSize  = TD->getTypeAllocSize(ElementTy);
6293        // For ByVal, alignment should be passed from FE.  BE will guess if
6294        // this info is not there but there are cases it cannot get right.
6295        if (F.getParamAlignment(Idx))
6296          FrameAlign = F.getParamAlignment(Idx);
6297        Flags.setByValAlign(FrameAlign);
6298        Flags.setByValSize(FrameSize);
6299      }
6300      if (F.paramHasAttr(Idx, Attribute::Nest))
6301        Flags.setNest();
6302      Flags.setOrigAlign(OriginalAlignment);
6303
6304      EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6305      unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6306      for (unsigned i = 0; i != NumRegs; ++i) {
6307        ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed);
6308        if (NumRegs > 1 && i == 0)
6309          MyFlags.Flags.setSplit();
6310        // if it isn't first piece, alignment must be 1
6311        else if (i > 0)
6312          MyFlags.Flags.setOrigAlign(1);
6313        Ins.push_back(MyFlags);
6314      }
6315    }
6316  }
6317
6318  // Call the target to set up the argument values.
6319  SmallVector<SDValue, 8> InVals;
6320  SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
6321                                             F.isVarArg(), Ins,
6322                                             dl, DAG, InVals);
6323
6324  // Verify that the target's LowerFormalArguments behaved as expected.
6325  assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
6326         "LowerFormalArguments didn't return a valid chain!");
6327  assert(InVals.size() == Ins.size() &&
6328         "LowerFormalArguments didn't emit the correct number of values!");
6329  DEBUG({
6330      for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6331        assert(InVals[i].getNode() &&
6332               "LowerFormalArguments emitted a null value!");
6333        assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6334               "LowerFormalArguments emitted a value with the wrong type!");
6335      }
6336    });
6337
6338  // Update the DAG with the new chain value resulting from argument lowering.
6339  DAG.setRoot(NewRoot);
6340
6341  // Set up the argument values.
6342  unsigned i = 0;
6343  Idx = 1;
6344  if (!FuncInfo->CanLowerReturn) {
6345    // Create a virtual register for the sret pointer, and put in a copy
6346    // from the sret argument into it.
6347    SmallVector<EVT, 1> ValueVTs;
6348    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6349    EVT VT = ValueVTs[0];
6350    EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6351    ISD::NodeType AssertOp = ISD::DELETED_NODE;
6352    SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
6353                                        RegVT, VT, AssertOp);
6354
6355    MachineFunction& MF = SDB->DAG.getMachineFunction();
6356    MachineRegisterInfo& RegInfo = MF.getRegInfo();
6357    unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT));
6358    FuncInfo->DemoteRegister = SRetReg;
6359    NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(),
6360                                    SRetReg, ArgValue);
6361    DAG.setRoot(NewRoot);
6362
6363    // i indexes lowered arguments.  Bump it past the hidden sret argument.
6364    // Idx indexes LLVM arguments.  Don't touch it.
6365    ++i;
6366  }
6367
6368  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
6369      ++I, ++Idx) {
6370    SmallVector<SDValue, 4> ArgValues;
6371    SmallVector<EVT, 4> ValueVTs;
6372    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6373    unsigned NumValues = ValueVTs.size();
6374
6375    // If this argument is unused then remember its value. It is used to generate
6376    // debugging information.
6377    if (I->use_empty() && NumValues)
6378      SDB->setUnusedArgValue(I, InVals[i]);
6379
6380    for (unsigned Value = 0; Value != NumValues; ++Value) {
6381      EVT VT = ValueVTs[Value];
6382      EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6383      unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6384
6385      if (!I->use_empty()) {
6386        ISD::NodeType AssertOp = ISD::DELETED_NODE;
6387        if (F.paramHasAttr(Idx, Attribute::SExt))
6388          AssertOp = ISD::AssertSext;
6389        else if (F.paramHasAttr(Idx, Attribute::ZExt))
6390          AssertOp = ISD::AssertZext;
6391
6392        ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
6393                                             NumParts, PartVT, VT,
6394                                             AssertOp));
6395      }
6396
6397      i += NumParts;
6398    }
6399
6400    // Note down frame index for byval arguments.
