SelectionDAGBuilder.cpp revision 219a8bed7b44ee401da3ec15109f39daa5f31fa2
1//===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements routines for translating from LLVM IR into SelectionDAG IR.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "SelectionDAGBuilder.h"
16#include "FunctionLoweringInfo.h"
17#include "llvm/ADT/BitVector.h"
18#include "llvm/ADT/SmallSet.h"
19#include "llvm/Analysis/AliasAnalysis.h"
20#include "llvm/Analysis/ConstantFolding.h"
21#include "llvm/Constants.h"
22#include "llvm/CallingConv.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/Function.h"
25#include "llvm/GlobalVariable.h"
26#include "llvm/InlineAsm.h"
27#include "llvm/Instructions.h"
28#include "llvm/Intrinsics.h"
29#include "llvm/IntrinsicInst.h"
30#include "llvm/Module.h"
31#include "llvm/CodeGen/FastISel.h"
32#include "llvm/CodeGen/GCStrategy.h"
33#include "llvm/CodeGen/GCMetadata.h"
34#include "llvm/CodeGen/MachineFunction.h"
35#include "llvm/CodeGen/MachineFrameInfo.h"
36#include "llvm/CodeGen/MachineInstrBuilder.h"
37#include "llvm/CodeGen/MachineJumpTableInfo.h"
38#include "llvm/CodeGen/MachineModuleInfo.h"
39#include "llvm/CodeGen/MachineRegisterInfo.h"
40#include "llvm/CodeGen/PseudoSourceValue.h"
41#include "llvm/CodeGen/SelectionDAG.h"
42#include "llvm/CodeGen/DwarfWriter.h"
43#include "llvm/Analysis/DebugInfo.h"
44#include "llvm/Target/TargetRegisterInfo.h"
45#include "llvm/Target/TargetData.h"
46#include "llvm/Target/TargetFrameInfo.h"
47#include "llvm/Target/TargetInstrInfo.h"
48#include "llvm/Target/TargetIntrinsicInfo.h"
49#include "llvm/Target/TargetLowering.h"
50#include "llvm/Target/TargetOptions.h"
51#include "llvm/Support/Compiler.h"
52#include "llvm/Support/CommandLine.h"
53#include "llvm/Support/Debug.h"
54#include "llvm/Support/ErrorHandling.h"
55#include "llvm/Support/MathExtras.h"
56#include "llvm/Support/raw_ostream.h"
57#include <algorithm>
58using namespace llvm;
59
60/// LimitFloatPrecision - Generate low-precision inline sequences for
61/// some float libcalls (6, 8 or 12 bits).
62static unsigned LimitFloatPrecision;
63
64static cl::opt<unsigned, true>
65LimitFPPrecision("limit-float-precision",
66                 cl::desc("Generate low-precision inline sequences "
67                          "for some float libcalls"),
68                 cl::location(LimitFloatPrecision),
69                 cl::init(0));
70
71namespace {
72  /// RegsForValue - This struct represents the registers (physical or virtual)
73  /// that a particular set of values is assigned, and the type information
74  /// about the value. The most common situation is to represent one value at a
75  /// time, but struct or array values are handled element-wise as multiple
76  /// values.  The splitting of aggregates is performed recursively, so that we
77  /// never have aggregate-typed registers. The values at this point do not
78  /// necessarily have legal types, so each value may require one or more
79  /// registers of some legal type.
80  ///
81  struct RegsForValue {
82    /// TLI - The TargetLowering object.
83    ///
84    const TargetLowering *TLI;
85
86    /// ValueVTs - The value types of the values, which may not be legal, and
87    /// may need be promoted or synthesized from one or more registers.
88    ///
89    SmallVector<EVT, 4> ValueVTs;
90
91    /// RegVTs - The value types of the registers. This is the same size as
92    /// ValueVTs and it records, for each value, what the type of the assigned
93    /// register or registers are. (Individual values are never synthesized
94    /// from more than one type of register.)
95    ///
96    /// With virtual registers, the contents of RegVTs is redundant with TLI's
97    /// getRegisterType member function, however when with physical registers
98    /// it is necessary to have a separate record of the types.
99    ///
100    SmallVector<EVT, 4> RegVTs;
101
102    /// Regs - This list holds the registers assigned to the values.
103    /// Each legal or promoted value requires one register, and each
104    /// expanded value requires multiple registers.
105    ///
106    SmallVector<unsigned, 4> Regs;
107
108    RegsForValue() : TLI(0) {}
109
110    RegsForValue(const TargetLowering &tli,
111                 const SmallVector<unsigned, 4> &regs,
112                 EVT regvt, EVT valuevt)
113      : TLI(&tli),  ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
114    RegsForValue(const TargetLowering &tli,
115                 const SmallVector<unsigned, 4> &regs,
116                 const SmallVector<EVT, 4> &regvts,
117                 const SmallVector<EVT, 4> &valuevts)
118      : TLI(&tli), ValueVTs(valuevts), RegVTs(regvts), Regs(regs) {}
119    RegsForValue(LLVMContext &Context, const TargetLowering &tli,
120                 unsigned Reg, const Type *Ty) : TLI(&tli) {
121      ComputeValueVTs(tli, Ty, ValueVTs);
122
123      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
124        EVT ValueVT = ValueVTs[Value];
125        unsigned NumRegs = TLI->getNumRegisters(Context, ValueVT);
126        EVT RegisterVT = TLI->getRegisterType(Context, ValueVT);
127        for (unsigned i = 0; i != NumRegs; ++i)
128          Regs.push_back(Reg + i);
129        RegVTs.push_back(RegisterVT);
130        Reg += NumRegs;
131      }
132    }
133
134    /// areValueTypesLegal - Return true if types of all the values are legal.
135    bool areValueTypesLegal() {
136      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
137        EVT RegisterVT = RegVTs[Value];
138        if (!TLI->isTypeLegal(RegisterVT))
139          return false;
140      }
141      return true;
142    }
143
144
145    /// append - Add the specified values to this one.
146    void append(const RegsForValue &RHS) {
147      TLI = RHS.TLI;
148      ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
149      RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
150      Regs.append(RHS.Regs.begin(), RHS.Regs.end());
151    }
152
153
154    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
155    /// this value and returns the result as a ValueVTs value.  This uses
156    /// Chain/Flag as the input and updates them for the output Chain/Flag.
157    /// If the Flag pointer is NULL, no flag is used.
158    SDValue getCopyFromRegs(SelectionDAG &DAG, DebugLoc dl,
159                            SDValue &Chain, SDValue *Flag) const;
160
161    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
162    /// specified value into the registers specified by this object.  This uses
163    /// Chain/Flag as the input and updates them for the output Chain/Flag.
164    /// If the Flag pointer is NULL, no flag is used.
165    void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
166                       SDValue &Chain, SDValue *Flag) const;
167
168    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
169    /// operand list.  This adds the code marker, matching input operand index
170    /// (if applicable), and includes the number of values added into it.
171    void AddInlineAsmOperands(unsigned Code,
172                              bool HasMatching, unsigned MatchingIdx,
173                              SelectionDAG &DAG,
174                              std::vector<SDValue> &Ops) const;
175  };
176}
177
178/// getCopyFromParts - Create a value that contains the specified legal parts
179/// combined into the value they represent.  If the parts combine to a type
180/// larger then ValueVT then AssertOp can be used to specify whether the extra
181/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
182/// (ISD::AssertSext).
183static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc dl,
184                                const SDValue *Parts,
185                                unsigned NumParts, EVT PartVT, EVT ValueVT,
186                                ISD::NodeType AssertOp = ISD::DELETED_NODE) {
187  assert(NumParts > 0 && "No parts to assemble!");
188  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
189  SDValue Val = Parts[0];
190
191  if (NumParts > 1) {
192    // Assemble the value from multiple parts.
193    if (!ValueVT.isVector() && ValueVT.isInteger()) {
194      unsigned PartBits = PartVT.getSizeInBits();
195      unsigned ValueBits = ValueVT.getSizeInBits();
196
197      // Assemble the power of 2 part.
198      unsigned RoundParts = NumParts & (NumParts - 1) ?
199        1 << Log2_32(NumParts) : NumParts;
200      unsigned RoundBits = PartBits * RoundParts;
201      EVT RoundVT = RoundBits == ValueBits ?
202        ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
203      SDValue Lo, Hi;
204
205      EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
206
207      if (RoundParts > 2) {
208        Lo = getCopyFromParts(DAG, dl, Parts, RoundParts / 2,
209                              PartVT, HalfVT);
210        Hi = getCopyFromParts(DAG, dl, Parts + RoundParts / 2,
211                              RoundParts / 2, PartVT, HalfVT);
212      } else {
213        Lo = DAG.getNode(ISD::BIT_CONVERT, dl, HalfVT, Parts[0]);
214        Hi = DAG.getNode(ISD::BIT_CONVERT, dl, HalfVT, Parts[1]);
215      }
216
217      if (TLI.isBigEndian())
218        std::swap(Lo, Hi);
219
220      Val = DAG.getNode(ISD::BUILD_PAIR, dl, RoundVT, Lo, Hi);
221
222      if (RoundParts < NumParts) {
223        // Assemble the trailing non-power-of-2 part.
224        unsigned OddParts = NumParts - RoundParts;
225        EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
226        Hi = getCopyFromParts(DAG, dl,
227                              Parts + RoundParts, OddParts, PartVT, OddVT);
228
229        // Combine the round and odd parts.
230        Lo = Val;
231        if (TLI.isBigEndian())
232          std::swap(Lo, Hi);
233        EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
234        Hi = DAG.getNode(ISD::ANY_EXTEND, dl, TotalVT, Hi);
235        Hi = DAG.getNode(ISD::SHL, dl, TotalVT, Hi,
236                         DAG.getConstant(Lo.getValueType().getSizeInBits(),
237                                         TLI.getPointerTy()));
238        Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, TotalVT, Lo);
239        Val = DAG.getNode(ISD::OR, dl, TotalVT, Lo, Hi);
240      }
241    } else if (ValueVT.isVector()) {
242      // Handle a multi-element vector.
243      EVT IntermediateVT, RegisterVT;
244      unsigned NumIntermediates;
245      unsigned NumRegs =
246        TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
247                                   NumIntermediates, RegisterVT);
248      assert(NumRegs == NumParts
249             && "Part count doesn't match vector breakdown!");
250      NumParts = NumRegs; // Silence a compiler warning.
251      assert(RegisterVT == PartVT
252             && "Part type doesn't match vector breakdown!");
253      assert(RegisterVT == Parts[0].getValueType() &&
254             "Part type doesn't match part!");
255
256      // Assemble the parts into intermediate operands.
257      SmallVector<SDValue, 8> Ops(NumIntermediates);
258      if (NumIntermediates == NumParts) {
259        // If the register was not expanded, truncate or copy the value,
260        // as appropriate.
261        for (unsigned i = 0; i != NumParts; ++i)
262          Ops[i] = getCopyFromParts(DAG, dl, &Parts[i], 1,
263                                    PartVT, IntermediateVT);
264      } else if (NumParts > 0) {
265        // If the intermediate type was expanded, build the intermediate
266        // operands from the parts.
267        assert(NumParts % NumIntermediates == 0 &&
268               "Must expand into a divisible number of parts!");
269        unsigned Factor = NumParts / NumIntermediates;
270        for (unsigned i = 0; i != NumIntermediates; ++i)
271          Ops[i] = getCopyFromParts(DAG, dl, &Parts[i * Factor], Factor,
272                                    PartVT, IntermediateVT);
273      }
274
275      // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
276      // intermediate operands.
277      Val = DAG.getNode(IntermediateVT.isVector() ?
278                        ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, dl,
279                        ValueVT, &Ops[0], NumIntermediates);
280    } else if (PartVT.isFloatingPoint()) {
281      // FP split into multiple FP parts (for ppcf128)
282      assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) &&
283             "Unexpected split");
284      SDValue Lo, Hi;
285      Lo = DAG.getNode(ISD::BIT_CONVERT, dl, EVT(MVT::f64), Parts[0]);
286      Hi = DAG.getNode(ISD::BIT_CONVERT, dl, EVT(MVT::f64), Parts[1]);
287      if (TLI.isBigEndian())
288        std::swap(Lo, Hi);
289      Val = DAG.getNode(ISD::BUILD_PAIR, dl, ValueVT, Lo, Hi);
290    } else {
291      // FP split into integer parts (soft fp)
292      assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
293             !PartVT.isVector() && "Unexpected split");
294      EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
295      Val = getCopyFromParts(DAG, dl, Parts, NumParts, PartVT, IntVT);
296    }
297  }
298
299  // There is now one part, held in Val.  Correct it to match ValueVT.
300  PartVT = Val.getValueType();
301
302  if (PartVT == ValueVT)
303    return Val;
304
305  if (PartVT.isVector()) {
306    assert(ValueVT.isVector() && "Unknown vector conversion!");
307    return DAG.getNode(ISD::BIT_CONVERT, dl, ValueVT, Val);
308  }
309
310  if (ValueVT.isVector()) {
311    assert(ValueVT.getVectorElementType() == PartVT &&
312           ValueVT.getVectorNumElements() == 1 &&
313           "Only trivial scalar-to-vector conversions should get here!");
314    return DAG.getNode(ISD::BUILD_VECTOR, dl, ValueVT, Val);
315  }
316
317  if (PartVT.isInteger() &&
318      ValueVT.isInteger()) {
319    if (ValueVT.bitsLT(PartVT)) {
320      // For a truncate, see if we have any information to
321      // indicate whether the truncated bits will always be
322      // zero or sign-extension.
323      if (AssertOp != ISD::DELETED_NODE)
324        Val = DAG.getNode(AssertOp, dl, PartVT, Val,
325                          DAG.getValueType(ValueVT));
326      return DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val);
327    } else {
328      return DAG.getNode(ISD::ANY_EXTEND, dl, ValueVT, Val);
329    }
330  }
331
332  if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
333    if (ValueVT.bitsLT(Val.getValueType())) {
334      // FP_ROUND's are always exact here.
335      return DAG.getNode(ISD::FP_ROUND, dl, ValueVT, Val,
336                         DAG.getIntPtrConstant(1));
337    }
338
339    return DAG.getNode(ISD::FP_EXTEND, dl, ValueVT, Val);
340  }
341
342  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
343    return DAG.getNode(ISD::BIT_CONVERT, dl, ValueVT, Val);
344
345  llvm_unreachable("Unknown mismatch!");
346  return SDValue();
347}
348
349/// getCopyToParts - Create a series of nodes that contain the specified value
350/// split into legal parts.  If the parts contain more bits than Val, then, for
351/// integers, ExtendKind can be used to specify how to generate the extra bits.
352static void getCopyToParts(SelectionDAG &DAG, DebugLoc dl,
353                           SDValue Val, SDValue *Parts, unsigned NumParts,
354                           EVT PartVT,
355                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
356  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
357  EVT PtrVT = TLI.getPointerTy();
358  EVT ValueVT = Val.getValueType();
359  unsigned PartBits = PartVT.getSizeInBits();
360  unsigned OrigNumParts = NumParts;
361  assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
362
363  if (!NumParts)
364    return;
365
366  if (!ValueVT.isVector()) {
367    if (PartVT == ValueVT) {
368      assert(NumParts == 1 && "No-op copy with multiple parts!");
369      Parts[0] = Val;
370      return;
371    }
372
373    if (NumParts * PartBits > ValueVT.getSizeInBits()) {
374      // If the parts cover more bits than the value has, promote the value.
375      if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
376        assert(NumParts == 1 && "Do not know what to promote to!");
377        Val = DAG.getNode(ISD::FP_EXTEND, dl, PartVT, Val);
378      } else if (PartVT.isInteger() && ValueVT.isInteger()) {
379        ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
380        Val = DAG.getNode(ExtendKind, dl, ValueVT, Val);
381      } else {
382        llvm_unreachable("Unknown mismatch!");
383      }
384    } else if (PartBits == ValueVT.getSizeInBits()) {
385      // Different types of the same size.
386      assert(NumParts == 1 && PartVT != ValueVT);
387      Val = DAG.getNode(ISD::BIT_CONVERT, dl, PartVT, Val);
388    } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
389      // If the parts cover less bits than value has, truncate the value.
390      if (PartVT.isInteger() && ValueVT.isInteger()) {
391        ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
392        Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val);
393      } else {
394        llvm_unreachable("Unknown mismatch!");
395      }
396    }
397
398    // The value may have changed - recompute ValueVT.
399    ValueVT = Val.getValueType();
400    assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
401           "Failed to tile the value with PartVT!");
402
403    if (NumParts == 1) {
404      assert(PartVT == ValueVT && "Type conversion failed!");
405      Parts[0] = Val;
406      return;
407    }
408
409    // Expand the value into multiple parts.
410    if (NumParts & (NumParts - 1)) {
411      // The number of parts is not a power of 2.  Split off and copy the tail.
412      assert(PartVT.isInteger() && ValueVT.isInteger() &&
413             "Do not know what to expand to!");
414      unsigned RoundParts = 1 << Log2_32(NumParts);
415      unsigned RoundBits = RoundParts * PartBits;
416      unsigned OddParts = NumParts - RoundParts;
417      SDValue OddVal = DAG.getNode(ISD::SRL, dl, ValueVT, Val,
418                                   DAG.getConstant(RoundBits,
419                                                   TLI.getPointerTy()));
420      getCopyToParts(DAG, dl, OddVal, Parts + RoundParts,
421                     OddParts, PartVT);
422
423      if (TLI.isBigEndian())
424        // The odd parts were reversed by getCopyToParts - unreverse them.
425        std::reverse(Parts + RoundParts, Parts + NumParts);
426
427      NumParts = RoundParts;
428      ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
429      Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val);
430    }
431
432    // The number of parts is a power of 2.  Repeatedly bisect the value using
433    // EXTRACT_ELEMENT.
434    Parts[0] = DAG.getNode(ISD::BIT_CONVERT, dl,
435                           EVT::getIntegerVT(*DAG.getContext(),
436                                             ValueVT.getSizeInBits()),
437                           Val);
438
439    for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
440      for (unsigned i = 0; i < NumParts; i += StepSize) {
441        unsigned ThisBits = StepSize * PartBits / 2;
442        EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
443        SDValue &Part0 = Parts[i];
444        SDValue &Part1 = Parts[i+StepSize/2];
445
446        Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
447                            ThisVT, Part0,
448                            DAG.getConstant(1, PtrVT));
449        Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
450                            ThisVT, Part0,
451                            DAG.getConstant(0, PtrVT));
452
453        if (ThisBits == PartBits && ThisVT != PartVT) {
454          Part0 = DAG.getNode(ISD::BIT_CONVERT, dl,
455                                                PartVT, Part0);
456          Part1 = DAG.getNode(ISD::BIT_CONVERT, dl,
457                                                PartVT, Part1);
458        }
459      }
460    }
461
462    if (TLI.isBigEndian())
463      std::reverse(Parts, Parts + OrigNumParts);
464
465    return;
466  }
467
468  // Vector ValueVT.
469  if (NumParts == 1) {
470    if (PartVT != ValueVT) {
471      if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
472        Val = DAG.getNode(ISD::BIT_CONVERT, dl, PartVT, Val);
473      } else {
474        assert(ValueVT.getVectorElementType() == PartVT &&
475               ValueVT.getVectorNumElements() == 1 &&
476               "Only trivial vector-to-scalar conversions should get here!");
477        Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
478                          PartVT, Val,
479                          DAG.getConstant(0, PtrVT));
480      }
481    }
482
483    Parts[0] = Val;
484    return;
485  }
486
487  // Handle a multi-element vector.
488  EVT IntermediateVT, RegisterVT;
489  unsigned NumIntermediates;
490  unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
491                              IntermediateVT, NumIntermediates, RegisterVT);
492  unsigned NumElements = ValueVT.getVectorNumElements();
493
494  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
495  NumParts = NumRegs; // Silence a compiler warning.
496  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
497
498  // Split the vector into intermediate operands.
499  SmallVector<SDValue, 8> Ops(NumIntermediates);
500  for (unsigned i = 0; i != NumIntermediates; ++i) {
501    if (IntermediateVT.isVector())
502      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl,
503                           IntermediateVT, Val,
504                           DAG.getConstant(i * (NumElements / NumIntermediates),
505                                           PtrVT));
506    else
507      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
508                           IntermediateVT, Val,
509                           DAG.getConstant(i, PtrVT));
510  }
511
512  // Split the intermediate operands into legal parts.
513  if (NumParts == NumIntermediates) {
514    // If the register was not expanded, promote or copy the value,
515    // as appropriate.
516    for (unsigned i = 0; i != NumParts; ++i)
517      getCopyToParts(DAG, dl, Ops[i], &Parts[i], 1, PartVT);
518  } else if (NumParts > 0) {
519    // If the intermediate type was expanded, split each the value into
520    // legal parts.
521    assert(NumParts % NumIntermediates == 0 &&
522           "Must expand into a divisible number of parts!");
523    unsigned Factor = NumParts / NumIntermediates;
524    for (unsigned i = 0; i != NumIntermediates; ++i)
525      getCopyToParts(DAG, dl, Ops[i], &Parts[i*Factor], Factor, PartVT);
526  }
527}
528
529
530void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) {
531  AA = &aa;
532  GFI = gfi;
533  TD = DAG.getTarget().getTargetData();
534}
535
536/// clear - Clear out the curret SelectionDAG and the associated
537/// state and prepare this SelectionDAGBuilder object to be used
538/// for a new block. This doesn't clear out information about
539/// additional blocks that are needed to complete switch lowering
540/// or PHI node updating; that information is cleared out as it is
541/// consumed.
542void SelectionDAGBuilder::clear() {
543  NodeMap.clear();
544  PendingLoads.clear();
545  PendingExports.clear();
546  EdgeMapping.clear();
547  DAG.clear();
548  CurDebugLoc = DebugLoc::getUnknownLoc();
549  HasTailCall = false;
550}
551
552/// getRoot - Return the current virtual root of the Selection DAG,
553/// flushing any PendingLoad items. This must be done before emitting
554/// a store or any other node that may need to be ordered after any
555/// prior load instructions.
556///
557SDValue SelectionDAGBuilder::getRoot() {
558  if (PendingLoads.empty())
559    return DAG.getRoot();
560
561  if (PendingLoads.size() == 1) {
562    SDValue Root = PendingLoads[0];
563    DAG.setRoot(Root);
564    PendingLoads.clear();
565    return Root;
566  }
567
568  // Otherwise, we have to make a token factor node.
569  SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
570                               &PendingLoads[0], PendingLoads.size());
571  PendingLoads.clear();
572  DAG.setRoot(Root);
573  return Root;
574}
575
576/// getControlRoot - Similar to getRoot, but instead of flushing all the
577/// PendingLoad items, flush all the PendingExports items. It is necessary
578/// to do this before emitting a terminator instruction.
579///
580SDValue SelectionDAGBuilder::getControlRoot() {
581  SDValue Root = DAG.getRoot();
582
583  if (PendingExports.empty())
584    return Root;
585
586  // Turn all of the CopyToReg chains into one factored node.
587  if (Root.getOpcode() != ISD::EntryToken) {
588    unsigned i = 0, e = PendingExports.size();
589    for (; i != e; ++i) {
590      assert(PendingExports[i].getNode()->getNumOperands() > 1);
591      if (PendingExports[i].getNode()->getOperand(0) == Root)
592        break;  // Don't add the root if we already indirectly depend on it.
593    }
594
595    if (i == e)
596      PendingExports.push_back(Root);
597  }
598
599  Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
600                     &PendingExports[0],
601                     PendingExports.size());
602  PendingExports.clear();
603  DAG.setRoot(Root);
604  return Root;
605}
606
607void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) {
608  if (DAG.GetOrdering(Node) != 0) return; // Already has ordering.
609  DAG.AssignOrdering(Node, SDNodeOrder);
610
611  for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I)
612    AssignOrderingToNode(Node->getOperand(I).getNode());
613}
614
615void SelectionDAGBuilder::visit(Instruction &I) {
616  visit(I.getOpcode(), I);
617}
618
619void SelectionDAGBuilder::visit(unsigned Opcode, User &I) {
620  // Note: this doesn't use InstVisitor, because it has to work with
621  // ConstantExpr's in addition to instructions.
622  switch (Opcode) {
623  default: llvm_unreachable("Unknown instruction type encountered!");
624    // Build the switch statement using the Instruction.def file.
625#define HANDLE_INST(NUM, OPCODE, CLASS) \
626    case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break;
627#include "llvm/Instruction.def"
628  }
629
630  // Assign the ordering to the freshly created DAG nodes.
631  if (NodeMap.count(&I)) {
632    ++SDNodeOrder;
633    AssignOrderingToNode(getValue(&I).getNode());
634  }
635}
636
637SDValue SelectionDAGBuilder::getValue(const Value *V) {
638  SDValue &N = NodeMap[V];
639  if (N.getNode()) return N;
640
641  if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) {
642    EVT VT = TLI.getValueType(V->getType(), true);
643
644    if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
645      return N = DAG.getConstant(*CI, VT);
646
647    if (GlobalValue *GV = dyn_cast<GlobalValue>(C))
648      return N = DAG.getGlobalAddress(GV, VT);
649
650    if (isa<ConstantPointerNull>(C))
651      return N = DAG.getConstant(0, TLI.getPointerTy());
652
653    if (ConstantFP *CFP = dyn_cast<ConstantFP>(C))
654      return N = DAG.getConstantFP(*CFP, VT);
655
656    if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
657      return N = DAG.getUNDEF(VT);
658
659    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
660      visit(CE->getOpcode(), *CE);
661      SDValue N1 = NodeMap[V];
662      assert(N1.getNode() && "visit didn't populate the ValueMap!");
663      return N1;
664    }
665
666    if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
667      SmallVector<SDValue, 4> Constants;
668      for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
669           OI != OE; ++OI) {
670        SDNode *Val = getValue(*OI).getNode();
671        // If the operand is an empty aggregate, there are no values.
672        if (!Val) continue;
673        // Add each leaf value from the operand to the Constants list
674        // to form a flattened list of all the values.
675        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
676          Constants.push_back(SDValue(Val, i));
677      }
678
679      return DAG.getMergeValues(&Constants[0], Constants.size(),
680                                getCurDebugLoc());
681    }
682
683    if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
684      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
685             "Unknown struct or array constant!");
686
687      SmallVector<EVT, 4> ValueVTs;
688      ComputeValueVTs(TLI, C->getType(), ValueVTs);
689      unsigned NumElts = ValueVTs.size();
690      if (NumElts == 0)
691        return SDValue(); // empty struct
692      SmallVector<SDValue, 4> Constants(NumElts);
693      for (unsigned i = 0; i != NumElts; ++i) {
694        EVT EltVT = ValueVTs[i];
695        if (isa<UndefValue>(C))
696          Constants[i] = DAG.getUNDEF(EltVT);
697        else if (EltVT.isFloatingPoint())
698          Constants[i] = DAG.getConstantFP(0, EltVT);
699        else
700          Constants[i] = DAG.getConstant(0, EltVT);
701      }
702
703      return DAG.getMergeValues(&Constants[0], NumElts,
704                                getCurDebugLoc());
705    }
706
707    if (BlockAddress *BA = dyn_cast<BlockAddress>(C))
708      return DAG.getBlockAddress(BA, VT);
709
710    const VectorType *VecTy = cast<VectorType>(V->getType());
711    unsigned NumElements = VecTy->getNumElements();
712
713    // Now that we know the number and type of the elements, get that number of
714    // elements into the Ops array based on what kind of constant it is.
715    SmallVector<SDValue, 16> Ops;
716    if (ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
717      for (unsigned i = 0; i != NumElements; ++i)
718        Ops.push_back(getValue(CP->getOperand(i)));
719    } else {
720      assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
721      EVT EltVT = TLI.getValueType(VecTy->getElementType());
722
723      SDValue Op;
724      if (EltVT.isFloatingPoint())
725        Op = DAG.getConstantFP(0, EltVT);
726      else
727        Op = DAG.getConstant(0, EltVT);
728      Ops.assign(NumElements, Op);
729    }
730
731    // Create a BUILD_VECTOR node.
732    return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
733                                    VT, &Ops[0], Ops.size());
734  }
735
736  // If this is a static alloca, generate it as the frameindex instead of
737  // computation.
