SelectionDAGBuilder.cpp revision 33b7a291aa1bd477bc09e3ef5fccb76249502a5e
1//===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements routines for translating from LLVM IR into SelectionDAG IR.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "SDNodeDbgValue.h"
16#include "SelectionDAGBuilder.h"
17#include "FunctionLoweringInfo.h"
18#include "llvm/ADT/BitVector.h"
19#include "llvm/ADT/SmallSet.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/ConstantFolding.h"
22#include "llvm/Constants.h"
23#include "llvm/CallingConv.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Function.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/InlineAsm.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/IntrinsicInst.h"
31#include "llvm/LLVMContext.h"
32#include "llvm/Module.h"
33#include "llvm/CodeGen/FastISel.h"
34#include "llvm/CodeGen/GCStrategy.h"
35#include "llvm/CodeGen/GCMetadata.h"
36#include "llvm/CodeGen/MachineFunction.h"
37#include "llvm/CodeGen/MachineFrameInfo.h"
38#include "llvm/CodeGen/MachineInstrBuilder.h"
39#include "llvm/CodeGen/MachineJumpTableInfo.h"
40#include "llvm/CodeGen/MachineModuleInfo.h"
41#include "llvm/CodeGen/MachineRegisterInfo.h"
42#include "llvm/CodeGen/PseudoSourceValue.h"
43#include "llvm/CodeGen/SelectionDAG.h"
44#include "llvm/Analysis/DebugInfo.h"
45#include "llvm/Target/TargetRegisterInfo.h"
46#include "llvm/Target/TargetData.h"
47#include "llvm/Target/TargetFrameInfo.h"
48#include "llvm/Target/TargetInstrInfo.h"
49#include "llvm/Target/TargetIntrinsicInfo.h"
50#include "llvm/Target/TargetLowering.h"
51#include "llvm/Target/TargetOptions.h"
52#include "llvm/Support/Compiler.h"
53#include "llvm/Support/CommandLine.h"
54#include "llvm/Support/Debug.h"
55#include "llvm/Support/ErrorHandling.h"
56#include "llvm/Support/MathExtras.h"
57#include "llvm/Support/raw_ostream.h"
58#include <algorithm>
59using namespace llvm;
60
61/// LimitFloatPrecision - Generate low-precision inline sequences for
62/// some float libcalls (6, 8 or 12 bits).
63static unsigned LimitFloatPrecision;
64
65static cl::opt<unsigned, true>
66LimitFPPrecision("limit-float-precision",
67                 cl::desc("Generate low-precision inline sequences "
68                          "for some float libcalls"),
69                 cl::location(LimitFloatPrecision),
70                 cl::init(0));
71
72namespace {
73  /// RegsForValue - This struct represents the registers (physical or virtual)
74  /// that a particular set of values is assigned, and the type information
75  /// about the value. The most common situation is to represent one value at a
76  /// time, but struct or array values are handled element-wise as multiple
77  /// values.  The splitting of aggregates is performed recursively, so that we
78  /// never have aggregate-typed registers. The values at this point do not
79  /// necessarily have legal types, so each value may require one or more
80  /// registers of some legal type.
81  ///
82  struct RegsForValue {
83    /// TLI - The TargetLowering object.
84    ///
85    const TargetLowering *TLI;
86
87    /// ValueVTs - The value types of the values, which may not be legal, and
88    /// may need be promoted or synthesized from one or more registers.
89    ///
90    SmallVector<EVT, 4> ValueVTs;
91
92    /// RegVTs - The value types of the registers. This is the same size as
93    /// ValueVTs and it records, for each value, what the type of the assigned
94    /// register or registers are. (Individual values are never synthesized
95    /// from more than one type of register.)
96    ///
97    /// With virtual registers, the contents of RegVTs is redundant with TLI's
98    /// getRegisterType member function, however when with physical registers
99    /// it is necessary to have a separate record of the types.
100    ///
101    SmallVector<EVT, 4> RegVTs;
102
103    /// Regs - This list holds the registers assigned to the values.
104    /// Each legal or promoted value requires one register, and each
105    /// expanded value requires multiple registers.
106    ///
107    SmallVector<unsigned, 4> Regs;
108
109    RegsForValue() : TLI(0) {}
110
111    RegsForValue(const TargetLowering &tli,
112                 const SmallVector<unsigned, 4> &regs,
113                 EVT regvt, EVT valuevt)
114      : TLI(&tli),  ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
115    RegsForValue(const TargetLowering &tli,
116                 const SmallVector<unsigned, 4> &regs,
117                 const SmallVector<EVT, 4> &regvts,
118                 const SmallVector<EVT, 4> &valuevts)
119      : TLI(&tli), ValueVTs(valuevts), RegVTs(regvts), Regs(regs) {}
120    RegsForValue(LLVMContext &Context, const TargetLowering &tli,
121                 unsigned Reg, const Type *Ty) : TLI(&tli) {
122      ComputeValueVTs(tli, Ty, ValueVTs);
123
124      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
125        EVT ValueVT = ValueVTs[Value];
126        unsigned NumRegs = TLI->getNumRegisters(Context, ValueVT);
127        EVT RegisterVT = TLI->getRegisterType(Context, ValueVT);
128        for (unsigned i = 0; i != NumRegs; ++i)
129          Regs.push_back(Reg + i);
130        RegVTs.push_back(RegisterVT);
131        Reg += NumRegs;
132      }
133    }
134
135    /// areValueTypesLegal - Return true if types of all the values are legal.
136    bool areValueTypesLegal() {
137      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
138        EVT RegisterVT = RegVTs[Value];
139        if (!TLI->isTypeLegal(RegisterVT))
140          return false;
141      }
142      return true;
143    }
144
145
146    /// append - Add the specified values to this one.
147    void append(const RegsForValue &RHS) {
148      TLI = RHS.TLI;
149      ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
150      RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
151      Regs.append(RHS.Regs.begin(), RHS.Regs.end());
152    }
153
154
155    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
156    /// this value and returns the result as a ValueVTs value.  This uses
157    /// Chain/Flag as the input and updates them for the output Chain/Flag.
158    /// If the Flag pointer is NULL, no flag is used.
159    SDValue getCopyFromRegs(SelectionDAG &DAG, DebugLoc dl,
160                            SDValue &Chain, SDValue *Flag) const;
161
162    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
163    /// specified value into the registers specified by this object.  This uses
164    /// Chain/Flag as the input and updates them for the output Chain/Flag.
165    /// If the Flag pointer is NULL, no flag is used.
166    void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
167                       SDValue &Chain, SDValue *Flag) const;
168
169    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
170    /// operand list.  This adds the code marker, matching input operand index
171    /// (if applicable), and includes the number of values added into it.
172    void AddInlineAsmOperands(unsigned Kind,
173                              bool HasMatching, unsigned MatchingIdx,
174                              SelectionDAG &DAG,
175                              std::vector<SDValue> &Ops) const;
176  };
177}
178
179/// getCopyFromParts - Create a value that contains the specified legal parts
180/// combined into the value they represent.  If the parts combine to a type
181/// larger then ValueVT then AssertOp can be used to specify whether the extra
182/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
183/// (ISD::AssertSext).
184static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc dl,
185                                const SDValue *Parts,
186                                unsigned NumParts, EVT PartVT, EVT ValueVT,
187                                ISD::NodeType AssertOp = ISD::DELETED_NODE) {
188  assert(NumParts > 0 && "No parts to assemble!");
189  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
190  SDValue Val = Parts[0];
191
192  if (NumParts > 1) {
193    // Assemble the value from multiple parts.
194    if (!ValueVT.isVector() && ValueVT.isInteger()) {
195      unsigned PartBits = PartVT.getSizeInBits();
196      unsigned ValueBits = ValueVT.getSizeInBits();
197
198      // Assemble the power of 2 part.
199      unsigned RoundParts = NumParts & (NumParts - 1) ?
200        1 << Log2_32(NumParts) : NumParts;
201      unsigned RoundBits = PartBits * RoundParts;
202      EVT RoundVT = RoundBits == ValueBits ?
203        ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
204      SDValue Lo, Hi;
205
206      EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
207
208      if (RoundParts > 2) {
209        Lo = getCopyFromParts(DAG, dl, Parts, RoundParts / 2,
210                              PartVT, HalfVT);
211        Hi = getCopyFromParts(DAG, dl, Parts + RoundParts / 2,
212                              RoundParts / 2, PartVT, HalfVT);
213      } else {
214        Lo = DAG.getNode(ISD::BIT_CONVERT, dl, HalfVT, Parts[0]);
215        Hi = DAG.getNode(ISD::BIT_CONVERT, dl, HalfVT, Parts[1]);
216      }
217
218      if (TLI.isBigEndian())
219        std::swap(Lo, Hi);
220
221      Val = DAG.getNode(ISD::BUILD_PAIR, dl, RoundVT, Lo, Hi);
222
223      if (RoundParts < NumParts) {
224        // Assemble the trailing non-power-of-2 part.
225        unsigned OddParts = NumParts - RoundParts;
226        EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
227        Hi = getCopyFromParts(DAG, dl,
228                              Parts + RoundParts, OddParts, PartVT, OddVT);
229
230        // Combine the round and odd parts.
231        Lo = Val;
232        if (TLI.isBigEndian())
233          std::swap(Lo, Hi);
234        EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
235        Hi = DAG.getNode(ISD::ANY_EXTEND, dl, TotalVT, Hi);
236        Hi = DAG.getNode(ISD::SHL, dl, TotalVT, Hi,
237                         DAG.getConstant(Lo.getValueType().getSizeInBits(),
238                                         TLI.getPointerTy()));
239        Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, TotalVT, Lo);
240        Val = DAG.getNode(ISD::OR, dl, TotalVT, Lo, Hi);
241      }
242    } else if (ValueVT.isVector()) {
243      // Handle a multi-element vector.
244      EVT IntermediateVT, RegisterVT;
245      unsigned NumIntermediates;
246      unsigned NumRegs =
247        TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
248                                   NumIntermediates, RegisterVT);
249      assert(NumRegs == NumParts
250             && "Part count doesn't match vector breakdown!");
251      NumParts = NumRegs; // Silence a compiler warning.
252      assert(RegisterVT == PartVT
253             && "Part type doesn't match vector breakdown!");
254      assert(RegisterVT == Parts[0].getValueType() &&
255             "Part type doesn't match part!");
256
257      // Assemble the parts into intermediate operands.
258      SmallVector<SDValue, 8> Ops(NumIntermediates);
259      if (NumIntermediates == NumParts) {
260        // If the register was not expanded, truncate or copy the value,
261        // as appropriate.
262        for (unsigned i = 0; i != NumParts; ++i)
263          Ops[i] = getCopyFromParts(DAG, dl, &Parts[i], 1,
264                                    PartVT, IntermediateVT);
265      } else if (NumParts > 0) {
266        // If the intermediate type was expanded, build the intermediate
267        // operands from the parts.
268        assert(NumParts % NumIntermediates == 0 &&
269               "Must expand into a divisible number of parts!");
270        unsigned Factor = NumParts / NumIntermediates;
271        for (unsigned i = 0; i != NumIntermediates; ++i)
272          Ops[i] = getCopyFromParts(DAG, dl, &Parts[i * Factor], Factor,
273                                    PartVT, IntermediateVT);
274      }
275
276      // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
277      // intermediate operands.
278      Val = DAG.getNode(IntermediateVT.isVector() ?
279                        ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, dl,
280                        ValueVT, &Ops[0], NumIntermediates);
281    } else if (PartVT.isFloatingPoint()) {
282      // FP split into multiple FP parts (for ppcf128)
283      assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) &&
284             "Unexpected split");
285      SDValue Lo, Hi;
286      Lo = DAG.getNode(ISD::BIT_CONVERT, dl, EVT(MVT::f64), Parts[0]);
287      Hi = DAG.getNode(ISD::BIT_CONVERT, dl, EVT(MVT::f64), Parts[1]);
288      if (TLI.isBigEndian())
289        std::swap(Lo, Hi);
290      Val = DAG.getNode(ISD::BUILD_PAIR, dl, ValueVT, Lo, Hi);
291    } else {
292      // FP split into integer parts (soft fp)
293      assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
294             !PartVT.isVector() && "Unexpected split");
295      EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
296      Val = getCopyFromParts(DAG, dl, Parts, NumParts, PartVT, IntVT);
297    }
298  }
299
300  // There is now one part, held in Val.  Correct it to match ValueVT.
301  PartVT = Val.getValueType();
302
303  if (PartVT == ValueVT)
304    return Val;
305
306  if (PartVT.isVector()) {
307    assert(ValueVT.isVector() && "Unknown vector conversion!");
308    return DAG.getNode(ISD::BIT_CONVERT, dl, ValueVT, Val);
309  }
310
311  if (ValueVT.isVector()) {
312    assert(ValueVT.getVectorElementType() == PartVT &&
313           ValueVT.getVectorNumElements() == 1 &&
314           "Only trivial scalar-to-vector conversions should get here!");
315    return DAG.getNode(ISD::BUILD_VECTOR, dl, ValueVT, Val);
316  }
317
318  if (PartVT.isInteger() &&
319      ValueVT.isInteger()) {
320    if (ValueVT.bitsLT(PartVT)) {
321      // For a truncate, see if we have any information to
322      // indicate whether the truncated bits will always be
323      // zero or sign-extension.
324      if (AssertOp != ISD::DELETED_NODE)
325        Val = DAG.getNode(AssertOp, dl, PartVT, Val,
326                          DAG.getValueType(ValueVT));
327      return DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val);
328    } else {
329      return DAG.getNode(ISD::ANY_EXTEND, dl, ValueVT, Val);
330    }
331  }
332
333  if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
334    if (ValueVT.bitsLT(Val.getValueType())) {
335      // FP_ROUND's are always exact here.
336      return DAG.getNode(ISD::FP_ROUND, dl, ValueVT, Val,
337                         DAG.getIntPtrConstant(1));
338    }
339
340    return DAG.getNode(ISD::FP_EXTEND, dl, ValueVT, Val);
341  }
342
343  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
344    return DAG.getNode(ISD::BIT_CONVERT, dl, ValueVT, Val);
345
346  llvm_unreachable("Unknown mismatch!");
347  return SDValue();
348}
349
350/// getCopyToParts - Create a series of nodes that contain the specified value
351/// split into legal parts.  If the parts contain more bits than Val, then, for
352/// integers, ExtendKind can be used to specify how to generate the extra bits.
353static void getCopyToParts(SelectionDAG &DAG, DebugLoc dl,
354                           SDValue Val, SDValue *Parts, unsigned NumParts,
355                           EVT PartVT,
356                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
357  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
358  EVT PtrVT = TLI.getPointerTy();
359  EVT ValueVT = Val.getValueType();
360  unsigned PartBits = PartVT.getSizeInBits();
361  unsigned OrigNumParts = NumParts;
362  assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
363
364  if (!NumParts)
365    return;
366
367  if (!ValueVT.isVector()) {
368    if (PartVT == ValueVT) {
369      assert(NumParts == 1 && "No-op copy with multiple parts!");
370      Parts[0] = Val;
371      return;
372    }
373
374    if (NumParts * PartBits > ValueVT.getSizeInBits()) {
375      // If the parts cover more bits than the value has, promote the value.
376      if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
377        assert(NumParts == 1 && "Do not know what to promote to!");
378        Val = DAG.getNode(ISD::FP_EXTEND, dl, PartVT, Val);
379      } else if (PartVT.isInteger() && ValueVT.isInteger()) {
380        ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
381        Val = DAG.getNode(ExtendKind, dl, ValueVT, Val);
382      } else {
383        llvm_unreachable("Unknown mismatch!");
384      }
385    } else if (PartBits == ValueVT.getSizeInBits()) {
386      // Different types of the same size.
387      assert(NumParts == 1 && PartVT != ValueVT);
388      Val = DAG.getNode(ISD::BIT_CONVERT, dl, PartVT, Val);
389    } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
390      // If the parts cover less bits than value has, truncate the value.
391      if (PartVT.isInteger() && ValueVT.isInteger()) {
392        ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
393        Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val);
394      } else {
395        llvm_unreachable("Unknown mismatch!");
396      }
397    }
398
399    // The value may have changed - recompute ValueVT.
400    ValueVT = Val.getValueType();
401    assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
402           "Failed to tile the value with PartVT!");
403
404    if (NumParts == 1) {
405      assert(PartVT == ValueVT && "Type conversion failed!");
406      Parts[0] = Val;
407      return;
408    }
409
410    // Expand the value into multiple parts.
411    if (NumParts & (NumParts - 1)) {
412      // The number of parts is not a power of 2.  Split off and copy the tail.
413      assert(PartVT.isInteger() && ValueVT.isInteger() &&
414             "Do not know what to expand to!");
415      unsigned RoundParts = 1 << Log2_32(NumParts);
416      unsigned RoundBits = RoundParts * PartBits;
417      unsigned OddParts = NumParts - RoundParts;
418      SDValue OddVal = DAG.getNode(ISD::SRL, dl, ValueVT, Val,
419                                   DAG.getConstant(RoundBits,
420                                                   TLI.getPointerTy()));
421      getCopyToParts(DAG, dl, OddVal, Parts + RoundParts,
422                     OddParts, PartVT);
423
424      if (TLI.isBigEndian())
425        // The odd parts were reversed by getCopyToParts - unreverse them.
426        std::reverse(Parts + RoundParts, Parts + NumParts);
427
428      NumParts = RoundParts;
429      ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
430      Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val);
431    }
432
433    // The number of parts is a power of 2.  Repeatedly bisect the value using
434    // EXTRACT_ELEMENT.
435    Parts[0] = DAG.getNode(ISD::BIT_CONVERT, dl,
436                           EVT::getIntegerVT(*DAG.getContext(),
437                                             ValueVT.getSizeInBits()),
438                           Val);
439
440    for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
441      for (unsigned i = 0; i < NumParts; i += StepSize) {
442        unsigned ThisBits = StepSize * PartBits / 2;
443        EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
444        SDValue &Part0 = Parts[i];
445        SDValue &Part1 = Parts[i+StepSize/2];
446
447        Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
448                            ThisVT, Part0,
449                            DAG.getConstant(1, PtrVT));
450        Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
451                            ThisVT, Part0,
452                            DAG.getConstant(0, PtrVT));
453
454        if (ThisBits == PartBits && ThisVT != PartVT) {
455          Part0 = DAG.getNode(ISD::BIT_CONVERT, dl,
456                                                PartVT, Part0);
457          Part1 = DAG.getNode(ISD::BIT_CONVERT, dl,
458                                                PartVT, Part1);
459        }
460      }
461    }
462
463    if (TLI.isBigEndian())
464      std::reverse(Parts, Parts + OrigNumParts);
465
466    return;
467  }
468
469  // Vector ValueVT.
470  if (NumParts == 1) {
471    if (PartVT != ValueVT) {
472      if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
473        Val = DAG.getNode(ISD::BIT_CONVERT, dl, PartVT, Val);
474      } else {
475        assert(ValueVT.getVectorElementType() == PartVT &&
476               ValueVT.getVectorNumElements() == 1 &&
477               "Only trivial vector-to-scalar conversions should get here!");
478        Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
479                          PartVT, Val,
480                          DAG.getConstant(0, PtrVT));
481      }
482    }
483
484    Parts[0] = Val;
485    return;
486  }
487
488  // Handle a multi-element vector.
489  EVT IntermediateVT, RegisterVT;
490  unsigned NumIntermediates;
491  unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
492                              IntermediateVT, NumIntermediates, RegisterVT);
493  unsigned NumElements = ValueVT.getVectorNumElements();
494
495  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
496  NumParts = NumRegs; // Silence a compiler warning.
497  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
498
499  // Split the vector into intermediate operands.
500  SmallVector<SDValue, 8> Ops(NumIntermediates);
501  for (unsigned i = 0; i != NumIntermediates; ++i) {
502    if (IntermediateVT.isVector())
503      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl,
504                           IntermediateVT, Val,
505                           DAG.getConstant(i * (NumElements / NumIntermediates),
506                                           PtrVT));
507    else
508      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
509                           IntermediateVT, Val,
510                           DAG.getConstant(i, PtrVT));
511  }
512
513  // Split the intermediate operands into legal parts.
514  if (NumParts == NumIntermediates) {
515    // If the register was not expanded, promote or copy the value,
516    // as appropriate.
517    for (unsigned i = 0; i != NumParts; ++i)
518      getCopyToParts(DAG, dl, Ops[i], &Parts[i], 1, PartVT);
519  } else if (NumParts > 0) {
520    // If the intermediate type was expanded, split each the value into
521    // legal parts.
522    assert(NumParts % NumIntermediates == 0 &&
523           "Must expand into a divisible number of parts!");
524    unsigned Factor = NumParts / NumIntermediates;
525    for (unsigned i = 0; i != NumIntermediates; ++i)
526      getCopyToParts(DAG, dl, Ops[i], &Parts[i*Factor], Factor, PartVT);
527  }
528}
529
530
531void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) {
532  AA = &aa;
533  GFI = gfi;
534  TD = DAG.getTarget().getTargetData();
535}
536
537/// clear - Clear out the current SelectionDAG and the associated
538/// state and prepare this SelectionDAGBuilder object to be used
539/// for a new block. This doesn't clear out information about
540/// additional blocks that are needed to complete switch lowering
541/// or PHI node updating; that information is cleared out as it is
542/// consumed.
543void SelectionDAGBuilder::clear() {
544  NodeMap.clear();
545  PendingLoads.clear();
546  PendingExports.clear();
547  EdgeMapping.clear();
548  DAG.clear();
549  CurDebugLoc = DebugLoc();
550  HasTailCall = false;
551}
552
553/// getRoot - Return the current virtual root of the Selection DAG,
554/// flushing any PendingLoad items. This must be done before emitting
555/// a store or any other node that may need to be ordered after any
556/// prior load instructions.
557///
558SDValue SelectionDAGBuilder::getRoot() {
559  if (PendingLoads.empty())
560    return DAG.getRoot();
561
562  if (PendingLoads.size() == 1) {
563    SDValue Root = PendingLoads[0];
564    DAG.setRoot(Root);
565    PendingLoads.clear();
566    return Root;
567  }
568
569  // Otherwise, we have to make a token factor node.
570  SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
571                               &PendingLoads[0], PendingLoads.size());
572  PendingLoads.clear();
573  DAG.setRoot(Root);
574  return Root;
575}
576
577/// getControlRoot - Similar to getRoot, but instead of flushing all the
578/// PendingLoad items, flush all the PendingExports items. It is necessary
579/// to do this before emitting a terminator instruction.
580///
581SDValue SelectionDAGBuilder::getControlRoot() {
582  SDValue Root = DAG.getRoot();
583
584  if (PendingExports.empty())
585    return Root;
586
587  // Turn all of the CopyToReg chains into one factored node.
588  if (Root.getOpcode() != ISD::EntryToken) {
589    unsigned i = 0, e = PendingExports.size();
590    for (; i != e; ++i) {
591      assert(PendingExports[i].getNode()->getNumOperands() > 1);
592      if (PendingExports[i].getNode()->getOperand(0) == Root)
593        break;  // Don't add the root if we already indirectly depend on it.
594    }
595
596    if (i == e)
597      PendingExports.push_back(Root);
598  }
599
600  Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
601                     &PendingExports[0],
602                     PendingExports.size());
603  PendingExports.clear();
604  DAG.setRoot(Root);
605  return Root;
606}
607
608void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) {
609  if (DAG.GetOrdering(Node) != 0) return; // Already has ordering.
610  DAG.AssignOrdering(Node, SDNodeOrder);
611
612  for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I)
613    AssignOrderingToNode(Node->getOperand(I).getNode());
614}
615
616void SelectionDAGBuilder::visit(const Instruction &I) {
617  visit(I.getOpcode(), I);
618}
619
620void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
621  // Note: this doesn't use InstVisitor, because it has to work with
622  // ConstantExpr's in addition to instructions.
623  switch (Opcode) {
624  default: llvm_unreachable("Unknown instruction type encountered!");
625    // Build the switch statement using the Instruction.def file.
626#define HANDLE_INST(NUM, OPCODE, CLASS) \
627    case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break;
628#include "llvm/Instruction.def"
629  }
630
631  // Assign the ordering to the freshly created DAG nodes.
632  if (NodeMap.count(&I)) {
633    ++SDNodeOrder;
634    AssignOrderingToNode(getValue(&I).getNode());
635  }
636}
637
638SDValue SelectionDAGBuilder::getValue(const Value *V) {
639  SDValue &N = NodeMap[V];
640  if (N.getNode()) return N;
641
642  if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) {
643    EVT VT = TLI.getValueType(V->getType(), true);
644
645    if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
646      return N = DAG.getConstant(*CI, VT);
647
648    if (GlobalValue *GV = dyn_cast<GlobalValue>(C))
649      return N = DAG.getGlobalAddress(GV, VT);
650
651    if (isa<ConstantPointerNull>(C))
652      return N = DAG.getConstant(0, TLI.getPointerTy());
653
654    if (ConstantFP *CFP = dyn_cast<ConstantFP>(C))
655      return N = DAG.getConstantFP(*CFP, VT);
656
657    if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
658      return N = DAG.getUNDEF(VT);
659
660    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
661      visit(CE->getOpcode(), *CE);
662      SDValue N1 = NodeMap[V];
663      assert(N1.getNode() && "visit didn't populate the NodeMap!");
664      return N1;
665    }
666
667    if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
668      SmallVector<SDValue, 4> Constants;
669      for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
670           OI != OE; ++OI) {
671        SDNode *Val = getValue(*OI).getNode();
672        // If the operand is an empty aggregate, there are no values.
673        if (!Val) continue;
674        // Add each leaf value from the operand to the Constants list
675        // to form a flattened list of all the values.
676        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
677          Constants.push_back(SDValue(Val, i));
678      }
679
680      return DAG.getMergeValues(&Constants[0], Constants.size(),
681                                getCurDebugLoc());
682    }
683
684    if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
685      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
686             "Unknown struct or array constant!");
687
688      SmallVector<EVT, 4> ValueVTs;
689      ComputeValueVTs(TLI, C->getType(), ValueVTs);
690      unsigned NumElts = ValueVTs.size();
691      if (NumElts == 0)
692        return SDValue(); // empty struct
693      SmallVector<SDValue, 4> Constants(NumElts);
694      for (unsigned i = 0; i != NumElts; ++i) {
695        EVT EltVT = ValueVTs[i];
696        if (isa<UndefValue>(C))
697          Constants[i] = DAG.getUNDEF(EltVT);
698        else if (EltVT.isFloatingPoint())
699          Constants[i] = DAG.getConstantFP(0, EltVT);
700        else
701          Constants[i] = DAG.getConstant(0, EltVT);
702      }
703
704      return DAG.getMergeValues(&Constants[0], NumElts,
705                                getCurDebugLoc());
706    }
707
708    if (BlockAddress *BA = dyn_cast<BlockAddress>(C))
709      return DAG.getBlockAddress(BA, VT);
710
711    const VectorType *VecTy = cast<VectorType>(V->getType());
712    unsigned NumElements = VecTy->getNumElements();
713
714    // Now that we know the number and type of the elements, get that number of
715    // elements into the Ops array based on what kind of constant it is.
716    SmallVector<SDValue, 16> Ops;
717    if (ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
718      for (unsigned i = 0; i != NumElements; ++i)
719        Ops.push_back(getValue(CP->getOperand(i)));
720    } else {
721      assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
722      EVT EltVT = TLI.getValueType(VecTy->getElementType());
723
724      SDValue Op;
725      if (EltVT.isFloatingPoint())
726        Op = DAG.getConstantFP(0, EltVT);
727      else
728        Op = DAG.getConstant(0, EltVT);
729      Ops.assign(NumElements, Op);
730    }
731
732    // Create a BUILD_VECTOR node.
