SelectionDAGBuilder.cpp revision 1de4aa904e9672abfc2e755d798c926d324e2d36
1//===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements routines for translating from LLVM IR into SelectionDAG IR.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "SDNodeDbgValue.h"
16#include "SelectionDAGBuilder.h"
17#include "llvm/ADT/BitVector.h"
18#include "llvm/ADT/PostOrderIterator.h"
19#include "llvm/ADT/SmallSet.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/ConstantFolding.h"
22#include "llvm/Constants.h"
23#include "llvm/CallingConv.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Function.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/InlineAsm.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/IntrinsicInst.h"
31#include "llvm/LLVMContext.h"
32#include "llvm/Module.h"
33#include "llvm/CodeGen/Analysis.h"
34#include "llvm/CodeGen/FastISel.h"
35#include "llvm/CodeGen/FunctionLoweringInfo.h"
36#include "llvm/CodeGen/GCStrategy.h"
37#include "llvm/CodeGen/GCMetadata.h"
38#include "llvm/CodeGen/MachineFunction.h"
39#include "llvm/CodeGen/MachineFrameInfo.h"
40#include "llvm/CodeGen/MachineInstrBuilder.h"
41#include "llvm/CodeGen/MachineJumpTableInfo.h"
42#include "llvm/CodeGen/MachineModuleInfo.h"
43#include "llvm/CodeGen/MachineRegisterInfo.h"
44#include "llvm/CodeGen/PseudoSourceValue.h"
45#include "llvm/CodeGen/SelectionDAG.h"
46#include "llvm/Analysis/DebugInfo.h"
47#include "llvm/Target/TargetRegisterInfo.h"
48#include "llvm/Target/TargetData.h"
49#include "llvm/Target/TargetFrameInfo.h"
50#include "llvm/Target/TargetInstrInfo.h"
51#include "llvm/Target/TargetIntrinsicInfo.h"
52#include "llvm/Target/TargetLowering.h"
53#include "llvm/Target/TargetOptions.h"
54#include "llvm/Support/Compiler.h"
55#include "llvm/Support/CommandLine.h"
56#include "llvm/Support/Debug.h"
57#include "llvm/Support/ErrorHandling.h"
58#include "llvm/Support/MathExtras.h"
59#include "llvm/Support/raw_ostream.h"
60#include <algorithm>
61using namespace llvm;
62
63/// LimitFloatPrecision - Generate low-precision inline sequences for
64/// some float libcalls (6, 8 or 12 bits).
65static unsigned LimitFloatPrecision;
66
67static cl::opt<unsigned, true>
68LimitFPPrecision("limit-float-precision",
69                 cl::desc("Generate low-precision inline sequences "
70                          "for some float libcalls"),
71                 cl::location(LimitFloatPrecision),
72                 cl::init(0));
73
74static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
75                                      const SDValue *Parts, unsigned NumParts,
76                                      EVT PartVT, EVT ValueVT);
77
78/// getCopyFromParts - Create a value that contains the specified legal parts
79/// combined into the value they represent.  If the parts combine to a type
80/// larger then ValueVT then AssertOp can be used to specify whether the extra
81/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
82/// (ISD::AssertSext).
83static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL,
84                                const SDValue *Parts,
85                                unsigned NumParts, EVT PartVT, EVT ValueVT,
86                                ISD::NodeType AssertOp = ISD::DELETED_NODE) {
87  if (ValueVT.isVector())
88    return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT);
89
90  assert(NumParts > 0 && "No parts to assemble!");
91  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
92  SDValue Val = Parts[0];
93
94  if (NumParts > 1) {
95    // Assemble the value from multiple parts.
96    if (ValueVT.isInteger()) {
97      unsigned PartBits = PartVT.getSizeInBits();
98      unsigned ValueBits = ValueVT.getSizeInBits();
99
100      // Assemble the power of 2 part.
101      unsigned RoundParts = NumParts & (NumParts - 1) ?
102        1 << Log2_32(NumParts) : NumParts;
103      unsigned RoundBits = PartBits * RoundParts;
104      EVT RoundVT = RoundBits == ValueBits ?
105        ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
106      SDValue Lo, Hi;
107
108      EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
109
110      if (RoundParts > 2) {
111        Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
112                              PartVT, HalfVT);
113        Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
114                              RoundParts / 2, PartVT, HalfVT);
115      } else {
116        Lo = DAG.getNode(ISD::BIT_CONVERT, DL, HalfVT, Parts[0]);
117        Hi = DAG.getNode(ISD::BIT_CONVERT, DL, HalfVT, Parts[1]);
118      }
119
120      if (TLI.isBigEndian())
121        std::swap(Lo, Hi);
122
123      Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
124
125      if (RoundParts < NumParts) {
126        // Assemble the trailing non-power-of-2 part.
127        unsigned OddParts = NumParts - RoundParts;
128        EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
129        Hi = getCopyFromParts(DAG, DL,
130                              Parts + RoundParts, OddParts, PartVT, OddVT);
131
132        // Combine the round and odd parts.
133        Lo = Val;
134        if (TLI.isBigEndian())
135          std::swap(Lo, Hi);
136        EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
137        Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
138        Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
139                         DAG.getConstant(Lo.getValueType().getSizeInBits(),
140                                         TLI.getPointerTy()));
141        Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
142        Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
143      }
144    } else if (PartVT.isFloatingPoint()) {
145      // FP split into multiple FP parts (for ppcf128)
146      assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) &&
147             "Unexpected split");
148      SDValue Lo, Hi;
149      Lo = DAG.getNode(ISD::BIT_CONVERT, DL, EVT(MVT::f64), Parts[0]);
150      Hi = DAG.getNode(ISD::BIT_CONVERT, DL, EVT(MVT::f64), Parts[1]);
151      if (TLI.isBigEndian())
152        std::swap(Lo, Hi);
153      Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
154    } else {
155      // FP split into integer parts (soft fp)
156      assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
157             !PartVT.isVector() && "Unexpected split");
158      EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
159      Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT);
160    }
161  }
162
163  // There is now one part, held in Val.  Correct it to match ValueVT.
164  PartVT = Val.getValueType();
165
166  if (PartVT == ValueVT)
167    return Val;
168
169  if (PartVT.isInteger() && ValueVT.isInteger()) {
170    if (ValueVT.bitsLT(PartVT)) {
171      // For a truncate, see if we have any information to
172      // indicate whether the truncated bits will always be
173      // zero or sign-extension.
174      if (AssertOp != ISD::DELETED_NODE)
175        Val = DAG.getNode(AssertOp, DL, PartVT, Val,
176                          DAG.getValueType(ValueVT));
177      return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
178    }
179    return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
180  }
181
182  if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
183    // FP_ROUND's are always exact here.
184    if (ValueVT.bitsLT(Val.getValueType()))
185      return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val,
186                         DAG.getIntPtrConstant(1));
187
188    return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
189  }
190
191  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
192    return DAG.getNode(ISD::BIT_CONVERT, DL, ValueVT, Val);
193
194  llvm_unreachable("Unknown mismatch!");
195  return SDValue();
196}
197
198/// getCopyFromParts - Create a value that contains the specified legal parts
199/// combined into the value they represent.  If the parts combine to a type
200/// larger then ValueVT then AssertOp can be used to specify whether the extra
201/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
202/// (ISD::AssertSext).
203static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
204                                      const SDValue *Parts, unsigned NumParts,
205                                      EVT PartVT, EVT ValueVT) {
206  assert(ValueVT.isVector() && "Not a vector value");
207  assert(NumParts > 0 && "No parts to assemble!");
208  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
209  SDValue Val = Parts[0];
210
211  // Handle a multi-element vector.
212  if (NumParts > 1) {
213    EVT IntermediateVT, RegisterVT;
214    unsigned NumIntermediates;
215    unsigned NumRegs =
216    TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
217                               NumIntermediates, RegisterVT);
218    assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
219    NumParts = NumRegs; // Silence a compiler warning.
220    assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
221    assert(RegisterVT == Parts[0].getValueType() &&
222           "Part type doesn't match part!");
223
224    // Assemble the parts into intermediate operands.
225    SmallVector<SDValue, 8> Ops(NumIntermediates);
226    if (NumIntermediates == NumParts) {
227      // If the register was not expanded, truncate or copy the value,
228      // as appropriate.
229      for (unsigned i = 0; i != NumParts; ++i)
230        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
231                                  PartVT, IntermediateVT);
232    } else if (NumParts > 0) {
233      // If the intermediate type was expanded, build the intermediate
234      // operands from the parts.
235      assert(NumParts % NumIntermediates == 0 &&
236             "Must expand into a divisible number of parts!");
237      unsigned Factor = NumParts / NumIntermediates;
238      for (unsigned i = 0; i != NumIntermediates; ++i)
239        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
240                                  PartVT, IntermediateVT);
241    }
242
243    // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
244    // intermediate operands.
245    Val = DAG.getNode(IntermediateVT.isVector() ?
246                      ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL,
247                      ValueVT, &Ops[0], NumIntermediates);
248  }
249
250  // There is now one part, held in Val.  Correct it to match ValueVT.
251  PartVT = Val.getValueType();
252
253  if (PartVT == ValueVT)
254    return Val;
255
256  if (PartVT.isVector()) {
257    // If the element type of the source/dest vectors are the same, but the
258    // parts vector has more elements than the value vector, then we have a
259    // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
260    // elements we want.
261    if (PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
262      assert(PartVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
263             "Cannot narrow, it would be a lossy transformation");
264      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
265                         DAG.getIntPtrConstant(0));
266    }
267
268    // Vector/Vector bitcast.
269    return DAG.getNode(ISD::BIT_CONVERT, DL, ValueVT, Val);
270  }
271
272  assert(ValueVT.getVectorElementType() == PartVT &&
273         ValueVT.getVectorNumElements() == 1 &&
274         "Only trivial scalar-to-vector conversions should get here!");
275  return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
276}
277
278
279
280
281static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl,
282                                 SDValue Val, SDValue *Parts, unsigned NumParts,
283                                 EVT PartVT);
284
285/// getCopyToParts - Create a series of nodes that contain the specified value
286/// split into legal parts.  If the parts contain more bits than Val, then, for
287/// integers, ExtendKind can be used to specify how to generate the extra bits.
288static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL,
289                           SDValue Val, SDValue *Parts, unsigned NumParts,
290                           EVT PartVT,
291                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
292  EVT ValueVT = Val.getValueType();
293
294  // Handle the vector case separately.
295  if (ValueVT.isVector())
296    return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT);
297
298  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
299  unsigned PartBits = PartVT.getSizeInBits();
300  unsigned OrigNumParts = NumParts;
301  assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
302
303  if (NumParts == 0)
304    return;
305
306  assert(!ValueVT.isVector() && "Vector case handled elsewhere");
307  if (PartVT == ValueVT) {
308    assert(NumParts == 1 && "No-op copy with multiple parts!");
309    Parts[0] = Val;
310    return;
311  }
312
313  if (NumParts * PartBits > ValueVT.getSizeInBits()) {
314    // If the parts cover more bits than the value has, promote the value.
315    if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
316      assert(NumParts == 1 && "Do not know what to promote to!");
317      Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
318    } else {
319      assert(PartVT.isInteger() && ValueVT.isInteger() &&
320             "Unknown mismatch!");
321      ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
322      Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
323    }
324  } else if (PartBits == ValueVT.getSizeInBits()) {
325    // Different types of the same size.
326    assert(NumParts == 1 && PartVT != ValueVT);
327    Val = DAG.getNode(ISD::BIT_CONVERT, DL, PartVT, Val);
328  } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
329    // If the parts cover less bits than value has, truncate the value.
330    assert(PartVT.isInteger() && ValueVT.isInteger() &&
331           "Unknown mismatch!");
332    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
333    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
334  }
335
336  // The value may have changed - recompute ValueVT.
337  ValueVT = Val.getValueType();
338  assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
339         "Failed to tile the value with PartVT!");
340
341  if (NumParts == 1) {
342    assert(PartVT == ValueVT && "Type conversion failed!");
343    Parts[0] = Val;
344    return;
345  }
346
347  // Expand the value into multiple parts.
348  if (NumParts & (NumParts - 1)) {
349    // The number of parts is not a power of 2.  Split off and copy the tail.
350    assert(PartVT.isInteger() && ValueVT.isInteger() &&
351           "Do not know what to expand to!");
352    unsigned RoundParts = 1 << Log2_32(NumParts);
353    unsigned RoundBits = RoundParts * PartBits;
354    unsigned OddParts = NumParts - RoundParts;
355    SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
356                                 DAG.getIntPtrConstant(RoundBits));
357    getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT);
358
359    if (TLI.isBigEndian())
360      // The odd parts were reversed by getCopyToParts - unreverse them.
361      std::reverse(Parts + RoundParts, Parts + NumParts);
362
363    NumParts = RoundParts;
364    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
365    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
366  }
367
368  // The number of parts is a power of 2.  Repeatedly bisect the value using
369  // EXTRACT_ELEMENT.
370  Parts[0] = DAG.getNode(ISD::BIT_CONVERT, DL,
371                         EVT::getIntegerVT(*DAG.getContext(),
372                                           ValueVT.getSizeInBits()),
373                         Val);
374
375  for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
376    for (unsigned i = 0; i < NumParts; i += StepSize) {
377      unsigned ThisBits = StepSize * PartBits / 2;
378      EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
379      SDValue &Part0 = Parts[i];
380      SDValue &Part1 = Parts[i+StepSize/2];
381
382      Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
383                          ThisVT, Part0, DAG.getIntPtrConstant(1));
384      Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
385                          ThisVT, Part0, DAG.getIntPtrConstant(0));
386
387      if (ThisBits == PartBits && ThisVT != PartVT) {
388        Part0 = DAG.getNode(ISD::BIT_CONVERT, DL, PartVT, Part0);
389        Part1 = DAG.getNode(ISD::BIT_CONVERT, DL, PartVT, Part1);
390      }
391    }
392  }
393
394  if (TLI.isBigEndian())
395    std::reverse(Parts, Parts + OrigNumParts);
396}
397
398
399/// getCopyToPartsVector - Create a series of nodes that contain the specified
400/// value split into legal parts.
401static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL,
402                                 SDValue Val, SDValue *Parts, unsigned NumParts,
403                                 EVT PartVT) {
404  EVT ValueVT = Val.getValueType();
405  assert(ValueVT.isVector() && "Not a vector");
406  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
407
408  if (NumParts == 1) {
409    if (PartVT == ValueVT) {
410      // Nothing to do.
411    } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
412      // Bitconvert vector->vector case.
413      Val = DAG.getNode(ISD::BIT_CONVERT, DL, PartVT, Val);
414    } else if (PartVT.isVector() &&
415               PartVT.getVectorElementType() == ValueVT.getVectorElementType()&&
416               PartVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
417      EVT ElementVT = PartVT.getVectorElementType();
418      // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
419      // undef elements.
420      SmallVector<SDValue, 16> Ops;
421      for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
422        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
423                                  ElementVT, Val, DAG.getIntPtrConstant(i)));
424
425      for (unsigned i = ValueVT.getVectorNumElements(),
426           e = PartVT.getVectorNumElements(); i != e; ++i)
427        Ops.push_back(DAG.getUNDEF(ElementVT));
428
429      Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size());
430
431      // FIXME: Use CONCAT for 2x -> 4x.
432
433      //SDValue UndefElts = DAG.getUNDEF(VectorTy);
434      //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
435    } else {
436      // Vector -> scalar conversion.
437      assert(ValueVT.getVectorElementType() == PartVT &&
438             ValueVT.getVectorNumElements() == 1 &&
439             "Only trivial vector-to-scalar conversions should get here!");
440      Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
441                        PartVT, Val, DAG.getIntPtrConstant(0));
442    }
443
444    Parts[0] = Val;
445    return;
446  }
447
448  // Handle a multi-element vector.
449  EVT IntermediateVT, RegisterVT;
450  unsigned NumIntermediates;
451  unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
452                                                IntermediateVT,
453                                                NumIntermediates, RegisterVT);
454  unsigned NumElements = ValueVT.getVectorNumElements();
455
456  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
457  NumParts = NumRegs; // Silence a compiler warning.
458  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
459
460  // Split the vector into intermediate operands.
461  SmallVector<SDValue, 8> Ops(NumIntermediates);
462  for (unsigned i = 0; i != NumIntermediates; ++i) {
463    if (IntermediateVT.isVector())
464      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
465                           IntermediateVT, Val,
466                   DAG.getIntPtrConstant(i * (NumElements / NumIntermediates)));
467    else
468      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
469                           IntermediateVT, Val, DAG.getIntPtrConstant(i));
470  }
471
472  // Split the intermediate operands into legal parts.
473  if (NumParts == NumIntermediates) {
474    // If the register was not expanded, promote or copy the value,
475    // as appropriate.
476    for (unsigned i = 0; i != NumParts; ++i)
477      getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT);
478  } else if (NumParts > 0) {
479    // If the intermediate type was expanded, split each the value into
480    // legal parts.
481    assert(NumParts % NumIntermediates == 0 &&
482           "Must expand into a divisible number of parts!");
483    unsigned Factor = NumParts / NumIntermediates;
484    for (unsigned i = 0; i != NumIntermediates; ++i)
485      getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT);
486  }
487}
488
489
490
491
492namespace {
493  /// RegsForValue - This struct represents the registers (physical or virtual)
494  /// that a particular set of values is assigned, and the type information
495  /// about the value. The most common situation is to represent one value at a
496  /// time, but struct or array values are handled element-wise as multiple
497  /// values.  The splitting of aggregates is performed recursively, so that we
498  /// never have aggregate-typed registers. The values at this point do not
499  /// necessarily have legal types, so each value may require one or more
500  /// registers of some legal type.
501  ///
502  struct RegsForValue {
503    /// ValueVTs - The value types of the values, which may not be legal, and
504    /// may need be promoted or synthesized from one or more registers.
505    ///
506    SmallVector<EVT, 4> ValueVTs;
507
508    /// RegVTs - The value types of the registers. This is the same size as
509    /// ValueVTs and it records, for each value, what the type of the assigned
510    /// register or registers are. (Individual values are never synthesized
511    /// from more than one type of register.)
512    ///
513    /// With virtual registers, the contents of RegVTs is redundant with TLI's
514    /// getRegisterType member function, however when with physical registers
515    /// it is necessary to have a separate record of the types.
516    ///
517    SmallVector<EVT, 4> RegVTs;
518
519    /// Regs - This list holds the registers assigned to the values.
520    /// Each legal or promoted value requires one register, and each
521    /// expanded value requires multiple registers.
522    ///
523    SmallVector<unsigned, 4> Regs;
524
525    RegsForValue() {}
526
527    RegsForValue(const SmallVector<unsigned, 4> &regs,
528                 EVT regvt, EVT valuevt)
529      : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
530
531    RegsForValue(LLVMContext &Context, const TargetLowering &tli,
532                 unsigned Reg, const Type *Ty) {
533      ComputeValueVTs(tli, Ty, ValueVTs);
534
535      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
536        EVT ValueVT = ValueVTs[Value];
537        unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
538        EVT RegisterVT = tli.getRegisterType(Context, ValueVT);
539        for (unsigned i = 0; i != NumRegs; ++i)
540          Regs.push_back(Reg + i);
541        RegVTs.push_back(RegisterVT);
542        Reg += NumRegs;
543      }
544    }
545
546    /// areValueTypesLegal - Return true if types of all the values are legal.
547    bool areValueTypesLegal(const TargetLowering &TLI) {
548      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
549        EVT RegisterVT = RegVTs[Value];
550        if (!TLI.isTypeLegal(RegisterVT))
551          return false;
552      }
553      return true;
554    }
555
556    /// append - Add the specified values to this one.
557    void append(const RegsForValue &RHS) {
558      ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
559      RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
560      Regs.append(RHS.Regs.begin(), RHS.Regs.end());
561    }
562
563    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
564    /// this value and returns the result as a ValueVTs value.  This uses
565    /// Chain/Flag as the input and updates them for the output Chain/Flag.
566    /// If the Flag pointer is NULL, no flag is used.
567    SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
568                            DebugLoc dl,
569                            SDValue &Chain, SDValue *Flag) const;
570
571    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
572    /// specified value into the registers specified by this object.  This uses
573    /// Chain/Flag as the input and updates them for the output Chain/Flag.
574    /// If the Flag pointer is NULL, no flag is used.
575    void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
576                       SDValue &Chain, SDValue *Flag) const;
577
578    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
579    /// operand list.  This adds the code marker, matching input operand index
580    /// (if applicable), and includes the number of values added into it.
581    void AddInlineAsmOperands(unsigned Kind,
582                              bool HasMatching, unsigned MatchingIdx,
583                              SelectionDAG &DAG,
584                              std::vector<SDValue> &Ops) const;
585  };
586}
587
588/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
589/// this value and returns the result as a ValueVT value.  This uses
590/// Chain/Flag as the input and updates them for the output Chain/Flag.
591/// If the Flag pointer is NULL, no flag is used.
592SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
593                                      FunctionLoweringInfo &FuncInfo,
594                                      DebugLoc dl,
595                                      SDValue &Chain, SDValue *Flag) const {
596  // A Value with type {} or [0 x %t] needs no registers.
597  if (ValueVTs.empty())
598    return SDValue();
599
600  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
601
602  // Assemble the legal parts into the final values.
603  SmallVector<SDValue, 4> Values(ValueVTs.size());
604  SmallVector<SDValue, 8> Parts;
605  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
606    // Copy the legal parts from the registers.
607    EVT ValueVT = ValueVTs[Value];
608    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
609    EVT RegisterVT = RegVTs[Value];
610
611    Parts.resize(NumRegs);
612    for (unsigned i = 0; i != NumRegs; ++i) {
613      SDValue P;
614      if (Flag == 0) {
615        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
616      } else {
617        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
618        *Flag = P.getValue(2);
619      }
620
621      Chain = P.getValue(1);
622
623      // If the source register was virtual and if we know something about it,
624      // add an assert node.
625      if (TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) &&
626          RegisterVT.isInteger() && !RegisterVT.isVector()) {
627        unsigned SlotNo = Regs[Part+i]-TargetRegisterInfo::FirstVirtualRegister;
628        if (FuncInfo.LiveOutRegInfo.size() > SlotNo) {
629          const FunctionLoweringInfo::LiveOutInfo &LOI =
630            FuncInfo.LiveOutRegInfo[SlotNo];
631
632          unsigned RegSize = RegisterVT.getSizeInBits();
633          unsigned NumSignBits = LOI.NumSignBits;
634          unsigned NumZeroBits = LOI.KnownZero.countLeadingOnes();
635
636          // FIXME: We capture more information than the dag can represent.  For
637          // now, just use the tightest assertzext/assertsext possible.
638          bool isSExt = true;
639          EVT FromVT(MVT::Other);
640          if (NumSignBits == RegSize)
641            isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
642          else if (NumZeroBits >= RegSize-1)
643            isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
644          else if (NumSignBits > RegSize-8)
645            isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
646          else if (NumZeroBits >= RegSize-8)
647            isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
648          else if (NumSignBits > RegSize-16)
649            isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
650          else if (NumZeroBits >= RegSize-16)
651            isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
652          else if (NumSignBits > RegSize-32)
653            isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
654          else if (NumZeroBits >= RegSize-32)
655            isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
656
657          if (FromVT != MVT::Other)
658            P = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
659                            RegisterVT, P, DAG.getValueType(FromVT));
660        }
661      }
662
663      Parts[i] = P;
664    }
665
666    Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
667                                     NumRegs, RegisterVT, ValueVT);
668    Part += NumRegs;
669    Parts.clear();
670  }
671
672  return DAG.getNode(ISD::MERGE_VALUES, dl,
673                     DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
674                     &Values[0], ValueVTs.size());
675}
676
677/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
678/// specified value into the registers specified by this object.  This uses
679/// Chain/Flag as the input and updates them for the output Chain/Flag.
680/// If the Flag pointer is NULL, no flag is used.
681void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
682                                 SDValue &Chain, SDValue *Flag) const {
683  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
684
685  // Get the list of the values's legal parts.
686  unsigned NumRegs = Regs.size();
687  SmallVector<SDValue, 8> Parts(NumRegs);
688  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
689    EVT ValueVT = ValueVTs[Value];
690    unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
691    EVT RegisterVT = RegVTs[Value];
692
693    getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
694                   &Parts[Part], NumParts, RegisterVT);
695    Part += NumParts;
696  }
697
698  // Copy the parts into the registers.
699  SmallVector<SDValue, 8> Chains(NumRegs);
700  for (unsigned i = 0; i != NumRegs; ++i) {
701    SDValue Part;
702    if (Flag == 0) {
703      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
704    } else {
705      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
706      *Flag = Part.getValue(1);
707    }
708
709    Chains[i] = Part.getValue(0);
710  }
711
712  if (NumRegs == 1 || Flag)
713    // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
714    // flagged to it. That is the CopyToReg nodes and the user are considered
715    // a single scheduling unit. If we create a TokenFactor and return it as
716    // chain, then the TokenFactor is both a predecessor (operand) of the
717    // user as well as a successor (the TF operands are flagged to the user).
718    // c1, f1 = CopyToReg
719    // c2, f2 = CopyToReg
720    // c3     = TokenFactor c1, c2
721    // ...
722    //        = op c3, ..., f2
723    Chain = Chains[NumRegs-1];
724  else
725    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
726}
727
728/// AddInlineAsmOperands - Add this value to the specified inlineasm node
729/// operand list.  This adds the code marker and includes the number of
730/// values added into it.
731void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
732                                        unsigned MatchingIdx,
733                                        SelectionDAG &DAG,
734                                        std::vector<SDValue> &Ops) const {
735  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
736
737  unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
738  if (HasMatching)
739    Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
740  SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
741  Ops.push_back(Res);
742
743  for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
744    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
745    EVT RegisterVT = RegVTs[Value];
746    for (unsigned i = 0; i != NumRegs; ++i) {
747      assert(Reg < Regs.size() && "Mismatch in # registers expected");
748      Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
749    }
750  }
751}
752
753void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) {
754  AA = &aa;
755  GFI = gfi;
756  TD = DAG.getTarget().getTargetData();
757}
758
759/// clear - Clear out the current SelectionDAG and the associated
760/// state and prepare this SelectionDAGBuilder object to be used
761/// for a new block. This doesn't clear out information about
762/// additional blocks that are needed to complete switch lowering
763/// or PHI node updating; that information is cleared out as it is
764/// consumed.
765void SelectionDAGBuilder::clear() {
766  NodeMap.clear();
767  UnusedArgNodeMap.clear();
768  PendingLoads.clear();
769  PendingExports.clear();
770  DanglingDebugInfoMap.clear();
771  CurDebugLoc = DebugLoc();
772  HasTailCall = false;
773}
774
775/// getRoot - Return the current virtual root of the Selection DAG,
776/// flushing any PendingLoad items. This must be done before emitting
777/// a store or any other node that may need to be ordered after any
778/// prior load instructions.
779///
780SDValue SelectionDAGBuilder::getRoot() {
781  if (PendingLoads.empty())
782    return DAG.getRoot();
783
784  if (PendingLoads.size() == 1) {
785    SDValue Root = PendingLoads[0];
786    DAG.setRoot(Root);
787    PendingLoads.clear();
788    return Root;
789  }
790
791  // Otherwise, we have to make a token factor node.
792  SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
793                               &PendingLoads[0], PendingLoads.size());
794  PendingLoads.clear();
795  DAG.setRoot(Root);
796  return Root;
797}
798
799/// getControlRoot - Similar to getRoot, but instead of flushing all the
800/// PendingLoad items, flush all the PendingExports items. It is necessary
801/// to do this before emitting a terminator instruction.
802///
803SDValue SelectionDAGBuilder::getControlRoot() {
804  SDValue Root = DAG.getRoot();
805
806  if (PendingExports.empty())
807    return Root;
808
809  // Turn all of the CopyToReg chains into one factored node.