738  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
739    DenseMap<const AllocaInst*, int>::iterator SI =
740      FuncInfo.StaticAllocaMap.find(AI);
741    if (SI != FuncInfo.StaticAllocaMap.end())
742      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
743  }
744
745  unsigned InReg = FuncInfo.ValueMap[V];
746  assert(InReg && "Value not in map!");
747
748  RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
749  SDValue Chain = DAG.getEntryNode();
750  return RFV.getCopyFromRegs(DAG, getCurDebugLoc(), Chain, NULL);
751}
752
753/// Get the EVTs and ArgFlags collections that represent the legalized return
754/// type of the given function.  This does not require a DAG or a return value,
755/// and is suitable for use before any DAGs for the function are constructed.
756static void getReturnInfo(const Type* ReturnType,
757                   Attributes attr, SmallVectorImpl<EVT> &OutVTs,
758                   SmallVectorImpl<ISD::ArgFlagsTy> &OutFlags,
759                   TargetLowering &TLI,
760                   SmallVectorImpl<uint64_t> *Offsets = 0) {
761  SmallVector<EVT, 4> ValueVTs;
762  ComputeValueVTs(TLI, ReturnType, ValueVTs);
763  unsigned NumValues = ValueVTs.size();
764  if (NumValues == 0) return;
765  unsigned Offset = 0;
766
767  for (unsigned j = 0, f = NumValues; j != f; ++j) {
768    EVT VT = ValueVTs[j];
769    ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
770
771    if (attr & Attribute::SExt)
772      ExtendKind = ISD::SIGN_EXTEND;
773    else if (attr & Attribute::ZExt)
774      ExtendKind = ISD::ZERO_EXTEND;
775
776    // FIXME: C calling convention requires the return type to be promoted to
777    // at least 32-bit. But this is not necessary for non-C calling
778    // conventions. The frontend should mark functions whose return values
779    // require promoting with signext or zeroext attributes.
780    if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
781      EVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
782      if (VT.bitsLT(MinVT))
783        VT = MinVT;
784    }
785
786    unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT);
787    EVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT);
788    unsigned PartSize = TLI.getTargetData()->getTypeAllocSize(
789                        PartVT.getTypeForEVT(ReturnType->getContext()));
790
791    // 'inreg' on function refers to return value
792    ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
793    if (attr & Attribute::InReg)
794      Flags.setInReg();
795
796    // Propagate extension type if any
797    if (attr & Attribute::SExt)
798      Flags.setSExt();
799    else if (attr & Attribute::ZExt)
800      Flags.setZExt();
801
802    for (unsigned i = 0; i < NumParts; ++i) {
803      OutVTs.push_back(PartVT);
804      OutFlags.push_back(Flags);
805      if (Offsets)
806      {
807        Offsets->push_back(Offset);
808        Offset += PartSize;
809      }
810    }
811  }
812}
813
814void SelectionDAGBuilder::visitRet(ReturnInst &I) {
815  SDValue Chain = getControlRoot();
816  SmallVector<ISD::OutputArg, 8> Outs;
817  FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo();
818
819  if (!FLI.CanLowerReturn) {
820    unsigned DemoteReg = FLI.DemoteRegister;
821    const Function *F = I.getParent()->getParent();
822
823    // Emit a store of the return value through the virtual register.
824    // Leave Outs empty so that LowerReturn won't try to load return
825    // registers the usual way.
826    SmallVector<EVT, 1> PtrValueVTs;
827    ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
828                    PtrValueVTs);
829
830    SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
831    SDValue RetOp = getValue(I.getOperand(0));
832
833    SmallVector<EVT, 4> ValueVTs;
834    SmallVector<uint64_t, 4> Offsets;
835    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
836    unsigned NumValues = ValueVTs.size();
837
838    SmallVector<SDValue, 4> Chains(NumValues);
839    EVT PtrVT = PtrValueVTs[0];
840    for (unsigned i = 0; i != NumValues; ++i) {
841      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, RetPtr,
842                                DAG.getConstant(Offsets[i], PtrVT));
843      Chains[i] =
844        DAG.getStore(Chain, getCurDebugLoc(),
845                     SDValue(RetOp.getNode(), RetOp.getResNo() + i),
846                     Add, NULL, Offsets[i], false, false, 0);
847    }
848
849    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
850                        MVT::Other, &Chains[0], NumValues);
851  } else if (I.getNumOperands() != 0) {
852    SmallVector<EVT, 4> ValueVTs;
853    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
854    unsigned NumValues = ValueVTs.size();
855    if (NumValues) {
856      SDValue RetOp = getValue(I.getOperand(0));
857      for (unsigned j = 0, f = NumValues; j != f; ++j) {
858        EVT VT = ValueVTs[j];
859
860        ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
861
862        const Function *F = I.getParent()->getParent();
863        if (F->paramHasAttr(0, Attribute::SExt))
864          ExtendKind = ISD::SIGN_EXTEND;
865        else if (F->paramHasAttr(0, Attribute::ZExt))
866          ExtendKind = ISD::ZERO_EXTEND;
867
868        // FIXME: C calling convention requires the return type to be promoted
869        // to at least 32-bit. But this is not necessary for non-C calling
870        // conventions. The frontend should mark functions whose return values
871        // require promoting with signext or zeroext attributes.
872        if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
873          EVT MinVT = TLI.getRegisterType(*DAG.getContext(), MVT::i32);
874          if (VT.bitsLT(MinVT))
875            VT = MinVT;
876        }
877
878        unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
879        EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
880        SmallVector<SDValue, 4> Parts(NumParts);
881        getCopyToParts(DAG, getCurDebugLoc(),
882                       SDValue(RetOp.getNode(), RetOp.getResNo() + j),
883                       &Parts[0], NumParts, PartVT, ExtendKind);
884
885        // 'inreg' on function refers to return value
886        ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
887        if (F->paramHasAttr(0, Attribute::InReg))
888          Flags.setInReg();
889
890        // Propagate extension type if any
891        if (F->paramHasAttr(0, Attribute::SExt))
892          Flags.setSExt();
893        else if (F->paramHasAttr(0, Attribute::ZExt))
894          Flags.setZExt();
895
896        for (unsigned i = 0; i < NumParts; ++i)
897          Outs.push_back(ISD::OutputArg(Flags, Parts[i], /*isfixed=*/true));
898      }
899    }
900  }
901
902  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
903  CallingConv::ID CallConv =
904    DAG.getMachineFunction().getFunction()->getCallingConv();
905  Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
906                          Outs, getCurDebugLoc(), DAG);
907
908  // Verify that the target's LowerReturn behaved as expected.
909  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
910         "LowerReturn didn't return a valid chain!");
911
912  // Update the DAG with the new chain value resulting from return lowering.
913  DAG.setRoot(Chain);
914}
915
916/// CopyToExportRegsIfNeeded - If the given value has virtual registers
917/// created for it, emit nodes to copy the value into the virtual
918/// registers.
919void SelectionDAGBuilder::CopyToExportRegsIfNeeded(Value *V) {
920  if (!V->use_empty()) {
921    DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
922    if (VMI != FuncInfo.ValueMap.end())
923      CopyValueToVirtualRegister(V, VMI->second);
924  }
925}
926
927/// ExportFromCurrentBlock - If this condition isn't known to be exported from
928/// the current basic block, add it to ValueMap now so that we'll get a
929/// CopyTo/FromReg.
930void SelectionDAGBuilder::ExportFromCurrentBlock(Value *V) {
931  // No need to export constants.
932  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
933
934  // Already exported?
935  if (FuncInfo.isExportedInst(V)) return;
936
937  unsigned Reg = FuncInfo.InitializeRegForValue(V);
938  CopyValueToVirtualRegister(V, Reg);
939}
940
941bool SelectionDAGBuilder::isExportableFromCurrentBlock(Value *V,
942                                                     const BasicBlock *FromBB) {
943  // The operands of the setcc have to be in this block.  We don't know
944  // how to export them from some other block.
945  if (Instruction *VI = dyn_cast<Instruction>(V)) {
946    // Can export from current BB.
947    if (VI->getParent() == FromBB)
948      return true;
949
950    // Is already exported, noop.
951    return FuncInfo.isExportedInst(V);
952  }
953
954  // If this is an argument, we can export it if the BB is the entry block or
955  // if it is already exported.
956  if (isa<Argument>(V)) {
957    if (FromBB == &FromBB->getParent()->getEntryBlock())
958      return true;
959
960    // Otherwise, can only export this if it is already exported.
961    return FuncInfo.isExportedInst(V);
962  }
963
964  // Otherwise, constants can always be exported.
965  return true;
966}
967
968static bool InBlock(const Value *V, const BasicBlock *BB) {
969  if (const Instruction *I = dyn_cast<Instruction>(V))
970    return I->getParent() == BB;
971  return true;
972}
973
974/// getFCmpCondCode - Return the ISD condition code corresponding to
975/// the given LLVM IR floating-point condition code.  This includes
976/// consideration of global floating-point math flags.
977///
978static ISD::CondCode getFCmpCondCode(FCmpInst::Predicate Pred) {
979  ISD::CondCode FPC, FOC;
980  switch (Pred) {
981  case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
982  case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
983  case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
984  case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
985  case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
986  case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
987  case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
988  case FCmpInst::FCMP_ORD:   FOC = FPC = ISD::SETO;   break;
989  case FCmpInst::FCMP_UNO:   FOC = FPC = ISD::SETUO;  break;
990  case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
991  case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
992  case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
993  case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
994  case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
995  case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
996  case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
997  default:
998    llvm_unreachable("Invalid FCmp predicate opcode!");
999    FOC = FPC = ISD::SETFALSE;
1000    break;
1001  }
1002  if (FiniteOnlyFPMath())
1003    return FOC;
1004  else
1005    return FPC;
1006}
1007
1008/// getICmpCondCode - Return the ISD condition code corresponding to
1009/// the given LLVM IR integer condition code.
1010///
1011static ISD::CondCode getICmpCondCode(ICmpInst::Predicate Pred) {
1012  switch (Pred) {
1013  case ICmpInst::ICMP_EQ:  return ISD::SETEQ;
1014  case ICmpInst::ICMP_NE:  return ISD::SETNE;
1015  case ICmpInst::ICMP_SLE: return ISD::SETLE;
1016  case ICmpInst::ICMP_ULE: return ISD::SETULE;
1017  case ICmpInst::ICMP_SGE: return ISD::SETGE;
1018  case ICmpInst::ICMP_UGE: return ISD::SETUGE;
1019  case ICmpInst::ICMP_SLT: return ISD::SETLT;
1020  case ICmpInst::ICMP_ULT: return ISD::SETULT;
1021  case ICmpInst::ICMP_SGT: return ISD::SETGT;
1022  case ICmpInst::ICMP_UGT: return ISD::SETUGT;
1023  default:
1024    llvm_unreachable("Invalid ICmp predicate opcode!");
1025    return ISD::SETNE;
1026  }
1027}
1028
1029/// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1030/// This function emits a branch and is used at the leaves of an OR or an
1031/// AND operator tree.
1032///
1033void
1034SelectionDAGBuilder::EmitBranchForMergedCondition(Value *Cond,
1035                                                  MachineBasicBlock *TBB,
1036                                                  MachineBasicBlock *FBB,
1037                                                  MachineBasicBlock *CurBB) {
1038  const BasicBlock *BB = CurBB->getBasicBlock();
1039
1040  // If the leaf of the tree is a comparison, merge the condition into
1041  // the caseblock.
1042  if (CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1043    // The operands of the cmp have to be in this block.  We don't know
1044    // how to export them from some other block.  If this is the first block
1045    // of the sequence, no exporting is needed.
1046    if (CurBB == CurMBB ||
1047        (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1048         isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1049      ISD::CondCode Condition;
1050      if (ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1051        Condition = getICmpCondCode(IC->getPredicate());
1052      } else if (FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1053        Condition = getFCmpCondCode(FC->getPredicate());
1054      } else {
1055        Condition = ISD::SETEQ; // silence warning.
1056        llvm_unreachable("Unknown compare instruction");
1057      }
1058
1059      CaseBlock CB(Condition, BOp->getOperand(0),
1060                   BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1061      SwitchCases.push_back(CB);
1062      return;
1063    }
1064  }
1065
1066  // Create a CaseBlock record representing this branch.
1067  CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1068               NULL, TBB, FBB, CurBB);
1069  SwitchCases.push_back(CB);
1070}
1071
1072/// FindMergedConditions - If Cond is an expression like
1073void SelectionDAGBuilder::FindMergedConditions(Value *Cond,
1074                                               MachineBasicBlock *TBB,
1075                                               MachineBasicBlock *FBB,
1076                                               MachineBasicBlock *CurBB,
1077                                               unsigned Opc) {
1078  // If this node is not part of the or/and tree, emit it as a branch.
1079  Instruction *BOp = dyn_cast<Instruction>(Cond);
1080  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1081      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1082      BOp->getParent() != CurBB->getBasicBlock() ||
1083      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1084      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1085    EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB);
1086    return;
1087  }
1088
1089  //  Create TmpBB after CurBB.
1090  MachineFunction::iterator BBI = CurBB;
1091  MachineFunction &MF = DAG.getMachineFunction();
1092  MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1093  CurBB->getParent()->insert(++BBI, TmpBB);
1094
1095  if (Opc == Instruction::Or) {
1096    // Codegen X | Y as:
1097    //   jmp_if_X TBB
1098    //   jmp TmpBB
1099    // TmpBB:
1100    //   jmp_if_Y TBB
1101    //   jmp FBB
1102    //
1103
1104    // Emit the LHS condition.
1105    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, Opc);
1106
1107    // Emit the RHS condition into TmpBB.
1108    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1109  } else {
1110    assert(Opc == Instruction::And && "Unknown merge op!");
1111    // Codegen X & Y as:
1112    //   jmp_if_X TmpBB
1113    //   jmp FBB
1114    // TmpBB:
1115    //   jmp_if_Y TBB
1116    //   jmp FBB
1117    //
1118    //  This requires creation of TmpBB after CurBB.
1119
1120    // Emit the LHS condition.
1121    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, Opc);
1122
1123    // Emit the RHS condition into TmpBB.
1124    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1125  }
1126}
1127
1128/// If the set of cases should be emitted as a series of branches, return true.
1129/// If we should emit this as a bunch of and/or'd together conditions, return
1130/// false.
1131bool
1132SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
1133  if (Cases.size() != 2) return true;
1134
1135  // If this is two comparisons of the same values or'd or and'd together, they
1136  // will get folded into a single comparison, so don't emit two blocks.
1137  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1138       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1139      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1140       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1141    return false;
1142  }
1143
1144  // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1145  // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1146  if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1147      Cases[0].CC == Cases[1].CC &&
1148      isa<Constant>(Cases[0].CmpRHS) &&
1149      cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1150    if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1151      return false;
1152    if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1153      return false;
1154  }
1155
1156  return true;
1157}
1158
1159void SelectionDAGBuilder::visitBr(BranchInst &I) {
1160  // Update machine-CFG edges.
1161  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1162
1163  // Figure out which block is immediately after the current one.
1164  MachineBasicBlock *NextBlock = 0;
1165  MachineFunction::iterator BBI = CurMBB;
1166  if (++BBI != FuncInfo.MF->end())
1167    NextBlock = BBI;
1168
1169  if (I.isUnconditional()) {
1170    // Update machine-CFG edges.
1171    CurMBB->addSuccessor(Succ0MBB);
1172
1173    // If this is not a fall-through branch, emit the branch.
1174    if (Succ0MBB != NextBlock)
1175      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1176                              MVT::Other, getControlRoot(),
1177                              DAG.getBasicBlock(Succ0MBB)));
1178
1179    return;
1180  }
1181
1182  // If this condition is one of the special cases we handle, do special stuff
1183  // now.
1184  Value *CondVal = I.getCondition();
1185  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1186
1187  // If this is a series of conditions that are or'd or and'd together, emit
1188  // this as a sequence of branches instead of setcc's with and/or operations.
1189  // For example, instead of something like:
1190  //     cmp A, B
1191  //     C = seteq
1192  //     cmp D, E
1193  //     F = setle
1194  //     or C, F
1195  //     jnz foo
1196  // Emit:
1197  //     cmp A, B
1198  //     je foo
1199  //     cmp D, E
1200  //     jle foo
1201  //
1202  if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1203    if (BOp->hasOneUse() &&
1204        (BOp->getOpcode() == Instruction::And ||
1205         BOp->getOpcode() == Instruction::Or)) {
1206      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, CurMBB, BOp->getOpcode());
1207      // If the compares in later blocks need to use values not currently
1208      // exported from this block, export them now.  This block should always
1209      // be the first entry.
1210      assert(SwitchCases[0].ThisBB == CurMBB && "Unexpected lowering!");
1211
1212      // Allow some cases to be rejected.
1213      if (ShouldEmitAsBranches(SwitchCases)) {
1214        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1215          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1216          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1217        }
1218
1219        // Emit the branch for this block.
1220        visitSwitchCase(SwitchCases[0]);
1221        SwitchCases.erase(SwitchCases.begin());
1222        return;
1223      }
1224
1225      // Okay, we decided not to do this, remove any inserted MBB's and clear
1226      // SwitchCases.
1227      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1228        FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1229
1230      SwitchCases.clear();
1231    }
1232  }
1233
1234  // Create a CaseBlock record representing this branch.
1235  CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1236               NULL, Succ0MBB, Succ1MBB, CurMBB);
1237
1238  // Use visitSwitchCase to actually insert the fast branch sequence for this
1239  // cond branch.
1240  visitSwitchCase(CB);
1241}
1242
1243/// visitSwitchCase - Emits the necessary code to represent a single node in
1244/// the binary search tree resulting from lowering a switch instruction.
1245void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB) {
1246  SDValue Cond;
1247  SDValue CondLHS = getValue(CB.CmpLHS);
1248  DebugLoc dl = getCurDebugLoc();
1249
1250  // Build the setcc now.
1251  if (CB.CmpMHS == NULL) {
1252    // Fold "(X == true)" to X and "(X == false)" to !X to
1253    // handle common cases produced by branch lowering.
1254    if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1255        CB.CC == ISD::SETEQ)
1256      Cond = CondLHS;
1257    else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1258             CB.CC == ISD::SETEQ) {
1259      SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1260      Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1261    } else
1262      Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1263  } else {
1264    assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1265
1266    const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1267    const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
1268
1269    SDValue CmpOp = getValue(CB.CmpMHS);
1270    EVT VT = CmpOp.getValueType();
1271
1272    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1273      Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1274                          ISD::SETLE);
1275    } else {
1276      SDValue SUB = DAG.getNode(ISD::SUB, dl,
1277                                VT, CmpOp, DAG.getConstant(Low, VT));
1278      Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1279                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1280    }
1281  }
1282
1283  // Update successor info
1284  CurMBB->addSuccessor(CB.TrueBB);
1285  CurMBB->addSuccessor(CB.FalseBB);
1286
1287  // Set NextBlock to be the MBB immediately after the current one, if any.
1288  // This is used to avoid emitting unnecessary branches to the next block.
1289  MachineBasicBlock *NextBlock = 0;
1290  MachineFunction::iterator BBI = CurMBB;
1291  if (++BBI != FuncInfo.MF->end())
1292    NextBlock = BBI;
1293
1294  // If the lhs block is the next block, invert the condition so that we can
1295  // fall through to the lhs instead of the rhs block.
1296  if (CB.TrueBB == NextBlock) {
1297    std::swap(CB.TrueBB, CB.FalseBB);
1298    SDValue True = DAG.getConstant(1, Cond.getValueType());
1299    Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1300  }
1301
1302  SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1303                               MVT::Other, getControlRoot(), Cond,
1304                               DAG.getBasicBlock(CB.TrueBB));
1305
1306  // If the branch was constant folded, fix up the CFG.
1307  if (BrCond.getOpcode() == ISD::BR) {
1308    CurMBB->removeSuccessor(CB.FalseBB);
1309  } else {
1310    // Otherwise, go ahead and insert the false branch.
1311    if (BrCond == getControlRoot())
1312      CurMBB->removeSuccessor(CB.TrueBB);
1313
1314    if (CB.FalseBB != NextBlock)
1315      BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1316                           DAG.getBasicBlock(CB.FalseBB));
1317  }
1318
1319  DAG.setRoot(BrCond);
1320}
1321
1322/// visitJumpTable - Emit JumpTable node in the current MBB
1323void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1324  // Emit the code for the jump table
1325  assert(JT.Reg != -1U && "Should lower JT Header first!");
1326  EVT PTy = TLI.getPointerTy();
1327  SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1328                                     JT.Reg, PTy);
1329  SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1330  SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(),
1331                                    MVT::Other, Index.getValue(1),
1332                                    Table, Index);
1333  DAG.setRoot(BrJumpTable);
1334}
1335
1336/// visitJumpTableHeader - This function emits necessary code to produce index
1337/// in the JumpTable from switch case.
1338void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1339                                               JumpTableHeader &JTH) {
1340  // Subtract the lowest switch case value from the value being switched on and
1341  // conditional branch to default mbb if the result is greater than the
1342  // difference between smallest and largest cases.
1343  SDValue SwitchOp = getValue(JTH.SValue);
1344  EVT VT = SwitchOp.getValueType();
1345  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1346                            DAG.getConstant(JTH.First, VT));
1347
1348  // The SDNode we just created, which holds the value being switched on minus
1349  // the smallest case value, needs to be copied to a virtual register so it
1350  // can be used as an index into the jump table in a subsequent basic block.
1351  // This value may be smaller or larger than the target's pointer type, and
1352  // therefore require extension or truncating.
1353  SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy());
1354
1355  unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy());
1356  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1357                                    JumpTableReg, SwitchOp);
1358  JT.Reg = JumpTableReg;
1359
1360  // Emit the range check for the jump table, and branch to the default block
1361  // for the switch statement if the value being switched on exceeds the largest
1362  // case in the switch.
1363  SDValue CMP = DAG.getSetCC(getCurDebugLoc(),
1364                             TLI.getSetCCResultType(Sub.getValueType()), Sub,
1365                             DAG.getConstant(JTH.Last-JTH.First,VT),
1366                             ISD::SETUGT);
1367
1368  // Set NextBlock to be the MBB immediately after the current one, if any.
1369  // This is used to avoid emitting unnecessary branches to the next block.
1370  MachineBasicBlock *NextBlock = 0;
1371  MachineFunction::iterator BBI = CurMBB;
1372
1373  if (++BBI != FuncInfo.MF->end())
1374    NextBlock = BBI;
1375
1376  SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1377                               MVT::Other, CopyTo, CMP,
1378                               DAG.getBasicBlock(JT.Default));
1379
1380  if (JT.MBB != NextBlock)
1381    BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond,
1382                         DAG.getBasicBlock(JT.MBB));
1383
1384  DAG.setRoot(BrCond);
1385}
1386
1387/// visitBitTestHeader - This function emits necessary code to produce value
1388/// suitable for "bit tests"
1389void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B) {
1390  // Subtract the minimum value
1391  SDValue SwitchOp = getValue(B.SValue);
1392  EVT VT = SwitchOp.getValueType();
1393  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1394                            DAG.getConstant(B.First, VT));
1395
1396  // Check range
1397  SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(),
1398                                  TLI.getSetCCResultType(Sub.getValueType()),
1399                                  Sub, DAG.getConstant(B.Range, VT),
1400                                  ISD::SETUGT);
1401
1402  SDValue ShiftOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(),
1403                                       TLI.getPointerTy());
1404
1405  B.Reg = FuncInfo.MakeReg(TLI.getPointerTy());
1406  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1407                                    B.Reg, ShiftOp);
1408
1409  // Set NextBlock to be the MBB immediately after the current one, if any.
1410  // This is used to avoid emitting unnecessary branches to the next block.
1411  MachineBasicBlock *NextBlock = 0;
1412  MachineFunction::iterator BBI = CurMBB;
1413  if (++BBI != FuncInfo.MF->end())
1414    NextBlock = BBI;
1415
1416  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1417
1418  CurMBB->addSuccessor(B.Default);
1419  CurMBB->addSuccessor(MBB);
1420
1421  SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1422                                MVT::Other, CopyTo, RangeCmp,
1423                                DAG.getBasicBlock(B.Default));
1424
1425  if (MBB != NextBlock)
1426    BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo,
1427                          DAG.getBasicBlock(MBB));
1428
1429  DAG.setRoot(BrRange);
1430}
1431
1432/// visitBitTestCase - this function produces one "bit test"
1433void SelectionDAGBuilder::visitBitTestCase(MachineBasicBlock* NextMBB,
1434                                           unsigned Reg,
1435                                           BitTestCase &B) {
1436  // Make desired shift
1437  SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), Reg,
1438                                       TLI.getPointerTy());
1439  SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(),
1440                                  TLI.getPointerTy(),
1441                                  DAG.getConstant(1, TLI.getPointerTy()),
1442                                  ShiftOp);
1443
1444  // Emit bit tests and jumps
1445  SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(),
1446                              TLI.getPointerTy(), SwitchVal,
1447                              DAG.getConstant(B.Mask, TLI.getPointerTy()));
1448  SDValue AndCmp = DAG.getSetCC(getCurDebugLoc(),
1449                                TLI.getSetCCResultType(AndOp.getValueType()),
1450                                AndOp, DAG.getConstant(0, TLI.getPointerTy()),
1451                                ISD::SETNE);
1452
1453  CurMBB->addSuccessor(B.TargetBB);
1454  CurMBB->addSuccessor(NextMBB);
1455
1456  SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1457                              MVT::Other, getControlRoot(),
1458                              AndCmp, DAG.getBasicBlock(B.TargetBB));
1459
1460  // Set NextBlock to be the MBB immediately after the current one, if any.
1461  // This is used to avoid emitting unnecessary branches to the next block.
1462  MachineBasicBlock *NextBlock = 0;
1463  MachineFunction::iterator BBI = CurMBB;
1464  if (++BBI != FuncInfo.MF->end())
1465    NextBlock = BBI;
1466
1467  if (NextMBB != NextBlock)
1468    BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd,
1469                        DAG.getBasicBlock(NextMBB));
1470
1471  DAG.setRoot(BrAnd);
1472}
1473
1474void SelectionDAGBuilder::visitInvoke(InvokeInst &I) {
1475  // Retrieve successors.
1476  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1477  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1478
1479  const Value *Callee(I.getCalledValue());
1480  if (isa<InlineAsm>(Callee))
1481    visitInlineAsm(&I);
1482  else
1483    LowerCallTo(&I, getValue(Callee), false, LandingPad);
1484
1485  // If the value of the invoke is used outside of its defining block, make it
1486  // available as a virtual register.
1487  CopyToExportRegsIfNeeded(&I);
1488
1489  // Update successor info
1490  CurMBB->addSuccessor(Return);
1491  CurMBB->addSuccessor(LandingPad);
1492
1493  // Drop into normal successor.
1494  DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1495                          MVT::Other, getControlRoot(),
1496                          DAG.getBasicBlock(Return)));
1497}
1498
1499void SelectionDAGBuilder::visitUnwind(UnwindInst &I) {
1500}
1501
1502/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1503/// small case ranges).
1504bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
1505                                                 CaseRecVector& WorkList,
1506                                                 Value* SV,
1507                                                 MachineBasicBlock* Default) {
1508  Case& BackCase  = *(CR.Range.second-1);
1509
1510  // Size is the number of Cases represented by this range.
1511  size_t Size = CR.Range.second - CR.Range.first;
1512  if (Size > 3)
1513    return false;
1514
1515  // Get the MachineFunction which holds the current MBB.  This is used when
1516  // inserting any additional MBBs necessary to represent the switch.
1517  MachineFunction *CurMF = FuncInfo.MF;
1518
1519  // Figure out which block is immediately after the current one.
1520  MachineBasicBlock *NextBlock = 0;
1521  MachineFunction::iterator BBI = CR.CaseBB;
1522
1523  if (++BBI != FuncInfo.MF->end())
1524    NextBlock = BBI;
1525
1526  // TODO: If any two of the cases has the same destination, and if one value
1527  // is the same as the other, but has one bit unset that the other has set,
1528  // use bit manipulation to do two compares at once.  For example:
1529  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1530
1531  // Rearrange the case blocks so that the last one falls through if possible.