733    return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
734                                    VT, &Ops[0], Ops.size());
735  }
736
737  // If this is a static alloca, generate it as the frameindex instead of
738  // computation.
739  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
740    DenseMap<const AllocaInst*, int>::iterator SI =
741      FuncInfo.StaticAllocaMap.find(AI);
742    if (SI != FuncInfo.StaticAllocaMap.end())
743      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
744  }
745
746  unsigned InReg = FuncInfo.ValueMap[V];
747  assert(InReg && "Value not in map!");
748
749  RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
750  SDValue Chain = DAG.getEntryNode();
751  return RFV.getCopyFromRegs(DAG, getCurDebugLoc(), Chain, NULL);
752}
753
754/// Get the EVTs and ArgFlags collections that represent the legalized return
755/// type of the given function.  This does not require a DAG or a return value,
756/// and is suitable for use before any DAGs for the function are constructed.
757static void getReturnInfo(const Type* ReturnType,
758                   Attributes attr, SmallVectorImpl<EVT> &OutVTs,
759                   SmallVectorImpl<ISD::ArgFlagsTy> &OutFlags,
760                   TargetLowering &TLI,
761                   SmallVectorImpl<uint64_t> *Offsets = 0) {
762  SmallVector<EVT, 4> ValueVTs;
763  ComputeValueVTs(TLI, ReturnType, ValueVTs);
764  unsigned NumValues = ValueVTs.size();
765  if (NumValues == 0) return;
766  unsigned Offset = 0;
767
768  for (unsigned j = 0, f = NumValues; j != f; ++j) {
769    EVT VT = ValueVTs[j];
770    ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
771
772    if (attr & Attribute::SExt)
773      ExtendKind = ISD::SIGN_EXTEND;
774    else if (attr & Attribute::ZExt)
775      ExtendKind = ISD::ZERO_EXTEND;
776
777    // FIXME: C calling convention requires the return type to be promoted to
778    // at least 32-bit. But this is not necessary for non-C calling
779    // conventions. The frontend should mark functions whose return values
780    // require promoting with signext or zeroext attributes.
781    if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
782      EVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
783      if (VT.bitsLT(MinVT))
784        VT = MinVT;
785    }
786
787    unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT);
788    EVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT);
789    unsigned PartSize = TLI.getTargetData()->getTypeAllocSize(
790                        PartVT.getTypeForEVT(ReturnType->getContext()));
791
792    // 'inreg' on function refers to return value
793    ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
794    if (attr & Attribute::InReg)
795      Flags.setInReg();
796
797    // Propagate extension type if any
798    if (attr & Attribute::SExt)
799      Flags.setSExt();
800    else if (attr & Attribute::ZExt)
801      Flags.setZExt();
802
803    for (unsigned i = 0; i < NumParts; ++i) {
804      OutVTs.push_back(PartVT);
805      OutFlags.push_back(Flags);
806      if (Offsets)
807      {
808        Offsets->push_back(Offset);
809        Offset += PartSize;
810      }
811    }
812  }
813}
814
815void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
816  SDValue Chain = getControlRoot();
817  SmallVector<ISD::OutputArg, 8> Outs;
818  FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo();
819
820  if (!FLI.CanLowerReturn) {
821    unsigned DemoteReg = FLI.DemoteRegister;
822    const Function *F = I.getParent()->getParent();
823
824    // Emit a store of the return value through the virtual register.
825    // Leave Outs empty so that LowerReturn won't try to load return
826    // registers the usual way.
827    SmallVector<EVT, 1> PtrValueVTs;
828    ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
829                    PtrValueVTs);
830
831    SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
832    SDValue RetOp = getValue(I.getOperand(0));
833
834    SmallVector<EVT, 4> ValueVTs;
835    SmallVector<uint64_t, 4> Offsets;
836    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
837    unsigned NumValues = ValueVTs.size();
838
839    SmallVector<SDValue, 4> Chains(NumValues);
840    EVT PtrVT = PtrValueVTs[0];
841    for (unsigned i = 0; i != NumValues; ++i) {
842      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, RetPtr,
843                                DAG.getConstant(Offsets[i], PtrVT));
844      Chains[i] =
845        DAG.getStore(Chain, getCurDebugLoc(),
846                     SDValue(RetOp.getNode(), RetOp.getResNo() + i),
847                     Add, NULL, Offsets[i], false, false, 0);
848    }
849
850    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
851                        MVT::Other, &Chains[0], NumValues);
852  } else if (I.getNumOperands() != 0) {
853    SmallVector<EVT, 4> ValueVTs;
854    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
855    unsigned NumValues = ValueVTs.size();
856    if (NumValues) {
857      SDValue RetOp = getValue(I.getOperand(0));
858      for (unsigned j = 0, f = NumValues; j != f; ++j) {
859        EVT VT = ValueVTs[j];
860
861        ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
862
863        const Function *F = I.getParent()->getParent();
864        if (F->paramHasAttr(0, Attribute::SExt))
865          ExtendKind = ISD::SIGN_EXTEND;
866        else if (F->paramHasAttr(0, Attribute::ZExt))
867          ExtendKind = ISD::ZERO_EXTEND;
868
869        // FIXME: C calling convention requires the return type to be promoted
870        // to at least 32-bit. But this is not necessary for non-C calling
871        // conventions. The frontend should mark functions whose return values
872        // require promoting with signext or zeroext attributes.
873        if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
874          EVT MinVT = TLI.getRegisterType(*DAG.getContext(), MVT::i32);
875          if (VT.bitsLT(MinVT))
876            VT = MinVT;
877        }
878
879        unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
880        EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
881        SmallVector<SDValue, 4> Parts(NumParts);
882        getCopyToParts(DAG, getCurDebugLoc(),
883                       SDValue(RetOp.getNode(), RetOp.getResNo() + j),
884                       &Parts[0], NumParts, PartVT, ExtendKind);
885
886        // 'inreg' on function refers to return value
887        ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
888        if (F->paramHasAttr(0, Attribute::InReg))
889          Flags.setInReg();
890
891        // Propagate extension type if any
892        if (F->paramHasAttr(0, Attribute::SExt))
893          Flags.setSExt();
894        else if (F->paramHasAttr(0, Attribute::ZExt))
895          Flags.setZExt();
896
897        for (unsigned i = 0; i < NumParts; ++i)
898          Outs.push_back(ISD::OutputArg(Flags, Parts[i], /*isfixed=*/true));
899      }
900    }
901  }
902
903  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
904  CallingConv::ID CallConv =
905    DAG.getMachineFunction().getFunction()->getCallingConv();
906  Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
907                          Outs, getCurDebugLoc(), DAG);
908
909  // Verify that the target's LowerReturn behaved as expected.
910  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
911         "LowerReturn didn't return a valid chain!");
912
913  // Update the DAG with the new chain value resulting from return lowering.
914  DAG.setRoot(Chain);
915}
916
917/// CopyToExportRegsIfNeeded - If the given value has virtual registers
918/// created for it, emit nodes to copy the value into the virtual
919/// registers.
920void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
921  DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
922  if (VMI != FuncInfo.ValueMap.end()) {
923    assert(!V->use_empty() && "Unused value assigned virtual registers!");
924    CopyValueToVirtualRegister(V, VMI->second);
925  }
926}
927
928/// ExportFromCurrentBlock - If this condition isn't known to be exported from
929/// the current basic block, add it to ValueMap now so that we'll get a
930/// CopyTo/FromReg.
931void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
932  // No need to export constants.
933  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
934
935  // Already exported?
936  if (FuncInfo.isExportedInst(V)) return;
937
938  unsigned Reg = FuncInfo.InitializeRegForValue(V);
939  CopyValueToVirtualRegister(V, Reg);
940}
941
942bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
943                                                     const BasicBlock *FromBB) {
944  // The operands of the setcc have to be in this block.  We don't know
945  // how to export them from some other block.
946  if (const Instruction *VI = dyn_cast<Instruction>(V)) {
947    // Can export from current BB.
948    if (VI->getParent() == FromBB)
949      return true;
950
951    // Is already exported, noop.
952    return FuncInfo.isExportedInst(V);
953  }
954
955  // If this is an argument, we can export it if the BB is the entry block or
956  // if it is already exported.
957  if (isa<Argument>(V)) {
958    if (FromBB == &FromBB->getParent()->getEntryBlock())
959      return true;
960
961    // Otherwise, can only export this if it is already exported.
962    return FuncInfo.isExportedInst(V);
963  }
964
965  // Otherwise, constants can always be exported.
966  return true;
967}
968
969static bool InBlock(const Value *V, const BasicBlock *BB) {
970  if (const Instruction *I = dyn_cast<Instruction>(V))
971    return I->getParent() == BB;
972  return true;
973}
974
975/// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
976/// This function emits a branch and is used at the leaves of an OR or an
977/// AND operator tree.
978///
979void
980SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
981                                                  MachineBasicBlock *TBB,
982                                                  MachineBasicBlock *FBB,
983                                                  MachineBasicBlock *CurBB) {
984  const BasicBlock *BB = CurBB->getBasicBlock();
985
986  // If the leaf of the tree is a comparison, merge the condition into
987  // the caseblock.
988  if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
989    // The operands of the cmp have to be in this block.  We don't know
990    // how to export them from some other block.  If this is the first block
991    // of the sequence, no exporting is needed.
992    if (CurBB == CurMBB ||
993        (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
994         isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
995      ISD::CondCode Condition;
996      if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
997        Condition = getICmpCondCode(IC->getPredicate());
998      } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
999        Condition = getFCmpCondCode(FC->getPredicate());
1000      } else {
1001        Condition = ISD::SETEQ; // silence warning.
1002        llvm_unreachable("Unknown compare instruction");
1003      }
1004
1005      CaseBlock CB(Condition, BOp->getOperand(0),
1006                   BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1007      SwitchCases.push_back(CB);
1008      return;
1009    }
1010  }
1011
1012  // Create a CaseBlock record representing this branch.
1013  CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1014               NULL, TBB, FBB, CurBB);
1015  SwitchCases.push_back(CB);
1016}
1017
1018/// FindMergedConditions - If Cond is an expression like
1019void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1020                                               MachineBasicBlock *TBB,
1021                                               MachineBasicBlock *FBB,
1022                                               MachineBasicBlock *CurBB,
1023                                               unsigned Opc) {
1024  // If this node is not part of the or/and tree, emit it as a branch.
1025  const Instruction *BOp = dyn_cast<Instruction>(Cond);
1026  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1027      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1028      BOp->getParent() != CurBB->getBasicBlock() ||
1029      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1030      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1031    EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB);
1032    return;
1033  }
1034
1035  //  Create TmpBB after CurBB.
1036  MachineFunction::iterator BBI = CurBB;
1037  MachineFunction &MF = DAG.getMachineFunction();
1038  MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1039  CurBB->getParent()->insert(++BBI, TmpBB);
1040
1041  if (Opc == Instruction::Or) {
1042    // Codegen X | Y as:
1043    //   jmp_if_X TBB
1044    //   jmp TmpBB
1045    // TmpBB:
1046    //   jmp_if_Y TBB
1047    //   jmp FBB
1048    //
1049
1050    // Emit the LHS condition.
1051    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, Opc);
1052
1053    // Emit the RHS condition into TmpBB.
1054    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1055  } else {
1056    assert(Opc == Instruction::And && "Unknown merge op!");
1057    // Codegen X & Y as:
1058    //   jmp_if_X TmpBB
1059    //   jmp FBB
1060    // TmpBB:
1061    //   jmp_if_Y TBB
1062    //   jmp FBB
1063    //
1064    //  This requires creation of TmpBB after CurBB.
1065
1066    // Emit the LHS condition.
1067    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, Opc);
1068
1069    // Emit the RHS condition into TmpBB.
1070    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1071  }
1072}
1073
1074/// If the set of cases should be emitted as a series of branches, return true.
1075/// If we should emit this as a bunch of and/or'd together conditions, return
1076/// false.
1077bool
1078SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
1079  if (Cases.size() != 2) return true;
1080
1081  // If this is two comparisons of the same values or'd or and'd together, they
1082  // will get folded into a single comparison, so don't emit two blocks.
1083  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1084       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1085      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1086       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1087    return false;
1088  }
1089
1090  // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1091  // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1092  if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1093      Cases[0].CC == Cases[1].CC &&
1094      isa<Constant>(Cases[0].CmpRHS) &&
1095      cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1096    if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1097      return false;
1098    if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1099      return false;
1100  }
1101
1102  return true;
1103}
1104
1105void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1106  // Update machine-CFG edges.
1107  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1108
1109  // Figure out which block is immediately after the current one.
1110  MachineBasicBlock *NextBlock = 0;
1111  MachineFunction::iterator BBI = CurMBB;
1112  if (++BBI != FuncInfo.MF->end())
1113    NextBlock = BBI;
1114
1115  if (I.isUnconditional()) {
1116    // Update machine-CFG edges.
1117    CurMBB->addSuccessor(Succ0MBB);
1118
1119    // If this is not a fall-through branch, emit the branch.
1120    if (Succ0MBB != NextBlock)
1121      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1122                              MVT::Other, getControlRoot(),
1123                              DAG.getBasicBlock(Succ0MBB)));
1124
1125    return;
1126  }
1127
1128  // If this condition is one of the special cases we handle, do special stuff
1129  // now.
1130  const Value *CondVal = I.getCondition();
1131  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1132
1133  // If this is a series of conditions that are or'd or and'd together, emit
1134  // this as a sequence of branches instead of setcc's with and/or operations.
1135  // For example, instead of something like:
1136  //     cmp A, B
1137  //     C = seteq
1138  //     cmp D, E
1139  //     F = setle
1140  //     or C, F
1141  //     jnz foo
1142  // Emit:
1143  //     cmp A, B
1144  //     je foo
1145  //     cmp D, E
1146  //     jle foo
1147  //
1148  if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1149    if (BOp->hasOneUse() &&
1150        (BOp->getOpcode() == Instruction::And ||
1151         BOp->getOpcode() == Instruction::Or)) {
1152      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, CurMBB, BOp->getOpcode());
1153      // If the compares in later blocks need to use values not currently
1154      // exported from this block, export them now.  This block should always
1155      // be the first entry.
1156      assert(SwitchCases[0].ThisBB == CurMBB && "Unexpected lowering!");
1157
1158      // Allow some cases to be rejected.
1159      if (ShouldEmitAsBranches(SwitchCases)) {
1160        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1161          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1162          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1163        }
1164
1165        // Emit the branch for this block.
1166        visitSwitchCase(SwitchCases[0]);
1167        SwitchCases.erase(SwitchCases.begin());
1168        return;
1169      }
1170
1171      // Okay, we decided not to do this, remove any inserted MBB's and clear
1172      // SwitchCases.
1173      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1174        FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1175
1176      SwitchCases.clear();
1177    }
1178  }
1179
1180  // Create a CaseBlock record representing this branch.
1181  CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1182               NULL, Succ0MBB, Succ1MBB, CurMBB);
1183
1184  // Use visitSwitchCase to actually insert the fast branch sequence for this
1185  // cond branch.
1186  visitSwitchCase(CB);
1187}
1188
1189/// visitSwitchCase - Emits the necessary code to represent a single node in
1190/// the binary search tree resulting from lowering a switch instruction.
1191void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB) {
1192  SDValue Cond;
1193  SDValue CondLHS = getValue(CB.CmpLHS);
1194  DebugLoc dl = getCurDebugLoc();
1195
1196  // Build the setcc now.
1197  if (CB.CmpMHS == NULL) {
1198    // Fold "(X == true)" to X and "(X == false)" to !X to
1199    // handle common cases produced by branch lowering.
1200    if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1201        CB.CC == ISD::SETEQ)
1202      Cond = CondLHS;
1203    else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1204             CB.CC == ISD::SETEQ) {
1205      SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1206      Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1207    } else
1208      Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1209  } else {
1210    assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1211
1212    const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1213    const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
1214
1215    SDValue CmpOp = getValue(CB.CmpMHS);
1216    EVT VT = CmpOp.getValueType();
1217
1218    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1219      Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1220                          ISD::SETLE);
1221    } else {
1222      SDValue SUB = DAG.getNode(ISD::SUB, dl,
1223                                VT, CmpOp, DAG.getConstant(Low, VT));
1224      Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1225                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1226    }
1227  }
1228
1229  // Update successor info
1230  CurMBB->addSuccessor(CB.TrueBB);
1231  CurMBB->addSuccessor(CB.FalseBB);
1232
1233  // Set NextBlock to be the MBB immediately after the current one, if any.
1234  // This is used to avoid emitting unnecessary branches to the next block.
1235  MachineBasicBlock *NextBlock = 0;
1236  MachineFunction::iterator BBI = CurMBB;
1237  if (++BBI != FuncInfo.MF->end())
1238    NextBlock = BBI;
1239
1240  // If the lhs block is the next block, invert the condition so that we can
1241  // fall through to the lhs instead of the rhs block.
1242  if (CB.TrueBB == NextBlock) {
1243    std::swap(CB.TrueBB, CB.FalseBB);
1244    SDValue True = DAG.getConstant(1, Cond.getValueType());
1245    Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1246  }
1247
1248  SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1249                               MVT::Other, getControlRoot(), Cond,
1250                               DAG.getBasicBlock(CB.TrueBB));
1251
1252  // If the branch was constant folded, fix up the CFG.
1253  if (BrCond.getOpcode() == ISD::BR) {
1254    CurMBB->removeSuccessor(CB.FalseBB);
1255  } else {
1256    // Otherwise, go ahead and insert the false branch.
1257    if (BrCond == getControlRoot())
1258      CurMBB->removeSuccessor(CB.TrueBB);
1259
1260    if (CB.FalseBB != NextBlock)
1261      BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1262                           DAG.getBasicBlock(CB.FalseBB));
1263  }
1264
1265  DAG.setRoot(BrCond);
1266}
1267
1268/// visitJumpTable - Emit JumpTable node in the current MBB
1269void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1270  // Emit the code for the jump table
1271  assert(JT.Reg != -1U && "Should lower JT Header first!");
1272  EVT PTy = TLI.getPointerTy();
1273  SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1274                                     JT.Reg, PTy);
1275  SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1276  SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(),
1277                                    MVT::Other, Index.getValue(1),
1278                                    Table, Index);
1279  DAG.setRoot(BrJumpTable);
1280}
1281
1282/// visitJumpTableHeader - This function emits necessary code to produce index
1283/// in the JumpTable from switch case.
1284void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1285                                               JumpTableHeader &JTH) {
1286  // Subtract the lowest switch case value from the value being switched on and
1287  // conditional branch to default mbb if the result is greater than the
1288  // difference between smallest and largest cases.
1289  SDValue SwitchOp = getValue(JTH.SValue);
1290  EVT VT = SwitchOp.getValueType();
1291  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1292                            DAG.getConstant(JTH.First, VT));
1293
1294  // The SDNode we just created, which holds the value being switched on minus
1295  // the smallest case value, needs to be copied to a virtual register so it
1296  // can be used as an index into the jump table in a subsequent basic block.
1297  // This value may be smaller or larger than the target's pointer type, and
1298  // therefore require extension or truncating.
1299  SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy());
1300
1301  unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy());
1302  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1303                                    JumpTableReg, SwitchOp);
1304  JT.Reg = JumpTableReg;
1305
1306  // Emit the range check for the jump table, and branch to the default block
1307  // for the switch statement if the value being switched on exceeds the largest
1308  // case in the switch.
1309  SDValue CMP = DAG.getSetCC(getCurDebugLoc(),
1310                             TLI.getSetCCResultType(Sub.getValueType()), Sub,
1311                             DAG.getConstant(JTH.Last-JTH.First,VT),
1312                             ISD::SETUGT);
1313
1314  // Set NextBlock to be the MBB immediately after the current one, if any.
1315  // This is used to avoid emitting unnecessary branches to the next block.
1316  MachineBasicBlock *NextBlock = 0;
1317  MachineFunction::iterator BBI = CurMBB;
1318
1319  if (++BBI != FuncInfo.MF->end())
1320    NextBlock = BBI;
1321
1322  SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1323                               MVT::Other, CopyTo, CMP,
1324                               DAG.getBasicBlock(JT.Default));
1325
1326  if (JT.MBB != NextBlock)
1327    BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond,
1328                         DAG.getBasicBlock(JT.MBB));
1329
1330  DAG.setRoot(BrCond);
1331}
1332
1333/// visitBitTestHeader - This function emits necessary code to produce value
1334/// suitable for "bit tests"
1335void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B) {
1336  // Subtract the minimum value
1337  SDValue SwitchOp = getValue(B.SValue);
1338  EVT VT = SwitchOp.getValueType();
1339  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1340                            DAG.getConstant(B.First, VT));
1341
1342  // Check range
1343  SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(),
1344                                  TLI.getSetCCResultType(Sub.getValueType()),
1345                                  Sub, DAG.getConstant(B.Range, VT),
1346                                  ISD::SETUGT);
1347
1348  SDValue ShiftOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(),
1349                                       TLI.getPointerTy());
1350
1351  B.Reg = FuncInfo.MakeReg(TLI.getPointerTy());
1352  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1353                                    B.Reg, ShiftOp);
1354
1355  // Set NextBlock to be the MBB immediately after the current one, if any.
1356  // This is used to avoid emitting unnecessary branches to the next block.
1357  MachineBasicBlock *NextBlock = 0;
1358  MachineFunction::iterator BBI = CurMBB;
1359  if (++BBI != FuncInfo.MF->end())
1360    NextBlock = BBI;
1361
1362  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1363
1364  CurMBB->addSuccessor(B.Default);
1365  CurMBB->addSuccessor(MBB);
1366
1367  SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1368                                MVT::Other, CopyTo, RangeCmp,
1369                                DAG.getBasicBlock(B.Default));
1370
1371  if (MBB != NextBlock)
1372    BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo,
1373                          DAG.getBasicBlock(MBB));
1374
1375  DAG.setRoot(BrRange);
1376}
1377
1378/// visitBitTestCase - this function produces one "bit test"
1379void SelectionDAGBuilder::visitBitTestCase(MachineBasicBlock* NextMBB,
1380                                           unsigned Reg,
1381                                           BitTestCase &B) {
1382  // Make desired shift
1383  SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), Reg,
1384                                       TLI.getPointerTy());
1385  SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(),
1386                                  TLI.getPointerTy(),
1387                                  DAG.getConstant(1, TLI.getPointerTy()),
1388                                  ShiftOp);
1389
1390  // Emit bit tests and jumps
1391  SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(),
1392                              TLI.getPointerTy(), SwitchVal,
1393                              DAG.getConstant(B.Mask, TLI.getPointerTy()));
1394  SDValue AndCmp = DAG.getSetCC(getCurDebugLoc(),
1395                                TLI.getSetCCResultType(AndOp.getValueType()),
1396                                AndOp, DAG.getConstant(0, TLI.getPointerTy()),
1397                                ISD::SETNE);
1398
1399  CurMBB->addSuccessor(B.TargetBB);
1400  CurMBB->addSuccessor(NextMBB);
1401
1402  SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1403                              MVT::Other, getControlRoot(),
1404                              AndCmp, DAG.getBasicBlock(B.TargetBB));
1405
1406  // Set NextBlock to be the MBB immediately after the current one, if any.
1407  // This is used to avoid emitting unnecessary branches to the next block.
1408  MachineBasicBlock *NextBlock = 0;
1409  MachineFunction::iterator BBI = CurMBB;
1410  if (++BBI != FuncInfo.MF->end())
1411    NextBlock = BBI;
1412
1413  if (NextMBB != NextBlock)
1414    BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd,
1415                        DAG.getBasicBlock(NextMBB));
1416
1417  DAG.setRoot(BrAnd);
1418}
1419
1420void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1421  // Retrieve successors.
1422  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1423  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1424
1425  const Value *Callee(I.getCalledValue());
1426  if (isa<InlineAsm>(Callee))
1427    visitInlineAsm(&I);
1428  else
1429    LowerCallTo(&I, getValue(Callee), false, LandingPad);
1430
1431  // If the value of the invoke is used outside of its defining block, make it
1432  // available as a virtual register.
1433  CopyToExportRegsIfNeeded(&I);
1434
1435  // Update successor info
1436  CurMBB->addSuccessor(Return);
1437  CurMBB->addSuccessor(LandingPad);
1438
1439  // Drop into normal successor.
1440  DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1441                          MVT::Other, getControlRoot(),
1442                          DAG.getBasicBlock(Return)));
1443}
1444
1445void SelectionDAGBuilder::visitUnwind(const UnwindInst &I) {
1446}
1447
1448/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1449/// small case ranges).
1450bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
1451                                                 CaseRecVector& WorkList,
1452                                                 const Value* SV,
1453                                                 MachineBasicBlock* Default) {
1454  Case& BackCase  = *(CR.Range.second-1);
1455
1456  // Size is the number of Cases represented by this range.
1457  size_t Size = CR.Range.second - CR.Range.first;
1458  if (Size > 3)
1459    return false;
1460
1461  // Get the MachineFunction which holds the current MBB.  This is used when
1462  // inserting any additional MBBs necessary to represent the switch.
1463  MachineFunction *CurMF = FuncInfo.MF;
1464
1465  // Figure out which block is immediately after the current one.
1466  MachineBasicBlock *NextBlock = 0;
1467  MachineFunction::iterator BBI = CR.CaseBB;
1468
1469  if (++BBI != FuncInfo.MF->end())
1470    NextBlock = BBI;
1471
1472  // TODO: If any two of the cases has the same destination, and if one value
1473  // is the same as the other, but has one bit unset that the other has set,
1474  // use bit manipulation to do two compares at once.  For example:
1475  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1476
1477  // Rearrange the case blocks so that the last one falls through if possible.
1478  if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1479    // The last case block won't fall through into 'NextBlock' if we emit the
1480    // branches in this order.  See if rearranging a case value would help.
1481    for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1482      if (I->BB == NextBlock) {
1483        std::swap(*I, BackCase);
1484        break;
1485      }
1486    }
1487  }
1488
1489  // Create a CaseBlock record representing a conditional branch to
1490  // the Case's target mbb if the value being switched on SV is equal
1491  // to C.
1492  MachineBasicBlock *CurBlock = CR.CaseBB;
1493  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1494    MachineBasicBlock *FallThrough;
1495    if (I != E-1) {
1496      FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
1497      CurMF->insert(BBI, FallThrough);
1498
1499      // Put SV in a virtual register to make it available from the new blocks.
1500      ExportFromCurrentBlock(SV);
1501    } else {
1502      // If the last case doesn't match, go to the default block.
1503      FallThrough = Default;
1504    }
1505
1506    const Value *RHS, *LHS, *MHS;
1507    ISD::CondCode CC;
1508    if (I->High == I->Low) {
1509      // This is just small small case range :) containing exactly 1 case
1510      CC = ISD::SETEQ;
1511      LHS = SV; RHS = I->High; MHS = NULL;
1512    } else {
1513      CC = ISD::SETLE;
1514      LHS = I->Low; MHS = SV; RHS = I->High;
1515    }
1516    CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock);
1517
1518    // If emitting the first comparison, just call visitSwitchCase to emit the
1519    // code into the current block.  Otherwise, push the CaseBlock onto the
1520    // vector to be later processed by SDISel, and insert the node's MBB
1521    // before the next MBB.