810  if (Root.getOpcode() != ISD::EntryToken) {
811    unsigned i = 0, e = PendingExports.size();
812    for (; i != e; ++i) {
813      assert(PendingExports[i].getNode()->getNumOperands() > 1);
814      if (PendingExports[i].getNode()->getOperand(0) == Root)
815        break;  // Don't add the root if we already indirectly depend on it.
816    }
817
818    if (i == e)
819      PendingExports.push_back(Root);
820  }
821
822  Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
823                     &PendingExports[0],
824                     PendingExports.size());
825  PendingExports.clear();
826  DAG.setRoot(Root);
827  return Root;
828}
829
830void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) {
831  if (DAG.GetOrdering(Node) != 0) return; // Already has ordering.
832  DAG.AssignOrdering(Node, SDNodeOrder);
833
834  for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I)
835    AssignOrderingToNode(Node->getOperand(I).getNode());
836}
837
838void SelectionDAGBuilder::visit(const Instruction &I) {
839  // Set up outgoing PHI node register values before emitting the terminator.
840  if (isa<TerminatorInst>(&I))
841    HandlePHINodesInSuccessorBlocks(I.getParent());
842
843  CurDebugLoc = I.getDebugLoc();
844
845  visit(I.getOpcode(), I);
846
847  if (!isa<TerminatorInst>(&I) && !HasTailCall)
848    CopyToExportRegsIfNeeded(&I);
849
850  CurDebugLoc = DebugLoc();
851}
852
853void SelectionDAGBuilder::visitPHI(const PHINode &) {
854  llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
855}
856
857void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
858  // Note: this doesn't use InstVisitor, because it has to work with
859  // ConstantExpr's in addition to instructions.
860  switch (Opcode) {
861  default: llvm_unreachable("Unknown instruction type encountered!");
862    // Build the switch statement using the Instruction.def file.
863#define HANDLE_INST(NUM, OPCODE, CLASS) \
864    case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break;
865#include "llvm/Instruction.def"
866  }
867
868  // Assign the ordering to the freshly created DAG nodes.
869  if (NodeMap.count(&I)) {
870    ++SDNodeOrder;
871    AssignOrderingToNode(getValue(&I).getNode());
872  }
873}
874
875// resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
876// generate the debug data structures now that we've seen its definition.
877void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
878                                                   SDValue Val) {
879  DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
880  if (DDI.getDI()) {
881    const DbgValueInst *DI = DDI.getDI();
882    DebugLoc dl = DDI.getdl();
883    unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
884    MDNode *Variable = DI->getVariable();
885    uint64_t Offset = DI->getOffset();
886    SDDbgValue *SDV;
887    if (Val.getNode()) {
888      if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) {
889        SDV = DAG.getDbgValue(Variable, Val.getNode(),
890                              Val.getResNo(), Offset, dl, DbgSDNodeOrder);
891        DAG.AddDbgValue(SDV, Val.getNode(), false);
892      }
893    } else {
894      SDV = DAG.getDbgValue(Variable, UndefValue::get(V->getType()),
895                            Offset, dl, SDNodeOrder);
896      DAG.AddDbgValue(SDV, 0, false);
897    }
898    DanglingDebugInfoMap[V] = DanglingDebugInfo();
899  }
900}
901
902// getValue - Return an SDValue for the given Value.
903SDValue SelectionDAGBuilder::getValue(const Value *V) {
904  // If we already have an SDValue for this value, use it. It's important
905  // to do this first, so that we don't create a CopyFromReg if we already
906  // have a regular SDValue.
907  SDValue &N = NodeMap[V];
908  if (N.getNode()) return N;
909
910  // If there's a virtual register allocated and initialized for this
911  // value, use it.
912  DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
913  if (It != FuncInfo.ValueMap.end()) {
914    unsigned InReg = It->second;
915    RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
916    SDValue Chain = DAG.getEntryNode();
917    return N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain,NULL);
918  }
919
920  // Otherwise create a new SDValue and remember it.
921  SDValue Val = getValueImpl(V);
922  NodeMap[V] = Val;
923  resolveDanglingDebugInfo(V, Val);
924  return Val;
925}
926
927/// getNonRegisterValue - Return an SDValue for the given Value, but
928/// don't look in FuncInfo.ValueMap for a virtual register.
929SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
930  // If we already have an SDValue for this value, use it.
931  SDValue &N = NodeMap[V];
932  if (N.getNode()) return N;
933
934  // Otherwise create a new SDValue and remember it.
935  SDValue Val = getValueImpl(V);
936  NodeMap[V] = Val;
937  resolveDanglingDebugInfo(V, Val);
938  return Val;
939}
940
941/// getValueImpl - Helper function for getValue and getNonRegisterValue.
942/// Create an SDValue for the given value.
943SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
944  if (const Constant *C = dyn_cast<Constant>(V)) {
945    EVT VT = TLI.getValueType(V->getType(), true);
946
947    if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
948      return DAG.getConstant(*CI, VT);
949
950    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
951      return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT);
952
953    if (isa<ConstantPointerNull>(C))
954      return DAG.getConstant(0, TLI.getPointerTy());
955
956    if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
957      return DAG.getConstantFP(*CFP, VT);
958
959    if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
960      return DAG.getUNDEF(VT);
961
962    if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
963      visit(CE->getOpcode(), *CE);
964      SDValue N1 = NodeMap[V];
965      assert(N1.getNode() && "visit didn't populate the NodeMap!");
966      return N1;
967    }
968
969    if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
970      SmallVector<SDValue, 4> Constants;
971      for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
972           OI != OE; ++OI) {
973        SDNode *Val = getValue(*OI).getNode();
974        // If the operand is an empty aggregate, there are no values.
975        if (!Val) continue;
976        // Add each leaf value from the operand to the Constants list
977        // to form a flattened list of all the values.
978        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
979          Constants.push_back(SDValue(Val, i));
980      }
981
982      return DAG.getMergeValues(&Constants[0], Constants.size(),
983                                getCurDebugLoc());
984    }
985
986    if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
987      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
988             "Unknown struct or array constant!");
989
990      SmallVector<EVT, 4> ValueVTs;
991      ComputeValueVTs(TLI, C->getType(), ValueVTs);
992      unsigned NumElts = ValueVTs.size();
993      if (NumElts == 0)
994        return SDValue(); // empty struct
995      SmallVector<SDValue, 4> Constants(NumElts);
996      for (unsigned i = 0; i != NumElts; ++i) {
997        EVT EltVT = ValueVTs[i];
998        if (isa<UndefValue>(C))
999          Constants[i] = DAG.getUNDEF(EltVT);
1000        else if (EltVT.isFloatingPoint())
1001          Constants[i] = DAG.getConstantFP(0, EltVT);
1002        else
1003          Constants[i] = DAG.getConstant(0, EltVT);
1004      }
1005
1006      return DAG.getMergeValues(&Constants[0], NumElts,
1007                                getCurDebugLoc());
1008    }
1009
1010    if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1011      return DAG.getBlockAddress(BA, VT);
1012
1013    const VectorType *VecTy = cast<VectorType>(V->getType());
1014    unsigned NumElements = VecTy->getNumElements();
1015
1016    // Now that we know the number and type of the elements, get that number of
1017    // elements into the Ops array based on what kind of constant it is.
1018    SmallVector<SDValue, 16> Ops;
1019    if (const ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
1020      for (unsigned i = 0; i != NumElements; ++i)
1021        Ops.push_back(getValue(CP->getOperand(i)));
1022    } else {
1023      assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1024      EVT EltVT = TLI.getValueType(VecTy->getElementType());
1025
1026      SDValue Op;
1027      if (EltVT.isFloatingPoint())
1028        Op = DAG.getConstantFP(0, EltVT);
1029      else
1030        Op = DAG.getConstant(0, EltVT);
1031      Ops.assign(NumElements, Op);
1032    }
1033
1034    // Create a BUILD_VECTOR node.
1035    return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
1036                                    VT, &Ops[0], Ops.size());
1037  }
1038
1039  // If this is a static alloca, generate it as the frameindex instead of
1040  // computation.
1041  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1042    DenseMap<const AllocaInst*, int>::iterator SI =
1043      FuncInfo.StaticAllocaMap.find(AI);
1044    if (SI != FuncInfo.StaticAllocaMap.end())
1045      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
1046  }
1047
1048  // If this is an instruction which fast-isel has deferred, select it now.
1049  if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1050    unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1051    RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType());
1052    SDValue Chain = DAG.getEntryNode();
1053    return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL);
1054  }
1055
1056  llvm_unreachable("Can't get register for value!");
1057  return SDValue();
1058}
1059
1060void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1061  SDValue Chain = getControlRoot();
1062  SmallVector<ISD::OutputArg, 8> Outs;
1063  SmallVector<SDValue, 8> OutVals;
1064
1065  if (!FuncInfo.CanLowerReturn) {
1066    unsigned DemoteReg = FuncInfo.DemoteRegister;
1067    const Function *F = I.getParent()->getParent();
1068
1069    // Emit a store of the return value through the virtual register.
1070    // Leave Outs empty so that LowerReturn won't try to load return
1071    // registers the usual way.
1072    SmallVector<EVT, 1> PtrValueVTs;
1073    ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
1074                    PtrValueVTs);
1075
1076    SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
1077    SDValue RetOp = getValue(I.getOperand(0));
1078
1079    SmallVector<EVT, 4> ValueVTs;
1080    SmallVector<uint64_t, 4> Offsets;
1081    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1082    unsigned NumValues = ValueVTs.size();
1083
1084    SmallVector<SDValue, 4> Chains(NumValues);
1085    for (unsigned i = 0; i != NumValues; ++i) {
1086      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(),
1087                                RetPtr.getValueType(), RetPtr,
1088                                DAG.getIntPtrConstant(Offsets[i]));
1089      Chains[i] =
1090        DAG.getStore(Chain, getCurDebugLoc(),
1091                     SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1092                     // FIXME: better loc info would be nice.
1093                     Add, MachinePointerInfo(), false, false, 0);
1094    }
1095
1096    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
1097                        MVT::Other, &Chains[0], NumValues);
1098  } else if (I.getNumOperands() != 0) {
1099    SmallVector<EVT, 4> ValueVTs;
1100    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
1101    unsigned NumValues = ValueVTs.size();
1102    if (NumValues) {
1103      SDValue RetOp = getValue(I.getOperand(0));
1104      for (unsigned j = 0, f = NumValues; j != f; ++j) {
1105        EVT VT = ValueVTs[j];
1106
1107        ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1108
1109        const Function *F = I.getParent()->getParent();
1110        if (F->paramHasAttr(0, Attribute::SExt))
1111          ExtendKind = ISD::SIGN_EXTEND;
1112        else if (F->paramHasAttr(0, Attribute::ZExt))
1113          ExtendKind = ISD::ZERO_EXTEND;
1114
1115        // FIXME: C calling convention requires the return type to be promoted
1116        // to at least 32-bit. But this is not necessary for non-C calling
1117        // conventions. The frontend should mark functions whose return values
1118        // require promoting with signext or zeroext attributes.
1119        if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
1120          EVT MinVT = TLI.getRegisterType(*DAG.getContext(), MVT::i32);
1121          if (VT.bitsLT(MinVT))
1122            VT = MinVT;
1123        }
1124
1125        unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
1126        EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
1127        SmallVector<SDValue, 4> Parts(NumParts);
1128        getCopyToParts(DAG, getCurDebugLoc(),
1129                       SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1130                       &Parts[0], NumParts, PartVT, ExtendKind);
1131
1132        // 'inreg' on function refers to return value
1133        ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1134        if (F->paramHasAttr(0, Attribute::InReg))
1135          Flags.setInReg();
1136
1137        // Propagate extension type if any
1138        if (F->paramHasAttr(0, Attribute::SExt))
1139          Flags.setSExt();
1140        else if (F->paramHasAttr(0, Attribute::ZExt))
1141          Flags.setZExt();
1142
1143        for (unsigned i = 0; i < NumParts; ++i) {
1144          Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1145                                        /*isfixed=*/true));
1146          OutVals.push_back(Parts[i]);
1147        }
1148      }
1149    }
1150  }
1151
1152  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1153  CallingConv::ID CallConv =
1154    DAG.getMachineFunction().getFunction()->getCallingConv();
1155  Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
1156                          Outs, OutVals, getCurDebugLoc(), DAG);
1157
1158  // Verify that the target's LowerReturn behaved as expected.
1159  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1160         "LowerReturn didn't return a valid chain!");
1161
1162  // Update the DAG with the new chain value resulting from return lowering.
1163  DAG.setRoot(Chain);
1164}
1165
1166/// CopyToExportRegsIfNeeded - If the given value has virtual registers
1167/// created for it, emit nodes to copy the value into the virtual
1168/// registers.
1169void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1170  DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1171  if (VMI != FuncInfo.ValueMap.end()) {
1172    assert(!V->use_empty() && "Unused value assigned virtual registers!");
1173    CopyValueToVirtualRegister(V, VMI->second);
1174  }
1175}
1176
1177/// ExportFromCurrentBlock - If this condition isn't known to be exported from
1178/// the current basic block, add it to ValueMap now so that we'll get a
1179/// CopyTo/FromReg.
1180void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1181  // No need to export constants.
1182  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1183
1184  // Already exported?
1185  if (FuncInfo.isExportedInst(V)) return;
1186
1187  unsigned Reg = FuncInfo.InitializeRegForValue(V);
1188  CopyValueToVirtualRegister(V, Reg);
1189}
1190
1191bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1192                                                     const BasicBlock *FromBB) {
1193  // The operands of the setcc have to be in this block.  We don't know
1194  // how to export them from some other block.
1195  if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1196    // Can export from current BB.
1197    if (VI->getParent() == FromBB)
1198      return true;
1199
1200    // Is already exported, noop.
1201    return FuncInfo.isExportedInst(V);
1202  }
1203
1204  // If this is an argument, we can export it if the BB is the entry block or
1205  // if it is already exported.
1206  if (isa<Argument>(V)) {
1207    if (FromBB == &FromBB->getParent()->getEntryBlock())
1208      return true;
1209
1210    // Otherwise, can only export this if it is already exported.
1211    return FuncInfo.isExportedInst(V);
1212  }
1213
1214  // Otherwise, constants can always be exported.
1215  return true;
1216}
1217
1218static bool InBlock(const Value *V, const BasicBlock *BB) {
1219  if (const Instruction *I = dyn_cast<Instruction>(V))
1220    return I->getParent() == BB;
1221  return true;
1222}
1223
1224/// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1225/// This function emits a branch and is used at the leaves of an OR or an
1226/// AND operator tree.
1227///
1228void
1229SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1230                                                  MachineBasicBlock *TBB,
1231                                                  MachineBasicBlock *FBB,
1232                                                  MachineBasicBlock *CurBB,
1233                                                  MachineBasicBlock *SwitchBB) {
1234  const BasicBlock *BB = CurBB->getBasicBlock();
1235
1236  // If the leaf of the tree is a comparison, merge the condition into
1237  // the caseblock.
1238  if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1239    // The operands of the cmp have to be in this block.  We don't know
1240    // how to export them from some other block.  If this is the first block
1241    // of the sequence, no exporting is needed.
1242    if (CurBB == SwitchBB ||
1243        (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1244         isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1245      ISD::CondCode Condition;
1246      if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1247        Condition = getICmpCondCode(IC->getPredicate());
1248      } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1249        Condition = getFCmpCondCode(FC->getPredicate());
1250      } else {
1251        Condition = ISD::SETEQ; // silence warning.
1252        llvm_unreachable("Unknown compare instruction");
1253      }
1254
1255      CaseBlock CB(Condition, BOp->getOperand(0),
1256                   BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1257      SwitchCases.push_back(CB);
1258      return;
1259    }
1260  }
1261
1262  // Create a CaseBlock record representing this branch.
1263  CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1264               NULL, TBB, FBB, CurBB);
1265  SwitchCases.push_back(CB);
1266}
1267
1268/// FindMergedConditions - If Cond is an expression like
1269void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1270                                               MachineBasicBlock *TBB,
1271                                               MachineBasicBlock *FBB,
1272                                               MachineBasicBlock *CurBB,
1273                                               MachineBasicBlock *SwitchBB,
1274                                               unsigned Opc) {
1275  // If this node is not part of the or/and tree, emit it as a branch.
1276  const Instruction *BOp = dyn_cast<Instruction>(Cond);
1277  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1278      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1279      BOp->getParent() != CurBB->getBasicBlock() ||
1280      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1281      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1282    EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB);
1283    return;
1284  }
1285
1286  //  Create TmpBB after CurBB.
1287  MachineFunction::iterator BBI = CurBB;
1288  MachineFunction &MF = DAG.getMachineFunction();
1289  MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1290  CurBB->getParent()->insert(++BBI, TmpBB);
1291
1292  if (Opc == Instruction::Or) {
1293    // Codegen X | Y as:
1294    //   jmp_if_X TBB
1295    //   jmp TmpBB
1296    // TmpBB:
1297    //   jmp_if_Y TBB
1298    //   jmp FBB
1299    //
1300
1301    // Emit the LHS condition.
1302    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc);
1303
1304    // Emit the RHS condition into TmpBB.
1305    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1306  } else {
1307    assert(Opc == Instruction::And && "Unknown merge op!");
1308    // Codegen X & Y as:
1309    //   jmp_if_X TmpBB
1310    //   jmp FBB
1311    // TmpBB:
1312    //   jmp_if_Y TBB
1313    //   jmp FBB
1314    //
1315    //  This requires creation of TmpBB after CurBB.
1316
1317    // Emit the LHS condition.
1318    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc);
1319
1320    // Emit the RHS condition into TmpBB.
1321    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1322  }
1323}
1324
1325/// If the set of cases should be emitted as a series of branches, return true.
1326/// If we should emit this as a bunch of and/or'd together conditions, return
1327/// false.
1328bool
1329SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
1330  if (Cases.size() != 2) return true;
1331
1332  // If this is two comparisons of the same values or'd or and'd together, they
1333  // will get folded into a single comparison, so don't emit two blocks.
1334  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1335       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1336      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1337       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1338    return false;
1339  }
1340
1341  // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1342  // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1343  if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1344      Cases[0].CC == Cases[1].CC &&
1345      isa<Constant>(Cases[0].CmpRHS) &&
1346      cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1347    if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1348      return false;
1349    if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1350      return false;
1351  }
1352
1353  return true;
1354}
1355
1356void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1357  MachineBasicBlock *BrMBB = FuncInfo.MBB;
1358
1359  // Update machine-CFG edges.
1360  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1361
1362  // Figure out which block is immediately after the current one.
1363  MachineBasicBlock *NextBlock = 0;
1364  MachineFunction::iterator BBI = BrMBB;
1365  if (++BBI != FuncInfo.MF->end())
1366    NextBlock = BBI;
1367
1368  if (I.isUnconditional()) {
1369    // Update machine-CFG edges.
1370    BrMBB->addSuccessor(Succ0MBB);
1371
1372    // If this is not a fall-through branch, emit the branch.
1373    if (Succ0MBB != NextBlock)
1374      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1375                              MVT::Other, getControlRoot(),
1376                              DAG.getBasicBlock(Succ0MBB)));
1377
1378    return;
1379  }
1380
1381  // If this condition is one of the special cases we handle, do special stuff
1382  // now.
1383  const Value *CondVal = I.getCondition();
1384  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1385
1386  // If this is a series of conditions that are or'd or and'd together, emit
1387  // this as a sequence of branches instead of setcc's with and/or operations.
1388  // For example, instead of something like:
1389  //     cmp A, B
1390  //     C = seteq
1391  //     cmp D, E
1392  //     F = setle
1393  //     or C, F
1394  //     jnz foo
1395  // Emit:
1396  //     cmp A, B
1397  //     je foo
1398  //     cmp D, E
1399  //     jle foo
1400  //
1401  if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1402    if (BOp->hasOneUse() &&
1403        (BOp->getOpcode() == Instruction::And ||
1404         BOp->getOpcode() == Instruction::Or)) {
1405      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1406                           BOp->getOpcode());
1407      // If the compares in later blocks need to use values not currently
1408      // exported from this block, export them now.  This block should always
1409      // be the first entry.
1410      assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1411
1412      // Allow some cases to be rejected.
1413      if (ShouldEmitAsBranches(SwitchCases)) {
1414        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1415          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1416          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1417        }
1418
1419        // Emit the branch for this block.
1420        visitSwitchCase(SwitchCases[0], BrMBB);
1421        SwitchCases.erase(SwitchCases.begin());
1422        return;
1423      }
1424
1425      // Okay, we decided not to do this, remove any inserted MBB's and clear
1426      // SwitchCases.
1427      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1428        FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1429
1430      SwitchCases.clear();
1431    }
1432  }
1433
1434  // Create a CaseBlock record representing this branch.
1435  CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1436               NULL, Succ0MBB, Succ1MBB, BrMBB);
1437
1438  // Use visitSwitchCase to actually insert the fast branch sequence for this
1439  // cond branch.
1440  visitSwitchCase(CB, BrMBB);
1441}
1442
1443/// visitSwitchCase - Emits the necessary code to represent a single node in
1444/// the binary search tree resulting from lowering a switch instruction.
1445void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1446                                          MachineBasicBlock *SwitchBB) {
1447  SDValue Cond;
1448  SDValue CondLHS = getValue(CB.CmpLHS);
1449  DebugLoc dl = getCurDebugLoc();
1450
1451  // Build the setcc now.
1452  if (CB.CmpMHS == NULL) {
1453    // Fold "(X == true)" to X and "(X == false)" to !X to
1454    // handle common cases produced by branch lowering.
1455    if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1456        CB.CC == ISD::SETEQ)
1457      Cond = CondLHS;
1458    else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1459             CB.CC == ISD::SETEQ) {
1460      SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1461      Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1462    } else
1463      Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1464  } else {
1465    assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1466
1467    const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1468    const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
1469
1470    SDValue CmpOp = getValue(CB.CmpMHS);
1471    EVT VT = CmpOp.getValueType();
1472
1473    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1474      Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1475                          ISD::SETLE);
1476    } else {
1477      SDValue SUB = DAG.getNode(ISD::SUB, dl,
1478                                VT, CmpOp, DAG.getConstant(Low, VT));
1479      Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1480                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1481    }
1482  }
1483
1484  // Update successor info
1485  SwitchBB->addSuccessor(CB.TrueBB);
1486  SwitchBB->addSuccessor(CB.FalseBB);
1487
1488  // Set NextBlock to be the MBB immediately after the current one, if any.
1489  // This is used to avoid emitting unnecessary branches to the next block.
1490  MachineBasicBlock *NextBlock = 0;
1491  MachineFunction::iterator BBI = SwitchBB;
1492  if (++BBI != FuncInfo.MF->end())
1493    NextBlock = BBI;
1494
1495  // If the lhs block is the next block, invert the condition so that we can
1496  // fall through to the lhs instead of the rhs block.
1497  if (CB.TrueBB == NextBlock) {
1498    std::swap(CB.TrueBB, CB.FalseBB);
1499    SDValue True = DAG.getConstant(1, Cond.getValueType());
1500    Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1501  }
1502
1503  SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1504                               MVT::Other, getControlRoot(), Cond,
1505                               DAG.getBasicBlock(CB.TrueBB));
1506
1507  // Insert the false branch. Do this even if it's a fall through branch,
1508  // this makes it easier to do DAG optimizations which require inverting
1509  // the branch condition.
1510  BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1511                       DAG.getBasicBlock(CB.FalseBB));
1512
1513  DAG.setRoot(BrCond);
1514}
1515
1516/// visitJumpTable - Emit JumpTable node in the current MBB
1517void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1518  // Emit the code for the jump table
1519  assert(JT.Reg != -1U && "Should lower JT Header first!");
1520  EVT PTy = TLI.getPointerTy();
1521  SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1522                                     JT.Reg, PTy);
1523  SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1524  SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(),
1525                                    MVT::Other, Index.getValue(1),
1526                                    Table, Index);
1527  DAG.setRoot(BrJumpTable);
1528}
1529
1530/// visitJumpTableHeader - This function emits necessary code to produce index
1531/// in the JumpTable from switch case.
1532void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1533                                               JumpTableHeader &JTH,
1534                                               MachineBasicBlock *SwitchBB) {
1535  // Subtract the lowest switch case value from the value being switched on and
1536  // conditional branch to default mbb if the result is greater than the
1537  // difference between smallest and largest cases.
1538  SDValue SwitchOp = getValue(JTH.SValue);
1539  EVT VT = SwitchOp.getValueType();
1540  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1541                            DAG.getConstant(JTH.First, VT));
1542
1543  // The SDNode we just created, which holds the value being switched on minus
1544  // the smallest case value, needs to be copied to a virtual register so it
1545  // can be used as an index into the jump table in a subsequent basic block.
1546  // This value may be smaller or larger than the target's pointer type, and
1547  // therefore require extension or truncating.
1548  SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy());
1549
1550  unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy());
1551  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1552                                    JumpTableReg, SwitchOp);
1553  JT.Reg = JumpTableReg;
1554
1555  // Emit the range check for the jump table, and branch to the default block
1556  // for the switch statement if the value being switched on exceeds the largest
1557  // case in the switch.
1558  SDValue CMP = DAG.getSetCC(getCurDebugLoc(),
1559                             TLI.getSetCCResultType(Sub.getValueType()), Sub,
1560                             DAG.getConstant(JTH.Last-JTH.First,VT),
1561                             ISD::SETUGT);
1562
1563  // Set NextBlock to be the MBB immediately after the current one, if any.
1564  // This is used to avoid emitting unnecessary branches to the next block.
1565  MachineBasicBlock *NextBlock = 0;
1566  MachineFunction::iterator BBI = SwitchBB;
1567
1568  if (++BBI != FuncInfo.MF->end())
1569    NextBlock = BBI;
1570
1571  SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1572                               MVT::Other, CopyTo, CMP,
1573                               DAG.getBasicBlock(JT.Default));
1574
1575  if (JT.MBB != NextBlock)
1576    BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond,
1577                         DAG.getBasicBlock(JT.MBB));
1578
1579  DAG.setRoot(BrCond);
1580}
1581
1582/// visitBitTestHeader - This function emits necessary code to produce value
1583/// suitable for "bit tests"
1584void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1585                                             MachineBasicBlock *SwitchBB) {
1586  // Subtract the minimum value
1587  SDValue SwitchOp = getValue(B.SValue);
1588  EVT VT = SwitchOp.getValueType();
1589  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1590                            DAG.getConstant(B.First, VT));
1591
1592  // Check range
1593  SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(),
1594                                  TLI.getSetCCResultType(Sub.getValueType()),
1595                                  Sub, DAG.getConstant(B.Range, VT),
1596                                  ISD::SETUGT);
1597
1598  SDValue ShiftOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(),
1599                                       TLI.getPointerTy());
1600
1601  B.Reg = FuncInfo.CreateReg(TLI.getPointerTy());
1602  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1603                                    B.Reg, ShiftOp);
1604
1605  // Set NextBlock to be the MBB immediately after the current one, if any.
1606  // This is used to avoid emitting unnecessary branches to the next block.
1607  MachineBasicBlock *NextBlock = 0;
1608  MachineFunction::iterator BBI = SwitchBB;
1609  if (++BBI != FuncInfo.MF->end())
1610    NextBlock = BBI;
1611
1612  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1613
1614  SwitchBB->addSuccessor(B.Default);
1615  SwitchBB->addSuccessor(MBB);
1616
1617  SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1618                                MVT::Other, CopyTo, RangeCmp,
1619                                DAG.getBasicBlock(B.Default));
1620
1621  if (MBB != NextBlock)
1622    BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo,
1623                          DAG.getBasicBlock(MBB));
1624
1625  DAG.setRoot(BrRange);
1626}
1627
1628/// visitBitTestCase - this function produces one "bit test"
1629void SelectionDAGBuilder::visitBitTestCase(MachineBasicBlock* NextMBB,
1630                                           unsigned Reg,
1631                                           BitTestCase &B,
1632                                           MachineBasicBlock *SwitchBB) {
1633  SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), Reg,
1634                                       TLI.getPointerTy());
1635  SDValue Cmp;
1636  if (CountPopulation_64(B.Mask) == 1) {
1637    // Testing for a single bit; just compare the shift count with what it
1638    // would need to be to shift a 1 bit in that position.
