SelectionDAGBuilder.cpp revision 324c0e335cffaeeacdd15df43fa8beffcf125aca
1//===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements routines for translating from LLVM IR into SelectionDAG IR.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "SDNodeDbgValue.h"
16#include "SelectionDAGBuilder.h"
17#include "llvm/ADT/BitVector.h"
18#include "llvm/ADT/SmallSet.h"
19#include "llvm/Analysis/AliasAnalysis.h"
20#include "llvm/Analysis/ConstantFolding.h"
21#include "llvm/Constants.h"
22#include "llvm/CallingConv.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/Function.h"
25#include "llvm/GlobalVariable.h"
26#include "llvm/InlineAsm.h"
27#include "llvm/Instructions.h"
28#include "llvm/Intrinsics.h"
29#include "llvm/IntrinsicInst.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/Module.h"
32#include "llvm/CodeGen/Analysis.h"
33#include "llvm/CodeGen/FastISel.h"
34#include "llvm/CodeGen/FunctionLoweringInfo.h"
35#include "llvm/CodeGen/GCStrategy.h"
36#include "llvm/CodeGen/GCMetadata.h"
37#include "llvm/CodeGen/MachineFunction.h"
38#include "llvm/CodeGen/MachineFrameInfo.h"
39#include "llvm/CodeGen/MachineInstrBuilder.h"
40#include "llvm/CodeGen/MachineJumpTableInfo.h"
41#include "llvm/CodeGen/MachineModuleInfo.h"
42#include "llvm/CodeGen/MachineRegisterInfo.h"
43#include "llvm/CodeGen/PseudoSourceValue.h"
44#include "llvm/CodeGen/SelectionDAG.h"
45#include "llvm/Analysis/DebugInfo.h"
46#include "llvm/Target/TargetRegisterInfo.h"
47#include "llvm/Target/TargetData.h"
48#include "llvm/Target/TargetFrameInfo.h"
49#include "llvm/Target/TargetInstrInfo.h"
50#include "llvm/Target/TargetIntrinsicInfo.h"
51#include "llvm/Target/TargetLowering.h"
52#include "llvm/Target/TargetOptions.h"
53#include "llvm/Support/Compiler.h"
54#include "llvm/Support/CommandLine.h"
55#include "llvm/Support/Debug.h"
56#include "llvm/Support/ErrorHandling.h"
57#include "llvm/Support/MathExtras.h"
58#include "llvm/Support/raw_ostream.h"
59#include <algorithm>
60using namespace llvm;
61
62/// LimitFloatPrecision - Generate low-precision inline sequences for
63/// some float libcalls (6, 8 or 12 bits).
64static unsigned LimitFloatPrecision;
65
66static cl::opt<unsigned, true>
67LimitFPPrecision("limit-float-precision",
68                 cl::desc("Generate low-precision inline sequences "
69                          "for some float libcalls"),
70                 cl::location(LimitFloatPrecision),
71                 cl::init(0));
72
73/// getCopyFromParts - Create a value that contains the specified legal parts
74/// combined into the value they represent.  If the parts combine to a type
75/// larger then ValueVT then AssertOp can be used to specify whether the extra
76/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
77/// (ISD::AssertSext).
78static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc dl,
79                                const SDValue *Parts,
80                                unsigned NumParts, EVT PartVT, EVT ValueVT,
81                                ISD::NodeType AssertOp = ISD::DELETED_NODE) {
82  assert(NumParts > 0 && "No parts to assemble!");
83  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
84  SDValue Val = Parts[0];
85
86  if (NumParts > 1) {
87    // Assemble the value from multiple parts.
88    if (!ValueVT.isVector() && ValueVT.isInteger()) {
89      unsigned PartBits = PartVT.getSizeInBits();
90      unsigned ValueBits = ValueVT.getSizeInBits();
91
92      // Assemble the power of 2 part.
93      unsigned RoundParts = NumParts & (NumParts - 1) ?
94        1 << Log2_32(NumParts) : NumParts;
95      unsigned RoundBits = PartBits * RoundParts;
96      EVT RoundVT = RoundBits == ValueBits ?
97        ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
98      SDValue Lo, Hi;
99
100      EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
101
102      if (RoundParts > 2) {
103        Lo = getCopyFromParts(DAG, dl, Parts, RoundParts / 2,
104                              PartVT, HalfVT);
105        Hi = getCopyFromParts(DAG, dl, Parts + RoundParts / 2,
106                              RoundParts / 2, PartVT, HalfVT);
107      } else {
108        Lo = DAG.getNode(ISD::BIT_CONVERT, dl, HalfVT, Parts[0]);
109        Hi = DAG.getNode(ISD::BIT_CONVERT, dl, HalfVT, Parts[1]);
110      }
111
112      if (TLI.isBigEndian())
113        std::swap(Lo, Hi);
114
115      Val = DAG.getNode(ISD::BUILD_PAIR, dl, RoundVT, Lo, Hi);
116
117      if (RoundParts < NumParts) {
118        // Assemble the trailing non-power-of-2 part.
119        unsigned OddParts = NumParts - RoundParts;
120        EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
121        Hi = getCopyFromParts(DAG, dl,
122                              Parts + RoundParts, OddParts, PartVT, OddVT);
123
124        // Combine the round and odd parts.
125        Lo = Val;
126        if (TLI.isBigEndian())
127          std::swap(Lo, Hi);
128        EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
129        Hi = DAG.getNode(ISD::ANY_EXTEND, dl, TotalVT, Hi);
130        Hi = DAG.getNode(ISD::SHL, dl, TotalVT, Hi,
131                         DAG.getConstant(Lo.getValueType().getSizeInBits(),
132                                         TLI.getPointerTy()));
133        Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, TotalVT, Lo);
134        Val = DAG.getNode(ISD::OR, dl, TotalVT, Lo, Hi);
135      }
136    } else if (ValueVT.isVector()) {
137      // Handle a multi-element vector.
138      EVT IntermediateVT, RegisterVT;
139      unsigned NumIntermediates;
140      unsigned NumRegs =
141        TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
142                                   NumIntermediates, RegisterVT);
143      assert(NumRegs == NumParts
144             && "Part count doesn't match vector breakdown!");
145      NumParts = NumRegs; // Silence a compiler warning.
146      assert(RegisterVT == PartVT
147             && "Part type doesn't match vector breakdown!");
148      assert(RegisterVT == Parts[0].getValueType() &&
149             "Part type doesn't match part!");
150
151      // Assemble the parts into intermediate operands.
152      SmallVector<SDValue, 8> Ops(NumIntermediates);
153      if (NumIntermediates == NumParts) {
154        // If the register was not expanded, truncate or copy the value,
155        // as appropriate.
156        for (unsigned i = 0; i != NumParts; ++i)
157          Ops[i] = getCopyFromParts(DAG, dl, &Parts[i], 1,
158                                    PartVT, IntermediateVT);
159      } else if (NumParts > 0) {
160        // If the intermediate type was expanded, build the intermediate
161        // operands from the parts.
162        assert(NumParts % NumIntermediates == 0 &&
163               "Must expand into a divisible number of parts!");
164        unsigned Factor = NumParts / NumIntermediates;
165        for (unsigned i = 0; i != NumIntermediates; ++i)
166          Ops[i] = getCopyFromParts(DAG, dl, &Parts[i * Factor], Factor,
167                                    PartVT, IntermediateVT);
168      }
169
170      // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
171      // intermediate operands.
172      Val = DAG.getNode(IntermediateVT.isVector() ?
173                        ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, dl,
174                        ValueVT, &Ops[0], NumIntermediates);
175    } else if (PartVT.isFloatingPoint()) {
176      // FP split into multiple FP parts (for ppcf128)
177      assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) &&
178             "Unexpected split");
179      SDValue Lo, Hi;
180      Lo = DAG.getNode(ISD::BIT_CONVERT, dl, EVT(MVT::f64), Parts[0]);
181      Hi = DAG.getNode(ISD::BIT_CONVERT, dl, EVT(MVT::f64), Parts[1]);
182      if (TLI.isBigEndian())
183        std::swap(Lo, Hi);
184      Val = DAG.getNode(ISD::BUILD_PAIR, dl, ValueVT, Lo, Hi);
185    } else {
186      // FP split into integer parts (soft fp)
187      assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
188             !PartVT.isVector() && "Unexpected split");
189      EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
190      Val = getCopyFromParts(DAG, dl, Parts, NumParts, PartVT, IntVT);
191    }
192  }
193
194  // There is now one part, held in Val.  Correct it to match ValueVT.
195  PartVT = Val.getValueType();
196
197  if (PartVT == ValueVT)
198    return Val;
199
200  if (PartVT.isVector()) {
201    assert(ValueVT.isVector() && "Unknown vector conversion!");
202    return DAG.getNode(ISD::BIT_CONVERT, dl, ValueVT, Val);
203  }
204
205  if (ValueVT.isVector()) {
206    assert(ValueVT.getVectorElementType() == PartVT &&
207           ValueVT.getVectorNumElements() == 1 &&
208           "Only trivial scalar-to-vector conversions should get here!");
209    return DAG.getNode(ISD::BUILD_VECTOR, dl, ValueVT, Val);
210  }
211
212  if (PartVT.isInteger() &&
213      ValueVT.isInteger()) {
214    if (ValueVT.bitsLT(PartVT)) {
215      // For a truncate, see if we have any information to
216      // indicate whether the truncated bits will always be
217      // zero or sign-extension.
218      if (AssertOp != ISD::DELETED_NODE)
219        Val = DAG.getNode(AssertOp, dl, PartVT, Val,
220                          DAG.getValueType(ValueVT));
221      return DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val);
222    } else {
223      return DAG.getNode(ISD::ANY_EXTEND, dl, ValueVT, Val);
224    }
225  }
226
227  if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
228    if (ValueVT.bitsLT(Val.getValueType())) {
229      // FP_ROUND's are always exact here.
230      return DAG.getNode(ISD::FP_ROUND, dl, ValueVT, Val,
231                         DAG.getIntPtrConstant(1));
232    }
233
234    return DAG.getNode(ISD::FP_EXTEND, dl, ValueVT, Val);
235  }
236
237  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
238    return DAG.getNode(ISD::BIT_CONVERT, dl, ValueVT, Val);
239
240  llvm_unreachable("Unknown mismatch!");
241  return SDValue();
242}
243
244/// getCopyToParts - Create a series of nodes that contain the specified value
245/// split into legal parts.  If the parts contain more bits than Val, then, for
246/// integers, ExtendKind can be used to specify how to generate the extra bits.
247static void getCopyToParts(SelectionDAG &DAG, DebugLoc dl,
248                           SDValue Val, SDValue *Parts, unsigned NumParts,
249                           EVT PartVT,
250                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
251  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
252  EVT PtrVT = TLI.getPointerTy();
253  EVT ValueVT = Val.getValueType();
254  unsigned PartBits = PartVT.getSizeInBits();
255  unsigned OrigNumParts = NumParts;
256  assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
257
258  if (!NumParts)
259    return;
260
261  if (!ValueVT.isVector()) {
262    if (PartVT == ValueVT) {
263      assert(NumParts == 1 && "No-op copy with multiple parts!");
264      Parts[0] = Val;
265      return;
266    }
267
268    if (NumParts * PartBits > ValueVT.getSizeInBits()) {
269      // If the parts cover more bits than the value has, promote the value.
270      if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
271        assert(NumParts == 1 && "Do not know what to promote to!");
272        Val = DAG.getNode(ISD::FP_EXTEND, dl, PartVT, Val);
273      } else if (PartVT.isInteger() && ValueVT.isInteger()) {
274        ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
275        Val = DAG.getNode(ExtendKind, dl, ValueVT, Val);
276      } else {
277        llvm_unreachable("Unknown mismatch!");
278      }
279    } else if (PartBits == ValueVT.getSizeInBits()) {
280      // Different types of the same size.
281      assert(NumParts == 1 && PartVT != ValueVT);
282      Val = DAG.getNode(ISD::BIT_CONVERT, dl, PartVT, Val);
283    } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
284      // If the parts cover less bits than value has, truncate the value.
285      if (PartVT.isInteger() && ValueVT.isInteger()) {
286        ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
287        Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val);
288      } else {
289        llvm_unreachable("Unknown mismatch!");
290      }
291    }
292
293    // The value may have changed - recompute ValueVT.
294    ValueVT = Val.getValueType();
295    assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
296           "Failed to tile the value with PartVT!");
297
298    if (NumParts == 1) {
299      assert(PartVT == ValueVT && "Type conversion failed!");
300      Parts[0] = Val;
301      return;
302    }
303
304    // Expand the value into multiple parts.
305    if (NumParts & (NumParts - 1)) {
306      // The number of parts is not a power of 2.  Split off and copy the tail.
307      assert(PartVT.isInteger() && ValueVT.isInteger() &&
308             "Do not know what to expand to!");
309      unsigned RoundParts = 1 << Log2_32(NumParts);
310      unsigned RoundBits = RoundParts * PartBits;
311      unsigned OddParts = NumParts - RoundParts;
312      SDValue OddVal = DAG.getNode(ISD::SRL, dl, ValueVT, Val,
313                                   DAG.getConstant(RoundBits,
314                                                   TLI.getPointerTy()));
315      getCopyToParts(DAG, dl, OddVal, Parts + RoundParts,
316                     OddParts, PartVT);
317
318      if (TLI.isBigEndian())
319        // The odd parts were reversed by getCopyToParts - unreverse them.
320        std::reverse(Parts + RoundParts, Parts + NumParts);
321
322      NumParts = RoundParts;
323      ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
324      Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val);
325    }
326
327    // The number of parts is a power of 2.  Repeatedly bisect the value using
328    // EXTRACT_ELEMENT.
329    Parts[0] = DAG.getNode(ISD::BIT_CONVERT, dl,
330                           EVT::getIntegerVT(*DAG.getContext(),
331                                             ValueVT.getSizeInBits()),
332                           Val);
333
334    for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
335      for (unsigned i = 0; i < NumParts; i += StepSize) {
336        unsigned ThisBits = StepSize * PartBits / 2;
337        EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
338        SDValue &Part0 = Parts[i];
339        SDValue &Part1 = Parts[i+StepSize/2];
340
341        Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
342                            ThisVT, Part0,
343                            DAG.getConstant(1, PtrVT));
344        Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
345                            ThisVT, Part0,
346                            DAG.getConstant(0, PtrVT));
347
348        if (ThisBits == PartBits && ThisVT != PartVT) {
349          Part0 = DAG.getNode(ISD::BIT_CONVERT, dl,
350                                                PartVT, Part0);
351          Part1 = DAG.getNode(ISD::BIT_CONVERT, dl,
352                                                PartVT, Part1);
353        }
354      }
355    }
356
357    if (TLI.isBigEndian())
358      std::reverse(Parts, Parts + OrigNumParts);
359
360    return;
361  }
362
363  // Vector ValueVT.
364  if (NumParts == 1) {
365    if (PartVT != ValueVT) {
366      if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
367        Val = DAG.getNode(ISD::BIT_CONVERT, dl, PartVT, Val);
368      } else {
369        assert(ValueVT.getVectorElementType() == PartVT &&
370               ValueVT.getVectorNumElements() == 1 &&
371               "Only trivial vector-to-scalar conversions should get here!");
372        Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
373                          PartVT, Val,
374                          DAG.getConstant(0, PtrVT));
375      }
376    }
377
378    Parts[0] = Val;
379    return;
380  }
381
382  // Handle a multi-element vector.
383  EVT IntermediateVT, RegisterVT;
384  unsigned NumIntermediates;
385  unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
386                              IntermediateVT, NumIntermediates, RegisterVT);
387  unsigned NumElements = ValueVT.getVectorNumElements();
388
389  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
390  NumParts = NumRegs; // Silence a compiler warning.
391  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
392
393  // Split the vector into intermediate operands.
394  SmallVector<SDValue, 8> Ops(NumIntermediates);
395  for (unsigned i = 0; i != NumIntermediates; ++i) {
396    if (IntermediateVT.isVector())
397      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl,
398                           IntermediateVT, Val,
399                           DAG.getConstant(i * (NumElements / NumIntermediates),
400                                           PtrVT));
401    else
402      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
403                           IntermediateVT, Val,
404                           DAG.getConstant(i, PtrVT));
405  }
406
407  // Split the intermediate operands into legal parts.
408  if (NumParts == NumIntermediates) {
409    // If the register was not expanded, promote or copy the value,
410    // as appropriate.
411    for (unsigned i = 0; i != NumParts; ++i)
412      getCopyToParts(DAG, dl, Ops[i], &Parts[i], 1, PartVT);
413  } else if (NumParts > 0) {
414    // If the intermediate type was expanded, split each the value into
415    // legal parts.
416    assert(NumParts % NumIntermediates == 0 &&
417           "Must expand into a divisible number of parts!");
418    unsigned Factor = NumParts / NumIntermediates;
419    for (unsigned i = 0; i != NumIntermediates; ++i)
420      getCopyToParts(DAG, dl, Ops[i], &Parts[i*Factor], Factor, PartVT);
421  }
422}
423
424namespace {
425  /// RegsForValue - This struct represents the registers (physical or virtual)
426  /// that a particular set of values is assigned, and the type information
427  /// about the value. The most common situation is to represent one value at a
428  /// time, but struct or array values are handled element-wise as multiple
429  /// values.  The splitting of aggregates is performed recursively, so that we
430  /// never have aggregate-typed registers. The values at this point do not
431  /// necessarily have legal types, so each value may require one or more
432  /// registers of some legal type.
433  ///
434  struct RegsForValue {
435    /// ValueVTs - The value types of the values, which may not be legal, and
436    /// may need be promoted or synthesized from one or more registers.
437    ///
438    SmallVector<EVT, 4> ValueVTs;
439
440    /// RegVTs - The value types of the registers. This is the same size as
441    /// ValueVTs and it records, for each value, what the type of the assigned
442    /// register or registers are. (Individual values are never synthesized
443    /// from more than one type of register.)
444    ///
445    /// With virtual registers, the contents of RegVTs is redundant with TLI's
446    /// getRegisterType member function, however when with physical registers
447    /// it is necessary to have a separate record of the types.
448    ///
449    SmallVector<EVT, 4> RegVTs;
450
451    /// Regs - This list holds the registers assigned to the values.
452    /// Each legal or promoted value requires one register, and each
453    /// expanded value requires multiple registers.
454    ///
455    SmallVector<unsigned, 4> Regs;
456
457    RegsForValue() {}
458
459    RegsForValue(const SmallVector<unsigned, 4> &regs,
460                 EVT regvt, EVT valuevt)
461      : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
462
463    RegsForValue(const SmallVector<unsigned, 4> &regs,
464                 const SmallVector<EVT, 4> &regvts,
465                 const SmallVector<EVT, 4> &valuevts)
466      : ValueVTs(valuevts), RegVTs(regvts), Regs(regs) {}
467
468    RegsForValue(LLVMContext &Context, const TargetLowering &tli,
469                 unsigned Reg, const Type *Ty) {
470      ComputeValueVTs(tli, Ty, ValueVTs);
471
472      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
473        EVT ValueVT = ValueVTs[Value];
474        unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
475        EVT RegisterVT = tli.getRegisterType(Context, ValueVT);
476        for (unsigned i = 0; i != NumRegs; ++i)
477          Regs.push_back(Reg + i);
478        RegVTs.push_back(RegisterVT);
479        Reg += NumRegs;
480      }
481    }
482
483    /// areValueTypesLegal - Return true if types of all the values are legal.
484    bool areValueTypesLegal(const TargetLowering &TLI) {
485      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
486        EVT RegisterVT = RegVTs[Value];
487        if (!TLI.isTypeLegal(RegisterVT))
488          return false;
489      }
490      return true;
491    }
492
493    /// append - Add the specified values to this one.
494    void append(const RegsForValue &RHS) {
495      ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
496      RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
497      Regs.append(RHS.Regs.begin(), RHS.Regs.end());
498    }
499
500    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
501    /// this value and returns the result as a ValueVTs value.  This uses
502    /// Chain/Flag as the input and updates them for the output Chain/Flag.
503    /// If the Flag pointer is NULL, no flag is used.
504    SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
505                            DebugLoc dl,
506                            SDValue &Chain, SDValue *Flag) const;
507
508    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
509    /// specified value into the registers specified by this object.  This uses
510    /// Chain/Flag as the input and updates them for the output Chain/Flag.
511    /// If the Flag pointer is NULL, no flag is used.
512    void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
513                       SDValue &Chain, SDValue *Flag) const;
514
515    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
516    /// operand list.  This adds the code marker, matching input operand index
517    /// (if applicable), and includes the number of values added into it.
518    void AddInlineAsmOperands(unsigned Kind,
519                              bool HasMatching, unsigned MatchingIdx,
520                              SelectionDAG &DAG,
521                              std::vector<SDValue> &Ops) const;
522  };
523}
524
525/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
526/// this value and returns the result as a ValueVT value.  This uses
527/// Chain/Flag as the input and updates them for the output Chain/Flag.
528/// If the Flag pointer is NULL, no flag is used.
529SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
530                                      FunctionLoweringInfo &FuncInfo,
531                                      DebugLoc dl,
532                                      SDValue &Chain, SDValue *Flag) const {
533  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
534
535  // Assemble the legal parts into the final values.
536  SmallVector<SDValue, 4> Values(ValueVTs.size());
537  SmallVector<SDValue, 8> Parts;
538  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
539    // Copy the legal parts from the registers.
540    EVT ValueVT = ValueVTs[Value];
541    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
542    EVT RegisterVT = RegVTs[Value];
543
544    Parts.resize(NumRegs);
545    for (unsigned i = 0; i != NumRegs; ++i) {
546      SDValue P;
547      if (Flag == 0) {
548        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
549      } else {
550        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
551        *Flag = P.getValue(2);
552      }
553
554      Chain = P.getValue(1);
555
556      // If the source register was virtual and if we know something about it,
557      // add an assert node.
558      if (TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) &&
559          RegisterVT.isInteger() && !RegisterVT.isVector()) {
560        unsigned SlotNo = Regs[Part+i]-TargetRegisterInfo::FirstVirtualRegister;
561        if (FuncInfo.LiveOutRegInfo.size() > SlotNo) {
562          const FunctionLoweringInfo::LiveOutInfo &LOI =
563            FuncInfo.LiveOutRegInfo[SlotNo];
564
565          unsigned RegSize = RegisterVT.getSizeInBits();
566          unsigned NumSignBits = LOI.NumSignBits;
567          unsigned NumZeroBits = LOI.KnownZero.countLeadingOnes();
568
569          // FIXME: We capture more information than the dag can represent.  For
570          // now, just use the tightest assertzext/assertsext possible.
571          bool isSExt = true;
572          EVT FromVT(MVT::Other);
573          if (NumSignBits == RegSize)
574            isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
575          else if (NumZeroBits >= RegSize-1)
576            isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
577          else if (NumSignBits > RegSize-8)
578            isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
579          else if (NumZeroBits >= RegSize-8)
580            isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
581          else if (NumSignBits > RegSize-16)
582            isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
583          else if (NumZeroBits >= RegSize-16)
584            isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
585          else if (NumSignBits > RegSize-32)
586            isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
587          else if (NumZeroBits >= RegSize-32)
588            isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
589
590          if (FromVT != MVT::Other)
591            P = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
592                            RegisterVT, P, DAG.getValueType(FromVT));
593        }
594      }
595
596      Parts[i] = P;
597    }
598
599    Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
600                                     NumRegs, RegisterVT, ValueVT);
601    Part += NumRegs;
602    Parts.clear();
603  }
604
605  return DAG.getNode(ISD::MERGE_VALUES, dl,
606                     DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
607                     &Values[0], ValueVTs.size());
608}
609
610/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
611/// specified value into the registers specified by this object.  This uses
612/// Chain/Flag as the input and updates them for the output Chain/Flag.
613/// If the Flag pointer is NULL, no flag is used.
614void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
615                                 SDValue &Chain, SDValue *Flag) const {
616  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
617
618  // Get the list of the values's legal parts.
619  unsigned NumRegs = Regs.size();
620  SmallVector<SDValue, 8> Parts(NumRegs);
621  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
622    EVT ValueVT = ValueVTs[Value];
623    unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
624    EVT RegisterVT = RegVTs[Value];
625
626    getCopyToParts(DAG, dl,
627                   Val.getValue(Val.getResNo() + Value),
628                   &Parts[Part], NumParts, RegisterVT);
629    Part += NumParts;
630  }
631
632  // Copy the parts into the registers.
633  SmallVector<SDValue, 8> Chains(NumRegs);
634  for (unsigned i = 0; i != NumRegs; ++i) {
635    SDValue Part;
636    if (Flag == 0) {
637      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
638    } else {
639      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
640      *Flag = Part.getValue(1);
641    }
642
643    Chains[i] = Part.getValue(0);
644  }
645
646  if (NumRegs == 1 || Flag)
647    // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
648    // flagged to it. That is the CopyToReg nodes and the user are considered
649    // a single scheduling unit. If we create a TokenFactor and return it as
650    // chain, then the TokenFactor is both a predecessor (operand) of the
651    // user as well as a successor (the TF operands are flagged to the user).
652    // c1, f1 = CopyToReg
653    // c2, f2 = CopyToReg
654    // c3     = TokenFactor c1, c2
655    // ...
656    //        = op c3, ..., f2
657    Chain = Chains[NumRegs-1];
658  else
659    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
660}
661
662/// AddInlineAsmOperands - Add this value to the specified inlineasm node
663/// operand list.  This adds the code marker and includes the number of
664/// values added into it.
665void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
666                                        unsigned MatchingIdx,
667                                        SelectionDAG &DAG,
668                                        std::vector<SDValue> &Ops) const {
669  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
670
671  unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
672  if (HasMatching)
673    Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
674  SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
675  Ops.push_back(Res);
676
677  for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
678    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
679    EVT RegisterVT = RegVTs[Value];
680    for (unsigned i = 0; i != NumRegs; ++i) {
681      assert(Reg < Regs.size() && "Mismatch in # registers expected");
682      Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
683    }
684  }
685}
686
687void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) {
688  AA = &aa;
689  GFI = gfi;
690  TD = DAG.getTarget().getTargetData();
691}
692
693/// clear - Clear out the current SelectionDAG and the associated
694/// state and prepare this SelectionDAGBuilder object to be used
695/// for a new block. This doesn't clear out information about
696/// additional blocks that are needed to complete switch lowering
697/// or PHI node updating; that information is cleared out as it is
698/// consumed.
699void SelectionDAGBuilder::clear() {
700  NodeMap.clear();
701  UnusedArgNodeMap.clear();
702  PendingLoads.clear();
703  PendingExports.clear();
704  CurDebugLoc = DebugLoc();
705  HasTailCall = false;
706}
707
708/// getRoot - Return the current virtual root of the Selection DAG,
709/// flushing any PendingLoad items. This must be done before emitting
710/// a store or any other node that may need to be ordered after any
711/// prior load instructions.