1532  if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1533    // The last case block won't fall through into 'NextBlock' if we emit the
1534    // branches in this order.  See if rearranging a case value would help.
1535    for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1536      if (I->BB == NextBlock) {
1537        std::swap(*I, BackCase);
1538        break;
1539      }
1540    }
1541  }
1542
1543  // Create a CaseBlock record representing a conditional branch to
1544  // the Case's target mbb if the value being switched on SV is equal
1545  // to C.
1546  MachineBasicBlock *CurBlock = CR.CaseBB;
1547  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1548    MachineBasicBlock *FallThrough;
1549    if (I != E-1) {
1550      FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
1551      CurMF->insert(BBI, FallThrough);
1552
1553      // Put SV in a virtual register to make it available from the new blocks.
1554      ExportFromCurrentBlock(SV);
1555    } else {
1556      // If the last case doesn't match, go to the default block.
1557      FallThrough = Default;
1558    }
1559
1560    Value *RHS, *LHS, *MHS;
1561    ISD::CondCode CC;
1562    if (I->High == I->Low) {
1563      // This is just small small case range :) containing exactly 1 case
1564      CC = ISD::SETEQ;
1565      LHS = SV; RHS = I->High; MHS = NULL;
1566    } else {
1567      CC = ISD::SETLE;
1568      LHS = I->Low; MHS = SV; RHS = I->High;
1569    }
1570    CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock);
1571
1572    // If emitting the first comparison, just call visitSwitchCase to emit the
1573    // code into the current block.  Otherwise, push the CaseBlock onto the
1574    // vector to be later processed by SDISel, and insert the node's MBB
1575    // before the next MBB.
1576    if (CurBlock == CurMBB)
1577      visitSwitchCase(CB);
1578    else
1579      SwitchCases.push_back(CB);
1580
1581    CurBlock = FallThrough;
1582  }
1583
1584  return true;
1585}
1586
1587static inline bool areJTsAllowed(const TargetLowering &TLI) {
1588  return !DisableJumpTables &&
1589          (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
1590           TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
1591}
1592
1593static APInt ComputeRange(const APInt &First, const APInt &Last) {
1594  APInt LastExt(Last), FirstExt(First);
1595  uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
1596  LastExt.sext(BitWidth); FirstExt.sext(BitWidth);
1597  return (LastExt - FirstExt + 1ULL);
1598}
1599
1600/// handleJTSwitchCase - Emit jumptable for current switch case range
1601bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec& CR,
1602                                             CaseRecVector& WorkList,
1603                                             Value* SV,
1604                                             MachineBasicBlock* Default) {
1605  Case& FrontCase = *CR.Range.first;
1606  Case& BackCase  = *(CR.Range.second-1);
1607
1608  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
1609  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
1610
1611  APInt TSize(First.getBitWidth(), 0);
1612  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1613       I!=E; ++I)
1614    TSize += I->size();
1615
1616  if (!areJTsAllowed(TLI) || TSize.ult(APInt(First.getBitWidth(), 4)))
1617    return false;
1618
1619  APInt Range = ComputeRange(First, Last);
1620  double Density = TSize.roundToDouble() / Range.roundToDouble();
1621  if (Density < 0.4)
1622    return false;
1623
1624  DEBUG(dbgs() << "Lowering jump table\n"
1625               << "First entry: " << First << ". Last entry: " << Last << '\n'
1626               << "Range: " << Range
1627               << "Size: " << TSize << ". Density: " << Density << "\n\n");
1628
1629  // Get the MachineFunction which holds the current MBB.  This is used when
1630  // inserting any additional MBBs necessary to represent the switch.
1631  MachineFunction *CurMF = FuncInfo.MF;
1632
1633  // Figure out which block is immediately after the current one.
1634  MachineFunction::iterator BBI = CR.CaseBB;
1635  ++BBI;
1636
1637  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1638
1639  // Create a new basic block to hold the code for loading the address
1640  // of the jump table, and jumping to it.  Update successor information;
1641  // we will either branch to the default case for the switch, or the jump
1642  // table.
1643  MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1644  CurMF->insert(BBI, JumpTableBB);
1645  CR.CaseBB->addSuccessor(Default);
1646  CR.CaseBB->addSuccessor(JumpTableBB);
1647
1648  // Build a vector of destination BBs, corresponding to each target
1649  // of the jump table. If the value of the jump table slot corresponds to
1650  // a case statement, push the case's BB onto the vector, otherwise, push
1651  // the default BB.
1652  std::vector<MachineBasicBlock*> DestBBs;
1653  APInt TEI = First;
1654  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
1655    const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
1656    const APInt &High = cast<ConstantInt>(I->High)->getValue();
1657
1658    if (Low.sle(TEI) && TEI.sle(High)) {
1659      DestBBs.push_back(I->BB);
1660      if (TEI==High)
1661        ++I;
1662    } else {
1663      DestBBs.push_back(Default);
1664    }
1665  }
1666
1667  // Update successor info. Add one edge to each unique successor.
1668  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
1669  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
1670         E = DestBBs.end(); I != E; ++I) {
1671    if (!SuccsHandled[(*I)->getNumber()]) {
1672      SuccsHandled[(*I)->getNumber()] = true;
1673      JumpTableBB->addSuccessor(*I);
1674    }
1675  }
1676
1677  // Create a jump table index for this jump table, or return an existing
1678  // one.
1679  unsigned JTEncoding = TLI.getJumpTableEncoding();
1680  unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
1681                       ->getJumpTableIndex(DestBBs);
1682
1683  // Set the jump table information so that we can codegen it as a second
1684  // MachineBasicBlock
1685  JumpTable JT(-1U, JTI, JumpTableBB, Default);
1686  JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == CurMBB));
1687  if (CR.CaseBB == CurMBB)
1688    visitJumpTableHeader(JT, JTH);
1689
1690  JTCases.push_back(JumpTableBlock(JTH, JT));
1691
1692  return true;
1693}
1694
1695/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
1696/// 2 subtrees.
1697bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
1698                                                  CaseRecVector& WorkList,
1699                                                  Value* SV,
1700                                                  MachineBasicBlock* Default) {
1701  // Get the MachineFunction which holds the current MBB.  This is used when
1702  // inserting any additional MBBs necessary to represent the switch.
1703  MachineFunction *CurMF = FuncInfo.MF;
1704
1705  // Figure out which block is immediately after the current one.
1706  MachineFunction::iterator BBI = CR.CaseBB;
1707  ++BBI;
1708
1709  Case& FrontCase = *CR.Range.first;
1710  Case& BackCase  = *(CR.Range.second-1);
1711  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1712
1713  // Size is the number of Cases represented by this range.
1714  unsigned Size = CR.Range.second - CR.Range.first;
1715
1716  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
1717  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
1718  double FMetric = 0;
1719  CaseItr Pivot = CR.Range.first + Size/2;
1720
1721  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
1722  // (heuristically) allow us to emit JumpTable's later.
1723  APInt TSize(First.getBitWidth(), 0);
1724  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1725       I!=E; ++I)
1726    TSize += I->size();
1727
1728  APInt LSize = FrontCase.size();
1729  APInt RSize = TSize-LSize;
1730  DEBUG(dbgs() << "Selecting best pivot: \n"
1731               << "First: " << First << ", Last: " << Last <<'\n'
1732               << "LSize: " << LSize << ", RSize: " << RSize << '\n');
1733  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
1734       J!=E; ++I, ++J) {
1735    const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
1736    const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
1737    APInt Range = ComputeRange(LEnd, RBegin);
1738    assert((Range - 2ULL).isNonNegative() &&
1739           "Invalid case distance");
1740    double LDensity = (double)LSize.roundToDouble() /
1741                           (LEnd - First + 1ULL).roundToDouble();
1742    double RDensity = (double)RSize.roundToDouble() /
1743                           (Last - RBegin + 1ULL).roundToDouble();
1744    double Metric = Range.logBase2()*(LDensity+RDensity);
1745    // Should always split in some non-trivial place
1746    DEBUG(dbgs() <<"=>Step\n"
1747                 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
1748                 << "LDensity: " << LDensity
1749                 << ", RDensity: " << RDensity << '\n'
1750                 << "Metric: " << Metric << '\n');
1751    if (FMetric < Metric) {
1752      Pivot = J;
1753      FMetric = Metric;
1754      DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
1755    }
1756
1757    LSize += J->size();
1758    RSize -= J->size();
1759  }
1760  if (areJTsAllowed(TLI)) {
1761    // If our case is dense we *really* should handle it earlier!
1762    assert((FMetric > 0) && "Should handle dense range earlier!");
1763  } else {
1764    Pivot = CR.Range.first + Size/2;
1765  }
1766
1767  CaseRange LHSR(CR.Range.first, Pivot);
1768  CaseRange RHSR(Pivot, CR.Range.second);
1769  Constant *C = Pivot->Low;
1770  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
1771
1772  // We know that we branch to the LHS if the Value being switched on is
1773  // less than the Pivot value, C.  We use this to optimize our binary
1774  // tree a bit, by recognizing that if SV is greater than or equal to the
1775  // LHS's Case Value, and that Case Value is exactly one less than the
1776  // Pivot's Value, then we can branch directly to the LHS's Target,
1777  // rather than creating a leaf node for it.
1778  if ((LHSR.second - LHSR.first) == 1 &&
1779      LHSR.first->High == CR.GE &&
1780      cast<ConstantInt>(C)->getValue() ==
1781      (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
1782    TrueBB = LHSR.first->BB;
1783  } else {
1784    TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1785    CurMF->insert(BBI, TrueBB);
1786    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
1787
1788    // Put SV in a virtual register to make it available from the new blocks.
1789    ExportFromCurrentBlock(SV);
1790  }
1791
1792  // Similar to the optimization above, if the Value being switched on is
1793  // known to be less than the Constant CR.LT, and the current Case Value
1794  // is CR.LT - 1, then we can branch directly to the target block for
1795  // the current Case Value, rather than emitting a RHS leaf node for it.
1796  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
1797      cast<ConstantInt>(RHSR.first->Low)->getValue() ==
1798      (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
1799    FalseBB = RHSR.first->BB;
1800  } else {
1801    FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1802    CurMF->insert(BBI, FalseBB);
1803    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
1804
1805    // Put SV in a virtual register to make it available from the new blocks.
1806    ExportFromCurrentBlock(SV);
1807  }
1808
1809  // Create a CaseBlock record representing a conditional branch to
1810  // the LHS node if the value being switched on SV is less than C.
1811  // Otherwise, branch to LHS.
1812  CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
1813
1814  if (CR.CaseBB == CurMBB)
1815    visitSwitchCase(CB);
1816  else
1817    SwitchCases.push_back(CB);
1818
1819  return true;
1820}
1821
1822/// handleBitTestsSwitchCase - if current case range has few destination and
1823/// range span less, than machine word bitwidth, encode case range into series
1824/// of masks and emit bit tests with these masks.
1825bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
1826                                                   CaseRecVector& WorkList,
1827                                                   Value* SV,
1828                                                   MachineBasicBlock* Default){
1829  EVT PTy = TLI.getPointerTy();
1830  unsigned IntPtrBits = PTy.getSizeInBits();
1831
1832  Case& FrontCase = *CR.Range.first;
1833  Case& BackCase  = *(CR.Range.second-1);
1834
1835  // Get the MachineFunction which holds the current MBB.  This is used when
1836  // inserting any additional MBBs necessary to represent the switch.
1837  MachineFunction *CurMF = FuncInfo.MF;
1838
1839  // If target does not have legal shift left, do not emit bit tests at all.
1840  if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
1841    return false;
1842
1843  size_t numCmps = 0;
1844  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1845       I!=E; ++I) {
1846    // Single case counts one, case range - two.
1847    numCmps += (I->Low == I->High ? 1 : 2);
1848  }
1849
1850  // Count unique destinations
1851  SmallSet<MachineBasicBlock*, 4> Dests;
1852  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
1853    Dests.insert(I->BB);
1854    if (Dests.size() > 3)
1855      // Don't bother the code below, if there are too much unique destinations
1856      return false;
1857  }
1858  DEBUG(dbgs() << "Total number of unique destinations: "
1859        << Dests.size() << '\n'
1860        << "Total number of comparisons: " << numCmps << '\n');
1861
1862  // Compute span of values.
1863  const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
1864  const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
1865  APInt cmpRange = maxValue - minValue;
1866
1867  DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
1868               << "Low bound: " << minValue << '\n'
1869               << "High bound: " << maxValue << '\n');
1870
1871  if (cmpRange.uge(APInt(cmpRange.getBitWidth(), IntPtrBits)) ||
1872      (!(Dests.size() == 1 && numCmps >= 3) &&
1873       !(Dests.size() == 2 && numCmps >= 5) &&
1874       !(Dests.size() >= 3 && numCmps >= 6)))
1875    return false;
1876
1877  DEBUG(dbgs() << "Emitting bit tests\n");
1878  APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
1879
1880  // Optimize the case where all the case values fit in a
1881  // word without having to subtract minValue. In this case,
1882  // we can optimize away the subtraction.
1883  if (minValue.isNonNegative() &&
1884      maxValue.slt(APInt(maxValue.getBitWidth(), IntPtrBits))) {
1885    cmpRange = maxValue;
1886  } else {
1887    lowBound = minValue;
1888  }
1889
1890  CaseBitsVector CasesBits;
1891  unsigned i, count = 0;
1892
1893  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
1894    MachineBasicBlock* Dest = I->BB;
1895    for (i = 0; i < count; ++i)
1896      if (Dest == CasesBits[i].BB)
1897        break;
1898
1899    if (i == count) {
1900      assert((count < 3) && "Too much destinations to test!");
1901      CasesBits.push_back(CaseBits(0, Dest, 0));
1902      count++;
1903    }
1904
1905    const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
1906    const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
1907
1908    uint64_t lo = (lowValue - lowBound).getZExtValue();
1909    uint64_t hi = (highValue - lowBound).getZExtValue();
1910
1911    for (uint64_t j = lo; j <= hi; j++) {
1912      CasesBits[i].Mask |=  1ULL << j;
1913      CasesBits[i].Bits++;
1914    }
1915
1916  }
1917  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
1918
1919  BitTestInfo BTC;
1920
1921  // Figure out which block is immediately after the current one.
1922  MachineFunction::iterator BBI = CR.CaseBB;
1923  ++BBI;
1924
1925  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1926
1927  DEBUG(dbgs() << "Cases:\n");
1928  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
1929    DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
1930                 << ", Bits: " << CasesBits[i].Bits
1931                 << ", BB: " << CasesBits[i].BB << '\n');
1932
1933    MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1934    CurMF->insert(BBI, CaseBB);
1935    BTC.push_back(BitTestCase(CasesBits[i].Mask,
1936                              CaseBB,
1937                              CasesBits[i].BB));
1938
1939    // Put SV in a virtual register to make it available from the new blocks.
1940    ExportFromCurrentBlock(SV);
1941  }
1942
1943  BitTestBlock BTB(lowBound, cmpRange, SV,
1944                   -1U, (CR.CaseBB == CurMBB),
1945                   CR.CaseBB, Default, BTC);
1946
1947  if (CR.CaseBB == CurMBB)
1948    visitBitTestHeader(BTB);
1949
1950  BitTestCases.push_back(BTB);
1951
1952  return true;
1953}
1954
1955/// Clusterify - Transform simple list of Cases into list of CaseRange's
1956size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
1957                                       const SwitchInst& SI) {
1958  size_t numCmps = 0;
1959
1960  // Start with "simple" cases
1961  for (size_t i = 1; i < SI.getNumSuccessors(); ++i) {
1962    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
1963    Cases.push_back(Case(SI.getSuccessorValue(i),
1964                         SI.getSuccessorValue(i),
1965                         SMBB));
1966  }
1967  std::sort(Cases.begin(), Cases.end(), CaseCmp());
1968
1969  // Merge case into clusters
1970  if (Cases.size() >= 2)
1971    // Must recompute end() each iteration because it may be
1972    // invalidated by erase if we hold on to it
1973    for (CaseItr I = Cases.begin(), J = ++(Cases.begin()); J != Cases.end(); ) {
1974      const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
1975      const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
1976      MachineBasicBlock* nextBB = J->BB;
1977      MachineBasicBlock* currentBB = I->BB;
1978
1979      // If the two neighboring cases go to the same destination, merge them
1980      // into a single case.
1981      if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
1982        I->High = J->High;
1983        J = Cases.erase(J);
1984      } else {
1985        I = J++;
1986      }
1987    }
1988
1989  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
1990    if (I->Low != I->High)
1991      // A range counts double, since it requires two compares.
1992      ++numCmps;
1993  }
1994
1995  return numCmps;
1996}
1997
1998void SelectionDAGBuilder::visitSwitch(SwitchInst &SI) {
1999  // Figure out which block is immediately after the current one.
2000  MachineBasicBlock *NextBlock = 0;
2001  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2002
2003  // If there is only the default destination, branch to it if it is not the
2004  // next basic block.  Otherwise, just fall through.
2005  if (SI.getNumOperands() == 2) {
2006    // Update machine-CFG edges.
2007
2008    // If this is not a fall-through branch, emit the branch.
2009    CurMBB->addSuccessor(Default);
2010    if (Default != NextBlock)
2011      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
2012                              MVT::Other, getControlRoot(),
2013                              DAG.getBasicBlock(Default)));
2014
2015    return;
2016  }
2017
2018  // If there are any non-default case statements, create a vector of Cases
2019  // representing each one, and sort the vector so that we can efficiently
2020  // create a binary search tree from them.
2021  CaseVector Cases;
2022  size_t numCmps = Clusterify(Cases, SI);
2023  DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2024               << ". Total compares: " << numCmps << '\n');
2025  numCmps = 0;
2026
2027  // Get the Value to be switched on and default basic blocks, which will be
2028  // inserted into CaseBlock records, representing basic blocks in the binary
2029  // search tree.
2030  Value *SV = SI.getOperand(0);
2031
2032  // Push the initial CaseRec onto the worklist
2033  CaseRecVector WorkList;
2034  WorkList.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end())));
2035
2036  while (!WorkList.empty()) {
2037    // Grab a record representing a case range to process off the worklist
2038    CaseRec CR = WorkList.back();
2039    WorkList.pop_back();
2040
2041    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default))
2042      continue;
2043
2044    // If the range has few cases (two or less) emit a series of specific
2045    // tests.
2046    if (handleSmallSwitchRange(CR, WorkList, SV, Default))
2047      continue;
2048
2049    // If the switch has more than 5 blocks, and at least 40% dense, and the
2050    // target supports indirect branches, then emit a jump table rather than
2051    // lowering the switch to a binary tree of conditional branches.
2052    if (handleJTSwitchCase(CR, WorkList, SV, Default))
2053      continue;
2054
2055    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2056    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2057    handleBTSplitSwitchCase(CR, WorkList, SV, Default);
2058  }
2059}
2060
2061void SelectionDAGBuilder::visitIndirectBr(IndirectBrInst &I) {
2062  // Update machine-CFG edges with unique successors.
2063  SmallVector<BasicBlock*, 32> succs;
2064  succs.reserve(I.getNumSuccessors());
2065  for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i)
2066    succs.push_back(I.getSuccessor(i));
2067  array_pod_sort(succs.begin(), succs.end());
2068  succs.erase(std::unique(succs.begin(), succs.end()), succs.end());
2069  for (unsigned i = 0, e = succs.size(); i != e; ++i)
2070    CurMBB->addSuccessor(FuncInfo.MBBMap[succs[i]]);
2071
2072  DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(),
2073                          MVT::Other, getControlRoot(),
2074                          getValue(I.getAddress())));
2075}
2076
2077void SelectionDAGBuilder::visitFSub(User &I) {
2078  // -0.0 - X --> fneg
2079  const Type *Ty = I.getType();
2080  if (Ty->isVectorTy()) {
2081    if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) {
2082      const VectorType *DestTy = cast<VectorType>(I.getType());
2083      const Type *ElTy = DestTy->getElementType();
2084      unsigned VL = DestTy->getNumElements();
2085      std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy));
2086      Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size());
2087      if (CV == CNZ) {
2088        SDValue Op2 = getValue(I.getOperand(1));
2089        setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2090                                 Op2.getValueType(), Op2));
2091        return;
2092      }
2093    }
2094  }
2095
2096  if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
2097    if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) {
2098      SDValue Op2 = getValue(I.getOperand(1));
2099      setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2100                               Op2.getValueType(), Op2));
2101      return;
2102    }
2103
2104  visitBinary(I, ISD::FSUB);
2105}
2106
2107void SelectionDAGBuilder::visitBinary(User &I, unsigned OpCode) {
2108  SDValue Op1 = getValue(I.getOperand(0));
2109  SDValue Op2 = getValue(I.getOperand(1));
2110  setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(),
2111                           Op1.getValueType(), Op1, Op2));
2112}
2113
2114void SelectionDAGBuilder::visitShift(User &I, unsigned Opcode) {
2115  SDValue Op1 = getValue(I.getOperand(0));
2116  SDValue Op2 = getValue(I.getOperand(1));
2117  if (!I.getType()->isVectorTy() &&
2118      Op2.getValueType() != TLI.getShiftAmountTy()) {
2119    // If the operand is smaller than the shift count type, promote it.
2120    EVT PTy = TLI.getPointerTy();
2121    EVT STy = TLI.getShiftAmountTy();
2122    if (STy.bitsGT(Op2.getValueType()))
2123      Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(),
2124                        TLI.getShiftAmountTy(), Op2);
2125    // If the operand is larger than the shift count type but the shift
2126    // count type has enough bits to represent any shift value, truncate
2127    // it now. This is a common case and it exposes the truncate to
2128    // optimization early.
2129    else if (STy.getSizeInBits() >=
2130             Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2131      Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2132                        TLI.getShiftAmountTy(), Op2);
2133    // Otherwise we'll need to temporarily settle for some other
2134    // convenient type; type legalization will make adjustments as
2135    // needed.
2136    else if (PTy.bitsLT(Op2.getValueType()))
2137      Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2138                        TLI.getPointerTy(), Op2);
2139    else if (PTy.bitsGT(Op2.getValueType()))
2140      Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(),
2141                        TLI.getPointerTy(), Op2);
2142  }
2143
2144  setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(),
2145                           Op1.getValueType(), Op1, Op2));
2146}
2147
2148void SelectionDAGBuilder::visitICmp(User &I) {
2149  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2150  if (ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2151    predicate = IC->getPredicate();
2152  else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2153    predicate = ICmpInst::Predicate(IC->getPredicate());
2154  SDValue Op1 = getValue(I.getOperand(0));
2155  SDValue Op2 = getValue(I.getOperand(1));
2156  ISD::CondCode Opcode = getICmpCondCode(predicate);
2157
2158  EVT DestVT = TLI.getValueType(I.getType());
2159  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode));
2160}
2161
2162void SelectionDAGBuilder::visitFCmp(User &I) {
2163  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2164  if (FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2165    predicate = FC->getPredicate();
2166  else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2167    predicate = FCmpInst::Predicate(FC->getPredicate());
2168  SDValue Op1 = getValue(I.getOperand(0));
2169  SDValue Op2 = getValue(I.getOperand(1));
2170  ISD::CondCode Condition = getFCmpCondCode(predicate);
2171  EVT DestVT = TLI.getValueType(I.getType());
2172  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition));
2173}
2174
2175void SelectionDAGBuilder::visitSelect(User &I) {
2176  SmallVector<EVT, 4> ValueVTs;
2177  ComputeValueVTs(TLI, I.getType(), ValueVTs);
2178  unsigned NumValues = ValueVTs.size();
2179  if (NumValues == 0) return;
2180
2181  SmallVector<SDValue, 4> Values(NumValues);
2182  SDValue Cond     = getValue(I.getOperand(0));
2183  SDValue TrueVal  = getValue(I.getOperand(1));
2184  SDValue FalseVal = getValue(I.getOperand(2));
2185
2186  for (unsigned i = 0; i != NumValues; ++i)
2187    Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(),
2188                          TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2189                            Cond,
2190                            SDValue(TrueVal.getNode(),
2191                                    TrueVal.getResNo() + i),
2192                            SDValue(FalseVal.getNode(),
2193                                    FalseVal.getResNo() + i));
2194
2195  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2196                           DAG.getVTList(&ValueVTs[0], NumValues),
2197                           &Values[0], NumValues));
2198}
2199
2200void SelectionDAGBuilder::visitTrunc(User &I) {
2201  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2202  SDValue N = getValue(I.getOperand(0));
2203  EVT DestVT = TLI.getValueType(I.getType());
2204  setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N));
2205}
2206
2207void SelectionDAGBuilder::visitZExt(User &I) {
2208  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2209  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2210  SDValue N = getValue(I.getOperand(0));
2211  EVT DestVT = TLI.getValueType(I.getType());
2212  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N));
2213}
2214
2215void SelectionDAGBuilder::visitSExt(User &I) {
2216  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2217  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2218  SDValue N = getValue(I.getOperand(0));
2219  EVT DestVT = TLI.getValueType(I.getType());
2220  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N));
2221}
2222
2223void SelectionDAGBuilder::visitFPTrunc(User &I) {
2224  // FPTrunc is never a no-op cast, no need to check
2225  SDValue N = getValue(I.getOperand(0));
2226  EVT DestVT = TLI.getValueType(I.getType());
2227  setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(),
2228                           DestVT, N, DAG.getIntPtrConstant(0)));
2229}
2230
2231void SelectionDAGBuilder::visitFPExt(User &I){
2232  // FPTrunc is never a no-op cast, no need to check
2233  SDValue N = getValue(I.getOperand(0));
2234  EVT DestVT = TLI.getValueType(I.getType());
2235  setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N));
2236}
2237
2238void SelectionDAGBuilder::visitFPToUI(User &I) {
2239  // FPToUI is never a no-op cast, no need to check
2240  SDValue N = getValue(I.getOperand(0));
2241  EVT DestVT = TLI.getValueType(I.getType());
2242  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N));
2243}
2244
2245void SelectionDAGBuilder::visitFPToSI(User &I) {
2246  // FPToSI is never a no-op cast, no need to check
2247  SDValue N = getValue(I.getOperand(0));
2248  EVT DestVT = TLI.getValueType(I.getType());
2249  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N));
2250}
2251
2252void SelectionDAGBuilder::visitUIToFP(User &I) {
2253  // UIToFP is never a no-op cast, no need to check
2254  SDValue N = getValue(I.getOperand(0));
2255  EVT DestVT = TLI.getValueType(I.getType());
2256  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N));
2257}
2258
2259void SelectionDAGBuilder::visitSIToFP(User &I){
2260  // SIToFP is never a no-op cast, no need to check
2261  SDValue N = getValue(I.getOperand(0));
2262  EVT DestVT = TLI.getValueType(I.getType());
2263  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N));
2264}
2265
2266void SelectionDAGBuilder::visitPtrToInt(User &I) {
2267  // What to do depends on the size of the integer and the size of the pointer.
2268  // We can either truncate, zero extend, or no-op, accordingly.
2269  SDValue N = getValue(I.getOperand(0));
2270  EVT SrcVT = N.getValueType();
2271  EVT DestVT = TLI.getValueType(I.getType());
2272  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2273}
2274
2275void SelectionDAGBuilder::visitIntToPtr(User &I) {
2276  // What to do depends on the size of the integer and the size of the pointer.
2277  // We can either truncate, zero extend, or no-op, accordingly.
2278  SDValue N = getValue(I.getOperand(0));
2279  EVT SrcVT = N.getValueType();
2280  EVT DestVT = TLI.getValueType(I.getType());
2281  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2282}
2283
2284void SelectionDAGBuilder::visitBitCast(User &I) {
2285  SDValue N = getValue(I.getOperand(0));
2286  EVT DestVT = TLI.getValueType(I.getType());
2287
2288  // BitCast assures us that source and destination are the same size so this is
2289  // either a BIT_CONVERT or a no-op.
2290  if (DestVT != N.getValueType())
2291    setValue(&I, DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
2292                             DestVT, N)); // convert types.
2293  else
2294    setValue(&I, N);            // noop cast.