1639    Cmp = DAG.getSetCC(getCurDebugLoc(),
1640                       TLI.getSetCCResultType(ShiftOp.getValueType()),
1641                       ShiftOp,
1642                       DAG.getConstant(CountTrailingZeros_64(B.Mask),
1643                                       TLI.getPointerTy()),
1644                       ISD::SETEQ);
1645  } else {
1646    // Make desired shift
1647    SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(),
1648                                    TLI.getPointerTy(),
1649                                    DAG.getConstant(1, TLI.getPointerTy()),
1650                                    ShiftOp);
1651
1652    // Emit bit tests and jumps
1653    SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(),
1654                                TLI.getPointerTy(), SwitchVal,
1655                                DAG.getConstant(B.Mask, TLI.getPointerTy()));
1656    Cmp = DAG.getSetCC(getCurDebugLoc(),
1657                       TLI.getSetCCResultType(AndOp.getValueType()),
1658                       AndOp, DAG.getConstant(0, TLI.getPointerTy()),
1659                       ISD::SETNE);
1660  }
1661
1662  SwitchBB->addSuccessor(B.TargetBB);
1663  SwitchBB->addSuccessor(NextMBB);
1664
1665  SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1666                              MVT::Other, getControlRoot(),
1667                              Cmp, DAG.getBasicBlock(B.TargetBB));
1668
1669  // Set NextBlock to be the MBB immediately after the current one, if any.
1670  // This is used to avoid emitting unnecessary branches to the next block.
1671  MachineBasicBlock *NextBlock = 0;
1672  MachineFunction::iterator BBI = SwitchBB;
1673  if (++BBI != FuncInfo.MF->end())
1674    NextBlock = BBI;
1675
1676  if (NextMBB != NextBlock)
1677    BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd,
1678                        DAG.getBasicBlock(NextMBB));
1679
1680  DAG.setRoot(BrAnd);
1681}
1682
1683void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1684  MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
1685
1686  // Retrieve successors.
1687  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1688  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1689
1690  const Value *Callee(I.getCalledValue());
1691  if (isa<InlineAsm>(Callee))
1692    visitInlineAsm(&I);
1693  else
1694    LowerCallTo(&I, getValue(Callee), false, LandingPad);
1695
1696  // If the value of the invoke is used outside of its defining block, make it
1697  // available as a virtual register.
1698  CopyToExportRegsIfNeeded(&I);
1699
1700  // Update successor info
1701  InvokeMBB->addSuccessor(Return);
1702  InvokeMBB->addSuccessor(LandingPad);
1703
1704  // Drop into normal successor.
1705  DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1706                          MVT::Other, getControlRoot(),
1707                          DAG.getBasicBlock(Return)));
1708}
1709
1710void SelectionDAGBuilder::visitUnwind(const UnwindInst &I) {
1711}
1712
1713/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1714/// small case ranges).
1715bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
1716                                                 CaseRecVector& WorkList,
1717                                                 const Value* SV,
1718                                                 MachineBasicBlock *Default,
1719                                                 MachineBasicBlock *SwitchBB) {
1720  Case& BackCase  = *(CR.Range.second-1);
1721
1722  // Size is the number of Cases represented by this range.
1723  size_t Size = CR.Range.second - CR.Range.first;
1724  if (Size > 3)
1725    return false;
1726
1727  // Get the MachineFunction which holds the current MBB.  This is used when
1728  // inserting any additional MBBs necessary to represent the switch.
1729  MachineFunction *CurMF = FuncInfo.MF;
1730
1731  // Figure out which block is immediately after the current one.
1732  MachineBasicBlock *NextBlock = 0;
1733  MachineFunction::iterator BBI = CR.CaseBB;
1734
1735  if (++BBI != FuncInfo.MF->end())
1736    NextBlock = BBI;
1737
1738  // TODO: If any two of the cases has the same destination, and if one value
1739  // is the same as the other, but has one bit unset that the other has set,
1740  // use bit manipulation to do two compares at once.  For example:
1741  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1742
1743  // Rearrange the case blocks so that the last one falls through if possible.
1744  if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1745    // The last case block won't fall through into 'NextBlock' if we emit the
1746    // branches in this order.  See if rearranging a case value would help.
1747    for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1748      if (I->BB == NextBlock) {
1749        std::swap(*I, BackCase);
1750        break;
1751      }
1752    }
1753  }
1754
1755  // Create a CaseBlock record representing a conditional branch to
1756  // the Case's target mbb if the value being switched on SV is equal
1757  // to C.
1758  MachineBasicBlock *CurBlock = CR.CaseBB;
1759  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1760    MachineBasicBlock *FallThrough;
1761    if (I != E-1) {
1762      FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
1763      CurMF->insert(BBI, FallThrough);
1764
1765      // Put SV in a virtual register to make it available from the new blocks.
1766      ExportFromCurrentBlock(SV);
1767    } else {
1768      // If the last case doesn't match, go to the default block.
1769      FallThrough = Default;
1770    }
1771
1772    const Value *RHS, *LHS, *MHS;
1773    ISD::CondCode CC;
1774    if (I->High == I->Low) {
1775      // This is just small small case range :) containing exactly 1 case
1776      CC = ISD::SETEQ;
1777      LHS = SV; RHS = I->High; MHS = NULL;
1778    } else {
1779      CC = ISD::SETLE;
1780      LHS = I->Low; MHS = SV; RHS = I->High;
1781    }
1782    CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock);
1783
1784    // If emitting the first comparison, just call visitSwitchCase to emit the
1785    // code into the current block.  Otherwise, push the CaseBlock onto the
1786    // vector to be later processed by SDISel, and insert the node's MBB
1787    // before the next MBB.
1788    if (CurBlock == SwitchBB)
1789      visitSwitchCase(CB, SwitchBB);
1790    else
1791      SwitchCases.push_back(CB);
1792
1793    CurBlock = FallThrough;
1794  }
1795
1796  return true;
1797}
1798
1799static inline bool areJTsAllowed(const TargetLowering &TLI) {
1800  return !DisableJumpTables &&
1801          (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
1802           TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
1803}
1804
1805static APInt ComputeRange(const APInt &First, const APInt &Last) {
1806  APInt LastExt(Last), FirstExt(First);
1807  uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
1808  LastExt.sext(BitWidth); FirstExt.sext(BitWidth);
1809  return (LastExt - FirstExt + 1ULL);
1810}
1811
1812/// handleJTSwitchCase - Emit jumptable for current switch case range
1813bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec& CR,
1814                                             CaseRecVector& WorkList,
1815                                             const Value* SV,
1816                                             MachineBasicBlock* Default,
1817                                             MachineBasicBlock *SwitchBB) {
1818  Case& FrontCase = *CR.Range.first;
1819  Case& BackCase  = *(CR.Range.second-1);
1820
1821  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
1822  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
1823
1824  APInt TSize(First.getBitWidth(), 0);
1825  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1826       I!=E; ++I)
1827    TSize += I->size();
1828
1829  if (!areJTsAllowed(TLI) || TSize.ult(4))
1830    return false;
1831
1832  APInt Range = ComputeRange(First, Last);
1833  double Density = TSize.roundToDouble() / Range.roundToDouble();
1834  if (Density < 0.4)
1835    return false;
1836
1837  DEBUG(dbgs() << "Lowering jump table\n"
1838               << "First entry: " << First << ". Last entry: " << Last << '\n'
1839               << "Range: " << Range
1840               << "Size: " << TSize << ". Density: " << Density << "\n\n");
1841
1842  // Get the MachineFunction which holds the current MBB.  This is used when
1843  // inserting any additional MBBs necessary to represent the switch.
1844  MachineFunction *CurMF = FuncInfo.MF;
1845
1846  // Figure out which block is immediately after the current one.
1847  MachineFunction::iterator BBI = CR.CaseBB;
1848  ++BBI;
1849
1850  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1851
1852  // Create a new basic block to hold the code for loading the address
1853  // of the jump table, and jumping to it.  Update successor information;
1854  // we will either branch to the default case for the switch, or the jump
1855  // table.
1856  MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1857  CurMF->insert(BBI, JumpTableBB);
1858  CR.CaseBB->addSuccessor(Default);
1859  CR.CaseBB->addSuccessor(JumpTableBB);
1860
1861  // Build a vector of destination BBs, corresponding to each target
1862  // of the jump table. If the value of the jump table slot corresponds to
1863  // a case statement, push the case's BB onto the vector, otherwise, push
1864  // the default BB.
1865  std::vector<MachineBasicBlock*> DestBBs;
1866  APInt TEI = First;
1867  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
1868    const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
1869    const APInt &High = cast<ConstantInt>(I->High)->getValue();
1870
1871    if (Low.sle(TEI) && TEI.sle(High)) {
1872      DestBBs.push_back(I->BB);
1873      if (TEI==High)
1874        ++I;
1875    } else {
1876      DestBBs.push_back(Default);
1877    }
1878  }
1879
1880  // Update successor info. Add one edge to each unique successor.
1881  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
1882  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
1883         E = DestBBs.end(); I != E; ++I) {
1884    if (!SuccsHandled[(*I)->getNumber()]) {
1885      SuccsHandled[(*I)->getNumber()] = true;
1886      JumpTableBB->addSuccessor(*I);
1887    }
1888  }
1889
1890  // Create a jump table index for this jump table.
1891  unsigned JTEncoding = TLI.getJumpTableEncoding();
1892  unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
1893                       ->createJumpTableIndex(DestBBs);
1894
1895  // Set the jump table information so that we can codegen it as a second
1896  // MachineBasicBlock
1897  JumpTable JT(-1U, JTI, JumpTableBB, Default);
1898  JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
1899  if (CR.CaseBB == SwitchBB)
1900    visitJumpTableHeader(JT, JTH, SwitchBB);
1901
1902  JTCases.push_back(JumpTableBlock(JTH, JT));
1903
1904  return true;
1905}
1906
1907/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
1908/// 2 subtrees.
1909bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
1910                                                  CaseRecVector& WorkList,
1911                                                  const Value* SV,
1912                                                  MachineBasicBlock *Default,
1913                                                  MachineBasicBlock *SwitchBB) {
1914  // Get the MachineFunction which holds the current MBB.  This is used when
1915  // inserting any additional MBBs necessary to represent the switch.
1916  MachineFunction *CurMF = FuncInfo.MF;
1917
1918  // Figure out which block is immediately after the current one.
1919  MachineFunction::iterator BBI = CR.CaseBB;
1920  ++BBI;
1921
1922  Case& FrontCase = *CR.Range.first;
1923  Case& BackCase  = *(CR.Range.second-1);
1924  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1925
1926  // Size is the number of Cases represented by this range.
1927  unsigned Size = CR.Range.second - CR.Range.first;
1928
1929  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
1930  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
1931  double FMetric = 0;
1932  CaseItr Pivot = CR.Range.first + Size/2;
1933
1934  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
1935  // (heuristically) allow us to emit JumpTable's later.
1936  APInt TSize(First.getBitWidth(), 0);
1937  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1938       I!=E; ++I)
1939    TSize += I->size();
1940
1941  APInt LSize = FrontCase.size();
1942  APInt RSize = TSize-LSize;
1943  DEBUG(dbgs() << "Selecting best pivot: \n"
1944               << "First: " << First << ", Last: " << Last <<'\n'
1945               << "LSize: " << LSize << ", RSize: " << RSize << '\n');
1946  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
1947       J!=E; ++I, ++J) {
1948    const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
1949    const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
1950    APInt Range = ComputeRange(LEnd, RBegin);
1951    assert((Range - 2ULL).isNonNegative() &&
1952           "Invalid case distance");
1953    double LDensity = (double)LSize.roundToDouble() /
1954                           (LEnd - First + 1ULL).roundToDouble();
1955    double RDensity = (double)RSize.roundToDouble() /
1956                           (Last - RBegin + 1ULL).roundToDouble();
1957    double Metric = Range.logBase2()*(LDensity+RDensity);
1958    // Should always split in some non-trivial place
1959    DEBUG(dbgs() <<"=>Step\n"
1960                 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
1961                 << "LDensity: " << LDensity
1962                 << ", RDensity: " << RDensity << '\n'
1963                 << "Metric: " << Metric << '\n');
1964    if (FMetric < Metric) {
1965      Pivot = J;
1966      FMetric = Metric;
1967      DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
1968    }
1969
1970    LSize += J->size();
1971    RSize -= J->size();
1972  }
1973  if (areJTsAllowed(TLI)) {
1974    // If our case is dense we *really* should handle it earlier!
1975    assert((FMetric > 0) && "Should handle dense range earlier!");
1976  } else {
1977    Pivot = CR.Range.first + Size/2;
1978  }
1979
1980  CaseRange LHSR(CR.Range.first, Pivot);
1981  CaseRange RHSR(Pivot, CR.Range.second);
1982  Constant *C = Pivot->Low;
1983  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
1984
1985  // We know that we branch to the LHS if the Value being switched on is
1986  // less than the Pivot value, C.  We use this to optimize our binary
1987  // tree a bit, by recognizing that if SV is greater than or equal to the
1988  // LHS's Case Value, and that Case Value is exactly one less than the
1989  // Pivot's Value, then we can branch directly to the LHS's Target,
1990  // rather than creating a leaf node for it.
1991  if ((LHSR.second - LHSR.first) == 1 &&
1992      LHSR.first->High == CR.GE &&
1993      cast<ConstantInt>(C)->getValue() ==
1994      (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
1995    TrueBB = LHSR.first->BB;
1996  } else {
1997    TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1998    CurMF->insert(BBI, TrueBB);
1999    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
2000
2001    // Put SV in a virtual register to make it available from the new blocks.
2002    ExportFromCurrentBlock(SV);
2003  }
2004
2005  // Similar to the optimization above, if the Value being switched on is
2006  // known to be less than the Constant CR.LT, and the current Case Value
2007  // is CR.LT - 1, then we can branch directly to the target block for
2008  // the current Case Value, rather than emitting a RHS leaf node for it.
2009  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
2010      cast<ConstantInt>(RHSR.first->Low)->getValue() ==
2011      (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
2012    FalseBB = RHSR.first->BB;
2013  } else {
2014    FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2015    CurMF->insert(BBI, FalseBB);
2016    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
2017
2018    // Put SV in a virtual register to make it available from the new blocks.
2019    ExportFromCurrentBlock(SV);
2020  }
2021
2022  // Create a CaseBlock record representing a conditional branch to
2023  // the LHS node if the value being switched on SV is less than C.
2024  // Otherwise, branch to LHS.
2025  CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
2026
2027  if (CR.CaseBB == SwitchBB)
2028    visitSwitchCase(CB, SwitchBB);
2029  else
2030    SwitchCases.push_back(CB);
2031
2032  return true;
2033}
2034
2035/// handleBitTestsSwitchCase - if current case range has few destination and
2036/// range span less, than machine word bitwidth, encode case range into series
2037/// of masks and emit bit tests with these masks.
2038bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
2039                                                   CaseRecVector& WorkList,
2040                                                   const Value* SV,
2041                                                   MachineBasicBlock* Default,
2042                                                   MachineBasicBlock *SwitchBB){
2043  EVT PTy = TLI.getPointerTy();
2044  unsigned IntPtrBits = PTy.getSizeInBits();
2045
2046  Case& FrontCase = *CR.Range.first;
2047  Case& BackCase  = *(CR.Range.second-1);
2048
2049  // Get the MachineFunction which holds the current MBB.  This is used when
2050  // inserting any additional MBBs necessary to represent the switch.
2051  MachineFunction *CurMF = FuncInfo.MF;
2052
2053  // If target does not have legal shift left, do not emit bit tests at all.
2054  if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
2055    return false;
2056
2057  size_t numCmps = 0;
2058  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2059       I!=E; ++I) {
2060    // Single case counts one, case range - two.
2061    numCmps += (I->Low == I->High ? 1 : 2);
2062  }
2063
2064  // Count unique destinations
2065  SmallSet<MachineBasicBlock*, 4> Dests;
2066  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2067    Dests.insert(I->BB);
2068    if (Dests.size() > 3)
2069      // Don't bother the code below, if there are too much unique destinations
2070      return false;
2071  }
2072  DEBUG(dbgs() << "Total number of unique destinations: "
2073        << Dests.size() << '\n'
2074        << "Total number of comparisons: " << numCmps << '\n');
2075
2076  // Compute span of values.
2077  const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
2078  const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
2079  APInt cmpRange = maxValue - minValue;
2080
2081  DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
2082               << "Low bound: " << minValue << '\n'
2083               << "High bound: " << maxValue << '\n');
2084
2085  if (cmpRange.uge(IntPtrBits) ||
2086      (!(Dests.size() == 1 && numCmps >= 3) &&
2087       !(Dests.size() == 2 && numCmps >= 5) &&
2088       !(Dests.size() >= 3 && numCmps >= 6)))
2089    return false;
2090
2091  DEBUG(dbgs() << "Emitting bit tests\n");
2092  APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
2093
2094  // Optimize the case where all the case values fit in a
2095  // word without having to subtract minValue. In this case,
2096  // we can optimize away the subtraction.
2097  if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) {
2098    cmpRange = maxValue;
2099  } else {
2100    lowBound = minValue;
2101  }
2102
2103  CaseBitsVector CasesBits;
2104  unsigned i, count = 0;
2105
2106  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2107    MachineBasicBlock* Dest = I->BB;
2108    for (i = 0; i < count; ++i)
2109      if (Dest == CasesBits[i].BB)
2110        break;
2111
2112    if (i == count) {
2113      assert((count < 3) && "Too much destinations to test!");
2114      CasesBits.push_back(CaseBits(0, Dest, 0));
2115      count++;
2116    }
2117
2118    const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
2119    const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
2120
2121    uint64_t lo = (lowValue - lowBound).getZExtValue();
2122    uint64_t hi = (highValue - lowBound).getZExtValue();
2123
2124    for (uint64_t j = lo; j <= hi; j++) {
2125      CasesBits[i].Mask |=  1ULL << j;
2126      CasesBits[i].Bits++;
2127    }
2128
2129  }
2130  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2131
2132  BitTestInfo BTC;
2133
2134  // Figure out which block is immediately after the current one.
2135  MachineFunction::iterator BBI = CR.CaseBB;
2136  ++BBI;
2137
2138  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2139
2140  DEBUG(dbgs() << "Cases:\n");
2141  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2142    DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
2143                 << ", Bits: " << CasesBits[i].Bits
2144                 << ", BB: " << CasesBits[i].BB << '\n');
2145
2146    MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2147    CurMF->insert(BBI, CaseBB);
2148    BTC.push_back(BitTestCase(CasesBits[i].Mask,
2149                              CaseBB,
2150                              CasesBits[i].BB));
2151
2152    // Put SV in a virtual register to make it available from the new blocks.
2153    ExportFromCurrentBlock(SV);
2154  }
2155
2156  BitTestBlock BTB(lowBound, cmpRange, SV,
2157                   -1U, (CR.CaseBB == SwitchBB),
2158                   CR.CaseBB, Default, BTC);
2159
2160  if (CR.CaseBB == SwitchBB)
2161    visitBitTestHeader(BTB, SwitchBB);
2162
2163  BitTestCases.push_back(BTB);
2164
2165  return true;
2166}
2167
2168/// Clusterify - Transform simple list of Cases into list of CaseRange's
2169size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
2170                                       const SwitchInst& SI) {
2171  size_t numCmps = 0;
2172
2173  // Start with "simple" cases
2174  for (size_t i = 1; i < SI.getNumSuccessors(); ++i) {
2175    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
2176    Cases.push_back(Case(SI.getSuccessorValue(i),
2177                         SI.getSuccessorValue(i),
2178                         SMBB));
2179  }
2180  std::sort(Cases.begin(), Cases.end(), CaseCmp());
2181
2182  // Merge case into clusters
2183  if (Cases.size() >= 2)
2184    // Must recompute end() each iteration because it may be
2185    // invalidated by erase if we hold on to it
2186    for (CaseItr I = Cases.begin(), J = ++(Cases.begin()); J != Cases.end(); ) {
2187      const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
2188      const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
2189      MachineBasicBlock* nextBB = J->BB;
2190      MachineBasicBlock* currentBB = I->BB;
2191
2192      // If the two neighboring cases go to the same destination, merge them
2193      // into a single case.
2194      if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
2195        I->High = J->High;
2196        J = Cases.erase(J);
2197      } else {
2198        I = J++;
2199      }
2200    }
2201
2202  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
2203    if (I->Low != I->High)
2204      // A range counts double, since it requires two compares.
2205      ++numCmps;
2206  }
2207
2208  return numCmps;
2209}
2210
2211void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2212                                           MachineBasicBlock *Last) {
2213  // Update JTCases.
2214  for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2215    if (JTCases[i].first.HeaderBB == First)
2216      JTCases[i].first.HeaderBB = Last;
2217
2218  // Update BitTestCases.
2219  for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2220    if (BitTestCases[i].Parent == First)
2221      BitTestCases[i].Parent = Last;
2222}
2223
2224void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
2225  MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
2226
2227  // Figure out which block is immediately after the current one.
2228  MachineBasicBlock *NextBlock = 0;
2229  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2230
2231  // If there is only the default destination, branch to it if it is not the
2232  // next basic block.  Otherwise, just fall through.
2233  if (SI.getNumOperands() == 2) {
2234    // Update machine-CFG edges.
2235
2236    // If this is not a fall-through branch, emit the branch.
2237    SwitchMBB->addSuccessor(Default);
2238    if (Default != NextBlock)
2239      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
2240                              MVT::Other, getControlRoot(),
2241                              DAG.getBasicBlock(Default)));
2242
2243    return;
2244  }
2245
2246  // If there are any non-default case statements, create a vector of Cases
2247  // representing each one, and sort the vector so that we can efficiently
2248  // create a binary search tree from them.
2249  CaseVector Cases;
2250  size_t numCmps = Clusterify(Cases, SI);
2251  DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2252               << ". Total compares: " << numCmps << '\n');
2253  numCmps = 0;
2254
2255  // Get the Value to be switched on and default basic blocks, which will be
2256  // inserted into CaseBlock records, representing basic blocks in the binary
2257  // search tree.
2258  const Value *SV = SI.getOperand(0);
2259
2260  // Push the initial CaseRec onto the worklist
2261  CaseRecVector WorkList;
2262  WorkList.push_back(CaseRec(SwitchMBB,0,0,
2263                             CaseRange(Cases.begin(),Cases.end())));
2264
2265  while (!WorkList.empty()) {
2266    // Grab a record representing a case range to process off the worklist
2267    CaseRec CR = WorkList.back();
2268    WorkList.pop_back();
2269
2270    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2271      continue;
2272
2273    // If the range has few cases (two or less) emit a series of specific
2274    // tests.
2275    if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
2276      continue;
2277
2278    // If the switch has more than 5 blocks, and at least 40% dense, and the
2279    // target supports indirect branches, then emit a jump table rather than
2280    // lowering the switch to a binary tree of conditional branches.
2281    if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2282      continue;
2283
2284    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2285    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2286    handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
2287  }
2288}
2289
2290void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2291  MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2292
2293  // Update machine-CFG edges with unique successors.
2294  SmallVector<BasicBlock*, 32> succs;
2295  succs.reserve(I.getNumSuccessors());
2296  for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i)
2297    succs.push_back(I.getSuccessor(i));
2298  array_pod_sort(succs.begin(), succs.end());
2299  succs.erase(std::unique(succs.begin(), succs.end()), succs.end());
2300  for (unsigned i = 0, e = succs.size(); i != e; ++i)
2301    IndirectBrMBB->addSuccessor(FuncInfo.MBBMap[succs[i]]);
2302
2303  DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(),
2304                          MVT::Other, getControlRoot(),
2305                          getValue(I.getAddress())));
2306}
2307
2308void SelectionDAGBuilder::visitFSub(const User &I) {
2309  // -0.0 - X --> fneg
2310  const Type *Ty = I.getType();
2311  if (Ty->isVectorTy()) {
2312    if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) {
2313      const VectorType *DestTy = cast<VectorType>(I.getType());
2314      const Type *ElTy = DestTy->getElementType();
2315      unsigned VL = DestTy->getNumElements();
2316      std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy));
2317      Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size());
2318      if (CV == CNZ) {
2319        SDValue Op2 = getValue(I.getOperand(1));
2320        setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2321                                 Op2.getValueType(), Op2));
2322        return;
2323      }
2324    }
2325  }
2326
2327  if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
2328    if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) {
2329      SDValue Op2 = getValue(I.getOperand(1));
2330      setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2331                               Op2.getValueType(), Op2));
2332      return;
2333    }
2334
2335  visitBinary(I, ISD::FSUB);
2336}
2337
2338void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2339  SDValue Op1 = getValue(I.getOperand(0));
2340  SDValue Op2 = getValue(I.getOperand(1));
2341  setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(),
2342                           Op1.getValueType(), Op1, Op2));
2343}
2344
2345void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2346  SDValue Op1 = getValue(I.getOperand(0));
2347  SDValue Op2 = getValue(I.getOperand(1));
2348  if (!I.getType()->isVectorTy() &&
2349      Op2.getValueType() != TLI.getShiftAmountTy()) {
2350    // If the operand is smaller than the shift count type, promote it.
2351    EVT PTy = TLI.getPointerTy();
2352    EVT STy = TLI.getShiftAmountTy();
2353    if (STy.bitsGT(Op2.getValueType()))
2354      Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(),
2355                        TLI.getShiftAmountTy(), Op2);
2356    // If the operand is larger than the shift count type but the shift
2357    // count type has enough bits to represent any shift value, truncate
2358    // it now. This is a common case and it exposes the truncate to
2359    // optimization early.
2360    else if (STy.getSizeInBits() >=
2361             Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2362      Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2363                        TLI.getShiftAmountTy(), Op2);
2364    // Otherwise we'll need to temporarily settle for some other
2365    // convenient type; type legalization will make adjustments as
2366    // needed.