712///
713SDValue SelectionDAGBuilder::getRoot() {
714  if (PendingLoads.empty())
715    return DAG.getRoot();
716
717  if (PendingLoads.size() == 1) {
718    SDValue Root = PendingLoads[0];
719    DAG.setRoot(Root);
720    PendingLoads.clear();
721    return Root;
722  }
723
724  // Otherwise, we have to make a token factor node.
725  SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
726                               &PendingLoads[0], PendingLoads.size());
727  PendingLoads.clear();
728  DAG.setRoot(Root);
729  return Root;
730}
731
732/// getControlRoot - Similar to getRoot, but instead of flushing all the
733/// PendingLoad items, flush all the PendingExports items. It is necessary
734/// to do this before emitting a terminator instruction.
735///
736SDValue SelectionDAGBuilder::getControlRoot() {
737  SDValue Root = DAG.getRoot();
738
739  if (PendingExports.empty())
740    return Root;
741
742  // Turn all of the CopyToReg chains into one factored node.
743  if (Root.getOpcode() != ISD::EntryToken) {
744    unsigned i = 0, e = PendingExports.size();
745    for (; i != e; ++i) {
746      assert(PendingExports[i].getNode()->getNumOperands() > 1);
747      if (PendingExports[i].getNode()->getOperand(0) == Root)
748        break;  // Don't add the root if we already indirectly depend on it.
749    }
750
751    if (i == e)
752      PendingExports.push_back(Root);
753  }
754
755  Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
756                     &PendingExports[0],
757                     PendingExports.size());
758  PendingExports.clear();
759  DAG.setRoot(Root);
760  return Root;
761}
762
763void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) {
764  if (DAG.GetOrdering(Node) != 0) return; // Already has ordering.
765  DAG.AssignOrdering(Node, SDNodeOrder);
766
767  for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I)
768    AssignOrderingToNode(Node->getOperand(I).getNode());
769}
770
771void SelectionDAGBuilder::visit(const Instruction &I) {
772  // Set up outgoing PHI node register values before emitting the terminator.
773  if (isa<TerminatorInst>(&I))
774    HandlePHINodesInSuccessorBlocks(I.getParent());
775
776  CurDebugLoc = I.getDebugLoc();
777
778  visit(I.getOpcode(), I);
779
780  if (!isa<TerminatorInst>(&I) && !HasTailCall)
781    CopyToExportRegsIfNeeded(&I);
782
783  CurDebugLoc = DebugLoc();
784}
785
786void SelectionDAGBuilder::visitPHI(const PHINode &) {
787  llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
788}
789
790void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
791  // Note: this doesn't use InstVisitor, because it has to work with
792  // ConstantExpr's in addition to instructions.
793  switch (Opcode) {
794  default: llvm_unreachable("Unknown instruction type encountered!");
795    // Build the switch statement using the Instruction.def file.
796#define HANDLE_INST(NUM, OPCODE, CLASS) \
797    case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break;
798#include "llvm/Instruction.def"
799  }
800
801  // Assign the ordering to the freshly created DAG nodes.
802  if (NodeMap.count(&I)) {
803    ++SDNodeOrder;
804    AssignOrderingToNode(getValue(&I).getNode());
805  }
806}
807
808// getValue - Return an SDValue for the given Value.
809SDValue SelectionDAGBuilder::getValue(const Value *V) {
810  // If we already have an SDValue for this value, use it. It's important
811  // to do this first, so that we don't create a CopyFromReg if we already
812  // have a regular SDValue.
813  SDValue &N = NodeMap[V];
814  if (N.getNode()) return N;
815
816  // If there's a virtual register allocated and initialized for this
817  // value, use it.
818  DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
819  if (It != FuncInfo.ValueMap.end()) {
820    unsigned InReg = It->second;
821    RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
822    SDValue Chain = DAG.getEntryNode();
823    return N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL);
824  }
825
826  // Otherwise create a new SDValue and remember it.
827  SDValue Val = getValueImpl(V);
828  NodeMap[V] = Val;
829  return Val;
830}
831
832/// getNonRegisterValue - Return an SDValue for the given Value, but
833/// don't look in FuncInfo.ValueMap for a virtual register.
834SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
835  // If we already have an SDValue for this value, use it.
836  SDValue &N = NodeMap[V];
837  if (N.getNode()) return N;
838
839  // Otherwise create a new SDValue and remember it.
840  SDValue Val = getValueImpl(V);
841  NodeMap[V] = Val;
842  return Val;
843}
844
845/// getValueImpl - Helper function for getValue and getMaterializedValue.
846/// Create an SDValue for the given value.
847SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
848  if (const Constant *C = dyn_cast<Constant>(V)) {
849    EVT VT = TLI.getValueType(V->getType(), true);
850
851    if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
852      return DAG.getConstant(*CI, VT);
853
854    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
855      return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT);
856
857    if (isa<ConstantPointerNull>(C))
858      return DAG.getConstant(0, TLI.getPointerTy());
859
860    if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
861      return DAG.getConstantFP(*CFP, VT);
862
863    if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
864      return DAG.getUNDEF(VT);
865
866    if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
867      visit(CE->getOpcode(), *CE);
868      SDValue N1 = NodeMap[V];
869      assert(N1.getNode() && "visit didn't populate the NodeMap!");
870      return N1;
871    }
872
873    if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
874      SmallVector<SDValue, 4> Constants;
875      for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
876           OI != OE; ++OI) {
877        SDNode *Val = getValue(*OI).getNode();
878        // If the operand is an empty aggregate, there are no values.
879        if (!Val) continue;
880        // Add each leaf value from the operand to the Constants list
881        // to form a flattened list of all the values.
882        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
883          Constants.push_back(SDValue(Val, i));
884      }
885
886      return DAG.getMergeValues(&Constants[0], Constants.size(),
887                                getCurDebugLoc());
888    }
889
890    if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
891      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
892             "Unknown struct or array constant!");
893
894      SmallVector<EVT, 4> ValueVTs;
895      ComputeValueVTs(TLI, C->getType(), ValueVTs);
896      unsigned NumElts = ValueVTs.size();
897      if (NumElts == 0)
898        return SDValue(); // empty struct
899      SmallVector<SDValue, 4> Constants(NumElts);
900      for (unsigned i = 0; i != NumElts; ++i) {
901        EVT EltVT = ValueVTs[i];
902        if (isa<UndefValue>(C))
903          Constants[i] = DAG.getUNDEF(EltVT);
904        else if (EltVT.isFloatingPoint())
905          Constants[i] = DAG.getConstantFP(0, EltVT);
906        else
907          Constants[i] = DAG.getConstant(0, EltVT);
908      }
909
910      return DAG.getMergeValues(&Constants[0], NumElts,
911                                getCurDebugLoc());
912    }
913
914    if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
915      return DAG.getBlockAddress(BA, VT);
916
917    const VectorType *VecTy = cast<VectorType>(V->getType());
918    unsigned NumElements = VecTy->getNumElements();
919
920    // Now that we know the number and type of the elements, get that number of
921    // elements into the Ops array based on what kind of constant it is.
922    SmallVector<SDValue, 16> Ops;
923    if (const ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
924      for (unsigned i = 0; i != NumElements; ++i)
925        Ops.push_back(getValue(CP->getOperand(i)));
926    } else {
927      assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
928      EVT EltVT = TLI.getValueType(VecTy->getElementType());
929
930      SDValue Op;
931      if (EltVT.isFloatingPoint())
932        Op = DAG.getConstantFP(0, EltVT);
933      else
934        Op = DAG.getConstant(0, EltVT);
935      Ops.assign(NumElements, Op);
936    }
937
938    // Create a BUILD_VECTOR node.
939    return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
940                                    VT, &Ops[0], Ops.size());
941  }
942
943  // If this is a static alloca, generate it as the frameindex instead of
944  // computation.
945  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
946    DenseMap<const AllocaInst*, int>::iterator SI =
947      FuncInfo.StaticAllocaMap.find(AI);
948    if (SI != FuncInfo.StaticAllocaMap.end())
949      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
950  }
951
952  // If this is an instruction which fast-isel has deferred, select it now.
953  if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
954    unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
955    RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType());
956    SDValue Chain = DAG.getEntryNode();
957    return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL);
958  }
959
960  llvm_unreachable("Can't get register for value!");
961  return SDValue();
962}
963
964void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
965  SDValue Chain = getControlRoot();
966  SmallVector<ISD::OutputArg, 8> Outs;
967  SmallVector<SDValue, 8> OutVals;
968
969  if (!FuncInfo.CanLowerReturn) {
970    unsigned DemoteReg = FuncInfo.DemoteRegister;
971    const Function *F = I.getParent()->getParent();
972
973    // Emit a store of the return value through the virtual register.
974    // Leave Outs empty so that LowerReturn won't try to load return
975    // registers the usual way.
976    SmallVector<EVT, 1> PtrValueVTs;
977    ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
978                    PtrValueVTs);
979
980    SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
981    SDValue RetOp = getValue(I.getOperand(0));
982
983    SmallVector<EVT, 4> ValueVTs;
984    SmallVector<uint64_t, 4> Offsets;
985    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
986    unsigned NumValues = ValueVTs.size();
987
988    SmallVector<SDValue, 4> Chains(NumValues);
989    EVT PtrVT = PtrValueVTs[0];
990    for (unsigned i = 0; i != NumValues; ++i) {
991      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, RetPtr,
992                                DAG.getConstant(Offsets[i], PtrVT));
993      Chains[i] =
994        DAG.getStore(Chain, getCurDebugLoc(),
995                     SDValue(RetOp.getNode(), RetOp.getResNo() + i),
996                     Add, NULL, Offsets[i], false, false, 0);
997    }
998
999    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
1000                        MVT::Other, &Chains[0], NumValues);
1001  } else if (I.getNumOperands() != 0) {
1002    SmallVector<EVT, 4> ValueVTs;
1003    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
1004    unsigned NumValues = ValueVTs.size();
1005    if (NumValues) {
1006      SDValue RetOp = getValue(I.getOperand(0));
1007      for (unsigned j = 0, f = NumValues; j != f; ++j) {
1008        EVT VT = ValueVTs[j];
1009
1010        ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1011
1012        const Function *F = I.getParent()->getParent();
1013        if (F->paramHasAttr(0, Attribute::SExt))
1014          ExtendKind = ISD::SIGN_EXTEND;
1015        else if (F->paramHasAttr(0, Attribute::ZExt))
1016          ExtendKind = ISD::ZERO_EXTEND;
1017
1018        // FIXME: C calling convention requires the return type to be promoted
1019        // to at least 32-bit. But this is not necessary for non-C calling
1020        // conventions. The frontend should mark functions whose return values
1021        // require promoting with signext or zeroext attributes.
1022        if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
1023          EVT MinVT = TLI.getRegisterType(*DAG.getContext(), MVT::i32);
1024          if (VT.bitsLT(MinVT))
1025            VT = MinVT;
1026        }
1027
1028        unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
1029        EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
1030        SmallVector<SDValue, 4> Parts(NumParts);
1031        getCopyToParts(DAG, getCurDebugLoc(),
1032                       SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1033                       &Parts[0], NumParts, PartVT, ExtendKind);
1034
1035        // 'inreg' on function refers to return value
1036        ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1037        if (F->paramHasAttr(0, Attribute::InReg))
1038          Flags.setInReg();
1039
1040        // Propagate extension type if any
1041        if (F->paramHasAttr(0, Attribute::SExt))
1042          Flags.setSExt();
1043        else if (F->paramHasAttr(0, Attribute::ZExt))
1044          Flags.setZExt();
1045
1046        for (unsigned i = 0; i < NumParts; ++i) {
1047          Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1048                                        /*isfixed=*/true));
1049          OutVals.push_back(Parts[i]);
1050        }
1051      }
1052    }
1053  }
1054
1055  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1056  CallingConv::ID CallConv =
1057    DAG.getMachineFunction().getFunction()->getCallingConv();
1058  Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
1059                          Outs, OutVals, getCurDebugLoc(), DAG);
1060
1061  // Verify that the target's LowerReturn behaved as expected.
1062  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1063         "LowerReturn didn't return a valid chain!");
1064
1065  // Update the DAG with the new chain value resulting from return lowering.
1066  DAG.setRoot(Chain);
1067}
1068
1069/// CopyToExportRegsIfNeeded - If the given value has virtual registers
1070/// created for it, emit nodes to copy the value into the virtual
1071/// registers.
1072void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1073  DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1074  if (VMI != FuncInfo.ValueMap.end()) {
1075    assert(!V->use_empty() && "Unused value assigned virtual registers!");
1076    CopyValueToVirtualRegister(V, VMI->second);
1077  }
1078}
1079
1080/// ExportFromCurrentBlock - If this condition isn't known to be exported from
1081/// the current basic block, add it to ValueMap now so that we'll get a
1082/// CopyTo/FromReg.
1083void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1084  // No need to export constants.
1085  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1086
1087  // Already exported?
1088  if (FuncInfo.isExportedInst(V)) return;
1089
1090  unsigned Reg = FuncInfo.InitializeRegForValue(V);
1091  CopyValueToVirtualRegister(V, Reg);
1092}
1093
1094bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1095                                                     const BasicBlock *FromBB) {
1096  // The operands of the setcc have to be in this block.  We don't know
1097  // how to export them from some other block.
1098  if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1099    // Can export from current BB.
1100    if (VI->getParent() == FromBB)
1101      return true;
1102
1103    // Is already exported, noop.
1104    return FuncInfo.isExportedInst(V);
1105  }
1106
1107  // If this is an argument, we can export it if the BB is the entry block or
1108  // if it is already exported.
1109  if (isa<Argument>(V)) {
1110    if (FromBB == &FromBB->getParent()->getEntryBlock())
1111      return true;
1112
1113    // Otherwise, can only export this if it is already exported.
1114    return FuncInfo.isExportedInst(V);
1115  }
1116
1117  // Otherwise, constants can always be exported.
1118  return true;
1119}
1120
1121static bool InBlock(const Value *V, const BasicBlock *BB) {
1122  if (const Instruction *I = dyn_cast<Instruction>(V))
1123    return I->getParent() == BB;
1124  return true;
1125}
1126
1127/// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1128/// This function emits a branch and is used at the leaves of an OR or an
1129/// AND operator tree.
1130///
1131void
1132SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1133                                                  MachineBasicBlock *TBB,
1134                                                  MachineBasicBlock *FBB,
1135                                                  MachineBasicBlock *CurBB,
1136                                                  MachineBasicBlock *SwitchBB) {
1137  const BasicBlock *BB = CurBB->getBasicBlock();
1138
1139  // If the leaf of the tree is a comparison, merge the condition into
1140  // the caseblock.
1141  if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1142    // The operands of the cmp have to be in this block.  We don't know
1143    // how to export them from some other block.  If this is the first block
1144    // of the sequence, no exporting is needed.
1145    if (CurBB == SwitchBB ||
1146        (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1147         isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1148      ISD::CondCode Condition;
1149      if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1150        Condition = getICmpCondCode(IC->getPredicate());
1151      } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1152        Condition = getFCmpCondCode(FC->getPredicate());
1153      } else {
1154        Condition = ISD::SETEQ; // silence warning.
1155        llvm_unreachable("Unknown compare instruction");
1156      }
1157
1158      CaseBlock CB(Condition, BOp->getOperand(0),
1159                   BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1160      SwitchCases.push_back(CB);
1161      return;
1162    }
1163  }
1164
1165  // Create a CaseBlock record representing this branch.
1166  CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1167               NULL, TBB, FBB, CurBB);
1168  SwitchCases.push_back(CB);
1169}
1170
1171/// FindMergedConditions - If Cond is an expression like
1172void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1173                                               MachineBasicBlock *TBB,
1174                                               MachineBasicBlock *FBB,
1175                                               MachineBasicBlock *CurBB,
1176                                               MachineBasicBlock *SwitchBB,
1177                                               unsigned Opc) {
1178  // If this node is not part of the or/and tree, emit it as a branch.
1179  const Instruction *BOp = dyn_cast<Instruction>(Cond);
1180  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1181      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1182      BOp->getParent() != CurBB->getBasicBlock() ||
1183      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1184      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1185    EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB);
1186    return;
1187  }
1188
1189  //  Create TmpBB after CurBB.
1190  MachineFunction::iterator BBI = CurBB;
1191  MachineFunction &MF = DAG.getMachineFunction();
1192  MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1193  CurBB->getParent()->insert(++BBI, TmpBB);
1194
1195  if (Opc == Instruction::Or) {
1196    // Codegen X | Y as:
1197    //   jmp_if_X TBB
1198    //   jmp TmpBB
1199    // TmpBB:
1200    //   jmp_if_Y TBB
1201    //   jmp FBB
1202    //
1203
1204    // Emit the LHS condition.
1205    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc);
1206
1207    // Emit the RHS condition into TmpBB.
1208    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1209  } else {
1210    assert(Opc == Instruction::And && "Unknown merge op!");
1211    // Codegen X & Y as:
1212    //   jmp_if_X TmpBB
1213    //   jmp FBB
1214    // TmpBB:
1215    //   jmp_if_Y TBB
1216    //   jmp FBB
1217    //
1218    //  This requires creation of TmpBB after CurBB.
1219
1220    // Emit the LHS condition.
1221    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc);
1222
1223    // Emit the RHS condition into TmpBB.
1224    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1225  }
1226}
1227
1228/// If the set of cases should be emitted as a series of branches, return true.
1229/// If we should emit this as a bunch of and/or'd together conditions, return
1230/// false.
1231bool
1232SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
1233  if (Cases.size() != 2) return true;
1234
1235  // If this is two comparisons of the same values or'd or and'd together, they
1236  // will get folded into a single comparison, so don't emit two blocks.
1237  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1238       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1239      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1240       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1241    return false;
1242  }
1243
1244  // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1245  // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1246  if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1247      Cases[0].CC == Cases[1].CC &&
1248      isa<Constant>(Cases[0].CmpRHS) &&
1249      cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1250    if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1251      return false;
1252    if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1253      return false;
1254  }
1255
1256  return true;
1257}
1258
1259void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1260  MachineBasicBlock *BrMBB = FuncInfo.MBB;
1261
1262  // Update machine-CFG edges.
1263  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1264
1265  // Figure out which block is immediately after the current one.
1266  MachineBasicBlock *NextBlock = 0;
1267  MachineFunction::iterator BBI = BrMBB;
1268  if (++BBI != FuncInfo.MF->end())
1269    NextBlock = BBI;
1270
1271  if (I.isUnconditional()) {
1272    // Update machine-CFG edges.
1273    BrMBB->addSuccessor(Succ0MBB);
1274
1275    // If this is not a fall-through branch, emit the branch.
1276    if (Succ0MBB != NextBlock)
1277      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1278                              MVT::Other, getControlRoot(),
1279                              DAG.getBasicBlock(Succ0MBB)));
1280
1281    return;
1282  }
1283
1284  // If this condition is one of the special cases we handle, do special stuff
1285  // now.
1286  const Value *CondVal = I.getCondition();
1287  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1288
1289  // If this is a series of conditions that are or'd or and'd together, emit
1290  // this as a sequence of branches instead of setcc's with and/or operations.
1291  // For example, instead of something like:
1292  //     cmp A, B
1293  //     C = seteq
1294  //     cmp D, E
1295  //     F = setle
1296  //     or C, F
1297  //     jnz foo
1298  // Emit:
1299  //     cmp A, B
1300  //     je foo
1301  //     cmp D, E
1302  //     jle foo
1303  //
1304  if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1305    if (BOp->hasOneUse() &&
1306        (BOp->getOpcode() == Instruction::And ||
1307         BOp->getOpcode() == Instruction::Or)) {
1308      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1309                           BOp->getOpcode());
1310      // If the compares in later blocks need to use values not currently
1311      // exported from this block, export them now.  This block should always
1312      // be the first entry.
1313      assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1314
1315      // Allow some cases to be rejected.
1316      if (ShouldEmitAsBranches(SwitchCases)) {
1317        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1318          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1319          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1320        }
1321
1322        // Emit the branch for this block.
1323        visitSwitchCase(SwitchCases[0], BrMBB);
1324        SwitchCases.erase(SwitchCases.begin());
1325        return;
1326      }
1327
1328      // Okay, we decided not to do this, remove any inserted MBB's and clear
1329      // SwitchCases.
1330      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1331        FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1332
1333      SwitchCases.clear();
1334    }
1335  }
1336
1337  // Create a CaseBlock record representing this branch.
1338  CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1339               NULL, Succ0MBB, Succ1MBB, BrMBB);
1340
1341  // Use visitSwitchCase to actually insert the fast branch sequence for this
1342  // cond branch.
1343  visitSwitchCase(CB, BrMBB);
1344}
1345
1346/// visitSwitchCase - Emits the necessary code to represent a single node in
1347/// the binary search tree resulting from lowering a switch instruction.
1348void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1349                                          MachineBasicBlock *SwitchBB) {
1350  SDValue Cond;
1351  SDValue CondLHS = getValue(CB.CmpLHS);
1352  DebugLoc dl = getCurDebugLoc();
1353
1354  // Build the setcc now.
1355  if (CB.CmpMHS == NULL) {
1356    // Fold "(X == true)" to X and "(X == false)" to !X to
1357    // handle common cases produced by branch lowering.
1358    if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1359        CB.CC == ISD::SETEQ)
1360      Cond = CondLHS;
1361    else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1362             CB.CC == ISD::SETEQ) {
1363      SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1364      Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1365    } else
1366      Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1367  } else {
1368    assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1369
1370    const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1371    const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
1372
1373    SDValue CmpOp = getValue(CB.CmpMHS);
1374    EVT VT = CmpOp.getValueType();
1375
1376    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1377      Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1378                          ISD::SETLE);
1379    } else {
1380      SDValue SUB = DAG.getNode(ISD::SUB, dl,
1381                                VT, CmpOp, DAG.getConstant(Low, VT));
1382      Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1383                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1384    }
1385  }
1386
1387  // Update successor info
1388  SwitchBB->addSuccessor(CB.TrueBB);
1389  SwitchBB->addSuccessor(CB.FalseBB);
1390
1391  // Set NextBlock to be the MBB immediately after the current one, if any.
1392  // This is used to avoid emitting unnecessary branches to the next block.
1393  MachineBasicBlock *NextBlock = 0;
1394  MachineFunction::iterator BBI = SwitchBB;
1395  if (++BBI != FuncInfo.MF->end())
1396    NextBlock = BBI;
1397
1398  // If the lhs block is the next block, invert the condition so that we can
1399  // fall through to the lhs instead of the rhs block.
1400  if (CB.TrueBB == NextBlock) {
1401    std::swap(CB.TrueBB, CB.FalseBB);
1402    SDValue True = DAG.getConstant(1, Cond.getValueType());
1403    Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1404  }
1405
1406  SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1407                               MVT::Other, getControlRoot(), Cond,
1408                               DAG.getBasicBlock(CB.TrueBB));
1409
1410  // Insert the false branch.
1411  if (CB.FalseBB != NextBlock)
1412    BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1413                         DAG.getBasicBlock(CB.FalseBB));
1414
1415  DAG.setRoot(BrCond);
1416}
1417
1418/// visitJumpTable - Emit JumpTable node in the current MBB
1419void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1420  // Emit the code for the jump table
1421  assert(JT.Reg != -1U && "Should lower JT Header first!");
1422  EVT PTy = TLI.getPointerTy();
1423  SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1424                                     JT.Reg, PTy);
1425  SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1426  SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(),
1427                                    MVT::Other, Index.getValue(1),
1428                                    Table, Index);
1429  DAG.setRoot(BrJumpTable);
1430}
1431
1432/// visitJumpTableHeader - This function emits necessary code to produce index
1433/// in the JumpTable from switch case.
1434void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1435                                               JumpTableHeader &JTH,
1436                                               MachineBasicBlock *SwitchBB) {
1437  // Subtract the lowest switch case value from the value being switched on and
1438  // conditional branch to default mbb if the result is greater than the
1439  // difference between smallest and largest cases.
1440  SDValue SwitchOp = getValue(JTH.SValue);
1441  EVT VT = SwitchOp.getValueType();
1442  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1443                            DAG.getConstant(JTH.First, VT));
1444
1445  // The SDNode we just created, which holds the value being switched on minus
1446  // the smallest case value, needs to be copied to a virtual register so it
1447  // can be used as an index into the jump table in a subsequent basic block.
1448  // This value may be smaller or larger than the target's pointer type, and
1449  // therefore require extension or truncating.
1450  SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy());
1451
1452  unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy());
1453  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1454                                    JumpTableReg, SwitchOp);
1455  JT.Reg = JumpTableReg;
1456
1457  // Emit the range check for the jump table, and branch to the default block
1458  // for the switch statement if the value being switched on exceeds the largest
1459  // case in the switch.
1460  SDValue CMP = DAG.getSetCC(getCurDebugLoc(),
1461                             TLI.getSetCCResultType(Sub.getValueType()), Sub,
1462                             DAG.getConstant(JTH.Last-JTH.First,VT),
1463                             ISD::SETUGT);
1464
1465  // Set NextBlock to be the MBB immediately after the current one, if any.
1466  // This is used to avoid emitting unnecessary branches to the next block.
1467  MachineBasicBlock *NextBlock = 0;
1468  MachineFunction::iterator BBI = SwitchBB;
1469
1470  if (++BBI != FuncInfo.MF->end())
1471    NextBlock = BBI;
1472
1473  SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1474                               MVT::Other, CopyTo, CMP,
1475                               DAG.getBasicBlock(JT.Default));
1476
1477  if (JT.MBB != NextBlock)
1478    BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond,
1479                         DAG.getBasicBlock(JT.MBB));
1480
1481  DAG.setRoot(BrCond);
1482}
1483
1484/// visitBitTestHeader - This function emits necessary code to produce value
1485/// suitable for "bit tests"
1486void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1487                                             MachineBasicBlock *SwitchBB) {
1488  // Subtract the minimum value
1489  SDValue SwitchOp = getValue(B.SValue);
1490  EVT VT = SwitchOp.getValueType();
1491  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1492                            DAG.getConstant(B.First, VT));
1493
1494  // Check range
1495  SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(),
1496                                  TLI.getSetCCResultType(Sub.getValueType()),
1497                                  Sub, DAG.getConstant(B.Range, VT),
1498                                  ISD::SETUGT);
1499
1500  SDValue ShiftOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(),
1501                                       TLI.getPointerTy());
1502
1503  B.Reg = FuncInfo.CreateReg(TLI.getPointerTy());
1504  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1505                                    B.Reg, ShiftOp);
1506
1507  // Set NextBlock to be the MBB immediately after the current one, if any.
1508  // This is used to avoid emitting unnecessary branches to the next block.
