SelectionDAGBuilder.cpp revision 20adc9dc4650313f017b27d9818eb2176238113d
1//===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements routines for translating from LLVM IR into SelectionDAG IR.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "SDNodeDbgValue.h"
16#include "SelectionDAGBuilder.h"
17#include "FunctionLoweringInfo.h"
18#include "llvm/ADT/BitVector.h"
19#include "llvm/ADT/SmallSet.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/ConstantFolding.h"
22#include "llvm/Constants.h"
23#include "llvm/CallingConv.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Function.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/InlineAsm.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/IntrinsicInst.h"
31#include "llvm/Module.h"
32#include "llvm/CodeGen/FastISel.h"
33#include "llvm/CodeGen/GCStrategy.h"
34#include "llvm/CodeGen/GCMetadata.h"
35#include "llvm/CodeGen/MachineFunction.h"
36#include "llvm/CodeGen/MachineFrameInfo.h"
37#include "llvm/CodeGen/MachineInstrBuilder.h"
38#include "llvm/CodeGen/MachineJumpTableInfo.h"
39#include "llvm/CodeGen/MachineModuleInfo.h"
40#include "llvm/CodeGen/MachineRegisterInfo.h"
41#include "llvm/CodeGen/PseudoSourceValue.h"
42#include "llvm/CodeGen/SelectionDAG.h"
43#include "llvm/CodeGen/DwarfWriter.h"
44#include "llvm/Analysis/DebugInfo.h"
45#include "llvm/Target/TargetRegisterInfo.h"
46#include "llvm/Target/TargetData.h"
47#include "llvm/Target/TargetFrameInfo.h"
48#include "llvm/Target/TargetInstrInfo.h"
49#include "llvm/Target/TargetIntrinsicInfo.h"
50#include "llvm/Target/TargetLowering.h"
51#include "llvm/Target/TargetOptions.h"
52#include "llvm/Support/Compiler.h"
53#include "llvm/Support/CommandLine.h"
54#include "llvm/Support/Debug.h"
55#include "llvm/Support/ErrorHandling.h"
56#include "llvm/Support/MathExtras.h"
57#include "llvm/Support/raw_ostream.h"
58#include <algorithm>
59using namespace llvm;
60
61/// LimitFloatPrecision - Generate low-precision inline sequences for
62/// some float libcalls (6, 8 or 12 bits).
63static unsigned LimitFloatPrecision;
64
65static cl::opt<unsigned, true>
66LimitFPPrecision("limit-float-precision",
67                 cl::desc("Generate low-precision inline sequences "
68                          "for some float libcalls"),
69                 cl::location(LimitFloatPrecision),
70                 cl::init(0));
71
72namespace {
73  /// RegsForValue - This struct represents the registers (physical or virtual)
74  /// that a particular set of values is assigned, and the type information
75  /// about the value. The most common situation is to represent one value at a
76  /// time, but struct or array values are handled element-wise as multiple
77  /// values.  The splitting of aggregates is performed recursively, so that we
78  /// never have aggregate-typed registers. The values at this point do not
79  /// necessarily have legal types, so each value may require one or more
80  /// registers of some legal type.
81  ///
82  struct RegsForValue {
83    /// TLI - The TargetLowering object.
84    ///
85    const TargetLowering *TLI;
86
87    /// ValueVTs - The value types of the values, which may not be legal, and
88    /// may need be promoted or synthesized from one or more registers.
89    ///
90    SmallVector<EVT, 4> ValueVTs;
91
92    /// RegVTs - The value types of the registers. This is the same size as
93    /// ValueVTs and it records, for each value, what the type of the assigned
94    /// register or registers are. (Individual values are never synthesized
95    /// from more than one type of register.)
96    ///
97    /// With virtual registers, the contents of RegVTs is redundant with TLI's
98    /// getRegisterType member function, however when with physical registers
99    /// it is necessary to have a separate record of the types.
100    ///
101    SmallVector<EVT, 4> RegVTs;
102
103    /// Regs - This list holds the registers assigned to the values.
104    /// Each legal or promoted value requires one register, and each
105    /// expanded value requires multiple registers.
106    ///
107    SmallVector<unsigned, 4> Regs;
108
109    RegsForValue() : TLI(0) {}
110
111    RegsForValue(const TargetLowering &tli,
112                 const SmallVector<unsigned, 4> &regs,
113                 EVT regvt, EVT valuevt)
114      : TLI(&tli),  ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
115    RegsForValue(const TargetLowering &tli,
116                 const SmallVector<unsigned, 4> &regs,
117                 const SmallVector<EVT, 4> &regvts,
118                 const SmallVector<EVT, 4> &valuevts)
119      : TLI(&tli), ValueVTs(valuevts), RegVTs(regvts), Regs(regs) {}
120    RegsForValue(LLVMContext &Context, const TargetLowering &tli,
121                 unsigned Reg, const Type *Ty) : TLI(&tli) {
122      ComputeValueVTs(tli, Ty, ValueVTs);
123
124      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
125        EVT ValueVT = ValueVTs[Value];
126        unsigned NumRegs = TLI->getNumRegisters(Context, ValueVT);
127        EVT RegisterVT = TLI->getRegisterType(Context, ValueVT);
128        for (unsigned i = 0; i != NumRegs; ++i)
129          Regs.push_back(Reg + i);
130        RegVTs.push_back(RegisterVT);
131        Reg += NumRegs;
132      }
133    }
134
135    /// areValueTypesLegal - Return true if types of all the values are legal.
136    bool areValueTypesLegal() {
137      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
138        EVT RegisterVT = RegVTs[Value];
139        if (!TLI->isTypeLegal(RegisterVT))
140          return false;
141      }
142      return true;
143    }
144
145
146    /// append - Add the specified values to this one.
147    void append(const RegsForValue &RHS) {
148      TLI = RHS.TLI;
149      ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
150      RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
151      Regs.append(RHS.Regs.begin(), RHS.Regs.end());
152    }
153
154
155    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
156    /// this value and returns the result as a ValueVTs value.  This uses
157    /// Chain/Flag as the input and updates them for the output Chain/Flag.
158    /// If the Flag pointer is NULL, no flag is used.
159    SDValue getCopyFromRegs(SelectionDAG &DAG, DebugLoc dl,
160                            SDValue &Chain, SDValue *Flag) const;
161
162    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
163    /// specified value into the registers specified by this object.  This uses
164    /// Chain/Flag as the input and updates them for the output Chain/Flag.
165    /// If the Flag pointer is NULL, no flag is used.
166    void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
167                       SDValue &Chain, SDValue *Flag) const;
168
169    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
170    /// operand list.  This adds the code marker, matching input operand index
171    /// (if applicable), and includes the number of values added into it.
172    void AddInlineAsmOperands(unsigned Code,
173                              bool HasMatching, unsigned MatchingIdx,
174                              SelectionDAG &DAG,
175                              std::vector<SDValue> &Ops) const;
176  };
177}
178
179/// getCopyFromParts - Create a value that contains the specified legal parts
180/// combined into the value they represent.  If the parts combine to a type
181/// larger then ValueVT then AssertOp can be used to specify whether the extra
182/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
183/// (ISD::AssertSext).
184static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc dl,
185                                const SDValue *Parts,
186                                unsigned NumParts, EVT PartVT, EVT ValueVT,
187                                ISD::NodeType AssertOp = ISD::DELETED_NODE) {
188  assert(NumParts > 0 && "No parts to assemble!");
189  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
190  SDValue Val = Parts[0];
191
192  if (NumParts > 1) {
193    // Assemble the value from multiple parts.
194    if (!ValueVT.isVector() && ValueVT.isInteger()) {
195      unsigned PartBits = PartVT.getSizeInBits();
196      unsigned ValueBits = ValueVT.getSizeInBits();
197
198      // Assemble the power of 2 part.
199      unsigned RoundParts = NumParts & (NumParts - 1) ?
200        1 << Log2_32(NumParts) : NumParts;
201      unsigned RoundBits = PartBits * RoundParts;
202      EVT RoundVT = RoundBits == ValueBits ?
203        ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
204      SDValue Lo, Hi;
205
206      EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
207
208      if (RoundParts > 2) {
209        Lo = getCopyFromParts(DAG, dl, Parts, RoundParts / 2,
210                              PartVT, HalfVT);
211        Hi = getCopyFromParts(DAG, dl, Parts + RoundParts / 2,
212                              RoundParts / 2, PartVT, HalfVT);
213      } else {
214        Lo = DAG.getNode(ISD::BIT_CONVERT, dl, HalfVT, Parts[0]);
215        Hi = DAG.getNode(ISD::BIT_CONVERT, dl, HalfVT, Parts[1]);
216      }
217
218      if (TLI.isBigEndian())
219        std::swap(Lo, Hi);
220
221      Val = DAG.getNode(ISD::BUILD_PAIR, dl, RoundVT, Lo, Hi);
222
223      if (RoundParts < NumParts) {
224        // Assemble the trailing non-power-of-2 part.
225        unsigned OddParts = NumParts - RoundParts;
226        EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
227        Hi = getCopyFromParts(DAG, dl,
228                              Parts + RoundParts, OddParts, PartVT, OddVT);
229
230        // Combine the round and odd parts.
231        Lo = Val;
232        if (TLI.isBigEndian())
233          std::swap(Lo, Hi);
234        EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
235        Hi = DAG.getNode(ISD::ANY_EXTEND, dl, TotalVT, Hi);
236        Hi = DAG.getNode(ISD::SHL, dl, TotalVT, Hi,
237                         DAG.getConstant(Lo.getValueType().getSizeInBits(),
238                                         TLI.getPointerTy()));
239        Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, TotalVT, Lo);
240        Val = DAG.getNode(ISD::OR, dl, TotalVT, Lo, Hi);
241      }
242    } else if (ValueVT.isVector()) {
243      // Handle a multi-element vector.
244      EVT IntermediateVT, RegisterVT;
245      unsigned NumIntermediates;
246      unsigned NumRegs =
247        TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
248                                   NumIntermediates, RegisterVT);
249      assert(NumRegs == NumParts
250             && "Part count doesn't match vector breakdown!");
251      NumParts = NumRegs; // Silence a compiler warning.
252      assert(RegisterVT == PartVT
253             && "Part type doesn't match vector breakdown!");
254      assert(RegisterVT == Parts[0].getValueType() &&
255             "Part type doesn't match part!");
256
257      // Assemble the parts into intermediate operands.
258      SmallVector<SDValue, 8> Ops(NumIntermediates);
259      if (NumIntermediates == NumParts) {
260        // If the register was not expanded, truncate or copy the value,
261        // as appropriate.
262        for (unsigned i = 0; i != NumParts; ++i)
263          Ops[i] = getCopyFromParts(DAG, dl, &Parts[i], 1,
264                                    PartVT, IntermediateVT);
265      } else if (NumParts > 0) {
266        // If the intermediate type was expanded, build the intermediate
267        // operands from the parts.
268        assert(NumParts % NumIntermediates == 0 &&
269               "Must expand into a divisible number of parts!");
270        unsigned Factor = NumParts / NumIntermediates;
271        for (unsigned i = 0; i != NumIntermediates; ++i)
272          Ops[i] = getCopyFromParts(DAG, dl, &Parts[i * Factor], Factor,
273                                    PartVT, IntermediateVT);
274      }
275
276      // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
277      // intermediate operands.
278      Val = DAG.getNode(IntermediateVT.isVector() ?
279                        ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, dl,
280                        ValueVT, &Ops[0], NumIntermediates);
281    } else if (PartVT.isFloatingPoint()) {
282      // FP split into multiple FP parts (for ppcf128)
283      assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) &&
284             "Unexpected split");
285      SDValue Lo, Hi;
286      Lo = DAG.getNode(ISD::BIT_CONVERT, dl, EVT(MVT::f64), Parts[0]);
287      Hi = DAG.getNode(ISD::BIT_CONVERT, dl, EVT(MVT::f64), Parts[1]);
288      if (TLI.isBigEndian())
289        std::swap(Lo, Hi);
290      Val = DAG.getNode(ISD::BUILD_PAIR, dl, ValueVT, Lo, Hi);
291    } else {
292      // FP split into integer parts (soft fp)
293      assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
294             !PartVT.isVector() && "Unexpected split");
295      EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
296      Val = getCopyFromParts(DAG, dl, Parts, NumParts, PartVT, IntVT);
297    }
298  }
299
300  // There is now one part, held in Val.  Correct it to match ValueVT.
301  PartVT = Val.getValueType();
302
303  if (PartVT == ValueVT)
304    return Val;
305
306  if (PartVT.isVector()) {
307    assert(ValueVT.isVector() && "Unknown vector conversion!");
308    return DAG.getNode(ISD::BIT_CONVERT, dl, ValueVT, Val);
309  }
310
311  if (ValueVT.isVector()) {
312    assert(ValueVT.getVectorElementType() == PartVT &&
313           ValueVT.getVectorNumElements() == 1 &&
314           "Only trivial scalar-to-vector conversions should get here!");
315    return DAG.getNode(ISD::BUILD_VECTOR, dl, ValueVT, Val);
316  }
317
318  if (PartVT.isInteger() &&
319      ValueVT.isInteger()) {
320    if (ValueVT.bitsLT(PartVT)) {
321      // For a truncate, see if we have any information to
322      // indicate whether the truncated bits will always be
323      // zero or sign-extension.
324      if (AssertOp != ISD::DELETED_NODE)
325        Val = DAG.getNode(AssertOp, dl, PartVT, Val,
326                          DAG.getValueType(ValueVT));
327      return DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val);
328    } else {
329      return DAG.getNode(ISD::ANY_EXTEND, dl, ValueVT, Val);
330    }
331  }
332
333  if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
334    if (ValueVT.bitsLT(Val.getValueType())) {
335      // FP_ROUND's are always exact here.
336      return DAG.getNode(ISD::FP_ROUND, dl, ValueVT, Val,
337                         DAG.getIntPtrConstant(1));
338    }
339
340    return DAG.getNode(ISD::FP_EXTEND, dl, ValueVT, Val);
341  }
342
343  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
344    return DAG.getNode(ISD::BIT_CONVERT, dl, ValueVT, Val);
345
346  llvm_unreachable("Unknown mismatch!");
347  return SDValue();
348}
349
350/// getCopyToParts - Create a series of nodes that contain the specified value
351/// split into legal parts.  If the parts contain more bits than Val, then, for
352/// integers, ExtendKind can be used to specify how to generate the extra bits.
353static void getCopyToParts(SelectionDAG &DAG, DebugLoc dl,
354                           SDValue Val, SDValue *Parts, unsigned NumParts,
355                           EVT PartVT,
356                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
357  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
358  EVT PtrVT = TLI.getPointerTy();
359  EVT ValueVT = Val.getValueType();
360  unsigned PartBits = PartVT.getSizeInBits();
361  unsigned OrigNumParts = NumParts;
362  assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
363
364  if (!NumParts)
365    return;
366
367  if (!ValueVT.isVector()) {
368    if (PartVT == ValueVT) {
369      assert(NumParts == 1 && "No-op copy with multiple parts!");
370      Parts[0] = Val;
371      return;
372    }
373
374    if (NumParts * PartBits > ValueVT.getSizeInBits()) {
375      // If the parts cover more bits than the value has, promote the value.
376      if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
377        assert(NumParts == 1 && "Do not know what to promote to!");
378        Val = DAG.getNode(ISD::FP_EXTEND, dl, PartVT, Val);
379      } else if (PartVT.isInteger() && ValueVT.isInteger()) {
380        ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
381        Val = DAG.getNode(ExtendKind, dl, ValueVT, Val);
382      } else {
383        llvm_unreachable("Unknown mismatch!");
384      }
385    } else if (PartBits == ValueVT.getSizeInBits()) {
386      // Different types of the same size.
387      assert(NumParts == 1 && PartVT != ValueVT);
388      Val = DAG.getNode(ISD::BIT_CONVERT, dl, PartVT, Val);
389    } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
390      // If the parts cover less bits than value has, truncate the value.
391      if (PartVT.isInteger() && ValueVT.isInteger()) {
392        ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
393        Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val);
394      } else {
395        llvm_unreachable("Unknown mismatch!");
396      }
397    }
398
399    // The value may have changed - recompute ValueVT.
400    ValueVT = Val.getValueType();
401    assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
402           "Failed to tile the value with PartVT!");
403
404    if (NumParts == 1) {
405      assert(PartVT == ValueVT && "Type conversion failed!");
406      Parts[0] = Val;
407      return;
408    }
409
410    // Expand the value into multiple parts.
411    if (NumParts & (NumParts - 1)) {
412      // The number of parts is not a power of 2.  Split off and copy the tail.
413      assert(PartVT.isInteger() && ValueVT.isInteger() &&
414             "Do not know what to expand to!");
415      unsigned RoundParts = 1 << Log2_32(NumParts);
416      unsigned RoundBits = RoundParts * PartBits;
417      unsigned OddParts = NumParts - RoundParts;
418      SDValue OddVal = DAG.getNode(ISD::SRL, dl, ValueVT, Val,
419                                   DAG.getConstant(RoundBits,
420                                                   TLI.getPointerTy()));
421      getCopyToParts(DAG, dl, OddVal, Parts + RoundParts,
422                     OddParts, PartVT);
423
424      if (TLI.isBigEndian())
425        // The odd parts were reversed by getCopyToParts - unreverse them.
426        std::reverse(Parts + RoundParts, Parts + NumParts);
427
428      NumParts = RoundParts;
429      ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
430      Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val);
431    }
432
433    // The number of parts is a power of 2.  Repeatedly bisect the value using
434    // EXTRACT_ELEMENT.
435    Parts[0] = DAG.getNode(ISD::BIT_CONVERT, dl,
436                           EVT::getIntegerVT(*DAG.getContext(),
437                                             ValueVT.getSizeInBits()),
438                           Val);
439
440    for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
441      for (unsigned i = 0; i < NumParts; i += StepSize) {
442        unsigned ThisBits = StepSize * PartBits / 2;
443        EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
444        SDValue &Part0 = Parts[i];
445        SDValue &Part1 = Parts[i+StepSize/2];
446
447        Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
448                            ThisVT, Part0,
449                            DAG.getConstant(1, PtrVT));
450        Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
451                            ThisVT, Part0,
452                            DAG.getConstant(0, PtrVT));
453
454        if (ThisBits == PartBits && ThisVT != PartVT) {
455          Part0 = DAG.getNode(ISD::BIT_CONVERT, dl,
456                                                PartVT, Part0);
457          Part1 = DAG.getNode(ISD::BIT_CONVERT, dl,
458                                                PartVT, Part1);
459        }
460      }
461    }
462
463    if (TLI.isBigEndian())
464      std::reverse(Parts, Parts + OrigNumParts);
465
466    return;
467  }
468
469  // Vector ValueVT.
470  if (NumParts == 1) {
471    if (PartVT != ValueVT) {
472      if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
473        Val = DAG.getNode(ISD::BIT_CONVERT, dl, PartVT, Val);
474      } else {
475        assert(ValueVT.getVectorElementType() == PartVT &&
476               ValueVT.getVectorNumElements() == 1 &&
477               "Only trivial vector-to-scalar conversions should get here!");
478        Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
479                          PartVT, Val,
480                          DAG.getConstant(0, PtrVT));
481      }
482    }
483
484    Parts[0] = Val;
485    return;
486  }
487
488  // Handle a multi-element vector.
489  EVT IntermediateVT, RegisterVT;
490  unsigned NumIntermediates;
491  unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
492                              IntermediateVT, NumIntermediates, RegisterVT);
493  unsigned NumElements = ValueVT.getVectorNumElements();
494
495  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
496  NumParts = NumRegs; // Silence a compiler warning.
497  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
498
499  // Split the vector into intermediate operands.
500  SmallVector<SDValue, 8> Ops(NumIntermediates);
501  for (unsigned i = 0; i != NumIntermediates; ++i) {
502    if (IntermediateVT.isVector())
503      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl,
504                           IntermediateVT, Val,
505                           DAG.getConstant(i * (NumElements / NumIntermediates),
506                                           PtrVT));
507    else
508      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
509                           IntermediateVT, Val,
510                           DAG.getConstant(i, PtrVT));
511  }
512
513  // Split the intermediate operands into legal parts.
514  if (NumParts == NumIntermediates) {
515    // If the register was not expanded, promote or copy the value,
516    // as appropriate.
517    for (unsigned i = 0; i != NumParts; ++i)
518      getCopyToParts(DAG, dl, Ops[i], &Parts[i], 1, PartVT);
519  } else if (NumParts > 0) {
520    // If the intermediate type was expanded, split each the value into
521    // legal parts.
522    assert(NumParts % NumIntermediates == 0 &&
523           "Must expand into a divisible number of parts!");
524    unsigned Factor = NumParts / NumIntermediates;
525    for (unsigned i = 0; i != NumIntermediates; ++i)
526      getCopyToParts(DAG, dl, Ops[i], &Parts[i*Factor], Factor, PartVT);
527  }
528}
529
530
531void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) {
532  AA = &aa;
533  GFI = gfi;
534  TD = DAG.getTarget().getTargetData();
535}
536
537/// clear - Clear out the curret SelectionDAG and the associated
538/// state and prepare this SelectionDAGBuilder object to be used
539/// for a new block. This doesn't clear out information about
540/// additional blocks that are needed to complete switch lowering
541/// or PHI node updating; that information is cleared out as it is
542/// consumed.
543void SelectionDAGBuilder::clear() {
544  NodeMap.clear();
545  PendingLoads.clear();
546  PendingExports.clear();
547  EdgeMapping.clear();
548  DAG.clear();
549  CurDebugLoc = DebugLoc();
550  HasTailCall = false;
551}
552
553/// getRoot - Return the current virtual root of the Selection DAG,
554/// flushing any PendingLoad items. This must be done before emitting
555/// a store or any other node that may need to be ordered after any
556/// prior load instructions.
557///
558SDValue SelectionDAGBuilder::getRoot() {
559  if (PendingLoads.empty())
560    return DAG.getRoot();
561
562  if (PendingLoads.size() == 1) {
563    SDValue Root = PendingLoads[0];
564    DAG.setRoot(Root);
565    PendingLoads.clear();
566    return Root;
567  }
568
569  // Otherwise, we have to make a token factor node.
570  SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
571                               &PendingLoads[0], PendingLoads.size());
572  PendingLoads.clear();
573  DAG.setRoot(Root);
574  return Root;
575}
576
577/// getControlRoot - Similar to getRoot, but instead of flushing all the
578/// PendingLoad items, flush all the PendingExports items. It is necessary
579/// to do this before emitting a terminator instruction.
580///
581SDValue SelectionDAGBuilder::getControlRoot() {
582  SDValue Root = DAG.getRoot();
583
584  if (PendingExports.empty())
585    return Root;
586
587  // Turn all of the CopyToReg chains into one factored node.
588  if (Root.getOpcode() != ISD::EntryToken) {
589    unsigned i = 0, e = PendingExports.size();
590    for (; i != e; ++i) {
591      assert(PendingExports[i].getNode()->getNumOperands() > 1);
592      if (PendingExports[i].getNode()->getOperand(0) == Root)
593        break;  // Don't add the root if we already indirectly depend on it.
594    }
595
596    if (i == e)
597      PendingExports.push_back(Root);
598  }
599
600  Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
601                     &PendingExports[0],
602                     PendingExports.size());
603  PendingExports.clear();
604  DAG.setRoot(Root);
605  return Root;
606}
607
608void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) {
609  if (DAG.GetOrdering(Node) != 0) return; // Already has ordering.
610  DAG.AssignOrdering(Node, SDNodeOrder);
611
612  for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I)
613    AssignOrderingToNode(Node->getOperand(I).getNode());
614}
615
616void SelectionDAGBuilder::visit(Instruction &I) {
617  visit(I.getOpcode(), I);
618}
619
620void SelectionDAGBuilder::visit(unsigned Opcode, User &I) {
621  // Note: this doesn't use InstVisitor, because it has to work with
622  // ConstantExpr's in addition to instructions.
623  switch (Opcode) {
624  default: llvm_unreachable("Unknown instruction type encountered!");
625    // Build the switch statement using the Instruction.def file.
626#define HANDLE_INST(NUM, OPCODE, CLASS) \
627    case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break;
628#include "llvm/Instruction.def"
629  }
630
631  // Assign the ordering to the freshly created DAG nodes.
632  if (NodeMap.count(&I)) {
633    ++SDNodeOrder;
634    AssignOrderingToNode(getValue(&I).getNode());
635  }
636}
637
638SDValue SelectionDAGBuilder::getValue(const Value *V) {
639  SDValue &N = NodeMap[V];
640  if (N.getNode()) return N;
641
642  if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) {
643    EVT VT = TLI.getValueType(V->getType(), true);
644
645    if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
646      return N = DAG.getConstant(*CI, VT);
647
648    if (GlobalValue *GV = dyn_cast<GlobalValue>(C))
649      return N = DAG.getGlobalAddress(GV, VT);
650
651    if (isa<ConstantPointerNull>(C))
652      return N = DAG.getConstant(0, TLI.getPointerTy());
653
654    if (ConstantFP *CFP = dyn_cast<ConstantFP>(C))
655      return N = DAG.getConstantFP(*CFP, VT);
656
657    if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
658      return N = DAG.getUNDEF(VT);
659
660    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
661      visit(CE->getOpcode(), *CE);
662      SDValue N1 = NodeMap[V];
663      assert(N1.getNode() && "visit didn't populate the ValueMap!");
664      return N1;
665    }
666
667    if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
668      SmallVector<SDValue, 4> Constants;
669      for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
670           OI != OE; ++OI) {
671        SDNode *Val = getValue(*OI).getNode();
672        // If the operand is an empty aggregate, there are no values.
673        if (!Val) continue;
674        // Add each leaf value from the operand to the Constants list
675        // to form a flattened list of all the values.
676        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
677          Constants.push_back(SDValue(Val, i));
678      }
679
680      return DAG.getMergeValues(&Constants[0], Constants.size(),
681                                getCurDebugLoc());
682    }
683
684    if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
685      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
686             "Unknown struct or array constant!");
687
688      SmallVector<EVT, 4> ValueVTs;
689      ComputeValueVTs(TLI, C->getType(), ValueVTs);
690      unsigned NumElts = ValueVTs.size();
691      if (NumElts == 0)
692        return SDValue(); // empty struct
693      SmallVector<SDValue, 4> Constants(NumElts);
694      for (unsigned i = 0; i != NumElts; ++i) {
695        EVT EltVT = ValueVTs[i];
696        if (isa<UndefValue>(C))
697          Constants[i] = DAG.getUNDEF(EltVT);
698        else if (EltVT.isFloatingPoint())
699          Constants[i] = DAG.getConstantFP(0, EltVT);
700        else
701          Constants[i] = DAG.getConstant(0, EltVT);
702      }
703
704      return DAG.getMergeValues(&Constants[0], NumElts,
705                                getCurDebugLoc());
706    }
707
708    if (BlockAddress *BA = dyn_cast<BlockAddress>(C))
709      return DAG.getBlockAddress(BA, VT);
710
711    const VectorType *VecTy = cast<VectorType>(V->getType());
712    unsigned NumElements = VecTy->getNumElements();
713
714    // Now that we know the number and type of the elements, get that number of
715    // elements into the Ops array based on what kind of constant it is.
716    SmallVector<SDValue, 16> Ops;
717    if (ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
718      for (unsigned i = 0; i != NumElements; ++i)
719        Ops.push_back(getValue(CP->getOperand(i)));
720    } else {
721      assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
722      EVT EltVT = TLI.getValueType(VecTy->getElementType());
723
724      SDValue Op;
725      if (EltVT.isFloatingPoint())
726        Op = DAG.getConstantFP(0, EltVT);
727      else
728        Op = DAG.getConstant(0, EltVT);
729      Ops.assign(NumElements, Op);
730    }
731
732    // Create a BUILD_VECTOR node.
733    return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
734                                    VT, &Ops[0], Ops.size());
735  }
736
737  // If this is a static alloca, generate it as the frameindex instead of
738  // computation.
739  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
740    DenseMap<const AllocaInst*, int>::iterator SI =
741      FuncInfo.StaticAllocaMap.find(AI);
742    if (SI != FuncInfo.StaticAllocaMap.end())
743      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
744  }
745
746  unsigned InReg = FuncInfo.ValueMap[V];
747  assert(InReg && "Value not in map!");
748
749  RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
750  SDValue Chain = DAG.getEntryNode();
751  return RFV.getCopyFromRegs(DAG, getCurDebugLoc(), Chain, NULL);
752}
753
754/// Get the EVTs and ArgFlags collections that represent the legalized return
755/// type of the given function.  This does not require a DAG or a return value,
756/// and is suitable for use before any DAGs for the function are constructed.
