SelectionDAGBuilder.cpp revision 425b76c2314ff7ee7ad507011bdda1988ae481ef
1//===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements routines for translating from LLVM IR into SelectionDAG IR.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "SelectionDAGBuilder.h"
16#include "SDNodeDbgValue.h"
17#include "llvm/ADT/BitVector.h"
18#include "llvm/ADT/Optional.h"
19#include "llvm/ADT/SmallSet.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/BranchProbabilityInfo.h"
22#include "llvm/Analysis/ConstantFolding.h"
23#include "llvm/Analysis/ValueTracking.h"
24#include "llvm/CodeGen/Analysis.h"
25#include "llvm/CodeGen/FastISel.h"
26#include "llvm/CodeGen/FunctionLoweringInfo.h"
27#include "llvm/CodeGen/GCMetadata.h"
28#include "llvm/CodeGen/GCStrategy.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineInstrBuilder.h"
32#include "llvm/CodeGen/MachineJumpTableInfo.h"
33#include "llvm/CodeGen/MachineModuleInfo.h"
34#include "llvm/CodeGen/MachineRegisterInfo.h"
35#include "llvm/CodeGen/SelectionDAG.h"
36#include "llvm/DebugInfo.h"
37#include "llvm/IR/CallingConv.h"
38#include "llvm/IR/Constants.h"
39#include "llvm/IR/DataLayout.h"
40#include "llvm/IR/DerivedTypes.h"
41#include "llvm/IR/Function.h"
42#include "llvm/IR/GlobalVariable.h"
43#include "llvm/IR/InlineAsm.h"
44#include "llvm/IR/Instructions.h"
45#include "llvm/IR/IntrinsicInst.h"
46#include "llvm/IR/Intrinsics.h"
47#include "llvm/IR/LLVMContext.h"
48#include "llvm/IR/Module.h"
49#include "llvm/Support/CommandLine.h"
50#include "llvm/Support/Debug.h"
51#include "llvm/Support/ErrorHandling.h"
52#include "llvm/Support/IntegersSubsetMapping.h"
53#include "llvm/Support/MathExtras.h"
54#include "llvm/Support/raw_ostream.h"
55#include "llvm/Target/TargetFrameLowering.h"
56#include "llvm/Target/TargetInstrInfo.h"
57#include "llvm/Target/TargetIntrinsicInfo.h"
58#include "llvm/Target/TargetLibraryInfo.h"
59#include "llvm/Target/TargetLowering.h"
60#include "llvm/Target/TargetOptions.h"
61#include <algorithm>
62using namespace llvm;
63
64/// LimitFloatPrecision - Generate low-precision inline sequences for
65/// some float libcalls (6, 8 or 12 bits).
66static unsigned LimitFloatPrecision;
67
68static cl::opt<unsigned, true>
69LimitFPPrecision("limit-float-precision",
70                 cl::desc("Generate low-precision inline sequences "
71                          "for some float libcalls"),
72                 cl::location(LimitFloatPrecision),
73                 cl::init(0));
74
75// Limit the width of DAG chains. This is important in general to prevent
76// prevent DAG-based analysis from blowing up. For example, alias analysis and
77// load clustering may not complete in reasonable time. It is difficult to
78// recognize and avoid this situation within each individual analysis, and
79// future analyses are likely to have the same behavior. Limiting DAG width is
80// the safe approach, and will be especially important with global DAGs.
81//
82// MaxParallelChains default is arbitrarily high to avoid affecting
83// optimization, but could be lowered to improve compile time. Any ld-ld-st-st
84// sequence over this should have been converted to llvm.memcpy by the
85// frontend. It easy to induce this behavior with .ll code such as:
86// %buffer = alloca [4096 x i8]
87// %data = load [4096 x i8]* %argPtr
88// store [4096 x i8] %data, [4096 x i8]* %buffer
89static const unsigned MaxParallelChains = 64;
90
91static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL,
92                                      const SDValue *Parts, unsigned NumParts,
93                                      MVT PartVT, EVT ValueVT, const Value *V);
94
95/// getCopyFromParts - Create a value that contains the specified legal parts
96/// combined into the value they represent.  If the parts combine to a type
97/// larger then ValueVT then AssertOp can be used to specify whether the extra
98/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
99/// (ISD::AssertSext).
100static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL,
101                                const SDValue *Parts,
102                                unsigned NumParts, MVT PartVT, EVT ValueVT,
103                                const Value *V,
104                                ISD::NodeType AssertOp = ISD::DELETED_NODE) {
105  if (ValueVT.isVector())
106    return getCopyFromPartsVector(DAG, DL, Parts, NumParts,
107                                  PartVT, ValueVT, V);
108
109  assert(NumParts > 0 && "No parts to assemble!");
110  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
111  SDValue Val = Parts[0];
112
113  if (NumParts > 1) {
114    // Assemble the value from multiple parts.
115    if (ValueVT.isInteger()) {
116      unsigned PartBits = PartVT.getSizeInBits();
117      unsigned ValueBits = ValueVT.getSizeInBits();
118
119      // Assemble the power of 2 part.
120      unsigned RoundParts = NumParts & (NumParts - 1) ?
121        1 << Log2_32(NumParts) : NumParts;
122      unsigned RoundBits = PartBits * RoundParts;
123      EVT RoundVT = RoundBits == ValueBits ?
124        ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
125      SDValue Lo, Hi;
126
127      EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
128
129      if (RoundParts > 2) {
130        Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
131                              PartVT, HalfVT, V);
132        Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
133                              RoundParts / 2, PartVT, HalfVT, V);
134      } else {
135        Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
136        Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
137      }
138
139      if (TLI.isBigEndian())
140        std::swap(Lo, Hi);
141
142      Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
143
144      if (RoundParts < NumParts) {
145        // Assemble the trailing non-power-of-2 part.
146        unsigned OddParts = NumParts - RoundParts;
147        EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
148        Hi = getCopyFromParts(DAG, DL,
149                              Parts + RoundParts, OddParts, PartVT, OddVT, V);
150
151        // Combine the round and odd parts.
152        Lo = Val;
153        if (TLI.isBigEndian())
154          std::swap(Lo, Hi);
155        EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
156        Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
157        Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
158                         DAG.getConstant(Lo.getValueType().getSizeInBits(),
159                                         TLI.getPointerTy()));
160        Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
161        Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
162      }
163    } else if (PartVT.isFloatingPoint()) {
164      // FP split into multiple FP parts (for ppcf128)
165      assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
166             "Unexpected split");
167      SDValue Lo, Hi;
168      Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
169      Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
170      if (TLI.isBigEndian())
171        std::swap(Lo, Hi);
172      Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
173    } else {
174      // FP split into integer parts (soft fp)
175      assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
176             !PartVT.isVector() && "Unexpected split");
177      EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
178      Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V);
179    }
180  }
181
182  // There is now one part, held in Val.  Correct it to match ValueVT.
183  EVT PartEVT = Val.getValueType();
184
185  if (PartEVT == ValueVT)
186    return Val;
187
188  if (PartEVT.isInteger() && ValueVT.isInteger()) {
189    if (ValueVT.bitsLT(PartEVT)) {
190      // For a truncate, see if we have any information to
191      // indicate whether the truncated bits will always be
192      // zero or sign-extension.
193      if (AssertOp != ISD::DELETED_NODE)
194        Val = DAG.getNode(AssertOp, DL, PartEVT, Val,
195                          DAG.getValueType(ValueVT));
196      return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
197    }
198    return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
199  }
200
201  if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
202    // FP_ROUND's are always exact here.
203    if (ValueVT.bitsLT(Val.getValueType()))
204      return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val,
205                         DAG.getTargetConstant(1, TLI.getPointerTy()));
206
207    return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
208  }
209
210  if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
211    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
212
213  llvm_unreachable("Unknown mismatch!");
214}
215
216/// getCopyFromPartsVector - Create a value that contains the specified legal
217/// parts combined into the value they represent.  If the parts combine to a
218/// type larger then ValueVT then AssertOp can be used to specify whether the
219/// extra bits are known to be zero (ISD::AssertZext) or sign extended from
220/// ValueVT (ISD::AssertSext).
221static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL,
222                                      const SDValue *Parts, unsigned NumParts,
223                                      MVT PartVT, EVT ValueVT, const Value *V) {
224  assert(ValueVT.isVector() && "Not a vector value");
225  assert(NumParts > 0 && "No parts to assemble!");
226  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
227  SDValue Val = Parts[0];
228
229  // Handle a multi-element vector.
230  if (NumParts > 1) {
231    EVT IntermediateVT;
232    MVT RegisterVT;
233    unsigned NumIntermediates;
234    unsigned NumRegs =
235    TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
236                               NumIntermediates, RegisterVT);
237    assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
238    NumParts = NumRegs; // Silence a compiler warning.
239    assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
240    assert(RegisterVT == Parts[0].getSimpleValueType() &&
241           "Part type doesn't match part!");
242
243    // Assemble the parts into intermediate operands.
244    SmallVector<SDValue, 8> Ops(NumIntermediates);
245    if (NumIntermediates == NumParts) {
246      // If the register was not expanded, truncate or copy the value,
247      // as appropriate.
248      for (unsigned i = 0; i != NumParts; ++i)
249        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
250                                  PartVT, IntermediateVT, V);
251    } else if (NumParts > 0) {
252      // If the intermediate type was expanded, build the intermediate
253      // operands from the parts.
254      assert(NumParts % NumIntermediates == 0 &&
255             "Must expand into a divisible number of parts!");
256      unsigned Factor = NumParts / NumIntermediates;
257      for (unsigned i = 0; i != NumIntermediates; ++i)
258        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
259                                  PartVT, IntermediateVT, V);
260    }
261
262    // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
263    // intermediate operands.
264    Val = DAG.getNode(IntermediateVT.isVector() ?
265                      ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL,
266                      ValueVT, &Ops[0], NumIntermediates);
267  }
268
269  // There is now one part, held in Val.  Correct it to match ValueVT.
270  EVT PartEVT = Val.getValueType();
271
272  if (PartEVT == ValueVT)
273    return Val;
274
275  if (PartEVT.isVector()) {
276    // If the element type of the source/dest vectors are the same, but the
277    // parts vector has more elements than the value vector, then we have a
278    // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
279    // elements we want.
280    if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
281      assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
282             "Cannot narrow, it would be a lossy transformation");
283      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
284                         DAG.getConstant(0, TLI.getVectorIdxTy()));
285    }
286
287    // Vector/Vector bitcast.
288    if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
289      return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
290
291    assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
292      "Cannot handle this kind of promotion");
293    // Promoted vector extract
294    bool Smaller = ValueVT.bitsLE(PartEVT);
295    return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
296                       DL, ValueVT, Val);
297
298  }
299
300  // Trivial bitcast if the types are the same size and the destination
301  // vector type is legal.
302  if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
303      TLI.isTypeLegal(ValueVT))
304    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
305
306  // Handle cases such as i8 -> <1 x i1>
307  if (ValueVT.getVectorNumElements() != 1) {
308    LLVMContext &Ctx = *DAG.getContext();
309    Twine ErrMsg("non-trivial scalar-to-vector conversion");
310    if (const Instruction *I = dyn_cast_or_null<Instruction>(V)) {
311      if (const CallInst *CI = dyn_cast<CallInst>(I))
312        if (isa<InlineAsm>(CI->getCalledValue()))
313          ErrMsg = ErrMsg + ", possible invalid constraint for vector type";
314      Ctx.emitError(I, ErrMsg);
315    } else {
316      Ctx.emitError(ErrMsg);
317    }
318    return DAG.getUNDEF(ValueVT);
319  }
320
321  if (ValueVT.getVectorNumElements() == 1 &&
322      ValueVT.getVectorElementType() != PartEVT) {
323    bool Smaller = ValueVT.bitsLE(PartEVT);
324    Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
325                       DL, ValueVT.getScalarType(), Val);
326  }
327
328  return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
329}
330
331static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl,
332                                 SDValue Val, SDValue *Parts, unsigned NumParts,
333                                 MVT PartVT, const Value *V);
334
335/// getCopyToParts - Create a series of nodes that contain the specified value
336/// split into legal parts.  If the parts contain more bits than Val, then, for
337/// integers, ExtendKind can be used to specify how to generate the extra bits.
338static void getCopyToParts(SelectionDAG &DAG, SDLoc DL,
339                           SDValue Val, SDValue *Parts, unsigned NumParts,
340                           MVT PartVT, const Value *V,
341                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
342  EVT ValueVT = Val.getValueType();
343
344  // Handle the vector case separately.
345  if (ValueVT.isVector())
346    return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V);
347
348  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
349  unsigned PartBits = PartVT.getSizeInBits();
350  unsigned OrigNumParts = NumParts;
351  assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
352
353  if (NumParts == 0)
354    return;
355
356  assert(!ValueVT.isVector() && "Vector case handled elsewhere");
357  EVT PartEVT = PartVT;
358  if (PartEVT == ValueVT) {
359    assert(NumParts == 1 && "No-op copy with multiple parts!");
360    Parts[0] = Val;
361    return;
362  }
363
364  if (NumParts * PartBits > ValueVT.getSizeInBits()) {
365    // If the parts cover more bits than the value has, promote the value.
366    if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
367      assert(NumParts == 1 && "Do not know what to promote to!");
368      Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
369    } else {
370      assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
371             ValueVT.isInteger() &&
372             "Unknown mismatch!");
373      ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
374      Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
375      if (PartVT == MVT::x86mmx)
376        Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
377    }
378  } else if (PartBits == ValueVT.getSizeInBits()) {
379    // Different types of the same size.
380    assert(NumParts == 1 && PartEVT != ValueVT);
381    Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
382  } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
383    // If the parts cover less bits than value has, truncate the value.
384    assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
385           ValueVT.isInteger() &&
386           "Unknown mismatch!");
387    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
388    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
389    if (PartVT == MVT::x86mmx)
390      Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
391  }
392
393  // The value may have changed - recompute ValueVT.
394  ValueVT = Val.getValueType();
395  assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
396         "Failed to tile the value with PartVT!");
397
398  if (NumParts == 1) {
399    if (PartEVT != ValueVT) {
400      LLVMContext &Ctx = *DAG.getContext();
401      Twine ErrMsg("scalar-to-vector conversion failed");
402      if (const Instruction *I = dyn_cast_or_null<Instruction>(V)) {
403        if (const CallInst *CI = dyn_cast<CallInst>(I))
404          if (isa<InlineAsm>(CI->getCalledValue()))
405            ErrMsg = ErrMsg + ", possible invalid constraint for vector type";
406        Ctx.emitError(I, ErrMsg);
407      } else {
408        Ctx.emitError(ErrMsg);
409      }
410    }
411
412    Parts[0] = Val;
413    return;
414  }
415
416  // Expand the value into multiple parts.
417  if (NumParts & (NumParts - 1)) {
418    // The number of parts is not a power of 2.  Split off and copy the tail.
