SelectionDAGBuilder.cpp revision 16e4ace95196c2b34246746b7481a8de3d715c19
1//===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements routines for translating from LLVM IR into SelectionDAG IR.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "SDNodeDbgValue.h"
16#include "SelectionDAGBuilder.h"
17#include "FunctionLoweringInfo.h"
18#include "llvm/ADT/BitVector.h"
19#include "llvm/ADT/SmallSet.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/ConstantFolding.h"
22#include "llvm/Constants.h"
23#include "llvm/CallingConv.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Function.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/InlineAsm.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/IntrinsicInst.h"
31#include "llvm/LLVMContext.h"
32#include "llvm/Module.h"
33#include "llvm/CodeGen/Analysis.h"
34#include "llvm/CodeGen/FastISel.h"
35#include "llvm/CodeGen/GCStrategy.h"
36#include "llvm/CodeGen/GCMetadata.h"
37#include "llvm/CodeGen/MachineFunction.h"
38#include "llvm/CodeGen/MachineFrameInfo.h"
39#include "llvm/CodeGen/MachineInstrBuilder.h"
40#include "llvm/CodeGen/MachineJumpTableInfo.h"
41#include "llvm/CodeGen/MachineModuleInfo.h"
42#include "llvm/CodeGen/MachineRegisterInfo.h"
43#include "llvm/CodeGen/PseudoSourceValue.h"
44#include "llvm/CodeGen/SelectionDAG.h"
45#include "llvm/Analysis/DebugInfo.h"
46#include "llvm/Target/TargetRegisterInfo.h"
47#include "llvm/Target/TargetData.h"
48#include "llvm/Target/TargetFrameInfo.h"
49#include "llvm/Target/TargetInstrInfo.h"
50#include "llvm/Target/TargetIntrinsicInfo.h"
51#include "llvm/Target/TargetLowering.h"
52#include "llvm/Target/TargetOptions.h"
53#include "llvm/Support/Compiler.h"
54#include "llvm/Support/CommandLine.h"
55#include "llvm/Support/Debug.h"
56#include "llvm/Support/ErrorHandling.h"
57#include "llvm/Support/MathExtras.h"
58#include "llvm/Support/raw_ostream.h"
59#include <algorithm>
60using namespace llvm;
61
62/// LimitFloatPrecision - Generate low-precision inline sequences for
63/// some float libcalls (6, 8 or 12 bits).
64static unsigned LimitFloatPrecision;
65
66static cl::opt<unsigned, true>
67LimitFPPrecision("limit-float-precision",
68                 cl::desc("Generate low-precision inline sequences "
69                          "for some float libcalls"),
70                 cl::location(LimitFloatPrecision),
71                 cl::init(0));
72
73namespace {
74  /// RegsForValue - This struct represents the registers (physical or virtual)
75  /// that a particular set of values is assigned, and the type information
76  /// about the value. The most common situation is to represent one value at a
77  /// time, but struct or array values are handled element-wise as multiple
78  /// values.  The splitting of aggregates is performed recursively, so that we
79  /// never have aggregate-typed registers. The values at this point do not
80  /// necessarily have legal types, so each value may require one or more
81  /// registers of some legal type.
82  ///
83  struct RegsForValue {
84    /// TLI - The TargetLowering object.
85    ///
86    const TargetLowering *TLI;
87
88    /// ValueVTs - The value types of the values, which may not be legal, and
89    /// may need be promoted or synthesized from one or more registers.
90    ///
91    SmallVector<EVT, 4> ValueVTs;
92
93    /// RegVTs - The value types of the registers. This is the same size as
94    /// ValueVTs and it records, for each value, what the type of the assigned
95    /// register or registers are. (Individual values are never synthesized
96    /// from more than one type of register.)
97    ///
98    /// With virtual registers, the contents of RegVTs is redundant with TLI's
99    /// getRegisterType member function, however when with physical registers
100    /// it is necessary to have a separate record of the types.
101    ///
102    SmallVector<EVT, 4> RegVTs;
103
104    /// Regs - This list holds the registers assigned to the values.
105    /// Each legal or promoted value requires one register, and each
106    /// expanded value requires multiple registers.
107    ///
108    SmallVector<unsigned, 4> Regs;
109
110    RegsForValue() : TLI(0) {}
111
112    RegsForValue(const TargetLowering &tli,
113                 const SmallVector<unsigned, 4> &regs,
114                 EVT regvt, EVT valuevt)
115      : TLI(&tli),  ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
116    RegsForValue(const TargetLowering &tli,
117                 const SmallVector<unsigned, 4> &regs,
118                 const SmallVector<EVT, 4> &regvts,
119                 const SmallVector<EVT, 4> &valuevts)
120      : TLI(&tli), ValueVTs(valuevts), RegVTs(regvts), Regs(regs) {}
121    RegsForValue(LLVMContext &Context, const TargetLowering &tli,
122                 unsigned Reg, const Type *Ty) : TLI(&tli) {
123      ComputeValueVTs(tli, Ty, ValueVTs);
124
125      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
126        EVT ValueVT = ValueVTs[Value];
127        unsigned NumRegs = TLI->getNumRegisters(Context, ValueVT);
128        EVT RegisterVT = TLI->getRegisterType(Context, ValueVT);
129        for (unsigned i = 0; i != NumRegs; ++i)
130          Regs.push_back(Reg + i);
131        RegVTs.push_back(RegisterVT);
132        Reg += NumRegs;
133      }
134    }
135
136    /// areValueTypesLegal - Return true if types of all the values are legal.
137    bool areValueTypesLegal() {
138      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
139        EVT RegisterVT = RegVTs[Value];
140        if (!TLI->isTypeLegal(RegisterVT))
141          return false;
142      }
143      return true;
144    }
145
146
147    /// append - Add the specified values to this one.
148    void append(const RegsForValue &RHS) {
149      TLI = RHS.TLI;
150      ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
151      RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
152      Regs.append(RHS.Regs.begin(), RHS.Regs.end());
153    }
154
155
156    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
157    /// this value and returns the result as a ValueVTs value.  This uses
158    /// Chain/Flag as the input and updates them for the output Chain/Flag.
159    /// If the Flag pointer is NULL, no flag is used.
160    SDValue getCopyFromRegs(SelectionDAG &DAG, DebugLoc dl,
161                            SDValue &Chain, SDValue *Flag) const;
162
163    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
164    /// specified value into the registers specified by this object.  This uses
165    /// Chain/Flag as the input and updates them for the output Chain/Flag.
166    /// If the Flag pointer is NULL, no flag is used.
167    void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
168                       SDValue &Chain, SDValue *Flag) const;
169
170    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
171    /// operand list.  This adds the code marker, matching input operand index
172    /// (if applicable), and includes the number of values added into it.
173    void AddInlineAsmOperands(unsigned Kind,
174                              bool HasMatching, unsigned MatchingIdx,
175                              SelectionDAG &DAG,
176                              std::vector<SDValue> &Ops) const;
177  };
178}
179
180/// getCopyFromParts - Create a value that contains the specified legal parts
181/// combined into the value they represent.  If the parts combine to a type
182/// larger then ValueVT then AssertOp can be used to specify whether the extra
183/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
184/// (ISD::AssertSext).
185static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc dl,
186                                const SDValue *Parts,
187                                unsigned NumParts, EVT PartVT, EVT ValueVT,
188                                ISD::NodeType AssertOp = ISD::DELETED_NODE) {
189  assert(NumParts > 0 && "No parts to assemble!");
190  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
191  SDValue Val = Parts[0];
192
193  if (NumParts > 1) {
194    // Assemble the value from multiple parts.
195    if (!ValueVT.isVector() && ValueVT.isInteger()) {
196      unsigned PartBits = PartVT.getSizeInBits();
197      unsigned ValueBits = ValueVT.getSizeInBits();
198
199      // Assemble the power of 2 part.
200      unsigned RoundParts = NumParts & (NumParts - 1) ?
201        1 << Log2_32(NumParts) : NumParts;
202      unsigned RoundBits = PartBits * RoundParts;
203      EVT RoundVT = RoundBits == ValueBits ?
204        ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
205      SDValue Lo, Hi;
206
207      EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
208
209      if (RoundParts > 2) {
210        Lo = getCopyFromParts(DAG, dl, Parts, RoundParts / 2,
211                              PartVT, HalfVT);
212        Hi = getCopyFromParts(DAG, dl, Parts + RoundParts / 2,
213                              RoundParts / 2, PartVT, HalfVT);
214      } else {
215        Lo = DAG.getNode(ISD::BIT_CONVERT, dl, HalfVT, Parts[0]);
216        Hi = DAG.getNode(ISD::BIT_CONVERT, dl, HalfVT, Parts[1]);
217      }
218
219      if (TLI.isBigEndian())
220        std::swap(Lo, Hi);
221
222      Val = DAG.getNode(ISD::BUILD_PAIR, dl, RoundVT, Lo, Hi);
223
224      if (RoundParts < NumParts) {
225        // Assemble the trailing non-power-of-2 part.
226        unsigned OddParts = NumParts - RoundParts;
227        EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
228        Hi = getCopyFromParts(DAG, dl,
229                              Parts + RoundParts, OddParts, PartVT, OddVT);
230
231        // Combine the round and odd parts.
232        Lo = Val;
233        if (TLI.isBigEndian())
234          std::swap(Lo, Hi);
235        EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
236        Hi = DAG.getNode(ISD::ANY_EXTEND, dl, TotalVT, Hi);
237        Hi = DAG.getNode(ISD::SHL, dl, TotalVT, Hi,
238                         DAG.getConstant(Lo.getValueType().getSizeInBits(),
239                                         TLI.getPointerTy()));
240        Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, TotalVT, Lo);
241        Val = DAG.getNode(ISD::OR, dl, TotalVT, Lo, Hi);
242      }
243    } else if (ValueVT.isVector()) {
244      // Handle a multi-element vector.
245      EVT IntermediateVT, RegisterVT;
246      unsigned NumIntermediates;
247      unsigned NumRegs =
248        TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
249                                   NumIntermediates, RegisterVT);
250      assert(NumRegs == NumParts
251             && "Part count doesn't match vector breakdown!");
252      NumParts = NumRegs; // Silence a compiler warning.
253      assert(RegisterVT == PartVT
254             && "Part type doesn't match vector breakdown!");
255      assert(RegisterVT == Parts[0].getValueType() &&
256             "Part type doesn't match part!");
257
258      // Assemble the parts into intermediate operands.
259      SmallVector<SDValue, 8> Ops(NumIntermediates);
260      if (NumIntermediates == NumParts) {
261        // If the register was not expanded, truncate or copy the value,
262        // as appropriate.
263        for (unsigned i = 0; i != NumParts; ++i)
264          Ops[i] = getCopyFromParts(DAG, dl, &Parts[i], 1,
265                                    PartVT, IntermediateVT);
266      } else if (NumParts > 0) {
267        // If the intermediate type was expanded, build the intermediate
268        // operands from the parts.
269        assert(NumParts % NumIntermediates == 0 &&
270               "Must expand into a divisible number of parts!");
271        unsigned Factor = NumParts / NumIntermediates;
272        for (unsigned i = 0; i != NumIntermediates; ++i)
273          Ops[i] = getCopyFromParts(DAG, dl, &Parts[i * Factor], Factor,
274                                    PartVT, IntermediateVT);
275      }
276
277      // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
278      // intermediate operands.
279      Val = DAG.getNode(IntermediateVT.isVector() ?
280                        ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, dl,
281                        ValueVT, &Ops[0], NumIntermediates);
282    } else if (PartVT.isFloatingPoint()) {
283      // FP split into multiple FP parts (for ppcf128)
284      assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) &&
285             "Unexpected split");
286      SDValue Lo, Hi;
287      Lo = DAG.getNode(ISD::BIT_CONVERT, dl, EVT(MVT::f64), Parts[0]);
288      Hi = DAG.getNode(ISD::BIT_CONVERT, dl, EVT(MVT::f64), Parts[1]);
289      if (TLI.isBigEndian())
290        std::swap(Lo, Hi);
291      Val = DAG.getNode(ISD::BUILD_PAIR, dl, ValueVT, Lo, Hi);
292    } else {
293      // FP split into integer parts (soft fp)
294      assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
295             !PartVT.isVector() && "Unexpected split");
296      EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
297      Val = getCopyFromParts(DAG, dl, Parts, NumParts, PartVT, IntVT);
298    }
299  }
300
301  // There is now one part, held in Val.  Correct it to match ValueVT.
302  PartVT = Val.getValueType();
303
304  if (PartVT == ValueVT)
305    return Val;
306
307  if (PartVT.isVector()) {
308    assert(ValueVT.isVector() && "Unknown vector conversion!");
309    return DAG.getNode(ISD::BIT_CONVERT, dl, ValueVT, Val);
310  }
311
312  if (ValueVT.isVector()) {
313    assert(ValueVT.getVectorElementType() == PartVT &&
314           ValueVT.getVectorNumElements() == 1 &&
315           "Only trivial scalar-to-vector conversions should get here!");
316    return DAG.getNode(ISD::BUILD_VECTOR, dl, ValueVT, Val);
317  }
318
319  if (PartVT.isInteger() &&
320      ValueVT.isInteger()) {
321    if (ValueVT.bitsLT(PartVT)) {
322      // For a truncate, see if we have any information to
323      // indicate whether the truncated bits will always be
324      // zero or sign-extension.
325      if (AssertOp != ISD::DELETED_NODE)
326        Val = DAG.getNode(AssertOp, dl, PartVT, Val,
327                          DAG.getValueType(ValueVT));
328      return DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val);
329    } else {
330      return DAG.getNode(ISD::ANY_EXTEND, dl, ValueVT, Val);
331    }
332  }
333
334  if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
335    if (ValueVT.bitsLT(Val.getValueType())) {
336      // FP_ROUND's are always exact here.
337      return DAG.getNode(ISD::FP_ROUND, dl, ValueVT, Val,
338                         DAG.getIntPtrConstant(1));
339    }
340
341    return DAG.getNode(ISD::FP_EXTEND, dl, ValueVT, Val);
342  }
343
344  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
345    return DAG.getNode(ISD::BIT_CONVERT, dl, ValueVT, Val);
346
347  llvm_unreachable("Unknown mismatch!");
348  return SDValue();
349}
350
351/// getCopyToParts - Create a series of nodes that contain the specified value
352/// split into legal parts.  If the parts contain more bits than Val, then, for
353/// integers, ExtendKind can be used to specify how to generate the extra bits.
354static void getCopyToParts(SelectionDAG &DAG, DebugLoc dl,
355                           SDValue Val, SDValue *Parts, unsigned NumParts,
356                           EVT PartVT,
357                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
358  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
359  EVT PtrVT = TLI.getPointerTy();
360  EVT ValueVT = Val.getValueType();
361  unsigned PartBits = PartVT.getSizeInBits();
362  unsigned OrigNumParts = NumParts;
363  assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
364
365  if (!NumParts)
366    return;
367
368  if (!ValueVT.isVector()) {
369    if (PartVT == ValueVT) {
370      assert(NumParts == 1 && "No-op copy with multiple parts!");
371      Parts[0] = Val;
372      return;
373    }
374
375    if (NumParts * PartBits > ValueVT.getSizeInBits()) {
376      // If the parts cover more bits than the value has, promote the value.
377      if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
378        assert(NumParts == 1 && "Do not know what to promote to!");
379        Val = DAG.getNode(ISD::FP_EXTEND, dl, PartVT, Val);
380      } else if (PartVT.isInteger() && ValueVT.isInteger()) {
381        ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
382        Val = DAG.getNode(ExtendKind, dl, ValueVT, Val);
383      } else {
384        llvm_unreachable("Unknown mismatch!");
385      }
386    } else if (PartBits == ValueVT.getSizeInBits()) {
387      // Different types of the same size.
388      assert(NumParts == 1 && PartVT != ValueVT);
389      Val = DAG.getNode(ISD::BIT_CONVERT, dl, PartVT, Val);
390    } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
391      // If the parts cover less bits than value has, truncate the value.
392      if (PartVT.isInteger() && ValueVT.isInteger()) {
393        ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
394        Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val);
395      } else {
396        llvm_unreachable("Unknown mismatch!");
397      }
398    }
399
400    // The value may have changed - recompute ValueVT.
401    ValueVT = Val.getValueType();
402    assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
403           "Failed to tile the value with PartVT!");
404
405    if (NumParts == 1) {
406      assert(PartVT == ValueVT && "Type conversion failed!");
407      Parts[0] = Val;
408      return;
409    }
410
411    // Expand the value into multiple parts.
412    if (NumParts & (NumParts - 1)) {
413      // The number of parts is not a power of 2.  Split off and copy the tail.
414      assert(PartVT.isInteger() && ValueVT.isInteger() &&
415             "Do not know what to expand to!");
416      unsigned RoundParts = 1 << Log2_32(NumParts);
417      unsigned RoundBits = RoundParts * PartBits;
418      unsigned OddParts = NumParts - RoundParts;
419      SDValue OddVal = DAG.getNode(ISD::SRL, dl, ValueVT, Val,
420                                   DAG.getConstant(RoundBits,
421                                                   TLI.getPointerTy()));
422      getCopyToParts(DAG, dl, OddVal, Parts + RoundParts,
423                     OddParts, PartVT);
424
425      if (TLI.isBigEndian())
426        // The odd parts were reversed by getCopyToParts - unreverse them.
427        std::reverse(Parts + RoundParts, Parts + NumParts);
428
429      NumParts = RoundParts;
430      ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
431      Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val);
432    }
433
434    // The number of parts is a power of 2.  Repeatedly bisect the value using
435    // EXTRACT_ELEMENT.
436    Parts[0] = DAG.getNode(ISD::BIT_CONVERT, dl,
437                           EVT::getIntegerVT(*DAG.getContext(),
438                                             ValueVT.getSizeInBits()),
439                           Val);
440
441    for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
442      for (unsigned i = 0; i < NumParts; i += StepSize) {
443        unsigned ThisBits = StepSize * PartBits / 2;
444        EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
445        SDValue &Part0 = Parts[i];
446        SDValue &Part1 = Parts[i+StepSize/2];
447
448        Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
449                            ThisVT, Part0,
450                            DAG.getConstant(1, PtrVT));
451        Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
452                            ThisVT, Part0,
453                            DAG.getConstant(0, PtrVT));
454
455        if (ThisBits == PartBits && ThisVT != PartVT) {
456          Part0 = DAG.getNode(ISD::BIT_CONVERT, dl,
457                                                PartVT, Part0);
458          Part1 = DAG.getNode(ISD::BIT_CONVERT, dl,
459                                                PartVT, Part1);
460        }
461      }
462    }
463
464    if (TLI.isBigEndian())
465      std::reverse(Parts, Parts + OrigNumParts);
466
467    return;
468  }
469
470  // Vector ValueVT.
471  if (NumParts == 1) {
472    if (PartVT != ValueVT) {
473      if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
474        Val = DAG.getNode(ISD::BIT_CONVERT, dl, PartVT, Val);
475      } else {
476        assert(ValueVT.getVectorElementType() == PartVT &&
477               ValueVT.getVectorNumElements() == 1 &&
478               "Only trivial vector-to-scalar conversions should get here!");
479        Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
480                          PartVT, Val,
481                          DAG.getConstant(0, PtrVT));
482      }
483    }
484
485    Parts[0] = Val;
486    return;
487  }
488
489  // Handle a multi-element vector.
490  EVT IntermediateVT, RegisterVT;
491  unsigned NumIntermediates;
492  unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
493                              IntermediateVT, NumIntermediates, RegisterVT);
494  unsigned NumElements = ValueVT.getVectorNumElements();
495
496  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
497  NumParts = NumRegs; // Silence a compiler warning.
498  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
499
500  // Split the vector into intermediate operands.
501  SmallVector<SDValue, 8> Ops(NumIntermediates);
502  for (unsigned i = 0; i != NumIntermediates; ++i) {
503    if (IntermediateVT.isVector())
504      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl,
505                           IntermediateVT, Val,
506                           DAG.getConstant(i * (NumElements / NumIntermediates),
507                                           PtrVT));
508    else
509      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
510                           IntermediateVT, Val,
511                           DAG.getConstant(i, PtrVT));
512  }
513
514  // Split the intermediate operands into legal parts.
515  if (NumParts == NumIntermediates) {
516    // If the register was not expanded, promote or copy the value,
517    // as appropriate.
518    for (unsigned i = 0; i != NumParts; ++i)
519      getCopyToParts(DAG, dl, Ops[i], &Parts[i], 1, PartVT);
520  } else if (NumParts > 0) {
521    // If the intermediate type was expanded, split each the value into
522    // legal parts.
523    assert(NumParts % NumIntermediates == 0 &&
524           "Must expand into a divisible number of parts!");
525    unsigned Factor = NumParts / NumIntermediates;
526    for (unsigned i = 0; i != NumIntermediates; ++i)
527      getCopyToParts(DAG, dl, Ops[i], &Parts[i*Factor], Factor, PartVT);
528  }
529}
530
531
532void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) {
533  AA = &aa;
534  GFI = gfi;
535  TD = DAG.getTarget().getTargetData();
536}
537
538/// clear - Clear out the current SelectionDAG and the associated
539/// state and prepare this SelectionDAGBuilder object to be used
540/// for a new block. This doesn't clear out information about
541/// additional blocks that are needed to complete switch lowering
542/// or PHI node updating; that information is cleared out as it is
543/// consumed.
544void SelectionDAGBuilder::clear() {
545  NodeMap.clear();
546  PendingLoads.clear();
547  PendingExports.clear();
548  EdgeMapping.clear();
549  DAG.clear();
550  CurDebugLoc = DebugLoc();
551  HasTailCall = false;
552}
553
554/// getRoot - Return the current virtual root of the Selection DAG,
555/// flushing any PendingLoad items. This must be done before emitting
556/// a store or any other node that may need to be ordered after any
557/// prior load instructions.
558///
559SDValue SelectionDAGBuilder::getRoot() {
560  if (PendingLoads.empty())
561    return DAG.getRoot();
562
563  if (PendingLoads.size() == 1) {
564    SDValue Root = PendingLoads[0];
565    DAG.setRoot(Root);
566    PendingLoads.clear();
567    return Root;
568  }
569
570  // Otherwise, we have to make a token factor node.
571  SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
572                               &PendingLoads[0], PendingLoads.size());
573  PendingLoads.clear();
574  DAG.setRoot(Root);
575  return Root;
576}
577
578/// getControlRoot - Similar to getRoot, but instead of flushing all the
579/// PendingLoad items, flush all the PendingExports items. It is necessary
580/// to do this before emitting a terminator instruction.
581///
582SDValue SelectionDAGBuilder::getControlRoot() {
583  SDValue Root = DAG.getRoot();
584
585  if (PendingExports.empty())
586    return Root;
587
588  // Turn all of the CopyToReg chains into one factored node.
589  if (Root.getOpcode() != ISD::EntryToken) {
590    unsigned i = 0, e = PendingExports.size();
591    for (; i != e; ++i) {
592      assert(PendingExports[i].getNode()->getNumOperands() > 1);
593      if (PendingExports[i].getNode()->getOperand(0) == Root)
594        break;  // Don't add the root if we already indirectly depend on it.
595    }
596
597    if (i == e)
598      PendingExports.push_back(Root);
599  }
600
601  Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
602                     &PendingExports[0],
603                     PendingExports.size());
604  PendingExports.clear();
605  DAG.setRoot(Root);
606  return Root;
607}
608
609void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) {
610  if (DAG.GetOrdering(Node) != 0) return; // Already has ordering.
611  DAG.AssignOrdering(Node, SDNodeOrder);
612
613  for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I)
614    AssignOrderingToNode(Node->getOperand(I).getNode());
615}
616
617void SelectionDAGBuilder::visit(const Instruction &I) {
618  // Set up outgoing PHI node register values before emitting the terminator.
619  if (isa<TerminatorInst>(&I))
620    HandlePHINodesInSuccessorBlocks(I.getParent());
621
622  CurDebugLoc = I.getDebugLoc();
623
624  visit(I.getOpcode(), I);
625
626  if (!isa<TerminatorInst>(&I) && !HasTailCall)
627    CopyToExportRegsIfNeeded(&I);
628
629  CurDebugLoc = DebugLoc();
630}
631
632void SelectionDAGBuilder::visitPHI(const PHINode &) {
633  llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
634}
635
636void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
637  // Note: this doesn't use InstVisitor, because it has to work with
638  // ConstantExpr's in addition to instructions.
639  switch (Opcode) {
640  default: llvm_unreachable("Unknown instruction type encountered!");
641    // Build the switch statement using the Instruction.def file.
642#define HANDLE_INST(NUM, OPCODE, CLASS) \
643    case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break;
644#include "llvm/Instruction.def"
645  }
646
647  // Assign the ordering to the freshly created DAG nodes.
648  if (NodeMap.count(&I)) {
649    ++SDNodeOrder;
650    AssignOrderingToNode(getValue(&I).getNode());
651  }
652}
653
654SDValue SelectionDAGBuilder::getValue(const Value *V) {
655  SDValue &N = NodeMap[V];
656  if (N.getNode()) return N;
657
658  if (const Constant *C = dyn_cast<Constant>(V)) {
659    EVT VT = TLI.getValueType(V->getType(), true);
660
661    if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
662      return N = DAG.getConstant(*CI, VT);
663
664    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
665      return N = DAG.getGlobalAddress(GV, VT);
666
667    if (isa<ConstantPointerNull>(C))
668      return N = DAG.getConstant(0, TLI.getPointerTy());
669
670    if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
671      return N = DAG.getConstantFP(*CFP, VT);
672
673    if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
674      return N = DAG.getUNDEF(VT);
675
676    if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
677      visit(CE->getOpcode(), *CE);
678      SDValue N1 = NodeMap[V];
679      assert(N1.getNode() && "visit didn't populate the NodeMap!");
680      return N1;
681    }
682
683    if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
684      SmallVector<SDValue, 4> Constants;
685      for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
686           OI != OE; ++OI) {
687        SDNode *Val = getValue(*OI).getNode();
688        // If the operand is an empty aggregate, there are no values.
689        if (!Val) continue;
690        // Add each leaf value from the operand to the Constants list
691        // to form a flattened list of all the values.
692        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
693          Constants.push_back(SDValue(Val, i));
694      }
695
696      return DAG.getMergeValues(&Constants[0], Constants.size(),
697                                getCurDebugLoc());
698    }
699
700    if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
701      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
702             "Unknown struct or array constant!");
703
704      SmallVector<EVT, 4> ValueVTs;
705      ComputeValueVTs(TLI, C->getType(), ValueVTs);
706      unsigned NumElts = ValueVTs.size();
707      if (NumElts == 0)
708        return SDValue(); // empty struct
709      SmallVector<SDValue, 4> Constants(NumElts);
710      for (unsigned i = 0; i != NumElts; ++i) {
711        EVT EltVT = ValueVTs[i];
712        if (isa<UndefValue>(C))
713          Constants[i] = DAG.getUNDEF(EltVT);
714        else if (EltVT.isFloatingPoint())
715          Constants[i] = DAG.getConstantFP(0, EltVT);
716        else
717          Constants[i] = DAG.getConstant(0, EltVT);
718      }
719
720      return DAG.getMergeValues(&Constants[0], NumElts,
721                                getCurDebugLoc());
722    }
723
724    if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
725      return DAG.getBlockAddress(BA, VT);
726
727    const VectorType *VecTy = cast<VectorType>(V->getType());
728    unsigned NumElements = VecTy->getNumElements();
729
730    // Now that we know the number and type of the elements, get that number of
731    // elements into the Ops array based on what kind of constant it is.