757static void getReturnInfo(const Type* ReturnType,
758                   Attributes attr, SmallVectorImpl<EVT> &OutVTs,
759                   SmallVectorImpl<ISD::ArgFlagsTy> &OutFlags,
760                   TargetLowering &TLI,
761                   SmallVectorImpl<uint64_t> *Offsets = 0) {
762  SmallVector<EVT, 4> ValueVTs;
763  ComputeValueVTs(TLI, ReturnType, ValueVTs);
764  unsigned NumValues = ValueVTs.size();
765  if (NumValues == 0) return;
766  unsigned Offset = 0;
767
768  for (unsigned j = 0, f = NumValues; j != f; ++j) {
769    EVT VT = ValueVTs[j];
770    ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
771
772    if (attr & Attribute::SExt)
773      ExtendKind = ISD::SIGN_EXTEND;
774    else if (attr & Attribute::ZExt)
775      ExtendKind = ISD::ZERO_EXTEND;
776
777    // FIXME: C calling convention requires the return type to be promoted to
778    // at least 32-bit. But this is not necessary for non-C calling
779    // conventions. The frontend should mark functions whose return values
780    // require promoting with signext or zeroext attributes.
781    if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
782      EVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
783      if (VT.bitsLT(MinVT))
784        VT = MinVT;
785    }
786
787    unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT);
788    EVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT);
789    unsigned PartSize = TLI.getTargetData()->getTypeAllocSize(
790                        PartVT.getTypeForEVT(ReturnType->getContext()));
791
792    // 'inreg' on function refers to return value
793    ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
794    if (attr & Attribute::InReg)
795      Flags.setInReg();
796
797    // Propagate extension type if any
798    if (attr & Attribute::SExt)
799      Flags.setSExt();
800    else if (attr & Attribute::ZExt)
801      Flags.setZExt();
802
803    for (unsigned i = 0; i < NumParts; ++i) {
804      OutVTs.push_back(PartVT);
805      OutFlags.push_back(Flags);
806      if (Offsets)
807      {
808        Offsets->push_back(Offset);
809        Offset += PartSize;
810      }
811    }
812  }
813}
814
815void SelectionDAGBuilder::visitRet(ReturnInst &I) {
816  SDValue Chain = getControlRoot();
817  SmallVector<ISD::OutputArg, 8> Outs;
818  FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo();
819
820  if (!FLI.CanLowerReturn) {
821    unsigned DemoteReg = FLI.DemoteRegister;
822    const Function *F = I.getParent()->getParent();
823
824    // Emit a store of the return value through the virtual register.
825    // Leave Outs empty so that LowerReturn won't try to load return
826    // registers the usual way.
827    SmallVector<EVT, 1> PtrValueVTs;
828    ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
829                    PtrValueVTs);
830
831    SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
832    SDValue RetOp = getValue(I.getOperand(0));
833
834    SmallVector<EVT, 4> ValueVTs;
835    SmallVector<uint64_t, 4> Offsets;
836    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
837    unsigned NumValues = ValueVTs.size();
838
839    SmallVector<SDValue, 4> Chains(NumValues);
840    EVT PtrVT = PtrValueVTs[0];
841    for (unsigned i = 0; i != NumValues; ++i) {
842      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, RetPtr,
843                                DAG.getConstant(Offsets[i], PtrVT));
844      Chains[i] =
845        DAG.getStore(Chain, getCurDebugLoc(),
846                     SDValue(RetOp.getNode(), RetOp.getResNo() + i),
847                     Add, NULL, Offsets[i], false, false, 0);
848    }
849
850    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
851                        MVT::Other, &Chains[0], NumValues);
852  } else if (I.getNumOperands() != 0) {
853    SmallVector<EVT, 4> ValueVTs;
854    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
855    unsigned NumValues = ValueVTs.size();
856    if (NumValues) {
857      SDValue RetOp = getValue(I.getOperand(0));
858      for (unsigned j = 0, f = NumValues; j != f; ++j) {
859        EVT VT = ValueVTs[j];
860
861        ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
862
863        const Function *F = I.getParent()->getParent();
864        if (F->paramHasAttr(0, Attribute::SExt))
865          ExtendKind = ISD::SIGN_EXTEND;
866        else if (F->paramHasAttr(0, Attribute::ZExt))
867          ExtendKind = ISD::ZERO_EXTEND;
868
869        // FIXME: C calling convention requires the return type to be promoted
870        // to at least 32-bit. But this is not necessary for non-C calling
871        // conventions. The frontend should mark functions whose return values
872        // require promoting with signext or zeroext attributes.
873        if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
874          EVT MinVT = TLI.getRegisterType(*DAG.getContext(), MVT::i32);
875          if (VT.bitsLT(MinVT))
876            VT = MinVT;
877        }
878
879        unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
880        EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
881        SmallVector<SDValue, 4> Parts(NumParts);
882        getCopyToParts(DAG, getCurDebugLoc(),
883                       SDValue(RetOp.getNode(), RetOp.getResNo() + j),
884                       &Parts[0], NumParts, PartVT, ExtendKind);
885
886        // 'inreg' on function refers to return value
887        ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
888        if (F->paramHasAttr(0, Attribute::InReg))
889          Flags.setInReg();
890
891        // Propagate extension type if any
892        if (F->paramHasAttr(0, Attribute::SExt))
893          Flags.setSExt();
894        else if (F->paramHasAttr(0, Attribute::ZExt))
895          Flags.setZExt();
896
897        for (unsigned i = 0; i < NumParts; ++i)
898          Outs.push_back(ISD::OutputArg(Flags, Parts[i], /*isfixed=*/true));
899      }
900    }
901  }
902
903  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
904  CallingConv::ID CallConv =
905    DAG.getMachineFunction().getFunction()->getCallingConv();
906  Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
907                          Outs, getCurDebugLoc(), DAG);
908
909  // Verify that the target's LowerReturn behaved as expected.
910  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
911         "LowerReturn didn't return a valid chain!");
912
913  // Update the DAG with the new chain value resulting from return lowering.
914  DAG.setRoot(Chain);
915}
916
917/// CopyToExportRegsIfNeeded - If the given value has virtual registers
918/// created for it, emit nodes to copy the value into the virtual
919/// registers.
920void SelectionDAGBuilder::CopyToExportRegsIfNeeded(Value *V) {
921  if (!V->use_empty()) {
922    DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
923    if (VMI != FuncInfo.ValueMap.end())
924      CopyValueToVirtualRegister(V, VMI->second);
925  }
926}
927
928/// ExportFromCurrentBlock - If this condition isn't known to be exported from
929/// the current basic block, add it to ValueMap now so that we'll get a
930/// CopyTo/FromReg.
931void SelectionDAGBuilder::ExportFromCurrentBlock(Value *V) {
932  // No need to export constants.
933  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
934
935  // Already exported?
936  if (FuncInfo.isExportedInst(V)) return;
937
938  unsigned Reg = FuncInfo.InitializeRegForValue(V);
939  CopyValueToVirtualRegister(V, Reg);
940}
941
942bool SelectionDAGBuilder::isExportableFromCurrentBlock(Value *V,
943                                                     const BasicBlock *FromBB) {
944  // The operands of the setcc have to be in this block.  We don't know
945  // how to export them from some other block.
946  if (Instruction *VI = dyn_cast<Instruction>(V)) {
947    // Can export from current BB.
948    if (VI->getParent() == FromBB)
949      return true;
950
951    // Is already exported, noop.
952    return FuncInfo.isExportedInst(V);
953  }
954
955  // If this is an argument, we can export it if the BB is the entry block or
956  // if it is already exported.
957  if (isa<Argument>(V)) {
958    if (FromBB == &FromBB->getParent()->getEntryBlock())
959      return true;
960
961    // Otherwise, can only export this if it is already exported.
962    return FuncInfo.isExportedInst(V);
963  }
964
965  // Otherwise, constants can always be exported.
966  return true;
967}
968
969static bool InBlock(const Value *V, const BasicBlock *BB) {
970  if (const Instruction *I = dyn_cast<Instruction>(V))
971    return I->getParent() == BB;
972  return true;
973}
974
975/// getFCmpCondCode - Return the ISD condition code corresponding to
976/// the given LLVM IR floating-point condition code.  This includes
977/// consideration of global floating-point math flags.
978///
979static ISD::CondCode getFCmpCondCode(FCmpInst::Predicate Pred) {
980  ISD::CondCode FPC, FOC;
981  switch (Pred) {
982  case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
983  case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
984  case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
985  case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
986  case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
987  case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
988  case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
989  case FCmpInst::FCMP_ORD:   FOC = FPC = ISD::SETO;   break;
990  case FCmpInst::FCMP_UNO:   FOC = FPC = ISD::SETUO;  break;
991  case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
992  case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
993  case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
994  case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
995  case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
996  case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
997  case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
998  default:
999    llvm_unreachable("Invalid FCmp predicate opcode!");
1000    FOC = FPC = ISD::SETFALSE;
1001    break;
1002  }
1003  if (FiniteOnlyFPMath())
1004    return FOC;
1005  else
1006    return FPC;
1007}
1008
1009/// getICmpCondCode - Return the ISD condition code corresponding to
1010/// the given LLVM IR integer condition code.
1011///
1012static ISD::CondCode getICmpCondCode(ICmpInst::Predicate Pred) {
1013  switch (Pred) {
1014  case ICmpInst::ICMP_EQ:  return ISD::SETEQ;
1015  case ICmpInst::ICMP_NE:  return ISD::SETNE;
1016  case ICmpInst::ICMP_SLE: return ISD::SETLE;
1017  case ICmpInst::ICMP_ULE: return ISD::SETULE;
1018  case ICmpInst::ICMP_SGE: return ISD::SETGE;
1019  case ICmpInst::ICMP_UGE: return ISD::SETUGE;
1020  case ICmpInst::ICMP_SLT: return ISD::SETLT;
1021  case ICmpInst::ICMP_ULT: return ISD::SETULT;
1022  case ICmpInst::ICMP_SGT: return ISD::SETGT;
1023  case ICmpInst::ICMP_UGT: return ISD::SETUGT;
1024  default:
1025    llvm_unreachable("Invalid ICmp predicate opcode!");
1026    return ISD::SETNE;
1027  }
1028}
1029
1030/// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1031/// This function emits a branch and is used at the leaves of an OR or an
1032/// AND operator tree.
1033///
1034void
1035SelectionDAGBuilder::EmitBranchForMergedCondition(Value *Cond,
1036                                                  MachineBasicBlock *TBB,
1037                                                  MachineBasicBlock *FBB,
1038                                                  MachineBasicBlock *CurBB) {
1039  const BasicBlock *BB = CurBB->getBasicBlock();
1040
1041  // If the leaf of the tree is a comparison, merge the condition into
1042  // the caseblock.
1043  if (CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1044    // The operands of the cmp have to be in this block.  We don't know
1045    // how to export them from some other block.  If this is the first block
1046    // of the sequence, no exporting is needed.
1047    if (CurBB == CurMBB ||
1048        (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1049         isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1050      ISD::CondCode Condition;
1051      if (ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1052        Condition = getICmpCondCode(IC->getPredicate());
1053      } else if (FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1054        Condition = getFCmpCondCode(FC->getPredicate());
1055      } else {
1056        Condition = ISD::SETEQ; // silence warning.
1057        llvm_unreachable("Unknown compare instruction");
1058      }
1059
1060      CaseBlock CB(Condition, BOp->getOperand(0),
1061                   BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1062      SwitchCases.push_back(CB);
1063      return;
1064    }
1065  }
1066
1067  // Create a CaseBlock record representing this branch.
1068  CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1069               NULL, TBB, FBB, CurBB);
1070  SwitchCases.push_back(CB);
1071}
1072
1073/// FindMergedConditions - If Cond is an expression like
1074void SelectionDAGBuilder::FindMergedConditions(Value *Cond,
1075                                               MachineBasicBlock *TBB,
1076                                               MachineBasicBlock *FBB,
1077                                               MachineBasicBlock *CurBB,
1078                                               unsigned Opc) {
1079  // If this node is not part of the or/and tree, emit it as a branch.
1080  Instruction *BOp = dyn_cast<Instruction>(Cond);
1081  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1082      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1083      BOp->getParent() != CurBB->getBasicBlock() ||
1084      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1085      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1086    EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB);
1087    return;
1088  }
1089
1090  //  Create TmpBB after CurBB.
1091  MachineFunction::iterator BBI = CurBB;
1092  MachineFunction &MF = DAG.getMachineFunction();
1093  MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1094  CurBB->getParent()->insert(++BBI, TmpBB);
1095
1096  if (Opc == Instruction::Or) {
1097    // Codegen X | Y as:
1098    //   jmp_if_X TBB
1099    //   jmp TmpBB
1100    // TmpBB:
1101    //   jmp_if_Y TBB
1102    //   jmp FBB
1103    //
1104
1105    // Emit the LHS condition.
1106    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, Opc);
1107
1108    // Emit the RHS condition into TmpBB.
1109    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1110  } else {
1111    assert(Opc == Instruction::And && "Unknown merge op!");
1112    // Codegen X & Y as:
1113    //   jmp_if_X TmpBB
1114    //   jmp FBB
1115    // TmpBB:
1116    //   jmp_if_Y TBB
1117    //   jmp FBB
1118    //
1119    //  This requires creation of TmpBB after CurBB.
1120
1121    // Emit the LHS condition.
1122    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, Opc);
1123
1124    // Emit the RHS condition into TmpBB.
1125    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1126  }
1127}
1128
1129/// If the set of cases should be emitted as a series of branches, return true.
1130/// If we should emit this as a bunch of and/or'd together conditions, return
1131/// false.
1132bool
1133SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
1134  if (Cases.size() != 2) return true;
1135
1136  // If this is two comparisons of the same values or'd or and'd together, they
1137  // will get folded into a single comparison, so don't emit two blocks.
1138  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1139       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1140      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1141       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1142    return false;
1143  }
1144
1145  // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1146  // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1147  if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1148      Cases[0].CC == Cases[1].CC &&
1149      isa<Constant>(Cases[0].CmpRHS) &&
1150      cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1151    if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1152      return false;
1153    if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1154      return false;
1155  }
1156
1157  return true;
1158}
1159
1160void SelectionDAGBuilder::visitBr(BranchInst &I) {
1161  // Update machine-CFG edges.
1162  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1163
1164  // Figure out which block is immediately after the current one.
1165  MachineBasicBlock *NextBlock = 0;
1166  MachineFunction::iterator BBI = CurMBB;
1167  if (++BBI != FuncInfo.MF->end())
1168    NextBlock = BBI;
1169
1170  if (I.isUnconditional()) {
1171    // Update machine-CFG edges.
1172    CurMBB->addSuccessor(Succ0MBB);
1173
1174    // If this is not a fall-through branch, emit the branch.
1175    if (Succ0MBB != NextBlock)
1176      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1177                              MVT::Other, getControlRoot(),
1178                              DAG.getBasicBlock(Succ0MBB)));
1179
1180    return;
1181  }
1182
1183  // If this condition is one of the special cases we handle, do special stuff
1184  // now.
1185  Value *CondVal = I.getCondition();
1186  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1187
1188  // If this is a series of conditions that are or'd or and'd together, emit
1189  // this as a sequence of branches instead of setcc's with and/or operations.
1190  // For example, instead of something like:
1191  //     cmp A, B
1192  //     C = seteq
1193  //     cmp D, E
1194  //     F = setle
1195  //     or C, F
1196  //     jnz foo
1197  // Emit:
1198  //     cmp A, B
1199  //     je foo
1200  //     cmp D, E
1201  //     jle foo
1202  //
1203  if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1204    if (BOp->hasOneUse() &&
1205        (BOp->getOpcode() == Instruction::And ||
1206         BOp->getOpcode() == Instruction::Or)) {
1207      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, CurMBB, BOp->getOpcode());
1208      // If the compares in later blocks need to use values not currently
1209      // exported from this block, export them now.  This block should always
1210      // be the first entry.
1211      assert(SwitchCases[0].ThisBB == CurMBB && "Unexpected lowering!");
1212
1213      // Allow some cases to be rejected.
1214      if (ShouldEmitAsBranches(SwitchCases)) {
1215        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1216          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1217          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1218        }
1219
1220        // Emit the branch for this block.
1221        visitSwitchCase(SwitchCases[0]);
1222        SwitchCases.erase(SwitchCases.begin());
1223        return;
1224      }
1225
1226      // Okay, we decided not to do this, remove any inserted MBB's and clear
1227      // SwitchCases.
1228      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1229        FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1230
1231      SwitchCases.clear();
1232    }
1233  }
1234
1235  // Create a CaseBlock record representing this branch.
1236  CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1237               NULL, Succ0MBB, Succ1MBB, CurMBB);
1238
1239  // Use visitSwitchCase to actually insert the fast branch sequence for this
1240  // cond branch.
1241  visitSwitchCase(CB);
1242}
1243
1244/// visitSwitchCase - Emits the necessary code to represent a single node in
1245/// the binary search tree resulting from lowering a switch instruction.
1246void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB) {
1247  SDValue Cond;
1248  SDValue CondLHS = getValue(CB.CmpLHS);
1249  DebugLoc dl = getCurDebugLoc();
1250
1251  // Build the setcc now.
1252  if (CB.CmpMHS == NULL) {
1253    // Fold "(X == true)" to X and "(X == false)" to !X to
1254    // handle common cases produced by branch lowering.
1255    if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1256        CB.CC == ISD::SETEQ)
1257      Cond = CondLHS;
1258    else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1259             CB.CC == ISD::SETEQ) {
1260      SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1261      Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1262    } else
1263      Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1264  } else {
1265    assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1266
1267    const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1268    const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
1269
1270    SDValue CmpOp = getValue(CB.CmpMHS);
1271    EVT VT = CmpOp.getValueType();
1272
1273    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1274      Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1275                          ISD::SETLE);
1276    } else {
1277      SDValue SUB = DAG.getNode(ISD::SUB, dl,
1278                                VT, CmpOp, DAG.getConstant(Low, VT));
1279      Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1280                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1281    }
1282  }
1283
1284  // Update successor info
1285  CurMBB->addSuccessor(CB.TrueBB);
1286  CurMBB->addSuccessor(CB.FalseBB);
1287
1288  // Set NextBlock to be the MBB immediately after the current one, if any.
1289  // This is used to avoid emitting unnecessary branches to the next block.
1290  MachineBasicBlock *NextBlock = 0;
1291  MachineFunction::iterator BBI = CurMBB;
1292  if (++BBI != FuncInfo.MF->end())
1293    NextBlock = BBI;
1294
1295  // If the lhs block is the next block, invert the condition so that we can
1296  // fall through to the lhs instead of the rhs block.
1297  if (CB.TrueBB == NextBlock) {
1298    std::swap(CB.TrueBB, CB.FalseBB);
1299    SDValue True = DAG.getConstant(1, Cond.getValueType());
1300    Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1301  }
1302
1303  SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1304                               MVT::Other, getControlRoot(), Cond,
1305                               DAG.getBasicBlock(CB.TrueBB));
1306
1307  // If the branch was constant folded, fix up the CFG.
1308  if (BrCond.getOpcode() == ISD::BR) {
1309    CurMBB->removeSuccessor(CB.FalseBB);
1310  } else {
1311    // Otherwise, go ahead and insert the false branch.
1312    if (BrCond == getControlRoot())
1313      CurMBB->removeSuccessor(CB.TrueBB);
1314
1315    if (CB.FalseBB != NextBlock)
1316      BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1317                           DAG.getBasicBlock(CB.FalseBB));
1318  }
1319
1320  DAG.setRoot(BrCond);
1321}
1322
1323/// visitJumpTable - Emit JumpTable node in the current MBB
1324void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1325  // Emit the code for the jump table
1326  assert(JT.Reg != -1U && "Should lower JT Header first!");
1327  EVT PTy = TLI.getPointerTy();
1328  SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1329                                     JT.Reg, PTy);
1330  SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1331  SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(),
1332                                    MVT::Other, Index.getValue(1),
1333                                    Table, Index);
1334  DAG.setRoot(BrJumpTable);
1335}
1336
1337/// visitJumpTableHeader - This function emits necessary code to produce index
1338/// in the JumpTable from switch case.
1339void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1340                                               JumpTableHeader &JTH) {
1341  // Subtract the lowest switch case value from the value being switched on and
1342  // conditional branch to default mbb if the result is greater than the
1343  // difference between smallest and largest cases.
1344  SDValue SwitchOp = getValue(JTH.SValue);
1345  EVT VT = SwitchOp.getValueType();
1346  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1347                            DAG.getConstant(JTH.First, VT));
1348
1349  // The SDNode we just created, which holds the value being switched on minus
1350  // the smallest case value, needs to be copied to a virtual register so it
1351  // can be used as an index into the jump table in a subsequent basic block.
1352  // This value may be smaller or larger than the target's pointer type, and
1353  // therefore require extension or truncating.
1354  SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy());
1355
1356  unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy());
1357  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1358                                    JumpTableReg, SwitchOp);
1359  JT.Reg = JumpTableReg;
1360
1361  // Emit the range check for the jump table, and branch to the default block
1362  // for the switch statement if the value being switched on exceeds the largest
1363  // case in the switch.
1364  SDValue CMP = DAG.getSetCC(getCurDebugLoc(),
1365                             TLI.getSetCCResultType(Sub.getValueType()), Sub,
1366                             DAG.getConstant(JTH.Last-JTH.First,VT),
1367                             ISD::SETUGT);
1368
1369  // Set NextBlock to be the MBB immediately after the current one, if any.
1370  // This is used to avoid emitting unnecessary branches to the next block.
1371  MachineBasicBlock *NextBlock = 0;
1372  MachineFunction::iterator BBI = CurMBB;
1373
1374  if (++BBI != FuncInfo.MF->end())
1375    NextBlock = BBI;
1376
1377  SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1378                               MVT::Other, CopyTo, CMP,
1379                               DAG.getBasicBlock(JT.Default));
1380
1381  if (JT.MBB != NextBlock)
1382    BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond,
1383                         DAG.getBasicBlock(JT.MBB));
1384
1385  DAG.setRoot(BrCond);
1386}
1387
1388/// visitBitTestHeader - This function emits necessary code to produce value
1389/// suitable for "bit tests"
1390void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B) {
1391  // Subtract the minimum value
1392  SDValue SwitchOp = getValue(B.SValue);
1393  EVT VT = SwitchOp.getValueType();
1394  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1395                            DAG.getConstant(B.First, VT));
1396
1397  // Check range
1398  SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(),
1399                                  TLI.getSetCCResultType(Sub.getValueType()),
1400                                  Sub, DAG.getConstant(B.Range, VT),
1401                                  ISD::SETUGT);
1402
1403  SDValue ShiftOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(),
1404                                       TLI.getPointerTy());
1405
1406  B.Reg = FuncInfo.MakeReg(TLI.getPointerTy());
1407  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1408                                    B.Reg, ShiftOp);
1409
1410  // Set NextBlock to be the MBB immediately after the current one, if any.
1411  // This is used to avoid emitting unnecessary branches to the next block.
1412  MachineBasicBlock *NextBlock = 0;
1413  MachineFunction::iterator BBI = CurMBB;
1414  if (++BBI != FuncInfo.MF->end())
1415    NextBlock = BBI;
1416
1417  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1418
1419  CurMBB->addSuccessor(B.Default);
1420  CurMBB->addSuccessor(MBB);
1421
1422  SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1423                                MVT::Other, CopyTo, RangeCmp,
1424                                DAG.getBasicBlock(B.Default));
1425
1426  if (MBB != NextBlock)
1427    BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo,
1428                          DAG.getBasicBlock(MBB));
1429
1430  DAG.setRoot(BrRange);
1431}
1432
1433/// visitBitTestCase - this function produces one "bit test"
1434void SelectionDAGBuilder::visitBitTestCase(MachineBasicBlock* NextMBB,
1435                                           unsigned Reg,
1436                                           BitTestCase &B) {
1437  // Make desired shift
1438  SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), Reg,
1439                                       TLI.getPointerTy());
1440  SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(),
1441                                  TLI.getPointerTy(),
1442                                  DAG.getConstant(1, TLI.getPointerTy()),
1443                                  ShiftOp);
1444
1445  // Emit bit tests and jumps
1446  SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(),
1447                              TLI.getPointerTy(), SwitchVal,
1448                              DAG.getConstant(B.Mask, TLI.getPointerTy()));
1449  SDValue AndCmp = DAG.getSetCC(getCurDebugLoc(),
1450                                TLI.getSetCCResultType(AndOp.getValueType()),
1451                                AndOp, DAG.getConstant(0, TLI.getPointerTy()),
1452                                ISD::SETNE);
1453
1454  CurMBB->addSuccessor(B.TargetBB);
1455  CurMBB->addSuccessor(NextMBB);
1456
1457  SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1458                              MVT::Other, getControlRoot(),
1459                              AndCmp, DAG.getBasicBlock(B.TargetBB));
1460
1461  // Set NextBlock to be the MBB immediately after the current one, if any.
1462  // This is used to avoid emitting unnecessary branches to the next block.
1463  MachineBasicBlock *NextBlock = 0;
1464  MachineFunction::iterator BBI = CurMBB;
1465  if (++BBI != FuncInfo.MF->end())
1466    NextBlock = BBI;
1467
1468  if (NextMBB != NextBlock)
1469    BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd,
1470                        DAG.getBasicBlock(NextMBB));
1471
1472  DAG.setRoot(BrAnd);
1473}
1474
1475void SelectionDAGBuilder::visitInvoke(InvokeInst &I) {
1476  // Retrieve successors.
1477  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1478  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1479
1480  const Value *Callee(I.getCalledValue());
1481  if (isa<InlineAsm>(Callee))
1482    visitInlineAsm(&I);
1483  else
1484    LowerCallTo(&I, getValue(Callee), false, LandingPad);
1485
1486  // If the value of the invoke is used outside of its defining block, make it
1487  // available as a virtual register.
1488  CopyToExportRegsIfNeeded(&I);
1489
1490  // Update successor info
1491  CurMBB->addSuccessor(Return);
1492  CurMBB->addSuccessor(LandingPad);
1493
1494  // Drop into normal successor.
1495  DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1496                          MVT::Other, getControlRoot(),
1497                          DAG.getBasicBlock(Return)));
1498}
1499
1500void SelectionDAGBuilder::visitUnwind(UnwindInst &I) {
1501}
1502
1503/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1504/// small case ranges).
1505bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
1506                                                 CaseRecVector& WorkList,
1507                                                 Value* SV,
1508                                                 MachineBasicBlock* Default) {
1509  Case& BackCase  = *(CR.Range.second-1);
1510
1511  // Size is the number of Cases represented by this range.
1512  size_t Size = CR.Range.second - CR.Range.first;
1513  if (Size > 3)
1514    return false;
1515
1516  // Get the MachineFunction which holds the current MBB.  This is used when
1517  // inserting any additional MBBs necessary to represent the switch.
1518  MachineFunction *CurMF = FuncInfo.MF;
1519
1520  // Figure out which block is immediately after the current one.
1521  MachineBasicBlock *NextBlock = 0;
1522  MachineFunction::iterator BBI = CR.CaseBB;
1523
1524  if (++BBI != FuncInfo.MF->end())
1525    NextBlock = BBI;
1526
1527  // TODO: If any two of the cases has the same destination, and if one value
1528  // is the same as the other, but has one bit unset that the other has set,
1529  // use bit manipulation to do two compares at once.  For example:
1530  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1531
1532  // Rearrange the case blocks so that the last one falls through if possible.
1533  if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1534    // The last case block won't fall through into 'NextBlock' if we emit the
1535    // branches in this order.  See if rearranging a case value would help.
1536    for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1537      if (I->BB == NextBlock) {
1538        std::swap(*I, BackCase);
1539        break;
1540      }
1541    }
1542  }
1543
1544  // Create a CaseBlock record representing a conditional branch to
1545  // the Case's target mbb if the value being switched on SV is equal
1546  // to C.
1547  MachineBasicBlock *CurBlock = CR.CaseBB;
1548  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1549    MachineBasicBlock *FallThrough;
1550    if (I != E-1) {
1551      FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
1552      CurMF->insert(BBI, FallThrough);
1553
1554      // Put SV in a virtual register to make it available from the new blocks.
