SelectionDAGBuilder.cpp revision 224a180d11891a80b4f00bdec77e7f5f465690ac
1//===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements routines for translating from LLVM IR into SelectionDAG IR.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "SDNodeDbgValue.h"
16#include "SelectionDAGBuilder.h"
17#include "llvm/ADT/BitVector.h"
18#include "llvm/ADT/PostOrderIterator.h"
19#include "llvm/ADT/SmallSet.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/ConstantFolding.h"
22#include "llvm/Constants.h"
23#include "llvm/CallingConv.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Function.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/InlineAsm.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/IntrinsicInst.h"
31#include "llvm/LLVMContext.h"
32#include "llvm/Module.h"
33#include "llvm/CodeGen/Analysis.h"
34#include "llvm/CodeGen/FastISel.h"
35#include "llvm/CodeGen/FunctionLoweringInfo.h"
36#include "llvm/CodeGen/GCStrategy.h"
37#include "llvm/CodeGen/GCMetadata.h"
38#include "llvm/CodeGen/MachineFunction.h"
39#include "llvm/CodeGen/MachineFrameInfo.h"
40#include "llvm/CodeGen/MachineInstrBuilder.h"
41#include "llvm/CodeGen/MachineJumpTableInfo.h"
42#include "llvm/CodeGen/MachineModuleInfo.h"
43#include "llvm/CodeGen/MachineRegisterInfo.h"
44#include "llvm/CodeGen/PseudoSourceValue.h"
45#include "llvm/CodeGen/SelectionDAG.h"
46#include "llvm/Analysis/DebugInfo.h"
47#include "llvm/Target/TargetData.h"
48#include "llvm/Target/TargetFrameLowering.h"
49#include "llvm/Target/TargetInstrInfo.h"
50#include "llvm/Target/TargetIntrinsicInfo.h"
51#include "llvm/Target/TargetLowering.h"
52#include "llvm/Target/TargetOptions.h"
53#include "llvm/Support/Compiler.h"
54#include "llvm/Support/CommandLine.h"
55#include "llvm/Support/Debug.h"
56#include "llvm/Support/ErrorHandling.h"
57#include "llvm/Support/MathExtras.h"
58#include "llvm/Support/raw_ostream.h"
59#include <algorithm>
60using namespace llvm;
61
62/// LimitFloatPrecision - Generate low-precision inline sequences for
63/// some float libcalls (6, 8 or 12 bits).
64static unsigned LimitFloatPrecision;
65
66static cl::opt<unsigned, true>
67LimitFPPrecision("limit-float-precision",
68                 cl::desc("Generate low-precision inline sequences "
69                          "for some float libcalls"),
70                 cl::location(LimitFloatPrecision),
71                 cl::init(0));
72
73// Limit the width of DAG chains. This is important in general to prevent
74// prevent DAG-based analysis from blowing up. For example, alias analysis and
75// load clustering may not complete in reasonable time. It is difficult to
76// recognize and avoid this situation within each individual analysis, and
77// future analyses are likely to have the same behavior. Limiting DAG width is
78// the safe approach, and will be especially important with global DAGs.
79//
80// MaxParallelChains default is arbitrarily high to avoid affecting
81// optimization, but could be lowered to improve compile time. Any ld-ld-st-st
82// sequence over this should have been converted to llvm.memcpy by the
83// frontend. It easy to induce this behavior with .ll code such as:
84// %buffer = alloca [4096 x i8]
85// %data = load [4096 x i8]* %argPtr
86// store [4096 x i8] %data, [4096 x i8]* %buffer
87static cl::opt<unsigned>
88MaxParallelChains("dag-chain-limit", cl::desc("Max parallel isel dag chains"),
89                  cl::init(64), cl::Hidden);
90
91static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
92                                      const SDValue *Parts, unsigned NumParts,
93                                      EVT PartVT, EVT ValueVT);
94
95/// getCopyFromParts - Create a value that contains the specified legal parts
96/// combined into the value they represent.  If the parts combine to a type
97/// larger then ValueVT then AssertOp can be used to specify whether the extra
98/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
99/// (ISD::AssertSext).
100static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL,
101                                const SDValue *Parts,
102                                unsigned NumParts, EVT PartVT, EVT ValueVT,
103                                ISD::NodeType AssertOp = ISD::DELETED_NODE) {
104  if (ValueVT.isVector())
105    return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT);
106
107  assert(NumParts > 0 && "No parts to assemble!");
108  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
109  SDValue Val = Parts[0];
110
111  if (NumParts > 1) {
112    // Assemble the value from multiple parts.
113    if (ValueVT.isInteger()) {
114      unsigned PartBits = PartVT.getSizeInBits();
115      unsigned ValueBits = ValueVT.getSizeInBits();
116
117      // Assemble the power of 2 part.
118      unsigned RoundParts = NumParts & (NumParts - 1) ?
119        1 << Log2_32(NumParts) : NumParts;
120      unsigned RoundBits = PartBits * RoundParts;
121      EVT RoundVT = RoundBits == ValueBits ?
122        ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
123      SDValue Lo, Hi;
124
125      EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
126
127      if (RoundParts > 2) {
128        Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
129                              PartVT, HalfVT);
130        Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
131                              RoundParts / 2, PartVT, HalfVT);
132      } else {
133        Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
134        Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
135      }
136
137      if (TLI.isBigEndian())
138        std::swap(Lo, Hi);
139
140      Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
141
142      if (RoundParts < NumParts) {
143        // Assemble the trailing non-power-of-2 part.
144        unsigned OddParts = NumParts - RoundParts;
145        EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
146        Hi = getCopyFromParts(DAG, DL,
147                              Parts + RoundParts, OddParts, PartVT, OddVT);
148
149        // Combine the round and odd parts.
150        Lo = Val;
151        if (TLI.isBigEndian())
152          std::swap(Lo, Hi);
153        EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
154        Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
155        Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
156                         DAG.getConstant(Lo.getValueType().getSizeInBits(),
157                                         TLI.getPointerTy()));
158        Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
159        Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
160      }
161    } else if (PartVT.isFloatingPoint()) {
162      // FP split into multiple FP parts (for ppcf128)
163      assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) &&
164             "Unexpected split");
165      SDValue Lo, Hi;
166      Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
167      Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
168      if (TLI.isBigEndian())
169        std::swap(Lo, Hi);
170      Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
171    } else {
172      // FP split into integer parts (soft fp)
173      assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
174             !PartVT.isVector() && "Unexpected split");
175      EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
176      Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT);
177    }
178  }
179
180  // There is now one part, held in Val.  Correct it to match ValueVT.
181  PartVT = Val.getValueType();
182
183  if (PartVT == ValueVT)
184    return Val;
185
186  if (PartVT.isInteger() && ValueVT.isInteger()) {
187    if (ValueVT.bitsLT(PartVT)) {
188      // For a truncate, see if we have any information to
189      // indicate whether the truncated bits will always be
190      // zero or sign-extension.
191      if (AssertOp != ISD::DELETED_NODE)
192        Val = DAG.getNode(AssertOp, DL, PartVT, Val,
193                          DAG.getValueType(ValueVT));
194      return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
195    }
196    return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
197  }
198
199  if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
200    // FP_ROUND's are always exact here.
201    if (ValueVT.bitsLT(Val.getValueType()))
202      return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val,
203                         DAG.getIntPtrConstant(1));
204
205    return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
206  }
207
208  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
209    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
210
211  llvm_unreachable("Unknown mismatch!");
212  return SDValue();
213}
214
215/// getCopyFromParts - Create a value that contains the specified legal parts
216/// combined into the value they represent.  If the parts combine to a type
217/// larger then ValueVT then AssertOp can be used to specify whether the extra
218/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
219/// (ISD::AssertSext).
220static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
221                                      const SDValue *Parts, unsigned NumParts,
222                                      EVT PartVT, EVT ValueVT) {
223  assert(ValueVT.isVector() && "Not a vector value");
224  assert(NumParts > 0 && "No parts to assemble!");
225  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
226  SDValue Val = Parts[0];
227
228  // Handle a multi-element vector.
229  if (NumParts > 1) {
230    EVT IntermediateVT, RegisterVT;
231    unsigned NumIntermediates;
232    unsigned NumRegs =
233    TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
234                               NumIntermediates, RegisterVT);
235    assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
236    NumParts = NumRegs; // Silence a compiler warning.
237    assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
238    assert(RegisterVT == Parts[0].getValueType() &&
239           "Part type doesn't match part!");
240
241    // Assemble the parts into intermediate operands.
242    SmallVector<SDValue, 8> Ops(NumIntermediates);
243    if (NumIntermediates == NumParts) {
244      // If the register was not expanded, truncate or copy the value,
245      // as appropriate.
246      for (unsigned i = 0; i != NumParts; ++i)
247        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
248                                  PartVT, IntermediateVT);
249    } else if (NumParts > 0) {
250      // If the intermediate type was expanded, build the intermediate
251      // operands from the parts.
252      assert(NumParts % NumIntermediates == 0 &&
253             "Must expand into a divisible number of parts!");
254      unsigned Factor = NumParts / NumIntermediates;
255      for (unsigned i = 0; i != NumIntermediates; ++i)
256        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
257                                  PartVT, IntermediateVT);
258    }
259
260    // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
261    // intermediate operands.
262    Val = DAG.getNode(IntermediateVT.isVector() ?
263                      ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL,
264                      ValueVT, &Ops[0], NumIntermediates);
265  }
266
267  // There is now one part, held in Val.  Correct it to match ValueVT.
268  PartVT = Val.getValueType();
269
270  if (PartVT == ValueVT)
271    return Val;
272
273  if (PartVT.isVector()) {
274    // If the element type of the source/dest vectors are the same, but the
275    // parts vector has more elements than the value vector, then we have a
276    // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
277    // elements we want.
278    if (PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
279      assert(PartVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
280             "Cannot narrow, it would be a lossy transformation");
281      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
282                         DAG.getIntPtrConstant(0));
283    }
284
285    // Vector/Vector bitcast.
286    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
287  }
288
289  assert(ValueVT.getVectorElementType() == PartVT &&
290         ValueVT.getVectorNumElements() == 1 &&
291         "Only trivial scalar-to-vector conversions should get here!");
292  return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
293}
294
295
296
297
298static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl,
299                                 SDValue Val, SDValue *Parts, unsigned NumParts,
300                                 EVT PartVT);
301
302/// getCopyToParts - Create a series of nodes that contain the specified value
303/// split into legal parts.  If the parts contain more bits than Val, then, for
304/// integers, ExtendKind can be used to specify how to generate the extra bits.
305static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL,
306                           SDValue Val, SDValue *Parts, unsigned NumParts,
307                           EVT PartVT,
308                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
309  EVT ValueVT = Val.getValueType();
310
311  // Handle the vector case separately.
312  if (ValueVT.isVector())
313    return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT);
314
315  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
316  unsigned PartBits = PartVT.getSizeInBits();
317  unsigned OrigNumParts = NumParts;
318  assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
319
320  if (NumParts == 0)
321    return;
322
323  assert(!ValueVT.isVector() && "Vector case handled elsewhere");
324  if (PartVT == ValueVT) {
325    assert(NumParts == 1 && "No-op copy with multiple parts!");
326    Parts[0] = Val;
327    return;
328  }
329
330  if (NumParts * PartBits > ValueVT.getSizeInBits()) {
331    // If the parts cover more bits than the value has, promote the value.
332    if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
333      assert(NumParts == 1 && "Do not know what to promote to!");
334      Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
335    } else {
336      assert(PartVT.isInteger() && ValueVT.isInteger() &&
337             "Unknown mismatch!");
338      ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
339      Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
340    }
341  } else if (PartBits == ValueVT.getSizeInBits()) {
342    // Different types of the same size.
343    assert(NumParts == 1 && PartVT != ValueVT);
344    Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
345  } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
346    // If the parts cover less bits than value has, truncate the value.
347    assert(PartVT.isInteger() && ValueVT.isInteger() &&
348           "Unknown mismatch!");
349    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
350    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
351  }
352
353  // The value may have changed - recompute ValueVT.
354  ValueVT = Val.getValueType();
355  assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
356         "Failed to tile the value with PartVT!");
357
358  if (NumParts == 1) {
359    assert(PartVT == ValueVT && "Type conversion failed!");
360    Parts[0] = Val;
361    return;
362  }
363
364  // Expand the value into multiple parts.
365  if (NumParts & (NumParts - 1)) {
366    // The number of parts is not a power of 2.  Split off and copy the tail.
367    assert(PartVT.isInteger() && ValueVT.isInteger() &&
368           "Do not know what to expand to!");
369    unsigned RoundParts = 1 << Log2_32(NumParts);
370    unsigned RoundBits = RoundParts * PartBits;
371    unsigned OddParts = NumParts - RoundParts;
372    SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
373                                 DAG.getIntPtrConstant(RoundBits));
374    getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT);
375
376    if (TLI.isBigEndian())
377      // The odd parts were reversed by getCopyToParts - unreverse them.
378      std::reverse(Parts + RoundParts, Parts + NumParts);
379
380    NumParts = RoundParts;
381    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
382    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
383  }
384
385  // The number of parts is a power of 2.  Repeatedly bisect the value using
386  // EXTRACT_ELEMENT.
387  Parts[0] = DAG.getNode(ISD::BITCAST, DL,
388                         EVT::getIntegerVT(*DAG.getContext(),
389                                           ValueVT.getSizeInBits()),
390                         Val);
391
392  for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
393    for (unsigned i = 0; i < NumParts; i += StepSize) {
394      unsigned ThisBits = StepSize * PartBits / 2;
395      EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
396      SDValue &Part0 = Parts[i];
397      SDValue &Part1 = Parts[i+StepSize/2];
398
399      Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
400                          ThisVT, Part0, DAG.getIntPtrConstant(1));
401      Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
402                          ThisVT, Part0, DAG.getIntPtrConstant(0));
403
404      if (ThisBits == PartBits && ThisVT != PartVT) {
405        Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
406        Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
407      }
408    }
409  }
410
411  if (TLI.isBigEndian())
412    std::reverse(Parts, Parts + OrigNumParts);
413}
414
415
416/// getCopyToPartsVector - Create a series of nodes that contain the specified
417/// value split into legal parts.
418static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL,
419                                 SDValue Val, SDValue *Parts, unsigned NumParts,
420                                 EVT PartVT) {
421  EVT ValueVT = Val.getValueType();
422  assert(ValueVT.isVector() && "Not a vector");
423  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
424
425  if (NumParts == 1) {
426    if (PartVT == ValueVT) {
427      // Nothing to do.
428    } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
429      // Bitconvert vector->vector case.
430      Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
431    } else if (PartVT.isVector() &&
432               PartVT.getVectorElementType() == ValueVT.getVectorElementType()&&
433               PartVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
434      EVT ElementVT = PartVT.getVectorElementType();
435      // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
436      // undef elements.
437      SmallVector<SDValue, 16> Ops;
438      for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
439        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
440                                  ElementVT, Val, DAG.getIntPtrConstant(i)));
441
442      for (unsigned i = ValueVT.getVectorNumElements(),
443           e = PartVT.getVectorNumElements(); i != e; ++i)
444        Ops.push_back(DAG.getUNDEF(ElementVT));
445
446      Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size());
447
448      // FIXME: Use CONCAT for 2x -> 4x.
449
450      //SDValue UndefElts = DAG.getUNDEF(VectorTy);
451      //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
452    } else {
453      // Vector -> scalar conversion.
454      assert(ValueVT.getVectorElementType() == PartVT &&
455             ValueVT.getVectorNumElements() == 1 &&
456             "Only trivial vector-to-scalar conversions should get here!");
457      Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
458                        PartVT, Val, DAG.getIntPtrConstant(0));
459    }
460
461    Parts[0] = Val;
462    return;
463  }
464
465  // Handle a multi-element vector.
466  EVT IntermediateVT, RegisterVT;
467  unsigned NumIntermediates;
468  unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
469                                                IntermediateVT,
470                                                NumIntermediates, RegisterVT);
471  unsigned NumElements = ValueVT.getVectorNumElements();
472
473  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
474  NumParts = NumRegs; // Silence a compiler warning.
475  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
476
477  // Split the vector into intermediate operands.
478  SmallVector<SDValue, 8> Ops(NumIntermediates);
479  for (unsigned i = 0; i != NumIntermediates; ++i) {
480    if (IntermediateVT.isVector())
481      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
482                           IntermediateVT, Val,
483                   DAG.getIntPtrConstant(i * (NumElements / NumIntermediates)));
484    else
485      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
486                           IntermediateVT, Val, DAG.getIntPtrConstant(i));
487  }
488
489  // Split the intermediate operands into legal parts.
490  if (NumParts == NumIntermediates) {
491    // If the register was not expanded, promote or copy the value,
492    // as appropriate.
493    for (unsigned i = 0; i != NumParts; ++i)
494      getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT);
495  } else if (NumParts > 0) {
496    // If the intermediate type was expanded, split each the value into
497    // legal parts.
498    assert(NumParts % NumIntermediates == 0 &&
499           "Must expand into a divisible number of parts!");
500    unsigned Factor = NumParts / NumIntermediates;
501    for (unsigned i = 0; i != NumIntermediates; ++i)
502      getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT);
503  }
504}
505
506
507
508
509namespace {
510  /// RegsForValue - This struct represents the registers (physical or virtual)
511  /// that a particular set of values is assigned, and the type information
512  /// about the value. The most common situation is to represent one value at a
513  /// time, but struct or array values are handled element-wise as multiple
514  /// values.  The splitting of aggregates is performed recursively, so that we
515  /// never have aggregate-typed registers. The values at this point do not
516  /// necessarily have legal types, so each value may require one or more
517  /// registers of some legal type.
518  ///
519  struct RegsForValue {
520    /// ValueVTs - The value types of the values, which may not be legal, and
521    /// may need be promoted or synthesized from one or more registers.
522    ///
523    SmallVector<EVT, 4> ValueVTs;
524
525    /// RegVTs - The value types of the registers. This is the same size as
526    /// ValueVTs and it records, for each value, what the type of the assigned
527    /// register or registers are. (Individual values are never synthesized
528    /// from more than one type of register.)
529    ///
530    /// With virtual registers, the contents of RegVTs is redundant with TLI's
531    /// getRegisterType member function, however when with physical registers
532    /// it is necessary to have a separate record of the types.
533    ///
534    SmallVector<EVT, 4> RegVTs;
535
536    /// Regs - This list holds the registers assigned to the values.
537    /// Each legal or promoted value requires one register, and each
538    /// expanded value requires multiple registers.
539    ///
540    SmallVector<unsigned, 4> Regs;
541
542    RegsForValue() {}
543
544    RegsForValue(const SmallVector<unsigned, 4> &regs,
545                 EVT regvt, EVT valuevt)
546      : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
547
548    RegsForValue(LLVMContext &Context, const TargetLowering &tli,
549                 unsigned Reg, const Type *Ty) {
550      ComputeValueVTs(tli, Ty, ValueVTs);
551
552      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
553        EVT ValueVT = ValueVTs[Value];
554        unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
555        EVT RegisterVT = tli.getRegisterType(Context, ValueVT);
556        for (unsigned i = 0; i != NumRegs; ++i)
557          Regs.push_back(Reg + i);
558        RegVTs.push_back(RegisterVT);
559        Reg += NumRegs;
560      }
561    }
562
563    /// areValueTypesLegal - Return true if types of all the values are legal.
564    bool areValueTypesLegal(const TargetLowering &TLI) {
565      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
566        EVT RegisterVT = RegVTs[Value];
567        if (!TLI.isTypeLegal(RegisterVT))
568          return false;
569      }
570      return true;
571    }
572
573    /// append - Add the specified values to this one.
574    void append(const RegsForValue &RHS) {
575      ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
576      RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
577      Regs.append(RHS.Regs.begin(), RHS.Regs.end());
578    }
579
580    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
581    /// this value and returns the result as a ValueVTs value.  This uses
582    /// Chain/Flag as the input and updates them for the output Chain/Flag.
583    /// If the Flag pointer is NULL, no flag is used.
584    SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
585                            DebugLoc dl,
586                            SDValue &Chain, SDValue *Flag) const;
587
588    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
589    /// specified value into the registers specified by this object.  This uses
590    /// Chain/Flag as the input and updates them for the output Chain/Flag.
591    /// If the Flag pointer is NULL, no flag is used.
592    void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
593                       SDValue &Chain, SDValue *Flag) const;
594
595    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
596    /// operand list.  This adds the code marker, matching input operand index
597    /// (if applicable), and includes the number of values added into it.
598    void AddInlineAsmOperands(unsigned Kind,
599                              bool HasMatching, unsigned MatchingIdx,
600                              SelectionDAG &DAG,
601                              std::vector<SDValue> &Ops) const;
602  };
603}
604
605/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
606/// this value and returns the result as a ValueVT value.  This uses
607/// Chain/Flag as the input and updates them for the output Chain/Flag.
608/// If the Flag pointer is NULL, no flag is used.
609SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
610                                      FunctionLoweringInfo &FuncInfo,
611                                      DebugLoc dl,
612                                      SDValue &Chain, SDValue *Flag) const {
613  // A Value with type {} or [0 x %t] needs no registers.
614  if (ValueVTs.empty())
615    return SDValue();
616
617  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
618
619  // Assemble the legal parts into the final values.
620  SmallVector<SDValue, 4> Values(ValueVTs.size());
621  SmallVector<SDValue, 8> Parts;
622  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
623    // Copy the legal parts from the registers.
624    EVT ValueVT = ValueVTs[Value];
625    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
626    EVT RegisterVT = RegVTs[Value];
627
628    Parts.resize(NumRegs);
629    for (unsigned i = 0; i != NumRegs; ++i) {
630      SDValue P;
631      if (Flag == 0) {
632        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
633      } else {
634        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
635        *Flag = P.getValue(2);
636      }
637
638      Chain = P.getValue(1);
639      Parts[i] = P;
640
641      // If the source register was virtual and if we know something about it,
642      // add an assert node.
643      if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
644          !RegisterVT.isInteger() || RegisterVT.isVector() ||
645          !FuncInfo.LiveOutRegInfo.inBounds(Regs[Part+i]))
646        continue;
647
648      const FunctionLoweringInfo::LiveOutInfo &LOI =
649        FuncInfo.LiveOutRegInfo[Regs[Part+i]];
650
651      unsigned RegSize = RegisterVT.getSizeInBits();
652      unsigned NumSignBits = LOI.NumSignBits;
653      unsigned NumZeroBits = LOI.KnownZero.countLeadingOnes();
654
655      // FIXME: We capture more information than the dag can represent.  For
656      // now, just use the tightest assertzext/assertsext possible.
657      bool isSExt = true;
658      EVT FromVT(MVT::Other);
659      if (NumSignBits == RegSize)
660        isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
661      else if (NumZeroBits >= RegSize-1)
662        isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
663      else if (NumSignBits > RegSize-8)
664        isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
665      else if (NumZeroBits >= RegSize-8)
666        isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
667      else if (NumSignBits > RegSize-16)
668        isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
669      else if (NumZeroBits >= RegSize-16)
670        isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
671      else if (NumSignBits > RegSize-32)
672        isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
673      else if (NumZeroBits >= RegSize-32)
674        isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
675      else
676        continue;
677
678      // Add an assertion node.
679      assert(FromVT != MVT::Other);
680      Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
681                             RegisterVT, P, DAG.getValueType(FromVT));
682    }
683
684    Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
685                                     NumRegs, RegisterVT, ValueVT);
686    Part += NumRegs;
687    Parts.clear();
688  }
689
690  return DAG.getNode(ISD::MERGE_VALUES, dl,
691                     DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
692                     &Values[0], ValueVTs.size());
693}
694
695/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
696/// specified value into the registers specified by this object.  This uses
697/// Chain/Flag as the input and updates them for the output Chain/Flag.
698/// If the Flag pointer is NULL, no flag is used.
699void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
700                                 SDValue &Chain, SDValue *Flag) const {
701  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
702
703  // Get the list of the values's legal parts.
704  unsigned NumRegs = Regs.size();
705  SmallVector<SDValue, 8> Parts(NumRegs);
706  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
707    EVT ValueVT = ValueVTs[Value];
708    unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
709    EVT RegisterVT = RegVTs[Value];
710
711    getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
712                   &Parts[Part], NumParts, RegisterVT);
713    Part += NumParts;
714  }
715
716  // Copy the parts into the registers.
717  SmallVector<SDValue, 8> Chains(NumRegs);
718  for (unsigned i = 0; i != NumRegs; ++i) {
719    SDValue Part;
720    if (Flag == 0) {
721      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
722    } else {
723      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
724      *Flag = Part.getValue(1);
725    }
726
727    Chains[i] = Part.getValue(0);
728  }
729
730  if (NumRegs == 1 || Flag)
731    // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
732    // flagged to it. That is the CopyToReg nodes and the user are considered
733    // a single scheduling unit. If we create a TokenFactor and return it as
734    // chain, then the TokenFactor is both a predecessor (operand) of the
735    // user as well as a successor (the TF operands are flagged to the user).
736    // c1, f1 = CopyToReg
737    // c2, f2 = CopyToReg
738    // c3     = TokenFactor c1, c2
739    // ...
740    //        = op c3, ..., f2
741    Chain = Chains[NumRegs-1];
742  else
743    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
744}
745
746/// AddInlineAsmOperands - Add this value to the specified inlineasm node
747/// operand list.  This adds the code marker and includes the number of
748/// values added into it.
749void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
750                                        unsigned MatchingIdx,
751                                        SelectionDAG &DAG,
752                                        std::vector<SDValue> &Ops) const {
753  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
754
755  unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
756  if (HasMatching)
757    Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
758  SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
759  Ops.push_back(Res);
760
761  for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
762    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
763    EVT RegisterVT = RegVTs[Value];
764    for (unsigned i = 0; i != NumRegs; ++i) {
765      assert(Reg < Regs.size() && "Mismatch in # registers expected");
766      Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
767    }
768  }
769}
770
771void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) {
772  AA = &aa;
773  GFI = gfi;
774  TD = DAG.getTarget().getTargetData();
775}
776
777/// clear - Clear out the current SelectionDAG and the associated
778/// state and prepare this SelectionDAGBuilder object to be used
779/// for a new block. This doesn't clear out information about
780/// additional blocks that are needed to complete switch lowering
781/// or PHI node updating; that information is cleared out as it is
782/// consumed.
783void SelectionDAGBuilder::clear() {
784  NodeMap.clear();
785  UnusedArgNodeMap.clear();
786  PendingLoads.clear();
787  PendingExports.clear();
788  DanglingDebugInfoMap.clear();
789  CurDebugLoc = DebugLoc();
790  HasTailCall = false;
791}
792
793/// getRoot - Return the current virtual root of the Selection DAG,
794/// flushing any PendingLoad items. This must be done before emitting
795/// a store or any other node that may need to be ordered after any
796/// prior load instructions.
797///
798SDValue SelectionDAGBuilder::getRoot() {
799  if (PendingLoads.empty())
800    return DAG.getRoot();
801
802  if (PendingLoads.size() == 1) {
803    SDValue Root = PendingLoads[0];
804    DAG.setRoot(Root);
805    PendingLoads.clear();
806    return Root;
807  }
808
809  // Otherwise, we have to make a token factor node.
810  SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
811                               &PendingLoads[0], PendingLoads.size());
812  PendingLoads.clear();
813  DAG.setRoot(Root);
814  return Root;
815}
816
817/// getControlRoot - Similar to getRoot, but instead of flushing all the
818/// PendingLoad items, flush all the PendingExports items. It is necessary
819/// to do this before emitting a terminator instruction.
820///
821SDValue SelectionDAGBuilder::getControlRoot() {
822  SDValue Root = DAG.getRoot();
823
824  if (PendingExports.empty())
825    return Root;
826
827  // Turn all of the CopyToReg chains into one factored node.
828  if (Root.getOpcode() != ISD::EntryToken) {
829    unsigned i = 0, e = PendingExports.size();
830    for (; i != e; ++i) {
831      assert(PendingExports[i].getNode()->getNumOperands() > 1);
832      if (PendingExports[i].getNode()->getOperand(0) == Root)
833        break;  // Don't add the root if we already indirectly depend on it.