732    SmallVector<SDValue, 16> Ops;
733    if (const ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
734      for (unsigned i = 0; i != NumElements; ++i)
735        Ops.push_back(getValue(CP->getOperand(i)));
736    } else {
737      assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
738      EVT EltVT = TLI.getValueType(VecTy->getElementType());
739
740      SDValue Op;
741      if (EltVT.isFloatingPoint())
742        Op = DAG.getConstantFP(0, EltVT);
743      else
744        Op = DAG.getConstant(0, EltVT);
745      Ops.assign(NumElements, Op);
746    }
747
748    // Create a BUILD_VECTOR node.
749    return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
750                                    VT, &Ops[0], Ops.size());
751  }
752
753  // If this is a static alloca, generate it as the frameindex instead of
754  // computation.
755  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
756    DenseMap<const AllocaInst*, int>::iterator SI =
757      FuncInfo.StaticAllocaMap.find(AI);
758    if (SI != FuncInfo.StaticAllocaMap.end())
759      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
760  }
761
762  unsigned InReg = FuncInfo.ValueMap[V];
763  assert(InReg && "Value not in map!");
764
765  RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
766  SDValue Chain = DAG.getEntryNode();
767  return RFV.getCopyFromRegs(DAG, getCurDebugLoc(), Chain, NULL);
768}
769
770/// Get the EVTs and ArgFlags collections that represent the legalized return
771/// type of the given function.  This does not require a DAG or a return value,
772/// and is suitable for use before any DAGs for the function are constructed.
773static void getReturnInfo(const Type* ReturnType,
774                   Attributes attr, SmallVectorImpl<EVT> &OutVTs,
775                   SmallVectorImpl<ISD::ArgFlagsTy> &OutFlags,
776                   const TargetLowering &TLI,
777                   SmallVectorImpl<uint64_t> *Offsets = 0) {
778  SmallVector<EVT, 4> ValueVTs;
779  ComputeValueVTs(TLI, ReturnType, ValueVTs);
780  unsigned NumValues = ValueVTs.size();
781  if (NumValues == 0) return;
782  unsigned Offset = 0;
783
784  for (unsigned j = 0, f = NumValues; j != f; ++j) {
785    EVT VT = ValueVTs[j];
786    ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
787
788    if (attr & Attribute::SExt)
789      ExtendKind = ISD::SIGN_EXTEND;
790    else if (attr & Attribute::ZExt)
791      ExtendKind = ISD::ZERO_EXTEND;
792
793    // FIXME: C calling convention requires the return type to be promoted to
794    // at least 32-bit. But this is not necessary for non-C calling
795    // conventions. The frontend should mark functions whose return values
796    // require promoting with signext or zeroext attributes.
797    if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
798      EVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
799      if (VT.bitsLT(MinVT))
800        VT = MinVT;
801    }
802
803    unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT);
804    EVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT);
805    unsigned PartSize = TLI.getTargetData()->getTypeAllocSize(
806                        PartVT.getTypeForEVT(ReturnType->getContext()));
807
808    // 'inreg' on function refers to return value
809    ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
810    if (attr & Attribute::InReg)
811      Flags.setInReg();
812
813    // Propagate extension type if any
814    if (attr & Attribute::SExt)
815      Flags.setSExt();
816    else if (attr & Attribute::ZExt)
817      Flags.setZExt();
818
819    for (unsigned i = 0; i < NumParts; ++i) {
820      OutVTs.push_back(PartVT);
821      OutFlags.push_back(Flags);
822      if (Offsets)
823      {
824        Offsets->push_back(Offset);
825        Offset += PartSize;
826      }
827    }
828  }
829}
830
831void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
832  SDValue Chain = getControlRoot();
833  SmallVector<ISD::OutputArg, 8> Outs;
834  FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo();
835
836  if (!FLI.CanLowerReturn) {
837    unsigned DemoteReg = FLI.DemoteRegister;
838    const Function *F = I.getParent()->getParent();
839
840    // Emit a store of the return value through the virtual register.
841    // Leave Outs empty so that LowerReturn won't try to load return
842    // registers the usual way.
843    SmallVector<EVT, 1> PtrValueVTs;
844    ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
845                    PtrValueVTs);
846
847    SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
848    SDValue RetOp = getValue(I.getOperand(0));
849
850    SmallVector<EVT, 4> ValueVTs;
851    SmallVector<uint64_t, 4> Offsets;
852    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
853    unsigned NumValues = ValueVTs.size();
854
855    SmallVector<SDValue, 4> Chains(NumValues);
856    EVT PtrVT = PtrValueVTs[0];
857    for (unsigned i = 0; i != NumValues; ++i) {
858      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, RetPtr,
859                                DAG.getConstant(Offsets[i], PtrVT));
860      Chains[i] =
861        DAG.getStore(Chain, getCurDebugLoc(),
862                     SDValue(RetOp.getNode(), RetOp.getResNo() + i),
863                     Add, NULL, Offsets[i], false, false, 0);
864    }
865
866    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
867                        MVT::Other, &Chains[0], NumValues);
868  } else if (I.getNumOperands() != 0) {
869    SmallVector<EVT, 4> ValueVTs;
870    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
871    unsigned NumValues = ValueVTs.size();
872    if (NumValues) {
873      SDValue RetOp = getValue(I.getOperand(0));
874      for (unsigned j = 0, f = NumValues; j != f; ++j) {
875        EVT VT = ValueVTs[j];
876
877        ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
878
879        const Function *F = I.getParent()->getParent();
880        if (F->paramHasAttr(0, Attribute::SExt))
881          ExtendKind = ISD::SIGN_EXTEND;
882        else if (F->paramHasAttr(0, Attribute::ZExt))
883          ExtendKind = ISD::ZERO_EXTEND;
884
885        // FIXME: C calling convention requires the return type to be promoted
886        // to at least 32-bit. But this is not necessary for non-C calling
887        // conventions. The frontend should mark functions whose return values
888        // require promoting with signext or zeroext attributes.
889        if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
890          EVT MinVT = TLI.getRegisterType(*DAG.getContext(), MVT::i32);
891          if (VT.bitsLT(MinVT))
892            VT = MinVT;
893        }
894
895        unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
896        EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
897        SmallVector<SDValue, 4> Parts(NumParts);
898        getCopyToParts(DAG, getCurDebugLoc(),
899                       SDValue(RetOp.getNode(), RetOp.getResNo() + j),
900                       &Parts[0], NumParts, PartVT, ExtendKind);
901
902        // 'inreg' on function refers to return value
903        ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
904        if (F->paramHasAttr(0, Attribute::InReg))
905          Flags.setInReg();
906
907        // Propagate extension type if any
908        if (F->paramHasAttr(0, Attribute::SExt))
909          Flags.setSExt();
910        else if (F->paramHasAttr(0, Attribute::ZExt))
911          Flags.setZExt();
912
913        for (unsigned i = 0; i < NumParts; ++i)
914          Outs.push_back(ISD::OutputArg(Flags, Parts[i], /*isfixed=*/true));
915      }
916    }
917  }
918
919  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
920  CallingConv::ID CallConv =
921    DAG.getMachineFunction().getFunction()->getCallingConv();
922  Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
923                          Outs, getCurDebugLoc(), DAG);
924
925  // Verify that the target's LowerReturn behaved as expected.
926  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
927         "LowerReturn didn't return a valid chain!");
928
929  // Update the DAG with the new chain value resulting from return lowering.
930  DAG.setRoot(Chain);
931}
932
933/// CopyToExportRegsIfNeeded - If the given value has virtual registers
934/// created for it, emit nodes to copy the value into the virtual
935/// registers.
936void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
937  DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
938  if (VMI != FuncInfo.ValueMap.end()) {
939    assert(!V->use_empty() && "Unused value assigned virtual registers!");
940    CopyValueToVirtualRegister(V, VMI->second);
941  }
942}
943
944/// ExportFromCurrentBlock - If this condition isn't known to be exported from
945/// the current basic block, add it to ValueMap now so that we'll get a
946/// CopyTo/FromReg.
947void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
948  // No need to export constants.
949  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
950
951  // Already exported?
952  if (FuncInfo.isExportedInst(V)) return;
953
954  unsigned Reg = FuncInfo.InitializeRegForValue(V);
955  CopyValueToVirtualRegister(V, Reg);
956}
957
958bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
959                                                     const BasicBlock *FromBB) {
960  // The operands of the setcc have to be in this block.  We don't know
961  // how to export them from some other block.
962  if (const Instruction *VI = dyn_cast<Instruction>(V)) {
963    // Can export from current BB.
964    if (VI->getParent() == FromBB)
965      return true;
966
967    // Is already exported, noop.
968    return FuncInfo.isExportedInst(V);
969  }
970
971  // If this is an argument, we can export it if the BB is the entry block or
972  // if it is already exported.
973  if (isa<Argument>(V)) {
974    if (FromBB == &FromBB->getParent()->getEntryBlock())
975      return true;
976
977    // Otherwise, can only export this if it is already exported.
978    return FuncInfo.isExportedInst(V);
979  }
980
981  // Otherwise, constants can always be exported.
982  return true;
983}
984
985static bool InBlock(const Value *V, const BasicBlock *BB) {
986  if (const Instruction *I = dyn_cast<Instruction>(V))
987    return I->getParent() == BB;
988  return true;
989}
990
991/// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
992/// This function emits a branch and is used at the leaves of an OR or an
993/// AND operator tree.
994///
995void
996SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
997                                                  MachineBasicBlock *TBB,
998                                                  MachineBasicBlock *FBB,
999                                                  MachineBasicBlock *CurBB,
1000                                                  MachineBasicBlock *SwitchBB) {
1001  const BasicBlock *BB = CurBB->getBasicBlock();
1002
1003  // If the leaf of the tree is a comparison, merge the condition into
1004  // the caseblock.
1005  if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1006    // The operands of the cmp have to be in this block.  We don't know
1007    // how to export them from some other block.  If this is the first block
1008    // of the sequence, no exporting is needed.
1009    if (CurBB == SwitchBB ||
1010        (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1011         isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1012      ISD::CondCode Condition;
1013      if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1014        Condition = getICmpCondCode(IC->getPredicate());
1015      } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1016        Condition = getFCmpCondCode(FC->getPredicate());
1017      } else {
1018        Condition = ISD::SETEQ; // silence warning.
1019        llvm_unreachable("Unknown compare instruction");
1020      }
1021
1022      CaseBlock CB(Condition, BOp->getOperand(0),
1023                   BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1024      SwitchCases.push_back(CB);
1025      return;
1026    }
1027  }
1028
1029  // Create a CaseBlock record representing this branch.
1030  CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1031               NULL, TBB, FBB, CurBB);
1032  SwitchCases.push_back(CB);
1033}
1034
1035/// FindMergedConditions - If Cond is an expression like
1036void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1037                                               MachineBasicBlock *TBB,
1038                                               MachineBasicBlock *FBB,
1039                                               MachineBasicBlock *CurBB,
1040                                               MachineBasicBlock *SwitchBB,
1041                                               unsigned Opc) {
1042  // If this node is not part of the or/and tree, emit it as a branch.
1043  const Instruction *BOp = dyn_cast<Instruction>(Cond);
1044  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1045      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1046      BOp->getParent() != CurBB->getBasicBlock() ||
1047      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1048      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1049    EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB);
1050    return;
1051  }
1052
1053  //  Create TmpBB after CurBB.
1054  MachineFunction::iterator BBI = CurBB;
1055  MachineFunction &MF = DAG.getMachineFunction();
1056  MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1057  CurBB->getParent()->insert(++BBI, TmpBB);
1058
1059  if (Opc == Instruction::Or) {
1060    // Codegen X | Y as:
1061    //   jmp_if_X TBB
1062    //   jmp TmpBB
1063    // TmpBB:
1064    //   jmp_if_Y TBB
1065    //   jmp FBB
1066    //
1067
1068    // Emit the LHS condition.
1069    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc);
1070
1071    // Emit the RHS condition into TmpBB.
1072    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1073  } else {
1074    assert(Opc == Instruction::And && "Unknown merge op!");
1075    // Codegen X & Y as:
1076    //   jmp_if_X TmpBB
1077    //   jmp FBB
1078    // TmpBB:
1079    //   jmp_if_Y TBB
1080    //   jmp FBB
1081    //
1082    //  This requires creation of TmpBB after CurBB.
1083
1084    // Emit the LHS condition.
1085    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc);
1086
1087    // Emit the RHS condition into TmpBB.
1088    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1089  }
1090}
1091
1092/// If the set of cases should be emitted as a series of branches, return true.
1093/// If we should emit this as a bunch of and/or'd together conditions, return
1094/// false.
1095bool
1096SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
1097  if (Cases.size() != 2) return true;
1098
1099  // If this is two comparisons of the same values or'd or and'd together, they
1100  // will get folded into a single comparison, so don't emit two blocks.
1101  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1102       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1103      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1104       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1105    return false;
1106  }
1107
1108  // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1109  // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1110  if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1111      Cases[0].CC == Cases[1].CC &&
1112      isa<Constant>(Cases[0].CmpRHS) &&
1113      cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1114    if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1115      return false;
1116    if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1117      return false;
1118  }
1119
1120  return true;
1121}
1122
1123void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1124  MachineBasicBlock *BrMBB = FuncInfo.MBBMap[I.getParent()];
1125
1126  // Update machine-CFG edges.
1127  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1128
1129  // Figure out which block is immediately after the current one.
1130  MachineBasicBlock *NextBlock = 0;
1131  MachineFunction::iterator BBI = BrMBB;
1132  if (++BBI != FuncInfo.MF->end())
1133    NextBlock = BBI;
1134
1135  if (I.isUnconditional()) {
1136    // Update machine-CFG edges.
1137    BrMBB->addSuccessor(Succ0MBB);
1138
1139    // If this is not a fall-through branch, emit the branch.
1140    if (Succ0MBB != NextBlock)
1141      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1142                              MVT::Other, getControlRoot(),
1143                              DAG.getBasicBlock(Succ0MBB)));
1144
1145    return;
1146  }
1147
1148  // If this condition is one of the special cases we handle, do special stuff
1149  // now.
1150  const Value *CondVal = I.getCondition();
1151  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1152
1153  // If this is a series of conditions that are or'd or and'd together, emit
1154  // this as a sequence of branches instead of setcc's with and/or operations.
1155  // For example, instead of something like:
1156  //     cmp A, B
1157  //     C = seteq
1158  //     cmp D, E
1159  //     F = setle
1160  //     or C, F
1161  //     jnz foo
1162  // Emit:
1163  //     cmp A, B
1164  //     je foo
1165  //     cmp D, E
1166  //     jle foo
1167  //
1168  if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1169    if (BOp->hasOneUse() &&
1170        (BOp->getOpcode() == Instruction::And ||
1171         BOp->getOpcode() == Instruction::Or)) {
1172      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1173                           BOp->getOpcode());
1174      // If the compares in later blocks need to use values not currently
1175      // exported from this block, export them now.  This block should always
1176      // be the first entry.
1177      assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1178
1179      // Allow some cases to be rejected.
1180      if (ShouldEmitAsBranches(SwitchCases)) {
1181        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1182          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1183          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1184        }
1185
1186        // Emit the branch for this block.
1187        visitSwitchCase(SwitchCases[0], BrMBB);
1188        SwitchCases.erase(SwitchCases.begin());
1189        return;
1190      }
1191
1192      // Okay, we decided not to do this, remove any inserted MBB's and clear
1193      // SwitchCases.
1194      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1195        FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1196
1197      SwitchCases.clear();
1198    }
1199  }
1200
1201  // Create a CaseBlock record representing this branch.
1202  CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1203               NULL, Succ0MBB, Succ1MBB, BrMBB);
1204
1205  // Use visitSwitchCase to actually insert the fast branch sequence for this
1206  // cond branch.
1207  visitSwitchCase(CB, BrMBB);
1208}
1209
1210/// visitSwitchCase - Emits the necessary code to represent a single node in
1211/// the binary search tree resulting from lowering a switch instruction.
1212void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1213                                          MachineBasicBlock *SwitchBB) {
1214  SDValue Cond;
1215  SDValue CondLHS = getValue(CB.CmpLHS);
1216  DebugLoc dl = getCurDebugLoc();
1217
1218  // Build the setcc now.
1219  if (CB.CmpMHS == NULL) {
1220    // Fold "(X == true)" to X and "(X == false)" to !X to
1221    // handle common cases produced by branch lowering.
1222    if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1223        CB.CC == ISD::SETEQ)
1224      Cond = CondLHS;
1225    else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1226             CB.CC == ISD::SETEQ) {
1227      SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1228      Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1229    } else
1230      Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1231  } else {
1232    assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1233
1234    const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1235    const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
1236
1237    SDValue CmpOp = getValue(CB.CmpMHS);
1238    EVT VT = CmpOp.getValueType();
1239
1240    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1241      Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1242                          ISD::SETLE);
1243    } else {
1244      SDValue SUB = DAG.getNode(ISD::SUB, dl,
1245                                VT, CmpOp, DAG.getConstant(Low, VT));
1246      Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1247                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1248    }
1249  }
1250
1251  // Update successor info
1252  SwitchBB->addSuccessor(CB.TrueBB);
1253  SwitchBB->addSuccessor(CB.FalseBB);
1254
1255  // Set NextBlock to be the MBB immediately after the current one, if any.
1256  // This is used to avoid emitting unnecessary branches to the next block.
1257  MachineBasicBlock *NextBlock = 0;
1258  MachineFunction::iterator BBI = SwitchBB;
1259  if (++BBI != FuncInfo.MF->end())
1260    NextBlock = BBI;
1261
1262  // If the lhs block is the next block, invert the condition so that we can
1263  // fall through to the lhs instead of the rhs block.
1264  if (CB.TrueBB == NextBlock) {
1265    std::swap(CB.TrueBB, CB.FalseBB);
1266    SDValue True = DAG.getConstant(1, Cond.getValueType());
1267    Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1268  }
1269
1270  SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1271                               MVT::Other, getControlRoot(), Cond,
1272                               DAG.getBasicBlock(CB.TrueBB));
1273
1274  // If the branch was constant folded, fix up the CFG.
1275  if (BrCond.getOpcode() == ISD::BR) {
1276    SwitchBB->removeSuccessor(CB.FalseBB);
1277  } else {
1278    // Otherwise, go ahead and insert the false branch.
1279    if (BrCond == getControlRoot())
1280      SwitchBB->removeSuccessor(CB.TrueBB);
1281
1282    if (CB.FalseBB != NextBlock)
1283      BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1284                           DAG.getBasicBlock(CB.FalseBB));
1285  }
1286
1287  DAG.setRoot(BrCond);
1288}
1289
1290/// visitJumpTable - Emit JumpTable node in the current MBB
1291void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1292  // Emit the code for the jump table
1293  assert(JT.Reg != -1U && "Should lower JT Header first!");
1294  EVT PTy = TLI.getPointerTy();
1295  SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1296                                     JT.Reg, PTy);
1297  SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1298  SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(),
1299                                    MVT::Other, Index.getValue(1),
1300                                    Table, Index);
1301  DAG.setRoot(BrJumpTable);
1302}
1303
1304/// visitJumpTableHeader - This function emits necessary code to produce index
1305/// in the JumpTable from switch case.
1306void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1307                                               JumpTableHeader &JTH,
1308                                               MachineBasicBlock *SwitchBB) {
1309  // Subtract the lowest switch case value from the value being switched on and
1310  // conditional branch to default mbb if the result is greater than the
1311  // difference between smallest and largest cases.
1312  SDValue SwitchOp = getValue(JTH.SValue);
1313  EVT VT = SwitchOp.getValueType();
1314  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1315                            DAG.getConstant(JTH.First, VT));
1316
1317  // The SDNode we just created, which holds the value being switched on minus
1318  // the smallest case value, needs to be copied to a virtual register so it
1319  // can be used as an index into the jump table in a subsequent basic block.
1320  // This value may be smaller or larger than the target's pointer type, and
1321  // therefore require extension or truncating.
1322  SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy());
1323
1324  unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy());
1325  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1326                                    JumpTableReg, SwitchOp);
1327  JT.Reg = JumpTableReg;
1328
1329  // Emit the range check for the jump table, and branch to the default block
1330  // for the switch statement if the value being switched on exceeds the largest
1331  // case in the switch.
1332  SDValue CMP = DAG.getSetCC(getCurDebugLoc(),
1333                             TLI.getSetCCResultType(Sub.getValueType()), Sub,
1334                             DAG.getConstant(JTH.Last-JTH.First,VT),
1335                             ISD::SETUGT);
1336
1337  // Set NextBlock to be the MBB immediately after the current one, if any.
1338  // This is used to avoid emitting unnecessary branches to the next block.
1339  MachineBasicBlock *NextBlock = 0;
1340  MachineFunction::iterator BBI = SwitchBB;
1341
1342  if (++BBI != FuncInfo.MF->end())
1343    NextBlock = BBI;
1344
1345  SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1346                               MVT::Other, CopyTo, CMP,
1347                               DAG.getBasicBlock(JT.Default));
1348
1349  if (JT.MBB != NextBlock)
1350    BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond,
1351                         DAG.getBasicBlock(JT.MBB));
1352
1353  DAG.setRoot(BrCond);
1354}
1355
1356/// visitBitTestHeader - This function emits necessary code to produce value
1357/// suitable for "bit tests"
1358void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1359                                             MachineBasicBlock *SwitchBB) {
1360  // Subtract the minimum value
1361  SDValue SwitchOp = getValue(B.SValue);
1362  EVT VT = SwitchOp.getValueType();
1363  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1364                            DAG.getConstant(B.First, VT));
1365
1366  // Check range
1367  SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(),
1368                                  TLI.getSetCCResultType(Sub.getValueType()),
1369                                  Sub, DAG.getConstant(B.Range, VT),
1370                                  ISD::SETUGT);
1371
1372  SDValue ShiftOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(),
1373                                       TLI.getPointerTy());
1374
1375  B.Reg = FuncInfo.MakeReg(TLI.getPointerTy());
1376  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1377                                    B.Reg, ShiftOp);
1378
1379  // Set NextBlock to be the MBB immediately after the current one, if any.
1380  // This is used to avoid emitting unnecessary branches to the next block.
1381  MachineBasicBlock *NextBlock = 0;
1382  MachineFunction::iterator BBI = SwitchBB;
1383  if (++BBI != FuncInfo.MF->end())
1384    NextBlock = BBI;
1385
1386  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1387
1388  SwitchBB->addSuccessor(B.Default);
1389  SwitchBB->addSuccessor(MBB);
1390
1391  SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1392                                MVT::Other, CopyTo, RangeCmp,
1393                                DAG.getBasicBlock(B.Default));
1394
1395  if (MBB != NextBlock)
1396    BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo,
1397                          DAG.getBasicBlock(MBB));
1398
1399  DAG.setRoot(BrRange);
1400}
1401
1402/// visitBitTestCase - this function produces one "bit test"
1403void SelectionDAGBuilder::visitBitTestCase(MachineBasicBlock* NextMBB,
1404                                           unsigned Reg,
1405                                           BitTestCase &B,
1406                                           MachineBasicBlock *SwitchBB) {
1407  // Make desired shift
1408  SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), Reg,
1409                                       TLI.getPointerTy());
1410  SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(),
1411                                  TLI.getPointerTy(),
1412                                  DAG.getConstant(1, TLI.getPointerTy()),
1413                                  ShiftOp);
1414
1415  // Emit bit tests and jumps
1416  SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(),
1417                              TLI.getPointerTy(), SwitchVal,
1418                              DAG.getConstant(B.Mask, TLI.getPointerTy()));
1419  SDValue AndCmp = DAG.getSetCC(getCurDebugLoc(),
1420                                TLI.getSetCCResultType(AndOp.getValueType()),
1421                                AndOp, DAG.getConstant(0, TLI.getPointerTy()),
1422                                ISD::SETNE);
1423
1424  SwitchBB->addSuccessor(B.TargetBB);
1425  SwitchBB->addSuccessor(NextMBB);
1426
1427  SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1428                              MVT::Other, getControlRoot(),
1429                              AndCmp, DAG.getBasicBlock(B.TargetBB));
1430
1431  // Set NextBlock to be the MBB immediately after the current one, if any.
1432  // This is used to avoid emitting unnecessary branches to the next block.
1433  MachineBasicBlock *NextBlock = 0;
1434  MachineFunction::iterator BBI = SwitchBB;
1435  if (++BBI != FuncInfo.MF->end())
1436    NextBlock = BBI;
1437
1438  if (NextMBB != NextBlock)
1439    BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd,
1440                        DAG.getBasicBlock(NextMBB));
1441
1442  DAG.setRoot(BrAnd);
1443}
1444
1445void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1446  MachineBasicBlock *InvokeMBB = FuncInfo.MBBMap[I.getParent()];
1447
1448  // Retrieve successors.
1449  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1450  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1451
1452  const Value *Callee(I.getCalledValue());
1453  if (isa<InlineAsm>(Callee))
1454    visitInlineAsm(&I);
1455  else
1456    LowerCallTo(&I, getValue(Callee), false, LandingPad);
1457
1458  // If the value of the invoke is used outside of its defining block, make it
1459  // available as a virtual register.
1460  CopyToExportRegsIfNeeded(&I);
1461
1462  // Update successor info
1463  InvokeMBB->addSuccessor(Return);
1464  InvokeMBB->addSuccessor(LandingPad);
1465
1466  // Drop into normal successor.
1467  DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1468                          MVT::Other, getControlRoot(),
1469                          DAG.getBasicBlock(Return)));
1470}
1471
1472void SelectionDAGBuilder::visitUnwind(const UnwindInst &I) {
1473}
1474
1475/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1476/// small case ranges).
1477bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
1478                                                 CaseRecVector& WorkList,
1479                                                 const Value* SV,
1480                                                 MachineBasicBlock *Default,
1481                                                 MachineBasicBlock *SwitchBB) {
1482  Case& BackCase  = *(CR.Range.second-1);
1483
1484  // Size is the number of Cases represented by this range.
1485  size_t Size = CR.Range.second - CR.Range.first;
1486  if (Size > 3)
1487    return false;
1488
1489  // Get the MachineFunction which holds the current MBB.  This is used when
1490  // inserting any additional MBBs necessary to represent the switch.
1491  MachineFunction *CurMF = FuncInfo.MF;
1492
1493  // Figure out which block is immediately after the current one.
1494  MachineBasicBlock *NextBlock = 0;
1495  MachineFunction::iterator BBI = CR.CaseBB;
1496
1497  if (++BBI != FuncInfo.MF->end())
1498    NextBlock = BBI;
1499
1500  // TODO: If any two of the cases has the same destination, and if one value
1501  // is the same as the other, but has one bit unset that the other has set,
1502  // use bit manipulation to do two compares at once.  For example:
1503  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1504
1505  // Rearrange the case blocks so that the last one falls through if possible.
1506  if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1507    // The last case block won't fall through into 'NextBlock' if we emit the
1508    // branches in this order.  See if rearranging a case value would help.