1555      ExportFromCurrentBlock(SV);
1556    } else {
1557      // If the last case doesn't match, go to the default block.
1558      FallThrough = Default;
1559    }
1560
1561    Value *RHS, *LHS, *MHS;
1562    ISD::CondCode CC;
1563    if (I->High == I->Low) {
1564      // This is just small small case range :) containing exactly 1 case
1565      CC = ISD::SETEQ;
1566      LHS = SV; RHS = I->High; MHS = NULL;
1567    } else {
1568      CC = ISD::SETLE;
1569      LHS = I->Low; MHS = SV; RHS = I->High;
1570    }
1571    CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock);
1572
1573    // If emitting the first comparison, just call visitSwitchCase to emit the
1574    // code into the current block.  Otherwise, push the CaseBlock onto the
1575    // vector to be later processed by SDISel, and insert the node's MBB
1576    // before the next MBB.
1577    if (CurBlock == CurMBB)
1578      visitSwitchCase(CB);
1579    else
1580      SwitchCases.push_back(CB);
1581
1582    CurBlock = FallThrough;
1583  }
1584
1585  return true;
1586}
1587
1588static inline bool areJTsAllowed(const TargetLowering &TLI) {
1589  return !DisableJumpTables &&
1590          (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
1591           TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
1592}
1593
1594static APInt ComputeRange(const APInt &First, const APInt &Last) {
1595  APInt LastExt(Last), FirstExt(First);
1596  uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
1597  LastExt.sext(BitWidth); FirstExt.sext(BitWidth);
1598  return (LastExt - FirstExt + 1ULL);
1599}
1600
1601/// handleJTSwitchCase - Emit jumptable for current switch case range
1602bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec& CR,
1603                                             CaseRecVector& WorkList,
1604                                             Value* SV,
1605                                             MachineBasicBlock* Default) {
1606  Case& FrontCase = *CR.Range.first;
1607  Case& BackCase  = *(CR.Range.second-1);
1608
1609  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
1610  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
1611
1612  APInt TSize(First.getBitWidth(), 0);
1613  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1614       I!=E; ++I)
1615    TSize += I->size();
1616
1617  if (!areJTsAllowed(TLI) || TSize.ult(APInt(First.getBitWidth(), 4)))
1618    return false;
1619
1620  APInt Range = ComputeRange(First, Last);
1621  double Density = TSize.roundToDouble() / Range.roundToDouble();
1622  if (Density < 0.4)
1623    return false;
1624
1625  DEBUG(dbgs() << "Lowering jump table\n"
1626               << "First entry: " << First << ". Last entry: " << Last << '\n'
1627               << "Range: " << Range
1628               << "Size: " << TSize << ". Density: " << Density << "\n\n");
1629
1630  // Get the MachineFunction which holds the current MBB.  This is used when
1631  // inserting any additional MBBs necessary to represent the switch.
1632  MachineFunction *CurMF = FuncInfo.MF;
1633
1634  // Figure out which block is immediately after the current one.
1635  MachineFunction::iterator BBI = CR.CaseBB;
1636  ++BBI;
1637
1638  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1639
1640  // Create a new basic block to hold the code for loading the address
1641  // of the jump table, and jumping to it.  Update successor information;
1642  // we will either branch to the default case for the switch, or the jump
1643  // table.
1644  MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1645  CurMF->insert(BBI, JumpTableBB);
1646  CR.CaseBB->addSuccessor(Default);
1647  CR.CaseBB->addSuccessor(JumpTableBB);
1648
1649  // Build a vector of destination BBs, corresponding to each target
1650  // of the jump table. If the value of the jump table slot corresponds to
1651  // a case statement, push the case's BB onto the vector, otherwise, push
1652  // the default BB.
1653  std::vector<MachineBasicBlock*> DestBBs;
1654  APInt TEI = First;
1655  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
1656    const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
1657    const APInt &High = cast<ConstantInt>(I->High)->getValue();
1658
1659    if (Low.sle(TEI) && TEI.sle(High)) {
1660      DestBBs.push_back(I->BB);
1661      if (TEI==High)
1662        ++I;
1663    } else {
1664      DestBBs.push_back(Default);
1665    }
1666  }
1667
1668  // Update successor info. Add one edge to each unique successor.
1669  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
1670  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
1671         E = DestBBs.end(); I != E; ++I) {
1672    if (!SuccsHandled[(*I)->getNumber()]) {
1673      SuccsHandled[(*I)->getNumber()] = true;
1674      JumpTableBB->addSuccessor(*I);
1675    }
1676  }
1677
1678  // Create a jump table index for this jump table.
1679  unsigned JTEncoding = TLI.getJumpTableEncoding();
1680  unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
1681                       ->createJumpTableIndex(DestBBs);
1682
1683  // Set the jump table information so that we can codegen it as a second
1684  // MachineBasicBlock
1685  JumpTable JT(-1U, JTI, JumpTableBB, Default);
1686  JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == CurMBB));
1687  if (CR.CaseBB == CurMBB)
1688    visitJumpTableHeader(JT, JTH);
1689
1690  JTCases.push_back(JumpTableBlock(JTH, JT));
1691
1692  return true;
1693}
1694
1695/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
1696/// 2 subtrees.
1697bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
1698                                                  CaseRecVector& WorkList,
1699                                                  Value* SV,
1700                                                  MachineBasicBlock* Default) {
1701  // Get the MachineFunction which holds the current MBB.  This is used when
1702  // inserting any additional MBBs necessary to represent the switch.
1703  MachineFunction *CurMF = FuncInfo.MF;
1704
1705  // Figure out which block is immediately after the current one.
1706  MachineFunction::iterator BBI = CR.CaseBB;
1707  ++BBI;
1708
1709  Case& FrontCase = *CR.Range.first;
1710  Case& BackCase  = *(CR.Range.second-1);
1711  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1712
1713  // Size is the number of Cases represented by this range.
1714  unsigned Size = CR.Range.second - CR.Range.first;
1715
1716  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
1717  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
1718  double FMetric = 0;
1719  CaseItr Pivot = CR.Range.first + Size/2;
1720
1721  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
1722  // (heuristically) allow us to emit JumpTable's later.
1723  APInt TSize(First.getBitWidth(), 0);
1724  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1725       I!=E; ++I)
1726    TSize += I->size();
1727
1728  APInt LSize = FrontCase.size();
1729  APInt RSize = TSize-LSize;
1730  DEBUG(dbgs() << "Selecting best pivot: \n"
1731               << "First: " << First << ", Last: " << Last <<'\n'
1732               << "LSize: " << LSize << ", RSize: " << RSize << '\n');
1733  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
1734       J!=E; ++I, ++J) {
1735    const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
1736    const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
1737    APInt Range = ComputeRange(LEnd, RBegin);
1738    assert((Range - 2ULL).isNonNegative() &&
1739           "Invalid case distance");
1740    double LDensity = (double)LSize.roundToDouble() /
1741                           (LEnd - First + 1ULL).roundToDouble();
1742    double RDensity = (double)RSize.roundToDouble() /
1743                           (Last - RBegin + 1ULL).roundToDouble();
1744    double Metric = Range.logBase2()*(LDensity+RDensity);
1745    // Should always split in some non-trivial place
1746    DEBUG(dbgs() <<"=>Step\n"
1747                 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
1748                 << "LDensity: " << LDensity
1749                 << ", RDensity: " << RDensity << '\n'
1750                 << "Metric: " << Metric << '\n');
1751    if (FMetric < Metric) {
1752      Pivot = J;
1753      FMetric = Metric;
1754      DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
1755    }
1756
1757    LSize += J->size();
1758    RSize -= J->size();
1759  }
1760  if (areJTsAllowed(TLI)) {
1761    // If our case is dense we *really* should handle it earlier!
1762    assert((FMetric > 0) && "Should handle dense range earlier!");
1763  } else {
1764    Pivot = CR.Range.first + Size/2;
1765  }
1766
1767  CaseRange LHSR(CR.Range.first, Pivot);
1768  CaseRange RHSR(Pivot, CR.Range.second);
1769  Constant *C = Pivot->Low;
1770  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
1771
1772  // We know that we branch to the LHS if the Value being switched on is
1773  // less than the Pivot value, C.  We use this to optimize our binary
1774  // tree a bit, by recognizing that if SV is greater than or equal to the
1775  // LHS's Case Value, and that Case Value is exactly one less than the
1776  // Pivot's Value, then we can branch directly to the LHS's Target,
1777  // rather than creating a leaf node for it.
1778  if ((LHSR.second - LHSR.first) == 1 &&
1779      LHSR.first->High == CR.GE &&
1780      cast<ConstantInt>(C)->getValue() ==
1781      (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
1782    TrueBB = LHSR.first->BB;
1783  } else {
1784    TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1785    CurMF->insert(BBI, TrueBB);
1786    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
1787
1788    // Put SV in a virtual register to make it available from the new blocks.
1789    ExportFromCurrentBlock(SV);
1790  }
1791
1792  // Similar to the optimization above, if the Value being switched on is
1793  // known to be less than the Constant CR.LT, and the current Case Value
1794  // is CR.LT - 1, then we can branch directly to the target block for
1795  // the current Case Value, rather than emitting a RHS leaf node for it.
1796  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
1797      cast<ConstantInt>(RHSR.first->Low)->getValue() ==
1798      (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
1799    FalseBB = RHSR.first->BB;
1800  } else {
1801    FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1802    CurMF->insert(BBI, FalseBB);
1803    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
1804
1805    // Put SV in a virtual register to make it available from the new blocks.
1806    ExportFromCurrentBlock(SV);
1807  }
1808
1809  // Create a CaseBlock record representing a conditional branch to
1810  // the LHS node if the value being switched on SV is less than C.
1811  // Otherwise, branch to LHS.
1812  CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
1813
1814  if (CR.CaseBB == CurMBB)
1815    visitSwitchCase(CB);
1816  else
1817    SwitchCases.push_back(CB);
1818
1819  return true;
1820}
1821
1822/// handleBitTestsSwitchCase - if current case range has few destination and
1823/// range span less, than machine word bitwidth, encode case range into series
1824/// of masks and emit bit tests with these masks.
1825bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
1826                                                   CaseRecVector& WorkList,
1827                                                   Value* SV,
1828                                                   MachineBasicBlock* Default){
1829  EVT PTy = TLI.getPointerTy();
1830  unsigned IntPtrBits = PTy.getSizeInBits();
1831
1832  Case& FrontCase = *CR.Range.first;
1833  Case& BackCase  = *(CR.Range.second-1);
1834
1835  // Get the MachineFunction which holds the current MBB.  This is used when
1836  // inserting any additional MBBs necessary to represent the switch.
1837  MachineFunction *CurMF = FuncInfo.MF;
1838
1839  // If target does not have legal shift left, do not emit bit tests at all.
1840  if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
1841    return false;
1842
1843  size_t numCmps = 0;
1844  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1845       I!=E; ++I) {
1846    // Single case counts one, case range - two.
1847    numCmps += (I->Low == I->High ? 1 : 2);
1848  }
1849
1850  // Count unique destinations
1851  SmallSet<MachineBasicBlock*, 4> Dests;
1852  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
1853    Dests.insert(I->BB);
1854    if (Dests.size() > 3)
1855      // Don't bother the code below, if there are too much unique destinations
1856      return false;
1857  }
1858  DEBUG(dbgs() << "Total number of unique destinations: "
1859        << Dests.size() << '\n'
1860        << "Total number of comparisons: " << numCmps << '\n');
1861
1862  // Compute span of values.
1863  const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
1864  const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
1865  APInt cmpRange = maxValue - minValue;
1866
1867  DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
1868               << "Low bound: " << minValue << '\n'
1869               << "High bound: " << maxValue << '\n');
1870
1871  if (cmpRange.uge(APInt(cmpRange.getBitWidth(), IntPtrBits)) ||
1872      (!(Dests.size() == 1 && numCmps >= 3) &&
1873       !(Dests.size() == 2 && numCmps >= 5) &&
1874       !(Dests.size() >= 3 && numCmps >= 6)))
1875    return false;
1876
1877  DEBUG(dbgs() << "Emitting bit tests\n");
1878  APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
1879
1880  // Optimize the case where all the case values fit in a
1881  // word without having to subtract minValue. In this case,
1882  // we can optimize away the subtraction.
1883  if (minValue.isNonNegative() &&
1884      maxValue.slt(APInt(maxValue.getBitWidth(), IntPtrBits))) {
1885    cmpRange = maxValue;
1886  } else {
1887    lowBound = minValue;
1888  }
1889
1890  CaseBitsVector CasesBits;
1891  unsigned i, count = 0;
1892
1893  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
1894    MachineBasicBlock* Dest = I->BB;
1895    for (i = 0; i < count; ++i)
1896      if (Dest == CasesBits[i].BB)
1897        break;
1898
1899    if (i == count) {
1900      assert((count < 3) && "Too much destinations to test!");
1901      CasesBits.push_back(CaseBits(0, Dest, 0));
1902      count++;
1903    }
1904
1905    const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
1906    const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
1907
1908    uint64_t lo = (lowValue - lowBound).getZExtValue();
1909    uint64_t hi = (highValue - lowBound).getZExtValue();
1910
1911    for (uint64_t j = lo; j <= hi; j++) {
1912      CasesBits[i].Mask |=  1ULL << j;
1913      CasesBits[i].Bits++;
1914    }
1915
1916  }
1917  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
1918
1919  BitTestInfo BTC;
1920
1921  // Figure out which block is immediately after the current one.
1922  MachineFunction::iterator BBI = CR.CaseBB;
1923  ++BBI;
1924
1925  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1926
1927  DEBUG(dbgs() << "Cases:\n");
1928  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
1929    DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
1930                 << ", Bits: " << CasesBits[i].Bits
1931                 << ", BB: " << CasesBits[i].BB << '\n');
1932
1933    MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1934    CurMF->insert(BBI, CaseBB);
1935    BTC.push_back(BitTestCase(CasesBits[i].Mask,
1936                              CaseBB,
1937                              CasesBits[i].BB));
1938
1939    // Put SV in a virtual register to make it available from the new blocks.
1940    ExportFromCurrentBlock(SV);
1941  }
1942
1943  BitTestBlock BTB(lowBound, cmpRange, SV,
1944                   -1U, (CR.CaseBB == CurMBB),
1945                   CR.CaseBB, Default, BTC);
1946
1947  if (CR.CaseBB == CurMBB)
1948    visitBitTestHeader(BTB);
1949
1950  BitTestCases.push_back(BTB);
1951
1952  return true;
1953}
1954
1955/// Clusterify - Transform simple list of Cases into list of CaseRange's
1956size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
1957                                       const SwitchInst& SI) {
1958  size_t numCmps = 0;
1959
1960  // Start with "simple" cases
1961  for (size_t i = 1; i < SI.getNumSuccessors(); ++i) {
1962    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
1963    Cases.push_back(Case(SI.getSuccessorValue(i),
1964                         SI.getSuccessorValue(i),
1965                         SMBB));
1966  }
1967  std::sort(Cases.begin(), Cases.end(), CaseCmp());
1968
1969  // Merge case into clusters
1970  if (Cases.size() >= 2)
1971    // Must recompute end() each iteration because it may be
1972    // invalidated by erase if we hold on to it
1973    for (CaseItr I = Cases.begin(), J = ++(Cases.begin()); J != Cases.end(); ) {
1974      const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
1975      const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
1976      MachineBasicBlock* nextBB = J->BB;
1977      MachineBasicBlock* currentBB = I->BB;
1978
1979      // If the two neighboring cases go to the same destination, merge them
1980      // into a single case.
1981      if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
1982        I->High = J->High;
1983        J = Cases.erase(J);
1984      } else {
1985        I = J++;
1986      }
1987    }
1988
1989  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
1990    if (I->Low != I->High)
1991      // A range counts double, since it requires two compares.
1992      ++numCmps;
1993  }
1994
1995  return numCmps;
1996}
1997
1998void SelectionDAGBuilder::visitSwitch(SwitchInst &SI) {
1999  // Figure out which block is immediately after the current one.
2000  MachineBasicBlock *NextBlock = 0;
2001  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2002
2003  // If there is only the default destination, branch to it if it is not the
2004  // next basic block.  Otherwise, just fall through.
2005  if (SI.getNumOperands() == 2) {
2006    // Update machine-CFG edges.
2007
2008    // If this is not a fall-through branch, emit the branch.
2009    CurMBB->addSuccessor(Default);
2010    if (Default != NextBlock)
2011      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
2012                              MVT::Other, getControlRoot(),
2013                              DAG.getBasicBlock(Default)));
2014
2015    return;
2016  }
2017
2018  // If there are any non-default case statements, create a vector of Cases
2019  // representing each one, and sort the vector so that we can efficiently
2020  // create a binary search tree from them.
2021  CaseVector Cases;
2022  size_t numCmps = Clusterify(Cases, SI);
2023  DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2024               << ". Total compares: " << numCmps << '\n');
2025  numCmps = 0;
2026
2027  // Get the Value to be switched on and default basic blocks, which will be
2028  // inserted into CaseBlock records, representing basic blocks in the binary
2029  // search tree.
2030  Value *SV = SI.getOperand(0);
2031
2032  // Push the initial CaseRec onto the worklist
2033  CaseRecVector WorkList;
2034  WorkList.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end())));
2035
2036  while (!WorkList.empty()) {
2037    // Grab a record representing a case range to process off the worklist
2038    CaseRec CR = WorkList.back();
2039    WorkList.pop_back();
2040
2041    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default))
2042      continue;
2043
2044    // If the range has few cases (two or less) emit a series of specific
2045    // tests.
2046    if (handleSmallSwitchRange(CR, WorkList, SV, Default))
2047      continue;
2048
2049    // If the switch has more than 5 blocks, and at least 40% dense, and the
2050    // target supports indirect branches, then emit a jump table rather than
2051    // lowering the switch to a binary tree of conditional branches.
2052    if (handleJTSwitchCase(CR, WorkList, SV, Default))
2053      continue;
2054
2055    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2056    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2057    handleBTSplitSwitchCase(CR, WorkList, SV, Default);
2058  }
2059}
2060
2061void SelectionDAGBuilder::visitIndirectBr(IndirectBrInst &I) {
2062  // Update machine-CFG edges with unique successors.
2063  SmallVector<BasicBlock*, 32> succs;
2064  succs.reserve(I.getNumSuccessors());
2065  for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i)
2066    succs.push_back(I.getSuccessor(i));
2067  array_pod_sort(succs.begin(), succs.end());
2068  succs.erase(std::unique(succs.begin(), succs.end()), succs.end());
2069  for (unsigned i = 0, e = succs.size(); i != e; ++i)
2070    CurMBB->addSuccessor(FuncInfo.MBBMap[succs[i]]);
2071
2072  DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(),
2073                          MVT::Other, getControlRoot(),
2074                          getValue(I.getAddress())));
2075}
2076
2077void SelectionDAGBuilder::visitFSub(User &I) {
2078  // -0.0 - X --> fneg
2079  const Type *Ty = I.getType();
2080  if (Ty->isVectorTy()) {
2081    if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) {
2082      const VectorType *DestTy = cast<VectorType>(I.getType());
2083      const Type *ElTy = DestTy->getElementType();
2084      unsigned VL = DestTy->getNumElements();
2085      std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy));
2086      Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size());
2087      if (CV == CNZ) {
2088        SDValue Op2 = getValue(I.getOperand(1));
2089        setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2090                                 Op2.getValueType(), Op2));
2091        return;
2092      }
2093    }
2094  }
2095
2096  if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
2097    if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) {
2098      SDValue Op2 = getValue(I.getOperand(1));
2099      setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2100                               Op2.getValueType(), Op2));
2101      return;
2102    }
2103
2104  visitBinary(I, ISD::FSUB);
2105}
2106
2107void SelectionDAGBuilder::visitBinary(User &I, unsigned OpCode) {
2108  SDValue Op1 = getValue(I.getOperand(0));
2109  SDValue Op2 = getValue(I.getOperand(1));
2110  setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(),
2111                           Op1.getValueType(), Op1, Op2));
2112}
2113
2114void SelectionDAGBuilder::visitShift(User &I, unsigned Opcode) {
2115  SDValue Op1 = getValue(I.getOperand(0));
2116  SDValue Op2 = getValue(I.getOperand(1));
2117  if (!I.getType()->isVectorTy() &&
2118      Op2.getValueType() != TLI.getShiftAmountTy()) {
2119    // If the operand is smaller than the shift count type, promote it.
2120    EVT PTy = TLI.getPointerTy();
2121    EVT STy = TLI.getShiftAmountTy();
2122    if (STy.bitsGT(Op2.getValueType()))
2123      Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(),
2124                        TLI.getShiftAmountTy(), Op2);
2125    // If the operand is larger than the shift count type but the shift
2126    // count type has enough bits to represent any shift value, truncate
2127    // it now. This is a common case and it exposes the truncate to
2128    // optimization early.
2129    else if (STy.getSizeInBits() >=
2130             Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2131      Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2132                        TLI.getShiftAmountTy(), Op2);
2133    // Otherwise we'll need to temporarily settle for some other
2134    // convenient type; type legalization will make adjustments as
2135    // needed.
2136    else if (PTy.bitsLT(Op2.getValueType()))
2137      Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2138                        TLI.getPointerTy(), Op2);
2139    else if (PTy.bitsGT(Op2.getValueType()))
2140      Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(),
2141                        TLI.getPointerTy(), Op2);
2142  }
2143
2144  setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(),
2145                           Op1.getValueType(), Op1, Op2));
2146}
2147
2148void SelectionDAGBuilder::visitICmp(User &I) {
2149  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2150  if (ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2151    predicate = IC->getPredicate();
2152  else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2153    predicate = ICmpInst::Predicate(IC->getPredicate());
2154  SDValue Op1 = getValue(I.getOperand(0));
2155  SDValue Op2 = getValue(I.getOperand(1));
2156  ISD::CondCode Opcode = getICmpCondCode(predicate);
2157
2158  EVT DestVT = TLI.getValueType(I.getType());
2159  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode));
2160}
2161
2162void SelectionDAGBuilder::visitFCmp(User &I) {
2163  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2164  if (FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2165    predicate = FC->getPredicate();
2166  else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2167    predicate = FCmpInst::Predicate(FC->getPredicate());
2168  SDValue Op1 = getValue(I.getOperand(0));
2169  SDValue Op2 = getValue(I.getOperand(1));
2170  ISD::CondCode Condition = getFCmpCondCode(predicate);
2171  EVT DestVT = TLI.getValueType(I.getType());
2172  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition));
2173}
2174
2175void SelectionDAGBuilder::visitSelect(User &I) {
2176  SmallVector<EVT, 4> ValueVTs;
2177  ComputeValueVTs(TLI, I.getType(), ValueVTs);
2178  unsigned NumValues = ValueVTs.size();
2179  if (NumValues == 0) return;
2180
2181  SmallVector<SDValue, 4> Values(NumValues);
2182  SDValue Cond     = getValue(I.getOperand(0));
2183  SDValue TrueVal  = getValue(I.getOperand(1));
2184  SDValue FalseVal = getValue(I.getOperand(2));
2185
2186  for (unsigned i = 0; i != NumValues; ++i)
2187    Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(),
2188                          TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2189                            Cond,
2190                            SDValue(TrueVal.getNode(),
2191                                    TrueVal.getResNo() + i),
2192                            SDValue(FalseVal.getNode(),
2193                                    FalseVal.getResNo() + i));
2194
2195  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2196                           DAG.getVTList(&ValueVTs[0], NumValues),
2197                           &Values[0], NumValues));
2198}
2199
2200void SelectionDAGBuilder::visitTrunc(User &I) {
2201  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2202  SDValue N = getValue(I.getOperand(0));
2203  EVT DestVT = TLI.getValueType(I.getType());
2204  setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N));
2205}
2206
2207void SelectionDAGBuilder::visitZExt(User &I) {
2208  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2209  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2210  SDValue N = getValue(I.getOperand(0));
2211  EVT DestVT = TLI.getValueType(I.getType());
2212  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N));
2213}
2214
2215void SelectionDAGBuilder::visitSExt(User &I) {
2216  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2217  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2218  SDValue N = getValue(I.getOperand(0));
2219  EVT DestVT = TLI.getValueType(I.getType());
2220  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N));
2221}
2222
2223void SelectionDAGBuilder::visitFPTrunc(User &I) {
2224  // FPTrunc is never a no-op cast, no need to check
2225  SDValue N = getValue(I.getOperand(0));
2226  EVT DestVT = TLI.getValueType(I.getType());
2227  setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(),
2228                           DestVT, N, DAG.getIntPtrConstant(0)));
2229}
2230
2231void SelectionDAGBuilder::visitFPExt(User &I){
2232  // FPTrunc is never a no-op cast, no need to check
2233  SDValue N = getValue(I.getOperand(0));
2234  EVT DestVT = TLI.getValueType(I.getType());
2235  setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N));
2236}
2237
2238void SelectionDAGBuilder::visitFPToUI(User &I) {
2239  // FPToUI is never a no-op cast, no need to check
2240  SDValue N = getValue(I.getOperand(0));
2241  EVT DestVT = TLI.getValueType(I.getType());
2242  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N));
2243}
2244
2245void SelectionDAGBuilder::visitFPToSI(User &I) {
2246  // FPToSI is never a no-op cast, no need to check
2247  SDValue N = getValue(I.getOperand(0));
2248  EVT DestVT = TLI.getValueType(I.getType());
2249  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N));
2250}
2251
2252void SelectionDAGBuilder::visitUIToFP(User &I) {
2253  // UIToFP is never a no-op cast, no need to check
2254  SDValue N = getValue(I.getOperand(0));
2255  EVT DestVT = TLI.getValueType(I.getType());
2256  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N));
2257}
2258
2259void SelectionDAGBuilder::visitSIToFP(User &I){
2260  // SIToFP is never a no-op cast, no need to check
2261  SDValue N = getValue(I.getOperand(0));
2262  EVT DestVT = TLI.getValueType(I.getType());
2263  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N));
2264}
2265
2266void SelectionDAGBuilder::visitPtrToInt(User &I) {
2267  // What to do depends on the size of the integer and the size of the pointer.
2268  // We can either truncate, zero extend, or no-op, accordingly.
2269  SDValue N = getValue(I.getOperand(0));
2270  EVT SrcVT = N.getValueType();
2271  EVT DestVT = TLI.getValueType(I.getType());
2272  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2273}
2274
2275void SelectionDAGBuilder::visitIntToPtr(User &I) {
2276  // What to do depends on the size of the integer and the size of the pointer.
2277  // We can either truncate, zero extend, or no-op, accordingly.
2278  SDValue N = getValue(I.getOperand(0));
2279  EVT SrcVT = N.getValueType();
2280  EVT DestVT = TLI.getValueType(I.getType());
2281  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2282}
2283
2284void SelectionDAGBuilder::visitBitCast(User &I) {
2285  SDValue N = getValue(I.getOperand(0));
2286  EVT DestVT = TLI.getValueType(I.getType());
2287
2288  // BitCast assures us that source and destination are the same size so this is
2289  // either a BIT_CONVERT or a no-op.
2290  if (DestVT != N.getValueType())
2291    setValue(&I, DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
2292                             DestVT, N)); // convert types.
2293  else
2294    setValue(&I, N);            // noop cast.
2295}
2296
2297void SelectionDAGBuilder::visitInsertElement(User &I) {
2298  SDValue InVec = getValue(I.getOperand(0));
2299  SDValue InVal = getValue(I.getOperand(1));
2300  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2301                              TLI.getPointerTy(),
2302                              getValue(I.getOperand(2)));
2303  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(),
2304                           TLI.getValueType(I.getType()),
2305                           InVec, InVal, InIdx));
2306}
2307
2308void SelectionDAGBuilder::visitExtractElement(User &I) {
2309  SDValue InVec = getValue(I.getOperand(0));
2310  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2311                              TLI.getPointerTy(),
2312                              getValue(I.getOperand(1)));
2313  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2314                           TLI.getValueType(I.getType()), InVec, InIdx));
2315}
2316
2317// Utility for visitShuffleVector - Returns true if the mask is mask starting
2318// from SIndx and increasing to the element length (undefs are allowed).