419    assert(PartVT.isInteger() && ValueVT.isInteger() &&
420           "Do not know what to expand to!");
421    unsigned RoundParts = 1 << Log2_32(NumParts);
422    unsigned RoundBits = RoundParts * PartBits;
423    unsigned OddParts = NumParts - RoundParts;
424    SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
425                                 DAG.getIntPtrConstant(RoundBits));
426    getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V);
427
428    if (TLI.isBigEndian())
429      // The odd parts were reversed by getCopyToParts - unreverse them.
430      std::reverse(Parts + RoundParts, Parts + NumParts);
431
432    NumParts = RoundParts;
433    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
434    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
435  }
436
437  // The number of parts is a power of 2.  Repeatedly bisect the value using
438  // EXTRACT_ELEMENT.
439  Parts[0] = DAG.getNode(ISD::BITCAST, DL,
440                         EVT::getIntegerVT(*DAG.getContext(),
441                                           ValueVT.getSizeInBits()),
442                         Val);
443
444  for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
445    for (unsigned i = 0; i < NumParts; i += StepSize) {
446      unsigned ThisBits = StepSize * PartBits / 2;
447      EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
448      SDValue &Part0 = Parts[i];
449      SDValue &Part1 = Parts[i+StepSize/2];
450
451      Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
452                          ThisVT, Part0, DAG.getIntPtrConstant(1));
453      Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
454                          ThisVT, Part0, DAG.getIntPtrConstant(0));
455
456      if (ThisBits == PartBits && ThisVT != PartVT) {
457        Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
458        Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
459      }
460    }
461  }
462
463  if (TLI.isBigEndian())
464    std::reverse(Parts, Parts + OrigNumParts);
465}
466
467
468/// getCopyToPartsVector - Create a series of nodes that contain the specified
469/// value split into legal parts.
470static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL,
471                                 SDValue Val, SDValue *Parts, unsigned NumParts,
472                                 MVT PartVT, const Value *V) {
473  EVT ValueVT = Val.getValueType();
474  assert(ValueVT.isVector() && "Not a vector");
475  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
476
477  if (NumParts == 1) {
478    EVT PartEVT = PartVT;
479    if (PartEVT == ValueVT) {
480      // Nothing to do.
481    } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
482      // Bitconvert vector->vector case.
483      Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
484    } else if (PartVT.isVector() &&
485               PartEVT.getVectorElementType() == ValueVT.getVectorElementType() &&
486               PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
487      EVT ElementVT = PartVT.getVectorElementType();
488      // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
489      // undef elements.
490      SmallVector<SDValue, 16> Ops;
491      for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
492        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
493                                  ElementVT, Val, DAG.getConstant(i,
494                                                  TLI.getVectorIdxTy())));
495
496      for (unsigned i = ValueVT.getVectorNumElements(),
497           e = PartVT.getVectorNumElements(); i != e; ++i)
498        Ops.push_back(DAG.getUNDEF(ElementVT));
499
500      Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size());
501
502      // FIXME: Use CONCAT for 2x -> 4x.
503
504      //SDValue UndefElts = DAG.getUNDEF(VectorTy);
505      //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
506    } else if (PartVT.isVector() &&
507               PartEVT.getVectorElementType().bitsGE(
508                 ValueVT.getVectorElementType()) &&
509               PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
510
511      // Promoted vector extract
512      bool Smaller = PartEVT.bitsLE(ValueVT);
513      Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
514                        DL, PartVT, Val);
515    } else{
516      // Vector -> scalar conversion.
517      assert(ValueVT.getVectorNumElements() == 1 &&
518             "Only trivial vector-to-scalar conversions should get here!");
519      Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
520                        PartVT, Val, DAG.getConstant(0, TLI.getVectorIdxTy()));
521
522      bool Smaller = ValueVT.bitsLE(PartVT);
523      Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
524                         DL, PartVT, Val);
525    }
526
527    Parts[0] = Val;
528    return;
529  }
530
531  // Handle a multi-element vector.
532  EVT IntermediateVT;
533  MVT RegisterVT;
534  unsigned NumIntermediates;
535  unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
536                                                IntermediateVT,
537                                                NumIntermediates, RegisterVT);
538  unsigned NumElements = ValueVT.getVectorNumElements();
539
540  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
541  NumParts = NumRegs; // Silence a compiler warning.
542  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
543
544  // Split the vector into intermediate operands.
545  SmallVector<SDValue, 8> Ops(NumIntermediates);
546  for (unsigned i = 0; i != NumIntermediates; ++i) {
547    if (IntermediateVT.isVector())
548      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
549                           IntermediateVT, Val,
550                   DAG.getConstant(i * (NumElements / NumIntermediates),
551                                   TLI.getVectorIdxTy()));
552    else
553      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
554                           IntermediateVT, Val,
555                           DAG.getConstant(i, TLI.getVectorIdxTy()));
556  }
557
558  // Split the intermediate operands into legal parts.
559  if (NumParts == NumIntermediates) {
560    // If the register was not expanded, promote or copy the value,
561    // as appropriate.
562    for (unsigned i = 0; i != NumParts; ++i)
563      getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V);
564  } else if (NumParts > 0) {
565    // If the intermediate type was expanded, split each the value into
566    // legal parts.
567    assert(NumParts % NumIntermediates == 0 &&
568           "Must expand into a divisible number of parts!");
569    unsigned Factor = NumParts / NumIntermediates;
570    for (unsigned i = 0; i != NumIntermediates; ++i)
571      getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V);
572  }
573}
574
575namespace {
576  /// RegsForValue - This struct represents the registers (physical or virtual)
577  /// that a particular set of values is assigned, and the type information
578  /// about the value. The most common situation is to represent one value at a
579  /// time, but struct or array values are handled element-wise as multiple
580  /// values.  The splitting of aggregates is performed recursively, so that we
581  /// never have aggregate-typed registers. The values at this point do not
582  /// necessarily have legal types, so each value may require one or more
583  /// registers of some legal type.
584  ///
585  struct RegsForValue {
586    /// ValueVTs - The value types of the values, which may not be legal, and
587    /// may need be promoted or synthesized from one or more registers.
588    ///
589    SmallVector<EVT, 4> ValueVTs;
590
591    /// RegVTs - The value types of the registers. This is the same size as
592    /// ValueVTs and it records, for each value, what the type of the assigned
593    /// register or registers are. (Individual values are never synthesized
594    /// from more than one type of register.)
595    ///
596    /// With virtual registers, the contents of RegVTs is redundant with TLI's
597    /// getRegisterType member function, however when with physical registers
598    /// it is necessary to have a separate record of the types.
599    ///
600    SmallVector<MVT, 4> RegVTs;
601
602    /// Regs - This list holds the registers assigned to the values.
603    /// Each legal or promoted value requires one register, and each
604    /// expanded value requires multiple registers.
605    ///
606    SmallVector<unsigned, 4> Regs;
607
608    RegsForValue() {}
609
610    RegsForValue(const SmallVector<unsigned, 4> &regs,
611                 MVT regvt, EVT valuevt)
612      : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
613
614    RegsForValue(LLVMContext &Context, const TargetLowering &tli,
615                 unsigned Reg, Type *Ty) {
616      ComputeValueVTs(tli, Ty, ValueVTs);
617
618      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
619        EVT ValueVT = ValueVTs[Value];
620        unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
621        MVT RegisterVT = tli.getRegisterType(Context, ValueVT);
622        for (unsigned i = 0; i != NumRegs; ++i)
623          Regs.push_back(Reg + i);
624        RegVTs.push_back(RegisterVT);
625        Reg += NumRegs;
626      }
627    }
628
629    /// areValueTypesLegal - Return true if types of all the values are legal.
630    bool areValueTypesLegal(const TargetLowering &TLI) {
631      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
632        MVT RegisterVT = RegVTs[Value];
633        if (!TLI.isTypeLegal(RegisterVT))
634          return false;
635      }
636      return true;
637    }
638
639    /// append - Add the specified values to this one.
640    void append(const RegsForValue &RHS) {
641      ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
642      RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
643      Regs.append(RHS.Regs.begin(), RHS.Regs.end());
644    }
645
646    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
647    /// this value and returns the result as a ValueVTs value.  This uses
648    /// Chain/Flag as the input and updates them for the output Chain/Flag.
649    /// If the Flag pointer is NULL, no flag is used.
650    SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
651                            SDLoc dl,
652                            SDValue &Chain, SDValue *Flag,
653                            const Value *V = 0) const;
654
655    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
656    /// specified value into the registers specified by this object.  This uses
657    /// Chain/Flag as the input and updates them for the output Chain/Flag.
658    /// If the Flag pointer is NULL, no flag is used.
659    void getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl,
660                       SDValue &Chain, SDValue *Flag, const Value *V) const;
661
662    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
663    /// operand list.  This adds the code marker, matching input operand index
664    /// (if applicable), and includes the number of values added into it.
665    void AddInlineAsmOperands(unsigned Kind,
666                              bool HasMatching, unsigned MatchingIdx,
667                              SelectionDAG &DAG,
668                              std::vector<SDValue> &Ops) const;
669  };
670}
671
672/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
673/// this value and returns the result as a ValueVT value.  This uses
674/// Chain/Flag as the input and updates them for the output Chain/Flag.
675/// If the Flag pointer is NULL, no flag is used.
676SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
677                                      FunctionLoweringInfo &FuncInfo,
678                                      SDLoc dl,
679                                      SDValue &Chain, SDValue *Flag,
680                                      const Value *V) const {
681  // A Value with type {} or [0 x %t] needs no registers.
682  if (ValueVTs.empty())
683    return SDValue();
684
685  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
686
687  // Assemble the legal parts into the final values.
688  SmallVector<SDValue, 4> Values(ValueVTs.size());
689  SmallVector<SDValue, 8> Parts;
690  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
691    // Copy the legal parts from the registers.
692    EVT ValueVT = ValueVTs[Value];
693    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
694    MVT RegisterVT = RegVTs[Value];
695
696    Parts.resize(NumRegs);
697    for (unsigned i = 0; i != NumRegs; ++i) {
698      SDValue P;
699      if (Flag == 0) {
700        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
701      } else {
702        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
703        *Flag = P.getValue(2);
704      }
705
706      Chain = P.getValue(1);
707      Parts[i] = P;
708
709      // If the source register was virtual and if we know something about it,
710      // add an assert node.
711      if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
712          !RegisterVT.isInteger() || RegisterVT.isVector())
713        continue;
714
715      const FunctionLoweringInfo::LiveOutInfo *LOI =
716        FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
717      if (!LOI)
718        continue;
719
720      unsigned RegSize = RegisterVT.getSizeInBits();
721      unsigned NumSignBits = LOI->NumSignBits;
722      unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
723
724      if (NumZeroBits == RegSize) {
725        // The current value is a zero.
726        // Explicitly express that as it would be easier for
727        // optimizations to kick in.
728        Parts[i] = DAG.getConstant(0, RegisterVT);
729        continue;
730      }
731
732      // FIXME: We capture more information than the dag can represent.  For
733      // now, just use the tightest assertzext/assertsext possible.
734      bool isSExt = true;
735      EVT FromVT(MVT::Other);
736      if (NumSignBits == RegSize)
737        isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
738      else if (NumZeroBits >= RegSize-1)
739        isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
740      else if (NumSignBits > RegSize-8)
741        isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
742      else if (NumZeroBits >= RegSize-8)
743        isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
744      else if (NumSignBits > RegSize-16)
745        isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
746      else if (NumZeroBits >= RegSize-16)
747        isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
748      else if (NumSignBits > RegSize-32)
749        isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
750      else if (NumZeroBits >= RegSize-32)
751        isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
752      else
753        continue;
754
755      // Add an assertion node.
756      assert(FromVT != MVT::Other);
757      Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
758                             RegisterVT, P, DAG.getValueType(FromVT));
759    }
760
761    Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
762                                     NumRegs, RegisterVT, ValueVT, V);
763    Part += NumRegs;
764    Parts.clear();
765  }
766
767  return DAG.getNode(ISD::MERGE_VALUES, dl,
768                     DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
769                     &Values[0], ValueVTs.size());
770}
771
772/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
773/// specified value into the registers specified by this object.  This uses
774/// Chain/Flag as the input and updates them for the output Chain/Flag.
775/// If the Flag pointer is NULL, no flag is used.
776void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl,
777                                 SDValue &Chain, SDValue *Flag,
778                                 const Value *V) const {
779  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
780
781  // Get the list of the values's legal parts.
782  unsigned NumRegs = Regs.size();
783  SmallVector<SDValue, 8> Parts(NumRegs);
784  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
785    EVT ValueVT = ValueVTs[Value];
786    unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
787    MVT RegisterVT = RegVTs[Value];
788    ISD::NodeType ExtendKind =
789      TLI.isZExtFree(Val, RegisterVT)? ISD::ZERO_EXTEND: ISD::ANY_EXTEND;
790
791    getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
792                   &Parts[Part], NumParts, RegisterVT, V, ExtendKind);
793    Part += NumParts;
794  }
795
796  // Copy the parts into the registers.
797  SmallVector<SDValue, 8> Chains(NumRegs);
798  for (unsigned i = 0; i != NumRegs; ++i) {
799    SDValue Part;
800    if (Flag == 0) {
801      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
802    } else {
803      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
804      *Flag = Part.getValue(1);
805    }
806
807    Chains[i] = Part.getValue(0);
808  }
809
810  if (NumRegs == 1 || Flag)
811    // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
812    // flagged to it. That is the CopyToReg nodes and the user are considered
813    // a single scheduling unit. If we create a TokenFactor and return it as
814    // chain, then the TokenFactor is both a predecessor (operand) of the
815    // user as well as a successor (the TF operands are flagged to the user).
816    // c1, f1 = CopyToReg
817    // c2, f2 = CopyToReg
818    // c3     = TokenFactor c1, c2
819    // ...
820    //        = op c3, ..., f2
821    Chain = Chains[NumRegs-1];
822  else
823    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
824}
825
826/// AddInlineAsmOperands - Add this value to the specified inlineasm node
827/// operand list.  This adds the code marker and includes the number of
828/// values added into it.
829void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
830                                        unsigned MatchingIdx,
831                                        SelectionDAG &DAG,
832                                        std::vector<SDValue> &Ops) const {
833  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
834
835  unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
836  if (HasMatching)
837    Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
838  else if (!Regs.empty() &&
839           TargetRegisterInfo::isVirtualRegister(Regs.front())) {
840    // Put the register class of the virtual registers in the flag word.  That
841    // way, later passes can recompute register class constraints for inline
842    // assembly as well as normal instructions.
843    // Don't do this for tied operands that can use the regclass information
844    // from the def.
845    const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
846    const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
847    Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
848  }
849
850  SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
851  Ops.push_back(Res);
852
853  for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
854    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
855    MVT RegisterVT = RegVTs[Value];
856    for (unsigned i = 0; i != NumRegs; ++i) {
857      assert(Reg < Regs.size() && "Mismatch in # registers expected");
858      Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
859    }
860  }
861}
862
863void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa,
864                               const TargetLibraryInfo *li) {
865  AA = &aa;
866  GFI = gfi;
867  LibInfo = li;
868  TD = DAG.getTarget().getDataLayout();
869  Context = DAG.getContext();
870  LPadToCallSiteMap.clear();
871}
872
873/// clear - Clear out the current SelectionDAG and the associated
874/// state and prepare this SelectionDAGBuilder object to be used
875/// for a new block. This doesn't clear out information about
876/// additional blocks that are needed to complete switch lowering
877/// or PHI node updating; that information is cleared out as it is
878/// consumed.