1522    if (CurBlock == CurMBB)
1523      visitSwitchCase(CB);
1524    else
1525      SwitchCases.push_back(CB);
1526
1527    CurBlock = FallThrough;
1528  }
1529
1530  return true;
1531}
1532
1533static inline bool areJTsAllowed(const TargetLowering &TLI) {
1534  return !DisableJumpTables &&
1535          (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
1536           TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
1537}
1538
1539static APInt ComputeRange(const APInt &First, const APInt &Last) {
1540  APInt LastExt(Last), FirstExt(First);
1541  uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
1542  LastExt.sext(BitWidth); FirstExt.sext(BitWidth);
1543  return (LastExt - FirstExt + 1ULL);
1544}
1545
1546/// handleJTSwitchCase - Emit jumptable for current switch case range
1547bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec& CR,
1548                                             CaseRecVector& WorkList,
1549                                             const Value* SV,
1550                                             MachineBasicBlock* Default) {
1551  Case& FrontCase = *CR.Range.first;
1552  Case& BackCase  = *(CR.Range.second-1);
1553
1554  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
1555  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
1556
1557  APInt TSize(First.getBitWidth(), 0);
1558  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1559       I!=E; ++I)
1560    TSize += I->size();
1561
1562  if (!areJTsAllowed(TLI) || TSize.ult(4))
1563    return false;
1564
1565  APInt Range = ComputeRange(First, Last);
1566  double Density = TSize.roundToDouble() / Range.roundToDouble();
1567  if (Density < 0.4)
1568    return false;
1569
1570  DEBUG(dbgs() << "Lowering jump table\n"
1571               << "First entry: " << First << ". Last entry: " << Last << '\n'
1572               << "Range: " << Range
1573               << "Size: " << TSize << ". Density: " << Density << "\n\n");
1574
1575  // Get the MachineFunction which holds the current MBB.  This is used when
1576  // inserting any additional MBBs necessary to represent the switch.
1577  MachineFunction *CurMF = FuncInfo.MF;
1578
1579  // Figure out which block is immediately after the current one.
1580  MachineFunction::iterator BBI = CR.CaseBB;
1581  ++BBI;
1582
1583  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1584
1585  // Create a new basic block to hold the code for loading the address
1586  // of the jump table, and jumping to it.  Update successor information;
1587  // we will either branch to the default case for the switch, or the jump
1588  // table.
1589  MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1590  CurMF->insert(BBI, JumpTableBB);
1591  CR.CaseBB->addSuccessor(Default);
1592  CR.CaseBB->addSuccessor(JumpTableBB);
1593
1594  // Build a vector of destination BBs, corresponding to each target
1595  // of the jump table. If the value of the jump table slot corresponds to
1596  // a case statement, push the case's BB onto the vector, otherwise, push
1597  // the default BB.
1598  std::vector<MachineBasicBlock*> DestBBs;
1599  APInt TEI = First;
1600  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
1601    const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
1602    const APInt &High = cast<ConstantInt>(I->High)->getValue();
1603
1604    if (Low.sle(TEI) && TEI.sle(High)) {
1605      DestBBs.push_back(I->BB);
1606      if (TEI==High)
1607        ++I;
1608    } else {
1609      DestBBs.push_back(Default);
1610    }
1611  }
1612
1613  // Update successor info. Add one edge to each unique successor.
1614  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
1615  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
1616         E = DestBBs.end(); I != E; ++I) {
1617    if (!SuccsHandled[(*I)->getNumber()]) {
1618      SuccsHandled[(*I)->getNumber()] = true;
1619      JumpTableBB->addSuccessor(*I);
1620    }
1621  }
1622
1623  // Create a jump table index for this jump table.
1624  unsigned JTEncoding = TLI.getJumpTableEncoding();
1625  unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
1626                       ->createJumpTableIndex(DestBBs);
1627
1628  // Set the jump table information so that we can codegen it as a second
1629  // MachineBasicBlock
1630  JumpTable JT(-1U, JTI, JumpTableBB, Default);
1631  JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == CurMBB));
1632  if (CR.CaseBB == CurMBB)
1633    visitJumpTableHeader(JT, JTH);
1634
1635  JTCases.push_back(JumpTableBlock(JTH, JT));
1636
1637  return true;
1638}
1639
1640/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
1641/// 2 subtrees.
1642bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
1643                                                  CaseRecVector& WorkList,
1644                                                  const Value* SV,
1645                                                  MachineBasicBlock* Default) {
1646  // Get the MachineFunction which holds the current MBB.  This is used when
1647  // inserting any additional MBBs necessary to represent the switch.
1648  MachineFunction *CurMF = FuncInfo.MF;
1649
1650  // Figure out which block is immediately after the current one.
1651  MachineFunction::iterator BBI = CR.CaseBB;
1652  ++BBI;
1653
1654  Case& FrontCase = *CR.Range.first;
1655  Case& BackCase  = *(CR.Range.second-1);
1656  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1657
1658  // Size is the number of Cases represented by this range.
1659  unsigned Size = CR.Range.second - CR.Range.first;
1660
1661  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
1662  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
1663  double FMetric = 0;
1664  CaseItr Pivot = CR.Range.first + Size/2;
1665
1666  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
1667  // (heuristically) allow us to emit JumpTable's later.
1668  APInt TSize(First.getBitWidth(), 0);
1669  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1670       I!=E; ++I)
1671    TSize += I->size();
1672
1673  APInt LSize = FrontCase.size();
1674  APInt RSize = TSize-LSize;
1675  DEBUG(dbgs() << "Selecting best pivot: \n"
1676               << "First: " << First << ", Last: " << Last <<'\n'
1677               << "LSize: " << LSize << ", RSize: " << RSize << '\n');
1678  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
1679       J!=E; ++I, ++J) {
1680    const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
1681    const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
1682    APInt Range = ComputeRange(LEnd, RBegin);
1683    assert((Range - 2ULL).isNonNegative() &&
1684           "Invalid case distance");
1685    double LDensity = (double)LSize.roundToDouble() /
1686                           (LEnd - First + 1ULL).roundToDouble();
1687    double RDensity = (double)RSize.roundToDouble() /
1688                           (Last - RBegin + 1ULL).roundToDouble();
1689    double Metric = Range.logBase2()*(LDensity+RDensity);
1690    // Should always split in some non-trivial place
1691    DEBUG(dbgs() <<"=>Step\n"
1692                 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
1693                 << "LDensity: " << LDensity
1694                 << ", RDensity: " << RDensity << '\n'
1695                 << "Metric: " << Metric << '\n');
1696    if (FMetric < Metric) {
1697      Pivot = J;
1698      FMetric = Metric;
1699      DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
1700    }
1701
1702    LSize += J->size();
1703    RSize -= J->size();
1704  }
1705  if (areJTsAllowed(TLI)) {
1706    // If our case is dense we *really* should handle it earlier!
1707    assert((FMetric > 0) && "Should handle dense range earlier!");
1708  } else {
1709    Pivot = CR.Range.first + Size/2;
1710  }
1711
1712  CaseRange LHSR(CR.Range.first, Pivot);
1713  CaseRange RHSR(Pivot, CR.Range.second);
1714  Constant *C = Pivot->Low;
1715  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
1716
1717  // We know that we branch to the LHS if the Value being switched on is
1718  // less than the Pivot value, C.  We use this to optimize our binary
1719  // tree a bit, by recognizing that if SV is greater than or equal to the
1720  // LHS's Case Value, and that Case Value is exactly one less than the
1721  // Pivot's Value, then we can branch directly to the LHS's Target,
1722  // rather than creating a leaf node for it.
1723  if ((LHSR.second - LHSR.first) == 1 &&
1724      LHSR.first->High == CR.GE &&
1725      cast<ConstantInt>(C)->getValue() ==
1726      (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
1727    TrueBB = LHSR.first->BB;
1728  } else {
1729    TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1730    CurMF->insert(BBI, TrueBB);
1731    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
1732
1733    // Put SV in a virtual register to make it available from the new blocks.
1734    ExportFromCurrentBlock(SV);
1735  }
1736
1737  // Similar to the optimization above, if the Value being switched on is
1738  // known to be less than the Constant CR.LT, and the current Case Value
1739  // is CR.LT - 1, then we can branch directly to the target block for
1740  // the current Case Value, rather than emitting a RHS leaf node for it.
1741  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
1742      cast<ConstantInt>(RHSR.first->Low)->getValue() ==
1743      (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
1744    FalseBB = RHSR.first->BB;
1745  } else {
1746    FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1747    CurMF->insert(BBI, FalseBB);
1748    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
1749
1750    // Put SV in a virtual register to make it available from the new blocks.
1751    ExportFromCurrentBlock(SV);
1752  }
1753
1754  // Create a CaseBlock record representing a conditional branch to
1755  // the LHS node if the value being switched on SV is less than C.
1756  // Otherwise, branch to LHS.
1757  CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
1758
1759  if (CR.CaseBB == CurMBB)
1760    visitSwitchCase(CB);
1761  else
1762    SwitchCases.push_back(CB);
1763
1764  return true;
1765}
1766
1767/// handleBitTestsSwitchCase - if current case range has few destination and
1768/// range span less, than machine word bitwidth, encode case range into series
1769/// of masks and emit bit tests with these masks.
1770bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
1771                                                   CaseRecVector& WorkList,
1772                                                   const Value* SV,
1773                                                   MachineBasicBlock* Default){
1774  EVT PTy = TLI.getPointerTy();
1775  unsigned IntPtrBits = PTy.getSizeInBits();
1776
1777  Case& FrontCase = *CR.Range.first;
1778  Case& BackCase  = *(CR.Range.second-1);
1779
1780  // Get the MachineFunction which holds the current MBB.  This is used when
1781  // inserting any additional MBBs necessary to represent the switch.
1782  MachineFunction *CurMF = FuncInfo.MF;
1783
1784  // If target does not have legal shift left, do not emit bit tests at all.
1785  if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
1786    return false;
1787
1788  size_t numCmps = 0;
1789  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1790       I!=E; ++I) {
1791    // Single case counts one, case range - two.
1792    numCmps += (I->Low == I->High ? 1 : 2);
1793  }
1794
1795  // Count unique destinations
1796  SmallSet<MachineBasicBlock*, 4> Dests;
1797  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
1798    Dests.insert(I->BB);
1799    if (Dests.size() > 3)
1800      // Don't bother the code below, if there are too much unique destinations
1801      return false;
1802  }
1803  DEBUG(dbgs() << "Total number of unique destinations: "
1804        << Dests.size() << '\n'
1805        << "Total number of comparisons: " << numCmps << '\n');
1806
1807  // Compute span of values.
1808  const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
1809  const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
1810  APInt cmpRange = maxValue - minValue;
1811
1812  DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
1813               << "Low bound: " << minValue << '\n'
1814               << "High bound: " << maxValue << '\n');
1815
1816  if (cmpRange.uge(IntPtrBits) ||
1817      (!(Dests.size() == 1 && numCmps >= 3) &&
1818       !(Dests.size() == 2 && numCmps >= 5) &&
1819       !(Dests.size() >= 3 && numCmps >= 6)))
1820    return false;
1821
1822  DEBUG(dbgs() << "Emitting bit tests\n");
1823  APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
1824
1825  // Optimize the case where all the case values fit in a
1826  // word without having to subtract minValue. In this case,
1827  // we can optimize away the subtraction.
1828  if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) {
1829    cmpRange = maxValue;
1830  } else {
1831    lowBound = minValue;
1832  }
1833
1834  CaseBitsVector CasesBits;
1835  unsigned i, count = 0;
1836
1837  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
1838    MachineBasicBlock* Dest = I->BB;
1839    for (i = 0; i < count; ++i)
1840      if (Dest == CasesBits[i].BB)
1841        break;
1842
1843    if (i == count) {
1844      assert((count < 3) && "Too much destinations to test!");
1845      CasesBits.push_back(CaseBits(0, Dest, 0));
1846      count++;
1847    }
1848
1849    const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
1850    const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
1851
1852    uint64_t lo = (lowValue - lowBound).getZExtValue();
1853    uint64_t hi = (highValue - lowBound).getZExtValue();
1854
1855    for (uint64_t j = lo; j <= hi; j++) {
1856      CasesBits[i].Mask |=  1ULL << j;
1857      CasesBits[i].Bits++;
1858    }
1859
1860  }
1861  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
1862
1863  BitTestInfo BTC;
1864
1865  // Figure out which block is immediately after the current one.
1866  MachineFunction::iterator BBI = CR.CaseBB;
1867  ++BBI;
1868
1869  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1870
1871  DEBUG(dbgs() << "Cases:\n");
1872  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
1873    DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
1874                 << ", Bits: " << CasesBits[i].Bits
1875                 << ", BB: " << CasesBits[i].BB << '\n');
1876
1877    MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1878    CurMF->insert(BBI, CaseBB);
1879    BTC.push_back(BitTestCase(CasesBits[i].Mask,
1880                              CaseBB,
1881                              CasesBits[i].BB));
1882
1883    // Put SV in a virtual register to make it available from the new blocks.
1884    ExportFromCurrentBlock(SV);
1885  }
1886
1887  BitTestBlock BTB(lowBound, cmpRange, SV,
1888                   -1U, (CR.CaseBB == CurMBB),
1889                   CR.CaseBB, Default, BTC);
1890
1891  if (CR.CaseBB == CurMBB)
1892    visitBitTestHeader(BTB);
1893
1894  BitTestCases.push_back(BTB);
1895
1896  return true;
1897}
1898
1899/// Clusterify - Transform simple list of Cases into list of CaseRange's
1900size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
1901                                       const SwitchInst& SI) {
1902  size_t numCmps = 0;
1903
1904  // Start with "simple" cases
1905  for (size_t i = 1; i < SI.getNumSuccessors(); ++i) {
1906    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
1907    Cases.push_back(Case(SI.getSuccessorValue(i),
1908                         SI.getSuccessorValue(i),
1909                         SMBB));
1910  }
1911  std::sort(Cases.begin(), Cases.end(), CaseCmp());
1912
1913  // Merge case into clusters
1914  if (Cases.size() >= 2)
1915    // Must recompute end() each iteration because it may be
1916    // invalidated by erase if we hold on to it
1917    for (CaseItr I = Cases.begin(), J = ++(Cases.begin()); J != Cases.end(); ) {
1918      const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
1919      const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
1920      MachineBasicBlock* nextBB = J->BB;
1921      MachineBasicBlock* currentBB = I->BB;
1922
1923      // If the two neighboring cases go to the same destination, merge them
1924      // into a single case.
1925      if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
1926        I->High = J->High;
1927        J = Cases.erase(J);
1928      } else {
1929        I = J++;
1930      }
1931    }
1932
1933  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
1934    if (I->Low != I->High)
1935      // A range counts double, since it requires two compares.
1936      ++numCmps;
1937  }
1938
1939  return numCmps;
1940}
1941
1942void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
1943  // Figure out which block is immediately after the current one.
1944  MachineBasicBlock *NextBlock = 0;
1945  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
1946
1947  // If there is only the default destination, branch to it if it is not the
1948  // next basic block.  Otherwise, just fall through.
1949  if (SI.getNumOperands() == 2) {
1950    // Update machine-CFG edges.
1951
1952    // If this is not a fall-through branch, emit the branch.
1953    CurMBB->addSuccessor(Default);
1954    if (Default != NextBlock)
1955      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1956                              MVT::Other, getControlRoot(),
1957                              DAG.getBasicBlock(Default)));
1958
1959    return;
1960  }
1961
1962  // If there are any non-default case statements, create a vector of Cases
1963  // representing each one, and sort the vector so that we can efficiently
1964  // create a binary search tree from them.
1965  CaseVector Cases;
1966  size_t numCmps = Clusterify(Cases, SI);
1967  DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
1968               << ". Total compares: " << numCmps << '\n');
1969  numCmps = 0;
1970
1971  // Get the Value to be switched on and default basic blocks, which will be
1972  // inserted into CaseBlock records, representing basic blocks in the binary
1973  // search tree.
1974  const Value *SV = SI.getOperand(0);
1975
1976  // Push the initial CaseRec onto the worklist
1977  CaseRecVector WorkList;
1978  WorkList.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end())));
1979
1980  while (!WorkList.empty()) {
1981    // Grab a record representing a case range to process off the worklist
1982    CaseRec CR = WorkList.back();
1983    WorkList.pop_back();
1984
1985    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default))
1986      continue;
1987
1988    // If the range has few cases (two or less) emit a series of specific
1989    // tests.
1990    if (handleSmallSwitchRange(CR, WorkList, SV, Default))
1991      continue;
1992
1993    // If the switch has more than 5 blocks, and at least 40% dense, and the
1994    // target supports indirect branches, then emit a jump table rather than
1995    // lowering the switch to a binary tree of conditional branches.
1996    if (handleJTSwitchCase(CR, WorkList, SV, Default))
1997      continue;
1998
1999    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2000    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2001    handleBTSplitSwitchCase(CR, WorkList, SV, Default);
2002  }
2003}
2004
2005void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2006  // Update machine-CFG edges with unique successors.
2007  SmallVector<BasicBlock*, 32> succs;
2008  succs.reserve(I.getNumSuccessors());
2009  for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i)
2010    succs.push_back(I.getSuccessor(i));
2011  array_pod_sort(succs.begin(), succs.end());
2012  succs.erase(std::unique(succs.begin(), succs.end()), succs.end());
2013  for (unsigned i = 0, e = succs.size(); i != e; ++i)
2014    CurMBB->addSuccessor(FuncInfo.MBBMap[succs[i]]);
2015
2016  DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(),
2017                          MVT::Other, getControlRoot(),
2018                          getValue(I.getAddress())));
2019}
2020
2021void SelectionDAGBuilder::visitFSub(const User &I) {
2022  // -0.0 - X --> fneg
2023  const Type *Ty = I.getType();
2024  if (Ty->isVectorTy()) {
2025    if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) {
2026      const VectorType *DestTy = cast<VectorType>(I.getType());
2027      const Type *ElTy = DestTy->getElementType();
2028      unsigned VL = DestTy->getNumElements();
2029      std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy));
2030      Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size());
2031      if (CV == CNZ) {
2032        SDValue Op2 = getValue(I.getOperand(1));
2033        setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2034                                 Op2.getValueType(), Op2));
2035        return;
2036      }
2037    }
2038  }
2039
2040  if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
2041    if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) {
2042      SDValue Op2 = getValue(I.getOperand(1));
2043      setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2044                               Op2.getValueType(), Op2));
2045      return;
2046    }
2047
2048  visitBinary(I, ISD::FSUB);
2049}
2050
2051void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2052  SDValue Op1 = getValue(I.getOperand(0));
2053  SDValue Op2 = getValue(I.getOperand(1));
2054  setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(),
2055                           Op1.getValueType(), Op1, Op2));
2056}
2057
2058void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2059  SDValue Op1 = getValue(I.getOperand(0));
2060  SDValue Op2 = getValue(I.getOperand(1));
2061  if (!I.getType()->isVectorTy() &&
2062      Op2.getValueType() != TLI.getShiftAmountTy()) {
2063    // If the operand is smaller than the shift count type, promote it.
2064    EVT PTy = TLI.getPointerTy();
2065    EVT STy = TLI.getShiftAmountTy();
2066    if (STy.bitsGT(Op2.getValueType()))
2067      Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(),
2068                        TLI.getShiftAmountTy(), Op2);
2069    // If the operand is larger than the shift count type but the shift
2070    // count type has enough bits to represent any shift value, truncate
2071    // it now. This is a common case and it exposes the truncate to
2072    // optimization early.
2073    else if (STy.getSizeInBits() >=
2074             Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2075      Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2076                        TLI.getShiftAmountTy(), Op2);
2077    // Otherwise we'll need to temporarily settle for some other
2078    // convenient type; type legalization will make adjustments as
2079    // needed.
2080    else if (PTy.bitsLT(Op2.getValueType()))
2081      Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2082                        TLI.getPointerTy(), Op2);
2083    else if (PTy.bitsGT(Op2.getValueType()))
2084      Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(),
2085                        TLI.getPointerTy(), Op2);
2086  }
2087
2088  setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(),
2089                           Op1.getValueType(), Op1, Op2));
2090}
2091
2092void SelectionDAGBuilder::visitICmp(const User &I) {
2093  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2094  if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2095    predicate = IC->getPredicate();
2096  else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2097    predicate = ICmpInst::Predicate(IC->getPredicate());
2098  SDValue Op1 = getValue(I.getOperand(0));
2099  SDValue Op2 = getValue(I.getOperand(1));
2100  ISD::CondCode Opcode = getICmpCondCode(predicate);
2101
2102  EVT DestVT = TLI.getValueType(I.getType());
2103  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode));
2104}
2105
2106void SelectionDAGBuilder::visitFCmp(const User &I) {
2107  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2108  if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2109    predicate = FC->getPredicate();
2110  else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2111    predicate = FCmpInst::Predicate(FC->getPredicate());
2112  SDValue Op1 = getValue(I.getOperand(0));
2113  SDValue Op2 = getValue(I.getOperand(1));
2114  ISD::CondCode Condition = getFCmpCondCode(predicate);
2115  EVT DestVT = TLI.getValueType(I.getType());
2116  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition));
2117}
2118
2119void SelectionDAGBuilder::visitSelect(const User &I) {
2120  SmallVector<EVT, 4> ValueVTs;
2121  ComputeValueVTs(TLI, I.getType(), ValueVTs);
2122  unsigned NumValues = ValueVTs.size();
2123  if (NumValues == 0) return;
2124
2125  SmallVector<SDValue, 4> Values(NumValues);
2126  SDValue Cond     = getValue(I.getOperand(0));
2127  SDValue TrueVal  = getValue(I.getOperand(1));
2128  SDValue FalseVal = getValue(I.getOperand(2));
2129
2130  for (unsigned i = 0; i != NumValues; ++i)
2131    Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(),
2132                          TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2133                            Cond,
2134                            SDValue(TrueVal.getNode(),
2135                                    TrueVal.getResNo() + i),
2136                            SDValue(FalseVal.getNode(),
2137                                    FalseVal.getResNo() + i));
2138
2139  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2140                           DAG.getVTList(&ValueVTs[0], NumValues),
2141                           &Values[0], NumValues));
2142}
2143
2144void SelectionDAGBuilder::visitTrunc(const User &I) {
2145  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2146  SDValue N = getValue(I.getOperand(0));
2147  EVT DestVT = TLI.getValueType(I.getType());
2148  setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N));
2149}
2150
2151void SelectionDAGBuilder::visitZExt(const User &I) {
2152  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2153  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2154  SDValue N = getValue(I.getOperand(0));
2155  EVT DestVT = TLI.getValueType(I.getType());
2156  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N));
2157}
2158
2159void SelectionDAGBuilder::visitSExt(const User &I) {
2160  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2161  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2162  SDValue N = getValue(I.getOperand(0));
2163  EVT DestVT = TLI.getValueType(I.getType());
2164  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N));
2165}
2166
2167void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2168  // FPTrunc is never a no-op cast, no need to check
2169  SDValue N = getValue(I.getOperand(0));
2170  EVT DestVT = TLI.getValueType(I.getType());
2171  setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(),
2172                           DestVT, N, DAG.getIntPtrConstant(0)));
2173}
2174
2175void SelectionDAGBuilder::visitFPExt(const User &I){
2176  // FPTrunc is never a no-op cast, no need to check
2177  SDValue N = getValue(I.getOperand(0));
2178  EVT DestVT = TLI.getValueType(I.getType());
2179  setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N));
2180}
2181
2182void SelectionDAGBuilder::visitFPToUI(const User &I) {
2183  // FPToUI is never a no-op cast, no need to check
2184  SDValue N = getValue(I.getOperand(0));
2185  EVT DestVT = TLI.getValueType(I.getType());
2186  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N));
2187}
2188
2189void SelectionDAGBuilder::visitFPToSI(const User &I) {
2190  // FPToSI is never a no-op cast, no need to check
2191  SDValue N = getValue(I.getOperand(0));
2192  EVT DestVT = TLI.getValueType(I.getType());
2193  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N));
2194}
2195
2196void SelectionDAGBuilder::visitUIToFP(const User &I) {
2197  // UIToFP is never a no-op cast, no need to check
2198  SDValue N = getValue(I.getOperand(0));
2199  EVT DestVT = TLI.getValueType(I.getType());
2200  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N));
2201}
2202
2203void SelectionDAGBuilder::visitSIToFP(const User &I){
2204  // SIToFP is never a no-op cast, no need to check
2205  SDValue N = getValue(I.getOperand(0));
2206  EVT DestVT = TLI.getValueType(I.getType());
2207  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N));
2208}
2209
2210void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2211  // What to do depends on the size of the integer and the size of the pointer.
2212  // We can either truncate, zero extend, or no-op, accordingly.
2213  SDValue N = getValue(I.getOperand(0));
2214  EVT SrcVT = N.getValueType();
2215  EVT DestVT = TLI.getValueType(I.getType());
2216  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2217}
2218
2219void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2220  // What to do depends on the size of the integer and the size of the pointer.
2221  // We can either truncate, zero extend, or no-op, accordingly.
2222  SDValue N = getValue(I.getOperand(0));
2223  EVT SrcVT = N.getValueType();
2224  EVT DestVT = TLI.getValueType(I.getType());
2225  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2226}
2227
2228void SelectionDAGBuilder::visitBitCast(const User &I) {
2229  SDValue N = getValue(I.getOperand(0));
2230  EVT DestVT = TLI.getValueType(I.getType());
2231
2232  // BitCast assures us that source and destination are the same size so this is
2233  // either a BIT_CONVERT or a no-op.
2234  if (DestVT != N.getValueType())
2235    setValue(&I, DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
2236                             DestVT, N)); // convert types.
2237  else
2238    setValue(&I, N);            // noop cast.
2239}
2240
2241void SelectionDAGBuilder::visitInsertElement(const User &I) {
2242  SDValue InVec = getValue(I.getOperand(0));
2243  SDValue InVal = getValue(I.getOperand(1));
2244  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2245                              TLI.getPointerTy(),
2246                              getValue(I.getOperand(2)));
2247  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(),
2248                           TLI.getValueType(I.getType()),
2249                           InVec, InVal, InIdx));
2250}
2251
2252void SelectionDAGBuilder::visitExtractElement(const User &I) {
2253  SDValue InVec = getValue(I.getOperand(0));
2254  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2255                              TLI.getPointerTy(),
2256                              getValue(I.getOperand(1)));
2257  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2258                           TLI.getValueType(I.getType()), InVec, InIdx));
2259}
2260
2261// Utility for visitShuffleVector - Returns true if the mask is mask starting
2262// from SIndx and increasing to the element length (undefs are allowed).
2263static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) {
2264  unsigned MaskNumElts = Mask.size();
2265  for (unsigned i = 0; i != MaskNumElts; ++i)
2266    if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx)))
2267      return false;
2268  return true;
2269}
2270
2271void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2272  SmallVector<int, 8> Mask;
2273  SDValue Src1 = getValue(I.getOperand(0));
2274  SDValue Src2 = getValue(I.getOperand(1));
2275
2276  // Convert the ConstantVector mask operand into an array of ints, with -1
2277  // representing undef values.
2278  SmallVector<Constant*, 8> MaskElts;
2279  cast<Constant>(I.getOperand(2))->getVectorElements(MaskElts);
2280  unsigned MaskNumElts = MaskElts.size();
2281  for (unsigned i = 0; i != MaskNumElts; ++i) {
2282    if (isa<UndefValue>(MaskElts[i]))
2283      Mask.push_back(-1);
2284    else
2285      Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue());
2286  }
2287
2288  EVT VT = TLI.getValueType(I.getType());
2289  EVT SrcVT = Src1.getValueType();
2290  unsigned SrcNumElts = SrcVT.getVectorNumElements();
2291
2292  if (SrcNumElts == MaskNumElts) {
2293    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2294                                      &Mask[0]));
2295    return;
2296  }
2297
2298  // Normalize the shuffle vector since mask and vector length don't match.