2319static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) {
2320  unsigned MaskNumElts = Mask.size();
2321  for (unsigned i = 0; i != MaskNumElts; ++i)
2322    if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx)))
2323      return false;
2324  return true;
2325}
2326
2327void SelectionDAGBuilder::visitShuffleVector(User &I) {
2328  SmallVector<int, 8> Mask;
2329  SDValue Src1 = getValue(I.getOperand(0));
2330  SDValue Src2 = getValue(I.getOperand(1));
2331
2332  // Convert the ConstantVector mask operand into an array of ints, with -1
2333  // representing undef values.
2334  SmallVector<Constant*, 8> MaskElts;
2335  cast<Constant>(I.getOperand(2))->getVectorElements(MaskElts);
2336  unsigned MaskNumElts = MaskElts.size();
2337  for (unsigned i = 0; i != MaskNumElts; ++i) {
2338    if (isa<UndefValue>(MaskElts[i]))
2339      Mask.push_back(-1);
2340    else
2341      Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue());
2342  }
2343
2344  EVT VT = TLI.getValueType(I.getType());
2345  EVT SrcVT = Src1.getValueType();
2346  unsigned SrcNumElts = SrcVT.getVectorNumElements();
2347
2348  if (SrcNumElts == MaskNumElts) {
2349    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2350                                      &Mask[0]));
2351    return;
2352  }
2353
2354  // Normalize the shuffle vector since mask and vector length don't match.
2355  if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2356    // Mask is longer than the source vectors and is a multiple of the source
2357    // vectors.  We can use concatenate vector to make the mask and vectors
2358    // lengths match.
2359    if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) {
2360      // The shuffle is concatenating two vectors together.
2361      setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2362                               VT, Src1, Src2));
2363      return;
2364    }
2365
2366    // Pad both vectors with undefs to make them the same length as the mask.
2367    unsigned NumConcat = MaskNumElts / SrcNumElts;
2368    bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2369    bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2370    SDValue UndefVal = DAG.getUNDEF(SrcVT);
2371
2372    SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2373    SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2374    MOps1[0] = Src1;
2375    MOps2[0] = Src2;
2376
2377    Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2378                                                  getCurDebugLoc(), VT,
2379                                                  &MOps1[0], NumConcat);
2380    Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2381                                                  getCurDebugLoc(), VT,
2382                                                  &MOps2[0], NumConcat);
2383
2384    // Readjust mask for new input vector length.
2385    SmallVector<int, 8> MappedOps;
2386    for (unsigned i = 0; i != MaskNumElts; ++i) {
2387      int Idx = Mask[i];
2388      if (Idx < (int)SrcNumElts)
2389        MappedOps.push_back(Idx);
2390      else
2391        MappedOps.push_back(Idx + MaskNumElts - SrcNumElts);
2392    }
2393
2394    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2395                                      &MappedOps[0]));
2396    return;
2397  }
2398
2399  if (SrcNumElts > MaskNumElts) {
2400    // Analyze the access pattern of the vector to see if we can extract
2401    // two subvectors and do the shuffle. The analysis is done by calculating
2402    // the range of elements the mask access on both vectors.
2403    int MinRange[2] = { SrcNumElts+1, SrcNumElts+1};
2404    int MaxRange[2] = {-1, -1};
2405
2406    for (unsigned i = 0; i != MaskNumElts; ++i) {
2407      int Idx = Mask[i];
2408      int Input = 0;
2409      if (Idx < 0)
2410        continue;
2411
2412      if (Idx >= (int)SrcNumElts) {
2413        Input = 1;
2414        Idx -= SrcNumElts;
2415      }
2416      if (Idx > MaxRange[Input])
2417        MaxRange[Input] = Idx;
2418      if (Idx < MinRange[Input])
2419        MinRange[Input] = Idx;
2420    }
2421
2422    // Check if the access is smaller than the vector size and can we find
2423    // a reasonable extract index.
2424    int RangeUse[2] = { 2, 2 };  // 0 = Unused, 1 = Extract, 2 = Can not
2425                                 // Extract.
2426    int StartIdx[2];  // StartIdx to extract from
2427    for (int Input=0; Input < 2; ++Input) {
2428      if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) {
2429        RangeUse[Input] = 0; // Unused
2430        StartIdx[Input] = 0;
2431      } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) {
2432        // Fits within range but we should see if we can find a good
2433        // start index that is a multiple of the mask length.
2434        if (MaxRange[Input] < (int)MaskNumElts) {
2435          RangeUse[Input] = 1; // Extract from beginning of the vector
2436          StartIdx[Input] = 0;
2437        } else {
2438          StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2439          if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2440              StartIdx[Input] + MaskNumElts < SrcNumElts)
2441            RangeUse[Input] = 1; // Extract from a multiple of the mask length.
2442        }
2443      }
2444    }
2445
2446    if (RangeUse[0] == 0 && RangeUse[1] == 0) {
2447      setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
2448      return;
2449    }
2450    else if (RangeUse[0] < 2 && RangeUse[1] < 2) {
2451      // Extract appropriate subvector and generate a vector shuffle
2452      for (int Input=0; Input < 2; ++Input) {
2453        SDValue &Src = Input == 0 ? Src1 : Src2;
2454        if (RangeUse[Input] == 0)
2455          Src = DAG.getUNDEF(VT);
2456        else
2457          Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT,
2458                            Src, DAG.getIntPtrConstant(StartIdx[Input]));
2459      }
2460
2461      // Calculate new mask.
2462      SmallVector<int, 8> MappedOps;
2463      for (unsigned i = 0; i != MaskNumElts; ++i) {
2464        int Idx = Mask[i];
2465        if (Idx < 0)
2466          MappedOps.push_back(Idx);
2467        else if (Idx < (int)SrcNumElts)
2468          MappedOps.push_back(Idx - StartIdx[0]);
2469        else
2470          MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts);
2471      }
2472
2473      setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2474                                        &MappedOps[0]));
2475      return;
2476    }
2477  }
2478
2479  // We can't use either concat vectors or extract subvectors so fall back to
2480  // replacing the shuffle with extract and build vector.
2481  // to insert and build vector.
2482  EVT EltVT = VT.getVectorElementType();
2483  EVT PtrVT = TLI.getPointerTy();
2484  SmallVector<SDValue,8> Ops;
2485  for (unsigned i = 0; i != MaskNumElts; ++i) {
2486    if (Mask[i] < 0) {
2487      Ops.push_back(DAG.getUNDEF(EltVT));
2488    } else {
2489      int Idx = Mask[i];
2490      SDValue Res;
2491
2492      if (Idx < (int)SrcNumElts)
2493        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2494                          EltVT, Src1, DAG.getConstant(Idx, PtrVT));
2495      else
2496        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2497                          EltVT, Src2,
2498                          DAG.getConstant(Idx - SrcNumElts, PtrVT));
2499
2500      Ops.push_back(Res);
2501    }
2502  }
2503
2504  setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
2505                           VT, &Ops[0], Ops.size()));
2506}
2507
2508void SelectionDAGBuilder::visitInsertValue(InsertValueInst &I) {
2509  const Value *Op0 = I.getOperand(0);
2510  const Value *Op1 = I.getOperand(1);
2511  const Type *AggTy = I.getType();
2512  const Type *ValTy = Op1->getType();
2513  bool IntoUndef = isa<UndefValue>(Op0);
2514  bool FromUndef = isa<UndefValue>(Op1);
2515
2516  unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
2517                                            I.idx_begin(), I.idx_end());
2518
2519  SmallVector<EVT, 4> AggValueVTs;
2520  ComputeValueVTs(TLI, AggTy, AggValueVTs);
2521  SmallVector<EVT, 4> ValValueVTs;
2522  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2523
2524  unsigned NumAggValues = AggValueVTs.size();
2525  unsigned NumValValues = ValValueVTs.size();
2526  SmallVector<SDValue, 4> Values(NumAggValues);
2527
2528  SDValue Agg = getValue(Op0);
2529  SDValue Val = getValue(Op1);
2530  unsigned i = 0;
2531  // Copy the beginning value(s) from the original aggregate.
2532  for (; i != LinearIndex; ++i)
2533    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2534                SDValue(Agg.getNode(), Agg.getResNo() + i);
2535  // Copy values from the inserted value(s).
2536  for (; i != LinearIndex + NumValValues; ++i)
2537    Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2538                SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
2539  // Copy remaining value(s) from the original aggregate.
2540  for (; i != NumAggValues; ++i)
2541    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2542                SDValue(Agg.getNode(), Agg.getResNo() + i);
2543
2544  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2545                           DAG.getVTList(&AggValueVTs[0], NumAggValues),
2546                           &Values[0], NumAggValues));
2547}
2548
2549void SelectionDAGBuilder::visitExtractValue(ExtractValueInst &I) {
2550  const Value *Op0 = I.getOperand(0);
2551  const Type *AggTy = Op0->getType();
2552  const Type *ValTy = I.getType();
2553  bool OutOfUndef = isa<UndefValue>(Op0);
2554
2555  unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
2556                                            I.idx_begin(), I.idx_end());
2557
2558  SmallVector<EVT, 4> ValValueVTs;
2559  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2560
2561  unsigned NumValValues = ValValueVTs.size();
2562  SmallVector<SDValue, 4> Values(NumValValues);
2563
2564  SDValue Agg = getValue(Op0);
2565  // Copy out the selected value(s).
2566  for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
2567    Values[i - LinearIndex] =
2568      OutOfUndef ?
2569        DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
2570        SDValue(Agg.getNode(), Agg.getResNo() + i);
2571
2572  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2573                           DAG.getVTList(&ValValueVTs[0], NumValValues),
2574                           &Values[0], NumValValues));
2575}
2576
2577void SelectionDAGBuilder::visitGetElementPtr(User &I) {
2578  SDValue N = getValue(I.getOperand(0));
2579  const Type *Ty = I.getOperand(0)->getType();
2580
2581  for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
2582       OI != E; ++OI) {
2583    Value *Idx = *OI;
2584    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2585      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2586      if (Field) {
2587        // N = N + Offset
2588        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
2589        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2590                        DAG.getIntPtrConstant(Offset));
2591      }
2592
2593      Ty = StTy->getElementType(Field);
2594    } else if (const UnionType *UnTy = dyn_cast<UnionType>(Ty)) {
2595      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2596
2597      // Offset canonically 0 for unions, but type changes
2598      Ty = UnTy->getElementType(Field);
2599    } else {
2600      Ty = cast<SequentialType>(Ty)->getElementType();
2601
2602      // If this is a constant subscript, handle it quickly.
2603      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2604        if (CI->getZExtValue() == 0) continue;
2605        uint64_t Offs =
2606            TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
2607        SDValue OffsVal;
2608        EVT PTy = TLI.getPointerTy();
2609        unsigned PtrBits = PTy.getSizeInBits();
2610        if (PtrBits < 64)
2611          OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2612                                TLI.getPointerTy(),
2613                                DAG.getConstant(Offs, MVT::i64));
2614        else
2615          OffsVal = DAG.getIntPtrConstant(Offs);
2616
2617        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2618                        OffsVal);
2619        continue;
2620      }
2621
2622      // N = N + Idx * ElementSize;
2623      APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
2624                                TD->getTypeAllocSize(Ty));
2625      SDValue IdxN = getValue(Idx);
2626
2627      // If the index is smaller or larger than intptr_t, truncate or extend
2628      // it.
2629      IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType());
2630
2631      // If this is a multiply by a power of two, turn it into a shl
2632      // immediately.  This is a very common case.
2633      if (ElementSize != 1) {
2634        if (ElementSize.isPowerOf2()) {
2635          unsigned Amt = ElementSize.logBase2();
2636          IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(),
2637                             N.getValueType(), IdxN,
2638                             DAG.getConstant(Amt, TLI.getPointerTy()));
2639        } else {
2640          SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy());
2641          IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(),
2642                             N.getValueType(), IdxN, Scale);
2643        }
2644      }
2645
2646      N = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2647                      N.getValueType(), N, IdxN);
2648    }
2649  }
2650
2651  setValue(&I, N);
2652}
2653
2654void SelectionDAGBuilder::visitAlloca(AllocaInst &I) {
2655  // If this is a fixed sized alloca in the entry block of the function,
2656  // allocate it statically on the stack.
2657  if (FuncInfo.StaticAllocaMap.count(&I))
2658    return;   // getValue will auto-populate this.
2659
2660  const Type *Ty = I.getAllocatedType();
2661  uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
2662  unsigned Align =
2663    std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
2664             I.getAlignment());
2665
2666  SDValue AllocSize = getValue(I.getArraySize());
2667
2668  AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), AllocSize.getValueType(),
2669                          AllocSize,
2670                          DAG.getConstant(TySize, AllocSize.getValueType()));
2671
2672  EVT IntPtr = TLI.getPointerTy();
2673  AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr);
2674
2675  // Handle alignment.  If the requested alignment is less than or equal to
2676  // the stack alignment, ignore it.  If the size is greater than or equal to
2677  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
2678  unsigned StackAlign =
2679    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
2680  if (Align <= StackAlign)
2681    Align = 0;
2682
2683  // Round the size of the allocation up to the stack alignment size
2684  // by add SA-1 to the size.
2685  AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2686                          AllocSize.getValueType(), AllocSize,
2687                          DAG.getIntPtrConstant(StackAlign-1));
2688
2689  // Mask out the low bits for alignment purposes.
2690  AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(),
2691                          AllocSize.getValueType(), AllocSize,
2692                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
2693
2694  SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
2695  SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
2696  SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(),
2697                            VTs, Ops, 3);
2698  setValue(&I, DSA);
2699  DAG.setRoot(DSA.getValue(1));
2700
2701  // Inform the Frame Information that we have just allocated a variable-sized
2702  // object.
2703  FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject();
2704}
2705
2706void SelectionDAGBuilder::visitLoad(LoadInst &I) {
2707  const Value *SV = I.getOperand(0);
2708  SDValue Ptr = getValue(SV);
2709
2710  const Type *Ty = I.getType();
2711
2712  bool isVolatile = I.isVolatile();
2713  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
2714  unsigned Alignment = I.getAlignment();
2715
2716  SmallVector<EVT, 4> ValueVTs;
2717  SmallVector<uint64_t, 4> Offsets;
2718  ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
2719  unsigned NumValues = ValueVTs.size();
2720  if (NumValues == 0)
2721    return;
2722
2723  SDValue Root;
2724  bool ConstantMemory = false;
2725  if (I.isVolatile())
2726    // Serialize volatile loads with other side effects.
2727    Root = getRoot();
2728  else if (AA->pointsToConstantMemory(SV)) {
2729    // Do not serialize (non-volatile) loads of constant memory with anything.
2730    Root = DAG.getEntryNode();
2731    ConstantMemory = true;
2732  } else {
2733    // Do not serialize non-volatile loads against each other.
2734    Root = DAG.getRoot();
2735  }
2736
2737  SmallVector<SDValue, 4> Values(NumValues);
2738  SmallVector<SDValue, 4> Chains(NumValues);
2739  EVT PtrVT = Ptr.getValueType();
2740  for (unsigned i = 0; i != NumValues; ++i) {
2741    SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2742                            PtrVT, Ptr,
2743                            DAG.getConstant(Offsets[i], PtrVT));
2744    SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root,
2745                            A, SV, Offsets[i], isVolatile,
2746                            isNonTemporal, Alignment);
2747
2748    Values[i] = L;
2749    Chains[i] = L.getValue(1);
2750  }
2751
2752  if (!ConstantMemory) {
2753    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
2754                                MVT::Other, &Chains[0], NumValues);
2755    if (isVolatile)
2756      DAG.setRoot(Chain);
2757    else
2758      PendingLoads.push_back(Chain);
2759  }
2760
2761  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2762                           DAG.getVTList(&ValueVTs[0], NumValues),
2763                           &Values[0], NumValues));
2764}
2765
2766void SelectionDAGBuilder::visitStore(StoreInst &I) {
2767  Value *SrcV = I.getOperand(0);
2768  Value *PtrV = I.getOperand(1);
2769
2770  SmallVector<EVT, 4> ValueVTs;
2771  SmallVector<uint64_t, 4> Offsets;
2772  ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
2773  unsigned NumValues = ValueVTs.size();
2774  if (NumValues == 0)
2775    return;
2776
2777  // Get the lowered operands. Note that we do this after
2778  // checking if NumResults is zero, because with zero results
2779  // the operands won't have values in the map.
2780  SDValue Src = getValue(SrcV);
2781  SDValue Ptr = getValue(PtrV);
2782
2783  SDValue Root = getRoot();
2784  SmallVector<SDValue, 4> Chains(NumValues);
2785  EVT PtrVT = Ptr.getValueType();
2786  bool isVolatile = I.isVolatile();
2787  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
2788  unsigned Alignment = I.getAlignment();
2789
2790  for (unsigned i = 0; i != NumValues; ++i) {
2791    SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr,
2792                              DAG.getConstant(Offsets[i], PtrVT));
2793    Chains[i] = DAG.getStore(Root, getCurDebugLoc(),
2794                             SDValue(Src.getNode(), Src.getResNo() + i),
2795                             Add, PtrV, Offsets[i], isVolatile,
2796                             isNonTemporal, Alignment);
2797  }
2798
2799  DAG.setRoot(DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
2800                          MVT::Other, &Chains[0], NumValues));
2801}
2802
2803/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
2804/// node.
2805void SelectionDAGBuilder::visitTargetIntrinsic(CallInst &I,
2806                                               unsigned Intrinsic) {
2807  bool HasChain = !I.doesNotAccessMemory();
2808  bool OnlyLoad = HasChain && I.onlyReadsMemory();
2809
2810  // Build the operand list.
2811  SmallVector<SDValue, 8> Ops;
2812  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
2813    if (OnlyLoad) {
2814      // We don't need to serialize loads against other loads.
2815      Ops.push_back(DAG.getRoot());
2816    } else {
2817      Ops.push_back(getRoot());
2818    }
2819  }
2820
2821  // Info is set by getTgtMemInstrinsic
2822  TargetLowering::IntrinsicInfo Info;
2823  bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
2824
2825  // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
2826  if (!IsTgtIntrinsic)
2827    Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
2828
2829  // Add all operands of the call to the operand list.
2830  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
2831    SDValue Op = getValue(I.getOperand(i));
2832    assert(TLI.isTypeLegal(Op.getValueType()) &&
2833           "Intrinsic uses a non-legal type?");
2834    Ops.push_back(Op);
2835  }
2836
2837  SmallVector<EVT, 4> ValueVTs;
2838  ComputeValueVTs(TLI, I.getType(), ValueVTs);
2839#ifndef NDEBUG
2840  for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) {
2841    assert(TLI.isTypeLegal(ValueVTs[Val]) &&
2842           "Intrinsic uses a non-legal type?");
2843  }
2844#endif // NDEBUG
2845
2846  if (HasChain)
2847    ValueVTs.push_back(MVT::Other);
2848
2849  SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
2850
2851  // Create the node.
2852  SDValue Result;
2853  if (IsTgtIntrinsic) {
2854    // This is target intrinsic that touches memory
2855    Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(),
2856                                     VTs, &Ops[0], Ops.size(),
2857                                     Info.memVT, Info.ptrVal, Info.offset,
2858                                     Info.align, Info.vol,
2859                                     Info.readMem, Info.writeMem);
2860  } else if (!HasChain) {
2861    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
2862                         VTs, &Ops[0], Ops.size());
2863  } else if (!I.getType()->isVoidTy()) {
2864    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
2865                         VTs, &Ops[0], Ops.size());
2866  } else {
2867    Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(),
2868                         VTs, &Ops[0], Ops.size());
2869  }
2870
2871  if (HasChain) {
2872    SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
2873    if (OnlyLoad)
2874      PendingLoads.push_back(Chain);
2875    else
2876      DAG.setRoot(Chain);
2877  }
2878
2879  if (!I.getType()->isVoidTy()) {
2880    if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
2881      EVT VT = TLI.getValueType(PTy);
2882      Result = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), VT, Result);
2883    }
2884
2885    setValue(&I, Result);
2886  }
2887}
2888
2889/// GetSignificand - Get the significand and build it into a floating-point
2890/// number with exponent of 1:
2891///
2892///   Op = (Op & 0x007fffff) | 0x3f800000;
2893///
2894/// where Op is the hexidecimal representation of floating point value.
2895static SDValue
2896GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) {
2897  SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
2898                           DAG.getConstant(0x007fffff, MVT::i32));
2899  SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
2900                           DAG.getConstant(0x3f800000, MVT::i32));
2901  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t2);
2902}
2903
2904/// GetExponent - Get the exponent:
2905///
2906///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
2907///
2908/// where Op is the hexidecimal representation of floating point value.
2909static SDValue
2910GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
2911            DebugLoc dl) {
2912  SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
2913                           DAG.getConstant(0x7f800000, MVT::i32));
2914  SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
2915                           DAG.getConstant(23, TLI.getPointerTy()));
2916  SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
2917                           DAG.getConstant(127, MVT::i32));
2918  return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
2919}
2920
2921/// getF32Constant - Get 32-bit floating point constant.
2922static SDValue
2923getF32Constant(SelectionDAG &DAG, unsigned Flt) {
2924  return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32);
2925}
2926
2927/// Inlined utility function to implement binary input atomic intrinsics for
2928/// visitIntrinsicCall: I is a call instruction
2929///                     Op is the associated NodeType for I
2930const char *
2931SelectionDAGBuilder::implVisitBinaryAtomic(CallInst& I, ISD::NodeType Op) {
2932  SDValue Root = getRoot();
2933  SDValue L =
2934    DAG.getAtomic(Op, getCurDebugLoc(),
2935                  getValue(I.getOperand(2)).getValueType().getSimpleVT(),
2936                  Root,
2937                  getValue(I.getOperand(1)),
2938                  getValue(I.getOperand(2)),
2939                  I.getOperand(1));
2940  setValue(&I, L);
2941  DAG.setRoot(L.getValue(1));
2942  return 0;
2943}
2944
2945// implVisitAluOverflow - Lower arithmetic overflow instrinsics.
2946const char *
2947SelectionDAGBuilder::implVisitAluOverflow(CallInst &I, ISD::NodeType Op) {
2948  SDValue Op1 = getValue(I.getOperand(1));
2949  SDValue Op2 = getValue(I.getOperand(2));
2950
2951  SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
2952  setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2));
2953  return 0;
2954}
2955
2956/// visitExp - Lower an exp intrinsic. Handles the special sequences for
2957/// limited-precision mode.
2958void
2959SelectionDAGBuilder::visitExp(CallInst &I) {
2960  SDValue result;
2961  DebugLoc dl = getCurDebugLoc();
2962
2963  if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
2964      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
2965    SDValue Op = getValue(I.getOperand(1));
2966
2967    // Put the exponent in the right bit position for later addition to the
2968    // final result:
2969    //
2970    //   #define LOG2OFe 1.4426950f
2971    //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
2972    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
2973                             getF32Constant(DAG, 0x3fb8aa3b));
2974    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
2975
2976    //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
2977    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
2978    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
2979
2980    //   IntegerPartOfX <<= 23;
2981    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
2982                                 DAG.getConstant(23, TLI.getPointerTy()));
2983
2984    if (LimitFloatPrecision <= 6) {
2985      // For floating-point precision of 6:
2986      //
2987      //   TwoToFractionalPartOfX =
2988      //     0.997535578f +
2989      //       (0.735607626f + 0.252464424f * x) * x;
2990      //
2991      // error 0.0144103317, which is 6 bits
2992      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
2993                               getF32Constant(DAG, 0x3e814304));
2994      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
2995                               getF32Constant(DAG, 0x3f3c50c8));
2996      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
2997      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
2998                               getF32Constant(DAG, 0x3f7f5e7e));
2999      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t5);
3000
3001      // Add the exponent into the result in integer domain.
3002      SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3003                               TwoToFracPartOfX, IntegerPartOfX);
3004
3005      result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t6);
3006    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3007      // For floating-point precision of 12:
3008      //
3009      //   TwoToFractionalPartOfX =
3010      //     0.999892986f +
3011      //       (0.696457318f +
3012      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3013      //
3014      // 0.000107046256 error, which is 13 to 14 bits
3015      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3016                               getF32Constant(DAG, 0x3da235e3));
3017      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3018                               getF32Constant(DAG, 0x3e65b8f3));
3019      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3020      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3021                               getF32Constant(DAG, 0x3f324b07));
3022      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3023      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3024                               getF32Constant(DAG, 0x3f7ff8fd));
3025      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t7);
3026
3027      // Add the exponent into the result in integer domain.
3028      SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3029                               TwoToFracPartOfX, IntegerPartOfX);
3030
3031      result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t8);
3032    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3033      // For floating-point precision of 18:
3034      //
3035      //   TwoToFractionalPartOfX =
3036      //     0.999999982f +
3037      //       (0.693148872f +
3038      //         (0.240227044f +
3039      //           (0.554906021e-1f +
3040      //             (0.961591928e-2f +
3041      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3042      //
3043      // error 2.47208000*10^(-7), which is better than 18 bits
3044      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3045                               getF32Constant(DAG, 0x3924b03e));
3046      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3047                               getF32Constant(DAG, 0x3ab24b87));
3048      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3049      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3050                               getF32Constant(DAG, 0x3c1d8c17));
3051      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3052      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3053                               getF32Constant(DAG, 0x3d634a1d));
3054      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3055      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3056                               getF32Constant(DAG, 0x3e75fe14));
3057      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3058      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3059                                getF32Constant(DAG, 0x3f317234));
3060      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3061      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3062                                getF32Constant(DAG, 0x3f800000));
3063      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,
3064                                             MVT::i32, t13);
3065
3066      // Add the exponent into the result in integer domain.
3067      SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3068                                TwoToFracPartOfX, IntegerPartOfX);
3069
3070      result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t14);
3071    }
3072  } else {
3073    // No special expansion.
3074    result = DAG.getNode(ISD::FEXP, dl,
3075                         getValue(I.getOperand(1)).getValueType(),
3076                         getValue(I.getOperand(1)));
3077  }
3078
3079  setValue(&I, result);
3080}
3081
3082/// visitLog - Lower a log intrinsic. Handles the special sequences for
3083/// limited-precision mode.
3084void
3085SelectionDAGBuilder::visitLog(CallInst &I) {
3086  SDValue result;
3087  DebugLoc dl = getCurDebugLoc();
3088
3089  if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
3090      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3091    SDValue Op = getValue(I.getOperand(1));
3092    SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
3093
3094    // Scale the exponent by log(2) [0.69314718f].
3095    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3096    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3097                                        getF32Constant(DAG, 0x3f317218));
3098
3099    // Get the significand and build it into a floating-point number with
3100    // exponent of 1.
3101    SDValue X = GetSignificand(DAG, Op1, dl);
3102
3103    if (LimitFloatPrecision <= 6) {
3104      // For floating-point precision of 6:
3105      //
3106      //   LogofMantissa =
3107      //     -1.1609546f +
3108      //       (1.4034025f - 0.23903021f * x) * x;
3109      //
3110      // error 0.0034276066, which is better than 8 bits
3111      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3112                               getF32Constant(DAG, 0xbe74c456));
3113      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3114                               getF32Constant(DAG, 0x3fb3a2b1));
3115      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3116      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3117                                          getF32Constant(DAG, 0x3f949a29));
3118
3119      result = DAG.getNode(ISD::FADD, dl,
3120                           MVT::f32, LogOfExponent, LogOfMantissa);
3121    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3122      // For floating-point precision of 12:
3123      //
3124      //   LogOfMantissa =
3125      //     -1.7417939f +
3126      //       (2.8212026f +
3127      //         (-1.4699568f +
3128      //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3129      //
3130      // error 0.000061011436, which is 14 bits
3131      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3132                               getF32Constant(DAG, 0xbd67b6d6));
3133      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3134                               getF32Constant(DAG, 0x3ee4f4b8));
3135      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3136      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3137                               getF32Constant(DAG, 0x3fbc278b));
3138      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3139      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3140                               getF32Constant(DAG, 0x40348e95));
3141      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3142      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3143                                          getF32Constant(DAG, 0x3fdef31a));
3144
3145      result = DAG.getNode(ISD::FADD, dl,
3146                           MVT::f32, LogOfExponent, LogOfMantissa);
3147    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3148      // For floating-point precision of 18:
3149      //
3150      //   LogOfMantissa =
3151      //     -2.1072184f +
3152      //       (4.2372794f +
3153      //         (-3.7029485f +
3154      //           (2.2781945f +
3155      //             (-0.87823314f +
3156      //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3157      //
3158      // error 0.0000023660568, which is better than 18 bits
3159      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3160                               getF32Constant(DAG, 0xbc91e5ac));
3161      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3162                               getF32Constant(DAG, 0x3e4350aa));
3163      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3164      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3165                               getF32Constant(DAG, 0x3f60d3e3));
3166      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3167      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3168                               getF32Constant(DAG, 0x4011cdf0));
3169      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3170      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3171                               getF32Constant(DAG, 0x406cfd1c));
3172      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3173      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3174                               getF32Constant(DAG, 0x408797cb));
3175      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3176      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3177                                          getF32Constant(DAG, 0x4006dcab));
3178
3179      result = DAG.getNode(ISD::FADD, dl,
3180                           MVT::f32, LogOfExponent, LogOfMantissa);
3181    }
3182  } else {
3183    // No special expansion.