2367    else if (PTy.bitsLT(Op2.getValueType()))
2368      Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2369                        TLI.getPointerTy(), Op2);
2370    else if (PTy.bitsGT(Op2.getValueType()))
2371      Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(),
2372                        TLI.getPointerTy(), Op2);
2373  }
2374
2375  setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(),
2376                           Op1.getValueType(), Op1, Op2));
2377}
2378
2379void SelectionDAGBuilder::visitICmp(const User &I) {
2380  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2381  if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2382    predicate = IC->getPredicate();
2383  else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2384    predicate = ICmpInst::Predicate(IC->getPredicate());
2385  SDValue Op1 = getValue(I.getOperand(0));
2386  SDValue Op2 = getValue(I.getOperand(1));
2387  ISD::CondCode Opcode = getICmpCondCode(predicate);
2388
2389  EVT DestVT = TLI.getValueType(I.getType());
2390  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode));
2391}
2392
2393void SelectionDAGBuilder::visitFCmp(const User &I) {
2394  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2395  if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2396    predicate = FC->getPredicate();
2397  else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2398    predicate = FCmpInst::Predicate(FC->getPredicate());
2399  SDValue Op1 = getValue(I.getOperand(0));
2400  SDValue Op2 = getValue(I.getOperand(1));
2401  ISD::CondCode Condition = getFCmpCondCode(predicate);
2402  EVT DestVT = TLI.getValueType(I.getType());
2403  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition));
2404}
2405
2406void SelectionDAGBuilder::visitSelect(const User &I) {
2407  SmallVector<EVT, 4> ValueVTs;
2408  ComputeValueVTs(TLI, I.getType(), ValueVTs);
2409  unsigned NumValues = ValueVTs.size();
2410  if (NumValues == 0) return;
2411
2412  SmallVector<SDValue, 4> Values(NumValues);
2413  SDValue Cond     = getValue(I.getOperand(0));
2414  SDValue TrueVal  = getValue(I.getOperand(1));
2415  SDValue FalseVal = getValue(I.getOperand(2));
2416
2417  for (unsigned i = 0; i != NumValues; ++i)
2418    Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(),
2419                          TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2420                            Cond,
2421                            SDValue(TrueVal.getNode(),
2422                                    TrueVal.getResNo() + i),
2423                            SDValue(FalseVal.getNode(),
2424                                    FalseVal.getResNo() + i));
2425
2426  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2427                           DAG.getVTList(&ValueVTs[0], NumValues),
2428                           &Values[0], NumValues));
2429}
2430
2431void SelectionDAGBuilder::visitTrunc(const User &I) {
2432  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2433  SDValue N = getValue(I.getOperand(0));
2434  EVT DestVT = TLI.getValueType(I.getType());
2435  setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N));
2436}
2437
2438void SelectionDAGBuilder::visitZExt(const User &I) {
2439  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2440  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2441  SDValue N = getValue(I.getOperand(0));
2442  EVT DestVT = TLI.getValueType(I.getType());
2443  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N));
2444}
2445
2446void SelectionDAGBuilder::visitSExt(const User &I) {
2447  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2448  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2449  SDValue N = getValue(I.getOperand(0));
2450  EVT DestVT = TLI.getValueType(I.getType());
2451  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N));
2452}
2453
2454void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2455  // FPTrunc is never a no-op cast, no need to check
2456  SDValue N = getValue(I.getOperand(0));
2457  EVT DestVT = TLI.getValueType(I.getType());
2458  setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(),
2459                           DestVT, N, DAG.getIntPtrConstant(0)));
2460}
2461
2462void SelectionDAGBuilder::visitFPExt(const User &I){
2463  // FPTrunc is never a no-op cast, no need to check
2464  SDValue N = getValue(I.getOperand(0));
2465  EVT DestVT = TLI.getValueType(I.getType());
2466  setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N));
2467}
2468
2469void SelectionDAGBuilder::visitFPToUI(const User &I) {
2470  // FPToUI is never a no-op cast, no need to check
2471  SDValue N = getValue(I.getOperand(0));
2472  EVT DestVT = TLI.getValueType(I.getType());
2473  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N));
2474}
2475
2476void SelectionDAGBuilder::visitFPToSI(const User &I) {
2477  // FPToSI is never a no-op cast, no need to check
2478  SDValue N = getValue(I.getOperand(0));
2479  EVT DestVT = TLI.getValueType(I.getType());
2480  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N));
2481}
2482
2483void SelectionDAGBuilder::visitUIToFP(const User &I) {
2484  // UIToFP is never a no-op cast, no need to check
2485  SDValue N = getValue(I.getOperand(0));
2486  EVT DestVT = TLI.getValueType(I.getType());
2487  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N));
2488}
2489
2490void SelectionDAGBuilder::visitSIToFP(const User &I){
2491  // SIToFP is never a no-op cast, no need to check
2492  SDValue N = getValue(I.getOperand(0));
2493  EVT DestVT = TLI.getValueType(I.getType());
2494  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N));
2495}
2496
2497void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2498  // What to do depends on the size of the integer and the size of the pointer.
2499  // We can either truncate, zero extend, or no-op, accordingly.
2500  SDValue N = getValue(I.getOperand(0));
2501  EVT DestVT = TLI.getValueType(I.getType());
2502  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2503}
2504
2505void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2506  // What to do depends on the size of the integer and the size of the pointer.
2507  // We can either truncate, zero extend, or no-op, accordingly.
2508  SDValue N = getValue(I.getOperand(0));
2509  EVT DestVT = TLI.getValueType(I.getType());
2510  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2511}
2512
2513void SelectionDAGBuilder::visitBitCast(const User &I) {
2514  SDValue N = getValue(I.getOperand(0));
2515  EVT DestVT = TLI.getValueType(I.getType());
2516
2517  // BitCast assures us that source and destination are the same size so this is
2518  // either a BIT_CONVERT or a no-op.
2519  if (DestVT != N.getValueType())
2520    setValue(&I, DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
2521                             DestVT, N)); // convert types.
2522  else
2523    setValue(&I, N);            // noop cast.
2524}
2525
2526void SelectionDAGBuilder::visitInsertElement(const User &I) {
2527  SDValue InVec = getValue(I.getOperand(0));
2528  SDValue InVal = getValue(I.getOperand(1));
2529  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2530                              TLI.getPointerTy(),
2531                              getValue(I.getOperand(2)));
2532  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(),
2533                           TLI.getValueType(I.getType()),
2534                           InVec, InVal, InIdx));
2535}
2536
2537void SelectionDAGBuilder::visitExtractElement(const User &I) {
2538  SDValue InVec = getValue(I.getOperand(0));
2539  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2540                              TLI.getPointerTy(),
2541                              getValue(I.getOperand(1)));
2542  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2543                           TLI.getValueType(I.getType()), InVec, InIdx));
2544}
2545
2546// Utility for visitShuffleVector - Returns true if the mask is mask starting
2547// from SIndx and increasing to the element length (undefs are allowed).
2548static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) {
2549  unsigned MaskNumElts = Mask.size();
2550  for (unsigned i = 0; i != MaskNumElts; ++i)
2551    if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx)))
2552      return false;
2553  return true;
2554}
2555
2556void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2557  SmallVector<int, 8> Mask;
2558  SDValue Src1 = getValue(I.getOperand(0));
2559  SDValue Src2 = getValue(I.getOperand(1));
2560
2561  // Convert the ConstantVector mask operand into an array of ints, with -1
2562  // representing undef values.
2563  SmallVector<Constant*, 8> MaskElts;
2564  cast<Constant>(I.getOperand(2))->getVectorElements(MaskElts);
2565  unsigned MaskNumElts = MaskElts.size();
2566  for (unsigned i = 0; i != MaskNumElts; ++i) {
2567    if (isa<UndefValue>(MaskElts[i]))
2568      Mask.push_back(-1);
2569    else
2570      Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue());
2571  }
2572
2573  EVT VT = TLI.getValueType(I.getType());
2574  EVT SrcVT = Src1.getValueType();
2575  unsigned SrcNumElts = SrcVT.getVectorNumElements();
2576
2577  if (SrcNumElts == MaskNumElts) {
2578    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2579                                      &Mask[0]));
2580    return;
2581  }
2582
2583  // Normalize the shuffle vector since mask and vector length don't match.
2584  if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2585    // Mask is longer than the source vectors and is a multiple of the source
2586    // vectors.  We can use concatenate vector to make the mask and vectors
2587    // lengths match.
2588    if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) {
2589      // The shuffle is concatenating two vectors together.
2590      setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2591                               VT, Src1, Src2));
2592      return;
2593    }
2594
2595    // Pad both vectors with undefs to make them the same length as the mask.
2596    unsigned NumConcat = MaskNumElts / SrcNumElts;
2597    bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2598    bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2599    SDValue UndefVal = DAG.getUNDEF(SrcVT);
2600
2601    SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2602    SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2603    MOps1[0] = Src1;
2604    MOps2[0] = Src2;
2605
2606    Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2607                                                  getCurDebugLoc(), VT,
2608                                                  &MOps1[0], NumConcat);
2609    Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2610                                                  getCurDebugLoc(), VT,
2611                                                  &MOps2[0], NumConcat);
2612
2613    // Readjust mask for new input vector length.
2614    SmallVector<int, 8> MappedOps;
2615    for (unsigned i = 0; i != MaskNumElts; ++i) {
2616      int Idx = Mask[i];
2617      if (Idx < (int)SrcNumElts)
2618        MappedOps.push_back(Idx);
2619      else
2620        MappedOps.push_back(Idx + MaskNumElts - SrcNumElts);
2621    }
2622
2623    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2624                                      &MappedOps[0]));
2625    return;
2626  }
2627
2628  if (SrcNumElts > MaskNumElts) {
2629    // Analyze the access pattern of the vector to see if we can extract
2630    // two subvectors and do the shuffle. The analysis is done by calculating
2631    // the range of elements the mask access on both vectors.
2632    int MinRange[2] = { SrcNumElts+1, SrcNumElts+1};
2633    int MaxRange[2] = {-1, -1};
2634
2635    for (unsigned i = 0; i != MaskNumElts; ++i) {
2636      int Idx = Mask[i];
2637      int Input = 0;
2638      if (Idx < 0)
2639        continue;
2640
2641      if (Idx >= (int)SrcNumElts) {
2642        Input = 1;
2643        Idx -= SrcNumElts;
2644      }
2645      if (Idx > MaxRange[Input])
2646        MaxRange[Input] = Idx;
2647      if (Idx < MinRange[Input])
2648        MinRange[Input] = Idx;
2649    }
2650
2651    // Check if the access is smaller than the vector size and can we find
2652    // a reasonable extract index.
2653    int RangeUse[2] = { 2, 2 };  // 0 = Unused, 1 = Extract, 2 = Can not
2654                                 // Extract.
2655    int StartIdx[2];  // StartIdx to extract from
2656    for (int Input=0; Input < 2; ++Input) {
2657      if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) {
2658        RangeUse[Input] = 0; // Unused
2659        StartIdx[Input] = 0;
2660      } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) {
2661        // Fits within range but we should see if we can find a good
2662        // start index that is a multiple of the mask length.
2663        if (MaxRange[Input] < (int)MaskNumElts) {
2664          RangeUse[Input] = 1; // Extract from beginning of the vector
2665          StartIdx[Input] = 0;
2666        } else {
2667          StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2668          if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2669              StartIdx[Input] + MaskNumElts < SrcNumElts)
2670            RangeUse[Input] = 1; // Extract from a multiple of the mask length.
2671        }
2672      }
2673    }
2674
2675    if (RangeUse[0] == 0 && RangeUse[1] == 0) {
2676      setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
2677      return;
2678    }
2679    else if (RangeUse[0] < 2 && RangeUse[1] < 2) {
2680      // Extract appropriate subvector and generate a vector shuffle
2681      for (int Input=0; Input < 2; ++Input) {
2682        SDValue &Src = Input == 0 ? Src1 : Src2;
2683        if (RangeUse[Input] == 0)
2684          Src = DAG.getUNDEF(VT);
2685        else
2686          Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT,
2687                            Src, DAG.getIntPtrConstant(StartIdx[Input]));
2688      }
2689
2690      // Calculate new mask.
2691      SmallVector<int, 8> MappedOps;
2692      for (unsigned i = 0; i != MaskNumElts; ++i) {
2693        int Idx = Mask[i];
2694        if (Idx < 0)
2695          MappedOps.push_back(Idx);
2696        else if (Idx < (int)SrcNumElts)
2697          MappedOps.push_back(Idx - StartIdx[0]);
2698        else
2699          MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts);
2700      }
2701
2702      setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2703                                        &MappedOps[0]));
2704      return;
2705    }
2706  }
2707
2708  // We can't use either concat vectors or extract subvectors so fall back to
2709  // replacing the shuffle with extract and build vector.
2710  // to insert and build vector.
2711  EVT EltVT = VT.getVectorElementType();
2712  EVT PtrVT = TLI.getPointerTy();
2713  SmallVector<SDValue,8> Ops;
2714  for (unsigned i = 0; i != MaskNumElts; ++i) {
2715    if (Mask[i] < 0) {
2716      Ops.push_back(DAG.getUNDEF(EltVT));
2717    } else {
2718      int Idx = Mask[i];
2719      SDValue Res;
2720
2721      if (Idx < (int)SrcNumElts)
2722        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2723                          EltVT, Src1, DAG.getConstant(Idx, PtrVT));
2724      else
2725        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2726                          EltVT, Src2,
2727                          DAG.getConstant(Idx - SrcNumElts, PtrVT));
2728
2729      Ops.push_back(Res);
2730    }
2731  }
2732
2733  setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
2734                           VT, &Ops[0], Ops.size()));
2735}
2736
2737void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
2738  const Value *Op0 = I.getOperand(0);
2739  const Value *Op1 = I.getOperand(1);
2740  const Type *AggTy = I.getType();
2741  const Type *ValTy = Op1->getType();
2742  bool IntoUndef = isa<UndefValue>(Op0);
2743  bool FromUndef = isa<UndefValue>(Op1);
2744
2745  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.idx_begin(), I.idx_end());
2746
2747  SmallVector<EVT, 4> AggValueVTs;
2748  ComputeValueVTs(TLI, AggTy, AggValueVTs);
2749  SmallVector<EVT, 4> ValValueVTs;
2750  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2751
2752  unsigned NumAggValues = AggValueVTs.size();
2753  unsigned NumValValues = ValValueVTs.size();
2754  SmallVector<SDValue, 4> Values(NumAggValues);
2755
2756  SDValue Agg = getValue(Op0);
2757  SDValue Val = getValue(Op1);
2758  unsigned i = 0;
2759  // Copy the beginning value(s) from the original aggregate.
2760  for (; i != LinearIndex; ++i)
2761    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2762                SDValue(Agg.getNode(), Agg.getResNo() + i);
2763  // Copy values from the inserted value(s).
2764  for (; i != LinearIndex + NumValValues; ++i)
2765    Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2766                SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
2767  // Copy remaining value(s) from the original aggregate.
2768  for (; i != NumAggValues; ++i)
2769    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2770                SDValue(Agg.getNode(), Agg.getResNo() + i);
2771
2772  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2773                           DAG.getVTList(&AggValueVTs[0], NumAggValues),
2774                           &Values[0], NumAggValues));
2775}
2776
2777void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
2778  const Value *Op0 = I.getOperand(0);
2779  const Type *AggTy = Op0->getType();
2780  const Type *ValTy = I.getType();
2781  bool OutOfUndef = isa<UndefValue>(Op0);
2782
2783  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.idx_begin(), I.idx_end());
2784
2785  SmallVector<EVT, 4> ValValueVTs;
2786  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2787
2788  unsigned NumValValues = ValValueVTs.size();
2789  SmallVector<SDValue, 4> Values(NumValValues);
2790
2791  SDValue Agg = getValue(Op0);
2792  // Copy out the selected value(s).
2793  for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
2794    Values[i - LinearIndex] =
2795      OutOfUndef ?
2796        DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
2797        SDValue(Agg.getNode(), Agg.getResNo() + i);
2798
2799  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2800                           DAG.getVTList(&ValValueVTs[0], NumValValues),
2801                           &Values[0], NumValValues));
2802}
2803
2804void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
2805  SDValue N = getValue(I.getOperand(0));
2806  const Type *Ty = I.getOperand(0)->getType();
2807
2808  for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
2809       OI != E; ++OI) {
2810    const Value *Idx = *OI;
2811    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2812      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2813      if (Field) {
2814        // N = N + Offset
2815        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
2816        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2817                        DAG.getIntPtrConstant(Offset));
2818      }
2819
2820      Ty = StTy->getElementType(Field);
2821    } else {
2822      Ty = cast<SequentialType>(Ty)->getElementType();
2823
2824      // If this is a constant subscript, handle it quickly.
2825      if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2826        if (CI->isZero()) continue;
2827        uint64_t Offs =
2828            TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
2829        SDValue OffsVal;
2830        EVT PTy = TLI.getPointerTy();
2831        unsigned PtrBits = PTy.getSizeInBits();
2832        if (PtrBits < 64)
2833          OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2834                                TLI.getPointerTy(),
2835                                DAG.getConstant(Offs, MVT::i64));
2836        else
2837          OffsVal = DAG.getIntPtrConstant(Offs);
2838
2839        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2840                        OffsVal);
2841        continue;
2842      }
2843
2844      // N = N + Idx * ElementSize;
2845      APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
2846                                TD->getTypeAllocSize(Ty));
2847      SDValue IdxN = getValue(Idx);
2848
2849      // If the index is smaller or larger than intptr_t, truncate or extend
2850      // it.
2851      IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType());
2852
2853      // If this is a multiply by a power of two, turn it into a shl
2854      // immediately.  This is a very common case.
2855      if (ElementSize != 1) {
2856        if (ElementSize.isPowerOf2()) {
2857          unsigned Amt = ElementSize.logBase2();
2858          IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(),
2859                             N.getValueType(), IdxN,
2860                             DAG.getConstant(Amt, TLI.getPointerTy()));
2861        } else {
2862          SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy());
2863          IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(),
2864                             N.getValueType(), IdxN, Scale);
2865        }
2866      }
2867
2868      N = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2869                      N.getValueType(), N, IdxN);
2870    }
2871  }
2872
2873  setValue(&I, N);
2874}
2875
2876void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
2877  // If this is a fixed sized alloca in the entry block of the function,
2878  // allocate it statically on the stack.
2879  if (FuncInfo.StaticAllocaMap.count(&I))
2880    return;   // getValue will auto-populate this.
2881
2882  const Type *Ty = I.getAllocatedType();
2883  uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
2884  unsigned Align =
2885    std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
2886             I.getAlignment());
2887
2888  SDValue AllocSize = getValue(I.getArraySize());
2889
2890  EVT IntPtr = TLI.getPointerTy();
2891  if (AllocSize.getValueType() != IntPtr)
2892    AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr);
2893
2894  AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr,
2895                          AllocSize,
2896                          DAG.getConstant(TySize, IntPtr));
2897
2898  // Handle alignment.  If the requested alignment is less than or equal to
2899  // the stack alignment, ignore it.  If the size is greater than or equal to
2900  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
2901  unsigned StackAlign = TM.getFrameInfo()->getStackAlignment();
2902  if (Align <= StackAlign)
2903    Align = 0;
2904
2905  // Round the size of the allocation up to the stack alignment size
2906  // by add SA-1 to the size.
2907  AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2908                          AllocSize.getValueType(), AllocSize,
2909                          DAG.getIntPtrConstant(StackAlign-1));
2910
2911  // Mask out the low bits for alignment purposes.
2912  AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(),
2913                          AllocSize.getValueType(), AllocSize,
2914                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
2915
2916  SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
2917  SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
2918  SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(),
2919                            VTs, Ops, 3);
2920  setValue(&I, DSA);
2921  DAG.setRoot(DSA.getValue(1));
2922
2923  // Inform the Frame Information that we have just allocated a variable-sized
2924  // object.
2925  FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1);
2926}
2927
2928void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
2929  const Value *SV = I.getOperand(0);
2930  SDValue Ptr = getValue(SV);
2931
2932  const Type *Ty = I.getType();
2933
2934  bool isVolatile = I.isVolatile();
2935  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
2936  unsigned Alignment = I.getAlignment();
2937  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
2938
2939  SmallVector<EVT, 4> ValueVTs;
2940  SmallVector<uint64_t, 4> Offsets;
2941  ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
2942  unsigned NumValues = ValueVTs.size();
2943  if (NumValues == 0)
2944    return;
2945
2946  SDValue Root;
2947  bool ConstantMemory = false;
2948  if (I.isVolatile())
2949    // Serialize volatile loads with other side effects.
2950    Root = getRoot();
2951  else if (AA->pointsToConstantMemory(
2952             AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) {
2953    // Do not serialize (non-volatile) loads of constant memory with anything.
2954    Root = DAG.getEntryNode();
2955    ConstantMemory = true;
2956  } else {
2957    // Do not serialize non-volatile loads against each other.
2958    Root = DAG.getRoot();
2959  }
2960
2961  SmallVector<SDValue, 4> Values(NumValues);
2962  SmallVector<SDValue, 4> Chains(NumValues);
2963  EVT PtrVT = Ptr.getValueType();
2964  for (unsigned i = 0; i != NumValues; ++i) {
2965    SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2966                            PtrVT, Ptr,
2967                            DAG.getConstant(Offsets[i], PtrVT));
2968    SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root,
2969                            A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
2970                            isNonTemporal, Alignment, TBAAInfo);
2971
2972    Values[i] = L;
2973    Chains[i] = L.getValue(1);
2974  }
2975
2976  if (!ConstantMemory) {
2977    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
2978                                MVT::Other, &Chains[0], NumValues);
2979    if (isVolatile)
2980      DAG.setRoot(Chain);
2981    else
2982      PendingLoads.push_back(Chain);
2983  }
2984
2985  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2986                           DAG.getVTList(&ValueVTs[0], NumValues),
2987                           &Values[0], NumValues));
2988}
2989
2990void SelectionDAGBuilder::visitStore(const StoreInst &I) {
2991  const Value *SrcV = I.getOperand(0);
2992  const Value *PtrV = I.getOperand(1);
2993
2994  SmallVector<EVT, 4> ValueVTs;
2995  SmallVector<uint64_t, 4> Offsets;
2996  ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
2997  unsigned NumValues = ValueVTs.size();
2998  if (NumValues == 0)
2999    return;
3000
3001  // Get the lowered operands. Note that we do this after
3002  // checking if NumResults is zero, because with zero results
3003  // the operands won't have values in the map.
3004  SDValue Src = getValue(SrcV);
3005  SDValue Ptr = getValue(PtrV);
3006
3007  SDValue Root = getRoot();
3008  SmallVector<SDValue, 4> Chains(NumValues);
3009  EVT PtrVT = Ptr.getValueType();
3010  bool isVolatile = I.isVolatile();
3011  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3012  unsigned Alignment = I.getAlignment();
3013  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3014
3015  for (unsigned i = 0; i != NumValues; ++i) {
3016    SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr,
3017                              DAG.getConstant(Offsets[i], PtrVT));
3018    Chains[i] = DAG.getStore(Root, getCurDebugLoc(),
3019                             SDValue(Src.getNode(), Src.getResNo() + i),
3020                             Add, MachinePointerInfo(PtrV, Offsets[i]),
3021                             isVolatile, isNonTemporal, Alignment, TBAAInfo);
3022  }
3023
3024  SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3025                                  MVT::Other, &Chains[0], NumValues);
3026  ++SDNodeOrder;
3027  AssignOrderingToNode(StoreNode.getNode());
3028  DAG.setRoot(StoreNode);
3029}
3030
3031/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3032/// node.
3033void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3034                                               unsigned Intrinsic) {
3035  bool HasChain = !I.doesNotAccessMemory();
3036  bool OnlyLoad = HasChain && I.onlyReadsMemory();
3037
3038  // Build the operand list.
3039  SmallVector<SDValue, 8> Ops;
3040  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
3041    if (OnlyLoad) {
3042      // We don't need to serialize loads against other loads.
3043      Ops.push_back(DAG.getRoot());
3044    } else {
3045      Ops.push_back(getRoot());
3046    }
3047  }
3048
3049  // Info is set by getTgtMemInstrinsic
3050  TargetLowering::IntrinsicInfo Info;
3051  bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
3052
3053  // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3054  if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
3055      Info.opc == ISD::INTRINSIC_W_CHAIN)
3056    Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
3057
3058  // Add all operands of the call to the operand list.
3059  for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
3060    SDValue Op = getValue(I.getArgOperand(i));
3061    assert(TLI.isTypeLegal(Op.getValueType()) &&
3062           "Intrinsic uses a non-legal type?");
3063    Ops.push_back(Op);
3064  }
3065
3066  SmallVector<EVT, 4> ValueVTs;
3067  ComputeValueVTs(TLI, I.getType(), ValueVTs);
3068#ifndef NDEBUG
3069  for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) {
3070    assert(TLI.isTypeLegal(ValueVTs[Val]) &&
3071           "Intrinsic uses a non-legal type?");
3072  }
3073#endif // NDEBUG
3074
3075  if (HasChain)
3076    ValueVTs.push_back(MVT::Other);
3077
3078  SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
3079
3080  // Create the node.
3081  SDValue Result;
3082  if (IsTgtIntrinsic) {
3083    // This is target intrinsic that touches memory
3084    Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(),
3085                                     VTs, &Ops[0], Ops.size(),
3086                                     Info.memVT,
3087                                   MachinePointerInfo(Info.ptrVal, Info.offset),
3088                                     Info.align, Info.vol,
3089                                     Info.readMem, Info.writeMem);
3090  } else if (!HasChain) {
3091    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
3092                         VTs, &Ops[0], Ops.size());
3093  } else if (!I.getType()->isVoidTy()) {
3094    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
3095                         VTs, &Ops[0], Ops.size());
3096  } else {
3097    Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(),
3098                         VTs, &Ops[0], Ops.size());
3099  }
3100
3101  if (HasChain) {
3102    SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3103    if (OnlyLoad)
3104      PendingLoads.push_back(Chain);
3105    else
3106      DAG.setRoot(Chain);
3107  }
3108
3109  if (!I.getType()->isVoidTy()) {
3110    if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3111      EVT VT = TLI.getValueType(PTy);
3112      Result = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), VT, Result);
3113    }
3114
3115    setValue(&I, Result);
3116  }
3117}
3118
3119/// GetSignificand - Get the significand and build it into a floating-point
3120/// number with exponent of 1:
3121///
3122///   Op = (Op & 0x007fffff) | 0x3f800000;
3123///
3124/// where Op is the hexidecimal representation of floating point value.
3125static SDValue
3126GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) {
3127  SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3128                           DAG.getConstant(0x007fffff, MVT::i32));
3129  SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3130                           DAG.getConstant(0x3f800000, MVT::i32));
3131  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t2);
3132}
3133
3134/// GetExponent - Get the exponent:
3135///
3136///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3137///
3138/// where Op is the hexidecimal representation of floating point value.
3139static SDValue
3140GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3141            DebugLoc dl) {
3142  SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3143                           DAG.getConstant(0x7f800000, MVT::i32));
3144  SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3145                           DAG.getConstant(23, TLI.getPointerTy()));
3146  SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3147                           DAG.getConstant(127, MVT::i32));
3148  return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3149}
3150
3151/// getF32Constant - Get 32-bit floating point constant.
3152static SDValue
3153getF32Constant(SelectionDAG &DAG, unsigned Flt) {
3154  return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32);
3155}
3156
3157/// Inlined utility function to implement binary input atomic intrinsics for
3158/// visitIntrinsicCall: I is a call instruction
3159///                     Op is the associated NodeType for I
3160const char *
3161SelectionDAGBuilder::implVisitBinaryAtomic(const CallInst& I,
3162                                           ISD::NodeType Op) {
3163  SDValue Root = getRoot();
3164  SDValue L =
3165    DAG.getAtomic(Op, getCurDebugLoc(),
3166                  getValue(I.getArgOperand(1)).getValueType().getSimpleVT(),
3167                  Root,
3168                  getValue(I.getArgOperand(0)),
3169                  getValue(I.getArgOperand(1)),
3170                  I.getArgOperand(0));
3171  setValue(&I, L);
3172  DAG.setRoot(L.getValue(1));
3173  return 0;
3174}
3175
3176// implVisitAluOverflow - Lower arithmetic overflow instrinsics.
3177const char *
3178SelectionDAGBuilder::implVisitAluOverflow(const CallInst &I, ISD::NodeType Op) {
3179  SDValue Op1 = getValue(I.getArgOperand(0));
3180  SDValue Op2 = getValue(I.getArgOperand(1));
3181
3182  SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
3183  setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2));
3184  return 0;
3185}
3186
3187/// visitExp - Lower an exp intrinsic. Handles the special sequences for
3188/// limited-precision mode.
3189void
3190SelectionDAGBuilder::visitExp(const CallInst &I) {
3191  SDValue result;
3192  DebugLoc dl = getCurDebugLoc();
3193
3194  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3195      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3196    SDValue Op = getValue(I.getArgOperand(0));
3197
3198    // Put the exponent in the right bit position for later addition to the
3199    // final result:
3200    //
3201    //   #define LOG2OFe 1.4426950f
3202    //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3203    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3204                             getF32Constant(DAG, 0x3fb8aa3b));
3205    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3206
3207    //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3208    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3209    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3210
3211    //   IntegerPartOfX <<= 23;
3212    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3213                                 DAG.getConstant(23, TLI.getPointerTy()));
3214
3215    if (LimitFloatPrecision <= 6) {
3216      // For floating-point precision of 6:
3217      //
3218      //   TwoToFractionalPartOfX =
3219      //     0.997535578f +
3220      //       (0.735607626f + 0.252464424f * x) * x;
3221      //
3222      // error 0.0144103317, which is 6 bits
3223      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3224                               getF32Constant(DAG, 0x3e814304));
3225      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3226                               getF32Constant(DAG, 0x3f3c50c8));
3227      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3228      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3229                               getF32Constant(DAG, 0x3f7f5e7e));
3230      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t5);
3231
3232      // Add the exponent into the result in integer domain.