6401    if (I->hasByValAttr() && !ArgValues.empty())
6402      if (FrameIndexSDNode *FI =
6403          dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
6404        FuncInfo->setByValArgumentFrameIndex(I, FI->getIndex());
6405
6406    if (!I->use_empty()) {
6407      SDValue Res;
6408      if (!ArgValues.empty())
6409        Res = DAG.getMergeValues(&ArgValues[0], NumValues,
6410                                 SDB->getCurDebugLoc());
6411      SDB->setValue(I, Res);
6412
6413      // If this argument is live outside of the entry block, insert a copy from
6414      // whereever we got it to the vreg that other BB's will reference it as.
6415      SDB->CopyToExportRegsIfNeeded(I);
6416    }
6417  }
6418
6419  assert(i == InVals.size() && "Argument register count mismatch!");
6420
6421  // Finally, if the target has anything special to do, allow it to do so.
6422  // FIXME: this should insert code into the DAG!
6423  EmitFunctionEntryCode();
6424}
6425
6426/// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
6427/// ensure constants are generated when needed.  Remember the virtual registers
6428/// that need to be added to the Machine PHI nodes as input.  We cannot just
6429/// directly add them, because expansion might result in multiple MBB's for one
6430/// BB.  As such, the start of the BB might correspond to a different MBB than
6431/// the end.
6432///
6433void
6434SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
6435  const TerminatorInst *TI = LLVMBB->getTerminator();
6436
6437  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6438
6439  // Check successor nodes' PHI nodes that expect a constant to be available
6440  // from this block.
6441  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6442    const BasicBlock *SuccBB = TI->getSuccessor(succ);
6443    if (!isa<PHINode>(SuccBB->begin())) continue;
6444    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
6445
6446    // If this terminator has multiple identical successors (common for
6447    // switches), only handle each succ once.
6448    if (!SuccsHandled.insert(SuccMBB)) continue;
6449
6450    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6451
6452    // At this point we know that there is a 1-1 correspondence between LLVM PHI
6453    // nodes and Machine PHI nodes, but the incoming operands have not been
6454    // emitted yet.
6455    for (BasicBlock::const_iterator I = SuccBB->begin();
6456         const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
6457      // Ignore dead phi's.
6458      if (PN->use_empty()) continue;
6459
6460      unsigned Reg;
6461      const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6462
6463      if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
6464        unsigned &RegOut = ConstantsOut[C];
6465        if (RegOut == 0) {
6466          RegOut = FuncInfo.CreateRegs(C->getType());
6467          CopyValueToVirtualRegister(C, RegOut);
6468        }
6469        Reg = RegOut;
6470      } else {
6471        DenseMap<const Value *, unsigned>::iterator I =
6472          FuncInfo.ValueMap.find(PHIOp);
6473        if (I != FuncInfo.ValueMap.end())
6474          Reg = I->second;
6475        else {
6476          assert(isa<AllocaInst>(PHIOp) &&
6477                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
6478                 "Didn't codegen value into a register!??");
6479          Reg = FuncInfo.CreateRegs(PHIOp->getType());
6480          CopyValueToVirtualRegister(PHIOp, Reg);
6481        }
6482      }
6483
6484      // Remember that this register needs to added to the machine PHI node as
6485      // the input for this MBB.
6486      SmallVector<EVT, 4> ValueVTs;
6487      ComputeValueVTs(TLI, PN->getType(), ValueVTs);
6488      for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
6489        EVT VT = ValueVTs[vti];
6490        unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
6491        for (unsigned i = 0, e = NumRegisters; i != e; ++i)
6492          FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
6493        Reg += NumRegisters;
6494      }
6495    }
6496  }
6497  ConstantsOut.clear();
6498}
6499