2299  if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2300    // Mask is longer than the source vectors and is a multiple of the source
2301    // vectors.  We can use concatenate vector to make the mask and vectors
2302    // lengths match.
2303    if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) {
2304      // The shuffle is concatenating two vectors together.
2305      setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2306                               VT, Src1, Src2));
2307      return;
2308    }
2309
2310    // Pad both vectors with undefs to make them the same length as the mask.
2311    unsigned NumConcat = MaskNumElts / SrcNumElts;
2312    bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2313    bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2314    SDValue UndefVal = DAG.getUNDEF(SrcVT);
2315
2316    SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2317    SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2318    MOps1[0] = Src1;
2319    MOps2[0] = Src2;
2320
2321    Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2322                                                  getCurDebugLoc(), VT,
2323                                                  &MOps1[0], NumConcat);
2324    Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2325                                                  getCurDebugLoc(), VT,
2326                                                  &MOps2[0], NumConcat);
2327
2328    // Readjust mask for new input vector length.
2329    SmallVector<int, 8> MappedOps;
2330    for (unsigned i = 0; i != MaskNumElts; ++i) {
2331      int Idx = Mask[i];
2332      if (Idx < (int)SrcNumElts)
2333        MappedOps.push_back(Idx);
2334      else
2335        MappedOps.push_back(Idx + MaskNumElts - SrcNumElts);
2336    }
2337
2338    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2339                                      &MappedOps[0]));
2340    return;
2341  }
2342
2343  if (SrcNumElts > MaskNumElts) {
2344    // Analyze the access pattern of the vector to see if we can extract
2345    // two subvectors and do the shuffle. The analysis is done by calculating
2346    // the range of elements the mask access on both vectors.
2347    int MinRange[2] = { SrcNumElts+1, SrcNumElts+1};
2348    int MaxRange[2] = {-1, -1};
2349
2350    for (unsigned i = 0; i != MaskNumElts; ++i) {
2351      int Idx = Mask[i];
2352      int Input = 0;
2353      if (Idx < 0)
2354        continue;
2355
2356      if (Idx >= (int)SrcNumElts) {
2357        Input = 1;
2358        Idx -= SrcNumElts;
2359      }
2360      if (Idx > MaxRange[Input])
2361        MaxRange[Input] = Idx;
2362      if (Idx < MinRange[Input])
2363        MinRange[Input] = Idx;
2364    }
2365
2366    // Check if the access is smaller than the vector size and can we find
2367    // a reasonable extract index.
2368    int RangeUse[2] = { 2, 2 };  // 0 = Unused, 1 = Extract, 2 = Can not
2369                                 // Extract.
2370    int StartIdx[2];  // StartIdx to extract from
2371    for (int Input=0; Input < 2; ++Input) {
2372      if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) {
2373        RangeUse[Input] = 0; // Unused
2374        StartIdx[Input] = 0;
2375      } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) {
2376        // Fits within range but we should see if we can find a good
2377        // start index that is a multiple of the mask length.
2378        if (MaxRange[Input] < (int)MaskNumElts) {
2379          RangeUse[Input] = 1; // Extract from beginning of the vector
2380          StartIdx[Input] = 0;
2381        } else {
2382          StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2383          if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2384              StartIdx[Input] + MaskNumElts < SrcNumElts)
2385            RangeUse[Input] = 1; // Extract from a multiple of the mask length.
2386        }
2387      }
2388    }
2389
2390    if (RangeUse[0] == 0 && RangeUse[1] == 0) {
2391      setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
2392      return;
2393    }
2394    else if (RangeUse[0] < 2 && RangeUse[1] < 2) {
2395      // Extract appropriate subvector and generate a vector shuffle
2396      for (int Input=0; Input < 2; ++Input) {
2397        SDValue &Src = Input == 0 ? Src1 : Src2;
2398        if (RangeUse[Input] == 0)
2399          Src = DAG.getUNDEF(VT);
2400        else
2401          Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT,
2402                            Src, DAG.getIntPtrConstant(StartIdx[Input]));
2403      }
2404
2405      // Calculate new mask.
2406      SmallVector<int, 8> MappedOps;
2407      for (unsigned i = 0; i != MaskNumElts; ++i) {
2408        int Idx = Mask[i];
2409        if (Idx < 0)
2410          MappedOps.push_back(Idx);
2411        else if (Idx < (int)SrcNumElts)
2412          MappedOps.push_back(Idx - StartIdx[0]);
2413        else
2414          MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts);
2415      }
2416
2417      setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2418                                        &MappedOps[0]));
2419      return;
2420    }
2421  }
2422
2423  // We can't use either concat vectors or extract subvectors so fall back to
2424  // replacing the shuffle with extract and build vector.
2425  // to insert and build vector.
2426  EVT EltVT = VT.getVectorElementType();
2427  EVT PtrVT = TLI.getPointerTy();
2428  SmallVector<SDValue,8> Ops;
2429  for (unsigned i = 0; i != MaskNumElts; ++i) {
2430    if (Mask[i] < 0) {
2431      Ops.push_back(DAG.getUNDEF(EltVT));
2432    } else {
2433      int Idx = Mask[i];
2434      SDValue Res;
2435
2436      if (Idx < (int)SrcNumElts)
2437        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2438                          EltVT, Src1, DAG.getConstant(Idx, PtrVT));
2439      else
2440        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2441                          EltVT, Src2,
2442                          DAG.getConstant(Idx - SrcNumElts, PtrVT));
2443
2444      Ops.push_back(Res);
2445    }
2446  }
2447
2448  setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
2449                           VT, &Ops[0], Ops.size()));
2450}
2451
2452void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
2453  const Value *Op0 = I.getOperand(0);
2454  const Value *Op1 = I.getOperand(1);
2455  const Type *AggTy = I.getType();
2456  const Type *ValTy = Op1->getType();
2457  bool IntoUndef = isa<UndefValue>(Op0);
2458  bool FromUndef = isa<UndefValue>(Op1);
2459
2460  unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
2461                                            I.idx_begin(), I.idx_end());
2462
2463  SmallVector<EVT, 4> AggValueVTs;
2464  ComputeValueVTs(TLI, AggTy, AggValueVTs);
2465  SmallVector<EVT, 4> ValValueVTs;
2466  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2467
2468  unsigned NumAggValues = AggValueVTs.size();
2469  unsigned NumValValues = ValValueVTs.size();
2470  SmallVector<SDValue, 4> Values(NumAggValues);
2471
2472  SDValue Agg = getValue(Op0);
2473  SDValue Val = getValue(Op1);
2474  unsigned i = 0;
2475  // Copy the beginning value(s) from the original aggregate.
2476  for (; i != LinearIndex; ++i)
2477    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2478                SDValue(Agg.getNode(), Agg.getResNo() + i);
2479  // Copy values from the inserted value(s).
2480  for (; i != LinearIndex + NumValValues; ++i)
2481    Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2482                SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
2483  // Copy remaining value(s) from the original aggregate.
2484  for (; i != NumAggValues; ++i)
2485    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2486                SDValue(Agg.getNode(), Agg.getResNo() + i);
2487
2488  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2489                           DAG.getVTList(&AggValueVTs[0], NumAggValues),
2490                           &Values[0], NumAggValues));
2491}
2492
2493void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
2494  const Value *Op0 = I.getOperand(0);
2495  const Type *AggTy = Op0->getType();
2496  const Type *ValTy = I.getType();
2497  bool OutOfUndef = isa<UndefValue>(Op0);
2498
2499  unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
2500                                            I.idx_begin(), I.idx_end());
2501
2502  SmallVector<EVT, 4> ValValueVTs;
2503  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2504
2505  unsigned NumValValues = ValValueVTs.size();
2506  SmallVector<SDValue, 4> Values(NumValValues);
2507
2508  SDValue Agg = getValue(Op0);
2509  // Copy out the selected value(s).
2510  for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
2511    Values[i - LinearIndex] =
2512      OutOfUndef ?
2513        DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
2514        SDValue(Agg.getNode(), Agg.getResNo() + i);
2515
2516  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2517                           DAG.getVTList(&ValValueVTs[0], NumValValues),
2518                           &Values[0], NumValValues));
2519}
2520
2521void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
2522  SDValue N = getValue(I.getOperand(0));
2523  const Type *Ty = I.getOperand(0)->getType();
2524
2525  for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
2526       OI != E; ++OI) {
2527    const Value *Idx = *OI;
2528    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2529      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2530      if (Field) {
2531        // N = N + Offset
2532        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
2533        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2534                        DAG.getIntPtrConstant(Offset));
2535      }
2536
2537      Ty = StTy->getElementType(Field);
2538    } else if (const UnionType *UnTy = dyn_cast<UnionType>(Ty)) {
2539      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2540
2541      // Offset canonically 0 for unions, but type changes
2542      Ty = UnTy->getElementType(Field);
2543    } else {
2544      Ty = cast<SequentialType>(Ty)->getElementType();
2545
2546      // If this is a constant subscript, handle it quickly.
2547      if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2548        if (CI->getZExtValue() == 0) continue;
2549        uint64_t Offs =
2550            TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
2551        SDValue OffsVal;
2552        EVT PTy = TLI.getPointerTy();
2553        unsigned PtrBits = PTy.getSizeInBits();
2554        if (PtrBits < 64)
2555          OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2556                                TLI.getPointerTy(),
2557                                DAG.getConstant(Offs, MVT::i64));
2558        else
2559          OffsVal = DAG.getIntPtrConstant(Offs);
2560
2561        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2562                        OffsVal);
2563        continue;
2564      }
2565
2566      // N = N + Idx * ElementSize;
2567      APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
2568                                TD->getTypeAllocSize(Ty));
2569      SDValue IdxN = getValue(Idx);
2570
2571      // If the index is smaller or larger than intptr_t, truncate or extend
2572      // it.
2573      IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType());
2574
2575      // If this is a multiply by a power of two, turn it into a shl
2576      // immediately.  This is a very common case.
2577      if (ElementSize != 1) {
2578        if (ElementSize.isPowerOf2()) {
2579          unsigned Amt = ElementSize.logBase2();
2580          IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(),
2581                             N.getValueType(), IdxN,
2582                             DAG.getConstant(Amt, TLI.getPointerTy()));
2583        } else {
2584          SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy());
2585          IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(),
2586                             N.getValueType(), IdxN, Scale);
2587        }
2588      }
2589
2590      N = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2591                      N.getValueType(), N, IdxN);
2592    }
2593  }
2594
2595  setValue(&I, N);
2596}
2597
2598void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
2599  // If this is a fixed sized alloca in the entry block of the function,
2600  // allocate it statically on the stack.
2601  if (FuncInfo.StaticAllocaMap.count(&I))
2602    return;   // getValue will auto-populate this.
2603
2604  const Type *Ty = I.getAllocatedType();
2605  uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
2606  unsigned Align =
2607    std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
2608             I.getAlignment());
2609
2610  SDValue AllocSize = getValue(I.getArraySize());
2611
2612  AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), AllocSize.getValueType(),
2613                          AllocSize,
2614                          DAG.getConstant(TySize, AllocSize.getValueType()));
2615
2616  EVT IntPtr = TLI.getPointerTy();
2617  AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr);
2618
2619  // Handle alignment.  If the requested alignment is less than or equal to
2620  // the stack alignment, ignore it.  If the size is greater than or equal to
2621  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
2622  unsigned StackAlign =
2623    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
2624  if (Align <= StackAlign)
2625    Align = 0;
2626
2627  // Round the size of the allocation up to the stack alignment size
2628  // by add SA-1 to the size.
2629  AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2630                          AllocSize.getValueType(), AllocSize,
2631                          DAG.getIntPtrConstant(StackAlign-1));
2632
2633  // Mask out the low bits for alignment purposes.
2634  AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(),
2635                          AllocSize.getValueType(), AllocSize,
2636                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
2637
2638  SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
2639  SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
2640  SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(),
2641                            VTs, Ops, 3);
2642  setValue(&I, DSA);
2643  DAG.setRoot(DSA.getValue(1));
2644
2645  // Inform the Frame Information that we have just allocated a variable-sized
2646  // object.
2647  FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject();
2648}
2649
2650void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
2651  const Value *SV = I.getOperand(0);
2652  SDValue Ptr = getValue(SV);
2653
2654  const Type *Ty = I.getType();
2655
2656  bool isVolatile = I.isVolatile();
2657  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
2658  unsigned Alignment = I.getAlignment();
2659
2660  SmallVector<EVT, 4> ValueVTs;
2661  SmallVector<uint64_t, 4> Offsets;
2662  ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
2663  unsigned NumValues = ValueVTs.size();
2664  if (NumValues == 0)
2665    return;
2666
2667  SDValue Root;
2668  bool ConstantMemory = false;
2669  if (I.isVolatile())
2670    // Serialize volatile loads with other side effects.
2671    Root = getRoot();
2672  else if (AA->pointsToConstantMemory(SV)) {
2673    // Do not serialize (non-volatile) loads of constant memory with anything.
2674    Root = DAG.getEntryNode();
2675    ConstantMemory = true;
2676  } else {
2677    // Do not serialize non-volatile loads against each other.
2678    Root = DAG.getRoot();
2679  }
2680
2681  SmallVector<SDValue, 4> Values(NumValues);
2682  SmallVector<SDValue, 4> Chains(NumValues);
2683  EVT PtrVT = Ptr.getValueType();
2684  for (unsigned i = 0; i != NumValues; ++i) {
2685    SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2686                            PtrVT, Ptr,
2687                            DAG.getConstant(Offsets[i], PtrVT));
2688    SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root,
2689                            A, SV, Offsets[i], isVolatile,
2690                            isNonTemporal, Alignment);
2691
2692    Values[i] = L;
2693    Chains[i] = L.getValue(1);
2694  }
2695
2696  if (!ConstantMemory) {
2697    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
2698                                MVT::Other, &Chains[0], NumValues);
2699    if (isVolatile)
2700      DAG.setRoot(Chain);
2701    else
2702      PendingLoads.push_back(Chain);
2703  }
2704
2705  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2706                           DAG.getVTList(&ValueVTs[0], NumValues),
2707                           &Values[0], NumValues));
2708}
2709
2710void SelectionDAGBuilder::visitStore(const StoreInst &I) {
2711  const Value *SrcV = I.getOperand(0);
2712  const Value *PtrV = I.getOperand(1);
2713
2714  SmallVector<EVT, 4> ValueVTs;
2715  SmallVector<uint64_t, 4> Offsets;
2716  ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
2717  unsigned NumValues = ValueVTs.size();
2718  if (NumValues == 0)
2719    return;
2720
2721  // Get the lowered operands. Note that we do this after
2722  // checking if NumResults is zero, because with zero results
2723  // the operands won't have values in the map.
2724  SDValue Src = getValue(SrcV);
2725  SDValue Ptr = getValue(PtrV);
2726
2727  SDValue Root = getRoot();
2728  SmallVector<SDValue, 4> Chains(NumValues);
2729  EVT PtrVT = Ptr.getValueType();
2730  bool isVolatile = I.isVolatile();
2731  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
2732  unsigned Alignment = I.getAlignment();
2733
2734  for (unsigned i = 0; i != NumValues; ++i) {
2735    SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr,
2736                              DAG.getConstant(Offsets[i], PtrVT));
2737    Chains[i] = DAG.getStore(Root, getCurDebugLoc(),
2738                             SDValue(Src.getNode(), Src.getResNo() + i),
2739                             Add, PtrV, Offsets[i], isVolatile,
2740                             isNonTemporal, Alignment);
2741  }
2742
2743  DAG.setRoot(DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
2744                          MVT::Other, &Chains[0], NumValues));
2745}
2746
2747/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
2748/// node.
2749void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
2750                                               unsigned Intrinsic) {
2751  bool HasChain = !I.doesNotAccessMemory();
2752  bool OnlyLoad = HasChain && I.onlyReadsMemory();
2753
2754  // Build the operand list.
2755  SmallVector<SDValue, 8> Ops;
2756  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
2757    if (OnlyLoad) {
2758      // We don't need to serialize loads against other loads.
2759      Ops.push_back(DAG.getRoot());
2760    } else {
2761      Ops.push_back(getRoot());
2762    }
2763  }
2764
2765  // Info is set by getTgtMemInstrinsic
2766  TargetLowering::IntrinsicInfo Info;
2767  bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
2768
2769  // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
2770  if (!IsTgtIntrinsic)
2771    Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
2772
2773  // Add all operands of the call to the operand list.
2774  for (unsigned i = 0, e = I.getNumOperands()-1; i != e; ++i) {
2775    SDValue Op = getValue(I.getOperand(i));
2776    assert(TLI.isTypeLegal(Op.getValueType()) &&
2777           "Intrinsic uses a non-legal type?");
2778    Ops.push_back(Op);
2779  }
2780
2781  SmallVector<EVT, 4> ValueVTs;
2782  ComputeValueVTs(TLI, I.getType(), ValueVTs);
2783#ifndef NDEBUG
2784  for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) {
2785    assert(TLI.isTypeLegal(ValueVTs[Val]) &&
2786           "Intrinsic uses a non-legal type?");
2787  }
2788#endif // NDEBUG
2789
2790  if (HasChain)
2791    ValueVTs.push_back(MVT::Other);
2792
2793  SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
2794
2795  // Create the node.
2796  SDValue Result;
2797  if (IsTgtIntrinsic) {
2798    // This is target intrinsic that touches memory
2799    Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(),
2800                                     VTs, &Ops[0], Ops.size(),
2801                                     Info.memVT, Info.ptrVal, Info.offset,
2802                                     Info.align, Info.vol,
2803                                     Info.readMem, Info.writeMem);
2804  } else if (!HasChain) {
2805    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
2806                         VTs, &Ops[0], Ops.size());
2807  } else if (!I.getType()->isVoidTy()) {
2808    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
2809                         VTs, &Ops[0], Ops.size());
2810  } else {
2811    Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(),
2812                         VTs, &Ops[0], Ops.size());
2813  }
2814
2815  if (HasChain) {
2816    SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
2817    if (OnlyLoad)
2818      PendingLoads.push_back(Chain);
2819    else
2820      DAG.setRoot(Chain);
2821  }
2822
2823  if (!I.getType()->isVoidTy()) {
2824    if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
2825      EVT VT = TLI.getValueType(PTy);
2826      Result = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), VT, Result);
2827    }
2828
2829    setValue(&I, Result);
2830  }
2831}
2832
2833/// GetSignificand - Get the significand and build it into a floating-point
2834/// number with exponent of 1:
2835///
2836///   Op = (Op & 0x007fffff) | 0x3f800000;
2837///
2838/// where Op is the hexidecimal representation of floating point value.
2839static SDValue
2840GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) {
2841  SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
2842                           DAG.getConstant(0x007fffff, MVT::i32));
2843  SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
2844                           DAG.getConstant(0x3f800000, MVT::i32));
2845  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t2);
2846}
2847
2848/// GetExponent - Get the exponent:
2849///
2850///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
2851///
2852/// where Op is the hexidecimal representation of floating point value.
2853static SDValue
2854GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
2855            DebugLoc dl) {
2856  SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
2857                           DAG.getConstant(0x7f800000, MVT::i32));
2858  SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
2859                           DAG.getConstant(23, TLI.getPointerTy()));
2860  SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
2861                           DAG.getConstant(127, MVT::i32));
2862  return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
2863}
2864
2865/// getF32Constant - Get 32-bit floating point constant.
2866static SDValue
2867getF32Constant(SelectionDAG &DAG, unsigned Flt) {
2868  return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32);
2869}
2870
2871/// Inlined utility function to implement binary input atomic intrinsics for
2872/// visitIntrinsicCall: I is a call instruction
2873///                     Op is the associated NodeType for I
2874const char *
2875SelectionDAGBuilder::implVisitBinaryAtomic(const CallInst& I,
2876                                           ISD::NodeType Op) {
2877  SDValue Root = getRoot();
2878  SDValue L =
2879    DAG.getAtomic(Op, getCurDebugLoc(),
2880                  getValue(I.getOperand(1)).getValueType().getSimpleVT(),
2881                  Root,
2882                  getValue(I.getOperand(0)),
2883                  getValue(I.getOperand(1)),
2884                  I.getOperand(0));
2885  setValue(&I, L);
2886  DAG.setRoot(L.getValue(1));
2887  return 0;
2888}
2889
2890// implVisitAluOverflow - Lower arithmetic overflow instrinsics.
2891const char *
2892SelectionDAGBuilder::implVisitAluOverflow(const CallInst &I, ISD::NodeType Op) {
2893  SDValue Op1 = getValue(I.getOperand(0));
2894  SDValue Op2 = getValue(I.getOperand(1));
2895
2896  SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
2897  setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2));
2898  return 0;
2899}
2900
2901/// visitExp - Lower an exp intrinsic. Handles the special sequences for
2902/// limited-precision mode.
2903void
2904SelectionDAGBuilder::visitExp(const CallInst &I) {
2905  SDValue result;
2906  DebugLoc dl = getCurDebugLoc();
2907
2908  if (getValue(I.getOperand(0)).getValueType() == MVT::f32 &&
2909      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
2910    SDValue Op = getValue(I.getOperand(0));
2911
2912    // Put the exponent in the right bit position for later addition to the
2913    // final result:
2914    //
2915    //   #define LOG2OFe 1.4426950f
2916    //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
2917    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
2918                             getF32Constant(DAG, 0x3fb8aa3b));
2919    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
2920
2921    //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
2922    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
2923    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
2924
2925    //   IntegerPartOfX <<= 23;
2926    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
2927                                 DAG.getConstant(23, TLI.getPointerTy()));
2928
2929    if (LimitFloatPrecision <= 6) {
2930      // For floating-point precision of 6:
2931      //
2932      //   TwoToFractionalPartOfX =
2933      //     0.997535578f +
2934      //       (0.735607626f + 0.252464424f * x) * x;
2935      //
2936      // error 0.0144103317, which is 6 bits
2937      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
2938                               getF32Constant(DAG, 0x3e814304));
2939      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
2940                               getF32Constant(DAG, 0x3f3c50c8));
2941      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
2942      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
2943                               getF32Constant(DAG, 0x3f7f5e7e));
2944      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t5);
2945
2946      // Add the exponent into the result in integer domain.
2947      SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32,
2948                               TwoToFracPartOfX, IntegerPartOfX);
2949
2950      result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t6);
2951    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
2952      // For floating-point precision of 12:
2953      //
2954      //   TwoToFractionalPartOfX =
2955      //     0.999892986f +
2956      //       (0.696457318f +
2957      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
2958      //
2959      // 0.000107046256 error, which is 13 to 14 bits
2960      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
2961                               getF32Constant(DAG, 0x3da235e3));
2962      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
2963                               getF32Constant(DAG, 0x3e65b8f3));
2964      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
2965      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
2966                               getF32Constant(DAG, 0x3f324b07));
2967      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
2968      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
2969                               getF32Constant(DAG, 0x3f7ff8fd));
2970      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t7);
2971
2972      // Add the exponent into the result in integer domain.
2973      SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32,
2974                               TwoToFracPartOfX, IntegerPartOfX);
2975
2976      result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t8);
2977    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
2978      // For floating-point precision of 18:
2979      //
2980      //   TwoToFractionalPartOfX =
2981      //     0.999999982f +
2982      //       (0.693148872f +
2983      //         (0.240227044f +
2984      //           (0.554906021e-1f +
2985      //             (0.961591928e-2f +
2986      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
2987      //
2988      // error 2.47208000*10^(-7), which is better than 18 bits
2989      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
2990                               getF32Constant(DAG, 0x3924b03e));
2991      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
2992                               getF32Constant(DAG, 0x3ab24b87));
2993      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
2994      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
2995                               getF32Constant(DAG, 0x3c1d8c17));
2996      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
2997      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
2998                               getF32Constant(DAG, 0x3d634a1d));
2999      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3000      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3001                               getF32Constant(DAG, 0x3e75fe14));
3002      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3003      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3004                                getF32Constant(DAG, 0x3f317234));
3005      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3006      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3007                                getF32Constant(DAG, 0x3f800000));
3008      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,
3009                                             MVT::i32, t13);
3010
3011      // Add the exponent into the result in integer domain.
3012      SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3013                                TwoToFracPartOfX, IntegerPartOfX);
3014
3015      result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t14);
3016    }
3017  } else {
3018    // No special expansion.
3019    result = DAG.getNode(ISD::FEXP, dl,
3020                         getValue(I.getOperand(0)).getValueType(),
3021                         getValue(I.getOperand(0)));
3022  }
3023
3024  setValue(&I, result);
3025}
3026
3027/// visitLog - Lower a log intrinsic. Handles the special sequences for
3028/// limited-precision mode.
3029void
3030SelectionDAGBuilder::visitLog(const CallInst &I) {
3031  SDValue result;
3032  DebugLoc dl = getCurDebugLoc();
3033
3034  if (getValue(I.getOperand(0)).getValueType() == MVT::f32 &&
3035      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3036    SDValue Op = getValue(I.getOperand(0));
3037    SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
3038
3039    // Scale the exponent by log(2) [0.69314718f].
3040    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3041    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3042                                        getF32Constant(DAG, 0x3f317218));
3043
3044    // Get the significand and build it into a floating-point number with
3045    // exponent of 1.
3046    SDValue X = GetSignificand(DAG, Op1, dl);
3047
3048    if (LimitFloatPrecision <= 6) {
3049      // For floating-point precision of 6:
3050      //
3051      //   LogofMantissa =
3052      //     -1.1609546f +
3053      //       (1.4034025f - 0.23903021f * x) * x;
3054      //
3055      // error 0.0034276066, which is better than 8 bits
3056      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3057                               getF32Constant(DAG, 0xbe74c456));
3058      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3059                               getF32Constant(DAG, 0x3fb3a2b1));
3060      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3061      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3062                                          getF32Constant(DAG, 0x3f949a29));
3063
3064      result = DAG.getNode(ISD::FADD, dl,
3065                           MVT::f32, LogOfExponent, LogOfMantissa);
3066    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3067      // For floating-point precision of 12:
3068      //
3069      //   LogOfMantissa =
3070      //     -1.7417939f +
3071      //       (2.8212026f +
3072      //         (-1.4699568f +
3073      //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3074      //
3075      // error 0.000061011436, which is 14 bits
3076      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3077                               getF32Constant(DAG, 0xbd67b6d6));
3078      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3079                               getF32Constant(DAG, 0x3ee4f4b8));
3080      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3081      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3082                               getF32Constant(DAG, 0x3fbc278b));
3083      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3084      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3085                               getF32Constant(DAG, 0x40348e95));
3086      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3087      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3088                                          getF32Constant(DAG, 0x3fdef31a));
3089
3090      result = DAG.getNode(ISD::FADD, dl,
3091                           MVT::f32, LogOfExponent, LogOfMantissa);
3092    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3093      // For floating-point precision of 18:
3094      //
3095      //   LogOfMantissa =
3096      //     -2.1072184f +
3097      //       (4.2372794f +
3098      //         (-3.7029485f +
3099      //           (2.2781945f +
3100      //             (-0.87823314f +
3101      //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3102      //
3103      // error 0.0000023660568, which is better than 18 bits
3104      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3105                               getF32Constant(DAG, 0xbc91e5ac));
3106      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3107                               getF32Constant(DAG, 0x3e4350aa));
3108      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3109      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3110                               getF32Constant(DAG, 0x3f60d3e3));
3111      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3112      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3113                               getF32Constant(DAG, 0x4011cdf0));
3114      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3115      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3116                               getF32Constant(DAG, 0x406cfd1c));
3117      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3118      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3119                               getF32Constant(DAG, 0x408797cb));
3120      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3121      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3122                                          getF32Constant(DAG, 0x4006dcab));
3123
3124      result = DAG.getNode(ISD::FADD, dl,
3125                           MVT::f32, LogOfExponent, LogOfMantissa);
3126    }
3127  } else {
3128    // No special expansion.