3233      SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3234                               TwoToFracPartOfX, IntegerPartOfX);
3235
3236      result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t6);
3237    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3238      // For floating-point precision of 12:
3239      //
3240      //   TwoToFractionalPartOfX =
3241      //     0.999892986f +
3242      //       (0.696457318f +
3243      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3244      //
3245      // 0.000107046256 error, which is 13 to 14 bits
3246      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3247                               getF32Constant(DAG, 0x3da235e3));
3248      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3249                               getF32Constant(DAG, 0x3e65b8f3));
3250      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3251      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3252                               getF32Constant(DAG, 0x3f324b07));
3253      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3254      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3255                               getF32Constant(DAG, 0x3f7ff8fd));
3256      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t7);
3257
3258      // Add the exponent into the result in integer domain.
3259      SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3260                               TwoToFracPartOfX, IntegerPartOfX);
3261
3262      result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t8);
3263    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3264      // For floating-point precision of 18:
3265      //
3266      //   TwoToFractionalPartOfX =
3267      //     0.999999982f +
3268      //       (0.693148872f +
3269      //         (0.240227044f +
3270      //           (0.554906021e-1f +
3271      //             (0.961591928e-2f +
3272      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3273      //
3274      // error 2.47208000*10^(-7), which is better than 18 bits
3275      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3276                               getF32Constant(DAG, 0x3924b03e));
3277      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3278                               getF32Constant(DAG, 0x3ab24b87));
3279      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3280      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3281                               getF32Constant(DAG, 0x3c1d8c17));
3282      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3283      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3284                               getF32Constant(DAG, 0x3d634a1d));
3285      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3286      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3287                               getF32Constant(DAG, 0x3e75fe14));
3288      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3289      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3290                                getF32Constant(DAG, 0x3f317234));
3291      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3292      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3293                                getF32Constant(DAG, 0x3f800000));
3294      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,
3295                                             MVT::i32, t13);
3296
3297      // Add the exponent into the result in integer domain.
3298      SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3299                                TwoToFracPartOfX, IntegerPartOfX);
3300
3301      result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t14);
3302    }
3303  } else {
3304    // No special expansion.
3305    result = DAG.getNode(ISD::FEXP, dl,
3306                         getValue(I.getArgOperand(0)).getValueType(),
3307                         getValue(I.getArgOperand(0)));
3308  }
3309
3310  setValue(&I, result);
3311}
3312
3313/// visitLog - Lower a log intrinsic. Handles the special sequences for
3314/// limited-precision mode.
3315void
3316SelectionDAGBuilder::visitLog(const CallInst &I) {
3317  SDValue result;
3318  DebugLoc dl = getCurDebugLoc();
3319
3320  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3321      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3322    SDValue Op = getValue(I.getArgOperand(0));
3323    SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
3324
3325    // Scale the exponent by log(2) [0.69314718f].
3326    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3327    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3328                                        getF32Constant(DAG, 0x3f317218));
3329
3330    // Get the significand and build it into a floating-point number with
3331    // exponent of 1.
3332    SDValue X = GetSignificand(DAG, Op1, dl);
3333
3334    if (LimitFloatPrecision <= 6) {
3335      // For floating-point precision of 6:
3336      //
3337      //   LogofMantissa =
3338      //     -1.1609546f +
3339      //       (1.4034025f - 0.23903021f * x) * x;
3340      //
3341      // error 0.0034276066, which is better than 8 bits
3342      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3343                               getF32Constant(DAG, 0xbe74c456));
3344      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3345                               getF32Constant(DAG, 0x3fb3a2b1));
3346      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3347      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3348                                          getF32Constant(DAG, 0x3f949a29));
3349
3350      result = DAG.getNode(ISD::FADD, dl,
3351                           MVT::f32, LogOfExponent, LogOfMantissa);
3352    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3353      // For floating-point precision of 12:
3354      //
3355      //   LogOfMantissa =
3356      //     -1.7417939f +
3357      //       (2.8212026f +
3358      //         (-1.4699568f +
3359      //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3360      //
3361      // error 0.000061011436, which is 14 bits
3362      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3363                               getF32Constant(DAG, 0xbd67b6d6));
3364      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3365                               getF32Constant(DAG, 0x3ee4f4b8));
3366      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3367      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3368                               getF32Constant(DAG, 0x3fbc278b));
3369      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3370      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3371                               getF32Constant(DAG, 0x40348e95));
3372      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3373      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3374                                          getF32Constant(DAG, 0x3fdef31a));
3375
3376      result = DAG.getNode(ISD::FADD, dl,
3377                           MVT::f32, LogOfExponent, LogOfMantissa);
3378    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3379      // For floating-point precision of 18:
3380      //
3381      //   LogOfMantissa =
3382      //     -2.1072184f +
3383      //       (4.2372794f +
3384      //         (-3.7029485f +
3385      //           (2.2781945f +
3386      //             (-0.87823314f +
3387      //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3388      //
3389      // error 0.0000023660568, which is better than 18 bits
3390      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3391                               getF32Constant(DAG, 0xbc91e5ac));
3392      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3393                               getF32Constant(DAG, 0x3e4350aa));
3394      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3395      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3396                               getF32Constant(DAG, 0x3f60d3e3));
3397      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3398      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3399                               getF32Constant(DAG, 0x4011cdf0));
3400      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3401      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3402                               getF32Constant(DAG, 0x406cfd1c));
3403      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3404      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3405                               getF32Constant(DAG, 0x408797cb));
3406      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3407      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3408                                          getF32Constant(DAG, 0x4006dcab));
3409
3410      result = DAG.getNode(ISD::FADD, dl,
3411                           MVT::f32, LogOfExponent, LogOfMantissa);
3412    }
3413  } else {
3414    // No special expansion.
3415    result = DAG.getNode(ISD::FLOG, dl,
3416                         getValue(I.getArgOperand(0)).getValueType(),
3417                         getValue(I.getArgOperand(0)));
3418  }
3419
3420  setValue(&I, result);
3421}
3422
3423/// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for
3424/// limited-precision mode.
3425void
3426SelectionDAGBuilder::visitLog2(const CallInst &I) {
3427  SDValue result;
3428  DebugLoc dl = getCurDebugLoc();
3429
3430  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3431      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3432    SDValue Op = getValue(I.getArgOperand(0));
3433    SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
3434
3435    // Get the exponent.
3436    SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3437
3438    // Get the significand and build it into a floating-point number with
3439    // exponent of 1.
3440    SDValue X = GetSignificand(DAG, Op1, dl);
3441
3442    // Different possible minimax approximations of significand in
3443    // floating-point for various degrees of accuracy over [1,2].
3444    if (LimitFloatPrecision <= 6) {
3445      // For floating-point precision of 6:
3446      //
3447      //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3448      //
3449      // error 0.0049451742, which is more than 7 bits
3450      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3451                               getF32Constant(DAG, 0xbeb08fe0));
3452      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3453                               getF32Constant(DAG, 0x40019463));
3454      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3455      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3456                                           getF32Constant(DAG, 0x3fd6633d));
3457
3458      result = DAG.getNode(ISD::FADD, dl,
3459                           MVT::f32, LogOfExponent, Log2ofMantissa);
3460    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3461      // For floating-point precision of 12:
3462      //
3463      //   Log2ofMantissa =
3464      //     -2.51285454f +
3465      //       (4.07009056f +
3466      //         (-2.12067489f +
3467      //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3468      //
3469      // error 0.0000876136000, which is better than 13 bits
3470      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3471                               getF32Constant(DAG, 0xbda7262e));
3472      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3473                               getF32Constant(DAG, 0x3f25280b));
3474      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3475      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3476                               getF32Constant(DAG, 0x4007b923));
3477      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3478      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3479                               getF32Constant(DAG, 0x40823e2f));
3480      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3481      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3482                                           getF32Constant(DAG, 0x4020d29c));
3483
3484      result = DAG.getNode(ISD::FADD, dl,
3485                           MVT::f32, LogOfExponent, Log2ofMantissa);
3486    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3487      // For floating-point precision of 18:
3488      //
3489      //   Log2ofMantissa =
3490      //     -3.0400495f +
3491      //       (6.1129976f +
3492      //         (-5.3420409f +
3493      //           (3.2865683f +
3494      //             (-1.2669343f +
3495      //               (0.27515199f -
3496      //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3497      //
3498      // error 0.0000018516, which is better than 18 bits
3499      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3500                               getF32Constant(DAG, 0xbcd2769e));
3501      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3502                               getF32Constant(DAG, 0x3e8ce0b9));
3503      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3504      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3505                               getF32Constant(DAG, 0x3fa22ae7));
3506      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3507      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3508                               getF32Constant(DAG, 0x40525723));
3509      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3510      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3511                               getF32Constant(DAG, 0x40aaf200));
3512      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3513      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3514                               getF32Constant(DAG, 0x40c39dad));
3515      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3516      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3517                                           getF32Constant(DAG, 0x4042902c));
3518
3519      result = DAG.getNode(ISD::FADD, dl,
3520                           MVT::f32, LogOfExponent, Log2ofMantissa);
3521    }
3522  } else {
3523    // No special expansion.
3524    result = DAG.getNode(ISD::FLOG2, dl,
3525                         getValue(I.getArgOperand(0)).getValueType(),
3526                         getValue(I.getArgOperand(0)));
3527  }
3528
3529  setValue(&I, result);
3530}
3531
3532/// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for
3533/// limited-precision mode.
3534void
3535SelectionDAGBuilder::visitLog10(const CallInst &I) {
3536  SDValue result;
3537  DebugLoc dl = getCurDebugLoc();
3538
3539  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3540      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3541    SDValue Op = getValue(I.getArgOperand(0));
3542    SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
3543
3544    // Scale the exponent by log10(2) [0.30102999f].
3545    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3546    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3547                                        getF32Constant(DAG, 0x3e9a209a));
3548
3549    // Get the significand and build it into a floating-point number with
3550    // exponent of 1.
3551    SDValue X = GetSignificand(DAG, Op1, dl);
3552
3553    if (LimitFloatPrecision <= 6) {
3554      // For floating-point precision of 6:
3555      //
3556      //   Log10ofMantissa =
3557      //     -0.50419619f +
3558      //       (0.60948995f - 0.10380950f * x) * x;
3559      //
3560      // error 0.0014886165, which is 6 bits
3561      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3562                               getF32Constant(DAG, 0xbdd49a13));
3563      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3564                               getF32Constant(DAG, 0x3f1c0789));
3565      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3566      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3567                                            getF32Constant(DAG, 0x3f011300));
3568
3569      result = DAG.getNode(ISD::FADD, dl,
3570                           MVT::f32, LogOfExponent, Log10ofMantissa);
3571    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3572      // For floating-point precision of 12:
3573      //
3574      //   Log10ofMantissa =
3575      //     -0.64831180f +
3576      //       (0.91751397f +
3577      //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
3578      //
3579      // error 0.00019228036, which is better than 12 bits
3580      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3581                               getF32Constant(DAG, 0x3d431f31));
3582      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3583                               getF32Constant(DAG, 0x3ea21fb2));
3584      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3585      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3586                               getF32Constant(DAG, 0x3f6ae232));
3587      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3588      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3589                                            getF32Constant(DAG, 0x3f25f7c3));
3590
3591      result = DAG.getNode(ISD::FADD, dl,
3592                           MVT::f32, LogOfExponent, Log10ofMantissa);
3593    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3594      // For floating-point precision of 18:
3595      //
3596      //   Log10ofMantissa =
3597      //     -0.84299375f +
3598      //       (1.5327582f +
3599      //         (-1.0688956f +
3600      //           (0.49102474f +
3601      //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
3602      //
3603      // error 0.0000037995730, which is better than 18 bits
3604      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3605                               getF32Constant(DAG, 0x3c5d51ce));
3606      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3607                               getF32Constant(DAG, 0x3e00685a));
3608      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3609      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3610                               getF32Constant(DAG, 0x3efb6798));
3611      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3612      SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3613                               getF32Constant(DAG, 0x3f88d192));
3614      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3615      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3616                               getF32Constant(DAG, 0x3fc4316c));
3617      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3618      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
3619                                            getF32Constant(DAG, 0x3f57ce70));
3620
3621      result = DAG.getNode(ISD::FADD, dl,
3622                           MVT::f32, LogOfExponent, Log10ofMantissa);
3623    }
3624  } else {
3625    // No special expansion.
3626    result = DAG.getNode(ISD::FLOG10, dl,
3627                         getValue(I.getArgOperand(0)).getValueType(),
3628                         getValue(I.getArgOperand(0)));
3629  }
3630
3631  setValue(&I, result);
3632}
3633
3634/// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for
3635/// limited-precision mode.
3636void
3637SelectionDAGBuilder::visitExp2(const CallInst &I) {
3638  SDValue result;
3639  DebugLoc dl = getCurDebugLoc();
3640
3641  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3642      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3643    SDValue Op = getValue(I.getArgOperand(0));
3644
3645    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
3646
3647    //   FractionalPartOfX = x - (float)IntegerPartOfX;
3648    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3649    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
3650
3651    //   IntegerPartOfX <<= 23;
3652    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3653                                 DAG.getConstant(23, TLI.getPointerTy()));
3654
3655    if (LimitFloatPrecision <= 6) {
3656      // For floating-point precision of 6:
3657      //
3658      //   TwoToFractionalPartOfX =
3659      //     0.997535578f +
3660      //       (0.735607626f + 0.252464424f * x) * x;
3661      //
3662      // error 0.0144103317, which is 6 bits
3663      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3664                               getF32Constant(DAG, 0x3e814304));
3665      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3666                               getF32Constant(DAG, 0x3f3c50c8));
3667      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3668      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3669                               getF32Constant(DAG, 0x3f7f5e7e));
3670      SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5);
3671      SDValue TwoToFractionalPartOfX =
3672        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3673
3674      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3675                           MVT::f32, TwoToFractionalPartOfX);
3676    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3677      // For floating-point precision of 12:
3678      //
3679      //   TwoToFractionalPartOfX =
3680      //     0.999892986f +
3681      //       (0.696457318f +
3682      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3683      //
3684      // error 0.000107046256, which is 13 to 14 bits
3685      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3686                               getF32Constant(DAG, 0x3da235e3));
3687      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3688                               getF32Constant(DAG, 0x3e65b8f3));
3689      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3690      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3691                               getF32Constant(DAG, 0x3f324b07));
3692      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3693      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3694                               getF32Constant(DAG, 0x3f7ff8fd));
3695      SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7);
3696      SDValue TwoToFractionalPartOfX =
3697        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
3698
3699      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3700                           MVT::f32, TwoToFractionalPartOfX);
3701    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3702      // For floating-point precision of 18:
3703      //
3704      //   TwoToFractionalPartOfX =
3705      //     0.999999982f +
3706      //       (0.693148872f +
3707      //         (0.240227044f +
3708      //           (0.554906021e-1f +
3709      //             (0.961591928e-2f +
3710      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3711      // error 2.47208000*10^(-7), which is better than 18 bits
3712      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3713                               getF32Constant(DAG, 0x3924b03e));
3714      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3715                               getF32Constant(DAG, 0x3ab24b87));
3716      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3717      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3718                               getF32Constant(DAG, 0x3c1d8c17));
3719      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3720      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3721                               getF32Constant(DAG, 0x3d634a1d));
3722      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3723      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3724                               getF32Constant(DAG, 0x3e75fe14));
3725      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3726      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3727                                getF32Constant(DAG, 0x3f317234));
3728      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3729      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3730                                getF32Constant(DAG, 0x3f800000));
3731      SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13);
3732      SDValue TwoToFractionalPartOfX =
3733        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
3734
3735      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3736                           MVT::f32, TwoToFractionalPartOfX);
3737    }
3738  } else {
3739    // No special expansion.
3740    result = DAG.getNode(ISD::FEXP2, dl,
3741                         getValue(I.getArgOperand(0)).getValueType(),
3742                         getValue(I.getArgOperand(0)));
3743  }
3744
3745  setValue(&I, result);
3746}
3747
3748/// visitPow - Lower a pow intrinsic. Handles the special sequences for
3749/// limited-precision mode with x == 10.0f.
3750void
3751SelectionDAGBuilder::visitPow(const CallInst &I) {
3752  SDValue result;
3753  const Value *Val = I.getArgOperand(0);
3754  DebugLoc dl = getCurDebugLoc();
3755  bool IsExp10 = false;
3756
3757  if (getValue(Val).getValueType() == MVT::f32 &&
3758      getValue(I.getArgOperand(1)).getValueType() == MVT::f32 &&
3759      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3760    if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) {
3761      if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
3762        APFloat Ten(10.0f);
3763        IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten);
3764      }
3765    }
3766  }
3767
3768  if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3769    SDValue Op = getValue(I.getArgOperand(1));
3770
3771    // Put the exponent in the right bit position for later addition to the
3772    // final result:
3773    //
3774    //   #define LOG2OF10 3.3219281f
3775    //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
3776    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3777                             getF32Constant(DAG, 0x40549a78));
3778    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3779
3780    //   FractionalPartOfX = x - (float)IntegerPartOfX;
3781    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3782    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3783
3784    //   IntegerPartOfX <<= 23;
3785    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3786                                 DAG.getConstant(23, TLI.getPointerTy()));
3787
3788    if (LimitFloatPrecision <= 6) {
3789      // For floating-point precision of 6:
3790      //
3791      //   twoToFractionalPartOfX =
3792      //     0.997535578f +
3793      //       (0.735607626f + 0.252464424f * x) * x;
3794      //
3795      // error 0.0144103317, which is 6 bits
3796      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3797                               getF32Constant(DAG, 0x3e814304));
3798      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3799                               getF32Constant(DAG, 0x3f3c50c8));
3800      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3801      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3802                               getF32Constant(DAG, 0x3f7f5e7e));
3803      SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5);
3804      SDValue TwoToFractionalPartOfX =
3805        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3806
3807      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3808                           MVT::f32, TwoToFractionalPartOfX);
3809    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3810      // For floating-point precision of 12:
3811      //
3812      //   TwoToFractionalPartOfX =
3813      //     0.999892986f +
3814      //       (0.696457318f +
3815      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3816      //
3817      // error 0.000107046256, which is 13 to 14 bits
3818      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3819                               getF32Constant(DAG, 0x3da235e3));
3820      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3821                               getF32Constant(DAG, 0x3e65b8f3));
3822      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3823      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3824                               getF32Constant(DAG, 0x3f324b07));
3825      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3826      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3827                               getF32Constant(DAG, 0x3f7ff8fd));
3828      SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7);
3829      SDValue TwoToFractionalPartOfX =
3830        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
3831
3832      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3833                           MVT::f32, TwoToFractionalPartOfX);
3834    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3835      // For floating-point precision of 18:
3836      //
3837      //   TwoToFractionalPartOfX =
3838      //     0.999999982f +
3839      //       (0.693148872f +
3840      //         (0.240227044f +
3841      //           (0.554906021e-1f +
3842      //             (0.961591928e-2f +
3843      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3844      // error 2.47208000*10^(-7), which is better than 18 bits
3845      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3846                               getF32Constant(DAG, 0x3924b03e));
3847      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3848                               getF32Constant(DAG, 0x3ab24b87));
3849      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3850      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3851                               getF32Constant(DAG, 0x3c1d8c17));
3852      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3853      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3854                               getF32Constant(DAG, 0x3d634a1d));
3855      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3856      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3857                               getF32Constant(DAG, 0x3e75fe14));
3858      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3859      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3860                                getF32Constant(DAG, 0x3f317234));
3861      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3862      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3863                                getF32Constant(DAG, 0x3f800000));
3864      SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13);
3865      SDValue TwoToFractionalPartOfX =
3866        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
3867
3868      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3869                           MVT::f32, TwoToFractionalPartOfX);
3870    }
3871  } else {
3872    // No special expansion.
3873    result = DAG.getNode(ISD::FPOW, dl,
3874                         getValue(I.getArgOperand(0)).getValueType(),
3875                         getValue(I.getArgOperand(0)),
3876                         getValue(I.getArgOperand(1)));
3877  }
3878
3879  setValue(&I, result);
3880}
3881
3882
3883/// ExpandPowI - Expand a llvm.powi intrinsic.
3884static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS,
3885                          SelectionDAG &DAG) {
3886  // If RHS is a constant, we can expand this out to a multiplication tree,
3887  // otherwise we end up lowering to a call to __powidf2 (for example).  When
3888  // optimizing for size, we only want to do this if the expansion would produce
3889  // a small number of multiplies, otherwise we do the full expansion.
3890  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3891    // Get the exponent as a positive value.
3892    unsigned Val = RHSC->getSExtValue();
3893    if ((int)Val < 0) Val = -Val;
3894
3895    // powi(x, 0) -> 1.0
3896    if (Val == 0)
3897      return DAG.getConstantFP(1.0, LHS.getValueType());
3898
3899    const Function *F = DAG.getMachineFunction().getFunction();
3900    if (!F->hasFnAttr(Attribute::OptimizeForSize) ||
3901        // If optimizing for size, don't insert too many multiplies.  This
3902        // inserts up to 5 multiplies.
3903        CountPopulation_32(Val)+Log2_32(Val) < 7) {
3904      // We use the simple binary decomposition method to generate the multiply
3905      // sequence.  There are more optimal ways to do this (for example,
3906      // powi(x,15) generates one more multiply than it should), but this has
3907      // the benefit of being both really simple and much better than a libcall.
3908      SDValue Res;  // Logically starts equal to 1.0
3909      SDValue CurSquare = LHS;
3910      while (Val) {
3911        if (Val & 1) {
3912          if (Res.getNode())
3913            Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
3914          else
3915            Res = CurSquare;  // 1.0*CurSquare.
3916        }
3917
3918        CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
3919                                CurSquare, CurSquare);
3920        Val >>= 1;
3921      }
3922
3923      // If the original was negative, invert the result, producing 1/(x*x*x).
3924      if (RHSC->getSExtValue() < 0)
3925        Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
3926                          DAG.getConstantFP(1.0, LHS.getValueType()), Res);
3927      return Res;
3928    }
3929  }
3930
3931  // Otherwise, expand to a libcall.
3932  return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
3933}
3934
3935/// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
3936/// argument, create the corresponding DBG_VALUE machine instruction for it now.
3937/// At the end of instruction selection, they will be inserted to the entry BB.
3938bool
3939SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
3940                                              int64_t Offset,
3941                                              const SDValue &N) {
3942  const Argument *Arg = dyn_cast<Argument>(V);
3943  if (!Arg)
3944    return false;
3945
3946  MachineFunction &MF = DAG.getMachineFunction();
3947  // Ignore inlined function arguments here.
3948  DIVariable DV(Variable);
3949  if (DV.isInlinedFnArgument(MF.getFunction()))
3950    return false;
3951
3952  MachineBasicBlock *MBB = FuncInfo.MBB;
3953  if (MBB != &MF.front())
3954    return false;
3955
3956  unsigned Reg = 0;
3957  if (Arg->hasByValAttr()) {
3958    // Byval arguments' frame index is recorded during argument lowering.
3959    // Use this info directly.
3960    const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
3961    Reg = TRI->getFrameRegister(MF);
3962    Offset = FuncInfo.getByValArgumentFrameIndex(Arg);
3963    // If byval argument ofset is not recorded then ignore this.
3964    if (!Offset)
3965      Reg = 0;
3966  }
3967
3968  if (N.getNode() && N.getOpcode() == ISD::CopyFromReg) {
3969    Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
3970    if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
3971      MachineRegisterInfo &RegInfo = MF.getRegInfo();
3972      unsigned PR = RegInfo.getLiveInPhysReg(Reg);
3973      if (PR)
3974        Reg = PR;
3975    }
3976  }
3977
3978  if (!Reg) {
3979    DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
3980    if (VMI == FuncInfo.ValueMap.end())
3981      return false;
3982    Reg = VMI->second;
3983  }
3984
3985  const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
3986  MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(),
3987                                    TII->get(TargetOpcode::DBG_VALUE))
3988    .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable);
3989  FuncInfo.ArgDbgValues.push_back(&*MIB);
3990  return true;
3991}
3992
3993// VisualStudio defines setjmp as _setjmp
3994#if defined(_MSC_VER) && defined(setjmp) && \
3995                         !defined(setjmp_undefined_for_msvc)
3996#  pragma push_macro("setjmp")
3997#  undef setjmp
3998#  define setjmp_undefined_for_msvc
3999#endif
4000
4001/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4002/// we want to emit this as a call to a named external function, return the name
4003/// otherwise lower it and return null.
4004const char *
4005SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4006  DebugLoc dl = getCurDebugLoc();
4007  SDValue Res;
4008
4009  switch (Intrinsic) {
4010  default:
4011    // By default, turn this into a target intrinsic node.
4012    visitTargetIntrinsic(I, Intrinsic);
4013    return 0;
4014  case Intrinsic::vastart:  visitVAStart(I); return 0;
4015  case Intrinsic::vaend:    visitVAEnd(I); return 0;
4016  case Intrinsic::vacopy:   visitVACopy(I); return 0;
4017  case Intrinsic::returnaddress:
4018    setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(),
4019                             getValue(I.getArgOperand(0))));
4020    return 0;
4021  case Intrinsic::frameaddress:
4022    setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(),
4023                             getValue(I.getArgOperand(0))));
4024    return 0;
4025  case Intrinsic::setjmp:
4026    return "_setjmp"+!TLI.usesUnderscoreSetJmp();
4027  case Intrinsic::longjmp:
4028    return "_longjmp"+!TLI.usesUnderscoreLongJmp();
4029  case Intrinsic::memcpy: {
4030    // Assert for address < 256 since we support only user defined address
4031    // spaces.
4032    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4033           < 256 &&
4034           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4035           < 256 &&
4036           "Unknown address space");
4037    SDValue Op1 = getValue(I.getArgOperand(0));
4038    SDValue Op2 = getValue(I.getArgOperand(1));
4039    SDValue Op3 = getValue(I.getArgOperand(2));
4040    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4041    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4042    DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false,
4043                              MachinePointerInfo(I.getArgOperand(0)),
4044                              MachinePointerInfo(I.getArgOperand(1))));
4045    return 0;
4046  }
4047  case Intrinsic::memset: {
4048    // Assert for address < 256 since we support only user defined address
4049    // spaces.
4050    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4051           < 256 &&
4052           "Unknown address space");
4053    SDValue Op1 = getValue(I.getArgOperand(0));
4054    SDValue Op2 = getValue(I.getArgOperand(1));
4055    SDValue Op3 = getValue(I.getArgOperand(2));
4056    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4057    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4058    DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4059                              MachinePointerInfo(I.getArgOperand(0))));
4060    return 0;
4061  }
4062  case Intrinsic::memmove: {
4063    // Assert for address < 256 since we support only user defined address
4064    // spaces.
4065    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4066           < 256 &&
4067           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4068           < 256 &&
4069           "Unknown address space");
4070    SDValue Op1 = getValue(I.getArgOperand(0));
4071    SDValue Op2 = getValue(I.getArgOperand(1));
4072    SDValue Op3 = getValue(I.getArgOperand(2));
4073    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4074    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4075
4076    // If the source and destination are known to not be aliases, we can
4077    // lower memmove as memcpy.