2295}
2296
2297void SelectionDAGBuilder::visitInsertElement(User &I) {
2298  SDValue InVec = getValue(I.getOperand(0));
2299  SDValue InVal = getValue(I.getOperand(1));
2300  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2301                              TLI.getPointerTy(),
2302                              getValue(I.getOperand(2)));
2303  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(),
2304                           TLI.getValueType(I.getType()),
2305                           InVec, InVal, InIdx));
2306}
2307
2308void SelectionDAGBuilder::visitExtractElement(User &I) {
2309  SDValue InVec = getValue(I.getOperand(0));
2310  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2311                              TLI.getPointerTy(),
2312                              getValue(I.getOperand(1)));
2313  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2314                           TLI.getValueType(I.getType()), InVec, InIdx));
2315}
2316
2317// Utility for visitShuffleVector - Returns true if the mask is mask starting
2318// from SIndx and increasing to the element length (undefs are allowed).
2319static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) {
2320  unsigned MaskNumElts = Mask.size();
2321  for (unsigned i = 0; i != MaskNumElts; ++i)
2322    if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx)))
2323      return false;
2324  return true;
2325}
2326
2327void SelectionDAGBuilder::visitShuffleVector(User &I) {
2328  SmallVector<int, 8> Mask;
2329  SDValue Src1 = getValue(I.getOperand(0));
2330  SDValue Src2 = getValue(I.getOperand(1));
2331
2332  // Convert the ConstantVector mask operand into an array of ints, with -1
2333  // representing undef values.
2334  SmallVector<Constant*, 8> MaskElts;
2335  cast<Constant>(I.getOperand(2))->getVectorElements(MaskElts);
2336  unsigned MaskNumElts = MaskElts.size();
2337  for (unsigned i = 0; i != MaskNumElts; ++i) {
2338    if (isa<UndefValue>(MaskElts[i]))
2339      Mask.push_back(-1);
2340    else
2341      Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue());
2342  }
2343
2344  EVT VT = TLI.getValueType(I.getType());
2345  EVT SrcVT = Src1.getValueType();
2346  unsigned SrcNumElts = SrcVT.getVectorNumElements();
2347
2348  if (SrcNumElts == MaskNumElts) {
2349    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2350                                      &Mask[0]));
2351    return;
2352  }
2353
2354  // Normalize the shuffle vector since mask and vector length don't match.
2355  if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2356    // Mask is longer than the source vectors and is a multiple of the source
2357    // vectors.  We can use concatenate vector to make the mask and vectors
2358    // lengths match.
2359    if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) {
2360      // The shuffle is concatenating two vectors together.
2361      setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2362                               VT, Src1, Src2));
2363      return;
2364    }
2365
2366    // Pad both vectors with undefs to make them the same length as the mask.
2367    unsigned NumConcat = MaskNumElts / SrcNumElts;
2368    bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2369    bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2370    SDValue UndefVal = DAG.getUNDEF(SrcVT);
2371
2372    SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2373    SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2374    MOps1[0] = Src1;
2375    MOps2[0] = Src2;
2376
2377    Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2378                                                  getCurDebugLoc(), VT,
2379                                                  &MOps1[0], NumConcat);
2380    Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2381                                                  getCurDebugLoc(), VT,
2382                                                  &MOps2[0], NumConcat);
2383
2384    // Readjust mask for new input vector length.
2385    SmallVector<int, 8> MappedOps;
2386    for (unsigned i = 0; i != MaskNumElts; ++i) {
2387      int Idx = Mask[i];
2388      if (Idx < (int)SrcNumElts)
2389        MappedOps.push_back(Idx);
2390      else
2391        MappedOps.push_back(Idx + MaskNumElts - SrcNumElts);
2392    }
2393
2394    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2395                                      &MappedOps[0]));
2396    return;
2397  }
2398
2399  if (SrcNumElts > MaskNumElts) {
2400    // Analyze the access pattern of the vector to see if we can extract
2401    // two subvectors and do the shuffle. The analysis is done by calculating
2402    // the range of elements the mask access on both vectors.
2403    int MinRange[2] = { SrcNumElts+1, SrcNumElts+1};
2404    int MaxRange[2] = {-1, -1};
2405
2406    for (unsigned i = 0; i != MaskNumElts; ++i) {
2407      int Idx = Mask[i];
2408      int Input = 0;
2409      if (Idx < 0)
2410        continue;
2411
2412      if (Idx >= (int)SrcNumElts) {
2413        Input = 1;
2414        Idx -= SrcNumElts;
2415      }
2416      if (Idx > MaxRange[Input])
2417        MaxRange[Input] = Idx;
2418      if (Idx < MinRange[Input])
2419        MinRange[Input] = Idx;
2420    }
2421
2422    // Check if the access is smaller than the vector size and can we find
2423    // a reasonable extract index.
2424    int RangeUse[2] = { 2, 2 };  // 0 = Unused, 1 = Extract, 2 = Can not
2425                                 // Extract.
2426    int StartIdx[2];  // StartIdx to extract from
2427    for (int Input=0; Input < 2; ++Input) {
2428      if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) {
2429        RangeUse[Input] = 0; // Unused
2430        StartIdx[Input] = 0;
2431      } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) {
2432        // Fits within range but we should see if we can find a good
2433        // start index that is a multiple of the mask length.
2434        if (MaxRange[Input] < (int)MaskNumElts) {
2435          RangeUse[Input] = 1; // Extract from beginning of the vector
2436          StartIdx[Input] = 0;
2437        } else {
2438          StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2439          if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2440              StartIdx[Input] + MaskNumElts < SrcNumElts)
2441            RangeUse[Input] = 1; // Extract from a multiple of the mask length.
2442        }
2443      }
2444    }
2445
2446    if (RangeUse[0] == 0 && RangeUse[1] == 0) {
2447      setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
2448      return;
2449    }
2450    else if (RangeUse[0] < 2 && RangeUse[1] < 2) {
2451      // Extract appropriate subvector and generate a vector shuffle
2452      for (int Input=0; Input < 2; ++Input) {
2453        SDValue &Src = Input == 0 ? Src1 : Src2;
2454        if (RangeUse[Input] == 0)
2455          Src = DAG.getUNDEF(VT);
2456        else
2457          Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT,
2458                            Src, DAG.getIntPtrConstant(StartIdx[Input]));
2459      }
2460
2461      // Calculate new mask.
2462      SmallVector<int, 8> MappedOps;
2463      for (unsigned i = 0; i != MaskNumElts; ++i) {
2464        int Idx = Mask[i];
2465        if (Idx < 0)
2466          MappedOps.push_back(Idx);
2467        else if (Idx < (int)SrcNumElts)
2468          MappedOps.push_back(Idx - StartIdx[0]);
2469        else
2470          MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts);
2471      }
2472
2473      setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2474                                        &MappedOps[0]));
2475      return;
2476    }
2477  }
2478
2479  // We can't use either concat vectors or extract subvectors so fall back to
2480  // replacing the shuffle with extract and build vector.
2481  // to insert and build vector.
2482  EVT EltVT = VT.getVectorElementType();
2483  EVT PtrVT = TLI.getPointerTy();
2484  SmallVector<SDValue,8> Ops;
2485  for (unsigned i = 0; i != MaskNumElts; ++i) {
2486    if (Mask[i] < 0) {
2487      Ops.push_back(DAG.getUNDEF(EltVT));
2488    } else {
2489      int Idx = Mask[i];
2490      SDValue Res;
2491
2492      if (Idx < (int)SrcNumElts)
2493        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2494                          EltVT, Src1, DAG.getConstant(Idx, PtrVT));
2495      else
2496        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2497                          EltVT, Src2,
2498                          DAG.getConstant(Idx - SrcNumElts, PtrVT));
2499
2500      Ops.push_back(Res);
2501    }
2502  }
2503
2504  setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
2505                           VT, &Ops[0], Ops.size()));
2506}
2507
2508void SelectionDAGBuilder::visitInsertValue(InsertValueInst &I) {
2509  const Value *Op0 = I.getOperand(0);
2510  const Value *Op1 = I.getOperand(1);
2511  const Type *AggTy = I.getType();
2512  const Type *ValTy = Op1->getType();
2513  bool IntoUndef = isa<UndefValue>(Op0);
2514  bool FromUndef = isa<UndefValue>(Op1);
2515
2516  unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
2517                                            I.idx_begin(), I.idx_end());
2518
2519  SmallVector<EVT, 4> AggValueVTs;
2520  ComputeValueVTs(TLI, AggTy, AggValueVTs);
2521  SmallVector<EVT, 4> ValValueVTs;
2522  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2523
2524  unsigned NumAggValues = AggValueVTs.size();
2525  unsigned NumValValues = ValValueVTs.size();
2526  SmallVector<SDValue, 4> Values(NumAggValues);
2527
2528  SDValue Agg = getValue(Op0);
2529  SDValue Val = getValue(Op1);
2530  unsigned i = 0;
2531  // Copy the beginning value(s) from the original aggregate.
2532  for (; i != LinearIndex; ++i)
2533    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2534                SDValue(Agg.getNode(), Agg.getResNo() + i);
2535  // Copy values from the inserted value(s).
2536  for (; i != LinearIndex + NumValValues; ++i)
2537    Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2538                SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
2539  // Copy remaining value(s) from the original aggregate.
2540  for (; i != NumAggValues; ++i)
2541    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2542                SDValue(Agg.getNode(), Agg.getResNo() + i);
2543
2544  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2545                           DAG.getVTList(&AggValueVTs[0], NumAggValues),
2546                           &Values[0], NumAggValues));
2547}
2548
2549void SelectionDAGBuilder::visitExtractValue(ExtractValueInst &I) {
2550  const Value *Op0 = I.getOperand(0);
2551  const Type *AggTy = Op0->getType();
2552  const Type *ValTy = I.getType();
2553  bool OutOfUndef = isa<UndefValue>(Op0);
2554
2555  unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
2556                                            I.idx_begin(), I.idx_end());
2557
2558  SmallVector<EVT, 4> ValValueVTs;
2559  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2560
2561  unsigned NumValValues = ValValueVTs.size();
2562  SmallVector<SDValue, 4> Values(NumValValues);
2563
2564  SDValue Agg = getValue(Op0);
2565  // Copy out the selected value(s).
2566  for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
2567    Values[i - LinearIndex] =
2568      OutOfUndef ?
2569        DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
2570        SDValue(Agg.getNode(), Agg.getResNo() + i);
2571
2572  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2573                           DAG.getVTList(&ValValueVTs[0], NumValValues),
2574                           &Values[0], NumValValues));
2575}
2576
2577void SelectionDAGBuilder::visitGetElementPtr(User &I) {
2578  SDValue N = getValue(I.getOperand(0));
2579  const Type *Ty = I.getOperand(0)->getType();
2580
2581  for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
2582       OI != E; ++OI) {
2583    Value *Idx = *OI;
2584    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2585      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2586      if (Field) {
2587        // N = N + Offset
2588        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
2589        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2590                        DAG.getIntPtrConstant(Offset));
2591      }
2592
2593      Ty = StTy->getElementType(Field);
2594    } else {
2595      Ty = cast<SequentialType>(Ty)->getElementType();
2596
2597      // If this is a constant subscript, handle it quickly.
2598      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2599        if (CI->getZExtValue() == 0) continue;
2600        uint64_t Offs =
2601            TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
2602        SDValue OffsVal;
2603        EVT PTy = TLI.getPointerTy();
2604        unsigned PtrBits = PTy.getSizeInBits();
2605        if (PtrBits < 64)
2606          OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2607                                TLI.getPointerTy(),
2608                                DAG.getConstant(Offs, MVT::i64));
2609        else
2610          OffsVal = DAG.getIntPtrConstant(Offs);
2611
2612        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2613                        OffsVal);
2614        continue;
2615      }
2616
2617      // N = N + Idx * ElementSize;
2618      APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
2619                                TD->getTypeAllocSize(Ty));
2620      SDValue IdxN = getValue(Idx);
2621
2622      // If the index is smaller or larger than intptr_t, truncate or extend
2623      // it.
2624      IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType());
2625
2626      // If this is a multiply by a power of two, turn it into a shl
2627      // immediately.  This is a very common case.
2628      if (ElementSize != 1) {
2629        if (ElementSize.isPowerOf2()) {
2630          unsigned Amt = ElementSize.logBase2();
2631          IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(),
2632                             N.getValueType(), IdxN,
2633                             DAG.getConstant(Amt, TLI.getPointerTy()));
2634        } else {
2635          SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy());
2636          IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(),
2637                             N.getValueType(), IdxN, Scale);
2638        }
2639      }
2640
2641      N = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2642                      N.getValueType(), N, IdxN);
2643    }
2644  }
2645
2646  setValue(&I, N);
2647}
2648
2649void SelectionDAGBuilder::visitAlloca(AllocaInst &I) {
2650  // If this is a fixed sized alloca in the entry block of the function,
2651  // allocate it statically on the stack.
2652  if (FuncInfo.StaticAllocaMap.count(&I))
2653    return;   // getValue will auto-populate this.
2654
2655  const Type *Ty = I.getAllocatedType();
2656  uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
2657  unsigned Align =
2658    std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
2659             I.getAlignment());
2660
2661  SDValue AllocSize = getValue(I.getArraySize());
2662
2663  AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), AllocSize.getValueType(),
2664                          AllocSize,
2665                          DAG.getConstant(TySize, AllocSize.getValueType()));
2666
2667  EVT IntPtr = TLI.getPointerTy();
2668  AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr);
2669
2670  // Handle alignment.  If the requested alignment is less than or equal to
2671  // the stack alignment, ignore it.  If the size is greater than or equal to
2672  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
2673  unsigned StackAlign =
2674    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
2675  if (Align <= StackAlign)
2676    Align = 0;
2677
2678  // Round the size of the allocation up to the stack alignment size
2679  // by add SA-1 to the size.
2680  AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2681                          AllocSize.getValueType(), AllocSize,
2682                          DAG.getIntPtrConstant(StackAlign-1));
2683
2684  // Mask out the low bits for alignment purposes.
2685  AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(),
2686                          AllocSize.getValueType(), AllocSize,
2687                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
2688
2689  SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
2690  SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
2691  SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(),
2692                            VTs, Ops, 3);
2693  setValue(&I, DSA);
2694  DAG.setRoot(DSA.getValue(1));
2695
2696  // Inform the Frame Information that we have just allocated a variable-sized
2697  // object.
2698  FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject();
2699}
2700
2701void SelectionDAGBuilder::visitLoad(LoadInst &I) {
2702  const Value *SV = I.getOperand(0);
2703  SDValue Ptr = getValue(SV);
2704
2705  const Type *Ty = I.getType();
2706
2707  bool isVolatile = I.isVolatile();
2708  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
2709  unsigned Alignment = I.getAlignment();
2710
2711  SmallVector<EVT, 4> ValueVTs;
2712  SmallVector<uint64_t, 4> Offsets;
2713  ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
2714  unsigned NumValues = ValueVTs.size();
2715  if (NumValues == 0)
2716    return;
2717
2718  SDValue Root;
2719  bool ConstantMemory = false;
2720  if (I.isVolatile())
2721    // Serialize volatile loads with other side effects.
2722    Root = getRoot();
2723  else if (AA->pointsToConstantMemory(SV)) {
2724    // Do not serialize (non-volatile) loads of constant memory with anything.
2725    Root = DAG.getEntryNode();
2726    ConstantMemory = true;
2727  } else {
2728    // Do not serialize non-volatile loads against each other.
2729    Root = DAG.getRoot();
2730  }
2731
2732  SmallVector<SDValue, 4> Values(NumValues);
2733  SmallVector<SDValue, 4> Chains(NumValues);
2734  EVT PtrVT = Ptr.getValueType();
2735  for (unsigned i = 0; i != NumValues; ++i) {
2736    SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2737                            PtrVT, Ptr,
2738                            DAG.getConstant(Offsets[i], PtrVT));
2739    SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root,
2740                            A, SV, Offsets[i], isVolatile,
2741                            isNonTemporal, Alignment);
2742
2743    Values[i] = L;
2744    Chains[i] = L.getValue(1);
2745  }
2746
2747  if (!ConstantMemory) {
2748    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
2749                                MVT::Other, &Chains[0], NumValues);
2750    if (isVolatile)
2751      DAG.setRoot(Chain);
2752    else
2753      PendingLoads.push_back(Chain);
2754  }
2755
2756  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2757                           DAG.getVTList(&ValueVTs[0], NumValues),
2758                           &Values[0], NumValues));
2759}
2760
2761void SelectionDAGBuilder::visitStore(StoreInst &I) {
2762  Value *SrcV = I.getOperand(0);
2763  Value *PtrV = I.getOperand(1);
2764
2765  SmallVector<EVT, 4> ValueVTs;
2766  SmallVector<uint64_t, 4> Offsets;
2767  ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
2768  unsigned NumValues = ValueVTs.size();
2769  if (NumValues == 0)
2770    return;
2771
2772  // Get the lowered operands. Note that we do this after
2773  // checking if NumResults is zero, because with zero results
2774  // the operands won't have values in the map.
2775  SDValue Src = getValue(SrcV);
2776  SDValue Ptr = getValue(PtrV);
2777
2778  SDValue Root = getRoot();
2779  SmallVector<SDValue, 4> Chains(NumValues);
2780  EVT PtrVT = Ptr.getValueType();
2781  bool isVolatile = I.isVolatile();
2782  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
2783  unsigned Alignment = I.getAlignment();
2784
2785  for (unsigned i = 0; i != NumValues; ++i) {
2786    SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr,
2787                              DAG.getConstant(Offsets[i], PtrVT));
2788    Chains[i] = DAG.getStore(Root, getCurDebugLoc(),
2789                             SDValue(Src.getNode(), Src.getResNo() + i),
2790                             Add, PtrV, Offsets[i], isVolatile,
2791                             isNonTemporal, Alignment);
2792  }
2793
2794  DAG.setRoot(DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
2795                          MVT::Other, &Chains[0], NumValues));
2796}
2797
2798/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
2799/// node.
2800void SelectionDAGBuilder::visitTargetIntrinsic(CallInst &I,
2801                                               unsigned Intrinsic) {
2802  bool HasChain = !I.doesNotAccessMemory();
2803  bool OnlyLoad = HasChain && I.onlyReadsMemory();
2804
2805  // Build the operand list.
2806  SmallVector<SDValue, 8> Ops;
2807  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
2808    if (OnlyLoad) {
2809      // We don't need to serialize loads against other loads.
2810      Ops.push_back(DAG.getRoot());
2811    } else {
2812      Ops.push_back(getRoot());
2813    }
2814  }
2815
2816  // Info is set by getTgtMemInstrinsic
2817  TargetLowering::IntrinsicInfo Info;
2818  bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
2819
2820  // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
2821  if (!IsTgtIntrinsic)
2822    Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
2823
2824  // Add all operands of the call to the operand list.
2825  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
2826    SDValue Op = getValue(I.getOperand(i));
2827    assert(TLI.isTypeLegal(Op.getValueType()) &&
2828           "Intrinsic uses a non-legal type?");
2829    Ops.push_back(Op);
2830  }
2831
2832  SmallVector<EVT, 4> ValueVTs;
2833  ComputeValueVTs(TLI, I.getType(), ValueVTs);
2834#ifndef NDEBUG
2835  for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) {
2836    assert(TLI.isTypeLegal(ValueVTs[Val]) &&
2837           "Intrinsic uses a non-legal type?");
2838  }
2839#endif // NDEBUG
2840
2841  if (HasChain)
2842    ValueVTs.push_back(MVT::Other);
2843
2844  SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
2845
2846  // Create the node.
2847  SDValue Result;
2848  if (IsTgtIntrinsic) {
2849    // This is target intrinsic that touches memory
2850    Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(),
2851                                     VTs, &Ops[0], Ops.size(),
2852                                     Info.memVT, Info.ptrVal, Info.offset,
2853                                     Info.align, Info.vol,
2854                                     Info.readMem, Info.writeMem);
2855  } else if (!HasChain) {
2856    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
2857                         VTs, &Ops[0], Ops.size());
2858  } else if (!I.getType()->isVoidTy()) {
2859    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
2860                         VTs, &Ops[0], Ops.size());
2861  } else {
2862    Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(),
2863                         VTs, &Ops[0], Ops.size());
2864  }
2865
2866  if (HasChain) {
2867    SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
2868    if (OnlyLoad)
2869      PendingLoads.push_back(Chain);
2870    else
2871      DAG.setRoot(Chain);
2872  }
2873
2874  if (!I.getType()->isVoidTy()) {
2875    if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
2876      EVT VT = TLI.getValueType(PTy);
2877      Result = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), VT, Result);
2878    }
2879
2880    setValue(&I, Result);
2881  }
2882}
2883
2884/// GetSignificand - Get the significand and build it into a floating-point
2885/// number with exponent of 1:
2886///
2887///   Op = (Op & 0x007fffff) | 0x3f800000;
2888///
2889/// where Op is the hexidecimal representation of floating point value.
2890static SDValue
2891GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) {
2892  SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
2893                           DAG.getConstant(0x007fffff, MVT::i32));
2894  SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
2895                           DAG.getConstant(0x3f800000, MVT::i32));
2896  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t2);
2897}
2898
2899/// GetExponent - Get the exponent:
2900///
2901///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
2902///
2903/// where Op is the hexidecimal representation of floating point value.
2904static SDValue
2905GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
2906            DebugLoc dl) {
2907  SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
2908                           DAG.getConstant(0x7f800000, MVT::i32));
2909  SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
2910                           DAG.getConstant(23, TLI.getPointerTy()));
2911  SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
2912                           DAG.getConstant(127, MVT::i32));
2913  return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
2914}
2915
2916/// getF32Constant - Get 32-bit floating point constant.
2917static SDValue
2918getF32Constant(SelectionDAG &DAG, unsigned Flt) {
2919  return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32);
2920}
2921
2922/// Inlined utility function to implement binary input atomic intrinsics for
2923/// visitIntrinsicCall: I is a call instruction
2924///                     Op is the associated NodeType for I
2925const char *
2926SelectionDAGBuilder::implVisitBinaryAtomic(CallInst& I, ISD::NodeType Op) {
2927  SDValue Root = getRoot();
2928  SDValue L =
2929    DAG.getAtomic(Op, getCurDebugLoc(),
2930                  getValue(I.getOperand(2)).getValueType().getSimpleVT(),
2931                  Root,
2932                  getValue(I.getOperand(1)),
2933                  getValue(I.getOperand(2)),
2934                  I.getOperand(1));
2935  setValue(&I, L);
2936  DAG.setRoot(L.getValue(1));
2937  return 0;
2938}
2939
2940// implVisitAluOverflow - Lower arithmetic overflow instrinsics.
2941const char *
2942SelectionDAGBuilder::implVisitAluOverflow(CallInst &I, ISD::NodeType Op) {
2943  SDValue Op1 = getValue(I.getOperand(1));
2944  SDValue Op2 = getValue(I.getOperand(2));
2945
2946  SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
2947  setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2));
2948  return 0;
2949}
2950
2951/// visitExp - Lower an exp intrinsic. Handles the special sequences for
2952/// limited-precision mode.
2953void
2954SelectionDAGBuilder::visitExp(CallInst &I) {
2955  SDValue result;
2956  DebugLoc dl = getCurDebugLoc();
2957
2958  if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
2959      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
2960    SDValue Op = getValue(I.getOperand(1));
2961
2962    // Put the exponent in the right bit position for later addition to the
2963    // final result:
2964    //
2965    //   #define LOG2OFe 1.4426950f
2966    //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
2967    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
2968                             getF32Constant(DAG, 0x3fb8aa3b));
2969    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
2970
2971    //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
2972    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
2973    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
2974
2975    //   IntegerPartOfX <<= 23;
2976    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
2977                                 DAG.getConstant(23, TLI.getPointerTy()));
2978
2979    if (LimitFloatPrecision <= 6) {
2980      // For floating-point precision of 6:
2981      //
2982      //   TwoToFractionalPartOfX =
2983      //     0.997535578f +
2984      //       (0.735607626f + 0.252464424f * x) * x;
2985      //
2986      // error 0.0144103317, which is 6 bits
2987      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
2988                               getF32Constant(DAG, 0x3e814304));
2989      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
2990                               getF32Constant(DAG, 0x3f3c50c8));
2991      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
2992      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
2993                               getF32Constant(DAG, 0x3f7f5e7e));
2994      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t5);
2995
2996      // Add the exponent into the result in integer domain.
2997      SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32,
2998                               TwoToFracPartOfX, IntegerPartOfX);
2999
3000      result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t6);
3001    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3002      // For floating-point precision of 12:
3003      //
3004      //   TwoToFractionalPartOfX =
3005      //     0.999892986f +
3006      //       (0.696457318f +
3007      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3008      //
3009      // 0.000107046256 error, which is 13 to 14 bits
3010      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3011                               getF32Constant(DAG, 0x3da235e3));
3012      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3013                               getF32Constant(DAG, 0x3e65b8f3));
3014      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3015      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3016                               getF32Constant(DAG, 0x3f324b07));
3017      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3018      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3019                               getF32Constant(DAG, 0x3f7ff8fd));
3020      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t7);
3021
3022      // Add the exponent into the result in integer domain.
3023      SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3024                               TwoToFracPartOfX, IntegerPartOfX);
3025
3026      result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t8);
3027    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3028      // For floating-point precision of 18:
3029      //
3030      //   TwoToFractionalPartOfX =
3031      //     0.999999982f +
3032      //       (0.693148872f +
3033      //         (0.240227044f +
3034      //           (0.554906021e-1f +
3035      //             (0.961591928e-2f +
3036      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3037      //
3038      // error 2.47208000*10^(-7), which is better than 18 bits
3039      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3040                               getF32Constant(DAG, 0x3924b03e));
3041      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3042                               getF32Constant(DAG, 0x3ab24b87));
3043      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3044      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3045                               getF32Constant(DAG, 0x3c1d8c17));
3046      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3047      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3048                               getF32Constant(DAG, 0x3d634a1d));
3049      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3050      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3051                               getF32Constant(DAG, 0x3e75fe14));
3052      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3053      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3054                                getF32Constant(DAG, 0x3f317234));
3055      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3056      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3057                                getF32Constant(DAG, 0x3f800000));
3058      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,
3059                                             MVT::i32, t13);
3060
3061      // Add the exponent into the result in integer domain.
3062      SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3063                                TwoToFracPartOfX, IntegerPartOfX);
3064
3065      result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t14);
3066    }
3067  } else {
3068    // No special expansion.
3069    result = DAG.getNode(ISD::FEXP, dl,
3070                         getValue(I.getOperand(1)).getValueType(),
3071                         getValue(I.getOperand(1)));
3072  }
3073
3074  setValue(&I, result);
3075}
3076
3077/// visitLog - Lower a log intrinsic. Handles the special sequences for
3078/// limited-precision mode.
3079void
3080SelectionDAGBuilder::visitLog(CallInst &I) {
3081  SDValue result;
3082  DebugLoc dl = getCurDebugLoc();
3083
3084  if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
3085      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3086    SDValue Op = getValue(I.getOperand(1));
3087    SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
3088
3089    // Scale the exponent by log(2) [0.69314718f].
3090    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3091    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3092                                        getF32Constant(DAG, 0x3f317218));
3093
3094    // Get the significand and build it into a floating-point number with
3095    // exponent of 1.
