SelectionDAGBuilder.cpp revision 1ac2429d1f1b89a9a9c0397ef63c4f4fa535fee8
1//===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements routines for translating from LLVM IR into SelectionDAG IR.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "SDNodeDbgValue.h"
16#include "SelectionDAGBuilder.h"
17#include "FunctionLoweringInfo.h"
18#include "llvm/ADT/BitVector.h"
19#include "llvm/ADT/SmallSet.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/ConstantFolding.h"
22#include "llvm/Constants.h"
23#include "llvm/CallingConv.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Function.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/InlineAsm.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/IntrinsicInst.h"
31#include "llvm/Module.h"
32#include "llvm/CodeGen/FastISel.h"
33#include "llvm/CodeGen/GCStrategy.h"
34#include "llvm/CodeGen/GCMetadata.h"
35#include "llvm/CodeGen/MachineFunction.h"
36#include "llvm/CodeGen/MachineFrameInfo.h"
37#include "llvm/CodeGen/MachineInstrBuilder.h"
38#include "llvm/CodeGen/MachineJumpTableInfo.h"
39#include "llvm/CodeGen/MachineModuleInfo.h"
40#include "llvm/CodeGen/MachineRegisterInfo.h"
41#include "llvm/CodeGen/PseudoSourceValue.h"
42#include "llvm/CodeGen/SelectionDAG.h"
43#include "llvm/CodeGen/DwarfWriter.h"
44#include "llvm/Analysis/DebugInfo.h"
45#include "llvm/Target/TargetRegisterInfo.h"
46#include "llvm/Target/TargetData.h"
47#include "llvm/Target/TargetFrameInfo.h"
48#include "llvm/Target/TargetInstrInfo.h"
49#include "llvm/Target/TargetIntrinsicInfo.h"
50#include "llvm/Target/TargetLowering.h"
51#include "llvm/Target/TargetOptions.h"
52#include "llvm/Support/Compiler.h"
53#include "llvm/Support/CommandLine.h"
54#include "llvm/Support/Debug.h"
55#include "llvm/Support/ErrorHandling.h"
56#include "llvm/Support/MathExtras.h"
57#include "llvm/Support/raw_ostream.h"
58#include <algorithm>
59using namespace llvm;
60
61/// LimitFloatPrecision - Generate low-precision inline sequences for
62/// some float libcalls (6, 8 or 12 bits).
63static unsigned LimitFloatPrecision;
64
65static cl::opt<unsigned, true>
66LimitFPPrecision("limit-float-precision",
67                 cl::desc("Generate low-precision inline sequences "
68                          "for some float libcalls"),
69                 cl::location(LimitFloatPrecision),
70                 cl::init(0));
71
72namespace {
73  /// RegsForValue - This struct represents the registers (physical or virtual)
74  /// that a particular set of values is assigned, and the type information
75  /// about the value. The most common situation is to represent one value at a
76  /// time, but struct or array values are handled element-wise as multiple
77  /// values.  The splitting of aggregates is performed recursively, so that we
78  /// never have aggregate-typed registers. The values at this point do not
79  /// necessarily have legal types, so each value may require one or more
80  /// registers of some legal type.
81  ///
82  struct RegsForValue {
83    /// TLI - The TargetLowering object.
84    ///
85    const TargetLowering *TLI;
86
87    /// ValueVTs - The value types of the values, which may not be legal, and
88    /// may need be promoted or synthesized from one or more registers.
89    ///
90    SmallVector<EVT, 4> ValueVTs;
91
92    /// RegVTs - The value types of the registers. This is the same size as
93    /// ValueVTs and it records, for each value, what the type of the assigned
94    /// register or registers are. (Individual values are never synthesized
95    /// from more than one type of register.)
96    ///
97    /// With virtual registers, the contents of RegVTs is redundant with TLI's
98    /// getRegisterType member function, however when with physical registers
99    /// it is necessary to have a separate record of the types.
100    ///
101    SmallVector<EVT, 4> RegVTs;
102
103    /// Regs - This list holds the registers assigned to the values.
104    /// Each legal or promoted value requires one register, and each
105    /// expanded value requires multiple registers.
106    ///
107    SmallVector<unsigned, 4> Regs;
108
109    RegsForValue() : TLI(0) {}
110
111    RegsForValue(const TargetLowering &tli,
112                 const SmallVector<unsigned, 4> &regs,
113                 EVT regvt, EVT valuevt)
114      : TLI(&tli),  ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
115    RegsForValue(const TargetLowering &tli,
116                 const SmallVector<unsigned, 4> &regs,
117                 const SmallVector<EVT, 4> &regvts,
118                 const SmallVector<EVT, 4> &valuevts)
119      : TLI(&tli), ValueVTs(valuevts), RegVTs(regvts), Regs(regs) {}
120    RegsForValue(LLVMContext &Context, const TargetLowering &tli,
121                 unsigned Reg, const Type *Ty) : TLI(&tli) {
122      ComputeValueVTs(tli, Ty, ValueVTs);
123
124      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
125        EVT ValueVT = ValueVTs[Value];
126        unsigned NumRegs = TLI->getNumRegisters(Context, ValueVT);
127        EVT RegisterVT = TLI->getRegisterType(Context, ValueVT);
128        for (unsigned i = 0; i != NumRegs; ++i)
129          Regs.push_back(Reg + i);
130        RegVTs.push_back(RegisterVT);
131        Reg += NumRegs;
132      }
133    }
134
135    /// areValueTypesLegal - Return true if types of all the values are legal.
136    bool areValueTypesLegal() {
137      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
138        EVT RegisterVT = RegVTs[Value];
139        if (!TLI->isTypeLegal(RegisterVT))
140          return false;
141      }
142      return true;
143    }
144
145
146    /// append - Add the specified values to this one.
147    void append(const RegsForValue &RHS) {
148      TLI = RHS.TLI;
149      ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
150      RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
151      Regs.append(RHS.Regs.begin(), RHS.Regs.end());
152    }
153
154
155    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
156    /// this value and returns the result as a ValueVTs value.  This uses
157    /// Chain/Flag as the input and updates them for the output Chain/Flag.
158    /// If the Flag pointer is NULL, no flag is used.
159    SDValue getCopyFromRegs(SelectionDAG &DAG, DebugLoc dl,
160                            SDValue &Chain, SDValue *Flag) const;
161
162    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
163    /// specified value into the registers specified by this object.  This uses
164    /// Chain/Flag as the input and updates them for the output Chain/Flag.
165    /// If the Flag pointer is NULL, no flag is used.
166    void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
167                       SDValue &Chain, SDValue *Flag) const;
168
169    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
170    /// operand list.  This adds the code marker, matching input operand index
171    /// (if applicable), and includes the number of values added into it.
172    void AddInlineAsmOperands(unsigned Code,
173                              bool HasMatching, unsigned MatchingIdx,
174                              SelectionDAG &DAG,
175                              std::vector<SDValue> &Ops) const;
176  };
177}
178
179/// getCopyFromParts - Create a value that contains the specified legal parts
180/// combined into the value they represent.  If the parts combine to a type
181/// larger then ValueVT then AssertOp can be used to specify whether the extra
182/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
183/// (ISD::AssertSext).
184static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc dl,
185                                const SDValue *Parts,
186                                unsigned NumParts, EVT PartVT, EVT ValueVT,
187                                ISD::NodeType AssertOp = ISD::DELETED_NODE) {
188  assert(NumParts > 0 && "No parts to assemble!");
189  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
190  SDValue Val = Parts[0];
191
192  if (NumParts > 1) {
193    // Assemble the value from multiple parts.
194    if (!ValueVT.isVector() && ValueVT.isInteger()) {
195      unsigned PartBits = PartVT.getSizeInBits();
196      unsigned ValueBits = ValueVT.getSizeInBits();
197
198      // Assemble the power of 2 part.
199      unsigned RoundParts = NumParts & (NumParts - 1) ?
200        1 << Log2_32(NumParts) : NumParts;
201      unsigned RoundBits = PartBits * RoundParts;
202      EVT RoundVT = RoundBits == ValueBits ?
203        ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
204      SDValue Lo, Hi;
205
206      EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
207
208      if (RoundParts > 2) {
209        Lo = getCopyFromParts(DAG, dl, Parts, RoundParts / 2,
210                              PartVT, HalfVT);
211        Hi = getCopyFromParts(DAG, dl, Parts + RoundParts / 2,
212                              RoundParts / 2, PartVT, HalfVT);
213      } else {
214        Lo = DAG.getNode(ISD::BIT_CONVERT, dl, HalfVT, Parts[0]);
215        Hi = DAG.getNode(ISD::BIT_CONVERT, dl, HalfVT, Parts[1]);
216      }
217
218      if (TLI.isBigEndian())
219        std::swap(Lo, Hi);
220
221      Val = DAG.getNode(ISD::BUILD_PAIR, dl, RoundVT, Lo, Hi);
222
223      if (RoundParts < NumParts) {
224        // Assemble the trailing non-power-of-2 part.
225        unsigned OddParts = NumParts - RoundParts;
226        EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
227        Hi = getCopyFromParts(DAG, dl,
228                              Parts + RoundParts, OddParts, PartVT, OddVT);
229
230        // Combine the round and odd parts.
231        Lo = Val;
232        if (TLI.isBigEndian())
233          std::swap(Lo, Hi);
234        EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
235        Hi = DAG.getNode(ISD::ANY_EXTEND, dl, TotalVT, Hi);
236        Hi = DAG.getNode(ISD::SHL, dl, TotalVT, Hi,
237                         DAG.getConstant(Lo.getValueType().getSizeInBits(),
238                                         TLI.getPointerTy()));
239        Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, TotalVT, Lo);
240        Val = DAG.getNode(ISD::OR, dl, TotalVT, Lo, Hi);
241      }
242    } else if (ValueVT.isVector()) {
243      // Handle a multi-element vector.
244      EVT IntermediateVT, RegisterVT;
245      unsigned NumIntermediates;
246      unsigned NumRegs =
247        TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
248                                   NumIntermediates, RegisterVT);
249      assert(NumRegs == NumParts
250             && "Part count doesn't match vector breakdown!");
251      NumParts = NumRegs; // Silence a compiler warning.
252      assert(RegisterVT == PartVT
253             && "Part type doesn't match vector breakdown!");
254      assert(RegisterVT == Parts[0].getValueType() &&
255             "Part type doesn't match part!");
256
257      // Assemble the parts into intermediate operands.
258      SmallVector<SDValue, 8> Ops(NumIntermediates);
259      if (NumIntermediates == NumParts) {
260        // If the register was not expanded, truncate or copy the value,
261        // as appropriate.
262        for (unsigned i = 0; i != NumParts; ++i)
263          Ops[i] = getCopyFromParts(DAG, dl, &Parts[i], 1,
264                                    PartVT, IntermediateVT);
265      } else if (NumParts > 0) {
266        // If the intermediate type was expanded, build the intermediate
267        // operands from the parts.
268        assert(NumParts % NumIntermediates == 0 &&
269               "Must expand into a divisible number of parts!");
270        unsigned Factor = NumParts / NumIntermediates;
271        for (unsigned i = 0; i != NumIntermediates; ++i)
272          Ops[i] = getCopyFromParts(DAG, dl, &Parts[i * Factor], Factor,
273                                    PartVT, IntermediateVT);
274      }
275
276      // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
277      // intermediate operands.
278      Val = DAG.getNode(IntermediateVT.isVector() ?
279                        ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, dl,
280                        ValueVT, &Ops[0], NumIntermediates);
281    } else if (PartVT.isFloatingPoint()) {
282      // FP split into multiple FP parts (for ppcf128)
283      assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) &&
284             "Unexpected split");
285      SDValue Lo, Hi;
286      Lo = DAG.getNode(ISD::BIT_CONVERT, dl, EVT(MVT::f64), Parts[0]);
287      Hi = DAG.getNode(ISD::BIT_CONVERT, dl, EVT(MVT::f64), Parts[1]);
288      if (TLI.isBigEndian())
289        std::swap(Lo, Hi);
290      Val = DAG.getNode(ISD::BUILD_PAIR, dl, ValueVT, Lo, Hi);
291    } else {
292      // FP split into integer parts (soft fp)
293      assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
294             !PartVT.isVector() && "Unexpected split");
295      EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
296      Val = getCopyFromParts(DAG, dl, Parts, NumParts, PartVT, IntVT);
297    }
298  }
299
300  // There is now one part, held in Val.  Correct it to match ValueVT.
301  PartVT = Val.getValueType();
302
303  if (PartVT == ValueVT)
304    return Val;
305
306  if (PartVT.isVector()) {
307    assert(ValueVT.isVector() && "Unknown vector conversion!");
308    return DAG.getNode(ISD::BIT_CONVERT, dl, ValueVT, Val);
309  }
310
311  if (ValueVT.isVector()) {
312    assert(ValueVT.getVectorElementType() == PartVT &&
313           ValueVT.getVectorNumElements() == 1 &&
314           "Only trivial scalar-to-vector conversions should get here!");
315    return DAG.getNode(ISD::BUILD_VECTOR, dl, ValueVT, Val);
316  }
317
318  if (PartVT.isInteger() &&
319      ValueVT.isInteger()) {
320    if (ValueVT.bitsLT(PartVT)) {
321      // For a truncate, see if we have any information to
322      // indicate whether the truncated bits will always be
323      // zero or sign-extension.
324      if (AssertOp != ISD::DELETED_NODE)
325        Val = DAG.getNode(AssertOp, dl, PartVT, Val,
326                          DAG.getValueType(ValueVT));
327      return DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val);
328    } else {
329      return DAG.getNode(ISD::ANY_EXTEND, dl, ValueVT, Val);
330    }
331  }
332
333  if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
334    if (ValueVT.bitsLT(Val.getValueType())) {
335      // FP_ROUND's are always exact here.
336      return DAG.getNode(ISD::FP_ROUND, dl, ValueVT, Val,
337                         DAG.getIntPtrConstant(1));
338    }
339
340    return DAG.getNode(ISD::FP_EXTEND, dl, ValueVT, Val);
341  }
342
343  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
344    return DAG.getNode(ISD::BIT_CONVERT, dl, ValueVT, Val);
345
346  llvm_unreachable("Unknown mismatch!");
347  return SDValue();
348}
349
350/// getCopyToParts - Create a series of nodes that contain the specified value
351/// split into legal parts.  If the parts contain more bits than Val, then, for
352/// integers, ExtendKind can be used to specify how to generate the extra bits.
353static void getCopyToParts(SelectionDAG &DAG, DebugLoc dl,
354                           SDValue Val, SDValue *Parts, unsigned NumParts,
355                           EVT PartVT,
356                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
357  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
358  EVT PtrVT = TLI.getPointerTy();
359  EVT ValueVT = Val.getValueType();
360  unsigned PartBits = PartVT.getSizeInBits();
361  unsigned OrigNumParts = NumParts;
362  assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
363
364  if (!NumParts)
365    return;
366
367  if (!ValueVT.isVector()) {
368    if (PartVT == ValueVT) {
369      assert(NumParts == 1 && "No-op copy with multiple parts!");
370      Parts[0] = Val;
371      return;
372    }
373
374    if (NumParts * PartBits > ValueVT.getSizeInBits()) {
375      // If the parts cover more bits than the value has, promote the value.
376      if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
377        assert(NumParts == 1 && "Do not know what to promote to!");
378        Val = DAG.getNode(ISD::FP_EXTEND, dl, PartVT, Val);
379      } else if (PartVT.isInteger() && ValueVT.isInteger()) {
380        ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
381        Val = DAG.getNode(ExtendKind, dl, ValueVT, Val);
382      } else {
383        llvm_unreachable("Unknown mismatch!");
384      }
385    } else if (PartBits == ValueVT.getSizeInBits()) {
386      // Different types of the same size.
387      assert(NumParts == 1 && PartVT != ValueVT);
388      Val = DAG.getNode(ISD::BIT_CONVERT, dl, PartVT, Val);
389    } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
390      // If the parts cover less bits than value has, truncate the value.
391      if (PartVT.isInteger() && ValueVT.isInteger()) {
392        ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
393        Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val);
394      } else {
395        llvm_unreachable("Unknown mismatch!");
396      }
397    }
398
399    // The value may have changed - recompute ValueVT.
400    ValueVT = Val.getValueType();
401    assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
402           "Failed to tile the value with PartVT!");
403
404    if (NumParts == 1) {
405      assert(PartVT == ValueVT && "Type conversion failed!");
406      Parts[0] = Val;
407      return;
408    }
409
410    // Expand the value into multiple parts.
411    if (NumParts & (NumParts - 1)) {
412      // The number of parts is not a power of 2.  Split off and copy the tail.
413      assert(PartVT.isInteger() && ValueVT.isInteger() &&
414             "Do not know what to expand to!");
415      unsigned RoundParts = 1 << Log2_32(NumParts);
416      unsigned RoundBits = RoundParts * PartBits;
417      unsigned OddParts = NumParts - RoundParts;
418      SDValue OddVal = DAG.getNode(ISD::SRL, dl, ValueVT, Val,
419                                   DAG.getConstant(RoundBits,
420                                                   TLI.getPointerTy()));
421      getCopyToParts(DAG, dl, OddVal, Parts + RoundParts,
422                     OddParts, PartVT);
423
424      if (TLI.isBigEndian())
425        // The odd parts were reversed by getCopyToParts - unreverse them.
426        std::reverse(Parts + RoundParts, Parts + NumParts);
427
428      NumParts = RoundParts;
429      ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
430      Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val);
431    }
432
433    // The number of parts is a power of 2.  Repeatedly bisect the value using
434    // EXTRACT_ELEMENT.
435    Parts[0] = DAG.getNode(ISD::BIT_CONVERT, dl,
436                           EVT::getIntegerVT(*DAG.getContext(),
437                                             ValueVT.getSizeInBits()),
438                           Val);
439
440    for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
441      for (unsigned i = 0; i < NumParts; i += StepSize) {
442        unsigned ThisBits = StepSize * PartBits / 2;
443        EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
444        SDValue &Part0 = Parts[i];
445        SDValue &Part1 = Parts[i+StepSize/2];
446
447        Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
448                            ThisVT, Part0,
449                            DAG.getConstant(1, PtrVT));
450        Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
451                            ThisVT, Part0,
452                            DAG.getConstant(0, PtrVT));
453
454        if (ThisBits == PartBits && ThisVT != PartVT) {
455          Part0 = DAG.getNode(ISD::BIT_CONVERT, dl,
456                                                PartVT, Part0);
457          Part1 = DAG.getNode(ISD::BIT_CONVERT, dl,
458                                                PartVT, Part1);
459        }
460      }
461    }
462
463    if (TLI.isBigEndian())
464      std::reverse(Parts, Parts + OrigNumParts);
465
466    return;
467  }
468
469  // Vector ValueVT.
470  if (NumParts == 1) {
471    if (PartVT != ValueVT) {
472      if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
473        Val = DAG.getNode(ISD::BIT_CONVERT, dl, PartVT, Val);
474      } else {
475        assert(ValueVT.getVectorElementType() == PartVT &&
476               ValueVT.getVectorNumElements() == 1 &&
477               "Only trivial vector-to-scalar conversions should get here!");
478        Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
479                          PartVT, Val,
480                          DAG.getConstant(0, PtrVT));
481      }
482    }
483
484    Parts[0] = Val;
485    return;
486  }
487
488  // Handle a multi-element vector.
489  EVT IntermediateVT, RegisterVT;
490  unsigned NumIntermediates;
491  unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
492                              IntermediateVT, NumIntermediates, RegisterVT);
493  unsigned NumElements = ValueVT.getVectorNumElements();
494
495  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
496  NumParts = NumRegs; // Silence a compiler warning.
497  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
498
499  // Split the vector into intermediate operands.
500  SmallVector<SDValue, 8> Ops(NumIntermediates);
501  for (unsigned i = 0; i != NumIntermediates; ++i) {
502    if (IntermediateVT.isVector())
503      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl,
504                           IntermediateVT, Val,
505                           DAG.getConstant(i * (NumElements / NumIntermediates),
506                                           PtrVT));
507    else
508      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
509                           IntermediateVT, Val,
510                           DAG.getConstant(i, PtrVT));
511  }
512
513  // Split the intermediate operands into legal parts.
514  if (NumParts == NumIntermediates) {
515    // If the register was not expanded, promote or copy the value,
516    // as appropriate.
517    for (unsigned i = 0; i != NumParts; ++i)
518      getCopyToParts(DAG, dl, Ops[i], &Parts[i], 1, PartVT);
519  } else if (NumParts > 0) {
520    // If the intermediate type was expanded, split each the value into
521    // legal parts.
522    assert(NumParts % NumIntermediates == 0 &&
523           "Must expand into a divisible number of parts!");
524    unsigned Factor = NumParts / NumIntermediates;
525    for (unsigned i = 0; i != NumIntermediates; ++i)
526      getCopyToParts(DAG, dl, Ops[i], &Parts[i*Factor], Factor, PartVT);
527  }
528}
529
530
531void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) {
532  AA = &aa;
533  GFI = gfi;
534  TD = DAG.getTarget().getTargetData();
535}
536
537/// clear - Clear out the curret SelectionDAG and the associated
538/// state and prepare this SelectionDAGBuilder object to be used
539/// for a new block. This doesn't clear out information about
540/// additional blocks that are needed to complete switch lowering
541/// or PHI node updating; that information is cleared out as it is
542/// consumed.
543void SelectionDAGBuilder::clear() {
544  NodeMap.clear();
545  PendingLoads.clear();
546  PendingExports.clear();
547  EdgeMapping.clear();
548  DAG.clear();
549  CurDebugLoc = DebugLoc::getUnknownLoc();
550  HasTailCall = false;
551}
552
553/// getRoot - Return the current virtual root of the Selection DAG,
554/// flushing any PendingLoad items. This must be done before emitting
555/// a store or any other node that may need to be ordered after any
556/// prior load instructions.
557///
558SDValue SelectionDAGBuilder::getRoot() {
559  if (PendingLoads.empty())
560    return DAG.getRoot();
561
562  if (PendingLoads.size() == 1) {
563    SDValue Root = PendingLoads[0];
564    DAG.setRoot(Root);
565    PendingLoads.clear();
566    return Root;
567  }
568
569  // Otherwise, we have to make a token factor node.
570  SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
571                               &PendingLoads[0], PendingLoads.size());
572  PendingLoads.clear();
573  DAG.setRoot(Root);
574  return Root;
575}
576
577/// getControlRoot - Similar to getRoot, but instead of flushing all the
578/// PendingLoad items, flush all the PendingExports items. It is necessary
579/// to do this before emitting a terminator instruction.
580///
581SDValue SelectionDAGBuilder::getControlRoot() {
582  SDValue Root = DAG.getRoot();
583
584  if (PendingExports.empty())
585    return Root;
586
587  // Turn all of the CopyToReg chains into one factored node.
588  if (Root.getOpcode() != ISD::EntryToken) {
589    unsigned i = 0, e = PendingExports.size();
590    for (; i != e; ++i) {
591      assert(PendingExports[i].getNode()->getNumOperands() > 1);
592      if (PendingExports[i].getNode()->getOperand(0) == Root)
593        break;  // Don't add the root if we already indirectly depend on it.
594    }
595
596    if (i == e)
597      PendingExports.push_back(Root);
598  }
599
600  Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
601                     &PendingExports[0],
602                     PendingExports.size());
603  PendingExports.clear();
604  DAG.setRoot(Root);
605  return Root;
606}
607
608void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) {
609  if (DAG.GetOrdering(Node) != 0) return; // Already has ordering.
610  DAG.AssignOrdering(Node, SDNodeOrder);
611
612  for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I)
613    AssignOrderingToNode(Node->getOperand(I).getNode());
614}
615
616void SelectionDAGBuilder::visit(Instruction &I) {
617  visit(I.getOpcode(), I);
618}
619
620void SelectionDAGBuilder::visit(unsigned Opcode, User &I) {
621  // Note: this doesn't use InstVisitor, because it has to work with
622  // ConstantExpr's in addition to instructions.
623  switch (Opcode) {
624  default: llvm_unreachable("Unknown instruction type encountered!");
625    // Build the switch statement using the Instruction.def file.
626#define HANDLE_INST(NUM, OPCODE, CLASS) \
627    case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break;
628#include "llvm/Instruction.def"
629  }
630
631  // Assign the ordering to the freshly created DAG nodes.
632  if (NodeMap.count(&I)) {
633    ++SDNodeOrder;
634    AssignOrderingToNode(getValue(&I).getNode());
635  }
636}
637
638SDValue SelectionDAGBuilder::getValue(const Value *V) {
639  SDValue &N = NodeMap[V];
640  if (N.getNode()) return N;
641
642  if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) {
643    EVT VT = TLI.getValueType(V->getType(), true);
644
645    if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
646      return N = DAG.getConstant(*CI, VT);
647
648    if (GlobalValue *GV = dyn_cast<GlobalValue>(C))
649      return N = DAG.getGlobalAddress(GV, VT);
650
651    if (isa<ConstantPointerNull>(C))
652      return N = DAG.getConstant(0, TLI.getPointerTy());
653
654    if (ConstantFP *CFP = dyn_cast<ConstantFP>(C))
655      return N = DAG.getConstantFP(*CFP, VT);
656
657    if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
658      return N = DAG.getUNDEF(VT);
659
660    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
661      visit(CE->getOpcode(), *CE);
662      SDValue N1 = NodeMap[V];
663      assert(N1.getNode() && "visit didn't populate the ValueMap!");
664      return N1;
665    }
666
667    if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
668      SmallVector<SDValue, 4> Constants;
669      for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
670           OI != OE; ++OI) {
671        SDNode *Val = getValue(*OI).getNode();
672        // If the operand is an empty aggregate, there are no values.
673        if (!Val) continue;
674        // Add each leaf value from the operand to the Constants list
675        // to form a flattened list of all the values.
676        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
677          Constants.push_back(SDValue(Val, i));
678      }
679
680      return DAG.getMergeValues(&Constants[0], Constants.size(),
681                                getCurDebugLoc());
682    }
683
684    if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
685      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
686             "Unknown struct or array constant!");
687
688      SmallVector<EVT, 4> ValueVTs;
689      ComputeValueVTs(TLI, C->getType(), ValueVTs);
690      unsigned NumElts = ValueVTs.size();
691      if (NumElts == 0)
692        return SDValue(); // empty struct
693      SmallVector<SDValue, 4> Constants(NumElts);
694      for (unsigned i = 0; i != NumElts; ++i) {
695        EVT EltVT = ValueVTs[i];
696        if (isa<UndefValue>(C))
697          Constants[i] = DAG.getUNDEF(EltVT);
698        else if (EltVT.isFloatingPoint())
699          Constants[i] = DAG.getConstantFP(0, EltVT);
700        else
701          Constants[i] = DAG.getConstant(0, EltVT);
702      }
703
704      return DAG.getMergeValues(&Constants[0], NumElts,
705                                getCurDebugLoc());
706    }
707
708    if (BlockAddress *BA = dyn_cast<BlockAddress>(C))
709      return DAG.getBlockAddress(BA, VT);
710
711    const VectorType *VecTy = cast<VectorType>(V->getType());
712    unsigned NumElements = VecTy->getNumElements();
713
714    // Now that we know the number and type of the elements, get that number of
715    // elements into the Ops array based on what kind of constant it is.
716    SmallVector<SDValue, 16> Ops;
717    if (ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
718      for (unsigned i = 0; i != NumElements; ++i)
719        Ops.push_back(getValue(CP->getOperand(i)));
720    } else {
721      assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
722      EVT EltVT = TLI.getValueType(VecTy->getElementType());
723
724      SDValue Op;
725      if (EltVT.isFloatingPoint())
726        Op = DAG.getConstantFP(0, EltVT);
727      else
728        Op = DAG.getConstant(0, EltVT);
729      Ops.assign(NumElements, Op);
730    }
731
732    // Create a BUILD_VECTOR node.
733    return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
734                                    VT, &Ops[0], Ops.size());
735  }
736
737  // If this is a static alloca, generate it as the frameindex instead of
738  // computation.