1509    for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1510      if (I->BB == NextBlock) {
1511        std::swap(*I, BackCase);
1512        break;
1513      }
1514    }
1515  }
1516
1517  // Create a CaseBlock record representing a conditional branch to
1518  // the Case's target mbb if the value being switched on SV is equal
1519  // to C.
1520  MachineBasicBlock *CurBlock = CR.CaseBB;
1521  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1522    MachineBasicBlock *FallThrough;
1523    if (I != E-1) {
1524      FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
1525      CurMF->insert(BBI, FallThrough);
1526
1527      // Put SV in a virtual register to make it available from the new blocks.
1528      ExportFromCurrentBlock(SV);
1529    } else {
1530      // If the last case doesn't match, go to the default block.
1531      FallThrough = Default;
1532    }
1533
1534    const Value *RHS, *LHS, *MHS;
1535    ISD::CondCode CC;
1536    if (I->High == I->Low) {
1537      // This is just small small case range :) containing exactly 1 case
1538      CC = ISD::SETEQ;
1539      LHS = SV; RHS = I->High; MHS = NULL;
1540    } else {
1541      CC = ISD::SETLE;
1542      LHS = I->Low; MHS = SV; RHS = I->High;
1543    }
1544    CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock);
1545
1546    // If emitting the first comparison, just call visitSwitchCase to emit the
1547    // code into the current block.  Otherwise, push the CaseBlock onto the
1548    // vector to be later processed by SDISel, and insert the node's MBB
1549    // before the next MBB.
1550    if (CurBlock == SwitchBB)
1551      visitSwitchCase(CB, SwitchBB);
1552    else
1553      SwitchCases.push_back(CB);
1554
1555    CurBlock = FallThrough;
1556  }
1557
1558  return true;
1559}
1560
1561static inline bool areJTsAllowed(const TargetLowering &TLI) {
1562  return !DisableJumpTables &&
1563          (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
1564           TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
1565}
1566
1567static APInt ComputeRange(const APInt &First, const APInt &Last) {
1568  APInt LastExt(Last), FirstExt(First);
1569  uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
1570  LastExt.sext(BitWidth); FirstExt.sext(BitWidth);
1571  return (LastExt - FirstExt + 1ULL);
1572}
1573
1574/// handleJTSwitchCase - Emit jumptable for current switch case range
1575bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec& CR,
1576                                             CaseRecVector& WorkList,
1577                                             const Value* SV,
1578                                             MachineBasicBlock* Default,
1579                                             MachineBasicBlock *SwitchBB) {
1580  Case& FrontCase = *CR.Range.first;
1581  Case& BackCase  = *(CR.Range.second-1);
1582
1583  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
1584  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
1585
1586  APInt TSize(First.getBitWidth(), 0);
1587  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1588       I!=E; ++I)
1589    TSize += I->size();
1590
1591  if (!areJTsAllowed(TLI) || TSize.ult(4))
1592    return false;
1593
1594  APInt Range = ComputeRange(First, Last);
1595  double Density = TSize.roundToDouble() / Range.roundToDouble();
1596  if (Density < 0.4)
1597    return false;
1598
1599  DEBUG(dbgs() << "Lowering jump table\n"
1600               << "First entry: " << First << ". Last entry: " << Last << '\n'
1601               << "Range: " << Range
1602               << "Size: " << TSize << ". Density: " << Density << "\n\n");
1603
1604  // Get the MachineFunction which holds the current MBB.  This is used when
1605  // inserting any additional MBBs necessary to represent the switch.
1606  MachineFunction *CurMF = FuncInfo.MF;
1607
1608  // Figure out which block is immediately after the current one.
1609  MachineFunction::iterator BBI = CR.CaseBB;
1610  ++BBI;
1611
1612  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1613
1614  // Create a new basic block to hold the code for loading the address
1615  // of the jump table, and jumping to it.  Update successor information;
1616  // we will either branch to the default case for the switch, or the jump
1617  // table.
1618  MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1619  CurMF->insert(BBI, JumpTableBB);
1620  CR.CaseBB->addSuccessor(Default);
1621  CR.CaseBB->addSuccessor(JumpTableBB);
1622
1623  // Build a vector of destination BBs, corresponding to each target
1624  // of the jump table. If the value of the jump table slot corresponds to
1625  // a case statement, push the case's BB onto the vector, otherwise, push
1626  // the default BB.
1627  std::vector<MachineBasicBlock*> DestBBs;
1628  APInt TEI = First;
1629  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
1630    const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
1631    const APInt &High = cast<ConstantInt>(I->High)->getValue();
1632
1633    if (Low.sle(TEI) && TEI.sle(High)) {
1634      DestBBs.push_back(I->BB);
1635      if (TEI==High)
1636        ++I;
1637    } else {
1638      DestBBs.push_back(Default);
1639    }
1640  }
1641
1642  // Update successor info. Add one edge to each unique successor.
1643  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
1644  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
1645         E = DestBBs.end(); I != E; ++I) {
1646    if (!SuccsHandled[(*I)->getNumber()]) {
1647      SuccsHandled[(*I)->getNumber()] = true;
1648      JumpTableBB->addSuccessor(*I);
1649    }
1650  }
1651
1652  // Create a jump table index for this jump table.
1653  unsigned JTEncoding = TLI.getJumpTableEncoding();
1654  unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
1655                       ->createJumpTableIndex(DestBBs);
1656
1657  // Set the jump table information so that we can codegen it as a second
1658  // MachineBasicBlock
1659  JumpTable JT(-1U, JTI, JumpTableBB, Default);
1660  JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
1661  if (CR.CaseBB == SwitchBB)
1662    visitJumpTableHeader(JT, JTH, SwitchBB);
1663
1664  JTCases.push_back(JumpTableBlock(JTH, JT));
1665
1666  return true;
1667}
1668
1669/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
1670/// 2 subtrees.
1671bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
1672                                                  CaseRecVector& WorkList,
1673                                                  const Value* SV,
1674                                                  MachineBasicBlock *Default,
1675                                                  MachineBasicBlock *SwitchBB) {
1676  // Get the MachineFunction which holds the current MBB.  This is used when
1677  // inserting any additional MBBs necessary to represent the switch.
1678  MachineFunction *CurMF = FuncInfo.MF;
1679
1680  // Figure out which block is immediately after the current one.
1681  MachineFunction::iterator BBI = CR.CaseBB;
1682  ++BBI;
1683
1684  Case& FrontCase = *CR.Range.first;
1685  Case& BackCase  = *(CR.Range.second-1);
1686  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1687
1688  // Size is the number of Cases represented by this range.
1689  unsigned Size = CR.Range.second - CR.Range.first;
1690
1691  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
1692  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
1693  double FMetric = 0;
1694  CaseItr Pivot = CR.Range.first + Size/2;
1695
1696  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
1697  // (heuristically) allow us to emit JumpTable's later.
1698  APInt TSize(First.getBitWidth(), 0);
1699  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1700       I!=E; ++I)
1701    TSize += I->size();
1702
1703  APInt LSize = FrontCase.size();
1704  APInt RSize = TSize-LSize;
1705  DEBUG(dbgs() << "Selecting best pivot: \n"
1706               << "First: " << First << ", Last: " << Last <<'\n'
1707               << "LSize: " << LSize << ", RSize: " << RSize << '\n');
1708  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
1709       J!=E; ++I, ++J) {
1710    const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
1711    const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
1712    APInt Range = ComputeRange(LEnd, RBegin);
1713    assert((Range - 2ULL).isNonNegative() &&
1714           "Invalid case distance");
1715    double LDensity = (double)LSize.roundToDouble() /
1716                           (LEnd - First + 1ULL).roundToDouble();
1717    double RDensity = (double)RSize.roundToDouble() /
1718                           (Last - RBegin + 1ULL).roundToDouble();
1719    double Metric = Range.logBase2()*(LDensity+RDensity);
1720    // Should always split in some non-trivial place
1721    DEBUG(dbgs() <<"=>Step\n"
1722                 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
1723                 << "LDensity: " << LDensity
1724                 << ", RDensity: " << RDensity << '\n'
1725                 << "Metric: " << Metric << '\n');
1726    if (FMetric < Metric) {
1727      Pivot = J;
1728      FMetric = Metric;
1729      DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
1730    }
1731
1732    LSize += J->size();
1733    RSize -= J->size();
1734  }
1735  if (areJTsAllowed(TLI)) {
1736    // If our case is dense we *really* should handle it earlier!
1737    assert((FMetric > 0) && "Should handle dense range earlier!");
1738  } else {
1739    Pivot = CR.Range.first + Size/2;
1740  }
1741
1742  CaseRange LHSR(CR.Range.first, Pivot);
1743  CaseRange RHSR(Pivot, CR.Range.second);
1744  Constant *C = Pivot->Low;
1745  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
1746
1747  // We know that we branch to the LHS if the Value being switched on is
1748  // less than the Pivot value, C.  We use this to optimize our binary
1749  // tree a bit, by recognizing that if SV is greater than or equal to the
1750  // LHS's Case Value, and that Case Value is exactly one less than the
1751  // Pivot's Value, then we can branch directly to the LHS's Target,
1752  // rather than creating a leaf node for it.
1753  if ((LHSR.second - LHSR.first) == 1 &&
1754      LHSR.first->High == CR.GE &&
1755      cast<ConstantInt>(C)->getValue() ==
1756      (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
1757    TrueBB = LHSR.first->BB;
1758  } else {
1759    TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1760    CurMF->insert(BBI, TrueBB);
1761    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
1762
1763    // Put SV in a virtual register to make it available from the new blocks.
1764    ExportFromCurrentBlock(SV);
1765  }
1766
1767  // Similar to the optimization above, if the Value being switched on is
1768  // known to be less than the Constant CR.LT, and the current Case Value
1769  // is CR.LT - 1, then we can branch directly to the target block for
1770  // the current Case Value, rather than emitting a RHS leaf node for it.
1771  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
1772      cast<ConstantInt>(RHSR.first->Low)->getValue() ==
1773      (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
1774    FalseBB = RHSR.first->BB;
1775  } else {
1776    FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1777    CurMF->insert(BBI, FalseBB);
1778    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
1779
1780    // Put SV in a virtual register to make it available from the new blocks.
1781    ExportFromCurrentBlock(SV);
1782  }
1783
1784  // Create a CaseBlock record representing a conditional branch to
1785  // the LHS node if the value being switched on SV is less than C.
1786  // Otherwise, branch to LHS.
1787  CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
1788
1789  if (CR.CaseBB == SwitchBB)
1790    visitSwitchCase(CB, SwitchBB);
1791  else
1792    SwitchCases.push_back(CB);
1793
1794  return true;
1795}
1796
1797/// handleBitTestsSwitchCase - if current case range has few destination and
1798/// range span less, than machine word bitwidth, encode case range into series
1799/// of masks and emit bit tests with these masks.
1800bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
1801                                                   CaseRecVector& WorkList,
1802                                                   const Value* SV,
1803                                                   MachineBasicBlock* Default,
1804                                                   MachineBasicBlock *SwitchBB){
1805  EVT PTy = TLI.getPointerTy();
1806  unsigned IntPtrBits = PTy.getSizeInBits();
1807
1808  Case& FrontCase = *CR.Range.first;
1809  Case& BackCase  = *(CR.Range.second-1);
1810
1811  // Get the MachineFunction which holds the current MBB.  This is used when
1812  // inserting any additional MBBs necessary to represent the switch.
1813  MachineFunction *CurMF = FuncInfo.MF;
1814
1815  // If target does not have legal shift left, do not emit bit tests at all.
1816  if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
1817    return false;
1818
1819  size_t numCmps = 0;
1820  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1821       I!=E; ++I) {
1822    // Single case counts one, case range - two.
1823    numCmps += (I->Low == I->High ? 1 : 2);
1824  }
1825
1826  // Count unique destinations
1827  SmallSet<MachineBasicBlock*, 4> Dests;
1828  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
1829    Dests.insert(I->BB);
1830    if (Dests.size() > 3)
1831      // Don't bother the code below, if there are too much unique destinations
1832      return false;
1833  }
1834  DEBUG(dbgs() << "Total number of unique destinations: "
1835        << Dests.size() << '\n'
1836        << "Total number of comparisons: " << numCmps << '\n');
1837
1838  // Compute span of values.
1839  const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
1840  const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
1841  APInt cmpRange = maxValue - minValue;
1842
1843  DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
1844               << "Low bound: " << minValue << '\n'
1845               << "High bound: " << maxValue << '\n');
1846
1847  if (cmpRange.uge(IntPtrBits) ||
1848      (!(Dests.size() == 1 && numCmps >= 3) &&
1849       !(Dests.size() == 2 && numCmps >= 5) &&
1850       !(Dests.size() >= 3 && numCmps >= 6)))
1851    return false;
1852
1853  DEBUG(dbgs() << "Emitting bit tests\n");
1854  APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
1855
1856  // Optimize the case where all the case values fit in a
1857  // word without having to subtract minValue. In this case,
1858  // we can optimize away the subtraction.
1859  if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) {
1860    cmpRange = maxValue;
1861  } else {
1862    lowBound = minValue;
1863  }
1864
1865  CaseBitsVector CasesBits;
1866  unsigned i, count = 0;
1867
1868  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
1869    MachineBasicBlock* Dest = I->BB;
1870    for (i = 0; i < count; ++i)
1871      if (Dest == CasesBits[i].BB)
1872        break;
1873
1874    if (i == count) {
1875      assert((count < 3) && "Too much destinations to test!");
1876      CasesBits.push_back(CaseBits(0, Dest, 0));
1877      count++;
1878    }
1879
1880    const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
1881    const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
1882
1883    uint64_t lo = (lowValue - lowBound).getZExtValue();
1884    uint64_t hi = (highValue - lowBound).getZExtValue();
1885
1886    for (uint64_t j = lo; j <= hi; j++) {
1887      CasesBits[i].Mask |=  1ULL << j;
1888      CasesBits[i].Bits++;
1889    }
1890
1891  }
1892  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
1893
1894  BitTestInfo BTC;
1895
1896  // Figure out which block is immediately after the current one.
1897  MachineFunction::iterator BBI = CR.CaseBB;
1898  ++BBI;
1899
1900  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1901
1902  DEBUG(dbgs() << "Cases:\n");
1903  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
1904    DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
1905                 << ", Bits: " << CasesBits[i].Bits
1906                 << ", BB: " << CasesBits[i].BB << '\n');
1907
1908    MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1909    CurMF->insert(BBI, CaseBB);
1910    BTC.push_back(BitTestCase(CasesBits[i].Mask,
1911                              CaseBB,
1912                              CasesBits[i].BB));
1913
1914    // Put SV in a virtual register to make it available from the new blocks.
1915    ExportFromCurrentBlock(SV);
1916  }
1917
1918  BitTestBlock BTB(lowBound, cmpRange, SV,
1919                   -1U, (CR.CaseBB == SwitchBB),
1920                   CR.CaseBB, Default, BTC);
1921
1922  if (CR.CaseBB == SwitchBB)
1923    visitBitTestHeader(BTB, SwitchBB);
1924
1925  BitTestCases.push_back(BTB);
1926
1927  return true;
1928}
1929
1930/// Clusterify - Transform simple list of Cases into list of CaseRange's
1931size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
1932                                       const SwitchInst& SI) {
1933  size_t numCmps = 0;
1934
1935  // Start with "simple" cases
1936  for (size_t i = 1; i < SI.getNumSuccessors(); ++i) {
1937    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
1938    Cases.push_back(Case(SI.getSuccessorValue(i),
1939                         SI.getSuccessorValue(i),
1940                         SMBB));
1941  }
1942  std::sort(Cases.begin(), Cases.end(), CaseCmp());
1943
1944  // Merge case into clusters
1945  if (Cases.size() >= 2)
1946    // Must recompute end() each iteration because it may be
1947    // invalidated by erase if we hold on to it
1948    for (CaseItr I = Cases.begin(), J = ++(Cases.begin()); J != Cases.end(); ) {
1949      const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
1950      const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
1951      MachineBasicBlock* nextBB = J->BB;
1952      MachineBasicBlock* currentBB = I->BB;
1953
1954      // If the two neighboring cases go to the same destination, merge them
1955      // into a single case.
1956      if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
1957        I->High = J->High;
1958        J = Cases.erase(J);
1959      } else {
1960        I = J++;
1961      }
1962    }
1963
1964  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
1965    if (I->Low != I->High)
1966      // A range counts double, since it requires two compares.
1967      ++numCmps;
1968  }
1969
1970  return numCmps;
1971}
1972
1973void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
1974  MachineBasicBlock *SwitchMBB = FuncInfo.MBBMap[SI.getParent()];
1975
1976  // Figure out which block is immediately after the current one.
1977  MachineBasicBlock *NextBlock = 0;
1978  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
1979
1980  // If there is only the default destination, branch to it if it is not the
1981  // next basic block.  Otherwise, just fall through.
1982  if (SI.getNumOperands() == 2) {
1983    // Update machine-CFG edges.
1984
1985    // If this is not a fall-through branch, emit the branch.
1986    SwitchMBB->addSuccessor(Default);
1987    if (Default != NextBlock)
1988      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1989                              MVT::Other, getControlRoot(),
1990                              DAG.getBasicBlock(Default)));
1991
1992    return;
1993  }
1994
1995  // If there are any non-default case statements, create a vector of Cases
1996  // representing each one, and sort the vector so that we can efficiently
1997  // create a binary search tree from them.
1998  CaseVector Cases;
1999  size_t numCmps = Clusterify(Cases, SI);
2000  DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2001               << ". Total compares: " << numCmps << '\n');
2002  numCmps = 0;
2003
2004  // Get the Value to be switched on and default basic blocks, which will be
2005  // inserted into CaseBlock records, representing basic blocks in the binary
2006  // search tree.
2007  const Value *SV = SI.getOperand(0);
2008
2009  // Push the initial CaseRec onto the worklist
2010  CaseRecVector WorkList;
2011  WorkList.push_back(CaseRec(SwitchMBB,0,0,
2012                             CaseRange(Cases.begin(),Cases.end())));
2013
2014  while (!WorkList.empty()) {
2015    // Grab a record representing a case range to process off the worklist
2016    CaseRec CR = WorkList.back();
2017    WorkList.pop_back();
2018
2019    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2020      continue;
2021
2022    // If the range has few cases (two or less) emit a series of specific
2023    // tests.
2024    if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
2025      continue;
2026
2027    // If the switch has more than 5 blocks, and at least 40% dense, and the
2028    // target supports indirect branches, then emit a jump table rather than
2029    // lowering the switch to a binary tree of conditional branches.
2030    if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2031      continue;
2032
2033    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2034    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2035    handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
2036  }
2037}
2038
2039void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2040  MachineBasicBlock *IndirectBrMBB = FuncInfo.MBBMap[I.getParent()];
2041
2042  // Update machine-CFG edges with unique successors.
2043  SmallVector<BasicBlock*, 32> succs;
2044  succs.reserve(I.getNumSuccessors());
2045  for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i)
2046    succs.push_back(I.getSuccessor(i));
2047  array_pod_sort(succs.begin(), succs.end());
2048  succs.erase(std::unique(succs.begin(), succs.end()), succs.end());
2049  for (unsigned i = 0, e = succs.size(); i != e; ++i)
2050    IndirectBrMBB->addSuccessor(FuncInfo.MBBMap[succs[i]]);
2051
2052  DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(),
2053                          MVT::Other, getControlRoot(),
2054                          getValue(I.getAddress())));
2055}
2056
2057void SelectionDAGBuilder::visitFSub(const User &I) {
2058  // -0.0 - X --> fneg
2059  const Type *Ty = I.getType();
2060  if (Ty->isVectorTy()) {
2061    if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) {
2062      const VectorType *DestTy = cast<VectorType>(I.getType());
2063      const Type *ElTy = DestTy->getElementType();
2064      unsigned VL = DestTy->getNumElements();
2065      std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy));
2066      Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size());
2067      if (CV == CNZ) {
2068        SDValue Op2 = getValue(I.getOperand(1));
2069        setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2070                                 Op2.getValueType(), Op2));
2071        return;
2072      }
2073    }
2074  }
2075
2076  if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
2077    if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) {
2078      SDValue Op2 = getValue(I.getOperand(1));
2079      setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2080                               Op2.getValueType(), Op2));
2081      return;
2082    }
2083
2084  visitBinary(I, ISD::FSUB);
2085}
2086
2087void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2088  SDValue Op1 = getValue(I.getOperand(0));
2089  SDValue Op2 = getValue(I.getOperand(1));
2090  setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(),
2091                           Op1.getValueType(), Op1, Op2));
2092}
2093
2094void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2095  SDValue Op1 = getValue(I.getOperand(0));
2096  SDValue Op2 = getValue(I.getOperand(1));
2097  if (!I.getType()->isVectorTy() &&
2098      Op2.getValueType() != TLI.getShiftAmountTy()) {
2099    // If the operand is smaller than the shift count type, promote it.
2100    EVT PTy = TLI.getPointerTy();
2101    EVT STy = TLI.getShiftAmountTy();
2102    if (STy.bitsGT(Op2.getValueType()))
2103      Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(),
2104                        TLI.getShiftAmountTy(), Op2);
2105    // If the operand is larger than the shift count type but the shift
2106    // count type has enough bits to represent any shift value, truncate
2107    // it now. This is a common case and it exposes the truncate to
2108    // optimization early.
2109    else if (STy.getSizeInBits() >=
2110             Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2111      Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2112                        TLI.getShiftAmountTy(), Op2);
2113    // Otherwise we'll need to temporarily settle for some other
2114    // convenient type; type legalization will make adjustments as
2115    // needed.
2116    else if (PTy.bitsLT(Op2.getValueType()))
2117      Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2118                        TLI.getPointerTy(), Op2);
2119    else if (PTy.bitsGT(Op2.getValueType()))
2120      Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(),
2121                        TLI.getPointerTy(), Op2);
2122  }
2123
2124  setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(),
2125                           Op1.getValueType(), Op1, Op2));
2126}
2127
2128void SelectionDAGBuilder::visitICmp(const User &I) {
2129  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2130  if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2131    predicate = IC->getPredicate();
2132  else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2133    predicate = ICmpInst::Predicate(IC->getPredicate());
2134  SDValue Op1 = getValue(I.getOperand(0));
2135  SDValue Op2 = getValue(I.getOperand(1));
2136  ISD::CondCode Opcode = getICmpCondCode(predicate);
2137
2138  EVT DestVT = TLI.getValueType(I.getType());
2139  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode));
2140}
2141
2142void SelectionDAGBuilder::visitFCmp(const User &I) {
2143  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2144  if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2145    predicate = FC->getPredicate();
2146  else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2147    predicate = FCmpInst::Predicate(FC->getPredicate());
2148  SDValue Op1 = getValue(I.getOperand(0));
2149  SDValue Op2 = getValue(I.getOperand(1));
2150  ISD::CondCode Condition = getFCmpCondCode(predicate);
2151  EVT DestVT = TLI.getValueType(I.getType());
2152  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition));
2153}
2154
2155void SelectionDAGBuilder::visitSelect(const User &I) {
2156  SmallVector<EVT, 4> ValueVTs;
2157  ComputeValueVTs(TLI, I.getType(), ValueVTs);
2158  unsigned NumValues = ValueVTs.size();
2159  if (NumValues == 0) return;
2160
2161  SmallVector<SDValue, 4> Values(NumValues);
2162  SDValue Cond     = getValue(I.getOperand(0));
2163  SDValue TrueVal  = getValue(I.getOperand(1));
2164  SDValue FalseVal = getValue(I.getOperand(2));
2165
2166  for (unsigned i = 0; i != NumValues; ++i)
2167    Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(),
2168                          TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2169                            Cond,
2170                            SDValue(TrueVal.getNode(),
2171                                    TrueVal.getResNo() + i),
2172                            SDValue(FalseVal.getNode(),
2173                                    FalseVal.getResNo() + i));
2174
2175  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2176                           DAG.getVTList(&ValueVTs[0], NumValues),
2177                           &Values[0], NumValues));
2178}
2179
2180void SelectionDAGBuilder::visitTrunc(const User &I) {
2181  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2182  SDValue N = getValue(I.getOperand(0));
2183  EVT DestVT = TLI.getValueType(I.getType());
2184  setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N));
2185}
2186
2187void SelectionDAGBuilder::visitZExt(const User &I) {
2188  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2189  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2190  SDValue N = getValue(I.getOperand(0));
2191  EVT DestVT = TLI.getValueType(I.getType());
2192  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N));
2193}
2194
2195void SelectionDAGBuilder::visitSExt(const User &I) {
2196  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2197  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2198  SDValue N = getValue(I.getOperand(0));
2199  EVT DestVT = TLI.getValueType(I.getType());
2200  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N));
2201}
2202
2203void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2204  // FPTrunc is never a no-op cast, no need to check
2205  SDValue N = getValue(I.getOperand(0));
2206  EVT DestVT = TLI.getValueType(I.getType());
2207  setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(),
2208                           DestVT, N, DAG.getIntPtrConstant(0)));
2209}
2210
2211void SelectionDAGBuilder::visitFPExt(const User &I){
2212  // FPTrunc is never a no-op cast, no need to check
2213  SDValue N = getValue(I.getOperand(0));
2214  EVT DestVT = TLI.getValueType(I.getType());
2215  setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N));
2216}
2217
2218void SelectionDAGBuilder::visitFPToUI(const User &I) {
2219  // FPToUI is never a no-op cast, no need to check
2220  SDValue N = getValue(I.getOperand(0));
2221  EVT DestVT = TLI.getValueType(I.getType());
2222  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N));
2223}
2224
2225void SelectionDAGBuilder::visitFPToSI(const User &I) {
2226  // FPToSI is never a no-op cast, no need to check
2227  SDValue N = getValue(I.getOperand(0));
2228  EVT DestVT = TLI.getValueType(I.getType());
2229  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N));
2230}
2231
2232void SelectionDAGBuilder::visitUIToFP(const User &I) {
2233  // UIToFP is never a no-op cast, no need to check
2234  SDValue N = getValue(I.getOperand(0));
2235  EVT DestVT = TLI.getValueType(I.getType());
2236  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N));
2237}
2238
2239void SelectionDAGBuilder::visitSIToFP(const User &I){
2240  // SIToFP is never a no-op cast, no need to check
2241  SDValue N = getValue(I.getOperand(0));
2242  EVT DestVT = TLI.getValueType(I.getType());
2243  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N));
2244}
2245
2246void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2247  // What to do depends on the size of the integer and the size of the pointer.
2248  // We can either truncate, zero extend, or no-op, accordingly.
2249  SDValue N = getValue(I.getOperand(0));
2250  EVT SrcVT = N.getValueType();
2251  EVT DestVT = TLI.getValueType(I.getType());
2252  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2253}
2254
2255void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2256  // What to do depends on the size of the integer and the size of the pointer.
2257  // We can either truncate, zero extend, or no-op, accordingly.
2258  SDValue N = getValue(I.getOperand(0));
2259  EVT SrcVT = N.getValueType();
2260  EVT DestVT = TLI.getValueType(I.getType());
2261  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2262}
2263
2264void SelectionDAGBuilder::visitBitCast(const User &I) {
2265  SDValue N = getValue(I.getOperand(0));
2266  EVT DestVT = TLI.getValueType(I.getType());
2267
2268  // BitCast assures us that source and destination are the same size so this is
2269  // either a BIT_CONVERT or a no-op.