3096    SDValue X = GetSignificand(DAG, Op1, dl);
3097
3098    if (LimitFloatPrecision <= 6) {
3099      // For floating-point precision of 6:
3100      //
3101      //   LogofMantissa =
3102      //     -1.1609546f +
3103      //       (1.4034025f - 0.23903021f * x) * x;
3104      //
3105      // error 0.0034276066, which is better than 8 bits
3106      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3107                               getF32Constant(DAG, 0xbe74c456));
3108      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3109                               getF32Constant(DAG, 0x3fb3a2b1));
3110      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3111      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3112                                          getF32Constant(DAG, 0x3f949a29));
3113
3114      result = DAG.getNode(ISD::FADD, dl,
3115                           MVT::f32, LogOfExponent, LogOfMantissa);
3116    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3117      // For floating-point precision of 12:
3118      //
3119      //   LogOfMantissa =
3120      //     -1.7417939f +
3121      //       (2.8212026f +
3122      //         (-1.4699568f +
3123      //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3124      //
3125      // error 0.000061011436, which is 14 bits
3126      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3127                               getF32Constant(DAG, 0xbd67b6d6));
3128      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3129                               getF32Constant(DAG, 0x3ee4f4b8));
3130      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3131      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3132                               getF32Constant(DAG, 0x3fbc278b));
3133      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3134      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3135                               getF32Constant(DAG, 0x40348e95));
3136      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3137      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3138                                          getF32Constant(DAG, 0x3fdef31a));
3139
3140      result = DAG.getNode(ISD::FADD, dl,
3141                           MVT::f32, LogOfExponent, LogOfMantissa);
3142    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3143      // For floating-point precision of 18:
3144      //
3145      //   LogOfMantissa =
3146      //     -2.1072184f +
3147      //       (4.2372794f +
3148      //         (-3.7029485f +
3149      //           (2.2781945f +
3150      //             (-0.87823314f +
3151      //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3152      //
3153      // error 0.0000023660568, which is better than 18 bits
3154      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3155                               getF32Constant(DAG, 0xbc91e5ac));
3156      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3157                               getF32Constant(DAG, 0x3e4350aa));
3158      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3159      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3160                               getF32Constant(DAG, 0x3f60d3e3));
3161      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3162      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3163                               getF32Constant(DAG, 0x4011cdf0));
3164      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3165      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3166                               getF32Constant(DAG, 0x406cfd1c));
3167      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3168      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3169                               getF32Constant(DAG, 0x408797cb));
3170      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3171      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3172                                          getF32Constant(DAG, 0x4006dcab));
3173
3174      result = DAG.getNode(ISD::FADD, dl,
3175                           MVT::f32, LogOfExponent, LogOfMantissa);
3176    }
3177  } else {
3178    // No special expansion.
3179    result = DAG.getNode(ISD::FLOG, dl,
3180                         getValue(I.getOperand(1)).getValueType(),
3181                         getValue(I.getOperand(1)));
3182  }
3183
3184  setValue(&I, result);
3185}
3186
3187/// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for
3188/// limited-precision mode.
3189void
3190SelectionDAGBuilder::visitLog2(CallInst &I) {
3191  SDValue result;
3192  DebugLoc dl = getCurDebugLoc();
3193
3194  if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
3195      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3196    SDValue Op = getValue(I.getOperand(1));
3197    SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
3198
3199    // Get the exponent.
3200    SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3201
3202    // Get the significand and build it into a floating-point number with
3203    // exponent of 1.
3204    SDValue X = GetSignificand(DAG, Op1, dl);
3205
3206    // Different possible minimax approximations of significand in
3207    // floating-point for various degrees of accuracy over [1,2].
3208    if (LimitFloatPrecision <= 6) {
3209      // For floating-point precision of 6:
3210      //
3211      //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3212      //
3213      // error 0.0049451742, which is more than 7 bits
3214      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3215                               getF32Constant(DAG, 0xbeb08fe0));
3216      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3217                               getF32Constant(DAG, 0x40019463));
3218      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3219      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3220                                           getF32Constant(DAG, 0x3fd6633d));
3221
3222      result = DAG.getNode(ISD::FADD, dl,
3223                           MVT::f32, LogOfExponent, Log2ofMantissa);
3224    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3225      // For floating-point precision of 12:
3226      //
3227      //   Log2ofMantissa =
3228      //     -2.51285454f +
3229      //       (4.07009056f +
3230      //         (-2.12067489f +
3231      //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3232      //
3233      // error 0.0000876136000, which is better than 13 bits
3234      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3235                               getF32Constant(DAG, 0xbda7262e));
3236      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3237                               getF32Constant(DAG, 0x3f25280b));
3238      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3239      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3240                               getF32Constant(DAG, 0x4007b923));
3241      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3242      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3243                               getF32Constant(DAG, 0x40823e2f));
3244      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3245      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3246                                           getF32Constant(DAG, 0x4020d29c));
3247
3248      result = DAG.getNode(ISD::FADD, dl,
3249                           MVT::f32, LogOfExponent, Log2ofMantissa);
3250    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3251      // For floating-point precision of 18:
3252      //
3253      //   Log2ofMantissa =
3254      //     -3.0400495f +
3255      //       (6.1129976f +
3256      //         (-5.3420409f +
3257      //           (3.2865683f +
3258      //             (-1.2669343f +
3259      //               (0.27515199f -
3260      //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3261      //
3262      // error 0.0000018516, which is better than 18 bits
3263      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3264                               getF32Constant(DAG, 0xbcd2769e));
3265      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3266                               getF32Constant(DAG, 0x3e8ce0b9));
3267      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3268      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3269                               getF32Constant(DAG, 0x3fa22ae7));
3270      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3271      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3272                               getF32Constant(DAG, 0x40525723));
3273      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3274      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3275                               getF32Constant(DAG, 0x40aaf200));
3276      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3277      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3278                               getF32Constant(DAG, 0x40c39dad));
3279      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3280      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3281                                           getF32Constant(DAG, 0x4042902c));
3282
3283      result = DAG.getNode(ISD::FADD, dl,
3284                           MVT::f32, LogOfExponent, Log2ofMantissa);
3285    }
3286  } else {
3287    // No special expansion.
3288    result = DAG.getNode(ISD::FLOG2, dl,
3289                         getValue(I.getOperand(1)).getValueType(),
3290                         getValue(I.getOperand(1)));
3291  }
3292
3293  setValue(&I, result);
3294}
3295
3296/// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for
3297/// limited-precision mode.
3298void
3299SelectionDAGBuilder::visitLog10(CallInst &I) {
3300  SDValue result;
3301  DebugLoc dl = getCurDebugLoc();
3302
3303  if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
3304      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3305    SDValue Op = getValue(I.getOperand(1));
3306    SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
3307
3308    // Scale the exponent by log10(2) [0.30102999f].
3309    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3310    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3311                                        getF32Constant(DAG, 0x3e9a209a));
3312
3313    // Get the significand and build it into a floating-point number with
3314    // exponent of 1.
3315    SDValue X = GetSignificand(DAG, Op1, dl);
3316
3317    if (LimitFloatPrecision <= 6) {
3318      // For floating-point precision of 6:
3319      //
3320      //   Log10ofMantissa =
3321      //     -0.50419619f +
3322      //       (0.60948995f - 0.10380950f * x) * x;
3323      //
3324      // error 0.0014886165, which is 6 bits
3325      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3326                               getF32Constant(DAG, 0xbdd49a13));
3327      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3328                               getF32Constant(DAG, 0x3f1c0789));
3329      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3330      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3331                                            getF32Constant(DAG, 0x3f011300));
3332
3333      result = DAG.getNode(ISD::FADD, dl,
3334                           MVT::f32, LogOfExponent, Log10ofMantissa);
3335    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3336      // For floating-point precision of 12:
3337      //
3338      //   Log10ofMantissa =
3339      //     -0.64831180f +
3340      //       (0.91751397f +
3341      //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
3342      //
3343      // error 0.00019228036, which is better than 12 bits
3344      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3345                               getF32Constant(DAG, 0x3d431f31));
3346      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3347                               getF32Constant(DAG, 0x3ea21fb2));
3348      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3349      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3350                               getF32Constant(DAG, 0x3f6ae232));
3351      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3352      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3353                                            getF32Constant(DAG, 0x3f25f7c3));
3354
3355      result = DAG.getNode(ISD::FADD, dl,
3356                           MVT::f32, LogOfExponent, Log10ofMantissa);
3357    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3358      // For floating-point precision of 18:
3359      //
3360      //   Log10ofMantissa =
3361      //     -0.84299375f +
3362      //       (1.5327582f +
3363      //         (-1.0688956f +
3364      //           (0.49102474f +
3365      //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
3366      //
3367      // error 0.0000037995730, which is better than 18 bits
3368      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3369                               getF32Constant(DAG, 0x3c5d51ce));
3370      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3371                               getF32Constant(DAG, 0x3e00685a));
3372      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3373      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3374                               getF32Constant(DAG, 0x3efb6798));
3375      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3376      SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3377                               getF32Constant(DAG, 0x3f88d192));
3378      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3379      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3380                               getF32Constant(DAG, 0x3fc4316c));
3381      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3382      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
3383                                            getF32Constant(DAG, 0x3f57ce70));
3384
3385      result = DAG.getNode(ISD::FADD, dl,
3386                           MVT::f32, LogOfExponent, Log10ofMantissa);
3387    }
3388  } else {
3389    // No special expansion.
3390    result = DAG.getNode(ISD::FLOG10, dl,
3391                         getValue(I.getOperand(1)).getValueType(),
3392                         getValue(I.getOperand(1)));
3393  }
3394
3395  setValue(&I, result);
3396}
3397
3398/// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for
3399/// limited-precision mode.
3400void
3401SelectionDAGBuilder::visitExp2(CallInst &I) {
3402  SDValue result;
3403  DebugLoc dl = getCurDebugLoc();
3404
3405  if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
3406      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3407    SDValue Op = getValue(I.getOperand(1));
3408
3409    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
3410
3411    //   FractionalPartOfX = x - (float)IntegerPartOfX;
3412    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3413    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
3414
3415    //   IntegerPartOfX <<= 23;
3416    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3417                                 DAG.getConstant(23, TLI.getPointerTy()));
3418
3419    if (LimitFloatPrecision <= 6) {
3420      // For floating-point precision of 6:
3421      //
3422      //   TwoToFractionalPartOfX =
3423      //     0.997535578f +
3424      //       (0.735607626f + 0.252464424f * x) * x;
3425      //
3426      // error 0.0144103317, which is 6 bits
3427      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3428                               getF32Constant(DAG, 0x3e814304));
3429      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3430                               getF32Constant(DAG, 0x3f3c50c8));
3431      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3432      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3433                               getF32Constant(DAG, 0x3f7f5e7e));
3434      SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5);
3435      SDValue TwoToFractionalPartOfX =
3436        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3437
3438      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3439                           MVT::f32, TwoToFractionalPartOfX);
3440    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3441      // For floating-point precision of 12:
3442      //
3443      //   TwoToFractionalPartOfX =
3444      //     0.999892986f +
3445      //       (0.696457318f +
3446      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3447      //
3448      // error 0.000107046256, which is 13 to 14 bits
3449      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3450                               getF32Constant(DAG, 0x3da235e3));
3451      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3452                               getF32Constant(DAG, 0x3e65b8f3));
3453      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3454      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3455                               getF32Constant(DAG, 0x3f324b07));
3456      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3457      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3458                               getF32Constant(DAG, 0x3f7ff8fd));
3459      SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7);
3460      SDValue TwoToFractionalPartOfX =
3461        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
3462
3463      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3464                           MVT::f32, TwoToFractionalPartOfX);
3465    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3466      // For floating-point precision of 18:
3467      //
3468      //   TwoToFractionalPartOfX =
3469      //     0.999999982f +
3470      //       (0.693148872f +
3471      //         (0.240227044f +
3472      //           (0.554906021e-1f +
3473      //             (0.961591928e-2f +
3474      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3475      // error 2.47208000*10^(-7), which is better than 18 bits
3476      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3477                               getF32Constant(DAG, 0x3924b03e));
3478      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3479                               getF32Constant(DAG, 0x3ab24b87));
3480      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3481      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3482                               getF32Constant(DAG, 0x3c1d8c17));
3483      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3484      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3485                               getF32Constant(DAG, 0x3d634a1d));
3486      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3487      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3488                               getF32Constant(DAG, 0x3e75fe14));
3489      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3490      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3491                                getF32Constant(DAG, 0x3f317234));
3492      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3493      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3494                                getF32Constant(DAG, 0x3f800000));
3495      SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13);
3496      SDValue TwoToFractionalPartOfX =
3497        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
3498
3499      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3500                           MVT::f32, TwoToFractionalPartOfX);
3501    }
3502  } else {
3503    // No special expansion.
3504    result = DAG.getNode(ISD::FEXP2, dl,
3505                         getValue(I.getOperand(1)).getValueType(),
3506                         getValue(I.getOperand(1)));
3507  }
3508
3509  setValue(&I, result);
3510}
3511
3512/// visitPow - Lower a pow intrinsic. Handles the special sequences for
3513/// limited-precision mode with x == 10.0f.
3514void
3515SelectionDAGBuilder::visitPow(CallInst &I) {
3516  SDValue result;
3517  Value *Val = I.getOperand(1);
3518  DebugLoc dl = getCurDebugLoc();
3519  bool IsExp10 = false;
3520
3521  if (getValue(Val).getValueType() == MVT::f32 &&
3522      getValue(I.getOperand(2)).getValueType() == MVT::f32 &&
3523      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3524    if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) {
3525      if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
3526        APFloat Ten(10.0f);
3527        IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten);
3528      }
3529    }
3530  }
3531
3532  if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3533    SDValue Op = getValue(I.getOperand(2));
3534
3535    // Put the exponent in the right bit position for later addition to the
3536    // final result:
3537    //
3538    //   #define LOG2OF10 3.3219281f
3539    //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
3540    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3541                             getF32Constant(DAG, 0x40549a78));
3542    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3543
3544    //   FractionalPartOfX = x - (float)IntegerPartOfX;
3545    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3546    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3547
3548    //   IntegerPartOfX <<= 23;
3549    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3550                                 DAG.getConstant(23, TLI.getPointerTy()));
3551
3552    if (LimitFloatPrecision <= 6) {
3553      // For floating-point precision of 6:
3554      //
3555      //   twoToFractionalPartOfX =
3556      //     0.997535578f +
3557      //       (0.735607626f + 0.252464424f * x) * x;
3558      //
3559      // error 0.0144103317, which is 6 bits
3560      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3561                               getF32Constant(DAG, 0x3e814304));
3562      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3563                               getF32Constant(DAG, 0x3f3c50c8));
3564      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3565      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3566                               getF32Constant(DAG, 0x3f7f5e7e));
3567      SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5);
3568      SDValue TwoToFractionalPartOfX =
3569        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3570
3571      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3572                           MVT::f32, TwoToFractionalPartOfX);
3573    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3574      // For floating-point precision of 12:
3575      //
3576      //   TwoToFractionalPartOfX =
3577      //     0.999892986f +
3578      //       (0.696457318f +
3579      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3580      //
3581      // error 0.000107046256, which is 13 to 14 bits
3582      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3583                               getF32Constant(DAG, 0x3da235e3));
3584      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3585                               getF32Constant(DAG, 0x3e65b8f3));
3586      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3587      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3588                               getF32Constant(DAG, 0x3f324b07));
3589      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3590      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3591                               getF32Constant(DAG, 0x3f7ff8fd));
3592      SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7);
3593      SDValue TwoToFractionalPartOfX =
3594        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
3595
3596      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3597                           MVT::f32, TwoToFractionalPartOfX);
3598    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3599      // For floating-point precision of 18:
3600      //
3601      //   TwoToFractionalPartOfX =
3602      //     0.999999982f +
3603      //       (0.693148872f +
3604      //         (0.240227044f +
3605      //           (0.554906021e-1f +
3606      //             (0.961591928e-2f +
3607      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3608      // error 2.47208000*10^(-7), which is better than 18 bits
3609      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3610                               getF32Constant(DAG, 0x3924b03e));
3611      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3612                               getF32Constant(DAG, 0x3ab24b87));
3613      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3614      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3615                               getF32Constant(DAG, 0x3c1d8c17));
3616      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3617      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3618                               getF32Constant(DAG, 0x3d634a1d));
3619      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3620      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3621                               getF32Constant(DAG, 0x3e75fe14));
3622      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3623      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3624                                getF32Constant(DAG, 0x3f317234));
3625      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3626      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3627                                getF32Constant(DAG, 0x3f800000));
3628      SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13);
3629      SDValue TwoToFractionalPartOfX =
3630        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
3631
3632      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3633                           MVT::f32, TwoToFractionalPartOfX);
3634    }
3635  } else {
3636    // No special expansion.
3637    result = DAG.getNode(ISD::FPOW, dl,
3638                         getValue(I.getOperand(1)).getValueType(),
3639                         getValue(I.getOperand(1)),
3640                         getValue(I.getOperand(2)));
3641  }
3642
3643  setValue(&I, result);
3644}
3645
3646
3647/// ExpandPowI - Expand a llvm.powi intrinsic.
3648static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS,
3649                          SelectionDAG &DAG) {
3650  // If RHS is a constant, we can expand this out to a multiplication tree,
3651  // otherwise we end up lowering to a call to __powidf2 (for example).  When
3652  // optimizing for size, we only want to do this if the expansion would produce
3653  // a small number of multiplies, otherwise we do the full expansion.
3654  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3655    // Get the exponent as a positive value.
3656    unsigned Val = RHSC->getSExtValue();
3657    if ((int)Val < 0) Val = -Val;
3658
3659    // powi(x, 0) -> 1.0
3660    if (Val == 0)
3661      return DAG.getConstantFP(1.0, LHS.getValueType());
3662
3663    Function *F = DAG.getMachineFunction().getFunction();
3664    if (!F->hasFnAttr(Attribute::OptimizeForSize) ||
3665        // If optimizing for size, don't insert too many multiplies.  This
3666        // inserts up to 5 multiplies.
3667        CountPopulation_32(Val)+Log2_32(Val) < 7) {
3668      // We use the simple binary decomposition method to generate the multiply
3669      // sequence.  There are more optimal ways to do this (for example,
3670      // powi(x,15) generates one more multiply than it should), but this has
3671      // the benefit of being both really simple and much better than a libcall.
3672      SDValue Res;  // Logically starts equal to 1.0
3673      SDValue CurSquare = LHS;
3674      while (Val) {
3675        if (Val & 1) {
3676          if (Res.getNode())
3677            Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
3678          else
3679            Res = CurSquare;  // 1.0*CurSquare.
3680        }
3681
3682        CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
3683                                CurSquare, CurSquare);
3684        Val >>= 1;
3685      }
3686
3687      // If the original was negative, invert the result, producing 1/(x*x*x).
3688      if (RHSC->getSExtValue() < 0)
3689        Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
3690                          DAG.getConstantFP(1.0, LHS.getValueType()), Res);
3691      return Res;
3692    }
3693  }
3694
3695  // Otherwise, expand to a libcall.
3696  return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
3697}
3698
3699
3700/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
3701/// we want to emit this as a call to a named external function, return the name
3702/// otherwise lower it and return null.
3703const char *
3704SelectionDAGBuilder::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
3705  DebugLoc dl = getCurDebugLoc();
3706  SDValue Res;
3707
3708  switch (Intrinsic) {
3709  default:
3710    // By default, turn this into a target intrinsic node.
3711    visitTargetIntrinsic(I, Intrinsic);
3712    return 0;
3713  case Intrinsic::vastart:  visitVAStart(I); return 0;
3714  case Intrinsic::vaend:    visitVAEnd(I); return 0;
3715  case Intrinsic::vacopy:   visitVACopy(I); return 0;
3716  case Intrinsic::returnaddress:
3717    setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(),
3718                             getValue(I.getOperand(1))));
3719    return 0;
3720  case Intrinsic::frameaddress:
3721    setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(),
3722                             getValue(I.getOperand(1))));
3723    return 0;
3724  case Intrinsic::setjmp:
3725    return "_setjmp"+!TLI.usesUnderscoreSetJmp();
3726  case Intrinsic::longjmp:
3727    return "_longjmp"+!TLI.usesUnderscoreLongJmp();
3728  case Intrinsic::memcpy: {
3729    SDValue Op1 = getValue(I.getOperand(1));
3730    SDValue Op2 = getValue(I.getOperand(2));
3731    SDValue Op3 = getValue(I.getOperand(3));
3732    unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3733    DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, false,
3734                              I.getOperand(1), 0, I.getOperand(2), 0));
3735    return 0;
3736  }
3737  case Intrinsic::memset: {
3738    SDValue Op1 = getValue(I.getOperand(1));
3739    SDValue Op2 = getValue(I.getOperand(2));
3740    SDValue Op3 = getValue(I.getOperand(3));
3741    unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3742    DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align,
3743                              I.getOperand(1), 0));
3744    return 0;
3745  }
3746  case Intrinsic::memmove: {
3747    SDValue Op1 = getValue(I.getOperand(1));
3748    SDValue Op2 = getValue(I.getOperand(2));
3749    SDValue Op3 = getValue(I.getOperand(3));
3750    unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3751
3752    // If the source and destination are known to not be aliases, we can
3753    // lower memmove as memcpy.
3754    uint64_t Size = -1ULL;
3755    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3))
3756      Size = C->getZExtValue();
3757    if (AA->alias(I.getOperand(1), Size, I.getOperand(2), Size) ==
3758        AliasAnalysis::NoAlias) {
3759      DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, false,
3760                                I.getOperand(1), 0, I.getOperand(2), 0));
3761      return 0;
3762    }
3763
3764    DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align,
3765                               I.getOperand(1), 0, I.getOperand(2), 0));
3766    return 0;
3767  }
3768  case Intrinsic::dbg_declare: {
3769    // FIXME: currently, we get here only if OptLevel != CodeGenOpt::None.
3770    // The real handling of this intrinsic is in FastISel.
3771    if (OptLevel != CodeGenOpt::None)
3772      // FIXME: Variable debug info is not supported here.
3773      return 0;
3774    DwarfWriter *DW = DAG.getDwarfWriter();
3775    if (!DW)
3776      return 0;
3777    DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
3778    if (!DIDescriptor::ValidDebugInfo(DI.getVariable(), CodeGenOpt::None))
3779      return 0;
3780
3781    MDNode *Variable = DI.getVariable();
3782    Value *Address = DI.getAddress();
3783    if (!Address)
3784      return 0;
3785    if (BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
3786      Address = BCI->getOperand(0);
3787    AllocaInst *AI = dyn_cast<AllocaInst>(Address);
3788    // Don't handle byval struct arguments or VLAs, for example.
3789    if (!AI)
3790      return 0;
3791    DenseMap<const AllocaInst*, int>::iterator SI =
3792      FuncInfo.StaticAllocaMap.find(AI);
3793    if (SI == FuncInfo.StaticAllocaMap.end())
3794      return 0; // VLAs.
3795    int FI = SI->second;
3796
3797    if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo())
3798      if (MDNode *Dbg = DI.getMetadata("dbg"))
3799        MMI->setVariableDbgInfo(Variable, FI, Dbg);
3800    return 0;
3801  }
3802  case Intrinsic::dbg_value: {
3803    // FIXME: currently, we get here only if OptLevel != CodeGenOpt::None.
3804    // The real handling of this intrinsic is in FastISel.
3805    if (OptLevel != CodeGenOpt::None)
3806      // FIXME: Variable debug info is not supported here.
3807      return 0;
3808    DwarfWriter *DW = DAG.getDwarfWriter();
3809    if (!DW)
3810      return 0;
3811    DbgValueInst &DI = cast<DbgValueInst>(I);
3812    if (!DIDescriptor::ValidDebugInfo(DI.getVariable(), CodeGenOpt::None))
3813      return 0;
3814
3815    MDNode *Variable = DI.getVariable();
3816    Value *V = DI.getValue();
3817    if (!V)
3818      return 0;
3819    if (BitCastInst *BCI = dyn_cast<BitCastInst>(V))
3820      V = BCI->getOperand(0);
3821    AllocaInst *AI = dyn_cast<AllocaInst>(V);
3822    // Don't handle byval struct arguments or VLAs, for example.
3823    if (!AI)
3824      return 0;
3825    DenseMap<const AllocaInst*, int>::iterator SI =
3826      FuncInfo.StaticAllocaMap.find(AI);
3827    if (SI == FuncInfo.StaticAllocaMap.end())
3828      return 0; // VLAs.
3829    int FI = SI->second;
3830    if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo())
3831      if (MDNode *Dbg = DI.getMetadata("dbg"))
3832        MMI->setVariableDbgInfo(Variable, FI, Dbg);
3833    return 0;
3834  }
3835  case Intrinsic::eh_exception: {
3836    // Insert the EXCEPTIONADDR instruction.
3837    assert(CurMBB->isLandingPad() &&"Call to eh.exception not in landing pad!");
3838    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
3839    SDValue Ops[1];
3840    Ops[0] = DAG.getRoot();
3841    SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1);
3842    setValue(&I, Op);
3843    DAG.setRoot(Op.getValue(1));
3844    return 0;
3845  }
3846
3847  case Intrinsic::eh_selector: {
3848    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3849
3850    if (CurMBB->isLandingPad())
3851      AddCatchInfo(I, MMI, CurMBB);
3852    else {
3853#ifndef NDEBUG
3854      FuncInfo.CatchInfoLost.insert(&I);
3855#endif
3856      // FIXME: Mark exception selector register as live in.  Hack for PR1508.
3857      unsigned Reg = TLI.getExceptionSelectorRegister();
3858      if (Reg) CurMBB->addLiveIn(Reg);
3859    }
3860
3861    // Insert the EHSELECTION instruction.
3862    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
3863    SDValue Ops[2];
3864    Ops[0] = getValue(I.getOperand(1));
3865    Ops[1] = getRoot();
3866    SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2);
3867    DAG.setRoot(Op.getValue(1));
3868    setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32));
3869    return 0;
3870  }
3871
3872  case Intrinsic::eh_typeid_for: {
3873    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3874
3875    if (MMI) {
3876      // Find the type id for the given typeinfo.
3877      GlobalVariable *GV = ExtractTypeInfo(I.getOperand(1));
3878      unsigned TypeID = MMI->getTypeIDFor(GV);
3879      Res = DAG.getConstant(TypeID, MVT::i32);
3880    } else {
3881      // Return something different to eh_selector.