879void SelectionDAGBuilder::clear() {
880  NodeMap.clear();
881  UnusedArgNodeMap.clear();
882  PendingLoads.clear();
883  PendingExports.clear();
884  CurInst = NULL;
885  HasTailCall = false;
886}
887
888/// clearDanglingDebugInfo - Clear the dangling debug information
889/// map. This function is separated from the clear so that debug
890/// information that is dangling in a basic block can be properly
891/// resolved in a different basic block. This allows the
892/// SelectionDAG to resolve dangling debug information attached
893/// to PHI nodes.
894void SelectionDAGBuilder::clearDanglingDebugInfo() {
895  DanglingDebugInfoMap.clear();
896}
897
898/// getRoot - Return the current virtual root of the Selection DAG,
899/// flushing any PendingLoad items. This must be done before emitting
900/// a store or any other node that may need to be ordered after any
901/// prior load instructions.
902///
903SDValue SelectionDAGBuilder::getRoot() {
904  if (PendingLoads.empty())
905    return DAG.getRoot();
906
907  if (PendingLoads.size() == 1) {
908    SDValue Root = PendingLoads[0];
909    DAG.setRoot(Root);
910    PendingLoads.clear();
911    return Root;
912  }
913
914  // Otherwise, we have to make a token factor node.
915  SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
916                               &PendingLoads[0], PendingLoads.size());
917  PendingLoads.clear();
918  DAG.setRoot(Root);
919  return Root;
920}
921
922/// getControlRoot - Similar to getRoot, but instead of flushing all the
923/// PendingLoad items, flush all the PendingExports items. It is necessary
924/// to do this before emitting a terminator instruction.
925///
926SDValue SelectionDAGBuilder::getControlRoot() {
927  SDValue Root = DAG.getRoot();
928
929  if (PendingExports.empty())
930    return Root;
931
932  // Turn all of the CopyToReg chains into one factored node.
933  if (Root.getOpcode() != ISD::EntryToken) {
934    unsigned i = 0, e = PendingExports.size();
935    for (; i != e; ++i) {
936      assert(PendingExports[i].getNode()->getNumOperands() > 1);
937      if (PendingExports[i].getNode()->getOperand(0) == Root)
938        break;  // Don't add the root if we already indirectly depend on it.
939    }
940
941    if (i == e)
942      PendingExports.push_back(Root);
943  }
944
945  Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
946                     &PendingExports[0],
947                     PendingExports.size());
948  PendingExports.clear();
949  DAG.setRoot(Root);
950  return Root;
951}
952
953void SelectionDAGBuilder::visit(const Instruction &I) {
954  // Set up outgoing PHI node register values before emitting the terminator.
955  if (isa<TerminatorInst>(&I))
956    HandlePHINodesInSuccessorBlocks(I.getParent());
957
958  ++SDNodeOrder;
959
960  CurInst = &I;
961
962  visit(I.getOpcode(), I);
963
964  if (!isa<TerminatorInst>(&I) && !HasTailCall)
965    CopyToExportRegsIfNeeded(&I);
966
967  CurInst = NULL;
968}
969
970void SelectionDAGBuilder::visitPHI(const PHINode &) {
971  llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
972}
973
974void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
975  // Note: this doesn't use InstVisitor, because it has to work with
976  // ConstantExpr's in addition to instructions.
977  switch (Opcode) {
978  default: llvm_unreachable("Unknown instruction type encountered!");
979    // Build the switch statement using the Instruction.def file.
980#define HANDLE_INST(NUM, OPCODE, CLASS) \
981    case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
982#include "llvm/IR/Instruction.def"
983  }
984}
985
986// resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
987// generate the debug data structures now that we've seen its definition.
988void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
989                                                   SDValue Val) {
990  DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
991  if (DDI.getDI()) {
992    const DbgValueInst *DI = DDI.getDI();
993    DebugLoc dl = DDI.getdl();
994    unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
995    MDNode *Variable = DI->getVariable();
996    uint64_t Offset = DI->getOffset();
997    SDDbgValue *SDV;
998    if (Val.getNode()) {
999      if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) {
1000        SDV = DAG.getDbgValue(Variable, Val.getNode(),
1001                              Val.getResNo(), Offset, dl, DbgSDNodeOrder);
1002        DAG.AddDbgValue(SDV, Val.getNode(), false);
1003      }
1004    } else
1005      DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1006    DanglingDebugInfoMap[V] = DanglingDebugInfo();
1007  }
1008}
1009
1010/// getValue - Return an SDValue for the given Value.
1011SDValue SelectionDAGBuilder::getValue(const Value *V) {
1012  // If we already have an SDValue for this value, use it. It's important
1013  // to do this first, so that we don't create a CopyFromReg if we already
1014  // have a regular SDValue.
1015  SDValue &N = NodeMap[V];
1016  if (N.getNode()) return N;
1017
1018  // If there's a virtual register allocated and initialized for this
1019  // value, use it.
1020  DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
1021  if (It != FuncInfo.ValueMap.end()) {
1022    unsigned InReg = It->second;
1023    RegsForValue RFV(*DAG.getContext(), *TM.getTargetLowering(),
1024                     InReg, V->getType());
1025    SDValue Chain = DAG.getEntryNode();
1026    N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, NULL, V);
1027    resolveDanglingDebugInfo(V, N);
1028    return N;
1029  }
1030
1031  // Otherwise create a new SDValue and remember it.
1032  SDValue Val = getValueImpl(V);
1033  NodeMap[V] = Val;
1034  resolveDanglingDebugInfo(V, Val);
1035  return Val;
1036}
1037
1038/// getNonRegisterValue - Return an SDValue for the given Value, but
1039/// don't look in FuncInfo.ValueMap for a virtual register.
1040SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1041  // If we already have an SDValue for this value, use it.
1042  SDValue &N = NodeMap[V];
1043  if (N.getNode()) return N;
1044
1045  // Otherwise create a new SDValue and remember it.
1046  SDValue Val = getValueImpl(V);
1047  NodeMap[V] = Val;
1048  resolveDanglingDebugInfo(V, Val);
1049  return Val;
1050}
1051
1052/// getValueImpl - Helper function for getValue and getNonRegisterValue.
1053/// Create an SDValue for the given value.
1054SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1055  const TargetLowering *TLI = TM.getTargetLowering();
1056
1057  if (const Constant *C = dyn_cast<Constant>(V)) {
1058    EVT VT = TLI->getValueType(V->getType(), true);
1059
1060    if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1061      return DAG.getConstant(*CI, VT);
1062
1063    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1064      return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1065
1066    if (isa<ConstantPointerNull>(C))
1067      return DAG.getConstant(0, TLI->getPointerTy());
1068
1069    if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1070      return DAG.getConstantFP(*CFP, VT);
1071
1072    if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1073      return DAG.getUNDEF(VT);
1074
1075    if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1076      visit(CE->getOpcode(), *CE);
1077      SDValue N1 = NodeMap[V];
1078      assert(N1.getNode() && "visit didn't populate the NodeMap!");
1079      return N1;
1080    }
1081
1082    if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1083      SmallVector<SDValue, 4> Constants;
1084      for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1085           OI != OE; ++OI) {
1086        SDNode *Val = getValue(*OI).getNode();
1087        // If the operand is an empty aggregate, there are no values.
1088        if (!Val) continue;
1089        // Add each leaf value from the operand to the Constants list
1090        // to form a flattened list of all the values.
1091        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1092          Constants.push_back(SDValue(Val, i));
1093      }
1094
1095      return DAG.getMergeValues(&Constants[0], Constants.size(),
1096                                getCurSDLoc());
1097    }
1098
1099    if (const ConstantDataSequential *CDS =
1100          dyn_cast<ConstantDataSequential>(C)) {
1101      SmallVector<SDValue, 4> Ops;
1102      for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1103        SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1104        // Add each leaf value from the operand to the Constants list
1105        // to form a flattened list of all the values.
1106        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1107          Ops.push_back(SDValue(Val, i));
1108      }
1109
1110      if (isa<ArrayType>(CDS->getType()))
1111        return DAG.getMergeValues(&Ops[0], Ops.size(), getCurSDLoc());
1112      return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(),
1113                                      VT, &Ops[0], Ops.size());
1114    }
1115
1116    if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1117      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1118             "Unknown struct or array constant!");
1119
1120      SmallVector<EVT, 4> ValueVTs;
1121      ComputeValueVTs(*TLI, C->getType(), ValueVTs);
1122      unsigned NumElts = ValueVTs.size();
1123      if (NumElts == 0)
1124        return SDValue(); // empty struct
1125      SmallVector<SDValue, 4> Constants(NumElts);
1126      for (unsigned i = 0; i != NumElts; ++i) {
1127        EVT EltVT = ValueVTs[i];
1128        if (isa<UndefValue>(C))
1129          Constants[i] = DAG.getUNDEF(EltVT);
1130        else if (EltVT.isFloatingPoint())
1131          Constants[i] = DAG.getConstantFP(0, EltVT);
1132        else
1133          Constants[i] = DAG.getConstant(0, EltVT);
1134      }
1135
1136      return DAG.getMergeValues(&Constants[0], NumElts,
1137                                getCurSDLoc());
1138    }
1139
1140    if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1141      return DAG.getBlockAddress(BA, VT);
1142
1143    VectorType *VecTy = cast<VectorType>(V->getType());
1144    unsigned NumElements = VecTy->getNumElements();
1145
1146    // Now that we know the number and type of the elements, get that number of
1147    // elements into the Ops array based on what kind of constant it is.
1148    SmallVector<SDValue, 16> Ops;
1149    if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1150      for (unsigned i = 0; i != NumElements; ++i)
1151        Ops.push_back(getValue(CV->getOperand(i)));
1152    } else {
1153      assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1154      EVT EltVT = TLI->getValueType(VecTy->getElementType());
1155
1156      SDValue Op;
1157      if (EltVT.isFloatingPoint())
1158        Op = DAG.getConstantFP(0, EltVT);
1159      else
1160        Op = DAG.getConstant(0, EltVT);
1161      Ops.assign(NumElements, Op);
1162    }
1163
1164    // Create a BUILD_VECTOR node.
1165    return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(),
1166                                    VT, &Ops[0], Ops.size());
1167  }
1168
1169  // If this is a static alloca, generate it as the frameindex instead of
1170  // computation.
1171  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1172    DenseMap<const AllocaInst*, int>::iterator SI =
1173      FuncInfo.StaticAllocaMap.find(AI);
1174    if (SI != FuncInfo.StaticAllocaMap.end())
1175      return DAG.getFrameIndex(SI->second, TLI->getPointerTy());
1176  }
1177
1178  // If this is an instruction which fast-isel has deferred, select it now.
1179  if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1180    unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1181    RegsForValue RFV(*DAG.getContext(), *TLI, InReg, Inst->getType());
1182    SDValue Chain = DAG.getEntryNode();
1183    return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, NULL, V);
1184  }
1185
1186  llvm_unreachable("Can't get register for value!");
1187}
1188
1189void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1190  const TargetLowering *TLI = TM.getTargetLowering();
1191  SDValue Chain = getControlRoot();
1192  SmallVector<ISD::OutputArg, 8> Outs;
1193  SmallVector<SDValue, 8> OutVals;
1194
1195  if (!FuncInfo.CanLowerReturn) {
1196    unsigned DemoteReg = FuncInfo.DemoteRegister;
1197    const Function *F = I.getParent()->getParent();
1198
1199    // Emit a store of the return value through the virtual register.
1200    // Leave Outs empty so that LowerReturn won't try to load return
1201    // registers the usual way.
1202    SmallVector<EVT, 1> PtrValueVTs;
1203    ComputeValueVTs(*TLI, PointerType::getUnqual(F->getReturnType()),
1204                    PtrValueVTs);
1205
1206    SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
1207    SDValue RetOp = getValue(I.getOperand(0));
1208
1209    SmallVector<EVT, 4> ValueVTs;
1210    SmallVector<uint64_t, 4> Offsets;
1211    ComputeValueVTs(*TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1212    unsigned NumValues = ValueVTs.size();
1213
1214    SmallVector<SDValue, 4> Chains(NumValues);
1215    for (unsigned i = 0; i != NumValues; ++i) {
1216      SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(),
1217                                RetPtr.getValueType(), RetPtr,
1218                                DAG.getIntPtrConstant(Offsets[i]));
1219      Chains[i] =
1220        DAG.getStore(Chain, getCurSDLoc(),
1221                     SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1222                     // FIXME: better loc info would be nice.
1223                     Add, MachinePointerInfo(), false, false, 0);
1224    }
1225
1226    Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1227                        MVT::Other, &Chains[0], NumValues);
1228  } else if (I.getNumOperands() != 0) {
1229    SmallVector<EVT, 4> ValueVTs;
1230    ComputeValueVTs(*TLI, I.getOperand(0)->getType(), ValueVTs);
1231    unsigned NumValues = ValueVTs.size();
1232    if (NumValues) {
1233      SDValue RetOp = getValue(I.getOperand(0));
1234      for (unsigned j = 0, f = NumValues; j != f; ++j) {
1235        EVT VT = ValueVTs[j];
1236
1237        ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1238
1239        const Function *F = I.getParent()->getParent();
1240        if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1241                                            Attribute::SExt))
1242          ExtendKind = ISD::SIGN_EXTEND;
1243        else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1244                                                 Attribute::ZExt))
1245          ExtendKind = ISD::ZERO_EXTEND;
1246
1247        if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1248          VT = TLI->getTypeForExtArgOrReturn(VT.getSimpleVT(), ExtendKind);
1249
1250        unsigned NumParts = TLI->getNumRegisters(*DAG.getContext(), VT);
1251        MVT PartVT = TLI->getRegisterType(*DAG.getContext(), VT);
1252        SmallVector<SDValue, 4> Parts(NumParts);
1253        getCopyToParts(DAG, getCurSDLoc(),
1254                       SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1255                       &Parts[0], NumParts, PartVT, &I, ExtendKind);
1256
1257        // 'inreg' on function refers to return value
1258        ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1259        if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1260                                            Attribute::InReg))
1261          Flags.setInReg();
1262
1263        // Propagate extension type if any
1264        if (ExtendKind == ISD::SIGN_EXTEND)
1265          Flags.setSExt();
1266        else if (ExtendKind == ISD::ZERO_EXTEND)
1267          Flags.setZExt();
1268
1269        for (unsigned i = 0; i < NumParts; ++i) {
1270          Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1271                                        /*isfixed=*/true, 0, 0));
1272          OutVals.push_back(Parts[i]);
1273        }
1274      }
1275    }
1276  }
1277
1278  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1279  CallingConv::ID CallConv =
1280    DAG.getMachineFunction().getFunction()->getCallingConv();
1281  Chain = TM.getTargetLowering()->LowerReturn(Chain, CallConv, isVarArg,
1282                                              Outs, OutVals, getCurSDLoc(),
1283                                              DAG);
1284
1285  // Verify that the target's LowerReturn behaved as expected.