3184    result = DAG.getNode(ISD::FLOG, dl,
3185                         getValue(I.getOperand(1)).getValueType(),
3186                         getValue(I.getOperand(1)));
3187  }
3188
3189  setValue(&I, result);
3190}
3191
3192/// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for
3193/// limited-precision mode.
3194void
3195SelectionDAGBuilder::visitLog2(CallInst &I) {
3196  SDValue result;
3197  DebugLoc dl = getCurDebugLoc();
3198
3199  if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
3200      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3201    SDValue Op = getValue(I.getOperand(1));
3202    SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
3203
3204    // Get the exponent.
3205    SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3206
3207    // Get the significand and build it into a floating-point number with
3208    // exponent of 1.
3209    SDValue X = GetSignificand(DAG, Op1, dl);
3210
3211    // Different possible minimax approximations of significand in
3212    // floating-point for various degrees of accuracy over [1,2].
3213    if (LimitFloatPrecision <= 6) {
3214      // For floating-point precision of 6:
3215      //
3216      //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3217      //
3218      // error 0.0049451742, which is more than 7 bits
3219      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3220                               getF32Constant(DAG, 0xbeb08fe0));
3221      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3222                               getF32Constant(DAG, 0x40019463));
3223      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3224      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3225                                           getF32Constant(DAG, 0x3fd6633d));
3226
3227      result = DAG.getNode(ISD::FADD, dl,
3228                           MVT::f32, LogOfExponent, Log2ofMantissa);
3229    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3230      // For floating-point precision of 12:
3231      //
3232      //   Log2ofMantissa =
3233      //     -2.51285454f +
3234      //       (4.07009056f +
3235      //         (-2.12067489f +
3236      //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3237      //
3238      // error 0.0000876136000, which is better than 13 bits
3239      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3240                               getF32Constant(DAG, 0xbda7262e));
3241      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3242                               getF32Constant(DAG, 0x3f25280b));
3243      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3244      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3245                               getF32Constant(DAG, 0x4007b923));
3246      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3247      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3248                               getF32Constant(DAG, 0x40823e2f));
3249      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3250      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3251                                           getF32Constant(DAG, 0x4020d29c));
3252
3253      result = DAG.getNode(ISD::FADD, dl,
3254                           MVT::f32, LogOfExponent, Log2ofMantissa);
3255    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3256      // For floating-point precision of 18:
3257      //
3258      //   Log2ofMantissa =
3259      //     -3.0400495f +
3260      //       (6.1129976f +
3261      //         (-5.3420409f +
3262      //           (3.2865683f +
3263      //             (-1.2669343f +
3264      //               (0.27515199f -
3265      //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3266      //
3267      // error 0.0000018516, which is better than 18 bits
3268      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3269                               getF32Constant(DAG, 0xbcd2769e));
3270      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3271                               getF32Constant(DAG, 0x3e8ce0b9));
3272      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3273      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3274                               getF32Constant(DAG, 0x3fa22ae7));
3275      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3276      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3277                               getF32Constant(DAG, 0x40525723));
3278      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3279      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3280                               getF32Constant(DAG, 0x40aaf200));
3281      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3282      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3283                               getF32Constant(DAG, 0x40c39dad));
3284      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3285      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3286                                           getF32Constant(DAG, 0x4042902c));
3287
3288      result = DAG.getNode(ISD::FADD, dl,
3289                           MVT::f32, LogOfExponent, Log2ofMantissa);
3290    }
3291  } else {
3292    // No special expansion.
3293    result = DAG.getNode(ISD::FLOG2, dl,
3294                         getValue(I.getOperand(1)).getValueType(),
3295                         getValue(I.getOperand(1)));
3296  }
3297
3298  setValue(&I, result);
3299}
3300
3301/// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for
3302/// limited-precision mode.
3303void
3304SelectionDAGBuilder::visitLog10(CallInst &I) {
3305  SDValue result;
3306  DebugLoc dl = getCurDebugLoc();
3307
3308  if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
3309      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3310    SDValue Op = getValue(I.getOperand(1));
3311    SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
3312
3313    // Scale the exponent by log10(2) [0.30102999f].
3314    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3315    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3316                                        getF32Constant(DAG, 0x3e9a209a));
3317
3318    // Get the significand and build it into a floating-point number with
3319    // exponent of 1.
3320    SDValue X = GetSignificand(DAG, Op1, dl);
3321
3322    if (LimitFloatPrecision <= 6) {
3323      // For floating-point precision of 6:
3324      //
3325      //   Log10ofMantissa =
3326      //     -0.50419619f +
3327      //       (0.60948995f - 0.10380950f * x) * x;
3328      //
3329      // error 0.0014886165, which is 6 bits
3330      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3331                               getF32Constant(DAG, 0xbdd49a13));
3332      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3333                               getF32Constant(DAG, 0x3f1c0789));
3334      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3335      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3336                                            getF32Constant(DAG, 0x3f011300));
3337
3338      result = DAG.getNode(ISD::FADD, dl,
3339                           MVT::f32, LogOfExponent, Log10ofMantissa);
3340    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3341      // For floating-point precision of 12:
3342      //
3343      //   Log10ofMantissa =
3344      //     -0.64831180f +
3345      //       (0.91751397f +
3346      //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
3347      //
3348      // error 0.00019228036, which is better than 12 bits
3349      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3350                               getF32Constant(DAG, 0x3d431f31));
3351      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3352                               getF32Constant(DAG, 0x3ea21fb2));
3353      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3354      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3355                               getF32Constant(DAG, 0x3f6ae232));
3356      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3357      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3358                                            getF32Constant(DAG, 0x3f25f7c3));
3359
3360      result = DAG.getNode(ISD::FADD, dl,
3361                           MVT::f32, LogOfExponent, Log10ofMantissa);
3362    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3363      // For floating-point precision of 18:
3364      //
3365      //   Log10ofMantissa =
3366      //     -0.84299375f +
3367      //       (1.5327582f +
3368      //         (-1.0688956f +
3369      //           (0.49102474f +
3370      //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
3371      //
3372      // error 0.0000037995730, which is better than 18 bits
3373      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3374                               getF32Constant(DAG, 0x3c5d51ce));
3375      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3376                               getF32Constant(DAG, 0x3e00685a));
3377      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3378      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3379                               getF32Constant(DAG, 0x3efb6798));
3380      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3381      SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3382                               getF32Constant(DAG, 0x3f88d192));
3383      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3384      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3385                               getF32Constant(DAG, 0x3fc4316c));
3386      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3387      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
3388                                            getF32Constant(DAG, 0x3f57ce70));
3389
3390      result = DAG.getNode(ISD::FADD, dl,
3391                           MVT::f32, LogOfExponent, Log10ofMantissa);
3392    }
3393  } else {
3394    // No special expansion.
3395    result = DAG.getNode(ISD::FLOG10, dl,
3396                         getValue(I.getOperand(1)).getValueType(),
3397                         getValue(I.getOperand(1)));
3398  }
3399
3400  setValue(&I, result);
3401}
3402
3403/// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for
3404/// limited-precision mode.
3405void
3406SelectionDAGBuilder::visitExp2(CallInst &I) {
3407  SDValue result;
3408  DebugLoc dl = getCurDebugLoc();
3409
3410  if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
3411      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3412    SDValue Op = getValue(I.getOperand(1));
3413
3414    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
3415
3416    //   FractionalPartOfX = x - (float)IntegerPartOfX;
3417    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3418    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
3419
3420    //   IntegerPartOfX <<= 23;
3421    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3422                                 DAG.getConstant(23, TLI.getPointerTy()));
3423
3424    if (LimitFloatPrecision <= 6) {
3425      // For floating-point precision of 6:
3426      //
3427      //   TwoToFractionalPartOfX =
3428      //     0.997535578f +
3429      //       (0.735607626f + 0.252464424f * x) * x;
3430      //
3431      // error 0.0144103317, which is 6 bits
3432      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3433                               getF32Constant(DAG, 0x3e814304));
3434      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3435                               getF32Constant(DAG, 0x3f3c50c8));
3436      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3437      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3438                               getF32Constant(DAG, 0x3f7f5e7e));
3439      SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5);
3440      SDValue TwoToFractionalPartOfX =
3441        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3442
3443      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3444                           MVT::f32, TwoToFractionalPartOfX);
3445    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3446      // For floating-point precision of 12:
3447      //
3448      //   TwoToFractionalPartOfX =
3449      //     0.999892986f +
3450      //       (0.696457318f +
3451      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3452      //
3453      // error 0.000107046256, which is 13 to 14 bits
3454      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3455                               getF32Constant(DAG, 0x3da235e3));
3456      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3457                               getF32Constant(DAG, 0x3e65b8f3));
3458      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3459      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3460                               getF32Constant(DAG, 0x3f324b07));
3461      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3462      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3463                               getF32Constant(DAG, 0x3f7ff8fd));
3464      SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7);
3465      SDValue TwoToFractionalPartOfX =
3466        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
3467
3468      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3469                           MVT::f32, TwoToFractionalPartOfX);
3470    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3471      // For floating-point precision of 18:
3472      //
3473      //   TwoToFractionalPartOfX =
3474      //     0.999999982f +
3475      //       (0.693148872f +
3476      //         (0.240227044f +
3477      //           (0.554906021e-1f +
3478      //             (0.961591928e-2f +
3479      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3480      // error 2.47208000*10^(-7), which is better than 18 bits
3481      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3482                               getF32Constant(DAG, 0x3924b03e));
3483      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3484                               getF32Constant(DAG, 0x3ab24b87));
3485      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3486      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3487                               getF32Constant(DAG, 0x3c1d8c17));
3488      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3489      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3490                               getF32Constant(DAG, 0x3d634a1d));
3491      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3492      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3493                               getF32Constant(DAG, 0x3e75fe14));
3494      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3495      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3496                                getF32Constant(DAG, 0x3f317234));
3497      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3498      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3499                                getF32Constant(DAG, 0x3f800000));
3500      SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13);
3501      SDValue TwoToFractionalPartOfX =
3502        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
3503
3504      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3505                           MVT::f32, TwoToFractionalPartOfX);
3506    }
3507  } else {
3508    // No special expansion.
3509    result = DAG.getNode(ISD::FEXP2, dl,
3510                         getValue(I.getOperand(1)).getValueType(),
3511                         getValue(I.getOperand(1)));
3512  }
3513
3514  setValue(&I, result);
3515}
3516
3517/// visitPow - Lower a pow intrinsic. Handles the special sequences for
3518/// limited-precision mode with x == 10.0f.
3519void
3520SelectionDAGBuilder::visitPow(CallInst &I) {
3521  SDValue result;
3522  Value *Val = I.getOperand(1);
3523  DebugLoc dl = getCurDebugLoc();
3524  bool IsExp10 = false;
3525
3526  if (getValue(Val).getValueType() == MVT::f32 &&
3527      getValue(I.getOperand(2)).getValueType() == MVT::f32 &&
3528      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3529    if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) {
3530      if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
3531        APFloat Ten(10.0f);
3532        IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten);
3533      }
3534    }
3535  }
3536
3537  if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3538    SDValue Op = getValue(I.getOperand(2));
3539
3540    // Put the exponent in the right bit position for later addition to the
3541    // final result:
3542    //
3543    //   #define LOG2OF10 3.3219281f
3544    //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
3545    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3546                             getF32Constant(DAG, 0x40549a78));
3547    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3548
3549    //   FractionalPartOfX = x - (float)IntegerPartOfX;
3550    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3551    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3552
3553    //   IntegerPartOfX <<= 23;
3554    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3555                                 DAG.getConstant(23, TLI.getPointerTy()));
3556
3557    if (LimitFloatPrecision <= 6) {
3558      // For floating-point precision of 6:
3559      //
3560      //   twoToFractionalPartOfX =
3561      //     0.997535578f +
3562      //       (0.735607626f + 0.252464424f * x) * x;
3563      //
3564      // error 0.0144103317, which is 6 bits
3565      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3566                               getF32Constant(DAG, 0x3e814304));
3567      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3568                               getF32Constant(DAG, 0x3f3c50c8));
3569      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3570      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3571                               getF32Constant(DAG, 0x3f7f5e7e));
3572      SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5);
3573      SDValue TwoToFractionalPartOfX =
3574        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3575
3576      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3577                           MVT::f32, TwoToFractionalPartOfX);
3578    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3579      // For floating-point precision of 12:
3580      //
3581      //   TwoToFractionalPartOfX =
3582      //     0.999892986f +
3583      //       (0.696457318f +
3584      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3585      //
3586      // error 0.000107046256, which is 13 to 14 bits
3587      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3588                               getF32Constant(DAG, 0x3da235e3));
3589      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3590                               getF32Constant(DAG, 0x3e65b8f3));
3591      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3592      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3593                               getF32Constant(DAG, 0x3f324b07));
3594      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3595      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3596                               getF32Constant(DAG, 0x3f7ff8fd));
3597      SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7);
3598      SDValue TwoToFractionalPartOfX =
3599        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
3600
3601      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3602                           MVT::f32, TwoToFractionalPartOfX);
3603    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3604      // For floating-point precision of 18:
3605      //
3606      //   TwoToFractionalPartOfX =
3607      //     0.999999982f +
3608      //       (0.693148872f +
3609      //         (0.240227044f +
3610      //           (0.554906021e-1f +
3611      //             (0.961591928e-2f +
3612      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3613      // error 2.47208000*10^(-7), which is better than 18 bits
3614      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3615                               getF32Constant(DAG, 0x3924b03e));
3616      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3617                               getF32Constant(DAG, 0x3ab24b87));
3618      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3619      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3620                               getF32Constant(DAG, 0x3c1d8c17));
3621      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3622      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3623                               getF32Constant(DAG, 0x3d634a1d));
3624      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3625      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3626                               getF32Constant(DAG, 0x3e75fe14));
3627      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3628      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3629                                getF32Constant(DAG, 0x3f317234));
3630      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3631      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3632                                getF32Constant(DAG, 0x3f800000));
3633      SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13);
3634      SDValue TwoToFractionalPartOfX =
3635        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
3636
3637      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3638                           MVT::f32, TwoToFractionalPartOfX);
3639    }
3640  } else {
3641    // No special expansion.
3642    result = DAG.getNode(ISD::FPOW, dl,
3643                         getValue(I.getOperand(1)).getValueType(),
3644                         getValue(I.getOperand(1)),
3645                         getValue(I.getOperand(2)));
3646  }
3647
3648  setValue(&I, result);
3649}
3650
3651
3652/// ExpandPowI - Expand a llvm.powi intrinsic.
3653static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS,
3654                          SelectionDAG &DAG) {
3655  // If RHS is a constant, we can expand this out to a multiplication tree,
3656  // otherwise we end up lowering to a call to __powidf2 (for example).  When
3657  // optimizing for size, we only want to do this if the expansion would produce
3658  // a small number of multiplies, otherwise we do the full expansion.
3659  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3660    // Get the exponent as a positive value.
3661    unsigned Val = RHSC->getSExtValue();
3662    if ((int)Val < 0) Val = -Val;
3663
3664    // powi(x, 0) -> 1.0
3665    if (Val == 0)
3666      return DAG.getConstantFP(1.0, LHS.getValueType());
3667
3668    Function *F = DAG.getMachineFunction().getFunction();
3669    if (!F->hasFnAttr(Attribute::OptimizeForSize) ||
3670        // If optimizing for size, don't insert too many multiplies.  This
3671        // inserts up to 5 multiplies.
3672        CountPopulation_32(Val)+Log2_32(Val) < 7) {
3673      // We use the simple binary decomposition method to generate the multiply
3674      // sequence.  There are more optimal ways to do this (for example,
3675      // powi(x,15) generates one more multiply than it should), but this has
3676      // the benefit of being both really simple and much better than a libcall.
3677      SDValue Res;  // Logically starts equal to 1.0
3678      SDValue CurSquare = LHS;
3679      while (Val) {
3680        if (Val & 1) {
3681          if (Res.getNode())
3682            Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
3683          else
3684            Res = CurSquare;  // 1.0*CurSquare.
3685        }
3686
3687        CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
3688                                CurSquare, CurSquare);
3689        Val >>= 1;
3690      }
3691
3692      // If the original was negative, invert the result, producing 1/(x*x*x).
3693      if (RHSC->getSExtValue() < 0)
3694        Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
3695                          DAG.getConstantFP(1.0, LHS.getValueType()), Res);
3696      return Res;
3697    }
3698  }
3699
3700  // Otherwise, expand to a libcall.
3701  return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
3702}
3703
3704
3705/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
3706/// we want to emit this as a call to a named external function, return the name
3707/// otherwise lower it and return null.
3708const char *
3709SelectionDAGBuilder::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
3710  DebugLoc dl = getCurDebugLoc();
3711  SDValue Res;
3712
3713  switch (Intrinsic) {
3714  default:
3715    // By default, turn this into a target intrinsic node.
3716    visitTargetIntrinsic(I, Intrinsic);
3717    return 0;
3718  case Intrinsic::vastart:  visitVAStart(I); return 0;
3719  case Intrinsic::vaend:    visitVAEnd(I); return 0;
3720  case Intrinsic::vacopy:   visitVACopy(I); return 0;
3721  case Intrinsic::returnaddress:
3722    setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(),
3723                             getValue(I.getOperand(1))));
3724    return 0;
3725  case Intrinsic::frameaddress:
3726    setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(),
3727                             getValue(I.getOperand(1))));
3728    return 0;
3729  case Intrinsic::setjmp:
3730    return "_setjmp"+!TLI.usesUnderscoreSetJmp();
3731  case Intrinsic::longjmp:
3732    return "_longjmp"+!TLI.usesUnderscoreLongJmp();
3733  case Intrinsic::memcpy: {
3734    // Assert for address < 256 since we support only user defined address
3735    // spaces.
3736    assert(cast<PointerType>(I.getOperand(1)->getType())->getAddressSpace()
3737           < 256 &&
3738           cast<PointerType>(I.getOperand(2)->getType())->getAddressSpace()
3739           < 256 &&
3740           "Unknown address space");
3741    SDValue Op1 = getValue(I.getOperand(1));
3742    SDValue Op2 = getValue(I.getOperand(2));
3743    SDValue Op3 = getValue(I.getOperand(3));
3744    unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3745    bool isVol = cast<ConstantInt>(I.getOperand(5))->getZExtValue();
3746    DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false,
3747                              I.getOperand(1), 0, I.getOperand(2), 0));
3748    return 0;
3749  }
3750  case Intrinsic::memset: {
3751    // Assert for address < 256 since we support only user defined address
3752    // spaces.
3753    assert(cast<PointerType>(I.getOperand(1)->getType())->getAddressSpace()
3754           < 256 &&
3755           "Unknown address space");
3756    SDValue Op1 = getValue(I.getOperand(1));
3757    SDValue Op2 = getValue(I.getOperand(2));
3758    SDValue Op3 = getValue(I.getOperand(3));
3759    unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3760    bool isVol = cast<ConstantInt>(I.getOperand(5))->getZExtValue();
3761    DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
3762                              I.getOperand(1), 0));
3763    return 0;
3764  }
3765  case Intrinsic::memmove: {
3766    // Assert for address < 256 since we support only user defined address
3767    // spaces.
3768    assert(cast<PointerType>(I.getOperand(1)->getType())->getAddressSpace()
3769           < 256 &&
3770           cast<PointerType>(I.getOperand(2)->getType())->getAddressSpace()
3771           < 256 &&
3772           "Unknown address space");
3773    SDValue Op1 = getValue(I.getOperand(1));
3774    SDValue Op2 = getValue(I.getOperand(2));
3775    SDValue Op3 = getValue(I.getOperand(3));
3776    unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3777    bool isVol = cast<ConstantInt>(I.getOperand(5))->getZExtValue();
3778
3779    // If the source and destination are known to not be aliases, we can
3780    // lower memmove as memcpy.
3781    uint64_t Size = -1ULL;
3782    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3))
3783      Size = C->getZExtValue();
3784    if (AA->alias(I.getOperand(1), Size, I.getOperand(2), Size) ==
3785        AliasAnalysis::NoAlias) {
3786      DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
3787                                false, I.getOperand(1), 0, I.getOperand(2), 0));
3788      return 0;
3789    }
3790
3791    DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
3792                               I.getOperand(1), 0, I.getOperand(2), 0));
3793    return 0;
3794  }
3795  case Intrinsic::dbg_declare: {
3796    // FIXME: currently, we get here only if OptLevel != CodeGenOpt::None.
3797    // The real handling of this intrinsic is in FastISel.
3798    if (OptLevel != CodeGenOpt::None)
3799      // FIXME: Variable debug info is not supported here.
3800      return 0;
3801    DwarfWriter *DW = DAG.getDwarfWriter();
3802    if (!DW)
3803      return 0;
3804    DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
3805    if (!DIDescriptor::ValidDebugInfo(DI.getVariable(), CodeGenOpt::None))
3806      return 0;
3807
3808    MDNode *Variable = DI.getVariable();
3809    Value *Address = DI.getAddress();
3810    if (!Address)
3811      return 0;
3812    if (BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
3813      Address = BCI->getOperand(0);
3814    AllocaInst *AI = dyn_cast<AllocaInst>(Address);
3815    // Don't handle byval struct arguments or VLAs, for example.
3816    if (!AI)
3817      return 0;
3818    DenseMap<const AllocaInst*, int>::iterator SI =
3819      FuncInfo.StaticAllocaMap.find(AI);
3820    if (SI == FuncInfo.StaticAllocaMap.end())
3821      return 0; // VLAs.
3822    int FI = SI->second;
3823
3824    if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo())
3825      if (!DI.getDebugLoc().isUnknown())
3826        MMI->setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
3827    return 0;
3828  }
3829  case Intrinsic::dbg_value: {
3830    DwarfWriter *DW = DAG.getDwarfWriter();
3831    if (!DW)
3832      return 0;
3833    DbgValueInst &DI = cast<DbgValueInst>(I);
3834    if (!DIDescriptor::ValidDebugInfo(DI.getVariable(), CodeGenOpt::None))
3835      return 0;
3836
3837    MDNode *Variable = DI.getVariable();
3838    uint64_t Offset = DI.getOffset();
3839    Value *V = DI.getValue();
3840    if (!V)
3841      return 0;
3842
3843    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
3844    // but do not always have a corresponding SDNode built.  The SDNodeOrder
3845    // absolute, but not relative, values are different depending on whether
3846    // debug info exists.
3847    ++SDNodeOrder;
3848    if (isa<ConstantInt>(V) || isa<ConstantFP>(V)) {
3849      DAG.AddDbgValue(DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder));
3850    } else {
3851      SDValue &N = NodeMap[V];
3852      if (N.getNode())
3853        DAG.AddDbgValue(DAG.getDbgValue(Variable, N.getNode(),
3854                                        N.getResNo(), Offset, dl, SDNodeOrder),
3855                        N.getNode());
3856      else
3857        // We may expand this to cover more cases.  One case where we have no
3858        // data available is an unreferenced parameter; we need this fallback.
3859        DAG.AddDbgValue(DAG.getDbgValue(Variable,
3860                                        UndefValue::get(V->getType()),
3861                                        Offset, dl, SDNodeOrder));
3862    }
3863
3864    // Build a debug info table entry.
3865    if (BitCastInst *BCI = dyn_cast<BitCastInst>(V))
3866      V = BCI->getOperand(0);
3867    AllocaInst *AI = dyn_cast<AllocaInst>(V);
3868    // Don't handle byval struct arguments or VLAs, for example.
3869    if (!AI)
3870      return 0;
3871    DenseMap<const AllocaInst*, int>::iterator SI =
3872      FuncInfo.StaticAllocaMap.find(AI);
3873    if (SI == FuncInfo.StaticAllocaMap.end())
3874      return 0; // VLAs.
3875    int FI = SI->second;
3876
3877    if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo())
3878      if (!DI.getDebugLoc().isUnknown())
3879        MMI->setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
3880    return 0;
3881  }
3882  case Intrinsic::eh_exception: {
3883    // Insert the EXCEPTIONADDR instruction.
3884    assert(CurMBB->isLandingPad() &&"Call to eh.exception not in landing pad!");
3885    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
3886    SDValue Ops[1];
3887    Ops[0] = DAG.getRoot();
3888    SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1);
3889    setValue(&I, Op);
3890    DAG.setRoot(Op.getValue(1));
3891    return 0;
3892  }
3893
3894  case Intrinsic::eh_selector: {
3895    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3896
3897    if (CurMBB->isLandingPad())
3898      AddCatchInfo(I, MMI, CurMBB);
3899    else {
3900#ifndef NDEBUG
3901      FuncInfo.CatchInfoLost.insert(&I);
3902#endif
3903      // FIXME: Mark exception selector register as live in.  Hack for PR1508.
3904      unsigned Reg = TLI.getExceptionSelectorRegister();
3905      if (Reg) CurMBB->addLiveIn(Reg);
3906    }
3907
3908    // Insert the EHSELECTION instruction.
3909    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
3910    SDValue Ops[2];
3911    Ops[0] = getValue(I.getOperand(1));
3912    Ops[1] = getRoot();
3913    SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2);
3914    DAG.setRoot(Op.getValue(1));
3915    setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32));
3916    return 0;
3917  }
3918
3919  case Intrinsic::eh_typeid_for: {
3920    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3921
3922    if (MMI) {
3923      // Find the type id for the given typeinfo.
3924      GlobalVariable *GV = ExtractTypeInfo(I.getOperand(1));
3925      unsigned TypeID = MMI->getTypeIDFor(GV);
3926      Res = DAG.getConstant(TypeID, MVT::i32);
3927    } else {
3928      // Return something different to eh_selector.