4078    uint64_t Size = -1ULL;
4079    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3))
4080      Size = C->getZExtValue();
4081    if (AA->alias(I.getArgOperand(0), Size, I.getArgOperand(1), Size) ==
4082        AliasAnalysis::NoAlias) {
4083      DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4084                                false, MachinePointerInfo(I.getArgOperand(0)),
4085                                MachinePointerInfo(I.getArgOperand(1))));
4086      return 0;
4087    }
4088
4089    DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4090                               MachinePointerInfo(I.getArgOperand(0)),
4091                               MachinePointerInfo(I.getArgOperand(1))));
4092    return 0;
4093  }
4094  case Intrinsic::dbg_declare: {
4095    const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4096    MDNode *Variable = DI.getVariable();
4097    const Value *Address = DI.getAddress();
4098    if (!Address || !DIVariable(DI.getVariable()).Verify())
4099      return 0;
4100
4101    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4102    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4103    // absolute, but not relative, values are different depending on whether
4104    // debug info exists.
4105    ++SDNodeOrder;
4106
4107    // Check if address has undef value.
4108    if (isa<UndefValue>(Address) ||
4109        (Address->use_empty() && !isa<Argument>(Address))) {
4110      SDDbgValue*SDV =
4111        DAG.getDbgValue(Variable, UndefValue::get(Address->getType()),
4112                        0, dl, SDNodeOrder);
4113      DAG.AddDbgValue(SDV, 0, false);
4114      return 0;
4115    }
4116
4117    SDValue &N = NodeMap[Address];
4118    if (!N.getNode() && isa<Argument>(Address))
4119      // Check unused arguments map.
4120      N = UnusedArgNodeMap[Address];
4121    SDDbgValue *SDV;
4122    if (N.getNode()) {
4123      // Parameters are handled specially.
4124      bool isParameter =
4125        DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable;
4126      if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4127        Address = BCI->getOperand(0);
4128      const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
4129
4130      if (isParameter && !AI) {
4131        FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4132        if (FINode)
4133          // Byval parameter.  We have a frame index at this point.
4134          SDV = DAG.getDbgValue(Variable, FINode->getIndex(),
4135                                0, dl, SDNodeOrder);
4136        else
4137          // Can't do anything with other non-AI cases yet.  This might be a
4138          // parameter of a callee function that got inlined, for example.
4139          return 0;
4140      } else if (AI)
4141        SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
4142                              0, dl, SDNodeOrder);
4143      else
4144        // Can't do anything with other non-AI cases yet.
4145        return 0;
4146      DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4147    } else {
4148      // If Address is an argument then try to emit its dbg value using
4149      // virtual register info from the FuncInfo.ValueMap.
4150      if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) {
4151        // If variable is pinned by a alloca in dominating bb then
4152        // use StaticAllocaMap.
4153        if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4154          if (AI->getParent() != DI.getParent()) {
4155            DenseMap<const AllocaInst*, int>::iterator SI =
4156              FuncInfo.StaticAllocaMap.find(AI);
4157            if (SI != FuncInfo.StaticAllocaMap.end()) {
4158              SDV = DAG.getDbgValue(Variable, SI->second,
4159                                    0, dl, SDNodeOrder);
4160              DAG.AddDbgValue(SDV, 0, false);
4161              return 0;
4162            }
4163          }
4164        }
4165        // Otherwise add undef to help track missing debug info.
4166        SDV = DAG.getDbgValue(Variable, UndefValue::get(Address->getType()),
4167                              0, dl, SDNodeOrder);
4168        DAG.AddDbgValue(SDV, 0, false);
4169      }
4170    }
4171    return 0;
4172  }
4173  case Intrinsic::dbg_value: {
4174    const DbgValueInst &DI = cast<DbgValueInst>(I);
4175    if (!DIVariable(DI.getVariable()).Verify())
4176      return 0;
4177
4178    MDNode *Variable = DI.getVariable();
4179    uint64_t Offset = DI.getOffset();
4180    const Value *V = DI.getValue();
4181    if (!V)
4182      return 0;
4183
4184    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4185    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4186    // absolute, but not relative, values are different depending on whether
4187    // debug info exists.
4188    ++SDNodeOrder;
4189    SDDbgValue *SDV;
4190    if (isa<ConstantInt>(V) || isa<ConstantFP>(V)) {
4191      SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder);
4192      DAG.AddDbgValue(SDV, 0, false);
4193    } else {
4194      // Do not use getValue() in here; we don't want to generate code at
4195      // this point if it hasn't been done yet.
4196      SDValue N = NodeMap[V];
4197      if (!N.getNode() && isa<Argument>(V))
4198        // Check unused arguments map.
4199        N = UnusedArgNodeMap[V];
4200      if (N.getNode()) {
4201        if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) {
4202          SDV = DAG.getDbgValue(Variable, N.getNode(),
4203                                N.getResNo(), Offset, dl, SDNodeOrder);
4204          DAG.AddDbgValue(SDV, N.getNode(), false);
4205        }
4206      } else if (isa<PHINode>(V) && !V->use_empty() ) {
4207        // Do not call getValue(V) yet, as we don't want to generate code.
4208        // Remember it for later.
4209        DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4210        DanglingDebugInfoMap[V] = DDI;
4211      } else {
4212        // We may expand this to cover more cases.  One case where we have no
4213        // data available is an unreferenced parameter; we need this fallback.
4214        SDV = DAG.getDbgValue(Variable, UndefValue::get(V->getType()),
4215                              Offset, dl, SDNodeOrder);
4216        DAG.AddDbgValue(SDV, 0, false);
4217      }
4218    }
4219
4220    // Build a debug info table entry.
4221    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4222      V = BCI->getOperand(0);
4223    const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4224    // Don't handle byval struct arguments or VLAs, for example.
4225    if (!AI)
4226      return 0;
4227    DenseMap<const AllocaInst*, int>::iterator SI =
4228      FuncInfo.StaticAllocaMap.find(AI);
4229    if (SI == FuncInfo.StaticAllocaMap.end())
4230      return 0; // VLAs.
4231    int FI = SI->second;
4232
4233    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4234    if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
4235      MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
4236    return 0;
4237  }
4238  case Intrinsic::eh_exception: {
4239    // Insert the EXCEPTIONADDR instruction.
4240    assert(FuncInfo.MBB->isLandingPad() &&
4241           "Call to eh.exception not in landing pad!");
4242    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4243    SDValue Ops[1];
4244    Ops[0] = DAG.getRoot();
4245    SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1);
4246    setValue(&I, Op);
4247    DAG.setRoot(Op.getValue(1));
4248    return 0;
4249  }
4250
4251  case Intrinsic::eh_selector: {
4252    MachineBasicBlock *CallMBB = FuncInfo.MBB;
4253    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4254    if (CallMBB->isLandingPad())
4255      AddCatchInfo(I, &MMI, CallMBB);
4256    else {
4257#ifndef NDEBUG
4258      FuncInfo.CatchInfoLost.insert(&I);
4259#endif
4260      // FIXME: Mark exception selector register as live in.  Hack for PR1508.
4261      unsigned Reg = TLI.getExceptionSelectorRegister();
4262      if (Reg) FuncInfo.MBB->addLiveIn(Reg);
4263    }
4264
4265    // Insert the EHSELECTION instruction.
4266    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4267    SDValue Ops[2];
4268    Ops[0] = getValue(I.getArgOperand(0));
4269    Ops[1] = getRoot();
4270    SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2);
4271    DAG.setRoot(Op.getValue(1));
4272    setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32));
4273    return 0;
4274  }
4275
4276  case Intrinsic::eh_typeid_for: {
4277    // Find the type id for the given typeinfo.
4278    GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0));
4279    unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4280    Res = DAG.getConstant(TypeID, MVT::i32);
4281    setValue(&I, Res);
4282    return 0;
4283  }
4284
4285  case Intrinsic::eh_return_i32:
4286  case Intrinsic::eh_return_i64:
4287    DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4288    DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl,
4289                            MVT::Other,
4290                            getControlRoot(),
4291                            getValue(I.getArgOperand(0)),
4292                            getValue(I.getArgOperand(1))));
4293    return 0;
4294  case Intrinsic::eh_unwind_init:
4295    DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4296    return 0;
4297  case Intrinsic::eh_dwarf_cfa: {
4298    SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl,
4299                                        TLI.getPointerTy());
4300    SDValue Offset = DAG.getNode(ISD::ADD, dl,
4301                                 TLI.getPointerTy(),
4302                                 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
4303                                             TLI.getPointerTy()),
4304                                 CfaArg);
4305    SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl,
4306                             TLI.getPointerTy(),
4307                             DAG.getConstant(0, TLI.getPointerTy()));
4308    setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
4309                             FA, Offset));
4310    return 0;
4311  }
4312  case Intrinsic::eh_sjlj_callsite: {
4313    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4314    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4315    assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4316    assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4317
4318    MMI.setCurrentCallSite(CI->getZExtValue());
4319    return 0;
4320  }
4321  case Intrinsic::eh_sjlj_setjmp: {
4322    setValue(&I, DAG.getNode(ISD::EH_SJLJ_SETJMP, dl, MVT::i32, getRoot(),
4323                             getValue(I.getArgOperand(0))));
4324    return 0;
4325  }
4326  case Intrinsic::eh_sjlj_longjmp: {
4327    DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other,
4328                            getRoot(), getValue(I.getArgOperand(0))));
4329    return 0;
4330  }
4331  case Intrinsic::eh_sjlj_dispatch_setup: {
4332    DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_DISPATCHSETUP, dl, MVT::Other,
4333                            getRoot(), getValue(I.getArgOperand(0))));
4334    return 0;
4335  }
4336
4337  case Intrinsic::x86_mmx_pslli_w:
4338  case Intrinsic::x86_mmx_pslli_d:
4339  case Intrinsic::x86_mmx_pslli_q:
4340  case Intrinsic::x86_mmx_psrli_w:
4341  case Intrinsic::x86_mmx_psrli_d:
4342  case Intrinsic::x86_mmx_psrli_q:
4343  case Intrinsic::x86_mmx_psrai_w:
4344  case Intrinsic::x86_mmx_psrai_d: {
4345    SDValue ShAmt = getValue(I.getArgOperand(1));
4346    if (isa<ConstantSDNode>(ShAmt)) {
4347      visitTargetIntrinsic(I, Intrinsic);
4348      return 0;
4349    }
4350    unsigned NewIntrinsic = 0;
4351    EVT ShAmtVT = MVT::v2i32;
4352    switch (Intrinsic) {
4353    case Intrinsic::x86_mmx_pslli_w:
4354      NewIntrinsic = Intrinsic::x86_mmx_psll_w;
4355      break;
4356    case Intrinsic::x86_mmx_pslli_d:
4357      NewIntrinsic = Intrinsic::x86_mmx_psll_d;
4358      break;
4359    case Intrinsic::x86_mmx_pslli_q:
4360      NewIntrinsic = Intrinsic::x86_mmx_psll_q;
4361      break;
4362    case Intrinsic::x86_mmx_psrli_w:
4363      NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
4364      break;
4365    case Intrinsic::x86_mmx_psrli_d:
4366      NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
4367      break;
4368    case Intrinsic::x86_mmx_psrli_q:
4369      NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
4370      break;
4371    case Intrinsic::x86_mmx_psrai_w:
4372      NewIntrinsic = Intrinsic::x86_mmx_psra_w;
4373      break;
4374    case Intrinsic::x86_mmx_psrai_d:
4375      NewIntrinsic = Intrinsic::x86_mmx_psra_d;
4376      break;
4377    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4378    }
4379
4380    // The vector shift intrinsics with scalars uses 32b shift amounts but
4381    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
4382    // to be zero.
4383    // We must do this early because v2i32 is not a legal type.
4384    DebugLoc dl = getCurDebugLoc();
4385    SDValue ShOps[2];
4386    ShOps[0] = ShAmt;
4387    ShOps[1] = DAG.getConstant(0, MVT::i32);
4388    ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
4389    EVT DestVT = TLI.getValueType(I.getType());
4390    ShAmt = DAG.getNode(ISD::BIT_CONVERT, dl, DestVT, ShAmt);
4391    Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
4392                       DAG.getConstant(NewIntrinsic, MVT::i32),
4393                       getValue(I.getArgOperand(0)), ShAmt);
4394    setValue(&I, Res);
4395    return 0;
4396  }
4397  case Intrinsic::convertff:
4398  case Intrinsic::convertfsi:
4399  case Intrinsic::convertfui:
4400  case Intrinsic::convertsif:
4401  case Intrinsic::convertuif:
4402  case Intrinsic::convertss:
4403  case Intrinsic::convertsu:
4404  case Intrinsic::convertus:
4405  case Intrinsic::convertuu: {
4406    ISD::CvtCode Code = ISD::CVT_INVALID;
4407    switch (Intrinsic) {
4408    case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
4409    case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4410    case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4411    case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4412    case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4413    case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
4414    case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
4415    case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4416    case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4417    }
4418    EVT DestVT = TLI.getValueType(I.getType());
4419    const Value *Op1 = I.getArgOperand(0);
4420    Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1),
4421                               DAG.getValueType(DestVT),
4422                               DAG.getValueType(getValue(Op1).getValueType()),
4423                               getValue(I.getArgOperand(1)),
4424                               getValue(I.getArgOperand(2)),
4425                               Code);
4426    setValue(&I, Res);
4427    return 0;
4428  }
4429  case Intrinsic::sqrt:
4430    setValue(&I, DAG.getNode(ISD::FSQRT, dl,
4431                             getValue(I.getArgOperand(0)).getValueType(),
4432                             getValue(I.getArgOperand(0))));
4433    return 0;
4434  case Intrinsic::powi:
4435    setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)),
4436                            getValue(I.getArgOperand(1)), DAG));
4437    return 0;
4438  case Intrinsic::sin:
4439    setValue(&I, DAG.getNode(ISD::FSIN, dl,
4440                             getValue(I.getArgOperand(0)).getValueType(),
4441                             getValue(I.getArgOperand(0))));
4442    return 0;
4443  case Intrinsic::cos:
4444    setValue(&I, DAG.getNode(ISD::FCOS, dl,
4445                             getValue(I.getArgOperand(0)).getValueType(),
4446                             getValue(I.getArgOperand(0))));
4447    return 0;
4448  case Intrinsic::log:
4449    visitLog(I);
4450    return 0;
4451  case Intrinsic::log2:
4452    visitLog2(I);
4453    return 0;
4454  case Intrinsic::log10:
4455    visitLog10(I);
4456    return 0;
4457  case Intrinsic::exp:
4458    visitExp(I);
4459    return 0;
4460  case Intrinsic::exp2:
4461    visitExp2(I);
4462    return 0;
4463  case Intrinsic::pow:
4464    visitPow(I);
4465    return 0;
4466  case Intrinsic::convert_to_fp16:
4467    setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl,
4468                             MVT::i16, getValue(I.getArgOperand(0))));
4469    return 0;
4470  case Intrinsic::convert_from_fp16:
4471    setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl,
4472                             MVT::f32, getValue(I.getArgOperand(0))));
4473    return 0;
4474  case Intrinsic::pcmarker: {
4475    SDValue Tmp = getValue(I.getArgOperand(0));
4476    DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp));
4477    return 0;
4478  }
4479  case Intrinsic::readcyclecounter: {
4480    SDValue Op = getRoot();
4481    Res = DAG.getNode(ISD::READCYCLECOUNTER, dl,
4482                      DAG.getVTList(MVT::i64, MVT::Other),
4483                      &Op, 1);
4484    setValue(&I, Res);
4485    DAG.setRoot(Res.getValue(1));
4486    return 0;
4487  }
4488  case Intrinsic::bswap:
4489    setValue(&I, DAG.getNode(ISD::BSWAP, dl,
4490                             getValue(I.getArgOperand(0)).getValueType(),
4491                             getValue(I.getArgOperand(0))));
4492    return 0;
4493  case Intrinsic::cttz: {
4494    SDValue Arg = getValue(I.getArgOperand(0));
4495    EVT Ty = Arg.getValueType();
4496    setValue(&I, DAG.getNode(ISD::CTTZ, dl, Ty, Arg));
4497    return 0;
4498  }
4499  case Intrinsic::ctlz: {
4500    SDValue Arg = getValue(I.getArgOperand(0));
4501    EVT Ty = Arg.getValueType();
4502    setValue(&I, DAG.getNode(ISD::CTLZ, dl, Ty, Arg));
4503    return 0;
4504  }
4505  case Intrinsic::ctpop: {
4506    SDValue Arg = getValue(I.getArgOperand(0));
4507    EVT Ty = Arg.getValueType();
4508    setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg));
4509    return 0;
4510  }
4511  case Intrinsic::stacksave: {
4512    SDValue Op = getRoot();
4513    Res = DAG.getNode(ISD::STACKSAVE, dl,
4514                      DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
4515    setValue(&I, Res);
4516    DAG.setRoot(Res.getValue(1));
4517    return 0;
4518  }
4519  case Intrinsic::stackrestore: {
4520    Res = getValue(I.getArgOperand(0));
4521    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res));
4522    return 0;
4523  }
4524  case Intrinsic::stackprotector: {
4525    // Emit code into the DAG to store the stack guard onto the stack.
4526    MachineFunction &MF = DAG.getMachineFunction();
4527    MachineFrameInfo *MFI = MF.getFrameInfo();
4528    EVT PtrTy = TLI.getPointerTy();
4529
4530    SDValue Src = getValue(I.getArgOperand(0));   // The guard's value.
4531    AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
4532
4533    int FI = FuncInfo.StaticAllocaMap[Slot];
4534    MFI->setStackProtectorIndex(FI);
4535
4536    SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
4537
4538    // Store the stack protector onto the stack.
4539    Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN,
4540                       MachinePointerInfo::getFixedStack(FI),
4541                       true, false, 0);
4542    setValue(&I, Res);
4543    DAG.setRoot(Res);
4544    return 0;
4545  }
4546  case Intrinsic::objectsize: {
4547    // If we don't know by now, we're never going to know.
4548    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
4549
4550    assert(CI && "Non-constant type in __builtin_object_size?");
4551
4552    SDValue Arg = getValue(I.getCalledValue());
4553    EVT Ty = Arg.getValueType();
4554
4555    if (CI->isZero())
4556      Res = DAG.getConstant(-1ULL, Ty);
4557    else
4558      Res = DAG.getConstant(0, Ty);
4559
4560    setValue(&I, Res);
4561    return 0;
4562  }
4563  case Intrinsic::var_annotation:
4564    // Discard annotate attributes
4565    return 0;
4566
4567  case Intrinsic::init_trampoline: {
4568    const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
4569
4570    SDValue Ops[6];
4571    Ops[0] = getRoot();
4572    Ops[1] = getValue(I.getArgOperand(0));
4573    Ops[2] = getValue(I.getArgOperand(1));
4574    Ops[3] = getValue(I.getArgOperand(2));
4575    Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
4576    Ops[5] = DAG.getSrcValue(F);
4577
4578    Res = DAG.getNode(ISD::TRAMPOLINE, dl,
4579                      DAG.getVTList(TLI.getPointerTy(), MVT::Other),
4580                      Ops, 6);
4581
4582    setValue(&I, Res);
4583    DAG.setRoot(Res.getValue(1));
4584    return 0;
4585  }
4586  case Intrinsic::gcroot:
4587    if (GFI) {
4588      const Value *Alloca = I.getArgOperand(0);
4589      const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
4590
4591      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
4592      GFI->addStackRoot(FI->getIndex(), TypeMap);
4593    }
4594    return 0;
4595  case Intrinsic::gcread:
4596  case Intrinsic::gcwrite:
4597    llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
4598    return 0;
4599  case Intrinsic::flt_rounds:
4600    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32));
4601    return 0;
4602  case Intrinsic::trap:
4603    DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot()));
4604    return 0;
4605  case Intrinsic::uadd_with_overflow:
4606    return implVisitAluOverflow(I, ISD::UADDO);
4607  case Intrinsic::sadd_with_overflow:
4608    return implVisitAluOverflow(I, ISD::SADDO);
4609  case Intrinsic::usub_with_overflow:
4610    return implVisitAluOverflow(I, ISD::USUBO);
4611  case Intrinsic::ssub_with_overflow:
4612    return implVisitAluOverflow(I, ISD::SSUBO);
4613  case Intrinsic::umul_with_overflow:
4614    return implVisitAluOverflow(I, ISD::UMULO);
4615  case Intrinsic::smul_with_overflow:
4616    return implVisitAluOverflow(I, ISD::SMULO);
4617
4618  case Intrinsic::prefetch: {
4619    SDValue Ops[4];
4620    unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
4621    Ops[0] = getRoot();
4622    Ops[1] = getValue(I.getArgOperand(0));
4623    Ops[2] = getValue(I.getArgOperand(1));
4624    Ops[3] = getValue(I.getArgOperand(2));
4625    DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, dl,
4626                                        DAG.getVTList(MVT::Other),
4627                                        &Ops[0], 4,
4628                                        EVT::getIntegerVT(*Context, 8),
4629                                        MachinePointerInfo(I.getArgOperand(0)),
4630                                        0, /* align */
4631                                        false, /* volatile */
4632                                        rw==0, /* read */
4633                                        rw==1)); /* write */
4634    return 0;
4635  }
4636  case Intrinsic::memory_barrier: {
4637    SDValue Ops[6];
4638    Ops[0] = getRoot();
4639    for (int x = 1; x < 6; ++x)
4640      Ops[x] = getValue(I.getArgOperand(x - 1));
4641
4642    DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6));
4643    return 0;
4644  }
4645  case Intrinsic::atomic_cmp_swap: {
4646    SDValue Root = getRoot();
4647    SDValue L =
4648      DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(),
4649                    getValue(I.getArgOperand(1)).getValueType().getSimpleVT(),
4650                    Root,
4651                    getValue(I.getArgOperand(0)),
4652                    getValue(I.getArgOperand(1)),
4653                    getValue(I.getArgOperand(2)),
4654                    MachinePointerInfo(I.getArgOperand(0)));
4655    setValue(&I, L);
4656    DAG.setRoot(L.getValue(1));
4657    return 0;
4658  }
4659  case Intrinsic::atomic_load_add:
4660    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD);
4661  case Intrinsic::atomic_load_sub:
4662    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB);
4663  case Intrinsic::atomic_load_or:
4664    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR);
4665  case Intrinsic::atomic_load_xor:
4666    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR);
4667  case Intrinsic::atomic_load_and:
4668    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND);
4669  case Intrinsic::atomic_load_nand:
4670    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND);
4671  case Intrinsic::atomic_load_max:
4672    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX);
4673  case Intrinsic::atomic_load_min:
4674    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN);
4675  case Intrinsic::atomic_load_umin:
4676    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN);
4677  case Intrinsic::atomic_load_umax:
4678    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX);
4679  case Intrinsic::atomic_swap:
4680    return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP);
4681
4682  case Intrinsic::invariant_start:
4683  case Intrinsic::lifetime_start:
4684    // Discard region information.
4685    setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
4686    return 0;
4687  case Intrinsic::invariant_end:
4688  case Intrinsic::lifetime_end:
4689    // Discard region information.
4690    return 0;
4691  }
4692}
4693
4694void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
4695                                      bool isTailCall,
4696                                      MachineBasicBlock *LandingPad) {
4697  const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
4698  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
4699  const Type *RetTy = FTy->getReturnType();
4700  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4701  MCSymbol *BeginLabel = 0;
4702
4703  TargetLowering::ArgListTy Args;
4704  TargetLowering::ArgListEntry Entry;
4705  Args.reserve(CS.arg_size());
4706
4707  // Check whether the function can return without sret-demotion.
4708  SmallVector<ISD::OutputArg, 4> Outs;
4709  SmallVector<uint64_t, 4> Offsets;
4710  GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(),
4711                Outs, TLI, &Offsets);
4712
4713  bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
4714                        FTy->isVarArg(), Outs, FTy->getContext());
4715
4716  SDValue DemoteStackSlot;
4717  int DemoteStackIdx = -100;
4718
4719  if (!CanLowerReturn) {
4720    uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(
4721                      FTy->getReturnType());
4722    unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(
4723                      FTy->getReturnType());
4724    MachineFunction &MF = DAG.getMachineFunction();
4725    DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
4726    const Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
4727
4728    DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI.getPointerTy());
4729    Entry.Node = DemoteStackSlot;
4730    Entry.Ty = StackSlotPtrType;
4731    Entry.isSExt = false;
4732    Entry.isZExt = false;
4733    Entry.isInReg = false;
4734    Entry.isSRet = true;
4735    Entry.isNest = false;
4736    Entry.isByVal = false;
4737    Entry.Alignment = Align;
4738    Args.push_back(Entry);
4739    RetTy = Type::getVoidTy(FTy->getContext());
4740  }
4741
4742  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
4743       i != e; ++i) {
4744    SDValue ArgNode = getValue(*i);
4745    Entry.Node = ArgNode; Entry.Ty = (*i)->getType();
4746
4747    unsigned attrInd = i - CS.arg_begin() + 1;
4748    Entry.isSExt  = CS.paramHasAttr(attrInd, Attribute::SExt);
4749    Entry.isZExt  = CS.paramHasAttr(attrInd, Attribute::ZExt);
4750    Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg);
4751    Entry.isSRet  = CS.paramHasAttr(attrInd, Attribute::StructRet);
4752    Entry.isNest  = CS.paramHasAttr(attrInd, Attribute::Nest);
4753    Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal);
4754    Entry.Alignment = CS.getParamAlignment(attrInd);
4755    Args.push_back(Entry);
4756  }
4757
4758  if (LandingPad) {
4759    // Insert a label before the invoke call to mark the try range.  This can be
4760    // used to detect deletion of the invoke via the MachineModuleInfo.
4761    BeginLabel = MMI.getContext().CreateTempSymbol();
4762
4763    // For SjLj, keep track of which landing pads go with which invokes
4764    // so as to maintain the ordering of pads in the LSDA.
4765    unsigned CallSiteIndex = MMI.getCurrentCallSite();
4766    if (CallSiteIndex) {
4767      MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
4768      // Now that the call site is handled, stop tracking it.
4769      MMI.setCurrentCallSite(0);
4770    }
4771
4772    // Both PendingLoads and PendingExports must be flushed here;
4773    // this call might not return.
4774    (void)getRoot();
4775    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel));
4776  }
4777
4778  // Check if target-independent constraints permit a tail call here.
4779  // Target-dependent constraints are checked within TLI.LowerCallTo.
4780  if (isTailCall &&
4781      !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI))
4782    isTailCall = false;
4783
4784  // If there's a possibility that fast-isel has already selected some amount
4785  // of the current basic block, don't emit a tail call.
4786  if (isTailCall && EnableFastISel)
4787    isTailCall = false;
4788
4789  std::pair<SDValue,SDValue> Result =
4790    TLI.LowerCallTo(getRoot(), RetTy,
4791                    CS.paramHasAttr(0, Attribute::SExt),
4792                    CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(),
4793                    CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(),
4794                    CS.getCallingConv(),
4795                    isTailCall,
4796                    !CS.getInstruction()->use_empty(),
4797                    Callee, Args, DAG, getCurDebugLoc());
4798  assert((isTailCall || Result.second.getNode()) &&
4799         "Non-null chain expected with non-tail call!");
4800  assert((Result.second.getNode() || !Result.first.getNode()) &&
4801         "Null value expected with tail call!");
4802  if (Result.first.getNode()) {
4803    setValue(CS.getInstruction(), Result.first);
4804  } else if (!CanLowerReturn && Result.second.getNode()) {
4805    // The instruction result is the result of loading from the
4806    // hidden sret parameter.
4807    SmallVector<EVT, 1> PVTs;
4808    const Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
4809
4810    ComputeValueVTs(TLI, PtrRetTy, PVTs);
4811    assert(PVTs.size() == 1 && "Pointers should fit in one register");
4812    EVT PtrVT = PVTs[0];
4813    unsigned NumValues = Outs.size();
4814    SmallVector<SDValue, 4> Values(NumValues);
4815    SmallVector<SDValue, 4> Chains(NumValues);
4816
4817    for (unsigned i = 0; i < NumValues; ++i) {
4818      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT,
4819                                DemoteStackSlot,
4820                                DAG.getConstant(Offsets[i], PtrVT));
4821      SDValue L = DAG.getLoad(Outs[i].VT, getCurDebugLoc(), Result.second,
4822                              Add,
4823                  MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]),
4824                              false, false, 1);
4825      Values[i] = L;
4826      Chains[i] = L.getValue(1);
4827    }
4828
4829    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
4830                                MVT::Other, &Chains[0], NumValues);
4831    PendingLoads.push_back(Chain);
4832
4833    // Collect the legal value parts into potentially illegal values
4834    // that correspond to the original function's return values.