834    }
835
836    if (i == e)
837      PendingExports.push_back(Root);
838  }
839
840  Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
841                     &PendingExports[0],
842                     PendingExports.size());
843  PendingExports.clear();
844  DAG.setRoot(Root);
845  return Root;
846}
847
848void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) {
849  if (DAG.GetOrdering(Node) != 0) return; // Already has ordering.
850  DAG.AssignOrdering(Node, SDNodeOrder);
851
852  for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I)
853    AssignOrderingToNode(Node->getOperand(I).getNode());
854}
855
856void SelectionDAGBuilder::visit(const Instruction &I) {
857  // Set up outgoing PHI node register values before emitting the terminator.
858  if (isa<TerminatorInst>(&I))
859    HandlePHINodesInSuccessorBlocks(I.getParent());
860
861  CurDebugLoc = I.getDebugLoc();
862
863  visit(I.getOpcode(), I);
864
865  if (!isa<TerminatorInst>(&I) && !HasTailCall)
866    CopyToExportRegsIfNeeded(&I);
867
868  CurDebugLoc = DebugLoc();
869}
870
871void SelectionDAGBuilder::visitPHI(const PHINode &) {
872  llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
873}
874
875void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
876  // Note: this doesn't use InstVisitor, because it has to work with
877  // ConstantExpr's in addition to instructions.
878  switch (Opcode) {
879  default: llvm_unreachable("Unknown instruction type encountered!");
880    // Build the switch statement using the Instruction.def file.
881#define HANDLE_INST(NUM, OPCODE, CLASS) \
882    case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break;
883#include "llvm/Instruction.def"
884  }
885
886  // Assign the ordering to the freshly created DAG nodes.
887  if (NodeMap.count(&I)) {
888    ++SDNodeOrder;
889    AssignOrderingToNode(getValue(&I).getNode());
890  }
891}
892
893// resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
894// generate the debug data structures now that we've seen its definition.
895void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
896                                                   SDValue Val) {
897  DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
898  if (DDI.getDI()) {
899    const DbgValueInst *DI = DDI.getDI();
900    DebugLoc dl = DDI.getdl();
901    unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
902    MDNode *Variable = DI->getVariable();
903    uint64_t Offset = DI->getOffset();
904    SDDbgValue *SDV;
905    if (Val.getNode()) {
906      if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) {
907        SDV = DAG.getDbgValue(Variable, Val.getNode(),
908                              Val.getResNo(), Offset, dl, DbgSDNodeOrder);
909        DAG.AddDbgValue(SDV, Val.getNode(), false);
910      }
911    } else
912      DEBUG(dbgs() << "Dropping debug info for " << DI);
913    DanglingDebugInfoMap[V] = DanglingDebugInfo();
914  }
915}
916
917// getValue - Return an SDValue for the given Value.
918SDValue SelectionDAGBuilder::getValue(const Value *V) {
919  // If we already have an SDValue for this value, use it. It's important
920  // to do this first, so that we don't create a CopyFromReg if we already
921  // have a regular SDValue.
922  SDValue &N = NodeMap[V];
923  if (N.getNode()) return N;
924
925  // If there's a virtual register allocated and initialized for this
926  // value, use it.
927  DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
928  if (It != FuncInfo.ValueMap.end()) {
929    unsigned InReg = It->second;
930    RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
931    SDValue Chain = DAG.getEntryNode();
932    N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain,NULL);
933    resolveDanglingDebugInfo(V, N);
934    return N;
935  }
936
937  // Otherwise create a new SDValue and remember it.
938  SDValue Val = getValueImpl(V);
939  NodeMap[V] = Val;
940  resolveDanglingDebugInfo(V, Val);
941  return Val;
942}
943
944/// getNonRegisterValue - Return an SDValue for the given Value, but
945/// don't look in FuncInfo.ValueMap for a virtual register.
946SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
947  // If we already have an SDValue for this value, use it.
948  SDValue &N = NodeMap[V];
949  if (N.getNode()) return N;
950
951  // Otherwise create a new SDValue and remember it.
952  SDValue Val = getValueImpl(V);
953  NodeMap[V] = Val;
954  resolveDanglingDebugInfo(V, Val);
955  return Val;
956}
957
958/// getValueImpl - Helper function for getValue and getNonRegisterValue.
959/// Create an SDValue for the given value.
960SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
961  if (const Constant *C = dyn_cast<Constant>(V)) {
962    EVT VT = TLI.getValueType(V->getType(), true);
963
964    if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
965      return DAG.getConstant(*CI, VT);
966
967    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
968      return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT);
969
970    if (isa<ConstantPointerNull>(C))
971      return DAG.getConstant(0, TLI.getPointerTy());
972
973    if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
974      return DAG.getConstantFP(*CFP, VT);
975
976    if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
977      return DAG.getUNDEF(VT);
978
979    if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
980      visit(CE->getOpcode(), *CE);
981      SDValue N1 = NodeMap[V];
982      assert(N1.getNode() && "visit didn't populate the NodeMap!");
983      return N1;
984    }
985
986    if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
987      SmallVector<SDValue, 4> Constants;
988      for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
989           OI != OE; ++OI) {
990        SDNode *Val = getValue(*OI).getNode();
991        // If the operand is an empty aggregate, there are no values.
992        if (!Val) continue;
993        // Add each leaf value from the operand to the Constants list
994        // to form a flattened list of all the values.
995        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
996          Constants.push_back(SDValue(Val, i));
997      }
998
999      return DAG.getMergeValues(&Constants[0], Constants.size(),
1000                                getCurDebugLoc());
1001    }
1002
1003    if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1004      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1005             "Unknown struct or array constant!");
1006
1007      SmallVector<EVT, 4> ValueVTs;
1008      ComputeValueVTs(TLI, C->getType(), ValueVTs);
1009      unsigned NumElts = ValueVTs.size();
1010      if (NumElts == 0)
1011        return SDValue(); // empty struct
1012      SmallVector<SDValue, 4> Constants(NumElts);
1013      for (unsigned i = 0; i != NumElts; ++i) {
1014        EVT EltVT = ValueVTs[i];
1015        if (isa<UndefValue>(C))
1016          Constants[i] = DAG.getUNDEF(EltVT);
1017        else if (EltVT.isFloatingPoint())
1018          Constants[i] = DAG.getConstantFP(0, EltVT);
1019        else
1020          Constants[i] = DAG.getConstant(0, EltVT);
1021      }
1022
1023      return DAG.getMergeValues(&Constants[0], NumElts,
1024                                getCurDebugLoc());
1025    }
1026
1027    if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1028      return DAG.getBlockAddress(BA, VT);
1029
1030    const VectorType *VecTy = cast<VectorType>(V->getType());
1031    unsigned NumElements = VecTy->getNumElements();
1032
1033    // Now that we know the number and type of the elements, get that number of
1034    // elements into the Ops array based on what kind of constant it is.
1035    SmallVector<SDValue, 16> Ops;
1036    if (const ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
1037      for (unsigned i = 0; i != NumElements; ++i)
1038        Ops.push_back(getValue(CP->getOperand(i)));
1039    } else {
1040      assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1041      EVT EltVT = TLI.getValueType(VecTy->getElementType());
1042
1043      SDValue Op;
1044      if (EltVT.isFloatingPoint())
1045        Op = DAG.getConstantFP(0, EltVT);
1046      else
1047        Op = DAG.getConstant(0, EltVT);
1048      Ops.assign(NumElements, Op);
1049    }
1050
1051    // Create a BUILD_VECTOR node.
1052    return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
1053                                    VT, &Ops[0], Ops.size());
1054  }
1055
1056  // If this is a static alloca, generate it as the frameindex instead of
1057  // computation.
1058  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1059    DenseMap<const AllocaInst*, int>::iterator SI =
1060      FuncInfo.StaticAllocaMap.find(AI);
1061    if (SI != FuncInfo.StaticAllocaMap.end())
1062      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
1063  }
1064
1065  // If this is an instruction which fast-isel has deferred, select it now.
1066  if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1067    unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1068    RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType());
1069    SDValue Chain = DAG.getEntryNode();
1070    return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL);
1071  }
1072
1073  llvm_unreachable("Can't get register for value!");
1074  return SDValue();
1075}
1076
1077void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1078  SDValue Chain = getControlRoot();
1079  SmallVector<ISD::OutputArg, 8> Outs;
1080  SmallVector<SDValue, 8> OutVals;
1081
1082  if (!FuncInfo.CanLowerReturn) {
1083    unsigned DemoteReg = FuncInfo.DemoteRegister;
1084    const Function *F = I.getParent()->getParent();
1085
1086    // Emit a store of the return value through the virtual register.
1087    // Leave Outs empty so that LowerReturn won't try to load return
1088    // registers the usual way.
1089    SmallVector<EVT, 1> PtrValueVTs;
1090    ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
1091                    PtrValueVTs);
1092
1093    SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
1094    SDValue RetOp = getValue(I.getOperand(0));
1095
1096    SmallVector<EVT, 4> ValueVTs;
1097    SmallVector<uint64_t, 4> Offsets;
1098    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1099    unsigned NumValues = ValueVTs.size();
1100
1101    SmallVector<SDValue, 4> Chains(NumValues);
1102    for (unsigned i = 0; i != NumValues; ++i) {
1103      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(),
1104                                RetPtr.getValueType(), RetPtr,
1105                                DAG.getIntPtrConstant(Offsets[i]));
1106      Chains[i] =
1107        DAG.getStore(Chain, getCurDebugLoc(),
1108                     SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1109                     // FIXME: better loc info would be nice.
1110                     Add, MachinePointerInfo(), false, false, 0);
1111    }
1112
1113    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
1114                        MVT::Other, &Chains[0], NumValues);
1115  } else if (I.getNumOperands() != 0) {
1116    SmallVector<EVT, 4> ValueVTs;
1117    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
1118    unsigned NumValues = ValueVTs.size();
1119    if (NumValues) {
1120      SDValue RetOp = getValue(I.getOperand(0));
1121      for (unsigned j = 0, f = NumValues; j != f; ++j) {
1122        EVT VT = ValueVTs[j];
1123
1124        ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1125
1126        const Function *F = I.getParent()->getParent();
1127        if (F->paramHasAttr(0, Attribute::SExt))
1128          ExtendKind = ISD::SIGN_EXTEND;
1129        else if (F->paramHasAttr(0, Attribute::ZExt))
1130          ExtendKind = ISD::ZERO_EXTEND;
1131
1132        // FIXME: C calling convention requires the return type to be promoted
1133        // to at least 32-bit. But this is not necessary for non-C calling
1134        // conventions. The frontend should mark functions whose return values
1135        // require promoting with signext or zeroext attributes.
1136        if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
1137          EVT MinVT = TLI.getRegisterType(*DAG.getContext(), MVT::i32);
1138          if (VT.bitsLT(MinVT))
1139            VT = MinVT;
1140        }
1141
1142        unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
1143        EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
1144        SmallVector<SDValue, 4> Parts(NumParts);
1145        getCopyToParts(DAG, getCurDebugLoc(),
1146                       SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1147                       &Parts[0], NumParts, PartVT, ExtendKind);
1148
1149        // 'inreg' on function refers to return value
1150        ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1151        if (F->paramHasAttr(0, Attribute::InReg))
1152          Flags.setInReg();
1153
1154        // Propagate extension type if any
1155        if (F->paramHasAttr(0, Attribute::SExt))
1156          Flags.setSExt();
1157        else if (F->paramHasAttr(0, Attribute::ZExt))
1158          Flags.setZExt();
1159
1160        for (unsigned i = 0; i < NumParts; ++i) {
1161          Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1162                                        /*isfixed=*/true));
1163          OutVals.push_back(Parts[i]);
1164        }
1165      }
1166    }
1167  }
1168
1169  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1170  CallingConv::ID CallConv =
1171    DAG.getMachineFunction().getFunction()->getCallingConv();
1172  Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
1173                          Outs, OutVals, getCurDebugLoc(), DAG);
1174
1175  // Verify that the target's LowerReturn behaved as expected.
1176  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1177         "LowerReturn didn't return a valid chain!");
1178
1179  // Update the DAG with the new chain value resulting from return lowering.
1180  DAG.setRoot(Chain);
1181}
1182
1183/// CopyToExportRegsIfNeeded - If the given value has virtual registers
1184/// created for it, emit nodes to copy the value into the virtual
1185/// registers.
1186void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1187  DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1188  if (VMI != FuncInfo.ValueMap.end()) {
1189    assert(!V->use_empty() && "Unused value assigned virtual registers!");
1190    CopyValueToVirtualRegister(V, VMI->second);
1191  }
1192}
1193
1194/// ExportFromCurrentBlock - If this condition isn't known to be exported from
1195/// the current basic block, add it to ValueMap now so that we'll get a
1196/// CopyTo/FromReg.
1197void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1198  // No need to export constants.
1199  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1200
1201  // Already exported?
1202  if (FuncInfo.isExportedInst(V)) return;
1203
1204  unsigned Reg = FuncInfo.InitializeRegForValue(V);
1205  CopyValueToVirtualRegister(V, Reg);
1206}
1207
1208bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1209                                                     const BasicBlock *FromBB) {
1210  // The operands of the setcc have to be in this block.  We don't know
1211  // how to export them from some other block.
1212  if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1213    // Can export from current BB.
1214    if (VI->getParent() == FromBB)
1215      return true;
1216
1217    // Is already exported, noop.
1218    return FuncInfo.isExportedInst(V);
1219  }
1220
1221  // If this is an argument, we can export it if the BB is the entry block or
1222  // if it is already exported.
1223  if (isa<Argument>(V)) {
1224    if (FromBB == &FromBB->getParent()->getEntryBlock())
1225      return true;
1226
1227    // Otherwise, can only export this if it is already exported.
1228    return FuncInfo.isExportedInst(V);
1229  }
1230
1231  // Otherwise, constants can always be exported.
1232  return true;
1233}
1234
1235static bool InBlock(const Value *V, const BasicBlock *BB) {
1236  if (const Instruction *I = dyn_cast<Instruction>(V))
1237    return I->getParent() == BB;
1238  return true;
1239}
1240
1241/// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1242/// This function emits a branch and is used at the leaves of an OR or an
1243/// AND operator tree.
1244///
1245void
1246SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1247                                                  MachineBasicBlock *TBB,
1248                                                  MachineBasicBlock *FBB,
1249                                                  MachineBasicBlock *CurBB,
1250                                                  MachineBasicBlock *SwitchBB) {
1251  const BasicBlock *BB = CurBB->getBasicBlock();
1252
1253  // If the leaf of the tree is a comparison, merge the condition into
1254  // the caseblock.
1255  if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1256    // The operands of the cmp have to be in this block.  We don't know
1257    // how to export them from some other block.  If this is the first block
1258    // of the sequence, no exporting is needed.
1259    if (CurBB == SwitchBB ||
1260        (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1261         isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1262      ISD::CondCode Condition;
1263      if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1264        Condition = getICmpCondCode(IC->getPredicate());
1265      } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1266        Condition = getFCmpCondCode(FC->getPredicate());
1267      } else {
1268        Condition = ISD::SETEQ; // silence warning.
1269        llvm_unreachable("Unknown compare instruction");
1270      }
1271
1272      CaseBlock CB(Condition, BOp->getOperand(0),
1273                   BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1274      SwitchCases.push_back(CB);
1275      return;
1276    }
1277  }
1278
1279  // Create a CaseBlock record representing this branch.
1280  CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1281               NULL, TBB, FBB, CurBB);
1282  SwitchCases.push_back(CB);
1283}
1284
1285/// FindMergedConditions - If Cond is an expression like
1286void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1287                                               MachineBasicBlock *TBB,
1288                                               MachineBasicBlock *FBB,
1289                                               MachineBasicBlock *CurBB,
1290                                               MachineBasicBlock *SwitchBB,
1291                                               unsigned Opc) {
1292  // If this node is not part of the or/and tree, emit it as a branch.
1293  const Instruction *BOp = dyn_cast<Instruction>(Cond);
1294  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1295      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1296      BOp->getParent() != CurBB->getBasicBlock() ||
1297      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1298      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1299    EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB);
1300    return;
1301  }
1302
1303  //  Create TmpBB after CurBB.
1304  MachineFunction::iterator BBI = CurBB;
1305  MachineFunction &MF = DAG.getMachineFunction();
1306  MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1307  CurBB->getParent()->insert(++BBI, TmpBB);
1308
1309  if (Opc == Instruction::Or) {
1310    // Codegen X | Y as:
1311    //   jmp_if_X TBB
1312    //   jmp TmpBB
1313    // TmpBB:
1314    //   jmp_if_Y TBB
1315    //   jmp FBB
1316    //
1317
1318    // Emit the LHS condition.
1319    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc);
1320
1321    // Emit the RHS condition into TmpBB.
1322    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1323  } else {
1324    assert(Opc == Instruction::And && "Unknown merge op!");
1325    // Codegen X & Y as:
1326    //   jmp_if_X TmpBB
1327    //   jmp FBB
1328    // TmpBB:
1329    //   jmp_if_Y TBB
1330    //   jmp FBB
1331    //
1332    //  This requires creation of TmpBB after CurBB.
1333
1334    // Emit the LHS condition.
1335    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc);
1336
1337    // Emit the RHS condition into TmpBB.
1338    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1339  }
1340}
1341
1342/// If the set of cases should be emitted as a series of branches, return true.
1343/// If we should emit this as a bunch of and/or'd together conditions, return
1344/// false.
1345bool
1346SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
1347  if (Cases.size() != 2) return true;
1348
1349  // If this is two comparisons of the same values or'd or and'd together, they
1350  // will get folded into a single comparison, so don't emit two blocks.
1351  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1352       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1353      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1354       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1355    return false;
1356  }
1357
1358  // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1359  // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1360  if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1361      Cases[0].CC == Cases[1].CC &&
1362      isa<Constant>(Cases[0].CmpRHS) &&
1363      cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1364    if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1365      return false;
1366    if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1367      return false;
1368  }
1369
1370  return true;
1371}
1372
1373void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1374  MachineBasicBlock *BrMBB = FuncInfo.MBB;
1375
1376  // Update machine-CFG edges.
1377  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1378
1379  // Figure out which block is immediately after the current one.
1380  MachineBasicBlock *NextBlock = 0;
1381  MachineFunction::iterator BBI = BrMBB;
1382  if (++BBI != FuncInfo.MF->end())
1383    NextBlock = BBI;
1384
1385  if (I.isUnconditional()) {
1386    // Update machine-CFG edges.
1387    BrMBB->addSuccessor(Succ0MBB);
1388
1389    // If this is not a fall-through branch, emit the branch.
1390    if (Succ0MBB != NextBlock)
1391      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1392                              MVT::Other, getControlRoot(),
1393                              DAG.getBasicBlock(Succ0MBB)));
1394
1395    return;
1396  }
1397
1398  // If this condition is one of the special cases we handle, do special stuff
1399  // now.
1400  const Value *CondVal = I.getCondition();
1401  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1402
1403  // If this is a series of conditions that are or'd or and'd together, emit
1404  // this as a sequence of branches instead of setcc's with and/or operations.
1405  // As long as jumps are not expensive, this should improve performance.
1406  // For example, instead of something like:
1407  //     cmp A, B
1408  //     C = seteq
1409  //     cmp D, E
1410  //     F = setle
1411  //     or C, F
1412  //     jnz foo
1413  // Emit:
1414  //     cmp A, B
1415  //     je foo
1416  //     cmp D, E
1417  //     jle foo
1418  //
1419  if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1420    if (!TLI.isJumpExpensive() &&
1421        BOp->hasOneUse() &&
1422        (BOp->getOpcode() == Instruction::And ||
1423         BOp->getOpcode() == Instruction::Or)) {
1424      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1425                           BOp->getOpcode());
1426      // If the compares in later blocks need to use values not currently
1427      // exported from this block, export them now.  This block should always
1428      // be the first entry.
1429      assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1430
1431      // Allow some cases to be rejected.
1432      if (ShouldEmitAsBranches(SwitchCases)) {
1433        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1434          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1435          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1436        }
1437
1438        // Emit the branch for this block.
1439        visitSwitchCase(SwitchCases[0], BrMBB);
1440        SwitchCases.erase(SwitchCases.begin());
1441        return;
1442      }
1443
1444      // Okay, we decided not to do this, remove any inserted MBB's and clear
1445      // SwitchCases.
1446      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1447        FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1448
1449      SwitchCases.clear();
1450    }
1451  }
1452
1453  // Create a CaseBlock record representing this branch.
1454  CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1455               NULL, Succ0MBB, Succ1MBB, BrMBB);
1456
1457  // Use visitSwitchCase to actually insert the fast branch sequence for this
1458  // cond branch.
1459  visitSwitchCase(CB, BrMBB);
1460}
1461
1462/// visitSwitchCase - Emits the necessary code to represent a single node in
1463/// the binary search tree resulting from lowering a switch instruction.
1464void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1465                                          MachineBasicBlock *SwitchBB) {
1466  SDValue Cond;
1467  SDValue CondLHS = getValue(CB.CmpLHS);
1468  DebugLoc dl = getCurDebugLoc();
1469
1470  // Build the setcc now.
1471  if (CB.CmpMHS == NULL) {
1472    // Fold "(X == true)" to X and "(X == false)" to !X to
1473    // handle common cases produced by branch lowering.
1474    if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1475        CB.CC == ISD::SETEQ)
1476      Cond = CondLHS;
1477    else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1478             CB.CC == ISD::SETEQ) {
1479      SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1480      Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1481    } else
1482      Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1483  } else {
1484    assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1485
1486    const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1487    const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
1488
1489    SDValue CmpOp = getValue(CB.CmpMHS);
1490    EVT VT = CmpOp.getValueType();
1491
1492    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1493      Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1494                          ISD::SETLE);
1495    } else {
1496      SDValue SUB = DAG.getNode(ISD::SUB, dl,
1497                                VT, CmpOp, DAG.getConstant(Low, VT));
1498      Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1499                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1500    }
1501  }
1502
1503  // Update successor info
1504  SwitchBB->addSuccessor(CB.TrueBB);
1505  SwitchBB->addSuccessor(CB.FalseBB);
1506
1507  // Set NextBlock to be the MBB immediately after the current one, if any.
1508  // This is used to avoid emitting unnecessary branches to the next block.
1509  MachineBasicBlock *NextBlock = 0;
1510  MachineFunction::iterator BBI = SwitchBB;
1511  if (++BBI != FuncInfo.MF->end())
1512    NextBlock = BBI;
1513
1514  // If the lhs block is the next block, invert the condition so that we can
1515  // fall through to the lhs instead of the rhs block.
1516  if (CB.TrueBB == NextBlock) {
1517    std::swap(CB.TrueBB, CB.FalseBB);
1518    SDValue True = DAG.getConstant(1, Cond.getValueType());
1519    Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1520  }
1521
1522  SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1523                               MVT::Other, getControlRoot(), Cond,
1524                               DAG.getBasicBlock(CB.TrueBB));
1525
1526  // Insert the false branch. Do this even if it's a fall through branch,
1527  // this makes it easier to do DAG optimizations which require inverting
1528  // the branch condition.
1529  BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1530                       DAG.getBasicBlock(CB.FalseBB));
1531
1532  DAG.setRoot(BrCond);
1533}
1534
1535/// visitJumpTable - Emit JumpTable node in the current MBB
1536void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1537  // Emit the code for the jump table
1538  assert(JT.Reg != -1U && "Should lower JT Header first!");
1539  EVT PTy = TLI.getPointerTy();
1540  SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1541                                     JT.Reg, PTy);
1542  SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1543  SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(),
1544                                    MVT::Other, Index.getValue(1),
1545                                    Table, Index);
1546  DAG.setRoot(BrJumpTable);
1547}
1548
1549/// visitJumpTableHeader - This function emits necessary code to produce index
1550/// in the JumpTable from switch case.
1551void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1552                                               JumpTableHeader &JTH,
1553                                               MachineBasicBlock *SwitchBB) {
1554  // Subtract the lowest switch case value from the value being switched on and
1555  // conditional branch to default mbb if the result is greater than the
1556  // difference between smallest and largest cases.
1557  SDValue SwitchOp = getValue(JTH.SValue);
1558  EVT VT = SwitchOp.getValueType();
1559  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1560                            DAG.getConstant(JTH.First, VT));
1561
1562  // The SDNode we just created, which holds the value being switched on minus
1563  // the smallest case value, needs to be copied to a virtual register so it
1564  // can be used as an index into the jump table in a subsequent basic block.
1565  // This value may be smaller or larger than the target's pointer type, and
1566  // therefore require extension or truncating.
1567  SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy());
1568
1569  unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy());
1570  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1571                                    JumpTableReg, SwitchOp);
1572  JT.Reg = JumpTableReg;
1573
1574  // Emit the range check for the jump table, and branch to the default block
1575  // for the switch statement if the value being switched on exceeds the largest
1576  // case in the switch.
1577  SDValue CMP = DAG.getSetCC(getCurDebugLoc(),
1578                             TLI.getSetCCResultType(Sub.getValueType()), Sub,
1579                             DAG.getConstant(JTH.Last-JTH.First,VT),
1580                             ISD::SETUGT);
1581
1582  // Set NextBlock to be the MBB immediately after the current one, if any.
1583  // This is used to avoid emitting unnecessary branches to the next block.
1584  MachineBasicBlock *NextBlock = 0;
1585  MachineFunction::iterator BBI = SwitchBB;
1586
1587  if (++BBI != FuncInfo.MF->end())
1588    NextBlock = BBI;
1589
1590  SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1591                               MVT::Other, CopyTo, CMP,
1592                               DAG.getBasicBlock(JT.Default));
1593
1594  if (JT.MBB != NextBlock)
1595    BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond,
1596                         DAG.getBasicBlock(JT.MBB));
1597
1598  DAG.setRoot(BrCond);
1599}
1600
1601/// visitBitTestHeader - This function emits necessary code to produce value
1602/// suitable for "bit tests"
1603void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1604                                             MachineBasicBlock *SwitchBB) {
1605  // Subtract the minimum value
1606  SDValue SwitchOp = getValue(B.SValue);
1607  EVT VT = SwitchOp.getValueType();
1608  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1609                            DAG.getConstant(B.First, VT));
1610
1611  // Check range
1612  SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(),
1613                                  TLI.getSetCCResultType(Sub.getValueType()),
1614                                  Sub, DAG.getConstant(B.Range, VT),
1615                                  ISD::SETUGT);
1616
1617  // Determine the type of the test operands.
1618  bool UsePtrType = false;
1619  if (!TLI.isTypeLegal(VT))
1620    UsePtrType = true;
1621  else {
1622    for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
1623      if ((uint64_t)((int64_t)B.Cases[i].Mask >> VT.getSizeInBits()) + 1 >= 2) {
1624        // Switch table case range are encoded into series of masks.
1625        // Just use pointer type, it's guaranteed to fit.
1626        UsePtrType = true;
1627        break;
1628      }
1629  }
1630  if (UsePtrType) {
1631    VT = TLI.getPointerTy();
1632    Sub = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), VT);
1633  }
1634
1635  B.RegVT = VT;
1636  B.Reg = FuncInfo.CreateReg(VT);
1637  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1638                                    B.Reg, Sub);
1639
1640  // Set NextBlock to be the MBB immediately after the current one, if any.
1641  // This is used to avoid emitting unnecessary branches to the next block.
1642  MachineBasicBlock *NextBlock = 0;
1643  MachineFunction::iterator BBI = SwitchBB;
1644  if (++BBI != FuncInfo.MF->end())
1645    NextBlock = BBI;
1646
1647  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1648
1649  SwitchBB->addSuccessor(B.Default);
1650  SwitchBB->addSuccessor(MBB);
1651
1652  SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1653                                MVT::Other, CopyTo, RangeCmp,
1654                                DAG.getBasicBlock(B.Default));
1655
1656  if (MBB != NextBlock)
1657    BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo,
1658                          DAG.getBasicBlock(MBB));
1659
1660  DAG.setRoot(BrRange);
1661}
1662
1663/// visitBitTestCase - this function produces one "bit test"
1664void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
1665                                           MachineBasicBlock* NextMBB,
1666                                           unsigned Reg,
1667                                           BitTestCase &B,
1668                                           MachineBasicBlock *SwitchBB) {
1669  EVT VT = BB.RegVT;
1670  SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1671                                       Reg, VT);
1672  SDValue Cmp;
1673  if (CountPopulation_64(B.Mask) == 1) {
1674    // Testing for a single bit; just compare the shift count with what it
1675    // would need to be to shift a 1 bit in that position.