2270  if (DestVT != N.getValueType())
2271    setValue(&I, DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
2272                             DestVT, N)); // convert types.
2273  else
2274    setValue(&I, N);            // noop cast.
2275}
2276
2277void SelectionDAGBuilder::visitInsertElement(const User &I) {
2278  SDValue InVec = getValue(I.getOperand(0));
2279  SDValue InVal = getValue(I.getOperand(1));
2280  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2281                              TLI.getPointerTy(),
2282                              getValue(I.getOperand(2)));
2283  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(),
2284                           TLI.getValueType(I.getType()),
2285                           InVec, InVal, InIdx));
2286}
2287
2288void SelectionDAGBuilder::visitExtractElement(const User &I) {
2289  SDValue InVec = getValue(I.getOperand(0));
2290  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2291                              TLI.getPointerTy(),
2292                              getValue(I.getOperand(1)));
2293  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2294                           TLI.getValueType(I.getType()), InVec, InIdx));
2295}
2296
2297// Utility for visitShuffleVector - Returns true if the mask is mask starting
2298// from SIndx and increasing to the element length (undefs are allowed).
2299static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) {
2300  unsigned MaskNumElts = Mask.size();
2301  for (unsigned i = 0; i != MaskNumElts; ++i)
2302    if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx)))
2303      return false;
2304  return true;
2305}
2306
2307void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2308  SmallVector<int, 8> Mask;
2309  SDValue Src1 = getValue(I.getOperand(0));
2310  SDValue Src2 = getValue(I.getOperand(1));
2311
2312  // Convert the ConstantVector mask operand into an array of ints, with -1
2313  // representing undef values.
2314  SmallVector<Constant*, 8> MaskElts;
2315  cast<Constant>(I.getOperand(2))->getVectorElements(MaskElts);
2316  unsigned MaskNumElts = MaskElts.size();
2317  for (unsigned i = 0; i != MaskNumElts; ++i) {
2318    if (isa<UndefValue>(MaskElts[i]))
2319      Mask.push_back(-1);
2320    else
2321      Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue());
2322  }
2323
2324  EVT VT = TLI.getValueType(I.getType());
2325  EVT SrcVT = Src1.getValueType();
2326  unsigned SrcNumElts = SrcVT.getVectorNumElements();
2327
2328  if (SrcNumElts == MaskNumElts) {
2329    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2330                                      &Mask[0]));
2331    return;
2332  }
2333
2334  // Normalize the shuffle vector since mask and vector length don't match.
2335  if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2336    // Mask is longer than the source vectors and is a multiple of the source
2337    // vectors.  We can use concatenate vector to make the mask and vectors
2338    // lengths match.
2339    if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) {
2340      // The shuffle is concatenating two vectors together.
2341      setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2342                               VT, Src1, Src2));
2343      return;
2344    }
2345
2346    // Pad both vectors with undefs to make them the same length as the mask.
2347    unsigned NumConcat = MaskNumElts / SrcNumElts;
2348    bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2349    bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2350    SDValue UndefVal = DAG.getUNDEF(SrcVT);
2351
2352    SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2353    SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2354    MOps1[0] = Src1;
2355    MOps2[0] = Src2;
2356
2357    Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2358                                                  getCurDebugLoc(), VT,
2359                                                  &MOps1[0], NumConcat);
2360    Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2361                                                  getCurDebugLoc(), VT,
2362                                                  &MOps2[0], NumConcat);
2363
2364    // Readjust mask for new input vector length.
2365    SmallVector<int, 8> MappedOps;
2366    for (unsigned i = 0; i != MaskNumElts; ++i) {
2367      int Idx = Mask[i];
2368      if (Idx < (int)SrcNumElts)
2369        MappedOps.push_back(Idx);
2370      else
2371        MappedOps.push_back(Idx + MaskNumElts - SrcNumElts);
2372    }
2373
2374    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2375                                      &MappedOps[0]));
2376    return;
2377  }
2378
2379  if (SrcNumElts > MaskNumElts) {
2380    // Analyze the access pattern of the vector to see if we can extract
2381    // two subvectors and do the shuffle. The analysis is done by calculating
2382    // the range of elements the mask access on both vectors.
2383    int MinRange[2] = { SrcNumElts+1, SrcNumElts+1};
2384    int MaxRange[2] = {-1, -1};
2385
2386    for (unsigned i = 0; i != MaskNumElts; ++i) {
2387      int Idx = Mask[i];
2388      int Input = 0;
2389      if (Idx < 0)
2390        continue;
2391
2392      if (Idx >= (int)SrcNumElts) {
2393        Input = 1;
2394        Idx -= SrcNumElts;
2395      }
2396      if (Idx > MaxRange[Input])
2397        MaxRange[Input] = Idx;
2398      if (Idx < MinRange[Input])
2399        MinRange[Input] = Idx;
2400    }
2401
2402    // Check if the access is smaller than the vector size and can we find
2403    // a reasonable extract index.
2404    int RangeUse[2] = { 2, 2 };  // 0 = Unused, 1 = Extract, 2 = Can not
2405                                 // Extract.
2406    int StartIdx[2];  // StartIdx to extract from
2407    for (int Input=0; Input < 2; ++Input) {
2408      if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) {
2409        RangeUse[Input] = 0; // Unused
2410        StartIdx[Input] = 0;
2411      } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) {
2412        // Fits within range but we should see if we can find a good
2413        // start index that is a multiple of the mask length.
2414        if (MaxRange[Input] < (int)MaskNumElts) {
2415          RangeUse[Input] = 1; // Extract from beginning of the vector
2416          StartIdx[Input] = 0;
2417        } else {
2418          StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2419          if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2420              StartIdx[Input] + MaskNumElts < SrcNumElts)
2421            RangeUse[Input] = 1; // Extract from a multiple of the mask length.
2422        }
2423      }
2424    }
2425
2426    if (RangeUse[0] == 0 && RangeUse[1] == 0) {
2427      setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
2428      return;
2429    }
2430    else if (RangeUse[0] < 2 && RangeUse[1] < 2) {
2431      // Extract appropriate subvector and generate a vector shuffle
2432      for (int Input=0; Input < 2; ++Input) {
2433        SDValue &Src = Input == 0 ? Src1 : Src2;
2434        if (RangeUse[Input] == 0)
2435          Src = DAG.getUNDEF(VT);
2436        else
2437          Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT,
2438                            Src, DAG.getIntPtrConstant(StartIdx[Input]));
2439      }
2440
2441      // Calculate new mask.
2442      SmallVector<int, 8> MappedOps;
2443      for (unsigned i = 0; i != MaskNumElts; ++i) {
2444        int Idx = Mask[i];
2445        if (Idx < 0)
2446          MappedOps.push_back(Idx);
2447        else if (Idx < (int)SrcNumElts)
2448          MappedOps.push_back(Idx - StartIdx[0]);
2449        else
2450          MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts);
2451      }
2452
2453      setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2454                                        &MappedOps[0]));
2455      return;
2456    }
2457  }
2458
2459  // We can't use either concat vectors or extract subvectors so fall back to
2460  // replacing the shuffle with extract and build vector.
2461  // to insert and build vector.
2462  EVT EltVT = VT.getVectorElementType();
2463  EVT PtrVT = TLI.getPointerTy();
2464  SmallVector<SDValue,8> Ops;
2465  for (unsigned i = 0; i != MaskNumElts; ++i) {
2466    if (Mask[i] < 0) {
2467      Ops.push_back(DAG.getUNDEF(EltVT));
2468    } else {
2469      int Idx = Mask[i];
2470      SDValue Res;
2471
2472      if (Idx < (int)SrcNumElts)
2473        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2474                          EltVT, Src1, DAG.getConstant(Idx, PtrVT));
2475      else
2476        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2477                          EltVT, Src2,
2478                          DAG.getConstant(Idx - SrcNumElts, PtrVT));
2479
2480      Ops.push_back(Res);
2481    }
2482  }
2483
2484  setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
2485                           VT, &Ops[0], Ops.size()));
2486}
2487
2488void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
2489  const Value *Op0 = I.getOperand(0);
2490  const Value *Op1 = I.getOperand(1);
2491  const Type *AggTy = I.getType();
2492  const Type *ValTy = Op1->getType();
2493  bool IntoUndef = isa<UndefValue>(Op0);
2494  bool FromUndef = isa<UndefValue>(Op1);
2495
2496  unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
2497                                            I.idx_begin(), I.idx_end());
2498
2499  SmallVector<EVT, 4> AggValueVTs;
2500  ComputeValueVTs(TLI, AggTy, AggValueVTs);
2501  SmallVector<EVT, 4> ValValueVTs;
2502  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2503
2504  unsigned NumAggValues = AggValueVTs.size();
2505  unsigned NumValValues = ValValueVTs.size();
2506  SmallVector<SDValue, 4> Values(NumAggValues);
2507
2508  SDValue Agg = getValue(Op0);
2509  SDValue Val = getValue(Op1);
2510  unsigned i = 0;
2511  // Copy the beginning value(s) from the original aggregate.
2512  for (; i != LinearIndex; ++i)
2513    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2514                SDValue(Agg.getNode(), Agg.getResNo() + i);
2515  // Copy values from the inserted value(s).
2516  for (; i != LinearIndex + NumValValues; ++i)
2517    Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2518                SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
2519  // Copy remaining value(s) from the original aggregate.
2520  for (; i != NumAggValues; ++i)
2521    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2522                SDValue(Agg.getNode(), Agg.getResNo() + i);
2523
2524  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2525                           DAG.getVTList(&AggValueVTs[0], NumAggValues),
2526                           &Values[0], NumAggValues));
2527}
2528
2529void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
2530  const Value *Op0 = I.getOperand(0);
2531  const Type *AggTy = Op0->getType();
2532  const Type *ValTy = I.getType();
2533  bool OutOfUndef = isa<UndefValue>(Op0);
2534
2535  unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
2536                                            I.idx_begin(), I.idx_end());
2537
2538  SmallVector<EVT, 4> ValValueVTs;
2539  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2540
2541  unsigned NumValValues = ValValueVTs.size();
2542  SmallVector<SDValue, 4> Values(NumValValues);
2543
2544  SDValue Agg = getValue(Op0);
2545  // Copy out the selected value(s).
2546  for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
2547    Values[i - LinearIndex] =
2548      OutOfUndef ?
2549        DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
2550        SDValue(Agg.getNode(), Agg.getResNo() + i);
2551
2552  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2553                           DAG.getVTList(&ValValueVTs[0], NumValValues),
2554                           &Values[0], NumValValues));
2555}
2556
2557void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
2558  SDValue N = getValue(I.getOperand(0));
2559  const Type *Ty = I.getOperand(0)->getType();
2560
2561  for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
2562       OI != E; ++OI) {
2563    const Value *Idx = *OI;
2564    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2565      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2566      if (Field) {
2567        // N = N + Offset
2568        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
2569        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2570                        DAG.getIntPtrConstant(Offset));
2571      }
2572
2573      Ty = StTy->getElementType(Field);
2574    } else if (const UnionType *UnTy = dyn_cast<UnionType>(Ty)) {
2575      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2576
2577      // Offset canonically 0 for unions, but type changes
2578      Ty = UnTy->getElementType(Field);
2579    } else {
2580      Ty = cast<SequentialType>(Ty)->getElementType();
2581
2582      // If this is a constant subscript, handle it quickly.
2583      if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2584        if (CI->getZExtValue() == 0) continue;
2585        uint64_t Offs =
2586            TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
2587        SDValue OffsVal;
2588        EVT PTy = TLI.getPointerTy();
2589        unsigned PtrBits = PTy.getSizeInBits();
2590        if (PtrBits < 64)
2591          OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2592                                TLI.getPointerTy(),
2593                                DAG.getConstant(Offs, MVT::i64));
2594        else
2595          OffsVal = DAG.getIntPtrConstant(Offs);
2596
2597        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2598                        OffsVal);
2599        continue;
2600      }
2601
2602      // N = N + Idx * ElementSize;
2603      APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
2604                                TD->getTypeAllocSize(Ty));
2605      SDValue IdxN = getValue(Idx);
2606
2607      // If the index is smaller or larger than intptr_t, truncate or extend
2608      // it.
2609      IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType());
2610
2611      // If this is a multiply by a power of two, turn it into a shl
2612      // immediately.  This is a very common case.
2613      if (ElementSize != 1) {
2614        if (ElementSize.isPowerOf2()) {
2615          unsigned Amt = ElementSize.logBase2();
2616          IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(),
2617                             N.getValueType(), IdxN,
2618                             DAG.getConstant(Amt, TLI.getPointerTy()));
2619        } else {
2620          SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy());
2621          IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(),
2622                             N.getValueType(), IdxN, Scale);
2623        }
2624      }
2625
2626      N = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2627                      N.getValueType(), N, IdxN);
2628    }
2629  }
2630
2631  setValue(&I, N);
2632}
2633
2634void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
2635  // If this is a fixed sized alloca in the entry block of the function,
2636  // allocate it statically on the stack.
2637  if (FuncInfo.StaticAllocaMap.count(&I))
2638    return;   // getValue will auto-populate this.
2639
2640  const Type *Ty = I.getAllocatedType();
2641  uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
2642  unsigned Align =
2643    std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
2644             I.getAlignment());
2645
2646  SDValue AllocSize = getValue(I.getArraySize());
2647
2648  AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), AllocSize.getValueType(),
2649                          AllocSize,
2650                          DAG.getConstant(TySize, AllocSize.getValueType()));
2651
2652  EVT IntPtr = TLI.getPointerTy();
2653  AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr);
2654
2655  // Handle alignment.  If the requested alignment is less than or equal to
2656  // the stack alignment, ignore it.  If the size is greater than or equal to
2657  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
2658  unsigned StackAlign = TM.getFrameInfo()->getStackAlignment();
2659  if (Align <= StackAlign)
2660    Align = 0;
2661
2662  // Round the size of the allocation up to the stack alignment size
2663  // by add SA-1 to the size.
2664  AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2665                          AllocSize.getValueType(), AllocSize,
2666                          DAG.getIntPtrConstant(StackAlign-1));
2667
2668  // Mask out the low bits for alignment purposes.
2669  AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(),
2670                          AllocSize.getValueType(), AllocSize,
2671                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
2672
2673  SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
2674  SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
2675  SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(),
2676                            VTs, Ops, 3);
2677  setValue(&I, DSA);
2678  DAG.setRoot(DSA.getValue(1));
2679
2680  // Inform the Frame Information that we have just allocated a variable-sized
2681  // object.
2682  FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject();
2683}
2684
2685void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
2686  const Value *SV = I.getOperand(0);
2687  SDValue Ptr = getValue(SV);
2688
2689  const Type *Ty = I.getType();
2690
2691  bool isVolatile = I.isVolatile();
2692  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
2693  unsigned Alignment = I.getAlignment();
2694
2695  SmallVector<EVT, 4> ValueVTs;
2696  SmallVector<uint64_t, 4> Offsets;
2697  ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
2698  unsigned NumValues = ValueVTs.size();
2699  if (NumValues == 0)
2700    return;
2701
2702  SDValue Root;
2703  bool ConstantMemory = false;
2704  if (I.isVolatile())
2705    // Serialize volatile loads with other side effects.
2706    Root = getRoot();
2707  else if (AA->pointsToConstantMemory(SV)) {
2708    // Do not serialize (non-volatile) loads of constant memory with anything.
2709    Root = DAG.getEntryNode();
2710    ConstantMemory = true;
2711  } else {
2712    // Do not serialize non-volatile loads against each other.
2713    Root = DAG.getRoot();
2714  }
2715
2716  SmallVector<SDValue, 4> Values(NumValues);
2717  SmallVector<SDValue, 4> Chains(NumValues);
2718  EVT PtrVT = Ptr.getValueType();
2719  for (unsigned i = 0; i != NumValues; ++i) {
2720    SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2721                            PtrVT, Ptr,
2722                            DAG.getConstant(Offsets[i], PtrVT));
2723    SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root,
2724                            A, SV, Offsets[i], isVolatile,
2725                            isNonTemporal, Alignment);
2726
2727    Values[i] = L;
2728    Chains[i] = L.getValue(1);
2729  }
2730
2731  if (!ConstantMemory) {
2732    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
2733                                MVT::Other, &Chains[0], NumValues);
2734    if (isVolatile)
2735      DAG.setRoot(Chain);
2736    else
2737      PendingLoads.push_back(Chain);
2738  }
2739
2740  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2741                           DAG.getVTList(&ValueVTs[0], NumValues),
2742                           &Values[0], NumValues));
2743}
2744
2745void SelectionDAGBuilder::visitStore(const StoreInst &I) {
2746  const Value *SrcV = I.getOperand(0);
2747  const Value *PtrV = I.getOperand(1);
2748
2749  SmallVector<EVT, 4> ValueVTs;
2750  SmallVector<uint64_t, 4> Offsets;
2751  ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
2752  unsigned NumValues = ValueVTs.size();
2753  if (NumValues == 0)
2754    return;
2755
2756  // Get the lowered operands. Note that we do this after
2757  // checking if NumResults is zero, because with zero results
2758  // the operands won't have values in the map.
2759  SDValue Src = getValue(SrcV);
2760  SDValue Ptr = getValue(PtrV);
2761
2762  SDValue Root = getRoot();
2763  SmallVector<SDValue, 4> Chains(NumValues);
2764  EVT PtrVT = Ptr.getValueType();
2765  bool isVolatile = I.isVolatile();
2766  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
2767  unsigned Alignment = I.getAlignment();
2768
2769  for (unsigned i = 0; i != NumValues; ++i) {
2770    SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr,
2771                              DAG.getConstant(Offsets[i], PtrVT));
2772    Chains[i] = DAG.getStore(Root, getCurDebugLoc(),
2773                             SDValue(Src.getNode(), Src.getResNo() + i),
2774                             Add, PtrV, Offsets[i], isVolatile,
2775                             isNonTemporal, Alignment);
2776  }
2777
2778  DAG.setRoot(DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
2779                          MVT::Other, &Chains[0], NumValues));
2780}
2781
2782/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
2783/// node.
2784void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
2785                                               unsigned Intrinsic) {
2786  bool HasChain = !I.doesNotAccessMemory();
2787  bool OnlyLoad = HasChain && I.onlyReadsMemory();
2788
2789  // Build the operand list.
2790  SmallVector<SDValue, 8> Ops;
2791  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
2792    if (OnlyLoad) {
2793      // We don't need to serialize loads against other loads.
2794      Ops.push_back(DAG.getRoot());
2795    } else {
2796      Ops.push_back(getRoot());
2797    }
2798  }
2799
2800  // Info is set by getTgtMemInstrinsic
2801  TargetLowering::IntrinsicInfo Info;
2802  bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
2803
2804  // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
2805  if (!IsTgtIntrinsic)
2806    Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
2807
2808  // Add all operands of the call to the operand list.
2809  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
2810    SDValue Op = getValue(I.getOperand(i));
2811    assert(TLI.isTypeLegal(Op.getValueType()) &&
2812           "Intrinsic uses a non-legal type?");
2813    Ops.push_back(Op);
2814  }
2815
2816  SmallVector<EVT, 4> ValueVTs;
2817  ComputeValueVTs(TLI, I.getType(), ValueVTs);
2818#ifndef NDEBUG
2819  for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) {
2820    assert(TLI.isTypeLegal(ValueVTs[Val]) &&
2821           "Intrinsic uses a non-legal type?");
2822  }
2823#endif // NDEBUG
2824
2825  if (HasChain)
2826    ValueVTs.push_back(MVT::Other);
2827
2828  SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
2829
2830  // Create the node.
2831  SDValue Result;
2832  if (IsTgtIntrinsic) {
2833    // This is target intrinsic that touches memory
2834    Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(),
2835                                     VTs, &Ops[0], Ops.size(),
2836                                     Info.memVT, Info.ptrVal, Info.offset,
2837                                     Info.align, Info.vol,
2838                                     Info.readMem, Info.writeMem);
2839  } else if (!HasChain) {
2840    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
2841                         VTs, &Ops[0], Ops.size());
2842  } else if (!I.getType()->isVoidTy()) {
2843    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
2844                         VTs, &Ops[0], Ops.size());
2845  } else {
2846    Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(),
2847                         VTs, &Ops[0], Ops.size());
2848  }
2849
2850  if (HasChain) {
2851    SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
2852    if (OnlyLoad)
2853      PendingLoads.push_back(Chain);
2854    else
2855      DAG.setRoot(Chain);
2856  }
2857
2858  if (!I.getType()->isVoidTy()) {
2859    if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
2860      EVT VT = TLI.getValueType(PTy);
2861      Result = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), VT, Result);
2862    }
2863
2864    setValue(&I, Result);
2865  }
2866}
2867
2868/// GetSignificand - Get the significand and build it into a floating-point
2869/// number with exponent of 1:
2870///
2871///   Op = (Op & 0x007fffff) | 0x3f800000;
2872///
2873/// where Op is the hexidecimal representation of floating point value.
2874static SDValue
2875GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) {
2876  SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
2877                           DAG.getConstant(0x007fffff, MVT::i32));
2878  SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
2879                           DAG.getConstant(0x3f800000, MVT::i32));
2880  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t2);
2881}
2882
2883/// GetExponent - Get the exponent:
2884///
2885///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
2886///
2887/// where Op is the hexidecimal representation of floating point value.
2888static SDValue
2889GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
2890            DebugLoc dl) {
2891  SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
2892                           DAG.getConstant(0x7f800000, MVT::i32));
2893  SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
2894                           DAG.getConstant(23, TLI.getPointerTy()));
2895  SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
2896                           DAG.getConstant(127, MVT::i32));
2897  return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
2898}
2899
2900/// getF32Constant - Get 32-bit floating point constant.
2901static SDValue
2902getF32Constant(SelectionDAG &DAG, unsigned Flt) {
2903  return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32);
2904}
2905
2906/// Inlined utility function to implement binary input atomic intrinsics for
2907/// visitIntrinsicCall: I is a call instruction
2908///                     Op is the associated NodeType for I
2909const char *
2910SelectionDAGBuilder::implVisitBinaryAtomic(const CallInst& I,
2911                                           ISD::NodeType Op) {
2912  SDValue Root = getRoot();
2913  SDValue L =
2914    DAG.getAtomic(Op, getCurDebugLoc(),
2915                  getValue(I.getOperand(2)).getValueType().getSimpleVT(),
2916                  Root,
2917                  getValue(I.getOperand(1)),
2918                  getValue(I.getOperand(2)),
2919                  I.getOperand(1));
2920  setValue(&I, L);
2921  DAG.setRoot(L.getValue(1));
2922  return 0;
2923}
2924
2925// implVisitAluOverflow - Lower arithmetic overflow instrinsics.
2926const char *
2927SelectionDAGBuilder::implVisitAluOverflow(const CallInst &I, ISD::NodeType Op) {
2928  SDValue Op1 = getValue(I.getOperand(1));
2929  SDValue Op2 = getValue(I.getOperand(2));
2930
2931  SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
2932  setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2));
2933  return 0;
2934}
2935
2936/// visitExp - Lower an exp intrinsic. Handles the special sequences for
2937/// limited-precision mode.
2938void
2939SelectionDAGBuilder::visitExp(const CallInst &I) {
2940  SDValue result;
2941  DebugLoc dl = getCurDebugLoc();
2942
2943  if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
2944      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
2945    SDValue Op = getValue(I.getOperand(1));
2946
2947    // Put the exponent in the right bit position for later addition to the
2948    // final result:
2949    //
2950    //   #define LOG2OFe 1.4426950f
2951    //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
2952    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
2953                             getF32Constant(DAG, 0x3fb8aa3b));
2954    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
2955
2956    //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
2957    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
2958    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
2959
2960    //   IntegerPartOfX <<= 23;
2961    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
2962                                 DAG.getConstant(23, TLI.getPointerTy()));
2963
2964    if (LimitFloatPrecision <= 6) {
2965      // For floating-point precision of 6:
2966      //
2967      //   TwoToFractionalPartOfX =
2968      //     0.997535578f +
2969      //       (0.735607626f + 0.252464424f * x) * x;
2970      //
2971      // error 0.0144103317, which is 6 bits
2972      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
2973                               getF32Constant(DAG, 0x3e814304));
2974      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
2975                               getF32Constant(DAG, 0x3f3c50c8));
2976      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
2977      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
2978                               getF32Constant(DAG, 0x3f7f5e7e));
2979      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t5);
2980
2981      // Add the exponent into the result in integer domain.
2982      SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32,
2983                               TwoToFracPartOfX, IntegerPartOfX);
2984
2985      result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t6);
2986    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
2987      // For floating-point precision of 12:
2988      //
2989      //   TwoToFractionalPartOfX =
2990      //     0.999892986f +
2991      //       (0.696457318f +
2992      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
2993      //
2994      // 0.000107046256 error, which is 13 to 14 bits
2995      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
2996                               getF32Constant(DAG, 0x3da235e3));
2997      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
2998                               getF32Constant(DAG, 0x3e65b8f3));
2999      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3000      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3001                               getF32Constant(DAG, 0x3f324b07));
3002      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3003      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3004                               getF32Constant(DAG, 0x3f7ff8fd));
3005      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t7);
3006
3007      // Add the exponent into the result in integer domain.
3008      SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3009                               TwoToFracPartOfX, IntegerPartOfX);
3010
3011      result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t8);
3012    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3013      // For floating-point precision of 18:
3014      //
3015      //   TwoToFractionalPartOfX =
3016      //     0.999999982f +
3017      //       (0.693148872f +
3018      //         (0.240227044f +
3019      //           (0.554906021e-1f +
3020      //             (0.961591928e-2f +
3021      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3022      //
3023      // error 2.47208000*10^(-7), which is better than 18 bits
3024      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3025                               getF32Constant(DAG, 0x3924b03e));
3026      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3027                               getF32Constant(DAG, 0x3ab24b87));
3028      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3029      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3030                               getF32Constant(DAG, 0x3c1d8c17));
3031      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3032      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3033                               getF32Constant(DAG, 0x3d634a1d));
3034      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3035      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3036                               getF32Constant(DAG, 0x3e75fe14));
3037      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3038      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3039                                getF32Constant(DAG, 0x3f317234));
3040      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3041      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3042                                getF32Constant(DAG, 0x3f800000));
3043      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,
3044                                             MVT::i32, t13);
3045
3046      // Add the exponent into the result in integer domain.
3047      SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3048                                TwoToFracPartOfX, IntegerPartOfX);
3049
3050      result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t14);
3051    }
3052  } else {
3053    // No special expansion.
3054    result = DAG.getNode(ISD::FEXP, dl,
3055                         getValue(I.getOperand(1)).getValueType(),
3056                         getValue(I.getOperand(1)));
3057  }
3058
3059  setValue(&I, result);
3060}
3061
3062/// visitLog - Lower a log intrinsic. Handles the special sequences for
3063/// limited-precision mode.
3064void
3065SelectionDAGBuilder::visitLog(const CallInst &I) {
3066  SDValue result;
3067  DebugLoc dl = getCurDebugLoc();
3068
3069  if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
3070      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3071    SDValue Op = getValue(I.getOperand(1));
3072    SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
3073
3074    // Scale the exponent by log(2) [0.69314718f].