1509  MachineBasicBlock *NextBlock = 0;
1510  MachineFunction::iterator BBI = SwitchBB;
1511  if (++BBI != FuncInfo.MF->end())
1512    NextBlock = BBI;
1513
1514  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1515
1516  SwitchBB->addSuccessor(B.Default);
1517  SwitchBB->addSuccessor(MBB);
1518
1519  SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1520                                MVT::Other, CopyTo, RangeCmp,
1521                                DAG.getBasicBlock(B.Default));
1522
1523  if (MBB != NextBlock)
1524    BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo,
1525                          DAG.getBasicBlock(MBB));
1526
1527  DAG.setRoot(BrRange);
1528}
1529
1530/// visitBitTestCase - this function produces one "bit test"
1531void SelectionDAGBuilder::visitBitTestCase(MachineBasicBlock* NextMBB,
1532                                           unsigned Reg,
1533                                           BitTestCase &B,
1534                                           MachineBasicBlock *SwitchBB) {
1535  SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), Reg,
1536                                       TLI.getPointerTy());
1537  SDValue Cmp;
1538  if (CountPopulation_64(B.Mask) == 1) {
1539    // Testing for a single bit; just compare the shift count with what it
1540    // would need to be to shift a 1 bit in that position.
1541    Cmp = DAG.getSetCC(getCurDebugLoc(),
1542                       TLI.getSetCCResultType(ShiftOp.getValueType()),
1543                       ShiftOp,
1544                       DAG.getConstant(CountTrailingZeros_64(B.Mask),
1545                                       TLI.getPointerTy()),
1546                       ISD::SETEQ);
1547  } else {
1548    // Make desired shift
1549    SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(),
1550                                    TLI.getPointerTy(),
1551                                    DAG.getConstant(1, TLI.getPointerTy()),
1552                                    ShiftOp);
1553
1554    // Emit bit tests and jumps
1555    SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(),
1556                                TLI.getPointerTy(), SwitchVal,
1557                                DAG.getConstant(B.Mask, TLI.getPointerTy()));
1558    Cmp = DAG.getSetCC(getCurDebugLoc(),
1559                       TLI.getSetCCResultType(AndOp.getValueType()),
1560                       AndOp, DAG.getConstant(0, TLI.getPointerTy()),
1561                       ISD::SETNE);
1562  }
1563
1564  SwitchBB->addSuccessor(B.TargetBB);
1565  SwitchBB->addSuccessor(NextMBB);
1566
1567  SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1568                              MVT::Other, getControlRoot(),
1569                              Cmp, DAG.getBasicBlock(B.TargetBB));
1570
1571  // Set NextBlock to be the MBB immediately after the current one, if any.
1572  // This is used to avoid emitting unnecessary branches to the next block.
1573  MachineBasicBlock *NextBlock = 0;
1574  MachineFunction::iterator BBI = SwitchBB;
1575  if (++BBI != FuncInfo.MF->end())
1576    NextBlock = BBI;
1577
1578  if (NextMBB != NextBlock)
1579    BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd,
1580                        DAG.getBasicBlock(NextMBB));
1581
1582  DAG.setRoot(BrAnd);
1583}
1584
1585void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1586  MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
1587
1588  // Retrieve successors.
1589  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1590  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1591
1592  const Value *Callee(I.getCalledValue());
1593  if (isa<InlineAsm>(Callee))
1594    visitInlineAsm(&I);
1595  else
1596    LowerCallTo(&I, getValue(Callee), false, LandingPad);
1597
1598  // If the value of the invoke is used outside of its defining block, make it
1599  // available as a virtual register.
1600  CopyToExportRegsIfNeeded(&I);
1601
1602  // Update successor info
1603  InvokeMBB->addSuccessor(Return);
1604  InvokeMBB->addSuccessor(LandingPad);
1605
1606  // Drop into normal successor.
1607  DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1608                          MVT::Other, getControlRoot(),
1609                          DAG.getBasicBlock(Return)));
1610}
1611
1612void SelectionDAGBuilder::visitUnwind(const UnwindInst &I) {
1613}
1614
1615/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1616/// small case ranges).
1617bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
1618                                                 CaseRecVector& WorkList,
1619                                                 const Value* SV,
1620                                                 MachineBasicBlock *Default,
1621                                                 MachineBasicBlock *SwitchBB) {
1622  Case& BackCase  = *(CR.Range.second-1);
1623
1624  // Size is the number of Cases represented by this range.
1625  size_t Size = CR.Range.second - CR.Range.first;
1626  if (Size > 3)
1627    return false;
1628
1629  // Get the MachineFunction which holds the current MBB.  This is used when
1630  // inserting any additional MBBs necessary to represent the switch.
1631  MachineFunction *CurMF = FuncInfo.MF;
1632
1633  // Figure out which block is immediately after the current one.
1634  MachineBasicBlock *NextBlock = 0;
1635  MachineFunction::iterator BBI = CR.CaseBB;
1636
1637  if (++BBI != FuncInfo.MF->end())
1638    NextBlock = BBI;
1639
1640  // TODO: If any two of the cases has the same destination, and if one value
1641  // is the same as the other, but has one bit unset that the other has set,
1642  // use bit manipulation to do two compares at once.  For example:
1643  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1644
1645  // Rearrange the case blocks so that the last one falls through if possible.
1646  if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1647    // The last case block won't fall through into 'NextBlock' if we emit the
1648    // branches in this order.  See if rearranging a case value would help.
1649    for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1650      if (I->BB == NextBlock) {
1651        std::swap(*I, BackCase);
1652        break;
1653      }
1654    }
1655  }
1656
1657  // Create a CaseBlock record representing a conditional branch to
1658  // the Case's target mbb if the value being switched on SV is equal
1659  // to C.
1660  MachineBasicBlock *CurBlock = CR.CaseBB;
1661  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1662    MachineBasicBlock *FallThrough;
1663    if (I != E-1) {
1664      FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
1665      CurMF->insert(BBI, FallThrough);
1666
1667      // Put SV in a virtual register to make it available from the new blocks.
1668      ExportFromCurrentBlock(SV);
1669    } else {
1670      // If the last case doesn't match, go to the default block.
1671      FallThrough = Default;
1672    }
1673
1674    const Value *RHS, *LHS, *MHS;
1675    ISD::CondCode CC;
1676    if (I->High == I->Low) {
1677      // This is just small small case range :) containing exactly 1 case
1678      CC = ISD::SETEQ;
1679      LHS = SV; RHS = I->High; MHS = NULL;
1680    } else {
1681      CC = ISD::SETLE;
1682      LHS = I->Low; MHS = SV; RHS = I->High;
1683    }
1684    CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock);
1685
1686    // If emitting the first comparison, just call visitSwitchCase to emit the
1687    // code into the current block.  Otherwise, push the CaseBlock onto the
1688    // vector to be later processed by SDISel, and insert the node's MBB
1689    // before the next MBB.
1690    if (CurBlock == SwitchBB)
1691      visitSwitchCase(CB, SwitchBB);
1692    else
1693      SwitchCases.push_back(CB);
1694
1695    CurBlock = FallThrough;
1696  }
1697
1698  return true;
1699}
1700
1701static inline bool areJTsAllowed(const TargetLowering &TLI) {
1702  return !DisableJumpTables &&
1703          (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
1704           TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
1705}
1706
1707static APInt ComputeRange(const APInt &First, const APInt &Last) {
1708  APInt LastExt(Last), FirstExt(First);
1709  uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
1710  LastExt.sext(BitWidth); FirstExt.sext(BitWidth);
1711  return (LastExt - FirstExt + 1ULL);
1712}
1713
1714/// handleJTSwitchCase - Emit jumptable for current switch case range
1715bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec& CR,
1716                                             CaseRecVector& WorkList,
1717                                             const Value* SV,
1718                                             MachineBasicBlock* Default,
1719                                             MachineBasicBlock *SwitchBB) {
1720  Case& FrontCase = *CR.Range.first;
1721  Case& BackCase  = *(CR.Range.second-1);
1722
1723  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
1724  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
1725
1726  APInt TSize(First.getBitWidth(), 0);
1727  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1728       I!=E; ++I)
1729    TSize += I->size();
1730
1731  if (!areJTsAllowed(TLI) || TSize.ult(4))
1732    return false;
1733
1734  APInt Range = ComputeRange(First, Last);
1735  double Density = TSize.roundToDouble() / Range.roundToDouble();
1736  if (Density < 0.4)
1737    return false;
1738
1739  DEBUG(dbgs() << "Lowering jump table\n"
1740               << "First entry: " << First << ". Last entry: " << Last << '\n'
1741               << "Range: " << Range
1742               << "Size: " << TSize << ". Density: " << Density << "\n\n");
1743
1744  // Get the MachineFunction which holds the current MBB.  This is used when
1745  // inserting any additional MBBs necessary to represent the switch.
1746  MachineFunction *CurMF = FuncInfo.MF;
1747
1748  // Figure out which block is immediately after the current one.
1749  MachineFunction::iterator BBI = CR.CaseBB;
1750  ++BBI;
1751
1752  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1753
1754  // Create a new basic block to hold the code for loading the address
1755  // of the jump table, and jumping to it.  Update successor information;
1756  // we will either branch to the default case for the switch, or the jump
1757  // table.
1758  MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1759  CurMF->insert(BBI, JumpTableBB);
1760  CR.CaseBB->addSuccessor(Default);
1761  CR.CaseBB->addSuccessor(JumpTableBB);
1762
1763  // Build a vector of destination BBs, corresponding to each target
1764  // of the jump table. If the value of the jump table slot corresponds to
1765  // a case statement, push the case's BB onto the vector, otherwise, push
1766  // the default BB.
1767  std::vector<MachineBasicBlock*> DestBBs;
1768  APInt TEI = First;
1769  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
1770    const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
1771    const APInt &High = cast<ConstantInt>(I->High)->getValue();
1772
1773    if (Low.sle(TEI) && TEI.sle(High)) {
1774      DestBBs.push_back(I->BB);
1775      if (TEI==High)
1776        ++I;
1777    } else {
1778      DestBBs.push_back(Default);
1779    }
1780  }
1781
1782  // Update successor info. Add one edge to each unique successor.
1783  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
1784  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
1785         E = DestBBs.end(); I != E; ++I) {
1786    if (!SuccsHandled[(*I)->getNumber()]) {
1787      SuccsHandled[(*I)->getNumber()] = true;
1788      JumpTableBB->addSuccessor(*I);
1789    }
1790  }
1791
1792  // Create a jump table index for this jump table.
1793  unsigned JTEncoding = TLI.getJumpTableEncoding();
1794  unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
1795                       ->createJumpTableIndex(DestBBs);
1796
1797  // Set the jump table information so that we can codegen it as a second
1798  // MachineBasicBlock
1799  JumpTable JT(-1U, JTI, JumpTableBB, Default);
1800  JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
1801  if (CR.CaseBB == SwitchBB)
1802    visitJumpTableHeader(JT, JTH, SwitchBB);
1803
1804  JTCases.push_back(JumpTableBlock(JTH, JT));
1805
1806  return true;
1807}
1808
1809/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
1810/// 2 subtrees.
1811bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
1812                                                  CaseRecVector& WorkList,
1813                                                  const Value* SV,
1814                                                  MachineBasicBlock *Default,
1815                                                  MachineBasicBlock *SwitchBB) {
1816  // Get the MachineFunction which holds the current MBB.  This is used when
1817  // inserting any additional MBBs necessary to represent the switch.
1818  MachineFunction *CurMF = FuncInfo.MF;
1819
1820  // Figure out which block is immediately after the current one.
1821  MachineFunction::iterator BBI = CR.CaseBB;
1822  ++BBI;
1823
1824  Case& FrontCase = *CR.Range.first;
1825  Case& BackCase  = *(CR.Range.second-1);
1826  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1827
1828  // Size is the number of Cases represented by this range.
1829  unsigned Size = CR.Range.second - CR.Range.first;
1830
1831  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
1832  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
1833  double FMetric = 0;
1834  CaseItr Pivot = CR.Range.first + Size/2;
1835
1836  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
1837  // (heuristically) allow us to emit JumpTable's later.
1838  APInt TSize(First.getBitWidth(), 0);
1839  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1840       I!=E; ++I)
1841    TSize += I->size();
1842
1843  APInt LSize = FrontCase.size();
1844  APInt RSize = TSize-LSize;
1845  DEBUG(dbgs() << "Selecting best pivot: \n"
1846               << "First: " << First << ", Last: " << Last <<'\n'
1847               << "LSize: " << LSize << ", RSize: " << RSize << '\n');
1848  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
1849       J!=E; ++I, ++J) {
1850    const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
1851    const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
1852    APInt Range = ComputeRange(LEnd, RBegin);
1853    assert((Range - 2ULL).isNonNegative() &&
1854           "Invalid case distance");
1855    double LDensity = (double)LSize.roundToDouble() /
1856                           (LEnd - First + 1ULL).roundToDouble();
1857    double RDensity = (double)RSize.roundToDouble() /
1858                           (Last - RBegin + 1ULL).roundToDouble();
1859    double Metric = Range.logBase2()*(LDensity+RDensity);
1860    // Should always split in some non-trivial place
1861    DEBUG(dbgs() <<"=>Step\n"
1862                 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
1863                 << "LDensity: " << LDensity
1864                 << ", RDensity: " << RDensity << '\n'
1865                 << "Metric: " << Metric << '\n');
1866    if (FMetric < Metric) {
1867      Pivot = J;
1868      FMetric = Metric;
1869      DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
1870    }
1871
1872    LSize += J->size();
1873    RSize -= J->size();
1874  }
1875  if (areJTsAllowed(TLI)) {
1876    // If our case is dense we *really* should handle it earlier!
1877    assert((FMetric > 0) && "Should handle dense range earlier!");
1878  } else {
1879    Pivot = CR.Range.first + Size/2;
1880  }
1881
1882  CaseRange LHSR(CR.Range.first, Pivot);
1883  CaseRange RHSR(Pivot, CR.Range.second);
1884  Constant *C = Pivot->Low;
1885  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
1886
1887  // We know that we branch to the LHS if the Value being switched on is
1888  // less than the Pivot value, C.  We use this to optimize our binary
1889  // tree a bit, by recognizing that if SV is greater than or equal to the
1890  // LHS's Case Value, and that Case Value is exactly one less than the
1891  // Pivot's Value, then we can branch directly to the LHS's Target,
1892  // rather than creating a leaf node for it.
1893  if ((LHSR.second - LHSR.first) == 1 &&
1894      LHSR.first->High == CR.GE &&
1895      cast<ConstantInt>(C)->getValue() ==
1896      (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
1897    TrueBB = LHSR.first->BB;
1898  } else {
1899    TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1900    CurMF->insert(BBI, TrueBB);
1901    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
1902
1903    // Put SV in a virtual register to make it available from the new blocks.
1904    ExportFromCurrentBlock(SV);
1905  }
1906
1907  // Similar to the optimization above, if the Value being switched on is
1908  // known to be less than the Constant CR.LT, and the current Case Value
1909  // is CR.LT - 1, then we can branch directly to the target block for
1910  // the current Case Value, rather than emitting a RHS leaf node for it.
1911  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
1912      cast<ConstantInt>(RHSR.first->Low)->getValue() ==
1913      (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
1914    FalseBB = RHSR.first->BB;
1915  } else {
1916    FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1917    CurMF->insert(BBI, FalseBB);
1918    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
1919
1920    // Put SV in a virtual register to make it available from the new blocks.
1921    ExportFromCurrentBlock(SV);
1922  }
1923
1924  // Create a CaseBlock record representing a conditional branch to
1925  // the LHS node if the value being switched on SV is less than C.
1926  // Otherwise, branch to LHS.
1927  CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
1928
1929  if (CR.CaseBB == SwitchBB)
1930    visitSwitchCase(CB, SwitchBB);
1931  else
1932    SwitchCases.push_back(CB);
1933
1934  return true;
1935}
1936
1937/// handleBitTestsSwitchCase - if current case range has few destination and
1938/// range span less, than machine word bitwidth, encode case range into series
1939/// of masks and emit bit tests with these masks.
1940bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
1941                                                   CaseRecVector& WorkList,
1942                                                   const Value* SV,
1943                                                   MachineBasicBlock* Default,
1944                                                   MachineBasicBlock *SwitchBB){
1945  EVT PTy = TLI.getPointerTy();
1946  unsigned IntPtrBits = PTy.getSizeInBits();
1947
1948  Case& FrontCase = *CR.Range.first;
1949  Case& BackCase  = *(CR.Range.second-1);
1950
1951  // Get the MachineFunction which holds the current MBB.  This is used when
1952  // inserting any additional MBBs necessary to represent the switch.
1953  MachineFunction *CurMF = FuncInfo.MF;
1954
1955  // If target does not have legal shift left, do not emit bit tests at all.
1956  if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
1957    return false;
1958
1959  size_t numCmps = 0;
1960  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1961       I!=E; ++I) {
1962    // Single case counts one, case range - two.
1963    numCmps += (I->Low == I->High ? 1 : 2);
1964  }
1965
1966  // Count unique destinations
1967  SmallSet<MachineBasicBlock*, 4> Dests;
1968  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
1969    Dests.insert(I->BB);
1970    if (Dests.size() > 3)
1971      // Don't bother the code below, if there are too much unique destinations
1972      return false;
1973  }
1974  DEBUG(dbgs() << "Total number of unique destinations: "
1975        << Dests.size() << '\n'
1976        << "Total number of comparisons: " << numCmps << '\n');
1977
1978  // Compute span of values.
1979  const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
1980  const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
1981  APInt cmpRange = maxValue - minValue;
1982
1983  DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
1984               << "Low bound: " << minValue << '\n'
1985               << "High bound: " << maxValue << '\n');
1986
1987  if (cmpRange.uge(IntPtrBits) ||
1988      (!(Dests.size() == 1 && numCmps >= 3) &&
1989       !(Dests.size() == 2 && numCmps >= 5) &&
1990       !(Dests.size() >= 3 && numCmps >= 6)))
1991    return false;
1992
1993  DEBUG(dbgs() << "Emitting bit tests\n");
1994  APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
1995
1996  // Optimize the case where all the case values fit in a
1997  // word without having to subtract minValue. In this case,
1998  // we can optimize away the subtraction.
1999  if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) {
2000    cmpRange = maxValue;
2001  } else {
2002    lowBound = minValue;
2003  }
2004
2005  CaseBitsVector CasesBits;
2006  unsigned i, count = 0;
2007
2008  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2009    MachineBasicBlock* Dest = I->BB;
2010    for (i = 0; i < count; ++i)
2011      if (Dest == CasesBits[i].BB)
2012        break;
2013
2014    if (i == count) {
2015      assert((count < 3) && "Too much destinations to test!");
2016      CasesBits.push_back(CaseBits(0, Dest, 0));
2017      count++;
2018    }
2019
2020    const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
2021    const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
2022
2023    uint64_t lo = (lowValue - lowBound).getZExtValue();
2024    uint64_t hi = (highValue - lowBound).getZExtValue();
2025
2026    for (uint64_t j = lo; j <= hi; j++) {
2027      CasesBits[i].Mask |=  1ULL << j;
2028      CasesBits[i].Bits++;
2029    }
2030
2031  }
2032  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2033
2034  BitTestInfo BTC;
2035
2036  // Figure out which block is immediately after the current one.
2037  MachineFunction::iterator BBI = CR.CaseBB;
2038  ++BBI;
2039
2040  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2041
2042  DEBUG(dbgs() << "Cases:\n");
2043  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2044    DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
2045                 << ", Bits: " << CasesBits[i].Bits
2046                 << ", BB: " << CasesBits[i].BB << '\n');
2047
2048    MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2049    CurMF->insert(BBI, CaseBB);
2050    BTC.push_back(BitTestCase(CasesBits[i].Mask,
2051                              CaseBB,
2052                              CasesBits[i].BB));
2053
2054    // Put SV in a virtual register to make it available from the new blocks.
2055    ExportFromCurrentBlock(SV);
2056  }
2057
2058  BitTestBlock BTB(lowBound, cmpRange, SV,
2059                   -1U, (CR.CaseBB == SwitchBB),
2060                   CR.CaseBB, Default, BTC);
2061
2062  if (CR.CaseBB == SwitchBB)
2063    visitBitTestHeader(BTB, SwitchBB);
2064
2065  BitTestCases.push_back(BTB);
2066
2067  return true;
2068}
2069
2070/// Clusterify - Transform simple list of Cases into list of CaseRange's
2071size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
2072                                       const SwitchInst& SI) {
2073  size_t numCmps = 0;
2074
2075  // Start with "simple" cases
2076  for (size_t i = 1; i < SI.getNumSuccessors(); ++i) {
2077    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
2078    Cases.push_back(Case(SI.getSuccessorValue(i),
2079                         SI.getSuccessorValue(i),
2080                         SMBB));
2081  }
2082  std::sort(Cases.begin(), Cases.end(), CaseCmp());
2083
2084  // Merge case into clusters
2085  if (Cases.size() >= 2)
2086    // Must recompute end() each iteration because it may be
2087    // invalidated by erase if we hold on to it
2088    for (CaseItr I = Cases.begin(), J = ++(Cases.begin()); J != Cases.end(); ) {
2089      const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
2090      const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
2091      MachineBasicBlock* nextBB = J->BB;
2092      MachineBasicBlock* currentBB = I->BB;
2093
2094      // If the two neighboring cases go to the same destination, merge them
2095      // into a single case.
2096      if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
2097        I->High = J->High;
2098        J = Cases.erase(J);
2099      } else {
2100        I = J++;
2101      }
2102    }
2103
2104  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
2105    if (I->Low != I->High)
2106      // A range counts double, since it requires two compares.
2107      ++numCmps;
2108  }
2109
2110  return numCmps;
2111}
2112
2113void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
2114  MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
2115
2116  // Figure out which block is immediately after the current one.
2117  MachineBasicBlock *NextBlock = 0;
2118  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2119
2120  // If there is only the default destination, branch to it if it is not the
2121  // next basic block.  Otherwise, just fall through.
2122  if (SI.getNumOperands() == 2) {
2123    // Update machine-CFG edges.
2124
2125    // If this is not a fall-through branch, emit the branch.
2126    SwitchMBB->addSuccessor(Default);
2127    if (Default != NextBlock)
2128      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
2129                              MVT::Other, getControlRoot(),
2130                              DAG.getBasicBlock(Default)));
2131
2132    return;
2133  }
2134
2135  // If there are any non-default case statements, create a vector of Cases
2136  // representing each one, and sort the vector so that we can efficiently
2137  // create a binary search tree from them.
2138  CaseVector Cases;
2139  size_t numCmps = Clusterify(Cases, SI);
2140  DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2141               << ". Total compares: " << numCmps << '\n');
2142  numCmps = 0;
2143
2144  // Get the Value to be switched on and default basic blocks, which will be
2145  // inserted into CaseBlock records, representing basic blocks in the binary
2146  // search tree.
2147  const Value *SV = SI.getOperand(0);
2148
2149  // Push the initial CaseRec onto the worklist
2150  CaseRecVector WorkList;
2151  WorkList.push_back(CaseRec(SwitchMBB,0,0,
2152                             CaseRange(Cases.begin(),Cases.end())));
2153
2154  while (!WorkList.empty()) {
2155    // Grab a record representing a case range to process off the worklist
2156    CaseRec CR = WorkList.back();
2157    WorkList.pop_back();
2158
2159    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2160      continue;
2161
2162    // If the range has few cases (two or less) emit a series of specific
2163    // tests.
2164    if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
2165      continue;
2166
2167    // If the switch has more than 5 blocks, and at least 40% dense, and the
2168    // target supports indirect branches, then emit a jump table rather than
2169    // lowering the switch to a binary tree of conditional branches.
2170    if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2171      continue;
2172
2173    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2174    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2175    handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
2176  }
2177}
2178
2179void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2180  MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2181
2182  // Update machine-CFG edges with unique successors.
2183  SmallVector<BasicBlock*, 32> succs;
2184  succs.reserve(I.getNumSuccessors());
2185  for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i)
2186    succs.push_back(I.getSuccessor(i));
2187  array_pod_sort(succs.begin(), succs.end());
2188  succs.erase(std::unique(succs.begin(), succs.end()), succs.end());
2189  for (unsigned i = 0, e = succs.size(); i != e; ++i)
2190    IndirectBrMBB->addSuccessor(FuncInfo.MBBMap[succs[i]]);
2191
2192  DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(),
2193                          MVT::Other, getControlRoot(),
2194                          getValue(I.getAddress())));
2195}
2196
2197void SelectionDAGBuilder::visitFSub(const User &I) {
2198  // -0.0 - X --> fneg
2199  const Type *Ty = I.getType();
2200  if (Ty->isVectorTy()) {
2201    if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) {
2202      const VectorType *DestTy = cast<VectorType>(I.getType());
2203      const Type *ElTy = DestTy->getElementType();
2204      unsigned VL = DestTy->getNumElements();
2205      std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy));
2206      Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size());
2207      if (CV == CNZ) {
2208        SDValue Op2 = getValue(I.getOperand(1));
2209        setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2210                                 Op2.getValueType(), Op2));
2211        return;
2212      }
2213    }
2214  }
2215
2216  if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
2217    if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) {
2218      SDValue Op2 = getValue(I.getOperand(1));
2219      setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2220                               Op2.getValueType(), Op2));
2221      return;
2222    }
2223
2224  visitBinary(I, ISD::FSUB);
2225}
2226
2227void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2228  SDValue Op1 = getValue(I.getOperand(0));
2229  SDValue Op2 = getValue(I.getOperand(1));
2230  setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(),
2231                           Op1.getValueType(), Op1, Op2));
2232}
2233
2234void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2235  SDValue Op1 = getValue(I.getOperand(0));
2236  SDValue Op2 = getValue(I.getOperand(1));
2237  if (!I.getType()->isVectorTy() &&
2238      Op2.getValueType() != TLI.getShiftAmountTy()) {
2239    // If the operand is smaller than the shift count type, promote it.
2240    EVT PTy = TLI.getPointerTy();
2241    EVT STy = TLI.getShiftAmountTy();
2242    if (STy.bitsGT(Op2.getValueType()))
2243      Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(),
2244                        TLI.getShiftAmountTy(), Op2);
2245    // If the operand is larger than the shift count type but the shift
2246    // count type has enough bits to represent any shift value, truncate
2247    // it now. This is a common case and it exposes the truncate to
2248    // optimization early.
2249    else if (STy.getSizeInBits() >=
2250             Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2251      Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2252                        TLI.getShiftAmountTy(), Op2);
2253    // Otherwise we'll need to temporarily settle for some other
2254    // convenient type; type legalization will make adjustments as
2255    // needed.