1676    Cmp = DAG.getSetCC(getCurDebugLoc(),
1677                       TLI.getSetCCResultType(VT),
1678                       ShiftOp,
1679                       DAG.getConstant(CountTrailingZeros_64(B.Mask), VT),
1680                       ISD::SETEQ);
1681  } else {
1682    // Make desired shift
1683    SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), VT,
1684                                    DAG.getConstant(1, VT), ShiftOp);
1685
1686    // Emit bit tests and jumps
1687    SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(),
1688                                VT, SwitchVal, DAG.getConstant(B.Mask, VT));
1689    Cmp = DAG.getSetCC(getCurDebugLoc(),
1690                       TLI.getSetCCResultType(VT),
1691                       AndOp, DAG.getConstant(0, VT),
1692                       ISD::SETNE);
1693  }
1694
1695  SwitchBB->addSuccessor(B.TargetBB);
1696  SwitchBB->addSuccessor(NextMBB);
1697
1698  SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1699                              MVT::Other, getControlRoot(),
1700                              Cmp, DAG.getBasicBlock(B.TargetBB));
1701
1702  // Set NextBlock to be the MBB immediately after the current one, if any.
1703  // This is used to avoid emitting unnecessary branches to the next block.
1704  MachineBasicBlock *NextBlock = 0;
1705  MachineFunction::iterator BBI = SwitchBB;
1706  if (++BBI != FuncInfo.MF->end())
1707    NextBlock = BBI;
1708
1709  if (NextMBB != NextBlock)
1710    BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd,
1711                        DAG.getBasicBlock(NextMBB));
1712
1713  DAG.setRoot(BrAnd);
1714}
1715
1716void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1717  MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
1718
1719  // Retrieve successors.
1720  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1721  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1722
1723  const Value *Callee(I.getCalledValue());
1724  if (isa<InlineAsm>(Callee))
1725    visitInlineAsm(&I);
1726  else
1727    LowerCallTo(&I, getValue(Callee), false, LandingPad);
1728
1729  // If the value of the invoke is used outside of its defining block, make it
1730  // available as a virtual register.
1731  CopyToExportRegsIfNeeded(&I);
1732
1733  // Update successor info
1734  InvokeMBB->addSuccessor(Return);
1735  InvokeMBB->addSuccessor(LandingPad);
1736
1737  // Drop into normal successor.
1738  DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1739                          MVT::Other, getControlRoot(),
1740                          DAG.getBasicBlock(Return)));
1741}
1742
1743void SelectionDAGBuilder::visitUnwind(const UnwindInst &I) {
1744}
1745
1746/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1747/// small case ranges).
1748bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
1749                                                 CaseRecVector& WorkList,
1750                                                 const Value* SV,
1751                                                 MachineBasicBlock *Default,
1752                                                 MachineBasicBlock *SwitchBB) {
1753  Case& BackCase  = *(CR.Range.second-1);
1754
1755  // Size is the number of Cases represented by this range.
1756  size_t Size = CR.Range.second - CR.Range.first;
1757  if (Size > 3)
1758    return false;
1759
1760  // Get the MachineFunction which holds the current MBB.  This is used when
1761  // inserting any additional MBBs necessary to represent the switch.
1762  MachineFunction *CurMF = FuncInfo.MF;
1763
1764  // Figure out which block is immediately after the current one.
1765  MachineBasicBlock *NextBlock = 0;
1766  MachineFunction::iterator BBI = CR.CaseBB;
1767
1768  if (++BBI != FuncInfo.MF->end())
1769    NextBlock = BBI;
1770
1771  // If any two of the cases has the same destination, and if one value
1772  // is the same as the other, but has one bit unset that the other has set,
1773  // use bit manipulation to do two compares at once.  For example:
1774  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1775  // TODO: This could be extended to merge any 2 cases in switches with 3 cases.
1776  // TODO: Handle cases where CR.CaseBB != SwitchBB.
1777  if (Size == 2 && CR.CaseBB == SwitchBB) {
1778    Case &Small = *CR.Range.first;
1779    Case &Big = *(CR.Range.second-1);
1780
1781    if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) {
1782      const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue();
1783      const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue();
1784
1785      // Check that there is only one bit different.
1786      if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 &&
1787          (SmallValue | BigValue) == BigValue) {
1788        // Isolate the common bit.
1789        APInt CommonBit = BigValue & ~SmallValue;
1790        assert((SmallValue | CommonBit) == BigValue &&
1791               CommonBit.countPopulation() == 1 && "Not a common bit?");
1792
1793        SDValue CondLHS = getValue(SV);
1794        EVT VT = CondLHS.getValueType();
1795        DebugLoc DL = getCurDebugLoc();
1796
1797        SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
1798                                 DAG.getConstant(CommonBit, VT));
1799        SDValue Cond = DAG.getSetCC(DL, MVT::i1,
1800                                    Or, DAG.getConstant(BigValue, VT),
1801                                    ISD::SETEQ);
1802
1803        // Update successor info.
1804        SwitchBB->addSuccessor(Small.BB);
1805        SwitchBB->addSuccessor(Default);
1806
1807        // Insert the true branch.
1808        SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other,
1809                                     getControlRoot(), Cond,
1810                                     DAG.getBasicBlock(Small.BB));
1811
1812        // Insert the false branch.
1813        BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
1814                             DAG.getBasicBlock(Default));
1815
1816        DAG.setRoot(BrCond);
1817        return true;
1818      }
1819    }
1820  }
1821
1822  // Rearrange the case blocks so that the last one falls through if possible.
1823  if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1824    // The last case block won't fall through into 'NextBlock' if we emit the
1825    // branches in this order.  See if rearranging a case value would help.
1826    for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1827      if (I->BB == NextBlock) {
1828        std::swap(*I, BackCase);
1829        break;
1830      }
1831    }
1832  }
1833
1834  // Create a CaseBlock record representing a conditional branch to
1835  // the Case's target mbb if the value being switched on SV is equal
1836  // to C.
1837  MachineBasicBlock *CurBlock = CR.CaseBB;
1838  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1839    MachineBasicBlock *FallThrough;
1840    if (I != E-1) {
1841      FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
1842      CurMF->insert(BBI, FallThrough);
1843
1844      // Put SV in a virtual register to make it available from the new blocks.
1845      ExportFromCurrentBlock(SV);
1846    } else {
1847      // If the last case doesn't match, go to the default block.
1848      FallThrough = Default;
1849    }
1850
1851    const Value *RHS, *LHS, *MHS;
1852    ISD::CondCode CC;
1853    if (I->High == I->Low) {
1854      // This is just small small case range :) containing exactly 1 case
1855      CC = ISD::SETEQ;
1856      LHS = SV; RHS = I->High; MHS = NULL;
1857    } else {
1858      CC = ISD::SETLE;
1859      LHS = I->Low; MHS = SV; RHS = I->High;
1860    }
1861    CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock);
1862
1863    // If emitting the first comparison, just call visitSwitchCase to emit the
1864    // code into the current block.  Otherwise, push the CaseBlock onto the
1865    // vector to be later processed by SDISel, and insert the node's MBB
1866    // before the next MBB.
1867    if (CurBlock == SwitchBB)
1868      visitSwitchCase(CB, SwitchBB);
1869    else
1870      SwitchCases.push_back(CB);
1871
1872    CurBlock = FallThrough;
1873  }
1874
1875  return true;
1876}
1877
1878static inline bool areJTsAllowed(const TargetLowering &TLI) {
1879  return !DisableJumpTables &&
1880          (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
1881           TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
1882}
1883
1884static APInt ComputeRange(const APInt &First, const APInt &Last) {
1885  uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
1886  APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth);
1887  return (LastExt - FirstExt + 1ULL);
1888}
1889
1890/// handleJTSwitchCase - Emit jumptable for current switch case range
1891bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec& CR,
1892                                             CaseRecVector& WorkList,
1893                                             const Value* SV,
1894                                             MachineBasicBlock* Default,
1895                                             MachineBasicBlock *SwitchBB) {
1896  Case& FrontCase = *CR.Range.first;
1897  Case& BackCase  = *(CR.Range.second-1);
1898
1899  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
1900  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
1901
1902  APInt TSize(First.getBitWidth(), 0);
1903  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1904       I!=E; ++I)
1905    TSize += I->size();
1906
1907  if (!areJTsAllowed(TLI) || TSize.ult(4))
1908    return false;
1909
1910  APInt Range = ComputeRange(First, Last);
1911  double Density = TSize.roundToDouble() / Range.roundToDouble();
1912  if (Density < 0.4)
1913    return false;
1914
1915  DEBUG(dbgs() << "Lowering jump table\n"
1916               << "First entry: " << First << ". Last entry: " << Last << '\n'
1917               << "Range: " << Range
1918               << "Size: " << TSize << ". Density: " << Density << "\n\n");
1919
1920  // Get the MachineFunction which holds the current MBB.  This is used when
1921  // inserting any additional MBBs necessary to represent the switch.
1922  MachineFunction *CurMF = FuncInfo.MF;
1923
1924  // Figure out which block is immediately after the current one.
1925  MachineFunction::iterator BBI = CR.CaseBB;
1926  ++BBI;
1927
1928  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1929
1930  // Create a new basic block to hold the code for loading the address
1931  // of the jump table, and jumping to it.  Update successor information;
1932  // we will either branch to the default case for the switch, or the jump
1933  // table.
1934  MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1935  CurMF->insert(BBI, JumpTableBB);
1936  CR.CaseBB->addSuccessor(Default);
1937  CR.CaseBB->addSuccessor(JumpTableBB);
1938
1939  // Build a vector of destination BBs, corresponding to each target
1940  // of the jump table. If the value of the jump table slot corresponds to
1941  // a case statement, push the case's BB onto the vector, otherwise, push
1942  // the default BB.
1943  std::vector<MachineBasicBlock*> DestBBs;
1944  APInt TEI = First;
1945  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
1946    const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
1947    const APInt &High = cast<ConstantInt>(I->High)->getValue();
1948
1949    if (Low.sle(TEI) && TEI.sle(High)) {
1950      DestBBs.push_back(I->BB);
1951      if (TEI==High)
1952        ++I;
1953    } else {
1954      DestBBs.push_back(Default);
1955    }
1956  }
1957
1958  // Update successor info. Add one edge to each unique successor.
1959  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
1960  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
1961         E = DestBBs.end(); I != E; ++I) {
1962    if (!SuccsHandled[(*I)->getNumber()]) {
1963      SuccsHandled[(*I)->getNumber()] = true;
1964      JumpTableBB->addSuccessor(*I);
1965    }
1966  }
1967
1968  // Create a jump table index for this jump table.
1969  unsigned JTEncoding = TLI.getJumpTableEncoding();
1970  unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
1971                       ->createJumpTableIndex(DestBBs);
1972
1973  // Set the jump table information so that we can codegen it as a second
1974  // MachineBasicBlock
1975  JumpTable JT(-1U, JTI, JumpTableBB, Default);
1976  JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
1977  if (CR.CaseBB == SwitchBB)
1978    visitJumpTableHeader(JT, JTH, SwitchBB);
1979
1980  JTCases.push_back(JumpTableBlock(JTH, JT));
1981
1982  return true;
1983}
1984
1985/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
1986/// 2 subtrees.
1987bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
1988                                                  CaseRecVector& WorkList,
1989                                                  const Value* SV,
1990                                                  MachineBasicBlock *Default,
1991                                                  MachineBasicBlock *SwitchBB) {
1992  // Get the MachineFunction which holds the current MBB.  This is used when
1993  // inserting any additional MBBs necessary to represent the switch.
1994  MachineFunction *CurMF = FuncInfo.MF;
1995
1996  // Figure out which block is immediately after the current one.
1997  MachineFunction::iterator BBI = CR.CaseBB;
1998  ++BBI;
1999
2000  Case& FrontCase = *CR.Range.first;
2001  Case& BackCase  = *(CR.Range.second-1);
2002  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2003
2004  // Size is the number of Cases represented by this range.
2005  unsigned Size = CR.Range.second - CR.Range.first;
2006
2007  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2008  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2009  double FMetric = 0;
2010  CaseItr Pivot = CR.Range.first + Size/2;
2011
2012  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
2013  // (heuristically) allow us to emit JumpTable's later.
2014  APInt TSize(First.getBitWidth(), 0);
2015  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2016       I!=E; ++I)
2017    TSize += I->size();
2018
2019  APInt LSize = FrontCase.size();
2020  APInt RSize = TSize-LSize;
2021  DEBUG(dbgs() << "Selecting best pivot: \n"
2022               << "First: " << First << ", Last: " << Last <<'\n'
2023               << "LSize: " << LSize << ", RSize: " << RSize << '\n');
2024  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
2025       J!=E; ++I, ++J) {
2026    const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
2027    const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
2028    APInt Range = ComputeRange(LEnd, RBegin);
2029    assert((Range - 2ULL).isNonNegative() &&
2030           "Invalid case distance");
2031    double LDensity = (double)LSize.roundToDouble() /
2032                           (LEnd - First + 1ULL).roundToDouble();
2033    double RDensity = (double)RSize.roundToDouble() /
2034                           (Last - RBegin + 1ULL).roundToDouble();
2035    double Metric = Range.logBase2()*(LDensity+RDensity);
2036    // Should always split in some non-trivial place
2037    DEBUG(dbgs() <<"=>Step\n"
2038                 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
2039                 << "LDensity: " << LDensity
2040                 << ", RDensity: " << RDensity << '\n'
2041                 << "Metric: " << Metric << '\n');
2042    if (FMetric < Metric) {
2043      Pivot = J;
2044      FMetric = Metric;
2045      DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
2046    }
2047
2048    LSize += J->size();
2049    RSize -= J->size();
2050  }
2051  if (areJTsAllowed(TLI)) {
2052    // If our case is dense we *really* should handle it earlier!
2053    assert((FMetric > 0) && "Should handle dense range earlier!");
2054  } else {
2055    Pivot = CR.Range.first + Size/2;
2056  }
2057
2058  CaseRange LHSR(CR.Range.first, Pivot);
2059  CaseRange RHSR(Pivot, CR.Range.second);
2060  Constant *C = Pivot->Low;
2061  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
2062
2063  // We know that we branch to the LHS if the Value being switched on is
2064  // less than the Pivot value, C.  We use this to optimize our binary
2065  // tree a bit, by recognizing that if SV is greater than or equal to the
2066  // LHS's Case Value, and that Case Value is exactly one less than the
2067  // Pivot's Value, then we can branch directly to the LHS's Target,
2068  // rather than creating a leaf node for it.
2069  if ((LHSR.second - LHSR.first) == 1 &&
2070      LHSR.first->High == CR.GE &&
2071      cast<ConstantInt>(C)->getValue() ==
2072      (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
2073    TrueBB = LHSR.first->BB;
2074  } else {
2075    TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2076    CurMF->insert(BBI, TrueBB);
2077    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
2078
2079    // Put SV in a virtual register to make it available from the new blocks.
2080    ExportFromCurrentBlock(SV);
2081  }
2082
2083  // Similar to the optimization above, if the Value being switched on is
2084  // known to be less than the Constant CR.LT, and the current Case Value
2085  // is CR.LT - 1, then we can branch directly to the target block for
2086  // the current Case Value, rather than emitting a RHS leaf node for it.
2087  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
2088      cast<ConstantInt>(RHSR.first->Low)->getValue() ==
2089      (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
2090    FalseBB = RHSR.first->BB;
2091  } else {
2092    FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2093    CurMF->insert(BBI, FalseBB);
2094    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
2095
2096    // Put SV in a virtual register to make it available from the new blocks.
2097    ExportFromCurrentBlock(SV);
2098  }
2099
2100  // Create a CaseBlock record representing a conditional branch to
2101  // the LHS node if the value being switched on SV is less than C.
2102  // Otherwise, branch to LHS.
2103  CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
2104
2105  if (CR.CaseBB == SwitchBB)
2106    visitSwitchCase(CB, SwitchBB);
2107  else
2108    SwitchCases.push_back(CB);
2109
2110  return true;
2111}
2112
2113/// handleBitTestsSwitchCase - if current case range has few destination and
2114/// range span less, than machine word bitwidth, encode case range into series
2115/// of masks and emit bit tests with these masks.
2116bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
2117                                                   CaseRecVector& WorkList,
2118                                                   const Value* SV,
2119                                                   MachineBasicBlock* Default,
2120                                                   MachineBasicBlock *SwitchBB){
2121  EVT PTy = TLI.getPointerTy();
2122  unsigned IntPtrBits = PTy.getSizeInBits();
2123
2124  Case& FrontCase = *CR.Range.first;
2125  Case& BackCase  = *(CR.Range.second-1);
2126
2127  // Get the MachineFunction which holds the current MBB.  This is used when
2128  // inserting any additional MBBs necessary to represent the switch.
2129  MachineFunction *CurMF = FuncInfo.MF;
2130
2131  // If target does not have legal shift left, do not emit bit tests at all.
2132  if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
2133    return false;
2134
2135  size_t numCmps = 0;
2136  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2137       I!=E; ++I) {
2138    // Single case counts one, case range - two.
2139    numCmps += (I->Low == I->High ? 1 : 2);
2140  }
2141
2142  // Count unique destinations
2143  SmallSet<MachineBasicBlock*, 4> Dests;
2144  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2145    Dests.insert(I->BB);
2146    if (Dests.size() > 3)
2147      // Don't bother the code below, if there are too much unique destinations
2148      return false;
2149  }
2150  DEBUG(dbgs() << "Total number of unique destinations: "
2151        << Dests.size() << '\n'
2152        << "Total number of comparisons: " << numCmps << '\n');
2153
2154  // Compute span of values.
2155  const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
2156  const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
2157  APInt cmpRange = maxValue - minValue;
2158
2159  DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
2160               << "Low bound: " << minValue << '\n'
2161               << "High bound: " << maxValue << '\n');
2162
2163  if (cmpRange.uge(IntPtrBits) ||
2164      (!(Dests.size() == 1 && numCmps >= 3) &&
2165       !(Dests.size() == 2 && numCmps >= 5) &&
2166       !(Dests.size() >= 3 && numCmps >= 6)))
2167    return false;
2168
2169  DEBUG(dbgs() << "Emitting bit tests\n");
2170  APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
2171
2172  // Optimize the case where all the case values fit in a
2173  // word without having to subtract minValue. In this case,
2174  // we can optimize away the subtraction.
2175  if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) {
2176    cmpRange = maxValue;
2177  } else {
2178    lowBound = minValue;
2179  }
2180
2181  CaseBitsVector CasesBits;
2182  unsigned i, count = 0;
2183
2184  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2185    MachineBasicBlock* Dest = I->BB;
2186    for (i = 0; i < count; ++i)
2187      if (Dest == CasesBits[i].BB)
2188        break;
2189
2190    if (i == count) {
2191      assert((count < 3) && "Too much destinations to test!");
2192      CasesBits.push_back(CaseBits(0, Dest, 0));
2193      count++;
2194    }
2195
2196    const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
2197    const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
2198
2199    uint64_t lo = (lowValue - lowBound).getZExtValue();
2200    uint64_t hi = (highValue - lowBound).getZExtValue();
2201
2202    for (uint64_t j = lo; j <= hi; j++) {
2203      CasesBits[i].Mask |=  1ULL << j;
2204      CasesBits[i].Bits++;
2205    }
2206
2207  }
2208  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2209
2210  BitTestInfo BTC;
2211
2212  // Figure out which block is immediately after the current one.
2213  MachineFunction::iterator BBI = CR.CaseBB;
2214  ++BBI;
2215
2216  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2217
2218  DEBUG(dbgs() << "Cases:\n");
2219  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2220    DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
2221                 << ", Bits: " << CasesBits[i].Bits
2222                 << ", BB: " << CasesBits[i].BB << '\n');
2223
2224    MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2225    CurMF->insert(BBI, CaseBB);
2226    BTC.push_back(BitTestCase(CasesBits[i].Mask,
2227                              CaseBB,
2228                              CasesBits[i].BB));
2229
2230    // Put SV in a virtual register to make it available from the new blocks.
2231    ExportFromCurrentBlock(SV);
2232  }
2233
2234  BitTestBlock BTB(lowBound, cmpRange, SV,
2235                   -1U, MVT::Other, (CR.CaseBB == SwitchBB),
2236                   CR.CaseBB, Default, BTC);
2237
2238  if (CR.CaseBB == SwitchBB)
2239    visitBitTestHeader(BTB, SwitchBB);
2240
2241  BitTestCases.push_back(BTB);
2242
2243  return true;
2244}
2245
2246/// Clusterify - Transform simple list of Cases into list of CaseRange's
2247size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
2248                                       const SwitchInst& SI) {
2249  size_t numCmps = 0;
2250
2251  // Start with "simple" cases
2252  for (size_t i = 1; i < SI.getNumSuccessors(); ++i) {
2253    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
2254    Cases.push_back(Case(SI.getSuccessorValue(i),
2255                         SI.getSuccessorValue(i),
2256                         SMBB));
2257  }
2258  std::sort(Cases.begin(), Cases.end(), CaseCmp());
2259
2260  // Merge case into clusters
2261  if (Cases.size() >= 2)
2262    // Must recompute end() each iteration because it may be
2263    // invalidated by erase if we hold on to it
2264    for (CaseItr I = Cases.begin(), J = ++(Cases.begin()); J != Cases.end(); ) {
2265      const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
2266      const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
2267      MachineBasicBlock* nextBB = J->BB;
2268      MachineBasicBlock* currentBB = I->BB;
2269
2270      // If the two neighboring cases go to the same destination, merge them
2271      // into a single case.
2272      if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
2273        I->High = J->High;
2274        J = Cases.erase(J);
2275      } else {
2276        I = J++;
2277      }
2278    }
2279
2280  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
2281    if (I->Low != I->High)
2282      // A range counts double, since it requires two compares.
2283      ++numCmps;
2284  }
2285
2286  return numCmps;
2287}
2288
2289void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2290                                           MachineBasicBlock *Last) {
2291  // Update JTCases.
2292  for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2293    if (JTCases[i].first.HeaderBB == First)
2294      JTCases[i].first.HeaderBB = Last;
2295
2296  // Update BitTestCases.
2297  for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2298    if (BitTestCases[i].Parent == First)
2299      BitTestCases[i].Parent = Last;
2300}
2301
2302void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
2303  MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
2304
2305  // Figure out which block is immediately after the current one.
2306  MachineBasicBlock *NextBlock = 0;
2307  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2308
2309  // If there is only the default destination, branch to it if it is not the
2310  // next basic block.  Otherwise, just fall through.
2311  if (SI.getNumOperands() == 2) {
2312    // Update machine-CFG edges.
2313
2314    // If this is not a fall-through branch, emit the branch.
2315    SwitchMBB->addSuccessor(Default);
2316    if (Default != NextBlock)
2317      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
2318                              MVT::Other, getControlRoot(),
2319                              DAG.getBasicBlock(Default)));
2320
2321    return;
2322  }
2323
2324  // If there are any non-default case statements, create a vector of Cases
2325  // representing each one, and sort the vector so that we can efficiently
2326  // create a binary search tree from them.
2327  CaseVector Cases;
2328  size_t numCmps = Clusterify(Cases, SI);
2329  DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2330               << ". Total compares: " << numCmps << '\n');
2331  numCmps = 0;
2332
2333  // Get the Value to be switched on and default basic blocks, which will be
2334  // inserted into CaseBlock records, representing basic blocks in the binary
2335  // search tree.
2336  const Value *SV = SI.getOperand(0);
2337
2338  // Push the initial CaseRec onto the worklist
2339  CaseRecVector WorkList;
2340  WorkList.push_back(CaseRec(SwitchMBB,0,0,
2341                             CaseRange(Cases.begin(),Cases.end())));
2342
2343  while (!WorkList.empty()) {
2344    // Grab a record representing a case range to process off the worklist
2345    CaseRec CR = WorkList.back();
2346    WorkList.pop_back();
2347
2348    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2349      continue;
2350
2351    // If the range has few cases (two or less) emit a series of specific
2352    // tests.
2353    if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
2354      continue;
2355
2356    // If the switch has more than 5 blocks, and at least 40% dense, and the
2357    // target supports indirect branches, then emit a jump table rather than
2358    // lowering the switch to a binary tree of conditional branches.
2359    if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2360      continue;
2361
2362    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2363    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2364    handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
2365  }
2366}
2367
2368void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2369  MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2370
2371  // Update machine-CFG edges with unique successors.
2372  SmallVector<BasicBlock*, 32> succs;
2373  succs.reserve(I.getNumSuccessors());
2374  for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i)
2375    succs.push_back(I.getSuccessor(i));
2376  array_pod_sort(succs.begin(), succs.end());
2377  succs.erase(std::unique(succs.begin(), succs.end()), succs.end());
2378  for (unsigned i = 0, e = succs.size(); i != e; ++i)
2379    IndirectBrMBB->addSuccessor(FuncInfo.MBBMap[succs[i]]);
2380
2381  DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(),
2382                          MVT::Other, getControlRoot(),
2383                          getValue(I.getAddress())));
2384}
2385
2386void SelectionDAGBuilder::visitFSub(const User &I) {
2387  // -0.0 - X --> fneg
2388  const Type *Ty = I.getType();
2389  if (Ty->isVectorTy()) {
2390    if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) {
2391      const VectorType *DestTy = cast<VectorType>(I.getType());
2392      const Type *ElTy = DestTy->getElementType();
2393      unsigned VL = DestTy->getNumElements();
2394      std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy));
2395      Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size());
2396      if (CV == CNZ) {
2397        SDValue Op2 = getValue(I.getOperand(1));
2398        setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2399                                 Op2.getValueType(), Op2));
2400        return;
2401      }
2402    }
2403  }
2404
2405  if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
2406    if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) {
2407      SDValue Op2 = getValue(I.getOperand(1));
2408      setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2409                               Op2.getValueType(), Op2));
2410      return;
2411    }
2412
2413  visitBinary(I, ISD::FSUB);
2414}
2415
2416void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2417  SDValue Op1 = getValue(I.getOperand(0));
2418  SDValue Op2 = getValue(I.getOperand(1));
2419  setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(),
2420                           Op1.getValueType(), Op1, Op2));
2421}
2422
2423void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2424  SDValue Op1 = getValue(I.getOperand(0));
2425  SDValue Op2 = getValue(I.getOperand(1));
2426  if (!I.getType()->isVectorTy() &&
2427      Op2.getValueType() != TLI.getShiftAmountTy()) {
2428    // If the operand is smaller than the shift count type, promote it.
2429    EVT PTy = TLI.getPointerTy();
2430    EVT STy = TLI.getShiftAmountTy();
2431    if (STy.bitsGT(Op2.getValueType()))
2432      Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(),
2433                        TLI.getShiftAmountTy(), Op2);
2434    // If the operand is larger than the shift count type but the shift
2435    // count type has enough bits to represent any shift value, truncate
2436    // it now. This is a common case and it exposes the truncate to
2437    // optimization early.
2438    else if (STy.getSizeInBits() >=
2439             Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2440      Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2441                        TLI.getShiftAmountTy(), Op2);
2442    // Otherwise we'll need to temporarily settle for some other
2443    // convenient type; type legalization will make adjustments as
2444    // needed.