3929      Res = DAG.getConstant(1, MVT::i32);
3930    }
3931
3932    setValue(&I, Res);
3933    return 0;
3934  }
3935
3936  case Intrinsic::eh_return_i32:
3937  case Intrinsic::eh_return_i64:
3938    if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) {
3939      MMI->setCallsEHReturn(true);
3940      DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl,
3941                              MVT::Other,
3942                              getControlRoot(),
3943                              getValue(I.getOperand(1)),
3944                              getValue(I.getOperand(2))));
3945    } else {
3946      setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
3947    }
3948
3949    return 0;
3950  case Intrinsic::eh_unwind_init:
3951    if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) {
3952      MMI->setCallsUnwindInit(true);
3953    }
3954    return 0;
3955  case Intrinsic::eh_dwarf_cfa: {
3956    EVT VT = getValue(I.getOperand(1)).getValueType();
3957    SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), dl,
3958                                        TLI.getPointerTy());
3959    SDValue Offset = DAG.getNode(ISD::ADD, dl,
3960                                 TLI.getPointerTy(),
3961                                 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
3962                                             TLI.getPointerTy()),
3963                                 CfaArg);
3964    SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl,
3965                             TLI.getPointerTy(),
3966                             DAG.getConstant(0, TLI.getPointerTy()));
3967    setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
3968                             FA, Offset));
3969    return 0;
3970  }
3971  case Intrinsic::eh_sjlj_callsite: {
3972    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3973    ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1));
3974    assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
3975    assert(MMI->getCurrentCallSite() == 0 && "Overlapping call sites!");
3976
3977    MMI->setCurrentCallSite(CI->getZExtValue());
3978    return 0;
3979  }
3980
3981  case Intrinsic::convertff:
3982  case Intrinsic::convertfsi:
3983  case Intrinsic::convertfui:
3984  case Intrinsic::convertsif:
3985  case Intrinsic::convertuif:
3986  case Intrinsic::convertss:
3987  case Intrinsic::convertsu:
3988  case Intrinsic::convertus:
3989  case Intrinsic::convertuu: {
3990    ISD::CvtCode Code = ISD::CVT_INVALID;
3991    switch (Intrinsic) {
3992    case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
3993    case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
3994    case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
3995    case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
3996    case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
3997    case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
3998    case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
3999    case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4000    case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4001    }
4002    EVT DestVT = TLI.getValueType(I.getType());
4003    Value *Op1 = I.getOperand(1);
4004    Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1),
4005                               DAG.getValueType(DestVT),
4006                               DAG.getValueType(getValue(Op1).getValueType()),
4007                               getValue(I.getOperand(2)),
4008                               getValue(I.getOperand(3)),
4009                               Code);
4010    setValue(&I, Res);
4011    return 0;
4012  }
4013  case Intrinsic::sqrt:
4014    setValue(&I, DAG.getNode(ISD::FSQRT, dl,
4015                             getValue(I.getOperand(1)).getValueType(),
4016                             getValue(I.getOperand(1))));
4017    return 0;
4018  case Intrinsic::powi:
4019    setValue(&I, ExpandPowI(dl, getValue(I.getOperand(1)),
4020                            getValue(I.getOperand(2)), DAG));
4021    return 0;
4022  case Intrinsic::sin:
4023    setValue(&I, DAG.getNode(ISD::FSIN, dl,
4024                             getValue(I.getOperand(1)).getValueType(),
4025                             getValue(I.getOperand(1))));
4026    return 0;
4027  case Intrinsic::cos:
4028    setValue(&I, DAG.getNode(ISD::FCOS, dl,
4029                             getValue(I.getOperand(1)).getValueType(),
4030                             getValue(I.getOperand(1))));
4031    return 0;
4032  case Intrinsic::log:
4033    visitLog(I);
4034    return 0;
4035  case Intrinsic::log2:
4036    visitLog2(I);
4037    return 0;
4038  case Intrinsic::log10:
4039    visitLog10(I);
4040    return 0;
4041  case Intrinsic::exp:
4042    visitExp(I);
4043    return 0;
4044  case Intrinsic::exp2:
4045    visitExp2(I);
4046    return 0;
4047  case Intrinsic::pow:
4048    visitPow(I);
4049    return 0;
4050  case Intrinsic::convert_to_fp16:
4051    setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl,
4052                             MVT::i16, getValue(I.getOperand(1))));
4053    return 0;
4054  case Intrinsic::convert_from_fp16:
4055    setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl,
4056                             MVT::f32, getValue(I.getOperand(1))));
4057    return 0;
4058  case Intrinsic::pcmarker: {
4059    SDValue Tmp = getValue(I.getOperand(1));
4060    DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp));
4061    return 0;
4062  }
4063  case Intrinsic::readcyclecounter: {
4064    SDValue Op = getRoot();
4065    Res = DAG.getNode(ISD::READCYCLECOUNTER, dl,
4066                      DAG.getVTList(MVT::i64, MVT::Other),
4067                      &Op, 1);
4068    setValue(&I, Res);
4069    DAG.setRoot(Res.getValue(1));
4070    return 0;
4071  }
4072  case Intrinsic::bswap:
4073    setValue(&I, DAG.getNode(ISD::BSWAP, dl,
4074                             getValue(I.getOperand(1)).getValueType(),
4075                             getValue(I.getOperand(1))));
4076    return 0;
4077  case Intrinsic::cttz: {
4078    SDValue Arg = getValue(I.getOperand(1));
4079    EVT Ty = Arg.getValueType();
4080    setValue(&I, DAG.getNode(ISD::CTTZ, dl, Ty, Arg));
4081    return 0;
4082  }
4083  case Intrinsic::ctlz: {
4084    SDValue Arg = getValue(I.getOperand(1));
4085    EVT Ty = Arg.getValueType();
4086    setValue(&I, DAG.getNode(ISD::CTLZ, dl, Ty, Arg));
4087    return 0;
4088  }
4089  case Intrinsic::ctpop: {
4090    SDValue Arg = getValue(I.getOperand(1));
4091    EVT Ty = Arg.getValueType();
4092    setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg));
4093    return 0;
4094  }
4095  case Intrinsic::stacksave: {
4096    SDValue Op = getRoot();
4097    Res = DAG.getNode(ISD::STACKSAVE, dl,
4098                      DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
4099    setValue(&I, Res);
4100    DAG.setRoot(Res.getValue(1));
4101    return 0;
4102  }
4103  case Intrinsic::stackrestore: {
4104    Res = getValue(I.getOperand(1));
4105    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res));
4106    return 0;
4107  }
4108  case Intrinsic::stackprotector: {
4109    // Emit code into the DAG to store the stack guard onto the stack.
4110    MachineFunction &MF = DAG.getMachineFunction();
4111    MachineFrameInfo *MFI = MF.getFrameInfo();
4112    EVT PtrTy = TLI.getPointerTy();
4113
4114    SDValue Src = getValue(I.getOperand(1));   // The guard's value.
4115    AllocaInst *Slot = cast<AllocaInst>(I.getOperand(2));
4116
4117    int FI = FuncInfo.StaticAllocaMap[Slot];
4118    MFI->setStackProtectorIndex(FI);
4119
4120    SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
4121
4122    // Store the stack protector onto the stack.
4123    Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN,
4124                       PseudoSourceValue::getFixedStack(FI),
4125                       0, true, false, 0);
4126    setValue(&I, Res);
4127    DAG.setRoot(Res);
4128    return 0;
4129  }
4130  case Intrinsic::objectsize: {
4131    // If we don't know by now, we're never going to know.
4132    ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(2));
4133
4134    assert(CI && "Non-constant type in __builtin_object_size?");
4135
4136    SDValue Arg = getValue(I.getOperand(0));
4137    EVT Ty = Arg.getValueType();
4138
4139    if (CI->getZExtValue() == 0)
4140      Res = DAG.getConstant(-1ULL, Ty);
4141    else
4142      Res = DAG.getConstant(0, Ty);
4143
4144    setValue(&I, Res);
4145    return 0;
4146  }
4147  case Intrinsic::var_annotation:
4148    // Discard annotate attributes
4149    return 0;
4150
4151  case Intrinsic::init_trampoline: {
4152    const Function *F = cast<Function>(I.getOperand(2)->stripPointerCasts());
4153
4154    SDValue Ops[6];
4155    Ops[0] = getRoot();
4156    Ops[1] = getValue(I.getOperand(1));
4157    Ops[2] = getValue(I.getOperand(2));
4158    Ops[3] = getValue(I.getOperand(3));
4159    Ops[4] = DAG.getSrcValue(I.getOperand(1));
4160    Ops[5] = DAG.getSrcValue(F);
4161
4162    Res = DAG.getNode(ISD::TRAMPOLINE, dl,
4163                      DAG.getVTList(TLI.getPointerTy(), MVT::Other),
4164                      Ops, 6);
4165
4166    setValue(&I, Res);
4167    DAG.setRoot(Res.getValue(1));
4168    return 0;
4169  }
4170  case Intrinsic::gcroot:
4171    if (GFI) {
4172      Value *Alloca = I.getOperand(1);
4173      Constant *TypeMap = cast<Constant>(I.getOperand(2));
4174
4175      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
4176      GFI->addStackRoot(FI->getIndex(), TypeMap);
4177    }
4178    return 0;
4179  case Intrinsic::gcread:
4180  case Intrinsic::gcwrite:
4181    llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
4182    return 0;
4183  case Intrinsic::flt_rounds:
4184    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32));
4185    return 0;
4186  case Intrinsic::trap:
4187    DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot()));
4188    return 0;
4189  case Intrinsic::uadd_with_overflow:
4190    return implVisitAluOverflow(I, ISD::UADDO);
4191  case Intrinsic::sadd_with_overflow:
4192    return implVisitAluOverflow(I, ISD::SADDO);
4193  case Intrinsic::usub_with_overflow:
4194    return implVisitAluOverflow(I, ISD::USUBO);
4195  case Intrinsic::ssub_with_overflow:
4196    return implVisitAluOverflow(I, ISD::SSUBO);
4197  case Intrinsic::umul_with_overflow:
4198    return implVisitAluOverflow(I, ISD::UMULO);
4199  case Intrinsic::smul_with_overflow:
4200    return implVisitAluOverflow(I, ISD::SMULO);
4201
4202  case Intrinsic::prefetch: {
4203    SDValue Ops[4];
4204    Ops[0] = getRoot();
4205    Ops[1] = getValue(I.getOperand(1));
4206    Ops[2] = getValue(I.getOperand(2));
4207    Ops[3] = getValue(I.getOperand(3));
4208    DAG.setRoot(DAG.getNode(ISD::PREFETCH, dl, MVT::Other, &Ops[0], 4));
4209    return 0;
4210  }
4211
4212  case Intrinsic::memory_barrier: {
4213    SDValue Ops[6];
4214    Ops[0] = getRoot();
4215    for (int x = 1; x < 6; ++x)
4216      Ops[x] = getValue(I.getOperand(x));
4217
4218    DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6));
4219    return 0;
4220  }
4221  case Intrinsic::atomic_cmp_swap: {
4222    SDValue Root = getRoot();
4223    SDValue L =
4224      DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(),
4225                    getValue(I.getOperand(2)).getValueType().getSimpleVT(),
4226                    Root,
4227                    getValue(I.getOperand(1)),
4228                    getValue(I.getOperand(2)),
4229                    getValue(I.getOperand(3)),
4230                    I.getOperand(1));
4231    setValue(&I, L);
4232    DAG.setRoot(L.getValue(1));
4233    return 0;
4234  }
4235  case Intrinsic::atomic_load_add:
4236    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD);
4237  case Intrinsic::atomic_load_sub:
4238    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB);
4239  case Intrinsic::atomic_load_or:
4240    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR);
4241  case Intrinsic::atomic_load_xor:
4242    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR);
4243  case Intrinsic::atomic_load_and:
4244    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND);
4245  case Intrinsic::atomic_load_nand:
4246    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND);
4247  case Intrinsic::atomic_load_max:
4248    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX);
4249  case Intrinsic::atomic_load_min:
4250    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN);
4251  case Intrinsic::atomic_load_umin:
4252    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN);
4253  case Intrinsic::atomic_load_umax:
4254    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX);
4255  case Intrinsic::atomic_swap:
4256    return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP);
4257
4258  case Intrinsic::invariant_start:
4259  case Intrinsic::lifetime_start:
4260    // Discard region information.
4261    setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
4262    return 0;
4263  case Intrinsic::invariant_end:
4264  case Intrinsic::lifetime_end:
4265    // Discard region information.
4266    return 0;
4267  }
4268}
4269
4270/// Test if the given instruction is in a position to be optimized
4271/// with a tail-call. This roughly means that it's in a block with
4272/// a return and there's nothing that needs to be scheduled
4273/// between it and the return.
4274///
4275/// This function only tests target-independent requirements.
4276static bool
4277isInTailCallPosition(CallSite CS, Attributes CalleeRetAttr,
4278                     const TargetLowering &TLI) {
4279  const Instruction *I = CS.getInstruction();
4280  const BasicBlock *ExitBB = I->getParent();
4281  const TerminatorInst *Term = ExitBB->getTerminator();
4282  const ReturnInst *Ret = dyn_cast<ReturnInst>(Term);
4283  const Function *F = ExitBB->getParent();
4284
4285  // The block must end in a return statement or unreachable.
4286  //
4287  // FIXME: Decline tailcall if it's not guaranteed and if the block ends in
4288  // an unreachable, for now. The way tailcall optimization is currently
4289  // implemented means it will add an epilogue followed by a jump. That is
4290  // not profitable. Also, if the callee is a special function (e.g.
4291  // longjmp on x86), it can end up causing miscompilation that has not
4292  // been fully understood.
4293  if (!Ret &&
4294      (!GuaranteedTailCallOpt || !isa<UnreachableInst>(Term))) return false;
4295
4296  // If I will have a chain, make sure no other instruction that will have a
4297  // chain interposes between I and the return.
4298  if (I->mayHaveSideEffects() || I->mayReadFromMemory() ||
4299      !I->isSafeToSpeculativelyExecute())
4300    for (BasicBlock::const_iterator BBI = prior(prior(ExitBB->end())); ;
4301         --BBI) {
4302      if (&*BBI == I)
4303        break;
4304      // Debug info intrinsics do not get in the way of tail call optimization.
4305      if (isa<DbgInfoIntrinsic>(BBI))
4306        continue;
4307      if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() ||
4308          !BBI->isSafeToSpeculativelyExecute())
4309        return false;
4310    }
4311
4312  // If the block ends with a void return or unreachable, it doesn't matter
4313  // what the call's return type is.
4314  if (!Ret || Ret->getNumOperands() == 0) return true;
4315
4316  // If the return value is undef, it doesn't matter what the call's
4317  // return type is.
4318  if (isa<UndefValue>(Ret->getOperand(0))) return true;
4319
4320  // Conservatively require the attributes of the call to match those of
4321  // the return. Ignore noalias because it doesn't affect the call sequence.
4322  unsigned CallerRetAttr = F->getAttributes().getRetAttributes();
4323  if ((CalleeRetAttr ^ CallerRetAttr) & ~Attribute::NoAlias)
4324    return false;
4325
4326  // It's not safe to eliminate the sign / zero extension of the return value.
4327  if ((CallerRetAttr & Attribute::ZExt) || (CallerRetAttr & Attribute::SExt))
4328    return false;
4329
4330  // Otherwise, make sure the unmodified return value of I is the return value.
4331  for (const Instruction *U = dyn_cast<Instruction>(Ret->getOperand(0)); ;
4332       U = dyn_cast<Instruction>(U->getOperand(0))) {
4333    if (!U)
4334      return false;
4335    if (!U->hasOneUse())
4336      return false;
4337    if (U == I)
4338      break;
4339    // Check for a truly no-op truncate.
4340    if (isa<TruncInst>(U) &&
4341        TLI.isTruncateFree(U->getOperand(0)->getType(), U->getType()))
4342      continue;
4343    // Check for a truly no-op bitcast.
4344    if (isa<BitCastInst>(U) &&
4345        (U->getOperand(0)->getType() == U->getType() ||
4346         (U->getOperand(0)->getType()->isPointerTy() &&
4347          U->getType()->isPointerTy())))
4348      continue;
4349    // Otherwise it's not a true no-op.
4350    return false;
4351  }
4352
4353  return true;
4354}
4355
4356void SelectionDAGBuilder::LowerCallTo(CallSite CS, SDValue Callee,
4357                                      bool isTailCall,
4358                                      MachineBasicBlock *LandingPad) {
4359  const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
4360  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
4361  const Type *RetTy = FTy->getReturnType();
4362  MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
4363  MCSymbol *BeginLabel = 0;
4364
4365  TargetLowering::ArgListTy Args;
4366  TargetLowering::ArgListEntry Entry;
4367  Args.reserve(CS.arg_size());
4368
4369  // Check whether the function can return without sret-demotion.
4370  SmallVector<EVT, 4> OutVTs;
4371  SmallVector<ISD::ArgFlagsTy, 4> OutsFlags;
4372  SmallVector<uint64_t, 4> Offsets;
4373  getReturnInfo(RetTy, CS.getAttributes().getRetAttributes(),
4374                OutVTs, OutsFlags, TLI, &Offsets);
4375
4376  bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
4377                        FTy->isVarArg(), OutVTs, OutsFlags, DAG);
4378
4379  SDValue DemoteStackSlot;
4380
4381  if (!CanLowerReturn) {
4382    uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(
4383                      FTy->getReturnType());
4384    unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(
4385                      FTy->getReturnType());
4386    MachineFunction &MF = DAG.getMachineFunction();
4387    int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
4388    const Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
4389
4390    DemoteStackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
4391    Entry.Node = DemoteStackSlot;
4392    Entry.Ty = StackSlotPtrType;
4393    Entry.isSExt = false;
4394    Entry.isZExt = false;
4395    Entry.isInReg = false;
4396    Entry.isSRet = true;
4397    Entry.isNest = false;
4398    Entry.isByVal = false;
4399    Entry.Alignment = Align;
4400    Args.push_back(Entry);
4401    RetTy = Type::getVoidTy(FTy->getContext());
4402  }
4403
4404  for (CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
4405       i != e; ++i) {
4406    SDValue ArgNode = getValue(*i);
4407    Entry.Node = ArgNode; Entry.Ty = (*i)->getType();
4408
4409    unsigned attrInd = i - CS.arg_begin() + 1;
4410    Entry.isSExt  = CS.paramHasAttr(attrInd, Attribute::SExt);
4411    Entry.isZExt  = CS.paramHasAttr(attrInd, Attribute::ZExt);
4412    Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg);
4413    Entry.isSRet  = CS.paramHasAttr(attrInd, Attribute::StructRet);
4414    Entry.isNest  = CS.paramHasAttr(attrInd, Attribute::Nest);
4415    Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal);
4416    Entry.Alignment = CS.getParamAlignment(attrInd);
4417    Args.push_back(Entry);
4418  }
4419
4420  if (LandingPad && MMI) {
4421    // Insert a label before the invoke call to mark the try range.  This can be
4422    // used to detect deletion of the invoke via the MachineModuleInfo.
4423    BeginLabel = MMI->getContext().CreateTempSymbol();
4424
4425    // For SjLj, keep track of which landing pads go with which invokes
4426    // so as to maintain the ordering of pads in the LSDA.
4427    unsigned CallSiteIndex = MMI->getCurrentCallSite();
4428    if (CallSiteIndex) {
4429      MMI->setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
4430      // Now that the call site is handled, stop tracking it.
4431      MMI->setCurrentCallSite(0);
4432    }
4433
4434    // Both PendingLoads and PendingExports must be flushed here;
4435    // this call might not return.
4436    (void)getRoot();
4437    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel));
4438  }
4439
4440  // Check if target-independent constraints permit a tail call here.
4441  // Target-dependent constraints are checked within TLI.LowerCallTo.
4442  if (isTailCall &&
4443      !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI))
4444    isTailCall = false;
4445
4446  std::pair<SDValue,SDValue> Result =
4447    TLI.LowerCallTo(getRoot(), RetTy,
4448                    CS.paramHasAttr(0, Attribute::SExt),
4449                    CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(),
4450                    CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(),
4451                    CS.getCallingConv(),
4452                    isTailCall,
4453                    !CS.getInstruction()->use_empty(),
4454                    Callee, Args, DAG, getCurDebugLoc());
4455  assert((isTailCall || Result.second.getNode()) &&
4456         "Non-null chain expected with non-tail call!");
4457  assert((Result.second.getNode() || !Result.first.getNode()) &&
4458         "Null value expected with tail call!");
4459  if (Result.first.getNode()) {
4460    setValue(CS.getInstruction(), Result.first);
4461  } else if (!CanLowerReturn && Result.second.getNode()) {
4462    // The instruction result is the result of loading from the
4463    // hidden sret parameter.
4464    SmallVector<EVT, 1> PVTs;
4465    const Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
4466
4467    ComputeValueVTs(TLI, PtrRetTy, PVTs);
4468    assert(PVTs.size() == 1 && "Pointers should fit in one register");
4469    EVT PtrVT = PVTs[0];
4470    unsigned NumValues = OutVTs.size();
4471    SmallVector<SDValue, 4> Values(NumValues);
4472    SmallVector<SDValue, 4> Chains(NumValues);
4473
4474    for (unsigned i = 0; i < NumValues; ++i) {
4475      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT,
4476                                DemoteStackSlot,
4477                                DAG.getConstant(Offsets[i], PtrVT));
4478      SDValue L = DAG.getLoad(OutVTs[i], getCurDebugLoc(), Result.second,
4479                              Add, NULL, Offsets[i], false, false, 1);
4480      Values[i] = L;
4481      Chains[i] = L.getValue(1);
4482    }
4483
4484    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
4485                                MVT::Other, &Chains[0], NumValues);
4486    PendingLoads.push_back(Chain);
4487
4488    // Collect the legal value parts into potentially illegal values
4489    // that correspond to the original function's return values.
4490    SmallVector<EVT, 4> RetTys;
4491    RetTy = FTy->getReturnType();
4492    ComputeValueVTs(TLI, RetTy, RetTys);
4493    ISD::NodeType AssertOp = ISD::DELETED_NODE;
4494    SmallVector<SDValue, 4> ReturnValues;
4495    unsigned CurReg = 0;
4496    for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
4497      EVT VT = RetTys[I];
4498      EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT);
4499      unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT);
4500
4501      SDValue ReturnValue =
4502        getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs,
4503                         RegisterVT, VT, AssertOp);
4504      ReturnValues.push_back(ReturnValue);
4505      CurReg += NumRegs;
4506    }
4507
4508    setValue(CS.getInstruction(),
4509             DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
4510                         DAG.getVTList(&RetTys[0], RetTys.size()),
4511                         &ReturnValues[0], ReturnValues.size()));
4512
4513  }
4514
4515  // As a special case, a null chain means that a tail call has been emitted and
4516  // the DAG root is already updated.
4517  if (Result.second.getNode())
4518    DAG.setRoot(Result.second);
4519  else
4520    HasTailCall = true;
4521
4522  if (LandingPad && MMI) {
4523    // Insert a label at the end of the invoke call to mark the try range.  This
4524    // can be used to detect deletion of the invoke via the MachineModuleInfo.
4525    MCSymbol *EndLabel = MMI->getContext().CreateTempSymbol();
4526    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel));
4527
4528    // Inform MachineModuleInfo of range.
4529    MMI->addInvoke(LandingPad, BeginLabel, EndLabel);
4530  }
4531}
4532
4533/// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
4534/// value is equal or not-equal to zero.
4535static bool IsOnlyUsedInZeroEqualityComparison(Value *V) {
4536  for (Value::use_iterator UI = V->use_begin(), E = V->use_end();
4537       UI != E; ++UI) {
4538    if (ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
4539      if (IC->isEquality())
4540        if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
4541          if (C->isNullValue())
4542            continue;
4543    // Unknown instruction.
4544    return false;
4545  }
4546  return true;
4547}
4548
4549static SDValue getMemCmpLoad(Value *PtrVal, MVT LoadVT, const Type *LoadTy,
4550                             SelectionDAGBuilder &Builder) {
4551
4552  // Check to see if this load can be trivially constant folded, e.g. if the
4553  // input is from a string literal.
4554  if (Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
4555    // Cast pointer to the type we really want to load.
4556    LoadInput = ConstantExpr::getBitCast(LoadInput,
4557                                         PointerType::getUnqual(LoadTy));
4558
4559    if (Constant *LoadCst = ConstantFoldLoadFromConstPtr(LoadInput, Builder.TD))
4560      return Builder.getValue(LoadCst);
4561  }
4562
4563  // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
4564  // still constant memory, the input chain can be the entry node.
4565  SDValue Root;
4566  bool ConstantMemory = false;
4567
4568  // Do not serialize (non-volatile) loads of constant memory with anything.
4569  if (Builder.AA->pointsToConstantMemory(PtrVal)) {
4570    Root = Builder.DAG.getEntryNode();
4571    ConstantMemory = true;
4572  } else {
4573    // Do not serialize non-volatile loads against each other.
4574    Root = Builder.DAG.getRoot();
4575  }
4576
4577  SDValue Ptr = Builder.getValue(PtrVal);
4578  SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root,
4579                                        Ptr, PtrVal /*SrcValue*/, 0/*SVOffset*/,
4580                                        false /*volatile*/,
4581                                        false /*nontemporal*/, 1 /* align=1 */);
4582
4583  if (!ConstantMemory)
4584    Builder.PendingLoads.push_back(LoadVal.getValue(1));
4585  return LoadVal;
4586}
4587
4588
4589/// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
4590/// If so, return true and lower it, otherwise return false and it will be
4591/// lowered like a normal call.
4592bool SelectionDAGBuilder::visitMemCmpCall(CallInst &I) {
4593  // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
4594  if (I.getNumOperands() != 4)
4595    return false;
4596
4597  Value *LHS = I.getOperand(1), *RHS = I.getOperand(2);
4598  if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
4599      !I.getOperand(3)->getType()->isIntegerTy() ||
4600      !I.getType()->isIntegerTy())
4601    return false;
4602
4603  ConstantInt *Size = dyn_cast<ConstantInt>(I.getOperand(3));
4604
4605  // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
4606  // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
4607  if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) {
4608    bool ActuallyDoIt = true;
4609    MVT LoadVT;
4610    const Type *LoadTy;
4611    switch (Size->getZExtValue()) {
4612    default:
4613      LoadVT = MVT::Other;
4614      LoadTy = 0;
4615      ActuallyDoIt = false;
4616      break;
4617    case 2:
4618      LoadVT = MVT::i16;
4619      LoadTy = Type::getInt16Ty(Size->getContext());
4620      break;
4621    case 4:
4622      LoadVT = MVT::i32;
4623      LoadTy = Type::getInt32Ty(Size->getContext());
4624      break;
4625    case 8:
4626      LoadVT = MVT::i64;
4627      LoadTy = Type::getInt64Ty(Size->getContext());
4628      break;
4629        /*
4630    case 16:
4631      LoadVT = MVT::v4i32;
4632      LoadTy = Type::getInt32Ty(Size->getContext());
4633      LoadTy = VectorType::get(LoadTy, 4);
4634      break;
4635         */
4636    }
4637
4638    // This turns into unaligned loads.  We only do this if the target natively
4639    // supports the MVT we'll be loading or if it is small enough (<= 4) that
4640    // we'll only produce a small number of byte loads.
4641
4642    // Require that we can find a legal MVT, and only do this if the target
4643    // supports unaligned loads of that type.  Expanding into byte loads would
4644    // bloat the code.
4645    if (ActuallyDoIt && Size->getZExtValue() > 4) {
4646      // TODO: Handle 5 byte compare as 4-byte + 1 byte.
4647      // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
4648      if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT))
4649        ActuallyDoIt = false;
4650    }
4651
4652    if (ActuallyDoIt) {
4653      SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
4654      SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
4655
4656      SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal,
4657                                 ISD::SETNE);
4658      EVT CallVT = TLI.getValueType(I.getType(), true);
4659      setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT));
4660      return true;
4661    }
4662  }
4663
4664
4665  return false;
4666}
4667
4668
4669void SelectionDAGBuilder::visitCall(CallInst &I) {
4670  const char *RenameFn = 0;
4671  if (Function *F = I.getCalledFunction()) {
4672    if (F->isDeclaration()) {
4673      const TargetIntrinsicInfo *II = TLI.getTargetMachine().getIntrinsicInfo();
4674      if (II) {
4675        if (unsigned IID = II->getIntrinsicID(F)) {
4676          RenameFn = visitIntrinsicCall(I, IID);
4677          if (!RenameFn)
4678            return;
4679        }
4680      }
4681      if (unsigned IID = F->getIntrinsicID()) {
4682        RenameFn = visitIntrinsicCall(I, IID);
4683        if (!RenameFn)
4684          return;
4685      }
4686    }
4687
4688    // Check for well-known libc/libm calls.  If the function is internal, it
4689    // can't be a library call.
4690    if (!F->hasLocalLinkage() && F->hasName()) {
4691      StringRef Name = F->getName();
4692      if (Name == "copysign" || Name == "copysignf" || Name == "copysignl") {
4693        if (I.getNumOperands() == 3 &&   // Basic sanity checks.
4694            I.getOperand(1)->getType()->isFloatingPointTy() &&
4695            I.getType() == I.getOperand(1)->getType() &&
4696            I.getType() == I.getOperand(2)->getType()) {
4697          SDValue LHS = getValue(I.getOperand(1));
4698          SDValue RHS = getValue(I.getOperand(2));
4699          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(),
4700                                   LHS.getValueType(), LHS, RHS));
4701          return;
4702        }
4703      } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") {
4704        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
4705            I.getOperand(1)->getType()->isFloatingPointTy() &&
4706            I.getType() == I.getOperand(1)->getType()) {
4707          SDValue Tmp = getValue(I.getOperand(1));
4708          setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(),
4709                                   Tmp.getValueType(), Tmp));
4710          return;
4711        }
4712      } else if (Name == "sin" || Name == "sinf" || Name == "sinl") {
4713        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
4714            I.getOperand(1)->getType()->isFloatingPointTy() &&
4715            I.getType() == I.getOperand(1)->getType() &&
4716            I.onlyReadsMemory()) {
4717          SDValue Tmp = getValue(I.getOperand(1));
4718          setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(),
4719                                   Tmp.getValueType(), Tmp));
4720          return;
4721        }
4722      } else if (Name == "cos" || Name == "cosf" || Name == "cosl") {
4723        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
4724            I.getOperand(1)->getType()->isFloatingPointTy() &&
4725            I.getType() == I.getOperand(1)->getType() &&
4726            I.onlyReadsMemory()) {
4727          SDValue Tmp = getValue(I.getOperand(1));
4728          setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(),
4729                                   Tmp.getValueType(), Tmp));
4730          return;
4731        }
4732      } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") {
4733        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
4734            I.getOperand(1)->getType()->isFloatingPointTy() &&
4735            I.getType() == I.getOperand(1)->getType() &&
4736            I.onlyReadsMemory()) {
4737          SDValue Tmp = getValue(I.getOperand(1));
4738          setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(),
4739                                   Tmp.getValueType(), Tmp));
4740          return;
4741        }
4742      } else if (Name == "memcmp") {
4743        if (visitMemCmpCall(I))
4744          return;
4745      }
4746    }
4747  } else if (isa<InlineAsm>(I.getOperand(0))) {
4748    visitInlineAsm(&I);
4749    return;
4750  }
4751
4752  SDValue Callee;
4753  if (!RenameFn)
4754    Callee = getValue(I.getOperand(0));
4755  else
4756    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
4757
4758  // Check if we can potentially perform a tail call. More detailed checking is
4759  // be done within LowerCallTo, after more information about the call is known.