1286  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1287         "LowerReturn didn't return a valid chain!");
1288
1289  // Update the DAG with the new chain value resulting from return lowering.
1290  DAG.setRoot(Chain);
1291}
1292
1293/// CopyToExportRegsIfNeeded - If the given value has virtual registers
1294/// created for it, emit nodes to copy the value into the virtual
1295/// registers.
1296void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1297  // Skip empty types
1298  if (V->getType()->isEmptyTy())
1299    return;
1300
1301  DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1302  if (VMI != FuncInfo.ValueMap.end()) {
1303    assert(!V->use_empty() && "Unused value assigned virtual registers!");
1304    CopyValueToVirtualRegister(V, VMI->second);
1305  }
1306}
1307
1308/// ExportFromCurrentBlock - If this condition isn't known to be exported from
1309/// the current basic block, add it to ValueMap now so that we'll get a
1310/// CopyTo/FromReg.
1311void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1312  // No need to export constants.
1313  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1314
1315  // Already exported?
1316  if (FuncInfo.isExportedInst(V)) return;
1317
1318  unsigned Reg = FuncInfo.InitializeRegForValue(V);
1319  CopyValueToVirtualRegister(V, Reg);
1320}
1321
1322bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1323                                                     const BasicBlock *FromBB) {
1324  // The operands of the setcc have to be in this block.  We don't know
1325  // how to export them from some other block.
1326  if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1327    // Can export from current BB.
1328    if (VI->getParent() == FromBB)
1329      return true;
1330
1331    // Is already exported, noop.
1332    return FuncInfo.isExportedInst(V);
1333  }
1334
1335  // If this is an argument, we can export it if the BB is the entry block or
1336  // if it is already exported.
1337  if (isa<Argument>(V)) {
1338    if (FromBB == &FromBB->getParent()->getEntryBlock())
1339      return true;
1340
1341    // Otherwise, can only export this if it is already exported.
1342    return FuncInfo.isExportedInst(V);
1343  }
1344
1345  // Otherwise, constants can always be exported.
1346  return true;
1347}
1348
1349/// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1350uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src,
1351                                            const MachineBasicBlock *Dst) const {
1352  BranchProbabilityInfo *BPI = FuncInfo.BPI;
1353  if (!BPI)
1354    return 0;
1355  const BasicBlock *SrcBB = Src->getBasicBlock();
1356  const BasicBlock *DstBB = Dst->getBasicBlock();
1357  return BPI->getEdgeWeight(SrcBB, DstBB);
1358}
1359
1360void SelectionDAGBuilder::
1361addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst,
1362                       uint32_t Weight /* = 0 */) {
1363  if (!Weight)
1364    Weight = getEdgeWeight(Src, Dst);
1365  Src->addSuccessor(Dst, Weight);
1366}
1367
1368
1369static bool InBlock(const Value *V, const BasicBlock *BB) {
1370  if (const Instruction *I = dyn_cast<Instruction>(V))
1371    return I->getParent() == BB;
1372  return true;
1373}
1374
1375/// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1376/// This function emits a branch and is used at the leaves of an OR or an
1377/// AND operator tree.
1378///
1379void
1380SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1381                                                  MachineBasicBlock *TBB,
1382                                                  MachineBasicBlock *FBB,
1383                                                  MachineBasicBlock *CurBB,
1384                                                  MachineBasicBlock *SwitchBB) {
1385  const BasicBlock *BB = CurBB->getBasicBlock();
1386
1387  // If the leaf of the tree is a comparison, merge the condition into
1388  // the caseblock.
1389  if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1390    // The operands of the cmp have to be in this block.  We don't know
1391    // how to export them from some other block.  If this is the first block
1392    // of the sequence, no exporting is needed.
1393    if (CurBB == SwitchBB ||
1394        (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1395         isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1396      ISD::CondCode Condition;
1397      if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1398        Condition = getICmpCondCode(IC->getPredicate());
1399      } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1400        Condition = getFCmpCondCode(FC->getPredicate());
1401        if (TM.Options.NoNaNsFPMath)
1402          Condition = getFCmpCodeWithoutNaN(Condition);
1403      } else {
1404        Condition = ISD::SETEQ; // silence warning.
1405        llvm_unreachable("Unknown compare instruction");
1406      }
1407
1408      CaseBlock CB(Condition, BOp->getOperand(0),
1409                   BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1410      SwitchCases.push_back(CB);
1411      return;
1412    }
1413  }
1414
1415  // Create a CaseBlock record representing this branch.
1416  CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1417               NULL, TBB, FBB, CurBB);
1418  SwitchCases.push_back(CB);
1419}
1420
1421/// FindMergedConditions - If Cond is an expression like
1422void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1423                                               MachineBasicBlock *TBB,
1424                                               MachineBasicBlock *FBB,
1425                                               MachineBasicBlock *CurBB,
1426                                               MachineBasicBlock *SwitchBB,
1427                                               unsigned Opc) {
1428  // If this node is not part of the or/and tree, emit it as a branch.
1429  const Instruction *BOp = dyn_cast<Instruction>(Cond);
1430  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1431      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1432      BOp->getParent() != CurBB->getBasicBlock() ||
1433      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1434      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1435    EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB);
1436    return;
1437  }
1438
1439  //  Create TmpBB after CurBB.
1440  MachineFunction::iterator BBI = CurBB;
1441  MachineFunction &MF = DAG.getMachineFunction();
1442  MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1443  CurBB->getParent()->insert(++BBI, TmpBB);
1444
1445  if (Opc == Instruction::Or) {
1446    // Codegen X | Y as:
1447    //   jmp_if_X TBB
1448    //   jmp TmpBB
1449    // TmpBB:
1450    //   jmp_if_Y TBB
1451    //   jmp FBB
1452    //
1453
1454    // Emit the LHS condition.
1455    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc);
1456
1457    // Emit the RHS condition into TmpBB.
1458    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1459  } else {
1460    assert(Opc == Instruction::And && "Unknown merge op!");
1461    // Codegen X & Y as:
1462    //   jmp_if_X TmpBB
1463    //   jmp FBB
1464    // TmpBB:
1465    //   jmp_if_Y TBB
1466    //   jmp FBB
1467    //
1468    //  This requires creation of TmpBB after CurBB.
1469
1470    // Emit the LHS condition.
1471    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc);
1472
1473    // Emit the RHS condition into TmpBB.
1474    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1475  }
1476}
1477
1478/// If the set of cases should be emitted as a series of branches, return true.
1479/// If we should emit this as a bunch of and/or'd together conditions, return
1480/// false.
1481bool
1482SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
1483  if (Cases.size() != 2) return true;
1484
1485  // If this is two comparisons of the same values or'd or and'd together, they
1486  // will get folded into a single comparison, so don't emit two blocks.
1487  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1488       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1489      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1490       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1491    return false;
1492  }
1493
1494  // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1495  // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1496  if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1497      Cases[0].CC == Cases[1].CC &&
1498      isa<Constant>(Cases[0].CmpRHS) &&
1499      cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1500    if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1501      return false;
1502    if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1503      return false;
1504  }
1505
1506  return true;
1507}
1508
1509void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1510  MachineBasicBlock *BrMBB = FuncInfo.MBB;
1511
1512  // Update machine-CFG edges.
1513  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1514
1515  // Figure out which block is immediately after the current one.
1516  MachineBasicBlock *NextBlock = 0;
1517  MachineFunction::iterator BBI = BrMBB;
1518  if (++BBI != FuncInfo.MF->end())
1519    NextBlock = BBI;
1520
1521  if (I.isUnconditional()) {
1522    // Update machine-CFG edges.
1523    BrMBB->addSuccessor(Succ0MBB);
1524
1525    // If this is not a fall-through branch, emit the branch.
1526    if (Succ0MBB != NextBlock)
1527      DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
1528                              MVT::Other, getControlRoot(),
1529                              DAG.getBasicBlock(Succ0MBB)));
1530
1531    return;
1532  }
1533
1534  // If this condition is one of the special cases we handle, do special stuff
1535  // now.
1536  const Value *CondVal = I.getCondition();
1537  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1538
1539  // If this is a series of conditions that are or'd or and'd together, emit
1540  // this as a sequence of branches instead of setcc's with and/or operations.
1541  // As long as jumps are not expensive, this should improve performance.
1542  // For example, instead of something like:
1543  //     cmp A, B
1544  //     C = seteq
1545  //     cmp D, E
1546  //     F = setle
1547  //     or C, F
1548  //     jnz foo
1549  // Emit:
1550  //     cmp A, B
1551  //     je foo
1552  //     cmp D, E
1553  //     jle foo
1554  //
1555  if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1556    if (!TM.getTargetLowering()->isJumpExpensive() &&
1557        BOp->hasOneUse() &&
1558        (BOp->getOpcode() == Instruction::And ||
1559         BOp->getOpcode() == Instruction::Or)) {
1560      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1561                           BOp->getOpcode());
1562      // If the compares in later blocks need to use values not currently
1563      // exported from this block, export them now.  This block should always
1564      // be the first entry.
1565      assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1566
1567      // Allow some cases to be rejected.
1568      if (ShouldEmitAsBranches(SwitchCases)) {
1569        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1570          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1571          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1572        }
1573
1574        // Emit the branch for this block.
1575        visitSwitchCase(SwitchCases[0], BrMBB);
1576        SwitchCases.erase(SwitchCases.begin());
1577        return;
1578      }
1579
1580      // Okay, we decided not to do this, remove any inserted MBB's and clear
1581      // SwitchCases.
1582      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1583        FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1584
1585      SwitchCases.clear();
1586    }
1587  }
1588
1589  // Create a CaseBlock record representing this branch.
1590  CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1591               NULL, Succ0MBB, Succ1MBB, BrMBB);
1592
1593  // Use visitSwitchCase to actually insert the fast branch sequence for this
1594  // cond branch.
1595  visitSwitchCase(CB, BrMBB);
1596}
1597
1598/// visitSwitchCase - Emits the necessary code to represent a single node in
1599/// the binary search tree resulting from lowering a switch instruction.
1600void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1601                                          MachineBasicBlock *SwitchBB) {
1602  SDValue Cond;
1603  SDValue CondLHS = getValue(CB.CmpLHS);
1604  SDLoc dl = getCurSDLoc();
1605
1606  // Build the setcc now.
1607  if (CB.CmpMHS == NULL) {
1608    // Fold "(X == true)" to X and "(X == false)" to !X to
1609    // handle common cases produced by branch lowering.
1610    if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1611        CB.CC == ISD::SETEQ)
1612      Cond = CondLHS;
1613    else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1614             CB.CC == ISD::SETEQ) {
1615      SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1616      Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1617    } else
1618      Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1619  } else {
1620    assert(CB.CC == ISD::SETCC_INVALID &&
1621           "Condition is undefined for to-the-range belonging check.");
1622
1623    const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1624    const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
1625
1626    SDValue CmpOp = getValue(CB.CmpMHS);
1627    EVT VT = CmpOp.getValueType();
1628
1629    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(false)) {
1630      Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1631                          ISD::SETULE);
1632    } else {
1633      SDValue SUB = DAG.getNode(ISD::SUB, dl,
1634                                VT, CmpOp, DAG.getConstant(Low, VT));
1635      Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1636                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1637    }
1638  }
1639
1640  // Update successor info
1641  addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight);
1642  // TrueBB and FalseBB are always different unless the incoming IR is
1643  // degenerate. This only happens when running llc on weird IR.
1644  if (CB.TrueBB != CB.FalseBB)
1645    addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight);
1646
1647  // Set NextBlock to be the MBB immediately after the current one, if any.
1648  // This is used to avoid emitting unnecessary branches to the next block.
1649  MachineBasicBlock *NextBlock = 0;
1650  MachineFunction::iterator BBI = SwitchBB;
1651  if (++BBI != FuncInfo.MF->end())
1652    NextBlock = BBI;
1653
1654  // If the lhs block is the next block, invert the condition so that we can
1655  // fall through to the lhs instead of the rhs block.
1656  if (CB.TrueBB == NextBlock) {
1657    std::swap(CB.TrueBB, CB.FalseBB);
1658    SDValue True = DAG.getConstant(1, Cond.getValueType());
1659    Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1660  }
1661
1662  SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1663                               MVT::Other, getControlRoot(), Cond,
1664                               DAG.getBasicBlock(CB.TrueBB));
1665
1666  // Insert the false branch. Do this even if it's a fall through branch,
1667  // this makes it easier to do DAG optimizations which require inverting
1668  // the branch condition.
1669  BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1670                       DAG.getBasicBlock(CB.FalseBB));
1671
1672  DAG.setRoot(BrCond);
1673}
1674
1675/// visitJumpTable - Emit JumpTable node in the current MBB
1676void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1677  // Emit the code for the jump table
1678  assert(JT.Reg != -1U && "Should lower JT Header first!");
1679  EVT PTy = TM.getTargetLowering()->getPointerTy();
1680  SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
1681                                     JT.Reg, PTy);
1682  SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1683  SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
1684                                    MVT::Other, Index.getValue(1),
1685                                    Table, Index);
1686  DAG.setRoot(BrJumpTable);
1687}
1688
1689/// visitJumpTableHeader - This function emits necessary code to produce index
1690/// in the JumpTable from switch case.
1691void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1692                                               JumpTableHeader &JTH,
1693                                               MachineBasicBlock *SwitchBB) {
1694  // Subtract the lowest switch case value from the value being switched on and
1695  // conditional branch to default mbb if the result is greater than the
1696  // difference between smallest and largest cases.
1697  SDValue SwitchOp = getValue(JTH.SValue);
1698  EVT VT = SwitchOp.getValueType();
1699  SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp,
1700                            DAG.getConstant(JTH.First, VT));
1701
1702  // The SDNode we just created, which holds the value being switched on minus
1703  // the smallest case value, needs to be copied to a virtual register so it
1704  // can be used as an index into the jump table in a subsequent basic block.
1705  // This value may be smaller or larger than the target's pointer type, and
1706  // therefore require extension or truncating.
1707  const TargetLowering *TLI = TM.getTargetLowering();
1708  SwitchOp = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), TLI->getPointerTy());
1709
1710  unsigned JumpTableReg = FuncInfo.CreateReg(TLI->getPointerTy());
1711  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(),
1712                                    JumpTableReg, SwitchOp);
1713  JT.Reg = JumpTableReg;
1714
1715  // Emit the range check for the jump table, and branch to the default block
1716  // for the switch statement if the value being switched on exceeds the largest
1717  // case in the switch.
1718  SDValue CMP = DAG.getSetCC(getCurSDLoc(),
1719                             TLI->getSetCCResultType(*DAG.getContext(),
1720                                                     Sub.getValueType()),
1721                             Sub,
1722                             DAG.getConstant(JTH.Last - JTH.First,VT),
1723                             ISD::SETUGT);
1724
1725  // Set NextBlock to be the MBB immediately after the current one, if any.
1726  // This is used to avoid emitting unnecessary branches to the next block.