2445    else if (PTy.bitsLT(Op2.getValueType()))
2446      Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2447                        TLI.getPointerTy(), Op2);
2448    else if (PTy.bitsGT(Op2.getValueType()))
2449      Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(),
2450                        TLI.getPointerTy(), Op2);
2451  }
2452
2453  setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(),
2454                           Op1.getValueType(), Op1, Op2));
2455}
2456
2457void SelectionDAGBuilder::visitICmp(const User &I) {
2458  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2459  if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2460    predicate = IC->getPredicate();
2461  else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2462    predicate = ICmpInst::Predicate(IC->getPredicate());
2463  SDValue Op1 = getValue(I.getOperand(0));
2464  SDValue Op2 = getValue(I.getOperand(1));
2465  ISD::CondCode Opcode = getICmpCondCode(predicate);
2466
2467  EVT DestVT = TLI.getValueType(I.getType());
2468  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode));
2469}
2470
2471void SelectionDAGBuilder::visitFCmp(const User &I) {
2472  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2473  if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2474    predicate = FC->getPredicate();
2475  else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2476    predicate = FCmpInst::Predicate(FC->getPredicate());
2477  SDValue Op1 = getValue(I.getOperand(0));
2478  SDValue Op2 = getValue(I.getOperand(1));
2479  ISD::CondCode Condition = getFCmpCondCode(predicate);
2480  EVT DestVT = TLI.getValueType(I.getType());
2481  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition));
2482}
2483
2484void SelectionDAGBuilder::visitSelect(const User &I) {
2485  SmallVector<EVT, 4> ValueVTs;
2486  ComputeValueVTs(TLI, I.getType(), ValueVTs);
2487  unsigned NumValues = ValueVTs.size();
2488  if (NumValues == 0) return;
2489
2490  SmallVector<SDValue, 4> Values(NumValues);
2491  SDValue Cond     = getValue(I.getOperand(0));
2492  SDValue TrueVal  = getValue(I.getOperand(1));
2493  SDValue FalseVal = getValue(I.getOperand(2));
2494
2495  for (unsigned i = 0; i != NumValues; ++i)
2496    Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(),
2497                          TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2498                            Cond,
2499                            SDValue(TrueVal.getNode(),
2500                                    TrueVal.getResNo() + i),
2501                            SDValue(FalseVal.getNode(),
2502                                    FalseVal.getResNo() + i));
2503
2504  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2505                           DAG.getVTList(&ValueVTs[0], NumValues),
2506                           &Values[0], NumValues));
2507}
2508
2509void SelectionDAGBuilder::visitTrunc(const User &I) {
2510  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2511  SDValue N = getValue(I.getOperand(0));
2512  EVT DestVT = TLI.getValueType(I.getType());
2513  setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N));
2514}
2515
2516void SelectionDAGBuilder::visitZExt(const User &I) {
2517  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2518  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2519  SDValue N = getValue(I.getOperand(0));
2520  EVT DestVT = TLI.getValueType(I.getType());
2521  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N));
2522}
2523
2524void SelectionDAGBuilder::visitSExt(const User &I) {
2525  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2526  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2527  SDValue N = getValue(I.getOperand(0));
2528  EVT DestVT = TLI.getValueType(I.getType());
2529  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N));
2530}
2531
2532void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2533  // FPTrunc is never a no-op cast, no need to check
2534  SDValue N = getValue(I.getOperand(0));
2535  EVT DestVT = TLI.getValueType(I.getType());
2536  setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(),
2537                           DestVT, N, DAG.getIntPtrConstant(0)));
2538}
2539
2540void SelectionDAGBuilder::visitFPExt(const User &I){
2541  // FPTrunc is never a no-op cast, no need to check
2542  SDValue N = getValue(I.getOperand(0));
2543  EVT DestVT = TLI.getValueType(I.getType());
2544  setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N));
2545}
2546
2547void SelectionDAGBuilder::visitFPToUI(const User &I) {
2548  // FPToUI is never a no-op cast, no need to check
2549  SDValue N = getValue(I.getOperand(0));
2550  EVT DestVT = TLI.getValueType(I.getType());
2551  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N));
2552}
2553
2554void SelectionDAGBuilder::visitFPToSI(const User &I) {
2555  // FPToSI is never a no-op cast, no need to check
2556  SDValue N = getValue(I.getOperand(0));
2557  EVT DestVT = TLI.getValueType(I.getType());
2558  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N));
2559}
2560
2561void SelectionDAGBuilder::visitUIToFP(const User &I) {
2562  // UIToFP is never a no-op cast, no need to check
2563  SDValue N = getValue(I.getOperand(0));
2564  EVT DestVT = TLI.getValueType(I.getType());
2565  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N));
2566}
2567
2568void SelectionDAGBuilder::visitSIToFP(const User &I){
2569  // SIToFP is never a no-op cast, no need to check
2570  SDValue N = getValue(I.getOperand(0));
2571  EVT DestVT = TLI.getValueType(I.getType());
2572  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N));
2573}
2574
2575void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2576  // What to do depends on the size of the integer and the size of the pointer.
2577  // We can either truncate, zero extend, or no-op, accordingly.
2578  SDValue N = getValue(I.getOperand(0));
2579  EVT DestVT = TLI.getValueType(I.getType());
2580  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2581}
2582
2583void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2584  // What to do depends on the size of the integer and the size of the pointer.
2585  // We can either truncate, zero extend, or no-op, accordingly.
2586  SDValue N = getValue(I.getOperand(0));
2587  EVT DestVT = TLI.getValueType(I.getType());
2588  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2589}
2590
2591void SelectionDAGBuilder::visitBitCast(const User &I) {
2592  SDValue N = getValue(I.getOperand(0));
2593  EVT DestVT = TLI.getValueType(I.getType());
2594
2595  // BitCast assures us that source and destination are the same size so this is
2596  // either a BITCAST or a no-op.
2597  if (DestVT != N.getValueType())
2598    setValue(&I, DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
2599                             DestVT, N)); // convert types.
2600  else
2601    setValue(&I, N);            // noop cast.
2602}
2603
2604void SelectionDAGBuilder::visitInsertElement(const User &I) {
2605  SDValue InVec = getValue(I.getOperand(0));
2606  SDValue InVal = getValue(I.getOperand(1));
2607  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2608                              TLI.getPointerTy(),
2609                              getValue(I.getOperand(2)));
2610  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(),
2611                           TLI.getValueType(I.getType()),
2612                           InVec, InVal, InIdx));
2613}
2614
2615void SelectionDAGBuilder::visitExtractElement(const User &I) {
2616  SDValue InVec = getValue(I.getOperand(0));
2617  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2618                              TLI.getPointerTy(),
2619                              getValue(I.getOperand(1)));
2620  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2621                           TLI.getValueType(I.getType()), InVec, InIdx));
2622}
2623
2624// Utility for visitShuffleVector - Returns true if the mask is mask starting
2625// from SIndx and increasing to the element length (undefs are allowed).
2626static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) {
2627  unsigned MaskNumElts = Mask.size();
2628  for (unsigned i = 0; i != MaskNumElts; ++i)
2629    if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx)))
2630      return false;
2631  return true;
2632}
2633
2634void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2635  SmallVector<int, 8> Mask;
2636  SDValue Src1 = getValue(I.getOperand(0));
2637  SDValue Src2 = getValue(I.getOperand(1));
2638
2639  // Convert the ConstantVector mask operand into an array of ints, with -1
2640  // representing undef values.
2641  SmallVector<Constant*, 8> MaskElts;
2642  cast<Constant>(I.getOperand(2))->getVectorElements(MaskElts);
2643  unsigned MaskNumElts = MaskElts.size();
2644  for (unsigned i = 0; i != MaskNumElts; ++i) {
2645    if (isa<UndefValue>(MaskElts[i]))
2646      Mask.push_back(-1);
2647    else
2648      Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue());
2649  }
2650
2651  EVT VT = TLI.getValueType(I.getType());
2652  EVT SrcVT = Src1.getValueType();
2653  unsigned SrcNumElts = SrcVT.getVectorNumElements();
2654
2655  if (SrcNumElts == MaskNumElts) {
2656    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2657                                      &Mask[0]));
2658    return;
2659  }
2660
2661  // Normalize the shuffle vector since mask and vector length don't match.
2662  if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2663    // Mask is longer than the source vectors and is a multiple of the source
2664    // vectors.  We can use concatenate vector to make the mask and vectors
2665    // lengths match.
2666    if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) {
2667      // The shuffle is concatenating two vectors together.
2668      setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2669                               VT, Src1, Src2));
2670      return;
2671    }
2672
2673    // Pad both vectors with undefs to make them the same length as the mask.
2674    unsigned NumConcat = MaskNumElts / SrcNumElts;
2675    bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2676    bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2677    SDValue UndefVal = DAG.getUNDEF(SrcVT);
2678
2679    SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2680    SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2681    MOps1[0] = Src1;
2682    MOps2[0] = Src2;
2683
2684    Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2685                                                  getCurDebugLoc(), VT,
2686                                                  &MOps1[0], NumConcat);
2687    Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2688                                                  getCurDebugLoc(), VT,
2689                                                  &MOps2[0], NumConcat);
2690
2691    // Readjust mask for new input vector length.
2692    SmallVector<int, 8> MappedOps;
2693    for (unsigned i = 0; i != MaskNumElts; ++i) {
2694      int Idx = Mask[i];
2695      if (Idx < (int)SrcNumElts)
2696        MappedOps.push_back(Idx);
2697      else
2698        MappedOps.push_back(Idx + MaskNumElts - SrcNumElts);
2699    }
2700
2701    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2702                                      &MappedOps[0]));
2703    return;
2704  }
2705
2706  if (SrcNumElts > MaskNumElts) {
2707    // Analyze the access pattern of the vector to see if we can extract
2708    // two subvectors and do the shuffle. The analysis is done by calculating
2709    // the range of elements the mask access on both vectors.
2710    int MinRange[2] = { SrcNumElts+1, SrcNumElts+1};
2711    int MaxRange[2] = {-1, -1};
2712
2713    for (unsigned i = 0; i != MaskNumElts; ++i) {
2714      int Idx = Mask[i];
2715      int Input = 0;
2716      if (Idx < 0)
2717        continue;
2718
2719      if (Idx >= (int)SrcNumElts) {
2720        Input = 1;
2721        Idx -= SrcNumElts;
2722      }
2723      if (Idx > MaxRange[Input])
2724        MaxRange[Input] = Idx;
2725      if (Idx < MinRange[Input])
2726        MinRange[Input] = Idx;
2727    }
2728
2729    // Check if the access is smaller than the vector size and can we find
2730    // a reasonable extract index.
2731    int RangeUse[2] = { 2, 2 };  // 0 = Unused, 1 = Extract, 2 = Can not
2732                                 // Extract.
2733    int StartIdx[2];  // StartIdx to extract from
2734    for (int Input=0; Input < 2; ++Input) {
2735      if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) {
2736        RangeUse[Input] = 0; // Unused
2737        StartIdx[Input] = 0;
2738      } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) {
2739        // Fits within range but we should see if we can find a good
2740        // start index that is a multiple of the mask length.
2741        if (MaxRange[Input] < (int)MaskNumElts) {
2742          RangeUse[Input] = 1; // Extract from beginning of the vector
2743          StartIdx[Input] = 0;
2744        } else {
2745          StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2746          if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2747              StartIdx[Input] + MaskNumElts <= SrcNumElts)
2748            RangeUse[Input] = 1; // Extract from a multiple of the mask length.
2749        }
2750      }
2751    }
2752
2753    if (RangeUse[0] == 0 && RangeUse[1] == 0) {
2754      setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
2755      return;
2756    }
2757    else if (RangeUse[0] < 2 && RangeUse[1] < 2) {
2758      // Extract appropriate subvector and generate a vector shuffle
2759      for (int Input=0; Input < 2; ++Input) {
2760        SDValue &Src = Input == 0 ? Src1 : Src2;
2761        if (RangeUse[Input] == 0)
2762          Src = DAG.getUNDEF(VT);
2763        else
2764          Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT,
2765                            Src, DAG.getIntPtrConstant(StartIdx[Input]));
2766      }
2767
2768      // Calculate new mask.
2769      SmallVector<int, 8> MappedOps;
2770      for (unsigned i = 0; i != MaskNumElts; ++i) {
2771        int Idx = Mask[i];
2772        if (Idx < 0)
2773          MappedOps.push_back(Idx);
2774        else if (Idx < (int)SrcNumElts)
2775          MappedOps.push_back(Idx - StartIdx[0]);
2776        else
2777          MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts);
2778      }
2779
2780      setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2781                                        &MappedOps[0]));
2782      return;
2783    }
2784  }
2785
2786  // We can't use either concat vectors or extract subvectors so fall back to
2787  // replacing the shuffle with extract and build vector.
2788  // to insert and build vector.
2789  EVT EltVT = VT.getVectorElementType();
2790  EVT PtrVT = TLI.getPointerTy();
2791  SmallVector<SDValue,8> Ops;
2792  for (unsigned i = 0; i != MaskNumElts; ++i) {
2793    if (Mask[i] < 0) {
2794      Ops.push_back(DAG.getUNDEF(EltVT));
2795    } else {
2796      int Idx = Mask[i];
2797      SDValue Res;
2798
2799      if (Idx < (int)SrcNumElts)
2800        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2801                          EltVT, Src1, DAG.getConstant(Idx, PtrVT));
2802      else
2803        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2804                          EltVT, Src2,
2805                          DAG.getConstant(Idx - SrcNumElts, PtrVT));
2806
2807      Ops.push_back(Res);
2808    }
2809  }
2810
2811  setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
2812                           VT, &Ops[0], Ops.size()));
2813}
2814
2815void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
2816  const Value *Op0 = I.getOperand(0);
2817  const Value *Op1 = I.getOperand(1);
2818  const Type *AggTy = I.getType();
2819  const Type *ValTy = Op1->getType();
2820  bool IntoUndef = isa<UndefValue>(Op0);
2821  bool FromUndef = isa<UndefValue>(Op1);
2822
2823  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.idx_begin(), I.idx_end());
2824
2825  SmallVector<EVT, 4> AggValueVTs;
2826  ComputeValueVTs(TLI, AggTy, AggValueVTs);
2827  SmallVector<EVT, 4> ValValueVTs;
2828  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2829
2830  unsigned NumAggValues = AggValueVTs.size();
2831  unsigned NumValValues = ValValueVTs.size();
2832  SmallVector<SDValue, 4> Values(NumAggValues);
2833
2834  SDValue Agg = getValue(Op0);
2835  SDValue Val = getValue(Op1);
2836  unsigned i = 0;
2837  // Copy the beginning value(s) from the original aggregate.
2838  for (; i != LinearIndex; ++i)
2839    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2840                SDValue(Agg.getNode(), Agg.getResNo() + i);
2841  // Copy values from the inserted value(s).
2842  for (; i != LinearIndex + NumValValues; ++i)
2843    Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2844                SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
2845  // Copy remaining value(s) from the original aggregate.
2846  for (; i != NumAggValues; ++i)
2847    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2848                SDValue(Agg.getNode(), Agg.getResNo() + i);
2849
2850  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2851                           DAG.getVTList(&AggValueVTs[0], NumAggValues),
2852                           &Values[0], NumAggValues));
2853}
2854
2855void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
2856  const Value *Op0 = I.getOperand(0);
2857  const Type *AggTy = Op0->getType();
2858  const Type *ValTy = I.getType();
2859  bool OutOfUndef = isa<UndefValue>(Op0);
2860
2861  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.idx_begin(), I.idx_end());
2862
2863  SmallVector<EVT, 4> ValValueVTs;
2864  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2865
2866  unsigned NumValValues = ValValueVTs.size();
2867  SmallVector<SDValue, 4> Values(NumValValues);
2868
2869  SDValue Agg = getValue(Op0);
2870  // Copy out the selected value(s).
2871  for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
2872    Values[i - LinearIndex] =
2873      OutOfUndef ?
2874        DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
2875        SDValue(Agg.getNode(), Agg.getResNo() + i);
2876
2877  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2878                           DAG.getVTList(&ValValueVTs[0], NumValValues),
2879                           &Values[0], NumValValues));
2880}
2881
2882void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
2883  SDValue N = getValue(I.getOperand(0));
2884  const Type *Ty = I.getOperand(0)->getType();
2885
2886  for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
2887       OI != E; ++OI) {
2888    const Value *Idx = *OI;
2889    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2890      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2891      if (Field) {
2892        // N = N + Offset
2893        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
2894        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2895                        DAG.getIntPtrConstant(Offset));
2896      }
2897
2898      Ty = StTy->getElementType(Field);
2899    } else {
2900      Ty = cast<SequentialType>(Ty)->getElementType();
2901
2902      // If this is a constant subscript, handle it quickly.
2903      if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2904        if (CI->isZero()) continue;
2905        uint64_t Offs =
2906            TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
2907        SDValue OffsVal;
2908        EVT PTy = TLI.getPointerTy();
2909        unsigned PtrBits = PTy.getSizeInBits();
2910        if (PtrBits < 64)
2911          OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2912                                TLI.getPointerTy(),
2913                                DAG.getConstant(Offs, MVT::i64));
2914        else
2915          OffsVal = DAG.getIntPtrConstant(Offs);
2916
2917        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2918                        OffsVal);
2919        continue;
2920      }
2921
2922      // N = N + Idx * ElementSize;
2923      APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
2924                                TD->getTypeAllocSize(Ty));
2925      SDValue IdxN = getValue(Idx);
2926
2927      // If the index is smaller or larger than intptr_t, truncate or extend
2928      // it.
2929      IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType());
2930
2931      // If this is a multiply by a power of two, turn it into a shl
2932      // immediately.  This is a very common case.
2933      if (ElementSize != 1) {
2934        if (ElementSize.isPowerOf2()) {
2935          unsigned Amt = ElementSize.logBase2();
2936          IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(),
2937                             N.getValueType(), IdxN,
2938                             DAG.getConstant(Amt, TLI.getPointerTy()));
2939        } else {
2940          SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy());
2941          IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(),
2942                             N.getValueType(), IdxN, Scale);
2943        }
2944      }
2945
2946      N = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2947                      N.getValueType(), N, IdxN);
2948    }
2949  }
2950
2951  setValue(&I, N);
2952}
2953
2954void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
2955  // If this is a fixed sized alloca in the entry block of the function,
2956  // allocate it statically on the stack.
2957  if (FuncInfo.StaticAllocaMap.count(&I))
2958    return;   // getValue will auto-populate this.
2959
2960  const Type *Ty = I.getAllocatedType();
2961  uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
2962  unsigned Align =
2963    std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
2964             I.getAlignment());
2965
2966  SDValue AllocSize = getValue(I.getArraySize());
2967
2968  EVT IntPtr = TLI.getPointerTy();
2969  if (AllocSize.getValueType() != IntPtr)
2970    AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr);
2971
2972  AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr,
2973                          AllocSize,
2974                          DAG.getConstant(TySize, IntPtr));
2975
2976  // Handle alignment.  If the requested alignment is less than or equal to
2977  // the stack alignment, ignore it.  If the size is greater than or equal to
2978  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
2979  unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
2980  if (Align <= StackAlign)
2981    Align = 0;
2982
2983  // Round the size of the allocation up to the stack alignment size
2984  // by add SA-1 to the size.
2985  AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2986                          AllocSize.getValueType(), AllocSize,
2987                          DAG.getIntPtrConstant(StackAlign-1));
2988
2989  // Mask out the low bits for alignment purposes.
2990  AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(),
2991                          AllocSize.getValueType(), AllocSize,
2992                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
2993
2994  SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
2995  SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
2996  SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(),
2997                            VTs, Ops, 3);
2998  setValue(&I, DSA);
2999  DAG.setRoot(DSA.getValue(1));
3000
3001  // Inform the Frame Information that we have just allocated a variable-sized
3002  // object.
3003  FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1);
3004}
3005
3006void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3007  const Value *SV = I.getOperand(0);
3008  SDValue Ptr = getValue(SV);
3009
3010  const Type *Ty = I.getType();
3011
3012  bool isVolatile = I.isVolatile();
3013  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3014  unsigned Alignment = I.getAlignment();
3015  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3016
3017  SmallVector<EVT, 4> ValueVTs;
3018  SmallVector<uint64_t, 4> Offsets;
3019  ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
3020  unsigned NumValues = ValueVTs.size();
3021  if (NumValues == 0)
3022    return;
3023
3024  SDValue Root;
3025  bool ConstantMemory = false;
3026  if (I.isVolatile() || NumValues > MaxParallelChains)
3027    // Serialize volatile loads with other side effects.
3028    Root = getRoot();
3029  else if (AA->pointsToConstantMemory(
3030             AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) {
3031    // Do not serialize (non-volatile) loads of constant memory with anything.
3032    Root = DAG.getEntryNode();
3033    ConstantMemory = true;
3034  } else {
3035    // Do not serialize non-volatile loads against each other.
3036    Root = DAG.getRoot();
3037  }
3038
3039  SmallVector<SDValue, 4> Values(NumValues);
3040  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3041                                          NumValues));
3042  EVT PtrVT = Ptr.getValueType();
3043  unsigned ChainI = 0;
3044  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3045    // Serializing loads here may result in excessive register pressure, and
3046    // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3047    // could recover a bit by hoisting nodes upward in the chain by recognizing
3048    // they are side-effect free or do not alias. The optimizer should really
3049    // avoid this case by converting large object/array copies to llvm.memcpy
3050    // (MaxParallelChains should always remain as failsafe).
3051    if (ChainI == MaxParallelChains) {
3052      assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3053      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3054                                  MVT::Other, &Chains[0], ChainI);
3055      Root = Chain;
3056      ChainI = 0;
3057    }
3058    SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3059                            PtrVT, Ptr,
3060                            DAG.getConstant(Offsets[i], PtrVT));
3061    SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root,
3062                            A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
3063                            isNonTemporal, Alignment, TBAAInfo);
3064
3065    Values[i] = L;
3066    Chains[ChainI] = L.getValue(1);
3067  }
3068
3069  if (!ConstantMemory) {
3070    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3071                                MVT::Other, &Chains[0], ChainI);
3072    if (isVolatile)
3073      DAG.setRoot(Chain);
3074    else
3075      PendingLoads.push_back(Chain);
3076  }
3077
3078  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3079                           DAG.getVTList(&ValueVTs[0], NumValues),
3080                           &Values[0], NumValues));
3081}
3082
3083void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3084  const Value *SrcV = I.getOperand(0);
3085  const Value *PtrV = I.getOperand(1);
3086
3087  SmallVector<EVT, 4> ValueVTs;
3088  SmallVector<uint64_t, 4> Offsets;
3089  ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
3090  unsigned NumValues = ValueVTs.size();
3091  if (NumValues == 0)
3092    return;
3093
3094  // Get the lowered operands. Note that we do this after
3095  // checking if NumResults is zero, because with zero results
3096  // the operands won't have values in the map.
3097  SDValue Src = getValue(SrcV);
3098  SDValue Ptr = getValue(PtrV);
3099
3100  SDValue Root = getRoot();
3101  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3102                                          NumValues));
3103  EVT PtrVT = Ptr.getValueType();
3104  bool isVolatile = I.isVolatile();
3105  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3106  unsigned Alignment = I.getAlignment();
3107  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3108
3109  unsigned ChainI = 0;
3110  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3111    // See visitLoad comments.
3112    if (ChainI == MaxParallelChains) {
3113      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3114                                  MVT::Other, &Chains[0], ChainI);
3115      Root = Chain;
3116      ChainI = 0;
3117    }
3118    SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr,
3119                              DAG.getConstant(Offsets[i], PtrVT));
3120    SDValue St = DAG.getStore(Root, getCurDebugLoc(),
3121                              SDValue(Src.getNode(), Src.getResNo() + i),
3122                              Add, MachinePointerInfo(PtrV, Offsets[i]),
3123                              isVolatile, isNonTemporal, Alignment, TBAAInfo);
3124    Chains[ChainI] = St;
3125  }
3126
3127  SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3128                                  MVT::Other, &Chains[0], ChainI);
3129  ++SDNodeOrder;
3130  AssignOrderingToNode(StoreNode.getNode());
3131  DAG.setRoot(StoreNode);
3132}
3133
3134/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3135/// node.
3136void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3137                                               unsigned Intrinsic) {
3138  bool HasChain = !I.doesNotAccessMemory();
3139  bool OnlyLoad = HasChain && I.onlyReadsMemory();
3140
3141  // Build the operand list.
3142  SmallVector<SDValue, 8> Ops;
3143  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
3144    if (OnlyLoad) {
3145      // We don't need to serialize loads against other loads.
3146      Ops.push_back(DAG.getRoot());
3147    } else {
3148      Ops.push_back(getRoot());
3149    }
3150  }
3151
3152  // Info is set by getTgtMemInstrinsic
3153  TargetLowering::IntrinsicInfo Info;
3154  bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
3155
3156  // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3157  if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
3158      Info.opc == ISD::INTRINSIC_W_CHAIN)
3159    Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
3160
3161  // Add all operands of the call to the operand list.
3162  for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
3163    SDValue Op = getValue(I.getArgOperand(i));
3164    assert(TLI.isTypeLegal(Op.getValueType()) &&
3165           "Intrinsic uses a non-legal type?");
3166    Ops.push_back(Op);
3167  }
3168
3169  SmallVector<EVT, 4> ValueVTs;
3170  ComputeValueVTs(TLI, I.getType(), ValueVTs);
3171#ifndef NDEBUG
3172  for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) {
3173    assert(TLI.isTypeLegal(ValueVTs[Val]) &&
3174           "Intrinsic uses a non-legal type?");
3175  }
3176#endif // NDEBUG
3177
3178  if (HasChain)
3179    ValueVTs.push_back(MVT::Other);
3180
3181  SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
3182
3183  // Create the node.
3184  SDValue Result;
3185  if (IsTgtIntrinsic) {
3186    // This is target intrinsic that touches memory
3187    Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(),
3188                                     VTs, &Ops[0], Ops.size(),
3189                                     Info.memVT,
3190                                   MachinePointerInfo(Info.ptrVal, Info.offset),
3191                                     Info.align, Info.vol,
3192                                     Info.readMem, Info.writeMem);
3193  } else if (!HasChain) {
3194    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
3195                         VTs, &Ops[0], Ops.size());
3196  } else if (!I.getType()->isVoidTy()) {
3197    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
3198                         VTs, &Ops[0], Ops.size());
3199  } else {
3200    Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(),
3201                         VTs, &Ops[0], Ops.size());
3202  }
3203
3204  if (HasChain) {
3205    SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3206    if (OnlyLoad)
3207      PendingLoads.push_back(Chain);
3208    else
3209      DAG.setRoot(Chain);
3210  }
3211
3212  if (!I.getType()->isVoidTy()) {
3213    if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3214      EVT VT = TLI.getValueType(PTy);
3215      Result = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), VT, Result);
3216    }
3217
3218    setValue(&I, Result);
3219  }
3220}
3221
3222/// GetSignificand - Get the significand and build it into a floating-point
3223/// number with exponent of 1:
3224///
3225///   Op = (Op & 0x007fffff) | 0x3f800000;
3226///
3227/// where Op is the hexidecimal representation of floating point value.
3228static SDValue
3229GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) {
3230  SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3231                           DAG.getConstant(0x007fffff, MVT::i32));
3232  SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3233                           DAG.getConstant(0x3f800000, MVT::i32));
3234  return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
3235}
3236
3237/// GetExponent - Get the exponent:
3238///
3239///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3240///
3241/// where Op is the hexidecimal representation of floating point value.
3242static SDValue
3243GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3244            DebugLoc dl) {
3245  SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3246                           DAG.getConstant(0x7f800000, MVT::i32));
3247  SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3248                           DAG.getConstant(23, TLI.getPointerTy()));
3249  SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3250                           DAG.getConstant(127, MVT::i32));
3251  return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3252}
3253
3254/// getF32Constant - Get 32-bit floating point constant.
3255static SDValue
3256getF32Constant(SelectionDAG &DAG, unsigned Flt) {
3257  return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32);
3258}
3259
3260/// Inlined utility function to implement binary input atomic intrinsics for
3261/// visitIntrinsicCall: I is a call instruction
3262///                     Op is the associated NodeType for I
3263const char *
3264SelectionDAGBuilder::implVisitBinaryAtomic(const CallInst& I,
3265                                           ISD::NodeType Op) {
3266  SDValue Root = getRoot();
3267  SDValue L =
3268    DAG.getAtomic(Op, getCurDebugLoc(),
3269                  getValue(I.getArgOperand(1)).getValueType().getSimpleVT(),
3270                  Root,
3271                  getValue(I.getArgOperand(0)),
3272                  getValue(I.getArgOperand(1)),
3273                  I.getArgOperand(0));
3274  setValue(&I, L);
3275  DAG.setRoot(L.getValue(1));
3276  return 0;
3277}
3278
3279// implVisitAluOverflow - Lower arithmetic overflow instrinsics.