3075    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3076    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3077                                        getF32Constant(DAG, 0x3f317218));
3078
3079    // Get the significand and build it into a floating-point number with
3080    // exponent of 1.
3081    SDValue X = GetSignificand(DAG, Op1, dl);
3082
3083    if (LimitFloatPrecision <= 6) {
3084      // For floating-point precision of 6:
3085      //
3086      //   LogofMantissa =
3087      //     -1.1609546f +
3088      //       (1.4034025f - 0.23903021f * x) * x;
3089      //
3090      // error 0.0034276066, which is better than 8 bits
3091      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3092                               getF32Constant(DAG, 0xbe74c456));
3093      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3094                               getF32Constant(DAG, 0x3fb3a2b1));
3095      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3096      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3097                                          getF32Constant(DAG, 0x3f949a29));
3098
3099      result = DAG.getNode(ISD::FADD, dl,
3100                           MVT::f32, LogOfExponent, LogOfMantissa);
3101    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3102      // For floating-point precision of 12:
3103      //
3104      //   LogOfMantissa =
3105      //     -1.7417939f +
3106      //       (2.8212026f +
3107      //         (-1.4699568f +
3108      //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3109      //
3110      // error 0.000061011436, which is 14 bits
3111      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3112                               getF32Constant(DAG, 0xbd67b6d6));
3113      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3114                               getF32Constant(DAG, 0x3ee4f4b8));
3115      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3116      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3117                               getF32Constant(DAG, 0x3fbc278b));
3118      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3119      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3120                               getF32Constant(DAG, 0x40348e95));
3121      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3122      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3123                                          getF32Constant(DAG, 0x3fdef31a));
3124
3125      result = DAG.getNode(ISD::FADD, dl,
3126                           MVT::f32, LogOfExponent, LogOfMantissa);
3127    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3128      // For floating-point precision of 18:
3129      //
3130      //   LogOfMantissa =
3131      //     -2.1072184f +
3132      //       (4.2372794f +
3133      //         (-3.7029485f +
3134      //           (2.2781945f +
3135      //             (-0.87823314f +
3136      //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3137      //
3138      // error 0.0000023660568, which is better than 18 bits
3139      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3140                               getF32Constant(DAG, 0xbc91e5ac));
3141      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3142                               getF32Constant(DAG, 0x3e4350aa));
3143      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3144      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3145                               getF32Constant(DAG, 0x3f60d3e3));
3146      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3147      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3148                               getF32Constant(DAG, 0x4011cdf0));
3149      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3150      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3151                               getF32Constant(DAG, 0x406cfd1c));
3152      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3153      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3154                               getF32Constant(DAG, 0x408797cb));
3155      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3156      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3157                                          getF32Constant(DAG, 0x4006dcab));
3158
3159      result = DAG.getNode(ISD::FADD, dl,
3160                           MVT::f32, LogOfExponent, LogOfMantissa);
3161    }
3162  } else {
3163    // No special expansion.
3164    result = DAG.getNode(ISD::FLOG, dl,
3165                         getValue(I.getOperand(1)).getValueType(),
3166                         getValue(I.getOperand(1)));
3167  }
3168
3169  setValue(&I, result);
3170}
3171
3172/// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for
3173/// limited-precision mode.
3174void
3175SelectionDAGBuilder::visitLog2(const CallInst &I) {
3176  SDValue result;
3177  DebugLoc dl = getCurDebugLoc();
3178
3179  if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
3180      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3181    SDValue Op = getValue(I.getOperand(1));
3182    SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
3183
3184    // Get the exponent.
3185    SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3186
3187    // Get the significand and build it into a floating-point number with
3188    // exponent of 1.
3189    SDValue X = GetSignificand(DAG, Op1, dl);
3190
3191    // Different possible minimax approximations of significand in
3192    // floating-point for various degrees of accuracy over [1,2].
3193    if (LimitFloatPrecision <= 6) {
3194      // For floating-point precision of 6:
3195      //
3196      //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3197      //
3198      // error 0.0049451742, which is more than 7 bits
3199      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3200                               getF32Constant(DAG, 0xbeb08fe0));
3201      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3202                               getF32Constant(DAG, 0x40019463));
3203      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3204      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3205                                           getF32Constant(DAG, 0x3fd6633d));
3206
3207      result = DAG.getNode(ISD::FADD, dl,
3208                           MVT::f32, LogOfExponent, Log2ofMantissa);
3209    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3210      // For floating-point precision of 12:
3211      //
3212      //   Log2ofMantissa =
3213      //     -2.51285454f +
3214      //       (4.07009056f +
3215      //         (-2.12067489f +
3216      //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3217      //
3218      // error 0.0000876136000, which is better than 13 bits
3219      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3220                               getF32Constant(DAG, 0xbda7262e));
3221      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3222                               getF32Constant(DAG, 0x3f25280b));
3223      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3224      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3225                               getF32Constant(DAG, 0x4007b923));
3226      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3227      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3228                               getF32Constant(DAG, 0x40823e2f));
3229      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3230      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3231                                           getF32Constant(DAG, 0x4020d29c));
3232
3233      result = DAG.getNode(ISD::FADD, dl,
3234                           MVT::f32, LogOfExponent, Log2ofMantissa);
3235    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3236      // For floating-point precision of 18:
3237      //
3238      //   Log2ofMantissa =
3239      //     -3.0400495f +
3240      //       (6.1129976f +
3241      //         (-5.3420409f +
3242      //           (3.2865683f +
3243      //             (-1.2669343f +
3244      //               (0.27515199f -
3245      //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3246      //
3247      // error 0.0000018516, which is better than 18 bits
3248      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3249                               getF32Constant(DAG, 0xbcd2769e));
3250      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3251                               getF32Constant(DAG, 0x3e8ce0b9));
3252      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3253      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3254                               getF32Constant(DAG, 0x3fa22ae7));
3255      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3256      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3257                               getF32Constant(DAG, 0x40525723));
3258      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3259      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3260                               getF32Constant(DAG, 0x40aaf200));
3261      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3262      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3263                               getF32Constant(DAG, 0x40c39dad));
3264      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3265      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3266                                           getF32Constant(DAG, 0x4042902c));
3267
3268      result = DAG.getNode(ISD::FADD, dl,
3269                           MVT::f32, LogOfExponent, Log2ofMantissa);
3270    }
3271  } else {
3272    // No special expansion.
3273    result = DAG.getNode(ISD::FLOG2, dl,
3274                         getValue(I.getOperand(1)).getValueType(),
3275                         getValue(I.getOperand(1)));
3276  }
3277
3278  setValue(&I, result);
3279}
3280
3281/// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for
3282/// limited-precision mode.
3283void
3284SelectionDAGBuilder::visitLog10(const CallInst &I) {
3285  SDValue result;
3286  DebugLoc dl = getCurDebugLoc();
3287
3288  if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
3289      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3290    SDValue Op = getValue(I.getOperand(1));
3291    SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
3292
3293    // Scale the exponent by log10(2) [0.30102999f].
3294    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3295    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3296                                        getF32Constant(DAG, 0x3e9a209a));
3297
3298    // Get the significand and build it into a floating-point number with
3299    // exponent of 1.
3300    SDValue X = GetSignificand(DAG, Op1, dl);
3301
3302    if (LimitFloatPrecision <= 6) {
3303      // For floating-point precision of 6:
3304      //
3305      //   Log10ofMantissa =
3306      //     -0.50419619f +
3307      //       (0.60948995f - 0.10380950f * x) * x;
3308      //
3309      // error 0.0014886165, which is 6 bits
3310      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3311                               getF32Constant(DAG, 0xbdd49a13));
3312      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3313                               getF32Constant(DAG, 0x3f1c0789));
3314      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3315      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3316                                            getF32Constant(DAG, 0x3f011300));
3317
3318      result = DAG.getNode(ISD::FADD, dl,
3319                           MVT::f32, LogOfExponent, Log10ofMantissa);
3320    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3321      // For floating-point precision of 12:
3322      //
3323      //   Log10ofMantissa =
3324      //     -0.64831180f +
3325      //       (0.91751397f +
3326      //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
3327      //
3328      // error 0.00019228036, which is better than 12 bits
3329      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3330                               getF32Constant(DAG, 0x3d431f31));
3331      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3332                               getF32Constant(DAG, 0x3ea21fb2));
3333      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3334      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3335                               getF32Constant(DAG, 0x3f6ae232));
3336      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3337      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3338                                            getF32Constant(DAG, 0x3f25f7c3));
3339
3340      result = DAG.getNode(ISD::FADD, dl,
3341                           MVT::f32, LogOfExponent, Log10ofMantissa);
3342    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3343      // For floating-point precision of 18:
3344      //
3345      //   Log10ofMantissa =
3346      //     -0.84299375f +
3347      //       (1.5327582f +
3348      //         (-1.0688956f +
3349      //           (0.49102474f +
3350      //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
3351      //
3352      // error 0.0000037995730, which is better than 18 bits
3353      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3354                               getF32Constant(DAG, 0x3c5d51ce));
3355      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3356                               getF32Constant(DAG, 0x3e00685a));
3357      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3358      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3359                               getF32Constant(DAG, 0x3efb6798));
3360      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3361      SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3362                               getF32Constant(DAG, 0x3f88d192));
3363      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3364      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3365                               getF32Constant(DAG, 0x3fc4316c));
3366      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3367      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
3368                                            getF32Constant(DAG, 0x3f57ce70));
3369
3370      result = DAG.getNode(ISD::FADD, dl,
3371                           MVT::f32, LogOfExponent, Log10ofMantissa);
3372    }
3373  } else {
3374    // No special expansion.
3375    result = DAG.getNode(ISD::FLOG10, dl,
3376                         getValue(I.getOperand(1)).getValueType(),
3377                         getValue(I.getOperand(1)));
3378  }
3379
3380  setValue(&I, result);
3381}
3382
3383/// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for
3384/// limited-precision mode.
3385void
3386SelectionDAGBuilder::visitExp2(const CallInst &I) {
3387  SDValue result;
3388  DebugLoc dl = getCurDebugLoc();
3389
3390  if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
3391      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3392    SDValue Op = getValue(I.getOperand(1));
3393
3394    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
3395
3396    //   FractionalPartOfX = x - (float)IntegerPartOfX;
3397    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3398    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
3399
3400    //   IntegerPartOfX <<= 23;
3401    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3402                                 DAG.getConstant(23, TLI.getPointerTy()));
3403
3404    if (LimitFloatPrecision <= 6) {
3405      // For floating-point precision of 6:
3406      //
3407      //   TwoToFractionalPartOfX =
3408      //     0.997535578f +
3409      //       (0.735607626f + 0.252464424f * x) * x;
3410      //
3411      // error 0.0144103317, which is 6 bits
3412      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3413                               getF32Constant(DAG, 0x3e814304));
3414      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3415                               getF32Constant(DAG, 0x3f3c50c8));
3416      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3417      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3418                               getF32Constant(DAG, 0x3f7f5e7e));
3419      SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5);
3420      SDValue TwoToFractionalPartOfX =
3421        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3422
3423      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3424                           MVT::f32, TwoToFractionalPartOfX);
3425    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3426      // For floating-point precision of 12:
3427      //
3428      //   TwoToFractionalPartOfX =
3429      //     0.999892986f +
3430      //       (0.696457318f +
3431      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3432      //
3433      // error 0.000107046256, which is 13 to 14 bits
3434      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3435                               getF32Constant(DAG, 0x3da235e3));
3436      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3437                               getF32Constant(DAG, 0x3e65b8f3));
3438      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3439      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3440                               getF32Constant(DAG, 0x3f324b07));
3441      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3442      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3443                               getF32Constant(DAG, 0x3f7ff8fd));
3444      SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7);
3445      SDValue TwoToFractionalPartOfX =
3446        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
3447
3448      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3449                           MVT::f32, TwoToFractionalPartOfX);
3450    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3451      // For floating-point precision of 18:
3452      //
3453      //   TwoToFractionalPartOfX =
3454      //     0.999999982f +
3455      //       (0.693148872f +
3456      //         (0.240227044f +
3457      //           (0.554906021e-1f +
3458      //             (0.961591928e-2f +
3459      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3460      // error 2.47208000*10^(-7), which is better than 18 bits
3461      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3462                               getF32Constant(DAG, 0x3924b03e));
3463      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3464                               getF32Constant(DAG, 0x3ab24b87));
3465      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3466      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3467                               getF32Constant(DAG, 0x3c1d8c17));
3468      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3469      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3470                               getF32Constant(DAG, 0x3d634a1d));
3471      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3472      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3473                               getF32Constant(DAG, 0x3e75fe14));
3474      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3475      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3476                                getF32Constant(DAG, 0x3f317234));
3477      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3478      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3479                                getF32Constant(DAG, 0x3f800000));
3480      SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13);
3481      SDValue TwoToFractionalPartOfX =
3482        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
3483
3484      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3485                           MVT::f32, TwoToFractionalPartOfX);
3486    }
3487  } else {
3488    // No special expansion.
3489    result = DAG.getNode(ISD::FEXP2, dl,
3490                         getValue(I.getOperand(1)).getValueType(),
3491                         getValue(I.getOperand(1)));
3492  }
3493
3494  setValue(&I, result);
3495}
3496
3497/// visitPow - Lower a pow intrinsic. Handles the special sequences for
3498/// limited-precision mode with x == 10.0f.
3499void
3500SelectionDAGBuilder::visitPow(const CallInst &I) {
3501  SDValue result;
3502  const Value *Val = I.getOperand(1);
3503  DebugLoc dl = getCurDebugLoc();
3504  bool IsExp10 = false;
3505
3506  if (getValue(Val).getValueType() == MVT::f32 &&
3507      getValue(I.getOperand(2)).getValueType() == MVT::f32 &&
3508      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3509    if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) {
3510      if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
3511        APFloat Ten(10.0f);
3512        IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten);
3513      }
3514    }
3515  }
3516
3517  if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3518    SDValue Op = getValue(I.getOperand(2));
3519
3520    // Put the exponent in the right bit position for later addition to the
3521    // final result:
3522    //
3523    //   #define LOG2OF10 3.3219281f
3524    //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
3525    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3526                             getF32Constant(DAG, 0x40549a78));
3527    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3528
3529    //   FractionalPartOfX = x - (float)IntegerPartOfX;
3530    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3531    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3532
3533    //   IntegerPartOfX <<= 23;
3534    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3535                                 DAG.getConstant(23, TLI.getPointerTy()));
3536
3537    if (LimitFloatPrecision <= 6) {
3538      // For floating-point precision of 6:
3539      //
3540      //   twoToFractionalPartOfX =
3541      //     0.997535578f +
3542      //       (0.735607626f + 0.252464424f * x) * x;
3543      //
3544      // error 0.0144103317, which is 6 bits
3545      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3546                               getF32Constant(DAG, 0x3e814304));
3547      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3548                               getF32Constant(DAG, 0x3f3c50c8));
3549      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3550      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3551                               getF32Constant(DAG, 0x3f7f5e7e));
3552      SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5);
3553      SDValue TwoToFractionalPartOfX =
3554        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3555
3556      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3557                           MVT::f32, TwoToFractionalPartOfX);
3558    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3559      // For floating-point precision of 12:
3560      //
3561      //   TwoToFractionalPartOfX =
3562      //     0.999892986f +
3563      //       (0.696457318f +
3564      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3565      //
3566      // error 0.000107046256, which is 13 to 14 bits
3567      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3568                               getF32Constant(DAG, 0x3da235e3));
3569      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3570                               getF32Constant(DAG, 0x3e65b8f3));
3571      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3572      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3573                               getF32Constant(DAG, 0x3f324b07));
3574      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3575      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3576                               getF32Constant(DAG, 0x3f7ff8fd));
3577      SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7);
3578      SDValue TwoToFractionalPartOfX =
3579        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
3580
3581      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3582                           MVT::f32, TwoToFractionalPartOfX);
3583    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3584      // For floating-point precision of 18:
3585      //
3586      //   TwoToFractionalPartOfX =
3587      //     0.999999982f +
3588      //       (0.693148872f +
3589      //         (0.240227044f +
3590      //           (0.554906021e-1f +
3591      //             (0.961591928e-2f +
3592      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3593      // error 2.47208000*10^(-7), which is better than 18 bits
3594      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3595                               getF32Constant(DAG, 0x3924b03e));
3596      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3597                               getF32Constant(DAG, 0x3ab24b87));
3598      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3599      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3600                               getF32Constant(DAG, 0x3c1d8c17));
3601      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3602      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3603                               getF32Constant(DAG, 0x3d634a1d));
3604      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3605      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3606                               getF32Constant(DAG, 0x3e75fe14));
3607      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3608      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3609                                getF32Constant(DAG, 0x3f317234));
3610      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3611      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3612                                getF32Constant(DAG, 0x3f800000));
3613      SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13);
3614      SDValue TwoToFractionalPartOfX =
3615        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
3616
3617      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3618                           MVT::f32, TwoToFractionalPartOfX);
3619    }
3620  } else {
3621    // No special expansion.
3622    result = DAG.getNode(ISD::FPOW, dl,
3623                         getValue(I.getOperand(1)).getValueType(),
3624                         getValue(I.getOperand(1)),
3625                         getValue(I.getOperand(2)));
3626  }
3627
3628  setValue(&I, result);
3629}
3630
3631
3632/// ExpandPowI - Expand a llvm.powi intrinsic.
3633static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS,
3634                          SelectionDAG &DAG) {
3635  // If RHS is a constant, we can expand this out to a multiplication tree,
3636  // otherwise we end up lowering to a call to __powidf2 (for example).  When
3637  // optimizing for size, we only want to do this if the expansion would produce
3638  // a small number of multiplies, otherwise we do the full expansion.
3639  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3640    // Get the exponent as a positive value.
3641    unsigned Val = RHSC->getSExtValue();
3642    if ((int)Val < 0) Val = -Val;
3643
3644    // powi(x, 0) -> 1.0
3645    if (Val == 0)
3646      return DAG.getConstantFP(1.0, LHS.getValueType());
3647
3648    const Function *F = DAG.getMachineFunction().getFunction();
3649    if (!F->hasFnAttr(Attribute::OptimizeForSize) ||
3650        // If optimizing for size, don't insert too many multiplies.  This
3651        // inserts up to 5 multiplies.
3652        CountPopulation_32(Val)+Log2_32(Val) < 7) {
3653      // We use the simple binary decomposition method to generate the multiply
3654      // sequence.  There are more optimal ways to do this (for example,
3655      // powi(x,15) generates one more multiply than it should), but this has
3656      // the benefit of being both really simple and much better than a libcall.
3657      SDValue Res;  // Logically starts equal to 1.0
3658      SDValue CurSquare = LHS;
3659      while (Val) {
3660        if (Val & 1) {
3661          if (Res.getNode())
3662            Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
3663          else
3664            Res = CurSquare;  // 1.0*CurSquare.
3665        }
3666
3667        CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
3668                                CurSquare, CurSquare);
3669        Val >>= 1;
3670      }
3671
3672      // If the original was negative, invert the result, producing 1/(x*x*x).
3673      if (RHSC->getSExtValue() < 0)
3674        Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
3675                          DAG.getConstantFP(1.0, LHS.getValueType()), Res);
3676      return Res;
3677    }
3678  }
3679
3680  // Otherwise, expand to a libcall.
3681  return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
3682}
3683
3684/// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
3685/// argument, create the corresponding DBG_VALUE machine instruction for it now.
3686/// At the end of instruction selection, they will be inserted to the entry BB.
3687bool
3688SelectionDAGBuilder::EmitFuncArgumentDbgValue(const DbgValueInst &DI,
3689                                              const Value *V, MDNode *Variable,
3690                                              uint64_t Offset, SDValue &N) {
3691  if (!isa<Argument>(V))
3692    return false;
3693
3694  MachineFunction &MF = DAG.getMachineFunction();
3695  MachineBasicBlock *MBB = FuncInfo.MBBMap[DI.getParent()];
3696  if (MBB != &MF.front())
3697    return false;
3698
3699  unsigned Reg = 0;
3700  if (N.getOpcode() == ISD::CopyFromReg) {
3701    Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
3702    if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
3703      MachineRegisterInfo &RegInfo = MF.getRegInfo();
3704      unsigned PR = RegInfo.getLiveInPhysReg(Reg);
3705      if (PR)
3706        Reg = PR;
3707    }
3708  }
3709
3710  if (!Reg)
3711    Reg = FuncInfo.ValueMap[V];
3712  if (!Reg)
3713    return false;
3714
3715  const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
3716  MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(),
3717                                    TII->get(TargetOpcode::DBG_VALUE))
3718    .addReg(Reg).addImm(Offset).addMetadata(Variable);
3719  FuncInfo.ArgDbgValues.push_back(&*MIB);
3720  return true;
3721}
3722
3723/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
3724/// we want to emit this as a call to a named external function, return the name
3725/// otherwise lower it and return null.
3726const char *
3727SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
3728  DebugLoc dl = getCurDebugLoc();
3729  SDValue Res;
3730
3731  switch (Intrinsic) {
3732  default:
3733    // By default, turn this into a target intrinsic node.
3734    visitTargetIntrinsic(I, Intrinsic);
3735    return 0;
3736  case Intrinsic::vastart:  visitVAStart(I); return 0;
3737  case Intrinsic::vaend:    visitVAEnd(I); return 0;
3738  case Intrinsic::vacopy:   visitVACopy(I); return 0;
3739  case Intrinsic::returnaddress:
3740    setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(),
3741                             getValue(I.getOperand(1))));
3742    return 0;
3743  case Intrinsic::frameaddress:
3744    setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(),
3745                             getValue(I.getOperand(1))));
3746    return 0;
3747  case Intrinsic::setjmp:
3748    return "_setjmp"+!TLI.usesUnderscoreSetJmp();
3749  case Intrinsic::longjmp:
3750    return "_longjmp"+!TLI.usesUnderscoreLongJmp();
3751  case Intrinsic::memcpy: {
3752    // Assert for address < 256 since we support only user defined address
3753    // spaces.
3754    assert(cast<PointerType>(I.getOperand(1)->getType())->getAddressSpace()
3755           < 256 &&
3756           cast<PointerType>(I.getOperand(2)->getType())->getAddressSpace()
3757           < 256 &&
3758           "Unknown address space");
3759    SDValue Op1 = getValue(I.getOperand(1));
3760    SDValue Op2 = getValue(I.getOperand(2));
3761    SDValue Op3 = getValue(I.getOperand(3));
3762    unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3763    bool isVol = cast<ConstantInt>(I.getOperand(5))->getZExtValue();
3764    DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false,
3765                              I.getOperand(1), 0, I.getOperand(2), 0));
3766    return 0;
3767  }
3768  case Intrinsic::memset: {
3769    // Assert for address < 256 since we support only user defined address
3770    // spaces.
3771    assert(cast<PointerType>(I.getOperand(1)->getType())->getAddressSpace()
3772           < 256 &&
3773           "Unknown address space");
3774    SDValue Op1 = getValue(I.getOperand(1));
3775    SDValue Op2 = getValue(I.getOperand(2));
3776    SDValue Op3 = getValue(I.getOperand(3));
3777    unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3778    bool isVol = cast<ConstantInt>(I.getOperand(5))->getZExtValue();
3779    DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
3780                              I.getOperand(1), 0));
3781    return 0;
3782  }
3783  case Intrinsic::memmove: {
3784    // Assert for address < 256 since we support only user defined address
3785    // spaces.
3786    assert(cast<PointerType>(I.getOperand(1)->getType())->getAddressSpace()
3787           < 256 &&
3788           cast<PointerType>(I.getOperand(2)->getType())->getAddressSpace()
3789           < 256 &&
3790           "Unknown address space");
3791    SDValue Op1 = getValue(I.getOperand(1));
3792    SDValue Op2 = getValue(I.getOperand(2));
3793    SDValue Op3 = getValue(I.getOperand(3));
3794    unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3795    bool isVol = cast<ConstantInt>(I.getOperand(5))->getZExtValue();
3796
3797    // If the source and destination are known to not be aliases, we can
3798    // lower memmove as memcpy.
3799    uint64_t Size = -1ULL;
3800    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3))
3801      Size = C->getZExtValue();
3802    if (AA->alias(I.getOperand(1), Size, I.getOperand(2), Size) ==
3803        AliasAnalysis::NoAlias) {
3804      DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
3805                                false, I.getOperand(1), 0, I.getOperand(2), 0));
3806      return 0;
3807    }
3808
3809    DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
3810                               I.getOperand(1), 0, I.getOperand(2), 0));
3811    return 0;
3812  }
3813  case Intrinsic::dbg_declare: {
3814    const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
3815    if (!DIDescriptor::ValidDebugInfo(DI.getVariable(), CodeGenOpt::None))
3816      return 0;
3817
3818    MDNode *Variable = DI.getVariable();
3819    // Parameters are handled specially.
3820    bool isParameter =
3821      DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable;
3822    const Value *Address = DI.getAddress();
3823    if (!Address)
3824      return 0;
3825    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
3826      Address = BCI->getOperand(0);
3827    const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
3828    if (AI) {
3829      // Don't handle byval arguments or VLAs, for example.
3830      // Non-byval arguments are handled here (they refer to the stack temporary
3831      // alloca at this point).
3832      DenseMap<const AllocaInst*, int>::iterator SI =
3833        FuncInfo.StaticAllocaMap.find(AI);
3834      if (SI == FuncInfo.StaticAllocaMap.end())
3835        return 0; // VLAs.
3836      int FI = SI->second;
3837
3838      MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
3839      if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
3840        MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
3841    }
3842
3843    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
3844    // but do not always have a corresponding SDNode built.  The SDNodeOrder
3845    // absolute, but not relative, values are different depending on whether
3846    // debug info exists.
3847    ++SDNodeOrder;
3848    SDValue &N = NodeMap[Address];
3849    SDDbgValue *SDV;
3850    if (N.getNode()) {
3851      if (isParameter && !AI) {
3852        FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
3853        if (FINode)
3854          // Byval parameter.  We have a frame index at this point.
3855          SDV = DAG.getDbgValue(Variable, FINode->getIndex(),
3856                                0, dl, SDNodeOrder);
3857        else
3858          // Can't do anything with other non-AI cases yet.  This might be a
3859          // parameter of a callee function that got inlined, for example.
3860          return 0;
3861      } else if (AI)
3862        SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
3863                              0, dl, SDNodeOrder);
3864      else
3865        // Can't do anything with other non-AI cases yet.
3866        return 0;
3867      DAG.AddDbgValue(SDV, N.getNode(), isParameter);
3868    } else {
3869      // This isn't useful, but it shows what we're missing.
3870      SDV = DAG.getDbgValue(Variable, UndefValue::get(Address->getType()),
3871                            0, dl, SDNodeOrder);
3872      DAG.AddDbgValue(SDV, 0, isParameter);
3873    }
3874    return 0;
3875  }
3876  case Intrinsic::dbg_value: {
3877    const DbgValueInst &DI = cast<DbgValueInst>(I);
3878    if (!DIDescriptor::ValidDebugInfo(DI.getVariable(), CodeGenOpt::None))
3879      return 0;
3880
3881    MDNode *Variable = DI.getVariable();
3882    uint64_t Offset = DI.getOffset();
3883    const Value *V = DI.getValue();
3884    if (!V)
3885      return 0;
3886
3887    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
3888    // but do not always have a corresponding SDNode built.  The SDNodeOrder
3889    // absolute, but not relative, values are different depending on whether
3890    // debug info exists.