739  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
740    DenseMap<const AllocaInst*, int>::iterator SI =
741      FuncInfo.StaticAllocaMap.find(AI);
742    if (SI != FuncInfo.StaticAllocaMap.end())
743      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
744  }
745
746  unsigned InReg = FuncInfo.ValueMap[V];
747  assert(InReg && "Value not in map!");
748
749  RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
750  SDValue Chain = DAG.getEntryNode();
751  return RFV.getCopyFromRegs(DAG, getCurDebugLoc(), Chain, NULL);
752}
753
754/// Get the EVTs and ArgFlags collections that represent the legalized return
755/// type of the given function.  This does not require a DAG or a return value,
756/// and is suitable for use before any DAGs for the function are constructed.
757static void getReturnInfo(const Type* ReturnType,
758                   Attributes attr, SmallVectorImpl<EVT> &OutVTs,
759                   SmallVectorImpl<ISD::ArgFlagsTy> &OutFlags,
760                   TargetLowering &TLI,
761                   SmallVectorImpl<uint64_t> *Offsets = 0) {
762  SmallVector<EVT, 4> ValueVTs;
763  ComputeValueVTs(TLI, ReturnType, ValueVTs);
764  unsigned NumValues = ValueVTs.size();
765  if (NumValues == 0) return;
766  unsigned Offset = 0;
767
768  for (unsigned j = 0, f = NumValues; j != f; ++j) {
769    EVT VT = ValueVTs[j];
770    ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
771
772    if (attr & Attribute::SExt)
773      ExtendKind = ISD::SIGN_EXTEND;
774    else if (attr & Attribute::ZExt)
775      ExtendKind = ISD::ZERO_EXTEND;
776
777    // FIXME: C calling convention requires the return type to be promoted to
778    // at least 32-bit. But this is not necessary for non-C calling
779    // conventions. The frontend should mark functions whose return values
780    // require promoting with signext or zeroext attributes.
781    if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
782      EVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
783      if (VT.bitsLT(MinVT))
784        VT = MinVT;
785    }
786
787    unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT);
788    EVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT);
789    unsigned PartSize = TLI.getTargetData()->getTypeAllocSize(
790                        PartVT.getTypeForEVT(ReturnType->getContext()));
791
792    // 'inreg' on function refers to return value
793    ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
794    if (attr & Attribute::InReg)
795      Flags.setInReg();
796
797    // Propagate extension type if any
798    if (attr & Attribute::SExt)
799      Flags.setSExt();
800    else if (attr & Attribute::ZExt)
801      Flags.setZExt();
802
803    for (unsigned i = 0; i < NumParts; ++i) {
804      OutVTs.push_back(PartVT);
805      OutFlags.push_back(Flags);
806      if (Offsets)
807      {
808        Offsets->push_back(Offset);
809        Offset += PartSize;
810      }
811    }
812  }
813}
814
815void SelectionDAGBuilder::visitRet(ReturnInst &I) {
816  SDValue Chain = getControlRoot();
817  SmallVector<ISD::OutputArg, 8> Outs;
818  FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo();
819
820  if (!FLI.CanLowerReturn) {
821    unsigned DemoteReg = FLI.DemoteRegister;
822    const Function *F = I.getParent()->getParent();
823
824    // Emit a store of the return value through the virtual register.
825    // Leave Outs empty so that LowerReturn won't try to load return
826    // registers the usual way.
827    SmallVector<EVT, 1> PtrValueVTs;
828    ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
829                    PtrValueVTs);
830
831    SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
832    SDValue RetOp = getValue(I.getOperand(0));
833
834    SmallVector<EVT, 4> ValueVTs;
835    SmallVector<uint64_t, 4> Offsets;
836    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
837    unsigned NumValues = ValueVTs.size();
838
839    SmallVector<SDValue, 4> Chains(NumValues);
840    EVT PtrVT = PtrValueVTs[0];
841    for (unsigned i = 0; i != NumValues; ++i) {
842      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, RetPtr,
843                                DAG.getConstant(Offsets[i], PtrVT));
844      Chains[i] =
845        DAG.getStore(Chain, getCurDebugLoc(),
846                     SDValue(RetOp.getNode(), RetOp.getResNo() + i),
847                     Add, NULL, Offsets[i], false, false, 0);
848    }
849
850    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
851                        MVT::Other, &Chains[0], NumValues);
852  } else if (I.getNumOperands() != 0) {
853    SmallVector<EVT, 4> ValueVTs;
854    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
855    unsigned NumValues = ValueVTs.size();
856    if (NumValues) {
857      SDValue RetOp = getValue(I.getOperand(0));
858      for (unsigned j = 0, f = NumValues; j != f; ++j) {
859        EVT VT = ValueVTs[j];
860
861        ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
862
863        const Function *F = I.getParent()->getParent();
864        if (F->paramHasAttr(0, Attribute::SExt))
865          ExtendKind = ISD::SIGN_EXTEND;
866        else if (F->paramHasAttr(0, Attribute::ZExt))
867          ExtendKind = ISD::ZERO_EXTEND;
868
869        // FIXME: C calling convention requires the return type to be promoted
870        // to at least 32-bit. But this is not necessary for non-C calling
871        // conventions. The frontend should mark functions whose return values
872        // require promoting with signext or zeroext attributes.
873        if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
874          EVT MinVT = TLI.getRegisterType(*DAG.getContext(), MVT::i32);
875          if (VT.bitsLT(MinVT))
876            VT = MinVT;
877        }
878
879        unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
880        EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
881        SmallVector<SDValue, 4> Parts(NumParts);
882        getCopyToParts(DAG, getCurDebugLoc(),
883                       SDValue(RetOp.getNode(), RetOp.getResNo() + j),
884                       &Parts[0], NumParts, PartVT, ExtendKind);
885
886        // 'inreg' on function refers to return value
887        ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
888        if (F->paramHasAttr(0, Attribute::InReg))
889          Flags.setInReg();
890
891        // Propagate extension type if any
892        if (F->paramHasAttr(0, Attribute::SExt))
893          Flags.setSExt();
894        else if (F->paramHasAttr(0, Attribute::ZExt))
895          Flags.setZExt();
896
897        for (unsigned i = 0; i < NumParts; ++i)
898          Outs.push_back(ISD::OutputArg(Flags, Parts[i], /*isfixed=*/true));
899      }
900    }
901  }
902
903  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
904  CallingConv::ID CallConv =
905    DAG.getMachineFunction().getFunction()->getCallingConv();
906  Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
907                          Outs, getCurDebugLoc(), DAG);
908
909  // Verify that the target's LowerReturn behaved as expected.
910  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
911         "LowerReturn didn't return a valid chain!");
912
913  // Update the DAG with the new chain value resulting from return lowering.
914  DAG.setRoot(Chain);
915}
916
917/// CopyToExportRegsIfNeeded - If the given value has virtual registers
918/// created for it, emit nodes to copy the value into the virtual
919/// registers.
920void SelectionDAGBuilder::CopyToExportRegsIfNeeded(Value *V) {
921  if (!V->use_empty()) {
922    DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
923    if (VMI != FuncInfo.ValueMap.end())
924      CopyValueToVirtualRegister(V, VMI->second);
925  }
926}
927
928/// ExportFromCurrentBlock - If this condition isn't known to be exported from
929/// the current basic block, add it to ValueMap now so that we'll get a
930/// CopyTo/FromReg.
931void SelectionDAGBuilder::ExportFromCurrentBlock(Value *V) {
932  // No need to export constants.
933  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
934
935  // Already exported?
936  if (FuncInfo.isExportedInst(V)) return;
937
938  unsigned Reg = FuncInfo.InitializeRegForValue(V);
939  CopyValueToVirtualRegister(V, Reg);
940}
941
942bool SelectionDAGBuilder::isExportableFromCurrentBlock(Value *V,
943                                                     const BasicBlock *FromBB) {
944  // The operands of the setcc have to be in this block.  We don't know
945  // how to export them from some other block.
946  if (Instruction *VI = dyn_cast<Instruction>(V)) {
947    // Can export from current BB.
948    if (VI->getParent() == FromBB)
949      return true;
950
951    // Is already exported, noop.
952    return FuncInfo.isExportedInst(V);
953  }
954
955  // If this is an argument, we can export it if the BB is the entry block or
956  // if it is already exported.
957  if (isa<Argument>(V)) {
958    if (FromBB == &FromBB->getParent()->getEntryBlock())
959      return true;
960
961    // Otherwise, can only export this if it is already exported.
962    return FuncInfo.isExportedInst(V);
963  }
964
965  // Otherwise, constants can always be exported.
966  return true;
967}
968
969static bool InBlock(const Value *V, const BasicBlock *BB) {
970  if (const Instruction *I = dyn_cast<Instruction>(V))
971    return I->getParent() == BB;
972  return true;
973}
974
975/// getFCmpCondCode - Return the ISD condition code corresponding to
976/// the given LLVM IR floating-point condition code.  This includes
977/// consideration of global floating-point math flags.
978///
979static ISD::CondCode getFCmpCondCode(FCmpInst::Predicate Pred) {
980  ISD::CondCode FPC, FOC;
981  switch (Pred) {
982  case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
983  case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
984  case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
985  case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
986  case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
987  case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
988  case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
989  case FCmpInst::FCMP_ORD:   FOC = FPC = ISD::SETO;   break;
990  case FCmpInst::FCMP_UNO:   FOC = FPC = ISD::SETUO;  break;
991  case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
992  case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
993  case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
994  case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
995  case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
996  case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
997  case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
998  default:
999    llvm_unreachable("Invalid FCmp predicate opcode!");
1000    FOC = FPC = ISD::SETFALSE;
1001    break;
1002  }
1003  if (FiniteOnlyFPMath())
1004    return FOC;
1005  else
1006    return FPC;
1007}
1008
1009/// getICmpCondCode - Return the ISD condition code corresponding to
1010/// the given LLVM IR integer condition code.
1011///
1012static ISD::CondCode getICmpCondCode(ICmpInst::Predicate Pred) {
1013  switch (Pred) {
1014  case ICmpInst::ICMP_EQ:  return ISD::SETEQ;
1015  case ICmpInst::ICMP_NE:  return ISD::SETNE;
1016  case ICmpInst::ICMP_SLE: return ISD::SETLE;
1017  case ICmpInst::ICMP_ULE: return ISD::SETULE;
1018  case ICmpInst::ICMP_SGE: return ISD::SETGE;
1019  case ICmpInst::ICMP_UGE: return ISD::SETUGE;
1020  case ICmpInst::ICMP_SLT: return ISD::SETLT;
1021  case ICmpInst::ICMP_ULT: return ISD::SETULT;
1022  case ICmpInst::ICMP_SGT: return ISD::SETGT;
1023  case ICmpInst::ICMP_UGT: return ISD::SETUGT;
1024  default:
1025    llvm_unreachable("Invalid ICmp predicate opcode!");
1026    return ISD::SETNE;
1027  }
1028}
1029
1030/// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1031/// This function emits a branch and is used at the leaves of an OR or an
1032/// AND operator tree.
1033///
1034void
1035SelectionDAGBuilder::EmitBranchForMergedCondition(Value *Cond,
1036                                                  MachineBasicBlock *TBB,
1037                                                  MachineBasicBlock *FBB,
1038                                                  MachineBasicBlock *CurBB) {
1039  const BasicBlock *BB = CurBB->getBasicBlock();
1040
1041  // If the leaf of the tree is a comparison, merge the condition into
1042  // the caseblock.
1043  if (CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1044    // The operands of the cmp have to be in this block.  We don't know
1045    // how to export them from some other block.  If this is the first block
1046    // of the sequence, no exporting is needed.
1047    if (CurBB == CurMBB ||
1048        (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1049         isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1050      ISD::CondCode Condition;
1051      if (ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1052        Condition = getICmpCondCode(IC->getPredicate());
1053      } else if (FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1054        Condition = getFCmpCondCode(FC->getPredicate());
1055      } else {
1056        Condition = ISD::SETEQ; // silence warning.
1057        llvm_unreachable("Unknown compare instruction");
1058      }
1059
1060      CaseBlock CB(Condition, BOp->getOperand(0),
1061                   BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1062      SwitchCases.push_back(CB);
1063      return;
1064    }
1065  }
1066
1067  // Create a CaseBlock record representing this branch.
1068  CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1069               NULL, TBB, FBB, CurBB);
1070  SwitchCases.push_back(CB);
1071}
1072
1073/// FindMergedConditions - If Cond is an expression like
1074void SelectionDAGBuilder::FindMergedConditions(Value *Cond,
1075                                               MachineBasicBlock *TBB,
1076                                               MachineBasicBlock *FBB,
1077                                               MachineBasicBlock *CurBB,
1078                                               unsigned Opc) {
1079  // If this node is not part of the or/and tree, emit it as a branch.
1080  Instruction *BOp = dyn_cast<Instruction>(Cond);
1081  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1082      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1083      BOp->getParent() != CurBB->getBasicBlock() ||
1084      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1085      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1086    EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB);
1087    return;
1088  }
1089
1090  //  Create TmpBB after CurBB.
1091  MachineFunction::iterator BBI = CurBB;
1092  MachineFunction &MF = DAG.getMachineFunction();
1093  MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1094  CurBB->getParent()->insert(++BBI, TmpBB);
1095
1096  if (Opc == Instruction::Or) {
1097    // Codegen X | Y as:
1098    //   jmp_if_X TBB
1099    //   jmp TmpBB
1100    // TmpBB:
1101    //   jmp_if_Y TBB
1102    //   jmp FBB
1103    //
1104
1105    // Emit the LHS condition.
1106    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, Opc);
1107
1108    // Emit the RHS condition into TmpBB.
1109    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1110  } else {
1111    assert(Opc == Instruction::And && "Unknown merge op!");
1112    // Codegen X & Y as:
1113    //   jmp_if_X TmpBB
1114    //   jmp FBB
1115    // TmpBB:
1116    //   jmp_if_Y TBB
1117    //   jmp FBB
1118    //
1119    //  This requires creation of TmpBB after CurBB.
1120
1121    // Emit the LHS condition.
1122    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, Opc);
1123
1124    // Emit the RHS condition into TmpBB.
1125    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1126  }
1127}
1128
1129/// If the set of cases should be emitted as a series of branches, return true.
1130/// If we should emit this as a bunch of and/or'd together conditions, return
1131/// false.
1132bool
1133SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
1134  if (Cases.size() != 2) return true;
1135
1136  // If this is two comparisons of the same values or'd or and'd together, they
1137  // will get folded into a single comparison, so don't emit two blocks.
1138  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1139       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1140      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1141       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1142    return false;
1143  }
1144
1145  // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1146  // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1147  if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1148      Cases[0].CC == Cases[1].CC &&
1149      isa<Constant>(Cases[0].CmpRHS) &&
1150      cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1151    if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1152      return false;
1153    if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1154      return false;
1155  }
1156
1157  return true;
1158}
1159
1160void SelectionDAGBuilder::visitBr(BranchInst &I) {
1161  // Update machine-CFG edges.
1162  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1163
1164  // Figure out which block is immediately after the current one.
1165  MachineBasicBlock *NextBlock = 0;
1166  MachineFunction::iterator BBI = CurMBB;
1167  if (++BBI != FuncInfo.MF->end())
1168    NextBlock = BBI;
1169
1170  if (I.isUnconditional()) {
1171    // Update machine-CFG edges.
1172    CurMBB->addSuccessor(Succ0MBB);
1173
1174    // If this is not a fall-through branch, emit the branch.
1175    if (Succ0MBB != NextBlock)
1176      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1177                              MVT::Other, getControlRoot(),
1178                              DAG.getBasicBlock(Succ0MBB)));
1179
1180    return;
1181  }
1182
1183  // If this condition is one of the special cases we handle, do special stuff
1184  // now.
1185  Value *CondVal = I.getCondition();
1186  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1187
1188  // If this is a series of conditions that are or'd or and'd together, emit
1189  // this as a sequence of branches instead of setcc's with and/or operations.
1190  // For example, instead of something like:
1191  //     cmp A, B
1192  //     C = seteq
1193  //     cmp D, E
1194  //     F = setle
1195  //     or C, F
1196  //     jnz foo
1197  // Emit:
1198  //     cmp A, B
1199  //     je foo
1200  //     cmp D, E
1201  //     jle foo
1202  //
1203  if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1204    if (BOp->hasOneUse() &&
1205        (BOp->getOpcode() == Instruction::And ||
1206         BOp->getOpcode() == Instruction::Or)) {
1207      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, CurMBB, BOp->getOpcode());
1208      // If the compares in later blocks need to use values not currently
1209      // exported from this block, export them now.  This block should always
1210      // be the first entry.
1211      assert(SwitchCases[0].ThisBB == CurMBB && "Unexpected lowering!");
1212
1213      // Allow some cases to be rejected.
1214      if (ShouldEmitAsBranches(SwitchCases)) {
1215        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1216          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1217          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1218        }
1219
1220        // Emit the branch for this block.
1221        visitSwitchCase(SwitchCases[0]);
1222        SwitchCases.erase(SwitchCases.begin());
1223        return;
1224      }
1225
1226      // Okay, we decided not to do this, remove any inserted MBB's and clear
1227      // SwitchCases.
1228      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1229        FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1230
1231      SwitchCases.clear();
1232    }
1233  }
1234
1235  // Create a CaseBlock record representing this branch.
1236  CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1237               NULL, Succ0MBB, Succ1MBB, CurMBB);
1238
1239  // Use visitSwitchCase to actually insert the fast branch sequence for this
1240  // cond branch.
1241  visitSwitchCase(CB);
1242}
1243
1244/// visitSwitchCase - Emits the necessary code to represent a single node in
1245/// the binary search tree resulting from lowering a switch instruction.
1246void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB) {
1247  SDValue Cond;
1248  SDValue CondLHS = getValue(CB.CmpLHS);
1249  DebugLoc dl = getCurDebugLoc();
1250
1251  // Build the setcc now.
1252  if (CB.CmpMHS == NULL) {
1253    // Fold "(X == true)" to X and "(X == false)" to !X to
1254    // handle common cases produced by branch lowering.
1255    if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1256        CB.CC == ISD::SETEQ)
1257      Cond = CondLHS;
1258    else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1259             CB.CC == ISD::SETEQ) {
1260      SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1261      Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1262    } else
1263      Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1264  } else {
1265    assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1266
1267    const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1268    const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
1269
1270    SDValue CmpOp = getValue(CB.CmpMHS);
1271    EVT VT = CmpOp.getValueType();
1272
1273    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1274      Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1275                          ISD::SETLE);
1276    } else {
1277      SDValue SUB = DAG.getNode(ISD::SUB, dl,
1278                                VT, CmpOp, DAG.getConstant(Low, VT));
1279      Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1280                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1281    }
1282  }
1283
1284  // Update successor info
1285  CurMBB->addSuccessor(CB.TrueBB);
1286  CurMBB->addSuccessor(CB.FalseBB);
1287
1288  // Set NextBlock to be the MBB immediately after the current one, if any.
1289  // This is used to avoid emitting unnecessary branches to the next block.
1290  MachineBasicBlock *NextBlock = 0;
1291  MachineFunction::iterator BBI = CurMBB;
1292  if (++BBI != FuncInfo.MF->end())
1293    NextBlock = BBI;
1294
1295  // If the lhs block is the next block, invert the condition so that we can
1296  // fall through to the lhs instead of the rhs block.
1297  if (CB.TrueBB == NextBlock) {
1298    std::swap(CB.TrueBB, CB.FalseBB);
1299    SDValue True = DAG.getConstant(1, Cond.getValueType());
1300    Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1301  }
1302
1303  SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1304                               MVT::Other, getControlRoot(), Cond,
1305                               DAG.getBasicBlock(CB.TrueBB));
1306
1307  // If the branch was constant folded, fix up the CFG.
1308  if (BrCond.getOpcode() == ISD::BR) {
1309    CurMBB->removeSuccessor(CB.FalseBB);
1310  } else {
1311    // Otherwise, go ahead and insert the false branch.
1312    if (BrCond == getControlRoot())
1313      CurMBB->removeSuccessor(CB.TrueBB);
1314
1315    if (CB.FalseBB != NextBlock)
1316      BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1317                           DAG.getBasicBlock(CB.FalseBB));
1318  }
1319
1320  DAG.setRoot(BrCond);
1321}
1322
1323/// visitJumpTable - Emit JumpTable node in the current MBB
1324void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1325  // Emit the code for the jump table
1326  assert(JT.Reg != -1U && "Should lower JT Header first!");
1327  EVT PTy = TLI.getPointerTy();
1328  SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1329                                     JT.Reg, PTy);
1330  SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1331  SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(),
1332                                    MVT::Other, Index.getValue(1),
1333                                    Table, Index);
1334  DAG.setRoot(BrJumpTable);
1335}
1336
1337/// visitJumpTableHeader - This function emits necessary code to produce index
1338/// in the JumpTable from switch case.
1339void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1340                                               JumpTableHeader &JTH) {
1341  // Subtract the lowest switch case value from the value being switched on and
1342  // conditional branch to default mbb if the result is greater than the
1343  // difference between smallest and largest cases.
1344  SDValue SwitchOp = getValue(JTH.SValue);
1345  EVT VT = SwitchOp.getValueType();
1346  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1347                            DAG.getConstant(JTH.First, VT));
1348
1349  // The SDNode we just created, which holds the value being switched on minus
1350  // the smallest case value, needs to be copied to a virtual register so it
1351  // can be used as an index into the jump table in a subsequent basic block.
1352  // This value may be smaller or larger than the target's pointer type, and
1353  // therefore require extension or truncating.
1354  SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy());
1355
1356  unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy());
1357  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1358                                    JumpTableReg, SwitchOp);
1359  JT.Reg = JumpTableReg;
1360
1361  // Emit the range check for the jump table, and branch to the default block
1362  // for the switch statement if the value being switched on exceeds the largest
1363  // case in the switch.
1364  SDValue CMP = DAG.getSetCC(getCurDebugLoc(),
1365                             TLI.getSetCCResultType(Sub.getValueType()), Sub,
1366                             DAG.getConstant(JTH.Last-JTH.First,VT),
1367                             ISD::SETUGT);
1368
1369  // Set NextBlock to be the MBB immediately after the current one, if any.
1370  // This is used to avoid emitting unnecessary branches to the next block.
1371  MachineBasicBlock *NextBlock = 0;
1372  MachineFunction::iterator BBI = CurMBB;
1373
1374  if (++BBI != FuncInfo.MF->end())
1375    NextBlock = BBI;
1376
1377  SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1378                               MVT::Other, CopyTo, CMP,
1379                               DAG.getBasicBlock(JT.Default));
1380
1381  if (JT.MBB != NextBlock)
1382    BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond,
1383                         DAG.getBasicBlock(JT.MBB));
1384
1385  DAG.setRoot(BrCond);
1386}
1387
1388/// visitBitTestHeader - This function emits necessary code to produce value
1389/// suitable for "bit tests"
1390void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B) {
1391  // Subtract the minimum value
1392  SDValue SwitchOp = getValue(B.SValue);
1393  EVT VT = SwitchOp.getValueType();
1394  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1395                            DAG.getConstant(B.First, VT));
1396
1397  // Check range
1398  SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(),
1399                                  TLI.getSetCCResultType(Sub.getValueType()),
1400                                  Sub, DAG.getConstant(B.Range, VT),
1401                                  ISD::SETUGT);
1402
1403  SDValue ShiftOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(),
1404                                       TLI.getPointerTy());
1405
1406  B.Reg = FuncInfo.MakeReg(TLI.getPointerTy());
1407  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1408                                    B.Reg, ShiftOp);
1409
1410  // Set NextBlock to be the MBB immediately after the current one, if any.
1411  // This is used to avoid emitting unnecessary branches to the next block.
1412  MachineBasicBlock *NextBlock = 0;
1413  MachineFunction::iterator BBI = CurMBB;
1414  if (++BBI != FuncInfo.MF->end())
1415    NextBlock = BBI;
1416
1417  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1418
1419  CurMBB->addSuccessor(B.Default);
1420  CurMBB->addSuccessor(MBB);
1421
1422  SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1423                                MVT::Other, CopyTo, RangeCmp,
1424                                DAG.getBasicBlock(B.Default));
1425
1426  if (MBB != NextBlock)
1427    BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo,
1428                          DAG.getBasicBlock(MBB));
1429
1430  DAG.setRoot(BrRange);
1431}
1432
1433/// visitBitTestCase - this function produces one "bit test"
1434void SelectionDAGBuilder::visitBitTestCase(MachineBasicBlock* NextMBB,
1435                                           unsigned Reg,
1436                                           BitTestCase &B) {
1437  // Make desired shift
1438  SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), Reg,
1439                                       TLI.getPointerTy());
1440  SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(),
1441                                  TLI.getPointerTy(),
1442                                  DAG.getConstant(1, TLI.getPointerTy()),
1443                                  ShiftOp);
1444
1445  // Emit bit tests and jumps
1446  SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(),
1447                              TLI.getPointerTy(), SwitchVal,
1448                              DAG.getConstant(B.Mask, TLI.getPointerTy()));
1449  SDValue AndCmp = DAG.getSetCC(getCurDebugLoc(),
1450                                TLI.getSetCCResultType(AndOp.getValueType()),
1451                                AndOp, DAG.getConstant(0, TLI.getPointerTy()),
1452                                ISD::SETNE);
1453
1454  CurMBB->addSuccessor(B.TargetBB);
1455  CurMBB->addSuccessor(NextMBB);
1456
1457  SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1458                              MVT::Other, getControlRoot(),
1459                              AndCmp, DAG.getBasicBlock(B.TargetBB));
1460
1461  // Set NextBlock to be the MBB immediately after the current one, if any.
1462  // This is used to avoid emitting unnecessary branches to the next block.
1463  MachineBasicBlock *NextBlock = 0;
1464  MachineFunction::iterator BBI = CurMBB;
1465  if (++BBI != FuncInfo.MF->end())
1466    NextBlock = BBI;
1467
1468  if (NextMBB != NextBlock)
1469    BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd,
1470                        DAG.getBasicBlock(NextMBB));
1471
1472  DAG.setRoot(BrAnd);
1473}
1474
1475void SelectionDAGBuilder::visitInvoke(InvokeInst &I) {
1476  // Retrieve successors.
1477  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1478  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1479
1480  const Value *Callee(I.getCalledValue());
1481  if (isa<InlineAsm>(Callee))
1482    visitInlineAsm(&I);
1483  else
1484    LowerCallTo(&I, getValue(Callee), false, LandingPad);
1485
1486  // If the value of the invoke is used outside of its defining block, make it
1487  // available as a virtual register.
1488  CopyToExportRegsIfNeeded(&I);
1489
1490  // Update successor info
1491  CurMBB->addSuccessor(Return);
1492  CurMBB->addSuccessor(LandingPad);
1493
1494  // Drop into normal successor.
1495  DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1496                          MVT::Other, getControlRoot(),
1497                          DAG.getBasicBlock(Return)));
1498}
1499
1500void SelectionDAGBuilder::visitUnwind(UnwindInst &I) {
1501}
1502
1503/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1504/// small case ranges).
1505bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
1506                                                 CaseRecVector& WorkList,
1507                                                 Value* SV,
1508                                                 MachineBasicBlock* Default) {
1509  Case& BackCase  = *(CR.Range.second-1);
1510
1511  // Size is the number of Cases represented by this range.
1512  size_t Size = CR.Range.second - CR.Range.first;
1513  if (Size > 3)
1514    return false;
1515
1516  // Get the MachineFunction which holds the current MBB.  This is used when
1517  // inserting any additional MBBs necessary to represent the switch.
1518  MachineFunction *CurMF = FuncInfo.MF;
1519
1520  // Figure out which block is immediately after the current one.
1521  MachineBasicBlock *NextBlock = 0;
1522  MachineFunction::iterator BBI = CR.CaseBB;
1523
1524  if (++BBI != FuncInfo.MF->end())
1525    NextBlock = BBI;
1526
1527  // TODO: If any two of the cases has the same destination, and if one value
1528  // is the same as the other, but has one bit unset that the other has set,
1529  // use bit manipulation to do two compares at once.  For example:
1530  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1531
1532  // Rearrange the case blocks so that the last one falls through if possible.
1533  if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1534    // The last case block won't fall through into 'NextBlock' if we emit the
1535    // branches in this order.  See if rearranging a case value would help.
1536    for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1537      if (I->BB == NextBlock) {
1538        std::swap(*I, BackCase);
1539        break;
1540      }
1541    }
1542  }
1543
1544  // Create a CaseBlock record representing a conditional branch to
1545  // the Case's target mbb if the value being switched on SV is equal
1546  // to C.