3280const char *
3281SelectionDAGBuilder::implVisitAluOverflow(const CallInst &I, ISD::NodeType Op) {
3282  SDValue Op1 = getValue(I.getArgOperand(0));
3283  SDValue Op2 = getValue(I.getArgOperand(1));
3284
3285  SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
3286  setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2));
3287  return 0;
3288}
3289
3290/// visitExp - Lower an exp intrinsic. Handles the special sequences for
3291/// limited-precision mode.
3292void
3293SelectionDAGBuilder::visitExp(const CallInst &I) {
3294  SDValue result;
3295  DebugLoc dl = getCurDebugLoc();
3296
3297  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3298      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3299    SDValue Op = getValue(I.getArgOperand(0));
3300
3301    // Put the exponent in the right bit position for later addition to the
3302    // final result:
3303    //
3304    //   #define LOG2OFe 1.4426950f
3305    //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3306    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3307                             getF32Constant(DAG, 0x3fb8aa3b));
3308    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3309
3310    //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3311    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3312    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3313
3314    //   IntegerPartOfX <<= 23;
3315    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3316                                 DAG.getConstant(23, TLI.getPointerTy()));
3317
3318    if (LimitFloatPrecision <= 6) {
3319      // For floating-point precision of 6:
3320      //
3321      //   TwoToFractionalPartOfX =
3322      //     0.997535578f +
3323      //       (0.735607626f + 0.252464424f * x) * x;
3324      //
3325      // error 0.0144103317, which is 6 bits
3326      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3327                               getF32Constant(DAG, 0x3e814304));
3328      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3329                               getF32Constant(DAG, 0x3f3c50c8));
3330      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3331      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3332                               getF32Constant(DAG, 0x3f7f5e7e));
3333      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t5);
3334
3335      // Add the exponent into the result in integer domain.
3336      SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3337                               TwoToFracPartOfX, IntegerPartOfX);
3338
3339      result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t6);
3340    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3341      // For floating-point precision of 12:
3342      //
3343      //   TwoToFractionalPartOfX =
3344      //     0.999892986f +
3345      //       (0.696457318f +
3346      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3347      //
3348      // 0.000107046256 error, which is 13 to 14 bits
3349      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3350                               getF32Constant(DAG, 0x3da235e3));
3351      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3352                               getF32Constant(DAG, 0x3e65b8f3));
3353      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3354      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3355                               getF32Constant(DAG, 0x3f324b07));
3356      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3357      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3358                               getF32Constant(DAG, 0x3f7ff8fd));
3359      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t7);
3360
3361      // Add the exponent into the result in integer domain.
3362      SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3363                               TwoToFracPartOfX, IntegerPartOfX);
3364
3365      result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t8);
3366    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3367      // For floating-point precision of 18:
3368      //
3369      //   TwoToFractionalPartOfX =
3370      //     0.999999982f +
3371      //       (0.693148872f +
3372      //         (0.240227044f +
3373      //           (0.554906021e-1f +
3374      //             (0.961591928e-2f +
3375      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3376      //
3377      // error 2.47208000*10^(-7), which is better than 18 bits
3378      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3379                               getF32Constant(DAG, 0x3924b03e));
3380      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3381                               getF32Constant(DAG, 0x3ab24b87));
3382      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3383      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3384                               getF32Constant(DAG, 0x3c1d8c17));
3385      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3386      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3387                               getF32Constant(DAG, 0x3d634a1d));
3388      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3389      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3390                               getF32Constant(DAG, 0x3e75fe14));
3391      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3392      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3393                                getF32Constant(DAG, 0x3f317234));
3394      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3395      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3396                                getF32Constant(DAG, 0x3f800000));
3397      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,
3398                                             MVT::i32, t13);
3399
3400      // Add the exponent into the result in integer domain.
3401      SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3402                                TwoToFracPartOfX, IntegerPartOfX);
3403
3404      result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t14);
3405    }
3406  } else {
3407    // No special expansion.
3408    result = DAG.getNode(ISD::FEXP, dl,
3409                         getValue(I.getArgOperand(0)).getValueType(),
3410                         getValue(I.getArgOperand(0)));
3411  }
3412
3413  setValue(&I, result);
3414}
3415
3416/// visitLog - Lower a log intrinsic. Handles the special sequences for
3417/// limited-precision mode.
3418void
3419SelectionDAGBuilder::visitLog(const CallInst &I) {
3420  SDValue result;
3421  DebugLoc dl = getCurDebugLoc();
3422
3423  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3424      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3425    SDValue Op = getValue(I.getArgOperand(0));
3426    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3427
3428    // Scale the exponent by log(2) [0.69314718f].
3429    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3430    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3431                                        getF32Constant(DAG, 0x3f317218));
3432
3433    // Get the significand and build it into a floating-point number with
3434    // exponent of 1.
3435    SDValue X = GetSignificand(DAG, Op1, dl);
3436
3437    if (LimitFloatPrecision <= 6) {
3438      // For floating-point precision of 6:
3439      //
3440      //   LogofMantissa =
3441      //     -1.1609546f +
3442      //       (1.4034025f - 0.23903021f * x) * x;
3443      //
3444      // error 0.0034276066, which is better than 8 bits
3445      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3446                               getF32Constant(DAG, 0xbe74c456));
3447      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3448                               getF32Constant(DAG, 0x3fb3a2b1));
3449      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3450      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3451                                          getF32Constant(DAG, 0x3f949a29));
3452
3453      result = DAG.getNode(ISD::FADD, dl,
3454                           MVT::f32, LogOfExponent, LogOfMantissa);
3455    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3456      // For floating-point precision of 12:
3457      //
3458      //   LogOfMantissa =
3459      //     -1.7417939f +
3460      //       (2.8212026f +
3461      //         (-1.4699568f +
3462      //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3463      //
3464      // error 0.000061011436, which is 14 bits
3465      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3466                               getF32Constant(DAG, 0xbd67b6d6));
3467      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3468                               getF32Constant(DAG, 0x3ee4f4b8));
3469      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3470      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3471                               getF32Constant(DAG, 0x3fbc278b));
3472      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3473      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3474                               getF32Constant(DAG, 0x40348e95));
3475      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3476      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3477                                          getF32Constant(DAG, 0x3fdef31a));
3478
3479      result = DAG.getNode(ISD::FADD, dl,
3480                           MVT::f32, LogOfExponent, LogOfMantissa);
3481    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3482      // For floating-point precision of 18:
3483      //
3484      //   LogOfMantissa =
3485      //     -2.1072184f +
3486      //       (4.2372794f +
3487      //         (-3.7029485f +
3488      //           (2.2781945f +
3489      //             (-0.87823314f +
3490      //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3491      //
3492      // error 0.0000023660568, which is better than 18 bits
3493      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3494                               getF32Constant(DAG, 0xbc91e5ac));
3495      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3496                               getF32Constant(DAG, 0x3e4350aa));
3497      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3498      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3499                               getF32Constant(DAG, 0x3f60d3e3));
3500      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3501      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3502                               getF32Constant(DAG, 0x4011cdf0));
3503      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3504      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3505                               getF32Constant(DAG, 0x406cfd1c));
3506      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3507      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3508                               getF32Constant(DAG, 0x408797cb));
3509      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3510      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3511                                          getF32Constant(DAG, 0x4006dcab));
3512
3513      result = DAG.getNode(ISD::FADD, dl,
3514                           MVT::f32, LogOfExponent, LogOfMantissa);
3515    }
3516  } else {
3517    // No special expansion.
3518    result = DAG.getNode(ISD::FLOG, dl,
3519                         getValue(I.getArgOperand(0)).getValueType(),
3520                         getValue(I.getArgOperand(0)));
3521  }
3522
3523  setValue(&I, result);
3524}
3525
3526/// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for
3527/// limited-precision mode.
3528void
3529SelectionDAGBuilder::visitLog2(const CallInst &I) {
3530  SDValue result;
3531  DebugLoc dl = getCurDebugLoc();
3532
3533  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3534      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3535    SDValue Op = getValue(I.getArgOperand(0));
3536    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3537
3538    // Get the exponent.
3539    SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3540
3541    // Get the significand and build it into a floating-point number with
3542    // exponent of 1.
3543    SDValue X = GetSignificand(DAG, Op1, dl);
3544
3545    // Different possible minimax approximations of significand in
3546    // floating-point for various degrees of accuracy over [1,2].
3547    if (LimitFloatPrecision <= 6) {
3548      // For floating-point precision of 6:
3549      //
3550      //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3551      //
3552      // error 0.0049451742, which is more than 7 bits
3553      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3554                               getF32Constant(DAG, 0xbeb08fe0));
3555      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3556                               getF32Constant(DAG, 0x40019463));
3557      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3558      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3559                                           getF32Constant(DAG, 0x3fd6633d));
3560
3561      result = DAG.getNode(ISD::FADD, dl,
3562                           MVT::f32, LogOfExponent, Log2ofMantissa);
3563    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3564      // For floating-point precision of 12:
3565      //
3566      //   Log2ofMantissa =
3567      //     -2.51285454f +
3568      //       (4.07009056f +
3569      //         (-2.12067489f +
3570      //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3571      //
3572      // error 0.0000876136000, which is better than 13 bits
3573      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3574                               getF32Constant(DAG, 0xbda7262e));
3575      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3576                               getF32Constant(DAG, 0x3f25280b));
3577      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3578      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3579                               getF32Constant(DAG, 0x4007b923));
3580      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3581      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3582                               getF32Constant(DAG, 0x40823e2f));
3583      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3584      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3585                                           getF32Constant(DAG, 0x4020d29c));
3586
3587      result = DAG.getNode(ISD::FADD, dl,
3588                           MVT::f32, LogOfExponent, Log2ofMantissa);
3589    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3590      // For floating-point precision of 18:
3591      //
3592      //   Log2ofMantissa =
3593      //     -3.0400495f +
3594      //       (6.1129976f +
3595      //         (-5.3420409f +
3596      //           (3.2865683f +
3597      //             (-1.2669343f +
3598      //               (0.27515199f -
3599      //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3600      //
3601      // error 0.0000018516, which is better than 18 bits
3602      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3603                               getF32Constant(DAG, 0xbcd2769e));
3604      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3605                               getF32Constant(DAG, 0x3e8ce0b9));
3606      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3607      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3608                               getF32Constant(DAG, 0x3fa22ae7));
3609      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3610      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3611                               getF32Constant(DAG, 0x40525723));
3612      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3613      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3614                               getF32Constant(DAG, 0x40aaf200));
3615      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3616      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3617                               getF32Constant(DAG, 0x40c39dad));
3618      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3619      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3620                                           getF32Constant(DAG, 0x4042902c));
3621
3622      result = DAG.getNode(ISD::FADD, dl,
3623                           MVT::f32, LogOfExponent, Log2ofMantissa);
3624    }
3625  } else {
3626    // No special expansion.
3627    result = DAG.getNode(ISD::FLOG2, dl,
3628                         getValue(I.getArgOperand(0)).getValueType(),
3629                         getValue(I.getArgOperand(0)));
3630  }
3631
3632  setValue(&I, result);
3633}
3634
3635/// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for
3636/// limited-precision mode.
3637void
3638SelectionDAGBuilder::visitLog10(const CallInst &I) {
3639  SDValue result;
3640  DebugLoc dl = getCurDebugLoc();
3641
3642  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3643      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3644    SDValue Op = getValue(I.getArgOperand(0));
3645    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3646
3647    // Scale the exponent by log10(2) [0.30102999f].
3648    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3649    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3650                                        getF32Constant(DAG, 0x3e9a209a));
3651
3652    // Get the significand and build it into a floating-point number with
3653    // exponent of 1.
3654    SDValue X = GetSignificand(DAG, Op1, dl);
3655
3656    if (LimitFloatPrecision <= 6) {
3657      // For floating-point precision of 6:
3658      //
3659      //   Log10ofMantissa =
3660      //     -0.50419619f +
3661      //       (0.60948995f - 0.10380950f * x) * x;
3662      //
3663      // error 0.0014886165, which is 6 bits
3664      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3665                               getF32Constant(DAG, 0xbdd49a13));
3666      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3667                               getF32Constant(DAG, 0x3f1c0789));
3668      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3669      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3670                                            getF32Constant(DAG, 0x3f011300));
3671
3672      result = DAG.getNode(ISD::FADD, dl,
3673                           MVT::f32, LogOfExponent, Log10ofMantissa);
3674    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3675      // For floating-point precision of 12:
3676      //
3677      //   Log10ofMantissa =
3678      //     -0.64831180f +
3679      //       (0.91751397f +
3680      //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
3681      //
3682      // error 0.00019228036, which is better than 12 bits
3683      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3684                               getF32Constant(DAG, 0x3d431f31));
3685      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3686                               getF32Constant(DAG, 0x3ea21fb2));
3687      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3688      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3689                               getF32Constant(DAG, 0x3f6ae232));
3690      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3691      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3692                                            getF32Constant(DAG, 0x3f25f7c3));
3693
3694      result = DAG.getNode(ISD::FADD, dl,
3695                           MVT::f32, LogOfExponent, Log10ofMantissa);
3696    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3697      // For floating-point precision of 18:
3698      //
3699      //   Log10ofMantissa =
3700      //     -0.84299375f +
3701      //       (1.5327582f +
3702      //         (-1.0688956f +
3703      //           (0.49102474f +
3704      //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
3705      //
3706      // error 0.0000037995730, which is better than 18 bits
3707      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3708                               getF32Constant(DAG, 0x3c5d51ce));
3709      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3710                               getF32Constant(DAG, 0x3e00685a));
3711      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3712      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3713                               getF32Constant(DAG, 0x3efb6798));
3714      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3715      SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3716                               getF32Constant(DAG, 0x3f88d192));
3717      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3718      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3719                               getF32Constant(DAG, 0x3fc4316c));
3720      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3721      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
3722                                            getF32Constant(DAG, 0x3f57ce70));
3723
3724      result = DAG.getNode(ISD::FADD, dl,
3725                           MVT::f32, LogOfExponent, Log10ofMantissa);
3726    }
3727  } else {
3728    // No special expansion.
3729    result = DAG.getNode(ISD::FLOG10, dl,
3730                         getValue(I.getArgOperand(0)).getValueType(),
3731                         getValue(I.getArgOperand(0)));
3732  }
3733
3734  setValue(&I, result);
3735}
3736
3737/// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for
3738/// limited-precision mode.
3739void
3740SelectionDAGBuilder::visitExp2(const CallInst &I) {
3741  SDValue result;
3742  DebugLoc dl = getCurDebugLoc();
3743
3744  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3745      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3746    SDValue Op = getValue(I.getArgOperand(0));
3747
3748    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
3749
3750    //   FractionalPartOfX = x - (float)IntegerPartOfX;
3751    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3752    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
3753
3754    //   IntegerPartOfX <<= 23;
3755    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3756                                 DAG.getConstant(23, TLI.getPointerTy()));
3757
3758    if (LimitFloatPrecision <= 6) {
3759      // For floating-point precision of 6:
3760      //
3761      //   TwoToFractionalPartOfX =
3762      //     0.997535578f +
3763      //       (0.735607626f + 0.252464424f * x) * x;
3764      //
3765      // error 0.0144103317, which is 6 bits
3766      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3767                               getF32Constant(DAG, 0x3e814304));
3768      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3769                               getF32Constant(DAG, 0x3f3c50c8));
3770      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3771      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3772                               getF32Constant(DAG, 0x3f7f5e7e));
3773      SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
3774      SDValue TwoToFractionalPartOfX =
3775        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3776
3777      result = DAG.getNode(ISD::BITCAST, dl,
3778                           MVT::f32, TwoToFractionalPartOfX);
3779    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3780      // For floating-point precision of 12:
3781      //
3782      //   TwoToFractionalPartOfX =
3783      //     0.999892986f +
3784      //       (0.696457318f +
3785      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3786      //
3787      // error 0.000107046256, which is 13 to 14 bits
3788      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3789                               getF32Constant(DAG, 0x3da235e3));
3790      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3791                               getF32Constant(DAG, 0x3e65b8f3));
3792      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3793      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3794                               getF32Constant(DAG, 0x3f324b07));
3795      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3796      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3797                               getF32Constant(DAG, 0x3f7ff8fd));
3798      SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
3799      SDValue TwoToFractionalPartOfX =
3800        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
3801
3802      result = DAG.getNode(ISD::BITCAST, dl,
3803                           MVT::f32, TwoToFractionalPartOfX);
3804    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3805      // For floating-point precision of 18:
3806      //
3807      //   TwoToFractionalPartOfX =
3808      //     0.999999982f +
3809      //       (0.693148872f +
3810      //         (0.240227044f +
3811      //           (0.554906021e-1f +
3812      //             (0.961591928e-2f +
3813      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3814      // error 2.47208000*10^(-7), which is better than 18 bits
3815      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3816                               getF32Constant(DAG, 0x3924b03e));
3817      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3818                               getF32Constant(DAG, 0x3ab24b87));
3819      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3820      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3821                               getF32Constant(DAG, 0x3c1d8c17));
3822      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3823      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3824                               getF32Constant(DAG, 0x3d634a1d));
3825      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3826      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3827                               getF32Constant(DAG, 0x3e75fe14));
3828      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3829      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3830                                getF32Constant(DAG, 0x3f317234));
3831      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3832      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3833                                getF32Constant(DAG, 0x3f800000));
3834      SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
3835      SDValue TwoToFractionalPartOfX =
3836        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
3837
3838      result = DAG.getNode(ISD::BITCAST, dl,
3839                           MVT::f32, TwoToFractionalPartOfX);
3840    }
3841  } else {
3842    // No special expansion.
3843    result = DAG.getNode(ISD::FEXP2, dl,
3844                         getValue(I.getArgOperand(0)).getValueType(),
3845                         getValue(I.getArgOperand(0)));
3846  }
3847
3848  setValue(&I, result);
3849}
3850
3851/// visitPow - Lower a pow intrinsic. Handles the special sequences for
3852/// limited-precision mode with x == 10.0f.
3853void
3854SelectionDAGBuilder::visitPow(const CallInst &I) {
3855  SDValue result;
3856  const Value *Val = I.getArgOperand(0);
3857  DebugLoc dl = getCurDebugLoc();
3858  bool IsExp10 = false;
3859
3860  if (getValue(Val).getValueType() == MVT::f32 &&
3861      getValue(I.getArgOperand(1)).getValueType() == MVT::f32 &&
3862      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3863    if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) {
3864      if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
3865        APFloat Ten(10.0f);
3866        IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten);
3867      }
3868    }
3869  }
3870
3871  if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3872    SDValue Op = getValue(I.getArgOperand(1));
3873
3874    // Put the exponent in the right bit position for later addition to the
3875    // final result:
3876    //
3877    //   #define LOG2OF10 3.3219281f
3878    //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
3879    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3880                             getF32Constant(DAG, 0x40549a78));
3881    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3882
3883    //   FractionalPartOfX = x - (float)IntegerPartOfX;
3884    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3885    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3886
3887    //   IntegerPartOfX <<= 23;
3888    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3889                                 DAG.getConstant(23, TLI.getPointerTy()));
3890
3891    if (LimitFloatPrecision <= 6) {
3892      // For floating-point precision of 6:
3893      //
3894      //   twoToFractionalPartOfX =
3895      //     0.997535578f +
3896      //       (0.735607626f + 0.252464424f * x) * x;
3897      //
3898      // error 0.0144103317, which is 6 bits
3899      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3900                               getF32Constant(DAG, 0x3e814304));
3901      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3902                               getF32Constant(DAG, 0x3f3c50c8));
3903      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3904      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3905                               getF32Constant(DAG, 0x3f7f5e7e));
3906      SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
3907      SDValue TwoToFractionalPartOfX =
3908        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3909
3910      result = DAG.getNode(ISD::BITCAST, dl,
3911                           MVT::f32, TwoToFractionalPartOfX);
3912    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3913      // For floating-point precision of 12:
3914      //
3915      //   TwoToFractionalPartOfX =
3916      //     0.999892986f +
3917      //       (0.696457318f +
3918      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3919      //
3920      // error 0.000107046256, which is 13 to 14 bits
3921      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3922                               getF32Constant(DAG, 0x3da235e3));
3923      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3924                               getF32Constant(DAG, 0x3e65b8f3));
3925      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3926      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3927                               getF32Constant(DAG, 0x3f324b07));
3928      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3929      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3930                               getF32Constant(DAG, 0x3f7ff8fd));
3931      SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
3932      SDValue TwoToFractionalPartOfX =
3933        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
3934
3935      result = DAG.getNode(ISD::BITCAST, dl,
3936                           MVT::f32, TwoToFractionalPartOfX);
3937    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3938      // For floating-point precision of 18:
3939      //
3940      //   TwoToFractionalPartOfX =
3941      //     0.999999982f +
3942      //       (0.693148872f +
3943      //         (0.240227044f +
3944      //           (0.554906021e-1f +
3945      //             (0.961591928e-2f +
3946      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3947      // error 2.47208000*10^(-7), which is better than 18 bits
3948      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3949                               getF32Constant(DAG, 0x3924b03e));
3950      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3951                               getF32Constant(DAG, 0x3ab24b87));
3952      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3953      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3954                               getF32Constant(DAG, 0x3c1d8c17));
3955      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3956      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3957                               getF32Constant(DAG, 0x3d634a1d));
3958      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3959      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3960                               getF32Constant(DAG, 0x3e75fe14));
3961      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3962      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3963                                getF32Constant(DAG, 0x3f317234));
3964      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3965      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3966                                getF32Constant(DAG, 0x3f800000));
3967      SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
3968      SDValue TwoToFractionalPartOfX =
3969        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
3970
3971      result = DAG.getNode(ISD::BITCAST, dl,
3972                           MVT::f32, TwoToFractionalPartOfX);
3973    }
3974  } else {
3975    // No special expansion.
3976    result = DAG.getNode(ISD::FPOW, dl,
3977                         getValue(I.getArgOperand(0)).getValueType(),
3978                         getValue(I.getArgOperand(0)),
3979                         getValue(I.getArgOperand(1)));
3980  }
3981
3982  setValue(&I, result);
3983}
3984
3985
3986/// ExpandPowI - Expand a llvm.powi intrinsic.
3987static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS,
3988                          SelectionDAG &DAG) {
3989  // If RHS is a constant, we can expand this out to a multiplication tree,
3990  // otherwise we end up lowering to a call to __powidf2 (for example).  When
3991  // optimizing for size, we only want to do this if the expansion would produce
3992  // a small number of multiplies, otherwise we do the full expansion.
3993  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3994    // Get the exponent as a positive value.
3995    unsigned Val = RHSC->getSExtValue();
3996    if ((int)Val < 0) Val = -Val;
3997
3998    // powi(x, 0) -> 1.0
3999    if (Val == 0)
4000      return DAG.getConstantFP(1.0, LHS.getValueType());
4001
4002    const Function *F = DAG.getMachineFunction().getFunction();
4003    if (!F->hasFnAttr(Attribute::OptimizeForSize) ||
4004        // If optimizing for size, don't insert too many multiplies.  This
4005        // inserts up to 5 multiplies.
4006        CountPopulation_32(Val)+Log2_32(Val) < 7) {
4007      // We use the simple binary decomposition method to generate the multiply
4008      // sequence.  There are more optimal ways to do this (for example,
4009      // powi(x,15) generates one more multiply than it should), but this has
4010      // the benefit of being both really simple and much better than a libcall.
4011      SDValue Res;  // Logically starts equal to 1.0
4012      SDValue CurSquare = LHS;
4013      while (Val) {
4014        if (Val & 1) {
4015          if (Res.getNode())
4016            Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4017          else
4018            Res = CurSquare;  // 1.0*CurSquare.
4019        }
4020
4021        CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4022                                CurSquare, CurSquare);
4023        Val >>= 1;
4024      }
4025
4026      // If the original was negative, invert the result, producing 1/(x*x*x).
4027      if (RHSC->getSExtValue() < 0)
4028        Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4029                          DAG.getConstantFP(1.0, LHS.getValueType()), Res);
4030      return Res;
4031    }
4032  }
4033
4034  // Otherwise, expand to a libcall.
4035  return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4036}
4037
4038/// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4039/// argument, create the corresponding DBG_VALUE machine instruction for it now.
4040/// At the end of instruction selection, they will be inserted to the entry BB.
4041bool
4042SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
4043                                              int64_t Offset,
4044                                              const SDValue &N) {
4045  const Argument *Arg = dyn_cast<Argument>(V);
4046  if (!Arg)
4047    return false;
4048
4049  MachineFunction &MF = DAG.getMachineFunction();
4050  const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
4051  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
4052
4053  // Ignore inlined function arguments here.
4054  DIVariable DV(Variable);
4055  if (DV.isInlinedFnArgument(MF.getFunction()))
4056    return false;
4057
4058  MachineBasicBlock *MBB = FuncInfo.MBB;
4059  if (MBB != &MF.front())
4060    return false;
4061
4062  unsigned Reg = 0;
4063  if (Arg->hasByValAttr()) {
4064    // Byval arguments' frame index is recorded during argument lowering.
4065    // Use this info directly.
4066    Reg = TRI->getFrameRegister(MF);
4067    Offset = FuncInfo.getByValArgumentFrameIndex(Arg);
4068    // If byval argument ofset is not recorded then ignore this.
4069    if (!Offset)
4070      Reg = 0;
4071  }
4072
4073  if (N.getNode() && N.getOpcode() == ISD::CopyFromReg) {
4074    Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
4075    if (TargetRegisterInfo::isVirtualRegister(Reg)) {
4076      MachineRegisterInfo &RegInfo = MF.getRegInfo();
4077      unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4078      if (PR)
4079        Reg = PR;
4080    }
4081  }
4082
4083  if (!Reg) {
4084    // Check if ValueMap has reg number.
4085    DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4086    if (VMI != FuncInfo.ValueMap.end())
4087      Reg = VMI->second;
4088  }
4089
4090  if (!Reg && N.getNode()) {
4091    // Check if frame index is available.
4092    if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4093      if (FrameIndexSDNode *FINode =
4094          dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) {
4095        Reg = TRI->getFrameRegister(MF);
4096        Offset = FINode->getIndex();
4097      }
4098  }
4099
4100  if (!Reg)
4101    return false;
4102
4103  MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(),
4104                                    TII->get(TargetOpcode::DBG_VALUE))
4105    .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable);
4106  FuncInfo.ArgDbgValues.push_back(&*MIB);
4107  return true;
4108}
4109
4110// VisualStudio defines setjmp as _setjmp
4111#if defined(_MSC_VER) && defined(setjmp) && \
4112                         !defined(setjmp_undefined_for_msvc)
4113#  pragma push_macro("setjmp")
4114#  undef setjmp
4115#  define setjmp_undefined_for_msvc
4116#endif
4117
4118/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4119/// we want to emit this as a call to a named external function, return the name
4120/// otherwise lower it and return null.
4121const char *
4122SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4123  DebugLoc dl = getCurDebugLoc();
4124  SDValue Res;
4125
4126  switch (Intrinsic) {
4127  default:
4128    // By default, turn this into a target intrinsic node.
4129    visitTargetIntrinsic(I, Intrinsic);
4130    return 0;
4131  case Intrinsic::vastart:  visitVAStart(I); return 0;
4132  case Intrinsic::vaend:    visitVAEnd(I); return 0;
4133  case Intrinsic::vacopy:   visitVACopy(I); return 0;
4134  case Intrinsic::returnaddress:
4135    setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(),
4136                             getValue(I.getArgOperand(0))));
4137    return 0;
4138  case Intrinsic::frameaddress:
4139    setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(),
4140                             getValue(I.getArgOperand(0))));
4141    return 0;
4142  case Intrinsic::setjmp:
4143    return "_setjmp"+!TLI.usesUnderscoreSetJmp();
4144  case Intrinsic::longjmp:
4145    return "_longjmp"+!TLI.usesUnderscoreLongJmp();
4146  case Intrinsic::memcpy: {
4147    // Assert for address < 256 since we support only user defined address
4148    // spaces.