3891    ++SDNodeOrder;
3892    SDDbgValue *SDV;
3893    if (isa<ConstantInt>(V) || isa<ConstantFP>(V)) {
3894      SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder);
3895      DAG.AddDbgValue(SDV, 0, false);
3896    } else {
3897      SDValue &N = NodeMap[V];
3898      if (N.getNode()) {
3899#if 0
3900        if (!EmitFuncArgumentDbgValue(DI, V, Variable, Offset, N)) {
3901#endif
3902          SDV = DAG.getDbgValue(Variable, N.getNode(),
3903                                N.getResNo(), Offset, dl, SDNodeOrder);
3904          DAG.AddDbgValue(SDV, N.getNode(), false);
3905#if 0
3906        }
3907#endif
3908      } else {
3909        // We may expand this to cover more cases.  One case where we have no
3910        // data available is an unreferenced parameter; we need this fallback.
3911        SDV = DAG.getDbgValue(Variable, UndefValue::get(V->getType()),
3912                              Offset, dl, SDNodeOrder);
3913        DAG.AddDbgValue(SDV, 0, false);
3914      }
3915    }
3916
3917    // Build a debug info table entry.
3918    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
3919      V = BCI->getOperand(0);
3920    const AllocaInst *AI = dyn_cast<AllocaInst>(V);
3921    // Don't handle byval struct arguments or VLAs, for example.
3922    if (!AI)
3923      return 0;
3924    DenseMap<const AllocaInst*, int>::iterator SI =
3925      FuncInfo.StaticAllocaMap.find(AI);
3926    if (SI == FuncInfo.StaticAllocaMap.end())
3927      return 0; // VLAs.
3928    int FI = SI->second;
3929
3930    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
3931    if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
3932      MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
3933    return 0;
3934  }
3935  case Intrinsic::eh_exception: {
3936    // Insert the EXCEPTIONADDR instruction.
3937    assert(FuncInfo.MBBMap[I.getParent()]->isLandingPad() &&
3938           "Call to eh.exception not in landing pad!");
3939    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
3940    SDValue Ops[1];
3941    Ops[0] = DAG.getRoot();
3942    SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1);
3943    setValue(&I, Op);
3944    DAG.setRoot(Op.getValue(1));
3945    return 0;
3946  }
3947
3948  case Intrinsic::eh_selector: {
3949    MachineBasicBlock *CallMBB = FuncInfo.MBBMap[I.getParent()];
3950    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
3951    if (CallMBB->isLandingPad())
3952      AddCatchInfo(I, &MMI, CallMBB);
3953    else {
3954#ifndef NDEBUG
3955      FuncInfo.CatchInfoLost.insert(&I);
3956#endif
3957      // FIXME: Mark exception selector register as live in.  Hack for PR1508.
3958      unsigned Reg = TLI.getExceptionSelectorRegister();
3959      if (Reg) FuncInfo.MBBMap[I.getParent()]->addLiveIn(Reg);
3960    }
3961
3962    // Insert the EHSELECTION instruction.
3963    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
3964    SDValue Ops[2];
3965    Ops[0] = getValue(I.getOperand(1));
3966    Ops[1] = getRoot();
3967    SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2);
3968    DAG.setRoot(Op.getValue(1));
3969    setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32));
3970    return 0;
3971  }
3972
3973  case Intrinsic::eh_typeid_for: {
3974    // Find the type id for the given typeinfo.
3975    GlobalVariable *GV = ExtractTypeInfo(I.getOperand(1));
3976    unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
3977    Res = DAG.getConstant(TypeID, MVT::i32);
3978    setValue(&I, Res);
3979    return 0;
3980  }
3981
3982  case Intrinsic::eh_return_i32:
3983  case Intrinsic::eh_return_i64:
3984    DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
3985    DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl,
3986                            MVT::Other,
3987                            getControlRoot(),
3988                            getValue(I.getOperand(1)),
3989                            getValue(I.getOperand(2))));
3990    return 0;
3991  case Intrinsic::eh_unwind_init:
3992    DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
3993    return 0;
3994  case Intrinsic::eh_dwarf_cfa: {
3995    EVT VT = getValue(I.getOperand(1)).getValueType();
3996    SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), dl,
3997                                        TLI.getPointerTy());
3998    SDValue Offset = DAG.getNode(ISD::ADD, dl,
3999                                 TLI.getPointerTy(),
4000                                 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
4001                                             TLI.getPointerTy()),
4002                                 CfaArg);
4003    SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl,
4004                             TLI.getPointerTy(),
4005                             DAG.getConstant(0, TLI.getPointerTy()));
4006    setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
4007                             FA, Offset));
4008    return 0;
4009  }
4010  case Intrinsic::eh_sjlj_callsite: {
4011    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4012    ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1));
4013    assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4014    assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4015
4016    MMI.setCurrentCallSite(CI->getZExtValue());
4017    return 0;
4018  }
4019
4020  case Intrinsic::convertff:
4021  case Intrinsic::convertfsi:
4022  case Intrinsic::convertfui:
4023  case Intrinsic::convertsif:
4024  case Intrinsic::convertuif:
4025  case Intrinsic::convertss:
4026  case Intrinsic::convertsu:
4027  case Intrinsic::convertus:
4028  case Intrinsic::convertuu: {
4029    ISD::CvtCode Code = ISD::CVT_INVALID;
4030    switch (Intrinsic) {
4031    case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
4032    case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4033    case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4034    case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4035    case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4036    case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
4037    case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
4038    case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4039    case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4040    }
4041    EVT DestVT = TLI.getValueType(I.getType());
4042    const Value *Op1 = I.getOperand(1);
4043    Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1),
4044                               DAG.getValueType(DestVT),
4045                               DAG.getValueType(getValue(Op1).getValueType()),
4046                               getValue(I.getOperand(2)),
4047                               getValue(I.getOperand(3)),
4048                               Code);
4049    setValue(&I, Res);
4050    return 0;
4051  }
4052  case Intrinsic::sqrt:
4053    setValue(&I, DAG.getNode(ISD::FSQRT, dl,
4054                             getValue(I.getOperand(1)).getValueType(),
4055                             getValue(I.getOperand(1))));
4056    return 0;
4057  case Intrinsic::powi:
4058    setValue(&I, ExpandPowI(dl, getValue(I.getOperand(1)),
4059                            getValue(I.getOperand(2)), DAG));
4060    return 0;
4061  case Intrinsic::sin:
4062    setValue(&I, DAG.getNode(ISD::FSIN, dl,
4063                             getValue(I.getOperand(1)).getValueType(),
4064                             getValue(I.getOperand(1))));
4065    return 0;
4066  case Intrinsic::cos:
4067    setValue(&I, DAG.getNode(ISD::FCOS, dl,
4068                             getValue(I.getOperand(1)).getValueType(),
4069                             getValue(I.getOperand(1))));
4070    return 0;
4071  case Intrinsic::log:
4072    visitLog(I);
4073    return 0;
4074  case Intrinsic::log2:
4075    visitLog2(I);
4076    return 0;
4077  case Intrinsic::log10:
4078    visitLog10(I);
4079    return 0;
4080  case Intrinsic::exp:
4081    visitExp(I);
4082    return 0;
4083  case Intrinsic::exp2:
4084    visitExp2(I);
4085    return 0;
4086  case Intrinsic::pow:
4087    visitPow(I);
4088    return 0;
4089  case Intrinsic::convert_to_fp16:
4090    setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl,
4091                             MVT::i16, getValue(I.getOperand(1))));
4092    return 0;
4093  case Intrinsic::convert_from_fp16:
4094    setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl,
4095                             MVT::f32, getValue(I.getOperand(1))));
4096    return 0;
4097  case Intrinsic::pcmarker: {
4098    SDValue Tmp = getValue(I.getOperand(1));
4099    DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp));
4100    return 0;
4101  }
4102  case Intrinsic::readcyclecounter: {
4103    SDValue Op = getRoot();
4104    Res = DAG.getNode(ISD::READCYCLECOUNTER, dl,
4105                      DAG.getVTList(MVT::i64, MVT::Other),
4106                      &Op, 1);
4107    setValue(&I, Res);
4108    DAG.setRoot(Res.getValue(1));
4109    return 0;
4110  }
4111  case Intrinsic::bswap:
4112    setValue(&I, DAG.getNode(ISD::BSWAP, dl,
4113                             getValue(I.getOperand(1)).getValueType(),
4114                             getValue(I.getOperand(1))));
4115    return 0;
4116  case Intrinsic::cttz: {
4117    SDValue Arg = getValue(I.getOperand(1));
4118    EVT Ty = Arg.getValueType();
4119    setValue(&I, DAG.getNode(ISD::CTTZ, dl, Ty, Arg));
4120    return 0;
4121  }
4122  case Intrinsic::ctlz: {
4123    SDValue Arg = getValue(I.getOperand(1));
4124    EVT Ty = Arg.getValueType();
4125    setValue(&I, DAG.getNode(ISD::CTLZ, dl, Ty, Arg));
4126    return 0;
4127  }
4128  case Intrinsic::ctpop: {
4129    SDValue Arg = getValue(I.getOperand(1));
4130    EVT Ty = Arg.getValueType();
4131    setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg));
4132    return 0;
4133  }
4134  case Intrinsic::stacksave: {
4135    SDValue Op = getRoot();
4136    Res = DAG.getNode(ISD::STACKSAVE, dl,
4137                      DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
4138    setValue(&I, Res);
4139    DAG.setRoot(Res.getValue(1));
4140    return 0;
4141  }
4142  case Intrinsic::stackrestore: {
4143    Res = getValue(I.getOperand(1));
4144    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res));
4145    return 0;
4146  }
4147  case Intrinsic::stackprotector: {
4148    // Emit code into the DAG to store the stack guard onto the stack.
4149    MachineFunction &MF = DAG.getMachineFunction();
4150    MachineFrameInfo *MFI = MF.getFrameInfo();
4151    EVT PtrTy = TLI.getPointerTy();
4152
4153    SDValue Src = getValue(I.getOperand(1));   // The guard's value.
4154    AllocaInst *Slot = cast<AllocaInst>(I.getOperand(2));
4155
4156    int FI = FuncInfo.StaticAllocaMap[Slot];
4157    MFI->setStackProtectorIndex(FI);
4158
4159    SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
4160
4161    // Store the stack protector onto the stack.
4162    Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN,
4163                       PseudoSourceValue::getFixedStack(FI),
4164                       0, true, false, 0);
4165    setValue(&I, Res);
4166    DAG.setRoot(Res);
4167    return 0;
4168  }
4169  case Intrinsic::objectsize: {
4170    // If we don't know by now, we're never going to know.
4171    ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(2));
4172
4173    assert(CI && "Non-constant type in __builtin_object_size?");
4174
4175    SDValue Arg = getValue(I.getOperand(0));
4176    EVT Ty = Arg.getValueType();
4177
4178    if (CI->getZExtValue() == 0)
4179      Res = DAG.getConstant(-1ULL, Ty);
4180    else
4181      Res = DAG.getConstant(0, Ty);
4182
4183    setValue(&I, Res);
4184    return 0;
4185  }
4186  case Intrinsic::var_annotation:
4187    // Discard annotate attributes
4188    return 0;
4189
4190  case Intrinsic::init_trampoline: {
4191    const Function *F = cast<Function>(I.getOperand(2)->stripPointerCasts());
4192
4193    SDValue Ops[6];
4194    Ops[0] = getRoot();
4195    Ops[1] = getValue(I.getOperand(1));
4196    Ops[2] = getValue(I.getOperand(2));
4197    Ops[3] = getValue(I.getOperand(3));
4198    Ops[4] = DAG.getSrcValue(I.getOperand(1));
4199    Ops[5] = DAG.getSrcValue(F);
4200
4201    Res = DAG.getNode(ISD::TRAMPOLINE, dl,
4202                      DAG.getVTList(TLI.getPointerTy(), MVT::Other),
4203                      Ops, 6);
4204
4205    setValue(&I, Res);
4206    DAG.setRoot(Res.getValue(1));
4207    return 0;
4208  }
4209  case Intrinsic::gcroot:
4210    if (GFI) {
4211      const Value *Alloca = I.getOperand(1);
4212      const Constant *TypeMap = cast<Constant>(I.getOperand(2));
4213
4214      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
4215      GFI->addStackRoot(FI->getIndex(), TypeMap);
4216    }
4217    return 0;
4218  case Intrinsic::gcread:
4219  case Intrinsic::gcwrite:
4220    llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
4221    return 0;
4222  case Intrinsic::flt_rounds:
4223    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32));
4224    return 0;
4225  case Intrinsic::trap:
4226    DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot()));
4227    return 0;
4228  case Intrinsic::uadd_with_overflow:
4229    return implVisitAluOverflow(I, ISD::UADDO);
4230  case Intrinsic::sadd_with_overflow:
4231    return implVisitAluOverflow(I, ISD::SADDO);
4232  case Intrinsic::usub_with_overflow:
4233    return implVisitAluOverflow(I, ISD::USUBO);
4234  case Intrinsic::ssub_with_overflow:
4235    return implVisitAluOverflow(I, ISD::SSUBO);
4236  case Intrinsic::umul_with_overflow:
4237    return implVisitAluOverflow(I, ISD::UMULO);
4238  case Intrinsic::smul_with_overflow:
4239    return implVisitAluOverflow(I, ISD::SMULO);
4240
4241  case Intrinsic::prefetch: {
4242    SDValue Ops[4];
4243    Ops[0] = getRoot();
4244    Ops[1] = getValue(I.getOperand(1));
4245    Ops[2] = getValue(I.getOperand(2));
4246    Ops[3] = getValue(I.getOperand(3));
4247    DAG.setRoot(DAG.getNode(ISD::PREFETCH, dl, MVT::Other, &Ops[0], 4));
4248    return 0;
4249  }
4250
4251  case Intrinsic::memory_barrier: {
4252    SDValue Ops[6];
4253    Ops[0] = getRoot();
4254    for (int x = 1; x < 6; ++x)
4255      Ops[x] = getValue(I.getOperand(x));
4256
4257    DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6));
4258    return 0;
4259  }
4260  case Intrinsic::atomic_cmp_swap: {
4261    SDValue Root = getRoot();
4262    SDValue L =
4263      DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(),
4264                    getValue(I.getOperand(2)).getValueType().getSimpleVT(),
4265                    Root,
4266                    getValue(I.getOperand(1)),
4267                    getValue(I.getOperand(2)),
4268                    getValue(I.getOperand(3)),
4269                    I.getOperand(1));
4270    setValue(&I, L);
4271    DAG.setRoot(L.getValue(1));
4272    return 0;
4273  }
4274  case Intrinsic::atomic_load_add:
4275    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD);
4276  case Intrinsic::atomic_load_sub:
4277    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB);
4278  case Intrinsic::atomic_load_or:
4279    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR);
4280  case Intrinsic::atomic_load_xor:
4281    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR);
4282  case Intrinsic::atomic_load_and:
4283    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND);
4284  case Intrinsic::atomic_load_nand:
4285    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND);
4286  case Intrinsic::atomic_load_max:
4287    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX);
4288  case Intrinsic::atomic_load_min:
4289    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN);
4290  case Intrinsic::atomic_load_umin:
4291    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN);
4292  case Intrinsic::atomic_load_umax:
4293    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX);
4294  case Intrinsic::atomic_swap:
4295    return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP);
4296
4297  case Intrinsic::invariant_start:
4298  case Intrinsic::lifetime_start:
4299    // Discard region information.
4300    setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
4301    return 0;
4302  case Intrinsic::invariant_end:
4303  case Intrinsic::lifetime_end:
4304    // Discard region information.
4305    return 0;
4306  }
4307}
4308
4309void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
4310                                      bool isTailCall,
4311                                      MachineBasicBlock *LandingPad) {
4312  const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
4313  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
4314  const Type *RetTy = FTy->getReturnType();
4315  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4316  MCSymbol *BeginLabel = 0;
4317
4318  TargetLowering::ArgListTy Args;
4319  TargetLowering::ArgListEntry Entry;
4320  Args.reserve(CS.arg_size());
4321
4322  // Check whether the function can return without sret-demotion.
4323  SmallVector<EVT, 4> OutVTs;
4324  SmallVector<ISD::ArgFlagsTy, 4> OutsFlags;
4325  SmallVector<uint64_t, 4> Offsets;
4326  getReturnInfo(RetTy, CS.getAttributes().getRetAttributes(),
4327                OutVTs, OutsFlags, TLI, &Offsets);
4328
4329  bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
4330                        FTy->isVarArg(), OutVTs, OutsFlags, DAG);
4331
4332  SDValue DemoteStackSlot;
4333
4334  if (!CanLowerReturn) {
4335    uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(
4336                      FTy->getReturnType());
4337    unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(
4338                      FTy->getReturnType());
4339    MachineFunction &MF = DAG.getMachineFunction();
4340    int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
4341    const Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
4342
4343    DemoteStackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
4344    Entry.Node = DemoteStackSlot;
4345    Entry.Ty = StackSlotPtrType;
4346    Entry.isSExt = false;
4347    Entry.isZExt = false;
4348    Entry.isInReg = false;
4349    Entry.isSRet = true;
4350    Entry.isNest = false;
4351    Entry.isByVal = false;
4352    Entry.Alignment = Align;
4353    Args.push_back(Entry);
4354    RetTy = Type::getVoidTy(FTy->getContext());
4355  }
4356
4357  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
4358       i != e; ++i) {
4359    SDValue ArgNode = getValue(*i);
4360    Entry.Node = ArgNode; Entry.Ty = (*i)->getType();
4361
4362    unsigned attrInd = i - CS.arg_begin() + 1;
4363    Entry.isSExt  = CS.paramHasAttr(attrInd, Attribute::SExt);
4364    Entry.isZExt  = CS.paramHasAttr(attrInd, Attribute::ZExt);
4365    Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg);
4366    Entry.isSRet  = CS.paramHasAttr(attrInd, Attribute::StructRet);
4367    Entry.isNest  = CS.paramHasAttr(attrInd, Attribute::Nest);
4368    Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal);
4369    Entry.Alignment = CS.getParamAlignment(attrInd);
4370    Args.push_back(Entry);
4371  }
4372
4373  if (LandingPad) {
4374    // Insert a label before the invoke call to mark the try range.  This can be
4375    // used to detect deletion of the invoke via the MachineModuleInfo.
4376    BeginLabel = MMI.getContext().CreateTempSymbol();
4377
4378    // For SjLj, keep track of which landing pads go with which invokes
4379    // so as to maintain the ordering of pads in the LSDA.
4380    unsigned CallSiteIndex = MMI.getCurrentCallSite();
4381    if (CallSiteIndex) {
4382      MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
4383      // Now that the call site is handled, stop tracking it.
4384      MMI.setCurrentCallSite(0);
4385    }
4386
4387    // Both PendingLoads and PendingExports must be flushed here;
4388    // this call might not return.
4389    (void)getRoot();
4390    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel));
4391  }
4392
4393  // Check if target-independent constraints permit a tail call here.
4394  // Target-dependent constraints are checked within TLI.LowerCallTo.
4395  if (isTailCall &&
4396      !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI))
4397    isTailCall = false;
4398
4399  std::pair<SDValue,SDValue> Result =
4400    TLI.LowerCallTo(getRoot(), RetTy,
4401                    CS.paramHasAttr(0, Attribute::SExt),
4402                    CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(),
4403                    CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(),
4404                    CS.getCallingConv(),
4405                    isTailCall,
4406                    !CS.getInstruction()->use_empty(),
4407                    Callee, Args, DAG, getCurDebugLoc());
4408  assert((isTailCall || Result.second.getNode()) &&
4409         "Non-null chain expected with non-tail call!");
4410  assert((Result.second.getNode() || !Result.first.getNode()) &&
4411         "Null value expected with tail call!");
4412  if (Result.first.getNode()) {
4413    setValue(CS.getInstruction(), Result.first);
4414  } else if (!CanLowerReturn && Result.second.getNode()) {
4415    // The instruction result is the result of loading from the
4416    // hidden sret parameter.
4417    SmallVector<EVT, 1> PVTs;
4418    const Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
4419
4420    ComputeValueVTs(TLI, PtrRetTy, PVTs);
4421    assert(PVTs.size() == 1 && "Pointers should fit in one register");
4422    EVT PtrVT = PVTs[0];
4423    unsigned NumValues = OutVTs.size();
4424    SmallVector<SDValue, 4> Values(NumValues);
4425    SmallVector<SDValue, 4> Chains(NumValues);
4426
4427    for (unsigned i = 0; i < NumValues; ++i) {
4428      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT,
4429                                DemoteStackSlot,
4430                                DAG.getConstant(Offsets[i], PtrVT));
4431      SDValue L = DAG.getLoad(OutVTs[i], getCurDebugLoc(), Result.second,
4432                              Add, NULL, Offsets[i], false, false, 1);
4433      Values[i] = L;
4434      Chains[i] = L.getValue(1);
4435    }
4436
4437    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
4438                                MVT::Other, &Chains[0], NumValues);
4439    PendingLoads.push_back(Chain);
4440
4441    // Collect the legal value parts into potentially illegal values
4442    // that correspond to the original function's return values.
4443    SmallVector<EVT, 4> RetTys;
4444    RetTy = FTy->getReturnType();
4445    ComputeValueVTs(TLI, RetTy, RetTys);
4446    ISD::NodeType AssertOp = ISD::DELETED_NODE;
4447    SmallVector<SDValue, 4> ReturnValues;
4448    unsigned CurReg = 0;
4449    for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
4450      EVT VT = RetTys[I];
4451      EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT);
4452      unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT);
4453
4454      SDValue ReturnValue =
4455        getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs,
4456                         RegisterVT, VT, AssertOp);
4457      ReturnValues.push_back(ReturnValue);
4458      CurReg += NumRegs;
4459    }
4460
4461    setValue(CS.getInstruction(),
4462             DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
4463                         DAG.getVTList(&RetTys[0], RetTys.size()),
4464                         &ReturnValues[0], ReturnValues.size()));
4465
4466  }
4467
4468  // As a special case, a null chain means that a tail call has been emitted and
4469  // the DAG root is already updated.
4470  if (Result.second.getNode())
4471    DAG.setRoot(Result.second);
4472  else
4473    HasTailCall = true;
4474
4475  if (LandingPad) {
4476    // Insert a label at the end of the invoke call to mark the try range.  This
4477    // can be used to detect deletion of the invoke via the MachineModuleInfo.
4478    MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
4479    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel));
4480
4481    // Inform MachineModuleInfo of range.
4482    MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
4483  }
4484}
4485
4486/// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
4487/// value is equal or not-equal to zero.
4488static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
4489  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
4490       UI != E; ++UI) {
4491    if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
4492      if (IC->isEquality())
4493        if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
4494          if (C->isNullValue())
4495            continue;
4496    // Unknown instruction.
4497    return false;
4498  }
4499  return true;
4500}
4501
4502static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
4503                             const Type *LoadTy,
4504                             SelectionDAGBuilder &Builder) {
4505
4506  // Check to see if this load can be trivially constant folded, e.g. if the
4507  // input is from a string literal.
4508  if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
4509    // Cast pointer to the type we really want to load.
4510    LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
4511                                         PointerType::getUnqual(LoadTy));
4512
4513    if (const Constant *LoadCst =
4514          ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
4515                                       Builder.TD))
4516      return Builder.getValue(LoadCst);
4517  }
4518
4519  // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
4520  // still constant memory, the input chain can be the entry node.
4521  SDValue Root;
4522  bool ConstantMemory = false;
4523
4524  // Do not serialize (non-volatile) loads of constant memory with anything.
4525  if (Builder.AA->pointsToConstantMemory(PtrVal)) {
4526    Root = Builder.DAG.getEntryNode();
4527    ConstantMemory = true;
4528  } else {
4529    // Do not serialize non-volatile loads against each other.
4530    Root = Builder.DAG.getRoot();
4531  }
4532
4533  SDValue Ptr = Builder.getValue(PtrVal);
4534  SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root,
4535                                        Ptr, PtrVal /*SrcValue*/, 0/*SVOffset*/,
4536                                        false /*volatile*/,
4537                                        false /*nontemporal*/, 1 /* align=1 */);
4538
4539  if (!ConstantMemory)
4540    Builder.PendingLoads.push_back(LoadVal.getValue(1));
4541  return LoadVal;
4542}
4543
4544
4545/// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
4546/// If so, return true and lower it, otherwise return false and it will be
4547/// lowered like a normal call.
4548bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
4549  // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
4550  if (I.getNumOperands() != 4)
4551    return false;
4552
4553  const Value *LHS = I.getOperand(1), *RHS = I.getOperand(2);
4554  if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
4555      !I.getOperand(3)->getType()->isIntegerTy() ||
4556      !I.getType()->isIntegerTy())
4557    return false;
4558
4559  const ConstantInt *Size = dyn_cast<ConstantInt>(I.getOperand(3));
4560
4561  // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
4562  // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
4563  if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) {
4564    bool ActuallyDoIt = true;
4565    MVT LoadVT;
4566    const Type *LoadTy;
4567    switch (Size->getZExtValue()) {
4568    default:
4569      LoadVT = MVT::Other;
4570      LoadTy = 0;
4571      ActuallyDoIt = false;
4572      break;
4573    case 2:
4574      LoadVT = MVT::i16;
4575      LoadTy = Type::getInt16Ty(Size->getContext());
4576      break;
4577    case 4:
4578      LoadVT = MVT::i32;
4579      LoadTy = Type::getInt32Ty(Size->getContext());
4580      break;
4581    case 8:
4582      LoadVT = MVT::i64;
4583      LoadTy = Type::getInt64Ty(Size->getContext());
4584      break;
4585        /*
4586    case 16:
4587      LoadVT = MVT::v4i32;
4588      LoadTy = Type::getInt32Ty(Size->getContext());
4589      LoadTy = VectorType::get(LoadTy, 4);
4590      break;
4591         */
4592    }
4593
4594    // This turns into unaligned loads.  We only do this if the target natively
4595    // supports the MVT we'll be loading or if it is small enough (<= 4) that
4596    // we'll only produce a small number of byte loads.
4597
4598    // Require that we can find a legal MVT, and only do this if the target
4599    // supports unaligned loads of that type.  Expanding into byte loads would
4600    // bloat the code.
4601    if (ActuallyDoIt && Size->getZExtValue() > 4) {
4602      // TODO: Handle 5 byte compare as 4-byte + 1 byte.