1547  MachineBasicBlock *CurBlock = CR.CaseBB;
1548  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1549    MachineBasicBlock *FallThrough;
1550    if (I != E-1) {
1551      FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
1552      CurMF->insert(BBI, FallThrough);
1553
1554      // Put SV in a virtual register to make it available from the new blocks.
1555      ExportFromCurrentBlock(SV);
1556    } else {
1557      // If the last case doesn't match, go to the default block.
1558      FallThrough = Default;
1559    }
1560
1561    Value *RHS, *LHS, *MHS;
1562    ISD::CondCode CC;
1563    if (I->High == I->Low) {
1564      // This is just small small case range :) containing exactly 1 case
1565      CC = ISD::SETEQ;
1566      LHS = SV; RHS = I->High; MHS = NULL;
1567    } else {
1568      CC = ISD::SETLE;
1569      LHS = I->Low; MHS = SV; RHS = I->High;
1570    }
1571    CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock);
1572
1573    // If emitting the first comparison, just call visitSwitchCase to emit the
1574    // code into the current block.  Otherwise, push the CaseBlock onto the
1575    // vector to be later processed by SDISel, and insert the node's MBB
1576    // before the next MBB.
1577    if (CurBlock == CurMBB)
1578      visitSwitchCase(CB);
1579    else
1580      SwitchCases.push_back(CB);
1581
1582    CurBlock = FallThrough;
1583  }
1584
1585  return true;
1586}
1587
1588static inline bool areJTsAllowed(const TargetLowering &TLI) {
1589  return !DisableJumpTables &&
1590          (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
1591           TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
1592}
1593
1594static APInt ComputeRange(const APInt &First, const APInt &Last) {
1595  APInt LastExt(Last), FirstExt(First);
1596  uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
1597  LastExt.sext(BitWidth); FirstExt.sext(BitWidth);
1598  return (LastExt - FirstExt + 1ULL);
1599}
1600
1601/// handleJTSwitchCase - Emit jumptable for current switch case range
1602bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec& CR,
1603                                             CaseRecVector& WorkList,
1604                                             Value* SV,
1605                                             MachineBasicBlock* Default) {
1606  Case& FrontCase = *CR.Range.first;
1607  Case& BackCase  = *(CR.Range.second-1);
1608
1609  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
1610  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
1611
1612  APInt TSize(First.getBitWidth(), 0);
1613  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1614       I!=E; ++I)
1615    TSize += I->size();
1616
1617  if (!areJTsAllowed(TLI) || TSize.ult(APInt(First.getBitWidth(), 4)))
1618    return false;
1619
1620  APInt Range = ComputeRange(First, Last);
1621  double Density = TSize.roundToDouble() / Range.roundToDouble();
1622  if (Density < 0.4)
1623    return false;
1624
1625  DEBUG(dbgs() << "Lowering jump table\n"
1626               << "First entry: " << First << ". Last entry: " << Last << '\n'
1627               << "Range: " << Range
1628               << "Size: " << TSize << ". Density: " << Density << "\n\n");
1629
1630  // Get the MachineFunction which holds the current MBB.  This is used when
1631  // inserting any additional MBBs necessary to represent the switch.
1632  MachineFunction *CurMF = FuncInfo.MF;
1633
1634  // Figure out which block is immediately after the current one.
1635  MachineFunction::iterator BBI = CR.CaseBB;
1636  ++BBI;
1637
1638  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1639
1640  // Create a new basic block to hold the code for loading the address
1641  // of the jump table, and jumping to it.  Update successor information;
1642  // we will either branch to the default case for the switch, or the jump
1643  // table.
1644  MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1645  CurMF->insert(BBI, JumpTableBB);
1646  CR.CaseBB->addSuccessor(Default);
1647  CR.CaseBB->addSuccessor(JumpTableBB);
1648
1649  // Build a vector of destination BBs, corresponding to each target
1650  // of the jump table. If the value of the jump table slot corresponds to
1651  // a case statement, push the case's BB onto the vector, otherwise, push
1652  // the default BB.
1653  std::vector<MachineBasicBlock*> DestBBs;
1654  APInt TEI = First;
1655  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
1656    const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
1657    const APInt &High = cast<ConstantInt>(I->High)->getValue();
1658
1659    if (Low.sle(TEI) && TEI.sle(High)) {
1660      DestBBs.push_back(I->BB);
1661      if (TEI==High)
1662        ++I;
1663    } else {
1664      DestBBs.push_back(Default);
1665    }
1666  }
1667
1668  // Update successor info. Add one edge to each unique successor.
1669  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
1670  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
1671         E = DestBBs.end(); I != E; ++I) {
1672    if (!SuccsHandled[(*I)->getNumber()]) {
1673      SuccsHandled[(*I)->getNumber()] = true;
1674      JumpTableBB->addSuccessor(*I);
1675    }
1676  }
1677
1678  // Create a jump table index for this jump table, or return an existing
1679  // one.
1680  unsigned JTEncoding = TLI.getJumpTableEncoding();
1681  unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
1682                       ->getJumpTableIndex(DestBBs);
1683
1684  // Set the jump table information so that we can codegen it as a second
1685  // MachineBasicBlock
1686  JumpTable JT(-1U, JTI, JumpTableBB, Default);
1687  JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == CurMBB));
1688  if (CR.CaseBB == CurMBB)
1689    visitJumpTableHeader(JT, JTH);
1690
1691  JTCases.push_back(JumpTableBlock(JTH, JT));
1692
1693  return true;
1694}
1695
1696/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
1697/// 2 subtrees.
1698bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
1699                                                  CaseRecVector& WorkList,
1700                                                  Value* SV,
1701                                                  MachineBasicBlock* Default) {
1702  // Get the MachineFunction which holds the current MBB.  This is used when
1703  // inserting any additional MBBs necessary to represent the switch.
1704  MachineFunction *CurMF = FuncInfo.MF;
1705
1706  // Figure out which block is immediately after the current one.
1707  MachineFunction::iterator BBI = CR.CaseBB;
1708  ++BBI;
1709
1710  Case& FrontCase = *CR.Range.first;
1711  Case& BackCase  = *(CR.Range.second-1);
1712  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1713
1714  // Size is the number of Cases represented by this range.
1715  unsigned Size = CR.Range.second - CR.Range.first;
1716
1717  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
1718  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
1719  double FMetric = 0;
1720  CaseItr Pivot = CR.Range.first + Size/2;
1721
1722  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
1723  // (heuristically) allow us to emit JumpTable's later.
1724  APInt TSize(First.getBitWidth(), 0);
1725  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1726       I!=E; ++I)
1727    TSize += I->size();
1728
1729  APInt LSize = FrontCase.size();
1730  APInt RSize = TSize-LSize;
1731  DEBUG(dbgs() << "Selecting best pivot: \n"
1732               << "First: " << First << ", Last: " << Last <<'\n'
1733               << "LSize: " << LSize << ", RSize: " << RSize << '\n');
1734  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
1735       J!=E; ++I, ++J) {
1736    const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
1737    const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
1738    APInt Range = ComputeRange(LEnd, RBegin);
1739    assert((Range - 2ULL).isNonNegative() &&
1740           "Invalid case distance");
1741    double LDensity = (double)LSize.roundToDouble() /
1742                           (LEnd - First + 1ULL).roundToDouble();
1743    double RDensity = (double)RSize.roundToDouble() /
1744                           (Last - RBegin + 1ULL).roundToDouble();
1745    double Metric = Range.logBase2()*(LDensity+RDensity);
1746    // Should always split in some non-trivial place
1747    DEBUG(dbgs() <<"=>Step\n"
1748                 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
1749                 << "LDensity: " << LDensity
1750                 << ", RDensity: " << RDensity << '\n'
1751                 << "Metric: " << Metric << '\n');
1752    if (FMetric < Metric) {
1753      Pivot = J;
1754      FMetric = Metric;
1755      DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
1756    }
1757
1758    LSize += J->size();
1759    RSize -= J->size();
1760  }
1761  if (areJTsAllowed(TLI)) {
1762    // If our case is dense we *really* should handle it earlier!
1763    assert((FMetric > 0) && "Should handle dense range earlier!");
1764  } else {
1765    Pivot = CR.Range.first + Size/2;
1766  }
1767
1768  CaseRange LHSR(CR.Range.first, Pivot);
1769  CaseRange RHSR(Pivot, CR.Range.second);
1770  Constant *C = Pivot->Low;
1771  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
1772
1773  // We know that we branch to the LHS if the Value being switched on is
1774  // less than the Pivot value, C.  We use this to optimize our binary
1775  // tree a bit, by recognizing that if SV is greater than or equal to the
1776  // LHS's Case Value, and that Case Value is exactly one less than the
1777  // Pivot's Value, then we can branch directly to the LHS's Target,
1778  // rather than creating a leaf node for it.
1779  if ((LHSR.second - LHSR.first) == 1 &&
1780      LHSR.first->High == CR.GE &&
1781      cast<ConstantInt>(C)->getValue() ==
1782      (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
1783    TrueBB = LHSR.first->BB;
1784  } else {
1785    TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1786    CurMF->insert(BBI, TrueBB);
1787    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
1788
1789    // Put SV in a virtual register to make it available from the new blocks.
1790    ExportFromCurrentBlock(SV);
1791  }
1792
1793  // Similar to the optimization above, if the Value being switched on is
1794  // known to be less than the Constant CR.LT, and the current Case Value
1795  // is CR.LT - 1, then we can branch directly to the target block for
1796  // the current Case Value, rather than emitting a RHS leaf node for it.
1797  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
1798      cast<ConstantInt>(RHSR.first->Low)->getValue() ==
1799      (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
1800    FalseBB = RHSR.first->BB;
1801  } else {
1802    FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1803    CurMF->insert(BBI, FalseBB);
1804    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
1805
1806    // Put SV in a virtual register to make it available from the new blocks.
1807    ExportFromCurrentBlock(SV);
1808  }
1809
1810  // Create a CaseBlock record representing a conditional branch to
1811  // the LHS node if the value being switched on SV is less than C.
1812  // Otherwise, branch to LHS.
1813  CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
1814
1815  if (CR.CaseBB == CurMBB)
1816    visitSwitchCase(CB);
1817  else
1818    SwitchCases.push_back(CB);
1819
1820  return true;
1821}
1822
1823/// handleBitTestsSwitchCase - if current case range has few destination and
1824/// range span less, than machine word bitwidth, encode case range into series
1825/// of masks and emit bit tests with these masks.
1826bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
1827                                                   CaseRecVector& WorkList,
1828                                                   Value* SV,
1829                                                   MachineBasicBlock* Default){
1830  EVT PTy = TLI.getPointerTy();
1831  unsigned IntPtrBits = PTy.getSizeInBits();
1832
1833  Case& FrontCase = *CR.Range.first;
1834  Case& BackCase  = *(CR.Range.second-1);
1835
1836  // Get the MachineFunction which holds the current MBB.  This is used when
1837  // inserting any additional MBBs necessary to represent the switch.
1838  MachineFunction *CurMF = FuncInfo.MF;
1839
1840  // If target does not have legal shift left, do not emit bit tests at all.
1841  if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
1842    return false;
1843
1844  size_t numCmps = 0;
1845  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1846       I!=E; ++I) {
1847    // Single case counts one, case range - two.
1848    numCmps += (I->Low == I->High ? 1 : 2);
1849  }
1850
1851  // Count unique destinations
1852  SmallSet<MachineBasicBlock*, 4> Dests;
1853  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
1854    Dests.insert(I->BB);
1855    if (Dests.size() > 3)
1856      // Don't bother the code below, if there are too much unique destinations
1857      return false;
1858  }
1859  DEBUG(dbgs() << "Total number of unique destinations: "
1860        << Dests.size() << '\n'
1861        << "Total number of comparisons: " << numCmps << '\n');
1862
1863  // Compute span of values.
1864  const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
1865  const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
1866  APInt cmpRange = maxValue - minValue;
1867
1868  DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
1869               << "Low bound: " << minValue << '\n'
1870               << "High bound: " << maxValue << '\n');
1871
1872  if (cmpRange.uge(APInt(cmpRange.getBitWidth(), IntPtrBits)) ||
1873      (!(Dests.size() == 1 && numCmps >= 3) &&
1874       !(Dests.size() == 2 && numCmps >= 5) &&
1875       !(Dests.size() >= 3 && numCmps >= 6)))
1876    return false;
1877
1878  DEBUG(dbgs() << "Emitting bit tests\n");
1879  APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
1880
1881  // Optimize the case where all the case values fit in a
1882  // word without having to subtract minValue. In this case,
1883  // we can optimize away the subtraction.
1884  if (minValue.isNonNegative() &&
1885      maxValue.slt(APInt(maxValue.getBitWidth(), IntPtrBits))) {
1886    cmpRange = maxValue;
1887  } else {
1888    lowBound = minValue;
1889  }
1890
1891  CaseBitsVector CasesBits;
1892  unsigned i, count = 0;
1893
1894  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
1895    MachineBasicBlock* Dest = I->BB;
1896    for (i = 0; i < count; ++i)
1897      if (Dest == CasesBits[i].BB)
1898        break;
1899
1900    if (i == count) {
1901      assert((count < 3) && "Too much destinations to test!");
1902      CasesBits.push_back(CaseBits(0, Dest, 0));
1903      count++;
1904    }
1905
1906    const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
1907    const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
1908
1909    uint64_t lo = (lowValue - lowBound).getZExtValue();
1910    uint64_t hi = (highValue - lowBound).getZExtValue();
1911
1912    for (uint64_t j = lo; j <= hi; j++) {
1913      CasesBits[i].Mask |=  1ULL << j;
1914      CasesBits[i].Bits++;
1915    }
1916
1917  }
1918  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
1919
1920  BitTestInfo BTC;
1921
1922  // Figure out which block is immediately after the current one.
1923  MachineFunction::iterator BBI = CR.CaseBB;
1924  ++BBI;
1925
1926  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1927
1928  DEBUG(dbgs() << "Cases:\n");
1929  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
1930    DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
1931                 << ", Bits: " << CasesBits[i].Bits
1932                 << ", BB: " << CasesBits[i].BB << '\n');
1933
1934    MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1935    CurMF->insert(BBI, CaseBB);
1936    BTC.push_back(BitTestCase(CasesBits[i].Mask,
1937                              CaseBB,
1938                              CasesBits[i].BB));
1939
1940    // Put SV in a virtual register to make it available from the new blocks.
1941    ExportFromCurrentBlock(SV);
1942  }
1943
1944  BitTestBlock BTB(lowBound, cmpRange, SV,
1945                   -1U, (CR.CaseBB == CurMBB),
1946                   CR.CaseBB, Default, BTC);
1947
1948  if (CR.CaseBB == CurMBB)
1949    visitBitTestHeader(BTB);
1950
1951  BitTestCases.push_back(BTB);
1952
1953  return true;
1954}
1955
1956/// Clusterify - Transform simple list of Cases into list of CaseRange's
1957size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
1958                                       const SwitchInst& SI) {
1959  size_t numCmps = 0;
1960
1961  // Start with "simple" cases
1962  for (size_t i = 1; i < SI.getNumSuccessors(); ++i) {
1963    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
1964    Cases.push_back(Case(SI.getSuccessorValue(i),
1965                         SI.getSuccessorValue(i),
1966                         SMBB));
1967  }
1968  std::sort(Cases.begin(), Cases.end(), CaseCmp());
1969
1970  // Merge case into clusters
1971  if (Cases.size() >= 2)
1972    // Must recompute end() each iteration because it may be
1973    // invalidated by erase if we hold on to it
1974    for (CaseItr I = Cases.begin(), J = ++(Cases.begin()); J != Cases.end(); ) {
1975      const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
1976      const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
1977      MachineBasicBlock* nextBB = J->BB;
1978      MachineBasicBlock* currentBB = I->BB;
1979
1980      // If the two neighboring cases go to the same destination, merge them
1981      // into a single case.
1982      if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
1983        I->High = J->High;
1984        J = Cases.erase(J);
1985      } else {
1986        I = J++;
1987      }
1988    }
1989
1990  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
1991    if (I->Low != I->High)
1992      // A range counts double, since it requires two compares.
1993      ++numCmps;
1994  }
1995
1996  return numCmps;
1997}
1998
1999void SelectionDAGBuilder::visitSwitch(SwitchInst &SI) {
2000  // Figure out which block is immediately after the current one.
2001  MachineBasicBlock *NextBlock = 0;
2002  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2003
2004  // If there is only the default destination, branch to it if it is not the
2005  // next basic block.  Otherwise, just fall through.
2006  if (SI.getNumOperands() == 2) {
2007    // Update machine-CFG edges.
2008
2009    // If this is not a fall-through branch, emit the branch.
2010    CurMBB->addSuccessor(Default);
2011    if (Default != NextBlock)
2012      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
2013                              MVT::Other, getControlRoot(),
2014                              DAG.getBasicBlock(Default)));
2015
2016    return;
2017  }
2018
2019  // If there are any non-default case statements, create a vector of Cases
2020  // representing each one, and sort the vector so that we can efficiently
2021  // create a binary search tree from them.
2022  CaseVector Cases;
2023  size_t numCmps = Clusterify(Cases, SI);
2024  DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2025               << ". Total compares: " << numCmps << '\n');
2026  numCmps = 0;
2027
2028  // Get the Value to be switched on and default basic blocks, which will be
2029  // inserted into CaseBlock records, representing basic blocks in the binary
2030  // search tree.
2031  Value *SV = SI.getOperand(0);
2032
2033  // Push the initial CaseRec onto the worklist
2034  CaseRecVector WorkList;
2035  WorkList.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end())));
2036
2037  while (!WorkList.empty()) {
2038    // Grab a record representing a case range to process off the worklist
2039    CaseRec CR = WorkList.back();
2040    WorkList.pop_back();
2041
2042    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default))
2043      continue;
2044
2045    // If the range has few cases (two or less) emit a series of specific
2046    // tests.
2047    if (handleSmallSwitchRange(CR, WorkList, SV, Default))
2048      continue;
2049
2050    // If the switch has more than 5 blocks, and at least 40% dense, and the
2051    // target supports indirect branches, then emit a jump table rather than
2052    // lowering the switch to a binary tree of conditional branches.
2053    if (handleJTSwitchCase(CR, WorkList, SV, Default))
2054      continue;
2055
2056    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2057    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2058    handleBTSplitSwitchCase(CR, WorkList, SV, Default);
2059  }
2060}
2061
2062void SelectionDAGBuilder::visitIndirectBr(IndirectBrInst &I) {
2063  // Update machine-CFG edges with unique successors.
2064  SmallVector<BasicBlock*, 32> succs;
2065  succs.reserve(I.getNumSuccessors());
2066  for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i)
2067    succs.push_back(I.getSuccessor(i));
2068  array_pod_sort(succs.begin(), succs.end());
2069  succs.erase(std::unique(succs.begin(), succs.end()), succs.end());
2070  for (unsigned i = 0, e = succs.size(); i != e; ++i)
2071    CurMBB->addSuccessor(FuncInfo.MBBMap[succs[i]]);
2072
2073  DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(),
2074                          MVT::Other, getControlRoot(),
2075                          getValue(I.getAddress())));
2076}
2077
2078void SelectionDAGBuilder::visitFSub(User &I) {
2079  // -0.0 - X --> fneg
2080  const Type *Ty = I.getType();
2081  if (Ty->isVectorTy()) {
2082    if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) {
2083      const VectorType *DestTy = cast<VectorType>(I.getType());
2084      const Type *ElTy = DestTy->getElementType();
2085      unsigned VL = DestTy->getNumElements();
2086      std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy));
2087      Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size());
2088      if (CV == CNZ) {
2089        SDValue Op2 = getValue(I.getOperand(1));
2090        setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2091                                 Op2.getValueType(), Op2));
2092        return;
2093      }
2094    }
2095  }
2096
2097  if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
2098    if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) {
2099      SDValue Op2 = getValue(I.getOperand(1));
2100      setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2101                               Op2.getValueType(), Op2));
2102      return;
2103    }
2104
2105  visitBinary(I, ISD::FSUB);
2106}
2107
2108void SelectionDAGBuilder::visitBinary(User &I, unsigned OpCode) {
2109  SDValue Op1 = getValue(I.getOperand(0));
2110  SDValue Op2 = getValue(I.getOperand(1));
2111  setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(),
2112                           Op1.getValueType(), Op1, Op2));
2113}
2114
2115void SelectionDAGBuilder::visitShift(User &I, unsigned Opcode) {
2116  SDValue Op1 = getValue(I.getOperand(0));
2117  SDValue Op2 = getValue(I.getOperand(1));
2118  if (!I.getType()->isVectorTy() &&
2119      Op2.getValueType() != TLI.getShiftAmountTy()) {
2120    // If the operand is smaller than the shift count type, promote it.
2121    EVT PTy = TLI.getPointerTy();
2122    EVT STy = TLI.getShiftAmountTy();
2123    if (STy.bitsGT(Op2.getValueType()))
2124      Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(),
2125                        TLI.getShiftAmountTy(), Op2);
2126    // If the operand is larger than the shift count type but the shift
2127    // count type has enough bits to represent any shift value, truncate
2128    // it now. This is a common case and it exposes the truncate to
2129    // optimization early.
2130    else if (STy.getSizeInBits() >=
2131             Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2132      Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2133                        TLI.getShiftAmountTy(), Op2);
2134    // Otherwise we'll need to temporarily settle for some other
2135    // convenient type; type legalization will make adjustments as
2136    // needed.
2137    else if (PTy.bitsLT(Op2.getValueType()))
2138      Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2139                        TLI.getPointerTy(), Op2);
2140    else if (PTy.bitsGT(Op2.getValueType()))
2141      Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(),
2142                        TLI.getPointerTy(), Op2);
2143  }
2144
2145  setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(),
2146                           Op1.getValueType(), Op1, Op2));
2147}
2148
2149void SelectionDAGBuilder::visitICmp(User &I) {
2150  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2151  if (ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2152    predicate = IC->getPredicate();
2153  else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2154    predicate = ICmpInst::Predicate(IC->getPredicate());
2155  SDValue Op1 = getValue(I.getOperand(0));
2156  SDValue Op2 = getValue(I.getOperand(1));
2157  ISD::CondCode Opcode = getICmpCondCode(predicate);
2158
2159  EVT DestVT = TLI.getValueType(I.getType());
2160  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode));
2161}
2162
2163void SelectionDAGBuilder::visitFCmp(User &I) {
2164  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2165  if (FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2166    predicate = FC->getPredicate();
2167  else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2168    predicate = FCmpInst::Predicate(FC->getPredicate());
2169  SDValue Op1 = getValue(I.getOperand(0));
2170  SDValue Op2 = getValue(I.getOperand(1));
2171  ISD::CondCode Condition = getFCmpCondCode(predicate);
2172  EVT DestVT = TLI.getValueType(I.getType());
2173  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition));
2174}
2175
2176void SelectionDAGBuilder::visitSelect(User &I) {
2177  SmallVector<EVT, 4> ValueVTs;
2178  ComputeValueVTs(TLI, I.getType(), ValueVTs);
2179  unsigned NumValues = ValueVTs.size();
2180  if (NumValues == 0) return;
2181
2182  SmallVector<SDValue, 4> Values(NumValues);
2183  SDValue Cond     = getValue(I.getOperand(0));
2184  SDValue TrueVal  = getValue(I.getOperand(1));
2185  SDValue FalseVal = getValue(I.getOperand(2));
2186
2187  for (unsigned i = 0; i != NumValues; ++i)
2188    Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(),
2189                          TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2190                            Cond,
2191                            SDValue(TrueVal.getNode(),
2192                                    TrueVal.getResNo() + i),
2193                            SDValue(FalseVal.getNode(),
2194                                    FalseVal.getResNo() + i));
2195
2196  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2197                           DAG.getVTList(&ValueVTs[0], NumValues),
2198                           &Values[0], NumValues));
2199}
2200
2201void SelectionDAGBuilder::visitTrunc(User &I) {
2202  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2203  SDValue N = getValue(I.getOperand(0));
2204  EVT DestVT = TLI.getValueType(I.getType());
2205  setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N));
2206}
2207
2208void SelectionDAGBuilder::visitZExt(User &I) {
2209  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2210  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2211  SDValue N = getValue(I.getOperand(0));
2212  EVT DestVT = TLI.getValueType(I.getType());
2213  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N));
2214}
2215
2216void SelectionDAGBuilder::visitSExt(User &I) {
2217  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2218  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2219  SDValue N = getValue(I.getOperand(0));
2220  EVT DestVT = TLI.getValueType(I.getType());
2221  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N));
2222}
2223
2224void SelectionDAGBuilder::visitFPTrunc(User &I) {
2225  // FPTrunc is never a no-op cast, no need to check
2226  SDValue N = getValue(I.getOperand(0));
2227  EVT DestVT = TLI.getValueType(I.getType());
2228  setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(),
2229                           DestVT, N, DAG.getIntPtrConstant(0)));
2230}
2231
2232void SelectionDAGBuilder::visitFPExt(User &I){
2233  // FPTrunc is never a no-op cast, no need to check
2234  SDValue N = getValue(I.getOperand(0));
2235  EVT DestVT = TLI.getValueType(I.getType());
2236  setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N));
2237}
2238
2239void SelectionDAGBuilder::visitFPToUI(User &I) {
2240  // FPToUI is never a no-op cast, no need to check
2241  SDValue N = getValue(I.getOperand(0));
2242  EVT DestVT = TLI.getValueType(I.getType());
2243  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N));
2244}
2245
2246void SelectionDAGBuilder::visitFPToSI(User &I) {
2247  // FPToSI is never a no-op cast, no need to check
2248  SDValue N = getValue(I.getOperand(0));
2249  EVT DestVT = TLI.getValueType(I.getType());
2250  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N));
2251}
2252
2253void SelectionDAGBuilder::visitUIToFP(User &I) {
2254  // UIToFP is never a no-op cast, no need to check
2255  SDValue N = getValue(I.getOperand(0));
2256  EVT DestVT = TLI.getValueType(I.getType());
2257  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N));
2258}
2259
2260void SelectionDAGBuilder::visitSIToFP(User &I){
2261  // SIToFP is never a no-op cast, no need to check
2262  SDValue N = getValue(I.getOperand(0));
2263  EVT DestVT = TLI.getValueType(I.getType());
2264  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N));
2265}
2266
2267void SelectionDAGBuilder::visitPtrToInt(User &I) {
2268  // What to do depends on the size of the integer and the size of the pointer.
2269  // We can either truncate, zero extend, or no-op, accordingly.
2270  SDValue N = getValue(I.getOperand(0));
2271  EVT SrcVT = N.getValueType();
2272  EVT DestVT = TLI.getValueType(I.getType());
2273  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2274}
2275
2276void SelectionDAGBuilder::visitIntToPtr(User &I) {
2277  // What to do depends on the size of the integer and the size of the pointer.
2278  // We can either truncate, zero extend, or no-op, accordingly.
2279  SDValue N = getValue(I.getOperand(0));
2280  EVT SrcVT = N.getValueType();
2281  EVT DestVT = TLI.getValueType(I.getType());
2282  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2283}
2284
2285void SelectionDAGBuilder::visitBitCast(User &I) {
2286  SDValue N = getValue(I.getOperand(0));
2287  EVT DestVT = TLI.getValueType(I.getType());
2288
2289  // BitCast assures us that source and destination are the same size so this is
2290  // either a BIT_CONVERT or a no-op.
2291  if (DestVT != N.getValueType())
2292    setValue(&I, DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
2293                             DestVT, N)); // convert types.
2294  else
2295    setValue(&I, N);            // noop cast.
2296}
2297
2298void SelectionDAGBuilder::visitInsertElement(User &I) {
2299  SDValue InVec = getValue(I.getOperand(0));
2300  SDValue InVal = getValue(I.getOperand(1));
2301  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2302                              TLI.getPointerTy(),
2303                              getValue(I.getOperand(2)));
2304  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(),
2305                           TLI.getValueType(I.getType()),
2306                           InVec, InVal, InIdx));
2307}
2308
2309void SelectionDAGBuilder::visitExtractElement(User &I) {
2310  SDValue InVec = getValue(I.getOperand(0));
2311  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2312                              TLI.getPointerTy(),
2313                              getValue(I.getOperand(1)));
2314  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2315                           TLI.getValueType(I.getType()), InVec, InIdx));
2316}
2317
2318// Utility for visitShuffleVector - Returns true if the mask is mask starting
2319// from SIndx and increasing to the element length (undefs are allowed).