4149    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4150           < 256 &&
4151           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4152           < 256 &&
4153           "Unknown address space");
4154    SDValue Op1 = getValue(I.getArgOperand(0));
4155    SDValue Op2 = getValue(I.getArgOperand(1));
4156    SDValue Op3 = getValue(I.getArgOperand(2));
4157    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4158    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4159    DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false,
4160                              MachinePointerInfo(I.getArgOperand(0)),
4161                              MachinePointerInfo(I.getArgOperand(1))));
4162    return 0;
4163  }
4164  case Intrinsic::memset: {
4165    // Assert for address < 256 since we support only user defined address
4166    // spaces.
4167    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4168           < 256 &&
4169           "Unknown address space");
4170    SDValue Op1 = getValue(I.getArgOperand(0));
4171    SDValue Op2 = getValue(I.getArgOperand(1));
4172    SDValue Op3 = getValue(I.getArgOperand(2));
4173    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4174    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4175    DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4176                              MachinePointerInfo(I.getArgOperand(0))));
4177    return 0;
4178  }
4179  case Intrinsic::memmove: {
4180    // Assert for address < 256 since we support only user defined address
4181    // spaces.
4182    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4183           < 256 &&
4184           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4185           < 256 &&
4186           "Unknown address space");
4187    SDValue Op1 = getValue(I.getArgOperand(0));
4188    SDValue Op2 = getValue(I.getArgOperand(1));
4189    SDValue Op3 = getValue(I.getArgOperand(2));
4190    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4191    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4192    DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4193                               MachinePointerInfo(I.getArgOperand(0)),
4194                               MachinePointerInfo(I.getArgOperand(1))));
4195    return 0;
4196  }
4197  case Intrinsic::dbg_declare: {
4198    const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4199    MDNode *Variable = DI.getVariable();
4200    const Value *Address = DI.getAddress();
4201    if (!Address || !DIVariable(DI.getVariable()).Verify())
4202      return 0;
4203
4204    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4205    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4206    // absolute, but not relative, values are different depending on whether
4207    // debug info exists.
4208    ++SDNodeOrder;
4209
4210    // Check if address has undef value.
4211    if (isa<UndefValue>(Address) ||
4212        (Address->use_empty() && !isa<Argument>(Address))) {
4213      DEBUG(dbgs() << "Dropping debug info for " << DI);
4214      return 0;
4215    }
4216
4217    SDValue &N = NodeMap[Address];
4218    if (!N.getNode() && isa<Argument>(Address))
4219      // Check unused arguments map.
4220      N = UnusedArgNodeMap[Address];
4221    SDDbgValue *SDV;
4222    if (N.getNode()) {
4223      // Parameters are handled specially.
4224      bool isParameter =
4225        DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable;
4226      if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4227        Address = BCI->getOperand(0);
4228      const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
4229
4230      if (isParameter && !AI) {
4231        FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4232        if (FINode)
4233          // Byval parameter.  We have a frame index at this point.
4234          SDV = DAG.getDbgValue(Variable, FINode->getIndex(),
4235                                0, dl, SDNodeOrder);
4236        else {
4237          // Can't do anything with other non-AI cases yet.  This might be a
4238          // parameter of a callee function that got inlined, for example.
4239          DEBUG(dbgs() << "Dropping debug info for " << DI);
4240          return 0;
4241        }
4242      } else if (AI)
4243        SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
4244                              0, dl, SDNodeOrder);
4245      else {
4246        // Can't do anything with other non-AI cases yet.
4247        DEBUG(dbgs() << "Dropping debug info for " << DI);
4248        return 0;
4249      }
4250      DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4251    } else {
4252      // If Address is an argument then try to emit its dbg value using
4253      // virtual register info from the FuncInfo.ValueMap.
4254      if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) {
4255        // If variable is pinned by a alloca in dominating bb then
4256        // use StaticAllocaMap.
4257        if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4258          if (AI->getParent() != DI.getParent()) {
4259            DenseMap<const AllocaInst*, int>::iterator SI =
4260              FuncInfo.StaticAllocaMap.find(AI);
4261            if (SI != FuncInfo.StaticAllocaMap.end()) {
4262              SDV = DAG.getDbgValue(Variable, SI->second,
4263                                    0, dl, SDNodeOrder);
4264              DAG.AddDbgValue(SDV, 0, false);
4265              return 0;
4266            }
4267          }
4268        }
4269        DEBUG(dbgs() << "Dropping debug info for " << DI);
4270      }
4271    }
4272    return 0;
4273  }
4274  case Intrinsic::dbg_value: {
4275    const DbgValueInst &DI = cast<DbgValueInst>(I);
4276    if (!DIVariable(DI.getVariable()).Verify())
4277      return 0;
4278
4279    MDNode *Variable = DI.getVariable();
4280    uint64_t Offset = DI.getOffset();
4281    const Value *V = DI.getValue();
4282    if (!V)
4283      return 0;
4284
4285    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4286    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4287    // absolute, but not relative, values are different depending on whether
4288    // debug info exists.
4289    ++SDNodeOrder;
4290    SDDbgValue *SDV;
4291    if (isa<ConstantInt>(V) || isa<ConstantFP>(V)) {
4292      SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder);
4293      DAG.AddDbgValue(SDV, 0, false);
4294    } else {
4295      // Do not use getValue() in here; we don't want to generate code at
4296      // this point if it hasn't been done yet.
4297      SDValue N = NodeMap[V];
4298      if (!N.getNode() && isa<Argument>(V))
4299        // Check unused arguments map.
4300        N = UnusedArgNodeMap[V];
4301      if (N.getNode()) {
4302        if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) {
4303          SDV = DAG.getDbgValue(Variable, N.getNode(),
4304                                N.getResNo(), Offset, dl, SDNodeOrder);
4305          DAG.AddDbgValue(SDV, N.getNode(), false);
4306        }
4307      } else if (isa<PHINode>(V) && !V->use_empty() ) {
4308        // Do not call getValue(V) yet, as we don't want to generate code.
4309        // Remember it for later.
4310        DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4311        DanglingDebugInfoMap[V] = DDI;
4312      } else {
4313        // We may expand this to cover more cases.  One case where we have no
4314        // data available is an unreferenced parameter.
4315        DEBUG(dbgs() << "Dropping debug info for " << DI);
4316      }
4317    }
4318
4319    // Build a debug info table entry.
4320    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4321      V = BCI->getOperand(0);
4322    const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4323    // Don't handle byval struct arguments or VLAs, for example.
4324    if (!AI)
4325      return 0;
4326    DenseMap<const AllocaInst*, int>::iterator SI =
4327      FuncInfo.StaticAllocaMap.find(AI);
4328    if (SI == FuncInfo.StaticAllocaMap.end())
4329      return 0; // VLAs.
4330    int FI = SI->second;
4331
4332    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4333    if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
4334      MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
4335    return 0;
4336  }
4337  case Intrinsic::eh_exception: {
4338    // Insert the EXCEPTIONADDR instruction.
4339    assert(FuncInfo.MBB->isLandingPad() &&
4340           "Call to eh.exception not in landing pad!");
4341    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4342    SDValue Ops[1];
4343    Ops[0] = DAG.getRoot();
4344    SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1);
4345    setValue(&I, Op);
4346    DAG.setRoot(Op.getValue(1));
4347    return 0;
4348  }
4349
4350  case Intrinsic::eh_selector: {
4351    MachineBasicBlock *CallMBB = FuncInfo.MBB;
4352    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4353    if (CallMBB->isLandingPad())
4354      AddCatchInfo(I, &MMI, CallMBB);
4355    else {
4356#ifndef NDEBUG
4357      FuncInfo.CatchInfoLost.insert(&I);
4358#endif
4359      // FIXME: Mark exception selector register as live in.  Hack for PR1508.
4360      unsigned Reg = TLI.getExceptionSelectorRegister();
4361      if (Reg) FuncInfo.MBB->addLiveIn(Reg);
4362    }
4363
4364    // Insert the EHSELECTION instruction.
4365    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4366    SDValue Ops[2];
4367    Ops[0] = getValue(I.getArgOperand(0));
4368    Ops[1] = getRoot();
4369    SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2);
4370    DAG.setRoot(Op.getValue(1));
4371    setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32));
4372    return 0;
4373  }
4374
4375  case Intrinsic::eh_typeid_for: {
4376    // Find the type id for the given typeinfo.
4377    GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0));
4378    unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4379    Res = DAG.getConstant(TypeID, MVT::i32);
4380    setValue(&I, Res);
4381    return 0;
4382  }
4383
4384  case Intrinsic::eh_return_i32:
4385  case Intrinsic::eh_return_i64:
4386    DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4387    DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl,
4388                            MVT::Other,
4389                            getControlRoot(),
4390                            getValue(I.getArgOperand(0)),
4391                            getValue(I.getArgOperand(1))));
4392    return 0;
4393  case Intrinsic::eh_unwind_init:
4394    DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4395    return 0;
4396  case Intrinsic::eh_dwarf_cfa: {
4397    SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl,
4398                                        TLI.getPointerTy());
4399    SDValue Offset = DAG.getNode(ISD::ADD, dl,
4400                                 TLI.getPointerTy(),
4401                                 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
4402                                             TLI.getPointerTy()),
4403                                 CfaArg);
4404    SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl,
4405                             TLI.getPointerTy(),
4406                             DAG.getConstant(0, TLI.getPointerTy()));
4407    setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
4408                             FA, Offset));
4409    return 0;
4410  }
4411  case Intrinsic::eh_sjlj_callsite: {
4412    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4413    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4414    assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4415    assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4416
4417    MMI.setCurrentCallSite(CI->getZExtValue());
4418    return 0;
4419  }
4420  case Intrinsic::eh_sjlj_setjmp: {
4421    setValue(&I, DAG.getNode(ISD::EH_SJLJ_SETJMP, dl, MVT::i32, getRoot(),
4422                             getValue(I.getArgOperand(0))));
4423    return 0;
4424  }
4425  case Intrinsic::eh_sjlj_longjmp: {
4426    DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other,
4427                            getRoot(), getValue(I.getArgOperand(0))));
4428    return 0;
4429  }
4430  case Intrinsic::eh_sjlj_dispatch_setup: {
4431    DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_DISPATCHSETUP, dl, MVT::Other,
4432                            getRoot(), getValue(I.getArgOperand(0))));
4433    return 0;
4434  }
4435
4436  case Intrinsic::x86_mmx_pslli_w:
4437  case Intrinsic::x86_mmx_pslli_d:
4438  case Intrinsic::x86_mmx_pslli_q:
4439  case Intrinsic::x86_mmx_psrli_w:
4440  case Intrinsic::x86_mmx_psrli_d:
4441  case Intrinsic::x86_mmx_psrli_q:
4442  case Intrinsic::x86_mmx_psrai_w:
4443  case Intrinsic::x86_mmx_psrai_d: {
4444    SDValue ShAmt = getValue(I.getArgOperand(1));
4445    if (isa<ConstantSDNode>(ShAmt)) {
4446      visitTargetIntrinsic(I, Intrinsic);
4447      return 0;
4448    }
4449    unsigned NewIntrinsic = 0;
4450    EVT ShAmtVT = MVT::v2i32;
4451    switch (Intrinsic) {
4452    case Intrinsic::x86_mmx_pslli_w:
4453      NewIntrinsic = Intrinsic::x86_mmx_psll_w;
4454      break;
4455    case Intrinsic::x86_mmx_pslli_d:
4456      NewIntrinsic = Intrinsic::x86_mmx_psll_d;
4457      break;
4458    case Intrinsic::x86_mmx_pslli_q:
4459      NewIntrinsic = Intrinsic::x86_mmx_psll_q;
4460      break;
4461    case Intrinsic::x86_mmx_psrli_w:
4462      NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
4463      break;
4464    case Intrinsic::x86_mmx_psrli_d:
4465      NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
4466      break;
4467    case Intrinsic::x86_mmx_psrli_q:
4468      NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
4469      break;
4470    case Intrinsic::x86_mmx_psrai_w:
4471      NewIntrinsic = Intrinsic::x86_mmx_psra_w;
4472      break;
4473    case Intrinsic::x86_mmx_psrai_d:
4474      NewIntrinsic = Intrinsic::x86_mmx_psra_d;
4475      break;
4476    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4477    }
4478
4479    // The vector shift intrinsics with scalars uses 32b shift amounts but
4480    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
4481    // to be zero.
4482    // We must do this early because v2i32 is not a legal type.
4483    DebugLoc dl = getCurDebugLoc();
4484    SDValue ShOps[2];
4485    ShOps[0] = ShAmt;
4486    ShOps[1] = DAG.getConstant(0, MVT::i32);
4487    ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
4488    EVT DestVT = TLI.getValueType(I.getType());
4489    ShAmt = DAG.getNode(ISD::BITCAST, dl, DestVT, ShAmt);
4490    Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
4491                       DAG.getConstant(NewIntrinsic, MVT::i32),
4492                       getValue(I.getArgOperand(0)), ShAmt);
4493    setValue(&I, Res);
4494    return 0;
4495  }
4496  case Intrinsic::convertff:
4497  case Intrinsic::convertfsi:
4498  case Intrinsic::convertfui:
4499  case Intrinsic::convertsif:
4500  case Intrinsic::convertuif:
4501  case Intrinsic::convertss:
4502  case Intrinsic::convertsu:
4503  case Intrinsic::convertus:
4504  case Intrinsic::convertuu: {
4505    ISD::CvtCode Code = ISD::CVT_INVALID;
4506    switch (Intrinsic) {
4507    case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
4508    case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4509    case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4510    case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4511    case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4512    case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
4513    case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
4514    case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4515    case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4516    }
4517    EVT DestVT = TLI.getValueType(I.getType());
4518    const Value *Op1 = I.getArgOperand(0);
4519    Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1),
4520                               DAG.getValueType(DestVT),
4521                               DAG.getValueType(getValue(Op1).getValueType()),
4522                               getValue(I.getArgOperand(1)),
4523                               getValue(I.getArgOperand(2)),
4524                               Code);
4525    setValue(&I, Res);
4526    return 0;
4527  }
4528  case Intrinsic::sqrt:
4529    setValue(&I, DAG.getNode(ISD::FSQRT, dl,
4530                             getValue(I.getArgOperand(0)).getValueType(),
4531                             getValue(I.getArgOperand(0))));
4532    return 0;
4533  case Intrinsic::powi:
4534    setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)),
4535                            getValue(I.getArgOperand(1)), DAG));
4536    return 0;
4537  case Intrinsic::sin:
4538    setValue(&I, DAG.getNode(ISD::FSIN, dl,
4539                             getValue(I.getArgOperand(0)).getValueType(),
4540                             getValue(I.getArgOperand(0))));
4541    return 0;
4542  case Intrinsic::cos:
4543    setValue(&I, DAG.getNode(ISD::FCOS, dl,
4544                             getValue(I.getArgOperand(0)).getValueType(),
4545                             getValue(I.getArgOperand(0))));
4546    return 0;
4547  case Intrinsic::log:
4548    visitLog(I);
4549    return 0;
4550  case Intrinsic::log2:
4551    visitLog2(I);
4552    return 0;
4553  case Intrinsic::log10:
4554    visitLog10(I);
4555    return 0;
4556  case Intrinsic::exp:
4557    visitExp(I);
4558    return 0;
4559  case Intrinsic::exp2:
4560    visitExp2(I);
4561    return 0;
4562  case Intrinsic::pow:
4563    visitPow(I);
4564    return 0;
4565  case Intrinsic::convert_to_fp16:
4566    setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl,
4567                             MVT::i16, getValue(I.getArgOperand(0))));
4568    return 0;
4569  case Intrinsic::convert_from_fp16:
4570    setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl,
4571                             MVT::f32, getValue(I.getArgOperand(0))));
4572    return 0;
4573  case Intrinsic::pcmarker: {
4574    SDValue Tmp = getValue(I.getArgOperand(0));
4575    DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp));
4576    return 0;
4577  }
4578  case Intrinsic::readcyclecounter: {
4579    SDValue Op = getRoot();
4580    Res = DAG.getNode(ISD::READCYCLECOUNTER, dl,
4581                      DAG.getVTList(MVT::i64, MVT::Other),
4582                      &Op, 1);
4583    setValue(&I, Res);
4584    DAG.setRoot(Res.getValue(1));
4585    return 0;
4586  }
4587  case Intrinsic::bswap:
4588    setValue(&I, DAG.getNode(ISD::BSWAP, dl,
4589                             getValue(I.getArgOperand(0)).getValueType(),
4590                             getValue(I.getArgOperand(0))));
4591    return 0;
4592  case Intrinsic::cttz: {
4593    SDValue Arg = getValue(I.getArgOperand(0));
4594    EVT Ty = Arg.getValueType();
4595    setValue(&I, DAG.getNode(ISD::CTTZ, dl, Ty, Arg));
4596    return 0;
4597  }
4598  case Intrinsic::ctlz: {
4599    SDValue Arg = getValue(I.getArgOperand(0));
4600    EVT Ty = Arg.getValueType();
4601    setValue(&I, DAG.getNode(ISD::CTLZ, dl, Ty, Arg));
4602    return 0;
4603  }
4604  case Intrinsic::ctpop: {
4605    SDValue Arg = getValue(I.getArgOperand(0));
4606    EVT Ty = Arg.getValueType();
4607    setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg));
4608    return 0;
4609  }
4610  case Intrinsic::stacksave: {
4611    SDValue Op = getRoot();
4612    Res = DAG.getNode(ISD::STACKSAVE, dl,
4613                      DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
4614    setValue(&I, Res);
4615    DAG.setRoot(Res.getValue(1));
4616    return 0;
4617  }
4618  case Intrinsic::stackrestore: {
4619    Res = getValue(I.getArgOperand(0));
4620    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res));
4621    return 0;
4622  }
4623  case Intrinsic::stackprotector: {
4624    // Emit code into the DAG to store the stack guard onto the stack.
4625    MachineFunction &MF = DAG.getMachineFunction();
4626    MachineFrameInfo *MFI = MF.getFrameInfo();
4627    EVT PtrTy = TLI.getPointerTy();
4628
4629    SDValue Src = getValue(I.getArgOperand(0));   // The guard's value.
4630    AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
4631
4632    int FI = FuncInfo.StaticAllocaMap[Slot];
4633    MFI->setStackProtectorIndex(FI);
4634
4635    SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
4636
4637    // Store the stack protector onto the stack.
4638    Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN,
4639                       MachinePointerInfo::getFixedStack(FI),
4640                       true, false, 0);
4641    setValue(&I, Res);
4642    DAG.setRoot(Res);
4643    return 0;
4644  }
4645  case Intrinsic::objectsize: {
4646    // If we don't know by now, we're never going to know.
4647    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
4648
4649    assert(CI && "Non-constant type in __builtin_object_size?");
4650
4651    SDValue Arg = getValue(I.getCalledValue());
4652    EVT Ty = Arg.getValueType();
4653
4654    if (CI->isZero())
4655      Res = DAG.getConstant(-1ULL, Ty);
4656    else
4657      Res = DAG.getConstant(0, Ty);
4658
4659    setValue(&I, Res);
4660    return 0;
4661  }
4662  case Intrinsic::var_annotation:
4663    // Discard annotate attributes
4664    return 0;
4665
4666  case Intrinsic::init_trampoline: {
4667    const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
4668
4669    SDValue Ops[6];
4670    Ops[0] = getRoot();
4671    Ops[1] = getValue(I.getArgOperand(0));
4672    Ops[2] = getValue(I.getArgOperand(1));
4673    Ops[3] = getValue(I.getArgOperand(2));
4674    Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
4675    Ops[5] = DAG.getSrcValue(F);
4676
4677    Res = DAG.getNode(ISD::TRAMPOLINE, dl,
4678                      DAG.getVTList(TLI.getPointerTy(), MVT::Other),
4679                      Ops, 6);
4680
4681    setValue(&I, Res);
4682    DAG.setRoot(Res.getValue(1));
4683    return 0;
4684  }
4685  case Intrinsic::gcroot:
4686    if (GFI) {
4687      const Value *Alloca = I.getArgOperand(0);
4688      const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
4689
4690      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
4691      GFI->addStackRoot(FI->getIndex(), TypeMap);
4692    }
4693    return 0;
4694  case Intrinsic::gcread:
4695  case Intrinsic::gcwrite:
4696    llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
4697    return 0;
4698  case Intrinsic::flt_rounds:
4699    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32));
4700    return 0;
4701  case Intrinsic::trap:
4702    DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot()));
4703    return 0;
4704  case Intrinsic::uadd_with_overflow:
4705    return implVisitAluOverflow(I, ISD::UADDO);
4706  case Intrinsic::sadd_with_overflow:
4707    return implVisitAluOverflow(I, ISD::SADDO);
4708  case Intrinsic::usub_with_overflow:
4709    return implVisitAluOverflow(I, ISD::USUBO);
4710  case Intrinsic::ssub_with_overflow:
4711    return implVisitAluOverflow(I, ISD::SSUBO);
4712  case Intrinsic::umul_with_overflow:
4713    return implVisitAluOverflow(I, ISD::UMULO);
4714  case Intrinsic::smul_with_overflow:
4715    return implVisitAluOverflow(I, ISD::SMULO);
4716
4717  case Intrinsic::prefetch: {
4718    SDValue Ops[4];
4719    unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
4720    Ops[0] = getRoot();
4721    Ops[1] = getValue(I.getArgOperand(0));
4722    Ops[2] = getValue(I.getArgOperand(1));
4723    Ops[3] = getValue(I.getArgOperand(2));
4724    DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, dl,
4725                                        DAG.getVTList(MVT::Other),
4726                                        &Ops[0], 4,
4727                                        EVT::getIntegerVT(*Context, 8),
4728                                        MachinePointerInfo(I.getArgOperand(0)),
4729                                        0, /* align */
4730                                        false, /* volatile */
4731                                        rw==0, /* read */
4732                                        rw==1)); /* write */
4733    return 0;
4734  }
4735  case Intrinsic::memory_barrier: {
4736    SDValue Ops[6];
4737    Ops[0] = getRoot();
4738    for (int x = 1; x < 6; ++x)
4739      Ops[x] = getValue(I.getArgOperand(x - 1));
4740
4741    DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6));
4742    return 0;
4743  }
4744  case Intrinsic::atomic_cmp_swap: {
4745    SDValue Root = getRoot();
4746    SDValue L =
4747      DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(),
4748                    getValue(I.getArgOperand(1)).getValueType().getSimpleVT(),
4749                    Root,
4750                    getValue(I.getArgOperand(0)),
4751                    getValue(I.getArgOperand(1)),
4752                    getValue(I.getArgOperand(2)),
4753                    MachinePointerInfo(I.getArgOperand(0)));
4754    setValue(&I, L);
4755    DAG.setRoot(L.getValue(1));
4756    return 0;
4757  }
4758  case Intrinsic::atomic_load_add:
4759    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD);
4760  case Intrinsic::atomic_load_sub:
4761    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB);
4762  case Intrinsic::atomic_load_or:
4763    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR);
4764  case Intrinsic::atomic_load_xor:
4765    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR);
4766  case Intrinsic::atomic_load_and:
4767    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND);
4768  case Intrinsic::atomic_load_nand:
4769    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND);
4770  case Intrinsic::atomic_load_max:
4771    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX);
4772  case Intrinsic::atomic_load_min:
4773    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN);
4774  case Intrinsic::atomic_load_umin:
4775    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN);
4776  case Intrinsic::atomic_load_umax:
4777    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX);
4778  case Intrinsic::atomic_swap:
4779    return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP);
4780
4781  case Intrinsic::invariant_start:
4782  case Intrinsic::lifetime_start:
4783    // Discard region information.
4784    setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
4785    return 0;
4786  case Intrinsic::invariant_end:
4787  case Intrinsic::lifetime_end:
4788    // Discard region information.
4789    return 0;
4790  }
4791}
4792
4793void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
4794                                      bool isTailCall,
4795                                      MachineBasicBlock *LandingPad) {
4796  const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
4797  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
4798  const Type *RetTy = FTy->getReturnType();
4799  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4800  MCSymbol *BeginLabel = 0;
4801
4802  TargetLowering::ArgListTy Args;
4803  TargetLowering::ArgListEntry Entry;
4804  Args.reserve(CS.arg_size());
4805
4806  // Check whether the function can return without sret-demotion.
4807  SmallVector<ISD::OutputArg, 4> Outs;
4808  SmallVector<uint64_t, 4> Offsets;
4809  GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(),
4810                Outs, TLI, &Offsets);
4811
4812  bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
4813                        FTy->isVarArg(), Outs, FTy->getContext());
4814
4815  SDValue DemoteStackSlot;
4816  int DemoteStackIdx = -100;
4817
4818  if (!CanLowerReturn) {
4819    uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(
4820                      FTy->getReturnType());
4821    unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(
4822                      FTy->getReturnType());
4823    MachineFunction &MF = DAG.getMachineFunction();
4824    DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
4825    const Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
4826
4827    DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI.getPointerTy());
4828    Entry.Node = DemoteStackSlot;
4829    Entry.Ty = StackSlotPtrType;
4830    Entry.isSExt = false;
4831    Entry.isZExt = false;
4832    Entry.isInReg = false;
4833    Entry.isSRet = true;
4834    Entry.isNest = false;
4835    Entry.isByVal = false;
4836    Entry.Alignment = Align;
4837    Args.push_back(Entry);
4838    RetTy = Type::getVoidTy(FTy->getContext());
4839  }
4840
4841  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
4842       i != e; ++i) {
4843    SDValue ArgNode = getValue(*i);
4844    Entry.Node = ArgNode; Entry.Ty = (*i)->getType();
4845
4846    unsigned attrInd = i - CS.arg_begin() + 1;
4847    Entry.isSExt  = CS.paramHasAttr(attrInd, Attribute::SExt);
4848    Entry.isZExt  = CS.paramHasAttr(attrInd, Attribute::ZExt);
4849    Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg);
4850    Entry.isSRet  = CS.paramHasAttr(attrInd, Attribute::StructRet);
4851    Entry.isNest  = CS.paramHasAttr(attrInd, Attribute::Nest);
4852    Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal);
4853    Entry.Alignment = CS.getParamAlignment(attrInd);
4854    Args.push_back(Entry);
4855  }
4856
4857  if (LandingPad) {
4858    // Insert a label before the invoke call to mark the try range.  This can be
4859    // used to detect deletion of the invoke via the MachineModuleInfo.
4860    BeginLabel = MMI.getContext().CreateTempSymbol();
4861
4862    // For SjLj, keep track of which landing pads go with which invokes
4863    // so as to maintain the ordering of pads in the LSDA.
4864    unsigned CallSiteIndex = MMI.getCurrentCallSite();
4865    if (CallSiteIndex) {
4866      MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
4867      // Now that the call site is handled, stop tracking it.
4868      MMI.setCurrentCallSite(0);
4869    }
4870
4871    // Both PendingLoads and PendingExports must be flushed here;
4872    // this call might not return.
4873    (void)getRoot();
4874    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel));
4875  }
4876
4877  // Check if target-independent constraints permit a tail call here.
4878  // Target-dependent constraints are checked within TLI.LowerCallTo.
4879  if (isTailCall &&
4880      !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI))
4881    isTailCall = false;
4882
4883  // If there's a possibility that fast-isel has already selected some amount
4884  // of the current basic block, don't emit a tail call.
4885  if (isTailCall && EnableFastISel)
4886    isTailCall = false;
4887
4888  std::pair<SDValue,SDValue> Result =
4889    TLI.LowerCallTo(getRoot(), RetTy,
4890                    CS.paramHasAttr(0, Attribute::SExt),
4891                    CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(),
4892                    CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(),
4893                    CS.getCallingConv(),
4894                    isTailCall,
4895                    !CS.getInstruction()->use_empty(),
4896                    Callee, Args, DAG, getCurDebugLoc());
4897  assert((isTailCall || Result.second.getNode()) &&
4898         "Non-null chain expected with non-tail call!");
4899  assert((Result.second.getNode() || !Result.first.getNode()) &&
4900         "Null value expected with tail call!");
4901  if (Result.first.getNode()) {
4902    setValue(CS.getInstruction(), Result.first);
4903  } else if (!CanLowerReturn && Result.second.getNode()) {
4904    // The instruction result is the result of loading from the
4905    // hidden sret parameter.