2256    else if (PTy.bitsLT(Op2.getValueType()))
2257      Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2258                        TLI.getPointerTy(), Op2);
2259    else if (PTy.bitsGT(Op2.getValueType()))
2260      Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(),
2261                        TLI.getPointerTy(), Op2);
2262  }
2263
2264  setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(),
2265                           Op1.getValueType(), Op1, Op2));
2266}
2267
2268void SelectionDAGBuilder::visitICmp(const User &I) {
2269  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2270  if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2271    predicate = IC->getPredicate();
2272  else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2273    predicate = ICmpInst::Predicate(IC->getPredicate());
2274  SDValue Op1 = getValue(I.getOperand(0));
2275  SDValue Op2 = getValue(I.getOperand(1));
2276  ISD::CondCode Opcode = getICmpCondCode(predicate);
2277
2278  EVT DestVT = TLI.getValueType(I.getType());
2279  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode));
2280}
2281
2282void SelectionDAGBuilder::visitFCmp(const User &I) {
2283  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2284  if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2285    predicate = FC->getPredicate();
2286  else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2287    predicate = FCmpInst::Predicate(FC->getPredicate());
2288  SDValue Op1 = getValue(I.getOperand(0));
2289  SDValue Op2 = getValue(I.getOperand(1));
2290  ISD::CondCode Condition = getFCmpCondCode(predicate);
2291  EVT DestVT = TLI.getValueType(I.getType());
2292  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition));
2293}
2294
2295void SelectionDAGBuilder::visitSelect(const User &I) {
2296  SmallVector<EVT, 4> ValueVTs;
2297  ComputeValueVTs(TLI, I.getType(), ValueVTs);
2298  unsigned NumValues = ValueVTs.size();
2299  if (NumValues == 0) return;
2300
2301  SmallVector<SDValue, 4> Values(NumValues);
2302  SDValue Cond     = getValue(I.getOperand(0));
2303  SDValue TrueVal  = getValue(I.getOperand(1));
2304  SDValue FalseVal = getValue(I.getOperand(2));
2305
2306  for (unsigned i = 0; i != NumValues; ++i)
2307    Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(),
2308                          TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2309                            Cond,
2310                            SDValue(TrueVal.getNode(),
2311                                    TrueVal.getResNo() + i),
2312                            SDValue(FalseVal.getNode(),
2313                                    FalseVal.getResNo() + i));
2314
2315  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2316                           DAG.getVTList(&ValueVTs[0], NumValues),
2317                           &Values[0], NumValues));
2318}
2319
2320void SelectionDAGBuilder::visitTrunc(const User &I) {
2321  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2322  SDValue N = getValue(I.getOperand(0));
2323  EVT DestVT = TLI.getValueType(I.getType());
2324  setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N));
2325}
2326
2327void SelectionDAGBuilder::visitZExt(const User &I) {
2328  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2329  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2330  SDValue N = getValue(I.getOperand(0));
2331  EVT DestVT = TLI.getValueType(I.getType());
2332  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N));
2333}
2334
2335void SelectionDAGBuilder::visitSExt(const User &I) {
2336  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2337  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2338  SDValue N = getValue(I.getOperand(0));
2339  EVT DestVT = TLI.getValueType(I.getType());
2340  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N));
2341}
2342
2343void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2344  // FPTrunc is never a no-op cast, no need to check
2345  SDValue N = getValue(I.getOperand(0));
2346  EVT DestVT = TLI.getValueType(I.getType());
2347  setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(),
2348                           DestVT, N, DAG.getIntPtrConstant(0)));
2349}
2350
2351void SelectionDAGBuilder::visitFPExt(const User &I){
2352  // FPTrunc is never a no-op cast, no need to check
2353  SDValue N = getValue(I.getOperand(0));
2354  EVT DestVT = TLI.getValueType(I.getType());
2355  setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N));
2356}
2357
2358void SelectionDAGBuilder::visitFPToUI(const User &I) {
2359  // FPToUI is never a no-op cast, no need to check
2360  SDValue N = getValue(I.getOperand(0));
2361  EVT DestVT = TLI.getValueType(I.getType());
2362  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N));
2363}
2364
2365void SelectionDAGBuilder::visitFPToSI(const User &I) {
2366  // FPToSI is never a no-op cast, no need to check
2367  SDValue N = getValue(I.getOperand(0));
2368  EVT DestVT = TLI.getValueType(I.getType());
2369  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N));
2370}
2371
2372void SelectionDAGBuilder::visitUIToFP(const User &I) {
2373  // UIToFP is never a no-op cast, no need to check
2374  SDValue N = getValue(I.getOperand(0));
2375  EVT DestVT = TLI.getValueType(I.getType());
2376  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N));
2377}
2378
2379void SelectionDAGBuilder::visitSIToFP(const User &I){
2380  // SIToFP is never a no-op cast, no need to check
2381  SDValue N = getValue(I.getOperand(0));
2382  EVT DestVT = TLI.getValueType(I.getType());
2383  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N));
2384}
2385
2386void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2387  // What to do depends on the size of the integer and the size of the pointer.
2388  // We can either truncate, zero extend, or no-op, accordingly.
2389  SDValue N = getValue(I.getOperand(0));
2390  EVT DestVT = TLI.getValueType(I.getType());
2391  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2392}
2393
2394void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2395  // What to do depends on the size of the integer and the size of the pointer.
2396  // We can either truncate, zero extend, or no-op, accordingly.
2397  SDValue N = getValue(I.getOperand(0));
2398  EVT DestVT = TLI.getValueType(I.getType());
2399  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2400}
2401
2402void SelectionDAGBuilder::visitBitCast(const User &I) {
2403  SDValue N = getValue(I.getOperand(0));
2404  EVT DestVT = TLI.getValueType(I.getType());
2405
2406  // BitCast assures us that source and destination are the same size so this is
2407  // either a BIT_CONVERT or a no-op.
2408  if (DestVT != N.getValueType())
2409    setValue(&I, DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
2410                             DestVT, N)); // convert types.
2411  else
2412    setValue(&I, N);            // noop cast.
2413}
2414
2415void SelectionDAGBuilder::visitInsertElement(const User &I) {
2416  SDValue InVec = getValue(I.getOperand(0));
2417  SDValue InVal = getValue(I.getOperand(1));
2418  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2419                              TLI.getPointerTy(),
2420                              getValue(I.getOperand(2)));
2421  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(),
2422                           TLI.getValueType(I.getType()),
2423                           InVec, InVal, InIdx));
2424}
2425
2426void SelectionDAGBuilder::visitExtractElement(const User &I) {
2427  SDValue InVec = getValue(I.getOperand(0));
2428  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2429                              TLI.getPointerTy(),
2430                              getValue(I.getOperand(1)));
2431  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2432                           TLI.getValueType(I.getType()), InVec, InIdx));
2433}
2434
2435// Utility for visitShuffleVector - Returns true if the mask is mask starting
2436// from SIndx and increasing to the element length (undefs are allowed).
2437static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) {
2438  unsigned MaskNumElts = Mask.size();
2439  for (unsigned i = 0; i != MaskNumElts; ++i)
2440    if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx)))
2441      return false;
2442  return true;
2443}
2444
2445void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2446  SmallVector<int, 8> Mask;
2447  SDValue Src1 = getValue(I.getOperand(0));
2448  SDValue Src2 = getValue(I.getOperand(1));
2449
2450  // Convert the ConstantVector mask operand into an array of ints, with -1
2451  // representing undef values.
2452  SmallVector<Constant*, 8> MaskElts;
2453  cast<Constant>(I.getOperand(2))->getVectorElements(MaskElts);
2454  unsigned MaskNumElts = MaskElts.size();
2455  for (unsigned i = 0; i != MaskNumElts; ++i) {
2456    if (isa<UndefValue>(MaskElts[i]))
2457      Mask.push_back(-1);
2458    else
2459      Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue());
2460  }
2461
2462  EVT VT = TLI.getValueType(I.getType());
2463  EVT SrcVT = Src1.getValueType();
2464  unsigned SrcNumElts = SrcVT.getVectorNumElements();
2465
2466  if (SrcNumElts == MaskNumElts) {
2467    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2468                                      &Mask[0]));
2469    return;
2470  }
2471
2472  // Normalize the shuffle vector since mask and vector length don't match.
2473  if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2474    // Mask is longer than the source vectors and is a multiple of the source
2475    // vectors.  We can use concatenate vector to make the mask and vectors
2476    // lengths match.
2477    if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) {
2478      // The shuffle is concatenating two vectors together.
2479      setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2480                               VT, Src1, Src2));
2481      return;
2482    }
2483
2484    // Pad both vectors with undefs to make them the same length as the mask.
2485    unsigned NumConcat = MaskNumElts / SrcNumElts;
2486    bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2487    bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2488    SDValue UndefVal = DAG.getUNDEF(SrcVT);
2489
2490    SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2491    SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2492    MOps1[0] = Src1;
2493    MOps2[0] = Src2;
2494
2495    Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2496                                                  getCurDebugLoc(), VT,
2497                                                  &MOps1[0], NumConcat);
2498    Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2499                                                  getCurDebugLoc(), VT,
2500                                                  &MOps2[0], NumConcat);
2501
2502    // Readjust mask for new input vector length.
2503    SmallVector<int, 8> MappedOps;
2504    for (unsigned i = 0; i != MaskNumElts; ++i) {
2505      int Idx = Mask[i];
2506      if (Idx < (int)SrcNumElts)
2507        MappedOps.push_back(Idx);
2508      else
2509        MappedOps.push_back(Idx + MaskNumElts - SrcNumElts);
2510    }
2511
2512    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2513                                      &MappedOps[0]));
2514    return;
2515  }
2516
2517  if (SrcNumElts > MaskNumElts) {
2518    // Analyze the access pattern of the vector to see if we can extract
2519    // two subvectors and do the shuffle. The analysis is done by calculating
2520    // the range of elements the mask access on both vectors.
2521    int MinRange[2] = { SrcNumElts+1, SrcNumElts+1};
2522    int MaxRange[2] = {-1, -1};
2523
2524    for (unsigned i = 0; i != MaskNumElts; ++i) {
2525      int Idx = Mask[i];
2526      int Input = 0;
2527      if (Idx < 0)
2528        continue;
2529
2530      if (Idx >= (int)SrcNumElts) {
2531        Input = 1;
2532        Idx -= SrcNumElts;
2533      }
2534      if (Idx > MaxRange[Input])
2535        MaxRange[Input] = Idx;
2536      if (Idx < MinRange[Input])
2537        MinRange[Input] = Idx;
2538    }
2539
2540    // Check if the access is smaller than the vector size and can we find
2541    // a reasonable extract index.
2542    int RangeUse[2] = { 2, 2 };  // 0 = Unused, 1 = Extract, 2 = Can not
2543                                 // Extract.
2544    int StartIdx[2];  // StartIdx to extract from
2545    for (int Input=0; Input < 2; ++Input) {
2546      if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) {
2547        RangeUse[Input] = 0; // Unused
2548        StartIdx[Input] = 0;
2549      } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) {
2550        // Fits within range but we should see if we can find a good
2551        // start index that is a multiple of the mask length.
2552        if (MaxRange[Input] < (int)MaskNumElts) {
2553          RangeUse[Input] = 1; // Extract from beginning of the vector
2554          StartIdx[Input] = 0;
2555        } else {
2556          StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2557          if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2558              StartIdx[Input] + MaskNumElts < SrcNumElts)
2559            RangeUse[Input] = 1; // Extract from a multiple of the mask length.
2560        }
2561      }
2562    }
2563
2564    if (RangeUse[0] == 0 && RangeUse[1] == 0) {
2565      setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
2566      return;
2567    }
2568    else if (RangeUse[0] < 2 && RangeUse[1] < 2) {
2569      // Extract appropriate subvector and generate a vector shuffle
2570      for (int Input=0; Input < 2; ++Input) {
2571        SDValue &Src = Input == 0 ? Src1 : Src2;
2572        if (RangeUse[Input] == 0)
2573          Src = DAG.getUNDEF(VT);
2574        else
2575          Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT,
2576                            Src, DAG.getIntPtrConstant(StartIdx[Input]));
2577      }
2578
2579      // Calculate new mask.
2580      SmallVector<int, 8> MappedOps;
2581      for (unsigned i = 0; i != MaskNumElts; ++i) {
2582        int Idx = Mask[i];
2583        if (Idx < 0)
2584          MappedOps.push_back(Idx);
2585        else if (Idx < (int)SrcNumElts)
2586          MappedOps.push_back(Idx - StartIdx[0]);
2587        else
2588          MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts);
2589      }
2590
2591      setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2592                                        &MappedOps[0]));
2593      return;
2594    }
2595  }
2596
2597  // We can't use either concat vectors or extract subvectors so fall back to
2598  // replacing the shuffle with extract and build vector.
2599  // to insert and build vector.
2600  EVT EltVT = VT.getVectorElementType();
2601  EVT PtrVT = TLI.getPointerTy();
2602  SmallVector<SDValue,8> Ops;
2603  for (unsigned i = 0; i != MaskNumElts; ++i) {
2604    if (Mask[i] < 0) {
2605      Ops.push_back(DAG.getUNDEF(EltVT));
2606    } else {
2607      int Idx = Mask[i];
2608      SDValue Res;
2609
2610      if (Idx < (int)SrcNumElts)
2611        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2612                          EltVT, Src1, DAG.getConstant(Idx, PtrVT));
2613      else
2614        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2615                          EltVT, Src2,
2616                          DAG.getConstant(Idx - SrcNumElts, PtrVT));
2617
2618      Ops.push_back(Res);
2619    }
2620  }
2621
2622  setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
2623                           VT, &Ops[0], Ops.size()));
2624}
2625
2626void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
2627  const Value *Op0 = I.getOperand(0);
2628  const Value *Op1 = I.getOperand(1);
2629  const Type *AggTy = I.getType();
2630  const Type *ValTy = Op1->getType();
2631  bool IntoUndef = isa<UndefValue>(Op0);
2632  bool FromUndef = isa<UndefValue>(Op1);
2633
2634  unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
2635                                            I.idx_begin(), I.idx_end());
2636
2637  SmallVector<EVT, 4> AggValueVTs;
2638  ComputeValueVTs(TLI, AggTy, AggValueVTs);
2639  SmallVector<EVT, 4> ValValueVTs;
2640  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2641
2642  unsigned NumAggValues = AggValueVTs.size();
2643  unsigned NumValValues = ValValueVTs.size();
2644  SmallVector<SDValue, 4> Values(NumAggValues);
2645
2646  SDValue Agg = getValue(Op0);
2647  SDValue Val = getValue(Op1);
2648  unsigned i = 0;
2649  // Copy the beginning value(s) from the original aggregate.
2650  for (; i != LinearIndex; ++i)
2651    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2652                SDValue(Agg.getNode(), Agg.getResNo() + i);
2653  // Copy values from the inserted value(s).
2654  for (; i != LinearIndex + NumValValues; ++i)
2655    Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2656                SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
2657  // Copy remaining value(s) from the original aggregate.
2658  for (; i != NumAggValues; ++i)
2659    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2660                SDValue(Agg.getNode(), Agg.getResNo() + i);
2661
2662  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2663                           DAG.getVTList(&AggValueVTs[0], NumAggValues),
2664                           &Values[0], NumAggValues));
2665}
2666
2667void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
2668  const Value *Op0 = I.getOperand(0);
2669  const Type *AggTy = Op0->getType();
2670  const Type *ValTy = I.getType();
2671  bool OutOfUndef = isa<UndefValue>(Op0);
2672
2673  unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
2674                                            I.idx_begin(), I.idx_end());
2675
2676  SmallVector<EVT, 4> ValValueVTs;
2677  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2678
2679  unsigned NumValValues = ValValueVTs.size();
2680  SmallVector<SDValue, 4> Values(NumValValues);
2681
2682  SDValue Agg = getValue(Op0);
2683  // Copy out the selected value(s).
2684  for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
2685    Values[i - LinearIndex] =
2686      OutOfUndef ?
2687        DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
2688        SDValue(Agg.getNode(), Agg.getResNo() + i);
2689
2690  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2691                           DAG.getVTList(&ValValueVTs[0], NumValValues),
2692                           &Values[0], NumValValues));
2693}
2694
2695void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
2696  SDValue N = getValue(I.getOperand(0));
2697  const Type *Ty = I.getOperand(0)->getType();
2698
2699  for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
2700       OI != E; ++OI) {
2701    const Value *Idx = *OI;
2702    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2703      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2704      if (Field) {
2705        // N = N + Offset
2706        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
2707        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2708                        DAG.getIntPtrConstant(Offset));
2709      }
2710
2711      Ty = StTy->getElementType(Field);
2712    } else if (const UnionType *UnTy = dyn_cast<UnionType>(Ty)) {
2713      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2714
2715      // Offset canonically 0 for unions, but type changes
2716      Ty = UnTy->getElementType(Field);
2717    } else {
2718      Ty = cast<SequentialType>(Ty)->getElementType();
2719
2720      // If this is a constant subscript, handle it quickly.
2721      if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2722        if (CI->isZero()) continue;
2723        uint64_t Offs =
2724            TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
2725        SDValue OffsVal;
2726        EVT PTy = TLI.getPointerTy();
2727        unsigned PtrBits = PTy.getSizeInBits();
2728        if (PtrBits < 64)
2729          OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2730                                TLI.getPointerTy(),
2731                                DAG.getConstant(Offs, MVT::i64));
2732        else
2733          OffsVal = DAG.getIntPtrConstant(Offs);
2734
2735        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2736                        OffsVal);
2737        continue;
2738      }
2739
2740      // N = N + Idx * ElementSize;
2741      APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
2742                                TD->getTypeAllocSize(Ty));
2743      SDValue IdxN = getValue(Idx);
2744
2745      // If the index is smaller or larger than intptr_t, truncate or extend
2746      // it.
2747      IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType());
2748
2749      // If this is a multiply by a power of two, turn it into a shl
2750      // immediately.  This is a very common case.
2751      if (ElementSize != 1) {
2752        if (ElementSize.isPowerOf2()) {
2753          unsigned Amt = ElementSize.logBase2();
2754          IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(),
2755                             N.getValueType(), IdxN,
2756                             DAG.getConstant(Amt, TLI.getPointerTy()));
2757        } else {
2758          SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy());
2759          IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(),
2760                             N.getValueType(), IdxN, Scale);
2761        }
2762      }
2763
2764      N = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2765                      N.getValueType(), N, IdxN);
2766    }
2767  }
2768
2769  setValue(&I, N);
2770}
2771
2772void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
2773  // If this is a fixed sized alloca in the entry block of the function,
2774  // allocate it statically on the stack.
2775  if (FuncInfo.StaticAllocaMap.count(&I))
2776    return;   // getValue will auto-populate this.
2777
2778  const Type *Ty = I.getAllocatedType();
2779  uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
2780  unsigned Align =
2781    std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
2782             I.getAlignment());
2783
2784  SDValue AllocSize = getValue(I.getArraySize());
2785
2786  EVT IntPtr = TLI.getPointerTy();
2787  if (AllocSize.getValueType() != IntPtr)
2788    AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr);
2789
2790  AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr,
2791                          AllocSize,
2792                          DAG.getConstant(TySize, IntPtr));
2793
2794  // Handle alignment.  If the requested alignment is less than or equal to
2795  // the stack alignment, ignore it.  If the size is greater than or equal to
2796  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
2797  unsigned StackAlign = TM.getFrameInfo()->getStackAlignment();
2798  if (Align <= StackAlign)
2799    Align = 0;
2800
2801  // Round the size of the allocation up to the stack alignment size
2802  // by add SA-1 to the size.
2803  AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2804                          AllocSize.getValueType(), AllocSize,
2805                          DAG.getIntPtrConstant(StackAlign-1));
2806
2807  // Mask out the low bits for alignment purposes.
2808  AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(),
2809                          AllocSize.getValueType(), AllocSize,
2810                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
2811
2812  SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
2813  SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
2814  SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(),
2815                            VTs, Ops, 3);
2816  setValue(&I, DSA);
2817  DAG.setRoot(DSA.getValue(1));
2818
2819  // Inform the Frame Information that we have just allocated a variable-sized
2820  // object.
2821  FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject();
2822}
2823
2824void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
2825  const Value *SV = I.getOperand(0);
2826  SDValue Ptr = getValue(SV);
2827
2828  const Type *Ty = I.getType();
2829
2830  bool isVolatile = I.isVolatile();
2831  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
2832  unsigned Alignment = I.getAlignment();
2833
2834  SmallVector<EVT, 4> ValueVTs;
2835  SmallVector<uint64_t, 4> Offsets;
2836  ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
2837  unsigned NumValues = ValueVTs.size();
2838  if (NumValues == 0)
2839    return;
2840
2841  SDValue Root;
2842  bool ConstantMemory = false;
2843  if (I.isVolatile())
2844    // Serialize volatile loads with other side effects.
2845    Root = getRoot();
2846  else if (AA->pointsToConstantMemory(SV)) {
2847    // Do not serialize (non-volatile) loads of constant memory with anything.
2848    Root = DAG.getEntryNode();
2849    ConstantMemory = true;
2850  } else {
2851    // Do not serialize non-volatile loads against each other.
2852    Root = DAG.getRoot();
2853  }
2854
2855  SmallVector<SDValue, 4> Values(NumValues);
2856  SmallVector<SDValue, 4> Chains(NumValues);
2857  EVT PtrVT = Ptr.getValueType();
2858  for (unsigned i = 0; i != NumValues; ++i) {
2859    SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2860                            PtrVT, Ptr,
2861                            DAG.getConstant(Offsets[i], PtrVT));
2862    SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root,
2863                            A, SV, Offsets[i], isVolatile,
2864                            isNonTemporal, Alignment);
2865
2866    Values[i] = L;
2867    Chains[i] = L.getValue(1);
2868  }
2869
2870  if (!ConstantMemory) {
2871    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
2872                                MVT::Other, &Chains[0], NumValues);
2873    if (isVolatile)
2874      DAG.setRoot(Chain);
2875    else
2876      PendingLoads.push_back(Chain);
2877  }
2878
2879  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2880                           DAG.getVTList(&ValueVTs[0], NumValues),
2881                           &Values[0], NumValues));
2882}
2883
2884void SelectionDAGBuilder::visitStore(const StoreInst &I) {
2885  const Value *SrcV = I.getOperand(0);
2886  const Value *PtrV = I.getOperand(1);
2887
2888  SmallVector<EVT, 4> ValueVTs;
2889  SmallVector<uint64_t, 4> Offsets;
2890  ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
2891  unsigned NumValues = ValueVTs.size();
2892  if (NumValues == 0)
2893    return;
2894
2895  // Get the lowered operands. Note that we do this after
2896  // checking if NumResults is zero, because with zero results
2897  // the operands won't have values in the map.
2898  SDValue Src = getValue(SrcV);
2899  SDValue Ptr = getValue(PtrV);
2900
2901  SDValue Root = getRoot();
2902  SmallVector<SDValue, 4> Chains(NumValues);
2903  EVT PtrVT = Ptr.getValueType();
2904  bool isVolatile = I.isVolatile();
2905  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
2906  unsigned Alignment = I.getAlignment();
2907
2908  for (unsigned i = 0; i != NumValues; ++i) {
2909    SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr,
2910                              DAG.getConstant(Offsets[i], PtrVT));
2911    Chains[i] = DAG.getStore(Root, getCurDebugLoc(),
2912                             SDValue(Src.getNode(), Src.getResNo() + i),
2913                             Add, PtrV, Offsets[i], isVolatile,
2914                             isNonTemporal, Alignment);
2915  }
2916
2917  DAG.setRoot(DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
2918                          MVT::Other, &Chains[0], NumValues));
2919}
2920
2921/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
2922/// node.
2923void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
2924                                               unsigned Intrinsic) {
2925  bool HasChain = !I.doesNotAccessMemory();
2926  bool OnlyLoad = HasChain && I.onlyReadsMemory();
2927
2928  // Build the operand list.
2929  SmallVector<SDValue, 8> Ops;
2930  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
2931    if (OnlyLoad) {
2932      // We don't need to serialize loads against other loads.
2933      Ops.push_back(DAG.getRoot());
2934    } else {
2935      Ops.push_back(getRoot());
2936    }
2937  }
2938
2939  // Info is set by getTgtMemInstrinsic
2940  TargetLowering::IntrinsicInfo Info;
2941  bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
2942
2943  // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
2944  if (!IsTgtIntrinsic)
2945    Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
2946
2947  // Add all operands of the call to the operand list.
2948  for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
2949    SDValue Op = getValue(I.getArgOperand(i));
2950    assert(TLI.isTypeLegal(Op.getValueType()) &&
2951           "Intrinsic uses a non-legal type?");
2952    Ops.push_back(Op);
2953  }
2954
2955  SmallVector<EVT, 4> ValueVTs;
2956  ComputeValueVTs(TLI, I.getType(), ValueVTs);
2957#ifndef NDEBUG
2958  for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) {
2959    assert(TLI.isTypeLegal(ValueVTs[Val]) &&
2960           "Intrinsic uses a non-legal type?");
2961  }
2962#endif // NDEBUG
2963
2964  if (HasChain)
2965    ValueVTs.push_back(MVT::Other);
2966
2967  SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
2968
2969  // Create the node.
2970  SDValue Result;
2971  if (IsTgtIntrinsic) {
2972    // This is target intrinsic that touches memory
2973    Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(),
2974                                     VTs, &Ops[0], Ops.size(),
2975                                     Info.memVT, Info.ptrVal, Info.offset,
2976                                     Info.align, Info.vol,
2977                                     Info.readMem, Info.writeMem);
2978  } else if (!HasChain) {
2979    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
2980                         VTs, &Ops[0], Ops.size());
2981  } else if (!I.getType()->isVoidTy()) {
2982    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
2983                         VTs, &Ops[0], Ops.size());
2984  } else {
2985    Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(),
2986                         VTs, &Ops[0], Ops.size());
2987  }
2988
2989  if (HasChain) {
2990    SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
2991    if (OnlyLoad)
2992      PendingLoads.push_back(Chain);
2993    else
2994      DAG.setRoot(Chain);
2995  }
2996
2997  if (!I.getType()->isVoidTy()) {
2998    if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
2999      EVT VT = TLI.getValueType(PTy);
3000      Result = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), VT, Result);
3001    }
3002
3003    setValue(&I, Result);
3004  }
3005}
3006
3007/// GetSignificand - Get the significand and build it into a floating-point
3008/// number with exponent of 1:
3009///
3010///   Op = (Op & 0x007fffff) | 0x3f800000;
3011///
3012/// where Op is the hexidecimal representation of floating point value.
3013static SDValue
3014GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) {
3015  SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3016                           DAG.getConstant(0x007fffff, MVT::i32));
3017  SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3018                           DAG.getConstant(0x3f800000, MVT::i32));
3019  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t2);
3020}
3021
3022/// GetExponent - Get the exponent:
3023///
3024///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3025///
3026/// where Op is the hexidecimal representation of floating point value.
3027static SDValue
3028GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3029            DebugLoc dl) {
3030  SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3031                           DAG.getConstant(0x7f800000, MVT::i32));
3032  SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3033                           DAG.getConstant(23, TLI.getPointerTy()));
3034  SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3035                           DAG.getConstant(127, MVT::i32));
3036  return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3037}
3038
3039/// getF32Constant - Get 32-bit floating point constant.
3040static SDValue
3041getF32Constant(SelectionDAG &DAG, unsigned Flt) {
3042  return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32);
3043}
3044
3045/// Inlined utility function to implement binary input atomic intrinsics for
3046/// visitIntrinsicCall: I is a call instruction
3047///                     Op is the associated NodeType for I
3048const char *
3049SelectionDAGBuilder::implVisitBinaryAtomic(const CallInst& I,
3050                                           ISD::NodeType Op) {
3051  SDValue Root = getRoot();
3052  SDValue L =
3053    DAG.getAtomic(Op, getCurDebugLoc(),
3054                  getValue(I.getArgOperand(1)).getValueType().getSimpleVT(),
3055                  Root,
3056                  getValue(I.getArgOperand(0)),
3057                  getValue(I.getArgOperand(1)),
3058                  I.getArgOperand(0));
3059  setValue(&I, L);
3060  DAG.setRoot(L.getValue(1));
3061  return 0;
3062}
3063
3064// implVisitAluOverflow - Lower arithmetic overflow instrinsics.