2320static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) {
2321  unsigned MaskNumElts = Mask.size();
2322  for (unsigned i = 0; i != MaskNumElts; ++i)
2323    if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx)))
2324      return false;
2325  return true;
2326}
2327
2328void SelectionDAGBuilder::visitShuffleVector(User &I) {
2329  SmallVector<int, 8> Mask;
2330  SDValue Src1 = getValue(I.getOperand(0));
2331  SDValue Src2 = getValue(I.getOperand(1));
2332
2333  // Convert the ConstantVector mask operand into an array of ints, with -1
2334  // representing undef values.
2335  SmallVector<Constant*, 8> MaskElts;
2336  cast<Constant>(I.getOperand(2))->getVectorElements(MaskElts);
2337  unsigned MaskNumElts = MaskElts.size();
2338  for (unsigned i = 0; i != MaskNumElts; ++i) {
2339    if (isa<UndefValue>(MaskElts[i]))
2340      Mask.push_back(-1);
2341    else
2342      Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue());
2343  }
2344
2345  EVT VT = TLI.getValueType(I.getType());
2346  EVT SrcVT = Src1.getValueType();
2347  unsigned SrcNumElts = SrcVT.getVectorNumElements();
2348
2349  if (SrcNumElts == MaskNumElts) {
2350    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2351                                      &Mask[0]));
2352    return;
2353  }
2354
2355  // Normalize the shuffle vector since mask and vector length don't match.
2356  if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2357    // Mask is longer than the source vectors and is a multiple of the source
2358    // vectors.  We can use concatenate vector to make the mask and vectors
2359    // lengths match.
2360    if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) {
2361      // The shuffle is concatenating two vectors together.
2362      setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2363                               VT, Src1, Src2));
2364      return;
2365    }
2366
2367    // Pad both vectors with undefs to make them the same length as the mask.
2368    unsigned NumConcat = MaskNumElts / SrcNumElts;
2369    bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2370    bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2371    SDValue UndefVal = DAG.getUNDEF(SrcVT);
2372
2373    SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2374    SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2375    MOps1[0] = Src1;
2376    MOps2[0] = Src2;
2377
2378    Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2379                                                  getCurDebugLoc(), VT,
2380                                                  &MOps1[0], NumConcat);
2381    Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2382                                                  getCurDebugLoc(), VT,
2383                                                  &MOps2[0], NumConcat);
2384
2385    // Readjust mask for new input vector length.
2386    SmallVector<int, 8> MappedOps;
2387    for (unsigned i = 0; i != MaskNumElts; ++i) {
2388      int Idx = Mask[i];
2389      if (Idx < (int)SrcNumElts)
2390        MappedOps.push_back(Idx);
2391      else
2392        MappedOps.push_back(Idx + MaskNumElts - SrcNumElts);
2393    }
2394
2395    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2396                                      &MappedOps[0]));
2397    return;
2398  }
2399
2400  if (SrcNumElts > MaskNumElts) {
2401    // Analyze the access pattern of the vector to see if we can extract
2402    // two subvectors and do the shuffle. The analysis is done by calculating
2403    // the range of elements the mask access on both vectors.
2404    int MinRange[2] = { SrcNumElts+1, SrcNumElts+1};
2405    int MaxRange[2] = {-1, -1};
2406
2407    for (unsigned i = 0; i != MaskNumElts; ++i) {
2408      int Idx = Mask[i];
2409      int Input = 0;
2410      if (Idx < 0)
2411        continue;
2412
2413      if (Idx >= (int)SrcNumElts) {
2414        Input = 1;
2415        Idx -= SrcNumElts;
2416      }
2417      if (Idx > MaxRange[Input])
2418        MaxRange[Input] = Idx;
2419      if (Idx < MinRange[Input])
2420        MinRange[Input] = Idx;
2421    }
2422
2423    // Check if the access is smaller than the vector size and can we find
2424    // a reasonable extract index.
2425    int RangeUse[2] = { 2, 2 };  // 0 = Unused, 1 = Extract, 2 = Can not
2426                                 // Extract.
2427    int StartIdx[2];  // StartIdx to extract from
2428    for (int Input=0; Input < 2; ++Input) {
2429      if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) {
2430        RangeUse[Input] = 0; // Unused
2431        StartIdx[Input] = 0;
2432      } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) {
2433        // Fits within range but we should see if we can find a good
2434        // start index that is a multiple of the mask length.
2435        if (MaxRange[Input] < (int)MaskNumElts) {
2436          RangeUse[Input] = 1; // Extract from beginning of the vector
2437          StartIdx[Input] = 0;
2438        } else {
2439          StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2440          if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2441              StartIdx[Input] + MaskNumElts < SrcNumElts)
2442            RangeUse[Input] = 1; // Extract from a multiple of the mask length.
2443        }
2444      }
2445    }
2446
2447    if (RangeUse[0] == 0 && RangeUse[1] == 0) {
2448      setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
2449      return;
2450    }
2451    else if (RangeUse[0] < 2 && RangeUse[1] < 2) {
2452      // Extract appropriate subvector and generate a vector shuffle
2453      for (int Input=0; Input < 2; ++Input) {
2454        SDValue &Src = Input == 0 ? Src1 : Src2;
2455        if (RangeUse[Input] == 0)
2456          Src = DAG.getUNDEF(VT);
2457        else
2458          Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT,
2459                            Src, DAG.getIntPtrConstant(StartIdx[Input]));
2460      }
2461
2462      // Calculate new mask.
2463      SmallVector<int, 8> MappedOps;
2464      for (unsigned i = 0; i != MaskNumElts; ++i) {
2465        int Idx = Mask[i];
2466        if (Idx < 0)
2467          MappedOps.push_back(Idx);
2468        else if (Idx < (int)SrcNumElts)
2469          MappedOps.push_back(Idx - StartIdx[0]);
2470        else
2471          MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts);
2472      }
2473
2474      setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2475                                        &MappedOps[0]));
2476      return;
2477    }
2478  }
2479
2480  // We can't use either concat vectors or extract subvectors so fall back to
2481  // replacing the shuffle with extract and build vector.
2482  // to insert and build vector.
2483  EVT EltVT = VT.getVectorElementType();
2484  EVT PtrVT = TLI.getPointerTy();
2485  SmallVector<SDValue,8> Ops;
2486  for (unsigned i = 0; i != MaskNumElts; ++i) {
2487    if (Mask[i] < 0) {
2488      Ops.push_back(DAG.getUNDEF(EltVT));
2489    } else {
2490      int Idx = Mask[i];
2491      SDValue Res;
2492
2493      if (Idx < (int)SrcNumElts)
2494        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2495                          EltVT, Src1, DAG.getConstant(Idx, PtrVT));
2496      else
2497        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2498                          EltVT, Src2,
2499                          DAG.getConstant(Idx - SrcNumElts, PtrVT));
2500
2501      Ops.push_back(Res);
2502    }
2503  }
2504
2505  setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
2506                           VT, &Ops[0], Ops.size()));
2507}
2508
2509void SelectionDAGBuilder::visitInsertValue(InsertValueInst &I) {
2510  const Value *Op0 = I.getOperand(0);
2511  const Value *Op1 = I.getOperand(1);
2512  const Type *AggTy = I.getType();
2513  const Type *ValTy = Op1->getType();
2514  bool IntoUndef = isa<UndefValue>(Op0);
2515  bool FromUndef = isa<UndefValue>(Op1);
2516
2517  unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
2518                                            I.idx_begin(), I.idx_end());
2519
2520  SmallVector<EVT, 4> AggValueVTs;
2521  ComputeValueVTs(TLI, AggTy, AggValueVTs);
2522  SmallVector<EVT, 4> ValValueVTs;
2523  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2524
2525  unsigned NumAggValues = AggValueVTs.size();
2526  unsigned NumValValues = ValValueVTs.size();
2527  SmallVector<SDValue, 4> Values(NumAggValues);
2528
2529  SDValue Agg = getValue(Op0);
2530  SDValue Val = getValue(Op1);
2531  unsigned i = 0;
2532  // Copy the beginning value(s) from the original aggregate.
2533  for (; i != LinearIndex; ++i)
2534    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2535                SDValue(Agg.getNode(), Agg.getResNo() + i);
2536  // Copy values from the inserted value(s).
2537  for (; i != LinearIndex + NumValValues; ++i)
2538    Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2539                SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
2540  // Copy remaining value(s) from the original aggregate.
2541  for (; i != NumAggValues; ++i)
2542    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2543                SDValue(Agg.getNode(), Agg.getResNo() + i);
2544
2545  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2546                           DAG.getVTList(&AggValueVTs[0], NumAggValues),
2547                           &Values[0], NumAggValues));
2548}
2549
2550void SelectionDAGBuilder::visitExtractValue(ExtractValueInst &I) {
2551  const Value *Op0 = I.getOperand(0);
2552  const Type *AggTy = Op0->getType();
2553  const Type *ValTy = I.getType();
2554  bool OutOfUndef = isa<UndefValue>(Op0);
2555
2556  unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
2557                                            I.idx_begin(), I.idx_end());
2558
2559  SmallVector<EVT, 4> ValValueVTs;
2560  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2561
2562  unsigned NumValValues = ValValueVTs.size();
2563  SmallVector<SDValue, 4> Values(NumValValues);
2564
2565  SDValue Agg = getValue(Op0);
2566  // Copy out the selected value(s).
2567  for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
2568    Values[i - LinearIndex] =
2569      OutOfUndef ?
2570        DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
2571        SDValue(Agg.getNode(), Agg.getResNo() + i);
2572
2573  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2574                           DAG.getVTList(&ValValueVTs[0], NumValValues),
2575                           &Values[0], NumValValues));
2576}
2577
2578void SelectionDAGBuilder::visitGetElementPtr(User &I) {
2579  SDValue N = getValue(I.getOperand(0));
2580  const Type *Ty = I.getOperand(0)->getType();
2581
2582  for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
2583       OI != E; ++OI) {
2584    Value *Idx = *OI;
2585    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2586      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2587      if (Field) {
2588        // N = N + Offset
2589        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
2590        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2591                        DAG.getIntPtrConstant(Offset));
2592      }
2593
2594      Ty = StTy->getElementType(Field);
2595    } else if (const UnionType *UnTy = dyn_cast<UnionType>(Ty)) {
2596      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2597
2598      // Offset canonically 0 for unions, but type changes
2599      Ty = UnTy->getElementType(Field);
2600    } else {
2601      Ty = cast<SequentialType>(Ty)->getElementType();
2602
2603      // If this is a constant subscript, handle it quickly.
2604      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2605        if (CI->getZExtValue() == 0) continue;
2606        uint64_t Offs =
2607            TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
2608        SDValue OffsVal;
2609        EVT PTy = TLI.getPointerTy();
2610        unsigned PtrBits = PTy.getSizeInBits();
2611        if (PtrBits < 64)
2612          OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2613                                TLI.getPointerTy(),
2614                                DAG.getConstant(Offs, MVT::i64));
2615        else
2616          OffsVal = DAG.getIntPtrConstant(Offs);
2617
2618        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2619                        OffsVal);
2620        continue;
2621      }
2622
2623      // N = N + Idx * ElementSize;
2624      APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
2625                                TD->getTypeAllocSize(Ty));
2626      SDValue IdxN = getValue(Idx);
2627
2628      // If the index is smaller or larger than intptr_t, truncate or extend
2629      // it.
2630      IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType());
2631
2632      // If this is a multiply by a power of two, turn it into a shl
2633      // immediately.  This is a very common case.
2634      if (ElementSize != 1) {
2635        if (ElementSize.isPowerOf2()) {
2636          unsigned Amt = ElementSize.logBase2();
2637          IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(),
2638                             N.getValueType(), IdxN,
2639                             DAG.getConstant(Amt, TLI.getPointerTy()));
2640        } else {
2641          SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy());
2642          IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(),
2643                             N.getValueType(), IdxN, Scale);
2644        }
2645      }
2646
2647      N = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2648                      N.getValueType(), N, IdxN);
2649    }
2650  }
2651
2652  setValue(&I, N);
2653}
2654
2655void SelectionDAGBuilder::visitAlloca(AllocaInst &I) {
2656  // If this is a fixed sized alloca in the entry block of the function,
2657  // allocate it statically on the stack.
2658  if (FuncInfo.StaticAllocaMap.count(&I))
2659    return;   // getValue will auto-populate this.
2660
2661  const Type *Ty = I.getAllocatedType();
2662  uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
2663  unsigned Align =
2664    std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
2665             I.getAlignment());
2666
2667  SDValue AllocSize = getValue(I.getArraySize());
2668
2669  AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), AllocSize.getValueType(),
2670                          AllocSize,
2671                          DAG.getConstant(TySize, AllocSize.getValueType()));
2672
2673  EVT IntPtr = TLI.getPointerTy();
2674  AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr);
2675
2676  // Handle alignment.  If the requested alignment is less than or equal to
2677  // the stack alignment, ignore it.  If the size is greater than or equal to
2678  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
2679  unsigned StackAlign =
2680    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
2681  if (Align <= StackAlign)
2682    Align = 0;
2683
2684  // Round the size of the allocation up to the stack alignment size
2685  // by add SA-1 to the size.
2686  AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2687                          AllocSize.getValueType(), AllocSize,
2688                          DAG.getIntPtrConstant(StackAlign-1));
2689
2690  // Mask out the low bits for alignment purposes.
2691  AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(),
2692                          AllocSize.getValueType(), AllocSize,
2693                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
2694
2695  SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
2696  SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
2697  SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(),
2698                            VTs, Ops, 3);
2699  setValue(&I, DSA);
2700  DAG.setRoot(DSA.getValue(1));
2701
2702  // Inform the Frame Information that we have just allocated a variable-sized
2703  // object.
2704  FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject();
2705}
2706
2707void SelectionDAGBuilder::visitLoad(LoadInst &I) {
2708  const Value *SV = I.getOperand(0);
2709  SDValue Ptr = getValue(SV);
2710
2711  const Type *Ty = I.getType();
2712
2713  bool isVolatile = I.isVolatile();
2714  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
2715  unsigned Alignment = I.getAlignment();
2716
2717  SmallVector<EVT, 4> ValueVTs;
2718  SmallVector<uint64_t, 4> Offsets;
2719  ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
2720  unsigned NumValues = ValueVTs.size();
2721  if (NumValues == 0)
2722    return;
2723
2724  SDValue Root;
2725  bool ConstantMemory = false;
2726  if (I.isVolatile())
2727    // Serialize volatile loads with other side effects.
2728    Root = getRoot();
2729  else if (AA->pointsToConstantMemory(SV)) {
2730    // Do not serialize (non-volatile) loads of constant memory with anything.
2731    Root = DAG.getEntryNode();
2732    ConstantMemory = true;
2733  } else {
2734    // Do not serialize non-volatile loads against each other.
2735    Root = DAG.getRoot();
2736  }
2737
2738  SmallVector<SDValue, 4> Values(NumValues);
2739  SmallVector<SDValue, 4> Chains(NumValues);
2740  EVT PtrVT = Ptr.getValueType();
2741  for (unsigned i = 0; i != NumValues; ++i) {
2742    SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2743                            PtrVT, Ptr,
2744                            DAG.getConstant(Offsets[i], PtrVT));
2745    SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root,
2746                            A, SV, Offsets[i], isVolatile,
2747                            isNonTemporal, Alignment);
2748
2749    Values[i] = L;
2750    Chains[i] = L.getValue(1);
2751  }
2752
2753  if (!ConstantMemory) {
2754    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
2755                                MVT::Other, &Chains[0], NumValues);
2756    if (isVolatile)
2757      DAG.setRoot(Chain);
2758    else
2759      PendingLoads.push_back(Chain);
2760  }
2761
2762  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2763                           DAG.getVTList(&ValueVTs[0], NumValues),
2764                           &Values[0], NumValues));
2765}
2766
2767void SelectionDAGBuilder::visitStore(StoreInst &I) {
2768  Value *SrcV = I.getOperand(0);
2769  Value *PtrV = I.getOperand(1);
2770
2771  SmallVector<EVT, 4> ValueVTs;
2772  SmallVector<uint64_t, 4> Offsets;
2773  ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
2774  unsigned NumValues = ValueVTs.size();
2775  if (NumValues == 0)
2776    return;
2777
2778  // Get the lowered operands. Note that we do this after
2779  // checking if NumResults is zero, because with zero results
2780  // the operands won't have values in the map.
2781  SDValue Src = getValue(SrcV);
2782  SDValue Ptr = getValue(PtrV);
2783
2784  SDValue Root = getRoot();
2785  SmallVector<SDValue, 4> Chains(NumValues);
2786  EVT PtrVT = Ptr.getValueType();
2787  bool isVolatile = I.isVolatile();
2788  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
2789  unsigned Alignment = I.getAlignment();
2790
2791  for (unsigned i = 0; i != NumValues; ++i) {
2792    SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr,
2793                              DAG.getConstant(Offsets[i], PtrVT));
2794    Chains[i] = DAG.getStore(Root, getCurDebugLoc(),
2795                             SDValue(Src.getNode(), Src.getResNo() + i),
2796                             Add, PtrV, Offsets[i], isVolatile,
2797                             isNonTemporal, Alignment);
2798  }
2799
2800  DAG.setRoot(DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
2801                          MVT::Other, &Chains[0], NumValues));
2802}
2803
2804/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
2805/// node.
2806void SelectionDAGBuilder::visitTargetIntrinsic(CallInst &I,
2807                                               unsigned Intrinsic) {
2808  bool HasChain = !I.doesNotAccessMemory();
2809  bool OnlyLoad = HasChain && I.onlyReadsMemory();
2810
2811  // Build the operand list.
2812  SmallVector<SDValue, 8> Ops;
2813  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
2814    if (OnlyLoad) {
2815      // We don't need to serialize loads against other loads.
2816      Ops.push_back(DAG.getRoot());
2817    } else {
2818      Ops.push_back(getRoot());
2819    }
2820  }
2821
2822  // Info is set by getTgtMemInstrinsic
2823  TargetLowering::IntrinsicInfo Info;
2824  bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
2825
2826  // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
2827  if (!IsTgtIntrinsic)
2828    Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
2829
2830  // Add all operands of the call to the operand list.
2831  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
2832    SDValue Op = getValue(I.getOperand(i));
2833    assert(TLI.isTypeLegal(Op.getValueType()) &&
2834           "Intrinsic uses a non-legal type?");
2835    Ops.push_back(Op);
2836  }
2837
2838  SmallVector<EVT, 4> ValueVTs;
2839  ComputeValueVTs(TLI, I.getType(), ValueVTs);
2840#ifndef NDEBUG
2841  for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) {
2842    assert(TLI.isTypeLegal(ValueVTs[Val]) &&
2843           "Intrinsic uses a non-legal type?");
2844  }
2845#endif // NDEBUG
2846
2847  if (HasChain)
2848    ValueVTs.push_back(MVT::Other);
2849
2850  SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
2851
2852  // Create the node.
2853  SDValue Result;
2854  if (IsTgtIntrinsic) {
2855    // This is target intrinsic that touches memory
2856    Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(),
2857                                     VTs, &Ops[0], Ops.size(),
2858                                     Info.memVT, Info.ptrVal, Info.offset,
2859                                     Info.align, Info.vol,
2860                                     Info.readMem, Info.writeMem);
2861  } else if (!HasChain) {
2862    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
2863                         VTs, &Ops[0], Ops.size());
2864  } else if (!I.getType()->isVoidTy()) {
2865    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
2866                         VTs, &Ops[0], Ops.size());
2867  } else {
2868    Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(),
2869                         VTs, &Ops[0], Ops.size());
2870  }
2871
2872  if (HasChain) {
2873    SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
2874    if (OnlyLoad)
2875      PendingLoads.push_back(Chain);
2876    else
2877      DAG.setRoot(Chain);
2878  }
2879
2880  if (!I.getType()->isVoidTy()) {
2881    if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
2882      EVT VT = TLI.getValueType(PTy);
2883      Result = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), VT, Result);
2884    }
2885
2886    setValue(&I, Result);
2887  }
2888}
2889
2890/// GetSignificand - Get the significand and build it into a floating-point
2891/// number with exponent of 1:
2892///
2893///   Op = (Op & 0x007fffff) | 0x3f800000;
2894///
2895/// where Op is the hexidecimal representation of floating point value.
2896static SDValue
2897GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) {
2898  SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
2899                           DAG.getConstant(0x007fffff, MVT::i32));
2900  SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
2901                           DAG.getConstant(0x3f800000, MVT::i32));
2902  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t2);
2903}
2904
2905/// GetExponent - Get the exponent:
2906///
2907///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
2908///
2909/// where Op is the hexidecimal representation of floating point value.
2910static SDValue
2911GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
2912            DebugLoc dl) {
2913  SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
2914                           DAG.getConstant(0x7f800000, MVT::i32));
2915  SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
2916                           DAG.getConstant(23, TLI.getPointerTy()));
2917  SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
2918                           DAG.getConstant(127, MVT::i32));
2919  return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
2920}
2921
2922/// getF32Constant - Get 32-bit floating point constant.
2923static SDValue
2924getF32Constant(SelectionDAG &DAG, unsigned Flt) {
2925  return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32);
2926}
2927
2928/// Inlined utility function to implement binary input atomic intrinsics for
2929/// visitIntrinsicCall: I is a call instruction
2930///                     Op is the associated NodeType for I
2931const char *
2932SelectionDAGBuilder::implVisitBinaryAtomic(CallInst& I, ISD::NodeType Op) {
2933  SDValue Root = getRoot();
2934  SDValue L =
2935    DAG.getAtomic(Op, getCurDebugLoc(),
2936                  getValue(I.getOperand(2)).getValueType().getSimpleVT(),
2937                  Root,
2938                  getValue(I.getOperand(1)),
2939                  getValue(I.getOperand(2)),
2940                  I.getOperand(1));
2941  setValue(&I, L);
2942  DAG.setRoot(L.getValue(1));
2943  return 0;
2944}
2945
2946// implVisitAluOverflow - Lower arithmetic overflow instrinsics.
2947const char *
2948SelectionDAGBuilder::implVisitAluOverflow(CallInst &I, ISD::NodeType Op) {
2949  SDValue Op1 = getValue(I.getOperand(1));
2950  SDValue Op2 = getValue(I.getOperand(2));
2951
2952  SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
2953  setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2));
2954  return 0;
2955}
2956
2957/// visitExp - Lower an exp intrinsic. Handles the special sequences for
2958/// limited-precision mode.
2959void
2960SelectionDAGBuilder::visitExp(CallInst &I) {
2961  SDValue result;
2962  DebugLoc dl = getCurDebugLoc();
2963
2964  if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
2965      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
2966    SDValue Op = getValue(I.getOperand(1));
2967
2968    // Put the exponent in the right bit position for later addition to the
2969    // final result:
2970    //
2971    //   #define LOG2OFe 1.4426950f
2972    //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
2973    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
2974                             getF32Constant(DAG, 0x3fb8aa3b));
2975    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
2976
2977    //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
2978    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
2979    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
2980
2981    //   IntegerPartOfX <<= 23;
2982    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
2983                                 DAG.getConstant(23, TLI.getPointerTy()));
2984
2985    if (LimitFloatPrecision <= 6) {
2986      // For floating-point precision of 6:
2987      //
2988      //   TwoToFractionalPartOfX =
2989      //     0.997535578f +
2990      //       (0.735607626f + 0.252464424f * x) * x;
2991      //
2992      // error 0.0144103317, which is 6 bits
2993      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
2994                               getF32Constant(DAG, 0x3e814304));
2995      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
2996                               getF32Constant(DAG, 0x3f3c50c8));
2997      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
2998      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
2999                               getF32Constant(DAG, 0x3f7f5e7e));
3000      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t5);
3001
3002      // Add the exponent into the result in integer domain.
3003      SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3004                               TwoToFracPartOfX, IntegerPartOfX);
3005
3006      result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t6);
3007    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3008      // For floating-point precision of 12:
3009      //
3010      //   TwoToFractionalPartOfX =
3011      //     0.999892986f +
3012      //       (0.696457318f +
3013      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3014      //
3015      // 0.000107046256 error, which is 13 to 14 bits
3016      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3017                               getF32Constant(DAG, 0x3da235e3));
3018      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3019                               getF32Constant(DAG, 0x3e65b8f3));
3020      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3021      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3022                               getF32Constant(DAG, 0x3f324b07));
3023      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3024      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3025                               getF32Constant(DAG, 0x3f7ff8fd));
3026      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t7);
3027
3028      // Add the exponent into the result in integer domain.
3029      SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3030                               TwoToFracPartOfX, IntegerPartOfX);
3031
3032      result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t8);
3033    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3034      // For floating-point precision of 18:
3035      //
3036      //   TwoToFractionalPartOfX =
3037      //     0.999999982f +
3038      //       (0.693148872f +
3039      //         (0.240227044f +
3040      //           (0.554906021e-1f +
3041      //             (0.961591928e-2f +
3042      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3043      //
3044      // error 2.47208000*10^(-7), which is better than 18 bits
3045      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3046                               getF32Constant(DAG, 0x3924b03e));
3047      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3048                               getF32Constant(DAG, 0x3ab24b87));
3049      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3050      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3051                               getF32Constant(DAG, 0x3c1d8c17));
3052      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3053      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3054                               getF32Constant(DAG, 0x3d634a1d));
3055      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3056      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3057                               getF32Constant(DAG, 0x3e75fe14));
3058      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3059      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3060                                getF32Constant(DAG, 0x3f317234));
3061      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3062      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3063                                getF32Constant(DAG, 0x3f800000));
3064      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,
3065                                             MVT::i32, t13);
3066
3067      // Add the exponent into the result in integer domain.
3068      SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3069                                TwoToFracPartOfX, IntegerPartOfX);
3070
3071      result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t14);
3072    }
3073  } else {
3074    // No special expansion.
3075    result = DAG.getNode(ISD::FEXP, dl,
3076                         getValue(I.getOperand(1)).getValueType(),
3077                         getValue(I.getOperand(1)));
3078  }
3079
3080  setValue(&I, result);
3081}
3082
3083/// visitLog - Lower a log intrinsic. Handles the special sequences for
3084/// limited-precision mode.
3085void
3086SelectionDAGBuilder::visitLog(CallInst &I) {
3087  SDValue result;
3088  DebugLoc dl = getCurDebugLoc();
3089
3090  if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
3091      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3092    SDValue Op = getValue(I.getOperand(1));
3093    SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
3094
3095    // Scale the exponent by log(2) [0.69314718f].
3096    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3097    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3098                                        getF32Constant(DAG, 0x3f317218));
3099
3100    // Get the significand and build it into a floating-point number with
3101    // exponent of 1.
3102    SDValue X = GetSignificand(DAG, Op1, dl);
3103
3104    if (LimitFloatPrecision <= 6) {
3105      // For floating-point precision of 6:
3106      //
3107      //   LogofMantissa =
3108      //     -1.1609546f +
3109      //       (1.4034025f - 0.23903021f * x) * x;
3110      //
3111      // error 0.0034276066, which is better than 8 bits
3112      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3113                               getF32Constant(DAG, 0xbe74c456));
3114      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3115                               getF32Constant(DAG, 0x3fb3a2b1));
3116      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3117      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3118                                          getF32Constant(DAG, 0x3f949a29));
3119
3120      result = DAG.getNode(ISD::FADD, dl,
3121                           MVT::f32, LogOfExponent, LogOfMantissa);
3122    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3123      // For floating-point precision of 12:
3124      //
3125      //   LogOfMantissa =
3126      //     -1.7417939f +
3127      //       (2.8212026f +
3128      //         (-1.4699568f +
3129      //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3130      //
3131      // error 0.000061011436, which is 14 bits
3132      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3133                               getF32Constant(DAG, 0xbd67b6d6));
3134      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3135                               getF32Constant(DAG, 0x3ee4f4b8));
3136      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3137      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3138                               getF32Constant(DAG, 0x3fbc278b));
3139      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3140      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3141                               getF32Constant(DAG, 0x40348e95));
3142      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3143      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3144                                          getF32Constant(DAG, 0x3fdef31a));
3145
3146      result = DAG.getNode(ISD::FADD, dl,
3147                           MVT::f32, LogOfExponent, LogOfMantissa);
3148    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3149      // For floating-point precision of 18:
3150      //
3151      //   LogOfMantissa =
3152      //     -2.1072184f +
3153      //       (4.2372794f +
3154      //         (-3.7029485f +
3155      //           (2.2781945f +
3156      //             (-0.87823314f +
3157      //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3158      //
3159      // error 0.0000023660568, which is better than 18 bits
3160      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3161                               getF32Constant(DAG, 0xbc91e5ac));
3162      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3163                               getF32Constant(DAG, 0x3e4350aa));
3164      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3165      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3166                               getF32Constant(DAG, 0x3f60d3e3));
3167      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3168      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3169                               getF32Constant(DAG, 0x4011cdf0));
3170      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3171      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3172                               getF32Constant(DAG, 0x406cfd1c));
3173      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3174      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3175                               getF32Constant(DAG, 0x408797cb));
3176      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3177      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3178                                          getF32Constant(DAG, 0x4006dcab));
3179
3180      result = DAG.getNode(ISD::FADD, dl,
3181                           MVT::f32, LogOfExponent, LogOfMantissa);
3182    }
3183  } else {
3184    // No special expansion.