4906    SmallVector<EVT, 1> PVTs;
4907    const Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
4908
4909    ComputeValueVTs(TLI, PtrRetTy, PVTs);
4910    assert(PVTs.size() == 1 && "Pointers should fit in one register");
4911    EVT PtrVT = PVTs[0];
4912    unsigned NumValues = Outs.size();
4913    SmallVector<SDValue, 4> Values(NumValues);
4914    SmallVector<SDValue, 4> Chains(NumValues);
4915
4916    for (unsigned i = 0; i < NumValues; ++i) {
4917      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT,
4918                                DemoteStackSlot,
4919                                DAG.getConstant(Offsets[i], PtrVT));
4920      SDValue L = DAG.getLoad(Outs[i].VT, getCurDebugLoc(), Result.second,
4921                              Add,
4922                  MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]),
4923                              false, false, 1);
4924      Values[i] = L;
4925      Chains[i] = L.getValue(1);
4926    }
4927
4928    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
4929                                MVT::Other, &Chains[0], NumValues);
4930    PendingLoads.push_back(Chain);
4931
4932    // Collect the legal value parts into potentially illegal values
4933    // that correspond to the original function's return values.
4934    SmallVector<EVT, 4> RetTys;
4935    RetTy = FTy->getReturnType();
4936    ComputeValueVTs(TLI, RetTy, RetTys);
4937    ISD::NodeType AssertOp = ISD::DELETED_NODE;
4938    SmallVector<SDValue, 4> ReturnValues;
4939    unsigned CurReg = 0;
4940    for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
4941      EVT VT = RetTys[I];
4942      EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT);
4943      unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT);
4944
4945      SDValue ReturnValue =
4946        getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs,
4947                         RegisterVT, VT, AssertOp);
4948      ReturnValues.push_back(ReturnValue);
4949      CurReg += NumRegs;
4950    }
4951
4952    setValue(CS.getInstruction(),
4953             DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
4954                         DAG.getVTList(&RetTys[0], RetTys.size()),
4955                         &ReturnValues[0], ReturnValues.size()));
4956
4957  }
4958
4959  // As a special case, a null chain means that a tail call has been emitted and
4960  // the DAG root is already updated.
4961  if (Result.second.getNode())
4962    DAG.setRoot(Result.second);
4963  else
4964    HasTailCall = true;
4965
4966  if (LandingPad) {
4967    // Insert a label at the end of the invoke call to mark the try range.  This
4968    // can be used to detect deletion of the invoke via the MachineModuleInfo.
4969    MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
4970    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel));
4971
4972    // Inform MachineModuleInfo of range.
4973    MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
4974  }
4975}
4976
4977/// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
4978/// value is equal or not-equal to zero.
4979static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
4980  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
4981       UI != E; ++UI) {
4982    if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
4983      if (IC->isEquality())
4984        if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
4985          if (C->isNullValue())
4986            continue;
4987    // Unknown instruction.
4988    return false;
4989  }
4990  return true;
4991}
4992
4993static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
4994                             const Type *LoadTy,
4995                             SelectionDAGBuilder &Builder) {
4996
4997  // Check to see if this load can be trivially constant folded, e.g. if the
4998  // input is from a string literal.
4999  if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5000    // Cast pointer to the type we really want to load.
5001    LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5002                                         PointerType::getUnqual(LoadTy));
5003
5004    if (const Constant *LoadCst =
5005          ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
5006                                       Builder.TD))
5007      return Builder.getValue(LoadCst);
5008  }
5009
5010  // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
5011  // still constant memory, the input chain can be the entry node.
5012  SDValue Root;
5013  bool ConstantMemory = false;
5014
5015  // Do not serialize (non-volatile) loads of constant memory with anything.
5016  if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5017    Root = Builder.DAG.getEntryNode();
5018    ConstantMemory = true;
5019  } else {
5020    // Do not serialize non-volatile loads against each other.
5021    Root = Builder.DAG.getRoot();
5022  }
5023
5024  SDValue Ptr = Builder.getValue(PtrVal);
5025  SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root,
5026                                        Ptr, MachinePointerInfo(PtrVal),
5027                                        false /*volatile*/,
5028                                        false /*nontemporal*/, 1 /* align=1 */);
5029
5030  if (!ConstantMemory)
5031    Builder.PendingLoads.push_back(LoadVal.getValue(1));
5032  return LoadVal;
5033}
5034
5035
5036/// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5037/// If so, return true and lower it, otherwise return false and it will be
5038/// lowered like a normal call.
5039bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5040  // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
5041  if (I.getNumArgOperands() != 3)
5042    return false;
5043
5044  const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5045  if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5046      !I.getArgOperand(2)->getType()->isIntegerTy() ||
5047      !I.getType()->isIntegerTy())
5048    return false;
5049
5050  const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2));
5051
5052  // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
5053  // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
5054  if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) {
5055    bool ActuallyDoIt = true;
5056    MVT LoadVT;
5057    const Type *LoadTy;
5058    switch (Size->getZExtValue()) {
5059    default:
5060      LoadVT = MVT::Other;
5061      LoadTy = 0;
5062      ActuallyDoIt = false;
5063      break;
5064    case 2:
5065      LoadVT = MVT::i16;
5066      LoadTy = Type::getInt16Ty(Size->getContext());
5067      break;
5068    case 4:
5069      LoadVT = MVT::i32;
5070      LoadTy = Type::getInt32Ty(Size->getContext());
5071      break;
5072    case 8:
5073      LoadVT = MVT::i64;
5074      LoadTy = Type::getInt64Ty(Size->getContext());
5075      break;
5076        /*
5077    case 16:
5078      LoadVT = MVT::v4i32;
5079      LoadTy = Type::getInt32Ty(Size->getContext());
5080      LoadTy = VectorType::get(LoadTy, 4);
5081      break;
5082         */
5083    }
5084
5085    // This turns into unaligned loads.  We only do this if the target natively
5086    // supports the MVT we'll be loading or if it is small enough (<= 4) that
5087    // we'll only produce a small number of byte loads.
5088
5089    // Require that we can find a legal MVT, and only do this if the target
5090    // supports unaligned loads of that type.  Expanding into byte loads would
5091    // bloat the code.
5092    if (ActuallyDoIt && Size->getZExtValue() > 4) {
5093      // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5094      // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5095      if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT))
5096        ActuallyDoIt = false;
5097    }
5098
5099    if (ActuallyDoIt) {
5100      SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5101      SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5102
5103      SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal,
5104                                 ISD::SETNE);
5105      EVT CallVT = TLI.getValueType(I.getType(), true);
5106      setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT));
5107      return true;
5108    }
5109  }
5110
5111
5112  return false;
5113}
5114
5115
5116void SelectionDAGBuilder::visitCall(const CallInst &I) {
5117  // Handle inline assembly differently.
5118  if (isa<InlineAsm>(I.getCalledValue())) {
5119    visitInlineAsm(&I);
5120    return;
5121  }
5122
5123  // See if any floating point values are being passed to this function. This is
5124  // used to emit an undefined reference to fltused on Windows.
5125  const FunctionType *FT =
5126    cast<FunctionType>(I.getCalledValue()->getType()->getContainedType(0));
5127  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5128  if (FT->isVarArg() &&
5129      !MMI.callsExternalVAFunctionWithFloatingPointArguments()) {
5130    for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
5131      const Type* T = I.getArgOperand(i)->getType();
5132      for (po_iterator<const Type*> i = po_begin(T), e = po_end(T);
5133           i != e; ++i) {
5134        if (!i->isFloatingPointTy()) continue;
5135        MMI.setCallsExternalVAFunctionWithFloatingPointArguments(true);
5136        break;
5137      }
5138    }
5139  }
5140
5141  const char *RenameFn = 0;
5142  if (Function *F = I.getCalledFunction()) {
5143    if (F->isDeclaration()) {
5144      if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
5145        if (unsigned IID = II->getIntrinsicID(F)) {
5146          RenameFn = visitIntrinsicCall(I, IID);
5147          if (!RenameFn)
5148            return;
5149        }
5150      }
5151      if (unsigned IID = F->getIntrinsicID()) {
5152        RenameFn = visitIntrinsicCall(I, IID);
5153        if (!RenameFn)
5154          return;
5155      }
5156    }
5157
5158    // Check for well-known libc/libm calls.  If the function is internal, it
5159    // can't be a library call.
5160    if (!F->hasLocalLinkage() && F->hasName()) {
5161      StringRef Name = F->getName();
5162      if (Name == "copysign" || Name == "copysignf" || Name == "copysignl") {
5163        if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
5164            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5165            I.getType() == I.getArgOperand(0)->getType() &&
5166            I.getType() == I.getArgOperand(1)->getType()) {
5167          SDValue LHS = getValue(I.getArgOperand(0));
5168          SDValue RHS = getValue(I.getArgOperand(1));
5169          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(),
5170                                   LHS.getValueType(), LHS, RHS));
5171          return;
5172        }
5173      } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") {
5174        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5175            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5176            I.getType() == I.getArgOperand(0)->getType()) {
5177          SDValue Tmp = getValue(I.getArgOperand(0));
5178          setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(),
5179                                   Tmp.getValueType(), Tmp));
5180          return;
5181        }
5182      } else if (Name == "sin" || Name == "sinf" || Name == "sinl") {
5183        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5184            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5185            I.getType() == I.getArgOperand(0)->getType() &&
5186            I.onlyReadsMemory()) {
5187          SDValue Tmp = getValue(I.getArgOperand(0));
5188          setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(),
5189                                   Tmp.getValueType(), Tmp));
5190          return;
5191        }
5192      } else if (Name == "cos" || Name == "cosf" || Name == "cosl") {
5193        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5194            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5195            I.getType() == I.getArgOperand(0)->getType() &&
5196            I.onlyReadsMemory()) {
5197          SDValue Tmp = getValue(I.getArgOperand(0));
5198          setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(),
5199                                   Tmp.getValueType(), Tmp));
5200          return;
5201        }
5202      } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") {
5203        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5204            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5205            I.getType() == I.getArgOperand(0)->getType() &&
5206            I.onlyReadsMemory()) {
5207          SDValue Tmp = getValue(I.getArgOperand(0));
5208          setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(),
5209                                   Tmp.getValueType(), Tmp));
5210          return;
5211        }
5212      } else if (Name == "memcmp") {
5213        if (visitMemCmpCall(I))
5214          return;
5215      }
5216    }
5217  }
5218
5219  SDValue Callee;
5220  if (!RenameFn)
5221    Callee = getValue(I.getCalledValue());
5222  else
5223    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
5224
5225  // Check if we can potentially perform a tail call. More detailed checking is
5226  // be done within LowerCallTo, after more information about the call is known.
5227  LowerCallTo(&I, Callee, I.isTailCall());
5228}
5229
5230namespace llvm {
5231
5232/// AsmOperandInfo - This contains information for each constraint that we are
5233/// lowering.
5234class LLVM_LIBRARY_VISIBILITY SDISelAsmOperandInfo :
5235    public TargetLowering::AsmOperandInfo {
5236public:
5237  /// CallOperand - If this is the result output operand or a clobber
5238  /// this is null, otherwise it is the incoming operand to the CallInst.
5239  /// This gets modified as the asm is processed.
5240  SDValue CallOperand;
5241
5242  /// AssignedRegs - If this is a register or register class operand, this
5243  /// contains the set of register corresponding to the operand.
5244  RegsForValue AssignedRegs;
5245
5246  explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
5247    : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
5248  }
5249
5250  /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
5251  /// busy in OutputRegs/InputRegs.
5252  void MarkAllocatedRegs(bool isOutReg, bool isInReg,
5253                         std::set<unsigned> &OutputRegs,
5254                         std::set<unsigned> &InputRegs,
5255                         const TargetRegisterInfo &TRI) const {
5256    if (isOutReg) {
5257      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
5258        MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
5259    }
5260    if (isInReg) {
5261      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
5262        MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
5263    }
5264  }
5265
5266  /// getCallOperandValEVT - Return the EVT of the Value* that this operand
5267  /// corresponds to.  If there is no Value* for this operand, it returns
5268  /// MVT::Other.
5269  EVT getCallOperandValEVT(LLVMContext &Context,
5270                           const TargetLowering &TLI,
5271                           const TargetData *TD) const {
5272    if (CallOperandVal == 0) return MVT::Other;
5273
5274    if (isa<BasicBlock>(CallOperandVal))
5275      return TLI.getPointerTy();
5276
5277    const llvm::Type *OpTy = CallOperandVal->getType();
5278
5279    // If this is an indirect operand, the operand is a pointer to the
5280    // accessed type.
5281    if (isIndirect) {
5282      const llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
5283      if (!PtrTy)
5284        report_fatal_error("Indirect operand for inline asm not a pointer!");
5285      OpTy = PtrTy->getElementType();
5286    }
5287
5288    // If OpTy is not a single value, it may be a struct/union that we
5289    // can tile with integers.
5290    if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5291      unsigned BitSize = TD->getTypeSizeInBits(OpTy);
5292      switch (BitSize) {
5293      default: break;
5294      case 1:
5295      case 8:
5296      case 16:
5297      case 32:
5298      case 64:
5299      case 128:
5300        OpTy = IntegerType::get(Context, BitSize);
5301        break;
5302      }
5303    }
5304
5305    return TLI.getValueType(OpTy, true);
5306  }
5307
5308private:
5309  /// MarkRegAndAliases - Mark the specified register and all aliases in the
5310  /// specified set.
5311  static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
5312                                const TargetRegisterInfo &TRI) {
5313    assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
5314    Regs.insert(Reg);
5315    if (const unsigned *Aliases = TRI.getAliasSet(Reg))
5316      for (; *Aliases; ++Aliases)
5317        Regs.insert(*Aliases);
5318  }
5319};
5320
5321typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
5322
5323} // end llvm namespace.
5324
5325/// isAllocatableRegister - If the specified register is safe to allocate,
5326/// i.e. it isn't a stack pointer or some other special register, return the
5327/// register class for the register.  Otherwise, return null.
5328static const TargetRegisterClass *
5329isAllocatableRegister(unsigned Reg, MachineFunction &MF,
5330                      const TargetLowering &TLI,
5331                      const TargetRegisterInfo *TRI) {
5332  EVT FoundVT = MVT::Other;
5333  const TargetRegisterClass *FoundRC = 0;
5334  for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(),
5335       E = TRI->regclass_end(); RCI != E; ++RCI) {
5336    EVT ThisVT = MVT::Other;
5337
5338    const TargetRegisterClass *RC = *RCI;
5339    // If none of the value types for this register class are valid, we
5340    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
5341    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
5342         I != E; ++I) {
5343      if (TLI.isTypeLegal(*I)) {
5344        // If we have already found this register in a different register class,
5345        // choose the one with the largest VT specified.  For example, on
5346        // PowerPC, we favor f64 register classes over f32.
5347        if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) {
5348          ThisVT = *I;
5349          break;
5350        }
5351      }
5352    }
5353
5354    if (ThisVT == MVT::Other) continue;
5355
5356    // NOTE: This isn't ideal.  In particular, this might allocate the
5357    // frame pointer in functions that need it (due to them not being taken
5358    // out of allocation, because a variable sized allocation hasn't been seen
5359    // yet).  This is a slight code pessimization, but should still work.
5360    for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
5361         E = RC->allocation_order_end(MF); I != E; ++I)
5362      if (*I == Reg) {
5363        // We found a matching register class.  Keep looking at others in case
5364        // we find one with larger registers that this physreg is also in.
5365        FoundRC = RC;
5366        FoundVT = ThisVT;
5367        break;
5368      }
5369  }
5370  return FoundRC;
5371}
5372
5373/// GetRegistersForValue - Assign registers (virtual or physical) for the
5374/// specified operand.  We prefer to assign virtual registers, to allow the
5375/// register allocator to handle the assignment process.  However, if the asm
5376/// uses features that we can't model on machineinstrs, we have SDISel do the
5377/// allocation.  This produces generally horrible, but correct, code.
5378///
5379///   OpInfo describes the operand.
5380///   Input and OutputRegs are the set of already allocated physical registers.
5381///
5382void SelectionDAGBuilder::
5383GetRegistersForValue(SDISelAsmOperandInfo &OpInfo,
5384                     std::set<unsigned> &OutputRegs,
5385                     std::set<unsigned> &InputRegs) {
5386  LLVMContext &Context = FuncInfo.Fn->getContext();
5387
5388  // Compute whether this value requires an input register, an output register,
5389  // or both.
5390  bool isOutReg = false;
5391  bool isInReg = false;
5392  switch (OpInfo.Type) {
5393  case InlineAsm::isOutput:
5394    isOutReg = true;
5395
5396    // If there is an input constraint that matches this, we need to reserve
5397    // the input register so no other inputs allocate to it.
5398    isInReg = OpInfo.hasMatchingInput();
5399    break;
5400  case InlineAsm::isInput:
5401    isInReg = true;
5402    isOutReg = false;
5403    break;
5404  case InlineAsm::isClobber:
5405    isOutReg = true;
5406    isInReg = true;
5407    break;
5408  }
5409
5410
5411  MachineFunction &MF = DAG.getMachineFunction();
5412  SmallVector<unsigned, 4> Regs;
5413
5414  // If this is a constraint for a single physreg, or a constraint for a
5415  // register class, find it.
5416  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
5417    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5418                                     OpInfo.ConstraintVT);
5419
5420  unsigned NumRegs = 1;
5421  if (OpInfo.ConstraintVT != MVT::Other) {
5422    // If this is a FP input in an integer register (or visa versa) insert a bit
5423    // cast of the input value.  More generally, handle any case where the input
5424    // value disagrees with the register class we plan to stick this in.
5425    if (OpInfo.Type == InlineAsm::isInput &&
5426        PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
5427      // Try to convert to the first EVT that the reg class contains.  If the
5428      // types are identical size, use a bitcast to convert (e.g. two differing
5429      // vector types).
5430      EVT RegVT = *PhysReg.second->vt_begin();
5431      if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
5432        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
5433                                         RegVT, OpInfo.CallOperand);
5434        OpInfo.ConstraintVT = RegVT;
5435      } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
5436        // If the input is a FP value and we want it in FP registers, do a
5437        // bitcast to the corresponding integer type.  This turns an f64 value
5438        // into i64, which can be passed with two i32 values on a 32-bit
5439        // machine.
5440        RegVT = EVT::getIntegerVT(Context,
5441                                  OpInfo.ConstraintVT.getSizeInBits());
5442        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
5443                                         RegVT, OpInfo.CallOperand);
5444        OpInfo.ConstraintVT = RegVT;
5445      }
5446    }
5447
5448    NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
5449  }
5450
5451  EVT RegVT;
5452  EVT ValueVT = OpInfo.ConstraintVT;
5453
5454  // If this is a constraint for a specific physical register, like {r17},
5455  // assign it now.
5456  if (unsigned AssignedReg = PhysReg.first) {
5457    const TargetRegisterClass *RC = PhysReg.second;
5458    if (OpInfo.ConstraintVT == MVT::Other)
5459      ValueVT = *RC->vt_begin();
5460
5461    // Get the actual register value type.  This is important, because the user
5462    // may have asked for (e.g.) the AX register in i32 type.  We need to
5463    // remember that AX is actually i16 to get the right extension.
5464    RegVT = *RC->vt_begin();
5465
5466    // This is a explicit reference to a physical register.
5467    Regs.push_back(AssignedReg);
5468
5469    // If this is an expanded reference, add the rest of the regs to Regs.
5470    if (NumRegs != 1) {
5471      TargetRegisterClass::iterator I = RC->begin();
5472      for (; *I != AssignedReg; ++I)
5473        assert(I != RC->end() && "Didn't find reg!");
5474
5475      // Already added the first reg.
5476      --NumRegs; ++I;
5477      for (; NumRegs; --NumRegs, ++I) {
5478        assert(I != RC->end() && "Ran out of registers to allocate!");
5479        Regs.push_back(*I);
5480      }
5481    }
5482
5483    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5484    const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5485    OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5486    return;
5487  }
5488
5489  // Otherwise, if this was a reference to an LLVM register class, create vregs
5490  // for this reference.
5491  if (const TargetRegisterClass *RC = PhysReg.second) {
5492    RegVT = *RC->vt_begin();
5493    if (OpInfo.ConstraintVT == MVT::Other)
5494      ValueVT = RegVT;
5495
5496    // Create the appropriate number of virtual registers.
5497    MachineRegisterInfo &RegInfo = MF.getRegInfo();
5498    for (; NumRegs; --NumRegs)
5499      Regs.push_back(RegInfo.createVirtualRegister(RC));
5500
5501    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5502    return;
5503  }
5504
5505  // This is a reference to a register class that doesn't directly correspond
5506  // to an LLVM register class.  Allocate NumRegs consecutive, available,
5507  // registers from the class.
5508  std::vector<unsigned> RegClassRegs
5509    = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
5510                                            OpInfo.ConstraintVT);
5511
5512  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5513  unsigned NumAllocated = 0;
5514  for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
5515    unsigned Reg = RegClassRegs[i];
5516    // See if this register is available.
5517    if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
5518        (isInReg  && InputRegs.count(Reg))) {    // Already used.
5519      // Make sure we find consecutive registers.
5520      NumAllocated = 0;
5521      continue;
5522    }
5523
5524    // Check to see if this register is allocatable (i.e. don't give out the
5525    // stack pointer).
5526    const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, TRI);
5527    if (!RC) {        // Couldn't allocate this register.
5528      // Reset NumAllocated to make sure we return consecutive registers.
5529      NumAllocated = 0;
5530      continue;
5531    }
5532
5533    // Okay, this register is good, we can use it.
5534    ++NumAllocated;
5535
5536    // If we allocated enough consecutive registers, succeed.
5537    if (NumAllocated == NumRegs) {
5538      unsigned RegStart = (i-NumAllocated)+1;
5539      unsigned RegEnd   = i+1;
5540      // Mark all of the allocated registers used.
5541      for (unsigned i = RegStart; i != RegEnd; ++i)
5542        Regs.push_back(RegClassRegs[i]);
5543
5544      OpInfo.AssignedRegs = RegsForValue(Regs, *RC->vt_begin(),
5545                                         OpInfo.ConstraintVT);
5546      OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5547      return;
5548    }
5549  }
5550
5551  // Otherwise, we couldn't allocate enough registers for this.
5552}
5553
5554/// visitInlineAsm - Handle a call to an InlineAsm object.
5555///
5556void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
5557  const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
5558
5559  /// ConstraintOperands - Information about all of the constraints.
5560  SDISelAsmOperandInfoVector ConstraintOperands;
5561
5562  std::set<unsigned> OutputRegs, InputRegs;
5563
5564  TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(CS);
5565  bool hasMemory = false;
5566
5567  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
5568  unsigned ResNo = 0;   // ResNo - The result number of the next output.
5569  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
5570    ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
5571    SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
5572
5573    EVT OpVT = MVT::Other;
5574
5575    // Compute the value type for each operand.
5576    switch (OpInfo.Type) {
5577    case InlineAsm::isOutput:
5578      // Indirect outputs just consume an argument.
5579      if (OpInfo.isIndirect) {
5580        OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5581        break;
5582      }
5583
5584      // The return value of the call is this value.  As such, there is no
5585      // corresponding argument.
5586      assert(!CS.getType()->isVoidTy() &&
5587             "Bad inline asm!");
5588      if (const StructType *STy = dyn_cast<StructType>(CS.getType())) {
5589        OpVT = TLI.getValueType(STy->getElementType(ResNo));
5590      } else {
5591        assert(ResNo == 0 && "Asm only has one result!");
5592        OpVT = TLI.getValueType(CS.getType());
5593      }
5594      ++ResNo;
5595      break;
5596    case InlineAsm::isInput:
5597      OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5598      break;
5599    case InlineAsm::isClobber:
5600      // Nothing to do.
5601      break;
5602    }
5603
5604    // If this is an input or an indirect output, process the call argument.
5605    // BasicBlocks are labels, currently appearing only in asm's.
5606    if (OpInfo.CallOperandVal) {
5607      if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
5608        OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
5609      } else {
5610        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
5611      }
5612
5613      OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD);
5614    }
5615
5616    OpInfo.ConstraintVT = OpVT;
5617
5618    // Indirect operand accesses access memory.
5619    if (OpInfo.isIndirect)
5620      hasMemory = true;
5621    else {
5622      for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
5623        TargetLowering::ConstraintType CType = TLI.getConstraintType(OpInfo.Codes[j]);
5624        if (CType == TargetLowering::C_Memory) {
5625          hasMemory = true;
5626          break;
5627        }
5628      }
5629    }
5630  }
5631
5632  SDValue Chain, Flag;
5633
5634  // We won't need to flush pending loads if this asm doesn't touch
5635  // memory and is nonvolatile.
5636  if (hasMemory || IA->hasSideEffects())
5637    Chain = getRoot();
5638  else
5639    Chain = DAG.getRoot();
5640
5641  // Second pass over the constraints: compute which constraint option to use
5642  // and assign registers to constraints that want a specific physreg.
5643  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5644    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5645
5646    // If this is an output operand with a matching input operand, look up the
5647    // matching input. If their types mismatch, e.g. one is an integer, the
5648    // other is floating point, or their sizes are different, flag it as an
5649    // error.
5650    if (OpInfo.hasMatchingInput()) {
5651      SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5652
5653      if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5654        if ((OpInfo.ConstraintVT.isInteger() !=
5655             Input.ConstraintVT.isInteger()) ||
5656            (OpInfo.ConstraintVT.getSizeInBits() !=
5657             Input.ConstraintVT.getSizeInBits())) {
5658          report_fatal_error("Unsupported asm: input constraint"
5659                             " with a matching output constraint of"
5660                             " incompatible type!");
5661        }
5662        Input.ConstraintVT = OpInfo.ConstraintVT;
5663      }
5664    }
5665
5666    // Compute the constraint code and ConstraintType to use.
5667    TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
5668
5669    // If this is a memory input, and if the operand is not indirect, do what we
5670    // need to to provide an address for the memory input.
5671    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5672        !OpInfo.isIndirect) {
5673      assert((OpInfo.isMultipleAlternative || (OpInfo.Type == InlineAsm::isInput)) &&
5674             "Can only indirectify direct input operands!");
5675
5676      // Memory operands really want the address of the value.  If we don't have
5677      // an indirect input, put it in the constpool if we can, otherwise spill
5678      // it to a stack slot.
5679
5680      // If the operand is a float, integer, or vector constant, spill to a
5681      // constant pool entry to get its address.
5682      const Value *OpVal = OpInfo.CallOperandVal;
5683      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
5684          isa<ConstantVector>(OpVal)) {
5685        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
5686                                                 TLI.getPointerTy());
5687      } else {
5688        // Otherwise, create a stack slot and emit a store to it before the
5689        // asm.
5690        const Type *Ty = OpVal->getType();
5691        uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
5692        unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
5693        MachineFunction &MF = DAG.getMachineFunction();
5694        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5695        SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
5696        Chain = DAG.getStore(Chain, getCurDebugLoc(),
5697                             OpInfo.CallOperand, StackSlot,
5698                             MachinePointerInfo::getFixedStack(SSFI),
5699                             false, false, 0);
5700        OpInfo.CallOperand = StackSlot;
5701      }
5702
5703      // There is no longer a Value* corresponding to this operand.
5704      OpInfo.CallOperandVal = 0;
5705
5706      // It is now an indirect operand.
5707      OpInfo.isIndirect = true;
5708    }
5709
5710    // If this constraint is for a specific register, allocate it before
5711    // anything else.
5712    if (OpInfo.ConstraintType == TargetLowering::C_Register)
5713      GetRegistersForValue(OpInfo, OutputRegs, InputRegs);
5714  }
5715
5716  // Second pass - Loop over all of the operands, assigning virtual or physregs
5717  // to register class operands.
5718  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5719    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5720
5721    // C_Register operands have already been allocated, Other/Memory don't need
5722    // to be.