1727  MachineBasicBlock *NextBlock = 0;
1728  MachineFunction::iterator BBI = SwitchBB;
1729
1730  if (++BBI != FuncInfo.MF->end())
1731    NextBlock = BBI;
1732
1733  SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
1734                               MVT::Other, CopyTo, CMP,
1735                               DAG.getBasicBlock(JT.Default));
1736
1737  if (JT.MBB != NextBlock)
1738    BrCond = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrCond,
1739                         DAG.getBasicBlock(JT.MBB));
1740
1741  DAG.setRoot(BrCond);
1742}
1743
1744/// visitBitTestHeader - This function emits necessary code to produce value
1745/// suitable for "bit tests"
1746void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1747                                             MachineBasicBlock *SwitchBB) {
1748  // Subtract the minimum value
1749  SDValue SwitchOp = getValue(B.SValue);
1750  EVT VT = SwitchOp.getValueType();
1751  SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp,
1752                            DAG.getConstant(B.First, VT));
1753
1754  // Check range
1755  const TargetLowering *TLI = TM.getTargetLowering();
1756  SDValue RangeCmp = DAG.getSetCC(getCurSDLoc(),
1757                                  TLI->getSetCCResultType(*DAG.getContext(),
1758                                                         Sub.getValueType()),
1759                                  Sub, DAG.getConstant(B.Range, VT),
1760                                  ISD::SETUGT);
1761
1762  // Determine the type of the test operands.
1763  bool UsePtrType = false;
1764  if (!TLI->isTypeLegal(VT))
1765    UsePtrType = true;
1766  else {
1767    for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
1768      if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
1769        // Switch table case range are encoded into series of masks.
1770        // Just use pointer type, it's guaranteed to fit.
1771        UsePtrType = true;
1772        break;
1773      }
1774  }
1775  if (UsePtrType) {
1776    VT = TLI->getPointerTy();
1777    Sub = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), VT);
1778  }
1779
1780  B.RegVT = VT.getSimpleVT();
1781  B.Reg = FuncInfo.CreateReg(B.RegVT);
1782  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(),
1783                                    B.Reg, Sub);
1784
1785  // Set NextBlock to be the MBB immediately after the current one, if any.
1786  // This is used to avoid emitting unnecessary branches to the next block.
1787  MachineBasicBlock *NextBlock = 0;
1788  MachineFunction::iterator BBI = SwitchBB;
1789  if (++BBI != FuncInfo.MF->end())
1790    NextBlock = BBI;
1791
1792  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1793
1794  addSuccessorWithWeight(SwitchBB, B.Default);
1795  addSuccessorWithWeight(SwitchBB, MBB);
1796
1797  SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
1798                                MVT::Other, CopyTo, RangeCmp,
1799                                DAG.getBasicBlock(B.Default));
1800
1801  if (MBB != NextBlock)
1802    BrRange = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, CopyTo,
1803                          DAG.getBasicBlock(MBB));
1804
1805  DAG.setRoot(BrRange);
1806}
1807
1808/// visitBitTestCase - this function produces one "bit test"
1809void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
1810                                           MachineBasicBlock* NextMBB,
1811                                           uint32_t BranchWeightToNext,
1812                                           unsigned Reg,
1813                                           BitTestCase &B,
1814                                           MachineBasicBlock *SwitchBB) {
1815  MVT VT = BB.RegVT;
1816  SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
1817                                       Reg, VT);
1818  SDValue Cmp;
1819  unsigned PopCount = CountPopulation_64(B.Mask);
1820  const TargetLowering *TLI = TM.getTargetLowering();
1821  if (PopCount == 1) {
1822    // Testing for a single bit; just compare the shift count with what it
1823    // would need to be to shift a 1 bit in that position.
1824    Cmp = DAG.getSetCC(getCurSDLoc(),
1825                       TLI->getSetCCResultType(*DAG.getContext(), VT),
1826                       ShiftOp,
1827                       DAG.getConstant(countTrailingZeros(B.Mask), VT),
1828                       ISD::SETEQ);
1829  } else if (PopCount == BB.Range) {
1830    // There is only one zero bit in the range, test for it directly.
1831    Cmp = DAG.getSetCC(getCurSDLoc(),
1832                       TLI->getSetCCResultType(*DAG.getContext(), VT),
1833                       ShiftOp,
1834                       DAG.getConstant(CountTrailingOnes_64(B.Mask), VT),
1835                       ISD::SETNE);
1836  } else {
1837    // Make desired shift
1838    SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurSDLoc(), VT,
1839                                    DAG.getConstant(1, VT), ShiftOp);
1840
1841    // Emit bit tests and jumps
1842    SDValue AndOp = DAG.getNode(ISD::AND, getCurSDLoc(),
1843                                VT, SwitchVal, DAG.getConstant(B.Mask, VT));
1844    Cmp = DAG.getSetCC(getCurSDLoc(),
1845                       TLI->getSetCCResultType(*DAG.getContext(), VT),
1846                       AndOp, DAG.getConstant(0, VT),
1847                       ISD::SETNE);
1848  }
1849
1850  // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight.
1851  addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight);
1852  // The branch weight from SwitchBB to NextMBB is BranchWeightToNext.
1853  addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext);
1854
1855  SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
1856                              MVT::Other, getControlRoot(),
1857                              Cmp, DAG.getBasicBlock(B.TargetBB));
1858
1859  // Set NextBlock to be the MBB immediately after the current one, if any.
1860  // This is used to avoid emitting unnecessary branches to the next block.
1861  MachineBasicBlock *NextBlock = 0;
1862  MachineFunction::iterator BBI = SwitchBB;
1863  if (++BBI != FuncInfo.MF->end())
1864    NextBlock = BBI;
1865
1866  if (NextMBB != NextBlock)
1867    BrAnd = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrAnd,
1868                        DAG.getBasicBlock(NextMBB));
1869
1870  DAG.setRoot(BrAnd);
1871}
1872
1873void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1874  MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
1875
1876  // Retrieve successors.
1877  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1878  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1879
1880  const Value *Callee(I.getCalledValue());
1881  const Function *Fn = dyn_cast<Function>(Callee);
1882  if (isa<InlineAsm>(Callee))
1883    visitInlineAsm(&I);
1884  else if (Fn && Fn->isIntrinsic()) {
1885    assert(Fn->getIntrinsicID() == Intrinsic::donothing);
1886    // Ignore invokes to @llvm.donothing: jump directly to the next BB.
1887  } else
1888    LowerCallTo(&I, getValue(Callee), false, LandingPad);
1889
1890  // If the value of the invoke is used outside of its defining block, make it
1891  // available as a virtual register.
1892  CopyToExportRegsIfNeeded(&I);
1893
1894  // Update successor info
1895  addSuccessorWithWeight(InvokeMBB, Return);
1896  addSuccessorWithWeight(InvokeMBB, LandingPad);
1897
1898  // Drop into normal successor.
1899  DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
1900                          MVT::Other, getControlRoot(),
1901                          DAG.getBasicBlock(Return)));
1902}
1903
1904void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
1905  llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
1906}
1907
1908void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
1909  assert(FuncInfo.MBB->isLandingPad() &&
1910         "Call to landingpad not in landing pad!");
1911
1912  MachineBasicBlock *MBB = FuncInfo.MBB;
1913  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
1914  AddLandingPadInfo(LP, MMI, MBB);
1915
1916  // If there aren't registers to copy the values into (e.g., during SjLj
1917  // exceptions), then don't bother to create these DAG nodes.
1918  const TargetLowering *TLI = TM.getTargetLowering();
1919  if (TLI->getExceptionPointerRegister() == 0 &&
1920      TLI->getExceptionSelectorRegister() == 0)
1921    return;
1922
1923  SmallVector<EVT, 2> ValueVTs;
1924  ComputeValueVTs(*TLI, LP.getType(), ValueVTs);
1925  assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
1926
1927  // Get the two live-in registers as SDValues. The physregs have already been
1928  // copied into virtual registers.
1929  SDValue Ops[2];
1930  Ops[0] = DAG.getZExtOrTrunc(
1931    DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1932                       FuncInfo.ExceptionPointerVirtReg, TLI->getPointerTy()),
1933    getCurSDLoc(), ValueVTs[0]);
1934  Ops[1] = DAG.getZExtOrTrunc(
1935    DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1936                       FuncInfo.ExceptionSelectorVirtReg, TLI->getPointerTy()),
1937    getCurSDLoc(), ValueVTs[1]);
1938
1939  // Merge into one.
1940  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
1941                            DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
1942                            &Ops[0], 2);
1943  setValue(&LP, Res);
1944}
1945
1946/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1947/// small case ranges).
1948bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
1949                                                 CaseRecVector& WorkList,
1950                                                 const Value* SV,
1951                                                 MachineBasicBlock *Default,
1952                                                 MachineBasicBlock *SwitchBB) {
1953  // Size is the number of Cases represented by this range.
1954  size_t Size = CR.Range.second - CR.Range.first;
1955  if (Size > 3)
1956    return false;
1957
1958  // Get the MachineFunction which holds the current MBB.  This is used when
1959  // inserting any additional MBBs necessary to represent the switch.
1960  MachineFunction *CurMF = FuncInfo.MF;
1961
1962  // Figure out which block is immediately after the current one.
1963  MachineBasicBlock *NextBlock = 0;
1964  MachineFunction::iterator BBI = CR.CaseBB;
1965
1966  if (++BBI != FuncInfo.MF->end())
1967    NextBlock = BBI;
1968
1969  BranchProbabilityInfo *BPI = FuncInfo.BPI;
1970  // If any two of the cases has the same destination, and if one value
1971  // is the same as the other, but has one bit unset that the other has set,
1972  // use bit manipulation to do two compares at once.  For example:
1973  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1974  // TODO: This could be extended to merge any 2 cases in switches with 3 cases.
1975  // TODO: Handle cases where CR.CaseBB != SwitchBB.
1976  if (Size == 2 && CR.CaseBB == SwitchBB) {
1977    Case &Small = *CR.Range.first;
1978    Case &Big = *(CR.Range.second-1);
1979
1980    if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) {
1981      const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue();
1982      const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue();
1983
1984      // Check that there is only one bit different.
1985      if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 &&
1986          (SmallValue | BigValue) == BigValue) {
1987        // Isolate the common bit.
1988        APInt CommonBit = BigValue & ~SmallValue;
1989        assert((SmallValue | CommonBit) == BigValue &&
1990               CommonBit.countPopulation() == 1 && "Not a common bit?");
1991
1992        SDValue CondLHS = getValue(SV);
1993        EVT VT = CondLHS.getValueType();
1994        SDLoc DL = getCurSDLoc();
1995
1996        SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
1997                                 DAG.getConstant(CommonBit, VT));
1998        SDValue Cond = DAG.getSetCC(DL, MVT::i1,
1999                                    Or, DAG.getConstant(BigValue, VT),
2000                                    ISD::SETEQ);
2001
2002        // Update successor info.
2003        // Both Small and Big will jump to Small.BB, so we sum up the weights.
2004        addSuccessorWithWeight(SwitchBB, Small.BB,
2005                               Small.ExtraWeight + Big.ExtraWeight);
2006        addSuccessorWithWeight(SwitchBB, Default,
2007          // The default destination is the first successor in IR.
2008          BPI ? BPI->getEdgeWeight(SwitchBB->getBasicBlock(), (unsigned)0) : 0);
2009
2010        // Insert the true branch.
2011        SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other,
2012                                     getControlRoot(), Cond,
2013                                     DAG.getBasicBlock(Small.BB));
2014
2015        // Insert the false branch.
2016        BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
2017                             DAG.getBasicBlock(Default));
2018
2019        DAG.setRoot(BrCond);
2020        return true;
2021      }
2022    }
2023  }
2024
2025  // Order cases by weight so the most likely case will be checked first.
2026  uint32_t UnhandledWeights = 0;
2027  if (BPI) {
2028    for (CaseItr I = CR.Range.first, IE = CR.Range.second; I != IE; ++I) {
2029      uint32_t IWeight = I->ExtraWeight;
2030      UnhandledWeights += IWeight;
2031      for (CaseItr J = CR.Range.first; J < I; ++J) {
2032        uint32_t JWeight = J->ExtraWeight;
2033        if (IWeight > JWeight)
2034          std::swap(*I, *J);
2035      }
2036    }
2037  }
2038  // Rearrange the case blocks so that the last one falls through if possible.
2039  Case &BackCase = *(CR.Range.second-1);
2040  if (Size > 1 &&
2041      NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
2042    // The last case block won't fall through into 'NextBlock' if we emit the
2043    // branches in this order.  See if rearranging a case value would help.
2044    // We start at the bottom as it's the case with the least weight.
2045    for (Case *I = &*(CR.Range.second-2), *E = &*CR.Range.first-1; I != E; --I)
2046      if (I->BB == NextBlock) {
2047        std::swap(*I, BackCase);
2048        break;
2049      }
2050  }
2051
2052  // Create a CaseBlock record representing a conditional branch to
2053  // the Case's target mbb if the value being switched on SV is equal
2054  // to C.
2055  MachineBasicBlock *CurBlock = CR.CaseBB;
2056  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
2057    MachineBasicBlock *FallThrough;
2058    if (I != E-1) {
2059      FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
2060      CurMF->insert(BBI, FallThrough);
2061
2062      // Put SV in a virtual register to make it available from the new blocks.
2063      ExportFromCurrentBlock(SV);
2064    } else {
2065      // If the last case doesn't match, go to the default block.
2066      FallThrough = Default;
2067    }
2068
2069    const Value *RHS, *LHS, *MHS;
2070    ISD::CondCode CC;
2071    if (I->High == I->Low) {
2072      // This is just small small case range :) containing exactly 1 case
2073      CC = ISD::SETEQ;
2074      LHS = SV; RHS = I->High; MHS = NULL;
2075    } else {
2076      CC = ISD::SETCC_INVALID;
2077      LHS = I->Low; MHS = SV; RHS = I->High;
2078    }
2079
2080    // The false weight should be sum of all un-handled cases.
2081    UnhandledWeights -= I->ExtraWeight;
2082    CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough,
2083                 /* me */ CurBlock,
2084                 /* trueweight */ I->ExtraWeight,
2085                 /* falseweight */ UnhandledWeights);
2086
2087    // If emitting the first comparison, just call visitSwitchCase to emit the
2088    // code into the current block.  Otherwise, push the CaseBlock onto the
2089    // vector to be later processed by SDISel, and insert the node's MBB
2090    // before the next MBB.