3129    result = DAG.getNode(ISD::FLOG, dl,
3130                         getValue(I.getOperand(0)).getValueType(),
3131                         getValue(I.getOperand(0)));
3132  }
3133
3134  setValue(&I, result);
3135}
3136
3137/// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for
3138/// limited-precision mode.
3139void
3140SelectionDAGBuilder::visitLog2(const CallInst &I) {
3141  SDValue result;
3142  DebugLoc dl = getCurDebugLoc();
3143
3144  if (getValue(I.getOperand(0)).getValueType() == MVT::f32 &&
3145      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3146    SDValue Op = getValue(I.getOperand(0));
3147    SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
3148
3149    // Get the exponent.
3150    SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3151
3152    // Get the significand and build it into a floating-point number with
3153    // exponent of 1.
3154    SDValue X = GetSignificand(DAG, Op1, dl);
3155
3156    // Different possible minimax approximations of significand in
3157    // floating-point for various degrees of accuracy over [1,2].
3158    if (LimitFloatPrecision <= 6) {
3159      // For floating-point precision of 6:
3160      //
3161      //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3162      //
3163      // error 0.0049451742, which is more than 7 bits
3164      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3165                               getF32Constant(DAG, 0xbeb08fe0));
3166      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3167                               getF32Constant(DAG, 0x40019463));
3168      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3169      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3170                                           getF32Constant(DAG, 0x3fd6633d));
3171
3172      result = DAG.getNode(ISD::FADD, dl,
3173                           MVT::f32, LogOfExponent, Log2ofMantissa);
3174    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3175      // For floating-point precision of 12:
3176      //
3177      //   Log2ofMantissa =
3178      //     -2.51285454f +
3179      //       (4.07009056f +
3180      //         (-2.12067489f +
3181      //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3182      //
3183      // error 0.0000876136000, which is better than 13 bits
3184      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3185                               getF32Constant(DAG, 0xbda7262e));
3186      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3187                               getF32Constant(DAG, 0x3f25280b));
3188      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3189      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3190                               getF32Constant(DAG, 0x4007b923));
3191      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3192      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3193                               getF32Constant(DAG, 0x40823e2f));
3194      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3195      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3196                                           getF32Constant(DAG, 0x4020d29c));
3197
3198      result = DAG.getNode(ISD::FADD, dl,
3199                           MVT::f32, LogOfExponent, Log2ofMantissa);
3200    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3201      // For floating-point precision of 18:
3202      //
3203      //   Log2ofMantissa =
3204      //     -3.0400495f +
3205      //       (6.1129976f +
3206      //         (-5.3420409f +
3207      //           (3.2865683f +
3208      //             (-1.2669343f +
3209      //               (0.27515199f -
3210      //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3211      //
3212      // error 0.0000018516, which is better than 18 bits
3213      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3214                               getF32Constant(DAG, 0xbcd2769e));
3215      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3216                               getF32Constant(DAG, 0x3e8ce0b9));
3217      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3218      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3219                               getF32Constant(DAG, 0x3fa22ae7));
3220      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3221      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3222                               getF32Constant(DAG, 0x40525723));
3223      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3224      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3225                               getF32Constant(DAG, 0x40aaf200));
3226      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3227      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3228                               getF32Constant(DAG, 0x40c39dad));
3229      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3230      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3231                                           getF32Constant(DAG, 0x4042902c));
3232
3233      result = DAG.getNode(ISD::FADD, dl,
3234                           MVT::f32, LogOfExponent, Log2ofMantissa);
3235    }
3236  } else {
3237    // No special expansion.
3238    result = DAG.getNode(ISD::FLOG2, dl,
3239                         getValue(I.getOperand(0)).getValueType(),
3240                         getValue(I.getOperand(0)));
3241  }
3242
3243  setValue(&I, result);
3244}
3245
3246/// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for
3247/// limited-precision mode.
3248void
3249SelectionDAGBuilder::visitLog10(const CallInst &I) {
3250  SDValue result;
3251  DebugLoc dl = getCurDebugLoc();
3252
3253  if (getValue(I.getOperand(0)).getValueType() == MVT::f32 &&
3254      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3255    SDValue Op = getValue(I.getOperand(0));
3256    SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
3257
3258    // Scale the exponent by log10(2) [0.30102999f].
3259    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3260    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3261                                        getF32Constant(DAG, 0x3e9a209a));
3262
3263    // Get the significand and build it into a floating-point number with
3264    // exponent of 1.
3265    SDValue X = GetSignificand(DAG, Op1, dl);
3266
3267    if (LimitFloatPrecision <= 6) {
3268      // For floating-point precision of 6:
3269      //
3270      //   Log10ofMantissa =
3271      //     -0.50419619f +
3272      //       (0.60948995f - 0.10380950f * x) * x;
3273      //
3274      // error 0.0014886165, which is 6 bits
3275      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3276                               getF32Constant(DAG, 0xbdd49a13));
3277      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3278                               getF32Constant(DAG, 0x3f1c0789));
3279      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3280      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3281                                            getF32Constant(DAG, 0x3f011300));
3282
3283      result = DAG.getNode(ISD::FADD, dl,
3284                           MVT::f32, LogOfExponent, Log10ofMantissa);
3285    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3286      // For floating-point precision of 12:
3287      //
3288      //   Log10ofMantissa =
3289      //     -0.64831180f +
3290      //       (0.91751397f +
3291      //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
3292      //
3293      // error 0.00019228036, which is better than 12 bits
3294      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3295                               getF32Constant(DAG, 0x3d431f31));
3296      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3297                               getF32Constant(DAG, 0x3ea21fb2));
3298      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3299      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3300                               getF32Constant(DAG, 0x3f6ae232));
3301      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3302      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3303                                            getF32Constant(DAG, 0x3f25f7c3));
3304
3305      result = DAG.getNode(ISD::FADD, dl,
3306                           MVT::f32, LogOfExponent, Log10ofMantissa);
3307    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3308      // For floating-point precision of 18:
3309      //
3310      //   Log10ofMantissa =
3311      //     -0.84299375f +
3312      //       (1.5327582f +
3313      //         (-1.0688956f +
3314      //           (0.49102474f +
3315      //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
3316      //
3317      // error 0.0000037995730, which is better than 18 bits
3318      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3319                               getF32Constant(DAG, 0x3c5d51ce));
3320      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3321                               getF32Constant(DAG, 0x3e00685a));
3322      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3323      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3324                               getF32Constant(DAG, 0x3efb6798));
3325      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3326      SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3327                               getF32Constant(DAG, 0x3f88d192));
3328      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3329      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3330                               getF32Constant(DAG, 0x3fc4316c));
3331      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3332      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
3333                                            getF32Constant(DAG, 0x3f57ce70));
3334
3335      result = DAG.getNode(ISD::FADD, dl,
3336                           MVT::f32, LogOfExponent, Log10ofMantissa);
3337    }
3338  } else {
3339    // No special expansion.
3340    result = DAG.getNode(ISD::FLOG10, dl,
3341                         getValue(I.getOperand(0)).getValueType(),
3342                         getValue(I.getOperand(0)));
3343  }
3344
3345  setValue(&I, result);
3346}
3347
3348/// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for
3349/// limited-precision mode.
3350void
3351SelectionDAGBuilder::visitExp2(const CallInst &I) {
3352  SDValue result;
3353  DebugLoc dl = getCurDebugLoc();
3354
3355  if (getValue(I.getOperand(0)).getValueType() == MVT::f32 &&
3356      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3357    SDValue Op = getValue(I.getOperand(0));
3358
3359    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
3360
3361    //   FractionalPartOfX = x - (float)IntegerPartOfX;
3362    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3363    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
3364
3365    //   IntegerPartOfX <<= 23;
3366    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3367                                 DAG.getConstant(23, TLI.getPointerTy()));
3368
3369    if (LimitFloatPrecision <= 6) {
3370      // For floating-point precision of 6:
3371      //
3372      //   TwoToFractionalPartOfX =
3373      //     0.997535578f +
3374      //       (0.735607626f + 0.252464424f * x) * x;
3375      //
3376      // error 0.0144103317, which is 6 bits
3377      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3378                               getF32Constant(DAG, 0x3e814304));
3379      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3380                               getF32Constant(DAG, 0x3f3c50c8));
3381      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3382      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3383                               getF32Constant(DAG, 0x3f7f5e7e));
3384      SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5);
3385      SDValue TwoToFractionalPartOfX =
3386        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3387
3388      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3389                           MVT::f32, TwoToFractionalPartOfX);
3390    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3391      // For floating-point precision of 12:
3392      //
3393      //   TwoToFractionalPartOfX =
3394      //     0.999892986f +
3395      //       (0.696457318f +
3396      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3397      //
3398      // error 0.000107046256, which is 13 to 14 bits
3399      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3400                               getF32Constant(DAG, 0x3da235e3));
3401      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3402                               getF32Constant(DAG, 0x3e65b8f3));
3403      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3404      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3405                               getF32Constant(DAG, 0x3f324b07));
3406      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3407      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3408                               getF32Constant(DAG, 0x3f7ff8fd));
3409      SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7);
3410      SDValue TwoToFractionalPartOfX =
3411        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
3412
3413      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3414                           MVT::f32, TwoToFractionalPartOfX);
3415    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3416      // For floating-point precision of 18:
3417      //
3418      //   TwoToFractionalPartOfX =
3419      //     0.999999982f +
3420      //       (0.693148872f +
3421      //         (0.240227044f +
3422      //           (0.554906021e-1f +
3423      //             (0.961591928e-2f +
3424      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3425      // error 2.47208000*10^(-7), which is better than 18 bits
3426      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3427                               getF32Constant(DAG, 0x3924b03e));
3428      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3429                               getF32Constant(DAG, 0x3ab24b87));
3430      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3431      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3432                               getF32Constant(DAG, 0x3c1d8c17));
3433      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3434      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3435                               getF32Constant(DAG, 0x3d634a1d));
3436      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3437      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3438                               getF32Constant(DAG, 0x3e75fe14));
3439      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3440      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3441                                getF32Constant(DAG, 0x3f317234));
3442      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3443      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3444                                getF32Constant(DAG, 0x3f800000));
3445      SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13);
3446      SDValue TwoToFractionalPartOfX =
3447        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
3448
3449      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3450                           MVT::f32, TwoToFractionalPartOfX);
3451    }
3452  } else {
3453    // No special expansion.
3454    result = DAG.getNode(ISD::FEXP2, dl,
3455                         getValue(I.getOperand(0)).getValueType(),
3456                         getValue(I.getOperand(0)));
3457  }
3458
3459  setValue(&I, result);
3460}
3461
3462/// visitPow - Lower a pow intrinsic. Handles the special sequences for
3463/// limited-precision mode with x == 10.0f.
3464void
3465SelectionDAGBuilder::visitPow(const CallInst &I) {
3466  SDValue result;
3467  const Value *Val = I.getOperand(0);
3468  DebugLoc dl = getCurDebugLoc();
3469  bool IsExp10 = false;
3470
3471  if (getValue(Val).getValueType() == MVT::f32 &&
3472      getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
3473      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3474    if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) {
3475      if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
3476        APFloat Ten(10.0f);
3477        IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten);
3478      }
3479    }
3480  }
3481
3482  if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3483    SDValue Op = getValue(I.getOperand(1));
3484
3485    // Put the exponent in the right bit position for later addition to the
3486    // final result:
3487    //
3488    //   #define LOG2OF10 3.3219281f
3489    //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
3490    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3491                             getF32Constant(DAG, 0x40549a78));
3492    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3493
3494    //   FractionalPartOfX = x - (float)IntegerPartOfX;
3495    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3496    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3497
3498    //   IntegerPartOfX <<= 23;
3499    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3500                                 DAG.getConstant(23, TLI.getPointerTy()));
3501
3502    if (LimitFloatPrecision <= 6) {
3503      // For floating-point precision of 6:
3504      //
3505      //   twoToFractionalPartOfX =
3506      //     0.997535578f +
3507      //       (0.735607626f + 0.252464424f * x) * x;
3508      //
3509      // error 0.0144103317, which is 6 bits
3510      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3511                               getF32Constant(DAG, 0x3e814304));
3512      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3513                               getF32Constant(DAG, 0x3f3c50c8));
3514      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3515      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3516                               getF32Constant(DAG, 0x3f7f5e7e));
3517      SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5);
3518      SDValue TwoToFractionalPartOfX =
3519        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3520
3521      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3522                           MVT::f32, TwoToFractionalPartOfX);
3523    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3524      // For floating-point precision of 12:
3525      //
3526      //   TwoToFractionalPartOfX =
3527      //     0.999892986f +
3528      //       (0.696457318f +
3529      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3530      //
3531      // error 0.000107046256, which is 13 to 14 bits
3532      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3533                               getF32Constant(DAG, 0x3da235e3));
3534      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3535                               getF32Constant(DAG, 0x3e65b8f3));
3536      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3537      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3538                               getF32Constant(DAG, 0x3f324b07));
3539      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3540      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3541                               getF32Constant(DAG, 0x3f7ff8fd));
3542      SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7);
3543      SDValue TwoToFractionalPartOfX =
3544        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
3545
3546      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3547                           MVT::f32, TwoToFractionalPartOfX);
3548    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3549      // For floating-point precision of 18:
3550      //
3551      //   TwoToFractionalPartOfX =
3552      //     0.999999982f +
3553      //       (0.693148872f +
3554      //         (0.240227044f +
3555      //           (0.554906021e-1f +
3556      //             (0.961591928e-2f +
3557      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3558      // error 2.47208000*10^(-7), which is better than 18 bits
3559      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3560                               getF32Constant(DAG, 0x3924b03e));
3561      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3562                               getF32Constant(DAG, 0x3ab24b87));
3563      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3564      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3565                               getF32Constant(DAG, 0x3c1d8c17));
3566      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3567      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3568                               getF32Constant(DAG, 0x3d634a1d));
3569      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3570      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3571                               getF32Constant(DAG, 0x3e75fe14));
3572      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3573      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3574                                getF32Constant(DAG, 0x3f317234));
3575      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3576      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3577                                getF32Constant(DAG, 0x3f800000));
3578      SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13);
3579      SDValue TwoToFractionalPartOfX =
3580        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
3581
3582      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3583                           MVT::f32, TwoToFractionalPartOfX);
3584    }
3585  } else {
3586    // No special expansion.
3587    result = DAG.getNode(ISD::FPOW, dl,
3588                         getValue(I.getOperand(0)).getValueType(),
3589                         getValue(I.getOperand(0)),
3590                         getValue(I.getOperand(1)));
3591  }
3592
3593  setValue(&I, result);
3594}
3595
3596
3597/// ExpandPowI - Expand a llvm.powi intrinsic.
3598static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS,
3599                          SelectionDAG &DAG) {
3600  // If RHS is a constant, we can expand this out to a multiplication tree,
3601  // otherwise we end up lowering to a call to __powidf2 (for example).  When
3602  // optimizing for size, we only want to do this if the expansion would produce
3603  // a small number of multiplies, otherwise we do the full expansion.
3604  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3605    // Get the exponent as a positive value.
3606    unsigned Val = RHSC->getSExtValue();
3607    if ((int)Val < 0) Val = -Val;
3608
3609    // powi(x, 0) -> 1.0
3610    if (Val == 0)
3611      return DAG.getConstantFP(1.0, LHS.getValueType());
3612
3613    const Function *F = DAG.getMachineFunction().getFunction();
3614    if (!F->hasFnAttr(Attribute::OptimizeForSize) ||
3615        // If optimizing for size, don't insert too many multiplies.  This
3616        // inserts up to 5 multiplies.
3617        CountPopulation_32(Val)+Log2_32(Val) < 7) {
3618      // We use the simple binary decomposition method to generate the multiply
3619      // sequence.  There are more optimal ways to do this (for example,
3620      // powi(x,15) generates one more multiply than it should), but this has
3621      // the benefit of being both really simple and much better than a libcall.
3622      SDValue Res;  // Logically starts equal to 1.0
3623      SDValue CurSquare = LHS;
3624      while (Val) {
3625        if (Val & 1) {
3626          if (Res.getNode())
3627            Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
3628          else
3629            Res = CurSquare;  // 1.0*CurSquare.
3630        }
3631
3632        CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
3633                                CurSquare, CurSquare);
3634        Val >>= 1;
3635      }
3636
3637      // If the original was negative, invert the result, producing 1/(x*x*x).
3638      if (RHSC->getSExtValue() < 0)
3639        Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
3640                          DAG.getConstantFP(1.0, LHS.getValueType()), Res);
3641      return Res;
3642    }
3643  }
3644
3645  // Otherwise, expand to a libcall.
3646  return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
3647}
3648
3649
3650/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
3651/// we want to emit this as a call to a named external function, return the name
3652/// otherwise lower it and return null.
3653const char *
3654SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
3655  DebugLoc dl = getCurDebugLoc();
3656  SDValue Res;
3657
3658  switch (Intrinsic) {
3659  default:
3660    // By default, turn this into a target intrinsic node.
3661    visitTargetIntrinsic(I, Intrinsic);
3662    return 0;
3663  case Intrinsic::vastart:  visitVAStart(I); return 0;
3664  case Intrinsic::vaend:    visitVAEnd(I); return 0;
3665  case Intrinsic::vacopy:   visitVACopy(I); return 0;
3666  case Intrinsic::returnaddress:
3667    setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(),
3668                             getValue(I.getOperand(0))));
3669    return 0;
3670  case Intrinsic::frameaddress:
3671    setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(),
3672                             getValue(I.getOperand(0))));
3673    return 0;
3674  case Intrinsic::setjmp:
3675    return "_setjmp"+!TLI.usesUnderscoreSetJmp();
3676  case Intrinsic::longjmp:
3677    return "_longjmp"+!TLI.usesUnderscoreLongJmp();
3678  case Intrinsic::memcpy: {
3679    // Assert for address < 256 since we support only user defined address
3680    // spaces.
3681    assert(cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()
3682           < 256 &&
3683           cast<PointerType>(I.getOperand(1)->getType())->getAddressSpace()
3684           < 256 &&
3685           "Unknown address space");
3686    SDValue Op1 = getValue(I.getOperand(0));
3687    SDValue Op2 = getValue(I.getOperand(1));
3688    SDValue Op3 = getValue(I.getOperand(2));
3689    unsigned Align = cast<ConstantInt>(I.getOperand(3))->getZExtValue();
3690    bool isVol = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3691    DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false,
3692                              I.getOperand(0), 0, I.getOperand(1), 0));
3693    return 0;
3694  }
3695  case Intrinsic::memset: {
3696    // Assert for address < 256 since we support only user defined address
3697    // spaces.
3698    assert(cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()
3699           < 256 &&
3700           "Unknown address space");
3701    SDValue Op1 = getValue(I.getOperand(0));
3702    SDValue Op2 = getValue(I.getOperand(1));
3703    SDValue Op3 = getValue(I.getOperand(2));
3704    unsigned Align = cast<ConstantInt>(I.getOperand(3))->getZExtValue();
3705    bool isVol = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3706    DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
3707                              I.getOperand(0), 0));
3708    return 0;
3709  }
3710  case Intrinsic::memmove: {
3711    // Assert for address < 256 since we support only user defined address
3712    // spaces.
3713    assert(cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()
3714           < 256 &&
3715           cast<PointerType>(I.getOperand(1)->getType())->getAddressSpace()
3716           < 256 &&
3717           "Unknown address space");
3718    SDValue Op1 = getValue(I.getOperand(0));
3719    SDValue Op2 = getValue(I.getOperand(1));
3720    SDValue Op3 = getValue(I.getOperand(2));
3721    unsigned Align = cast<ConstantInt>(I.getOperand(3))->getZExtValue();
3722    bool isVol = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3723
3724    // If the source and destination are known to not be aliases, we can
3725    // lower memmove as memcpy.
3726    uint64_t Size = -1ULL;
3727    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3))
3728      Size = C->getZExtValue();
3729    if (AA->alias(I.getOperand(0), Size, I.getOperand(1), Size) ==
3730        AliasAnalysis::NoAlias) {
3731      DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
3732                                false, I.getOperand(0), 0, I.getOperand(1), 0));
3733      return 0;
3734    }
3735
3736    DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
3737                               I.getOperand(0), 0, I.getOperand(1), 0));
3738    return 0;
3739  }
3740  case Intrinsic::dbg_declare: {
3741    // FIXME: currently, we get here only if OptLevel != CodeGenOpt::None.
3742    // The real handling of this intrinsic is in FastISel.
3743    if (OptLevel != CodeGenOpt::None)
3744      // FIXME: Variable debug info is not supported here.
3745      return 0;
3746    const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
3747    if (!DIDescriptor::ValidDebugInfo(DI.getVariable(), CodeGenOpt::None))
3748      return 0;
3749
3750    MDNode *Variable = DI.getVariable();
3751    const Value *Address = DI.getAddress();
3752    if (!Address)
3753      return 0;
3754    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
3755      Address = BCI->getOperand(0);
3756    const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
3757    // Don't handle byval struct arguments or VLAs, for example.
3758    if (!AI)
3759      return 0;
3760    DenseMap<const AllocaInst*, int>::iterator SI =
3761      FuncInfo.StaticAllocaMap.find(AI);
3762    if (SI == FuncInfo.StaticAllocaMap.end())
3763      return 0; // VLAs.
3764    int FI = SI->second;
3765
3766    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
3767    if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
3768      MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
3769    return 0;
3770  }
3771  case Intrinsic::dbg_value: {
3772    const DbgValueInst &DI = cast<DbgValueInst>(I);
3773    if (!DIDescriptor::ValidDebugInfo(DI.getVariable(), CodeGenOpt::None))
3774      return 0;
3775
3776    MDNode *Variable = DI.getVariable();
3777    uint64_t Offset = DI.getOffset();
3778    const Value *V = DI.getValue();
3779    if (!V)
3780      return 0;
3781
3782    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
3783    // but do not always have a corresponding SDNode built.  The SDNodeOrder
3784    // absolute, but not relative, values are different depending on whether
3785    // debug info exists.
3786    ++SDNodeOrder;
3787    if (isa<ConstantInt>(V) || isa<ConstantFP>(V)) {
3788      DAG.AddDbgValue(DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder));
3789    } else {
3790      SDValue &N = NodeMap[V];
3791      if (N.getNode())
3792        DAG.AddDbgValue(DAG.getDbgValue(Variable, N.getNode(),
3793                                        N.getResNo(), Offset, dl, SDNodeOrder),
3794                        N.getNode());
3795      else
3796        // We may expand this to cover more cases.  One case where we have no
3797        // data available is an unreferenced parameter; we need this fallback.
3798        DAG.AddDbgValue(DAG.getDbgValue(Variable,
3799                                        UndefValue::get(V->getType()),
3800                                        Offset, dl, SDNodeOrder));
3801    }
3802
3803    // Build a debug info table entry.
3804    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
3805      V = BCI->getOperand(0);
3806    const AllocaInst *AI = dyn_cast<AllocaInst>(V);
3807    // Don't handle byval struct arguments or VLAs, for example.
3808    if (!AI)
3809      return 0;
3810    DenseMap<const AllocaInst*, int>::iterator SI =
3811      FuncInfo.StaticAllocaMap.find(AI);
3812    if (SI == FuncInfo.StaticAllocaMap.end())
3813      return 0; // VLAs.
3814    int FI = SI->second;
3815
3816    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
3817    if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
3818      MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
3819    return 0;
3820  }
3821  case Intrinsic::eh_exception: {
3822    // Insert the EXCEPTIONADDR instruction.
3823    assert(CurMBB->isLandingPad() &&"Call to eh.exception not in landing pad!");
3824    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
3825    SDValue Ops[1];
3826    Ops[0] = DAG.getRoot();
3827    SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1);
3828    setValue(&I, Op);
3829    DAG.setRoot(Op.getValue(1));
3830    return 0;
3831  }
3832
3833  case Intrinsic::eh_selector: {
3834    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
3835    if (CurMBB->isLandingPad())
3836      AddCatchInfo(I, &MMI, CurMBB);
3837    else {
3838#ifndef NDEBUG
3839      FuncInfo.CatchInfoLost.insert(&I);
3840#endif
3841      // FIXME: Mark exception selector register as live in.  Hack for PR1508.
3842      unsigned Reg = TLI.getExceptionSelectorRegister();
3843      if (Reg) CurMBB->addLiveIn(Reg);
3844    }
3845
3846    // Insert the EHSELECTION instruction.
3847    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
3848    SDValue Ops[2];
3849    Ops[0] = getValue(I.getOperand(0));
3850    Ops[1] = getRoot();
3851    SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2);
3852    DAG.setRoot(Op.getValue(1));
3853    setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32));
3854    return 0;
3855  }
3856
3857  case Intrinsic::eh_typeid_for: {
3858    // Find the type id for the given typeinfo.