3065const char *
3066SelectionDAGBuilder::implVisitAluOverflow(const CallInst &I, ISD::NodeType Op) {
3067  SDValue Op1 = getValue(I.getArgOperand(0));
3068  SDValue Op2 = getValue(I.getArgOperand(1));
3069
3070  SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
3071  setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2));
3072  return 0;
3073}
3074
3075/// visitExp - Lower an exp intrinsic. Handles the special sequences for
3076/// limited-precision mode.
3077void
3078SelectionDAGBuilder::visitExp(const CallInst &I) {
3079  SDValue result;
3080  DebugLoc dl = getCurDebugLoc();
3081
3082  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3083      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3084    SDValue Op = getValue(I.getArgOperand(0));
3085
3086    // Put the exponent in the right bit position for later addition to the
3087    // final result:
3088    //
3089    //   #define LOG2OFe 1.4426950f
3090    //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3091    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3092                             getF32Constant(DAG, 0x3fb8aa3b));
3093    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3094
3095    //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3096    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3097    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3098
3099    //   IntegerPartOfX <<= 23;
3100    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3101                                 DAG.getConstant(23, TLI.getPointerTy()));
3102
3103    if (LimitFloatPrecision <= 6) {
3104      // For floating-point precision of 6:
3105      //
3106      //   TwoToFractionalPartOfX =
3107      //     0.997535578f +
3108      //       (0.735607626f + 0.252464424f * x) * x;
3109      //
3110      // error 0.0144103317, which is 6 bits
3111      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3112                               getF32Constant(DAG, 0x3e814304));
3113      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3114                               getF32Constant(DAG, 0x3f3c50c8));
3115      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3116      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3117                               getF32Constant(DAG, 0x3f7f5e7e));
3118      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t5);
3119
3120      // Add the exponent into the result in integer domain.
3121      SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3122                               TwoToFracPartOfX, IntegerPartOfX);
3123
3124      result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t6);
3125    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3126      // For floating-point precision of 12:
3127      //
3128      //   TwoToFractionalPartOfX =
3129      //     0.999892986f +
3130      //       (0.696457318f +
3131      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3132      //
3133      // 0.000107046256 error, which is 13 to 14 bits
3134      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3135                               getF32Constant(DAG, 0x3da235e3));
3136      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3137                               getF32Constant(DAG, 0x3e65b8f3));
3138      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3139      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3140                               getF32Constant(DAG, 0x3f324b07));
3141      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3142      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3143                               getF32Constant(DAG, 0x3f7ff8fd));
3144      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t7);
3145
3146      // Add the exponent into the result in integer domain.
3147      SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3148                               TwoToFracPartOfX, IntegerPartOfX);
3149
3150      result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t8);
3151    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3152      // For floating-point precision of 18:
3153      //
3154      //   TwoToFractionalPartOfX =
3155      //     0.999999982f +
3156      //       (0.693148872f +
3157      //         (0.240227044f +
3158      //           (0.554906021e-1f +
3159      //             (0.961591928e-2f +
3160      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3161      //
3162      // error 2.47208000*10^(-7), which is better than 18 bits
3163      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3164                               getF32Constant(DAG, 0x3924b03e));
3165      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3166                               getF32Constant(DAG, 0x3ab24b87));
3167      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3168      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3169                               getF32Constant(DAG, 0x3c1d8c17));
3170      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3171      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3172                               getF32Constant(DAG, 0x3d634a1d));
3173      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3174      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3175                               getF32Constant(DAG, 0x3e75fe14));
3176      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3177      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3178                                getF32Constant(DAG, 0x3f317234));
3179      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3180      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3181                                getF32Constant(DAG, 0x3f800000));
3182      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,
3183                                             MVT::i32, t13);
3184
3185      // Add the exponent into the result in integer domain.
3186      SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3187                                TwoToFracPartOfX, IntegerPartOfX);
3188
3189      result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t14);
3190    }
3191  } else {
3192    // No special expansion.
3193    result = DAG.getNode(ISD::FEXP, dl,
3194                         getValue(I.getArgOperand(0)).getValueType(),
3195                         getValue(I.getArgOperand(0)));
3196  }
3197
3198  setValue(&I, result);
3199}
3200
3201/// visitLog - Lower a log intrinsic. Handles the special sequences for
3202/// limited-precision mode.
3203void
3204SelectionDAGBuilder::visitLog(const CallInst &I) {
3205  SDValue result;
3206  DebugLoc dl = getCurDebugLoc();
3207
3208  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3209      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3210    SDValue Op = getValue(I.getArgOperand(0));
3211    SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
3212
3213    // Scale the exponent by log(2) [0.69314718f].
3214    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3215    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3216                                        getF32Constant(DAG, 0x3f317218));
3217
3218    // Get the significand and build it into a floating-point number with
3219    // exponent of 1.
3220    SDValue X = GetSignificand(DAG, Op1, dl);
3221
3222    if (LimitFloatPrecision <= 6) {
3223      // For floating-point precision of 6:
3224      //
3225      //   LogofMantissa =
3226      //     -1.1609546f +
3227      //       (1.4034025f - 0.23903021f * x) * x;
3228      //
3229      // error 0.0034276066, which is better than 8 bits
3230      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3231                               getF32Constant(DAG, 0xbe74c456));
3232      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3233                               getF32Constant(DAG, 0x3fb3a2b1));
3234      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3235      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3236                                          getF32Constant(DAG, 0x3f949a29));
3237
3238      result = DAG.getNode(ISD::FADD, dl,
3239                           MVT::f32, LogOfExponent, LogOfMantissa);
3240    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3241      // For floating-point precision of 12:
3242      //
3243      //   LogOfMantissa =
3244      //     -1.7417939f +
3245      //       (2.8212026f +
3246      //         (-1.4699568f +
3247      //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3248      //
3249      // error 0.000061011436, which is 14 bits
3250      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3251                               getF32Constant(DAG, 0xbd67b6d6));
3252      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3253                               getF32Constant(DAG, 0x3ee4f4b8));
3254      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3255      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3256                               getF32Constant(DAG, 0x3fbc278b));
3257      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3258      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3259                               getF32Constant(DAG, 0x40348e95));
3260      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3261      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3262                                          getF32Constant(DAG, 0x3fdef31a));
3263
3264      result = DAG.getNode(ISD::FADD, dl,
3265                           MVT::f32, LogOfExponent, LogOfMantissa);
3266    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3267      // For floating-point precision of 18:
3268      //
3269      //   LogOfMantissa =
3270      //     -2.1072184f +
3271      //       (4.2372794f +
3272      //         (-3.7029485f +
3273      //           (2.2781945f +
3274      //             (-0.87823314f +
3275      //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3276      //
3277      // error 0.0000023660568, which is better than 18 bits
3278      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3279                               getF32Constant(DAG, 0xbc91e5ac));
3280      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3281                               getF32Constant(DAG, 0x3e4350aa));
3282      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3283      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3284                               getF32Constant(DAG, 0x3f60d3e3));
3285      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3286      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3287                               getF32Constant(DAG, 0x4011cdf0));
3288      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3289      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3290                               getF32Constant(DAG, 0x406cfd1c));
3291      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3292      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3293                               getF32Constant(DAG, 0x408797cb));
3294      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3295      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3296                                          getF32Constant(DAG, 0x4006dcab));
3297
3298      result = DAG.getNode(ISD::FADD, dl,
3299                           MVT::f32, LogOfExponent, LogOfMantissa);
3300    }
3301  } else {
3302    // No special expansion.
3303    result = DAG.getNode(ISD::FLOG, dl,
3304                         getValue(I.getArgOperand(0)).getValueType(),
3305                         getValue(I.getArgOperand(0)));
3306  }
3307
3308  setValue(&I, result);
3309}
3310
3311/// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for
3312/// limited-precision mode.
3313void
3314SelectionDAGBuilder::visitLog2(const CallInst &I) {
3315  SDValue result;
3316  DebugLoc dl = getCurDebugLoc();
3317
3318  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3319      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3320    SDValue Op = getValue(I.getArgOperand(0));
3321    SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
3322
3323    // Get the exponent.
3324    SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3325
3326    // Get the significand and build it into a floating-point number with
3327    // exponent of 1.
3328    SDValue X = GetSignificand(DAG, Op1, dl);
3329
3330    // Different possible minimax approximations of significand in
3331    // floating-point for various degrees of accuracy over [1,2].
3332    if (LimitFloatPrecision <= 6) {
3333      // For floating-point precision of 6:
3334      //
3335      //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3336      //
3337      // error 0.0049451742, which is more than 7 bits
3338      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3339                               getF32Constant(DAG, 0xbeb08fe0));
3340      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3341                               getF32Constant(DAG, 0x40019463));
3342      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3343      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3344                                           getF32Constant(DAG, 0x3fd6633d));
3345
3346      result = DAG.getNode(ISD::FADD, dl,
3347                           MVT::f32, LogOfExponent, Log2ofMantissa);
3348    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3349      // For floating-point precision of 12:
3350      //
3351      //   Log2ofMantissa =
3352      //     -2.51285454f +
3353      //       (4.07009056f +
3354      //         (-2.12067489f +
3355      //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3356      //
3357      // error 0.0000876136000, which is better than 13 bits
3358      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3359                               getF32Constant(DAG, 0xbda7262e));
3360      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3361                               getF32Constant(DAG, 0x3f25280b));
3362      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3363      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3364                               getF32Constant(DAG, 0x4007b923));
3365      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3366      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3367                               getF32Constant(DAG, 0x40823e2f));
3368      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3369      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3370                                           getF32Constant(DAG, 0x4020d29c));
3371
3372      result = DAG.getNode(ISD::FADD, dl,
3373                           MVT::f32, LogOfExponent, Log2ofMantissa);
3374    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3375      // For floating-point precision of 18:
3376      //
3377      //   Log2ofMantissa =
3378      //     -3.0400495f +
3379      //       (6.1129976f +
3380      //         (-5.3420409f +
3381      //           (3.2865683f +
3382      //             (-1.2669343f +
3383      //               (0.27515199f -
3384      //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3385      //
3386      // error 0.0000018516, which is better than 18 bits
3387      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3388                               getF32Constant(DAG, 0xbcd2769e));
3389      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3390                               getF32Constant(DAG, 0x3e8ce0b9));
3391      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3392      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3393                               getF32Constant(DAG, 0x3fa22ae7));
3394      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3395      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3396                               getF32Constant(DAG, 0x40525723));
3397      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3398      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3399                               getF32Constant(DAG, 0x40aaf200));
3400      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3401      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3402                               getF32Constant(DAG, 0x40c39dad));
3403      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3404      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3405                                           getF32Constant(DAG, 0x4042902c));
3406
3407      result = DAG.getNode(ISD::FADD, dl,
3408                           MVT::f32, LogOfExponent, Log2ofMantissa);
3409    }
3410  } else {
3411    // No special expansion.
3412    result = DAG.getNode(ISD::FLOG2, dl,
3413                         getValue(I.getArgOperand(0)).getValueType(),
3414                         getValue(I.getArgOperand(0)));
3415  }
3416
3417  setValue(&I, result);
3418}
3419
3420/// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for
3421/// limited-precision mode.
3422void
3423SelectionDAGBuilder::visitLog10(const CallInst &I) {
3424  SDValue result;
3425  DebugLoc dl = getCurDebugLoc();
3426
3427  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3428      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3429    SDValue Op = getValue(I.getArgOperand(0));
3430    SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
3431
3432    // Scale the exponent by log10(2) [0.30102999f].
3433    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3434    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3435                                        getF32Constant(DAG, 0x3e9a209a));
3436
3437    // Get the significand and build it into a floating-point number with
3438    // exponent of 1.
3439    SDValue X = GetSignificand(DAG, Op1, dl);
3440
3441    if (LimitFloatPrecision <= 6) {
3442      // For floating-point precision of 6:
3443      //
3444      //   Log10ofMantissa =
3445      //     -0.50419619f +
3446      //       (0.60948995f - 0.10380950f * x) * x;
3447      //
3448      // error 0.0014886165, which is 6 bits
3449      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3450                               getF32Constant(DAG, 0xbdd49a13));
3451      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3452                               getF32Constant(DAG, 0x3f1c0789));
3453      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3454      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3455                                            getF32Constant(DAG, 0x3f011300));
3456
3457      result = DAG.getNode(ISD::FADD, dl,
3458                           MVT::f32, LogOfExponent, Log10ofMantissa);
3459    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3460      // For floating-point precision of 12:
3461      //
3462      //   Log10ofMantissa =
3463      //     -0.64831180f +
3464      //       (0.91751397f +
3465      //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
3466      //
3467      // error 0.00019228036, which is better than 12 bits
3468      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3469                               getF32Constant(DAG, 0x3d431f31));
3470      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3471                               getF32Constant(DAG, 0x3ea21fb2));
3472      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3473      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3474                               getF32Constant(DAG, 0x3f6ae232));
3475      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3476      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3477                                            getF32Constant(DAG, 0x3f25f7c3));
3478
3479      result = DAG.getNode(ISD::FADD, dl,
3480                           MVT::f32, LogOfExponent, Log10ofMantissa);
3481    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3482      // For floating-point precision of 18:
3483      //
3484      //   Log10ofMantissa =
3485      //     -0.84299375f +
3486      //       (1.5327582f +
3487      //         (-1.0688956f +
3488      //           (0.49102474f +
3489      //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
3490      //
3491      // error 0.0000037995730, which is better than 18 bits
3492      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3493                               getF32Constant(DAG, 0x3c5d51ce));
3494      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3495                               getF32Constant(DAG, 0x3e00685a));
3496      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3497      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3498                               getF32Constant(DAG, 0x3efb6798));
3499      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3500      SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3501                               getF32Constant(DAG, 0x3f88d192));
3502      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3503      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3504                               getF32Constant(DAG, 0x3fc4316c));
3505      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3506      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
3507                                            getF32Constant(DAG, 0x3f57ce70));
3508
3509      result = DAG.getNode(ISD::FADD, dl,
3510                           MVT::f32, LogOfExponent, Log10ofMantissa);
3511    }
3512  } else {
3513    // No special expansion.
3514    result = DAG.getNode(ISD::FLOG10, dl,
3515                         getValue(I.getArgOperand(0)).getValueType(),
3516                         getValue(I.getArgOperand(0)));
3517  }
3518
3519  setValue(&I, result);
3520}
3521
3522/// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for
3523/// limited-precision mode.
3524void
3525SelectionDAGBuilder::visitExp2(const CallInst &I) {
3526  SDValue result;
3527  DebugLoc dl = getCurDebugLoc();
3528
3529  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3530      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3531    SDValue Op = getValue(I.getArgOperand(0));
3532
3533    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
3534
3535    //   FractionalPartOfX = x - (float)IntegerPartOfX;
3536    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3537    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
3538
3539    //   IntegerPartOfX <<= 23;
3540    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3541                                 DAG.getConstant(23, TLI.getPointerTy()));
3542
3543    if (LimitFloatPrecision <= 6) {
3544      // For floating-point precision of 6:
3545      //
3546      //   TwoToFractionalPartOfX =
3547      //     0.997535578f +
3548      //       (0.735607626f + 0.252464424f * x) * x;
3549      //
3550      // error 0.0144103317, which is 6 bits
3551      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3552                               getF32Constant(DAG, 0x3e814304));
3553      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3554                               getF32Constant(DAG, 0x3f3c50c8));
3555      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3556      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3557                               getF32Constant(DAG, 0x3f7f5e7e));
3558      SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5);
3559      SDValue TwoToFractionalPartOfX =
3560        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3561
3562      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3563                           MVT::f32, TwoToFractionalPartOfX);
3564    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3565      // For floating-point precision of 12:
3566      //
3567      //   TwoToFractionalPartOfX =
3568      //     0.999892986f +
3569      //       (0.696457318f +
3570      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3571      //
3572      // error 0.000107046256, which is 13 to 14 bits
3573      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3574                               getF32Constant(DAG, 0x3da235e3));
3575      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3576                               getF32Constant(DAG, 0x3e65b8f3));
3577      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3578      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3579                               getF32Constant(DAG, 0x3f324b07));
3580      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3581      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3582                               getF32Constant(DAG, 0x3f7ff8fd));
3583      SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7);
3584      SDValue TwoToFractionalPartOfX =
3585        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
3586
3587      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3588                           MVT::f32, TwoToFractionalPartOfX);
3589    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3590      // For floating-point precision of 18:
3591      //
3592      //   TwoToFractionalPartOfX =
3593      //     0.999999982f +
3594      //       (0.693148872f +
3595      //         (0.240227044f +
3596      //           (0.554906021e-1f +
3597      //             (0.961591928e-2f +
3598      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3599      // error 2.47208000*10^(-7), which is better than 18 bits
3600      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3601                               getF32Constant(DAG, 0x3924b03e));
3602      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3603                               getF32Constant(DAG, 0x3ab24b87));
3604      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3605      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3606                               getF32Constant(DAG, 0x3c1d8c17));
3607      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3608      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3609                               getF32Constant(DAG, 0x3d634a1d));
3610      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3611      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3612                               getF32Constant(DAG, 0x3e75fe14));
3613      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3614      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3615                                getF32Constant(DAG, 0x3f317234));
3616      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3617      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3618                                getF32Constant(DAG, 0x3f800000));
3619      SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13);
3620      SDValue TwoToFractionalPartOfX =
3621        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
3622
3623      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3624                           MVT::f32, TwoToFractionalPartOfX);
3625    }
3626  } else {
3627    // No special expansion.
3628    result = DAG.getNode(ISD::FEXP2, dl,
3629                         getValue(I.getArgOperand(0)).getValueType(),
3630                         getValue(I.getArgOperand(0)));
3631  }
3632
3633  setValue(&I, result);
3634}
3635
3636/// visitPow - Lower a pow intrinsic. Handles the special sequences for
3637/// limited-precision mode with x == 10.0f.
3638void
3639SelectionDAGBuilder::visitPow(const CallInst &I) {
3640  SDValue result;
3641  const Value *Val = I.getArgOperand(0);
3642  DebugLoc dl = getCurDebugLoc();
3643  bool IsExp10 = false;
3644
3645  if (getValue(Val).getValueType() == MVT::f32 &&
3646      getValue(I.getArgOperand(1)).getValueType() == MVT::f32 &&
3647      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3648    if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) {
3649      if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
3650        APFloat Ten(10.0f);
3651        IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten);
3652      }
3653    }
3654  }
3655
3656  if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3657    SDValue Op = getValue(I.getArgOperand(1));
3658
3659    // Put the exponent in the right bit position for later addition to the
3660    // final result:
3661    //
3662    //   #define LOG2OF10 3.3219281f
3663    //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
3664    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3665                             getF32Constant(DAG, 0x40549a78));
3666    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3667
3668    //   FractionalPartOfX = x - (float)IntegerPartOfX;
3669    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3670    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3671
3672    //   IntegerPartOfX <<= 23;
3673    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3674                                 DAG.getConstant(23, TLI.getPointerTy()));
3675
3676    if (LimitFloatPrecision <= 6) {
3677      // For floating-point precision of 6:
3678      //
3679      //   twoToFractionalPartOfX =
3680      //     0.997535578f +
3681      //       (0.735607626f + 0.252464424f * x) * x;
3682      //
3683      // error 0.0144103317, which is 6 bits
3684      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3685                               getF32Constant(DAG, 0x3e814304));
3686      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3687                               getF32Constant(DAG, 0x3f3c50c8));
3688      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3689      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3690                               getF32Constant(DAG, 0x3f7f5e7e));
3691      SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5);
3692      SDValue TwoToFractionalPartOfX =
3693        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3694
3695      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3696                           MVT::f32, TwoToFractionalPartOfX);
3697    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3698      // For floating-point precision of 12:
3699      //
3700      //   TwoToFractionalPartOfX =
3701      //     0.999892986f +
3702      //       (0.696457318f +
3703      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3704      //
3705      // error 0.000107046256, which is 13 to 14 bits
3706      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3707                               getF32Constant(DAG, 0x3da235e3));
3708      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3709                               getF32Constant(DAG, 0x3e65b8f3));
3710      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3711      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3712                               getF32Constant(DAG, 0x3f324b07));
3713      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3714      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3715                               getF32Constant(DAG, 0x3f7ff8fd));
3716      SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7);
3717      SDValue TwoToFractionalPartOfX =
3718        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
3719
3720      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3721                           MVT::f32, TwoToFractionalPartOfX);
3722    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3723      // For floating-point precision of 18:
3724      //
3725      //   TwoToFractionalPartOfX =
3726      //     0.999999982f +
3727      //       (0.693148872f +
3728      //         (0.240227044f +
3729      //           (0.554906021e-1f +
3730      //             (0.961591928e-2f +
3731      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3732      // error 2.47208000*10^(-7), which is better than 18 bits
3733      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3734                               getF32Constant(DAG, 0x3924b03e));
3735      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3736                               getF32Constant(DAG, 0x3ab24b87));
3737      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3738      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3739                               getF32Constant(DAG, 0x3c1d8c17));
3740      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3741      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3742                               getF32Constant(DAG, 0x3d634a1d));
3743      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3744      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3745                               getF32Constant(DAG, 0x3e75fe14));
3746      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3747      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3748                                getF32Constant(DAG, 0x3f317234));
3749      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3750      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3751                                getF32Constant(DAG, 0x3f800000));
3752      SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13);
3753      SDValue TwoToFractionalPartOfX =
3754        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
3755
3756      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3757                           MVT::f32, TwoToFractionalPartOfX);
3758    }
3759  } else {
3760    // No special expansion.
3761    result = DAG.getNode(ISD::FPOW, dl,
3762                         getValue(I.getArgOperand(0)).getValueType(),
3763                         getValue(I.getArgOperand(0)),
3764                         getValue(I.getArgOperand(1)));
3765  }
3766
3767  setValue(&I, result);
3768}
3769
3770
3771/// ExpandPowI - Expand a llvm.powi intrinsic.
3772static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS,
3773                          SelectionDAG &DAG) {
3774  // If RHS is a constant, we can expand this out to a multiplication tree,
3775  // otherwise we end up lowering to a call to __powidf2 (for example).  When
3776  // optimizing for size, we only want to do this if the expansion would produce
3777  // a small number of multiplies, otherwise we do the full expansion.
3778  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3779    // Get the exponent as a positive value.
3780    unsigned Val = RHSC->getSExtValue();
3781    if ((int)Val < 0) Val = -Val;
3782
3783    // powi(x, 0) -> 1.0
3784    if (Val == 0)
3785      return DAG.getConstantFP(1.0, LHS.getValueType());
3786
3787    const Function *F = DAG.getMachineFunction().getFunction();
3788    if (!F->hasFnAttr(Attribute::OptimizeForSize) ||
3789        // If optimizing for size, don't insert too many multiplies.  This
3790        // inserts up to 5 multiplies.
3791        CountPopulation_32(Val)+Log2_32(Val) < 7) {
3792      // We use the simple binary decomposition method to generate the multiply
3793      // sequence.  There are more optimal ways to do this (for example,
3794      // powi(x,15) generates one more multiply than it should), but this has
3795      // the benefit of being both really simple and much better than a libcall.
3796      SDValue Res;  // Logically starts equal to 1.0
3797      SDValue CurSquare = LHS;
3798      while (Val) {
3799        if (Val & 1) {
3800          if (Res.getNode())
3801            Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
3802          else
3803            Res = CurSquare;  // 1.0*CurSquare.
3804        }
3805
3806        CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
3807                                CurSquare, CurSquare);
3808        Val >>= 1;
3809      }
3810
3811      // If the original was negative, invert the result, producing 1/(x*x*x).
3812      if (RHSC->getSExtValue() < 0)
3813        Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
3814                          DAG.getConstantFP(1.0, LHS.getValueType()), Res);
3815      return Res;
3816    }
3817  }
3818
3819  // Otherwise, expand to a libcall.
3820  return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
3821}
3822
3823/// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
3824/// argument, create the corresponding DBG_VALUE machine instruction for it now.
3825/// At the end of instruction selection, they will be inserted to the entry BB.
3826bool
3827SelectionDAGBuilder::EmitFuncArgumentDbgValue(const DbgValueInst &DI,
3828                                              const Value *V, MDNode *Variable,
3829                                              uint64_t Offset,
3830                                              const SDValue &N) {
3831  if (!isa<Argument>(V))
3832    return false;
3833
3834  MachineFunction &MF = DAG.getMachineFunction();
3835  // Ignore inlined function arguments here.
3836  DIVariable DV(Variable);
3837  if (DV.isInlinedFnArgument(MF.getFunction()))
3838    return false;
3839
3840  MachineBasicBlock *MBB = FuncInfo.MBB;
3841  if (MBB != &MF.front())
3842    return false;
3843
3844  unsigned Reg = 0;
3845  if (N.getOpcode() == ISD::CopyFromReg) {
3846    Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
3847    if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
3848      MachineRegisterInfo &RegInfo = MF.getRegInfo();
3849      unsigned PR = RegInfo.getLiveInPhysReg(Reg);
3850      if (PR)
3851        Reg = PR;
3852    }
3853  }
3854
3855  if (!Reg) {
3856    DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
3857    if (VMI == FuncInfo.ValueMap.end())
3858      return false;
3859    Reg = VMI->second;
3860  }
3861
3862  const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
3863  MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(),
3864                                    TII->get(TargetOpcode::DBG_VALUE))
3865    .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable);
3866  FuncInfo.ArgDbgValues.push_back(&*MIB);
3867  return true;
3868}
3869
3870// VisualStudio defines setjmp as _setjmp
3871#if defined(_MSC_VER) && defined(setjmp)
3872#define setjmp_undefined_for_visual_studio
3873#undef setjmp
3874#endif
3875
3876/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
3877/// we want to emit this as a call to a named external function, return the name
3878/// otherwise lower it and return null.
3879const char *
3880SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
3881  DebugLoc dl = getCurDebugLoc();
3882  SDValue Res;
3883
3884  switch (Intrinsic) {
3885  default:
3886    // By default, turn this into a target intrinsic node.
3887    visitTargetIntrinsic(I, Intrinsic);
3888    return 0;
3889  case Intrinsic::vastart:  visitVAStart(I); return 0;
3890  case Intrinsic::vaend:    visitVAEnd(I); return 0;
3891  case Intrinsic::vacopy:   visitVACopy(I); return 0;
3892  case Intrinsic::returnaddress:
3893    setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(),
3894                             getValue(I.getArgOperand(0))));
3895    return 0;
3896  case Intrinsic::frameaddress:
3897    setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(),
3898                             getValue(I.getArgOperand(0))));
3899    return 0;
3900  case Intrinsic::setjmp:
3901    return "_setjmp"+!TLI.usesUnderscoreSetJmp();
3902  case Intrinsic::longjmp:
3903    return "_longjmp"+!TLI.usesUnderscoreLongJmp();
3904  case Intrinsic::memcpy: {
3905    // Assert for address < 256 since we support only user defined address
3906    // spaces.