3185    result = DAG.getNode(ISD::FLOG, dl,
3186                         getValue(I.getOperand(1)).getValueType(),
3187                         getValue(I.getOperand(1)));
3188  }
3189
3190  setValue(&I, result);
3191}
3192
3193/// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for
3194/// limited-precision mode.
3195void
3196SelectionDAGBuilder::visitLog2(CallInst &I) {
3197  SDValue result;
3198  DebugLoc dl = getCurDebugLoc();
3199
3200  if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
3201      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3202    SDValue Op = getValue(I.getOperand(1));
3203    SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
3204
3205    // Get the exponent.
3206    SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3207
3208    // Get the significand and build it into a floating-point number with
3209    // exponent of 1.
3210    SDValue X = GetSignificand(DAG, Op1, dl);
3211
3212    // Different possible minimax approximations of significand in
3213    // floating-point for various degrees of accuracy over [1,2].
3214    if (LimitFloatPrecision <= 6) {
3215      // For floating-point precision of 6:
3216      //
3217      //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3218      //
3219      // error 0.0049451742, which is more than 7 bits
3220      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3221                               getF32Constant(DAG, 0xbeb08fe0));
3222      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3223                               getF32Constant(DAG, 0x40019463));
3224      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3225      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3226                                           getF32Constant(DAG, 0x3fd6633d));
3227
3228      result = DAG.getNode(ISD::FADD, dl,
3229                           MVT::f32, LogOfExponent, Log2ofMantissa);
3230    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3231      // For floating-point precision of 12:
3232      //
3233      //   Log2ofMantissa =
3234      //     -2.51285454f +
3235      //       (4.07009056f +
3236      //         (-2.12067489f +
3237      //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3238      //
3239      // error 0.0000876136000, which is better than 13 bits
3240      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3241                               getF32Constant(DAG, 0xbda7262e));
3242      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3243                               getF32Constant(DAG, 0x3f25280b));
3244      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3245      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3246                               getF32Constant(DAG, 0x4007b923));
3247      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3248      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3249                               getF32Constant(DAG, 0x40823e2f));
3250      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3251      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3252                                           getF32Constant(DAG, 0x4020d29c));
3253
3254      result = DAG.getNode(ISD::FADD, dl,
3255                           MVT::f32, LogOfExponent, Log2ofMantissa);
3256    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3257      // For floating-point precision of 18:
3258      //
3259      //   Log2ofMantissa =
3260      //     -3.0400495f +
3261      //       (6.1129976f +
3262      //         (-5.3420409f +
3263      //           (3.2865683f +
3264      //             (-1.2669343f +
3265      //               (0.27515199f -
3266      //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3267      //
3268      // error 0.0000018516, which is better than 18 bits
3269      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3270                               getF32Constant(DAG, 0xbcd2769e));
3271      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3272                               getF32Constant(DAG, 0x3e8ce0b9));
3273      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3274      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3275                               getF32Constant(DAG, 0x3fa22ae7));
3276      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3277      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3278                               getF32Constant(DAG, 0x40525723));
3279      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3280      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3281                               getF32Constant(DAG, 0x40aaf200));
3282      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3283      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3284                               getF32Constant(DAG, 0x40c39dad));
3285      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3286      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3287                                           getF32Constant(DAG, 0x4042902c));
3288
3289      result = DAG.getNode(ISD::FADD, dl,
3290                           MVT::f32, LogOfExponent, Log2ofMantissa);
3291    }
3292  } else {
3293    // No special expansion.
3294    result = DAG.getNode(ISD::FLOG2, dl,
3295                         getValue(I.getOperand(1)).getValueType(),
3296                         getValue(I.getOperand(1)));
3297  }
3298
3299  setValue(&I, result);
3300}
3301
3302/// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for
3303/// limited-precision mode.
3304void
3305SelectionDAGBuilder::visitLog10(CallInst &I) {
3306  SDValue result;
3307  DebugLoc dl = getCurDebugLoc();
3308
3309  if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
3310      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3311    SDValue Op = getValue(I.getOperand(1));
3312    SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
3313
3314    // Scale the exponent by log10(2) [0.30102999f].
3315    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3316    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3317                                        getF32Constant(DAG, 0x3e9a209a));
3318
3319    // Get the significand and build it into a floating-point number with
3320    // exponent of 1.
3321    SDValue X = GetSignificand(DAG, Op1, dl);
3322
3323    if (LimitFloatPrecision <= 6) {
3324      // For floating-point precision of 6:
3325      //
3326      //   Log10ofMantissa =
3327      //     -0.50419619f +
3328      //       (0.60948995f - 0.10380950f * x) * x;
3329      //
3330      // error 0.0014886165, which is 6 bits
3331      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3332                               getF32Constant(DAG, 0xbdd49a13));
3333      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3334                               getF32Constant(DAG, 0x3f1c0789));
3335      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3336      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3337                                            getF32Constant(DAG, 0x3f011300));
3338
3339      result = DAG.getNode(ISD::FADD, dl,
3340                           MVT::f32, LogOfExponent, Log10ofMantissa);
3341    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3342      // For floating-point precision of 12:
3343      //
3344      //   Log10ofMantissa =
3345      //     -0.64831180f +
3346      //       (0.91751397f +
3347      //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
3348      //
3349      // error 0.00019228036, which is better than 12 bits
3350      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3351                               getF32Constant(DAG, 0x3d431f31));
3352      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3353                               getF32Constant(DAG, 0x3ea21fb2));
3354      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3355      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3356                               getF32Constant(DAG, 0x3f6ae232));
3357      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3358      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3359                                            getF32Constant(DAG, 0x3f25f7c3));
3360
3361      result = DAG.getNode(ISD::FADD, dl,
3362                           MVT::f32, LogOfExponent, Log10ofMantissa);
3363    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3364      // For floating-point precision of 18:
3365      //
3366      //   Log10ofMantissa =
3367      //     -0.84299375f +
3368      //       (1.5327582f +
3369      //         (-1.0688956f +
3370      //           (0.49102474f +
3371      //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
3372      //
3373      // error 0.0000037995730, which is better than 18 bits
3374      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3375                               getF32Constant(DAG, 0x3c5d51ce));
3376      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3377                               getF32Constant(DAG, 0x3e00685a));
3378      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3379      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3380                               getF32Constant(DAG, 0x3efb6798));
3381      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3382      SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3383                               getF32Constant(DAG, 0x3f88d192));
3384      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3385      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3386                               getF32Constant(DAG, 0x3fc4316c));
3387      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3388      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
3389                                            getF32Constant(DAG, 0x3f57ce70));
3390
3391      result = DAG.getNode(ISD::FADD, dl,
3392                           MVT::f32, LogOfExponent, Log10ofMantissa);
3393    }
3394  } else {
3395    // No special expansion.
3396    result = DAG.getNode(ISD::FLOG10, dl,
3397                         getValue(I.getOperand(1)).getValueType(),
3398                         getValue(I.getOperand(1)));
3399  }
3400
3401  setValue(&I, result);
3402}
3403
3404/// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for
3405/// limited-precision mode.
3406void
3407SelectionDAGBuilder::visitExp2(CallInst &I) {
3408  SDValue result;
3409  DebugLoc dl = getCurDebugLoc();
3410
3411  if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
3412      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3413    SDValue Op = getValue(I.getOperand(1));
3414
3415    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
3416
3417    //   FractionalPartOfX = x - (float)IntegerPartOfX;
3418    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3419    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
3420
3421    //   IntegerPartOfX <<= 23;
3422    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3423                                 DAG.getConstant(23, TLI.getPointerTy()));
3424
3425    if (LimitFloatPrecision <= 6) {
3426      // For floating-point precision of 6:
3427      //
3428      //   TwoToFractionalPartOfX =
3429      //     0.997535578f +
3430      //       (0.735607626f + 0.252464424f * x) * x;
3431      //
3432      // error 0.0144103317, which is 6 bits
3433      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3434                               getF32Constant(DAG, 0x3e814304));
3435      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3436                               getF32Constant(DAG, 0x3f3c50c8));
3437      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3438      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3439                               getF32Constant(DAG, 0x3f7f5e7e));
3440      SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5);
3441      SDValue TwoToFractionalPartOfX =
3442        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3443
3444      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3445                           MVT::f32, TwoToFractionalPartOfX);
3446    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3447      // For floating-point precision of 12:
3448      //
3449      //   TwoToFractionalPartOfX =
3450      //     0.999892986f +
3451      //       (0.696457318f +
3452      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3453      //
3454      // error 0.000107046256, which is 13 to 14 bits
3455      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3456                               getF32Constant(DAG, 0x3da235e3));
3457      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3458                               getF32Constant(DAG, 0x3e65b8f3));
3459      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3460      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3461                               getF32Constant(DAG, 0x3f324b07));
3462      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3463      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3464                               getF32Constant(DAG, 0x3f7ff8fd));
3465      SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7);
3466      SDValue TwoToFractionalPartOfX =
3467        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
3468
3469      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3470                           MVT::f32, TwoToFractionalPartOfX);
3471    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3472      // For floating-point precision of 18:
3473      //
3474      //   TwoToFractionalPartOfX =
3475      //     0.999999982f +
3476      //       (0.693148872f +
3477      //         (0.240227044f +
3478      //           (0.554906021e-1f +
3479      //             (0.961591928e-2f +
3480      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3481      // error 2.47208000*10^(-7), which is better than 18 bits
3482      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3483                               getF32Constant(DAG, 0x3924b03e));
3484      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3485                               getF32Constant(DAG, 0x3ab24b87));
3486      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3487      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3488                               getF32Constant(DAG, 0x3c1d8c17));
3489      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3490      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3491                               getF32Constant(DAG, 0x3d634a1d));
3492      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3493      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3494                               getF32Constant(DAG, 0x3e75fe14));
3495      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3496      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3497                                getF32Constant(DAG, 0x3f317234));
3498      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3499      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3500                                getF32Constant(DAG, 0x3f800000));
3501      SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13);
3502      SDValue TwoToFractionalPartOfX =
3503        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
3504
3505      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3506                           MVT::f32, TwoToFractionalPartOfX);
3507    }
3508  } else {
3509    // No special expansion.
3510    result = DAG.getNode(ISD::FEXP2, dl,
3511                         getValue(I.getOperand(1)).getValueType(),
3512                         getValue(I.getOperand(1)));
3513  }
3514
3515  setValue(&I, result);
3516}
3517
3518/// visitPow - Lower a pow intrinsic. Handles the special sequences for
3519/// limited-precision mode with x == 10.0f.
3520void
3521SelectionDAGBuilder::visitPow(CallInst &I) {
3522  SDValue result;
3523  Value *Val = I.getOperand(1);
3524  DebugLoc dl = getCurDebugLoc();
3525  bool IsExp10 = false;
3526
3527  if (getValue(Val).getValueType() == MVT::f32 &&
3528      getValue(I.getOperand(2)).getValueType() == MVT::f32 &&
3529      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3530    if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) {
3531      if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
3532        APFloat Ten(10.0f);
3533        IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten);
3534      }
3535    }
3536  }
3537
3538  if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3539    SDValue Op = getValue(I.getOperand(2));
3540
3541    // Put the exponent in the right bit position for later addition to the
3542    // final result:
3543    //
3544    //   #define LOG2OF10 3.3219281f
3545    //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
3546    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3547                             getF32Constant(DAG, 0x40549a78));
3548    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3549
3550    //   FractionalPartOfX = x - (float)IntegerPartOfX;
3551    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3552    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3553
3554    //   IntegerPartOfX <<= 23;
3555    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3556                                 DAG.getConstant(23, TLI.getPointerTy()));
3557
3558    if (LimitFloatPrecision <= 6) {
3559      // For floating-point precision of 6:
3560      //
3561      //   twoToFractionalPartOfX =
3562      //     0.997535578f +
3563      //       (0.735607626f + 0.252464424f * x) * x;
3564      //
3565      // error 0.0144103317, which is 6 bits
3566      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3567                               getF32Constant(DAG, 0x3e814304));
3568      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3569                               getF32Constant(DAG, 0x3f3c50c8));
3570      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3571      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3572                               getF32Constant(DAG, 0x3f7f5e7e));
3573      SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5);
3574      SDValue TwoToFractionalPartOfX =
3575        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3576
3577      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3578                           MVT::f32, TwoToFractionalPartOfX);
3579    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3580      // For floating-point precision of 12:
3581      //
3582      //   TwoToFractionalPartOfX =
3583      //     0.999892986f +
3584      //       (0.696457318f +
3585      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3586      //
3587      // error 0.000107046256, which is 13 to 14 bits
3588      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3589                               getF32Constant(DAG, 0x3da235e3));
3590      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3591                               getF32Constant(DAG, 0x3e65b8f3));
3592      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3593      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3594                               getF32Constant(DAG, 0x3f324b07));
3595      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3596      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3597                               getF32Constant(DAG, 0x3f7ff8fd));
3598      SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7);
3599      SDValue TwoToFractionalPartOfX =
3600        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
3601
3602      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3603                           MVT::f32, TwoToFractionalPartOfX);
3604    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3605      // For floating-point precision of 18:
3606      //
3607      //   TwoToFractionalPartOfX =
3608      //     0.999999982f +
3609      //       (0.693148872f +
3610      //         (0.240227044f +
3611      //           (0.554906021e-1f +
3612      //             (0.961591928e-2f +
3613      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3614      // error 2.47208000*10^(-7), which is better than 18 bits
3615      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3616                               getF32Constant(DAG, 0x3924b03e));
3617      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3618                               getF32Constant(DAG, 0x3ab24b87));
3619      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3620      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3621                               getF32Constant(DAG, 0x3c1d8c17));
3622      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3623      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3624                               getF32Constant(DAG, 0x3d634a1d));
3625      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3626      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3627                               getF32Constant(DAG, 0x3e75fe14));
3628      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3629      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3630                                getF32Constant(DAG, 0x3f317234));
3631      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3632      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3633                                getF32Constant(DAG, 0x3f800000));
3634      SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13);
3635      SDValue TwoToFractionalPartOfX =
3636        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
3637
3638      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3639                           MVT::f32, TwoToFractionalPartOfX);
3640    }
3641  } else {
3642    // No special expansion.
3643    result = DAG.getNode(ISD::FPOW, dl,
3644                         getValue(I.getOperand(1)).getValueType(),
3645                         getValue(I.getOperand(1)),
3646                         getValue(I.getOperand(2)));
3647  }
3648
3649  setValue(&I, result);
3650}
3651
3652
3653/// ExpandPowI - Expand a llvm.powi intrinsic.
3654static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS,
3655                          SelectionDAG &DAG) {
3656  // If RHS is a constant, we can expand this out to a multiplication tree,
3657  // otherwise we end up lowering to a call to __powidf2 (for example).  When
3658  // optimizing for size, we only want to do this if the expansion would produce
3659  // a small number of multiplies, otherwise we do the full expansion.
3660  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3661    // Get the exponent as a positive value.
3662    unsigned Val = RHSC->getSExtValue();
3663    if ((int)Val < 0) Val = -Val;
3664
3665    // powi(x, 0) -> 1.0
3666    if (Val == 0)
3667      return DAG.getConstantFP(1.0, LHS.getValueType());
3668
3669    Function *F = DAG.getMachineFunction().getFunction();
3670    if (!F->hasFnAttr(Attribute::OptimizeForSize) ||
3671        // If optimizing for size, don't insert too many multiplies.  This
3672        // inserts up to 5 multiplies.
3673        CountPopulation_32(Val)+Log2_32(Val) < 7) {
3674      // We use the simple binary decomposition method to generate the multiply
3675      // sequence.  There are more optimal ways to do this (for example,
3676      // powi(x,15) generates one more multiply than it should), but this has
3677      // the benefit of being both really simple and much better than a libcall.
3678      SDValue Res;  // Logically starts equal to 1.0
3679      SDValue CurSquare = LHS;
3680      while (Val) {
3681        if (Val & 1) {
3682          if (Res.getNode())
3683            Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
3684          else
3685            Res = CurSquare;  // 1.0*CurSquare.
3686        }
3687
3688        CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
3689                                CurSquare, CurSquare);
3690        Val >>= 1;
3691      }
3692
3693      // If the original was negative, invert the result, producing 1/(x*x*x).
3694      if (RHSC->getSExtValue() < 0)
3695        Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
3696                          DAG.getConstantFP(1.0, LHS.getValueType()), Res);
3697      return Res;
3698    }
3699  }
3700
3701  // Otherwise, expand to a libcall.
3702  return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
3703}
3704
3705
3706/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
3707/// we want to emit this as a call to a named external function, return the name
3708/// otherwise lower it and return null.
3709const char *
3710SelectionDAGBuilder::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
3711  DebugLoc dl = getCurDebugLoc();
3712  SDValue Res;
3713
3714  switch (Intrinsic) {
3715  default:
3716    // By default, turn this into a target intrinsic node.
3717    visitTargetIntrinsic(I, Intrinsic);
3718    return 0;
3719  case Intrinsic::vastart:  visitVAStart(I); return 0;
3720  case Intrinsic::vaend:    visitVAEnd(I); return 0;
3721  case Intrinsic::vacopy:   visitVACopy(I); return 0;
3722  case Intrinsic::returnaddress:
3723    setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(),
3724                             getValue(I.getOperand(1))));
3725    return 0;
3726  case Intrinsic::frameaddress:
3727    setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(),
3728                             getValue(I.getOperand(1))));
3729    return 0;
3730  case Intrinsic::setjmp:
3731    return "_setjmp"+!TLI.usesUnderscoreSetJmp();
3732  case Intrinsic::longjmp:
3733    return "_longjmp"+!TLI.usesUnderscoreLongJmp();
3734  case Intrinsic::memcpy: {
3735    SDValue Op1 = getValue(I.getOperand(1));
3736    SDValue Op2 = getValue(I.getOperand(2));
3737    SDValue Op3 = getValue(I.getOperand(3));
3738    unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3739    DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, false,
3740                              I.getOperand(1), 0, I.getOperand(2), 0));
3741    return 0;
3742  }
3743  case Intrinsic::memset: {
3744    SDValue Op1 = getValue(I.getOperand(1));
3745    SDValue Op2 = getValue(I.getOperand(2));
3746    SDValue Op3 = getValue(I.getOperand(3));
3747    unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3748    DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align,
3749                              I.getOperand(1), 0));
3750    return 0;
3751  }
3752  case Intrinsic::memmove: {
3753    SDValue Op1 = getValue(I.getOperand(1));
3754    SDValue Op2 = getValue(I.getOperand(2));
3755    SDValue Op3 = getValue(I.getOperand(3));
3756    unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3757
3758    // If the source and destination are known to not be aliases, we can
3759    // lower memmove as memcpy.
3760    uint64_t Size = -1ULL;
3761    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3))
3762      Size = C->getZExtValue();
3763    if (AA->alias(I.getOperand(1), Size, I.getOperand(2), Size) ==
3764        AliasAnalysis::NoAlias) {
3765      DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, false,
3766                                I.getOperand(1), 0, I.getOperand(2), 0));
3767      return 0;
3768    }
3769
3770    DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align,
3771                               I.getOperand(1), 0, I.getOperand(2), 0));
3772    return 0;
3773  }
3774  case Intrinsic::dbg_declare: {
3775    // FIXME: currently, we get here only if OptLevel != CodeGenOpt::None.
3776    // The real handling of this intrinsic is in FastISel.
3777    if (OptLevel != CodeGenOpt::None)
3778      // FIXME: Variable debug info is not supported here.
3779      return 0;
3780    DwarfWriter *DW = DAG.getDwarfWriter();
3781    if (!DW)
3782      return 0;
3783    DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
3784    if (!DIDescriptor::ValidDebugInfo(DI.getVariable(), CodeGenOpt::None))
3785      return 0;
3786
3787    MDNode *Variable = DI.getVariable();
3788    Value *Address = DI.getAddress();
3789    if (!Address)
3790      return 0;
3791    if (BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
3792      Address = BCI->getOperand(0);
3793    AllocaInst *AI = dyn_cast<AllocaInst>(Address);
3794    // Don't handle byval struct arguments or VLAs, for example.
3795    if (!AI)
3796      return 0;
3797    DenseMap<const AllocaInst*, int>::iterator SI =
3798      FuncInfo.StaticAllocaMap.find(AI);
3799    if (SI == FuncInfo.StaticAllocaMap.end())
3800      return 0; // VLAs.
3801    int FI = SI->second;
3802
3803    if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo())
3804      if (MDNode *Dbg = DI.getMetadata("dbg"))
3805        MMI->setVariableDbgInfo(Variable, FI, Dbg);
3806    return 0;
3807  }
3808  case Intrinsic::dbg_value: {
3809    DwarfWriter *DW = DAG.getDwarfWriter();
3810    if (!DW)
3811      return 0;
3812    DbgValueInst &DI = cast<DbgValueInst>(I);
3813    if (!DIDescriptor::ValidDebugInfo(DI.getVariable(), CodeGenOpt::None))
3814      return 0;
3815
3816    MDNode *Variable = DI.getVariable();
3817    uint64_t Offset = DI.getOffset();
3818    Value *V = DI.getValue();
3819    if (!V)
3820      return 0;
3821
3822    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
3823    // but do not always have a corresponding SDNode built.  The SDNodeOrder
3824    // absolute, but not relative, values are different depending on whether
3825    // debug info exists.
3826    ++SDNodeOrder;
3827    if (isa<ConstantInt>(V) || isa<ConstantFP>(V)) {
3828      SDDbgValue* dv = new SDDbgValue(Variable, V, Offset, dl, SDNodeOrder);
3829      DAG.RememberDbgInfo(dv);
3830    } else {
3831      SDValue &N = NodeMap[V];
3832      if (N.getNode()) {
3833        SDDbgValue *dv = new SDDbgValue(Variable, N.getNode(),
3834                                        N.getResNo(), Offset, dl, SDNodeOrder);
3835        DAG.AssignDbgInfo(N.getNode(), dv);
3836      } else {
3837        // We may expand this to cover more cases.  One case where we have no
3838        // data available is an unreferenced parameter; we need this fallback.
3839        SDDbgValue* dv = new SDDbgValue(Variable,
3840                                        UndefValue::get(V->getType()),
3841                                        Offset, dl, SDNodeOrder);
3842        DAG.RememberDbgInfo(dv);
3843      }
3844    }
3845
3846    // Build a debug info table entry.
3847    if (BitCastInst *BCI = dyn_cast<BitCastInst>(V))
3848      V = BCI->getOperand(0);
3849    AllocaInst *AI = dyn_cast<AllocaInst>(V);
3850    // Don't handle byval struct arguments or VLAs, for example.
3851    if (!AI)
3852      return 0;
3853    DenseMap<const AllocaInst*, int>::iterator SI =
3854      FuncInfo.StaticAllocaMap.find(AI);
3855    if (SI == FuncInfo.StaticAllocaMap.end())
3856      return 0; // VLAs.
3857    int FI = SI->second;
3858    if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo())
3859      if (MDNode *Dbg = DI.getMetadata("dbg"))
3860        MMI->setVariableDbgInfo(Variable, FI, Dbg);
3861    return 0;
3862  }
3863  case Intrinsic::eh_exception: {
3864    // Insert the EXCEPTIONADDR instruction.
3865    assert(CurMBB->isLandingPad() &&"Call to eh.exception not in landing pad!");
3866    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
3867    SDValue Ops[1];
3868    Ops[0] = DAG.getRoot();
3869    SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1);
3870    setValue(&I, Op);
3871    DAG.setRoot(Op.getValue(1));
3872    return 0;
3873  }
3874
3875  case Intrinsic::eh_selector: {
3876    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3877
3878    if (CurMBB->isLandingPad())
3879      AddCatchInfo(I, MMI, CurMBB);
3880    else {
3881#ifndef NDEBUG
3882      FuncInfo.CatchInfoLost.insert(&I);
3883#endif
3884      // FIXME: Mark exception selector register as live in.  Hack for PR1508.
3885      unsigned Reg = TLI.getExceptionSelectorRegister();
3886      if (Reg) CurMBB->addLiveIn(Reg);
3887    }
3888
3889    // Insert the EHSELECTION instruction.
3890    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
3891    SDValue Ops[2];
3892    Ops[0] = getValue(I.getOperand(1));
3893    Ops[1] = getRoot();
3894    SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2);
3895    DAG.setRoot(Op.getValue(1));
3896    setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32));
3897    return 0;
3898  }
3899
3900  case Intrinsic::eh_typeid_for: {
3901    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3902
3903    if (MMI) {
3904      // Find the type id for the given typeinfo.
3905      GlobalVariable *GV = ExtractTypeInfo(I.getOperand(1));
3906      unsigned TypeID = MMI->getTypeIDFor(GV);
3907      Res = DAG.getConstant(TypeID, MVT::i32);
3908    } else {
3909      // Return something different to eh_selector.