3859    GlobalVariable *GV = ExtractTypeInfo(I.getOperand(0));
3860    unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
3861    Res = DAG.getConstant(TypeID, MVT::i32);
3862    setValue(&I, Res);
3863    return 0;
3864  }
3865
3866  case Intrinsic::eh_return_i32:
3867  case Intrinsic::eh_return_i64:
3868    DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
3869    DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl,
3870                            MVT::Other,
3871                            getControlRoot(),
3872                            getValue(I.getOperand(0)),
3873                            getValue(I.getOperand(1))));
3874    return 0;
3875  case Intrinsic::eh_unwind_init:
3876    DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
3877    return 0;
3878  case Intrinsic::eh_dwarf_cfa: {
3879    EVT VT = getValue(I.getOperand(0)).getValueType();
3880    SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getOperand(0)), dl,
3881                                        TLI.getPointerTy());
3882    SDValue Offset = DAG.getNode(ISD::ADD, dl,
3883                                 TLI.getPointerTy(),
3884                                 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
3885                                             TLI.getPointerTy()),
3886                                 CfaArg);
3887    SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl,
3888                             TLI.getPointerTy(),
3889                             DAG.getConstant(0, TLI.getPointerTy()));
3890    setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
3891                             FA, Offset));
3892    return 0;
3893  }
3894  case Intrinsic::eh_sjlj_callsite: {
3895    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
3896    ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(0));
3897    assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
3898    assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
3899
3900    MMI.setCurrentCallSite(CI->getZExtValue());
3901    return 0;
3902  }
3903
3904  case Intrinsic::convertff:
3905  case Intrinsic::convertfsi:
3906  case Intrinsic::convertfui:
3907  case Intrinsic::convertsif:
3908  case Intrinsic::convertuif:
3909  case Intrinsic::convertss:
3910  case Intrinsic::convertsu:
3911  case Intrinsic::convertus:
3912  case Intrinsic::convertuu: {
3913    ISD::CvtCode Code = ISD::CVT_INVALID;
3914    switch (Intrinsic) {
3915    case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
3916    case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
3917    case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
3918    case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
3919    case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
3920    case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
3921    case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
3922    case Intrinsic::convertus:  Code = ISD::CVT_US; break;
3923    case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
3924    }
3925    EVT DestVT = TLI.getValueType(I.getType());
3926    const Value *Op1 = I.getOperand(0);
3927    Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1),
3928                               DAG.getValueType(DestVT),
3929                               DAG.getValueType(getValue(Op1).getValueType()),
3930                               getValue(I.getOperand(1)),
3931                               getValue(I.getOperand(2)),
3932                               Code);
3933    setValue(&I, Res);
3934    return 0;
3935  }
3936  case Intrinsic::sqrt:
3937    setValue(&I, DAG.getNode(ISD::FSQRT, dl,
3938                             getValue(I.getOperand(0)).getValueType(),
3939                             getValue(I.getOperand(0))));
3940    return 0;
3941  case Intrinsic::powi:
3942    setValue(&I, ExpandPowI(dl, getValue(I.getOperand(0)),
3943                            getValue(I.getOperand(1)), DAG));
3944    return 0;
3945  case Intrinsic::sin:
3946    setValue(&I, DAG.getNode(ISD::FSIN, dl,
3947                             getValue(I.getOperand(0)).getValueType(),
3948                             getValue(I.getOperand(0))));
3949    return 0;
3950  case Intrinsic::cos:
3951    setValue(&I, DAG.getNode(ISD::FCOS, dl,
3952                             getValue(I.getOperand(0)).getValueType(),
3953                             getValue(I.getOperand(0))));
3954    return 0;
3955  case Intrinsic::log:
3956    visitLog(I);
3957    return 0;
3958  case Intrinsic::log2:
3959    visitLog2(I);
3960    return 0;
3961  case Intrinsic::log10:
3962    visitLog10(I);
3963    return 0;
3964  case Intrinsic::exp:
3965    visitExp(I);
3966    return 0;
3967  case Intrinsic::exp2:
3968    visitExp2(I);
3969    return 0;
3970  case Intrinsic::pow:
3971    visitPow(I);
3972    return 0;
3973  case Intrinsic::convert_to_fp16:
3974    setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl,
3975                             MVT::i16, getValue(I.getOperand(0))));
3976    return 0;
3977  case Intrinsic::convert_from_fp16:
3978    setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl,
3979                             MVT::f32, getValue(I.getOperand(0))));
3980    return 0;
3981  case Intrinsic::pcmarker: {
3982    SDValue Tmp = getValue(I.getOperand(0));
3983    DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp));
3984    return 0;
3985  }
3986  case Intrinsic::readcyclecounter: {
3987    SDValue Op = getRoot();
3988    Res = DAG.getNode(ISD::READCYCLECOUNTER, dl,
3989                      DAG.getVTList(MVT::i64, MVT::Other),
3990                      &Op, 1);
3991    setValue(&I, Res);
3992    DAG.setRoot(Res.getValue(1));
3993    return 0;
3994  }
3995  case Intrinsic::bswap:
3996    setValue(&I, DAG.getNode(ISD::BSWAP, dl,
3997                             getValue(I.getOperand(0)).getValueType(),
3998                             getValue(I.getOperand(0))));
3999    return 0;
4000  case Intrinsic::cttz: {
4001    SDValue Arg = getValue(I.getOperand(0));
4002    EVT Ty = Arg.getValueType();
4003    setValue(&I, DAG.getNode(ISD::CTTZ, dl, Ty, Arg));
4004    return 0;
4005  }
4006  case Intrinsic::ctlz: {
4007    SDValue Arg = getValue(I.getOperand(0));
4008    EVT Ty = Arg.getValueType();
4009    setValue(&I, DAG.getNode(ISD::CTLZ, dl, Ty, Arg));
4010    return 0;
4011  }
4012  case Intrinsic::ctpop: {
4013    SDValue Arg = getValue(I.getOperand(0));
4014    EVT Ty = Arg.getValueType();
4015    setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg));
4016    return 0;
4017  }
4018  case Intrinsic::stacksave: {
4019    SDValue Op = getRoot();
4020    Res = DAG.getNode(ISD::STACKSAVE, dl,
4021                      DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
4022    setValue(&I, Res);
4023    DAG.setRoot(Res.getValue(1));
4024    return 0;
4025  }
4026  case Intrinsic::stackrestore: {
4027    Res = getValue(I.getOperand(0));
4028    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res));
4029    return 0;
4030  }
4031  case Intrinsic::stackprotector: {
4032    // Emit code into the DAG to store the stack guard onto the stack.
4033    MachineFunction &MF = DAG.getMachineFunction();
4034    MachineFrameInfo *MFI = MF.getFrameInfo();
4035    EVT PtrTy = TLI.getPointerTy();
4036
4037    SDValue Src = getValue(I.getOperand(0));   // The guard's value.
4038    AllocaInst *Slot = cast<AllocaInst>(I.getOperand(1));
4039
4040    int FI = FuncInfo.StaticAllocaMap[Slot];
4041    MFI->setStackProtectorIndex(FI);
4042
4043    SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
4044
4045    // Store the stack protector onto the stack.
4046    Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN,
4047                       PseudoSourceValue::getFixedStack(FI),
4048                       0, true, false, 0);
4049    setValue(&I, Res);
4050    DAG.setRoot(Res);
4051    return 0;
4052  }
4053  case Intrinsic::objectsize: {
4054    // If we don't know by now, we're never going to know.
4055    ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1));
4056
4057    assert(CI && "Non-constant type in __builtin_object_size?");
4058
4059    SDValue Arg = getValue(I.getCalledValue());
4060    EVT Ty = Arg.getValueType();
4061
4062    if (CI->getZExtValue() == 0)
4063      Res = DAG.getConstant(-1ULL, Ty);
4064    else
4065      Res = DAG.getConstant(0, Ty);
4066
4067    setValue(&I, Res);
4068    return 0;
4069  }
4070  case Intrinsic::var_annotation:
4071    // Discard annotate attributes
4072    return 0;
4073
4074  case Intrinsic::init_trampoline: {
4075    const Function *F = cast<Function>(I.getOperand(1)->stripPointerCasts());
4076
4077    SDValue Ops[6];
4078    Ops[0] = getRoot();
4079    Ops[1] = getValue(I.getOperand(0));
4080    Ops[2] = getValue(I.getOperand(1));
4081    Ops[3] = getValue(I.getOperand(2));
4082    Ops[4] = DAG.getSrcValue(I.getOperand(0));
4083    Ops[5] = DAG.getSrcValue(F);
4084
4085    Res = DAG.getNode(ISD::TRAMPOLINE, dl,
4086                      DAG.getVTList(TLI.getPointerTy(), MVT::Other),
4087                      Ops, 6);
4088
4089    setValue(&I, Res);
4090    DAG.setRoot(Res.getValue(1));
4091    return 0;
4092  }
4093  case Intrinsic::gcroot:
4094    if (GFI) {
4095      const Value *Alloca = I.getOperand(0);
4096      const Constant *TypeMap = cast<Constant>(I.getOperand(1));
4097
4098      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
4099      GFI->addStackRoot(FI->getIndex(), TypeMap);
4100    }
4101    return 0;
4102  case Intrinsic::gcread:
4103  case Intrinsic::gcwrite:
4104    llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
4105    return 0;
4106  case Intrinsic::flt_rounds:
4107    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32));
4108    return 0;
4109  case Intrinsic::trap:
4110    DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot()));
4111    return 0;
4112  case Intrinsic::uadd_with_overflow:
4113    return implVisitAluOverflow(I, ISD::UADDO);
4114  case Intrinsic::sadd_with_overflow:
4115    return implVisitAluOverflow(I, ISD::SADDO);
4116  case Intrinsic::usub_with_overflow:
4117    return implVisitAluOverflow(I, ISD::USUBO);
4118  case Intrinsic::ssub_with_overflow:
4119    return implVisitAluOverflow(I, ISD::SSUBO);
4120  case Intrinsic::umul_with_overflow:
4121    return implVisitAluOverflow(I, ISD::UMULO);
4122  case Intrinsic::smul_with_overflow:
4123    return implVisitAluOverflow(I, ISD::SMULO);
4124
4125  case Intrinsic::prefetch: {
4126    SDValue Ops[4];
4127    Ops[0] = getRoot();
4128    Ops[1] = getValue(I.getOperand(0));
4129    Ops[2] = getValue(I.getOperand(1));
4130    Ops[3] = getValue(I.getOperand(2));
4131    DAG.setRoot(DAG.getNode(ISD::PREFETCH, dl, MVT::Other, &Ops[0], 4));
4132    return 0;
4133  }
4134
4135  case Intrinsic::memory_barrier: {
4136    SDValue Ops[6];
4137    Ops[0] = getRoot();
4138    for (int x = 1; x < 6; ++x)
4139      Ops[x] = getValue(I.getOperand(x - 1));
4140
4141    DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6));
4142    return 0;
4143  }
4144  case Intrinsic::atomic_cmp_swap: {
4145    SDValue Root = getRoot();
4146    SDValue L =
4147      DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(),
4148                    getValue(I.getOperand(1)).getValueType().getSimpleVT(),
4149                    Root,
4150                    getValue(I.getOperand(0)),
4151                    getValue(I.getOperand(1)),
4152                    getValue(I.getOperand(2)),
4153                    I.getOperand(0));
4154    setValue(&I, L);
4155    DAG.setRoot(L.getValue(1));
4156    return 0;
4157  }
4158  case Intrinsic::atomic_load_add:
4159    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD);
4160  case Intrinsic::atomic_load_sub:
4161    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB);
4162  case Intrinsic::atomic_load_or:
4163    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR);
4164  case Intrinsic::atomic_load_xor:
4165    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR);
4166  case Intrinsic::atomic_load_and:
4167    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND);
4168  case Intrinsic::atomic_load_nand:
4169    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND);
4170  case Intrinsic::atomic_load_max:
4171    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX);
4172  case Intrinsic::atomic_load_min:
4173    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN);
4174  case Intrinsic::atomic_load_umin:
4175    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN);
4176  case Intrinsic::atomic_load_umax:
4177    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX);
4178  case Intrinsic::atomic_swap:
4179    return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP);
4180
4181  case Intrinsic::invariant_start:
4182  case Intrinsic::lifetime_start:
4183    // Discard region information.
4184    setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
4185    return 0;
4186  case Intrinsic::invariant_end:
4187  case Intrinsic::lifetime_end:
4188    // Discard region information.
4189    return 0;
4190  }
4191}
4192
4193/// Test if the given instruction is in a position to be optimized
4194/// with a tail-call. This roughly means that it's in a block with
4195/// a return and there's nothing that needs to be scheduled
4196/// between it and the return.
4197///
4198/// This function only tests target-independent requirements.
4199static bool
4200isInTailCallPosition(ImmutableCallSite CS, Attributes CalleeRetAttr,
4201                     const TargetLowering &TLI) {
4202  const Instruction *I = CS.getInstruction();
4203  const BasicBlock *ExitBB = I->getParent();
4204  const TerminatorInst *Term = ExitBB->getTerminator();
4205  const ReturnInst *Ret = dyn_cast<ReturnInst>(Term);
4206  const Function *F = ExitBB->getParent();
4207
4208  // The block must end in a return statement or unreachable.
4209  //
4210  // FIXME: Decline tailcall if it's not guaranteed and if the block ends in
4211  // an unreachable, for now. The way tailcall optimization is currently
4212  // implemented means it will add an epilogue followed by a jump. That is
4213  // not profitable. Also, if the callee is a special function (e.g.
4214  // longjmp on x86), it can end up causing miscompilation that has not
4215  // been fully understood.
4216  if (!Ret &&
4217      (!GuaranteedTailCallOpt || !isa<UnreachableInst>(Term))) return false;
4218
4219  // If I will have a chain, make sure no other instruction that will have a
4220  // chain interposes between I and the return.
4221  if (I->mayHaveSideEffects() || I->mayReadFromMemory() ||
4222      !I->isSafeToSpeculativelyExecute())
4223    for (BasicBlock::const_iterator BBI = prior(prior(ExitBB->end())); ;
4224         --BBI) {
4225      if (&*BBI == I)
4226        break;
4227      // Debug info intrinsics do not get in the way of tail call optimization.
4228      if (isa<DbgInfoIntrinsic>(BBI))
4229        continue;
4230      if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() ||
4231          !BBI->isSafeToSpeculativelyExecute())
4232        return false;
4233    }
4234
4235  // If the block ends with a void return or unreachable, it doesn't matter
4236  // what the call's return type is.
4237  if (!Ret || Ret->getNumOperands() == 0) return true;
4238
4239  // If the return value is undef, it doesn't matter what the call's
4240  // return type is.
4241  if (isa<UndefValue>(Ret->getOperand(0))) return true;
4242
4243  // Conservatively require the attributes of the call to match those of
4244  // the return. Ignore noalias because it doesn't affect the call sequence.
4245  unsigned CallerRetAttr = F->getAttributes().getRetAttributes();
4246  if ((CalleeRetAttr ^ CallerRetAttr) & ~Attribute::NoAlias)
4247    return false;
4248
4249  // It's not safe to eliminate the sign / zero extension of the return value.
4250  if ((CallerRetAttr & Attribute::ZExt) || (CallerRetAttr & Attribute::SExt))
4251    return false;
4252
4253  // Otherwise, make sure the unmodified return value of I is the return value.
4254  for (const Instruction *U = dyn_cast<Instruction>(Ret->getOperand(0)); ;
4255       U = dyn_cast<Instruction>(U->getOperand(0))) {
4256    if (!U)
4257      return false;
4258    if (!U->hasOneUse())
4259      return false;
4260    if (U == I)
4261      break;
4262    // Check for a truly no-op truncate.
4263    if (isa<TruncInst>(U) &&
4264        TLI.isTruncateFree(U->getOperand(0)->getType(), U->getType()))
4265      continue;
4266    // Check for a truly no-op bitcast.
4267    if (isa<BitCastInst>(U) &&
4268        (U->getOperand(0)->getType() == U->getType() ||
4269         (U->getOperand(0)->getType()->isPointerTy() &&
4270          U->getType()->isPointerTy())))
4271      continue;
4272    // Otherwise it's not a true no-op.
4273    return false;
4274  }
4275
4276  return true;
4277}
4278
4279void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
4280                                      bool isTailCall,
4281                                      MachineBasicBlock *LandingPad) {
4282  const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
4283  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
4284  const Type *RetTy = FTy->getReturnType();
4285  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4286  MCSymbol *BeginLabel = 0;
4287
4288  TargetLowering::ArgListTy Args;
4289  TargetLowering::ArgListEntry Entry;
4290  Args.reserve(CS.arg_size());
4291
4292  // Check whether the function can return without sret-demotion.
4293  SmallVector<EVT, 4> OutVTs;
4294  SmallVector<ISD::ArgFlagsTy, 4> OutsFlags;
4295  SmallVector<uint64_t, 4> Offsets;
4296  getReturnInfo(RetTy, CS.getAttributes().getRetAttributes(),
4297                OutVTs, OutsFlags, TLI, &Offsets);
4298
4299  bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
4300                        FTy->isVarArg(), OutVTs, OutsFlags, DAG);
4301
4302  SDValue DemoteStackSlot;
4303
4304  if (!CanLowerReturn) {
4305    uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(
4306                      FTy->getReturnType());
4307    unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(
4308                      FTy->getReturnType());
4309    MachineFunction &MF = DAG.getMachineFunction();
4310    int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
4311    const Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
4312
4313    DemoteStackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
4314    Entry.Node = DemoteStackSlot;
4315    Entry.Ty = StackSlotPtrType;
4316    Entry.isSExt = false;
4317    Entry.isZExt = false;
4318    Entry.isInReg = false;
4319    Entry.isSRet = true;
4320    Entry.isNest = false;
4321    Entry.isByVal = false;
4322    Entry.Alignment = Align;
4323    Args.push_back(Entry);
4324    RetTy = Type::getVoidTy(FTy->getContext());
4325  }
4326
4327  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
4328       i != e; ++i) {
4329    SDValue ArgNode = getValue(*i);
4330    Entry.Node = ArgNode; Entry.Ty = (*i)->getType();
4331
4332    unsigned attrInd = i - CS.arg_begin() + 1;
4333    Entry.isSExt  = CS.paramHasAttr(attrInd, Attribute::SExt);
4334    Entry.isZExt  = CS.paramHasAttr(attrInd, Attribute::ZExt);
4335    Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg);
4336    Entry.isSRet  = CS.paramHasAttr(attrInd, Attribute::StructRet);
4337    Entry.isNest  = CS.paramHasAttr(attrInd, Attribute::Nest);
4338    Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal);
4339    Entry.Alignment = CS.getParamAlignment(attrInd);
4340    Args.push_back(Entry);
4341  }
4342
4343  if (LandingPad) {
4344    // Insert a label before the invoke call to mark the try range.  This can be
4345    // used to detect deletion of the invoke via the MachineModuleInfo.
4346    BeginLabel = MMI.getContext().CreateTempSymbol();
4347
4348    // For SjLj, keep track of which landing pads go with which invokes
4349    // so as to maintain the ordering of pads in the LSDA.
4350    unsigned CallSiteIndex = MMI.getCurrentCallSite();
4351    if (CallSiteIndex) {
4352      MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
4353      // Now that the call site is handled, stop tracking it.
4354      MMI.setCurrentCallSite(0);
4355    }
4356
4357    // Both PendingLoads and PendingExports must be flushed here;
4358    // this call might not return.
4359    (void)getRoot();
4360    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel));
4361  }
4362
4363  // Check if target-independent constraints permit a tail call here.
4364  // Target-dependent constraints are checked within TLI.LowerCallTo.
4365  if (isTailCall &&
4366      !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI))
4367    isTailCall = false;
4368
4369  std::pair<SDValue,SDValue> Result =
4370    TLI.LowerCallTo(getRoot(), RetTy,
4371                    CS.paramHasAttr(0, Attribute::SExt),
4372                    CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(),
4373                    CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(),
4374                    CS.getCallingConv(),
4375                    isTailCall,
4376                    !CS.getInstruction()->use_empty(),
4377                    Callee, Args, DAG, getCurDebugLoc());
4378  assert((isTailCall || Result.second.getNode()) &&
4379         "Non-null chain expected with non-tail call!");
4380  assert((Result.second.getNode() || !Result.first.getNode()) &&
4381         "Null value expected with tail call!");
4382  if (Result.first.getNode()) {
4383    setValue(CS.getInstruction(), Result.first);
4384  } else if (!CanLowerReturn && Result.second.getNode()) {
4385    // The instruction result is the result of loading from the
4386    // hidden sret parameter.
4387    SmallVector<EVT, 1> PVTs;
4388    const Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
4389
4390    ComputeValueVTs(TLI, PtrRetTy, PVTs);
4391    assert(PVTs.size() == 1 && "Pointers should fit in one register");
4392    EVT PtrVT = PVTs[0];
4393    unsigned NumValues = OutVTs.size();
4394    SmallVector<SDValue, 4> Values(NumValues);
4395    SmallVector<SDValue, 4> Chains(NumValues);
4396
4397    for (unsigned i = 0; i < NumValues; ++i) {
4398      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT,
4399                                DemoteStackSlot,
4400                                DAG.getConstant(Offsets[i], PtrVT));
4401      SDValue L = DAG.getLoad(OutVTs[i], getCurDebugLoc(), Result.second,
4402                              Add, NULL, Offsets[i], false, false, 1);
4403      Values[i] = L;
4404      Chains[i] = L.getValue(1);
4405    }
4406
4407    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
4408                                MVT::Other, &Chains[0], NumValues);
4409    PendingLoads.push_back(Chain);
4410
4411    // Collect the legal value parts into potentially illegal values
4412    // that correspond to the original function's return values.
4413    SmallVector<EVT, 4> RetTys;
4414    RetTy = FTy->getReturnType();
4415    ComputeValueVTs(TLI, RetTy, RetTys);
4416    ISD::NodeType AssertOp = ISD::DELETED_NODE;
4417    SmallVector<SDValue, 4> ReturnValues;
4418    unsigned CurReg = 0;
4419    for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
4420      EVT VT = RetTys[I];
4421      EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT);
4422      unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT);
4423
4424      SDValue ReturnValue =
4425        getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs,
4426                         RegisterVT, VT, AssertOp);
4427      ReturnValues.push_back(ReturnValue);
4428      CurReg += NumRegs;
4429    }
4430
4431    setValue(CS.getInstruction(),
4432             DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
4433                         DAG.getVTList(&RetTys[0], RetTys.size()),
4434                         &ReturnValues[0], ReturnValues.size()));
4435
4436  }
4437
4438  // As a special case, a null chain means that a tail call has been emitted and
4439  // the DAG root is already updated.
4440  if (Result.second.getNode())
4441    DAG.setRoot(Result.second);
4442  else
4443    HasTailCall = true;
4444
4445  if (LandingPad) {
4446    // Insert a label at the end of the invoke call to mark the try range.  This
4447    // can be used to detect deletion of the invoke via the MachineModuleInfo.
4448    MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
4449    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel));
4450
4451    // Inform MachineModuleInfo of range.
4452    MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
4453  }
4454}
4455
4456/// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
4457/// value is equal or not-equal to zero.
4458static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
4459  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
4460       UI != E; ++UI) {
4461    if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
4462      if (IC->isEquality())
4463        if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
4464          if (C->isNullValue())
4465            continue;
4466    // Unknown instruction.
4467    return false;
4468  }
4469  return true;
4470}
4471
4472static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
4473                             const Type *LoadTy,
4474                             SelectionDAGBuilder &Builder) {
4475
4476  // Check to see if this load can be trivially constant folded, e.g. if the
4477  // input is from a string literal.
4478  if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
4479    // Cast pointer to the type we really want to load.
4480    LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
4481                                         PointerType::getUnqual(LoadTy));
4482
4483    if (const Constant *LoadCst =
4484          ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
4485                                       Builder.TD))
4486      return Builder.getValue(LoadCst);
4487  }
4488
4489  // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
4490  // still constant memory, the input chain can be the entry node.
4491  SDValue Root;
4492  bool ConstantMemory = false;
4493
4494  // Do not serialize (non-volatile) loads of constant memory with anything.
4495  if (Builder.AA->pointsToConstantMemory(PtrVal)) {
4496    Root = Builder.DAG.getEntryNode();
4497    ConstantMemory = true;
4498  } else {
4499    // Do not serialize non-volatile loads against each other.
4500    Root = Builder.DAG.getRoot();
4501  }
4502
4503  SDValue Ptr = Builder.getValue(PtrVal);
4504  SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root,
4505                                        Ptr, PtrVal /*SrcValue*/, 0/*SVOffset*/,
4506                                        false /*volatile*/,
4507                                        false /*nontemporal*/, 1 /* align=1 */);
4508
4509  if (!ConstantMemory)
4510    Builder.PendingLoads.push_back(LoadVal.getValue(1));
4511  return LoadVal;
4512}
4513
4514
4515/// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
4516/// If so, return true and lower it, otherwise return false and it will be
4517/// lowered like a normal call.
4518bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
4519  // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
4520  if (I.getNumOperands() != 4)
4521    return false;
4522
4523  const Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
4524  if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
4525      !I.getOperand(2)->getType()->isIntegerTy() ||
4526      !I.getType()->isIntegerTy())
4527    return false;
4528
4529  const ConstantInt *Size = dyn_cast<ConstantInt>(I.getOperand(2));
4530
4531  // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
4532  // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
4533  if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) {
4534    bool ActuallyDoIt = true;
4535    MVT LoadVT;
4536    const Type *LoadTy;
4537    switch (Size->getZExtValue()) {
4538    default:
4539      LoadVT = MVT::Other;
4540      LoadTy = 0;
4541      ActuallyDoIt = false;
4542      break;
4543    case 2:
4544      LoadVT = MVT::i16;
4545      LoadTy = Type::getInt16Ty(Size->getContext());
4546      break;
4547    case 4:
4548      LoadVT = MVT::i32;
4549      LoadTy = Type::getInt32Ty(Size->getContext());
4550      break;
4551    case 8:
4552      LoadVT = MVT::i64;
4553      LoadTy = Type::getInt64Ty(Size->getContext());
4554      break;
4555        /*
4556    case 16:
4557      LoadVT = MVT::v4i32;
4558      LoadTy = Type::getInt32Ty(Size->getContext());
4559      LoadTy = VectorType::get(LoadTy, 4);
4560      break;
4561         */
4562    }
4563
4564    // This turns into unaligned loads.  We only do this if the target natively
4565    // supports the MVT we'll be loading or if it is small enough (<= 4) that
4566    // we'll only produce a small number of byte loads.
4567
4568    // Require that we can find a legal MVT, and only do this if the target
4569    // supports unaligned loads of that type.  Expanding into byte loads would
4570    // bloat the code.
4571    if (ActuallyDoIt && Size->getZExtValue() > 4) {
4572      // TODO: Handle 5 byte compare as 4-byte + 1 byte.
4573      // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
4574      if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT))
4575        ActuallyDoIt = false;
4576    }
4577
4578    if (ActuallyDoIt) {
4579      SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
4580      SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
4581
4582      SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal,
4583                                 ISD::SETNE);
4584      EVT CallVT = TLI.getValueType(I.getType(), true);
4585      setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT));
4586      return true;
4587    }
4588  }
4589
4590
4591  return false;
4592}
4593
4594
4595void SelectionDAGBuilder::visitCall(const CallInst &I) {
4596  const char *RenameFn = 0;
4597  if (Function *F = I.getCalledFunction()) {
4598    if (F->isDeclaration()) {
4599      const TargetIntrinsicInfo *II = TLI.getTargetMachine().getIntrinsicInfo();
4600      if (II) {
4601        if (unsigned IID = II->getIntrinsicID(F)) {
4602          RenameFn = visitIntrinsicCall(I, IID);
4603          if (!RenameFn)
4604            return;
4605        }
4606      }
4607      if (unsigned IID = F->getIntrinsicID()) {
4608        RenameFn = visitIntrinsicCall(I, IID);
4609        if (!RenameFn)
4610          return;
4611      }
4612    }
4613
4614    // Check for well-known libc/libm calls.  If the function is internal, it
4615    // can't be a library call.
4616    if (!F->hasLocalLinkage() && F->hasName()) {
4617      StringRef Name = F->getName();
4618      if (Name == "copysign" || Name == "copysignf" || Name == "copysignl") {
4619        if (I.getNumOperands() == 3 &&   // Basic sanity checks.