4835    SmallVector<EVT, 4> RetTys;
4836    RetTy = FTy->getReturnType();
4837    ComputeValueVTs(TLI, RetTy, RetTys);
4838    ISD::NodeType AssertOp = ISD::DELETED_NODE;
4839    SmallVector<SDValue, 4> ReturnValues;
4840    unsigned CurReg = 0;
4841    for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
4842      EVT VT = RetTys[I];
4843      EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT);
4844      unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT);
4845
4846      SDValue ReturnValue =
4847        getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs,
4848                         RegisterVT, VT, AssertOp);
4849      ReturnValues.push_back(ReturnValue);
4850      CurReg += NumRegs;
4851    }
4852
4853    setValue(CS.getInstruction(),
4854             DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
4855                         DAG.getVTList(&RetTys[0], RetTys.size()),
4856                         &ReturnValues[0], ReturnValues.size()));
4857
4858  }
4859
4860  // As a special case, a null chain means that a tail call has been emitted and
4861  // the DAG root is already updated.
4862  if (Result.second.getNode())
4863    DAG.setRoot(Result.second);
4864  else
4865    HasTailCall = true;
4866
4867  if (LandingPad) {
4868    // Insert a label at the end of the invoke call to mark the try range.  This
4869    // can be used to detect deletion of the invoke via the MachineModuleInfo.
4870    MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
4871    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel));
4872
4873    // Inform MachineModuleInfo of range.
4874    MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
4875  }
4876}
4877
4878/// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
4879/// value is equal or not-equal to zero.
4880static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
4881  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
4882       UI != E; ++UI) {
4883    if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
4884      if (IC->isEquality())
4885        if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
4886          if (C->isNullValue())
4887            continue;
4888    // Unknown instruction.
4889    return false;
4890  }
4891  return true;
4892}
4893
4894static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
4895                             const Type *LoadTy,
4896                             SelectionDAGBuilder &Builder) {
4897
4898  // Check to see if this load can be trivially constant folded, e.g. if the
4899  // input is from a string literal.
4900  if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
4901    // Cast pointer to the type we really want to load.
4902    LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
4903                                         PointerType::getUnqual(LoadTy));
4904
4905    if (const Constant *LoadCst =
4906          ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
4907                                       Builder.TD))
4908      return Builder.getValue(LoadCst);
4909  }
4910
4911  // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
4912  // still constant memory, the input chain can be the entry node.
4913  SDValue Root;
4914  bool ConstantMemory = false;
4915
4916  // Do not serialize (non-volatile) loads of constant memory with anything.
4917  if (Builder.AA->pointsToConstantMemory(PtrVal)) {
4918    Root = Builder.DAG.getEntryNode();
4919    ConstantMemory = true;
4920  } else {
4921    // Do not serialize non-volatile loads against each other.
4922    Root = Builder.DAG.getRoot();
4923  }
4924
4925  SDValue Ptr = Builder.getValue(PtrVal);
4926  SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root,
4927                                        Ptr, MachinePointerInfo(PtrVal),
4928                                        false /*volatile*/,
4929                                        false /*nontemporal*/, 1 /* align=1 */);
4930
4931  if (!ConstantMemory)
4932    Builder.PendingLoads.push_back(LoadVal.getValue(1));
4933  return LoadVal;
4934}
4935
4936
4937/// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
4938/// If so, return true and lower it, otherwise return false and it will be
4939/// lowered like a normal call.
4940bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
4941  // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
4942  if (I.getNumArgOperands() != 3)
4943    return false;
4944
4945  const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
4946  if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
4947      !I.getArgOperand(2)->getType()->isIntegerTy() ||
4948      !I.getType()->isIntegerTy())
4949    return false;
4950
4951  const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2));
4952
4953  // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
4954  // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
4955  if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) {
4956    bool ActuallyDoIt = true;
4957    MVT LoadVT;
4958    const Type *LoadTy;
4959    switch (Size->getZExtValue()) {
4960    default:
4961      LoadVT = MVT::Other;
4962      LoadTy = 0;
4963      ActuallyDoIt = false;
4964      break;
4965    case 2:
4966      LoadVT = MVT::i16;
4967      LoadTy = Type::getInt16Ty(Size->getContext());
4968      break;
4969    case 4:
4970      LoadVT = MVT::i32;
4971      LoadTy = Type::getInt32Ty(Size->getContext());
4972      break;
4973    case 8:
4974      LoadVT = MVT::i64;
4975      LoadTy = Type::getInt64Ty(Size->getContext());
4976      break;
4977        /*
4978    case 16:
4979      LoadVT = MVT::v4i32;
4980      LoadTy = Type::getInt32Ty(Size->getContext());
4981      LoadTy = VectorType::get(LoadTy, 4);
4982      break;
4983         */
4984    }
4985
4986    // This turns into unaligned loads.  We only do this if the target natively
4987    // supports the MVT we'll be loading or if it is small enough (<= 4) that
4988    // we'll only produce a small number of byte loads.
4989
4990    // Require that we can find a legal MVT, and only do this if the target
4991    // supports unaligned loads of that type.  Expanding into byte loads would
4992    // bloat the code.
4993    if (ActuallyDoIt && Size->getZExtValue() > 4) {
4994      // TODO: Handle 5 byte compare as 4-byte + 1 byte.
4995      // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
4996      if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT))
4997        ActuallyDoIt = false;
4998    }
4999
5000    if (ActuallyDoIt) {
5001      SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5002      SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5003
5004      SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal,
5005                                 ISD::SETNE);
5006      EVT CallVT = TLI.getValueType(I.getType(), true);
5007      setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT));
5008      return true;
5009    }
5010  }
5011
5012
5013  return false;
5014}
5015
5016
5017void SelectionDAGBuilder::visitCall(const CallInst &I) {
5018  // Handle inline assembly differently.
5019  if (isa<InlineAsm>(I.getCalledValue())) {
5020    visitInlineAsm(&I);
5021    return;
5022  }
5023
5024  // See if any floating point values are being passed to this function. This is
5025  // used to emit an undefined reference to fltused on Windows.
5026  const FunctionType *FT =
5027    cast<FunctionType>(I.getCalledValue()->getType()->getContainedType(0));
5028  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5029  if (FT->isVarArg() &&
5030      !MMI.callsExternalVAFunctionWithFloatingPointArguments()) {
5031    for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
5032      const Type* T = I.getArgOperand(i)->getType();
5033      for (po_iterator<const Type*> i = po_begin(T),
5034                                    e = po_end(T);
5035                                    i != e; ++i) {
5036        if (i->isFloatingPointTy()) {
5037          MMI.setCallsExternalVAFunctionWithFloatingPointArguments(true);
5038          break;
5039        }
5040      }
5041    }
5042  }
5043
5044  const char *RenameFn = 0;
5045  if (Function *F = I.getCalledFunction()) {
5046    if (F->isDeclaration()) {
5047      if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
5048        if (unsigned IID = II->getIntrinsicID(F)) {
5049          RenameFn = visitIntrinsicCall(I, IID);
5050          if (!RenameFn)
5051            return;
5052        }
5053      }
5054      if (unsigned IID = F->getIntrinsicID()) {
5055        RenameFn = visitIntrinsicCall(I, IID);
5056        if (!RenameFn)
5057          return;
5058      }
5059    }
5060
5061    // Check for well-known libc/libm calls.  If the function is internal, it
5062    // can't be a library call.
5063    if (!F->hasLocalLinkage() && F->hasName()) {
5064      StringRef Name = F->getName();
5065      if (Name == "copysign" || Name == "copysignf" || Name == "copysignl") {
5066        if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
5067            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5068            I.getType() == I.getArgOperand(0)->getType() &&
5069            I.getType() == I.getArgOperand(1)->getType()) {
5070          SDValue LHS = getValue(I.getArgOperand(0));
5071          SDValue RHS = getValue(I.getArgOperand(1));
5072          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(),
5073                                   LHS.getValueType(), LHS, RHS));
5074          return;
5075        }
5076      } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") {
5077        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5078            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5079            I.getType() == I.getArgOperand(0)->getType()) {
5080          SDValue Tmp = getValue(I.getArgOperand(0));
5081          setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(),
5082                                   Tmp.getValueType(), Tmp));
5083          return;
5084        }
5085      } else if (Name == "sin" || Name == "sinf" || Name == "sinl") {
5086        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5087            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5088            I.getType() == I.getArgOperand(0)->getType() &&
5089            I.onlyReadsMemory()) {
5090          SDValue Tmp = getValue(I.getArgOperand(0));
5091          setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(),
5092                                   Tmp.getValueType(), Tmp));
5093          return;
5094        }
5095      } else if (Name == "cos" || Name == "cosf" || Name == "cosl") {
5096        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5097            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5098            I.getType() == I.getArgOperand(0)->getType() &&
5099            I.onlyReadsMemory()) {
5100          SDValue Tmp = getValue(I.getArgOperand(0));
5101          setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(),
5102                                   Tmp.getValueType(), Tmp));
5103          return;
5104        }
5105      } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") {
5106        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5107            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5108            I.getType() == I.getArgOperand(0)->getType() &&
5109            I.onlyReadsMemory()) {
5110          SDValue Tmp = getValue(I.getArgOperand(0));
5111          setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(),
5112                                   Tmp.getValueType(), Tmp));
5113          return;
5114        }
5115      } else if (Name == "memcmp") {
5116        if (visitMemCmpCall(I))
5117          return;
5118      }
5119    }
5120  }
5121
5122  SDValue Callee;
5123  if (!RenameFn)
5124    Callee = getValue(I.getCalledValue());
5125  else
5126    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
5127
5128  // Check if we can potentially perform a tail call. More detailed checking is
5129  // be done within LowerCallTo, after more information about the call is known.
5130  LowerCallTo(&I, Callee, I.isTailCall());
5131}
5132
5133namespace llvm {
5134
5135/// AsmOperandInfo - This contains information for each constraint that we are
5136/// lowering.
5137class LLVM_LIBRARY_VISIBILITY SDISelAsmOperandInfo :
5138    public TargetLowering::AsmOperandInfo {
5139public:
5140  /// CallOperand - If this is the result output operand or a clobber
5141  /// this is null, otherwise it is the incoming operand to the CallInst.
5142  /// This gets modified as the asm is processed.
5143  SDValue CallOperand;
5144
5145  /// AssignedRegs - If this is a register or register class operand, this
5146  /// contains the set of register corresponding to the operand.
5147  RegsForValue AssignedRegs;
5148
5149  explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
5150    : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
5151  }
5152
5153  /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
5154  /// busy in OutputRegs/InputRegs.
5155  void MarkAllocatedRegs(bool isOutReg, bool isInReg,
5156                         std::set<unsigned> &OutputRegs,
5157                         std::set<unsigned> &InputRegs,
5158                         const TargetRegisterInfo &TRI) const {
5159    if (isOutReg) {
5160      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
5161        MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
5162    }
5163    if (isInReg) {
5164      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
5165        MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
5166    }
5167  }
5168
5169  /// getCallOperandValEVT - Return the EVT of the Value* that this operand
5170  /// corresponds to.  If there is no Value* for this operand, it returns
5171  /// MVT::Other.
5172  EVT getCallOperandValEVT(LLVMContext &Context,
5173                           const TargetLowering &TLI,
5174                           const TargetData *TD) const {
5175    if (CallOperandVal == 0) return MVT::Other;
5176
5177    if (isa<BasicBlock>(CallOperandVal))
5178      return TLI.getPointerTy();
5179
5180    const llvm::Type *OpTy = CallOperandVal->getType();
5181
5182    // If this is an indirect operand, the operand is a pointer to the
5183    // accessed type.
5184    if (isIndirect) {
5185      const llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
5186      if (!PtrTy)
5187        report_fatal_error("Indirect operand for inline asm not a pointer!");
5188      OpTy = PtrTy->getElementType();
5189    }
5190
5191    // If OpTy is not a single value, it may be a struct/union that we
5192    // can tile with integers.
5193    if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5194      unsigned BitSize = TD->getTypeSizeInBits(OpTy);
5195      switch (BitSize) {
5196      default: break;
5197      case 1:
5198      case 8:
5199      case 16:
5200      case 32:
5201      case 64:
5202      case 128:
5203        OpTy = IntegerType::get(Context, BitSize);
5204        break;
5205      }
5206    }
5207
5208    return TLI.getValueType(OpTy, true);
5209  }
5210
5211private:
5212  /// MarkRegAndAliases - Mark the specified register and all aliases in the
5213  /// specified set.
5214  static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
5215                                const TargetRegisterInfo &TRI) {
5216    assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
5217    Regs.insert(Reg);
5218    if (const unsigned *Aliases = TRI.getAliasSet(Reg))
5219      for (; *Aliases; ++Aliases)
5220        Regs.insert(*Aliases);
5221  }
5222};
5223
5224} // end llvm namespace.
5225
5226/// isAllocatableRegister - If the specified register is safe to allocate,
5227/// i.e. it isn't a stack pointer or some other special register, return the
5228/// register class for the register.  Otherwise, return null.
5229static const TargetRegisterClass *
5230isAllocatableRegister(unsigned Reg, MachineFunction &MF,
5231                      const TargetLowering &TLI,
5232                      const TargetRegisterInfo *TRI) {
5233  EVT FoundVT = MVT::Other;
5234  const TargetRegisterClass *FoundRC = 0;
5235  for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(),
5236       E = TRI->regclass_end(); RCI != E; ++RCI) {
5237    EVT ThisVT = MVT::Other;
5238
5239    const TargetRegisterClass *RC = *RCI;
5240    // If none of the value types for this register class are valid, we
5241    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
5242    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
5243         I != E; ++I) {
5244      if (TLI.isTypeLegal(*I)) {
5245        // If we have already found this register in a different register class,
5246        // choose the one with the largest VT specified.  For example, on
5247        // PowerPC, we favor f64 register classes over f32.
5248        if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) {
5249          ThisVT = *I;
5250          break;
5251        }
5252      }
5253    }
5254
5255    if (ThisVT == MVT::Other) continue;
5256
5257    // NOTE: This isn't ideal.  In particular, this might allocate the
5258    // frame pointer in functions that need it (due to them not being taken
5259    // out of allocation, because a variable sized allocation hasn't been seen
5260    // yet).  This is a slight code pessimization, but should still work.
5261    for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
5262         E = RC->allocation_order_end(MF); I != E; ++I)
5263      if (*I == Reg) {
5264        // We found a matching register class.  Keep looking at others in case
5265        // we find one with larger registers that this physreg is also in.
5266        FoundRC = RC;
5267        FoundVT = ThisVT;
5268        break;
5269      }
5270  }
5271  return FoundRC;
5272}
5273
5274/// GetRegistersForValue - Assign registers (virtual or physical) for the
5275/// specified operand.  We prefer to assign virtual registers, to allow the
5276/// register allocator to handle the assignment process.  However, if the asm
5277/// uses features that we can't model on machineinstrs, we have SDISel do the
5278/// allocation.  This produces generally horrible, but correct, code.
5279///
5280///   OpInfo describes the operand.
5281///   Input and OutputRegs are the set of already allocated physical registers.
5282///
5283void SelectionDAGBuilder::
5284GetRegistersForValue(SDISelAsmOperandInfo &OpInfo,
5285                     std::set<unsigned> &OutputRegs,
5286                     std::set<unsigned> &InputRegs) {
5287  LLVMContext &Context = FuncInfo.Fn->getContext();
5288
5289  // Compute whether this value requires an input register, an output register,
5290  // or both.
5291  bool isOutReg = false;
5292  bool isInReg = false;
5293  switch (OpInfo.Type) {
5294  case InlineAsm::isOutput:
5295    isOutReg = true;
5296
5297    // If there is an input constraint that matches this, we need to reserve
5298    // the input register so no other inputs allocate to it.
5299    isInReg = OpInfo.hasMatchingInput();
5300    break;
5301  case InlineAsm::isInput:
5302    isInReg = true;
5303    isOutReg = false;
5304    break;
5305  case InlineAsm::isClobber:
5306    isOutReg = true;
5307    isInReg = true;
5308    break;
5309  }
5310
5311
5312  MachineFunction &MF = DAG.getMachineFunction();
5313  SmallVector<unsigned, 4> Regs;
5314
5315  // If this is a constraint for a single physreg, or a constraint for a
5316  // register class, find it.
5317  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
5318    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5319                                     OpInfo.ConstraintVT);
5320
5321  unsigned NumRegs = 1;
5322  if (OpInfo.ConstraintVT != MVT::Other) {
5323    // If this is a FP input in an integer register (or visa versa) insert a bit
5324    // cast of the input value.  More generally, handle any case where the input
5325    // value disagrees with the register class we plan to stick this in.
5326    if (OpInfo.Type == InlineAsm::isInput &&
5327        PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
5328      // Try to convert to the first EVT that the reg class contains.  If the
5329      // types are identical size, use a bitcast to convert (e.g. two differing
5330      // vector types).
5331      EVT RegVT = *PhysReg.second->vt_begin();
5332      if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
5333        OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
5334                                         RegVT, OpInfo.CallOperand);
5335        OpInfo.ConstraintVT = RegVT;
5336      } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
5337        // If the input is a FP value and we want it in FP registers, do a
5338        // bitcast to the corresponding integer type.  This turns an f64 value
5339        // into i64, which can be passed with two i32 values on a 32-bit
5340        // machine.
5341        RegVT = EVT::getIntegerVT(Context,
5342                                  OpInfo.ConstraintVT.getSizeInBits());
5343        OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
5344                                         RegVT, OpInfo.CallOperand);
5345        OpInfo.ConstraintVT = RegVT;
5346      }
5347    }
5348
5349    NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
5350  }
5351
5352  EVT RegVT;
5353  EVT ValueVT = OpInfo.ConstraintVT;
5354
5355  // If this is a constraint for a specific physical register, like {r17},
5356  // assign it now.
5357  if (unsigned AssignedReg = PhysReg.first) {
5358    const TargetRegisterClass *RC = PhysReg.second;
5359    if (OpInfo.ConstraintVT == MVT::Other)
5360      ValueVT = *RC->vt_begin();
5361
5362    // Get the actual register value type.  This is important, because the user
5363    // may have asked for (e.g.) the AX register in i32 type.  We need to
5364    // remember that AX is actually i16 to get the right extension.
5365    RegVT = *RC->vt_begin();
5366
5367    // This is a explicit reference to a physical register.
5368    Regs.push_back(AssignedReg);
5369
5370    // If this is an expanded reference, add the rest of the regs to Regs.
5371    if (NumRegs != 1) {
5372      TargetRegisterClass::iterator I = RC->begin();
5373      for (; *I != AssignedReg; ++I)
5374        assert(I != RC->end() && "Didn't find reg!");
5375
5376      // Already added the first reg.
5377      --NumRegs; ++I;
5378      for (; NumRegs; --NumRegs, ++I) {
5379        assert(I != RC->end() && "Ran out of registers to allocate!");
5380        Regs.push_back(*I);
5381      }
5382    }
5383
5384    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5385    const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5386    OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5387    return;
5388  }
5389
5390  // Otherwise, if this was a reference to an LLVM register class, create vregs
5391  // for this reference.
5392  if (const TargetRegisterClass *RC = PhysReg.second) {
5393    RegVT = *RC->vt_begin();
5394    if (OpInfo.ConstraintVT == MVT::Other)
5395      ValueVT = RegVT;
5396
5397    // Create the appropriate number of virtual registers.
5398    MachineRegisterInfo &RegInfo = MF.getRegInfo();
5399    for (; NumRegs; --NumRegs)
5400      Regs.push_back(RegInfo.createVirtualRegister(RC));
5401
5402    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5403    return;
5404  }
5405
5406  // This is a reference to a register class that doesn't directly correspond
5407  // to an LLVM register class.  Allocate NumRegs consecutive, available,
5408  // registers from the class.
5409  std::vector<unsigned> RegClassRegs
5410    = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
5411                                            OpInfo.ConstraintVT);
5412
5413  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5414  unsigned NumAllocated = 0;
5415  for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
5416    unsigned Reg = RegClassRegs[i];
5417    // See if this register is available.
5418    if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
5419        (isInReg  && InputRegs.count(Reg))) {    // Already used.
5420      // Make sure we find consecutive registers.
5421      NumAllocated = 0;
5422      continue;
5423    }
5424
5425    // Check to see if this register is allocatable (i.e. don't give out the
5426    // stack pointer).
5427    const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, TRI);
5428    if (!RC) {        // Couldn't allocate this register.
5429      // Reset NumAllocated to make sure we return consecutive registers.
5430      NumAllocated = 0;
5431      continue;
5432    }
5433
5434    // Okay, this register is good, we can use it.
5435    ++NumAllocated;
5436
5437    // If we allocated enough consecutive registers, succeed.
5438    if (NumAllocated == NumRegs) {
5439      unsigned RegStart = (i-NumAllocated)+1;
5440      unsigned RegEnd   = i+1;
5441      // Mark all of the allocated registers used.
5442      for (unsigned i = RegStart; i != RegEnd; ++i)
5443        Regs.push_back(RegClassRegs[i]);
5444
5445      OpInfo.AssignedRegs = RegsForValue(Regs, *RC->vt_begin(),
5446                                         OpInfo.ConstraintVT);
5447      OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5448      return;
5449    }
5450  }
5451
5452  // Otherwise, we couldn't allocate enough registers for this.
5453}
5454
5455/// visitInlineAsm - Handle a call to an InlineAsm object.
5456///
5457void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
5458  const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
5459
5460  /// ConstraintOperands - Information about all of the constraints.
5461  std::vector<SDISelAsmOperandInfo> ConstraintOperands;
5462
5463  std::set<unsigned> OutputRegs, InputRegs;
5464
5465  std::vector<TargetLowering::AsmOperandInfo> TargetConstraints = TLI.ParseConstraints(CS);
5466  bool hasMemory = false;
5467
5468  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
5469  unsigned ResNo = 0;   // ResNo - The result number of the next output.
5470  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
5471    ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
5472    SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
5473
5474    EVT OpVT = MVT::Other;
5475
5476    // Compute the value type for each operand.
5477    switch (OpInfo.Type) {
5478    case InlineAsm::isOutput:
5479      // Indirect outputs just consume an argument.
5480      if (OpInfo.isIndirect) {
5481        OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5482        break;
5483      }
5484
5485      // The return value of the call is this value.  As such, there is no
5486      // corresponding argument.
5487      assert(!CS.getType()->isVoidTy() &&
5488             "Bad inline asm!");
5489      if (const StructType *STy = dyn_cast<StructType>(CS.getType())) {
5490        OpVT = TLI.getValueType(STy->getElementType(ResNo));
5491      } else {
5492        assert(ResNo == 0 && "Asm only has one result!");
5493        OpVT = TLI.getValueType(CS.getType());
5494      }
5495      ++ResNo;
5496      break;
5497    case InlineAsm::isInput:
5498      OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5499      break;
5500    case InlineAsm::isClobber:
5501      // Nothing to do.
5502      break;
5503    }
5504
5505    // If this is an input or an indirect output, process the call argument.
5506    // BasicBlocks are labels, currently appearing only in asm's.
5507    if (OpInfo.CallOperandVal) {
5508      // Strip bitcasts, if any.  This mostly comes up for functions.
5509      OpInfo.CallOperandVal = OpInfo.CallOperandVal->stripPointerCasts();
5510
5511      if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
5512        OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
5513      } else {
5514        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
5515      }
5516
5517      OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD);
5518    }
5519
5520    OpInfo.ConstraintVT = OpVT;
5521
5522    // Indirect operand accesses access memory.
5523    if (OpInfo.isIndirect)
5524      hasMemory = true;
5525    else {
5526      for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
5527        TargetLowering::ConstraintType CType = TLI.getConstraintType(OpInfo.Codes[j]);
5528        if (CType == TargetLowering::C_Memory) {
5529          hasMemory = true;
5530          break;
5531        }
5532      }
5533    }
5534  }
5535
5536  SDValue Chain, Flag;
5537
5538  // We won't need to flush pending loads if this asm doesn't touch
5539  // memory and is nonvolatile.
5540  if (hasMemory || IA->hasSideEffects())
5541    Chain = getRoot();
5542  else
5543    Chain = DAG.getRoot();
5544
5545  // Second pass over the constraints: compute which constraint option to use
5546  // and assign registers to constraints that want a specific physreg.
5547  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5548    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5549
5550    // If this is an output operand with a matching input operand, look up the
5551    // matching input. If their types mismatch, e.g. one is an integer, the
5552    // other is floating point, or their sizes are different, flag it as an
5553    // error.
5554    if (OpInfo.hasMatchingInput()) {
5555      SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5556
5557      if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5558        if ((OpInfo.ConstraintVT.isInteger() !=
5559             Input.ConstraintVT.isInteger()) ||
5560            (OpInfo.ConstraintVT.getSizeInBits() !=
5561             Input.ConstraintVT.getSizeInBits())) {
5562          report_fatal_error("Unsupported asm: input constraint"
5563                             " with a matching output constraint of"
5564                             " incompatible type!");
5565        }
5566        Input.ConstraintVT = OpInfo.ConstraintVT;
5567      }
5568    }
5569
5570    // Compute the constraint code and ConstraintType to use.
5571    TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
5572
5573    // If this is a memory input, and if the operand is not indirect, do what we
5574    // need to to provide an address for the memory input.
5575    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5576        !OpInfo.isIndirect) {
5577      assert((OpInfo.isMultipleAlternative || (OpInfo.Type == InlineAsm::isInput)) &&
5578             "Can only indirectify direct input operands!");
5579
5580      // Memory operands really want the address of the value.  If we don't have
5581      // an indirect input, put it in the constpool if we can, otherwise spill
5582      // it to a stack slot.
5583
5584      // If the operand is a float, integer, or vector constant, spill to a
5585      // constant pool entry to get its address.
5586      const Value *OpVal = OpInfo.CallOperandVal;
5587      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
5588          isa<ConstantVector>(OpVal)) {
5589        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
5590                                                 TLI.getPointerTy());
5591      } else {
5592        // Otherwise, create a stack slot and emit a store to it before the
5593        // asm.
5594        const Type *Ty = OpVal->getType();
5595        uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
5596        unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
5597        MachineFunction &MF = DAG.getMachineFunction();
5598        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5599        SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
5600        Chain = DAG.getStore(Chain, getCurDebugLoc(),
5601                             OpInfo.CallOperand, StackSlot,
5602                             MachinePointerInfo::getFixedStack(SSFI),
5603                             false, false, 0);
5604        OpInfo.CallOperand = StackSlot;
5605      }
5606
5607      // There is no longer a Value* corresponding to this operand.
5608      OpInfo.CallOperandVal = 0;
5609
5610      // It is now an indirect operand.
5611      OpInfo.isIndirect = true;
5612    }
5613
5614    // If this constraint is for a specific register, allocate it before
5615    // anything else.
5616    if (OpInfo.ConstraintType == TargetLowering::C_Register)
5617      GetRegistersForValue(OpInfo, OutputRegs, InputRegs);
5618  }
5619
5620  // Second pass - Loop over all of the operands, assigning virtual or physregs
5621  // to register class operands.
5622  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5623    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5624
5625    // C_Register operands have already been allocated, Other/Memory don't need
5626    // to be.