4603      // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
4604      if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT))
4605        ActuallyDoIt = false;
4606    }
4607
4608    if (ActuallyDoIt) {
4609      SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
4610      SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
4611
4612      SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal,
4613                                 ISD::SETNE);
4614      EVT CallVT = TLI.getValueType(I.getType(), true);
4615      setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT));
4616      return true;
4617    }
4618  }
4619
4620
4621  return false;
4622}
4623
4624
4625void SelectionDAGBuilder::visitCall(const CallInst &I) {
4626  const char *RenameFn = 0;
4627  if (Function *F = I.getCalledFunction()) {
4628    if (F->isDeclaration()) {
4629      const TargetIntrinsicInfo *II = TM.getIntrinsicInfo();
4630      if (II) {
4631        if (unsigned IID = II->getIntrinsicID(F)) {
4632          RenameFn = visitIntrinsicCall(I, IID);
4633          if (!RenameFn)
4634            return;
4635        }
4636      }
4637      if (unsigned IID = F->getIntrinsicID()) {
4638        RenameFn = visitIntrinsicCall(I, IID);
4639        if (!RenameFn)
4640          return;
4641      }
4642    }
4643
4644    // Check for well-known libc/libm calls.  If the function is internal, it
4645    // can't be a library call.
4646    if (!F->hasLocalLinkage() && F->hasName()) {
4647      StringRef Name = F->getName();
4648      if (Name == "copysign" || Name == "copysignf" || Name == "copysignl") {
4649        if (I.getNumOperands() == 3 &&   // Basic sanity checks.
4650            I.getOperand(1)->getType()->isFloatingPointTy() &&
4651            I.getType() == I.getOperand(1)->getType() &&
4652            I.getType() == I.getOperand(2)->getType()) {
4653          SDValue LHS = getValue(I.getOperand(1));
4654          SDValue RHS = getValue(I.getOperand(2));
4655          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(),
4656                                   LHS.getValueType(), LHS, RHS));
4657          return;
4658        }
4659      } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") {
4660        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
4661            I.getOperand(1)->getType()->isFloatingPointTy() &&
4662            I.getType() == I.getOperand(1)->getType()) {
4663          SDValue Tmp = getValue(I.getOperand(1));
4664          setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(),
4665                                   Tmp.getValueType(), Tmp));
4666          return;
4667        }
4668      } else if (Name == "sin" || Name == "sinf" || Name == "sinl") {
4669        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
4670            I.getOperand(1)->getType()->isFloatingPointTy() &&
4671            I.getType() == I.getOperand(1)->getType() &&
4672            I.onlyReadsMemory()) {
4673          SDValue Tmp = getValue(I.getOperand(1));
4674          setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(),
4675                                   Tmp.getValueType(), Tmp));
4676          return;
4677        }
4678      } else if (Name == "cos" || Name == "cosf" || Name == "cosl") {
4679        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
4680            I.getOperand(1)->getType()->isFloatingPointTy() &&
4681            I.getType() == I.getOperand(1)->getType() &&
4682            I.onlyReadsMemory()) {
4683          SDValue Tmp = getValue(I.getOperand(1));
4684          setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(),
4685                                   Tmp.getValueType(), Tmp));
4686          return;
4687        }
4688      } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") {
4689        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
4690            I.getOperand(1)->getType()->isFloatingPointTy() &&
4691            I.getType() == I.getOperand(1)->getType() &&
4692            I.onlyReadsMemory()) {
4693          SDValue Tmp = getValue(I.getOperand(1));
4694          setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(),
4695                                   Tmp.getValueType(), Tmp));
4696          return;
4697        }
4698      } else if (Name == "memcmp") {
4699        if (visitMemCmpCall(I))
4700          return;
4701      }
4702    }
4703  } else if (isa<InlineAsm>(I.getOperand(0))) {
4704    visitInlineAsm(&I);
4705    return;
4706  }
4707
4708  SDValue Callee;
4709  if (!RenameFn)
4710    Callee = getValue(I.getOperand(0));
4711  else
4712    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
4713
4714  // Check if we can potentially perform a tail call. More detailed checking is
4715  // be done within LowerCallTo, after more information about the call is known.
4716  LowerCallTo(&I, Callee, I.isTailCall());
4717}
4718
4719/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
4720/// this value and returns the result as a ValueVT value.  This uses
4721/// Chain/Flag as the input and updates them for the output Chain/Flag.
4722/// If the Flag pointer is NULL, no flag is used.
4723SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, DebugLoc dl,
4724                                      SDValue &Chain, SDValue *Flag) const {
4725  // Assemble the legal parts into the final values.
4726  SmallVector<SDValue, 4> Values(ValueVTs.size());
4727  SmallVector<SDValue, 8> Parts;
4728  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
4729    // Copy the legal parts from the registers.
4730    EVT ValueVT = ValueVTs[Value];
4731    unsigned NumRegs = TLI->getNumRegisters(*DAG.getContext(), ValueVT);
4732    EVT RegisterVT = RegVTs[Value];
4733
4734    Parts.resize(NumRegs);
4735    for (unsigned i = 0; i != NumRegs; ++i) {
4736      SDValue P;
4737      if (Flag == 0) {
4738        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
4739      } else {
4740        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
4741        *Flag = P.getValue(2);
4742      }
4743
4744      Chain = P.getValue(1);
4745
4746      // If the source register was virtual and if we know something about it,
4747      // add an assert node.
4748      if (TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) &&
4749          RegisterVT.isInteger() && !RegisterVT.isVector()) {
4750        unsigned SlotNo = Regs[Part+i]-TargetRegisterInfo::FirstVirtualRegister;
4751        FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo();
4752        if (FLI.LiveOutRegInfo.size() > SlotNo) {
4753          FunctionLoweringInfo::LiveOutInfo &LOI = FLI.LiveOutRegInfo[SlotNo];
4754
4755          unsigned RegSize = RegisterVT.getSizeInBits();
4756          unsigned NumSignBits = LOI.NumSignBits;
4757          unsigned NumZeroBits = LOI.KnownZero.countLeadingOnes();
4758
4759          // FIXME: We capture more information than the dag can represent.  For
4760          // now, just use the tightest assertzext/assertsext possible.
4761          bool isSExt = true;
4762          EVT FromVT(MVT::Other);
4763          if (NumSignBits == RegSize)
4764            isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
4765          else if (NumZeroBits >= RegSize-1)
4766            isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
4767          else if (NumSignBits > RegSize-8)
4768            isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
4769          else if (NumZeroBits >= RegSize-8)
4770            isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
4771          else if (NumSignBits > RegSize-16)
4772            isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
4773          else if (NumZeroBits >= RegSize-16)
4774            isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
4775          else if (NumSignBits > RegSize-32)
4776            isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
4777          else if (NumZeroBits >= RegSize-32)
4778            isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
4779
4780          if (FromVT != MVT::Other)
4781            P = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
4782                            RegisterVT, P, DAG.getValueType(FromVT));
4783        }
4784      }
4785
4786      Parts[i] = P;
4787    }
4788
4789    Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
4790                                     NumRegs, RegisterVT, ValueVT);
4791    Part += NumRegs;
4792    Parts.clear();
4793  }
4794
4795  return DAG.getNode(ISD::MERGE_VALUES, dl,
4796                     DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
4797                     &Values[0], ValueVTs.size());
4798}
4799
4800/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
4801/// specified value into the registers specified by this object.  This uses
4802/// Chain/Flag as the input and updates them for the output Chain/Flag.
4803/// If the Flag pointer is NULL, no flag is used.
4804void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
4805                                 SDValue &Chain, SDValue *Flag) const {
4806  // Get the list of the values's legal parts.
4807  unsigned NumRegs = Regs.size();
4808  SmallVector<SDValue, 8> Parts(NumRegs);
4809  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
4810    EVT ValueVT = ValueVTs[Value];
4811    unsigned NumParts = TLI->getNumRegisters(*DAG.getContext(), ValueVT);
4812    EVT RegisterVT = RegVTs[Value];
4813
4814    getCopyToParts(DAG, dl,
4815                   Val.getValue(Val.getResNo() + Value),
4816                   &Parts[Part], NumParts, RegisterVT);
4817    Part += NumParts;
4818  }
4819
4820  // Copy the parts into the registers.
4821  SmallVector<SDValue, 8> Chains(NumRegs);
4822  for (unsigned i = 0; i != NumRegs; ++i) {
4823    SDValue Part;
4824    if (Flag == 0) {
4825      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
4826    } else {
4827      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
4828      *Flag = Part.getValue(1);
4829    }
4830
4831    Chains[i] = Part.getValue(0);
4832  }
4833
4834  if (NumRegs == 1 || Flag)
4835    // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
4836    // flagged to it. That is the CopyToReg nodes and the user are considered
4837    // a single scheduling unit. If we create a TokenFactor and return it as
4838    // chain, then the TokenFactor is both a predecessor (operand) of the
4839    // user as well as a successor (the TF operands are flagged to the user).
4840    // c1, f1 = CopyToReg
4841    // c2, f2 = CopyToReg
4842    // c3     = TokenFactor c1, c2
4843    // ...
4844    //        = op c3, ..., f2
4845    Chain = Chains[NumRegs-1];
4846  else
4847    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
4848}
4849
4850/// AddInlineAsmOperands - Add this value to the specified inlineasm node
4851/// operand list.  This adds the code marker and includes the number of
4852/// values added into it.
4853void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
4854                                        unsigned MatchingIdx,
4855                                        SelectionDAG &DAG,
4856                                        std::vector<SDValue> &Ops) const {
4857  unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
4858  if (HasMatching)
4859    Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
4860  SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
4861  Ops.push_back(Res);
4862
4863  for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
4864    unsigned NumRegs = TLI->getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
4865    EVT RegisterVT = RegVTs[Value];
4866    for (unsigned i = 0; i != NumRegs; ++i) {
4867      assert(Reg < Regs.size() && "Mismatch in # registers expected");
4868      Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
4869    }
4870  }
4871}
4872
4873/// isAllocatableRegister - If the specified register is safe to allocate,
4874/// i.e. it isn't a stack pointer or some other special register, return the
4875/// register class for the register.  Otherwise, return null.
4876static const TargetRegisterClass *
4877isAllocatableRegister(unsigned Reg, MachineFunction &MF,
4878                      const TargetLowering &TLI,
4879                      const TargetRegisterInfo *TRI) {
4880  EVT FoundVT = MVT::Other;
4881  const TargetRegisterClass *FoundRC = 0;
4882  for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(),
4883       E = TRI->regclass_end(); RCI != E; ++RCI) {
4884    EVT ThisVT = MVT::Other;
4885
4886    const TargetRegisterClass *RC = *RCI;
4887    // If none of the value types for this register class are valid, we
4888    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
4889    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
4890         I != E; ++I) {
4891      if (TLI.isTypeLegal(*I)) {
4892        // If we have already found this register in a different register class,
4893        // choose the one with the largest VT specified.  For example, on
4894        // PowerPC, we favor f64 register classes over f32.
4895        if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) {
4896          ThisVT = *I;
4897          break;
4898        }
4899      }
4900    }
4901
4902    if (ThisVT == MVT::Other) continue;
4903
4904    // NOTE: This isn't ideal.  In particular, this might allocate the
4905    // frame pointer in functions that need it (due to them not being taken
4906    // out of allocation, because a variable sized allocation hasn't been seen
4907    // yet).  This is a slight code pessimization, but should still work.
4908    for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
4909         E = RC->allocation_order_end(MF); I != E; ++I)
4910      if (*I == Reg) {
4911        // We found a matching register class.  Keep looking at others in case
4912        // we find one with larger registers that this physreg is also in.
4913        FoundRC = RC;
4914        FoundVT = ThisVT;
4915        break;
4916      }
4917  }
4918  return FoundRC;
4919}
4920
4921
4922namespace llvm {
4923/// AsmOperandInfo - This contains information for each constraint that we are
4924/// lowering.
4925class VISIBILITY_HIDDEN SDISelAsmOperandInfo :
4926    public TargetLowering::AsmOperandInfo {
4927public:
4928  /// CallOperand - If this is the result output operand or a clobber
4929  /// this is null, otherwise it is the incoming operand to the CallInst.
4930  /// This gets modified as the asm is processed.
4931  SDValue CallOperand;
4932
4933  /// AssignedRegs - If this is a register or register class operand, this
4934  /// contains the set of register corresponding to the operand.
4935  RegsForValue AssignedRegs;
4936
4937  explicit SDISelAsmOperandInfo(const InlineAsm::ConstraintInfo &info)
4938    : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
4939  }
4940
4941  /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
4942  /// busy in OutputRegs/InputRegs.
4943  void MarkAllocatedRegs(bool isOutReg, bool isInReg,
4944                         std::set<unsigned> &OutputRegs,
4945                         std::set<unsigned> &InputRegs,
4946                         const TargetRegisterInfo &TRI) const {
4947    if (isOutReg) {
4948      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
4949        MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
4950    }
4951    if (isInReg) {
4952      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
4953        MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
4954    }
4955  }
4956
4957  /// getCallOperandValEVT - Return the EVT of the Value* that this operand
4958  /// corresponds to.  If there is no Value* for this operand, it returns
4959  /// MVT::Other.
4960  EVT getCallOperandValEVT(LLVMContext &Context,
4961                           const TargetLowering &TLI,
4962                           const TargetData *TD) const {
4963    if (CallOperandVal == 0) return MVT::Other;
4964
4965    if (isa<BasicBlock>(CallOperandVal))
4966      return TLI.getPointerTy();
4967
4968    const llvm::Type *OpTy = CallOperandVal->getType();
4969
4970    // If this is an indirect operand, the operand is a pointer to the
4971    // accessed type.
4972    if (isIndirect) {
4973      const llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
4974      if (!PtrTy)
4975        report_fatal_error("Indirect operand for inline asm not a pointer!");
4976      OpTy = PtrTy->getElementType();
4977    }
4978
4979    // If OpTy is not a single value, it may be a struct/union that we
4980    // can tile with integers.
4981    if (!OpTy->isSingleValueType() && OpTy->isSized()) {
4982      unsigned BitSize = TD->getTypeSizeInBits(OpTy);
4983      switch (BitSize) {
4984      default: break;
4985      case 1:
4986      case 8:
4987      case 16:
4988      case 32:
4989      case 64:
4990      case 128:
4991        OpTy = IntegerType::get(Context, BitSize);
4992        break;
4993      }
4994    }
4995
4996    return TLI.getValueType(OpTy, true);
4997  }
4998
4999private:
5000  /// MarkRegAndAliases - Mark the specified register and all aliases in the
5001  /// specified set.
5002  static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
5003                                const TargetRegisterInfo &TRI) {
5004    assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
5005    Regs.insert(Reg);
5006    if (const unsigned *Aliases = TRI.getAliasSet(Reg))
5007      for (; *Aliases; ++Aliases)
5008        Regs.insert(*Aliases);
5009  }
5010};
5011} // end llvm namespace.
5012
5013
5014/// GetRegistersForValue - Assign registers (virtual or physical) for the
5015/// specified operand.  We prefer to assign virtual registers, to allow the
5016/// register allocator to handle the assignment process.  However, if the asm
5017/// uses features that we can't model on machineinstrs, we have SDISel do the
5018/// allocation.  This produces generally horrible, but correct, code.
5019///
5020///   OpInfo describes the operand.
5021///   Input and OutputRegs are the set of already allocated physical registers.
5022///
5023void SelectionDAGBuilder::
5024GetRegistersForValue(SDISelAsmOperandInfo &OpInfo,
5025                     std::set<unsigned> &OutputRegs,
5026                     std::set<unsigned> &InputRegs) {
5027  LLVMContext &Context = FuncInfo.Fn->getContext();
5028
5029  // Compute whether this value requires an input register, an output register,
5030  // or both.
5031  bool isOutReg = false;
5032  bool isInReg = false;
5033  switch (OpInfo.Type) {
5034  case InlineAsm::isOutput:
5035    isOutReg = true;
5036
5037    // If there is an input constraint that matches this, we need to reserve
5038    // the input register so no other inputs allocate to it.
5039    isInReg = OpInfo.hasMatchingInput();
5040    break;
5041  case InlineAsm::isInput:
5042    isInReg = true;
5043    isOutReg = false;
5044    break;
5045  case InlineAsm::isClobber:
5046    isOutReg = true;
5047    isInReg = true;
5048    break;
5049  }
5050
5051
5052  MachineFunction &MF = DAG.getMachineFunction();
5053  SmallVector<unsigned, 4> Regs;
5054
5055  // If this is a constraint for a single physreg, or a constraint for a
5056  // register class, find it.
5057  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
5058    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5059                                     OpInfo.ConstraintVT);
5060
5061  unsigned NumRegs = 1;
5062  if (OpInfo.ConstraintVT != MVT::Other) {
5063    // If this is a FP input in an integer register (or visa versa) insert a bit
5064    // cast of the input value.  More generally, handle any case where the input
5065    // value disagrees with the register class we plan to stick this in.
5066    if (OpInfo.Type == InlineAsm::isInput &&
5067        PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
5068      // Try to convert to the first EVT that the reg class contains.  If the
5069      // types are identical size, use a bitcast to convert (e.g. two differing
5070      // vector types).
5071      EVT RegVT = *PhysReg.second->vt_begin();
5072      if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
5073        OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
5074                                         RegVT, OpInfo.CallOperand);
5075        OpInfo.ConstraintVT = RegVT;
5076      } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
5077        // If the input is a FP value and we want it in FP registers, do a
5078        // bitcast to the corresponding integer type.  This turns an f64 value
5079        // into i64, which can be passed with two i32 values on a 32-bit
5080        // machine.
5081        RegVT = EVT::getIntegerVT(Context,
5082                                  OpInfo.ConstraintVT.getSizeInBits());
5083        OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
5084                                         RegVT, OpInfo.CallOperand);
5085        OpInfo.ConstraintVT = RegVT;
5086      }
5087    }
5088
5089    NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
5090  }
5091
5092  EVT RegVT;
5093  EVT ValueVT = OpInfo.ConstraintVT;
5094
5095  // If this is a constraint for a specific physical register, like {r17},
5096  // assign it now.
5097  if (unsigned AssignedReg = PhysReg.first) {
5098    const TargetRegisterClass *RC = PhysReg.second;
5099    if (OpInfo.ConstraintVT == MVT::Other)
5100      ValueVT = *RC->vt_begin();
5101
5102    // Get the actual register value type.  This is important, because the user
5103    // may have asked for (e.g.) the AX register in i32 type.  We need to
5104    // remember that AX is actually i16 to get the right extension.
5105    RegVT = *RC->vt_begin();
5106
5107    // This is a explicit reference to a physical register.
5108    Regs.push_back(AssignedReg);
5109
5110    // If this is an expanded reference, add the rest of the regs to Regs.
5111    if (NumRegs != 1) {
5112      TargetRegisterClass::iterator I = RC->begin();
5113      for (; *I != AssignedReg; ++I)
5114        assert(I != RC->end() && "Didn't find reg!");
5115
5116      // Already added the first reg.
5117      --NumRegs; ++I;
5118      for (; NumRegs; --NumRegs, ++I) {
5119        assert(I != RC->end() && "Ran out of registers to allocate!");
5120        Regs.push_back(*I);
5121      }
5122    }
5123
5124    OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT);
5125    const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5126    OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5127    return;
5128  }
5129
5130  // Otherwise, if this was a reference to an LLVM register class, create vregs
5131  // for this reference.
5132  if (const TargetRegisterClass *RC = PhysReg.second) {
5133    RegVT = *RC->vt_begin();
5134    if (OpInfo.ConstraintVT == MVT::Other)
5135      ValueVT = RegVT;
5136
5137    // Create the appropriate number of virtual registers.
5138    MachineRegisterInfo &RegInfo = MF.getRegInfo();
5139    for (; NumRegs; --NumRegs)
5140      Regs.push_back(RegInfo.createVirtualRegister(RC));
5141
5142    OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT);
5143    return;
5144  }
5145
5146  // This is a reference to a register class that doesn't directly correspond
5147  // to an LLVM register class.  Allocate NumRegs consecutive, available,
5148  // registers from the class.
5149  std::vector<unsigned> RegClassRegs
5150    = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
5151                                            OpInfo.ConstraintVT);
5152
5153  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5154  unsigned NumAllocated = 0;
5155  for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
5156    unsigned Reg = RegClassRegs[i];
5157    // See if this register is available.
5158    if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
5159        (isInReg  && InputRegs.count(Reg))) {    // Already used.
5160      // Make sure we find consecutive registers.
5161      NumAllocated = 0;
5162      continue;
5163    }
5164
5165    // Check to see if this register is allocatable (i.e. don't give out the
5166    // stack pointer).
5167    const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, TRI);
5168    if (!RC) {        // Couldn't allocate this register.
5169      // Reset NumAllocated to make sure we return consecutive registers.
5170      NumAllocated = 0;
5171      continue;
5172    }
5173
5174    // Okay, this register is good, we can use it.
5175    ++NumAllocated;
5176
5177    // If we allocated enough consecutive registers, succeed.
5178    if (NumAllocated == NumRegs) {
5179      unsigned RegStart = (i-NumAllocated)+1;
5180      unsigned RegEnd   = i+1;
5181      // Mark all of the allocated registers used.
5182      for (unsigned i = RegStart; i != RegEnd; ++i)
5183        Regs.push_back(RegClassRegs[i]);
5184
5185      OpInfo.AssignedRegs = RegsForValue(TLI, Regs, *RC->vt_begin(),
5186                                         OpInfo.ConstraintVT);
5187      OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5188      return;
5189    }
5190  }
5191
5192  // Otherwise, we couldn't allocate enough registers for this.
5193}
5194
5195/// visitInlineAsm - Handle a call to an InlineAsm object.
5196///
5197void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
5198  const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
5199
5200  /// ConstraintOperands - Information about all of the constraints.
5201  std::vector<SDISelAsmOperandInfo> ConstraintOperands;
5202
5203  std::set<unsigned> OutputRegs, InputRegs;
5204
5205  // Do a prepass over the constraints, canonicalizing them, and building up the
5206  // ConstraintOperands list.
5207  std::vector<InlineAsm::ConstraintInfo>
5208    ConstraintInfos = IA->ParseConstraints();
5209
5210  bool hasMemory = hasInlineAsmMemConstraint(ConstraintInfos, TLI);
5211
5212  SDValue Chain, Flag;
5213
5214  // We won't need to flush pending loads if this asm doesn't touch
5215  // memory and is nonvolatile.
5216  if (hasMemory || IA->hasSideEffects())
5217    Chain = getRoot();
5218  else
5219    Chain = DAG.getRoot();
5220
5221  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
5222  unsigned ResNo = 0;   // ResNo - The result number of the next output.
5223  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
5224    ConstraintOperands.push_back(SDISelAsmOperandInfo(ConstraintInfos[i]));
5225    SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
5226
5227    EVT OpVT = MVT::Other;
5228
5229    // Compute the value type for each operand.
5230    switch (OpInfo.Type) {
5231    case InlineAsm::isOutput:
5232      // Indirect outputs just consume an argument.
5233      if (OpInfo.isIndirect) {
5234        OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5235        break;
5236      }
5237
5238      // The return value of the call is this value.  As such, there is no
5239      // corresponding argument.
5240      assert(!CS.getType()->isVoidTy() &&
5241             "Bad inline asm!");
5242      if (const StructType *STy = dyn_cast<StructType>(CS.getType())) {
5243        OpVT = TLI.getValueType(STy->getElementType(ResNo));
5244      } else {
5245        assert(ResNo == 0 && "Asm only has one result!");
5246        OpVT = TLI.getValueType(CS.getType());
5247      }
5248      ++ResNo;
5249      break;
5250    case InlineAsm::isInput:
5251      OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5252      break;
5253    case InlineAsm::isClobber:
5254      // Nothing to do.
5255      break;
5256    }
5257
5258    // If this is an input or an indirect output, process the call argument.
5259    // BasicBlocks are labels, currently appearing only in asm's.
5260    if (OpInfo.CallOperandVal) {
5261      // Strip bitcasts, if any.  This mostly comes up for functions.
5262      OpInfo.CallOperandVal = OpInfo.CallOperandVal->stripPointerCasts();
5263
5264      if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
5265        OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
5266      } else {
5267        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
5268      }
5269
5270      OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD);
5271    }
5272
5273    OpInfo.ConstraintVT = OpVT;
5274  }
5275
5276  // Second pass over the constraints: compute which constraint option to use
5277  // and assign registers to constraints that want a specific physreg.
5278  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
5279    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5280
5281    // If this is an output operand with a matching input operand, look up the
5282    // matching input. If their types mismatch, e.g. one is an integer, the
5283    // other is floating point, or their sizes are different, flag it as an
5284    // error.
5285    if (OpInfo.hasMatchingInput()) {
5286      SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5287
5288      if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5289        if ((OpInfo.ConstraintVT.isInteger() !=
5290             Input.ConstraintVT.isInteger()) ||
5291            (OpInfo.ConstraintVT.getSizeInBits() !=
5292             Input.ConstraintVT.getSizeInBits())) {
5293          report_fatal_error("Unsupported asm: input constraint"
5294                             " with a matching output constraint of"
5295                             " incompatible type!");
5296        }
5297        Input.ConstraintVT = OpInfo.ConstraintVT;
5298      }
5299    }
5300
5301    // Compute the constraint code and ConstraintType to use.
5302    TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, hasMemory, &DAG);
5303
5304    // If this is a memory input, and if the operand is not indirect, do what we
5305    // need to to provide an address for the memory input.
5306    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5307        !OpInfo.isIndirect) {
5308      assert(OpInfo.Type == InlineAsm::isInput &&
5309             "Can only indirectify direct input operands!");
5310
5311      // Memory operands really want the address of the value.  If we don't have
5312      // an indirect input, put it in the constpool if we can, otherwise spill
5313      // it to a stack slot.
5314
5315      // If the operand is a float, integer, or vector constant, spill to a
5316      // constant pool entry to get its address.
5317      const Value *OpVal = OpInfo.CallOperandVal;
5318      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
5319          isa<ConstantVector>(OpVal)) {
5320        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
5321                                                 TLI.getPointerTy());
5322      } else {
5323        // Otherwise, create a stack slot and emit a store to it before the
5324        // asm.
5325        const Type *Ty = OpVal->getType();
5326        uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
5327        unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
5328        MachineFunction &MF = DAG.getMachineFunction();
5329        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5330        SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
5331        Chain = DAG.getStore(Chain, getCurDebugLoc(),
5332                             OpInfo.CallOperand, StackSlot, NULL, 0,
5333                             false, false, 0);
5334        OpInfo.CallOperand = StackSlot;
5335      }
5336
5337      // There is no longer a Value* corresponding to this operand.
5338      OpInfo.CallOperandVal = 0;
5339
5340      // It is now an indirect operand.
5341      OpInfo.isIndirect = true;
5342    }
5343
5344    // If this constraint is for a specific register, allocate it before
5345    // anything else.
5346    if (OpInfo.ConstraintType == TargetLowering::C_Register)
5347      GetRegistersForValue(OpInfo, OutputRegs, InputRegs);
5348  }
5349
5350  ConstraintInfos.clear();
5351
5352  // Second pass - Loop over all of the operands, assigning virtual or physregs
5353  // to register class operands.
5354  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5355    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5356
5357    // C_Register operands have already been allocated, Other/Memory don't need
5358    // to be.
5359    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
5360      GetRegistersForValue(OpInfo, OutputRegs, InputRegs);
5361  }
5362
5363  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
5364  std::vector<SDValue> AsmNodeOperands;
5365  AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
5366  AsmNodeOperands.push_back(
5367          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
5368                                      TLI.getPointerTy()));
5369
5370  // If we have a !srcloc metadata node associated with it, we want to attach
5371  // this to the ultimately generated inline asm machineinstr.  To do this, we
5372  // pass in the third operand as this (potentially null) inline asm MDNode.