4620            I.getOperand(0)->getType()->isFloatingPointTy() &&
4621            I.getType() == I.getOperand(0)->getType() &&
4622            I.getType() == I.getOperand(1)->getType()) {
4623          SDValue LHS = getValue(I.getOperand(0));
4624          SDValue RHS = getValue(I.getOperand(1));
4625          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(),
4626                                   LHS.getValueType(), LHS, RHS));
4627          return;
4628        }
4629      } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") {
4630        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
4631            I.getOperand(0)->getType()->isFloatingPointTy() &&
4632            I.getType() == I.getOperand(0)->getType()) {
4633          SDValue Tmp = getValue(I.getOperand(0));
4634          setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(),
4635                                   Tmp.getValueType(), Tmp));
4636          return;
4637        }
4638      } else if (Name == "sin" || Name == "sinf" || Name == "sinl") {
4639        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
4640            I.getOperand(0)->getType()->isFloatingPointTy() &&
4641            I.getType() == I.getOperand(0)->getType() &&
4642            I.onlyReadsMemory()) {
4643          SDValue Tmp = getValue(I.getOperand(0));
4644          setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(),
4645                                   Tmp.getValueType(), Tmp));
4646          return;
4647        }
4648      } else if (Name == "cos" || Name == "cosf" || Name == "cosl") {
4649        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
4650            I.getOperand(0)->getType()->isFloatingPointTy() &&
4651            I.getType() == I.getOperand(0)->getType() &&
4652            I.onlyReadsMemory()) {
4653          SDValue Tmp = getValue(I.getOperand(0));
4654          setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(),
4655                                   Tmp.getValueType(), Tmp));
4656          return;
4657        }
4658      } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") {
4659        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
4660            I.getOperand(0)->getType()->isFloatingPointTy() &&
4661            I.getType() == I.getOperand(0)->getType() &&
4662            I.onlyReadsMemory()) {
4663          SDValue Tmp = getValue(I.getOperand(0));
4664          setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(),
4665                                   Tmp.getValueType(), Tmp));
4666          return;
4667        }
4668      } else if (Name == "memcmp") {
4669        if (visitMemCmpCall(I))
4670          return;
4671      }
4672    }
4673  } else if (isa<InlineAsm>(I.getCalledValue())) {
4674    visitInlineAsm(&I);
4675    return;
4676  }
4677
4678  SDValue Callee;
4679  if (!RenameFn)
4680    Callee = getValue(I.getCalledValue());
4681  else
4682    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
4683
4684  // Check if we can potentially perform a tail call. More detailed checking is
4685  // be done within LowerCallTo, after more information about the call is known.
4686  LowerCallTo(&I, Callee, I.isTailCall());
4687}
4688
4689/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
4690/// this value and returns the result as a ValueVT value.  This uses
4691/// Chain/Flag as the input and updates them for the output Chain/Flag.
4692/// If the Flag pointer is NULL, no flag is used.
4693SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, DebugLoc dl,
4694                                      SDValue &Chain, SDValue *Flag) const {
4695  // Assemble the legal parts into the final values.
4696  SmallVector<SDValue, 4> Values(ValueVTs.size());
4697  SmallVector<SDValue, 8> Parts;
4698  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
4699    // Copy the legal parts from the registers.
4700    EVT ValueVT = ValueVTs[Value];
4701    unsigned NumRegs = TLI->getNumRegisters(*DAG.getContext(), ValueVT);
4702    EVT RegisterVT = RegVTs[Value];
4703
4704    Parts.resize(NumRegs);
4705    for (unsigned i = 0; i != NumRegs; ++i) {
4706      SDValue P;
4707      if (Flag == 0) {
4708        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
4709      } else {
4710        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
4711        *Flag = P.getValue(2);
4712      }
4713
4714      Chain = P.getValue(1);
4715
4716      // If the source register was virtual and if we know something about it,
4717      // add an assert node.
4718      if (TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) &&
4719          RegisterVT.isInteger() && !RegisterVT.isVector()) {
4720        unsigned SlotNo = Regs[Part+i]-TargetRegisterInfo::FirstVirtualRegister;
4721        FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo();
4722        if (FLI.LiveOutRegInfo.size() > SlotNo) {
4723          FunctionLoweringInfo::LiveOutInfo &LOI = FLI.LiveOutRegInfo[SlotNo];
4724
4725          unsigned RegSize = RegisterVT.getSizeInBits();
4726          unsigned NumSignBits = LOI.NumSignBits;
4727          unsigned NumZeroBits = LOI.KnownZero.countLeadingOnes();
4728
4729          // FIXME: We capture more information than the dag can represent.  For
4730          // now, just use the tightest assertzext/assertsext possible.
4731          bool isSExt = true;
4732          EVT FromVT(MVT::Other);
4733          if (NumSignBits == RegSize)
4734            isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
4735          else if (NumZeroBits >= RegSize-1)
4736            isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
4737          else if (NumSignBits > RegSize-8)
4738            isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
4739          else if (NumZeroBits >= RegSize-8)
4740            isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
4741          else if (NumSignBits > RegSize-16)
4742            isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
4743          else if (NumZeroBits >= RegSize-16)
4744            isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
4745          else if (NumSignBits > RegSize-32)
4746            isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
4747          else if (NumZeroBits >= RegSize-32)
4748            isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
4749
4750          if (FromVT != MVT::Other)
4751            P = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
4752                            RegisterVT, P, DAG.getValueType(FromVT));
4753        }
4754      }
4755
4756      Parts[i] = P;
4757    }
4758
4759    Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
4760                                     NumRegs, RegisterVT, ValueVT);
4761    Part += NumRegs;
4762    Parts.clear();
4763  }
4764
4765  return DAG.getNode(ISD::MERGE_VALUES, dl,
4766                     DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
4767                     &Values[0], ValueVTs.size());
4768}
4769
4770/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
4771/// specified value into the registers specified by this object.  This uses
4772/// Chain/Flag as the input and updates them for the output Chain/Flag.
4773/// If the Flag pointer is NULL, no flag is used.
4774void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
4775                                 SDValue &Chain, SDValue *Flag) const {
4776  // Get the list of the values's legal parts.
4777  unsigned NumRegs = Regs.size();
4778  SmallVector<SDValue, 8> Parts(NumRegs);
4779  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
4780    EVT ValueVT = ValueVTs[Value];
4781    unsigned NumParts = TLI->getNumRegisters(*DAG.getContext(), ValueVT);
4782    EVT RegisterVT = RegVTs[Value];
4783
4784    getCopyToParts(DAG, dl,
4785                   Val.getValue(Val.getResNo() + Value),
4786                   &Parts[Part], NumParts, RegisterVT);
4787    Part += NumParts;
4788  }
4789
4790  // Copy the parts into the registers.
4791  SmallVector<SDValue, 8> Chains(NumRegs);
4792  for (unsigned i = 0; i != NumRegs; ++i) {
4793    SDValue Part;
4794    if (Flag == 0) {
4795      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
4796    } else {
4797      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
4798      *Flag = Part.getValue(1);
4799    }
4800
4801    Chains[i] = Part.getValue(0);
4802  }
4803
4804  if (NumRegs == 1 || Flag)
4805    // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
4806    // flagged to it. That is the CopyToReg nodes and the user are considered
4807    // a single scheduling unit. If we create a TokenFactor and return it as
4808    // chain, then the TokenFactor is both a predecessor (operand) of the
4809    // user as well as a successor (the TF operands are flagged to the user).
4810    // c1, f1 = CopyToReg
4811    // c2, f2 = CopyToReg
4812    // c3     = TokenFactor c1, c2
4813    // ...
4814    //        = op c3, ..., f2
4815    Chain = Chains[NumRegs-1];
4816  else
4817    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
4818}
4819
4820/// AddInlineAsmOperands - Add this value to the specified inlineasm node
4821/// operand list.  This adds the code marker and includes the number of
4822/// values added into it.
4823void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
4824                                        unsigned MatchingIdx,
4825                                        SelectionDAG &DAG,
4826                                        std::vector<SDValue> &Ops) const {
4827  unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
4828  if (HasMatching)
4829    Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
4830  SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
4831  Ops.push_back(Res);
4832
4833  for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
4834    unsigned NumRegs = TLI->getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
4835    EVT RegisterVT = RegVTs[Value];
4836    for (unsigned i = 0; i != NumRegs; ++i) {
4837      assert(Reg < Regs.size() && "Mismatch in # registers expected");
4838      Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
4839    }
4840  }
4841}
4842
4843/// isAllocatableRegister - If the specified register is safe to allocate,
4844/// i.e. it isn't a stack pointer or some other special register, return the
4845/// register class for the register.  Otherwise, return null.
4846static const TargetRegisterClass *
4847isAllocatableRegister(unsigned Reg, MachineFunction &MF,
4848                      const TargetLowering &TLI,
4849                      const TargetRegisterInfo *TRI) {
4850  EVT FoundVT = MVT::Other;
4851  const TargetRegisterClass *FoundRC = 0;
4852  for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(),
4853       E = TRI->regclass_end(); RCI != E; ++RCI) {
4854    EVT ThisVT = MVT::Other;
4855
4856    const TargetRegisterClass *RC = *RCI;
4857    // If none of the value types for this register class are valid, we
4858    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
4859    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
4860         I != E; ++I) {
4861      if (TLI.isTypeLegal(*I)) {
4862        // If we have already found this register in a different register class,
4863        // choose the one with the largest VT specified.  For example, on
4864        // PowerPC, we favor f64 register classes over f32.
4865        if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) {
4866          ThisVT = *I;
4867          break;
4868        }
4869      }
4870    }
4871
4872    if (ThisVT == MVT::Other) continue;
4873
4874    // NOTE: This isn't ideal.  In particular, this might allocate the
4875    // frame pointer in functions that need it (due to them not being taken
4876    // out of allocation, because a variable sized allocation hasn't been seen
4877    // yet).  This is a slight code pessimization, but should still work.
4878    for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
4879         E = RC->allocation_order_end(MF); I != E; ++I)
4880      if (*I == Reg) {
4881        // We found a matching register class.  Keep looking at others in case
4882        // we find one with larger registers that this physreg is also in.
4883        FoundRC = RC;
4884        FoundVT = ThisVT;
4885        break;
4886      }
4887  }
4888  return FoundRC;
4889}
4890
4891
4892namespace llvm {
4893/// AsmOperandInfo - This contains information for each constraint that we are
4894/// lowering.
4895class VISIBILITY_HIDDEN SDISelAsmOperandInfo :
4896    public TargetLowering::AsmOperandInfo {
4897public:
4898  /// CallOperand - If this is the result output operand or a clobber
4899  /// this is null, otherwise it is the incoming operand to the CallInst.
4900  /// This gets modified as the asm is processed.
4901  SDValue CallOperand;
4902
4903  /// AssignedRegs - If this is a register or register class operand, this
4904  /// contains the set of register corresponding to the operand.
4905  RegsForValue AssignedRegs;
4906
4907  explicit SDISelAsmOperandInfo(const InlineAsm::ConstraintInfo &info)
4908    : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
4909  }
4910
4911  /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
4912  /// busy in OutputRegs/InputRegs.
4913  void MarkAllocatedRegs(bool isOutReg, bool isInReg,
4914                         std::set<unsigned> &OutputRegs,
4915                         std::set<unsigned> &InputRegs,
4916                         const TargetRegisterInfo &TRI) const {
4917    if (isOutReg) {
4918      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
4919        MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
4920    }
4921    if (isInReg) {
4922      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
4923        MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
4924    }
4925  }
4926
4927  /// getCallOperandValEVT - Return the EVT of the Value* that this operand
4928  /// corresponds to.  If there is no Value* for this operand, it returns
4929  /// MVT::Other.
4930  EVT getCallOperandValEVT(LLVMContext &Context,
4931                           const TargetLowering &TLI,
4932                           const TargetData *TD) const {
4933    if (CallOperandVal == 0) return MVT::Other;
4934
4935    if (isa<BasicBlock>(CallOperandVal))
4936      return TLI.getPointerTy();
4937
4938    const llvm::Type *OpTy = CallOperandVal->getType();
4939
4940    // If this is an indirect operand, the operand is a pointer to the
4941    // accessed type.
4942    if (isIndirect) {
4943      const llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
4944      if (!PtrTy)
4945        report_fatal_error("Indirect operand for inline asm not a pointer!");
4946      OpTy = PtrTy->getElementType();
4947    }
4948
4949    // If OpTy is not a single value, it may be a struct/union that we
4950    // can tile with integers.
4951    if (!OpTy->isSingleValueType() && OpTy->isSized()) {
4952      unsigned BitSize = TD->getTypeSizeInBits(OpTy);
4953      switch (BitSize) {
4954      default: break;
4955      case 1:
4956      case 8:
4957      case 16:
4958      case 32:
4959      case 64:
4960      case 128:
4961        OpTy = IntegerType::get(Context, BitSize);
4962        break;
4963      }
4964    }
4965
4966    return TLI.getValueType(OpTy, true);
4967  }
4968
4969private:
4970  /// MarkRegAndAliases - Mark the specified register and all aliases in the
4971  /// specified set.
4972  static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
4973                                const TargetRegisterInfo &TRI) {
4974    assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
4975    Regs.insert(Reg);
4976    if (const unsigned *Aliases = TRI.getAliasSet(Reg))
4977      for (; *Aliases; ++Aliases)
4978        Regs.insert(*Aliases);
4979  }
4980};
4981} // end llvm namespace.
4982
4983
4984/// GetRegistersForValue - Assign registers (virtual or physical) for the
4985/// specified operand.  We prefer to assign virtual registers, to allow the
4986/// register allocator to handle the assignment process.  However, if the asm
4987/// uses features that we can't model on machineinstrs, we have SDISel do the
4988/// allocation.  This produces generally horrible, but correct, code.
4989///
4990///   OpInfo describes the operand.
4991///   Input and OutputRegs are the set of already allocated physical registers.
4992///
4993void SelectionDAGBuilder::
4994GetRegistersForValue(SDISelAsmOperandInfo &OpInfo,
4995                     std::set<unsigned> &OutputRegs,
4996                     std::set<unsigned> &InputRegs) {
4997  LLVMContext &Context = FuncInfo.Fn->getContext();
4998
4999  // Compute whether this value requires an input register, an output register,
5000  // or both.
5001  bool isOutReg = false;
5002  bool isInReg = false;
5003  switch (OpInfo.Type) {
5004  case InlineAsm::isOutput:
5005    isOutReg = true;
5006
5007    // If there is an input constraint that matches this, we need to reserve
5008    // the input register so no other inputs allocate to it.
5009    isInReg = OpInfo.hasMatchingInput();
5010    break;
5011  case InlineAsm::isInput:
5012    isInReg = true;
5013    isOutReg = false;
5014    break;
5015  case InlineAsm::isClobber:
5016    isOutReg = true;
5017    isInReg = true;
5018    break;
5019  }
5020
5021
5022  MachineFunction &MF = DAG.getMachineFunction();
5023  SmallVector<unsigned, 4> Regs;
5024
5025  // If this is a constraint for a single physreg, or a constraint for a
5026  // register class, find it.
5027  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
5028    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5029                                     OpInfo.ConstraintVT);
5030
5031  unsigned NumRegs = 1;
5032  if (OpInfo.ConstraintVT != MVT::Other) {
5033    // If this is a FP input in an integer register (or visa versa) insert a bit
5034    // cast of the input value.  More generally, handle any case where the input
5035    // value disagrees with the register class we plan to stick this in.
5036    if (OpInfo.Type == InlineAsm::isInput &&
5037        PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
5038      // Try to convert to the first EVT that the reg class contains.  If the
5039      // types are identical size, use a bitcast to convert (e.g. two differing
5040      // vector types).
5041      EVT RegVT = *PhysReg.second->vt_begin();
5042      if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
5043        OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
5044                                         RegVT, OpInfo.CallOperand);
5045        OpInfo.ConstraintVT = RegVT;
5046      } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
5047        // If the input is a FP value and we want it in FP registers, do a
5048        // bitcast to the corresponding integer type.  This turns an f64 value
5049        // into i64, which can be passed with two i32 values on a 32-bit
5050        // machine.
5051        RegVT = EVT::getIntegerVT(Context,
5052                                  OpInfo.ConstraintVT.getSizeInBits());
5053        OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
5054                                         RegVT, OpInfo.CallOperand);
5055        OpInfo.ConstraintVT = RegVT;
5056      }
5057    }
5058
5059    NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
5060  }
5061
5062  EVT RegVT;
5063  EVT ValueVT = OpInfo.ConstraintVT;
5064
5065  // If this is a constraint for a specific physical register, like {r17},
5066  // assign it now.
5067  if (unsigned AssignedReg = PhysReg.first) {
5068    const TargetRegisterClass *RC = PhysReg.second;
5069    if (OpInfo.ConstraintVT == MVT::Other)
5070      ValueVT = *RC->vt_begin();
5071
5072    // Get the actual register value type.  This is important, because the user
5073    // may have asked for (e.g.) the AX register in i32 type.  We need to
5074    // remember that AX is actually i16 to get the right extension.
5075    RegVT = *RC->vt_begin();
5076
5077    // This is a explicit reference to a physical register.
5078    Regs.push_back(AssignedReg);
5079
5080    // If this is an expanded reference, add the rest of the regs to Regs.
5081    if (NumRegs != 1) {
5082      TargetRegisterClass::iterator I = RC->begin();
5083      for (; *I != AssignedReg; ++I)
5084        assert(I != RC->end() && "Didn't find reg!");
5085
5086      // Already added the first reg.
5087      --NumRegs; ++I;
5088      for (; NumRegs; --NumRegs, ++I) {
5089        assert(I != RC->end() && "Ran out of registers to allocate!");
5090        Regs.push_back(*I);
5091      }
5092    }
5093
5094    OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT);
5095    const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5096    OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5097    return;
5098  }
5099
5100  // Otherwise, if this was a reference to an LLVM register class, create vregs
5101  // for this reference.
5102  if (const TargetRegisterClass *RC = PhysReg.second) {
5103    RegVT = *RC->vt_begin();
5104    if (OpInfo.ConstraintVT == MVT::Other)
5105      ValueVT = RegVT;
5106
5107    // Create the appropriate number of virtual registers.
5108    MachineRegisterInfo &RegInfo = MF.getRegInfo();
5109    for (; NumRegs; --NumRegs)
5110      Regs.push_back(RegInfo.createVirtualRegister(RC));
5111
5112    OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT);
5113    return;
5114  }
5115
5116  // This is a reference to a register class that doesn't directly correspond
5117  // to an LLVM register class.  Allocate NumRegs consecutive, available,
5118  // registers from the class.
5119  std::vector<unsigned> RegClassRegs
5120    = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
5121                                            OpInfo.ConstraintVT);
5122
5123  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5124  unsigned NumAllocated = 0;
5125  for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
5126    unsigned Reg = RegClassRegs[i];
5127    // See if this register is available.
5128    if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
5129        (isInReg  && InputRegs.count(Reg))) {    // Already used.
5130      // Make sure we find consecutive registers.
5131      NumAllocated = 0;
5132      continue;
5133    }
5134
5135    // Check to see if this register is allocatable (i.e. don't give out the
5136    // stack pointer).
5137    const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, TRI);
5138    if (!RC) {        // Couldn't allocate this register.
5139      // Reset NumAllocated to make sure we return consecutive registers.
5140      NumAllocated = 0;
5141      continue;
5142    }
5143
5144    // Okay, this register is good, we can use it.
5145    ++NumAllocated;
5146
5147    // If we allocated enough consecutive registers, succeed.
5148    if (NumAllocated == NumRegs) {
5149      unsigned RegStart = (i-NumAllocated)+1;
5150      unsigned RegEnd   = i+1;
5151      // Mark all of the allocated registers used.
5152      for (unsigned i = RegStart; i != RegEnd; ++i)
5153        Regs.push_back(RegClassRegs[i]);
5154
5155      OpInfo.AssignedRegs = RegsForValue(TLI, Regs, *RC->vt_begin(),
5156                                         OpInfo.ConstraintVT);
5157      OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5158      return;
5159    }
5160  }
5161
5162  // Otherwise, we couldn't allocate enough registers for this.
5163}
5164
5165/// visitInlineAsm - Handle a call to an InlineAsm object.
5166///
5167void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
5168  const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
5169
5170  /// ConstraintOperands - Information about all of the constraints.
5171  std::vector<SDISelAsmOperandInfo> ConstraintOperands;
5172
5173  std::set<unsigned> OutputRegs, InputRegs;
5174
5175  // Do a prepass over the constraints, canonicalizing them, and building up the
5176  // ConstraintOperands list.
5177  std::vector<InlineAsm::ConstraintInfo>
5178    ConstraintInfos = IA->ParseConstraints();
5179
5180  bool hasMemory = hasInlineAsmMemConstraint(ConstraintInfos, TLI);
5181
5182  SDValue Chain, Flag;
5183
5184  // We won't need to flush pending loads if this asm doesn't touch
5185  // memory and is nonvolatile.
5186  if (hasMemory || IA->hasSideEffects())
5187    Chain = getRoot();
5188  else
5189    Chain = DAG.getRoot();
5190
5191  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
5192  unsigned ResNo = 0;   // ResNo - The result number of the next output.
5193  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
5194    ConstraintOperands.push_back(SDISelAsmOperandInfo(ConstraintInfos[i]));
5195    SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
5196
5197    EVT OpVT = MVT::Other;
5198
5199    // Compute the value type for each operand.
5200    switch (OpInfo.Type) {
5201    case InlineAsm::isOutput:
5202      // Indirect outputs just consume an argument.
5203      if (OpInfo.isIndirect) {
5204        OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5205        break;
5206      }
5207
5208      // The return value of the call is this value.  As such, there is no
5209      // corresponding argument.
5210      assert(!CS.getType()->isVoidTy() &&
5211             "Bad inline asm!");
5212      if (const StructType *STy = dyn_cast<StructType>(CS.getType())) {
5213        OpVT = TLI.getValueType(STy->getElementType(ResNo));
5214      } else {
5215        assert(ResNo == 0 && "Asm only has one result!");
5216        OpVT = TLI.getValueType(CS.getType());
5217      }
5218      ++ResNo;
5219      break;
5220    case InlineAsm::isInput:
5221      OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5222      break;
5223    case InlineAsm::isClobber:
5224      // Nothing to do.
5225      break;
5226    }
5227
5228    // If this is an input or an indirect output, process the call argument.
5229    // BasicBlocks are labels, currently appearing only in asm's.
5230    if (OpInfo.CallOperandVal) {
5231      // Strip bitcasts, if any.  This mostly comes up for functions.
5232      OpInfo.CallOperandVal = OpInfo.CallOperandVal->stripPointerCasts();
5233
5234      if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
5235        OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
5236      } else {
5237        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
5238      }
5239
5240      OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD);
5241    }
5242
5243    OpInfo.ConstraintVT = OpVT;
5244  }
5245
5246  // Second pass over the constraints: compute which constraint option to use
5247  // and assign registers to constraints that want a specific physreg.
5248  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
5249    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5250
5251    // If this is an output operand with a matching input operand, look up the
5252    // matching input. If their types mismatch, e.g. one is an integer, the
5253    // other is floating point, or their sizes are different, flag it as an
5254    // error.
5255    if (OpInfo.hasMatchingInput()) {
5256      SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5257
5258      if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5259        if ((OpInfo.ConstraintVT.isInteger() !=
5260             Input.ConstraintVT.isInteger()) ||
5261            (OpInfo.ConstraintVT.getSizeInBits() !=
5262             Input.ConstraintVT.getSizeInBits())) {
5263          report_fatal_error("Unsupported asm: input constraint"
5264                             " with a matching output constraint of"
5265                             " incompatible type!");
5266        }
5267        Input.ConstraintVT = OpInfo.ConstraintVT;
5268      }
5269    }
5270
5271    // Compute the constraint code and ConstraintType to use.
5272    TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, hasMemory, &DAG);
5273
5274    // If this is a memory input, and if the operand is not indirect, do what we
5275    // need to to provide an address for the memory input.
5276    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5277        !OpInfo.isIndirect) {
5278      assert(OpInfo.Type == InlineAsm::isInput &&
5279             "Can only indirectify direct input operands!");
5280
5281      // Memory operands really want the address of the value.  If we don't have
5282      // an indirect input, put it in the constpool if we can, otherwise spill
5283      // it to a stack slot.
5284
5285      // If the operand is a float, integer, or vector constant, spill to a
5286      // constant pool entry to get its address.
5287      const Value *OpVal = OpInfo.CallOperandVal;
5288      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
5289          isa<ConstantVector>(OpVal)) {
5290        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
5291                                                 TLI.getPointerTy());
5292      } else {
5293        // Otherwise, create a stack slot and emit a store to it before the
5294        // asm.
5295        const Type *Ty = OpVal->getType();
5296        uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
5297        unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
5298        MachineFunction &MF = DAG.getMachineFunction();
5299        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5300        SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
5301        Chain = DAG.getStore(Chain, getCurDebugLoc(),
5302                             OpInfo.CallOperand, StackSlot, NULL, 0,
5303                             false, false, 0);
5304        OpInfo.CallOperand = StackSlot;
5305      }
5306
5307      // There is no longer a Value* corresponding to this operand.
5308      OpInfo.CallOperandVal = 0;
5309
5310      // It is now an indirect operand.
5311      OpInfo.isIndirect = true;
5312    }
5313
5314    // If this constraint is for a specific register, allocate it before
5315    // anything else.
5316    if (OpInfo.ConstraintType == TargetLowering::C_Register)
5317      GetRegistersForValue(OpInfo, OutputRegs, InputRegs);
5318  }
5319
5320  ConstraintInfos.clear();
5321
5322  // Second pass - Loop over all of the operands, assigning virtual or physregs
5323  // to register class operands.
5324  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5325    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5326
5327    // C_Register operands have already been allocated, Other/Memory don't need
5328    // to be.
5329    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
5330      GetRegistersForValue(OpInfo, OutputRegs, InputRegs);
5331  }
5332
5333  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
5334  std::vector<SDValue> AsmNodeOperands;
5335  AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
5336  AsmNodeOperands.push_back(
5337          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
5338                                      TLI.getPointerTy()));
5339
5340  // If we have a !srcloc metadata node associated with it, we want to attach
5341  // this to the ultimately generated inline asm machineinstr.  To do this, we
5342  // pass in the third operand as this (potentially null) inline asm MDNode.
5343  const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
5344  AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
5345
5346  // Loop over all of the inputs, copying the operand values into the
5347  // appropriate registers and processing the output regs.
5348  RegsForValue RetValRegs;
5349
5350  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
5351  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
5352
5353  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5354    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5355
5356    switch (OpInfo.Type) {
5357    case InlineAsm::isOutput: {
5358      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
5359          OpInfo.ConstraintType != TargetLowering::C_Register) {
5360        // Memory output, or 'other' output (e.g. 'X' constraint).
5361        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
5362
5363        // Add information to the INLINEASM node to know about this output.
5364        unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
5365        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
5366                                                        TLI.getPointerTy()));
5367        AsmNodeOperands.push_back(OpInfo.CallOperand);
5368        break;
5369      }
5370
5371      // Otherwise, this is a register or register class output.
5372
5373      // Copy the output from the appropriate register.  Find a register that
5374      // we can use.
5375      if (OpInfo.AssignedRegs.Regs.empty())
5376        report_fatal_error("Couldn't allocate output reg for constraint '" +
5377                           Twine(OpInfo.ConstraintCode) + "'!");
5378
5379      // If this is an indirect operand, store through the pointer after the
5380      // asm.
5381      if (OpInfo.isIndirect) {
5382        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
5383                                                      OpInfo.CallOperandVal));
5384      } else {
5385        // This is the result value of the call.
5386        assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
5387        // Concatenate this output onto the outputs list.
5388        RetValRegs.append(OpInfo.AssignedRegs);
5389      }
5390
5391      // Add information to the INLINEASM node to know that this register is
5392      // set.
5393      OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
5394                                           InlineAsm::Kind_RegDefEarlyClobber :
5395                                               InlineAsm::Kind_RegDef,
5396                                               false,
5397                                               0,
5398                                               DAG,
5399                                               AsmNodeOperands);
5400      break;
5401    }
5402    case InlineAsm::isInput: {
5403      SDValue InOperandVal = OpInfo.CallOperand;
5404
5405      if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
5406        // If this is required to match an output register we have already set,
5407        // just use its register.
5408        unsigned OperandNo = OpInfo.getMatchedOperand();
5409
5410        // Scan until we find the definition we already emitted of this operand.
5411        // When we find it, create a RegsForValue operand.
5412        unsigned CurOp = InlineAsm::Op_FirstOperand;
5413        for (; OperandNo; --OperandNo) {
5414          // Advance to the next operand.