2091    if (CurBlock == SwitchBB)
2092      visitSwitchCase(CB, SwitchBB);
2093    else
2094      SwitchCases.push_back(CB);
2095
2096    CurBlock = FallThrough;
2097  }
2098
2099  return true;
2100}
2101
2102static inline bool areJTsAllowed(const TargetLowering &TLI) {
2103  return TLI.supportJumpTables() &&
2104          (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
2105           TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
2106}
2107
2108static APInt ComputeRange(const APInt &First, const APInt &Last) {
2109  uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
2110  APInt LastExt = Last.zext(BitWidth), FirstExt = First.zext(BitWidth);
2111  return (LastExt - FirstExt + 1ULL);
2112}
2113
2114/// handleJTSwitchCase - Emit jumptable for current switch case range
2115bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR,
2116                                             CaseRecVector &WorkList,
2117                                             const Value *SV,
2118                                             MachineBasicBlock *Default,
2119                                             MachineBasicBlock *SwitchBB) {
2120  Case& FrontCase = *CR.Range.first;
2121  Case& BackCase  = *(CR.Range.second-1);
2122
2123  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2124  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2125
2126  APInt TSize(First.getBitWidth(), 0);
2127  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I)
2128    TSize += I->size();
2129
2130  const TargetLowering *TLI = TM.getTargetLowering();
2131  if (!areJTsAllowed(*TLI) || TSize.ult(TLI->getMinimumJumpTableEntries()))
2132    return false;
2133
2134  APInt Range = ComputeRange(First, Last);
2135  // The density is TSize / Range. Require at least 40%.
2136  // It should not be possible for IntTSize to saturate for sane code, but make
2137  // sure we handle Range saturation correctly.
2138  uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10);
2139  uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10);
2140  if (IntTSize * 10 < IntRange * 4)
2141    return false;
2142
2143  DEBUG(dbgs() << "Lowering jump table\n"
2144               << "First entry: " << First << ". Last entry: " << Last << '\n'
2145               << "Range: " << Range << ". Size: " << TSize << ".\n\n");
2146
2147  // Get the MachineFunction which holds the current MBB.  This is used when
2148  // inserting any additional MBBs necessary to represent the switch.
2149  MachineFunction *CurMF = FuncInfo.MF;
2150
2151  // Figure out which block is immediately after the current one.
2152  MachineFunction::iterator BBI = CR.CaseBB;
2153  ++BBI;
2154
2155  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2156
2157  // Create a new basic block to hold the code for loading the address
2158  // of the jump table, and jumping to it.  Update successor information;
2159  // we will either branch to the default case for the switch, or the jump
2160  // table.
2161  MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2162  CurMF->insert(BBI, JumpTableBB);
2163
2164  addSuccessorWithWeight(CR.CaseBB, Default);
2165  addSuccessorWithWeight(CR.CaseBB, JumpTableBB);
2166
2167  // Build a vector of destination BBs, corresponding to each target
2168  // of the jump table. If the value of the jump table slot corresponds to
2169  // a case statement, push the case's BB onto the vector, otherwise, push
2170  // the default BB.
2171  std::vector<MachineBasicBlock*> DestBBs;
2172  APInt TEI = First;
2173  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
2174    const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
2175    const APInt &High = cast<ConstantInt>(I->High)->getValue();
2176
2177    if (Low.ule(TEI) && TEI.ule(High)) {
2178      DestBBs.push_back(I->BB);
2179      if (TEI==High)
2180        ++I;
2181    } else {
2182      DestBBs.push_back(Default);
2183    }
2184  }
2185
2186  // Calculate weight for each unique destination in CR.
2187  DenseMap<MachineBasicBlock*, uint32_t> DestWeights;
2188  if (FuncInfo.BPI)
2189    for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
2190      DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr =
2191          DestWeights.find(I->BB);
2192      if (Itr != DestWeights.end())
2193        Itr->second += I->ExtraWeight;
2194      else
2195        DestWeights[I->BB] = I->ExtraWeight;
2196    }
2197
2198  // Update successor info. Add one edge to each unique successor.
2199  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
2200  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
2201         E = DestBBs.end(); I != E; ++I) {
2202    if (!SuccsHandled[(*I)->getNumber()]) {
2203      SuccsHandled[(*I)->getNumber()] = true;
2204      DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr =
2205          DestWeights.find(*I);
2206      addSuccessorWithWeight(JumpTableBB, *I,
2207                             Itr != DestWeights.end() ? Itr->second : 0);
2208    }
2209  }
2210
2211  // Create a jump table index for this jump table.
2212  unsigned JTEncoding = TLI->getJumpTableEncoding();
2213  unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
2214                       ->createJumpTableIndex(DestBBs);
2215
2216  // Set the jump table information so that we can codegen it as a second
2217  // MachineBasicBlock
2218  JumpTable JT(-1U, JTI, JumpTableBB, Default);
2219  JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
2220  if (CR.CaseBB == SwitchBB)
2221    visitJumpTableHeader(JT, JTH, SwitchBB);
2222
2223  JTCases.push_back(JumpTableBlock(JTH, JT));
2224  return true;
2225}
2226
2227/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
2228/// 2 subtrees.
2229bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
2230                                                  CaseRecVector& WorkList,
2231                                                  const Value* SV,
2232                                                  MachineBasicBlock* Default,
2233                                                  MachineBasicBlock* SwitchBB) {
2234  // Get the MachineFunction which holds the current MBB.  This is used when
2235  // inserting any additional MBBs necessary to represent the switch.
2236  MachineFunction *CurMF = FuncInfo.MF;
2237
2238  // Figure out which block is immediately after the current one.
2239  MachineFunction::iterator BBI = CR.CaseBB;
2240  ++BBI;
2241
2242  Case& FrontCase = *CR.Range.first;
2243  Case& BackCase  = *(CR.Range.second-1);
2244  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2245
2246  // Size is the number of Cases represented by this range.
2247  unsigned Size = CR.Range.second - CR.Range.first;
2248
2249  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2250  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2251  double FMetric = 0;
2252  CaseItr Pivot = CR.Range.first + Size/2;
2253
2254  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
2255  // (heuristically) allow us to emit JumpTable's later.
2256  APInt TSize(First.getBitWidth(), 0);
2257  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2258       I!=E; ++I)
2259    TSize += I->size();
2260
2261  APInt LSize = FrontCase.size();
2262  APInt RSize = TSize-LSize;
2263  DEBUG(dbgs() << "Selecting best pivot: \n"
2264               << "First: " << First << ", Last: " << Last <<'\n'
2265               << "LSize: " << LSize << ", RSize: " << RSize << '\n');
2266  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
2267       J!=E; ++I, ++J) {
2268    const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
2269    const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
2270    APInt Range = ComputeRange(LEnd, RBegin);
2271    assert((Range - 2ULL).isNonNegative() &&
2272           "Invalid case distance");
2273    // Use volatile double here to avoid excess precision issues on some hosts,
2274    // e.g. that use 80-bit X87 registers.
2275    volatile double LDensity =
2276       (double)LSize.roundToDouble() /
2277                           (LEnd - First + 1ULL).roundToDouble();
2278    volatile double RDensity =
2279      (double)RSize.roundToDouble() /
2280                           (Last - RBegin + 1ULL).roundToDouble();
2281    double Metric = Range.logBase2()*(LDensity+RDensity);
2282    // Should always split in some non-trivial place
2283    DEBUG(dbgs() <<"=>Step\n"
2284                 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
2285                 << "LDensity: " << LDensity
2286                 << ", RDensity: " << RDensity << '\n'
2287                 << "Metric: " << Metric << '\n');
2288    if (FMetric < Metric) {
2289      Pivot = J;
2290      FMetric = Metric;
2291      DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
2292    }
2293
2294    LSize += J->size();
2295    RSize -= J->size();
2296  }
2297
2298  const TargetLowering *TLI = TM.getTargetLowering();
2299  if (areJTsAllowed(*TLI)) {
2300    // If our case is dense we *really* should handle it earlier!
2301    assert((FMetric > 0) && "Should handle dense range earlier!");
2302  } else {
2303    Pivot = CR.Range.first + Size/2;
2304  }
2305
2306  CaseRange LHSR(CR.Range.first, Pivot);
2307  CaseRange RHSR(Pivot, CR.Range.second);
2308  const Constant *C = Pivot->Low;
2309  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
2310
2311  // We know that we branch to the LHS if the Value being switched on is
2312  // less than the Pivot value, C.  We use this to optimize our binary
2313  // tree a bit, by recognizing that if SV is greater than or equal to the
2314  // LHS's Case Value, and that Case Value is exactly one less than the
2315  // Pivot's Value, then we can branch directly to the LHS's Target,
2316  // rather than creating a leaf node for it.
2317  if ((LHSR.second - LHSR.first) == 1 &&
2318      LHSR.first->High == CR.GE &&
2319      cast<ConstantInt>(C)->getValue() ==
2320      (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
2321    TrueBB = LHSR.first->BB;
2322  } else {
2323    TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2324    CurMF->insert(BBI, TrueBB);
2325    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
2326
2327    // Put SV in a virtual register to make it available from the new blocks.
2328    ExportFromCurrentBlock(SV);
2329  }
2330
2331  // Similar to the optimization above, if the Value being switched on is
2332  // known to be less than the Constant CR.LT, and the current Case Value
2333  // is CR.LT - 1, then we can branch directly to the target block for
2334  // the current Case Value, rather than emitting a RHS leaf node for it.
2335  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
2336      cast<ConstantInt>(RHSR.first->Low)->getValue() ==
2337      (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
2338    FalseBB = RHSR.first->BB;
2339  } else {
2340    FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2341    CurMF->insert(BBI, FalseBB);
2342    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
2343
2344    // Put SV in a virtual register to make it available from the new blocks.
2345    ExportFromCurrentBlock(SV);
2346  }
2347
2348  // Create a CaseBlock record representing a conditional branch to
2349  // the LHS node if the value being switched on SV is less than C.
2350  // Otherwise, branch to LHS.
2351  CaseBlock CB(ISD::SETULT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
2352
2353  if (CR.CaseBB == SwitchBB)
2354    visitSwitchCase(CB, SwitchBB);
2355  else
2356    SwitchCases.push_back(CB);
2357
2358  return true;
2359}
2360
2361/// handleBitTestsSwitchCase - if current case range has few destination and
2362/// range span less, than machine word bitwidth, encode case range into series
2363/// of masks and emit bit tests with these masks.
2364bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
2365                                                   CaseRecVector& WorkList,
2366                                                   const Value* SV,
2367                                                   MachineBasicBlock* Default,
2368                                                   MachineBasicBlock* SwitchBB) {
2369  const TargetLowering *TLI = TM.getTargetLowering();
2370  EVT PTy = TLI->getPointerTy();
2371  unsigned IntPtrBits = PTy.getSizeInBits();
2372
2373  Case& FrontCase = *CR.Range.first;
2374  Case& BackCase  = *(CR.Range.second-1);
2375
2376  // Get the MachineFunction which holds the current MBB.  This is used when
2377  // inserting any additional MBBs necessary to represent the switch.
2378  MachineFunction *CurMF = FuncInfo.MF;
2379
2380  // If target does not have legal shift left, do not emit bit tests at all.
2381  if (!TLI->isOperationLegal(ISD::SHL, TLI->getPointerTy()))
2382    return false;
2383
2384  size_t numCmps = 0;
2385  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2386       I!=E; ++I) {
2387    // Single case counts one, case range - two.
2388    numCmps += (I->Low == I->High ? 1 : 2);
2389  }
2390
2391  // Count unique destinations
2392  SmallSet<MachineBasicBlock*, 4> Dests;
2393  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2394    Dests.insert(I->BB);
2395    if (Dests.size() > 3)
2396      // Don't bother the code below, if there are too much unique destinations
2397      return false;
2398  }
2399  DEBUG(dbgs() << "Total number of unique destinations: "
2400        << Dests.size() << '\n'
2401        << "Total number of comparisons: " << numCmps << '\n');
2402
2403  // Compute span of values.
2404  const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
2405  const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
2406  APInt cmpRange = maxValue - minValue;
2407
2408  DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
2409               << "Low bound: " << minValue << '\n'
2410               << "High bound: " << maxValue << '\n');
2411
2412  if (cmpRange.uge(IntPtrBits) ||
2413      (!(Dests.size() == 1 && numCmps >= 3) &&
2414       !(Dests.size() == 2 && numCmps >= 5) &&
2415       !(Dests.size() >= 3 && numCmps >= 6)))
2416    return false;
2417
2418  DEBUG(dbgs() << "Emitting bit tests\n");
2419  APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
2420
2421  // Optimize the case where all the case values fit in a
2422  // word without having to subtract minValue. In this case,
2423  // we can optimize away the subtraction.
2424  if (maxValue.ult(IntPtrBits)) {
2425    cmpRange = maxValue;
2426  } else {
2427    lowBound = minValue;
2428  }
2429
2430  CaseBitsVector CasesBits;
2431  unsigned i, count = 0;
2432
2433  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2434    MachineBasicBlock* Dest = I->BB;
2435    for (i = 0; i < count; ++i)
2436      if (Dest == CasesBits[i].BB)
2437        break;
2438
2439    if (i == count) {
2440      assert((count < 3) && "Too much destinations to test!");
2441      CasesBits.push_back(CaseBits(0, Dest, 0, 0/*Weight*/));
2442      count++;
2443    }
2444
2445    const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
2446    const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
2447
2448    uint64_t lo = (lowValue - lowBound).getZExtValue();
2449    uint64_t hi = (highValue - lowBound).getZExtValue();
2450    CasesBits[i].ExtraWeight += I->ExtraWeight;
2451
2452    for (uint64_t j = lo; j <= hi; j++) {
2453      CasesBits[i].Mask |=  1ULL << j;
2454      CasesBits[i].Bits++;
2455    }
2456
2457  }
2458  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2459
2460  BitTestInfo BTC;
2461
2462  // Figure out which block is immediately after the current one.
2463  MachineFunction::iterator BBI = CR.CaseBB;
2464  ++BBI;
2465
2466  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2467
2468  DEBUG(dbgs() << "Cases:\n");
2469  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2470    DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
2471                 << ", Bits: " << CasesBits[i].Bits
2472                 << ", BB: " << CasesBits[i].BB << '\n');
2473
2474    MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2475    CurMF->insert(BBI, CaseBB);
2476    BTC.push_back(BitTestCase(CasesBits[i].Mask,
2477                              CaseBB,
2478                              CasesBits[i].BB, CasesBits[i].ExtraWeight));
2479
2480    // Put SV in a virtual register to make it available from the new blocks.
2481    ExportFromCurrentBlock(SV);
2482  }
2483
2484  BitTestBlock BTB(lowBound, cmpRange, SV,
2485                   -1U, MVT::Other, (CR.CaseBB == SwitchBB),
2486                   CR.CaseBB, Default, BTC);
2487
2488  if (CR.CaseBB == SwitchBB)
2489    visitBitTestHeader(BTB, SwitchBB);
2490
2491  BitTestCases.push_back(BTB);
2492
2493  return true;
2494}
2495
2496/// Clusterify - Transform simple list of Cases into list of CaseRange's
2497size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
2498                                       const SwitchInst& SI) {
2499
2500  /// Use a shorter form of declaration, and also
2501  /// show the we want to use CRSBuilder as Clusterifier.
2502  typedef IntegersSubsetMapping<MachineBasicBlock> Clusterifier;
2503
2504  Clusterifier TheClusterifier;
2505
2506  BranchProbabilityInfo *BPI = FuncInfo.BPI;
2507  // Start with "simple" cases
2508  for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
2509       i != e; ++i) {
2510    const BasicBlock *SuccBB = i.getCaseSuccessor();
2511    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB];
2512
2513    TheClusterifier.add(i.getCaseValueEx(), SMBB,
2514        BPI ? BPI->getEdgeWeight(SI.getParent(), i.getSuccessorIndex()) : 0);
2515  }
2516
2517  TheClusterifier.optimize();
2518
2519  size_t numCmps = 0;
2520  for (Clusterifier::RangeIterator i = TheClusterifier.begin(),
2521       e = TheClusterifier.end(); i != e; ++i, ++numCmps) {
2522    Clusterifier::Cluster &C = *i;
2523    // Update edge weight for the cluster.