4760  LowerCallTo(&I, Callee, I.isTailCall());
4761}
4762
4763/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
4764/// this value and returns the result as a ValueVT value.  This uses
4765/// Chain/Flag as the input and updates them for the output Chain/Flag.
4766/// If the Flag pointer is NULL, no flag is used.
4767SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, DebugLoc dl,
4768                                      SDValue &Chain, SDValue *Flag) const {
4769  // Assemble the legal parts into the final values.
4770  SmallVector<SDValue, 4> Values(ValueVTs.size());
4771  SmallVector<SDValue, 8> Parts;
4772  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
4773    // Copy the legal parts from the registers.
4774    EVT ValueVT = ValueVTs[Value];
4775    unsigned NumRegs = TLI->getNumRegisters(*DAG.getContext(), ValueVT);
4776    EVT RegisterVT = RegVTs[Value];
4777
4778    Parts.resize(NumRegs);
4779    for (unsigned i = 0; i != NumRegs; ++i) {
4780      SDValue P;
4781      if (Flag == 0) {
4782        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
4783      } else {
4784        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
4785        *Flag = P.getValue(2);
4786      }
4787
4788      Chain = P.getValue(1);
4789
4790      // If the source register was virtual and if we know something about it,
4791      // add an assert node.
4792      if (TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) &&
4793          RegisterVT.isInteger() && !RegisterVT.isVector()) {
4794        unsigned SlotNo = Regs[Part+i]-TargetRegisterInfo::FirstVirtualRegister;
4795        FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo();
4796        if (FLI.LiveOutRegInfo.size() > SlotNo) {
4797          FunctionLoweringInfo::LiveOutInfo &LOI = FLI.LiveOutRegInfo[SlotNo];
4798
4799          unsigned RegSize = RegisterVT.getSizeInBits();
4800          unsigned NumSignBits = LOI.NumSignBits;
4801          unsigned NumZeroBits = LOI.KnownZero.countLeadingOnes();
4802
4803          // FIXME: We capture more information than the dag can represent.  For
4804          // now, just use the tightest assertzext/assertsext possible.
4805          bool isSExt = true;
4806          EVT FromVT(MVT::Other);
4807          if (NumSignBits == RegSize)
4808            isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
4809          else if (NumZeroBits >= RegSize-1)
4810            isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
4811          else if (NumSignBits > RegSize-8)
4812            isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
4813          else if (NumZeroBits >= RegSize-8)
4814            isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
4815          else if (NumSignBits > RegSize-16)
4816            isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
4817          else if (NumZeroBits >= RegSize-16)
4818            isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
4819          else if (NumSignBits > RegSize-32)
4820            isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
4821          else if (NumZeroBits >= RegSize-32)
4822            isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
4823
4824          if (FromVT != MVT::Other)
4825            P = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
4826                            RegisterVT, P, DAG.getValueType(FromVT));
4827        }
4828      }
4829
4830      Parts[i] = P;
4831    }
4832
4833    Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
4834                                     NumRegs, RegisterVT, ValueVT);
4835    Part += NumRegs;
4836    Parts.clear();
4837  }
4838
4839  return DAG.getNode(ISD::MERGE_VALUES, dl,
4840                     DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
4841                     &Values[0], ValueVTs.size());
4842}
4843
4844/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
4845/// specified value into the registers specified by this object.  This uses
4846/// Chain/Flag as the input and updates them for the output Chain/Flag.
4847/// If the Flag pointer is NULL, no flag is used.
4848void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
4849                                 SDValue &Chain, SDValue *Flag) const {
4850  // Get the list of the values's legal parts.
4851  unsigned NumRegs = Regs.size();
4852  SmallVector<SDValue, 8> Parts(NumRegs);
4853  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
4854    EVT ValueVT = ValueVTs[Value];
4855    unsigned NumParts = TLI->getNumRegisters(*DAG.getContext(), ValueVT);
4856    EVT RegisterVT = RegVTs[Value];
4857
4858    getCopyToParts(DAG, dl,
4859                   Val.getValue(Val.getResNo() + Value),
4860                   &Parts[Part], NumParts, RegisterVT);
4861    Part += NumParts;
4862  }
4863
4864  // Copy the parts into the registers.
4865  SmallVector<SDValue, 8> Chains(NumRegs);
4866  for (unsigned i = 0; i != NumRegs; ++i) {
4867    SDValue Part;
4868    if (Flag == 0) {
4869      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
4870    } else {
4871      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
4872      *Flag = Part.getValue(1);
4873    }
4874
4875    Chains[i] = Part.getValue(0);
4876  }
4877
4878  if (NumRegs == 1 || Flag)
4879    // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
4880    // flagged to it. That is the CopyToReg nodes and the user are considered
4881    // a single scheduling unit. If we create a TokenFactor and return it as
4882    // chain, then the TokenFactor is both a predecessor (operand) of the
4883    // user as well as a successor (the TF operands are flagged to the user).
4884    // c1, f1 = CopyToReg
4885    // c2, f2 = CopyToReg
4886    // c3     = TokenFactor c1, c2
4887    // ...
4888    //        = op c3, ..., f2
4889    Chain = Chains[NumRegs-1];
4890  else
4891    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
4892}
4893
4894/// AddInlineAsmOperands - Add this value to the specified inlineasm node
4895/// operand list.  This adds the code marker and includes the number of
4896/// values added into it.
4897void RegsForValue::AddInlineAsmOperands(unsigned Code,
4898                                        bool HasMatching,unsigned MatchingIdx,
4899                                        SelectionDAG &DAG,
4900                                        std::vector<SDValue> &Ops) const {
4901  assert(Regs.size() < (1 << 13) && "Too many inline asm outputs!");
4902  unsigned Flag = Code | (Regs.size() << 3);
4903  if (HasMatching)
4904    Flag |= 0x80000000 | (MatchingIdx << 16);
4905  SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
4906  Ops.push_back(Res);
4907
4908  for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
4909    unsigned NumRegs = TLI->getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
4910    EVT RegisterVT = RegVTs[Value];
4911    for (unsigned i = 0; i != NumRegs; ++i) {
4912      assert(Reg < Regs.size() && "Mismatch in # registers expected");
4913      Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
4914    }
4915  }
4916}
4917
4918/// isAllocatableRegister - If the specified register is safe to allocate,
4919/// i.e. it isn't a stack pointer or some other special register, return the
4920/// register class for the register.  Otherwise, return null.
4921static const TargetRegisterClass *
4922isAllocatableRegister(unsigned Reg, MachineFunction &MF,
4923                      const TargetLowering &TLI,
4924                      const TargetRegisterInfo *TRI) {
4925  EVT FoundVT = MVT::Other;
4926  const TargetRegisterClass *FoundRC = 0;
4927  for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(),
4928       E = TRI->regclass_end(); RCI != E; ++RCI) {
4929    EVT ThisVT = MVT::Other;
4930
4931    const TargetRegisterClass *RC = *RCI;
4932    // If none of the value types for this register class are valid, we
4933    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
4934    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
4935         I != E; ++I) {
4936      if (TLI.isTypeLegal(*I)) {
4937        // If we have already found this register in a different register class,
4938        // choose the one with the largest VT specified.  For example, on
4939        // PowerPC, we favor f64 register classes over f32.
4940        if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) {
4941          ThisVT = *I;
4942          break;
4943        }
4944      }
4945    }
4946
4947    if (ThisVT == MVT::Other) continue;
4948
4949    // NOTE: This isn't ideal.  In particular, this might allocate the
4950    // frame pointer in functions that need it (due to them not being taken
4951    // out of allocation, because a variable sized allocation hasn't been seen
4952    // yet).  This is a slight code pessimization, but should still work.
4953    for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
4954         E = RC->allocation_order_end(MF); I != E; ++I)
4955      if (*I == Reg) {
4956        // We found a matching register class.  Keep looking at others in case
4957        // we find one with larger registers that this physreg is also in.
4958        FoundRC = RC;
4959        FoundVT = ThisVT;
4960        break;
4961      }
4962  }
4963  return FoundRC;
4964}
4965
4966
4967namespace llvm {
4968/// AsmOperandInfo - This contains information for each constraint that we are
4969/// lowering.
4970class VISIBILITY_HIDDEN SDISelAsmOperandInfo :
4971    public TargetLowering::AsmOperandInfo {
4972public:
4973  /// CallOperand - If this is the result output operand or a clobber
4974  /// this is null, otherwise it is the incoming operand to the CallInst.
4975  /// This gets modified as the asm is processed.
4976  SDValue CallOperand;
4977
4978  /// AssignedRegs - If this is a register or register class operand, this
4979  /// contains the set of register corresponding to the operand.
4980  RegsForValue AssignedRegs;
4981
4982  explicit SDISelAsmOperandInfo(const InlineAsm::ConstraintInfo &info)
4983    : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
4984  }
4985
4986  /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
4987  /// busy in OutputRegs/InputRegs.
4988  void MarkAllocatedRegs(bool isOutReg, bool isInReg,
4989                         std::set<unsigned> &OutputRegs,
4990                         std::set<unsigned> &InputRegs,
4991                         const TargetRegisterInfo &TRI) const {
4992    if (isOutReg) {
4993      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
4994        MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
4995    }
4996    if (isInReg) {
4997      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
4998        MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
4999    }
5000  }
5001
5002  /// getCallOperandValEVT - Return the EVT of the Value* that this operand
5003  /// corresponds to.  If there is no Value* for this operand, it returns
5004  /// MVT::Other.
5005  EVT getCallOperandValEVT(LLVMContext &Context,
5006                           const TargetLowering &TLI,
5007                           const TargetData *TD) const {
5008    if (CallOperandVal == 0) return MVT::Other;
5009
5010    if (isa<BasicBlock>(CallOperandVal))
5011      return TLI.getPointerTy();
5012
5013    const llvm::Type *OpTy = CallOperandVal->getType();
5014
5015    // If this is an indirect operand, the operand is a pointer to the
5016    // accessed type.
5017    if (isIndirect) {
5018      const llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
5019      if (!PtrTy)
5020        llvm_report_error("Indirect operand for inline asm not a pointer!");
5021      OpTy = PtrTy->getElementType();
5022    }
5023
5024    // If OpTy is not a single value, it may be a struct/union that we
5025    // can tile with integers.
5026    if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5027      unsigned BitSize = TD->getTypeSizeInBits(OpTy);
5028      switch (BitSize) {
5029      default: break;
5030      case 1:
5031      case 8:
5032      case 16:
5033      case 32:
5034      case 64:
5035      case 128:
5036        OpTy = IntegerType::get(Context, BitSize);
5037        break;
5038      }
5039    }
5040
5041    return TLI.getValueType(OpTy, true);
5042  }
5043
5044private:
5045  /// MarkRegAndAliases - Mark the specified register and all aliases in the
5046  /// specified set.
5047  static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
5048                                const TargetRegisterInfo &TRI) {
5049    assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
5050    Regs.insert(Reg);
5051    if (const unsigned *Aliases = TRI.getAliasSet(Reg))
5052      for (; *Aliases; ++Aliases)
5053        Regs.insert(*Aliases);
5054  }
5055};
5056} // end llvm namespace.
5057
5058
5059/// GetRegistersForValue - Assign registers (virtual or physical) for the
5060/// specified operand.  We prefer to assign virtual registers, to allow the
5061/// register allocator to handle the assignment process.  However, if the asm
5062/// uses features that we can't model on machineinstrs, we have SDISel do the
5063/// allocation.  This produces generally horrible, but correct, code.
5064///
5065///   OpInfo describes the operand.
5066///   Input and OutputRegs are the set of already allocated physical registers.
5067///
5068void SelectionDAGBuilder::
5069GetRegistersForValue(SDISelAsmOperandInfo &OpInfo,
5070                     std::set<unsigned> &OutputRegs,
5071                     std::set<unsigned> &InputRegs) {
5072  LLVMContext &Context = FuncInfo.Fn->getContext();
5073
5074  // Compute whether this value requires an input register, an output register,
5075  // or both.
5076  bool isOutReg = false;
5077  bool isInReg = false;
5078  switch (OpInfo.Type) {
5079  case InlineAsm::isOutput:
5080    isOutReg = true;
5081
5082    // If there is an input constraint that matches this, we need to reserve
5083    // the input register so no other inputs allocate to it.
5084    isInReg = OpInfo.hasMatchingInput();
5085    break;
5086  case InlineAsm::isInput:
5087    isInReg = true;
5088    isOutReg = false;
5089    break;
5090  case InlineAsm::isClobber:
5091    isOutReg = true;
5092    isInReg = true;
5093    break;
5094  }
5095
5096
5097  MachineFunction &MF = DAG.getMachineFunction();
5098  SmallVector<unsigned, 4> Regs;
5099
5100  // If this is a constraint for a single physreg, or a constraint for a
5101  // register class, find it.
5102  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
5103    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5104                                     OpInfo.ConstraintVT);
5105
5106  unsigned NumRegs = 1;
5107  if (OpInfo.ConstraintVT != MVT::Other) {
5108    // If this is a FP input in an integer register (or visa versa) insert a bit
5109    // cast of the input value.  More generally, handle any case where the input
5110    // value disagrees with the register class we plan to stick this in.
5111    if (OpInfo.Type == InlineAsm::isInput &&
5112        PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
5113      // Try to convert to the first EVT that the reg class contains.  If the
5114      // types are identical size, use a bitcast to convert (e.g. two differing
5115      // vector types).
5116      EVT RegVT = *PhysReg.second->vt_begin();
5117      if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
5118        OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
5119                                         RegVT, OpInfo.CallOperand);
5120        OpInfo.ConstraintVT = RegVT;
5121      } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
5122        // If the input is a FP value and we want it in FP registers, do a
5123        // bitcast to the corresponding integer type.  This turns an f64 value
5124        // into i64, which can be passed with two i32 values on a 32-bit
5125        // machine.
5126        RegVT = EVT::getIntegerVT(Context,
5127                                  OpInfo.ConstraintVT.getSizeInBits());
5128        OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
5129                                         RegVT, OpInfo.CallOperand);
5130        OpInfo.ConstraintVT = RegVT;
5131      }
5132    }
5133
5134    NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
5135  }
5136
5137  EVT RegVT;
5138  EVT ValueVT = OpInfo.ConstraintVT;
5139
5140  // If this is a constraint for a specific physical register, like {r17},
5141  // assign it now.
5142  if (unsigned AssignedReg = PhysReg.first) {
5143    const TargetRegisterClass *RC = PhysReg.second;
5144    if (OpInfo.ConstraintVT == MVT::Other)
5145      ValueVT = *RC->vt_begin();
5146
5147    // Get the actual register value type.  This is important, because the user
5148    // may have asked for (e.g.) the AX register in i32 type.  We need to
5149    // remember that AX is actually i16 to get the right extension.
5150    RegVT = *RC->vt_begin();
5151
5152    // This is a explicit reference to a physical register.
5153    Regs.push_back(AssignedReg);
5154
5155    // If this is an expanded reference, add the rest of the regs to Regs.
5156    if (NumRegs != 1) {
5157      TargetRegisterClass::iterator I = RC->begin();
5158      for (; *I != AssignedReg; ++I)
5159        assert(I != RC->end() && "Didn't find reg!");
5160
5161      // Already added the first reg.
5162      --NumRegs; ++I;
5163      for (; NumRegs; --NumRegs, ++I) {
5164        assert(I != RC->end() && "Ran out of registers to allocate!");
5165        Regs.push_back(*I);
5166      }
5167    }
5168
5169    OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT);
5170    const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5171    OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5172    return;
5173  }
5174
5175  // Otherwise, if this was a reference to an LLVM register class, create vregs
5176  // for this reference.
5177  if (const TargetRegisterClass *RC = PhysReg.second) {
5178    RegVT = *RC->vt_begin();
5179    if (OpInfo.ConstraintVT == MVT::Other)
5180      ValueVT = RegVT;
5181
5182    // Create the appropriate number of virtual registers.
5183    MachineRegisterInfo &RegInfo = MF.getRegInfo();
5184    for (; NumRegs; --NumRegs)
5185      Regs.push_back(RegInfo.createVirtualRegister(RC));
5186
5187    OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT);
5188    return;
5189  }
5190
5191  // This is a reference to a register class that doesn't directly correspond
5192  // to an LLVM register class.  Allocate NumRegs consecutive, available,
5193  // registers from the class.
5194  std::vector<unsigned> RegClassRegs
5195    = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
5196                                            OpInfo.ConstraintVT);
5197
5198  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5199  unsigned NumAllocated = 0;
5200  for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
5201    unsigned Reg = RegClassRegs[i];
5202    // See if this register is available.
5203    if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
5204        (isInReg  && InputRegs.count(Reg))) {    // Already used.
5205      // Make sure we find consecutive registers.
5206      NumAllocated = 0;
5207      continue;
5208    }
5209
5210    // Check to see if this register is allocatable (i.e. don't give out the
5211    // stack pointer).
5212    const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, TRI);
5213    if (!RC) {        // Couldn't allocate this register.
5214      // Reset NumAllocated to make sure we return consecutive registers.
5215      NumAllocated = 0;
5216      continue;
5217    }
5218
5219    // Okay, this register is good, we can use it.
5220    ++NumAllocated;
5221
5222    // If we allocated enough consecutive registers, succeed.
5223    if (NumAllocated == NumRegs) {
5224      unsigned RegStart = (i-NumAllocated)+1;
5225      unsigned RegEnd   = i+1;
5226      // Mark all of the allocated registers used.
5227      for (unsigned i = RegStart; i != RegEnd; ++i)
5228        Regs.push_back(RegClassRegs[i]);
5229
5230      OpInfo.AssignedRegs = RegsForValue(TLI, Regs, *RC->vt_begin(),
5231                                         OpInfo.ConstraintVT);
5232      OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5233      return;
5234    }
5235  }
5236
5237  // Otherwise, we couldn't allocate enough registers for this.
5238}
5239
5240/// hasInlineAsmMemConstraint - Return true if the inline asm instruction being
5241/// processed uses a memory 'm' constraint.
5242static bool
5243hasInlineAsmMemConstraint(std::vector<InlineAsm::ConstraintInfo> &CInfos,
5244                          const TargetLowering &TLI) {
5245  for (unsigned i = 0, e = CInfos.size(); i != e; ++i) {
5246    InlineAsm::ConstraintInfo &CI = CInfos[i];
5247    for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) {
5248      TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]);
5249      if (CType == TargetLowering::C_Memory)
5250        return true;
5251    }
5252
5253    // Indirect operand accesses access memory.
5254    if (CI.isIndirect)
5255      return true;
5256  }
5257
5258  return false;
5259}
5260
5261/// visitInlineAsm - Handle a call to an InlineAsm object.
5262///
5263void SelectionDAGBuilder::visitInlineAsm(CallSite CS) {
5264  InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
5265
5266  /// ConstraintOperands - Information about all of the constraints.
5267  std::vector<SDISelAsmOperandInfo> ConstraintOperands;
5268
5269  std::set<unsigned> OutputRegs, InputRegs;
5270
5271  // Do a prepass over the constraints, canonicalizing them, and building up the
5272  // ConstraintOperands list.
5273  std::vector<InlineAsm::ConstraintInfo>
5274    ConstraintInfos = IA->ParseConstraints();
5275
5276  bool hasMemory = hasInlineAsmMemConstraint(ConstraintInfos, TLI);
5277
5278  SDValue Chain, Flag;
5279
5280  // We won't need to flush pending loads if this asm doesn't touch
5281  // memory and is nonvolatile.
5282  if (hasMemory || IA->hasSideEffects())
5283    Chain = getRoot();
5284  else
5285    Chain = DAG.getRoot();
5286
5287  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
5288  unsigned ResNo = 0;   // ResNo - The result number of the next output.
5289  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
5290    ConstraintOperands.push_back(SDISelAsmOperandInfo(ConstraintInfos[i]));
5291    SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
5292
5293    EVT OpVT = MVT::Other;
5294
5295    // Compute the value type for each operand.
5296    switch (OpInfo.Type) {
5297    case InlineAsm::isOutput:
5298      // Indirect outputs just consume an argument.
5299      if (OpInfo.isIndirect) {
5300        OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
5301        break;
5302      }
5303
5304      // The return value of the call is this value.  As such, there is no
5305      // corresponding argument.
5306      assert(!CS.getType()->isVoidTy() &&
5307             "Bad inline asm!");
5308      if (const StructType *STy = dyn_cast<StructType>(CS.getType())) {
5309        OpVT = TLI.getValueType(STy->getElementType(ResNo));
5310      } else {
5311        assert(ResNo == 0 && "Asm only has one result!");
5312        OpVT = TLI.getValueType(CS.getType());
5313      }
5314      ++ResNo;
5315      break;
5316    case InlineAsm::isInput:
5317      OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
5318      break;
5319    case InlineAsm::isClobber:
5320      // Nothing to do.
5321      break;
5322    }
5323
5324    // If this is an input or an indirect output, process the call argument.
5325    // BasicBlocks are labels, currently appearing only in asm's.
5326    if (OpInfo.CallOperandVal) {
5327      // Strip bitcasts, if any.  This mostly comes up for functions.
5328      OpInfo.CallOperandVal = OpInfo.CallOperandVal->stripPointerCasts();
5329
5330      if (BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
5331        OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
5332      } else {
5333        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
5334      }
5335
5336      OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD);
5337    }
5338
5339    OpInfo.ConstraintVT = OpVT;
5340  }
5341
5342  // Second pass over the constraints: compute which constraint option to use
5343  // and assign registers to constraints that want a specific physreg.
5344  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
5345    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5346
5347    // If this is an output operand with a matching input operand, look up the
5348    // matching input. If their types mismatch, e.g. one is an integer, the
5349    // other is floating point, or their sizes are different, flag it as an
5350    // error.
5351    if (OpInfo.hasMatchingInput()) {
5352      SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5353      if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5354        if ((OpInfo.ConstraintVT.isInteger() !=
5355             Input.ConstraintVT.isInteger()) ||
5356            (OpInfo.ConstraintVT.getSizeInBits() !=
5357             Input.ConstraintVT.getSizeInBits())) {
5358          llvm_report_error("Unsupported asm: input constraint"
5359                            " with a matching output constraint of incompatible"
5360                            " type!");
5361        }
5362        Input.ConstraintVT = OpInfo.ConstraintVT;
5363      }
5364    }
5365
5366    // Compute the constraint code and ConstraintType to use.
5367    TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, hasMemory, &DAG);
5368
5369    // If this is a memory input, and if the operand is not indirect, do what we
5370    // need to to provide an address for the memory input.
5371    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5372        !OpInfo.isIndirect) {
5373      assert(OpInfo.Type == InlineAsm::isInput &&
5374             "Can only indirectify direct input operands!");
5375
5376      // Memory operands really want the address of the value.  If we don't have
5377      // an indirect input, put it in the constpool if we can, otherwise spill
5378      // it to a stack slot.
5379
5380      // If the operand is a float, integer, or vector constant, spill to a
5381      // constant pool entry to get its address.
5382      Value *OpVal = OpInfo.CallOperandVal;
5383      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
5384          isa<ConstantVector>(OpVal)) {
5385        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
5386                                                 TLI.getPointerTy());
5387      } else {
5388        // Otherwise, create a stack slot and emit a store to it before the
5389        // asm.
5390        const Type *Ty = OpVal->getType();
5391        uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
5392        unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
5393        MachineFunction &MF = DAG.getMachineFunction();
5394        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5395        SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
5396        Chain = DAG.getStore(Chain, getCurDebugLoc(),
5397                             OpInfo.CallOperand, StackSlot, NULL, 0,
5398                             false, false, 0);
5399        OpInfo.CallOperand = StackSlot;
5400      }
5401
5402      // There is no longer a Value* corresponding to this operand.
5403      OpInfo.CallOperandVal = 0;
5404
5405      // It is now an indirect operand.
5406      OpInfo.isIndirect = true;
5407    }
5408
5409    // If this constraint is for a specific register, allocate it before
5410    // anything else.
5411    if (OpInfo.ConstraintType == TargetLowering::C_Register)
5412      GetRegistersForValue(OpInfo, OutputRegs, InputRegs);
5413  }
5414
5415  ConstraintInfos.clear();
5416
5417  // Second pass - Loop over all of the operands, assigning virtual or physregs
5418  // to register class operands.
5419  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5420    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5421
5422    // C_Register operands have already been allocated, Other/Memory don't need
5423    // to be.
5424    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
5425      GetRegistersForValue(OpInfo, OutputRegs, InputRegs);
5426  }
5427
5428  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
5429  std::vector<SDValue> AsmNodeOperands;
5430  AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
5431  AsmNodeOperands.push_back(
5432          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
5433                                      TLI.getPointerTy()));
5434
5435
5436  // Loop over all of the inputs, copying the operand values into the
5437  // appropriate registers and processing the output regs.
5438  RegsForValue RetValRegs;
5439
5440  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
5441  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
5442
5443  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5444    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5445
5446    switch (OpInfo.Type) {
5447    case InlineAsm::isOutput: {
5448      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
5449          OpInfo.ConstraintType != TargetLowering::C_Register) {
5450        // Memory output, or 'other' output (e.g. 'X' constraint).
5451        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
5452
5453        // Add information to the INLINEASM node to know about this output.
5454        unsigned ResOpType = 4/*MEM*/ | (1<<3);
5455        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5456                                                        TLI.getPointerTy()));
5457        AsmNodeOperands.push_back(OpInfo.CallOperand);
5458        break;
5459      }
5460
5461      // Otherwise, this is a register or register class output.
5462
5463      // Copy the output from the appropriate register.  Find a register that
5464      // we can use.
5465      if (OpInfo.AssignedRegs.Regs.empty()) {
5466        llvm_report_error("Couldn't allocate output reg for"
5467                          " constraint '" + OpInfo.ConstraintCode + "'!");
5468      }
5469
5470      // If this is an indirect operand, store through the pointer after the
5471      // asm.
5472      if (OpInfo.isIndirect) {
5473        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
5474                                                      OpInfo.CallOperandVal));
5475      } else {
5476        // This is the result value of the call.
5477        assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
5478        // Concatenate this output onto the outputs list.
5479        RetValRegs.append(OpInfo.AssignedRegs);
5480      }
5481
5482      // Add information to the INLINEASM node to know that this register is
5483      // set.
5484      OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
5485                                               6 /* EARLYCLOBBER REGDEF */ :
5486                                               2 /* REGDEF */ ,
5487                                               false,
5488                                               0,
5489                                               DAG,
5490                                               AsmNodeOperands);
5491      break;
5492    }
5493    case InlineAsm::isInput: {
5494      SDValue InOperandVal = OpInfo.CallOperand;
5495
5496      if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
5497        // If this is required to match an output register we have already set,
5498        // just use its register.
5499        unsigned OperandNo = OpInfo.getMatchedOperand();
5500
5501        // Scan until we find the definition we already emitted of this operand.
5502        // When we find it, create a RegsForValue operand.
5503        unsigned CurOp = 2;  // The first operand.
5504        for (; OperandNo; --OperandNo) {
5505          // Advance to the next operand.