3882      Res = DAG.getConstant(1, MVT::i32);
3883    }
3884
3885    setValue(&I, Res);
3886    return 0;
3887  }
3888
3889  case Intrinsic::eh_return_i32:
3890  case Intrinsic::eh_return_i64:
3891    if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) {
3892      MMI->setCallsEHReturn(true);
3893      DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl,
3894                              MVT::Other,
3895                              getControlRoot(),
3896                              getValue(I.getOperand(1)),
3897                              getValue(I.getOperand(2))));
3898    } else {
3899      setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
3900    }
3901
3902    return 0;
3903  case Intrinsic::eh_unwind_init:
3904    if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) {
3905      MMI->setCallsUnwindInit(true);
3906    }
3907    return 0;
3908  case Intrinsic::eh_dwarf_cfa: {
3909    EVT VT = getValue(I.getOperand(1)).getValueType();
3910    SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), dl,
3911                                        TLI.getPointerTy());
3912    SDValue Offset = DAG.getNode(ISD::ADD, dl,
3913                                 TLI.getPointerTy(),
3914                                 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
3915                                             TLI.getPointerTy()),
3916                                 CfaArg);
3917    SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl,
3918                             TLI.getPointerTy(),
3919                             DAG.getConstant(0, TLI.getPointerTy()));
3920    setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
3921                             FA, Offset));
3922    return 0;
3923  }
3924  case Intrinsic::eh_sjlj_callsite: {
3925    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3926    ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1));
3927    assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
3928    assert(MMI->getCurrentCallSite() == 0 && "Overlapping call sites!");
3929
3930    MMI->setCurrentCallSite(CI->getZExtValue());
3931    return 0;
3932  }
3933
3934  case Intrinsic::convertff:
3935  case Intrinsic::convertfsi:
3936  case Intrinsic::convertfui:
3937  case Intrinsic::convertsif:
3938  case Intrinsic::convertuif:
3939  case Intrinsic::convertss:
3940  case Intrinsic::convertsu:
3941  case Intrinsic::convertus:
3942  case Intrinsic::convertuu: {
3943    ISD::CvtCode Code = ISD::CVT_INVALID;
3944    switch (Intrinsic) {
3945    case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
3946    case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
3947    case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
3948    case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
3949    case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
3950    case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
3951    case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
3952    case Intrinsic::convertus:  Code = ISD::CVT_US; break;
3953    case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
3954    }
3955    EVT DestVT = TLI.getValueType(I.getType());
3956    Value *Op1 = I.getOperand(1);
3957    Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1),
3958                               DAG.getValueType(DestVT),
3959                               DAG.getValueType(getValue(Op1).getValueType()),
3960                               getValue(I.getOperand(2)),
3961                               getValue(I.getOperand(3)),
3962                               Code);
3963    setValue(&I, Res);
3964    return 0;
3965  }
3966  case Intrinsic::sqrt:
3967    setValue(&I, DAG.getNode(ISD::FSQRT, dl,
3968                             getValue(I.getOperand(1)).getValueType(),
3969                             getValue(I.getOperand(1))));
3970    return 0;
3971  case Intrinsic::powi:
3972    setValue(&I, ExpandPowI(dl, getValue(I.getOperand(1)),
3973                            getValue(I.getOperand(2)), DAG));
3974    return 0;
3975  case Intrinsic::sin:
3976    setValue(&I, DAG.getNode(ISD::FSIN, dl,
3977                             getValue(I.getOperand(1)).getValueType(),
3978                             getValue(I.getOperand(1))));
3979    return 0;
3980  case Intrinsic::cos:
3981    setValue(&I, DAG.getNode(ISD::FCOS, dl,
3982                             getValue(I.getOperand(1)).getValueType(),
3983                             getValue(I.getOperand(1))));
3984    return 0;
3985  case Intrinsic::log:
3986    visitLog(I);
3987    return 0;
3988  case Intrinsic::log2:
3989    visitLog2(I);
3990    return 0;
3991  case Intrinsic::log10:
3992    visitLog10(I);
3993    return 0;
3994  case Intrinsic::exp:
3995    visitExp(I);
3996    return 0;
3997  case Intrinsic::exp2:
3998    visitExp2(I);
3999    return 0;
4000  case Intrinsic::pow:
4001    visitPow(I);
4002    return 0;
4003  case Intrinsic::pcmarker: {
4004    SDValue Tmp = getValue(I.getOperand(1));
4005    DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp));
4006    return 0;
4007  }
4008  case Intrinsic::readcyclecounter: {
4009    SDValue Op = getRoot();
4010    Res = DAG.getNode(ISD::READCYCLECOUNTER, dl,
4011                      DAG.getVTList(MVT::i64, MVT::Other),
4012                      &Op, 1);
4013    setValue(&I, Res);
4014    DAG.setRoot(Res.getValue(1));
4015    return 0;
4016  }
4017  case Intrinsic::bswap:
4018    setValue(&I, DAG.getNode(ISD::BSWAP, dl,
4019                             getValue(I.getOperand(1)).getValueType(),
4020                             getValue(I.getOperand(1))));
4021    return 0;
4022  case Intrinsic::cttz: {
4023    SDValue Arg = getValue(I.getOperand(1));
4024    EVT Ty = Arg.getValueType();
4025    setValue(&I, DAG.getNode(ISD::CTTZ, dl, Ty, Arg));
4026    return 0;
4027  }
4028  case Intrinsic::ctlz: {
4029    SDValue Arg = getValue(I.getOperand(1));
4030    EVT Ty = Arg.getValueType();
4031    setValue(&I, DAG.getNode(ISD::CTLZ, dl, Ty, Arg));
4032    return 0;
4033  }
4034  case Intrinsic::ctpop: {
4035    SDValue Arg = getValue(I.getOperand(1));
4036    EVT Ty = Arg.getValueType();
4037    setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg));
4038    return 0;
4039  }
4040  case Intrinsic::stacksave: {
4041    SDValue Op = getRoot();
4042    Res = DAG.getNode(ISD::STACKSAVE, dl,
4043                      DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
4044    setValue(&I, Res);
4045    DAG.setRoot(Res.getValue(1));
4046    return 0;
4047  }
4048  case Intrinsic::stackrestore: {
4049    Res = getValue(I.getOperand(1));
4050    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res));
4051    return 0;
4052  }
4053  case Intrinsic::stackprotector: {
4054    // Emit code into the DAG to store the stack guard onto the stack.
4055    MachineFunction &MF = DAG.getMachineFunction();
4056    MachineFrameInfo *MFI = MF.getFrameInfo();
4057    EVT PtrTy = TLI.getPointerTy();
4058
4059    SDValue Src = getValue(I.getOperand(1));   // The guard's value.
4060    AllocaInst *Slot = cast<AllocaInst>(I.getOperand(2));
4061
4062    int FI = FuncInfo.StaticAllocaMap[Slot];
4063    MFI->setStackProtectorIndex(FI);
4064
4065    SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
4066
4067    // Store the stack protector onto the stack.
4068    Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN,
4069                       PseudoSourceValue::getFixedStack(FI),
4070                       0, true, false, 0);
4071    setValue(&I, Res);
4072    DAG.setRoot(Res);
4073    return 0;
4074  }
4075  case Intrinsic::objectsize: {
4076    // If we don't know by now, we're never going to know.
4077    ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(2));
4078
4079    assert(CI && "Non-constant type in __builtin_object_size?");
4080
4081    SDValue Arg = getValue(I.getOperand(0));
4082    EVT Ty = Arg.getValueType();
4083
4084    if (CI->getZExtValue() == 0)
4085      Res = DAG.getConstant(-1ULL, Ty);
4086    else
4087      Res = DAG.getConstant(0, Ty);
4088
4089    setValue(&I, Res);
4090    return 0;
4091  }
4092  case Intrinsic::var_annotation:
4093    // Discard annotate attributes
4094    return 0;
4095
4096  case Intrinsic::init_trampoline: {
4097    const Function *F = cast<Function>(I.getOperand(2)->stripPointerCasts());
4098
4099    SDValue Ops[6];
4100    Ops[0] = getRoot();
4101    Ops[1] = getValue(I.getOperand(1));
4102    Ops[2] = getValue(I.getOperand(2));
4103    Ops[3] = getValue(I.getOperand(3));
4104    Ops[4] = DAG.getSrcValue(I.getOperand(1));
4105    Ops[5] = DAG.getSrcValue(F);
4106
4107    Res = DAG.getNode(ISD::TRAMPOLINE, dl,
4108                      DAG.getVTList(TLI.getPointerTy(), MVT::Other),
4109                      Ops, 6);
4110
4111    setValue(&I, Res);
4112    DAG.setRoot(Res.getValue(1));
4113    return 0;
4114  }
4115  case Intrinsic::gcroot:
4116    if (GFI) {
4117      Value *Alloca = I.getOperand(1);
4118      Constant *TypeMap = cast<Constant>(I.getOperand(2));
4119
4120      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
4121      GFI->addStackRoot(FI->getIndex(), TypeMap);
4122    }
4123    return 0;
4124  case Intrinsic::gcread:
4125  case Intrinsic::gcwrite:
4126    llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
4127    return 0;
4128  case Intrinsic::flt_rounds:
4129    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32));
4130    return 0;
4131  case Intrinsic::trap:
4132    DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot()));
4133    return 0;
4134  case Intrinsic::uadd_with_overflow:
4135    return implVisitAluOverflow(I, ISD::UADDO);
4136  case Intrinsic::sadd_with_overflow:
4137    return implVisitAluOverflow(I, ISD::SADDO);
4138  case Intrinsic::usub_with_overflow:
4139    return implVisitAluOverflow(I, ISD::USUBO);
4140  case Intrinsic::ssub_with_overflow:
4141    return implVisitAluOverflow(I, ISD::SSUBO);
4142  case Intrinsic::umul_with_overflow:
4143    return implVisitAluOverflow(I, ISD::UMULO);
4144  case Intrinsic::smul_with_overflow:
4145    return implVisitAluOverflow(I, ISD::SMULO);
4146
4147  case Intrinsic::prefetch: {
4148    SDValue Ops[4];
4149    Ops[0] = getRoot();
4150    Ops[1] = getValue(I.getOperand(1));
4151    Ops[2] = getValue(I.getOperand(2));
4152    Ops[3] = getValue(I.getOperand(3));
4153    DAG.setRoot(DAG.getNode(ISD::PREFETCH, dl, MVT::Other, &Ops[0], 4));
4154    return 0;
4155  }
4156
4157  case Intrinsic::memory_barrier: {
4158    SDValue Ops[6];
4159    Ops[0] = getRoot();
4160    for (int x = 1; x < 6; ++x)
4161      Ops[x] = getValue(I.getOperand(x));
4162
4163    DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6));
4164    return 0;
4165  }
4166  case Intrinsic::atomic_cmp_swap: {
4167    SDValue Root = getRoot();
4168    SDValue L =
4169      DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(),
4170                    getValue(I.getOperand(2)).getValueType().getSimpleVT(),
4171                    Root,
4172                    getValue(I.getOperand(1)),
4173                    getValue(I.getOperand(2)),
4174                    getValue(I.getOperand(3)),
4175                    I.getOperand(1));
4176    setValue(&I, L);
4177    DAG.setRoot(L.getValue(1));
4178    return 0;
4179  }
4180  case Intrinsic::atomic_load_add:
4181    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD);
4182  case Intrinsic::atomic_load_sub:
4183    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB);
4184  case Intrinsic::atomic_load_or:
4185    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR);
4186  case Intrinsic::atomic_load_xor:
4187    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR);
4188  case Intrinsic::atomic_load_and:
4189    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND);
4190  case Intrinsic::atomic_load_nand:
4191    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND);
4192  case Intrinsic::atomic_load_max:
4193    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX);
4194  case Intrinsic::atomic_load_min:
4195    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN);
4196  case Intrinsic::atomic_load_umin:
4197    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN);
4198  case Intrinsic::atomic_load_umax:
4199    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX);
4200  case Intrinsic::atomic_swap:
4201    return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP);
4202
4203  case Intrinsic::invariant_start:
4204  case Intrinsic::lifetime_start:
4205    // Discard region information.
4206    setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
4207    return 0;
4208  case Intrinsic::invariant_end:
4209  case Intrinsic::lifetime_end:
4210    // Discard region information.
4211    return 0;
4212  }
4213}
4214
4215/// Test if the given instruction is in a position to be optimized
4216/// with a tail-call. This roughly means that it's in a block with
4217/// a return and there's nothing that needs to be scheduled
4218/// between it and the return.
4219///
4220/// This function only tests target-independent requirements.
4221static bool
4222isInTailCallPosition(CallSite CS, Attributes CalleeRetAttr,
4223                     const TargetLowering &TLI) {
4224  const Instruction *I = CS.getInstruction();
4225  const BasicBlock *ExitBB = I->getParent();
4226  const TerminatorInst *Term = ExitBB->getTerminator();
4227  const ReturnInst *Ret = dyn_cast<ReturnInst>(Term);
4228  const Function *F = ExitBB->getParent();
4229
4230  // The block must end in a return statement or unreachable.
4231  //
4232  // FIXME: Decline tailcall if it's not guaranteed and if the block ends in
4233  // an unreachable, for now. The way tailcall optimization is currently
4234  // implemented means it will add an epilogue followed by a jump. That is
4235  // not profitable. Also, if the callee is a special function (e.g.
4236  // longjmp on x86), it can end up causing miscompilation that has not
4237  // been fully understood.
4238  if (!Ret &&
4239      (!GuaranteedTailCallOpt || !isa<UnreachableInst>(Term))) return false;
4240
4241  // If I will have a chain, make sure no other instruction that will have a
4242  // chain interposes between I and the return.
4243  if (I->mayHaveSideEffects() || I->mayReadFromMemory() ||
4244      !I->isSafeToSpeculativelyExecute())
4245    for (BasicBlock::const_iterator BBI = prior(prior(ExitBB->end())); ;
4246         --BBI) {
4247      if (&*BBI == I)
4248        break;
4249      if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() ||
4250          !BBI->isSafeToSpeculativelyExecute())
4251        return false;
4252    }
4253
4254  // If the block ends with a void return or unreachable, it doesn't matter
4255  // what the call's return type is.
4256  if (!Ret || Ret->getNumOperands() == 0) return true;
4257
4258  // If the return value is undef, it doesn't matter what the call's
4259  // return type is.
4260  if (isa<UndefValue>(Ret->getOperand(0))) return true;
4261
4262  // Conservatively require the attributes of the call to match those of
4263  // the return. Ignore noalias because it doesn't affect the call sequence.
4264  unsigned CallerRetAttr = F->getAttributes().getRetAttributes();
4265  if ((CalleeRetAttr ^ CallerRetAttr) & ~Attribute::NoAlias)
4266    return false;
4267
4268  // It's not safe to eliminate the sign / zero extension of the return value.
4269  if ((CallerRetAttr & Attribute::ZExt) || (CallerRetAttr & Attribute::SExt))
4270    return false;
4271
4272  // Otherwise, make sure the unmodified return value of I is the return value.
4273  for (const Instruction *U = dyn_cast<Instruction>(Ret->getOperand(0)); ;
4274       U = dyn_cast<Instruction>(U->getOperand(0))) {
4275    if (!U)
4276      return false;
4277    if (!U->hasOneUse())
4278      return false;
4279    if (U == I)
4280      break;
4281    // Check for a truly no-op truncate.
4282    if (isa<TruncInst>(U) &&
4283        TLI.isTruncateFree(U->getOperand(0)->getType(), U->getType()))
4284      continue;
4285    // Check for a truly no-op bitcast.
4286    if (isa<BitCastInst>(U) &&
4287        (U->getOperand(0)->getType() == U->getType() ||
4288         (U->getOperand(0)->getType()->isPointerTy() &&
4289          U->getType()->isPointerTy())))
4290      continue;
4291    // Otherwise it's not a true no-op.
4292    return false;
4293  }
4294
4295  return true;
4296}
4297
4298void SelectionDAGBuilder::LowerCallTo(CallSite CS, SDValue Callee,
4299                                      bool isTailCall,
4300                                      MachineBasicBlock *LandingPad) {
4301  const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
4302  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
4303  const Type *RetTy = FTy->getReturnType();
4304  MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
4305  unsigned BeginLabel = 0, EndLabel = 0;
4306
4307  TargetLowering::ArgListTy Args;
4308  TargetLowering::ArgListEntry Entry;
4309  Args.reserve(CS.arg_size());
4310
4311  // Check whether the function can return without sret-demotion.
4312  SmallVector<EVT, 4> OutVTs;
4313  SmallVector<ISD::ArgFlagsTy, 4> OutsFlags;
4314  SmallVector<uint64_t, 4> Offsets;
4315  getReturnInfo(RetTy, CS.getAttributes().getRetAttributes(),
4316                OutVTs, OutsFlags, TLI, &Offsets);
4317
4318  bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
4319                        FTy->isVarArg(), OutVTs, OutsFlags, DAG);
4320
4321  SDValue DemoteStackSlot;
4322
4323  if (!CanLowerReturn) {
4324    uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(
4325                      FTy->getReturnType());
4326    unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(
4327                      FTy->getReturnType());
4328    MachineFunction &MF = DAG.getMachineFunction();
4329    int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
4330    const Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
4331
4332    DemoteStackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
4333    Entry.Node = DemoteStackSlot;
4334    Entry.Ty = StackSlotPtrType;
4335    Entry.isSExt = false;
4336    Entry.isZExt = false;
4337    Entry.isInReg = false;
4338    Entry.isSRet = true;
4339    Entry.isNest = false;
4340    Entry.isByVal = false;
4341    Entry.Alignment = Align;
4342    Args.push_back(Entry);
4343    RetTy = Type::getVoidTy(FTy->getContext());
4344  }
4345
4346  for (CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
4347       i != e; ++i) {
4348    SDValue ArgNode = getValue(*i);
4349    Entry.Node = ArgNode; Entry.Ty = (*i)->getType();
4350
4351    unsigned attrInd = i - CS.arg_begin() + 1;
4352    Entry.isSExt  = CS.paramHasAttr(attrInd, Attribute::SExt);
4353    Entry.isZExt  = CS.paramHasAttr(attrInd, Attribute::ZExt);
4354    Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg);
4355    Entry.isSRet  = CS.paramHasAttr(attrInd, Attribute::StructRet);
4356    Entry.isNest  = CS.paramHasAttr(attrInd, Attribute::Nest);
4357    Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal);
4358    Entry.Alignment = CS.getParamAlignment(attrInd);
4359    Args.push_back(Entry);
4360  }
4361
4362  if (LandingPad && MMI) {
4363    // Insert a label before the invoke call to mark the try range.  This can be
4364    // used to detect deletion of the invoke via the MachineModuleInfo.
4365    BeginLabel = MMI->NextLabelID();
4366
4367    // For SjLj, keep track of which landing pads go with which invokes
4368    // so as to maintain the ordering of pads in the LSDA.
4369    unsigned CallSiteIndex = MMI->getCurrentCallSite();
4370    if (CallSiteIndex) {
4371      MMI->setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
4372      // Now that the call site is handled, stop tracking it.
4373      MMI->setCurrentCallSite(0);
4374    }
4375
4376    // Both PendingLoads and PendingExports must be flushed here;
4377    // this call might not return.
4378    (void)getRoot();
4379    DAG.setRoot(DAG.getLabel(ISD::EH_LABEL, getCurDebugLoc(),
4380                             getControlRoot(), BeginLabel));
4381  }
4382
4383  // Check if target-independent constraints permit a tail call here.
4384  // Target-dependent constraints are checked within TLI.LowerCallTo.
4385  if (isTailCall &&
4386      !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI))
4387    isTailCall = false;
4388
4389  std::pair<SDValue,SDValue> Result =
4390    TLI.LowerCallTo(getRoot(), RetTy,
4391                    CS.paramHasAttr(0, Attribute::SExt),
4392                    CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(),
4393                    CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(),
4394                    CS.getCallingConv(),
4395                    isTailCall,
4396                    !CS.getInstruction()->use_empty(),
4397                    Callee, Args, DAG, getCurDebugLoc());
4398  assert((isTailCall || Result.second.getNode()) &&
4399         "Non-null chain expected with non-tail call!");
4400  assert((Result.second.getNode() || !Result.first.getNode()) &&
4401         "Null value expected with tail call!");
4402  if (Result.first.getNode()) {
4403    setValue(CS.getInstruction(), Result.first);
4404  } else if (!CanLowerReturn && Result.second.getNode()) {
4405    // The instruction result is the result of loading from the
4406    // hidden sret parameter.
4407    SmallVector<EVT, 1> PVTs;
4408    const Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
4409
4410    ComputeValueVTs(TLI, PtrRetTy, PVTs);
4411    assert(PVTs.size() == 1 && "Pointers should fit in one register");
4412    EVT PtrVT = PVTs[0];
4413    unsigned NumValues = OutVTs.size();
4414    SmallVector<SDValue, 4> Values(NumValues);
4415    SmallVector<SDValue, 4> Chains(NumValues);
4416
4417    for (unsigned i = 0; i < NumValues; ++i) {
4418      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT,
4419                                DemoteStackSlot,
4420                                DAG.getConstant(Offsets[i], PtrVT));
4421      SDValue L = DAG.getLoad(OutVTs[i], getCurDebugLoc(), Result.second,
4422                              Add, NULL, Offsets[i], false, false, 1);
4423      Values[i] = L;
4424      Chains[i] = L.getValue(1);
4425    }
4426
4427    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
4428                                MVT::Other, &Chains[0], NumValues);
4429    PendingLoads.push_back(Chain);
4430
4431    // Collect the legal value parts into potentially illegal values
4432    // that correspond to the original function's return values.
4433    SmallVector<EVT, 4> RetTys;
4434    RetTy = FTy->getReturnType();
4435    ComputeValueVTs(TLI, RetTy, RetTys);
4436    ISD::NodeType AssertOp = ISD::DELETED_NODE;
4437    SmallVector<SDValue, 4> ReturnValues;
4438    unsigned CurReg = 0;
4439    for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
4440      EVT VT = RetTys[I];
4441      EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT);
4442      unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT);
4443
4444      SDValue ReturnValue =
4445        getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs,
4446                         RegisterVT, VT, AssertOp);
4447      ReturnValues.push_back(ReturnValue);
4448      CurReg += NumRegs;
4449    }
4450
4451    setValue(CS.getInstruction(),
4452             DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
4453                         DAG.getVTList(&RetTys[0], RetTys.size()),
4454                         &ReturnValues[0], ReturnValues.size()));
4455
4456  }
4457
4458  // As a special case, a null chain means that a tail call has been emitted and
4459  // the DAG root is already updated.
4460  if (Result.second.getNode())
4461    DAG.setRoot(Result.second);
4462  else
4463    HasTailCall = true;
4464
4465  if (LandingPad && MMI) {
4466    // Insert a label at the end of the invoke call to mark the try range.  This
4467    // can be used to detect deletion of the invoke via the MachineModuleInfo.
4468    EndLabel = MMI->NextLabelID();
4469    DAG.setRoot(DAG.getLabel(ISD::EH_LABEL, getCurDebugLoc(),
4470                             getRoot(), EndLabel));
4471
4472    // Inform MachineModuleInfo of range.
4473    MMI->addInvoke(LandingPad, BeginLabel, EndLabel);
4474  }
4475}
4476
4477/// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
4478/// value is equal or not-equal to zero.
4479static bool IsOnlyUsedInZeroEqualityComparison(Value *V) {
4480  for (Value::use_iterator UI = V->use_begin(), E = V->use_end();
4481       UI != E; ++UI) {
4482    if (ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
4483      if (IC->isEquality())
4484        if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
4485          if (C->isNullValue())
4486            continue;
4487    // Unknown instruction.
4488    return false;
4489  }
4490  return true;
4491}
4492
4493static SDValue getMemCmpLoad(Value *PtrVal, MVT LoadVT, const Type *LoadTy,
4494                             SelectionDAGBuilder &Builder) {
4495
4496  // Check to see if this load can be trivially constant folded, e.g. if the
4497  // input is from a string literal.
4498  if (Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
4499    // Cast pointer to the type we really want to load.
4500    LoadInput = ConstantExpr::getBitCast(LoadInput,
4501                                         PointerType::getUnqual(LoadTy));
4502
4503    if (Constant *LoadCst = ConstantFoldLoadFromConstPtr(LoadInput, Builder.TD))
4504      return Builder.getValue(LoadCst);
4505  }
4506
4507  // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
4508  // still constant memory, the input chain can be the entry node.
4509  SDValue Root;
4510  bool ConstantMemory = false;
4511
4512  // Do not serialize (non-volatile) loads of constant memory with anything.
4513  if (Builder.AA->pointsToConstantMemory(PtrVal)) {
4514    Root = Builder.DAG.getEntryNode();
4515    ConstantMemory = true;
4516  } else {
4517    // Do not serialize non-volatile loads against each other.
4518    Root = Builder.DAG.getRoot();
4519  }
4520
4521  SDValue Ptr = Builder.getValue(PtrVal);
4522  SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root,
4523                                        Ptr, PtrVal /*SrcValue*/, 0/*SVOffset*/,
4524                                        false /*volatile*/,
4525                                        false /*nontemporal*/, 1 /* align=1 */);
4526
4527  if (!ConstantMemory)
4528    Builder.PendingLoads.push_back(LoadVal.getValue(1));
4529  return LoadVal;
4530}
4531
4532
4533/// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
4534/// If so, return true and lower it, otherwise return false and it will be
4535/// lowered like a normal call.
4536bool SelectionDAGBuilder::visitMemCmpCall(CallInst &I) {
4537  // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
4538  if (I.getNumOperands() != 4)
4539    return false;
4540
4541  Value *LHS = I.getOperand(1), *RHS = I.getOperand(2);
4542  if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
4543      !I.getOperand(3)->getType()->isIntegerTy() ||
4544      !I.getType()->isIntegerTy())
4545    return false;
4546
4547  ConstantInt *Size = dyn_cast<ConstantInt>(I.getOperand(3));
4548
4549  // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
4550  // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
4551  if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) {
4552    bool ActuallyDoIt = true;
4553    MVT LoadVT;
4554    const Type *LoadTy;
4555    switch (Size->getZExtValue()) {
4556    default:
4557      LoadVT = MVT::Other;
4558      LoadTy = 0;
4559      ActuallyDoIt = false;
4560      break;
4561    case 2:
4562      LoadVT = MVT::i16;
4563      LoadTy = Type::getInt16Ty(Size->getContext());
4564      break;
4565    case 4:
4566      LoadVT = MVT::i32;
4567      LoadTy = Type::getInt32Ty(Size->getContext());
4568      break;
4569    case 8:
4570      LoadVT = MVT::i64;
4571      LoadTy = Type::getInt64Ty(Size->getContext());
4572      break;
4573        /*
4574    case 16:
4575      LoadVT = MVT::v4i32;
4576      LoadTy = Type::getInt32Ty(Size->getContext());
4577      LoadTy = VectorType::get(LoadTy, 4);
4578      break;
4579         */
4580    }
4581
4582    // This turns into unaligned loads.  We only do this if the target natively
4583    // supports the MVT we'll be loading or if it is small enough (<= 4) that
4584    // we'll only produce a small number of byte loads.
4585
4586    // Require that we can find a legal MVT, and only do this if the target
4587    // supports unaligned loads of that type.  Expanding into byte loads would
4588    // bloat the code.
4589    if (ActuallyDoIt && Size->getZExtValue() > 4) {
4590      // TODO: Handle 5 byte compare as 4-byte + 1 byte.
4591      // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
4592      if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT))
4593        ActuallyDoIt = false;
4594    }
4595
4596    if (ActuallyDoIt) {
4597      SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
4598      SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
4599
4600      SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal,
4601                                 ISD::SETNE);
4602      EVT CallVT = TLI.getValueType(I.getType(), true);
4603      setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT));
4604      return true;
4605    }
4606  }
4607
4608
4609  return false;
4610}
4611
4612
4613void SelectionDAGBuilder::visitCall(CallInst &I) {
4614  const char *RenameFn = 0;
4615  if (Function *F = I.getCalledFunction()) {
4616    if (F->isDeclaration()) {
4617      const TargetIntrinsicInfo *II = TLI.getTargetMachine().getIntrinsicInfo();
4618      if (II) {
4619        if (unsigned IID = II->getIntrinsicID(F)) {
4620          RenameFn = visitIntrinsicCall(I, IID);
4621          if (!RenameFn)
4622            return;
4623        }
4624      }
4625      if (unsigned IID = F->getIntrinsicID()) {
4626        RenameFn = visitIntrinsicCall(I, IID);
4627        if (!RenameFn)
4628          return;
4629      }
4630    }
4631
4632    // Check for well-known libc/libm calls.  If the function is internal, it
4633    // can't be a library call.
4634    if (!F->hasLocalLinkage() && F->hasName()) {
4635      StringRef Name = F->getName();
4636      if (Name == "copysign" || Name == "copysignf") {
4637        if (I.getNumOperands() == 3 &&   // Basic sanity checks.
4638            I.getOperand(1)->getType()->isFloatingPointTy() &&
4639            I.getType() == I.getOperand(1)->getType() &&
4640            I.getType() == I.getOperand(2)->getType()) {
4641          SDValue LHS = getValue(I.getOperand(1));
4642          SDValue RHS = getValue(I.getOperand(2));
4643          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(),
4644                                   LHS.getValueType(), LHS, RHS));
4645          return;
4646        }
4647      } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") {
4648        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
4649            I.getOperand(1)->getType()->isFloatingPointTy() &&
4650            I.getType() == I.getOperand(1)->getType()) {
4651          SDValue Tmp = getValue(I.getOperand(1));
4652          setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(),
4653                                   Tmp.getValueType(), Tmp));
4654          return;
4655        }
4656      } else if (Name == "sin" || Name == "sinf" || Name == "sinl") {
4657        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
4658            I.getOperand(1)->getType()->isFloatingPointTy() &&
4659            I.getType() == I.getOperand(1)->getType() &&
4660            I.onlyReadsMemory()) {
4661          SDValue Tmp = getValue(I.getOperand(1));
4662          setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(),
4663                                   Tmp.getValueType(), Tmp));
4664          return;
4665        }
4666      } else if (Name == "cos" || Name == "cosf" || Name == "cosl") {
4667        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
4668            I.getOperand(1)->getType()->isFloatingPointTy() &&
4669            I.getType() == I.getOperand(1)->getType() &&
4670            I.onlyReadsMemory()) {
4671          SDValue Tmp = getValue(I.getOperand(1));
4672          setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(),
4673                                   Tmp.getValueType(), Tmp));
4674          return;
4675        }
4676      } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") {
4677        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
4678            I.getOperand(1)->getType()->isFloatingPointTy() &&
4679            I.getType() == I.getOperand(1)->getType() &&
4680            I.onlyReadsMemory()) {
4681          SDValue Tmp = getValue(I.getOperand(1));
4682          setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(),
4683                                   Tmp.getValueType(), Tmp));
4684          return;
4685        }
4686      } else if (Name == "memcmp") {
4687        if (visitMemCmpCall(I))
4688          return;
4689      }
4690    }
4691  } else if (isa<InlineAsm>(I.getOperand(0))) {
4692    visitInlineAsm(&I);
4693    return;
4694  }
4695
4696  SDValue Callee;
4697  if (!RenameFn)
4698    Callee = getValue(I.getOperand(0));
4699  else
4700    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
4701
4702  // Check if we can potentially perform a tail call. More detailed checking is
4703  // be done within LowerCallTo, after more information about the call is known.