2524    unsigned W = C.first.Weight;
2525
2526    // FIXME: Currently work with ConstantInt based numbers.
2527    // Changing it to APInt based is a pretty heavy for this commit.
2528    Cases.push_back(Case(C.first.getLow().toConstantInt(),
2529                         C.first.getHigh().toConstantInt(), C.second, W));
2530
2531    if (C.first.getLow() != C.first.getHigh())
2532    // A range counts double, since it requires two compares.
2533    ++numCmps;
2534  }
2535
2536  return numCmps;
2537}
2538
2539void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2540                                           MachineBasicBlock *Last) {
2541  // Update JTCases.
2542  for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2543    if (JTCases[i].first.HeaderBB == First)
2544      JTCases[i].first.HeaderBB = Last;
2545
2546  // Update BitTestCases.
2547  for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2548    if (BitTestCases[i].Parent == First)
2549      BitTestCases[i].Parent = Last;
2550}
2551
2552void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
2553  MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
2554
2555  // Figure out which block is immediately after the current one.
2556  MachineBasicBlock *NextBlock = 0;
2557  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2558
2559  // If there is only the default destination, branch to it if it is not the
2560  // next basic block.  Otherwise, just fall through.
2561  if (!SI.getNumCases()) {
2562    // Update machine-CFG edges.
2563
2564    // If this is not a fall-through branch, emit the branch.
2565    SwitchMBB->addSuccessor(Default);
2566    if (Default != NextBlock)
2567      DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2568                              MVT::Other, getControlRoot(),
2569                              DAG.getBasicBlock(Default)));
2570
2571    return;
2572  }
2573
2574  // If there are any non-default case statements, create a vector of Cases
2575  // representing each one, and sort the vector so that we can efficiently
2576  // create a binary search tree from them.
2577  CaseVector Cases;
2578  size_t numCmps = Clusterify(Cases, SI);
2579  DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2580               << ". Total compares: " << numCmps << '\n');
2581  (void)numCmps;
2582
2583  // Get the Value to be switched on and default basic blocks, which will be
2584  // inserted into CaseBlock records, representing basic blocks in the binary
2585  // search tree.
2586  const Value *SV = SI.getCondition();
2587
2588  // Push the initial CaseRec onto the worklist
2589  CaseRecVector WorkList;
2590  WorkList.push_back(CaseRec(SwitchMBB,0,0,
2591                             CaseRange(Cases.begin(),Cases.end())));
2592
2593  while (!WorkList.empty()) {
2594    // Grab a record representing a case range to process off the worklist
2595    CaseRec CR = WorkList.back();
2596    WorkList.pop_back();
2597
2598    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2599      continue;
2600
2601    // If the range has few cases (two or less) emit a series of specific
2602    // tests.
2603    if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
2604      continue;
2605
2606    // If the switch has more than N blocks, and is at least 40% dense, and the
2607    // target supports indirect branches, then emit a jump table rather than
2608    // lowering the switch to a binary tree of conditional branches.
2609    // N defaults to 4 and is controlled via TLS.getMinimumJumpTableEntries().
2610    if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2611      continue;
2612
2613    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2614    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2615    handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
2616  }
2617}
2618
2619void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2620  MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2621
2622  // Update machine-CFG edges with unique successors.
2623  SmallSet<BasicBlock*, 32> Done;
2624  for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2625    BasicBlock *BB = I.getSuccessor(i);
2626    bool Inserted = Done.insert(BB);
2627    if (!Inserted)
2628        continue;
2629
2630    MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2631    addSuccessorWithWeight(IndirectBrMBB, Succ);
2632  }
2633
2634  DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2635                          MVT::Other, getControlRoot(),
2636                          getValue(I.getAddress())));
2637}
2638
2639void SelectionDAGBuilder::visitFSub(const User &I) {
2640  // -0.0 - X --> fneg
2641  Type *Ty = I.getType();
2642  if (isa<Constant>(I.getOperand(0)) &&
2643      I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2644    SDValue Op2 = getValue(I.getOperand(1));
2645    setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2646                             Op2.getValueType(), Op2));
2647    return;
2648  }
2649
2650  visitBinary(I, ISD::FSUB);
2651}
2652
2653void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2654  SDValue Op1 = getValue(I.getOperand(0));
2655  SDValue Op2 = getValue(I.getOperand(1));
2656  setValue(&I, DAG.getNode(OpCode, getCurSDLoc(),
2657                           Op1.getValueType(), Op1, Op2));
2658}
2659
2660void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2661  SDValue Op1 = getValue(I.getOperand(0));
2662  SDValue Op2 = getValue(I.getOperand(1));
2663
2664  EVT ShiftTy = TM.getTargetLowering()->getShiftAmountTy(Op2.getValueType());
2665
2666  // Coerce the shift amount to the right type if we can.
2667  if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2668    unsigned ShiftSize = ShiftTy.getSizeInBits();
2669    unsigned Op2Size = Op2.getValueType().getSizeInBits();
2670    SDLoc DL = getCurSDLoc();
2671
2672    // If the operand is smaller than the shift count type, promote it.
2673    if (ShiftSize > Op2Size)
2674      Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2675
2676    // If the operand is larger than the shift count type but the shift
2677    // count type has enough bits to represent any shift value, truncate
2678    // it now. This is a common case and it exposes the truncate to
2679    // optimization early.
2680    else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2681      Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2682    // Otherwise we'll need to temporarily settle for some other convenient
2683    // type.  Type legalization will make adjustments once the shiftee is split.
2684    else
2685      Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2686  }
2687
2688  setValue(&I, DAG.getNode(Opcode, getCurSDLoc(),
2689                           Op1.getValueType(), Op1, Op2));
2690}
2691
2692void SelectionDAGBuilder::visitSDiv(const User &I) {
2693  SDValue Op1 = getValue(I.getOperand(0));
2694  SDValue Op2 = getValue(I.getOperand(1));
2695
2696  // Turn exact SDivs into multiplications.
2697  // FIXME: This should be in DAGCombiner, but it doesn't have access to the
2698  // exact bit.
2699  if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() &&
2700      !isa<ConstantSDNode>(Op1) &&
2701      isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue())
2702    setValue(&I, TM.getTargetLowering()->BuildExactSDIV(Op1, Op2,
2703                                                        getCurSDLoc(), DAG));
2704  else
2705    setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(),
2706                             Op1, Op2));
2707}
2708
2709void SelectionDAGBuilder::visitICmp(const User &I) {
2710  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2711  if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2712    predicate = IC->getPredicate();
2713  else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2714    predicate = ICmpInst::Predicate(IC->getPredicate());
2715  SDValue Op1 = getValue(I.getOperand(0));
2716  SDValue Op2 = getValue(I.getOperand(1));
2717  ISD::CondCode Opcode = getICmpCondCode(predicate);
2718
2719  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2720  setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
2721}
2722
2723void SelectionDAGBuilder::visitFCmp(const User &I) {
2724  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2725  if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2726    predicate = FC->getPredicate();
2727  else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2728    predicate = FCmpInst::Predicate(FC->getPredicate());
2729  SDValue Op1 = getValue(I.getOperand(0));
2730  SDValue Op2 = getValue(I.getOperand(1));
2731  ISD::CondCode Condition = getFCmpCondCode(predicate);
2732  if (TM.Options.NoNaNsFPMath)
2733    Condition = getFCmpCodeWithoutNaN(Condition);
2734  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2735  setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
2736}
2737
2738void SelectionDAGBuilder::visitSelect(const User &I) {
2739  SmallVector<EVT, 4> ValueVTs;
2740  ComputeValueVTs(*TM.getTargetLowering(), I.getType(), ValueVTs);
2741  unsigned NumValues = ValueVTs.size();
2742  if (NumValues == 0) return;
2743
2744  SmallVector<SDValue, 4> Values(NumValues);
2745  SDValue Cond     = getValue(I.getOperand(0));
2746  SDValue TrueVal  = getValue(I.getOperand(1));
2747  SDValue FalseVal = getValue(I.getOperand(2));
2748  ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2749    ISD::VSELECT : ISD::SELECT;
2750
2751  for (unsigned i = 0; i != NumValues; ++i)
2752    Values[i] = DAG.getNode(OpCode, getCurSDLoc(),
2753                            TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2754                            Cond,
2755                            SDValue(TrueVal.getNode(),
2756                                    TrueVal.getResNo() + i),
2757                            SDValue(FalseVal.getNode(),
2758                                    FalseVal.getResNo() + i));
2759
2760  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
2761                           DAG.getVTList(&ValueVTs[0], NumValues),
2762                           &Values[0], NumValues));
2763}
2764
2765void SelectionDAGBuilder::visitTrunc(const User &I) {
2766  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2767  SDValue N = getValue(I.getOperand(0));
2768  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2769  setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
2770}
2771
2772void SelectionDAGBuilder::visitZExt(const User &I) {
2773  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2774  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2775  SDValue N = getValue(I.getOperand(0));
2776  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2777  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
2778}
2779
2780void SelectionDAGBuilder::visitSExt(const User &I) {
2781  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2782  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2783  SDValue N = getValue(I.getOperand(0));
2784  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2785  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
2786}
2787
2788void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2789  // FPTrunc is never a no-op cast, no need to check
2790  SDValue N = getValue(I.getOperand(0));
2791  const TargetLowering *TLI = TM.getTargetLowering();
2792  EVT DestVT = TLI->getValueType(I.getType());
2793  setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurSDLoc(),
2794                           DestVT, N,
2795                           DAG.getTargetConstant(0, TLI->getPointerTy())));
2796}
2797
2798void SelectionDAGBuilder::visitFPExt(const User &I) {
2799  // FPExt is never a no-op cast, no need to check
2800  SDValue N = getValue(I.getOperand(0));
2801  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2802  setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
2803}
2804
2805void SelectionDAGBuilder::visitFPToUI(const User &I) {
2806  // FPToUI is never a no-op cast, no need to check
2807  SDValue N = getValue(I.getOperand(0));
2808  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2809  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
2810}
2811
2812void SelectionDAGBuilder::visitFPToSI(const User &I) {
2813  // FPToSI is never a no-op cast, no need to check
2814  SDValue N = getValue(I.getOperand(0));
2815  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2816  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
2817}
2818
2819void SelectionDAGBuilder::visitUIToFP(const User &I) {
2820  // UIToFP is never a no-op cast, no need to check
2821  SDValue N = getValue(I.getOperand(0));
2822  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2823  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
2824}
2825
2826void SelectionDAGBuilder::visitSIToFP(const User &I) {
2827  // SIToFP is never a no-op cast, no need to check
2828  SDValue N = getValue(I.getOperand(0));
2829  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2830  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
2831}
2832
2833void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2834  // What to do depends on the size of the integer and the size of the pointer.
2835  // We can either truncate, zero extend, or no-op, accordingly.
2836  SDValue N = getValue(I.getOperand(0));
2837  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2838  setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
2839}
2840
2841void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2842  // What to do depends on the size of the integer and the size of the pointer.
2843  // We can either truncate, zero extend, or no-op, accordingly.
2844  SDValue N = getValue(I.getOperand(0));
2845  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2846  setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
2847}
2848
2849void SelectionDAGBuilder::visitBitCast(const User &I) {
2850  SDValue N = getValue(I.getOperand(0));
2851  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2852
2853  // BitCast assures us that source and destination are the same size so this is
2854  // either a BITCAST or a no-op.
2855  if (DestVT != N.getValueType())
2856    setValue(&I, DAG.getNode(ISD::BITCAST, getCurSDLoc(),
2857                             DestVT, N)); // convert types.
2858  else
2859    setValue(&I, N);            // noop cast.
2860}
2861
2862void SelectionDAGBuilder::visitInsertElement(const User &I) {
2863  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2864  SDValue InVec = getValue(I.getOperand(0));
2865  SDValue InVal = getValue(I.getOperand(1));
2866  SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)),
2867                                     getCurSDLoc(), TLI.getVectorIdxTy());
2868  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
2869                           TM.getTargetLowering()->getValueType(I.getType()),
2870                           InVec, InVal, InIdx));
2871}
2872
2873void SelectionDAGBuilder::visitExtractElement(const User &I) {
2874  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2875  SDValue InVec = getValue(I.getOperand(0));
2876  SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)),
2877                                     getCurSDLoc(), TLI.getVectorIdxTy());
2878  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
2879                           TM.getTargetLowering()->getValueType(I.getType()),
2880                           InVec, InIdx));
2881}
2882
2883// Utility for visitShuffleVector - Return true if every element in Mask,
2884// beginning from position Pos and ending in Pos+Size, falls within the
2885// specified sequential range [L, L+Pos). or is undef.
2886static bool isSequentialInRange(const SmallVectorImpl<int> &Mask,
2887                                unsigned Pos, unsigned Size, int Low) {
2888  for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
2889    if (Mask[i] >= 0 && Mask[i] != Low)
2890      return false;
2891  return true;
2892}
2893
2894void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2895  SDValue Src1 = getValue(I.getOperand(0));
2896  SDValue Src2 = getValue(I.getOperand(1));
2897
2898  SmallVector<int, 8> Mask;
2899  ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
2900  unsigned MaskNumElts = Mask.size();
2901
2902  const TargetLowering *TLI = TM.getTargetLowering();
2903  EVT VT = TLI->getValueType(I.getType());
2904  EVT SrcVT = Src1.getValueType();
2905  unsigned SrcNumElts = SrcVT.getVectorNumElements();
2906
2907  if (SrcNumElts == MaskNumElts) {
2908    setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
2909                                      &Mask[0]));
2910    return;
2911  }
2912
2913  // Normalize the shuffle vector since mask and vector length don't match.
2914  if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2915    // Mask is longer than the source vectors and is a multiple of the source
2916    // vectors.  We can use concatenate vector to make the mask and vectors
2917    // lengths match.
2918    if (SrcNumElts*2 == MaskNumElts) {
2919      // First check for Src1 in low and Src2 in high
2920      if (isSequentialInRange(Mask, 0, SrcNumElts, 0) &&
2921          isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) {
2922        // The shuffle is concatenating two vectors together.
2923        setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(),
2924                                 VT, Src1, Src2));
2925        return;
2926      }
2927      // Then check for Src2 in low and Src1 in high
2928      if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) &&
2929          isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) {
2930        // The shuffle is concatenating two vectors together.
2931        setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(),
2932                                 VT, Src2, Src1));
2933        return;
2934      }
2935    }
2936
2937    // Pad both vectors with undefs to make them the same length as the mask.