3910      Res = DAG.getConstant(1, MVT::i32);
3911    }
3912
3913    setValue(&I, Res);
3914    return 0;
3915  }
3916
3917  case Intrinsic::eh_return_i32:
3918  case Intrinsic::eh_return_i64:
3919    if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) {
3920      MMI->setCallsEHReturn(true);
3921      DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl,
3922                              MVT::Other,
3923                              getControlRoot(),
3924                              getValue(I.getOperand(1)),
3925                              getValue(I.getOperand(2))));
3926    } else {
3927      setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
3928    }
3929
3930    return 0;
3931  case Intrinsic::eh_unwind_init:
3932    if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) {
3933      MMI->setCallsUnwindInit(true);
3934    }
3935    return 0;
3936  case Intrinsic::eh_dwarf_cfa: {
3937    EVT VT = getValue(I.getOperand(1)).getValueType();
3938    SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), dl,
3939                                        TLI.getPointerTy());
3940    SDValue Offset = DAG.getNode(ISD::ADD, dl,
3941                                 TLI.getPointerTy(),
3942                                 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
3943                                             TLI.getPointerTy()),
3944                                 CfaArg);
3945    SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl,
3946                             TLI.getPointerTy(),
3947                             DAG.getConstant(0, TLI.getPointerTy()));
3948    setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
3949                             FA, Offset));
3950    return 0;
3951  }
3952  case Intrinsic::eh_sjlj_callsite: {
3953    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3954    ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1));
3955    assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
3956    assert(MMI->getCurrentCallSite() == 0 && "Overlapping call sites!");
3957
3958    MMI->setCurrentCallSite(CI->getZExtValue());
3959    return 0;
3960  }
3961
3962  case Intrinsic::convertff:
3963  case Intrinsic::convertfsi:
3964  case Intrinsic::convertfui:
3965  case Intrinsic::convertsif:
3966  case Intrinsic::convertuif:
3967  case Intrinsic::convertss:
3968  case Intrinsic::convertsu:
3969  case Intrinsic::convertus:
3970  case Intrinsic::convertuu: {
3971    ISD::CvtCode Code = ISD::CVT_INVALID;
3972    switch (Intrinsic) {
3973    case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
3974    case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
3975    case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
3976    case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
3977    case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
3978    case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
3979    case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
3980    case Intrinsic::convertus:  Code = ISD::CVT_US; break;
3981    case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
3982    }
3983    EVT DestVT = TLI.getValueType(I.getType());
3984    Value *Op1 = I.getOperand(1);
3985    Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1),
3986                               DAG.getValueType(DestVT),
3987                               DAG.getValueType(getValue(Op1).getValueType()),
3988                               getValue(I.getOperand(2)),
3989                               getValue(I.getOperand(3)),
3990                               Code);
3991    setValue(&I, Res);
3992    return 0;
3993  }
3994  case Intrinsic::sqrt:
3995    setValue(&I, DAG.getNode(ISD::FSQRT, dl,
3996                             getValue(I.getOperand(1)).getValueType(),
3997                             getValue(I.getOperand(1))));
3998    return 0;
3999  case Intrinsic::powi:
4000    setValue(&I, ExpandPowI(dl, getValue(I.getOperand(1)),
4001                            getValue(I.getOperand(2)), DAG));
4002    return 0;
4003  case Intrinsic::sin:
4004    setValue(&I, DAG.getNode(ISD::FSIN, dl,
4005                             getValue(I.getOperand(1)).getValueType(),
4006                             getValue(I.getOperand(1))));
4007    return 0;
4008  case Intrinsic::cos:
4009    setValue(&I, DAG.getNode(ISD::FCOS, dl,
4010                             getValue(I.getOperand(1)).getValueType(),
4011                             getValue(I.getOperand(1))));
4012    return 0;
4013  case Intrinsic::log:
4014    visitLog(I);
4015    return 0;
4016  case Intrinsic::log2:
4017    visitLog2(I);
4018    return 0;
4019  case Intrinsic::log10:
4020    visitLog10(I);
4021    return 0;
4022  case Intrinsic::exp:
4023    visitExp(I);
4024    return 0;
4025  case Intrinsic::exp2:
4026    visitExp2(I);
4027    return 0;
4028  case Intrinsic::pow:
4029    visitPow(I);
4030    return 0;
4031  case Intrinsic::convert_to_fp16:
4032    setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl,
4033                             MVT::i16, getValue(I.getOperand(1))));
4034    return 0;
4035  case Intrinsic::convert_from_fp16:
4036    setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl,
4037                             MVT::f32, getValue(I.getOperand(1))));
4038    return 0;
4039  case Intrinsic::pcmarker: {
4040    SDValue Tmp = getValue(I.getOperand(1));
4041    DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp));
4042    return 0;
4043  }
4044  case Intrinsic::readcyclecounter: {
4045    SDValue Op = getRoot();
4046    Res = DAG.getNode(ISD::READCYCLECOUNTER, dl,
4047                      DAG.getVTList(MVT::i64, MVT::Other),
4048                      &Op, 1);
4049    setValue(&I, Res);
4050    DAG.setRoot(Res.getValue(1));
4051    return 0;
4052  }
4053  case Intrinsic::bswap:
4054    setValue(&I, DAG.getNode(ISD::BSWAP, dl,
4055                             getValue(I.getOperand(1)).getValueType(),
4056                             getValue(I.getOperand(1))));
4057    return 0;
4058  case Intrinsic::cttz: {
4059    SDValue Arg = getValue(I.getOperand(1));
4060    EVT Ty = Arg.getValueType();
4061    setValue(&I, DAG.getNode(ISD::CTTZ, dl, Ty, Arg));
4062    return 0;
4063  }
4064  case Intrinsic::ctlz: {
4065    SDValue Arg = getValue(I.getOperand(1));
4066    EVT Ty = Arg.getValueType();
4067    setValue(&I, DAG.getNode(ISD::CTLZ, dl, Ty, Arg));
4068    return 0;
4069  }
4070  case Intrinsic::ctpop: {
4071    SDValue Arg = getValue(I.getOperand(1));
4072    EVT Ty = Arg.getValueType();
4073    setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg));
4074    return 0;
4075  }
4076  case Intrinsic::stacksave: {
4077    SDValue Op = getRoot();
4078    Res = DAG.getNode(ISD::STACKSAVE, dl,
4079                      DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
4080    setValue(&I, Res);
4081    DAG.setRoot(Res.getValue(1));
4082    return 0;
4083  }
4084  case Intrinsic::stackrestore: {
4085    Res = getValue(I.getOperand(1));
4086    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res));
4087    return 0;
4088  }
4089  case Intrinsic::stackprotector: {
4090    // Emit code into the DAG to store the stack guard onto the stack.
4091    MachineFunction &MF = DAG.getMachineFunction();
4092    MachineFrameInfo *MFI = MF.getFrameInfo();
4093    EVT PtrTy = TLI.getPointerTy();
4094
4095    SDValue Src = getValue(I.getOperand(1));   // The guard's value.
4096    AllocaInst *Slot = cast<AllocaInst>(I.getOperand(2));
4097
4098    int FI = FuncInfo.StaticAllocaMap[Slot];
4099    MFI->setStackProtectorIndex(FI);
4100
4101    SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
4102
4103    // Store the stack protector onto the stack.
4104    Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN,
4105                       PseudoSourceValue::getFixedStack(FI),
4106                       0, true, false, 0);
4107    setValue(&I, Res);
4108    DAG.setRoot(Res);
4109    return 0;
4110  }
4111  case Intrinsic::objectsize: {
4112    // If we don't know by now, we're never going to know.
4113    ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(2));
4114
4115    assert(CI && "Non-constant type in __builtin_object_size?");
4116
4117    SDValue Arg = getValue(I.getOperand(0));
4118    EVT Ty = Arg.getValueType();
4119
4120    if (CI->getZExtValue() == 0)
4121      Res = DAG.getConstant(-1ULL, Ty);
4122    else
4123      Res = DAG.getConstant(0, Ty);
4124
4125    setValue(&I, Res);
4126    return 0;
4127  }
4128  case Intrinsic::var_annotation:
4129    // Discard annotate attributes
4130    return 0;
4131
4132  case Intrinsic::init_trampoline: {
4133    const Function *F = cast<Function>(I.getOperand(2)->stripPointerCasts());
4134
4135    SDValue Ops[6];
4136    Ops[0] = getRoot();
4137    Ops[1] = getValue(I.getOperand(1));
4138    Ops[2] = getValue(I.getOperand(2));
4139    Ops[3] = getValue(I.getOperand(3));
4140    Ops[4] = DAG.getSrcValue(I.getOperand(1));
4141    Ops[5] = DAG.getSrcValue(F);
4142
4143    Res = DAG.getNode(ISD::TRAMPOLINE, dl,
4144                      DAG.getVTList(TLI.getPointerTy(), MVT::Other),
4145                      Ops, 6);
4146
4147    setValue(&I, Res);
4148    DAG.setRoot(Res.getValue(1));
4149    return 0;
4150  }
4151  case Intrinsic::gcroot:
4152    if (GFI) {
4153      Value *Alloca = I.getOperand(1);
4154      Constant *TypeMap = cast<Constant>(I.getOperand(2));
4155
4156      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
4157      GFI->addStackRoot(FI->getIndex(), TypeMap);
4158    }
4159    return 0;
4160  case Intrinsic::gcread:
4161  case Intrinsic::gcwrite:
4162    llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
4163    return 0;
4164  case Intrinsic::flt_rounds:
4165    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32));
4166    return 0;
4167  case Intrinsic::trap:
4168    DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot()));
4169    return 0;
4170  case Intrinsic::uadd_with_overflow:
4171    return implVisitAluOverflow(I, ISD::UADDO);
4172  case Intrinsic::sadd_with_overflow:
4173    return implVisitAluOverflow(I, ISD::SADDO);
4174  case Intrinsic::usub_with_overflow:
4175    return implVisitAluOverflow(I, ISD::USUBO);
4176  case Intrinsic::ssub_with_overflow:
4177    return implVisitAluOverflow(I, ISD::SSUBO);
4178  case Intrinsic::umul_with_overflow:
4179    return implVisitAluOverflow(I, ISD::UMULO);
4180  case Intrinsic::smul_with_overflow:
4181    return implVisitAluOverflow(I, ISD::SMULO);
4182
4183  case Intrinsic::prefetch: {
4184    SDValue Ops[4];
4185    Ops[0] = getRoot();
4186    Ops[1] = getValue(I.getOperand(1));
4187    Ops[2] = getValue(I.getOperand(2));
4188    Ops[3] = getValue(I.getOperand(3));
4189    DAG.setRoot(DAG.getNode(ISD::PREFETCH, dl, MVT::Other, &Ops[0], 4));
4190    return 0;
4191  }
4192
4193  case Intrinsic::memory_barrier: {
4194    SDValue Ops[6];
4195    Ops[0] = getRoot();
4196    for (int x = 1; x < 6; ++x)
4197      Ops[x] = getValue(I.getOperand(x));
4198
4199    DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6));
4200    return 0;
4201  }
4202  case Intrinsic::atomic_cmp_swap: {
4203    SDValue Root = getRoot();
4204    SDValue L =
4205      DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(),
4206                    getValue(I.getOperand(2)).getValueType().getSimpleVT(),
4207                    Root,
4208                    getValue(I.getOperand(1)),
4209                    getValue(I.getOperand(2)),
4210                    getValue(I.getOperand(3)),
4211                    I.getOperand(1));
4212    setValue(&I, L);
4213    DAG.setRoot(L.getValue(1));
4214    return 0;
4215  }
4216  case Intrinsic::atomic_load_add:
4217    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD);
4218  case Intrinsic::atomic_load_sub:
4219    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB);
4220  case Intrinsic::atomic_load_or:
4221    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR);
4222  case Intrinsic::atomic_load_xor:
4223    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR);
4224  case Intrinsic::atomic_load_and:
4225    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND);
4226  case Intrinsic::atomic_load_nand:
4227    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND);
4228  case Intrinsic::atomic_load_max:
4229    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX);
4230  case Intrinsic::atomic_load_min:
4231    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN);
4232  case Intrinsic::atomic_load_umin:
4233    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN);
4234  case Intrinsic::atomic_load_umax:
4235    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX);
4236  case Intrinsic::atomic_swap:
4237    return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP);
4238
4239  case Intrinsic::invariant_start:
4240  case Intrinsic::lifetime_start:
4241    // Discard region information.
4242    setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
4243    return 0;
4244  case Intrinsic::invariant_end:
4245  case Intrinsic::lifetime_end:
4246    // Discard region information.
4247    return 0;
4248  }
4249}
4250
4251/// Test if the given instruction is in a position to be optimized
4252/// with a tail-call. This roughly means that it's in a block with
4253/// a return and there's nothing that needs to be scheduled
4254/// between it and the return.
4255///
4256/// This function only tests target-independent requirements.
4257static bool
4258isInTailCallPosition(CallSite CS, Attributes CalleeRetAttr,
4259                     const TargetLowering &TLI) {
4260  const Instruction *I = CS.getInstruction();
4261  const BasicBlock *ExitBB = I->getParent();
4262  const TerminatorInst *Term = ExitBB->getTerminator();
4263  const ReturnInst *Ret = dyn_cast<ReturnInst>(Term);
4264  const Function *F = ExitBB->getParent();
4265
4266  // The block must end in a return statement or unreachable.
4267  //
4268  // FIXME: Decline tailcall if it's not guaranteed and if the block ends in
4269  // an unreachable, for now. The way tailcall optimization is currently
4270  // implemented means it will add an epilogue followed by a jump. That is
4271  // not profitable. Also, if the callee is a special function (e.g.
4272  // longjmp on x86), it can end up causing miscompilation that has not
4273  // been fully understood.
4274  if (!Ret &&
4275      (!GuaranteedTailCallOpt || !isa<UnreachableInst>(Term))) return false;
4276
4277  // If I will have a chain, make sure no other instruction that will have a
4278  // chain interposes between I and the return.
4279  if (I->mayHaveSideEffects() || I->mayReadFromMemory() ||
4280      !I->isSafeToSpeculativelyExecute())
4281    for (BasicBlock::const_iterator BBI = prior(prior(ExitBB->end())); ;
4282         --BBI) {
4283      if (&*BBI == I)
4284        break;
4285      // Debug info intrinsics do not get in the way of tail call optimization.
4286      if (isa<DbgInfoIntrinsic>(BBI))
4287        continue;
4288      if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() ||
4289          !BBI->isSafeToSpeculativelyExecute())
4290        return false;
4291    }
4292
4293  // If the block ends with a void return or unreachable, it doesn't matter
4294  // what the call's return type is.
4295  if (!Ret || Ret->getNumOperands() == 0) return true;
4296
4297  // If the return value is undef, it doesn't matter what the call's
4298  // return type is.
4299  if (isa<UndefValue>(Ret->getOperand(0))) return true;
4300
4301  // Conservatively require the attributes of the call to match those of
4302  // the return. Ignore noalias because it doesn't affect the call sequence.
4303  unsigned CallerRetAttr = F->getAttributes().getRetAttributes();
4304  if ((CalleeRetAttr ^ CallerRetAttr) & ~Attribute::NoAlias)
4305    return false;
4306
4307  // It's not safe to eliminate the sign / zero extension of the return value.
4308  if ((CallerRetAttr & Attribute::ZExt) || (CallerRetAttr & Attribute::SExt))
4309    return false;
4310
4311  // Otherwise, make sure the unmodified return value of I is the return value.
4312  for (const Instruction *U = dyn_cast<Instruction>(Ret->getOperand(0)); ;
4313       U = dyn_cast<Instruction>(U->getOperand(0))) {
4314    if (!U)
4315      return false;
4316    if (!U->hasOneUse())
4317      return false;
4318    if (U == I)
4319      break;
4320    // Check for a truly no-op truncate.
4321    if (isa<TruncInst>(U) &&
4322        TLI.isTruncateFree(U->getOperand(0)->getType(), U->getType()))
4323      continue;
4324    // Check for a truly no-op bitcast.
4325    if (isa<BitCastInst>(U) &&
4326        (U->getOperand(0)->getType() == U->getType() ||
4327         (U->getOperand(0)->getType()->isPointerTy() &&
4328          U->getType()->isPointerTy())))
4329      continue;
4330    // Otherwise it's not a true no-op.
4331    return false;
4332  }
4333
4334  return true;
4335}
4336
4337void SelectionDAGBuilder::LowerCallTo(CallSite CS, SDValue Callee,
4338                                      bool isTailCall,
4339                                      MachineBasicBlock *LandingPad) {
4340  const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
4341  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
4342  const Type *RetTy = FTy->getReturnType();
4343  MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
4344  MCSymbol *BeginLabel = 0;
4345
4346  TargetLowering::ArgListTy Args;
4347  TargetLowering::ArgListEntry Entry;
4348  Args.reserve(CS.arg_size());
4349
4350  // Check whether the function can return without sret-demotion.
4351  SmallVector<EVT, 4> OutVTs;
4352  SmallVector<ISD::ArgFlagsTy, 4> OutsFlags;
4353  SmallVector<uint64_t, 4> Offsets;
4354  getReturnInfo(RetTy, CS.getAttributes().getRetAttributes(),
4355                OutVTs, OutsFlags, TLI, &Offsets);
4356
4357  bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
4358                        FTy->isVarArg(), OutVTs, OutsFlags, DAG);
4359
4360  SDValue DemoteStackSlot;
4361
4362  if (!CanLowerReturn) {
4363    uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(
4364                      FTy->getReturnType());
4365    unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(
4366                      FTy->getReturnType());
4367    MachineFunction &MF = DAG.getMachineFunction();
4368    int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
4369    const Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
4370
4371    DemoteStackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
4372    Entry.Node = DemoteStackSlot;
4373    Entry.Ty = StackSlotPtrType;
4374    Entry.isSExt = false;
4375    Entry.isZExt = false;
4376    Entry.isInReg = false;
4377    Entry.isSRet = true;
4378    Entry.isNest = false;
4379    Entry.isByVal = false;
4380    Entry.Alignment = Align;
4381    Args.push_back(Entry);
4382    RetTy = Type::getVoidTy(FTy->getContext());
4383  }
4384
4385  for (CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
4386       i != e; ++i) {
4387    SDValue ArgNode = getValue(*i);
4388    Entry.Node = ArgNode; Entry.Ty = (*i)->getType();
4389
4390    unsigned attrInd = i - CS.arg_begin() + 1;
4391    Entry.isSExt  = CS.paramHasAttr(attrInd, Attribute::SExt);
4392    Entry.isZExt  = CS.paramHasAttr(attrInd, Attribute::ZExt);
4393    Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg);
4394    Entry.isSRet  = CS.paramHasAttr(attrInd, Attribute::StructRet);
4395    Entry.isNest  = CS.paramHasAttr(attrInd, Attribute::Nest);
4396    Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal);
4397    Entry.Alignment = CS.getParamAlignment(attrInd);
4398    Args.push_back(Entry);
4399  }
4400
4401  if (LandingPad && MMI) {
4402    // Insert a label before the invoke call to mark the try range.  This can be
4403    // used to detect deletion of the invoke via the MachineModuleInfo.
4404    BeginLabel = MMI->getContext().CreateTempSymbol();
4405
4406    // For SjLj, keep track of which landing pads go with which invokes
4407    // so as to maintain the ordering of pads in the LSDA.
4408    unsigned CallSiteIndex = MMI->getCurrentCallSite();
4409    if (CallSiteIndex) {
4410      MMI->setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
4411      // Now that the call site is handled, stop tracking it.
4412      MMI->setCurrentCallSite(0);
4413    }
4414
4415    // Both PendingLoads and PendingExports must be flushed here;
4416    // this call might not return.
4417    (void)getRoot();
4418    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel));
4419  }
4420
4421  // Check if target-independent constraints permit a tail call here.
4422  // Target-dependent constraints are checked within TLI.LowerCallTo.
4423  if (isTailCall &&
4424      !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI))
4425    isTailCall = false;
4426
4427  std::pair<SDValue,SDValue> Result =
4428    TLI.LowerCallTo(getRoot(), RetTy,
4429                    CS.paramHasAttr(0, Attribute::SExt),
4430                    CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(),
4431                    CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(),
4432                    CS.getCallingConv(),
4433                    isTailCall,
4434                    !CS.getInstruction()->use_empty(),
4435                    Callee, Args, DAG, getCurDebugLoc());
4436  assert((isTailCall || Result.second.getNode()) &&
4437         "Non-null chain expected with non-tail call!");
4438  assert((Result.second.getNode() || !Result.first.getNode()) &&
4439         "Null value expected with tail call!");
4440  if (Result.first.getNode()) {
4441    setValue(CS.getInstruction(), Result.first);
4442  } else if (!CanLowerReturn && Result.second.getNode()) {
4443    // The instruction result is the result of loading from the
4444    // hidden sret parameter.
4445    SmallVector<EVT, 1> PVTs;
4446    const Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
4447
4448    ComputeValueVTs(TLI, PtrRetTy, PVTs);
4449    assert(PVTs.size() == 1 && "Pointers should fit in one register");
4450    EVT PtrVT = PVTs[0];
4451    unsigned NumValues = OutVTs.size();
4452    SmallVector<SDValue, 4> Values(NumValues);
4453    SmallVector<SDValue, 4> Chains(NumValues);
4454
4455    for (unsigned i = 0; i < NumValues; ++i) {
4456      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT,
4457                                DemoteStackSlot,
4458                                DAG.getConstant(Offsets[i], PtrVT));
4459      SDValue L = DAG.getLoad(OutVTs[i], getCurDebugLoc(), Result.second,
4460                              Add, NULL, Offsets[i], false, false, 1);
4461      Values[i] = L;
4462      Chains[i] = L.getValue(1);
4463    }
4464
4465    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
4466                                MVT::Other, &Chains[0], NumValues);
4467    PendingLoads.push_back(Chain);
4468
4469    // Collect the legal value parts into potentially illegal values
4470    // that correspond to the original function's return values.
4471    SmallVector<EVT, 4> RetTys;
4472    RetTy = FTy->getReturnType();
4473    ComputeValueVTs(TLI, RetTy, RetTys);
4474    ISD::NodeType AssertOp = ISD::DELETED_NODE;
4475    SmallVector<SDValue, 4> ReturnValues;
4476    unsigned CurReg = 0;
4477    for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
4478      EVT VT = RetTys[I];
4479      EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT);
4480      unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT);
4481
4482      SDValue ReturnValue =
4483        getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs,
4484                         RegisterVT, VT, AssertOp);
4485      ReturnValues.push_back(ReturnValue);
4486      CurReg += NumRegs;
4487    }
4488
4489    setValue(CS.getInstruction(),
4490             DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
4491                         DAG.getVTList(&RetTys[0], RetTys.size()),
4492                         &ReturnValues[0], ReturnValues.size()));
4493
4494  }
4495
4496  // As a special case, a null chain means that a tail call has been emitted and
4497  // the DAG root is already updated.
4498  if (Result.second.getNode())
4499    DAG.setRoot(Result.second);
4500  else
4501    HasTailCall = true;
4502
4503  if (LandingPad && MMI) {
4504    // Insert a label at the end of the invoke call to mark the try range.  This
4505    // can be used to detect deletion of the invoke via the MachineModuleInfo.
4506    MCSymbol *EndLabel = MMI->getContext().CreateTempSymbol();
4507    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel));
4508
4509    // Inform MachineModuleInfo of range.
4510    MMI->addInvoke(LandingPad, BeginLabel, EndLabel);
4511  }
4512}
4513
4514/// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
4515/// value is equal or not-equal to zero.
4516static bool IsOnlyUsedInZeroEqualityComparison(Value *V) {
4517  for (Value::use_iterator UI = V->use_begin(), E = V->use_end();
4518       UI != E; ++UI) {
4519    if (ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
4520      if (IC->isEquality())
4521        if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
4522          if (C->isNullValue())
4523            continue;
4524    // Unknown instruction.
4525    return false;
4526  }
4527  return true;
4528}
4529
4530static SDValue getMemCmpLoad(Value *PtrVal, MVT LoadVT, const Type *LoadTy,
4531                             SelectionDAGBuilder &Builder) {
4532
4533  // Check to see if this load can be trivially constant folded, e.g. if the
4534  // input is from a string literal.
4535  if (Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
4536    // Cast pointer to the type we really want to load.
4537    LoadInput = ConstantExpr::getBitCast(LoadInput,
4538                                         PointerType::getUnqual(LoadTy));
4539
4540    if (Constant *LoadCst = ConstantFoldLoadFromConstPtr(LoadInput, Builder.TD))
4541      return Builder.getValue(LoadCst);
4542  }
4543
4544  // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
4545  // still constant memory, the input chain can be the entry node.
4546  SDValue Root;
4547  bool ConstantMemory = false;
4548
4549  // Do not serialize (non-volatile) loads of constant memory with anything.
4550  if (Builder.AA->pointsToConstantMemory(PtrVal)) {
4551    Root = Builder.DAG.getEntryNode();
4552    ConstantMemory = true;
4553  } else {
4554    // Do not serialize non-volatile loads against each other.
4555    Root = Builder.DAG.getRoot();
4556  }
4557
4558  SDValue Ptr = Builder.getValue(PtrVal);
4559  SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root,
4560                                        Ptr, PtrVal /*SrcValue*/, 0/*SVOffset*/,
4561                                        false /*volatile*/,
4562                                        false /*nontemporal*/, 1 /* align=1 */);
4563
4564  if (!ConstantMemory)
4565    Builder.PendingLoads.push_back(LoadVal.getValue(1));
4566  return LoadVal;
4567}
4568
4569
4570/// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
4571/// If so, return true and lower it, otherwise return false and it will be
4572/// lowered like a normal call.
4573bool SelectionDAGBuilder::visitMemCmpCall(CallInst &I) {
4574  // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
4575  if (I.getNumOperands() != 4)
4576    return false;
4577
4578  Value *LHS = I.getOperand(1), *RHS = I.getOperand(2);
4579  if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
4580      !I.getOperand(3)->getType()->isIntegerTy() ||
4581      !I.getType()->isIntegerTy())
4582    return false;
4583
4584  ConstantInt *Size = dyn_cast<ConstantInt>(I.getOperand(3));
4585
4586  // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
4587  // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
4588  if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) {
4589    bool ActuallyDoIt = true;
4590    MVT LoadVT;
4591    const Type *LoadTy;
4592    switch (Size->getZExtValue()) {
4593    default:
4594      LoadVT = MVT::Other;
4595      LoadTy = 0;
4596      ActuallyDoIt = false;
4597      break;
4598    case 2:
4599      LoadVT = MVT::i16;
4600      LoadTy = Type::getInt16Ty(Size->getContext());
4601      break;
4602    case 4:
4603      LoadVT = MVT::i32;
4604      LoadTy = Type::getInt32Ty(Size->getContext());
4605      break;
4606    case 8:
4607      LoadVT = MVT::i64;
4608      LoadTy = Type::getInt64Ty(Size->getContext());
4609      break;
4610        /*
4611    case 16:
4612      LoadVT = MVT::v4i32;
4613      LoadTy = Type::getInt32Ty(Size->getContext());
4614      LoadTy = VectorType::get(LoadTy, 4);
4615      break;
4616         */
4617    }
4618
4619    // This turns into unaligned loads.  We only do this if the target natively
4620    // supports the MVT we'll be loading or if it is small enough (<= 4) that
4621    // we'll only produce a small number of byte loads.
4622
4623    // Require that we can find a legal MVT, and only do this if the target
4624    // supports unaligned loads of that type.  Expanding into byte loads would
4625    // bloat the code.
4626    if (ActuallyDoIt && Size->getZExtValue() > 4) {
4627      // TODO: Handle 5 byte compare as 4-byte + 1 byte.
4628      // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
4629      if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT))
4630        ActuallyDoIt = false;
4631    }
4632
4633    if (ActuallyDoIt) {
4634      SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
4635      SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
4636
4637      SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal,
4638                                 ISD::SETNE);
4639      EVT CallVT = TLI.getValueType(I.getType(), true);
4640      setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT));
4641      return true;
4642    }
4643  }
4644
4645
4646  return false;
4647}
4648
4649
4650void SelectionDAGBuilder::visitCall(CallInst &I) {
4651  const char *RenameFn = 0;
4652  if (Function *F = I.getCalledFunction()) {
4653    if (F->isDeclaration()) {
4654      const TargetIntrinsicInfo *II = TLI.getTargetMachine().getIntrinsicInfo();
4655      if (II) {
4656        if (unsigned IID = II->getIntrinsicID(F)) {
4657          RenameFn = visitIntrinsicCall(I, IID);
4658          if (!RenameFn)
4659            return;
4660        }
4661      }
4662      if (unsigned IID = F->getIntrinsicID()) {
4663        RenameFn = visitIntrinsicCall(I, IID);
4664        if (!RenameFn)
4665          return;
4666      }
4667    }
4668
4669    // Check for well-known libc/libm calls.  If the function is internal, it
4670    // can't be a library call.
4671    if (!F->hasLocalLinkage() && F->hasName()) {
4672      StringRef Name = F->getName();
4673      if (Name == "copysign" || Name == "copysignf" || Name == "copysignl") {
4674        if (I.getNumOperands() == 3 &&   // Basic sanity checks.
4675            I.getOperand(1)->getType()->isFloatingPointTy() &&
4676            I.getType() == I.getOperand(1)->getType() &&
4677            I.getType() == I.getOperand(2)->getType()) {
4678          SDValue LHS = getValue(I.getOperand(1));
4679          SDValue RHS = getValue(I.getOperand(2));
4680          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(),
4681                                   LHS.getValueType(), LHS, RHS));
4682          return;
4683        }
4684      } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") {
4685        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
4686            I.getOperand(1)->getType()->isFloatingPointTy() &&
4687            I.getType() == I.getOperand(1)->getType()) {
4688          SDValue Tmp = getValue(I.getOperand(1));
4689          setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(),
4690                                   Tmp.getValueType(), Tmp));
4691          return;
4692        }
4693      } else if (Name == "sin" || Name == "sinf" || Name == "sinl") {
4694        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
4695            I.getOperand(1)->getType()->isFloatingPointTy() &&
4696            I.getType() == I.getOperand(1)->getType() &&
4697            I.onlyReadsMemory()) {
4698          SDValue Tmp = getValue(I.getOperand(1));
4699          setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(),
4700                                   Tmp.getValueType(), Tmp));
4701          return;
4702        }
4703      } else if (Name == "cos" || Name == "cosf" || Name == "cosl") {
4704        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
4705            I.getOperand(1)->getType()->isFloatingPointTy() &&
4706            I.getType() == I.getOperand(1)->getType() &&
4707            I.onlyReadsMemory()) {
4708          SDValue Tmp = getValue(I.getOperand(1));
4709          setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(),
4710                                   Tmp.getValueType(), Tmp));
4711          return;
4712        }
4713      } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") {
4714        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
4715            I.getOperand(1)->getType()->isFloatingPointTy() &&
4716            I.getType() == I.getOperand(1)->getType() &&
4717            I.onlyReadsMemory()) {
4718          SDValue Tmp = getValue(I.getOperand(1));
4719          setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(),
4720                                   Tmp.getValueType(), Tmp));
4721          return;
4722        }
4723      } else if (Name == "memcmp") {
4724        if (visitMemCmpCall(I))
4725          return;
4726      }
4727    }
4728  } else if (isa<InlineAsm>(I.getOperand(0))) {
4729    visitInlineAsm(&I);
4730    return;
4731  }
4732
4733  SDValue Callee;
4734  if (!RenameFn)
4735    Callee = getValue(I.getOperand(0));
4736  else
4737    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
4738
4739  // Check if we can potentially perform a tail call. More detailed checking is
4740  // be done within LowerCallTo, after more information about the call is known.