5627    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
5628      GetRegistersForValue(OpInfo, OutputRegs, InputRegs);
5629  }
5630
5631  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
5632  std::vector<SDValue> AsmNodeOperands;
5633  AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
5634  AsmNodeOperands.push_back(
5635          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
5636                                      TLI.getPointerTy()));
5637
5638  // If we have a !srcloc metadata node associated with it, we want to attach
5639  // this to the ultimately generated inline asm machineinstr.  To do this, we
5640  // pass in the third operand as this (potentially null) inline asm MDNode.
5641  const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
5642  AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
5643
5644  // Remember the AlignStack bit as operand 3.
5645  AsmNodeOperands.push_back(DAG.getTargetConstant(IA->isAlignStack() ? 1 : 0,
5646                                            MVT::i1));
5647
5648  // Loop over all of the inputs, copying the operand values into the
5649  // appropriate registers and processing the output regs.
5650  RegsForValue RetValRegs;
5651
5652  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
5653  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
5654
5655  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5656    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5657
5658    switch (OpInfo.Type) {
5659    case InlineAsm::isOutput: {
5660      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
5661          OpInfo.ConstraintType != TargetLowering::C_Register) {
5662        // Memory output, or 'other' output (e.g. 'X' constraint).
5663        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
5664
5665        // Add information to the INLINEASM node to know about this output.
5666        unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
5667        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
5668                                                        TLI.getPointerTy()));
5669        AsmNodeOperands.push_back(OpInfo.CallOperand);
5670        break;
5671      }
5672
5673      // Otherwise, this is a register or register class output.
5674
5675      // Copy the output from the appropriate register.  Find a register that
5676      // we can use.
5677      if (OpInfo.AssignedRegs.Regs.empty())
5678        report_fatal_error("Couldn't allocate output reg for constraint '" +
5679                           Twine(OpInfo.ConstraintCode) + "'!");
5680
5681      // If this is an indirect operand, store through the pointer after the
5682      // asm.
5683      if (OpInfo.isIndirect) {
5684        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
5685                                                      OpInfo.CallOperandVal));
5686      } else {
5687        // This is the result value of the call.
5688        assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
5689        // Concatenate this output onto the outputs list.
5690        RetValRegs.append(OpInfo.AssignedRegs);
5691      }
5692
5693      // Add information to the INLINEASM node to know that this register is
5694      // set.
5695      OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
5696                                           InlineAsm::Kind_RegDefEarlyClobber :
5697                                               InlineAsm::Kind_RegDef,
5698                                               false,
5699                                               0,
5700                                               DAG,
5701                                               AsmNodeOperands);
5702      break;
5703    }
5704    case InlineAsm::isInput: {
5705      SDValue InOperandVal = OpInfo.CallOperand;
5706
5707      if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
5708        // If this is required to match an output register we have already set,
5709        // just use its register.
5710        unsigned OperandNo = OpInfo.getMatchedOperand();
5711
5712        // Scan until we find the definition we already emitted of this operand.
5713        // When we find it, create a RegsForValue operand.
5714        unsigned CurOp = InlineAsm::Op_FirstOperand;
5715        for (; OperandNo; --OperandNo) {
5716          // Advance to the next operand.
5717          unsigned OpFlag =
5718            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5719          assert((InlineAsm::isRegDefKind(OpFlag) ||
5720                  InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
5721                  InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
5722          CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
5723        }
5724
5725        unsigned OpFlag =
5726          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5727        if (InlineAsm::isRegDefKind(OpFlag) ||
5728            InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
5729          // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
5730          if (OpInfo.isIndirect) {
5731            // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
5732            LLVMContext &Ctx = *DAG.getContext();
5733            Ctx.emitError(CS.getInstruction(),  "inline asm not supported yet:"
5734                          " don't know how to handle tied "
5735                          "indirect register inputs");
5736          }
5737
5738          RegsForValue MatchedRegs;
5739          MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
5740          EVT RegVT = AsmNodeOperands[CurOp+1].getValueType();
5741          MatchedRegs.RegVTs.push_back(RegVT);
5742          MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
5743          for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
5744               i != e; ++i)
5745            MatchedRegs.Regs.push_back
5746              (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)));
5747
5748          // Use the produced MatchedRegs object to
5749          MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
5750                                    Chain, &Flag);
5751          MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
5752                                           true, OpInfo.getMatchedOperand(),
5753                                           DAG, AsmNodeOperands);
5754          break;
5755        }
5756
5757        assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
5758        assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
5759               "Unexpected number of operands");
5760        // Add information to the INLINEASM node to know about this input.
5761        // See InlineAsm.h isUseOperandTiedToDef.
5762        OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
5763                                                    OpInfo.getMatchedOperand());
5764        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
5765                                                        TLI.getPointerTy()));
5766        AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
5767        break;
5768      }
5769
5770      // Treat indirect 'X' constraint as memory.
5771      if (OpInfo.ConstraintType == TargetLowering::C_Other &&
5772          OpInfo.isIndirect)
5773        OpInfo.ConstraintType = TargetLowering::C_Memory;
5774
5775      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
5776        std::vector<SDValue> Ops;
5777        TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0],
5778                                         Ops, DAG);
5779        if (Ops.empty())
5780          report_fatal_error("Invalid operand for inline asm constraint '" +
5781                             Twine(OpInfo.ConstraintCode) + "'!");
5782
5783        // Add information to the INLINEASM node to know about this input.
5784        unsigned ResOpType =
5785          InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
5786        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5787                                                        TLI.getPointerTy()));
5788        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
5789        break;
5790      }
5791
5792      if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
5793        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
5794        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
5795               "Memory operands expect pointer values");
5796
5797        // Add information to the INLINEASM node to know about this input.
5798        unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
5799        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5800                                                        TLI.getPointerTy()));
5801        AsmNodeOperands.push_back(InOperandVal);
5802        break;
5803      }
5804
5805      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
5806              OpInfo.ConstraintType == TargetLowering::C_Register) &&
5807             "Unknown constraint type!");
5808      assert(!OpInfo.isIndirect &&
5809             "Don't know how to handle indirect register inputs yet!");
5810
5811      // Copy the input into the appropriate registers.
5812      if (OpInfo.AssignedRegs.Regs.empty() ||
5813          !OpInfo.AssignedRegs.areValueTypesLegal(TLI))
5814        report_fatal_error("Couldn't allocate input reg for constraint '" +
5815                           Twine(OpInfo.ConstraintCode) + "'!");
5816
5817      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
5818                                        Chain, &Flag);
5819
5820      OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
5821                                               DAG, AsmNodeOperands);
5822      break;
5823    }
5824    case InlineAsm::isClobber: {
5825      // Add the clobbered value to the operand list, so that the register
5826      // allocator is aware that the physreg got clobbered.
5827      if (!OpInfo.AssignedRegs.Regs.empty())
5828        OpInfo.AssignedRegs.AddInlineAsmOperands(
5829                                            InlineAsm::Kind_RegDefEarlyClobber,
5830                                                 false, 0, DAG,
5831                                                 AsmNodeOperands);
5832      break;
5833    }
5834    }
5835  }
5836
5837  // Finish up input operands.  Set the input chain and add the flag last.
5838  AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
5839  if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
5840
5841  Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(),
5842                      DAG.getVTList(MVT::Other, MVT::Flag),
5843                      &AsmNodeOperands[0], AsmNodeOperands.size());
5844  Flag = Chain.getValue(1);
5845
5846  // If this asm returns a register value, copy the result from that register
5847  // and set it as the value of the call.
5848  if (!RetValRegs.Regs.empty()) {
5849    SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
5850                                             Chain, &Flag);
5851
5852    // FIXME: Why don't we do this for inline asms with MRVs?
5853    if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
5854      EVT ResultType = TLI.getValueType(CS.getType());
5855
5856      // If any of the results of the inline asm is a vector, it may have the
5857      // wrong width/num elts.  This can happen for register classes that can
5858      // contain multiple different value types.  The preg or vreg allocated may
5859      // not have the same VT as was expected.  Convert it to the right type
5860      // with bit_convert.
5861      if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
5862        Val = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
5863                          ResultType, Val);
5864
5865      } else if (ResultType != Val.getValueType() &&
5866                 ResultType.isInteger() && Val.getValueType().isInteger()) {
5867        // If a result value was tied to an input value, the computed result may
5868        // have a wider width than the expected result.  Extract the relevant
5869        // portion.
5870        Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val);
5871      }
5872
5873      assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
5874    }
5875
5876    setValue(CS.getInstruction(), Val);
5877    // Don't need to use this as a chain in this case.
5878    if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
5879      return;
5880  }
5881
5882  std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
5883
5884  // Process indirect outputs, first output all of the flagged copies out of
5885  // physregs.
5886  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
5887    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
5888    const Value *Ptr = IndirectStoresToEmit[i].second;
5889    SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
5890                                             Chain, &Flag);
5891    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
5892  }
5893
5894  // Emit the non-flagged stores from the physregs.
5895  SmallVector<SDValue, 8> OutChains;
5896  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
5897    SDValue Val = DAG.getStore(Chain, getCurDebugLoc(),
5898                               StoresToEmit[i].first,
5899                               getValue(StoresToEmit[i].second),
5900                               MachinePointerInfo(StoresToEmit[i].second),
5901                               false, false, 0);
5902    OutChains.push_back(Val);
5903  }
5904
5905  if (!OutChains.empty())
5906    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
5907                        &OutChains[0], OutChains.size());
5908
5909  DAG.setRoot(Chain);
5910}
5911
5912void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
5913  DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(),
5914                          MVT::Other, getRoot(),
5915                          getValue(I.getArgOperand(0)),
5916                          DAG.getSrcValue(I.getArgOperand(0))));
5917}
5918
5919void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
5920  const TargetData &TD = *TLI.getTargetData();
5921  SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(),
5922                           getRoot(), getValue(I.getOperand(0)),
5923                           DAG.getSrcValue(I.getOperand(0)),
5924                           TD.getABITypeAlignment(I.getType()));
5925  setValue(&I, V);
5926  DAG.setRoot(V.getValue(1));
5927}
5928
5929void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
5930  DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(),
5931                          MVT::Other, getRoot(),
5932                          getValue(I.getArgOperand(0)),
5933                          DAG.getSrcValue(I.getArgOperand(0))));
5934}
5935
5936void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
5937  DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(),
5938                          MVT::Other, getRoot(),
5939                          getValue(I.getArgOperand(0)),
5940                          getValue(I.getArgOperand(1)),
5941                          DAG.getSrcValue(I.getArgOperand(0)),
5942                          DAG.getSrcValue(I.getArgOperand(1))));
5943}
5944
5945/// TargetLowering::LowerCallTo - This is the default LowerCallTo
5946/// implementation, which just calls LowerCall.
5947/// FIXME: When all targets are
5948/// migrated to using LowerCall, this hook should be integrated into SDISel.
5949std::pair<SDValue, SDValue>
5950TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy,
5951                            bool RetSExt, bool RetZExt, bool isVarArg,
5952                            bool isInreg, unsigned NumFixedArgs,
5953                            CallingConv::ID CallConv, bool isTailCall,
5954                            bool isReturnValueUsed,
5955                            SDValue Callee,
5956                            ArgListTy &Args, SelectionDAG &DAG,
5957                            DebugLoc dl) const {
5958  // Handle all of the outgoing arguments.
5959  SmallVector<ISD::OutputArg, 32> Outs;
5960  SmallVector<SDValue, 32> OutVals;
5961  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
5962    SmallVector<EVT, 4> ValueVTs;
5963    ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
5964    for (unsigned Value = 0, NumValues = ValueVTs.size();
5965         Value != NumValues; ++Value) {
5966      EVT VT = ValueVTs[Value];
5967      const Type *ArgTy = VT.getTypeForEVT(RetTy->getContext());
5968      SDValue Op = SDValue(Args[i].Node.getNode(),
5969                           Args[i].Node.getResNo() + Value);
5970      ISD::ArgFlagsTy Flags;
5971      unsigned OriginalAlignment =
5972        getTargetData()->getABITypeAlignment(ArgTy);
5973
5974      if (Args[i].isZExt)
5975        Flags.setZExt();
5976      if (Args[i].isSExt)
5977        Flags.setSExt();
5978      if (Args[i].isInReg)
5979        Flags.setInReg();
5980      if (Args[i].isSRet)
5981        Flags.setSRet();
5982      if (Args[i].isByVal) {
5983        Flags.setByVal();
5984        const PointerType *Ty = cast<PointerType>(Args[i].Ty);
5985        const Type *ElementTy = Ty->getElementType();
5986        unsigned FrameAlign = getByValTypeAlignment(ElementTy);
5987        unsigned FrameSize  = getTargetData()->getTypeAllocSize(ElementTy);
5988        // For ByVal, alignment should come from FE.  BE will guess if this
5989        // info is not there but there are cases it cannot get right.
5990        if (Args[i].Alignment)
5991          FrameAlign = Args[i].Alignment;
5992        Flags.setByValAlign(FrameAlign);
5993        Flags.setByValSize(FrameSize);
5994      }
5995      if (Args[i].isNest)
5996        Flags.setNest();
5997      Flags.setOrigAlign(OriginalAlignment);
5998
5999      EVT PartVT = getRegisterType(RetTy->getContext(), VT);
6000      unsigned NumParts = getNumRegisters(RetTy->getContext(), VT);
6001      SmallVector<SDValue, 4> Parts(NumParts);
6002      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
6003
6004      if (Args[i].isSExt)
6005        ExtendKind = ISD::SIGN_EXTEND;
6006      else if (Args[i].isZExt)
6007        ExtendKind = ISD::ZERO_EXTEND;
6008
6009      getCopyToParts(DAG, dl, Op, &Parts[0], NumParts,
6010                     PartVT, ExtendKind);
6011
6012      for (unsigned j = 0; j != NumParts; ++j) {
6013        // if it isn't first piece, alignment must be 1
6014        ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(),
6015                               i < NumFixedArgs);
6016        if (NumParts > 1 && j == 0)
6017          MyFlags.Flags.setSplit();
6018        else if (j != 0)
6019          MyFlags.Flags.setOrigAlign(1);
6020
6021        Outs.push_back(MyFlags);
6022        OutVals.push_back(Parts[j]);
6023      }
6024    }
6025  }
6026
6027  // Handle the incoming return values from the call.
6028  SmallVector<ISD::InputArg, 32> Ins;
6029  SmallVector<EVT, 4> RetTys;
6030  ComputeValueVTs(*this, RetTy, RetTys);
6031  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6032    EVT VT = RetTys[I];
6033    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
6034    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
6035    for (unsigned i = 0; i != NumRegs; ++i) {
6036      ISD::InputArg MyFlags;
6037      MyFlags.VT = RegisterVT;
6038      MyFlags.Used = isReturnValueUsed;
6039      if (RetSExt)
6040        MyFlags.Flags.setSExt();
6041      if (RetZExt)
6042        MyFlags.Flags.setZExt();
6043      if (isInreg)
6044        MyFlags.Flags.setInReg();
6045      Ins.push_back(MyFlags);
6046    }
6047  }
6048
6049  SmallVector<SDValue, 4> InVals;
6050  Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall,
6051                    Outs, OutVals, Ins, dl, DAG, InVals);
6052
6053  // Verify that the target's LowerCall behaved as expected.
6054  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
6055         "LowerCall didn't return a valid chain!");
6056  assert((!isTailCall || InVals.empty()) &&
6057         "LowerCall emitted a return value for a tail call!");
6058  assert((isTailCall || InVals.size() == Ins.size()) &&
6059         "LowerCall didn't emit the correct number of values!");
6060
6061  // For a tail call, the return value is merely live-out and there aren't
6062  // any nodes in the DAG representing it. Return a special value to
6063  // indicate that a tail call has been emitted and no more Instructions
6064  // should be processed in the current block.
6065  if (isTailCall) {
6066    DAG.setRoot(Chain);
6067    return std::make_pair(SDValue(), SDValue());
6068  }
6069
6070  DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6071          assert(InVals[i].getNode() &&
6072                 "LowerCall emitted a null value!");
6073          assert(Ins[i].VT == InVals[i].getValueType() &&
6074                 "LowerCall emitted a value with the wrong type!");
6075        });
6076
6077  // Collect the legal value parts into potentially illegal values
6078  // that correspond to the original function's return values.
6079  ISD::NodeType AssertOp = ISD::DELETED_NODE;
6080  if (RetSExt)
6081    AssertOp = ISD::AssertSext;
6082  else if (RetZExt)
6083    AssertOp = ISD::AssertZext;
6084  SmallVector<SDValue, 4> ReturnValues;
6085  unsigned CurReg = 0;
6086  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6087    EVT VT = RetTys[I];
6088    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
6089    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
6090
6091    ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg],
6092                                            NumRegs, RegisterVT, VT,
6093                                            AssertOp));
6094    CurReg += NumRegs;
6095  }
6096
6097  // For a function returning void, there is no return value. We can't create
6098  // such a node, so we just return a null return value in that case. In
6099  // that case, nothing will actualy look at the value.
6100  if (ReturnValues.empty())
6101    return std::make_pair(SDValue(), Chain);
6102
6103  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
6104                            DAG.getVTList(&RetTys[0], RetTys.size()),
6105                            &ReturnValues[0], ReturnValues.size());
6106  return std::make_pair(Res, Chain);
6107}
6108
6109void TargetLowering::LowerOperationWrapper(SDNode *N,
6110                                           SmallVectorImpl<SDValue> &Results,
6111                                           SelectionDAG &DAG) const {
6112  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
6113  if (Res.getNode())
6114    Results.push_back(Res);
6115}
6116
6117SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
6118  llvm_unreachable("LowerOperation not implemented for this target!");
6119  return SDValue();
6120}
6121
6122void
6123SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
6124  SDValue Op = getNonRegisterValue(V);
6125  assert((Op.getOpcode() != ISD::CopyFromReg ||
6126          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
6127         "Copy from a reg to the same reg!");
6128  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
6129
6130  RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
6131  SDValue Chain = DAG.getEntryNode();
6132  RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0);
6133  PendingExports.push_back(Chain);
6134}
6135
6136#include "llvm/CodeGen/SelectionDAGISel.h"
6137
6138void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) {
6139  // If this is the entry block, emit arguments.
6140  const Function &F = *LLVMBB->getParent();
6141  SelectionDAG &DAG = SDB->DAG;
6142  DebugLoc dl = SDB->getCurDebugLoc();
6143  const TargetData *TD = TLI.getTargetData();
6144  SmallVector<ISD::InputArg, 16> Ins;
6145
6146  // Check whether the function can return without sret-demotion.
6147  SmallVector<ISD::OutputArg, 4> Outs;
6148  GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
6149                Outs, TLI);
6150
6151  if (!FuncInfo->CanLowerReturn) {
6152    // Put in an sret pointer parameter before all the other parameters.
6153    SmallVector<EVT, 1> ValueVTs;
6154    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6155
6156    // NOTE: Assuming that a pointer will never break down to more than one VT
6157    // or one register.
6158    ISD::ArgFlagsTy Flags;
6159    Flags.setSRet();
6160    EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]);
6161    ISD::InputArg RetArg(Flags, RegisterVT, true);
6162    Ins.push_back(RetArg);
6163  }
6164
6165  // Set up the incoming argument description vector.
6166  unsigned Idx = 1;
6167  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
6168       I != E; ++I, ++Idx) {
6169    SmallVector<EVT, 4> ValueVTs;
6170    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6171    bool isArgValueUsed = !I->use_empty();
6172    for (unsigned Value = 0, NumValues = ValueVTs.size();
6173         Value != NumValues; ++Value) {
6174      EVT VT = ValueVTs[Value];
6175      const Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
6176      ISD::ArgFlagsTy Flags;
6177      unsigned OriginalAlignment =
6178        TD->getABITypeAlignment(ArgTy);
6179
6180      if (F.paramHasAttr(Idx, Attribute::ZExt))
6181        Flags.setZExt();
6182      if (F.paramHasAttr(Idx, Attribute::SExt))
6183        Flags.setSExt();
6184      if (F.paramHasAttr(Idx, Attribute::InReg))
6185        Flags.setInReg();
6186      if (F.paramHasAttr(Idx, Attribute::StructRet))
6187        Flags.setSRet();
6188      if (F.paramHasAttr(Idx, Attribute::ByVal)) {
6189        Flags.setByVal();
6190        const PointerType *Ty = cast<PointerType>(I->getType());
6191        const Type *ElementTy = Ty->getElementType();
6192        unsigned FrameAlign = TLI.getByValTypeAlignment(ElementTy);
6193        unsigned FrameSize  = TD->getTypeAllocSize(ElementTy);
6194        // For ByVal, alignment should be passed from FE.  BE will guess if
6195        // this info is not there but there are cases it cannot get right.
6196        if (F.getParamAlignment(Idx))
6197          FrameAlign = F.getParamAlignment(Idx);
6198        Flags.setByValAlign(FrameAlign);
6199        Flags.setByValSize(FrameSize);
6200      }
6201      if (F.paramHasAttr(Idx, Attribute::Nest))
6202        Flags.setNest();
6203      Flags.setOrigAlign(OriginalAlignment);
6204
6205      EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6206      unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6207      for (unsigned i = 0; i != NumRegs; ++i) {
6208        ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed);
6209        if (NumRegs > 1 && i == 0)
6210          MyFlags.Flags.setSplit();
6211        // if it isn't first piece, alignment must be 1
6212        else if (i > 0)
6213          MyFlags.Flags.setOrigAlign(1);
6214        Ins.push_back(MyFlags);
6215      }
6216    }
6217  }
6218
6219  // Call the target to set up the argument values.
6220  SmallVector<SDValue, 8> InVals;
6221  SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
6222                                             F.isVarArg(), Ins,
6223                                             dl, DAG, InVals);
6224
6225  // Verify that the target's LowerFormalArguments behaved as expected.
6226  assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
6227         "LowerFormalArguments didn't return a valid chain!");
6228  assert(InVals.size() == Ins.size() &&
6229         "LowerFormalArguments didn't emit the correct number of values!");
6230  DEBUG({
6231      for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6232        assert(InVals[i].getNode() &&
6233               "LowerFormalArguments emitted a null value!");
6234        assert(Ins[i].VT == InVals[i].getValueType() &&
6235               "LowerFormalArguments emitted a value with the wrong type!");
6236      }
6237    });
6238
6239  // Update the DAG with the new chain value resulting from argument lowering.
6240  DAG.setRoot(NewRoot);
6241
6242  // Set up the argument values.
6243  unsigned i = 0;
6244  Idx = 1;
6245  if (!FuncInfo->CanLowerReturn) {
6246    // Create a virtual register for the sret pointer, and put in a copy
6247    // from the sret argument into it.
6248    SmallVector<EVT, 1> ValueVTs;
6249    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6250    EVT VT = ValueVTs[0];
6251    EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6252    ISD::NodeType AssertOp = ISD::DELETED_NODE;
6253    SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
6254                                        RegVT, VT, AssertOp);
6255
6256    MachineFunction& MF = SDB->DAG.getMachineFunction();
6257    MachineRegisterInfo& RegInfo = MF.getRegInfo();
6258    unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT));
6259    FuncInfo->DemoteRegister = SRetReg;
6260    NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(),
6261                                    SRetReg, ArgValue);
6262    DAG.setRoot(NewRoot);
6263
6264    // i indexes lowered arguments.  Bump it past the hidden sret argument.
6265    // Idx indexes LLVM arguments.  Don't touch it.
6266    ++i;
6267  }
6268
6269  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
6270      ++I, ++Idx) {
6271    SmallVector<SDValue, 4> ArgValues;
6272    SmallVector<EVT, 4> ValueVTs;
6273    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6274    unsigned NumValues = ValueVTs.size();
6275
6276    // If this argument is unused then remember its value. It is used to generate
6277    // debugging information.
6278    if (I->use_empty() && NumValues)
6279      SDB->setUnusedArgValue(I, InVals[i]);
6280
6281    for (unsigned Value = 0; Value != NumValues; ++Value) {
6282      EVT VT = ValueVTs[Value];
6283      EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6284      unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6285
6286      if (!I->use_empty()) {
6287        ISD::NodeType AssertOp = ISD::DELETED_NODE;
6288        if (F.paramHasAttr(Idx, Attribute::SExt))
6289          AssertOp = ISD::AssertSext;
6290        else if (F.paramHasAttr(Idx, Attribute::ZExt))
6291          AssertOp = ISD::AssertZext;
6292
6293        ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
6294                                             NumParts, PartVT, VT,
6295                                             AssertOp));
6296      }
6297
6298      i += NumParts;
6299    }
6300
6301    // Note down frame index for byval arguments.
6302    if (I->hasByValAttr() && !ArgValues.empty())
6303      if (FrameIndexSDNode *FI =
6304          dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
6305        FuncInfo->setByValArgumentFrameIndex(I, FI->getIndex());
6306
6307    if (!I->use_empty()) {
6308      SDValue Res;
6309      if (!ArgValues.empty())
6310        Res = DAG.getMergeValues(&ArgValues[0], NumValues,
6311                                 SDB->getCurDebugLoc());
6312      SDB->setValue(I, Res);
6313
6314      // If this argument is live outside of the entry block, insert a copy from
6315      // whereever we got it to the vreg that other BB's will reference it as.
6316      SDB->CopyToExportRegsIfNeeded(I);
6317    }
6318  }
6319
6320  assert(i == InVals.size() && "Argument register count mismatch!");
6321
6322  // Finally, if the target has anything special to do, allow it to do so.
6323  // FIXME: this should insert code into the DAG!
6324  EmitFunctionEntryCode();
6325}
6326
6327/// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
6328/// ensure constants are generated when needed.  Remember the virtual registers
6329/// that need to be added to the Machine PHI nodes as input.  We cannot just
6330/// directly add them, because expansion might result in multiple MBB's for one
6331/// BB.  As such, the start of the BB might correspond to a different MBB than
6332/// the end.
6333///
6334void
6335SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
6336  const TerminatorInst *TI = LLVMBB->getTerminator();
6337
6338  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6339
6340  // Check successor nodes' PHI nodes that expect a constant to be available
6341  // from this block.
6342  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6343    const BasicBlock *SuccBB = TI->getSuccessor(succ);
6344    if (!isa<PHINode>(SuccBB->begin())) continue;
6345    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
6346
6347    // If this terminator has multiple identical successors (common for
6348    // switches), only handle each succ once.
6349    if (!SuccsHandled.insert(SuccMBB)) continue;
6350
6351    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6352
6353    // At this point we know that there is a 1-1 correspondence between LLVM PHI
6354    // nodes and Machine PHI nodes, but the incoming operands have not been
6355    // emitted yet.
6356    for (BasicBlock::const_iterator I = SuccBB->begin();
6357         const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
6358      // Ignore dead phi's.
6359      if (PN->use_empty()) continue;
6360
6361      unsigned Reg;
6362      const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6363
6364      if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
6365        unsigned &RegOut = ConstantsOut[C];
6366        if (RegOut == 0) {
6367          RegOut = FuncInfo.CreateRegs(C->getType());
6368          CopyValueToVirtualRegister(C, RegOut);
6369        }
6370        Reg = RegOut;
6371      } else {
6372        DenseMap<const Value *, unsigned>::iterator I =
6373          FuncInfo.ValueMap.find(PHIOp);
6374        if (I != FuncInfo.ValueMap.end())
6375          Reg = I->second;
6376        else {
6377          assert(isa<AllocaInst>(PHIOp) &&
6378                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
6379                 "Didn't codegen value into a register!??");
6380          Reg = FuncInfo.CreateRegs(PHIOp->getType());
6381          CopyValueToVirtualRegister(PHIOp, Reg);
6382        }
6383      }
6384
6385      // Remember that this register needs to added to the machine PHI node as
6386      // the input for this MBB.
6387      SmallVector<EVT, 4> ValueVTs;
6388      ComputeValueVTs(TLI, PN->getType(), ValueVTs);
6389      for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
6390        EVT VT = ValueVTs[vti];
6391        unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
6392        for (unsigned i = 0, e = NumRegisters; i != e; ++i)
6393          FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
6394        Reg += NumRegisters;
6395      }
6396    }
6397  }
6398  ConstantsOut.clear();
6399}
6400