3907    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
3908           < 256 &&
3909           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
3910           < 256 &&
3911           "Unknown address space");
3912    SDValue Op1 = getValue(I.getArgOperand(0));
3913    SDValue Op2 = getValue(I.getArgOperand(1));
3914    SDValue Op3 = getValue(I.getArgOperand(2));
3915    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
3916    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
3917    DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false,
3918                              I.getArgOperand(0), 0, I.getArgOperand(1), 0));
3919    return 0;
3920  }
3921  case Intrinsic::memset: {
3922    // Assert for address < 256 since we support only user defined address
3923    // spaces.
3924    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
3925           < 256 &&
3926           "Unknown address space");
3927    SDValue Op1 = getValue(I.getArgOperand(0));
3928    SDValue Op2 = getValue(I.getArgOperand(1));
3929    SDValue Op3 = getValue(I.getArgOperand(2));
3930    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
3931    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
3932    DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
3933                              I.getArgOperand(0), 0));
3934    return 0;
3935  }
3936  case Intrinsic::memmove: {
3937    // Assert for address < 256 since we support only user defined address
3938    // spaces.
3939    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
3940           < 256 &&
3941           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
3942           < 256 &&
3943           "Unknown address space");
3944    SDValue Op1 = getValue(I.getArgOperand(0));
3945    SDValue Op2 = getValue(I.getArgOperand(1));
3946    SDValue Op3 = getValue(I.getArgOperand(2));
3947    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
3948    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
3949
3950    // If the source and destination are known to not be aliases, we can
3951    // lower memmove as memcpy.
3952    uint64_t Size = -1ULL;
3953    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3))
3954      Size = C->getZExtValue();
3955    if (AA->alias(I.getArgOperand(0), Size, I.getArgOperand(1), Size) ==
3956        AliasAnalysis::NoAlias) {
3957      DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
3958                                false, I.getArgOperand(0), 0, I.getArgOperand(1), 0));
3959      return 0;
3960    }
3961
3962    DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
3963                               I.getArgOperand(0), 0, I.getArgOperand(1), 0));
3964    return 0;
3965  }
3966  case Intrinsic::dbg_declare: {
3967    const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
3968    if (!DIVariable(DI.getVariable()).Verify())
3969      return 0;
3970
3971    MDNode *Variable = DI.getVariable();
3972    // Parameters are handled specially.
3973    bool isParameter =
3974      DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable;
3975    const Value *Address = DI.getAddress();
3976    if (!Address)
3977      return 0;
3978    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
3979      Address = BCI->getOperand(0);
3980    const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
3981    if (AI) {
3982      // Don't handle byval arguments or VLAs, for example.
3983      // Non-byval arguments are handled here (they refer to the stack temporary
3984      // alloca at this point).
3985      DenseMap<const AllocaInst*, int>::iterator SI =
3986        FuncInfo.StaticAllocaMap.find(AI);
3987      if (SI == FuncInfo.StaticAllocaMap.end())
3988        return 0; // VLAs.
3989      int FI = SI->second;
3990
3991      MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
3992      if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
3993        MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
3994    }
3995
3996    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
3997    // but do not always have a corresponding SDNode built.  The SDNodeOrder
3998    // absolute, but not relative, values are different depending on whether
3999    // debug info exists.
4000    ++SDNodeOrder;
4001    SDValue &N = NodeMap[Address];
4002    SDDbgValue *SDV;
4003    if (N.getNode()) {
4004      if (isParameter && !AI) {
4005        FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4006        if (FINode)
4007          // Byval parameter.  We have a frame index at this point.
4008          SDV = DAG.getDbgValue(Variable, FINode->getIndex(),
4009                                0, dl, SDNodeOrder);
4010        else
4011          // Can't do anything with other non-AI cases yet.  This might be a
4012          // parameter of a callee function that got inlined, for example.
4013          return 0;
4014      } else if (AI)
4015        SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
4016                              0, dl, SDNodeOrder);
4017      else
4018        // Can't do anything with other non-AI cases yet.
4019        return 0;
4020      DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4021    } else {
4022      // This isn't useful, but it shows what we're missing.
4023      SDV = DAG.getDbgValue(Variable, UndefValue::get(Address->getType()),
4024                            0, dl, SDNodeOrder);
4025      DAG.AddDbgValue(SDV, 0, isParameter);
4026    }
4027    return 0;
4028  }
4029  case Intrinsic::dbg_value: {
4030    const DbgValueInst &DI = cast<DbgValueInst>(I);
4031    if (!DIVariable(DI.getVariable()).Verify())
4032      return 0;
4033
4034    MDNode *Variable = DI.getVariable();
4035    uint64_t Offset = DI.getOffset();
4036    const Value *V = DI.getValue();
4037    if (!V)
4038      return 0;
4039
4040    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4041    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4042    // absolute, but not relative, values are different depending on whether
4043    // debug info exists.
4044    ++SDNodeOrder;
4045    SDDbgValue *SDV;
4046    if (isa<ConstantInt>(V) || isa<ConstantFP>(V)) {
4047      SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder);
4048      DAG.AddDbgValue(SDV, 0, false);
4049    } else {
4050      bool createUndef = false;
4051      // FIXME : Why not use getValue() directly ?
4052      SDValue N = NodeMap[V];
4053      if (!N.getNode() && isa<Argument>(V))
4054        // Check unused arguments map.
4055        N = UnusedArgNodeMap[V];
4056      if (N.getNode()) {
4057        if (!EmitFuncArgumentDbgValue(DI, V, Variable, Offset, N)) {
4058          SDV = DAG.getDbgValue(Variable, N.getNode(),
4059                                N.getResNo(), Offset, dl, SDNodeOrder);
4060          DAG.AddDbgValue(SDV, N.getNode(), false);
4061        }
4062      } else if (isa<PHINode>(V) && !V->use_empty()) {
4063        SDValue N = getValue(V);
4064        if (N.getNode()) {
4065          if (!EmitFuncArgumentDbgValue(DI, V, Variable, Offset, N)) {
4066            SDV = DAG.getDbgValue(Variable, N.getNode(),
4067                                  N.getResNo(), Offset, dl, SDNodeOrder);
4068            DAG.AddDbgValue(SDV, N.getNode(), false);
4069          }
4070        } else
4071          createUndef = true;
4072      } else
4073        createUndef = true;
4074      if (createUndef) {
4075        // We may expand this to cover more cases.  One case where we have no
4076        // data available is an unreferenced parameter; we need this fallback.
4077        SDV = DAG.getDbgValue(Variable, UndefValue::get(V->getType()),
4078                              Offset, dl, SDNodeOrder);
4079        DAG.AddDbgValue(SDV, 0, false);
4080      }
4081    }
4082
4083    // Build a debug info table entry.
4084    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4085      V = BCI->getOperand(0);
4086    const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4087    // Don't handle byval struct arguments or VLAs, for example.
4088    if (!AI)
4089      return 0;
4090    DenseMap<const AllocaInst*, int>::iterator SI =
4091      FuncInfo.StaticAllocaMap.find(AI);
4092    if (SI == FuncInfo.StaticAllocaMap.end())
4093      return 0; // VLAs.
4094    int FI = SI->second;
4095
4096    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4097    if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
4098      MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
4099    return 0;
4100  }
4101  case Intrinsic::eh_exception: {
4102    // Insert the EXCEPTIONADDR instruction.
4103    assert(FuncInfo.MBB->isLandingPad() &&
4104           "Call to eh.exception not in landing pad!");
4105    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4106    SDValue Ops[1];
4107    Ops[0] = DAG.getRoot();
4108    SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1);
4109    setValue(&I, Op);
4110    DAG.setRoot(Op.getValue(1));
4111    return 0;
4112  }
4113
4114  case Intrinsic::eh_selector: {
4115    MachineBasicBlock *CallMBB = FuncInfo.MBB;
4116    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4117    if (CallMBB->isLandingPad())
4118      AddCatchInfo(I, &MMI, CallMBB);
4119    else {
4120#ifndef NDEBUG
4121      FuncInfo.CatchInfoLost.insert(&I);
4122#endif
4123      // FIXME: Mark exception selector register as live in.  Hack for PR1508.
4124      unsigned Reg = TLI.getExceptionSelectorRegister();
4125      if (Reg) FuncInfo.MBB->addLiveIn(Reg);
4126    }
4127
4128    // Insert the EHSELECTION instruction.
4129    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4130    SDValue Ops[2];
4131    Ops[0] = getValue(I.getArgOperand(0));
4132    Ops[1] = getRoot();
4133    SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2);
4134    DAG.setRoot(Op.getValue(1));
4135    setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32));
4136    return 0;
4137  }
4138
4139  case Intrinsic::eh_typeid_for: {
4140    // Find the type id for the given typeinfo.
4141    GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0));
4142    unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4143    Res = DAG.getConstant(TypeID, MVT::i32);
4144    setValue(&I, Res);
4145    return 0;
4146  }
4147
4148  case Intrinsic::eh_return_i32:
4149  case Intrinsic::eh_return_i64:
4150    DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4151    DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl,
4152                            MVT::Other,
4153                            getControlRoot(),
4154                            getValue(I.getArgOperand(0)),
4155                            getValue(I.getArgOperand(1))));
4156    return 0;
4157  case Intrinsic::eh_unwind_init:
4158    DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4159    return 0;
4160  case Intrinsic::eh_dwarf_cfa: {
4161    SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl,
4162                                        TLI.getPointerTy());
4163    SDValue Offset = DAG.getNode(ISD::ADD, dl,
4164                                 TLI.getPointerTy(),
4165                                 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
4166                                             TLI.getPointerTy()),
4167                                 CfaArg);
4168    SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl,
4169                             TLI.getPointerTy(),
4170                             DAG.getConstant(0, TLI.getPointerTy()));
4171    setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
4172                             FA, Offset));
4173    return 0;
4174  }
4175  case Intrinsic::eh_sjlj_callsite: {
4176    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4177    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4178    assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4179    assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4180
4181    MMI.setCurrentCallSite(CI->getZExtValue());
4182    return 0;
4183  }
4184  case Intrinsic::eh_sjlj_setjmp: {
4185    setValue(&I, DAG.getNode(ISD::EH_SJLJ_SETJMP, dl, MVT::i32, getRoot(),
4186                             getValue(I.getArgOperand(0))));
4187    return 0;
4188  }
4189  case Intrinsic::eh_sjlj_longjmp: {
4190    DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other,
4191                            getRoot(),
4192                            getValue(I.getArgOperand(0))));
4193    return 0;
4194  }
4195
4196  case Intrinsic::convertff:
4197  case Intrinsic::convertfsi:
4198  case Intrinsic::convertfui:
4199  case Intrinsic::convertsif:
4200  case Intrinsic::convertuif:
4201  case Intrinsic::convertss:
4202  case Intrinsic::convertsu:
4203  case Intrinsic::convertus:
4204  case Intrinsic::convertuu: {
4205    ISD::CvtCode Code = ISD::CVT_INVALID;
4206    switch (Intrinsic) {
4207    case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
4208    case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4209    case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4210    case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4211    case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4212    case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
4213    case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
4214    case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4215    case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4216    }
4217    EVT DestVT = TLI.getValueType(I.getType());
4218    const Value *Op1 = I.getArgOperand(0);
4219    Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1),
4220                               DAG.getValueType(DestVT),
4221                               DAG.getValueType(getValue(Op1).getValueType()),
4222                               getValue(I.getArgOperand(1)),
4223                               getValue(I.getArgOperand(2)),
4224                               Code);
4225    setValue(&I, Res);
4226    return 0;
4227  }
4228  case Intrinsic::sqrt:
4229    setValue(&I, DAG.getNode(ISD::FSQRT, dl,
4230                             getValue(I.getArgOperand(0)).getValueType(),
4231                             getValue(I.getArgOperand(0))));
4232    return 0;
4233  case Intrinsic::powi:
4234    setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)),
4235                            getValue(I.getArgOperand(1)), DAG));
4236    return 0;
4237  case Intrinsic::sin:
4238    setValue(&I, DAG.getNode(ISD::FSIN, dl,
4239                             getValue(I.getArgOperand(0)).getValueType(),
4240                             getValue(I.getArgOperand(0))));
4241    return 0;
4242  case Intrinsic::cos:
4243    setValue(&I, DAG.getNode(ISD::FCOS, dl,
4244                             getValue(I.getArgOperand(0)).getValueType(),
4245                             getValue(I.getArgOperand(0))));
4246    return 0;
4247  case Intrinsic::log:
4248    visitLog(I);
4249    return 0;
4250  case Intrinsic::log2:
4251    visitLog2(I);
4252    return 0;
4253  case Intrinsic::log10:
4254    visitLog10(I);
4255    return 0;
4256  case Intrinsic::exp:
4257    visitExp(I);
4258    return 0;
4259  case Intrinsic::exp2:
4260    visitExp2(I);
4261    return 0;
4262  case Intrinsic::pow:
4263    visitPow(I);
4264    return 0;
4265  case Intrinsic::convert_to_fp16:
4266    setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl,
4267                             MVT::i16, getValue(I.getArgOperand(0))));
4268    return 0;
4269  case Intrinsic::convert_from_fp16:
4270    setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl,
4271                             MVT::f32, getValue(I.getArgOperand(0))));
4272    return 0;
4273  case Intrinsic::pcmarker: {
4274    SDValue Tmp = getValue(I.getArgOperand(0));
4275    DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp));
4276    return 0;
4277  }
4278  case Intrinsic::readcyclecounter: {
4279    SDValue Op = getRoot();
4280    Res = DAG.getNode(ISD::READCYCLECOUNTER, dl,
4281                      DAG.getVTList(MVT::i64, MVT::Other),
4282                      &Op, 1);
4283    setValue(&I, Res);
4284    DAG.setRoot(Res.getValue(1));
4285    return 0;
4286  }
4287  case Intrinsic::bswap:
4288    setValue(&I, DAG.getNode(ISD::BSWAP, dl,
4289                             getValue(I.getArgOperand(0)).getValueType(),
4290                             getValue(I.getArgOperand(0))));
4291    return 0;
4292  case Intrinsic::cttz: {
4293    SDValue Arg = getValue(I.getArgOperand(0));
4294    EVT Ty = Arg.getValueType();
4295    setValue(&I, DAG.getNode(ISD::CTTZ, dl, Ty, Arg));
4296    return 0;
4297  }
4298  case Intrinsic::ctlz: {
4299    SDValue Arg = getValue(I.getArgOperand(0));
4300    EVT Ty = Arg.getValueType();
4301    setValue(&I, DAG.getNode(ISD::CTLZ, dl, Ty, Arg));
4302    return 0;
4303  }
4304  case Intrinsic::ctpop: {
4305    SDValue Arg = getValue(I.getArgOperand(0));
4306    EVT Ty = Arg.getValueType();
4307    setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg));
4308    return 0;
4309  }
4310  case Intrinsic::stacksave: {
4311    SDValue Op = getRoot();
4312    Res = DAG.getNode(ISD::STACKSAVE, dl,
4313                      DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
4314    setValue(&I, Res);
4315    DAG.setRoot(Res.getValue(1));
4316    return 0;
4317  }
4318  case Intrinsic::stackrestore: {
4319    Res = getValue(I.getArgOperand(0));
4320    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res));
4321    return 0;
4322  }
4323  case Intrinsic::stackprotector: {
4324    // Emit code into the DAG to store the stack guard onto the stack.
4325    MachineFunction &MF = DAG.getMachineFunction();
4326    MachineFrameInfo *MFI = MF.getFrameInfo();
4327    EVT PtrTy = TLI.getPointerTy();
4328
4329    SDValue Src = getValue(I.getArgOperand(0));   // The guard's value.
4330    AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
4331
4332    int FI = FuncInfo.StaticAllocaMap[Slot];
4333    MFI->setStackProtectorIndex(FI);
4334
4335    SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
4336
4337    // Store the stack protector onto the stack.
4338    Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN,
4339                       PseudoSourceValue::getFixedStack(FI),
4340                       0, true, false, 0);
4341    setValue(&I, Res);
4342    DAG.setRoot(Res);
4343    return 0;
4344  }
4345  case Intrinsic::objectsize: {
4346    // If we don't know by now, we're never going to know.
4347    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
4348
4349    assert(CI && "Non-constant type in __builtin_object_size?");
4350
4351    SDValue Arg = getValue(I.getCalledValue());
4352    EVT Ty = Arg.getValueType();
4353
4354    if (CI->isZero())
4355      Res = DAG.getConstant(-1ULL, Ty);
4356    else
4357      Res = DAG.getConstant(0, Ty);
4358
4359    setValue(&I, Res);
4360    return 0;
4361  }
4362  case Intrinsic::var_annotation:
4363    // Discard annotate attributes
4364    return 0;
4365
4366  case Intrinsic::init_trampoline: {
4367    const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
4368
4369    SDValue Ops[6];
4370    Ops[0] = getRoot();
4371    Ops[1] = getValue(I.getArgOperand(0));
4372    Ops[2] = getValue(I.getArgOperand(1));
4373    Ops[3] = getValue(I.getArgOperand(2));
4374    Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
4375    Ops[5] = DAG.getSrcValue(F);
4376
4377    Res = DAG.getNode(ISD::TRAMPOLINE, dl,
4378                      DAG.getVTList(TLI.getPointerTy(), MVT::Other),
4379                      Ops, 6);
4380
4381    setValue(&I, Res);
4382    DAG.setRoot(Res.getValue(1));
4383    return 0;
4384  }
4385  case Intrinsic::gcroot:
4386    if (GFI) {
4387      const Value *Alloca = I.getArgOperand(0);
4388      const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
4389
4390      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
4391      GFI->addStackRoot(FI->getIndex(), TypeMap);
4392    }
4393    return 0;
4394  case Intrinsic::gcread:
4395  case Intrinsic::gcwrite:
4396    llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
4397    return 0;
4398  case Intrinsic::flt_rounds:
4399    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32));
4400    return 0;
4401  case Intrinsic::trap:
4402    DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot()));
4403    return 0;
4404  case Intrinsic::uadd_with_overflow:
4405    return implVisitAluOverflow(I, ISD::UADDO);
4406  case Intrinsic::sadd_with_overflow:
4407    return implVisitAluOverflow(I, ISD::SADDO);
4408  case Intrinsic::usub_with_overflow:
4409    return implVisitAluOverflow(I, ISD::USUBO);
4410  case Intrinsic::ssub_with_overflow:
4411    return implVisitAluOverflow(I, ISD::SSUBO);
4412  case Intrinsic::umul_with_overflow:
4413    return implVisitAluOverflow(I, ISD::UMULO);
4414  case Intrinsic::smul_with_overflow:
4415    return implVisitAluOverflow(I, ISD::SMULO);
4416
4417  case Intrinsic::prefetch: {
4418    SDValue Ops[4];
4419    Ops[0] = getRoot();
4420    Ops[1] = getValue(I.getArgOperand(0));
4421    Ops[2] = getValue(I.getArgOperand(1));
4422    Ops[3] = getValue(I.getArgOperand(2));
4423    DAG.setRoot(DAG.getNode(ISD::PREFETCH, dl, MVT::Other, &Ops[0], 4));
4424    return 0;
4425  }
4426
4427  case Intrinsic::memory_barrier: {
4428    SDValue Ops[6];
4429    Ops[0] = getRoot();
4430    for (int x = 1; x < 6; ++x)
4431      Ops[x] = getValue(I.getArgOperand(x - 1));
4432
4433    DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6));
4434    return 0;
4435  }
4436  case Intrinsic::atomic_cmp_swap: {
4437    SDValue Root = getRoot();
4438    SDValue L =
4439      DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(),
4440                    getValue(I.getArgOperand(1)).getValueType().getSimpleVT(),
4441                    Root,
4442                    getValue(I.getArgOperand(0)),
4443                    getValue(I.getArgOperand(1)),
4444                    getValue(I.getArgOperand(2)),
4445                    I.getArgOperand(0));
4446    setValue(&I, L);
4447    DAG.setRoot(L.getValue(1));
4448    return 0;
4449  }
4450  case Intrinsic::atomic_load_add:
4451    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD);
4452  case Intrinsic::atomic_load_sub:
4453    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB);
4454  case Intrinsic::atomic_load_or:
4455    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR);
4456  case Intrinsic::atomic_load_xor:
4457    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR);
4458  case Intrinsic::atomic_load_and:
4459    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND);
4460  case Intrinsic::atomic_load_nand:
4461    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND);
4462  case Intrinsic::atomic_load_max:
4463    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX);
4464  case Intrinsic::atomic_load_min:
4465    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN);
4466  case Intrinsic::atomic_load_umin:
4467    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN);
4468  case Intrinsic::atomic_load_umax:
4469    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX);
4470  case Intrinsic::atomic_swap:
4471    return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP);
4472
4473  case Intrinsic::invariant_start:
4474  case Intrinsic::lifetime_start:
4475    // Discard region information.
4476    setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
4477    return 0;
4478  case Intrinsic::invariant_end:
4479  case Intrinsic::lifetime_end:
4480    // Discard region information.
4481    return 0;
4482  }
4483}
4484
4485void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
4486                                      bool isTailCall,
4487                                      MachineBasicBlock *LandingPad) {
4488  const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
4489  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
4490  const Type *RetTy = FTy->getReturnType();
4491  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4492  MCSymbol *BeginLabel = 0;
4493
4494  TargetLowering::ArgListTy Args;
4495  TargetLowering::ArgListEntry Entry;
4496  Args.reserve(CS.arg_size());
4497
4498  // Check whether the function can return without sret-demotion.
4499  SmallVector<ISD::OutputArg, 4> Outs;
4500  SmallVector<uint64_t, 4> Offsets;
4501  GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(),
4502                Outs, TLI, &Offsets);
4503
4504  bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
4505                        FTy->isVarArg(), Outs, FTy->getContext());
4506
4507  SDValue DemoteStackSlot;
4508
4509  if (!CanLowerReturn) {
4510    uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(
4511                      FTy->getReturnType());
4512    unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(
4513                      FTy->getReturnType());
4514    MachineFunction &MF = DAG.getMachineFunction();
4515    int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
4516    const Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
4517
4518    DemoteStackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
4519    Entry.Node = DemoteStackSlot;
4520    Entry.Ty = StackSlotPtrType;
4521    Entry.isSExt = false;
4522    Entry.isZExt = false;
4523    Entry.isInReg = false;
4524    Entry.isSRet = true;
4525    Entry.isNest = false;
4526    Entry.isByVal = false;
4527    Entry.Alignment = Align;
4528    Args.push_back(Entry);
4529    RetTy = Type::getVoidTy(FTy->getContext());
4530  }
4531
4532  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
4533       i != e; ++i) {
4534    SDValue ArgNode = getValue(*i);
4535    Entry.Node = ArgNode; Entry.Ty = (*i)->getType();
4536
4537    unsigned attrInd = i - CS.arg_begin() + 1;
4538    Entry.isSExt  = CS.paramHasAttr(attrInd, Attribute::SExt);
4539    Entry.isZExt  = CS.paramHasAttr(attrInd, Attribute::ZExt);
4540    Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg);
4541    Entry.isSRet  = CS.paramHasAttr(attrInd, Attribute::StructRet);
4542    Entry.isNest  = CS.paramHasAttr(attrInd, Attribute::Nest);
4543    Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal);
4544    Entry.Alignment = CS.getParamAlignment(attrInd);
4545    Args.push_back(Entry);
4546  }
4547
4548  if (LandingPad) {
4549    // Insert a label before the invoke call to mark the try range.  This can be
4550    // used to detect deletion of the invoke via the MachineModuleInfo.
4551    BeginLabel = MMI.getContext().CreateTempSymbol();
4552
4553    // For SjLj, keep track of which landing pads go with which invokes
4554    // so as to maintain the ordering of pads in the LSDA.
4555    unsigned CallSiteIndex = MMI.getCurrentCallSite();
4556    if (CallSiteIndex) {
4557      MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
4558      // Now that the call site is handled, stop tracking it.
4559      MMI.setCurrentCallSite(0);
4560    }
4561
4562    // Both PendingLoads and PendingExports must be flushed here;
4563    // this call might not return.
4564    (void)getRoot();
4565    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel));
4566  }
4567
4568  // Check if target-independent constraints permit a tail call here.
4569  // Target-dependent constraints are checked within TLI.LowerCallTo.
4570  if (isTailCall &&
4571      !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI))
4572    isTailCall = false;
4573
4574  std::pair<SDValue,SDValue> Result =
4575    TLI.LowerCallTo(getRoot(), RetTy,
4576                    CS.paramHasAttr(0, Attribute::SExt),
4577                    CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(),
4578                    CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(),
4579                    CS.getCallingConv(),
4580                    isTailCall,
4581                    !CS.getInstruction()->use_empty(),
4582                    Callee, Args, DAG, getCurDebugLoc());
4583  assert((isTailCall || Result.second.getNode()) &&
4584         "Non-null chain expected with non-tail call!");
4585  assert((Result.second.getNode() || !Result.first.getNode()) &&
4586         "Null value expected with tail call!");
4587  if (Result.first.getNode()) {
4588    setValue(CS.getInstruction(), Result.first);
4589  } else if (!CanLowerReturn && Result.second.getNode()) {
4590    // The instruction result is the result of loading from the
4591    // hidden sret parameter.
4592    SmallVector<EVT, 1> PVTs;
4593    const Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
4594
4595    ComputeValueVTs(TLI, PtrRetTy, PVTs);
4596    assert(PVTs.size() == 1 && "Pointers should fit in one register");
4597    EVT PtrVT = PVTs[0];
4598    unsigned NumValues = Outs.size();
4599    SmallVector<SDValue, 4> Values(NumValues);
4600    SmallVector<SDValue, 4> Chains(NumValues);
4601
4602    for (unsigned i = 0; i < NumValues; ++i) {
4603      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT,
4604                                DemoteStackSlot,
4605                                DAG.getConstant(Offsets[i], PtrVT));
4606      SDValue L = DAG.getLoad(Outs[i].VT, getCurDebugLoc(), Result.second,
4607                              Add, NULL, Offsets[i], false, false, 1);
4608      Values[i] = L;
4609      Chains[i] = L.getValue(1);
4610    }
4611
4612    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
4613                                MVT::Other, &Chains[0], NumValues);
4614    PendingLoads.push_back(Chain);
4615
4616    // Collect the legal value parts into potentially illegal values
4617    // that correspond to the original function's return values.