5506          unsigned OpFlag =
5507            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5508          assert(((OpFlag & 7) == 2 /*REGDEF*/ ||
5509                  (OpFlag & 7) == 6 /*EARLYCLOBBER REGDEF*/ ||
5510                  (OpFlag & 7) == 4 /*MEM*/) &&
5511                 "Skipped past definitions?");
5512          CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
5513        }
5514
5515        unsigned OpFlag =
5516          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5517        if ((OpFlag & 7) == 2 /*REGDEF*/
5518            || (OpFlag & 7) == 6 /* EARLYCLOBBER REGDEF */) {
5519          // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
5520          if (OpInfo.isIndirect) {
5521            llvm_report_error("Don't know how to handle tied indirect "
5522                              "register inputs yet!");
5523          }
5524          RegsForValue MatchedRegs;
5525          MatchedRegs.TLI = &TLI;
5526          MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
5527          EVT RegVT = AsmNodeOperands[CurOp+1].getValueType();
5528          MatchedRegs.RegVTs.push_back(RegVT);
5529          MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
5530          for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
5531               i != e; ++i)
5532            MatchedRegs.Regs.push_back
5533              (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)));
5534
5535          // Use the produced MatchedRegs object to
5536          MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
5537                                    Chain, &Flag);
5538          MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/,
5539                                           true, OpInfo.getMatchedOperand(),
5540                                           DAG, AsmNodeOperands);
5541          break;
5542        } else {
5543          assert(((OpFlag & 7) == 4) && "Unknown matching constraint!");
5544          assert((InlineAsm::getNumOperandRegisters(OpFlag)) == 1 &&
5545                 "Unexpected number of operands");
5546          // Add information to the INLINEASM node to know about this input.
5547          // See InlineAsm.h isUseOperandTiedToDef.
5548          OpFlag |= 0x80000000 | (OpInfo.getMatchedOperand() << 16);
5549          AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
5550                                                          TLI.getPointerTy()));
5551          AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
5552          break;
5553        }
5554      }
5555
5556      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
5557        assert(!OpInfo.isIndirect &&
5558               "Don't know how to handle indirect other inputs yet!");
5559
5560        std::vector<SDValue> Ops;
5561        TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0],
5562                                         hasMemory, Ops, DAG);
5563        if (Ops.empty()) {
5564          llvm_report_error("Invalid operand for inline asm"
5565                            " constraint '" + OpInfo.ConstraintCode + "'!");
5566        }
5567
5568        // Add information to the INLINEASM node to know about this input.
5569        unsigned ResOpType = 3 /*IMM*/ | (Ops.size() << 3);
5570        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5571                                                        TLI.getPointerTy()));
5572        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
5573        break;
5574      } else if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
5575        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
5576        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
5577               "Memory operands expect pointer values");
5578
5579        // Add information to the INLINEASM node to know about this input.
5580        unsigned ResOpType = 4/*MEM*/ | (1<<3);
5581        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5582                                                        TLI.getPointerTy()));
5583        AsmNodeOperands.push_back(InOperandVal);
5584        break;
5585      }
5586
5587      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
5588              OpInfo.ConstraintType == TargetLowering::C_Register) &&
5589             "Unknown constraint type!");
5590      assert(!OpInfo.isIndirect &&
5591             "Don't know how to handle indirect register inputs yet!");
5592
5593      // Copy the input into the appropriate registers.
5594      if (OpInfo.AssignedRegs.Regs.empty() ||
5595          !OpInfo.AssignedRegs.areValueTypesLegal()) {
5596        llvm_report_error("Couldn't allocate input reg for"
5597                          " constraint '"+ OpInfo.ConstraintCode +"'!");
5598      }
5599
5600      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
5601                                        Chain, &Flag);
5602
5603      OpInfo.AssignedRegs.AddInlineAsmOperands(1/*REGUSE*/, false, 0,
5604                                               DAG, AsmNodeOperands);
5605      break;
5606    }
5607    case InlineAsm::isClobber: {
5608      // Add the clobbered value to the operand list, so that the register
5609      // allocator is aware that the physreg got clobbered.
5610      if (!OpInfo.AssignedRegs.Regs.empty())
5611        OpInfo.AssignedRegs.AddInlineAsmOperands(6 /* EARLYCLOBBER REGDEF */,
5612                                                 false, 0, DAG,
5613                                                 AsmNodeOperands);
5614      break;
5615    }
5616    }
5617  }
5618
5619  // Finish up input operands.
5620  AsmNodeOperands[0] = Chain;
5621  if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
5622
5623  Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(),
5624                      DAG.getVTList(MVT::Other, MVT::Flag),
5625                      &AsmNodeOperands[0], AsmNodeOperands.size());
5626  Flag = Chain.getValue(1);
5627
5628  // If this asm returns a register value, copy the result from that register
5629  // and set it as the value of the call.
5630  if (!RetValRegs.Regs.empty()) {
5631    SDValue Val = RetValRegs.getCopyFromRegs(DAG, getCurDebugLoc(),
5632                                             Chain, &Flag);
5633
5634    // FIXME: Why don't we do this for inline asms with MRVs?
5635    if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
5636      EVT ResultType = TLI.getValueType(CS.getType());
5637
5638      // If any of the results of the inline asm is a vector, it may have the
5639      // wrong width/num elts.  This can happen for register classes that can
5640      // contain multiple different value types.  The preg or vreg allocated may
5641      // not have the same VT as was expected.  Convert it to the right type
5642      // with bit_convert.
5643      if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
5644        Val = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
5645                          ResultType, Val);
5646
5647      } else if (ResultType != Val.getValueType() &&
5648                 ResultType.isInteger() && Val.getValueType().isInteger()) {
5649        // If a result value was tied to an input value, the computed result may
5650        // have a wider width than the expected result.  Extract the relevant
5651        // portion.
5652        Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val);
5653      }
5654
5655      assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
5656    }
5657
5658    setValue(CS.getInstruction(), Val);
5659    // Don't need to use this as a chain in this case.
5660    if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
5661      return;
5662  }
5663
5664  std::vector<std::pair<SDValue, Value*> > StoresToEmit;
5665
5666  // Process indirect outputs, first output all of the flagged copies out of
5667  // physregs.
5668  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
5669    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
5670    Value *Ptr = IndirectStoresToEmit[i].second;
5671    SDValue OutVal = OutRegs.getCopyFromRegs(DAG, getCurDebugLoc(),
5672                                             Chain, &Flag);
5673    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
5674
5675  }
5676
5677  // Emit the non-flagged stores from the physregs.
5678  SmallVector<SDValue, 8> OutChains;
5679  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
5680    SDValue Val = DAG.getStore(Chain, getCurDebugLoc(),
5681                               StoresToEmit[i].first,
5682                               getValue(StoresToEmit[i].second),
5683                               StoresToEmit[i].second, 0,
5684                               false, false, 0);
5685    OutChains.push_back(Val);
5686  }
5687
5688  if (!OutChains.empty())
5689    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
5690                        &OutChains[0], OutChains.size());
5691
5692  DAG.setRoot(Chain);
5693}
5694
5695void SelectionDAGBuilder::visitVAStart(CallInst &I) {
5696  DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(),
5697                          MVT::Other, getRoot(),
5698                          getValue(I.getOperand(1)),
5699                          DAG.getSrcValue(I.getOperand(1))));
5700}
5701
5702void SelectionDAGBuilder::visitVAArg(VAArgInst &I) {
5703  SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(),
5704                           getRoot(), getValue(I.getOperand(0)),
5705                           DAG.getSrcValue(I.getOperand(0)));
5706  setValue(&I, V);
5707  DAG.setRoot(V.getValue(1));
5708}
5709
5710void SelectionDAGBuilder::visitVAEnd(CallInst &I) {
5711  DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(),
5712                          MVT::Other, getRoot(),
5713                          getValue(I.getOperand(1)),
5714                          DAG.getSrcValue(I.getOperand(1))));
5715}
5716
5717void SelectionDAGBuilder::visitVACopy(CallInst &I) {
5718  DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(),
5719                          MVT::Other, getRoot(),
5720                          getValue(I.getOperand(1)),
5721                          getValue(I.getOperand(2)),
5722                          DAG.getSrcValue(I.getOperand(1)),
5723                          DAG.getSrcValue(I.getOperand(2))));
5724}
5725
5726/// TargetLowering::LowerCallTo - This is the default LowerCallTo
5727/// implementation, which just calls LowerCall.
5728/// FIXME: When all targets are
5729/// migrated to using LowerCall, this hook should be integrated into SDISel.
5730std::pair<SDValue, SDValue>
5731TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy,
5732                            bool RetSExt, bool RetZExt, bool isVarArg,
5733                            bool isInreg, unsigned NumFixedArgs,
5734                            CallingConv::ID CallConv, bool isTailCall,
5735                            bool isReturnValueUsed,
5736                            SDValue Callee,
5737                            ArgListTy &Args, SelectionDAG &DAG, DebugLoc dl) {
5738  // Handle all of the outgoing arguments.
5739  SmallVector<ISD::OutputArg, 32> Outs;
5740  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
5741    SmallVector<EVT, 4> ValueVTs;
5742    ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
5743    for (unsigned Value = 0, NumValues = ValueVTs.size();
5744         Value != NumValues; ++Value) {
5745      EVT VT = ValueVTs[Value];
5746      const Type *ArgTy = VT.getTypeForEVT(RetTy->getContext());
5747      SDValue Op = SDValue(Args[i].Node.getNode(),
5748                           Args[i].Node.getResNo() + Value);
5749      ISD::ArgFlagsTy Flags;
5750      unsigned OriginalAlignment =
5751        getTargetData()->getABITypeAlignment(ArgTy);
5752
5753      if (Args[i].isZExt)
5754        Flags.setZExt();
5755      if (Args[i].isSExt)
5756        Flags.setSExt();
5757      if (Args[i].isInReg)
5758        Flags.setInReg();
5759      if (Args[i].isSRet)
5760        Flags.setSRet();
5761      if (Args[i].isByVal) {
5762        Flags.setByVal();
5763        const PointerType *Ty = cast<PointerType>(Args[i].Ty);
5764        const Type *ElementTy = Ty->getElementType();
5765        unsigned FrameAlign = getByValTypeAlignment(ElementTy);
5766        unsigned FrameSize  = getTargetData()->getTypeAllocSize(ElementTy);
5767        // For ByVal, alignment should come from FE.  BE will guess if this
5768        // info is not there but there are cases it cannot get right.
5769        if (Args[i].Alignment)
5770          FrameAlign = Args[i].Alignment;
5771        Flags.setByValAlign(FrameAlign);
5772        Flags.setByValSize(FrameSize);
5773      }
5774      if (Args[i].isNest)
5775        Flags.setNest();
5776      Flags.setOrigAlign(OriginalAlignment);
5777
5778      EVT PartVT = getRegisterType(RetTy->getContext(), VT);
5779      unsigned NumParts = getNumRegisters(RetTy->getContext(), VT);
5780      SmallVector<SDValue, 4> Parts(NumParts);
5781      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
5782
5783      if (Args[i].isSExt)
5784        ExtendKind = ISD::SIGN_EXTEND;
5785      else if (Args[i].isZExt)
5786        ExtendKind = ISD::ZERO_EXTEND;
5787
5788      getCopyToParts(DAG, dl, Op, &Parts[0], NumParts,
5789                     PartVT, ExtendKind);
5790
5791      for (unsigned j = 0; j != NumParts; ++j) {
5792        // if it isn't first piece, alignment must be 1
5793        ISD::OutputArg MyFlags(Flags, Parts[j], i < NumFixedArgs);
5794        if (NumParts > 1 && j == 0)
5795          MyFlags.Flags.setSplit();
5796        else if (j != 0)
5797          MyFlags.Flags.setOrigAlign(1);
5798
5799        Outs.push_back(MyFlags);
5800      }
5801    }
5802  }
5803
5804  // Handle the incoming return values from the call.
5805  SmallVector<ISD::InputArg, 32> Ins;
5806  SmallVector<EVT, 4> RetTys;
5807  ComputeValueVTs(*this, RetTy, RetTys);
5808  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
5809    EVT VT = RetTys[I];
5810    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
5811    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
5812    for (unsigned i = 0; i != NumRegs; ++i) {
5813      ISD::InputArg MyFlags;
5814      MyFlags.VT = RegisterVT;
5815      MyFlags.Used = isReturnValueUsed;
5816      if (RetSExt)
5817        MyFlags.Flags.setSExt();
5818      if (RetZExt)
5819        MyFlags.Flags.setZExt();
5820      if (isInreg)
5821        MyFlags.Flags.setInReg();
5822      Ins.push_back(MyFlags);
5823    }
5824  }
5825
5826  SmallVector<SDValue, 4> InVals;
5827  Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall,
5828                    Outs, Ins, dl, DAG, InVals);
5829
5830  // Verify that the target's LowerCall behaved as expected.
5831  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
5832         "LowerCall didn't return a valid chain!");
5833  assert((!isTailCall || InVals.empty()) &&
5834         "LowerCall emitted a return value for a tail call!");
5835  assert((isTailCall || InVals.size() == Ins.size()) &&
5836         "LowerCall didn't emit the correct number of values!");
5837
5838  // For a tail call, the return value is merely live-out and there aren't
5839  // any nodes in the DAG representing it. Return a special value to
5840  // indicate that a tail call has been emitted and no more Instructions
5841  // should be processed in the current block.
5842  if (isTailCall) {
5843    DAG.setRoot(Chain);
5844    return std::make_pair(SDValue(), SDValue());
5845  }
5846
5847  DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
5848          assert(InVals[i].getNode() &&
5849                 "LowerCall emitted a null value!");
5850          assert(Ins[i].VT == InVals[i].getValueType() &&
5851                 "LowerCall emitted a value with the wrong type!");
5852        });
5853
5854  // Collect the legal value parts into potentially illegal values
5855  // that correspond to the original function's return values.
5856  ISD::NodeType AssertOp = ISD::DELETED_NODE;
5857  if (RetSExt)
5858    AssertOp = ISD::AssertSext;
5859  else if (RetZExt)
5860    AssertOp = ISD::AssertZext;
5861  SmallVector<SDValue, 4> ReturnValues;
5862  unsigned CurReg = 0;
5863  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
5864    EVT VT = RetTys[I];
5865    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
5866    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
5867
5868    ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg],
5869                                            NumRegs, RegisterVT, VT,
5870                                            AssertOp));
5871    CurReg += NumRegs;
5872  }
5873
5874  // For a function returning void, there is no return value. We can't create
5875  // such a node, so we just return a null return value in that case. In
5876  // that case, nothing will actualy look at the value.
5877  if (ReturnValues.empty())
5878    return std::make_pair(SDValue(), Chain);
5879
5880  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
5881                            DAG.getVTList(&RetTys[0], RetTys.size()),
5882                            &ReturnValues[0], ReturnValues.size());
5883  return std::make_pair(Res, Chain);
5884}
5885
5886void TargetLowering::LowerOperationWrapper(SDNode *N,
5887                                           SmallVectorImpl<SDValue> &Results,
5888                                           SelectionDAG &DAG) {
5889  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
5890  if (Res.getNode())
5891    Results.push_back(Res);
5892}
5893
5894SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
5895  llvm_unreachable("LowerOperation not implemented for this target!");
5896  return SDValue();
5897}
5898
5899void SelectionDAGBuilder::CopyValueToVirtualRegister(Value *V, unsigned Reg) {
5900  SDValue Op = getValue(V);
5901  assert((Op.getOpcode() != ISD::CopyFromReg ||
5902          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
5903         "Copy from a reg to the same reg!");
5904  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
5905
5906  RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
5907  SDValue Chain = DAG.getEntryNode();
5908  RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0);
5909  PendingExports.push_back(Chain);
5910}
5911
5912#include "llvm/CodeGen/SelectionDAGISel.h"
5913
5914void SelectionDAGISel::LowerArguments(BasicBlock *LLVMBB) {
5915  // If this is the entry block, emit arguments.
5916  Function &F = *LLVMBB->getParent();
5917  SelectionDAG &DAG = SDB->DAG;
5918  SDValue OldRoot = DAG.getRoot();
5919  DebugLoc dl = SDB->getCurDebugLoc();
5920  const TargetData *TD = TLI.getTargetData();
5921  SmallVector<ISD::InputArg, 16> Ins;
5922
5923  // Check whether the function can return without sret-demotion.
5924  SmallVector<EVT, 4> OutVTs;
5925  SmallVector<ISD::ArgFlagsTy, 4> OutsFlags;
5926  getReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
5927                OutVTs, OutsFlags, TLI);
5928  FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo();
5929
5930  FLI.CanLowerReturn = TLI.CanLowerReturn(F.getCallingConv(), F.isVarArg(),
5931                                          OutVTs, OutsFlags, DAG);
5932  if (!FLI.CanLowerReturn) {
5933    // Put in an sret pointer parameter before all the other parameters.
5934    SmallVector<EVT, 1> ValueVTs;
5935    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
5936
5937    // NOTE: Assuming that a pointer will never break down to more than one VT
5938    // or one register.
5939    ISD::ArgFlagsTy Flags;
5940    Flags.setSRet();
5941    EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), ValueVTs[0]);
5942    ISD::InputArg RetArg(Flags, RegisterVT, true);
5943    Ins.push_back(RetArg);
5944  }
5945
5946  // Set up the incoming argument description vector.
5947  unsigned Idx = 1;
5948  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
5949       I != E; ++I, ++Idx) {
5950    SmallVector<EVT, 4> ValueVTs;
5951    ComputeValueVTs(TLI, I->getType(), ValueVTs);
5952    bool isArgValueUsed = !I->use_empty();
5953    for (unsigned Value = 0, NumValues = ValueVTs.size();
5954         Value != NumValues; ++Value) {
5955      EVT VT = ValueVTs[Value];
5956      const Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
5957      ISD::ArgFlagsTy Flags;
5958      unsigned OriginalAlignment =
5959        TD->getABITypeAlignment(ArgTy);
5960
5961      if (F.paramHasAttr(Idx, Attribute::ZExt))
5962        Flags.setZExt();
5963      if (F.paramHasAttr(Idx, Attribute::SExt))
5964        Flags.setSExt();
5965      if (F.paramHasAttr(Idx, Attribute::InReg))
5966        Flags.setInReg();
5967      if (F.paramHasAttr(Idx, Attribute::StructRet))
5968        Flags.setSRet();
5969      if (F.paramHasAttr(Idx, Attribute::ByVal)) {
5970        Flags.setByVal();
5971        const PointerType *Ty = cast<PointerType>(I->getType());
5972        const Type *ElementTy = Ty->getElementType();
5973        unsigned FrameAlign = TLI.getByValTypeAlignment(ElementTy);
5974        unsigned FrameSize  = TD->getTypeAllocSize(ElementTy);
5975        // For ByVal, alignment should be passed from FE.  BE will guess if
5976        // this info is not there but there are cases it cannot get right.
5977        if (F.getParamAlignment(Idx))
5978          FrameAlign = F.getParamAlignment(Idx);
5979        Flags.setByValAlign(FrameAlign);
5980        Flags.setByValSize(FrameSize);
5981      }
5982      if (F.paramHasAttr(Idx, Attribute::Nest))
5983        Flags.setNest();
5984      Flags.setOrigAlign(OriginalAlignment);
5985
5986      EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
5987      unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
5988      for (unsigned i = 0; i != NumRegs; ++i) {
5989        ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed);
5990        if (NumRegs > 1 && i == 0)
5991          MyFlags.Flags.setSplit();
5992        // if it isn't first piece, alignment must be 1
5993        else if (i > 0)
5994          MyFlags.Flags.setOrigAlign(1);
5995        Ins.push_back(MyFlags);
5996      }
5997    }
5998  }
5999
6000  // Call the target to set up the argument values.
6001  SmallVector<SDValue, 8> InVals;
6002  SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
6003                                             F.isVarArg(), Ins,
6004                                             dl, DAG, InVals);
6005
6006  // Verify that the target's LowerFormalArguments behaved as expected.
6007  assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
6008         "LowerFormalArguments didn't return a valid chain!");
6009  assert(InVals.size() == Ins.size() &&
6010         "LowerFormalArguments didn't emit the correct number of values!");
6011  DEBUG({
6012      for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6013        assert(InVals[i].getNode() &&
6014               "LowerFormalArguments emitted a null value!");
6015        assert(Ins[i].VT == InVals[i].getValueType() &&
6016               "LowerFormalArguments emitted a value with the wrong type!");
6017      }
6018    });
6019
6020  // Update the DAG with the new chain value resulting from argument lowering.
6021  DAG.setRoot(NewRoot);
6022
6023  // Set up the argument values.
6024  unsigned i = 0;
6025  Idx = 1;
6026  if (!FLI.CanLowerReturn) {
6027    // Create a virtual register for the sret pointer, and put in a copy
6028    // from the sret argument into it.
6029    SmallVector<EVT, 1> ValueVTs;
6030    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6031    EVT VT = ValueVTs[0];
6032    EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6033    ISD::NodeType AssertOp = ISD::DELETED_NODE;
6034    SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
6035                                        RegVT, VT, AssertOp);
6036
6037    MachineFunction& MF = SDB->DAG.getMachineFunction();
6038    MachineRegisterInfo& RegInfo = MF.getRegInfo();
6039    unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT));
6040    FLI.DemoteRegister = SRetReg;
6041    NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(),
6042                                    SRetReg, ArgValue);
6043    DAG.setRoot(NewRoot);
6044
6045    // i indexes lowered arguments.  Bump it past the hidden sret argument.
6046    // Idx indexes LLVM arguments.  Don't touch it.
6047    ++i;
6048  }
6049
6050  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
6051      ++I, ++Idx) {
6052    SmallVector<SDValue, 4> ArgValues;
6053    SmallVector<EVT, 4> ValueVTs;
6054    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6055    unsigned NumValues = ValueVTs.size();
6056    for (unsigned Value = 0; Value != NumValues; ++Value) {
6057      EVT VT = ValueVTs[Value];
6058      EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6059      unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6060
6061      if (!I->use_empty()) {
6062        ISD::NodeType AssertOp = ISD::DELETED_NODE;
6063        if (F.paramHasAttr(Idx, Attribute::SExt))
6064          AssertOp = ISD::AssertSext;
6065        else if (F.paramHasAttr(Idx, Attribute::ZExt))
6066          AssertOp = ISD::AssertZext;
6067
6068        ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
6069                                             NumParts, PartVT, VT,
6070                                             AssertOp));
6071      }
6072
6073      i += NumParts;
6074    }
6075
6076    if (!I->use_empty()) {
6077      SDValue Res;
6078      if (!ArgValues.empty())
6079        Res = DAG.getMergeValues(&ArgValues[0], NumValues,
6080                                 SDB->getCurDebugLoc());
6081      SDB->setValue(I, Res);
6082
6083      // If this argument is live outside of the entry block, insert a copy from
6084      // whereever we got it to the vreg that other BB's will reference it as.
6085      SDB->CopyToExportRegsIfNeeded(I);
6086    }
6087  }
6088
6089  assert(i == InVals.size() && "Argument register count mismatch!");
6090
6091  // Finally, if the target has anything special to do, allow it to do so.
6092  // FIXME: this should insert code into the DAG!
6093  EmitFunctionEntryCode(F, SDB->DAG.getMachineFunction());
6094}
6095
6096/// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
6097/// ensure constants are generated when needed.  Remember the virtual registers
6098/// that need to be added to the Machine PHI nodes as input.  We cannot just
6099/// directly add them, because expansion might result in multiple MBB's for one
6100/// BB.  As such, the start of the BB might correspond to a different MBB than
6101/// the end.
6102///
6103void
6104SelectionDAGISel::HandlePHINodesInSuccessorBlocks(BasicBlock *LLVMBB) {
6105  TerminatorInst *TI = LLVMBB->getTerminator();
6106
6107  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6108
6109  // Check successor nodes' PHI nodes that expect a constant to be available
6110  // from this block.
6111  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6112    BasicBlock *SuccBB = TI->getSuccessor(succ);
6113    if (!isa<PHINode>(SuccBB->begin())) continue;
6114    MachineBasicBlock *SuccMBB = FuncInfo->MBBMap[SuccBB];
6115
6116    // If this terminator has multiple identical successors (common for
6117    // switches), only handle each succ once.
6118    if (!SuccsHandled.insert(SuccMBB)) continue;
6119
6120    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6121    PHINode *PN;
6122
6123    // At this point we know that there is a 1-1 correspondence between LLVM PHI
6124    // nodes and Machine PHI nodes, but the incoming operands have not been
6125    // emitted yet.
6126    for (BasicBlock::iterator I = SuccBB->begin();
6127         (PN = dyn_cast<PHINode>(I)); ++I) {
6128      // Ignore dead phi's.
6129      if (PN->use_empty()) continue;
6130
6131      unsigned Reg;
6132      Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6133
6134      if (Constant *C = dyn_cast<Constant>(PHIOp)) {
6135        unsigned &RegOut = SDB->ConstantsOut[C];
6136        if (RegOut == 0) {
6137          RegOut = FuncInfo->CreateRegForValue(C);
6138          SDB->CopyValueToVirtualRegister(C, RegOut);
6139        }
6140        Reg = RegOut;
6141      } else {
6142        Reg = FuncInfo->ValueMap[PHIOp];
6143        if (Reg == 0) {
6144          assert(isa<AllocaInst>(PHIOp) &&
6145                 FuncInfo->StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
6146                 "Didn't codegen value into a register!??");
6147          Reg = FuncInfo->CreateRegForValue(PHIOp);
6148          SDB->CopyValueToVirtualRegister(PHIOp, Reg);
6149        }
6150      }
6151
6152      // Remember that this register needs to added to the machine PHI node as
6153      // the input for this MBB.
6154      SmallVector<EVT, 4> ValueVTs;
6155      ComputeValueVTs(TLI, PN->getType(), ValueVTs);
6156      for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
6157        EVT VT = ValueVTs[vti];
6158        unsigned NumRegisters = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6159        for (unsigned i = 0, e = NumRegisters; i != e; ++i)
6160          SDB->PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
6161        Reg += NumRegisters;
6162      }
6163    }
6164  }
6165  SDB->ConstantsOut.clear();
6166}
6167
6168/// This is the Fast-ISel version of HandlePHINodesInSuccessorBlocks. It only
6169/// supports legal types, and it emits MachineInstrs directly instead of
6170/// creating SelectionDAG nodes.
6171///
6172bool
6173SelectionDAGISel::HandlePHINodesInSuccessorBlocksFast(BasicBlock *LLVMBB,
6174                                                      FastISel *F) {
6175  TerminatorInst *TI = LLVMBB->getTerminator();
6176
6177  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6178  unsigned OrigNumPHINodesToUpdate = SDB->PHINodesToUpdate.size();
6179
6180  // Check successor nodes' PHI nodes that expect a constant to be available
6181  // from this block.
6182  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6183    BasicBlock *SuccBB = TI->getSuccessor(succ);
6184    if (!isa<PHINode>(SuccBB->begin())) continue;
6185    MachineBasicBlock *SuccMBB = FuncInfo->MBBMap[SuccBB];
6186
6187    // If this terminator has multiple identical successors (common for
6188    // switches), only handle each succ once.
6189    if (!SuccsHandled.insert(SuccMBB)) continue;
6190
6191    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6192    PHINode *PN;
6193
6194    // At this point we know that there is a 1-1 correspondence between LLVM PHI
6195    // nodes and Machine PHI nodes, but the incoming operands have not been
6196    // emitted yet.
6197    for (BasicBlock::iterator I = SuccBB->begin();
6198         (PN = dyn_cast<PHINode>(I)); ++I) {
6199      // Ignore dead phi's.
6200      if (PN->use_empty()) continue;
6201
6202      // Only handle legal types. Two interesting things to note here. First,
6203      // by bailing out early, we may leave behind some dead instructions,
6204      // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its
6205      // own moves. Second, this check is necessary becuase FastISel doesn't
6206      // use CreateRegForValue to create registers, so it always creates
6207      // exactly one register for each non-void instruction.
6208      EVT VT = TLI.getValueType(PN->getType(), /*AllowUnknown=*/true);
6209      if (VT == MVT::Other || !TLI.isTypeLegal(VT)) {
6210        // Promote MVT::i1.
6211        if (VT == MVT::i1)
6212          VT = TLI.getTypeToTransformTo(*CurDAG->getContext(), VT);
6213        else {
6214          SDB->PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
6215          return false;
6216        }
6217      }
6218
6219      Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6220
6221      unsigned Reg = F->getRegForValue(PHIOp);
6222      if (Reg == 0) {
6223        SDB->PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
6224        return false;
6225      }
6226      SDB->PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg));
6227    }
6228  }
6229
6230  return true;
6231}
6232