5723    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
5724      GetRegistersForValue(OpInfo, OutputRegs, InputRegs);
5725  }
5726
5727  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
5728  std::vector<SDValue> AsmNodeOperands;
5729  AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
5730  AsmNodeOperands.push_back(
5731          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
5732                                      TLI.getPointerTy()));
5733
5734  // If we have a !srcloc metadata node associated with it, we want to attach
5735  // this to the ultimately generated inline asm machineinstr.  To do this, we
5736  // pass in the third operand as this (potentially null) inline asm MDNode.
5737  const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
5738  AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
5739
5740  // Remember the HasSideEffect and AlignStack bits as operand 3.
5741  unsigned ExtraInfo = 0;
5742  if (IA->hasSideEffects())
5743    ExtraInfo |= InlineAsm::Extra_HasSideEffects;
5744  if (IA->isAlignStack())
5745    ExtraInfo |= InlineAsm::Extra_IsAlignStack;
5746  AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo,
5747                                                  TLI.getPointerTy()));
5748
5749  // Loop over all of the inputs, copying the operand values into the
5750  // appropriate registers and processing the output regs.
5751  RegsForValue RetValRegs;
5752
5753  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
5754  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
5755
5756  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5757    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5758
5759    switch (OpInfo.Type) {
5760    case InlineAsm::isOutput: {
5761      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
5762          OpInfo.ConstraintType != TargetLowering::C_Register) {
5763        // Memory output, or 'other' output (e.g. 'X' constraint).
5764        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
5765
5766        // Add information to the INLINEASM node to know about this output.
5767        unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
5768        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
5769                                                        TLI.getPointerTy()));
5770        AsmNodeOperands.push_back(OpInfo.CallOperand);
5771        break;
5772      }
5773
5774      // Otherwise, this is a register or register class output.
5775
5776      // Copy the output from the appropriate register.  Find a register that
5777      // we can use.
5778      if (OpInfo.AssignedRegs.Regs.empty())
5779        report_fatal_error("Couldn't allocate output reg for constraint '" +
5780                           Twine(OpInfo.ConstraintCode) + "'!");
5781
5782      // If this is an indirect operand, store through the pointer after the
5783      // asm.
5784      if (OpInfo.isIndirect) {
5785        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
5786                                                      OpInfo.CallOperandVal));
5787      } else {
5788        // This is the result value of the call.
5789        assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
5790        // Concatenate this output onto the outputs list.
5791        RetValRegs.append(OpInfo.AssignedRegs);
5792      }
5793
5794      // Add information to the INLINEASM node to know that this register is
5795      // set.
5796      OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
5797                                           InlineAsm::Kind_RegDefEarlyClobber :
5798                                               InlineAsm::Kind_RegDef,
5799                                               false,
5800                                               0,
5801                                               DAG,
5802                                               AsmNodeOperands);
5803      break;
5804    }
5805    case InlineAsm::isInput: {
5806      SDValue InOperandVal = OpInfo.CallOperand;
5807
5808      if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
5809        // If this is required to match an output register we have already set,
5810        // just use its register.
5811        unsigned OperandNo = OpInfo.getMatchedOperand();
5812
5813        // Scan until we find the definition we already emitted of this operand.
5814        // When we find it, create a RegsForValue operand.
5815        unsigned CurOp = InlineAsm::Op_FirstOperand;
5816        for (; OperandNo; --OperandNo) {
5817          // Advance to the next operand.
5818          unsigned OpFlag =
5819            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5820          assert((InlineAsm::isRegDefKind(OpFlag) ||
5821                  InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
5822                  InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
5823          CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
5824        }
5825
5826        unsigned OpFlag =
5827          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5828        if (InlineAsm::isRegDefKind(OpFlag) ||
5829            InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
5830          // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
5831          if (OpInfo.isIndirect) {
5832            // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
5833            LLVMContext &Ctx = *DAG.getContext();
5834            Ctx.emitError(CS.getInstruction(),  "inline asm not supported yet:"
5835                          " don't know how to handle tied "
5836                          "indirect register inputs");
5837          }
5838
5839          RegsForValue MatchedRegs;
5840          MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
5841          EVT RegVT = AsmNodeOperands[CurOp+1].getValueType();
5842          MatchedRegs.RegVTs.push_back(RegVT);
5843          MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
5844          for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
5845               i != e; ++i)
5846            MatchedRegs.Regs.push_back
5847              (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)));
5848
5849          // Use the produced MatchedRegs object to
5850          MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
5851                                    Chain, &Flag);
5852          MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
5853                                           true, OpInfo.getMatchedOperand(),
5854                                           DAG, AsmNodeOperands);
5855          break;
5856        }
5857
5858        assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
5859        assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
5860               "Unexpected number of operands");
5861        // Add information to the INLINEASM node to know about this input.
5862        // See InlineAsm.h isUseOperandTiedToDef.
5863        OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
5864                                                    OpInfo.getMatchedOperand());
5865        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
5866                                                        TLI.getPointerTy()));
5867        AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
5868        break;
5869      }
5870
5871      // Treat indirect 'X' constraint as memory.
5872      if (OpInfo.ConstraintType == TargetLowering::C_Other &&
5873          OpInfo.isIndirect)
5874        OpInfo.ConstraintType = TargetLowering::C_Memory;
5875
5876      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
5877        std::vector<SDValue> Ops;
5878        TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0],
5879                                         Ops, DAG);
5880        if (Ops.empty())
5881          report_fatal_error("Invalid operand for inline asm constraint '" +
5882                             Twine(OpInfo.ConstraintCode) + "'!");
5883
5884        // Add information to the INLINEASM node to know about this input.
5885        unsigned ResOpType =
5886          InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
5887        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5888                                                        TLI.getPointerTy()));
5889        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
5890        break;
5891      }
5892
5893      if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
5894        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
5895        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
5896               "Memory operands expect pointer values");
5897
5898        // Add information to the INLINEASM node to know about this input.
5899        unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
5900        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5901                                                        TLI.getPointerTy()));
5902        AsmNodeOperands.push_back(InOperandVal);
5903        break;
5904      }
5905
5906      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
5907              OpInfo.ConstraintType == TargetLowering::C_Register) &&
5908             "Unknown constraint type!");
5909      assert(!OpInfo.isIndirect &&
5910             "Don't know how to handle indirect register inputs yet!");
5911
5912      // Copy the input into the appropriate registers.
5913      if (OpInfo.AssignedRegs.Regs.empty() ||
5914          !OpInfo.AssignedRegs.areValueTypesLegal(TLI))
5915        report_fatal_error("Couldn't allocate input reg for constraint '" +
5916                           Twine(OpInfo.ConstraintCode) + "'!");
5917
5918      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
5919                                        Chain, &Flag);
5920
5921      OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
5922                                               DAG, AsmNodeOperands);
5923      break;
5924    }
5925    case InlineAsm::isClobber: {
5926      // Add the clobbered value to the operand list, so that the register
5927      // allocator is aware that the physreg got clobbered.
5928      if (!OpInfo.AssignedRegs.Regs.empty())
5929        OpInfo.AssignedRegs.AddInlineAsmOperands(
5930                                            InlineAsm::Kind_RegDefEarlyClobber,
5931                                                 false, 0, DAG,
5932                                                 AsmNodeOperands);
5933      break;
5934    }
5935    }
5936  }
5937
5938  // Finish up input operands.  Set the input chain and add the flag last.
5939  AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
5940  if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
5941
5942  Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(),
5943                      DAG.getVTList(MVT::Other, MVT::Glue),
5944                      &AsmNodeOperands[0], AsmNodeOperands.size());
5945  Flag = Chain.getValue(1);
5946
5947  // If this asm returns a register value, copy the result from that register
5948  // and set it as the value of the call.
5949  if (!RetValRegs.Regs.empty()) {
5950    SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
5951                                             Chain, &Flag);
5952
5953    // FIXME: Why don't we do this for inline asms with MRVs?
5954    if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
5955      EVT ResultType = TLI.getValueType(CS.getType());
5956
5957      // If any of the results of the inline asm is a vector, it may have the
5958      // wrong width/num elts.  This can happen for register classes that can
5959      // contain multiple different value types.  The preg or vreg allocated may
5960      // not have the same VT as was expected.  Convert it to the right type
5961      // with bit_convert.
5962      if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
5963        Val = DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
5964                          ResultType, Val);
5965
5966      } else if (ResultType != Val.getValueType() &&
5967                 ResultType.isInteger() && Val.getValueType().isInteger()) {
5968        // If a result value was tied to an input value, the computed result may
5969        // have a wider width than the expected result.  Extract the relevant
5970        // portion.
5971        Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val);
5972      }
5973
5974      assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
5975    }
5976
5977    setValue(CS.getInstruction(), Val);
5978    // Don't need to use this as a chain in this case.
5979    if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
5980      return;
5981  }
5982
5983  std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
5984
5985  // Process indirect outputs, first output all of the flagged copies out of
5986  // physregs.
5987  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
5988    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
5989    const Value *Ptr = IndirectStoresToEmit[i].second;
5990    SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
5991                                             Chain, &Flag);
5992    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
5993  }
5994
5995  // Emit the non-flagged stores from the physregs.
5996  SmallVector<SDValue, 8> OutChains;
5997  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
5998    SDValue Val = DAG.getStore(Chain, getCurDebugLoc(),
5999                               StoresToEmit[i].first,
6000                               getValue(StoresToEmit[i].second),
6001                               MachinePointerInfo(StoresToEmit[i].second),
6002                               false, false, 0);
6003    OutChains.push_back(Val);
6004  }
6005
6006  if (!OutChains.empty())
6007    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
6008                        &OutChains[0], OutChains.size());
6009
6010  DAG.setRoot(Chain);
6011}
6012
6013void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
6014  DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(),
6015                          MVT::Other, getRoot(),
6016                          getValue(I.getArgOperand(0)),
6017                          DAG.getSrcValue(I.getArgOperand(0))));
6018}
6019
6020void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
6021  const TargetData &TD = *TLI.getTargetData();
6022  SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(),
6023                           getRoot(), getValue(I.getOperand(0)),
6024                           DAG.getSrcValue(I.getOperand(0)),
6025                           TD.getABITypeAlignment(I.getType()));
6026  setValue(&I, V);
6027  DAG.setRoot(V.getValue(1));
6028}
6029
6030void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
6031  DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(),
6032                          MVT::Other, getRoot(),
6033                          getValue(I.getArgOperand(0)),
6034                          DAG.getSrcValue(I.getArgOperand(0))));
6035}
6036
6037void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
6038  DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(),
6039                          MVT::Other, getRoot(),
6040                          getValue(I.getArgOperand(0)),
6041                          getValue(I.getArgOperand(1)),
6042                          DAG.getSrcValue(I.getArgOperand(0)),
6043                          DAG.getSrcValue(I.getArgOperand(1))));
6044}
6045
6046/// TargetLowering::LowerCallTo - This is the default LowerCallTo
6047/// implementation, which just calls LowerCall.
6048/// FIXME: When all targets are
6049/// migrated to using LowerCall, this hook should be integrated into SDISel.
6050std::pair<SDValue, SDValue>
6051TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy,
6052                            bool RetSExt, bool RetZExt, bool isVarArg,
6053                            bool isInreg, unsigned NumFixedArgs,
6054                            CallingConv::ID CallConv, bool isTailCall,
6055                            bool isReturnValueUsed,
6056                            SDValue Callee,
6057                            ArgListTy &Args, SelectionDAG &DAG,
6058                            DebugLoc dl) const {
6059  // Handle all of the outgoing arguments.
6060  SmallVector<ISD::OutputArg, 32> Outs;
6061  SmallVector<SDValue, 32> OutVals;
6062  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
6063    SmallVector<EVT, 4> ValueVTs;
6064    ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
6065    for (unsigned Value = 0, NumValues = ValueVTs.size();
6066         Value != NumValues; ++Value) {
6067      EVT VT = ValueVTs[Value];
6068      const Type *ArgTy = VT.getTypeForEVT(RetTy->getContext());
6069      SDValue Op = SDValue(Args[i].Node.getNode(),
6070                           Args[i].Node.getResNo() + Value);
6071      ISD::ArgFlagsTy Flags;
6072      unsigned OriginalAlignment =
6073        getTargetData()->getABITypeAlignment(ArgTy);
6074
6075      if (Args[i].isZExt)
6076        Flags.setZExt();
6077      if (Args[i].isSExt)
6078        Flags.setSExt();
6079      if (Args[i].isInReg)
6080        Flags.setInReg();
6081      if (Args[i].isSRet)
6082        Flags.setSRet();
6083      if (Args[i].isByVal) {
6084        Flags.setByVal();
6085        const PointerType *Ty = cast<PointerType>(Args[i].Ty);
6086        const Type *ElementTy = Ty->getElementType();
6087        unsigned FrameAlign = getByValTypeAlignment(ElementTy);
6088        unsigned FrameSize  = getTargetData()->getTypeAllocSize(ElementTy);
6089        // For ByVal, alignment should come from FE.  BE will guess if this
6090        // info is not there but there are cases it cannot get right.
6091        if (Args[i].Alignment)
6092          FrameAlign = Args[i].Alignment;
6093        Flags.setByValAlign(FrameAlign);
6094        Flags.setByValSize(FrameSize);
6095      }
6096      if (Args[i].isNest)
6097        Flags.setNest();
6098      Flags.setOrigAlign(OriginalAlignment);
6099
6100      EVT PartVT = getRegisterType(RetTy->getContext(), VT);
6101      unsigned NumParts = getNumRegisters(RetTy->getContext(), VT);
6102      SmallVector<SDValue, 4> Parts(NumParts);
6103      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
6104
6105      if (Args[i].isSExt)
6106        ExtendKind = ISD::SIGN_EXTEND;
6107      else if (Args[i].isZExt)
6108        ExtendKind = ISD::ZERO_EXTEND;
6109
6110      getCopyToParts(DAG, dl, Op, &Parts[0], NumParts,
6111                     PartVT, ExtendKind);
6112
6113      for (unsigned j = 0; j != NumParts; ++j) {
6114        // if it isn't first piece, alignment must be 1
6115        ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(),
6116                               i < NumFixedArgs);
6117        if (NumParts > 1 && j == 0)
6118          MyFlags.Flags.setSplit();
6119        else if (j != 0)
6120          MyFlags.Flags.setOrigAlign(1);
6121
6122        Outs.push_back(MyFlags);
6123        OutVals.push_back(Parts[j]);
6124      }
6125    }
6126  }
6127
6128  // Handle the incoming return values from the call.
6129  SmallVector<ISD::InputArg, 32> Ins;
6130  SmallVector<EVT, 4> RetTys;
6131  ComputeValueVTs(*this, RetTy, RetTys);
6132  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6133    EVT VT = RetTys[I];
6134    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
6135    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
6136    for (unsigned i = 0; i != NumRegs; ++i) {
6137      ISD::InputArg MyFlags;
6138      MyFlags.VT = RegisterVT.getSimpleVT();
6139      MyFlags.Used = isReturnValueUsed;
6140      if (RetSExt)
6141        MyFlags.Flags.setSExt();
6142      if (RetZExt)
6143        MyFlags.Flags.setZExt();
6144      if (isInreg)
6145        MyFlags.Flags.setInReg();
6146      Ins.push_back(MyFlags);
6147    }
6148  }
6149
6150  SmallVector<SDValue, 4> InVals;
6151  Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall,
6152                    Outs, OutVals, Ins, dl, DAG, InVals);
6153
6154  // Verify that the target's LowerCall behaved as expected.
6155  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
6156         "LowerCall didn't return a valid chain!");
6157  assert((!isTailCall || InVals.empty()) &&
6158         "LowerCall emitted a return value for a tail call!");
6159  assert((isTailCall || InVals.size() == Ins.size()) &&
6160         "LowerCall didn't emit the correct number of values!");
6161
6162  // For a tail call, the return value is merely live-out and there aren't
6163  // any nodes in the DAG representing it. Return a special value to
6164  // indicate that a tail call has been emitted and no more Instructions
6165  // should be processed in the current block.
6166  if (isTailCall) {
6167    DAG.setRoot(Chain);
6168    return std::make_pair(SDValue(), SDValue());
6169  }
6170
6171  DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6172          assert(InVals[i].getNode() &&
6173                 "LowerCall emitted a null value!");
6174          assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6175                 "LowerCall emitted a value with the wrong type!");
6176        });
6177
6178  // Collect the legal value parts into potentially illegal values
6179  // that correspond to the original function's return values.
6180  ISD::NodeType AssertOp = ISD::DELETED_NODE;
6181  if (RetSExt)
6182    AssertOp = ISD::AssertSext;
6183  else if (RetZExt)
6184    AssertOp = ISD::AssertZext;
6185  SmallVector<SDValue, 4> ReturnValues;
6186  unsigned CurReg = 0;
6187  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6188    EVT VT = RetTys[I];
6189    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
6190    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
6191
6192    ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg],
6193                                            NumRegs, RegisterVT, VT,
6194                                            AssertOp));
6195    CurReg += NumRegs;
6196  }
6197
6198  // For a function returning void, there is no return value. We can't create
6199  // such a node, so we just return a null return value in that case. In
6200  // that case, nothing will actualy look at the value.
6201  if (ReturnValues.empty())
6202    return std::make_pair(SDValue(), Chain);
6203
6204  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
6205                            DAG.getVTList(&RetTys[0], RetTys.size()),
6206                            &ReturnValues[0], ReturnValues.size());
6207  return std::make_pair(Res, Chain);
6208}
6209
6210void TargetLowering::LowerOperationWrapper(SDNode *N,
6211                                           SmallVectorImpl<SDValue> &Results,
6212                                           SelectionDAG &DAG) const {
6213  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
6214  if (Res.getNode())
6215    Results.push_back(Res);
6216}
6217
6218SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
6219  llvm_unreachable("LowerOperation not implemented for this target!");
6220  return SDValue();
6221}
6222
6223void
6224SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
6225  SDValue Op = getNonRegisterValue(V);
6226  assert((Op.getOpcode() != ISD::CopyFromReg ||
6227          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
6228         "Copy from a reg to the same reg!");
6229  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
6230
6231  RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
6232  SDValue Chain = DAG.getEntryNode();
6233  RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0);
6234  PendingExports.push_back(Chain);
6235}
6236
6237#include "llvm/CodeGen/SelectionDAGISel.h"
6238
6239void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) {
6240  // If this is the entry block, emit arguments.
6241  const Function &F = *LLVMBB->getParent();
6242  SelectionDAG &DAG = SDB->DAG;
6243  DebugLoc dl = SDB->getCurDebugLoc();
6244  const TargetData *TD = TLI.getTargetData();
6245  SmallVector<ISD::InputArg, 16> Ins;
6246
6247  // Check whether the function can return without sret-demotion.
6248  SmallVector<ISD::OutputArg, 4> Outs;
6249  GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
6250                Outs, TLI);
6251
6252  if (!FuncInfo->CanLowerReturn) {
6253    // Put in an sret pointer parameter before all the other parameters.
6254    SmallVector<EVT, 1> ValueVTs;
6255    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6256
6257    // NOTE: Assuming that a pointer will never break down to more than one VT
6258    // or one register.
6259    ISD::ArgFlagsTy Flags;
6260    Flags.setSRet();
6261    EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]);
6262    ISD::InputArg RetArg(Flags, RegisterVT, true);
6263    Ins.push_back(RetArg);
6264  }
6265
6266  // Set up the incoming argument description vector.
6267  unsigned Idx = 1;
6268  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
6269       I != E; ++I, ++Idx) {
6270    SmallVector<EVT, 4> ValueVTs;
6271    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6272    bool isArgValueUsed = !I->use_empty();
6273    for (unsigned Value = 0, NumValues = ValueVTs.size();
6274         Value != NumValues; ++Value) {
6275      EVT VT = ValueVTs[Value];
6276      const Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
6277      ISD::ArgFlagsTy Flags;
6278      unsigned OriginalAlignment =
6279        TD->getABITypeAlignment(ArgTy);
6280
6281      if (F.paramHasAttr(Idx, Attribute::ZExt))
6282        Flags.setZExt();
6283      if (F.paramHasAttr(Idx, Attribute::SExt))
6284        Flags.setSExt();
6285      if (F.paramHasAttr(Idx, Attribute::InReg))
6286        Flags.setInReg();
6287      if (F.paramHasAttr(Idx, Attribute::StructRet))
6288        Flags.setSRet();
6289      if (F.paramHasAttr(Idx, Attribute::ByVal)) {
6290        Flags.setByVal();
6291        const PointerType *Ty = cast<PointerType>(I->getType());
6292        const Type *ElementTy = Ty->getElementType();
6293        unsigned FrameAlign = TLI.getByValTypeAlignment(ElementTy);
6294        unsigned FrameSize  = TD->getTypeAllocSize(ElementTy);
6295        // For ByVal, alignment should be passed from FE.  BE will guess if
6296        // this info is not there but there are cases it cannot get right.
6297        if (F.getParamAlignment(Idx))
6298          FrameAlign = F.getParamAlignment(Idx);
6299        Flags.setByValAlign(FrameAlign);
6300        Flags.setByValSize(FrameSize);
6301      }
6302      if (F.paramHasAttr(Idx, Attribute::Nest))
6303        Flags.setNest();
6304      Flags.setOrigAlign(OriginalAlignment);
6305
6306      EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6307      unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6308      for (unsigned i = 0; i != NumRegs; ++i) {
6309        ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed);
6310        if (NumRegs > 1 && i == 0)
6311          MyFlags.Flags.setSplit();
6312        // if it isn't first piece, alignment must be 1
6313        else if (i > 0)
6314          MyFlags.Flags.setOrigAlign(1);
6315        Ins.push_back(MyFlags);
6316      }
6317    }
6318  }
6319
6320  // Call the target to set up the argument values.
6321  SmallVector<SDValue, 8> InVals;
6322  SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
6323                                             F.isVarArg(), Ins,
6324                                             dl, DAG, InVals);
6325
6326  // Verify that the target's LowerFormalArguments behaved as expected.
6327  assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
6328         "LowerFormalArguments didn't return a valid chain!");
6329  assert(InVals.size() == Ins.size() &&
6330         "LowerFormalArguments didn't emit the correct number of values!");
6331  DEBUG({
6332      for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6333        assert(InVals[i].getNode() &&
6334               "LowerFormalArguments emitted a null value!");
6335        assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6336               "LowerFormalArguments emitted a value with the wrong type!");
6337      }
6338    });
6339
6340  // Update the DAG with the new chain value resulting from argument lowering.
6341  DAG.setRoot(NewRoot);
6342
6343  // Set up the argument values.
6344  unsigned i = 0;
6345  Idx = 1;
6346  if (!FuncInfo->CanLowerReturn) {
6347    // Create a virtual register for the sret pointer, and put in a copy
6348    // from the sret argument into it.
6349    SmallVector<EVT, 1> ValueVTs;
6350    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6351    EVT VT = ValueVTs[0];
6352    EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6353    ISD::NodeType AssertOp = ISD::DELETED_NODE;
6354    SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
6355                                        RegVT, VT, AssertOp);
6356
6357    MachineFunction& MF = SDB->DAG.getMachineFunction();
6358    MachineRegisterInfo& RegInfo = MF.getRegInfo();
6359    unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT));
6360    FuncInfo->DemoteRegister = SRetReg;
6361    NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(),
6362                                    SRetReg, ArgValue);
6363    DAG.setRoot(NewRoot);
6364
6365    // i indexes lowered arguments.  Bump it past the hidden sret argument.
6366    // Idx indexes LLVM arguments.  Don't touch it.
6367    ++i;
6368  }
6369
6370  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
6371      ++I, ++Idx) {
6372    SmallVector<SDValue, 4> ArgValues;
6373    SmallVector<EVT, 4> ValueVTs;
6374    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6375    unsigned NumValues = ValueVTs.size();
6376
6377    // If this argument is unused then remember its value. It is used to generate
6378    // debugging information.
6379    if (I->use_empty() && NumValues)
6380      SDB->setUnusedArgValue(I, InVals[i]);
6381
6382    for (unsigned Value = 0; Value != NumValues; ++Value) {
6383      EVT VT = ValueVTs[Value];
6384      EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6385      unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6386
6387      if (!I->use_empty()) {
6388        ISD::NodeType AssertOp = ISD::DELETED_NODE;
6389        if (F.paramHasAttr(Idx, Attribute::SExt))
6390          AssertOp = ISD::AssertSext;
6391        else if (F.paramHasAttr(Idx, Attribute::ZExt))
6392          AssertOp = ISD::AssertZext;
6393
6394        ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
6395                                             NumParts, PartVT, VT,
6396                                             AssertOp));
6397      }
6398
6399      i += NumParts;
6400    }
6401
6402    // Note down frame index for byval arguments.
6403    if (I->hasByValAttr() && !ArgValues.empty())
6404      if (FrameIndexSDNode *FI =
6405          dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
6406        FuncInfo->setByValArgumentFrameIndex(I, FI->getIndex());
6407
6408    if (!I->use_empty()) {
6409      SDValue Res;
6410      if (!ArgValues.empty())
6411        Res = DAG.getMergeValues(&ArgValues[0], NumValues,
6412                                 SDB->getCurDebugLoc());
6413      SDB->setValue(I, Res);
6414
6415      // If this argument is live outside of the entry block, insert a copy from
6416      // whereever we got it to the vreg that other BB's will reference it as.
6417      SDB->CopyToExportRegsIfNeeded(I);
6418    }
6419  }
6420
6421  assert(i == InVals.size() && "Argument register count mismatch!");
6422
6423  // Finally, if the target has anything special to do, allow it to do so.
6424  // FIXME: this should insert code into the DAG!
6425  EmitFunctionEntryCode();
6426}
6427
6428/// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
6429/// ensure constants are generated when needed.  Remember the virtual registers
6430/// that need to be added to the Machine PHI nodes as input.  We cannot just
6431/// directly add them, because expansion might result in multiple MBB's for one
6432/// BB.  As such, the start of the BB might correspond to a different MBB than
6433/// the end.
6434///
6435void
6436SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
6437  const TerminatorInst *TI = LLVMBB->getTerminator();
6438
6439  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6440
6441  // Check successor nodes' PHI nodes that expect a constant to be available
6442  // from this block.
6443  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6444    const BasicBlock *SuccBB = TI->getSuccessor(succ);
6445    if (!isa<PHINode>(SuccBB->begin())) continue;
6446    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
6447
6448    // If this terminator has multiple identical successors (common for
6449    // switches), only handle each succ once.
6450    if (!SuccsHandled.insert(SuccMBB)) continue;
6451
6452    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6453
6454    // At this point we know that there is a 1-1 correspondence between LLVM PHI
6455    // nodes and Machine PHI nodes, but the incoming operands have not been
6456    // emitted yet.
6457    for (BasicBlock::const_iterator I = SuccBB->begin();
6458         const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
6459      // Ignore dead phi's.
6460      if (PN->use_empty()) continue;
6461
6462      unsigned Reg;
6463      const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6464
6465      if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
6466        unsigned &RegOut = ConstantsOut[C];
6467        if (RegOut == 0) {
6468          RegOut = FuncInfo.CreateRegs(C->getType());
6469          CopyValueToVirtualRegister(C, RegOut);
6470        }
6471        Reg = RegOut;
6472      } else {
6473        DenseMap<const Value *, unsigned>::iterator I =
6474          FuncInfo.ValueMap.find(PHIOp);
6475        if (I != FuncInfo.ValueMap.end())
6476          Reg = I->second;
6477        else {
6478          assert(isa<AllocaInst>(PHIOp) &&
6479                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
6480                 "Didn't codegen value into a register!??");
6481          Reg = FuncInfo.CreateRegs(PHIOp->getType());
6482          CopyValueToVirtualRegister(PHIOp, Reg);
6483        }
6484      }
6485
6486      // Remember that this register needs to added to the machine PHI node as
6487      // the input for this MBB.
6488      SmallVector<EVT, 4> ValueVTs;
6489      ComputeValueVTs(TLI, PN->getType(), ValueVTs);
6490      for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
6491        EVT VT = ValueVTs[vti];
6492        unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
6493        for (unsigned i = 0, e = NumRegisters; i != e; ++i)
6494          FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
6495        Reg += NumRegisters;
6496      }
6497    }
6498  }
6499  ConstantsOut.clear();
6500}
6501