4704  LowerCallTo(&I, Callee, I.isTailCall());
4705}
4706
4707/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
4708/// this value and returns the result as a ValueVT value.  This uses
4709/// Chain/Flag as the input and updates them for the output Chain/Flag.
4710/// If the Flag pointer is NULL, no flag is used.
4711SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, DebugLoc dl,
4712                                      SDValue &Chain, SDValue *Flag) const {
4713  // Assemble the legal parts into the final values.
4714  SmallVector<SDValue, 4> Values(ValueVTs.size());
4715  SmallVector<SDValue, 8> Parts;
4716  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
4717    // Copy the legal parts from the registers.
4718    EVT ValueVT = ValueVTs[Value];
4719    unsigned NumRegs = TLI->getNumRegisters(*DAG.getContext(), ValueVT);
4720    EVT RegisterVT = RegVTs[Value];
4721
4722    Parts.resize(NumRegs);
4723    for (unsigned i = 0; i != NumRegs; ++i) {
4724      SDValue P;
4725      if (Flag == 0) {
4726        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
4727      } else {
4728        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
4729        *Flag = P.getValue(2);
4730      }
4731
4732      Chain = P.getValue(1);
4733
4734      // If the source register was virtual and if we know something about it,
4735      // add an assert node.
4736      if (TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) &&
4737          RegisterVT.isInteger() && !RegisterVT.isVector()) {
4738        unsigned SlotNo = Regs[Part+i]-TargetRegisterInfo::FirstVirtualRegister;
4739        FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo();
4740        if (FLI.LiveOutRegInfo.size() > SlotNo) {
4741          FunctionLoweringInfo::LiveOutInfo &LOI = FLI.LiveOutRegInfo[SlotNo];
4742
4743          unsigned RegSize = RegisterVT.getSizeInBits();
4744          unsigned NumSignBits = LOI.NumSignBits;
4745          unsigned NumZeroBits = LOI.KnownZero.countLeadingOnes();
4746
4747          // FIXME: We capture more information than the dag can represent.  For
4748          // now, just use the tightest assertzext/assertsext possible.
4749          bool isSExt = true;
4750          EVT FromVT(MVT::Other);
4751          if (NumSignBits == RegSize)
4752            isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
4753          else if (NumZeroBits >= RegSize-1)
4754            isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
4755          else if (NumSignBits > RegSize-8)
4756            isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
4757          else if (NumZeroBits >= RegSize-8)
4758            isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
4759          else if (NumSignBits > RegSize-16)
4760            isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
4761          else if (NumZeroBits >= RegSize-16)
4762            isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
4763          else if (NumSignBits > RegSize-32)
4764            isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
4765          else if (NumZeroBits >= RegSize-32)
4766            isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
4767
4768          if (FromVT != MVT::Other)
4769            P = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
4770                            RegisterVT, P, DAG.getValueType(FromVT));
4771        }
4772      }
4773
4774      Parts[i] = P;
4775    }
4776
4777    Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
4778                                     NumRegs, RegisterVT, ValueVT);
4779    Part += NumRegs;
4780    Parts.clear();
4781  }
4782
4783  return DAG.getNode(ISD::MERGE_VALUES, dl,
4784                     DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
4785                     &Values[0], ValueVTs.size());
4786}
4787
4788/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
4789/// specified value into the registers specified by this object.  This uses
4790/// Chain/Flag as the input and updates them for the output Chain/Flag.
4791/// If the Flag pointer is NULL, no flag is used.
4792void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
4793                                 SDValue &Chain, SDValue *Flag) const {
4794  // Get the list of the values's legal parts.
4795  unsigned NumRegs = Regs.size();
4796  SmallVector<SDValue, 8> Parts(NumRegs);
4797  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
4798    EVT ValueVT = ValueVTs[Value];
4799    unsigned NumParts = TLI->getNumRegisters(*DAG.getContext(), ValueVT);
4800    EVT RegisterVT = RegVTs[Value];
4801
4802    getCopyToParts(DAG, dl,
4803                   Val.getValue(Val.getResNo() + Value),
4804                   &Parts[Part], NumParts, RegisterVT);
4805    Part += NumParts;
4806  }
4807
4808  // Copy the parts into the registers.
4809  SmallVector<SDValue, 8> Chains(NumRegs);
4810  for (unsigned i = 0; i != NumRegs; ++i) {
4811    SDValue Part;
4812    if (Flag == 0) {
4813      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
4814    } else {
4815      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
4816      *Flag = Part.getValue(1);
4817    }
4818
4819    Chains[i] = Part.getValue(0);
4820  }
4821
4822  if (NumRegs == 1 || Flag)
4823    // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
4824    // flagged to it. That is the CopyToReg nodes and the user are considered
4825    // a single scheduling unit. If we create a TokenFactor and return it as
4826    // chain, then the TokenFactor is both a predecessor (operand) of the
4827    // user as well as a successor (the TF operands are flagged to the user).
4828    // c1, f1 = CopyToReg
4829    // c2, f2 = CopyToReg
4830    // c3     = TokenFactor c1, c2
4831    // ...
4832    //        = op c3, ..., f2
4833    Chain = Chains[NumRegs-1];
4834  else
4835    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
4836}
4837
4838/// AddInlineAsmOperands - Add this value to the specified inlineasm node
4839/// operand list.  This adds the code marker and includes the number of
4840/// values added into it.
4841void RegsForValue::AddInlineAsmOperands(unsigned Code,
4842                                        bool HasMatching,unsigned MatchingIdx,
4843                                        SelectionDAG &DAG,
4844                                        std::vector<SDValue> &Ops) const {
4845  assert(Regs.size() < (1 << 13) && "Too many inline asm outputs!");
4846  unsigned Flag = Code | (Regs.size() << 3);
4847  if (HasMatching)
4848    Flag |= 0x80000000 | (MatchingIdx << 16);
4849  SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
4850  Ops.push_back(Res);
4851
4852  for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
4853    unsigned NumRegs = TLI->getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
4854    EVT RegisterVT = RegVTs[Value];
4855    for (unsigned i = 0; i != NumRegs; ++i) {
4856      assert(Reg < Regs.size() && "Mismatch in # registers expected");
4857      Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
4858    }
4859  }
4860}
4861
4862/// isAllocatableRegister - If the specified register is safe to allocate,
4863/// i.e. it isn't a stack pointer or some other special register, return the
4864/// register class for the register.  Otherwise, return null.
4865static const TargetRegisterClass *
4866isAllocatableRegister(unsigned Reg, MachineFunction &MF,
4867                      const TargetLowering &TLI,
4868                      const TargetRegisterInfo *TRI) {
4869  EVT FoundVT = MVT::Other;
4870  const TargetRegisterClass *FoundRC = 0;
4871  for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(),
4872       E = TRI->regclass_end(); RCI != E; ++RCI) {
4873    EVT ThisVT = MVT::Other;
4874
4875    const TargetRegisterClass *RC = *RCI;
4876    // If none of the value types for this register class are valid, we
4877    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
4878    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
4879         I != E; ++I) {
4880      if (TLI.isTypeLegal(*I)) {
4881        // If we have already found this register in a different register class,
4882        // choose the one with the largest VT specified.  For example, on
4883        // PowerPC, we favor f64 register classes over f32.
4884        if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) {
4885          ThisVT = *I;
4886          break;
4887        }
4888      }
4889    }
4890
4891    if (ThisVT == MVT::Other) continue;
4892
4893    // NOTE: This isn't ideal.  In particular, this might allocate the
4894    // frame pointer in functions that need it (due to them not being taken
4895    // out of allocation, because a variable sized allocation hasn't been seen
4896    // yet).  This is a slight code pessimization, but should still work.
4897    for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
4898         E = RC->allocation_order_end(MF); I != E; ++I)
4899      if (*I == Reg) {
4900        // We found a matching register class.  Keep looking at others in case
4901        // we find one with larger registers that this physreg is also in.
4902        FoundRC = RC;
4903        FoundVT = ThisVT;
4904        break;
4905      }
4906  }
4907  return FoundRC;
4908}
4909
4910
4911namespace llvm {
4912/// AsmOperandInfo - This contains information for each constraint that we are
4913/// lowering.
4914class VISIBILITY_HIDDEN SDISelAsmOperandInfo :
4915    public TargetLowering::AsmOperandInfo {
4916public:
4917  /// CallOperand - If this is the result output operand or a clobber
4918  /// this is null, otherwise it is the incoming operand to the CallInst.
4919  /// This gets modified as the asm is processed.
4920  SDValue CallOperand;
4921
4922  /// AssignedRegs - If this is a register or register class operand, this
4923  /// contains the set of register corresponding to the operand.
4924  RegsForValue AssignedRegs;
4925
4926  explicit SDISelAsmOperandInfo(const InlineAsm::ConstraintInfo &info)
4927    : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
4928  }
4929
4930  /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
4931  /// busy in OutputRegs/InputRegs.
4932  void MarkAllocatedRegs(bool isOutReg, bool isInReg,
4933                         std::set<unsigned> &OutputRegs,
4934                         std::set<unsigned> &InputRegs,
4935                         const TargetRegisterInfo &TRI) const {
4936    if (isOutReg) {
4937      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
4938        MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
4939    }
4940    if (isInReg) {
4941      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
4942        MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
4943    }
4944  }
4945
4946  /// getCallOperandValEVT - Return the EVT of the Value* that this operand
4947  /// corresponds to.  If there is no Value* for this operand, it returns
4948  /// MVT::Other.
4949  EVT getCallOperandValEVT(LLVMContext &Context,
4950                           const TargetLowering &TLI,
4951                           const TargetData *TD) const {
4952    if (CallOperandVal == 0) return MVT::Other;
4953
4954    if (isa<BasicBlock>(CallOperandVal))
4955      return TLI.getPointerTy();
4956
4957    const llvm::Type *OpTy = CallOperandVal->getType();
4958
4959    // If this is an indirect operand, the operand is a pointer to the
4960    // accessed type.
4961    if (isIndirect) {
4962      const llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
4963      if (!PtrTy)
4964        llvm_report_error("Indirect operand for inline asm not a pointer!");
4965      OpTy = PtrTy->getElementType();
4966    }
4967
4968    // If OpTy is not a single value, it may be a struct/union that we
4969    // can tile with integers.
4970    if (!OpTy->isSingleValueType() && OpTy->isSized()) {
4971      unsigned BitSize = TD->getTypeSizeInBits(OpTy);
4972      switch (BitSize) {
4973      default: break;
4974      case 1:
4975      case 8:
4976      case 16:
4977      case 32:
4978      case 64:
4979      case 128:
4980        OpTy = IntegerType::get(Context, BitSize);
4981        break;
4982      }
4983    }
4984
4985    return TLI.getValueType(OpTy, true);
4986  }
4987
4988private:
4989  /// MarkRegAndAliases - Mark the specified register and all aliases in the
4990  /// specified set.
4991  static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
4992                                const TargetRegisterInfo &TRI) {
4993    assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
4994    Regs.insert(Reg);
4995    if (const unsigned *Aliases = TRI.getAliasSet(Reg))
4996      for (; *Aliases; ++Aliases)
4997        Regs.insert(*Aliases);
4998  }
4999};
5000} // end llvm namespace.
5001
5002
5003/// GetRegistersForValue - Assign registers (virtual or physical) for the
5004/// specified operand.  We prefer to assign virtual registers, to allow the
5005/// register allocator to handle the assignment process.  However, if the asm
5006/// uses features that we can't model on machineinstrs, we have SDISel do the
5007/// allocation.  This produces generally horrible, but correct, code.
5008///
5009///   OpInfo describes the operand.
5010///   Input and OutputRegs are the set of already allocated physical registers.
5011///
5012void SelectionDAGBuilder::
5013GetRegistersForValue(SDISelAsmOperandInfo &OpInfo,
5014                     std::set<unsigned> &OutputRegs,
5015                     std::set<unsigned> &InputRegs) {
5016  LLVMContext &Context = FuncInfo.Fn->getContext();
5017
5018  // Compute whether this value requires an input register, an output register,
5019  // or both.
5020  bool isOutReg = false;
5021  bool isInReg = false;
5022  switch (OpInfo.Type) {
5023  case InlineAsm::isOutput:
5024    isOutReg = true;
5025
5026    // If there is an input constraint that matches this, we need to reserve
5027    // the input register so no other inputs allocate to it.
5028    isInReg = OpInfo.hasMatchingInput();
5029    break;
5030  case InlineAsm::isInput:
5031    isInReg = true;
5032    isOutReg = false;
5033    break;
5034  case InlineAsm::isClobber:
5035    isOutReg = true;
5036    isInReg = true;
5037    break;
5038  }
5039
5040
5041  MachineFunction &MF = DAG.getMachineFunction();
5042  SmallVector<unsigned, 4> Regs;
5043
5044  // If this is a constraint for a single physreg, or a constraint for a
5045  // register class, find it.
5046  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
5047    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5048                                     OpInfo.ConstraintVT);
5049
5050  unsigned NumRegs = 1;
5051  if (OpInfo.ConstraintVT != MVT::Other) {
5052    // If this is a FP input in an integer register (or visa versa) insert a bit
5053    // cast of the input value.  More generally, handle any case where the input
5054    // value disagrees with the register class we plan to stick this in.
5055    if (OpInfo.Type == InlineAsm::isInput &&
5056        PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
5057      // Try to convert to the first EVT that the reg class contains.  If the
5058      // types are identical size, use a bitcast to convert (e.g. two differing
5059      // vector types).
5060      EVT RegVT = *PhysReg.second->vt_begin();
5061      if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
5062        OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
5063                                         RegVT, OpInfo.CallOperand);
5064        OpInfo.ConstraintVT = RegVT;
5065      } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
5066        // If the input is a FP value and we want it in FP registers, do a
5067        // bitcast to the corresponding integer type.  This turns an f64 value
5068        // into i64, which can be passed with two i32 values on a 32-bit
5069        // machine.
5070        RegVT = EVT::getIntegerVT(Context,
5071                                  OpInfo.ConstraintVT.getSizeInBits());
5072        OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
5073                                         RegVT, OpInfo.CallOperand);
5074        OpInfo.ConstraintVT = RegVT;
5075      }
5076    }
5077
5078    NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
5079  }
5080
5081  EVT RegVT;
5082  EVT ValueVT = OpInfo.ConstraintVT;
5083
5084  // If this is a constraint for a specific physical register, like {r17},
5085  // assign it now.
5086  if (unsigned AssignedReg = PhysReg.first) {
5087    const TargetRegisterClass *RC = PhysReg.second;
5088    if (OpInfo.ConstraintVT == MVT::Other)
5089      ValueVT = *RC->vt_begin();
5090
5091    // Get the actual register value type.  This is important, because the user
5092    // may have asked for (e.g.) the AX register in i32 type.  We need to
5093    // remember that AX is actually i16 to get the right extension.
5094    RegVT = *RC->vt_begin();
5095
5096    // This is a explicit reference to a physical register.
5097    Regs.push_back(AssignedReg);
5098
5099    // If this is an expanded reference, add the rest of the regs to Regs.
5100    if (NumRegs != 1) {
5101      TargetRegisterClass::iterator I = RC->begin();
5102      for (; *I != AssignedReg; ++I)
5103        assert(I != RC->end() && "Didn't find reg!");
5104
5105      // Already added the first reg.
5106      --NumRegs; ++I;
5107      for (; NumRegs; --NumRegs, ++I) {
5108        assert(I != RC->end() && "Ran out of registers to allocate!");
5109        Regs.push_back(*I);
5110      }
5111    }
5112
5113    OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT);
5114    const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5115    OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5116    return;
5117  }
5118
5119  // Otherwise, if this was a reference to an LLVM register class, create vregs
5120  // for this reference.
5121  if (const TargetRegisterClass *RC = PhysReg.second) {
5122    RegVT = *RC->vt_begin();
5123    if (OpInfo.ConstraintVT == MVT::Other)
5124      ValueVT = RegVT;
5125
5126    // Create the appropriate number of virtual registers.
5127    MachineRegisterInfo &RegInfo = MF.getRegInfo();
5128    for (; NumRegs; --NumRegs)
5129      Regs.push_back(RegInfo.createVirtualRegister(RC));
5130
5131    OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT);
5132    return;
5133  }
5134
5135  // This is a reference to a register class that doesn't directly correspond
5136  // to an LLVM register class.  Allocate NumRegs consecutive, available,
5137  // registers from the class.
5138  std::vector<unsigned> RegClassRegs
5139    = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
5140                                            OpInfo.ConstraintVT);
5141
5142  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5143  unsigned NumAllocated = 0;
5144  for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
5145    unsigned Reg = RegClassRegs[i];
5146    // See if this register is available.
5147    if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
5148        (isInReg  && InputRegs.count(Reg))) {    // Already used.
5149      // Make sure we find consecutive registers.
5150      NumAllocated = 0;
5151      continue;
5152    }
5153
5154    // Check to see if this register is allocatable (i.e. don't give out the
5155    // stack pointer).
5156    const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, TRI);
5157    if (!RC) {        // Couldn't allocate this register.
5158      // Reset NumAllocated to make sure we return consecutive registers.
5159      NumAllocated = 0;
5160      continue;
5161    }
5162
5163    // Okay, this register is good, we can use it.
5164    ++NumAllocated;
5165
5166    // If we allocated enough consecutive registers, succeed.
5167    if (NumAllocated == NumRegs) {
5168      unsigned RegStart = (i-NumAllocated)+1;
5169      unsigned RegEnd   = i+1;
5170      // Mark all of the allocated registers used.
5171      for (unsigned i = RegStart; i != RegEnd; ++i)
5172        Regs.push_back(RegClassRegs[i]);
5173
5174      OpInfo.AssignedRegs = RegsForValue(TLI, Regs, *RC->vt_begin(),
5175                                         OpInfo.ConstraintVT);
5176      OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5177      return;
5178    }
5179  }
5180
5181  // Otherwise, we couldn't allocate enough registers for this.
5182}
5183
5184/// hasInlineAsmMemConstraint - Return true if the inline asm instruction being
5185/// processed uses a memory 'm' constraint.
5186static bool
5187hasInlineAsmMemConstraint(std::vector<InlineAsm::ConstraintInfo> &CInfos,
5188                          const TargetLowering &TLI) {
5189  for (unsigned i = 0, e = CInfos.size(); i != e; ++i) {
5190    InlineAsm::ConstraintInfo &CI = CInfos[i];
5191    for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) {
5192      TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]);
5193      if (CType == TargetLowering::C_Memory)
5194        return true;
5195    }
5196
5197    // Indirect operand accesses access memory.
5198    if (CI.isIndirect)
5199      return true;
5200  }
5201
5202  return false;
5203}
5204
5205/// visitInlineAsm - Handle a call to an InlineAsm object.
5206///
5207void SelectionDAGBuilder::visitInlineAsm(CallSite CS) {
5208  InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
5209
5210  /// ConstraintOperands - Information about all of the constraints.
5211  std::vector<SDISelAsmOperandInfo> ConstraintOperands;
5212
5213  std::set<unsigned> OutputRegs, InputRegs;
5214
5215  // Do a prepass over the constraints, canonicalizing them, and building up the
5216  // ConstraintOperands list.
5217  std::vector<InlineAsm::ConstraintInfo>
5218    ConstraintInfos = IA->ParseConstraints();
5219
5220  bool hasMemory = hasInlineAsmMemConstraint(ConstraintInfos, TLI);
5221
5222  SDValue Chain, Flag;
5223
5224  // We won't need to flush pending loads if this asm doesn't touch
5225  // memory and is nonvolatile.
5226  if (hasMemory || IA->hasSideEffects())
5227    Chain = getRoot();
5228  else
5229    Chain = DAG.getRoot();
5230
5231  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
5232  unsigned ResNo = 0;   // ResNo - The result number of the next output.
5233  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
5234    ConstraintOperands.push_back(SDISelAsmOperandInfo(ConstraintInfos[i]));
5235    SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
5236
5237    EVT OpVT = MVT::Other;
5238
5239    // Compute the value type for each operand.
5240    switch (OpInfo.Type) {
5241    case InlineAsm::isOutput:
5242      // Indirect outputs just consume an argument.
5243      if (OpInfo.isIndirect) {
5244        OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
5245        break;
5246      }
5247
5248      // The return value of the call is this value.  As such, there is no
5249      // corresponding argument.
5250      assert(!CS.getType()->isVoidTy() &&
5251             "Bad inline asm!");
5252      if (const StructType *STy = dyn_cast<StructType>(CS.getType())) {
5253        OpVT = TLI.getValueType(STy->getElementType(ResNo));
5254      } else {
5255        assert(ResNo == 0 && "Asm only has one result!");
5256        OpVT = TLI.getValueType(CS.getType());
5257      }
5258      ++ResNo;
5259      break;
5260    case InlineAsm::isInput:
5261      OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
5262      break;
5263    case InlineAsm::isClobber:
5264      // Nothing to do.
5265      break;
5266    }
5267
5268    // If this is an input or an indirect output, process the call argument.
5269    // BasicBlocks are labels, currently appearing only in asm's.
5270    if (OpInfo.CallOperandVal) {
5271      // Strip bitcasts, if any.  This mostly comes up for functions.
5272      OpInfo.CallOperandVal = OpInfo.CallOperandVal->stripPointerCasts();
5273
5274      if (BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
5275        OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
5276      } else {
5277        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
5278      }
5279
5280      OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD);
5281    }
5282
5283    OpInfo.ConstraintVT = OpVT;
5284  }
5285
5286  // Second pass over the constraints: compute which constraint option to use
5287  // and assign registers to constraints that want a specific physreg.
5288  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
5289    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5290
5291    // If this is an output operand with a matching input operand, look up the
5292    // matching input. If their types mismatch, e.g. one is an integer, the
5293    // other is floating point, or their sizes are different, flag it as an
5294    // error.
5295    if (OpInfo.hasMatchingInput()) {
5296      SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5297      if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5298        if ((OpInfo.ConstraintVT.isInteger() !=
5299             Input.ConstraintVT.isInteger()) ||
5300            (OpInfo.ConstraintVT.getSizeInBits() !=
5301             Input.ConstraintVT.getSizeInBits())) {
5302          llvm_report_error("Unsupported asm: input constraint"
5303                            " with a matching output constraint of incompatible"
5304                            " type!");
5305        }
5306        Input.ConstraintVT = OpInfo.ConstraintVT;
5307      }
5308    }
5309
5310    // Compute the constraint code and ConstraintType to use.
5311    TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, hasMemory, &DAG);
5312
5313    // If this is a memory input, and if the operand is not indirect, do what we
5314    // need to to provide an address for the memory input.
5315    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5316        !OpInfo.isIndirect) {
5317      assert(OpInfo.Type == InlineAsm::isInput &&
5318             "Can only indirectify direct input operands!");
5319
5320      // Memory operands really want the address of the value.  If we don't have
5321      // an indirect input, put it in the constpool if we can, otherwise spill
5322      // it to a stack slot.
5323
5324      // If the operand is a float, integer, or vector constant, spill to a
5325      // constant pool entry to get its address.
5326      Value *OpVal = OpInfo.CallOperandVal;
5327      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
5328          isa<ConstantVector>(OpVal)) {
5329        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
5330                                                 TLI.getPointerTy());
5331      } else {
5332        // Otherwise, create a stack slot and emit a store to it before the
5333        // asm.
5334        const Type *Ty = OpVal->getType();
5335        uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
5336        unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
5337        MachineFunction &MF = DAG.getMachineFunction();
5338        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5339        SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
5340        Chain = DAG.getStore(Chain, getCurDebugLoc(),
5341                             OpInfo.CallOperand, StackSlot, NULL, 0,
5342                             false, false, 0);
5343        OpInfo.CallOperand = StackSlot;
5344      }
5345
5346      // There is no longer a Value* corresponding to this operand.
5347      OpInfo.CallOperandVal = 0;
5348
5349      // It is now an indirect operand.
5350      OpInfo.isIndirect = true;
5351    }
5352
5353    // If this constraint is for a specific register, allocate it before
5354    // anything else.
5355    if (OpInfo.ConstraintType == TargetLowering::C_Register)
5356      GetRegistersForValue(OpInfo, OutputRegs, InputRegs);
5357  }
5358
5359  ConstraintInfos.clear();
5360
5361  // Second pass - Loop over all of the operands, assigning virtual or physregs
5362  // to register class operands.
5363  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5364    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5365
5366    // C_Register operands have already been allocated, Other/Memory don't need
5367    // to be.
5368    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
5369      GetRegistersForValue(OpInfo, OutputRegs, InputRegs);
5370  }
5371
5372  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
5373  std::vector<SDValue> AsmNodeOperands;
5374  AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
5375  AsmNodeOperands.push_back(
5376          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
5377                                      TLI.getPointerTy()));
5378
5379
5380  // Loop over all of the inputs, copying the operand values into the
5381  // appropriate registers and processing the output regs.
5382  RegsForValue RetValRegs;
5383
5384  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
5385  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
5386
5387  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5388    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5389
5390    switch (OpInfo.Type) {
5391    case InlineAsm::isOutput: {
5392      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
5393          OpInfo.ConstraintType != TargetLowering::C_Register) {
5394        // Memory output, or 'other' output (e.g. 'X' constraint).
5395        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
5396
5397        // Add information to the INLINEASM node to know about this output.
5398        unsigned ResOpType = 4/*MEM*/ | (1<<3);
5399        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5400                                                        TLI.getPointerTy()));
5401        AsmNodeOperands.push_back(OpInfo.CallOperand);
5402        break;
5403      }
5404
5405      // Otherwise, this is a register or register class output.
5406
5407      // Copy the output from the appropriate register.  Find a register that
5408      // we can use.
5409      if (OpInfo.AssignedRegs.Regs.empty()) {
5410        llvm_report_error("Couldn't allocate output reg for"
5411                          " constraint '" + OpInfo.ConstraintCode + "'!");
5412      }
5413
5414      // If this is an indirect operand, store through the pointer after the
5415      // asm.
5416      if (OpInfo.isIndirect) {
5417        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
5418                                                      OpInfo.CallOperandVal));
5419      } else {
5420        // This is the result value of the call.
5421        assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
5422        // Concatenate this output onto the outputs list.
5423        RetValRegs.append(OpInfo.AssignedRegs);
5424      }
5425
5426      // Add information to the INLINEASM node to know that this register is
5427      // set.
5428      OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
5429                                               6 /* EARLYCLOBBER REGDEF */ :
5430                                               2 /* REGDEF */ ,
5431                                               false,
5432                                               0,
5433                                               DAG,
5434                                               AsmNodeOperands);
5435      break;
5436    }
5437    case InlineAsm::isInput: {
5438      SDValue InOperandVal = OpInfo.CallOperand;
5439
5440      if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
5441        // If this is required to match an output register we have already set,
5442        // just use its register.
5443        unsigned OperandNo = OpInfo.getMatchedOperand();
5444
5445        // Scan until we find the definition we already emitted of this operand.
5446        // When we find it, create a RegsForValue operand.
5447        unsigned CurOp = 2;  // The first operand.
5448        for (; OperandNo; --OperandNo) {
5449          // Advance to the next operand.