4618    SmallVector<EVT, 4> RetTys;
4619    RetTy = FTy->getReturnType();
4620    ComputeValueVTs(TLI, RetTy, RetTys);
4621    ISD::NodeType AssertOp = ISD::DELETED_NODE;
4622    SmallVector<SDValue, 4> ReturnValues;
4623    unsigned CurReg = 0;
4624    for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
4625      EVT VT = RetTys[I];
4626      EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT);
4627      unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT);
4628
4629      SDValue ReturnValue =
4630        getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs,
4631                         RegisterVT, VT, AssertOp);
4632      ReturnValues.push_back(ReturnValue);
4633      CurReg += NumRegs;
4634    }
4635
4636    setValue(CS.getInstruction(),
4637             DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
4638                         DAG.getVTList(&RetTys[0], RetTys.size()),
4639                         &ReturnValues[0], ReturnValues.size()));
4640
4641  }
4642
4643  // As a special case, a null chain means that a tail call has been emitted and
4644  // the DAG root is already updated.
4645  if (Result.second.getNode())
4646    DAG.setRoot(Result.second);
4647  else
4648    HasTailCall = true;
4649
4650  if (LandingPad) {
4651    // Insert a label at the end of the invoke call to mark the try range.  This
4652    // can be used to detect deletion of the invoke via the MachineModuleInfo.
4653    MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
4654    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel));
4655
4656    // Inform MachineModuleInfo of range.
4657    MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
4658  }
4659}
4660
4661/// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
4662/// value is equal or not-equal to zero.
4663static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
4664  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
4665       UI != E; ++UI) {
4666    if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
4667      if (IC->isEquality())
4668        if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
4669          if (C->isNullValue())
4670            continue;
4671    // Unknown instruction.
4672    return false;
4673  }
4674  return true;
4675}
4676
4677static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
4678                             const Type *LoadTy,
4679                             SelectionDAGBuilder &Builder) {
4680
4681  // Check to see if this load can be trivially constant folded, e.g. if the
4682  // input is from a string literal.
4683  if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
4684    // Cast pointer to the type we really want to load.
4685    LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
4686                                         PointerType::getUnqual(LoadTy));
4687
4688    if (const Constant *LoadCst =
4689          ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
4690                                       Builder.TD))
4691      return Builder.getValue(LoadCst);
4692  }
4693
4694  // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
4695  // still constant memory, the input chain can be the entry node.
4696  SDValue Root;
4697  bool ConstantMemory = false;
4698
4699  // Do not serialize (non-volatile) loads of constant memory with anything.
4700  if (Builder.AA->pointsToConstantMemory(PtrVal)) {
4701    Root = Builder.DAG.getEntryNode();
4702    ConstantMemory = true;
4703  } else {
4704    // Do not serialize non-volatile loads against each other.
4705    Root = Builder.DAG.getRoot();
4706  }
4707
4708  SDValue Ptr = Builder.getValue(PtrVal);
4709  SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root,
4710                                        Ptr, PtrVal /*SrcValue*/, 0/*SVOffset*/,
4711                                        false /*volatile*/,
4712                                        false /*nontemporal*/, 1 /* align=1 */);
4713
4714  if (!ConstantMemory)
4715    Builder.PendingLoads.push_back(LoadVal.getValue(1));
4716  return LoadVal;
4717}
4718
4719
4720/// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
4721/// If so, return true and lower it, otherwise return false and it will be
4722/// lowered like a normal call.
4723bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
4724  // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
4725  if (I.getNumArgOperands() != 3)
4726    return false;
4727
4728  const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
4729  if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
4730      !I.getArgOperand(2)->getType()->isIntegerTy() ||
4731      !I.getType()->isIntegerTy())
4732    return false;
4733
4734  const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2));
4735
4736  // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
4737  // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
4738  if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) {
4739    bool ActuallyDoIt = true;
4740    MVT LoadVT;
4741    const Type *LoadTy;
4742    switch (Size->getZExtValue()) {
4743    default:
4744      LoadVT = MVT::Other;
4745      LoadTy = 0;
4746      ActuallyDoIt = false;
4747      break;
4748    case 2:
4749      LoadVT = MVT::i16;
4750      LoadTy = Type::getInt16Ty(Size->getContext());
4751      break;
4752    case 4:
4753      LoadVT = MVT::i32;
4754      LoadTy = Type::getInt32Ty(Size->getContext());
4755      break;
4756    case 8:
4757      LoadVT = MVT::i64;
4758      LoadTy = Type::getInt64Ty(Size->getContext());
4759      break;
4760        /*
4761    case 16:
4762      LoadVT = MVT::v4i32;
4763      LoadTy = Type::getInt32Ty(Size->getContext());
4764      LoadTy = VectorType::get(LoadTy, 4);
4765      break;
4766         */
4767    }
4768
4769    // This turns into unaligned loads.  We only do this if the target natively
4770    // supports the MVT we'll be loading or if it is small enough (<= 4) that
4771    // we'll only produce a small number of byte loads.
4772
4773    // Require that we can find a legal MVT, and only do this if the target
4774    // supports unaligned loads of that type.  Expanding into byte loads would
4775    // bloat the code.
4776    if (ActuallyDoIt && Size->getZExtValue() > 4) {
4777      // TODO: Handle 5 byte compare as 4-byte + 1 byte.
4778      // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
4779      if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT))
4780        ActuallyDoIt = false;
4781    }
4782
4783    if (ActuallyDoIt) {
4784      SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
4785      SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
4786
4787      SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal,
4788                                 ISD::SETNE);
4789      EVT CallVT = TLI.getValueType(I.getType(), true);
4790      setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT));
4791      return true;
4792    }
4793  }
4794
4795
4796  return false;
4797}
4798
4799
4800void SelectionDAGBuilder::visitCall(const CallInst &I) {
4801  // Handle inline assembly differently.
4802  if (isa<InlineAsm>(I.getCalledValue())) {
4803    visitInlineAsm(&I);
4804    return;
4805  }
4806
4807  const char *RenameFn = 0;
4808  if (Function *F = I.getCalledFunction()) {
4809    if (F->isDeclaration()) {
4810      if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
4811        if (unsigned IID = II->getIntrinsicID(F)) {
4812          RenameFn = visitIntrinsicCall(I, IID);
4813          if (!RenameFn)
4814            return;
4815        }
4816      }
4817      if (unsigned IID = F->getIntrinsicID()) {
4818        RenameFn = visitIntrinsicCall(I, IID);
4819        if (!RenameFn)
4820          return;
4821      }
4822    }
4823
4824    // Check for well-known libc/libm calls.  If the function is internal, it
4825    // can't be a library call.
4826    if (!F->hasLocalLinkage() && F->hasName()) {
4827      StringRef Name = F->getName();
4828      if (Name == "copysign" || Name == "copysignf" || Name == "copysignl") {
4829        if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
4830            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
4831            I.getType() == I.getArgOperand(0)->getType() &&
4832            I.getType() == I.getArgOperand(1)->getType()) {
4833          SDValue LHS = getValue(I.getArgOperand(0));
4834          SDValue RHS = getValue(I.getArgOperand(1));
4835          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(),
4836                                   LHS.getValueType(), LHS, RHS));
4837          return;
4838        }
4839      } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") {
4840        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
4841            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
4842            I.getType() == I.getArgOperand(0)->getType()) {
4843          SDValue Tmp = getValue(I.getArgOperand(0));
4844          setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(),
4845                                   Tmp.getValueType(), Tmp));
4846          return;
4847        }
4848      } else if (Name == "sin" || Name == "sinf" || Name == "sinl") {
4849        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
4850            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
4851            I.getType() == I.getArgOperand(0)->getType() &&
4852            I.onlyReadsMemory()) {
4853          SDValue Tmp = getValue(I.getArgOperand(0));
4854          setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(),
4855                                   Tmp.getValueType(), Tmp));
4856          return;
4857        }
4858      } else if (Name == "cos" || Name == "cosf" || Name == "cosl") {
4859        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
4860            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
4861            I.getType() == I.getArgOperand(0)->getType() &&
4862            I.onlyReadsMemory()) {
4863          SDValue Tmp = getValue(I.getArgOperand(0));
4864          setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(),
4865                                   Tmp.getValueType(), Tmp));
4866          return;
4867        }
4868      } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") {
4869        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
4870            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
4871            I.getType() == I.getArgOperand(0)->getType() &&
4872            I.onlyReadsMemory()) {
4873          SDValue Tmp = getValue(I.getArgOperand(0));
4874          setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(),
4875                                   Tmp.getValueType(), Tmp));
4876          return;
4877        }
4878      } else if (Name == "memcmp") {
4879        if (visitMemCmpCall(I))
4880          return;
4881      }
4882    }
4883  }
4884
4885  SDValue Callee;
4886  if (!RenameFn)
4887    Callee = getValue(I.getCalledValue());
4888  else
4889    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
4890
4891  // Check if we can potentially perform a tail call. More detailed checking is
4892  // be done within LowerCallTo, after more information about the call is known.
4893  LowerCallTo(&I, Callee, I.isTailCall());
4894}
4895
4896namespace llvm {
4897
4898/// AsmOperandInfo - This contains information for each constraint that we are
4899/// lowering.
4900class LLVM_LIBRARY_VISIBILITY SDISelAsmOperandInfo :
4901    public TargetLowering::AsmOperandInfo {
4902public:
4903  /// CallOperand - If this is the result output operand or a clobber
4904  /// this is null, otherwise it is the incoming operand to the CallInst.
4905  /// This gets modified as the asm is processed.
4906  SDValue CallOperand;
4907
4908  /// AssignedRegs - If this is a register or register class operand, this
4909  /// contains the set of register corresponding to the operand.
4910  RegsForValue AssignedRegs;
4911
4912  explicit SDISelAsmOperandInfo(const InlineAsm::ConstraintInfo &info)
4913    : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
4914  }
4915
4916  /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
4917  /// busy in OutputRegs/InputRegs.
4918  void MarkAllocatedRegs(bool isOutReg, bool isInReg,
4919                         std::set<unsigned> &OutputRegs,
4920                         std::set<unsigned> &InputRegs,
4921                         const TargetRegisterInfo &TRI) const {
4922    if (isOutReg) {
4923      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
4924        MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
4925    }
4926    if (isInReg) {
4927      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
4928        MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
4929    }
4930  }
4931
4932  /// getCallOperandValEVT - Return the EVT of the Value* that this operand
4933  /// corresponds to.  If there is no Value* for this operand, it returns
4934  /// MVT::Other.
4935  EVT getCallOperandValEVT(LLVMContext &Context,
4936                           const TargetLowering &TLI,
4937                           const TargetData *TD) const {
4938    if (CallOperandVal == 0) return MVT::Other;
4939
4940    if (isa<BasicBlock>(CallOperandVal))
4941      return TLI.getPointerTy();
4942
4943    const llvm::Type *OpTy = CallOperandVal->getType();
4944
4945    // If this is an indirect operand, the operand is a pointer to the
4946    // accessed type.
4947    if (isIndirect) {
4948      const llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
4949      if (!PtrTy)
4950        report_fatal_error("Indirect operand for inline asm not a pointer!");
4951      OpTy = PtrTy->getElementType();
4952    }
4953
4954    // If OpTy is not a single value, it may be a struct/union that we
4955    // can tile with integers.
4956    if (!OpTy->isSingleValueType() && OpTy->isSized()) {
4957      unsigned BitSize = TD->getTypeSizeInBits(OpTy);
4958      switch (BitSize) {
4959      default: break;
4960      case 1:
4961      case 8:
4962      case 16:
4963      case 32:
4964      case 64:
4965      case 128:
4966        OpTy = IntegerType::get(Context, BitSize);
4967        break;
4968      }
4969    }
4970
4971    return TLI.getValueType(OpTy, true);
4972  }
4973
4974private:
4975  /// MarkRegAndAliases - Mark the specified register and all aliases in the
4976  /// specified set.
4977  static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
4978                                const TargetRegisterInfo &TRI) {
4979    assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
4980    Regs.insert(Reg);
4981    if (const unsigned *Aliases = TRI.getAliasSet(Reg))
4982      for (; *Aliases; ++Aliases)
4983        Regs.insert(*Aliases);
4984  }
4985};
4986
4987} // end llvm namespace.
4988
4989/// isAllocatableRegister - If the specified register is safe to allocate,
4990/// i.e. it isn't a stack pointer or some other special register, return the
4991/// register class for the register.  Otherwise, return null.
4992static const TargetRegisterClass *
4993isAllocatableRegister(unsigned Reg, MachineFunction &MF,
4994                      const TargetLowering &TLI,
4995                      const TargetRegisterInfo *TRI) {
4996  EVT FoundVT = MVT::Other;
4997  const TargetRegisterClass *FoundRC = 0;
4998  for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(),
4999       E = TRI->regclass_end(); RCI != E; ++RCI) {
5000    EVT ThisVT = MVT::Other;
5001
5002    const TargetRegisterClass *RC = *RCI;
5003    // If none of the value types for this register class are valid, we
5004    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
5005    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
5006         I != E; ++I) {
5007      if (TLI.isTypeLegal(*I)) {
5008        // If we have already found this register in a different register class,
5009        // choose the one with the largest VT specified.  For example, on
5010        // PowerPC, we favor f64 register classes over f32.
5011        if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) {
5012          ThisVT = *I;
5013          break;
5014        }
5015      }
5016    }
5017
5018    if (ThisVT == MVT::Other) continue;
5019
5020    // NOTE: This isn't ideal.  In particular, this might allocate the
5021    // frame pointer in functions that need it (due to them not being taken
5022    // out of allocation, because a variable sized allocation hasn't been seen
5023    // yet).  This is a slight code pessimization, but should still work.
5024    for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
5025         E = RC->allocation_order_end(MF); I != E; ++I)
5026      if (*I == Reg) {
5027        // We found a matching register class.  Keep looking at others in case
5028        // we find one with larger registers that this physreg is also in.
5029        FoundRC = RC;
5030        FoundVT = ThisVT;
5031        break;
5032      }
5033  }
5034  return FoundRC;
5035}
5036
5037/// GetRegistersForValue - Assign registers (virtual or physical) for the
5038/// specified operand.  We prefer to assign virtual registers, to allow the
5039/// register allocator to handle the assignment process.  However, if the asm
5040/// uses features that we can't model on machineinstrs, we have SDISel do the
5041/// allocation.  This produces generally horrible, but correct, code.
5042///
5043///   OpInfo describes the operand.
5044///   Input and OutputRegs are the set of already allocated physical registers.
5045///
5046void SelectionDAGBuilder::
5047GetRegistersForValue(SDISelAsmOperandInfo &OpInfo,
5048                     std::set<unsigned> &OutputRegs,
5049                     std::set<unsigned> &InputRegs) {
5050  LLVMContext &Context = FuncInfo.Fn->getContext();
5051
5052  // Compute whether this value requires an input register, an output register,
5053  // or both.
5054  bool isOutReg = false;
5055  bool isInReg = false;
5056  switch (OpInfo.Type) {
5057  case InlineAsm::isOutput:
5058    isOutReg = true;
5059
5060    // If there is an input constraint that matches this, we need to reserve
5061    // the input register so no other inputs allocate to it.
5062    isInReg = OpInfo.hasMatchingInput();
5063    break;
5064  case InlineAsm::isInput:
5065    isInReg = true;
5066    isOutReg = false;
5067    break;
5068  case InlineAsm::isClobber:
5069    isOutReg = true;
5070    isInReg = true;
5071    break;
5072  }
5073
5074
5075  MachineFunction &MF = DAG.getMachineFunction();
5076  SmallVector<unsigned, 4> Regs;
5077
5078  // If this is a constraint for a single physreg, or a constraint for a
5079  // register class, find it.
5080  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
5081    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5082                                     OpInfo.ConstraintVT);
5083
5084  unsigned NumRegs = 1;
5085  if (OpInfo.ConstraintVT != MVT::Other) {
5086    // If this is a FP input in an integer register (or visa versa) insert a bit
5087    // cast of the input value.  More generally, handle any case where the input
5088    // value disagrees with the register class we plan to stick this in.
5089    if (OpInfo.Type == InlineAsm::isInput &&
5090        PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
5091      // Try to convert to the first EVT that the reg class contains.  If the
5092      // types are identical size, use a bitcast to convert (e.g. two differing
5093      // vector types).
5094      EVT RegVT = *PhysReg.second->vt_begin();
5095      if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
5096        OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
5097                                         RegVT, OpInfo.CallOperand);
5098        OpInfo.ConstraintVT = RegVT;
5099      } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
5100        // If the input is a FP value and we want it in FP registers, do a
5101        // bitcast to the corresponding integer type.  This turns an f64 value
5102        // into i64, which can be passed with two i32 values on a 32-bit
5103        // machine.
5104        RegVT = EVT::getIntegerVT(Context,
5105                                  OpInfo.ConstraintVT.getSizeInBits());
5106        OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
5107                                         RegVT, OpInfo.CallOperand);
5108        OpInfo.ConstraintVT = RegVT;
5109      }
5110    }
5111
5112    NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
5113  }
5114
5115  EVT RegVT;
5116  EVT ValueVT = OpInfo.ConstraintVT;
5117
5118  // If this is a constraint for a specific physical register, like {r17},
5119  // assign it now.
5120  if (unsigned AssignedReg = PhysReg.first) {
5121    const TargetRegisterClass *RC = PhysReg.second;
5122    if (OpInfo.ConstraintVT == MVT::Other)
5123      ValueVT = *RC->vt_begin();
5124
5125    // Get the actual register value type.  This is important, because the user
5126    // may have asked for (e.g.) the AX register in i32 type.  We need to
5127    // remember that AX is actually i16 to get the right extension.
5128    RegVT = *RC->vt_begin();
5129
5130    // This is a explicit reference to a physical register.
5131    Regs.push_back(AssignedReg);
5132
5133    // If this is an expanded reference, add the rest of the regs to Regs.
5134    if (NumRegs != 1) {
5135      TargetRegisterClass::iterator I = RC->begin();
5136      for (; *I != AssignedReg; ++I)
5137        assert(I != RC->end() && "Didn't find reg!");
5138
5139      // Already added the first reg.
5140      --NumRegs; ++I;
5141      for (; NumRegs; --NumRegs, ++I) {
5142        assert(I != RC->end() && "Ran out of registers to allocate!");
5143        Regs.push_back(*I);
5144      }
5145    }
5146
5147    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5148    const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5149    OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5150    return;
5151  }
5152
5153  // Otherwise, if this was a reference to an LLVM register class, create vregs
5154  // for this reference.
5155  if (const TargetRegisterClass *RC = PhysReg.second) {
5156    RegVT = *RC->vt_begin();
5157    if (OpInfo.ConstraintVT == MVT::Other)
5158      ValueVT = RegVT;
5159
5160    // Create the appropriate number of virtual registers.
5161    MachineRegisterInfo &RegInfo = MF.getRegInfo();
5162    for (; NumRegs; --NumRegs)
5163      Regs.push_back(RegInfo.createVirtualRegister(RC));
5164
5165    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5166    return;
5167  }
5168
5169  // This is a reference to a register class that doesn't directly correspond
5170  // to an LLVM register class.  Allocate NumRegs consecutive, available,
5171  // registers from the class.
5172  std::vector<unsigned> RegClassRegs
5173    = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
5174                                            OpInfo.ConstraintVT);
5175
5176  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5177  unsigned NumAllocated = 0;
5178  for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
5179    unsigned Reg = RegClassRegs[i];
5180    // See if this register is available.
5181    if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
5182        (isInReg  && InputRegs.count(Reg))) {    // Already used.
5183      // Make sure we find consecutive registers.
5184      NumAllocated = 0;
5185      continue;
5186    }
5187
5188    // Check to see if this register is allocatable (i.e. don't give out the
5189    // stack pointer).
5190    const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, TRI);
5191    if (!RC) {        // Couldn't allocate this register.
5192      // Reset NumAllocated to make sure we return consecutive registers.
5193      NumAllocated = 0;
5194      continue;
5195    }
5196
5197    // Okay, this register is good, we can use it.
5198    ++NumAllocated;
5199
5200    // If we allocated enough consecutive registers, succeed.
5201    if (NumAllocated == NumRegs) {
5202      unsigned RegStart = (i-NumAllocated)+1;
5203      unsigned RegEnd   = i+1;
5204      // Mark all of the allocated registers used.
5205      for (unsigned i = RegStart; i != RegEnd; ++i)
5206        Regs.push_back(RegClassRegs[i]);
5207
5208      OpInfo.AssignedRegs = RegsForValue(Regs, *RC->vt_begin(),
5209                                         OpInfo.ConstraintVT);
5210      OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5211      return;
5212    }
5213  }
5214
5215  // Otherwise, we couldn't allocate enough registers for this.
5216}
5217
5218/// visitInlineAsm - Handle a call to an InlineAsm object.
5219///
5220void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
5221  const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
5222
5223  /// ConstraintOperands - Information about all of the constraints.
5224  std::vector<SDISelAsmOperandInfo> ConstraintOperands;
5225
5226  std::set<unsigned> OutputRegs, InputRegs;
5227
5228  // Do a prepass over the constraints, canonicalizing them, and building up the
5229  // ConstraintOperands list.
5230  std::vector<InlineAsm::ConstraintInfo>
5231    ConstraintInfos = IA->ParseConstraints();
5232
5233  bool hasMemory = hasInlineAsmMemConstraint(ConstraintInfos, TLI);
5234
5235  SDValue Chain, Flag;
5236
5237  // We won't need to flush pending loads if this asm doesn't touch
5238  // memory and is nonvolatile.
5239  if (hasMemory || IA->hasSideEffects())
5240    Chain = getRoot();
5241  else
5242    Chain = DAG.getRoot();
5243
5244  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
5245  unsigned ResNo = 0;   // ResNo - The result number of the next output.
5246  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
5247    ConstraintOperands.push_back(SDISelAsmOperandInfo(ConstraintInfos[i]));
5248    SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
5249
5250    EVT OpVT = MVT::Other;
5251
5252    // Compute the value type for each operand.
5253    switch (OpInfo.Type) {
5254    case InlineAsm::isOutput:
5255      // Indirect outputs just consume an argument.
5256      if (OpInfo.isIndirect) {
5257        OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5258        break;
5259      }
5260
5261      // The return value of the call is this value.  As such, there is no
5262      // corresponding argument.
5263      assert(!CS.getType()->isVoidTy() &&
5264             "Bad inline asm!");
5265      if (const StructType *STy = dyn_cast<StructType>(CS.getType())) {
5266        OpVT = TLI.getValueType(STy->getElementType(ResNo));
5267      } else {
5268        assert(ResNo == 0 && "Asm only has one result!");
5269        OpVT = TLI.getValueType(CS.getType());
5270      }
5271      ++ResNo;
5272      break;
5273    case InlineAsm::isInput:
5274      OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5275      break;
5276    case InlineAsm::isClobber:
5277      // Nothing to do.
5278      break;
5279    }
5280
5281    // If this is an input or an indirect output, process the call argument.
5282    // BasicBlocks are labels, currently appearing only in asm's.
5283    if (OpInfo.CallOperandVal) {
5284      // Strip bitcasts, if any.  This mostly comes up for functions.
5285      OpInfo.CallOperandVal = OpInfo.CallOperandVal->stripPointerCasts();
5286
5287      if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
5288        OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
5289      } else {
5290        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
5291      }
5292
5293      OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD);
5294    }
5295
5296    OpInfo.ConstraintVT = OpVT;
5297  }
5298
5299  // Second pass over the constraints: compute which constraint option to use
5300  // and assign registers to constraints that want a specific physreg.
5301  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
5302    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5303
5304    // If this is an output operand with a matching input operand, look up the
5305    // matching input. If their types mismatch, e.g. one is an integer, the
5306    // other is floating point, or their sizes are different, flag it as an
5307    // error.
5308    if (OpInfo.hasMatchingInput()) {
5309      SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5310
5311      if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5312        if ((OpInfo.ConstraintVT.isInteger() !=
5313             Input.ConstraintVT.isInteger()) ||
5314            (OpInfo.ConstraintVT.getSizeInBits() !=
5315             Input.ConstraintVT.getSizeInBits())) {
5316          report_fatal_error("Unsupported asm: input constraint"
5317                             " with a matching output constraint of"
5318                             " incompatible type!");
5319        }
5320        Input.ConstraintVT = OpInfo.ConstraintVT;
5321      }
5322    }
5323
5324    // Compute the constraint code and ConstraintType to use.
5325    TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
5326
5327    // If this is a memory input, and if the operand is not indirect, do what we
5328    // need to to provide an address for the memory input.
5329    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5330        !OpInfo.isIndirect) {
5331      assert(OpInfo.Type == InlineAsm::isInput &&
5332             "Can only indirectify direct input operands!");
5333
5334      // Memory operands really want the address of the value.  If we don't have
5335      // an indirect input, put it in the constpool if we can, otherwise spill
5336      // it to a stack slot.
5337
5338      // If the operand is a float, integer, or vector constant, spill to a
5339      // constant pool entry to get its address.
5340      const Value *OpVal = OpInfo.CallOperandVal;
5341      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
5342          isa<ConstantVector>(OpVal)) {
5343        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
5344                                                 TLI.getPointerTy());
5345      } else {
5346        // Otherwise, create a stack slot and emit a store to it before the
5347        // asm.
5348        const Type *Ty = OpVal->getType();
5349        uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
5350        unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
5351        MachineFunction &MF = DAG.getMachineFunction();
5352        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5353        SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
5354        Chain = DAG.getStore(Chain, getCurDebugLoc(),
5355                             OpInfo.CallOperand, StackSlot, NULL, 0,
5356                             false, false, 0);
5357        OpInfo.CallOperand = StackSlot;
5358      }
5359
5360      // There is no longer a Value* corresponding to this operand.
5361      OpInfo.CallOperandVal = 0;
5362
5363      // It is now an indirect operand.
5364      OpInfo.isIndirect = true;
5365    }
5366
5367    // If this constraint is for a specific register, allocate it before
5368    // anything else.
5369    if (OpInfo.ConstraintType == TargetLowering::C_Register)
5370      GetRegistersForValue(OpInfo, OutputRegs, InputRegs);
5371  }
5372
5373  ConstraintInfos.clear();
5374
5375  // Second pass - Loop over all of the operands, assigning virtual or physregs
5376  // to register class operands.
5377  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5378    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5379
5380    // C_Register operands have already been allocated, Other/Memory don't need
5381    // to be.
5382    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
5383      GetRegistersForValue(OpInfo, OutputRegs, InputRegs);
5384  }
5385
5386  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
5387  std::vector<SDValue> AsmNodeOperands;
5388  AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
5389  AsmNodeOperands.push_back(
5390          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
5391                                      TLI.getPointerTy()));
5392
5393  // If we have a !srcloc metadata node associated with it, we want to attach
5394  // this to the ultimately generated inline asm machineinstr.  To do this, we
5395  // pass in the third operand as this (potentially null) inline asm MDNode.
5396  const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
5397  AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
5398
5399  // Remember the AlignStack bit as operand 3.
5400  AsmNodeOperands.push_back(DAG.getTargetConstant(IA->isAlignStack() ? 1 : 0,
5401                                            MVT::i1));
5402
5403  // Loop over all of the inputs, copying the operand values into the
5404  // appropriate registers and processing the output regs.