5373  const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
5374  AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
5375
5376  // Loop over all of the inputs, copying the operand values into the
5377  // appropriate registers and processing the output regs.
5378  RegsForValue RetValRegs;
5379
5380  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
5381  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
5382
5383  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5384    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5385
5386    switch (OpInfo.Type) {
5387    case InlineAsm::isOutput: {
5388      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
5389          OpInfo.ConstraintType != TargetLowering::C_Register) {
5390        // Memory output, or 'other' output (e.g. 'X' constraint).
5391        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
5392
5393        // Add information to the INLINEASM node to know about this output.
5394        unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
5395        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
5396                                                        TLI.getPointerTy()));
5397        AsmNodeOperands.push_back(OpInfo.CallOperand);
5398        break;
5399      }
5400
5401      // Otherwise, this is a register or register class output.
5402
5403      // Copy the output from the appropriate register.  Find a register that
5404      // we can use.
5405      if (OpInfo.AssignedRegs.Regs.empty())
5406        report_fatal_error("Couldn't allocate output reg for constraint '" +
5407                           Twine(OpInfo.ConstraintCode) + "'!");
5408
5409      // If this is an indirect operand, store through the pointer after the
5410      // asm.
5411      if (OpInfo.isIndirect) {
5412        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
5413                                                      OpInfo.CallOperandVal));
5414      } else {
5415        // This is the result value of the call.
5416        assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
5417        // Concatenate this output onto the outputs list.
5418        RetValRegs.append(OpInfo.AssignedRegs);
5419      }
5420
5421      // Add information to the INLINEASM node to know that this register is
5422      // set.
5423      OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
5424                                           InlineAsm::Kind_RegDefEarlyClobber :
5425                                               InlineAsm::Kind_RegDef,
5426                                               false,
5427                                               0,
5428                                               DAG,
5429                                               AsmNodeOperands);
5430      break;
5431    }
5432    case InlineAsm::isInput: {
5433      SDValue InOperandVal = OpInfo.CallOperand;
5434
5435      if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
5436        // If this is required to match an output register we have already set,
5437        // just use its register.
5438        unsigned OperandNo = OpInfo.getMatchedOperand();
5439
5440        // Scan until we find the definition we already emitted of this operand.
5441        // When we find it, create a RegsForValue operand.
5442        unsigned CurOp = InlineAsm::Op_FirstOperand;
5443        for (; OperandNo; --OperandNo) {
5444          // Advance to the next operand.
5445          unsigned OpFlag =
5446            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5447          assert((InlineAsm::isRegDefKind(OpFlag) ||
5448                  InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
5449                  InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
5450          CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
5451        }
5452
5453        unsigned OpFlag =
5454          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5455        if (InlineAsm::isRegDefKind(OpFlag) ||
5456            InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
5457          // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
5458          if (OpInfo.isIndirect) {
5459            // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
5460            LLVMContext &Ctx = *DAG.getContext();
5461            Ctx.emitError(CS.getInstruction(),  "inline asm not supported yet:"
5462                          " don't know how to handle tied "
5463                          "indirect register inputs");
5464          }
5465
5466          RegsForValue MatchedRegs;
5467          MatchedRegs.TLI = &TLI;
5468          MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
5469          EVT RegVT = AsmNodeOperands[CurOp+1].getValueType();
5470          MatchedRegs.RegVTs.push_back(RegVT);
5471          MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
5472          for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
5473               i != e; ++i)
5474            MatchedRegs.Regs.push_back
5475              (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)));
5476
5477          // Use the produced MatchedRegs object to
5478          MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
5479                                    Chain, &Flag);
5480          MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
5481                                           true, OpInfo.getMatchedOperand(),
5482                                           DAG, AsmNodeOperands);
5483          break;
5484        }
5485
5486        assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
5487        assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
5488               "Unexpected number of operands");
5489        // Add information to the INLINEASM node to know about this input.
5490        // See InlineAsm.h isUseOperandTiedToDef.
5491        OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
5492                                                    OpInfo.getMatchedOperand());
5493        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
5494                                                        TLI.getPointerTy()));
5495        AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
5496        break;
5497      }
5498
5499      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
5500        assert(!OpInfo.isIndirect &&
5501               "Don't know how to handle indirect other inputs yet!");
5502
5503        std::vector<SDValue> Ops;
5504        TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0],
5505                                         hasMemory, Ops, DAG);
5506        if (Ops.empty())
5507          report_fatal_error("Invalid operand for inline asm constraint '" +
5508                             Twine(OpInfo.ConstraintCode) + "'!");
5509
5510        // Add information to the INLINEASM node to know about this input.
5511        unsigned ResOpType =
5512          InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
5513        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5514                                                        TLI.getPointerTy()));
5515        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
5516        break;
5517      }
5518
5519      if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
5520        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
5521        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
5522               "Memory operands expect pointer values");
5523
5524        // Add information to the INLINEASM node to know about this input.
5525        unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
5526        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5527                                                        TLI.getPointerTy()));
5528        AsmNodeOperands.push_back(InOperandVal);
5529        break;
5530      }
5531
5532      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
5533              OpInfo.ConstraintType == TargetLowering::C_Register) &&
5534             "Unknown constraint type!");
5535      assert(!OpInfo.isIndirect &&
5536             "Don't know how to handle indirect register inputs yet!");
5537
5538      // Copy the input into the appropriate registers.
5539      if (OpInfo.AssignedRegs.Regs.empty() ||
5540          !OpInfo.AssignedRegs.areValueTypesLegal())
5541        report_fatal_error("Couldn't allocate input reg for constraint '" +
5542                           Twine(OpInfo.ConstraintCode) + "'!");
5543
5544      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
5545                                        Chain, &Flag);
5546
5547      OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
5548                                               DAG, AsmNodeOperands);
5549      break;
5550    }
5551    case InlineAsm::isClobber: {
5552      // Add the clobbered value to the operand list, so that the register
5553      // allocator is aware that the physreg got clobbered.
5554      if (!OpInfo.AssignedRegs.Regs.empty())
5555        OpInfo.AssignedRegs.AddInlineAsmOperands(
5556                                            InlineAsm::Kind_RegDefEarlyClobber,
5557                                                 false, 0, DAG,
5558                                                 AsmNodeOperands);
5559      break;
5560    }
5561    }
5562  }
5563
5564  // Finish up input operands.  Set the input chain and add the flag last.
5565  AsmNodeOperands[0] = Chain;
5566  if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
5567
5568  Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(),
5569                      DAG.getVTList(MVT::Other, MVT::Flag),
5570                      &AsmNodeOperands[0], AsmNodeOperands.size());
5571  Flag = Chain.getValue(1);
5572
5573  // If this asm returns a register value, copy the result from that register
5574  // and set it as the value of the call.
5575  if (!RetValRegs.Regs.empty()) {
5576    SDValue Val = RetValRegs.getCopyFromRegs(DAG, getCurDebugLoc(),
5577                                             Chain, &Flag);
5578
5579    // FIXME: Why don't we do this for inline asms with MRVs?
5580    if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
5581      EVT ResultType = TLI.getValueType(CS.getType());
5582
5583      // If any of the results of the inline asm is a vector, it may have the
5584      // wrong width/num elts.  This can happen for register classes that can
5585      // contain multiple different value types.  The preg or vreg allocated may
5586      // not have the same VT as was expected.  Convert it to the right type
5587      // with bit_convert.
5588      if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
5589        Val = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
5590                          ResultType, Val);
5591
5592      } else if (ResultType != Val.getValueType() &&
5593                 ResultType.isInteger() && Val.getValueType().isInteger()) {
5594        // If a result value was tied to an input value, the computed result may
5595        // have a wider width than the expected result.  Extract the relevant
5596        // portion.
5597        Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val);
5598      }
5599
5600      assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
5601    }
5602
5603    setValue(CS.getInstruction(), Val);
5604    // Don't need to use this as a chain in this case.
5605    if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
5606      return;
5607  }
5608
5609  std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
5610
5611  // Process indirect outputs, first output all of the flagged copies out of
5612  // physregs.
5613  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
5614    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
5615    const Value *Ptr = IndirectStoresToEmit[i].second;
5616    SDValue OutVal = OutRegs.getCopyFromRegs(DAG, getCurDebugLoc(),
5617                                             Chain, &Flag);
5618    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
5619  }
5620
5621  // Emit the non-flagged stores from the physregs.
5622  SmallVector<SDValue, 8> OutChains;
5623  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
5624    SDValue Val = DAG.getStore(Chain, getCurDebugLoc(),
5625                               StoresToEmit[i].first,
5626                               getValue(StoresToEmit[i].second),
5627                               StoresToEmit[i].second, 0,
5628                               false, false, 0);
5629    OutChains.push_back(Val);
5630  }
5631
5632  if (!OutChains.empty())
5633    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
5634                        &OutChains[0], OutChains.size());
5635
5636  DAG.setRoot(Chain);
5637}
5638
5639void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
5640  DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(),
5641                          MVT::Other, getRoot(),
5642                          getValue(I.getOperand(1)),
5643                          DAG.getSrcValue(I.getOperand(1))));
5644}
5645
5646void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
5647  SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(),
5648                           getRoot(), getValue(I.getOperand(0)),
5649                           DAG.getSrcValue(I.getOperand(0)));
5650  setValue(&I, V);
5651  DAG.setRoot(V.getValue(1));
5652}
5653
5654void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
5655  DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(),
5656                          MVT::Other, getRoot(),
5657                          getValue(I.getOperand(1)),
5658                          DAG.getSrcValue(I.getOperand(1))));
5659}
5660
5661void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
5662  DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(),
5663                          MVT::Other, getRoot(),
5664                          getValue(I.getOperand(1)),
5665                          getValue(I.getOperand(2)),
5666                          DAG.getSrcValue(I.getOperand(1)),
5667                          DAG.getSrcValue(I.getOperand(2))));
5668}
5669
5670/// TargetLowering::LowerCallTo - This is the default LowerCallTo
5671/// implementation, which just calls LowerCall.
5672/// FIXME: When all targets are
5673/// migrated to using LowerCall, this hook should be integrated into SDISel.
5674std::pair<SDValue, SDValue>
5675TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy,
5676                            bool RetSExt, bool RetZExt, bool isVarArg,
5677                            bool isInreg, unsigned NumFixedArgs,
5678                            CallingConv::ID CallConv, bool isTailCall,
5679                            bool isReturnValueUsed,
5680                            SDValue Callee,
5681                            ArgListTy &Args, SelectionDAG &DAG,
5682                            DebugLoc dl) const {
5683  // Handle all of the outgoing arguments.
5684  SmallVector<ISD::OutputArg, 32> Outs;
5685  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
5686    SmallVector<EVT, 4> ValueVTs;
5687    ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
5688    for (unsigned Value = 0, NumValues = ValueVTs.size();
5689         Value != NumValues; ++Value) {
5690      EVT VT = ValueVTs[Value];
5691      const Type *ArgTy = VT.getTypeForEVT(RetTy->getContext());
5692      SDValue Op = SDValue(Args[i].Node.getNode(),
5693                           Args[i].Node.getResNo() + Value);
5694      ISD::ArgFlagsTy Flags;
5695      unsigned OriginalAlignment =
5696        getTargetData()->getABITypeAlignment(ArgTy);
5697
5698      if (Args[i].isZExt)
5699        Flags.setZExt();
5700      if (Args[i].isSExt)
5701        Flags.setSExt();
5702      if (Args[i].isInReg)
5703        Flags.setInReg();
5704      if (Args[i].isSRet)
5705        Flags.setSRet();
5706      if (Args[i].isByVal) {
5707        Flags.setByVal();
5708        const PointerType *Ty = cast<PointerType>(Args[i].Ty);
5709        const Type *ElementTy = Ty->getElementType();
5710        unsigned FrameAlign = getByValTypeAlignment(ElementTy);
5711        unsigned FrameSize  = getTargetData()->getTypeAllocSize(ElementTy);
5712        // For ByVal, alignment should come from FE.  BE will guess if this
5713        // info is not there but there are cases it cannot get right.
5714        if (Args[i].Alignment)
5715          FrameAlign = Args[i].Alignment;
5716        Flags.setByValAlign(FrameAlign);
5717        Flags.setByValSize(FrameSize);
5718      }
5719      if (Args[i].isNest)
5720        Flags.setNest();
5721      Flags.setOrigAlign(OriginalAlignment);
5722
5723      EVT PartVT = getRegisterType(RetTy->getContext(), VT);
5724      unsigned NumParts = getNumRegisters(RetTy->getContext(), VT);
5725      SmallVector<SDValue, 4> Parts(NumParts);
5726      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
5727
5728      if (Args[i].isSExt)
5729        ExtendKind = ISD::SIGN_EXTEND;
5730      else if (Args[i].isZExt)
5731        ExtendKind = ISD::ZERO_EXTEND;
5732
5733      getCopyToParts(DAG, dl, Op, &Parts[0], NumParts,
5734                     PartVT, ExtendKind);
5735
5736      for (unsigned j = 0; j != NumParts; ++j) {
5737        // if it isn't first piece, alignment must be 1
5738        ISD::OutputArg MyFlags(Flags, Parts[j], i < NumFixedArgs);
5739        if (NumParts > 1 && j == 0)
5740          MyFlags.Flags.setSplit();
5741        else if (j != 0)
5742          MyFlags.Flags.setOrigAlign(1);
5743
5744        Outs.push_back(MyFlags);
5745      }
5746    }
5747  }
5748
5749  // Handle the incoming return values from the call.
5750  SmallVector<ISD::InputArg, 32> Ins;
5751  SmallVector<EVT, 4> RetTys;
5752  ComputeValueVTs(*this, RetTy, RetTys);
5753  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
5754    EVT VT = RetTys[I];
5755    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
5756    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
5757    for (unsigned i = 0; i != NumRegs; ++i) {
5758      ISD::InputArg MyFlags;
5759      MyFlags.VT = RegisterVT;
5760      MyFlags.Used = isReturnValueUsed;
5761      if (RetSExt)
5762        MyFlags.Flags.setSExt();
5763      if (RetZExt)
5764        MyFlags.Flags.setZExt();
5765      if (isInreg)
5766        MyFlags.Flags.setInReg();
5767      Ins.push_back(MyFlags);
5768    }
5769  }
5770
5771  SmallVector<SDValue, 4> InVals;
5772  Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall,
5773                    Outs, Ins, dl, DAG, InVals);
5774
5775  // Verify that the target's LowerCall behaved as expected.
5776  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
5777         "LowerCall didn't return a valid chain!");
5778  assert((!isTailCall || InVals.empty()) &&
5779         "LowerCall emitted a return value for a tail call!");
5780  assert((isTailCall || InVals.size() == Ins.size()) &&
5781         "LowerCall didn't emit the correct number of values!");
5782
5783  // For a tail call, the return value is merely live-out and there aren't
5784  // any nodes in the DAG representing it. Return a special value to
5785  // indicate that a tail call has been emitted and no more Instructions
5786  // should be processed in the current block.
5787  if (isTailCall) {
5788    DAG.setRoot(Chain);
5789    return std::make_pair(SDValue(), SDValue());
5790  }
5791
5792  DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
5793          assert(InVals[i].getNode() &&
5794                 "LowerCall emitted a null value!");
5795          assert(Ins[i].VT == InVals[i].getValueType() &&
5796                 "LowerCall emitted a value with the wrong type!");
5797        });
5798
5799  // Collect the legal value parts into potentially illegal values
5800  // that correspond to the original function's return values.
5801  ISD::NodeType AssertOp = ISD::DELETED_NODE;
5802  if (RetSExt)
5803    AssertOp = ISD::AssertSext;
5804  else if (RetZExt)
5805    AssertOp = ISD::AssertZext;
5806  SmallVector<SDValue, 4> ReturnValues;
5807  unsigned CurReg = 0;
5808  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
5809    EVT VT = RetTys[I];
5810    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
5811    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
5812
5813    ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg],
5814                                            NumRegs, RegisterVT, VT,
5815                                            AssertOp));
5816    CurReg += NumRegs;
5817  }
5818
5819  // For a function returning void, there is no return value. We can't create
5820  // such a node, so we just return a null return value in that case. In
5821  // that case, nothing will actualy look at the value.
5822  if (ReturnValues.empty())
5823    return std::make_pair(SDValue(), Chain);
5824
5825  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
5826                            DAG.getVTList(&RetTys[0], RetTys.size()),
5827                            &ReturnValues[0], ReturnValues.size());
5828  return std::make_pair(Res, Chain);
5829}
5830
5831void TargetLowering::LowerOperationWrapper(SDNode *N,
5832                                           SmallVectorImpl<SDValue> &Results,
5833                                           SelectionDAG &DAG) const {
5834  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
5835  if (Res.getNode())
5836    Results.push_back(Res);
5837}
5838
5839SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
5840  llvm_unreachable("LowerOperation not implemented for this target!");
5841  return SDValue();
5842}
5843
5844void
5845SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
5846  SDValue Op = getValue(V);
5847  assert((Op.getOpcode() != ISD::CopyFromReg ||
5848          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
5849         "Copy from a reg to the same reg!");
5850  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
5851
5852  RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
5853  SDValue Chain = DAG.getEntryNode();
5854  RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0);
5855  PendingExports.push_back(Chain);
5856}
5857
5858#include "llvm/CodeGen/SelectionDAGISel.h"
5859
5860void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) {
5861  // If this is the entry block, emit arguments.
5862  const Function &F = *LLVMBB->getParent();
5863  SelectionDAG &DAG = SDB->DAG;
5864  SDValue OldRoot = DAG.getRoot();
5865  DebugLoc dl = SDB->getCurDebugLoc();
5866  const TargetData *TD = TLI.getTargetData();
5867  SmallVector<ISD::InputArg, 16> Ins;
5868
5869  // Check whether the function can return without sret-demotion.
5870  SmallVector<EVT, 4> OutVTs;
5871  SmallVector<ISD::ArgFlagsTy, 4> OutsFlags;
5872  getReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
5873                OutVTs, OutsFlags, TLI);
5874  FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo();
5875
5876  FLI.CanLowerReturn = TLI.CanLowerReturn(F.getCallingConv(), F.isVarArg(),
5877                                          OutVTs, OutsFlags, DAG);
5878  if (!FLI.CanLowerReturn) {
5879    // Put in an sret pointer parameter before all the other parameters.
5880    SmallVector<EVT, 1> ValueVTs;
5881    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
5882
5883    // NOTE: Assuming that a pointer will never break down to more than one VT
5884    // or one register.
5885    ISD::ArgFlagsTy Flags;
5886    Flags.setSRet();
5887    EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]);
5888    ISD::InputArg RetArg(Flags, RegisterVT, true);
5889    Ins.push_back(RetArg);
5890  }
5891
5892  // Set up the incoming argument description vector.
5893  unsigned Idx = 1;
5894  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
5895       I != E; ++I, ++Idx) {
5896    SmallVector<EVT, 4> ValueVTs;
5897    ComputeValueVTs(TLI, I->getType(), ValueVTs);
5898    bool isArgValueUsed = !I->use_empty();
5899    for (unsigned Value = 0, NumValues = ValueVTs.size();
5900         Value != NumValues; ++Value) {
5901      EVT VT = ValueVTs[Value];
5902      const Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
5903      ISD::ArgFlagsTy Flags;
5904      unsigned OriginalAlignment =
5905        TD->getABITypeAlignment(ArgTy);
5906
5907      if (F.paramHasAttr(Idx, Attribute::ZExt))
5908        Flags.setZExt();
5909      if (F.paramHasAttr(Idx, Attribute::SExt))
5910        Flags.setSExt();
5911      if (F.paramHasAttr(Idx, Attribute::InReg))
5912        Flags.setInReg();
5913      if (F.paramHasAttr(Idx, Attribute::StructRet))
5914        Flags.setSRet();
5915      if (F.paramHasAttr(Idx, Attribute::ByVal)) {
5916        Flags.setByVal();
5917        const PointerType *Ty = cast<PointerType>(I->getType());
5918        const Type *ElementTy = Ty->getElementType();
5919        unsigned FrameAlign = TLI.getByValTypeAlignment(ElementTy);
5920        unsigned FrameSize  = TD->getTypeAllocSize(ElementTy);
5921        // For ByVal, alignment should be passed from FE.  BE will guess if
5922        // this info is not there but there are cases it cannot get right.
5923        if (F.getParamAlignment(Idx))
5924          FrameAlign = F.getParamAlignment(Idx);
5925        Flags.setByValAlign(FrameAlign);
5926        Flags.setByValSize(FrameSize);
5927      }
5928      if (F.paramHasAttr(Idx, Attribute::Nest))
5929        Flags.setNest();
5930      Flags.setOrigAlign(OriginalAlignment);
5931
5932      EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
5933      unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
5934      for (unsigned i = 0; i != NumRegs; ++i) {
5935        ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed);
5936        if (NumRegs > 1 && i == 0)
5937          MyFlags.Flags.setSplit();
5938        // if it isn't first piece, alignment must be 1
5939        else if (i > 0)
5940          MyFlags.Flags.setOrigAlign(1);
5941        Ins.push_back(MyFlags);
5942      }
5943    }
5944  }
5945
5946  // Call the target to set up the argument values.
5947  SmallVector<SDValue, 8> InVals;
5948  SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
5949                                             F.isVarArg(), Ins,
5950                                             dl, DAG, InVals);
5951
5952  // Verify that the target's LowerFormalArguments behaved as expected.
5953  assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
5954         "LowerFormalArguments didn't return a valid chain!");
5955  assert(InVals.size() == Ins.size() &&
5956         "LowerFormalArguments didn't emit the correct number of values!");
5957  DEBUG({
5958      for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
5959        assert(InVals[i].getNode() &&
5960               "LowerFormalArguments emitted a null value!");
5961        assert(Ins[i].VT == InVals[i].getValueType() &&
5962               "LowerFormalArguments emitted a value with the wrong type!");
5963      }
5964    });
5965
5966  // Update the DAG with the new chain value resulting from argument lowering.
5967  DAG.setRoot(NewRoot);
5968
5969  // Set up the argument values.
5970  unsigned i = 0;
5971  Idx = 1;
5972  if (!FLI.CanLowerReturn) {
5973    // Create a virtual register for the sret pointer, and put in a copy
5974    // from the sret argument into it.
5975    SmallVector<EVT, 1> ValueVTs;
5976    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
5977    EVT VT = ValueVTs[0];
5978    EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
5979    ISD::NodeType AssertOp = ISD::DELETED_NODE;
5980    SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
5981                                        RegVT, VT, AssertOp);
5982
5983    MachineFunction& MF = SDB->DAG.getMachineFunction();
5984    MachineRegisterInfo& RegInfo = MF.getRegInfo();
5985    unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT));
5986    FLI.DemoteRegister = SRetReg;
5987    NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(),
5988                                    SRetReg, ArgValue);
5989    DAG.setRoot(NewRoot);
5990
5991    // i indexes lowered arguments.  Bump it past the hidden sret argument.
5992    // Idx indexes LLVM arguments.  Don't touch it.
5993    ++i;
5994  }
5995
5996  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
5997      ++I, ++Idx) {
5998    SmallVector<SDValue, 4> ArgValues;
5999    SmallVector<EVT, 4> ValueVTs;
6000    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6001    unsigned NumValues = ValueVTs.size();
6002    for (unsigned Value = 0; Value != NumValues; ++Value) {
6003      EVT VT = ValueVTs[Value];
6004      EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6005      unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6006
6007      if (!I->use_empty()) {
6008        ISD::NodeType AssertOp = ISD::DELETED_NODE;
6009        if (F.paramHasAttr(Idx, Attribute::SExt))
6010          AssertOp = ISD::AssertSext;
6011        else if (F.paramHasAttr(Idx, Attribute::ZExt))
6012          AssertOp = ISD::AssertZext;
6013
6014        ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
6015                                             NumParts, PartVT, VT,
6016                                             AssertOp));
6017      }
6018
6019      i += NumParts;
6020    }
6021
6022    if (!I->use_empty()) {
6023      SDValue Res;
6024      if (!ArgValues.empty())
6025        Res = DAG.getMergeValues(&ArgValues[0], NumValues,
6026                                 SDB->getCurDebugLoc());
6027      SDB->setValue(I, Res);
6028
6029      // If this argument is live outside of the entry block, insert a copy from
6030      // whereever we got it to the vreg that other BB's will reference it as.
6031      SDB->CopyToExportRegsIfNeeded(I);
6032    }
6033  }
6034
6035  assert(i == InVals.size() && "Argument register count mismatch!");
6036
6037  // Finally, if the target has anything special to do, allow it to do so.
6038  // FIXME: this should insert code into the DAG!
6039  EmitFunctionEntryCode();
6040}
6041
6042/// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
6043/// ensure constants are generated when needed.  Remember the virtual registers
6044/// that need to be added to the Machine PHI nodes as input.  We cannot just
6045/// directly add them, because expansion might result in multiple MBB's for one
6046/// BB.  As such, the start of the BB might correspond to a different MBB than
6047/// the end.
6048///
6049void
6050SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
6051  const TerminatorInst *TI = LLVMBB->getTerminator();
6052
6053  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6054
6055  // Check successor nodes' PHI nodes that expect a constant to be available
6056  // from this block.
6057  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6058    const BasicBlock *SuccBB = TI->getSuccessor(succ);
6059    if (!isa<PHINode>(SuccBB->begin())) continue;
6060    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
6061
6062    // If this terminator has multiple identical successors (common for
6063    // switches), only handle each succ once.
6064    if (!SuccsHandled.insert(SuccMBB)) continue;
6065
6066    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6067
6068    // At this point we know that there is a 1-1 correspondence between LLVM PHI
6069    // nodes and Machine PHI nodes, but the incoming operands have not been
6070    // emitted yet.
6071    for (BasicBlock::const_iterator I = SuccBB->begin();
6072         const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
6073      // Ignore dead phi's.
6074      if (PN->use_empty()) continue;
6075
6076      unsigned Reg;
6077      const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6078
6079      if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
6080        unsigned &RegOut = ConstantsOut[C];
6081        if (RegOut == 0) {
6082          RegOut = FuncInfo.CreateRegForValue(C);
6083          CopyValueToVirtualRegister(C, RegOut);
6084        }
6085        Reg = RegOut;
6086      } else {
6087        Reg = FuncInfo.ValueMap[PHIOp];
6088        if (Reg == 0) {
6089          assert(isa<AllocaInst>(PHIOp) &&
6090                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
6091                 "Didn't codegen value into a register!??");
6092          Reg = FuncInfo.CreateRegForValue(PHIOp);
6093          CopyValueToVirtualRegister(PHIOp, Reg);
6094        }
6095      }
6096
6097      // Remember that this register needs to added to the machine PHI node as
6098      // the input for this MBB.
6099      SmallVector<EVT, 4> ValueVTs;
6100      ComputeValueVTs(TLI, PN->getType(), ValueVTs);
6101      for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
6102        EVT VT = ValueVTs[vti];
6103        unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
6104        for (unsigned i = 0, e = NumRegisters; i != e; ++i)
6105          FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
6106        Reg += NumRegisters;
6107      }
6108    }
6109  }
6110  ConstantsOut.clear();
6111}
6112