5450          unsigned OpFlag =
5451            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5452          assert(((OpFlag & 7) == 2 /*REGDEF*/ ||
5453                  (OpFlag & 7) == 6 /*EARLYCLOBBER REGDEF*/ ||
5454                  (OpFlag & 7) == 4 /*MEM*/) &&
5455                 "Skipped past definitions?");
5456          CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
5457        }
5458
5459        unsigned OpFlag =
5460          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5461        if ((OpFlag & 7) == 2 /*REGDEF*/
5462            || (OpFlag & 7) == 6 /* EARLYCLOBBER REGDEF */) {
5463          // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
5464          if (OpInfo.isIndirect) {
5465            llvm_report_error("Don't know how to handle tied indirect "
5466                              "register inputs yet!");
5467          }
5468          RegsForValue MatchedRegs;
5469          MatchedRegs.TLI = &TLI;
5470          MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
5471          EVT RegVT = AsmNodeOperands[CurOp+1].getValueType();
5472          MatchedRegs.RegVTs.push_back(RegVT);
5473          MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
5474          for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
5475               i != e; ++i)
5476            MatchedRegs.Regs.push_back
5477              (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)));
5478
5479          // Use the produced MatchedRegs object to
5480          MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
5481                                    Chain, &Flag);
5482          MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/,
5483                                           true, OpInfo.getMatchedOperand(),
5484                                           DAG, AsmNodeOperands);
5485          break;
5486        } else {
5487          assert(((OpFlag & 7) == 4) && "Unknown matching constraint!");
5488          assert((InlineAsm::getNumOperandRegisters(OpFlag)) == 1 &&
5489                 "Unexpected number of operands");
5490          // Add information to the INLINEASM node to know about this input.
5491          // See InlineAsm.h isUseOperandTiedToDef.
5492          OpFlag |= 0x80000000 | (OpInfo.getMatchedOperand() << 16);
5493          AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
5494                                                          TLI.getPointerTy()));
5495          AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
5496          break;
5497        }
5498      }
5499
5500      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
5501        assert(!OpInfo.isIndirect &&
5502               "Don't know how to handle indirect other inputs yet!");
5503
5504        std::vector<SDValue> Ops;
5505        TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0],
5506                                         hasMemory, Ops, DAG);
5507        if (Ops.empty()) {
5508          llvm_report_error("Invalid operand for inline asm"
5509                            " constraint '" + OpInfo.ConstraintCode + "'!");
5510        }
5511
5512        // Add information to the INLINEASM node to know about this input.
5513        unsigned ResOpType = 3 /*IMM*/ | (Ops.size() << 3);
5514        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5515                                                        TLI.getPointerTy()));
5516        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
5517        break;
5518      } else if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
5519        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
5520        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
5521               "Memory operands expect pointer values");
5522
5523        // Add information to the INLINEASM node to know about this input.
5524        unsigned ResOpType = 4/*MEM*/ | (1<<3);
5525        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5526                                                        TLI.getPointerTy()));
5527        AsmNodeOperands.push_back(InOperandVal);
5528        break;
5529      }
5530
5531      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
5532              OpInfo.ConstraintType == TargetLowering::C_Register) &&
5533             "Unknown constraint type!");
5534      assert(!OpInfo.isIndirect &&
5535             "Don't know how to handle indirect register inputs yet!");
5536
5537      // Copy the input into the appropriate registers.
5538      if (OpInfo.AssignedRegs.Regs.empty() ||
5539          !OpInfo.AssignedRegs.areValueTypesLegal()) {
5540        llvm_report_error("Couldn't allocate input reg for"
5541                          " constraint '"+ OpInfo.ConstraintCode +"'!");
5542      }
5543
5544      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
5545                                        Chain, &Flag);
5546
5547      OpInfo.AssignedRegs.AddInlineAsmOperands(1/*REGUSE*/, false, 0,
5548                                               DAG, AsmNodeOperands);
5549      break;
5550    }
5551    case InlineAsm::isClobber: {
5552      // Add the clobbered value to the operand list, so that the register
5553      // allocator is aware that the physreg got clobbered.
5554      if (!OpInfo.AssignedRegs.Regs.empty())
5555        OpInfo.AssignedRegs.AddInlineAsmOperands(6 /* EARLYCLOBBER REGDEF */,
5556                                                 false, 0, DAG,
5557                                                 AsmNodeOperands);
5558      break;
5559    }
5560    }
5561  }
5562
5563  // Finish up input operands.
5564  AsmNodeOperands[0] = Chain;
5565  if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
5566
5567  Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(),
5568                      DAG.getVTList(MVT::Other, MVT::Flag),
5569                      &AsmNodeOperands[0], AsmNodeOperands.size());
5570  Flag = Chain.getValue(1);
5571
5572  // If this asm returns a register value, copy the result from that register
5573  // and set it as the value of the call.
5574  if (!RetValRegs.Regs.empty()) {
5575    SDValue Val = RetValRegs.getCopyFromRegs(DAG, getCurDebugLoc(),
5576                                             Chain, &Flag);
5577
5578    // FIXME: Why don't we do this for inline asms with MRVs?
5579    if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
5580      EVT ResultType = TLI.getValueType(CS.getType());
5581
5582      // If any of the results of the inline asm is a vector, it may have the
5583      // wrong width/num elts.  This can happen for register classes that can
5584      // contain multiple different value types.  The preg or vreg allocated may
5585      // not have the same VT as was expected.  Convert it to the right type
5586      // with bit_convert.
5587      if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
5588        Val = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
5589                          ResultType, Val);
5590
5591      } else if (ResultType != Val.getValueType() &&
5592                 ResultType.isInteger() && Val.getValueType().isInteger()) {
5593        // If a result value was tied to an input value, the computed result may
5594        // have a wider width than the expected result.  Extract the relevant
5595        // portion.
5596        Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val);
5597      }
5598
5599      assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
5600    }
5601
5602    setValue(CS.getInstruction(), Val);
5603    // Don't need to use this as a chain in this case.
5604    if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
5605      return;
5606  }
5607
5608  std::vector<std::pair<SDValue, Value*> > StoresToEmit;
5609
5610  // Process indirect outputs, first output all of the flagged copies out of
5611  // physregs.
5612  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
5613    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
5614    Value *Ptr = IndirectStoresToEmit[i].second;
5615    SDValue OutVal = OutRegs.getCopyFromRegs(DAG, getCurDebugLoc(),
5616                                             Chain, &Flag);
5617    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
5618
5619  }
5620
5621  // Emit the non-flagged stores from the physregs.
5622  SmallVector<SDValue, 8> OutChains;
5623  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
5624    SDValue Val = DAG.getStore(Chain, getCurDebugLoc(),
5625                               StoresToEmit[i].first,
5626                               getValue(StoresToEmit[i].second),
5627                               StoresToEmit[i].second, 0,
5628                               false, false, 0);
5629    OutChains.push_back(Val);
5630  }
5631
5632  if (!OutChains.empty())
5633    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
5634                        &OutChains[0], OutChains.size());
5635
5636  DAG.setRoot(Chain);
5637}
5638
5639void SelectionDAGBuilder::visitVAStart(CallInst &I) {
5640  DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(),
5641                          MVT::Other, getRoot(),
5642                          getValue(I.getOperand(1)),
5643                          DAG.getSrcValue(I.getOperand(1))));
5644}
5645
5646void SelectionDAGBuilder::visitVAArg(VAArgInst &I) {
5647  SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(),
5648                           getRoot(), getValue(I.getOperand(0)),
5649                           DAG.getSrcValue(I.getOperand(0)));
5650  setValue(&I, V);
5651  DAG.setRoot(V.getValue(1));
5652}
5653
5654void SelectionDAGBuilder::visitVAEnd(CallInst &I) {
5655  DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(),
5656                          MVT::Other, getRoot(),
5657                          getValue(I.getOperand(1)),
5658                          DAG.getSrcValue(I.getOperand(1))));
5659}
5660
5661void SelectionDAGBuilder::visitVACopy(CallInst &I) {
5662  DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(),
5663                          MVT::Other, getRoot(),
5664                          getValue(I.getOperand(1)),
5665                          getValue(I.getOperand(2)),
5666                          DAG.getSrcValue(I.getOperand(1)),
5667                          DAG.getSrcValue(I.getOperand(2))));
5668}
5669
5670/// TargetLowering::LowerCallTo - This is the default LowerCallTo
5671/// implementation, which just calls LowerCall.
5672/// FIXME: When all targets are
5673/// migrated to using LowerCall, this hook should be integrated into SDISel.
5674std::pair<SDValue, SDValue>
5675TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy,
5676                            bool RetSExt, bool RetZExt, bool isVarArg,
5677                            bool isInreg, unsigned NumFixedArgs,
5678                            CallingConv::ID CallConv, bool isTailCall,
5679                            bool isReturnValueUsed,
5680                            SDValue Callee,
5681                            ArgListTy &Args, SelectionDAG &DAG, DebugLoc dl) {
5682  // Handle all of the outgoing arguments.
5683  SmallVector<ISD::OutputArg, 32> Outs;
5684  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
5685    SmallVector<EVT, 4> ValueVTs;
5686    ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
5687    for (unsigned Value = 0, NumValues = ValueVTs.size();
5688         Value != NumValues; ++Value) {
5689      EVT VT = ValueVTs[Value];
5690      const Type *ArgTy = VT.getTypeForEVT(RetTy->getContext());
5691      SDValue Op = SDValue(Args[i].Node.getNode(),
5692                           Args[i].Node.getResNo() + Value);
5693      ISD::ArgFlagsTy Flags;
5694      unsigned OriginalAlignment =
5695        getTargetData()->getABITypeAlignment(ArgTy);
5696
5697      if (Args[i].isZExt)
5698        Flags.setZExt();
5699      if (Args[i].isSExt)
5700        Flags.setSExt();
5701      if (Args[i].isInReg)
5702        Flags.setInReg();
5703      if (Args[i].isSRet)
5704        Flags.setSRet();
5705      if (Args[i].isByVal) {
5706        Flags.setByVal();
5707        const PointerType *Ty = cast<PointerType>(Args[i].Ty);
5708        const Type *ElementTy = Ty->getElementType();
5709        unsigned FrameAlign = getByValTypeAlignment(ElementTy);
5710        unsigned FrameSize  = getTargetData()->getTypeAllocSize(ElementTy);
5711        // For ByVal, alignment should come from FE.  BE will guess if this
5712        // info is not there but there are cases it cannot get right.
5713        if (Args[i].Alignment)
5714          FrameAlign = Args[i].Alignment;
5715        Flags.setByValAlign(FrameAlign);
5716        Flags.setByValSize(FrameSize);
5717      }
5718      if (Args[i].isNest)
5719        Flags.setNest();
5720      Flags.setOrigAlign(OriginalAlignment);
5721
5722      EVT PartVT = getRegisterType(RetTy->getContext(), VT);
5723      unsigned NumParts = getNumRegisters(RetTy->getContext(), VT);
5724      SmallVector<SDValue, 4> Parts(NumParts);
5725      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
5726
5727      if (Args[i].isSExt)
5728        ExtendKind = ISD::SIGN_EXTEND;
5729      else if (Args[i].isZExt)
5730        ExtendKind = ISD::ZERO_EXTEND;
5731
5732      getCopyToParts(DAG, dl, Op, &Parts[0], NumParts,
5733                     PartVT, ExtendKind);
5734
5735      for (unsigned j = 0; j != NumParts; ++j) {
5736        // if it isn't first piece, alignment must be 1
5737        ISD::OutputArg MyFlags(Flags, Parts[j], i < NumFixedArgs);
5738        if (NumParts > 1 && j == 0)
5739          MyFlags.Flags.setSplit();
5740        else if (j != 0)
5741          MyFlags.Flags.setOrigAlign(1);
5742
5743        Outs.push_back(MyFlags);
5744      }
5745    }
5746  }
5747
5748  // Handle the incoming return values from the call.
5749  SmallVector<ISD::InputArg, 32> Ins;
5750  SmallVector<EVT, 4> RetTys;
5751  ComputeValueVTs(*this, RetTy, RetTys);
5752  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
5753    EVT VT = RetTys[I];
5754    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
5755    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
5756    for (unsigned i = 0; i != NumRegs; ++i) {
5757      ISD::InputArg MyFlags;
5758      MyFlags.VT = RegisterVT;
5759      MyFlags.Used = isReturnValueUsed;
5760      if (RetSExt)
5761        MyFlags.Flags.setSExt();
5762      if (RetZExt)
5763        MyFlags.Flags.setZExt();
5764      if (isInreg)
5765        MyFlags.Flags.setInReg();
5766      Ins.push_back(MyFlags);
5767    }
5768  }
5769
5770  SmallVector<SDValue, 4> InVals;
5771  Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall,
5772                    Outs, Ins, dl, DAG, InVals);
5773
5774  // Verify that the target's LowerCall behaved as expected.
5775  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
5776         "LowerCall didn't return a valid chain!");
5777  assert((!isTailCall || InVals.empty()) &&
5778         "LowerCall emitted a return value for a tail call!");
5779  assert((isTailCall || InVals.size() == Ins.size()) &&
5780         "LowerCall didn't emit the correct number of values!");
5781
5782  // For a tail call, the return value is merely live-out and there aren't
5783  // any nodes in the DAG representing it. Return a special value to
5784  // indicate that a tail call has been emitted and no more Instructions
5785  // should be processed in the current block.
5786  if (isTailCall) {
5787    DAG.setRoot(Chain);
5788    return std::make_pair(SDValue(), SDValue());
5789  }
5790
5791  DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
5792          assert(InVals[i].getNode() &&
5793                 "LowerCall emitted a null value!");
5794          assert(Ins[i].VT == InVals[i].getValueType() &&
5795                 "LowerCall emitted a value with the wrong type!");
5796        });
5797
5798  // Collect the legal value parts into potentially illegal values
5799  // that correspond to the original function's return values.
5800  ISD::NodeType AssertOp = ISD::DELETED_NODE;
5801  if (RetSExt)
5802    AssertOp = ISD::AssertSext;
5803  else if (RetZExt)
5804    AssertOp = ISD::AssertZext;
5805  SmallVector<SDValue, 4> ReturnValues;
5806  unsigned CurReg = 0;
5807  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
5808    EVT VT = RetTys[I];
5809    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
5810    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
5811
5812    ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg],
5813                                            NumRegs, RegisterVT, VT,
5814                                            AssertOp));
5815    CurReg += NumRegs;
5816  }
5817
5818  // For a function returning void, there is no return value. We can't create
5819  // such a node, so we just return a null return value in that case. In
5820  // that case, nothing will actualy look at the value.
5821  if (ReturnValues.empty())
5822    return std::make_pair(SDValue(), Chain);
5823
5824  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
5825                            DAG.getVTList(&RetTys[0], RetTys.size()),
5826                            &ReturnValues[0], ReturnValues.size());
5827  return std::make_pair(Res, Chain);
5828}
5829
5830void TargetLowering::LowerOperationWrapper(SDNode *N,
5831                                           SmallVectorImpl<SDValue> &Results,
5832                                           SelectionDAG &DAG) {
5833  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
5834  if (Res.getNode())
5835    Results.push_back(Res);
5836}
5837
5838SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
5839  llvm_unreachable("LowerOperation not implemented for this target!");
5840  return SDValue();
5841}
5842
5843void SelectionDAGBuilder::CopyValueToVirtualRegister(Value *V, unsigned Reg) {
5844  SDValue Op = getValue(V);
5845  assert((Op.getOpcode() != ISD::CopyFromReg ||
5846          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
5847         "Copy from a reg to the same reg!");
5848  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
5849
5850  RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
5851  SDValue Chain = DAG.getEntryNode();
5852  RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0);
5853  PendingExports.push_back(Chain);
5854}
5855
5856#include "llvm/CodeGen/SelectionDAGISel.h"
5857
5858void SelectionDAGISel::LowerArguments(BasicBlock *LLVMBB) {
5859  // If this is the entry block, emit arguments.
5860  Function &F = *LLVMBB->getParent();
5861  SelectionDAG &DAG = SDB->DAG;
5862  SDValue OldRoot = DAG.getRoot();
5863  DebugLoc dl = SDB->getCurDebugLoc();
5864  const TargetData *TD = TLI.getTargetData();
5865  SmallVector<ISD::InputArg, 16> Ins;
5866
5867  // Check whether the function can return without sret-demotion.
5868  SmallVector<EVT, 4> OutVTs;
5869  SmallVector<ISD::ArgFlagsTy, 4> OutsFlags;
5870  getReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
5871                OutVTs, OutsFlags, TLI);
5872  FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo();
5873
5874  FLI.CanLowerReturn = TLI.CanLowerReturn(F.getCallingConv(), F.isVarArg(),
5875                                          OutVTs, OutsFlags, DAG);
5876  if (!FLI.CanLowerReturn) {
5877    // Put in an sret pointer parameter before all the other parameters.
5878    SmallVector<EVT, 1> ValueVTs;
5879    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
5880
5881    // NOTE: Assuming that a pointer will never break down to more than one VT
5882    // or one register.
5883    ISD::ArgFlagsTy Flags;
5884    Flags.setSRet();
5885    EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), ValueVTs[0]);
5886    ISD::InputArg RetArg(Flags, RegisterVT, true);
5887    Ins.push_back(RetArg);
5888  }
5889
5890  // Set up the incoming argument description vector.
5891  unsigned Idx = 1;
5892  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
5893       I != E; ++I, ++Idx) {
5894    SmallVector<EVT, 4> ValueVTs;
5895    ComputeValueVTs(TLI, I->getType(), ValueVTs);
5896    bool isArgValueUsed = !I->use_empty();
5897    for (unsigned Value = 0, NumValues = ValueVTs.size();
5898         Value != NumValues; ++Value) {
5899      EVT VT = ValueVTs[Value];
5900      const Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
5901      ISD::ArgFlagsTy Flags;
5902      unsigned OriginalAlignment =
5903        TD->getABITypeAlignment(ArgTy);
5904
5905      if (F.paramHasAttr(Idx, Attribute::ZExt))
5906        Flags.setZExt();
5907      if (F.paramHasAttr(Idx, Attribute::SExt))
5908        Flags.setSExt();
5909      if (F.paramHasAttr(Idx, Attribute::InReg))
5910        Flags.setInReg();
5911      if (F.paramHasAttr(Idx, Attribute::StructRet))
5912        Flags.setSRet();
5913      if (F.paramHasAttr(Idx, Attribute::ByVal)) {
5914        Flags.setByVal();
5915        const PointerType *Ty = cast<PointerType>(I->getType());
5916        const Type *ElementTy = Ty->getElementType();
5917        unsigned FrameAlign = TLI.getByValTypeAlignment(ElementTy);
5918        unsigned FrameSize  = TD->getTypeAllocSize(ElementTy);
5919        // For ByVal, alignment should be passed from FE.  BE will guess if
5920        // this info is not there but there are cases it cannot get right.
5921        if (F.getParamAlignment(Idx))
5922          FrameAlign = F.getParamAlignment(Idx);
5923        Flags.setByValAlign(FrameAlign);
5924        Flags.setByValSize(FrameSize);
5925      }
5926      if (F.paramHasAttr(Idx, Attribute::Nest))
5927        Flags.setNest();
5928      Flags.setOrigAlign(OriginalAlignment);
5929
5930      EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
5931      unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
5932      for (unsigned i = 0; i != NumRegs; ++i) {
5933        ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed);
5934        if (NumRegs > 1 && i == 0)
5935          MyFlags.Flags.setSplit();
5936        // if it isn't first piece, alignment must be 1
5937        else if (i > 0)
5938          MyFlags.Flags.setOrigAlign(1);
5939        Ins.push_back(MyFlags);
5940      }
5941    }
5942  }
5943
5944  // Call the target to set up the argument values.
5945  SmallVector<SDValue, 8> InVals;
5946  SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
5947                                             F.isVarArg(), Ins,
5948                                             dl, DAG, InVals);
5949
5950  // Verify that the target's LowerFormalArguments behaved as expected.
5951  assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
5952         "LowerFormalArguments didn't return a valid chain!");
5953  assert(InVals.size() == Ins.size() &&
5954         "LowerFormalArguments didn't emit the correct number of values!");
5955  DEBUG({
5956      for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
5957        assert(InVals[i].getNode() &&
5958               "LowerFormalArguments emitted a null value!");
5959        assert(Ins[i].VT == InVals[i].getValueType() &&
5960               "LowerFormalArguments emitted a value with the wrong type!");
5961      }
5962    });
5963
5964  // Update the DAG with the new chain value resulting from argument lowering.
5965  DAG.setRoot(NewRoot);
5966
5967  // Set up the argument values.
5968  unsigned i = 0;
5969  Idx = 1;
5970  if (!FLI.CanLowerReturn) {
5971    // Create a virtual register for the sret pointer, and put in a copy
5972    // from the sret argument into it.
5973    SmallVector<EVT, 1> ValueVTs;
5974    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
5975    EVT VT = ValueVTs[0];
5976    EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
5977    ISD::NodeType AssertOp = ISD::DELETED_NODE;
5978    SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
5979                                        RegVT, VT, AssertOp);
5980
5981    MachineFunction& MF = SDB->DAG.getMachineFunction();
5982    MachineRegisterInfo& RegInfo = MF.getRegInfo();
5983    unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT));
5984    FLI.DemoteRegister = SRetReg;
5985    NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(),
5986                                    SRetReg, ArgValue);
5987    DAG.setRoot(NewRoot);
5988
5989    // i indexes lowered arguments.  Bump it past the hidden sret argument.
5990    // Idx indexes LLVM arguments.  Don't touch it.
5991    ++i;
5992  }
5993
5994  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
5995      ++I, ++Idx) {
5996    SmallVector<SDValue, 4> ArgValues;
5997    SmallVector<EVT, 4> ValueVTs;
5998    ComputeValueVTs(TLI, I->getType(), ValueVTs);
5999    unsigned NumValues = ValueVTs.size();
6000    for (unsigned Value = 0; Value != NumValues; ++Value) {
6001      EVT VT = ValueVTs[Value];
6002      EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6003      unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6004
6005      if (!I->use_empty()) {
6006        ISD::NodeType AssertOp = ISD::DELETED_NODE;
6007        if (F.paramHasAttr(Idx, Attribute::SExt))
6008          AssertOp = ISD::AssertSext;
6009        else if (F.paramHasAttr(Idx, Attribute::ZExt))
6010          AssertOp = ISD::AssertZext;
6011
6012        ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
6013                                             NumParts, PartVT, VT,
6014                                             AssertOp));
6015      }
6016
6017      i += NumParts;
6018    }
6019
6020    if (!I->use_empty()) {
6021      SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues,
6022                                       SDB->getCurDebugLoc());
6023      SDB->setValue(I, Res);
6024
6025      // If this argument is live outside of the entry block, insert a copy from
6026      // whereever we got it to the vreg that other BB's will reference it as.
6027      SDB->CopyToExportRegsIfNeeded(I);
6028    }
6029  }
6030
6031  assert(i == InVals.size() && "Argument register count mismatch!");
6032
6033  // Finally, if the target has anything special to do, allow it to do so.
6034  // FIXME: this should insert code into the DAG!
6035  EmitFunctionEntryCode(F, SDB->DAG.getMachineFunction());
6036}
6037
6038/// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
6039/// ensure constants are generated when needed.  Remember the virtual registers
6040/// that need to be added to the Machine PHI nodes as input.  We cannot just
6041/// directly add them, because expansion might result in multiple MBB's for one
6042/// BB.  As such, the start of the BB might correspond to a different MBB than
6043/// the end.
6044///
6045void
6046SelectionDAGISel::HandlePHINodesInSuccessorBlocks(BasicBlock *LLVMBB) {
6047  TerminatorInst *TI = LLVMBB->getTerminator();
6048
6049  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6050
6051  // Check successor nodes' PHI nodes that expect a constant to be available
6052  // from this block.
6053  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6054    BasicBlock *SuccBB = TI->getSuccessor(succ);
6055    if (!isa<PHINode>(SuccBB->begin())) continue;
6056    MachineBasicBlock *SuccMBB = FuncInfo->MBBMap[SuccBB];
6057
6058    // If this terminator has multiple identical successors (common for
6059    // switches), only handle each succ once.
6060    if (!SuccsHandled.insert(SuccMBB)) continue;
6061
6062    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6063    PHINode *PN;
6064
6065    // At this point we know that there is a 1-1 correspondence between LLVM PHI
6066    // nodes and Machine PHI nodes, but the incoming operands have not been
6067    // emitted yet.
6068    for (BasicBlock::iterator I = SuccBB->begin();
6069         (PN = dyn_cast<PHINode>(I)); ++I) {
6070      // Ignore dead phi's.
6071      if (PN->use_empty()) continue;
6072
6073      unsigned Reg;
6074      Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6075
6076      if (Constant *C = dyn_cast<Constant>(PHIOp)) {
6077        unsigned &RegOut = SDB->ConstantsOut[C];
6078        if (RegOut == 0) {
6079          RegOut = FuncInfo->CreateRegForValue(C);
6080          SDB->CopyValueToVirtualRegister(C, RegOut);
6081        }
6082        Reg = RegOut;
6083      } else {
6084        Reg = FuncInfo->ValueMap[PHIOp];
6085        if (Reg == 0) {
6086          assert(isa<AllocaInst>(PHIOp) &&
6087                 FuncInfo->StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
6088                 "Didn't codegen value into a register!??");
6089          Reg = FuncInfo->CreateRegForValue(PHIOp);
6090          SDB->CopyValueToVirtualRegister(PHIOp, Reg);
6091        }
6092      }
6093
6094      // Remember that this register needs to added to the machine PHI node as
6095      // the input for this MBB.
6096      SmallVector<EVT, 4> ValueVTs;
6097      ComputeValueVTs(TLI, PN->getType(), ValueVTs);
6098      for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
6099        EVT VT = ValueVTs[vti];
6100        unsigned NumRegisters = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6101        for (unsigned i = 0, e = NumRegisters; i != e; ++i)
6102          SDB->PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
6103        Reg += NumRegisters;
6104      }
6105    }
6106  }
6107  SDB->ConstantsOut.clear();
6108}
6109
6110/// This is the Fast-ISel version of HandlePHINodesInSuccessorBlocks. It only
6111/// supports legal types, and it emits MachineInstrs directly instead of
6112/// creating SelectionDAG nodes.
6113///
6114bool
6115SelectionDAGISel::HandlePHINodesInSuccessorBlocksFast(BasicBlock *LLVMBB,
6116                                                      FastISel *F) {
6117  TerminatorInst *TI = LLVMBB->getTerminator();
6118
6119  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6120  unsigned OrigNumPHINodesToUpdate = SDB->PHINodesToUpdate.size();
6121
6122  // Check successor nodes' PHI nodes that expect a constant to be available
6123  // from this block.
6124  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6125    BasicBlock *SuccBB = TI->getSuccessor(succ);
6126    if (!isa<PHINode>(SuccBB->begin())) continue;
6127    MachineBasicBlock *SuccMBB = FuncInfo->MBBMap[SuccBB];
6128
6129    // If this terminator has multiple identical successors (common for
6130    // switches), only handle each succ once.
6131    if (!SuccsHandled.insert(SuccMBB)) continue;
6132
6133    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6134    PHINode *PN;
6135
6136    // At this point we know that there is a 1-1 correspondence between LLVM PHI
6137    // nodes and Machine PHI nodes, but the incoming operands have not been
6138    // emitted yet.
6139    for (BasicBlock::iterator I = SuccBB->begin();
6140         (PN = dyn_cast<PHINode>(I)); ++I) {
6141      // Ignore dead phi's.
6142      if (PN->use_empty()) continue;
6143
6144      // Only handle legal types. Two interesting things to note here. First,
6145      // by bailing out early, we may leave behind some dead instructions,
6146      // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its
6147      // own moves. Second, this check is necessary becuase FastISel doesn't
6148      // use CreateRegForValue to create registers, so it always creates
6149      // exactly one register for each non-void instruction.
6150      EVT VT = TLI.getValueType(PN->getType(), /*AllowUnknown=*/true);
6151      if (VT == MVT::Other || !TLI.isTypeLegal(VT)) {
6152        // Promote MVT::i1.
6153        if (VT == MVT::i1)
6154          VT = TLI.getTypeToTransformTo(*CurDAG->getContext(), VT);
6155        else {
6156          SDB->PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
6157          return false;
6158        }
6159      }
6160
6161      Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6162
6163      unsigned Reg = F->getRegForValue(PHIOp);
6164      if (Reg == 0) {
6165        SDB->PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
6166        return false;
6167      }
6168      SDB->PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg));
6169    }
6170  }
6171
6172  return true;
6173}
6174