4741  LowerCallTo(&I, Callee, I.isTailCall());
4742}
4743
4744/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
4745/// this value and returns the result as a ValueVT value.  This uses
4746/// Chain/Flag as the input and updates them for the output Chain/Flag.
4747/// If the Flag pointer is NULL, no flag is used.
4748SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, DebugLoc dl,
4749                                      SDValue &Chain, SDValue *Flag) const {
4750  // Assemble the legal parts into the final values.
4751  SmallVector<SDValue, 4> Values(ValueVTs.size());
4752  SmallVector<SDValue, 8> Parts;
4753  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
4754    // Copy the legal parts from the registers.
4755    EVT ValueVT = ValueVTs[Value];
4756    unsigned NumRegs = TLI->getNumRegisters(*DAG.getContext(), ValueVT);
4757    EVT RegisterVT = RegVTs[Value];
4758
4759    Parts.resize(NumRegs);
4760    for (unsigned i = 0; i != NumRegs; ++i) {
4761      SDValue P;
4762      if (Flag == 0) {
4763        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
4764      } else {
4765        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
4766        *Flag = P.getValue(2);
4767      }
4768
4769      Chain = P.getValue(1);
4770
4771      // If the source register was virtual and if we know something about it,
4772      // add an assert node.
4773      if (TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) &&
4774          RegisterVT.isInteger() && !RegisterVT.isVector()) {
4775        unsigned SlotNo = Regs[Part+i]-TargetRegisterInfo::FirstVirtualRegister;
4776        FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo();
4777        if (FLI.LiveOutRegInfo.size() > SlotNo) {
4778          FunctionLoweringInfo::LiveOutInfo &LOI = FLI.LiveOutRegInfo[SlotNo];
4779
4780          unsigned RegSize = RegisterVT.getSizeInBits();
4781          unsigned NumSignBits = LOI.NumSignBits;
4782          unsigned NumZeroBits = LOI.KnownZero.countLeadingOnes();
4783
4784          // FIXME: We capture more information than the dag can represent.  For
4785          // now, just use the tightest assertzext/assertsext possible.
4786          bool isSExt = true;
4787          EVT FromVT(MVT::Other);
4788          if (NumSignBits == RegSize)
4789            isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
4790          else if (NumZeroBits >= RegSize-1)
4791            isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
4792          else if (NumSignBits > RegSize-8)
4793            isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
4794          else if (NumZeroBits >= RegSize-8)
4795            isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
4796          else if (NumSignBits > RegSize-16)
4797            isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
4798          else if (NumZeroBits >= RegSize-16)
4799            isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
4800          else if (NumSignBits > RegSize-32)
4801            isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
4802          else if (NumZeroBits >= RegSize-32)
4803            isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
4804
4805          if (FromVT != MVT::Other)
4806            P = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
4807                            RegisterVT, P, DAG.getValueType(FromVT));
4808        }
4809      }
4810
4811      Parts[i] = P;
4812    }
4813
4814    Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
4815                                     NumRegs, RegisterVT, ValueVT);
4816    Part += NumRegs;
4817    Parts.clear();
4818  }
4819
4820  return DAG.getNode(ISD::MERGE_VALUES, dl,
4821                     DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
4822                     &Values[0], ValueVTs.size());
4823}
4824
4825/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
4826/// specified value into the registers specified by this object.  This uses
4827/// Chain/Flag as the input and updates them for the output Chain/Flag.
4828/// If the Flag pointer is NULL, no flag is used.
4829void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
4830                                 SDValue &Chain, SDValue *Flag) const {
4831  // Get the list of the values's legal parts.
4832  unsigned NumRegs = Regs.size();
4833  SmallVector<SDValue, 8> Parts(NumRegs);
4834  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
4835    EVT ValueVT = ValueVTs[Value];
4836    unsigned NumParts = TLI->getNumRegisters(*DAG.getContext(), ValueVT);
4837    EVT RegisterVT = RegVTs[Value];
4838
4839    getCopyToParts(DAG, dl,
4840                   Val.getValue(Val.getResNo() + Value),
4841                   &Parts[Part], NumParts, RegisterVT);
4842    Part += NumParts;
4843  }
4844
4845  // Copy the parts into the registers.
4846  SmallVector<SDValue, 8> Chains(NumRegs);
4847  for (unsigned i = 0; i != NumRegs; ++i) {
4848    SDValue Part;
4849    if (Flag == 0) {
4850      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
4851    } else {
4852      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
4853      *Flag = Part.getValue(1);
4854    }
4855
4856    Chains[i] = Part.getValue(0);
4857  }
4858
4859  if (NumRegs == 1 || Flag)
4860    // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
4861    // flagged to it. That is the CopyToReg nodes and the user are considered
4862    // a single scheduling unit. If we create a TokenFactor and return it as
4863    // chain, then the TokenFactor is both a predecessor (operand) of the
4864    // user as well as a successor (the TF operands are flagged to the user).
4865    // c1, f1 = CopyToReg
4866    // c2, f2 = CopyToReg
4867    // c3     = TokenFactor c1, c2
4868    // ...
4869    //        = op c3, ..., f2
4870    Chain = Chains[NumRegs-1];
4871  else
4872    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
4873}
4874
4875/// AddInlineAsmOperands - Add this value to the specified inlineasm node
4876/// operand list.  This adds the code marker and includes the number of
4877/// values added into it.
4878void RegsForValue::AddInlineAsmOperands(unsigned Code,
4879                                        bool HasMatching,unsigned MatchingIdx,
4880                                        SelectionDAG &DAG,
4881                                        std::vector<SDValue> &Ops) const {
4882  assert(Regs.size() < (1 << 13) && "Too many inline asm outputs!");
4883  unsigned Flag = Code | (Regs.size() << 3);
4884  if (HasMatching)
4885    Flag |= 0x80000000 | (MatchingIdx << 16);
4886  SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
4887  Ops.push_back(Res);
4888
4889  for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
4890    unsigned NumRegs = TLI->getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
4891    EVT RegisterVT = RegVTs[Value];
4892    for (unsigned i = 0; i != NumRegs; ++i) {
4893      assert(Reg < Regs.size() && "Mismatch in # registers expected");
4894      Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
4895    }
4896  }
4897}
4898
4899/// isAllocatableRegister - If the specified register is safe to allocate,
4900/// i.e. it isn't a stack pointer or some other special register, return the
4901/// register class for the register.  Otherwise, return null.
4902static const TargetRegisterClass *
4903isAllocatableRegister(unsigned Reg, MachineFunction &MF,
4904                      const TargetLowering &TLI,
4905                      const TargetRegisterInfo *TRI) {
4906  EVT FoundVT = MVT::Other;
4907  const TargetRegisterClass *FoundRC = 0;
4908  for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(),
4909       E = TRI->regclass_end(); RCI != E; ++RCI) {
4910    EVT ThisVT = MVT::Other;
4911
4912    const TargetRegisterClass *RC = *RCI;
4913    // If none of the value types for this register class are valid, we
4914    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
4915    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
4916         I != E; ++I) {
4917      if (TLI.isTypeLegal(*I)) {
4918        // If we have already found this register in a different register class,
4919        // choose the one with the largest VT specified.  For example, on
4920        // PowerPC, we favor f64 register classes over f32.
4921        if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) {
4922          ThisVT = *I;
4923          break;
4924        }
4925      }
4926    }
4927
4928    if (ThisVT == MVT::Other) continue;
4929
4930    // NOTE: This isn't ideal.  In particular, this might allocate the
4931    // frame pointer in functions that need it (due to them not being taken
4932    // out of allocation, because a variable sized allocation hasn't been seen
4933    // yet).  This is a slight code pessimization, but should still work.
4934    for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
4935         E = RC->allocation_order_end(MF); I != E; ++I)
4936      if (*I == Reg) {
4937        // We found a matching register class.  Keep looking at others in case
4938        // we find one with larger registers that this physreg is also in.
4939        FoundRC = RC;
4940        FoundVT = ThisVT;
4941        break;
4942      }
4943  }
4944  return FoundRC;
4945}
4946
4947
4948namespace llvm {
4949/// AsmOperandInfo - This contains information for each constraint that we are
4950/// lowering.
4951class VISIBILITY_HIDDEN SDISelAsmOperandInfo :
4952    public TargetLowering::AsmOperandInfo {
4953public:
4954  /// CallOperand - If this is the result output operand or a clobber
4955  /// this is null, otherwise it is the incoming operand to the CallInst.
4956  /// This gets modified as the asm is processed.
4957  SDValue CallOperand;
4958
4959  /// AssignedRegs - If this is a register or register class operand, this
4960  /// contains the set of register corresponding to the operand.
4961  RegsForValue AssignedRegs;
4962
4963  explicit SDISelAsmOperandInfo(const InlineAsm::ConstraintInfo &info)
4964    : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
4965  }
4966
4967  /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
4968  /// busy in OutputRegs/InputRegs.
4969  void MarkAllocatedRegs(bool isOutReg, bool isInReg,
4970                         std::set<unsigned> &OutputRegs,
4971                         std::set<unsigned> &InputRegs,
4972                         const TargetRegisterInfo &TRI) const {
4973    if (isOutReg) {
4974      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
4975        MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
4976    }
4977    if (isInReg) {
4978      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
4979        MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
4980    }
4981  }
4982
4983  /// getCallOperandValEVT - Return the EVT of the Value* that this operand
4984  /// corresponds to.  If there is no Value* for this operand, it returns
4985  /// MVT::Other.
4986  EVT getCallOperandValEVT(LLVMContext &Context,
4987                           const TargetLowering &TLI,
4988                           const TargetData *TD) const {
4989    if (CallOperandVal == 0) return MVT::Other;
4990
4991    if (isa<BasicBlock>(CallOperandVal))
4992      return TLI.getPointerTy();
4993
4994    const llvm::Type *OpTy = CallOperandVal->getType();
4995
4996    // If this is an indirect operand, the operand is a pointer to the
4997    // accessed type.
4998    if (isIndirect) {
4999      const llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
5000      if (!PtrTy)
5001        llvm_report_error("Indirect operand for inline asm not a pointer!");
5002      OpTy = PtrTy->getElementType();
5003    }
5004
5005    // If OpTy is not a single value, it may be a struct/union that we
5006    // can tile with integers.
5007    if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5008      unsigned BitSize = TD->getTypeSizeInBits(OpTy);
5009      switch (BitSize) {
5010      default: break;
5011      case 1:
5012      case 8:
5013      case 16:
5014      case 32:
5015      case 64:
5016      case 128:
5017        OpTy = IntegerType::get(Context, BitSize);
5018        break;
5019      }
5020    }
5021
5022    return TLI.getValueType(OpTy, true);
5023  }
5024
5025private:
5026  /// MarkRegAndAliases - Mark the specified register and all aliases in the
5027  /// specified set.
5028  static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
5029                                const TargetRegisterInfo &TRI) {
5030    assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
5031    Regs.insert(Reg);
5032    if (const unsigned *Aliases = TRI.getAliasSet(Reg))
5033      for (; *Aliases; ++Aliases)
5034        Regs.insert(*Aliases);
5035  }
5036};
5037} // end llvm namespace.
5038
5039
5040/// GetRegistersForValue - Assign registers (virtual or physical) for the
5041/// specified operand.  We prefer to assign virtual registers, to allow the
5042/// register allocator to handle the assignment process.  However, if the asm
5043/// uses features that we can't model on machineinstrs, we have SDISel do the
5044/// allocation.  This produces generally horrible, but correct, code.
5045///
5046///   OpInfo describes the operand.
5047///   Input and OutputRegs are the set of already allocated physical registers.
5048///
5049void SelectionDAGBuilder::
5050GetRegistersForValue(SDISelAsmOperandInfo &OpInfo,
5051                     std::set<unsigned> &OutputRegs,
5052                     std::set<unsigned> &InputRegs) {
5053  LLVMContext &Context = FuncInfo.Fn->getContext();
5054
5055  // Compute whether this value requires an input register, an output register,
5056  // or both.
5057  bool isOutReg = false;
5058  bool isInReg = false;
5059  switch (OpInfo.Type) {
5060  case InlineAsm::isOutput:
5061    isOutReg = true;
5062
5063    // If there is an input constraint that matches this, we need to reserve
5064    // the input register so no other inputs allocate to it.
5065    isInReg = OpInfo.hasMatchingInput();
5066    break;
5067  case InlineAsm::isInput:
5068    isInReg = true;
5069    isOutReg = false;
5070    break;
5071  case InlineAsm::isClobber:
5072    isOutReg = true;
5073    isInReg = true;
5074    break;
5075  }
5076
5077
5078  MachineFunction &MF = DAG.getMachineFunction();
5079  SmallVector<unsigned, 4> Regs;
5080
5081  // If this is a constraint for a single physreg, or a constraint for a
5082  // register class, find it.
5083  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
5084    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5085                                     OpInfo.ConstraintVT);
5086
5087  unsigned NumRegs = 1;
5088  if (OpInfo.ConstraintVT != MVT::Other) {
5089    // If this is a FP input in an integer register (or visa versa) insert a bit
5090    // cast of the input value.  More generally, handle any case where the input
5091    // value disagrees with the register class we plan to stick this in.
5092    if (OpInfo.Type == InlineAsm::isInput &&
5093        PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
5094      // Try to convert to the first EVT that the reg class contains.  If the
5095      // types are identical size, use a bitcast to convert (e.g. two differing
5096      // vector types).
5097      EVT RegVT = *PhysReg.second->vt_begin();
5098      if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
5099        OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
5100                                         RegVT, OpInfo.CallOperand);
5101        OpInfo.ConstraintVT = RegVT;
5102      } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
5103        // If the input is a FP value and we want it in FP registers, do a
5104        // bitcast to the corresponding integer type.  This turns an f64 value
5105        // into i64, which can be passed with two i32 values on a 32-bit
5106        // machine.
5107        RegVT = EVT::getIntegerVT(Context,
5108                                  OpInfo.ConstraintVT.getSizeInBits());
5109        OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
5110                                         RegVT, OpInfo.CallOperand);
5111        OpInfo.ConstraintVT = RegVT;
5112      }
5113    }
5114
5115    NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
5116  }
5117
5118  EVT RegVT;
5119  EVT ValueVT = OpInfo.ConstraintVT;
5120
5121  // If this is a constraint for a specific physical register, like {r17},
5122  // assign it now.
5123  if (unsigned AssignedReg = PhysReg.first) {
5124    const TargetRegisterClass *RC = PhysReg.second;
5125    if (OpInfo.ConstraintVT == MVT::Other)
5126      ValueVT = *RC->vt_begin();
5127
5128    // Get the actual register value type.  This is important, because the user
5129    // may have asked for (e.g.) the AX register in i32 type.  We need to
5130    // remember that AX is actually i16 to get the right extension.
5131    RegVT = *RC->vt_begin();
5132
5133    // This is a explicit reference to a physical register.
5134    Regs.push_back(AssignedReg);
5135
5136    // If this is an expanded reference, add the rest of the regs to Regs.
5137    if (NumRegs != 1) {
5138      TargetRegisterClass::iterator I = RC->begin();
5139      for (; *I != AssignedReg; ++I)
5140        assert(I != RC->end() && "Didn't find reg!");
5141
5142      // Already added the first reg.
5143      --NumRegs; ++I;
5144      for (; NumRegs; --NumRegs, ++I) {
5145        assert(I != RC->end() && "Ran out of registers to allocate!");
5146        Regs.push_back(*I);
5147      }
5148    }
5149
5150    OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT);
5151    const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5152    OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5153    return;
5154  }
5155
5156  // Otherwise, if this was a reference to an LLVM register class, create vregs
5157  // for this reference.
5158  if (const TargetRegisterClass *RC = PhysReg.second) {
5159    RegVT = *RC->vt_begin();
5160    if (OpInfo.ConstraintVT == MVT::Other)
5161      ValueVT = RegVT;
5162
5163    // Create the appropriate number of virtual registers.
5164    MachineRegisterInfo &RegInfo = MF.getRegInfo();
5165    for (; NumRegs; --NumRegs)
5166      Regs.push_back(RegInfo.createVirtualRegister(RC));
5167
5168    OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT);
5169    return;
5170  }
5171
5172  // This is a reference to a register class that doesn't directly correspond
5173  // to an LLVM register class.  Allocate NumRegs consecutive, available,
5174  // registers from the class.
5175  std::vector<unsigned> RegClassRegs
5176    = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
5177                                            OpInfo.ConstraintVT);
5178
5179  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5180  unsigned NumAllocated = 0;
5181  for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
5182    unsigned Reg = RegClassRegs[i];
5183    // See if this register is available.
5184    if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
5185        (isInReg  && InputRegs.count(Reg))) {    // Already used.
5186      // Make sure we find consecutive registers.
5187      NumAllocated = 0;
5188      continue;
5189    }
5190
5191    // Check to see if this register is allocatable (i.e. don't give out the
5192    // stack pointer).
5193    const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, TRI);
5194    if (!RC) {        // Couldn't allocate this register.
5195      // Reset NumAllocated to make sure we return consecutive registers.
5196      NumAllocated = 0;
5197      continue;
5198    }
5199
5200    // Okay, this register is good, we can use it.
5201    ++NumAllocated;
5202
5203    // If we allocated enough consecutive registers, succeed.
5204    if (NumAllocated == NumRegs) {
5205      unsigned RegStart = (i-NumAllocated)+1;
5206      unsigned RegEnd   = i+1;
5207      // Mark all of the allocated registers used.
5208      for (unsigned i = RegStart; i != RegEnd; ++i)
5209        Regs.push_back(RegClassRegs[i]);
5210
5211      OpInfo.AssignedRegs = RegsForValue(TLI, Regs, *RC->vt_begin(),
5212                                         OpInfo.ConstraintVT);
5213      OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5214      return;
5215    }
5216  }
5217
5218  // Otherwise, we couldn't allocate enough registers for this.
5219}
5220
5221/// hasInlineAsmMemConstraint - Return true if the inline asm instruction being
5222/// processed uses a memory 'm' constraint.
5223static bool
5224hasInlineAsmMemConstraint(std::vector<InlineAsm::ConstraintInfo> &CInfos,
5225                          const TargetLowering &TLI) {
5226  for (unsigned i = 0, e = CInfos.size(); i != e; ++i) {
5227    InlineAsm::ConstraintInfo &CI = CInfos[i];
5228    for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) {
5229      TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]);
5230      if (CType == TargetLowering::C_Memory)
5231        return true;
5232    }
5233
5234    // Indirect operand accesses access memory.
5235    if (CI.isIndirect)
5236      return true;
5237  }
5238
5239  return false;
5240}
5241
5242/// visitInlineAsm - Handle a call to an InlineAsm object.
5243///
5244void SelectionDAGBuilder::visitInlineAsm(CallSite CS) {
5245  InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
5246
5247  /// ConstraintOperands - Information about all of the constraints.
5248  std::vector<SDISelAsmOperandInfo> ConstraintOperands;
5249
5250  std::set<unsigned> OutputRegs, InputRegs;
5251
5252  // Do a prepass over the constraints, canonicalizing them, and building up the
5253  // ConstraintOperands list.
5254  std::vector<InlineAsm::ConstraintInfo>
5255    ConstraintInfos = IA->ParseConstraints();
5256
5257  bool hasMemory = hasInlineAsmMemConstraint(ConstraintInfos, TLI);
5258
5259  SDValue Chain, Flag;
5260
5261  // We won't need to flush pending loads if this asm doesn't touch
5262  // memory and is nonvolatile.
5263  if (hasMemory || IA->hasSideEffects())
5264    Chain = getRoot();
5265  else
5266    Chain = DAG.getRoot();
5267
5268  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
5269  unsigned ResNo = 0;   // ResNo - The result number of the next output.
5270  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
5271    ConstraintOperands.push_back(SDISelAsmOperandInfo(ConstraintInfos[i]));
5272    SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
5273
5274    EVT OpVT = MVT::Other;
5275
5276    // Compute the value type for each operand.
5277    switch (OpInfo.Type) {
5278    case InlineAsm::isOutput:
5279      // Indirect outputs just consume an argument.
5280      if (OpInfo.isIndirect) {
5281        OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
5282        break;
5283      }
5284
5285      // The return value of the call is this value.  As such, there is no
5286      // corresponding argument.
5287      assert(!CS.getType()->isVoidTy() &&
5288             "Bad inline asm!");
5289      if (const StructType *STy = dyn_cast<StructType>(CS.getType())) {
5290        OpVT = TLI.getValueType(STy->getElementType(ResNo));
5291      } else {
5292        assert(ResNo == 0 && "Asm only has one result!");
5293        OpVT = TLI.getValueType(CS.getType());
5294      }
5295      ++ResNo;
5296      break;
5297    case InlineAsm::isInput:
5298      OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
5299      break;
5300    case InlineAsm::isClobber:
5301      // Nothing to do.
5302      break;
5303    }
5304
5305    // If this is an input or an indirect output, process the call argument.
5306    // BasicBlocks are labels, currently appearing only in asm's.
5307    if (OpInfo.CallOperandVal) {
5308      // Strip bitcasts, if any.  This mostly comes up for functions.
5309      OpInfo.CallOperandVal = OpInfo.CallOperandVal->stripPointerCasts();
5310
5311      if (BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
5312        OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
5313      } else {
5314        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
5315      }
5316
5317      OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD);
5318    }
5319
5320    OpInfo.ConstraintVT = OpVT;
5321  }
5322
5323  // Second pass over the constraints: compute which constraint option to use
5324  // and assign registers to constraints that want a specific physreg.
5325  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
5326    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5327
5328    // If this is an output operand with a matching input operand, look up the
5329    // matching input. If their types mismatch, e.g. one is an integer, the
5330    // other is floating point, or their sizes are different, flag it as an
5331    // error.
5332    if (OpInfo.hasMatchingInput()) {
5333      SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5334      if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5335        if ((OpInfo.ConstraintVT.isInteger() !=
5336             Input.ConstraintVT.isInteger()) ||
5337            (OpInfo.ConstraintVT.getSizeInBits() !=
5338             Input.ConstraintVT.getSizeInBits())) {
5339          llvm_report_error("Unsupported asm: input constraint"
5340                            " with a matching output constraint of incompatible"
5341                            " type!");
5342        }
5343        Input.ConstraintVT = OpInfo.ConstraintVT;
5344      }
5345    }
5346
5347    // Compute the constraint code and ConstraintType to use.
5348    TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, hasMemory, &DAG);
5349
5350    // If this is a memory input, and if the operand is not indirect, do what we
5351    // need to to provide an address for the memory input.
5352    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5353        !OpInfo.isIndirect) {
5354      assert(OpInfo.Type == InlineAsm::isInput &&
5355             "Can only indirectify direct input operands!");
5356
5357      // Memory operands really want the address of the value.  If we don't have
5358      // an indirect input, put it in the constpool if we can, otherwise spill
5359      // it to a stack slot.
5360
5361      // If the operand is a float, integer, or vector constant, spill to a
5362      // constant pool entry to get its address.
5363      Value *OpVal = OpInfo.CallOperandVal;
5364      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
5365          isa<ConstantVector>(OpVal)) {
5366        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
5367                                                 TLI.getPointerTy());
5368      } else {
5369        // Otherwise, create a stack slot and emit a store to it before the
5370        // asm.
5371        const Type *Ty = OpVal->getType();
5372        uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
5373        unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
5374        MachineFunction &MF = DAG.getMachineFunction();
5375        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5376        SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
5377        Chain = DAG.getStore(Chain, getCurDebugLoc(),
5378                             OpInfo.CallOperand, StackSlot, NULL, 0,
5379                             false, false, 0);
5380        OpInfo.CallOperand = StackSlot;
5381      }
5382
5383      // There is no longer a Value* corresponding to this operand.
5384      OpInfo.CallOperandVal = 0;
5385
5386      // It is now an indirect operand.
5387      OpInfo.isIndirect = true;
5388    }
5389
5390    // If this constraint is for a specific register, allocate it before
5391    // anything else.
5392    if (OpInfo.ConstraintType == TargetLowering::C_Register)
5393      GetRegistersForValue(OpInfo, OutputRegs, InputRegs);
5394  }
5395
5396  ConstraintInfos.clear();
5397
5398  // Second pass - Loop over all of the operands, assigning virtual or physregs
5399  // to register class operands.
5400  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5401    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5402
5403    // C_Register operands have already been allocated, Other/Memory don't need
5404    // to be.
5405    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
5406      GetRegistersForValue(OpInfo, OutputRegs, InputRegs);
5407  }
5408
5409  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
5410  std::vector<SDValue> AsmNodeOperands;
5411  AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
5412  AsmNodeOperands.push_back(
5413          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
5414                                      TLI.getPointerTy()));
5415
5416
5417  // Loop over all of the inputs, copying the operand values into the
5418  // appropriate registers and processing the output regs.
5419  RegsForValue RetValRegs;
5420
5421  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
5422  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
5423
5424  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5425    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5426
5427    switch (OpInfo.Type) {
5428    case InlineAsm::isOutput: {
5429      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
5430          OpInfo.ConstraintType != TargetLowering::C_Register) {
5431        // Memory output, or 'other' output (e.g. 'X' constraint).
5432        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
5433
5434        // Add information to the INLINEASM node to know about this output.
5435        unsigned ResOpType = 4/*MEM*/ | (1<<3);
5436        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5437                                                        TLI.getPointerTy()));
5438        AsmNodeOperands.push_back(OpInfo.CallOperand);
5439        break;
5440      }
5441
5442      // Otherwise, this is a register or register class output.
5443
5444      // Copy the output from the appropriate register.  Find a register that
5445      // we can use.
5446      if (OpInfo.AssignedRegs.Regs.empty()) {
5447        llvm_report_error("Couldn't allocate output reg for"
5448                          " constraint '" + OpInfo.ConstraintCode + "'!");
5449      }
5450
5451      // If this is an indirect operand, store through the pointer after the
5452      // asm.
5453      if (OpInfo.isIndirect) {
5454        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
5455                                                      OpInfo.CallOperandVal));
5456      } else {
5457        // This is the result value of the call.
5458        assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
5459        // Concatenate this output onto the outputs list.
5460        RetValRegs.append(OpInfo.AssignedRegs);
5461      }
5462
5463      // Add information to the INLINEASM node to know that this register is
5464      // set.
5465      OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
5466                                               6 /* EARLYCLOBBER REGDEF */ :
5467                                               2 /* REGDEF */ ,
5468                                               false,
5469                                               0,
5470                                               DAG,
5471                                               AsmNodeOperands);
5472      break;
5473    }
5474    case InlineAsm::isInput: {
5475      SDValue InOperandVal = OpInfo.CallOperand;
5476
5477      if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
5478        // If this is required to match an output register we have already set,
5479        // just use its register.
5480        unsigned OperandNo = OpInfo.getMatchedOperand();
5481
5482        // Scan until we find the definition we already emitted of this operand.
5483        // When we find it, create a RegsForValue operand.
5484        unsigned CurOp = 2;  // The first operand.
5485        for (; OperandNo; --OperandNo) {
5486          // Advance to the next operand.