5405  RegsForValue RetValRegs;
5406
5407  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
5408  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
5409
5410  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5411    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5412
5413    switch (OpInfo.Type) {
5414    case InlineAsm::isOutput: {
5415      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
5416          OpInfo.ConstraintType != TargetLowering::C_Register) {
5417        // Memory output, or 'other' output (e.g. 'X' constraint).
5418        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
5419
5420        // Add information to the INLINEASM node to know about this output.
5421        unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
5422        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
5423                                                        TLI.getPointerTy()));
5424        AsmNodeOperands.push_back(OpInfo.CallOperand);
5425        break;
5426      }
5427
5428      // Otherwise, this is a register or register class output.
5429
5430      // Copy the output from the appropriate register.  Find a register that
5431      // we can use.
5432      if (OpInfo.AssignedRegs.Regs.empty())
5433        report_fatal_error("Couldn't allocate output reg for constraint '" +
5434                           Twine(OpInfo.ConstraintCode) + "'!");
5435
5436      // If this is an indirect operand, store through the pointer after the
5437      // asm.
5438      if (OpInfo.isIndirect) {
5439        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
5440                                                      OpInfo.CallOperandVal));
5441      } else {
5442        // This is the result value of the call.
5443        assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
5444        // Concatenate this output onto the outputs list.
5445        RetValRegs.append(OpInfo.AssignedRegs);
5446      }
5447
5448      // Add information to the INLINEASM node to know that this register is
5449      // set.
5450      OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
5451                                           InlineAsm::Kind_RegDefEarlyClobber :
5452                                               InlineAsm::Kind_RegDef,
5453                                               false,
5454                                               0,
5455                                               DAG,
5456                                               AsmNodeOperands);
5457      break;
5458    }
5459    case InlineAsm::isInput: {
5460      SDValue InOperandVal = OpInfo.CallOperand;
5461
5462      if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
5463        // If this is required to match an output register we have already set,
5464        // just use its register.
5465        unsigned OperandNo = OpInfo.getMatchedOperand();
5466
5467        // Scan until we find the definition we already emitted of this operand.
5468        // When we find it, create a RegsForValue operand.
5469        unsigned CurOp = InlineAsm::Op_FirstOperand;
5470        for (; OperandNo; --OperandNo) {
5471          // Advance to the next operand.
5472          unsigned OpFlag =
5473            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5474          assert((InlineAsm::isRegDefKind(OpFlag) ||
5475                  InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
5476                  InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
5477          CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
5478        }
5479
5480        unsigned OpFlag =
5481          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5482        if (InlineAsm::isRegDefKind(OpFlag) ||
5483            InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
5484          // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
5485          if (OpInfo.isIndirect) {
5486            // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
5487            LLVMContext &Ctx = *DAG.getContext();
5488            Ctx.emitError(CS.getInstruction(),  "inline asm not supported yet:"
5489                          " don't know how to handle tied "
5490                          "indirect register inputs");
5491          }
5492
5493          RegsForValue MatchedRegs;
5494          MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
5495          EVT RegVT = AsmNodeOperands[CurOp+1].getValueType();
5496          MatchedRegs.RegVTs.push_back(RegVT);
5497          MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
5498          for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
5499               i != e; ++i)
5500            MatchedRegs.Regs.push_back
5501              (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)));
5502
5503          // Use the produced MatchedRegs object to
5504          MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
5505                                    Chain, &Flag);
5506          MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
5507                                           true, OpInfo.getMatchedOperand(),
5508                                           DAG, AsmNodeOperands);
5509          break;
5510        }
5511
5512        assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
5513        assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
5514               "Unexpected number of operands");
5515        // Add information to the INLINEASM node to know about this input.
5516        // See InlineAsm.h isUseOperandTiedToDef.
5517        OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
5518                                                    OpInfo.getMatchedOperand());
5519        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
5520                                                        TLI.getPointerTy()));
5521        AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
5522        break;
5523      }
5524
5525      // Treat indirect 'X' constraint as memory.
5526      if (OpInfo.ConstraintType == TargetLowering::C_Other &&
5527          OpInfo.isIndirect)
5528        OpInfo.ConstraintType = TargetLowering::C_Memory;
5529
5530      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
5531        std::vector<SDValue> Ops;
5532        TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0],
5533                                         Ops, DAG);
5534        if (Ops.empty())
5535          report_fatal_error("Invalid operand for inline asm constraint '" +
5536                             Twine(OpInfo.ConstraintCode) + "'!");
5537
5538        // Add information to the INLINEASM node to know about this input.
5539        unsigned ResOpType =
5540          InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
5541        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5542                                                        TLI.getPointerTy()));
5543        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
5544        break;
5545      }
5546
5547      if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
5548        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
5549        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
5550               "Memory operands expect pointer values");
5551
5552        // Add information to the INLINEASM node to know about this input.
5553        unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
5554        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5555                                                        TLI.getPointerTy()));
5556        AsmNodeOperands.push_back(InOperandVal);
5557        break;
5558      }
5559
5560      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
5561              OpInfo.ConstraintType == TargetLowering::C_Register) &&
5562             "Unknown constraint type!");
5563      assert(!OpInfo.isIndirect &&
5564             "Don't know how to handle indirect register inputs yet!");
5565
5566      // Copy the input into the appropriate registers.
5567      if (OpInfo.AssignedRegs.Regs.empty() ||
5568          !OpInfo.AssignedRegs.areValueTypesLegal(TLI))
5569        report_fatal_error("Couldn't allocate input reg for constraint '" +
5570                           Twine(OpInfo.ConstraintCode) + "'!");
5571
5572      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
5573                                        Chain, &Flag);
5574
5575      OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
5576                                               DAG, AsmNodeOperands);
5577      break;
5578    }
5579    case InlineAsm::isClobber: {
5580      // Add the clobbered value to the operand list, so that the register
5581      // allocator is aware that the physreg got clobbered.
5582      if (!OpInfo.AssignedRegs.Regs.empty())
5583        OpInfo.AssignedRegs.AddInlineAsmOperands(
5584                                            InlineAsm::Kind_RegDefEarlyClobber,
5585                                                 false, 0, DAG,
5586                                                 AsmNodeOperands);
5587      break;
5588    }
5589    }
5590  }
5591
5592  // Finish up input operands.  Set the input chain and add the flag last.
5593  AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
5594  if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
5595
5596  Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(),
5597                      DAG.getVTList(MVT::Other, MVT::Flag),
5598                      &AsmNodeOperands[0], AsmNodeOperands.size());
5599  Flag = Chain.getValue(1);
5600
5601  // If this asm returns a register value, copy the result from that register
5602  // and set it as the value of the call.
5603  if (!RetValRegs.Regs.empty()) {
5604    SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
5605                                             Chain, &Flag);
5606
5607    // FIXME: Why don't we do this for inline asms with MRVs?
5608    if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
5609      EVT ResultType = TLI.getValueType(CS.getType());
5610
5611      // If any of the results of the inline asm is a vector, it may have the
5612      // wrong width/num elts.  This can happen for register classes that can
5613      // contain multiple different value types.  The preg or vreg allocated may
5614      // not have the same VT as was expected.  Convert it to the right type
5615      // with bit_convert.
5616      if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
5617        Val = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
5618                          ResultType, Val);
5619
5620      } else if (ResultType != Val.getValueType() &&
5621                 ResultType.isInteger() && Val.getValueType().isInteger()) {
5622        // If a result value was tied to an input value, the computed result may
5623        // have a wider width than the expected result.  Extract the relevant
5624        // portion.
5625        Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val);
5626      }
5627
5628      assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
5629    }
5630
5631    setValue(CS.getInstruction(), Val);
5632    // Don't need to use this as a chain in this case.
5633    if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
5634      return;
5635  }
5636
5637  std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
5638
5639  // Process indirect outputs, first output all of the flagged copies out of
5640  // physregs.
5641  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
5642    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
5643    const Value *Ptr = IndirectStoresToEmit[i].second;
5644    SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
5645                                             Chain, &Flag);
5646    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
5647  }
5648
5649  // Emit the non-flagged stores from the physregs.
5650  SmallVector<SDValue, 8> OutChains;
5651  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
5652    SDValue Val = DAG.getStore(Chain, getCurDebugLoc(),
5653                               StoresToEmit[i].first,
5654                               getValue(StoresToEmit[i].second),
5655                               StoresToEmit[i].second, 0,
5656                               false, false, 0);
5657    OutChains.push_back(Val);
5658  }
5659
5660  if (!OutChains.empty())
5661    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
5662                        &OutChains[0], OutChains.size());
5663
5664  DAG.setRoot(Chain);
5665}
5666
5667void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
5668  DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(),
5669                          MVT::Other, getRoot(),
5670                          getValue(I.getArgOperand(0)),
5671                          DAG.getSrcValue(I.getArgOperand(0))));
5672}
5673
5674void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
5675  const TargetData &TD = *TLI.getTargetData();
5676  SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(),
5677                           getRoot(), getValue(I.getOperand(0)),
5678                           DAG.getSrcValue(I.getOperand(0)),
5679                           TD.getABITypeAlignment(I.getType()));
5680  setValue(&I, V);
5681  DAG.setRoot(V.getValue(1));
5682}
5683
5684void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
5685  DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(),
5686                          MVT::Other, getRoot(),
5687                          getValue(I.getArgOperand(0)),
5688                          DAG.getSrcValue(I.getArgOperand(0))));
5689}
5690
5691void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
5692  DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(),
5693                          MVT::Other, getRoot(),
5694                          getValue(I.getArgOperand(0)),
5695                          getValue(I.getArgOperand(1)),
5696                          DAG.getSrcValue(I.getArgOperand(0)),
5697                          DAG.getSrcValue(I.getArgOperand(1))));
5698}
5699
5700/// TargetLowering::LowerCallTo - This is the default LowerCallTo
5701/// implementation, which just calls LowerCall.
5702/// FIXME: When all targets are
5703/// migrated to using LowerCall, this hook should be integrated into SDISel.
5704std::pair<SDValue, SDValue>
5705TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy,
5706                            bool RetSExt, bool RetZExt, bool isVarArg,
5707                            bool isInreg, unsigned NumFixedArgs,
5708                            CallingConv::ID CallConv, bool isTailCall,
5709                            bool isReturnValueUsed,
5710                            SDValue Callee,
5711                            ArgListTy &Args, SelectionDAG &DAG,
5712                            DebugLoc dl) const {
5713  // Handle all of the outgoing arguments.
5714  SmallVector<ISD::OutputArg, 32> Outs;
5715  SmallVector<SDValue, 32> OutVals;
5716  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
5717    SmallVector<EVT, 4> ValueVTs;
5718    ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
5719    for (unsigned Value = 0, NumValues = ValueVTs.size();
5720         Value != NumValues; ++Value) {
5721      EVT VT = ValueVTs[Value];
5722      const Type *ArgTy = VT.getTypeForEVT(RetTy->getContext());
5723      SDValue Op = SDValue(Args[i].Node.getNode(),
5724                           Args[i].Node.getResNo() + Value);
5725      ISD::ArgFlagsTy Flags;
5726      unsigned OriginalAlignment =
5727        getTargetData()->getABITypeAlignment(ArgTy);
5728
5729      if (Args[i].isZExt)
5730        Flags.setZExt();
5731      if (Args[i].isSExt)
5732        Flags.setSExt();
5733      if (Args[i].isInReg)
5734        Flags.setInReg();
5735      if (Args[i].isSRet)
5736        Flags.setSRet();
5737      if (Args[i].isByVal) {
5738        Flags.setByVal();
5739        const PointerType *Ty = cast<PointerType>(Args[i].Ty);
5740        const Type *ElementTy = Ty->getElementType();
5741        unsigned FrameAlign = getByValTypeAlignment(ElementTy);
5742        unsigned FrameSize  = getTargetData()->getTypeAllocSize(ElementTy);
5743        // For ByVal, alignment should come from FE.  BE will guess if this
5744        // info is not there but there are cases it cannot get right.
5745        if (Args[i].Alignment)
5746          FrameAlign = Args[i].Alignment;
5747        Flags.setByValAlign(FrameAlign);
5748        Flags.setByValSize(FrameSize);
5749      }
5750      if (Args[i].isNest)
5751        Flags.setNest();
5752      Flags.setOrigAlign(OriginalAlignment);
5753
5754      EVT PartVT = getRegisterType(RetTy->getContext(), VT);
5755      unsigned NumParts = getNumRegisters(RetTy->getContext(), VT);
5756      SmallVector<SDValue, 4> Parts(NumParts);
5757      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
5758
5759      if (Args[i].isSExt)
5760        ExtendKind = ISD::SIGN_EXTEND;
5761      else if (Args[i].isZExt)
5762        ExtendKind = ISD::ZERO_EXTEND;
5763
5764      getCopyToParts(DAG, dl, Op, &Parts[0], NumParts,
5765                     PartVT, ExtendKind);
5766
5767      for (unsigned j = 0; j != NumParts; ++j) {
5768        // if it isn't first piece, alignment must be 1
5769        ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(),
5770                               i < NumFixedArgs);
5771        if (NumParts > 1 && j == 0)
5772          MyFlags.Flags.setSplit();
5773        else if (j != 0)
5774          MyFlags.Flags.setOrigAlign(1);
5775
5776        Outs.push_back(MyFlags);
5777        OutVals.push_back(Parts[j]);
5778      }
5779    }
5780  }
5781
5782  // Handle the incoming return values from the call.
5783  SmallVector<ISD::InputArg, 32> Ins;
5784  SmallVector<EVT, 4> RetTys;
5785  ComputeValueVTs(*this, RetTy, RetTys);
5786  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
5787    EVT VT = RetTys[I];
5788    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
5789    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
5790    for (unsigned i = 0; i != NumRegs; ++i) {
5791      ISD::InputArg MyFlags;
5792      MyFlags.VT = RegisterVT;
5793      MyFlags.Used = isReturnValueUsed;
5794      if (RetSExt)
5795        MyFlags.Flags.setSExt();
5796      if (RetZExt)
5797        MyFlags.Flags.setZExt();
5798      if (isInreg)
5799        MyFlags.Flags.setInReg();
5800      Ins.push_back(MyFlags);
5801    }
5802  }
5803
5804  SmallVector<SDValue, 4> InVals;
5805  Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall,
5806                    Outs, OutVals, Ins, dl, DAG, InVals);
5807
5808  // Verify that the target's LowerCall behaved as expected.
5809  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
5810         "LowerCall didn't return a valid chain!");
5811  assert((!isTailCall || InVals.empty()) &&
5812         "LowerCall emitted a return value for a tail call!");
5813  assert((isTailCall || InVals.size() == Ins.size()) &&
5814         "LowerCall didn't emit the correct number of values!");
5815
5816  // For a tail call, the return value is merely live-out and there aren't
5817  // any nodes in the DAG representing it. Return a special value to
5818  // indicate that a tail call has been emitted and no more Instructions
5819  // should be processed in the current block.
5820  if (isTailCall) {
5821    DAG.setRoot(Chain);
5822    return std::make_pair(SDValue(), SDValue());
5823  }
5824
5825  DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
5826          assert(InVals[i].getNode() &&
5827                 "LowerCall emitted a null value!");
5828          assert(Ins[i].VT == InVals[i].getValueType() &&
5829                 "LowerCall emitted a value with the wrong type!");
5830        });
5831
5832  // Collect the legal value parts into potentially illegal values
5833  // that correspond to the original function's return values.
5834  ISD::NodeType AssertOp = ISD::DELETED_NODE;
5835  if (RetSExt)
5836    AssertOp = ISD::AssertSext;
5837  else if (RetZExt)
5838    AssertOp = ISD::AssertZext;
5839  SmallVector<SDValue, 4> ReturnValues;
5840  unsigned CurReg = 0;
5841  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
5842    EVT VT = RetTys[I];
5843    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
5844    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
5845
5846    ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg],
5847                                            NumRegs, RegisterVT, VT,
5848                                            AssertOp));
5849    CurReg += NumRegs;
5850  }
5851
5852  // For a function returning void, there is no return value. We can't create
5853  // such a node, so we just return a null return value in that case. In
5854  // that case, nothing will actualy look at the value.
5855  if (ReturnValues.empty())
5856    return std::make_pair(SDValue(), Chain);
5857
5858  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
5859                            DAG.getVTList(&RetTys[0], RetTys.size()),
5860                            &ReturnValues[0], ReturnValues.size());
5861  return std::make_pair(Res, Chain);
5862}
5863
5864void TargetLowering::LowerOperationWrapper(SDNode *N,
5865                                           SmallVectorImpl<SDValue> &Results,
5866                                           SelectionDAG &DAG) const {
5867  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
5868  if (Res.getNode())
5869    Results.push_back(Res);
5870}
5871
5872SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
5873  llvm_unreachable("LowerOperation not implemented for this target!");
5874  return SDValue();
5875}
5876
5877void
5878SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
5879  SDValue Op = getNonRegisterValue(V);
5880  assert((Op.getOpcode() != ISD::CopyFromReg ||
5881          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
5882         "Copy from a reg to the same reg!");
5883  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
5884
5885  RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
5886  SDValue Chain = DAG.getEntryNode();
5887  RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0);
5888  PendingExports.push_back(Chain);
5889}
5890
5891#include "llvm/CodeGen/SelectionDAGISel.h"
5892
5893void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) {
5894  // If this is the entry block, emit arguments.
5895  const Function &F = *LLVMBB->getParent();
5896  SelectionDAG &DAG = SDB->DAG;
5897  DebugLoc dl = SDB->getCurDebugLoc();
5898  const TargetData *TD = TLI.getTargetData();
5899  SmallVector<ISD::InputArg, 16> Ins;
5900
5901  // Check whether the function can return without sret-demotion.
5902  SmallVector<ISD::OutputArg, 4> Outs;
5903  GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
5904                Outs, TLI);
5905
5906  if (!FuncInfo->CanLowerReturn) {
5907    // Put in an sret pointer parameter before all the other parameters.
5908    SmallVector<EVT, 1> ValueVTs;
5909    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
5910
5911    // NOTE: Assuming that a pointer will never break down to more than one VT
5912    // or one register.
5913    ISD::ArgFlagsTy Flags;
5914    Flags.setSRet();
5915    EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]);
5916    ISD::InputArg RetArg(Flags, RegisterVT, true);
5917    Ins.push_back(RetArg);
5918  }
5919
5920  // Set up the incoming argument description vector.
5921  unsigned Idx = 1;
5922  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
5923       I != E; ++I, ++Idx) {
5924    SmallVector<EVT, 4> ValueVTs;
5925    ComputeValueVTs(TLI, I->getType(), ValueVTs);
5926    bool isArgValueUsed = !I->use_empty();
5927    for (unsigned Value = 0, NumValues = ValueVTs.size();
5928         Value != NumValues; ++Value) {
5929      EVT VT = ValueVTs[Value];
5930      const Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
5931      ISD::ArgFlagsTy Flags;
5932      unsigned OriginalAlignment =
5933        TD->getABITypeAlignment(ArgTy);
5934
5935      if (F.paramHasAttr(Idx, Attribute::ZExt))
5936        Flags.setZExt();
5937      if (F.paramHasAttr(Idx, Attribute::SExt))
5938        Flags.setSExt();
5939      if (F.paramHasAttr(Idx, Attribute::InReg))
5940        Flags.setInReg();
5941      if (F.paramHasAttr(Idx, Attribute::StructRet))
5942        Flags.setSRet();
5943      if (F.paramHasAttr(Idx, Attribute::ByVal)) {
5944        Flags.setByVal();
5945        const PointerType *Ty = cast<PointerType>(I->getType());
5946        const Type *ElementTy = Ty->getElementType();
5947        unsigned FrameAlign = TLI.getByValTypeAlignment(ElementTy);
5948        unsigned FrameSize  = TD->getTypeAllocSize(ElementTy);
5949        // For ByVal, alignment should be passed from FE.  BE will guess if
5950        // this info is not there but there are cases it cannot get right.
5951        if (F.getParamAlignment(Idx))
5952          FrameAlign = F.getParamAlignment(Idx);
5953        Flags.setByValAlign(FrameAlign);
5954        Flags.setByValSize(FrameSize);
5955      }
5956      if (F.paramHasAttr(Idx, Attribute::Nest))
5957        Flags.setNest();
5958      Flags.setOrigAlign(OriginalAlignment);
5959
5960      EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
5961      unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
5962      for (unsigned i = 0; i != NumRegs; ++i) {
5963        ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed);
5964        if (NumRegs > 1 && i == 0)
5965          MyFlags.Flags.setSplit();
5966        // if it isn't first piece, alignment must be 1
5967        else if (i > 0)
5968          MyFlags.Flags.setOrigAlign(1);
5969        Ins.push_back(MyFlags);
5970      }
5971    }
5972  }
5973
5974  // Call the target to set up the argument values.
5975  SmallVector<SDValue, 8> InVals;
5976  SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
5977                                             F.isVarArg(), Ins,
5978                                             dl, DAG, InVals);
5979
5980  // Verify that the target's LowerFormalArguments behaved as expected.
5981  assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
5982         "LowerFormalArguments didn't return a valid chain!");
5983  assert(InVals.size() == Ins.size() &&
5984         "LowerFormalArguments didn't emit the correct number of values!");
5985  DEBUG({
5986      for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
5987        assert(InVals[i].getNode() &&
5988               "LowerFormalArguments emitted a null value!");
5989        assert(Ins[i].VT == InVals[i].getValueType() &&
5990               "LowerFormalArguments emitted a value with the wrong type!");
5991      }
5992    });
5993
5994  // Update the DAG with the new chain value resulting from argument lowering.
5995  DAG.setRoot(NewRoot);
5996
5997  // Set up the argument values.
5998  unsigned i = 0;
5999  Idx = 1;
6000  if (!FuncInfo->CanLowerReturn) {
6001    // Create a virtual register for the sret pointer, and put in a copy
6002    // from the sret argument into it.
6003    SmallVector<EVT, 1> ValueVTs;
6004    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6005    EVT VT = ValueVTs[0];
6006    EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6007    ISD::NodeType AssertOp = ISD::DELETED_NODE;
6008    SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
6009                                        RegVT, VT, AssertOp);
6010
6011    MachineFunction& MF = SDB->DAG.getMachineFunction();
6012    MachineRegisterInfo& RegInfo = MF.getRegInfo();
6013    unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT));
6014    FuncInfo->DemoteRegister = SRetReg;
6015    NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(),
6016                                    SRetReg, ArgValue);
6017    DAG.setRoot(NewRoot);
6018
6019    // i indexes lowered arguments.  Bump it past the hidden sret argument.
6020    // Idx indexes LLVM arguments.  Don't touch it.
6021    ++i;
6022  }
6023
6024  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
6025      ++I, ++Idx) {
6026    SmallVector<SDValue, 4> ArgValues;
6027    SmallVector<EVT, 4> ValueVTs;
6028    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6029    unsigned NumValues = ValueVTs.size();
6030
6031    // If this argument is unused then remember its value. It is used to generate
6032    // debugging information.
6033    if (I->use_empty() && NumValues)
6034      SDB->setUnusedArgValue(I, InVals[i]);
6035
6036    for (unsigned Value = 0; Value != NumValues; ++Value) {
6037      EVT VT = ValueVTs[Value];
6038      EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6039      unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6040
6041      if (!I->use_empty()) {
6042        ISD::NodeType AssertOp = ISD::DELETED_NODE;
6043        if (F.paramHasAttr(Idx, Attribute::SExt))
6044          AssertOp = ISD::AssertSext;
6045        else if (F.paramHasAttr(Idx, Attribute::ZExt))
6046          AssertOp = ISD::AssertZext;
6047
6048        ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
6049                                             NumParts, PartVT, VT,
6050                                             AssertOp));
6051      }
6052
6053      i += NumParts;
6054    }
6055
6056    if (!I->use_empty()) {
6057      SDValue Res;
6058      if (!ArgValues.empty())
6059        Res = DAG.getMergeValues(&ArgValues[0], NumValues,
6060                                 SDB->getCurDebugLoc());
6061      SDB->setValue(I, Res);
6062
6063      // If this argument is live outside of the entry block, insert a copy from
6064      // whereever we got it to the vreg that other BB's will reference it as.
6065      SDB->CopyToExportRegsIfNeeded(I);
6066    }
6067  }
6068
6069  assert(i == InVals.size() && "Argument register count mismatch!");
6070
6071  // Finally, if the target has anything special to do, allow it to do so.
6072  // FIXME: this should insert code into the DAG!
6073  EmitFunctionEntryCode();
6074}
6075
6076/// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
6077/// ensure constants are generated when needed.  Remember the virtual registers
6078/// that need to be added to the Machine PHI nodes as input.  We cannot just
6079/// directly add them, because expansion might result in multiple MBB's for one
6080/// BB.  As such, the start of the BB might correspond to a different MBB than
6081/// the end.
6082///
6083void
6084SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
6085  const TerminatorInst *TI = LLVMBB->getTerminator();
6086
6087  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6088
6089  // Check successor nodes' PHI nodes that expect a constant to be available
6090  // from this block.
6091  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6092    const BasicBlock *SuccBB = TI->getSuccessor(succ);
6093    if (!isa<PHINode>(SuccBB->begin())) continue;
6094    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
6095
6096    // If this terminator has multiple identical successors (common for
6097    // switches), only handle each succ once.
6098    if (!SuccsHandled.insert(SuccMBB)) continue;
6099
6100    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6101
6102    // At this point we know that there is a 1-1 correspondence between LLVM PHI
6103    // nodes and Machine PHI nodes, but the incoming operands have not been
6104    // emitted yet.
6105    for (BasicBlock::const_iterator I = SuccBB->begin();
6106         const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
6107      // Ignore dead phi's.
6108      if (PN->use_empty()) continue;
6109
6110      unsigned Reg;
6111      const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6112
6113      if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
6114        unsigned &RegOut = ConstantsOut[C];
6115        if (RegOut == 0) {
6116          RegOut = FuncInfo.CreateRegs(C->getType());
6117          CopyValueToVirtualRegister(C, RegOut);
6118        }
6119        Reg = RegOut;
6120      } else {
6121        DenseMap<const Value *, unsigned>::iterator I =
6122          FuncInfo.ValueMap.find(PHIOp);
6123        if (I != FuncInfo.ValueMap.end())
6124          Reg = I->second;
6125        else {
6126          assert(isa<AllocaInst>(PHIOp) &&
6127                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
6128                 "Didn't codegen value into a register!??");
6129          Reg = FuncInfo.CreateRegs(PHIOp->getType());
6130          CopyValueToVirtualRegister(PHIOp, Reg);
6131        }
6132      }
6133
6134      // Remember that this register needs to added to the machine PHI node as
6135      // the input for this MBB.
6136      SmallVector<EVT, 4> ValueVTs;
6137      ComputeValueVTs(TLI, PN->getType(), ValueVTs);
6138      for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
6139        EVT VT = ValueVTs[vti];
6140        unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
6141        for (unsigned i = 0, e = NumRegisters; i != e; ++i)
6142          FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
6143        Reg += NumRegisters;
6144      }
6145    }
6146  }
6147  ConstantsOut.clear();
6148}
6149