5415          unsigned OpFlag =
5416            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5417          assert((InlineAsm::isRegDefKind(OpFlag) ||
5418                  InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
5419                  InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
5420          CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
5421        }
5422
5423        unsigned OpFlag =
5424          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5425        if (InlineAsm::isRegDefKind(OpFlag) ||
5426            InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
5427          // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
5428          if (OpInfo.isIndirect) {
5429            // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
5430            LLVMContext &Ctx = CurMBB->getParent()->getFunction()->getContext();
5431            Ctx.emitError(CS.getInstruction(),  "inline asm not supported yet:"
5432                          " don't know how to handle tied "
5433                          "indirect register inputs");
5434          }
5435
5436          RegsForValue MatchedRegs;
5437          MatchedRegs.TLI = &TLI;
5438          MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
5439          EVT RegVT = AsmNodeOperands[CurOp+1].getValueType();
5440          MatchedRegs.RegVTs.push_back(RegVT);
5441          MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
5442          for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
5443               i != e; ++i)
5444            MatchedRegs.Regs.push_back
5445              (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)));
5446
5447          // Use the produced MatchedRegs object to
5448          MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
5449                                    Chain, &Flag);
5450          MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
5451                                           true, OpInfo.getMatchedOperand(),
5452                                           DAG, AsmNodeOperands);
5453          break;
5454        }
5455
5456        assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
5457        assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
5458               "Unexpected number of operands");
5459        // Add information to the INLINEASM node to know about this input.
5460        // See InlineAsm.h isUseOperandTiedToDef.
5461        OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
5462                                                    OpInfo.getMatchedOperand());
5463        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
5464                                                        TLI.getPointerTy()));
5465        AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
5466        break;
5467      }
5468
5469      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
5470        assert(!OpInfo.isIndirect &&
5471               "Don't know how to handle indirect other inputs yet!");
5472
5473        std::vector<SDValue> Ops;
5474        TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0],
5475                                         hasMemory, Ops, DAG);
5476        if (Ops.empty())
5477          report_fatal_error("Invalid operand for inline asm constraint '" +
5478                             Twine(OpInfo.ConstraintCode) + "'!");
5479
5480        // Add information to the INLINEASM node to know about this input.
5481        unsigned ResOpType =
5482          InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
5483        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5484                                                        TLI.getPointerTy()));
5485        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
5486        break;
5487      }
5488
5489      if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
5490        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
5491        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
5492               "Memory operands expect pointer values");
5493
5494        // Add information to the INLINEASM node to know about this input.
5495        unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
5496        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5497                                                        TLI.getPointerTy()));
5498        AsmNodeOperands.push_back(InOperandVal);
5499        break;
5500      }
5501
5502      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
5503              OpInfo.ConstraintType == TargetLowering::C_Register) &&
5504             "Unknown constraint type!");
5505      assert(!OpInfo.isIndirect &&
5506             "Don't know how to handle indirect register inputs yet!");
5507
5508      // Copy the input into the appropriate registers.
5509      if (OpInfo.AssignedRegs.Regs.empty() ||
5510          !OpInfo.AssignedRegs.areValueTypesLegal())
5511        report_fatal_error("Couldn't allocate input reg for constraint '" +
5512                           Twine(OpInfo.ConstraintCode) + "'!");
5513
5514      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
5515                                        Chain, &Flag);
5516
5517      OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
5518                                               DAG, AsmNodeOperands);
5519      break;
5520    }
5521    case InlineAsm::isClobber: {
5522      // Add the clobbered value to the operand list, so that the register
5523      // allocator is aware that the physreg got clobbered.
5524      if (!OpInfo.AssignedRegs.Regs.empty())
5525        OpInfo.AssignedRegs.AddInlineAsmOperands(
5526                                            InlineAsm::Kind_RegDefEarlyClobber,
5527                                                 false, 0, DAG,
5528                                                 AsmNodeOperands);
5529      break;
5530    }
5531    }
5532  }
5533
5534  // Finish up input operands.  Set the input chain and add the flag last.
5535  AsmNodeOperands[0] = Chain;
5536  if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
5537
5538  Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(),
5539                      DAG.getVTList(MVT::Other, MVT::Flag),
5540                      &AsmNodeOperands[0], AsmNodeOperands.size());
5541  Flag = Chain.getValue(1);
5542
5543  // If this asm returns a register value, copy the result from that register
5544  // and set it as the value of the call.
5545  if (!RetValRegs.Regs.empty()) {
5546    SDValue Val = RetValRegs.getCopyFromRegs(DAG, getCurDebugLoc(),
5547                                             Chain, &Flag);
5548
5549    // FIXME: Why don't we do this for inline asms with MRVs?
5550    if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
5551      EVT ResultType = TLI.getValueType(CS.getType());
5552
5553      // If any of the results of the inline asm is a vector, it may have the
5554      // wrong width/num elts.  This can happen for register classes that can
5555      // contain multiple different value types.  The preg or vreg allocated may
5556      // not have the same VT as was expected.  Convert it to the right type
5557      // with bit_convert.
5558      if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
5559        Val = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
5560                          ResultType, Val);
5561
5562      } else if (ResultType != Val.getValueType() &&
5563                 ResultType.isInteger() && Val.getValueType().isInteger()) {
5564        // If a result value was tied to an input value, the computed result may
5565        // have a wider width than the expected result.  Extract the relevant
5566        // portion.
5567        Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val);
5568      }
5569
5570      assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
5571    }
5572
5573    setValue(CS.getInstruction(), Val);
5574    // Don't need to use this as a chain in this case.
5575    if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
5576      return;
5577  }
5578
5579  std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
5580
5581  // Process indirect outputs, first output all of the flagged copies out of
5582  // physregs.
5583  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
5584    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
5585    const Value *Ptr = IndirectStoresToEmit[i].second;
5586    SDValue OutVal = OutRegs.getCopyFromRegs(DAG, getCurDebugLoc(),
5587                                             Chain, &Flag);
5588    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
5589  }
5590
5591  // Emit the non-flagged stores from the physregs.
5592  SmallVector<SDValue, 8> OutChains;
5593  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
5594    SDValue Val = DAG.getStore(Chain, getCurDebugLoc(),
5595                               StoresToEmit[i].first,
5596                               getValue(StoresToEmit[i].second),
5597                               StoresToEmit[i].second, 0,
5598                               false, false, 0);
5599    OutChains.push_back(Val);
5600  }
5601
5602  if (!OutChains.empty())
5603    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
5604                        &OutChains[0], OutChains.size());
5605
5606  DAG.setRoot(Chain);
5607}
5608
5609void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
5610  DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(),
5611                          MVT::Other, getRoot(),
5612                          getValue(I.getOperand(0)),
5613                          DAG.getSrcValue(I.getOperand(0))));
5614}
5615
5616void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
5617  SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(),
5618                           getRoot(), getValue(I.getOperand(0)),
5619                           DAG.getSrcValue(I.getOperand(0)));
5620  setValue(&I, V);
5621  DAG.setRoot(V.getValue(1));
5622}
5623
5624void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
5625  DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(),
5626                          MVT::Other, getRoot(),
5627                          getValue(I.getOperand(0)),
5628                          DAG.getSrcValue(I.getOperand(0))));
5629}
5630
5631void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
5632  DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(),
5633                          MVT::Other, getRoot(),
5634                          getValue(I.getOperand(0)),
5635                          getValue(I.getOperand(1)),
5636                          DAG.getSrcValue(I.getOperand(0)),
5637                          DAG.getSrcValue(I.getOperand(1))));
5638}
5639
5640/// TargetLowering::LowerCallTo - This is the default LowerCallTo
5641/// implementation, which just calls LowerCall.
5642/// FIXME: When all targets are
5643/// migrated to using LowerCall, this hook should be integrated into SDISel.
5644std::pair<SDValue, SDValue>
5645TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy,
5646                            bool RetSExt, bool RetZExt, bool isVarArg,
5647                            bool isInreg, unsigned NumFixedArgs,
5648                            CallingConv::ID CallConv, bool isTailCall,
5649                            bool isReturnValueUsed,
5650                            SDValue Callee,
5651                            ArgListTy &Args, SelectionDAG &DAG, DebugLoc dl) {
5652  // Handle all of the outgoing arguments.
5653  SmallVector<ISD::OutputArg, 32> Outs;
5654  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
5655    SmallVector<EVT, 4> ValueVTs;
5656    ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
5657    for (unsigned Value = 0, NumValues = ValueVTs.size();
5658         Value != NumValues; ++Value) {
5659      EVT VT = ValueVTs[Value];
5660      const Type *ArgTy = VT.getTypeForEVT(RetTy->getContext());
5661      SDValue Op = SDValue(Args[i].Node.getNode(),
5662                           Args[i].Node.getResNo() + Value);
5663      ISD::ArgFlagsTy Flags;
5664      unsigned OriginalAlignment =
5665        getTargetData()->getABITypeAlignment(ArgTy);
5666
5667      if (Args[i].isZExt)
5668        Flags.setZExt();
5669      if (Args[i].isSExt)
5670        Flags.setSExt();
5671      if (Args[i].isInReg)
5672        Flags.setInReg();
5673      if (Args[i].isSRet)
5674        Flags.setSRet();
5675      if (Args[i].isByVal) {
5676        Flags.setByVal();
5677        const PointerType *Ty = cast<PointerType>(Args[i].Ty);
5678        const Type *ElementTy = Ty->getElementType();
5679        unsigned FrameAlign = getByValTypeAlignment(ElementTy);
5680        unsigned FrameSize  = getTargetData()->getTypeAllocSize(ElementTy);
5681        // For ByVal, alignment should come from FE.  BE will guess if this
5682        // info is not there but there are cases it cannot get right.
5683        if (Args[i].Alignment)
5684          FrameAlign = Args[i].Alignment;
5685        Flags.setByValAlign(FrameAlign);
5686        Flags.setByValSize(FrameSize);
5687      }
5688      if (Args[i].isNest)
5689        Flags.setNest();
5690      Flags.setOrigAlign(OriginalAlignment);
5691
5692      EVT PartVT = getRegisterType(RetTy->getContext(), VT);
5693      unsigned NumParts = getNumRegisters(RetTy->getContext(), VT);
5694      SmallVector<SDValue, 4> Parts(NumParts);
5695      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
5696
5697      if (Args[i].isSExt)
5698        ExtendKind = ISD::SIGN_EXTEND;
5699      else if (Args[i].isZExt)
5700        ExtendKind = ISD::ZERO_EXTEND;
5701
5702      getCopyToParts(DAG, dl, Op, &Parts[0], NumParts,
5703                     PartVT, ExtendKind);
5704
5705      for (unsigned j = 0; j != NumParts; ++j) {
5706        // if it isn't first piece, alignment must be 1
5707        ISD::OutputArg MyFlags(Flags, Parts[j], i < NumFixedArgs);
5708        if (NumParts > 1 && j == 0)
5709          MyFlags.Flags.setSplit();
5710        else if (j != 0)
5711          MyFlags.Flags.setOrigAlign(1);
5712
5713        Outs.push_back(MyFlags);
5714      }
5715    }
5716  }
5717
5718  // Handle the incoming return values from the call.
5719  SmallVector<ISD::InputArg, 32> Ins;
5720  SmallVector<EVT, 4> RetTys;
5721  ComputeValueVTs(*this, RetTy, RetTys);
5722  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
5723    EVT VT = RetTys[I];
5724    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
5725    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
5726    for (unsigned i = 0; i != NumRegs; ++i) {
5727      ISD::InputArg MyFlags;
5728      MyFlags.VT = RegisterVT;
5729      MyFlags.Used = isReturnValueUsed;
5730      if (RetSExt)
5731        MyFlags.Flags.setSExt();
5732      if (RetZExt)
5733        MyFlags.Flags.setZExt();
5734      if (isInreg)
5735        MyFlags.Flags.setInReg();
5736      Ins.push_back(MyFlags);
5737    }
5738  }
5739
5740  SmallVector<SDValue, 4> InVals;
5741  Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall,
5742                    Outs, Ins, dl, DAG, InVals);
5743
5744  // Verify that the target's LowerCall behaved as expected.
5745  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
5746         "LowerCall didn't return a valid chain!");
5747  assert((!isTailCall || InVals.empty()) &&
5748         "LowerCall emitted a return value for a tail call!");
5749  assert((isTailCall || InVals.size() == Ins.size()) &&
5750         "LowerCall didn't emit the correct number of values!");
5751
5752  // For a tail call, the return value is merely live-out and there aren't
5753  // any nodes in the DAG representing it. Return a special value to
5754  // indicate that a tail call has been emitted and no more Instructions
5755  // should be processed in the current block.
5756  if (isTailCall) {
5757    DAG.setRoot(Chain);
5758    return std::make_pair(SDValue(), SDValue());
5759  }
5760
5761  DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
5762          assert(InVals[i].getNode() &&
5763                 "LowerCall emitted a null value!");
5764          assert(Ins[i].VT == InVals[i].getValueType() &&
5765                 "LowerCall emitted a value with the wrong type!");
5766        });
5767
5768  // Collect the legal value parts into potentially illegal values
5769  // that correspond to the original function's return values.
5770  ISD::NodeType AssertOp = ISD::DELETED_NODE;
5771  if (RetSExt)
5772    AssertOp = ISD::AssertSext;
5773  else if (RetZExt)
5774    AssertOp = ISD::AssertZext;
5775  SmallVector<SDValue, 4> ReturnValues;
5776  unsigned CurReg = 0;
5777  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
5778    EVT VT = RetTys[I];
5779    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
5780    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
5781
5782    ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg],
5783                                            NumRegs, RegisterVT, VT,
5784                                            AssertOp));
5785    CurReg += NumRegs;
5786  }
5787
5788  // For a function returning void, there is no return value. We can't create
5789  // such a node, so we just return a null return value in that case. In
5790  // that case, nothing will actualy look at the value.
5791  if (ReturnValues.empty())
5792    return std::make_pair(SDValue(), Chain);
5793
5794  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
5795                            DAG.getVTList(&RetTys[0], RetTys.size()),
5796                            &ReturnValues[0], ReturnValues.size());
5797  return std::make_pair(Res, Chain);
5798}
5799
5800void TargetLowering::LowerOperationWrapper(SDNode *N,
5801                                           SmallVectorImpl<SDValue> &Results,
5802                                           SelectionDAG &DAG) {
5803  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
5804  if (Res.getNode())
5805    Results.push_back(Res);
5806}
5807
5808SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
5809  llvm_unreachable("LowerOperation not implemented for this target!");
5810  return SDValue();
5811}
5812
5813void
5814SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
5815  SDValue Op = getValue(V);
5816  assert((Op.getOpcode() != ISD::CopyFromReg ||
5817          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
5818         "Copy from a reg to the same reg!");
5819  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
5820
5821  RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
5822  SDValue Chain = DAG.getEntryNode();
5823  RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0);
5824  PendingExports.push_back(Chain);
5825}
5826
5827#include "llvm/CodeGen/SelectionDAGISel.h"
5828
5829void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) {
5830  // If this is the entry block, emit arguments.
5831  const Function &F = *LLVMBB->getParent();
5832  SelectionDAG &DAG = SDB->DAG;
5833  SDValue OldRoot = DAG.getRoot();
5834  DebugLoc dl = SDB->getCurDebugLoc();
5835  const TargetData *TD = TLI.getTargetData();
5836  SmallVector<ISD::InputArg, 16> Ins;
5837
5838  // Check whether the function can return without sret-demotion.
5839  SmallVector<EVT, 4> OutVTs;
5840  SmallVector<ISD::ArgFlagsTy, 4> OutsFlags;
5841  getReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
5842                OutVTs, OutsFlags, TLI);
5843  FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo();
5844
5845  FLI.CanLowerReturn = TLI.CanLowerReturn(F.getCallingConv(), F.isVarArg(),
5846                                          OutVTs, OutsFlags, DAG);
5847  if (!FLI.CanLowerReturn) {
5848    // Put in an sret pointer parameter before all the other parameters.
5849    SmallVector<EVT, 1> ValueVTs;
5850    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
5851
5852    // NOTE: Assuming that a pointer will never break down to more than one VT
5853    // or one register.
5854    ISD::ArgFlagsTy Flags;
5855    Flags.setSRet();
5856    EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), ValueVTs[0]);
5857    ISD::InputArg RetArg(Flags, RegisterVT, true);
5858    Ins.push_back(RetArg);
5859  }
5860
5861  // Set up the incoming argument description vector.
5862  unsigned Idx = 1;
5863  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
5864       I != E; ++I, ++Idx) {
5865    SmallVector<EVT, 4> ValueVTs;
5866    ComputeValueVTs(TLI, I->getType(), ValueVTs);
5867    bool isArgValueUsed = !I->use_empty();
5868    for (unsigned Value = 0, NumValues = ValueVTs.size();
5869         Value != NumValues; ++Value) {
5870      EVT VT = ValueVTs[Value];
5871      const Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
5872      ISD::ArgFlagsTy Flags;
5873      unsigned OriginalAlignment =
5874        TD->getABITypeAlignment(ArgTy);
5875
5876      if (F.paramHasAttr(Idx, Attribute::ZExt))
5877        Flags.setZExt();
5878      if (F.paramHasAttr(Idx, Attribute::SExt))
5879        Flags.setSExt();
5880      if (F.paramHasAttr(Idx, Attribute::InReg))
5881        Flags.setInReg();
5882      if (F.paramHasAttr(Idx, Attribute::StructRet))
5883        Flags.setSRet();
5884      if (F.paramHasAttr(Idx, Attribute::ByVal)) {
5885        Flags.setByVal();
5886        const PointerType *Ty = cast<PointerType>(I->getType());
5887        const Type *ElementTy = Ty->getElementType();
5888        unsigned FrameAlign = TLI.getByValTypeAlignment(ElementTy);
5889        unsigned FrameSize  = TD->getTypeAllocSize(ElementTy);
5890        // For ByVal, alignment should be passed from FE.  BE will guess if
5891        // this info is not there but there are cases it cannot get right.
5892        if (F.getParamAlignment(Idx))
5893          FrameAlign = F.getParamAlignment(Idx);
5894        Flags.setByValAlign(FrameAlign);
5895        Flags.setByValSize(FrameSize);
5896      }
5897      if (F.paramHasAttr(Idx, Attribute::Nest))
5898        Flags.setNest();
5899      Flags.setOrigAlign(OriginalAlignment);
5900
5901      EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
5902      unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
5903      for (unsigned i = 0; i != NumRegs; ++i) {
5904        ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed);
5905        if (NumRegs > 1 && i == 0)
5906          MyFlags.Flags.setSplit();
5907        // if it isn't first piece, alignment must be 1
5908        else if (i > 0)
5909          MyFlags.Flags.setOrigAlign(1);
5910        Ins.push_back(MyFlags);
5911      }
5912    }
5913  }
5914
5915  // Call the target to set up the argument values.
5916  SmallVector<SDValue, 8> InVals;
5917  SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
5918                                             F.isVarArg(), Ins,
5919                                             dl, DAG, InVals);
5920
5921  // Verify that the target's LowerFormalArguments behaved as expected.
5922  assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
5923         "LowerFormalArguments didn't return a valid chain!");
5924  assert(InVals.size() == Ins.size() &&
5925         "LowerFormalArguments didn't emit the correct number of values!");
5926  DEBUG({
5927      for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
5928        assert(InVals[i].getNode() &&
5929               "LowerFormalArguments emitted a null value!");
5930        assert(Ins[i].VT == InVals[i].getValueType() &&
5931               "LowerFormalArguments emitted a value with the wrong type!");
5932      }
5933    });
5934
5935  // Update the DAG with the new chain value resulting from argument lowering.
5936  DAG.setRoot(NewRoot);
5937
5938  // Set up the argument values.
5939  unsigned i = 0;
5940  Idx = 1;
5941  if (!FLI.CanLowerReturn) {
5942    // Create a virtual register for the sret pointer, and put in a copy
5943    // from the sret argument into it.
5944    SmallVector<EVT, 1> ValueVTs;
5945    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
5946    EVT VT = ValueVTs[0];
5947    EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
5948    ISD::NodeType AssertOp = ISD::DELETED_NODE;
5949    SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
5950                                        RegVT, VT, AssertOp);
5951
5952    MachineFunction& MF = SDB->DAG.getMachineFunction();
5953    MachineRegisterInfo& RegInfo = MF.getRegInfo();
5954    unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT));
5955    FLI.DemoteRegister = SRetReg;
5956    NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(),
5957                                    SRetReg, ArgValue);
5958    DAG.setRoot(NewRoot);
5959
5960    // i indexes lowered arguments.  Bump it past the hidden sret argument.
5961    // Idx indexes LLVM arguments.  Don't touch it.
5962    ++i;
5963  }
5964
5965  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
5966      ++I, ++Idx) {
5967    SmallVector<SDValue, 4> ArgValues;
5968    SmallVector<EVT, 4> ValueVTs;
5969    ComputeValueVTs(TLI, I->getType(), ValueVTs);
5970    unsigned NumValues = ValueVTs.size();
5971    for (unsigned Value = 0; Value != NumValues; ++Value) {
5972      EVT VT = ValueVTs[Value];
5973      EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
5974      unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
5975
5976      if (!I->use_empty()) {
5977        ISD::NodeType AssertOp = ISD::DELETED_NODE;
5978        if (F.paramHasAttr(Idx, Attribute::SExt))
5979          AssertOp = ISD::AssertSext;
5980        else if (F.paramHasAttr(Idx, Attribute::ZExt))
5981          AssertOp = ISD::AssertZext;
5982
5983        ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
5984                                             NumParts, PartVT, VT,
5985                                             AssertOp));
5986      }
5987
5988      i += NumParts;
5989    }
5990
5991    if (!I->use_empty()) {
5992      SDValue Res;
5993      if (!ArgValues.empty())
5994        Res = DAG.getMergeValues(&ArgValues[0], NumValues,
5995                                 SDB->getCurDebugLoc());
5996      SDB->setValue(I, Res);
5997
5998      // If this argument is live outside of the entry block, insert a copy from
5999      // whereever we got it to the vreg that other BB's will reference it as.
6000      SDB->CopyToExportRegsIfNeeded(I);
6001    }
6002  }
6003
6004  assert(i == InVals.size() && "Argument register count mismatch!");
6005
6006  // Finally, if the target has anything special to do, allow it to do so.
6007  // FIXME: this should insert code into the DAG!
6008  EmitFunctionEntryCode();
6009}
6010
6011/// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
6012/// ensure constants are generated when needed.  Remember the virtual registers
6013/// that need to be added to the Machine PHI nodes as input.  We cannot just
6014/// directly add them, because expansion might result in multiple MBB's for one
6015/// BB.  As such, the start of the BB might correspond to a different MBB than
6016/// the end.
6017///
6018void
6019SelectionDAGISel::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
6020  const TerminatorInst *TI = LLVMBB->getTerminator();
6021
6022  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6023
6024  // Check successor nodes' PHI nodes that expect a constant to be available
6025  // from this block.
6026  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6027    const BasicBlock *SuccBB = TI->getSuccessor(succ);
6028    if (!isa<PHINode>(SuccBB->begin())) continue;
6029    MachineBasicBlock *SuccMBB = FuncInfo->MBBMap[SuccBB];
6030
6031    // If this terminator has multiple identical successors (common for
6032    // switches), only handle each succ once.
6033    if (!SuccsHandled.insert(SuccMBB)) continue;
6034
6035    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6036
6037    // At this point we know that there is a 1-1 correspondence between LLVM PHI
6038    // nodes and Machine PHI nodes, but the incoming operands have not been
6039    // emitted yet.
6040    for (BasicBlock::const_iterator I = SuccBB->begin();
6041         const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
6042      // Ignore dead phi's.
6043      if (PN->use_empty()) continue;
6044
6045      unsigned Reg;
6046      const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6047
6048      if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
6049        unsigned &RegOut = SDB->ConstantsOut[C];
6050        if (RegOut == 0) {
6051          RegOut = FuncInfo->CreateRegForValue(C);
6052          SDB->CopyValueToVirtualRegister(C, RegOut);
6053        }
6054        Reg = RegOut;
6055      } else {
6056        Reg = FuncInfo->ValueMap[PHIOp];
6057        if (Reg == 0) {
6058          assert(isa<AllocaInst>(PHIOp) &&
6059                 FuncInfo->StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
6060                 "Didn't codegen value into a register!??");
6061          Reg = FuncInfo->CreateRegForValue(PHIOp);
6062          SDB->CopyValueToVirtualRegister(PHIOp, Reg);
6063        }
6064      }
6065
6066      // Remember that this register needs to added to the machine PHI node as
6067      // the input for this MBB.
6068      SmallVector<EVT, 4> ValueVTs;
6069      ComputeValueVTs(TLI, PN->getType(), ValueVTs);
6070      for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
6071        EVT VT = ValueVTs[vti];
6072        unsigned NumRegisters = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6073        for (unsigned i = 0, e = NumRegisters; i != e; ++i)
6074          SDB->PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
6075        Reg += NumRegisters;
6076      }
6077    }
6078  }
6079  SDB->ConstantsOut.clear();
6080}
6081
6082/// This is the Fast-ISel version of HandlePHINodesInSuccessorBlocks. It only
6083/// supports legal types, and it emits MachineInstrs directly instead of
6084/// creating SelectionDAG nodes.
6085///
6086bool
6087SelectionDAGISel::HandlePHINodesInSuccessorBlocksFast(const BasicBlock *LLVMBB,
6088                                                      FastISel *F) {
6089  const TerminatorInst *TI = LLVMBB->getTerminator();
6090
6091  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6092  unsigned OrigNumPHINodesToUpdate = SDB->PHINodesToUpdate.size();
6093
6094  // Check successor nodes' PHI nodes that expect a constant to be available
6095  // from this block.
6096  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6097    const BasicBlock *SuccBB = TI->getSuccessor(succ);
6098    if (!isa<PHINode>(SuccBB->begin())) continue;
6099    MachineBasicBlock *SuccMBB = FuncInfo->MBBMap[SuccBB];
6100
6101    // If this terminator has multiple identical successors (common for
6102    // switches), only handle each succ once.
6103    if (!SuccsHandled.insert(SuccMBB)) continue;
6104
6105    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6106
6107    // At this point we know that there is a 1-1 correspondence between LLVM PHI
6108    // nodes and Machine PHI nodes, but the incoming operands have not been
6109    // emitted yet.
6110    for (BasicBlock::const_iterator I = SuccBB->begin();
6111         const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
6112      // Ignore dead phi's.
6113      if (PN->use_empty()) continue;
6114
6115      // Only handle legal types. Two interesting things to note here. First,
6116      // by bailing out early, we may leave behind some dead instructions,
6117      // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its
6118      // own moves. Second, this check is necessary becuase FastISel doesn't
6119      // use CreateRegForValue to create registers, so it always creates
6120      // exactly one register for each non-void instruction.
6121      EVT VT = TLI.getValueType(PN->getType(), /*AllowUnknown=*/true);
6122      if (VT == MVT::Other || !TLI.isTypeLegal(VT)) {
6123        // Promote MVT::i1.
6124        if (VT == MVT::i1)
6125          VT = TLI.getTypeToTransformTo(*CurDAG->getContext(), VT);
6126        else {
6127          SDB->PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
6128          return false;
6129        }
6130      }
6131
6132      const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6133
6134      unsigned Reg = F->getRegForValue(PHIOp);
6135      if (Reg == 0) {
6136        SDB->PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
6137        return false;
6138      }
6139      SDB->PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg));
6140    }
6141  }
6142
6143  return true;
6144}
6145