5487          unsigned OpFlag =
5488            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5489          assert(((OpFlag & 7) == 2 /*REGDEF*/ ||
5490                  (OpFlag & 7) == 6 /*EARLYCLOBBER REGDEF*/ ||
5491                  (OpFlag & 7) == 4 /*MEM*/) &&
5492                 "Skipped past definitions?");
5493          CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
5494        }
5495
5496        unsigned OpFlag =
5497          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5498        if ((OpFlag & 7) == 2 /*REGDEF*/
5499            || (OpFlag & 7) == 6 /* EARLYCLOBBER REGDEF */) {
5500          // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
5501          if (OpInfo.isIndirect) {
5502            llvm_report_error("Don't know how to handle tied indirect "
5503                              "register inputs yet!");
5504          }
5505          RegsForValue MatchedRegs;
5506          MatchedRegs.TLI = &TLI;
5507          MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
5508          EVT RegVT = AsmNodeOperands[CurOp+1].getValueType();
5509          MatchedRegs.RegVTs.push_back(RegVT);
5510          MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
5511          for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
5512               i != e; ++i)
5513            MatchedRegs.Regs.push_back
5514              (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)));
5515
5516          // Use the produced MatchedRegs object to
5517          MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
5518                                    Chain, &Flag);
5519          MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/,
5520                                           true, OpInfo.getMatchedOperand(),
5521                                           DAG, AsmNodeOperands);
5522          break;
5523        } else {
5524          assert(((OpFlag & 7) == 4) && "Unknown matching constraint!");
5525          assert((InlineAsm::getNumOperandRegisters(OpFlag)) == 1 &&
5526                 "Unexpected number of operands");
5527          // Add information to the INLINEASM node to know about this input.
5528          // See InlineAsm.h isUseOperandTiedToDef.
5529          OpFlag |= 0x80000000 | (OpInfo.getMatchedOperand() << 16);
5530          AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
5531                                                          TLI.getPointerTy()));
5532          AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
5533          break;
5534        }
5535      }
5536
5537      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
5538        assert(!OpInfo.isIndirect &&
5539               "Don't know how to handle indirect other inputs yet!");
5540
5541        std::vector<SDValue> Ops;
5542        TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0],
5543                                         hasMemory, Ops, DAG);
5544        if (Ops.empty()) {
5545          llvm_report_error("Invalid operand for inline asm"
5546                            " constraint '" + OpInfo.ConstraintCode + "'!");
5547        }
5548
5549        // Add information to the INLINEASM node to know about this input.
5550        unsigned ResOpType = 3 /*IMM*/ | (Ops.size() << 3);
5551        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5552                                                        TLI.getPointerTy()));
5553        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
5554        break;
5555      } else if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
5556        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
5557        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
5558               "Memory operands expect pointer values");
5559
5560        // Add information to the INLINEASM node to know about this input.
5561        unsigned ResOpType = 4/*MEM*/ | (1<<3);
5562        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5563                                                        TLI.getPointerTy()));
5564        AsmNodeOperands.push_back(InOperandVal);
5565        break;
5566      }
5567
5568      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
5569              OpInfo.ConstraintType == TargetLowering::C_Register) &&
5570             "Unknown constraint type!");
5571      assert(!OpInfo.isIndirect &&
5572             "Don't know how to handle indirect register inputs yet!");
5573
5574      // Copy the input into the appropriate registers.
5575      if (OpInfo.AssignedRegs.Regs.empty() ||
5576          !OpInfo.AssignedRegs.areValueTypesLegal()) {
5577        llvm_report_error("Couldn't allocate input reg for"
5578                          " constraint '"+ OpInfo.ConstraintCode +"'!");
5579      }
5580
5581      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
5582                                        Chain, &Flag);
5583
5584      OpInfo.AssignedRegs.AddInlineAsmOperands(1/*REGUSE*/, false, 0,
5585                                               DAG, AsmNodeOperands);
5586      break;
5587    }
5588    case InlineAsm::isClobber: {
5589      // Add the clobbered value to the operand list, so that the register
5590      // allocator is aware that the physreg got clobbered.
5591      if (!OpInfo.AssignedRegs.Regs.empty())
5592        OpInfo.AssignedRegs.AddInlineAsmOperands(6 /* EARLYCLOBBER REGDEF */,
5593                                                 false, 0, DAG,
5594                                                 AsmNodeOperands);
5595      break;
5596    }
5597    }
5598  }
5599
5600  // Finish up input operands.
5601  AsmNodeOperands[0] = Chain;
5602  if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
5603
5604  Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(),
5605                      DAG.getVTList(MVT::Other, MVT::Flag),
5606                      &AsmNodeOperands[0], AsmNodeOperands.size());
5607  Flag = Chain.getValue(1);
5608
5609  // If this asm returns a register value, copy the result from that register
5610  // and set it as the value of the call.
5611  if (!RetValRegs.Regs.empty()) {
5612    SDValue Val = RetValRegs.getCopyFromRegs(DAG, getCurDebugLoc(),
5613                                             Chain, &Flag);
5614
5615    // FIXME: Why don't we do this for inline asms with MRVs?
5616    if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
5617      EVT ResultType = TLI.getValueType(CS.getType());
5618
5619      // If any of the results of the inline asm is a vector, it may have the
5620      // wrong width/num elts.  This can happen for register classes that can
5621      // contain multiple different value types.  The preg or vreg allocated may
5622      // not have the same VT as was expected.  Convert it to the right type
5623      // with bit_convert.
5624      if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
5625        Val = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
5626                          ResultType, Val);
5627
5628      } else if (ResultType != Val.getValueType() &&
5629                 ResultType.isInteger() && Val.getValueType().isInteger()) {
5630        // If a result value was tied to an input value, the computed result may
5631        // have a wider width than the expected result.  Extract the relevant
5632        // portion.
5633        Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val);
5634      }
5635
5636      assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
5637    }
5638
5639    setValue(CS.getInstruction(), Val);
5640    // Don't need to use this as a chain in this case.
5641    if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
5642      return;
5643  }
5644
5645  std::vector<std::pair<SDValue, Value*> > StoresToEmit;
5646
5647  // Process indirect outputs, first output all of the flagged copies out of
5648  // physregs.
5649  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
5650    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
5651    Value *Ptr = IndirectStoresToEmit[i].second;
5652    SDValue OutVal = OutRegs.getCopyFromRegs(DAG, getCurDebugLoc(),
5653                                             Chain, &Flag);
5654    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
5655
5656  }
5657
5658  // Emit the non-flagged stores from the physregs.
5659  SmallVector<SDValue, 8> OutChains;
5660  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
5661    SDValue Val = DAG.getStore(Chain, getCurDebugLoc(),
5662                               StoresToEmit[i].first,
5663                               getValue(StoresToEmit[i].second),
5664                               StoresToEmit[i].second, 0,
5665                               false, false, 0);
5666    OutChains.push_back(Val);
5667  }
5668
5669  if (!OutChains.empty())
5670    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
5671                        &OutChains[0], OutChains.size());
5672
5673  DAG.setRoot(Chain);
5674}
5675
5676void SelectionDAGBuilder::visitVAStart(CallInst &I) {
5677  DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(),
5678                          MVT::Other, getRoot(),
5679                          getValue(I.getOperand(1)),
5680                          DAG.getSrcValue(I.getOperand(1))));
5681}
5682
5683void SelectionDAGBuilder::visitVAArg(VAArgInst &I) {
5684  SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(),
5685                           getRoot(), getValue(I.getOperand(0)),
5686                           DAG.getSrcValue(I.getOperand(0)));
5687  setValue(&I, V);
5688  DAG.setRoot(V.getValue(1));
5689}
5690
5691void SelectionDAGBuilder::visitVAEnd(CallInst &I) {
5692  DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(),
5693                          MVT::Other, getRoot(),
5694                          getValue(I.getOperand(1)),
5695                          DAG.getSrcValue(I.getOperand(1))));
5696}
5697
5698void SelectionDAGBuilder::visitVACopy(CallInst &I) {
5699  DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(),
5700                          MVT::Other, getRoot(),
5701                          getValue(I.getOperand(1)),
5702                          getValue(I.getOperand(2)),
5703                          DAG.getSrcValue(I.getOperand(1)),
5704                          DAG.getSrcValue(I.getOperand(2))));
5705}
5706
5707/// TargetLowering::LowerCallTo - This is the default LowerCallTo
5708/// implementation, which just calls LowerCall.
5709/// FIXME: When all targets are
5710/// migrated to using LowerCall, this hook should be integrated into SDISel.
5711std::pair<SDValue, SDValue>
5712TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy,
5713                            bool RetSExt, bool RetZExt, bool isVarArg,
5714                            bool isInreg, unsigned NumFixedArgs,
5715                            CallingConv::ID CallConv, bool isTailCall,
5716                            bool isReturnValueUsed,
5717                            SDValue Callee,
5718                            ArgListTy &Args, SelectionDAG &DAG, DebugLoc dl) {
5719  // Handle all of the outgoing arguments.
5720  SmallVector<ISD::OutputArg, 32> Outs;
5721  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
5722    SmallVector<EVT, 4> ValueVTs;
5723    ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
5724    for (unsigned Value = 0, NumValues = ValueVTs.size();
5725         Value != NumValues; ++Value) {
5726      EVT VT = ValueVTs[Value];
5727      const Type *ArgTy = VT.getTypeForEVT(RetTy->getContext());
5728      SDValue Op = SDValue(Args[i].Node.getNode(),
5729                           Args[i].Node.getResNo() + Value);
5730      ISD::ArgFlagsTy Flags;
5731      unsigned OriginalAlignment =
5732        getTargetData()->getABITypeAlignment(ArgTy);
5733
5734      if (Args[i].isZExt)
5735        Flags.setZExt();
5736      if (Args[i].isSExt)
5737        Flags.setSExt();
5738      if (Args[i].isInReg)
5739        Flags.setInReg();
5740      if (Args[i].isSRet)
5741        Flags.setSRet();
5742      if (Args[i].isByVal) {
5743        Flags.setByVal();
5744        const PointerType *Ty = cast<PointerType>(Args[i].Ty);
5745        const Type *ElementTy = Ty->getElementType();
5746        unsigned FrameAlign = getByValTypeAlignment(ElementTy);
5747        unsigned FrameSize  = getTargetData()->getTypeAllocSize(ElementTy);
5748        // For ByVal, alignment should come from FE.  BE will guess if this
5749        // info is not there but there are cases it cannot get right.
5750        if (Args[i].Alignment)
5751          FrameAlign = Args[i].Alignment;
5752        Flags.setByValAlign(FrameAlign);
5753        Flags.setByValSize(FrameSize);
5754      }
5755      if (Args[i].isNest)
5756        Flags.setNest();
5757      Flags.setOrigAlign(OriginalAlignment);
5758
5759      EVT PartVT = getRegisterType(RetTy->getContext(), VT);
5760      unsigned NumParts = getNumRegisters(RetTy->getContext(), VT);
5761      SmallVector<SDValue, 4> Parts(NumParts);
5762      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
5763
5764      if (Args[i].isSExt)
5765        ExtendKind = ISD::SIGN_EXTEND;
5766      else if (Args[i].isZExt)
5767        ExtendKind = ISD::ZERO_EXTEND;
5768
5769      getCopyToParts(DAG, dl, Op, &Parts[0], NumParts,
5770                     PartVT, ExtendKind);
5771
5772      for (unsigned j = 0; j != NumParts; ++j) {
5773        // if it isn't first piece, alignment must be 1
5774        ISD::OutputArg MyFlags(Flags, Parts[j], i < NumFixedArgs);
5775        if (NumParts > 1 && j == 0)
5776          MyFlags.Flags.setSplit();
5777        else if (j != 0)
5778          MyFlags.Flags.setOrigAlign(1);
5779
5780        Outs.push_back(MyFlags);
5781      }
5782    }
5783  }
5784
5785  // Handle the incoming return values from the call.
5786  SmallVector<ISD::InputArg, 32> Ins;
5787  SmallVector<EVT, 4> RetTys;
5788  ComputeValueVTs(*this, RetTy, RetTys);
5789  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
5790    EVT VT = RetTys[I];
5791    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
5792    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
5793    for (unsigned i = 0; i != NumRegs; ++i) {
5794      ISD::InputArg MyFlags;
5795      MyFlags.VT = RegisterVT;
5796      MyFlags.Used = isReturnValueUsed;
5797      if (RetSExt)
5798        MyFlags.Flags.setSExt();
5799      if (RetZExt)
5800        MyFlags.Flags.setZExt();
5801      if (isInreg)
5802        MyFlags.Flags.setInReg();
5803      Ins.push_back(MyFlags);
5804    }
5805  }
5806
5807  SmallVector<SDValue, 4> InVals;
5808  Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall,
5809                    Outs, Ins, dl, DAG, InVals);
5810
5811  // Verify that the target's LowerCall behaved as expected.
5812  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
5813         "LowerCall didn't return a valid chain!");
5814  assert((!isTailCall || InVals.empty()) &&
5815         "LowerCall emitted a return value for a tail call!");
5816  assert((isTailCall || InVals.size() == Ins.size()) &&
5817         "LowerCall didn't emit the correct number of values!");
5818
5819  // For a tail call, the return value is merely live-out and there aren't
5820  // any nodes in the DAG representing it. Return a special value to
5821  // indicate that a tail call has been emitted and no more Instructions
5822  // should be processed in the current block.
5823  if (isTailCall) {
5824    DAG.setRoot(Chain);
5825    return std::make_pair(SDValue(), SDValue());
5826  }
5827
5828  DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
5829          assert(InVals[i].getNode() &&
5830                 "LowerCall emitted a null value!");
5831          assert(Ins[i].VT == InVals[i].getValueType() &&
5832                 "LowerCall emitted a value with the wrong type!");
5833        });
5834
5835  // Collect the legal value parts into potentially illegal values
5836  // that correspond to the original function's return values.
5837  ISD::NodeType AssertOp = ISD::DELETED_NODE;
5838  if (RetSExt)
5839    AssertOp = ISD::AssertSext;
5840  else if (RetZExt)
5841    AssertOp = ISD::AssertZext;
5842  SmallVector<SDValue, 4> ReturnValues;
5843  unsigned CurReg = 0;
5844  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
5845    EVT VT = RetTys[I];
5846    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
5847    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
5848
5849    ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg],
5850                                            NumRegs, RegisterVT, VT,
5851                                            AssertOp));
5852    CurReg += NumRegs;
5853  }
5854
5855  // For a function returning void, there is no return value. We can't create
5856  // such a node, so we just return a null return value in that case. In
5857  // that case, nothing will actualy look at the value.
5858  if (ReturnValues.empty())
5859    return std::make_pair(SDValue(), Chain);
5860
5861  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
5862                            DAG.getVTList(&RetTys[0], RetTys.size()),
5863                            &ReturnValues[0], ReturnValues.size());
5864  return std::make_pair(Res, Chain);
5865}
5866
5867void TargetLowering::LowerOperationWrapper(SDNode *N,
5868                                           SmallVectorImpl<SDValue> &Results,
5869                                           SelectionDAG &DAG) {
5870  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
5871  if (Res.getNode())
5872    Results.push_back(Res);
5873}
5874
5875SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
5876  llvm_unreachable("LowerOperation not implemented for this target!");
5877  return SDValue();
5878}
5879
5880void SelectionDAGBuilder::CopyValueToVirtualRegister(Value *V, unsigned Reg) {
5881  SDValue Op = getValue(V);
5882  assert((Op.getOpcode() != ISD::CopyFromReg ||
5883          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
5884         "Copy from a reg to the same reg!");
5885  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
5886
5887  RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
5888  SDValue Chain = DAG.getEntryNode();
5889  RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0);
5890  PendingExports.push_back(Chain);
5891}
5892
5893#include "llvm/CodeGen/SelectionDAGISel.h"
5894
5895void SelectionDAGISel::LowerArguments(BasicBlock *LLVMBB) {
5896  // If this is the entry block, emit arguments.
5897  Function &F = *LLVMBB->getParent();
5898  SelectionDAG &DAG = SDB->DAG;
5899  SDValue OldRoot = DAG.getRoot();
5900  DebugLoc dl = SDB->getCurDebugLoc();
5901  const TargetData *TD = TLI.getTargetData();
5902  SmallVector<ISD::InputArg, 16> Ins;
5903
5904  // Check whether the function can return without sret-demotion.
5905  SmallVector<EVT, 4> OutVTs;
5906  SmallVector<ISD::ArgFlagsTy, 4> OutsFlags;
5907  getReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
5908                OutVTs, OutsFlags, TLI);
5909  FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo();
5910
5911  FLI.CanLowerReturn = TLI.CanLowerReturn(F.getCallingConv(), F.isVarArg(),
5912                                          OutVTs, OutsFlags, DAG);
5913  if (!FLI.CanLowerReturn) {
5914    // Put in an sret pointer parameter before all the other parameters.
5915    SmallVector<EVT, 1> ValueVTs;
5916    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
5917
5918    // NOTE: Assuming that a pointer will never break down to more than one VT
5919    // or one register.
5920    ISD::ArgFlagsTy Flags;
5921    Flags.setSRet();
5922    EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), ValueVTs[0]);
5923    ISD::InputArg RetArg(Flags, RegisterVT, true);
5924    Ins.push_back(RetArg);
5925  }
5926
5927  // Set up the incoming argument description vector.
5928  unsigned Idx = 1;
5929  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
5930       I != E; ++I, ++Idx) {
5931    SmallVector<EVT, 4> ValueVTs;
5932    ComputeValueVTs(TLI, I->getType(), ValueVTs);
5933    bool isArgValueUsed = !I->use_empty();
5934    for (unsigned Value = 0, NumValues = ValueVTs.size();
5935         Value != NumValues; ++Value) {
5936      EVT VT = ValueVTs[Value];
5937      const Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
5938      ISD::ArgFlagsTy Flags;
5939      unsigned OriginalAlignment =
5940        TD->getABITypeAlignment(ArgTy);
5941
5942      if (F.paramHasAttr(Idx, Attribute::ZExt))
5943        Flags.setZExt();
5944      if (F.paramHasAttr(Idx, Attribute::SExt))
5945        Flags.setSExt();
5946      if (F.paramHasAttr(Idx, Attribute::InReg))
5947        Flags.setInReg();
5948      if (F.paramHasAttr(Idx, Attribute::StructRet))
5949        Flags.setSRet();
5950      if (F.paramHasAttr(Idx, Attribute::ByVal)) {
5951        Flags.setByVal();
5952        const PointerType *Ty = cast<PointerType>(I->getType());
5953        const Type *ElementTy = Ty->getElementType();
5954        unsigned FrameAlign = TLI.getByValTypeAlignment(ElementTy);
5955        unsigned FrameSize  = TD->getTypeAllocSize(ElementTy);
5956        // For ByVal, alignment should be passed from FE.  BE will guess if
5957        // this info is not there but there are cases it cannot get right.
5958        if (F.getParamAlignment(Idx))
5959          FrameAlign = F.getParamAlignment(Idx);
5960        Flags.setByValAlign(FrameAlign);
5961        Flags.setByValSize(FrameSize);
5962      }
5963      if (F.paramHasAttr(Idx, Attribute::Nest))
5964        Flags.setNest();
5965      Flags.setOrigAlign(OriginalAlignment);
5966
5967      EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
5968      unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
5969      for (unsigned i = 0; i != NumRegs; ++i) {
5970        ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed);
5971        if (NumRegs > 1 && i == 0)
5972          MyFlags.Flags.setSplit();
5973        // if it isn't first piece, alignment must be 1
5974        else if (i > 0)
5975          MyFlags.Flags.setOrigAlign(1);
5976        Ins.push_back(MyFlags);
5977      }
5978    }
5979  }
5980
5981  // Call the target to set up the argument values.
5982  SmallVector<SDValue, 8> InVals;
5983  SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
5984                                             F.isVarArg(), Ins,
5985                                             dl, DAG, InVals);
5986
5987  // Verify that the target's LowerFormalArguments behaved as expected.
5988  assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
5989         "LowerFormalArguments didn't return a valid chain!");
5990  assert(InVals.size() == Ins.size() &&
5991         "LowerFormalArguments didn't emit the correct number of values!");
5992  DEBUG({
5993      for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
5994        assert(InVals[i].getNode() &&
5995               "LowerFormalArguments emitted a null value!");
5996        assert(Ins[i].VT == InVals[i].getValueType() &&
5997               "LowerFormalArguments emitted a value with the wrong type!");
5998      }
5999    });
6000
6001  // Update the DAG with the new chain value resulting from argument lowering.
6002  DAG.setRoot(NewRoot);
6003
6004  // Set up the argument values.
6005  unsigned i = 0;
6006  Idx = 1;
6007  if (!FLI.CanLowerReturn) {
6008    // Create a virtual register for the sret pointer, and put in a copy
6009    // from the sret argument into it.
6010    SmallVector<EVT, 1> ValueVTs;
6011    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6012    EVT VT = ValueVTs[0];
6013    EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6014    ISD::NodeType AssertOp = ISD::DELETED_NODE;
6015    SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
6016                                        RegVT, VT, AssertOp);
6017
6018    MachineFunction& MF = SDB->DAG.getMachineFunction();
6019    MachineRegisterInfo& RegInfo = MF.getRegInfo();
6020    unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT));
6021    FLI.DemoteRegister = SRetReg;
6022    NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(),
6023                                    SRetReg, ArgValue);
6024    DAG.setRoot(NewRoot);
6025
6026    // i indexes lowered arguments.  Bump it past the hidden sret argument.
6027    // Idx indexes LLVM arguments.  Don't touch it.
6028    ++i;
6029  }
6030
6031  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
6032      ++I, ++Idx) {
6033    SmallVector<SDValue, 4> ArgValues;
6034    SmallVector<EVT, 4> ValueVTs;
6035    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6036    unsigned NumValues = ValueVTs.size();
6037    for (unsigned Value = 0; Value != NumValues; ++Value) {
6038      EVT VT = ValueVTs[Value];
6039      EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6040      unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6041
6042      if (!I->use_empty()) {
6043        ISD::NodeType AssertOp = ISD::DELETED_NODE;
6044        if (F.paramHasAttr(Idx, Attribute::SExt))
6045          AssertOp = ISD::AssertSext;
6046        else if (F.paramHasAttr(Idx, Attribute::ZExt))
6047          AssertOp = ISD::AssertZext;
6048
6049        ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
6050                                             NumParts, PartVT, VT,
6051                                             AssertOp));
6052      }
6053
6054      i += NumParts;
6055    }
6056
6057    if (!I->use_empty()) {
6058      SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues,
6059                                       SDB->getCurDebugLoc());
6060      SDB->setValue(I, Res);
6061
6062      // If this argument is live outside of the entry block, insert a copy from
6063      // whereever we got it to the vreg that other BB's will reference it as.
6064      SDB->CopyToExportRegsIfNeeded(I);
6065    }
6066  }
6067
6068  assert(i == InVals.size() && "Argument register count mismatch!");
6069
6070  // Finally, if the target has anything special to do, allow it to do so.
6071  // FIXME: this should insert code into the DAG!
6072  EmitFunctionEntryCode(F, SDB->DAG.getMachineFunction());
6073}
6074
6075/// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
6076/// ensure constants are generated when needed.  Remember the virtual registers
6077/// that need to be added to the Machine PHI nodes as input.  We cannot just
6078/// directly add them, because expansion might result in multiple MBB's for one
6079/// BB.  As such, the start of the BB might correspond to a different MBB than
6080/// the end.
6081///
6082void
6083SelectionDAGISel::HandlePHINodesInSuccessorBlocks(BasicBlock *LLVMBB) {
6084  TerminatorInst *TI = LLVMBB->getTerminator();
6085
6086  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6087
6088  // Check successor nodes' PHI nodes that expect a constant to be available
6089  // from this block.
6090  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6091    BasicBlock *SuccBB = TI->getSuccessor(succ);
6092    if (!isa<PHINode>(SuccBB->begin())) continue;
6093    MachineBasicBlock *SuccMBB = FuncInfo->MBBMap[SuccBB];
6094
6095    // If this terminator has multiple identical successors (common for
6096    // switches), only handle each succ once.
6097    if (!SuccsHandled.insert(SuccMBB)) continue;
6098
6099    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6100    PHINode *PN;
6101
6102    // At this point we know that there is a 1-1 correspondence between LLVM PHI
6103    // nodes and Machine PHI nodes, but the incoming operands have not been
6104    // emitted yet.
6105    for (BasicBlock::iterator I = SuccBB->begin();
6106         (PN = dyn_cast<PHINode>(I)); ++I) {
6107      // Ignore dead phi's.
6108      if (PN->use_empty()) continue;
6109
6110      unsigned Reg;
6111      Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6112
6113      if (Constant *C = dyn_cast<Constant>(PHIOp)) {
6114        unsigned &RegOut = SDB->ConstantsOut[C];
6115        if (RegOut == 0) {
6116          RegOut = FuncInfo->CreateRegForValue(C);
6117          SDB->CopyValueToVirtualRegister(C, RegOut);
6118        }
6119        Reg = RegOut;
6120      } else {
6121        Reg = FuncInfo->ValueMap[PHIOp];
6122        if (Reg == 0) {
6123          assert(isa<AllocaInst>(PHIOp) &&
6124                 FuncInfo->StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
6125                 "Didn't codegen value into a register!??");
6126          Reg = FuncInfo->CreateRegForValue(PHIOp);
6127          SDB->CopyValueToVirtualRegister(PHIOp, Reg);
6128        }
6129      }
6130
6131      // Remember that this register needs to added to the machine PHI node as
6132      // the input for this MBB.
6133      SmallVector<EVT, 4> ValueVTs;
6134      ComputeValueVTs(TLI, PN->getType(), ValueVTs);
6135      for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
6136        EVT VT = ValueVTs[vti];
6137        unsigned NumRegisters = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6138        for (unsigned i = 0, e = NumRegisters; i != e; ++i)
6139          SDB->PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
6140        Reg += NumRegisters;
6141      }
6142    }
6143  }
6144  SDB->ConstantsOut.clear();
6145}
6146
6147/// This is the Fast-ISel version of HandlePHINodesInSuccessorBlocks. It only
6148/// supports legal types, and it emits MachineInstrs directly instead of
6149/// creating SelectionDAG nodes.
6150///
6151bool
6152SelectionDAGISel::HandlePHINodesInSuccessorBlocksFast(BasicBlock *LLVMBB,
6153                                                      FastISel *F) {
6154  TerminatorInst *TI = LLVMBB->getTerminator();
6155
6156  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6157  unsigned OrigNumPHINodesToUpdate = SDB->PHINodesToUpdate.size();
6158
6159  // Check successor nodes' PHI nodes that expect a constant to be available
6160  // from this block.
6161  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6162    BasicBlock *SuccBB = TI->getSuccessor(succ);
6163    if (!isa<PHINode>(SuccBB->begin())) continue;
6164    MachineBasicBlock *SuccMBB = FuncInfo->MBBMap[SuccBB];
6165
6166    // If this terminator has multiple identical successors (common for
6167    // switches), only handle each succ once.
6168    if (!SuccsHandled.insert(SuccMBB)) continue;
6169
6170    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6171    PHINode *PN;
6172
6173    // At this point we know that there is a 1-1 correspondence between LLVM PHI
6174    // nodes and Machine PHI nodes, but the incoming operands have not been
6175    // emitted yet.
6176    for (BasicBlock::iterator I = SuccBB->begin();
6177         (PN = dyn_cast<PHINode>(I)); ++I) {
6178      // Ignore dead phi's.
6179      if (PN->use_empty()) continue;
6180
6181      // Only handle legal types. Two interesting things to note here. First,
6182      // by bailing out early, we may leave behind some dead instructions,
6183      // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its
6184      // own moves. Second, this check is necessary becuase FastISel doesn't
6185      // use CreateRegForValue to create registers, so it always creates
6186      // exactly one register for each non-void instruction.
6187      EVT VT = TLI.getValueType(PN->getType(), /*AllowUnknown=*/true);
6188      if (VT == MVT::Other || !TLI.isTypeLegal(VT)) {
6189        // Promote MVT::i1.
6190        if (VT == MVT::i1)
6191          VT = TLI.getTypeToTransformTo(*CurDAG->getContext(), VT);
6192        else {
6193          SDB->PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
6194          return false;
6195        }
6196      }
6197
6198      Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6199
6200      unsigned Reg = F->getRegForValue(PHIOp);
6201      if (Reg == 0) {
6202        SDB->PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
6203        return false;
6204      }
6205      SDB->PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg));
6206    }
6207  }
6208
6209  return true;
6210}
6211