2938    unsigned NumConcat = MaskNumElts / SrcNumElts;
2939    bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2940    bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2941    SDValue UndefVal = DAG.getUNDEF(SrcVT);
2942
2943    SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2944    SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2945    MOps1[0] = Src1;
2946    MOps2[0] = Src2;
2947
2948    Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2949                                                  getCurSDLoc(), VT,
2950                                                  &MOps1[0], NumConcat);
2951    Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2952                                                  getCurSDLoc(), VT,
2953                                                  &MOps2[0], NumConcat);
2954
2955    // Readjust mask for new input vector length.
2956    SmallVector<int, 8> MappedOps;
2957    for (unsigned i = 0; i != MaskNumElts; ++i) {
2958      int Idx = Mask[i];
2959      if (Idx >= (int)SrcNumElts)
2960        Idx -= SrcNumElts - MaskNumElts;
2961      MappedOps.push_back(Idx);
2962    }
2963
2964    setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
2965                                      &MappedOps[0]));
2966    return;
2967  }
2968
2969  if (SrcNumElts > MaskNumElts) {
2970    // Analyze the access pattern of the vector to see if we can extract
2971    // two subvectors and do the shuffle. The analysis is done by calculating
2972    // the range of elements the mask access on both vectors.
2973    int MinRange[2] = { static_cast<int>(SrcNumElts),
2974                        static_cast<int>(SrcNumElts)};
2975    int MaxRange[2] = {-1, -1};
2976
2977    for (unsigned i = 0; i != MaskNumElts; ++i) {
2978      int Idx = Mask[i];
2979      unsigned Input = 0;
2980      if (Idx < 0)
2981        continue;
2982
2983      if (Idx >= (int)SrcNumElts) {
2984        Input = 1;
2985        Idx -= SrcNumElts;
2986      }
2987      if (Idx > MaxRange[Input])
2988        MaxRange[Input] = Idx;
2989      if (Idx < MinRange[Input])
2990        MinRange[Input] = Idx;
2991    }
2992
2993    // Check if the access is smaller than the vector size and can we find
2994    // a reasonable extract index.
2995    int RangeUse[2] = { -1, -1 };  // 0 = Unused, 1 = Extract, -1 = Can not
2996                                   // Extract.
2997    int StartIdx[2];  // StartIdx to extract from
2998    for (unsigned Input = 0; Input < 2; ++Input) {
2999      if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) {
3000        RangeUse[Input] = 0; // Unused
3001        StartIdx[Input] = 0;
3002        continue;
3003      }
3004
3005      // Find a good start index that is a multiple of the mask length. Then
3006      // see if the rest of the elements are in range.
3007      StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
3008      if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
3009          StartIdx[Input] + MaskNumElts <= SrcNumElts)
3010        RangeUse[Input] = 1; // Extract from a multiple of the mask length.
3011    }
3012
3013    if (RangeUse[0] == 0 && RangeUse[1] == 0) {
3014      setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3015      return;
3016    }
3017    if (RangeUse[0] >= 0 && RangeUse[1] >= 0) {
3018      // Extract appropriate subvector and generate a vector shuffle
3019      for (unsigned Input = 0; Input < 2; ++Input) {
3020        SDValue &Src = Input == 0 ? Src1 : Src2;
3021        if (RangeUse[Input] == 0)
3022          Src = DAG.getUNDEF(VT);
3023        else
3024          Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurSDLoc(), VT,
3025                            Src, DAG.getConstant(StartIdx[Input],
3026                                                 TLI->getVectorIdxTy()));
3027      }
3028
3029      // Calculate new mask.
3030      SmallVector<int, 8> MappedOps;
3031      for (unsigned i = 0; i != MaskNumElts; ++i) {
3032        int Idx = Mask[i];
3033        if (Idx >= 0) {
3034          if (Idx < (int)SrcNumElts)
3035            Idx -= StartIdx[0];
3036          else
3037            Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3038        }
3039        MappedOps.push_back(Idx);
3040      }
3041
3042      setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
3043                                        &MappedOps[0]));
3044      return;
3045    }
3046  }
3047
3048  // We can't use either concat vectors or extract subvectors so fall back to
3049  // replacing the shuffle with extract and build vector.
3050  // to insert and build vector.
3051  EVT EltVT = VT.getVectorElementType();
3052  EVT IdxVT = TLI->getVectorIdxTy();
3053  SmallVector<SDValue,8> Ops;
3054  for (unsigned i = 0; i != MaskNumElts; ++i) {
3055    int Idx = Mask[i];
3056    SDValue Res;
3057
3058    if (Idx < 0) {
3059      Res = DAG.getUNDEF(EltVT);
3060    } else {
3061      SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3062      if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3063
3064      Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3065                        EltVT, Src, DAG.getConstant(Idx, IdxVT));
3066    }
3067
3068    Ops.push_back(Res);
3069  }
3070
3071  setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(),
3072                           VT, &Ops[0], Ops.size()));
3073}
3074
3075void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
3076  const Value *Op0 = I.getOperand(0);
3077  const Value *Op1 = I.getOperand(1);
3078  Type *AggTy = I.getType();
3079  Type *ValTy = Op1->getType();
3080  bool IntoUndef = isa<UndefValue>(Op0);
3081  bool FromUndef = isa<UndefValue>(Op1);
3082
3083  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3084
3085  const TargetLowering *TLI = TM.getTargetLowering();
3086  SmallVector<EVT, 4> AggValueVTs;
3087  ComputeValueVTs(*TLI, AggTy, AggValueVTs);
3088  SmallVector<EVT, 4> ValValueVTs;
3089  ComputeValueVTs(*TLI, ValTy, ValValueVTs);
3090
3091  unsigned NumAggValues = AggValueVTs.size();
3092  unsigned NumValValues = ValValueVTs.size();
3093  SmallVector<SDValue, 4> Values(NumAggValues);
3094
3095  SDValue Agg = getValue(Op0);
3096  unsigned i = 0;
3097  // Copy the beginning value(s) from the original aggregate.
3098  for (; i != LinearIndex; ++i)
3099    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3100                SDValue(Agg.getNode(), Agg.getResNo() + i);
3101  // Copy values from the inserted value(s).
3102  if (NumValValues) {
3103    SDValue Val = getValue(Op1);
3104    for (; i != LinearIndex + NumValValues; ++i)
3105      Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3106                  SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3107  }
3108  // Copy remaining value(s) from the original aggregate.
3109  for (; i != NumAggValues; ++i)
3110    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3111                SDValue(Agg.getNode(), Agg.getResNo() + i);
3112
3113  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3114                           DAG.getVTList(&AggValueVTs[0], NumAggValues),
3115                           &Values[0], NumAggValues));
3116}
3117
3118void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
3119  const Value *Op0 = I.getOperand(0);
3120  Type *AggTy = Op0->getType();
3121  Type *ValTy = I.getType();
3122  bool OutOfUndef = isa<UndefValue>(Op0);
3123
3124  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3125
3126  const TargetLowering *TLI = TM.getTargetLowering();
3127  SmallVector<EVT, 4> ValValueVTs;
3128  ComputeValueVTs(*TLI, ValTy, ValValueVTs);
3129
3130  unsigned NumValValues = ValValueVTs.size();
3131
3132  // Ignore a extractvalue that produces an empty object
3133  if (!NumValValues) {
3134    setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3135    return;
3136  }
3137
3138  SmallVector<SDValue, 4> Values(NumValValues);
3139
3140  SDValue Agg = getValue(Op0);
3141  // Copy out the selected value(s).
3142  for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3143    Values[i - LinearIndex] =
3144      OutOfUndef ?
3145        DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3146        SDValue(Agg.getNode(), Agg.getResNo() + i);
3147
3148  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3149                           DAG.getVTList(&ValValueVTs[0], NumValValues),
3150                           &Values[0], NumValValues));
3151}
3152
3153void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3154  SDValue N = getValue(I.getOperand(0));
3155  // Note that the pointer operand may be a vector of pointers. Take the scalar
3156  // element which holds a pointer.
3157  Type *Ty = I.getOperand(0)->getType()->getScalarType();
3158
3159  for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
3160       OI != E; ++OI) {
3161    const Value *Idx = *OI;
3162    if (StructType *StTy = dyn_cast<StructType>(Ty)) {
3163      unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3164      if (Field) {
3165        // N = N + Offset
3166        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
3167        N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N,
3168                        DAG.getConstant(Offset, N.getValueType()));
3169      }
3170
3171      Ty = StTy->getElementType(Field);
3172    } else {
3173      Ty = cast<SequentialType>(Ty)->getElementType();
3174
3175      // If this is a constant subscript, handle it quickly.
3176      const TargetLowering *TLI = TM.getTargetLowering();
3177      if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
3178        if (CI->isZero()) continue;
3179        uint64_t Offs =
3180            TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
3181        SDValue OffsVal;
3182        EVT PTy = TLI->getPointerTy();
3183        unsigned PtrBits = PTy.getSizeInBits();
3184        if (PtrBits < 64)
3185          OffsVal = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(),
3186                                TLI->getPointerTy(),
3187                                DAG.getConstant(Offs, MVT::i64));
3188        else
3189          OffsVal = DAG.getIntPtrConstant(Offs);
3190
3191        N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N,
3192                        OffsVal);
3193        continue;
3194      }
3195
3196      // N = N + Idx * ElementSize;
3197      APInt ElementSize = APInt(TLI->getPointerTy().getSizeInBits(),
3198                                TD->getTypeAllocSize(Ty));
3199      SDValue IdxN = getValue(Idx);
3200
3201      // If the index is smaller or larger than intptr_t, truncate or extend
3202      // it.
3203      IdxN = DAG.getSExtOrTrunc(IdxN, getCurSDLoc(), N.getValueType());
3204
3205      // If this is a multiply by a power of two, turn it into a shl
3206      // immediately.  This is a very common case.
3207      if (ElementSize != 1) {
3208        if (ElementSize.isPowerOf2()) {
3209          unsigned Amt = ElementSize.logBase2();
3210          IdxN = DAG.getNode(ISD::SHL, getCurSDLoc(),
3211                             N.getValueType(), IdxN,
3212                             DAG.getConstant(Amt, IdxN.getValueType()));
3213        } else {
3214          SDValue Scale = DAG.getConstant(ElementSize, IdxN.getValueType());
3215          IdxN = DAG.getNode(ISD::MUL, getCurSDLoc(),
3216                             N.getValueType(), IdxN, Scale);
3217        }
3218      }
3219
3220      N = DAG.getNode(ISD::ADD, getCurSDLoc(),
3221                      N.getValueType(), N, IdxN);
3222    }
3223  }
3224
3225  setValue(&I, N);
3226}
3227
3228void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3229  // If this is a fixed sized alloca in the entry block of the function,
3230  // allocate it statically on the stack.
3231  if (FuncInfo.StaticAllocaMap.count(&I))
3232    return;   // getValue will auto-populate this.
3233
3234  Type *Ty = I.getAllocatedType();
3235  const TargetLowering *TLI = TM.getTargetLowering();
3236  uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty);
3237  unsigned Align =
3238    std::max((unsigned)TLI->getDataLayout()->getPrefTypeAlignment(Ty),
3239             I.getAlignment());
3240
3241  SDValue AllocSize = getValue(I.getArraySize());
3242
3243  EVT IntPtr = TLI->getPointerTy();
3244  if (AllocSize.getValueType() != IntPtr)
3245    AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurSDLoc(), IntPtr);
3246
3247  AllocSize = DAG.getNode(ISD::MUL, getCurSDLoc(), IntPtr,
3248                          AllocSize,
3249                          DAG.getConstant(TySize, IntPtr));
3250
3251  // Handle alignment.  If the requested alignment is less than or equal to
3252  // the stack alignment, ignore it.  If the size is greater than or equal to
3253  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3254  unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
3255  if (Align <= StackAlign)
3256    Align = 0;
3257
3258  // Round the size of the allocation up to the stack alignment size
3259  // by add SA-1 to the size.
3260  AllocSize = DAG.getNode(ISD::ADD, getCurSDLoc(),
3261                          AllocSize.getValueType(), AllocSize,
3262                          DAG.getIntPtrConstant(StackAlign-1));
3263
3264  // Mask out the low bits for alignment purposes.
3265  AllocSize = DAG.getNode(ISD::AND, getCurSDLoc(),
3266                          AllocSize.getValueType(), AllocSize,
3267                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
3268
3269  SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
3270  SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3271  SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurSDLoc(),
3272                            VTs, Ops, 3);
3273  setValue(&I, DSA);
3274  DAG.setRoot(DSA.getValue(1));
3275
3276  // Inform the Frame Information that we have just allocated a variable-sized
3277  // object.
3278  FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1);
3279}
3280
3281void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3282  if (I.isAtomic())
3283    return visitAtomicLoad(I);
3284
3285  const Value *SV = I.getOperand(0);
3286  SDValue Ptr = getValue(SV);
3287
3288  Type *Ty = I.getType();
3289
3290  bool isVolatile = I.isVolatile();
3291  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3292  bool isInvariant = I.getMetadata("invariant.load") != 0;
3293  unsigned Alignment = I.getAlignment();
3294  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3295  const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3296
3297  SmallVector<EVT, 4> ValueVTs;
3298  SmallVector<uint64_t, 4> Offsets;
3299  ComputeValueVTs(*TM.getTargetLowering(), Ty, ValueVTs, &Offsets);
3300  unsigned NumValues = ValueVTs.size();
3301  if (NumValues == 0)
3302    return;
3303
3304  SDValue Root;
3305  bool ConstantMemory = false;
3306  if (I.isVolatile() || NumValues > MaxParallelChains)
3307    // Serialize volatile loads with other side effects.
3308    Root = getRoot();
3309  else if (AA->pointsToConstantMemory(
3310             AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) {
3311    // Do not serialize (non-volatile) loads of constant memory with anything.
3312    Root = DAG.getEntryNode();
3313    ConstantMemory = true;
3314  } else {
3315    // Do not serialize non-volatile loads against each other.
3316    Root = DAG.getRoot();
3317  }
3318
3319  SmallVector<SDValue, 4> Values(NumValues);
3320  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3321                                          NumValues));
3322  EVT PtrVT = Ptr.getValueType();
3323  unsigned ChainI = 0;
3324  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3325    // Serializing loads here may result in excessive register pressure, and
3326    // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3327    // could recover a bit by hoisting nodes upward in the chain by recognizing
3328    // they are side-effect free or do not alias. The optimizer should really
3329    // avoid this case by converting large object/array copies to llvm.memcpy
3330    // (MaxParallelChains should always remain as failsafe).
3331    if (ChainI == MaxParallelChains) {
3332      assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3333      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
3334                                  MVT::Other, &Chains[0], ChainI);
3335      Root = Chain;
3336      ChainI = 0;
3337    }
3338    SDValue A = DAG.getNode(ISD::ADD, getCurSDLoc(),
3339                            PtrVT, Ptr,
3340                            DAG.getConstant(Offsets[i], PtrVT));
3341    SDValue L = DAG.getLoad(ValueVTs[i], getCurSDLoc(), Root,
3342                            A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
3343                            isNonTemporal, isInvariant, Alignment, TBAAInfo,
3344                            Ranges);
3345
3346    Values[i] = L;
3347    Chains[ChainI] = L.getValue(1);
3348  }
3349
3350  if (!ConstantMemory) {
3351    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
3352                                MVT::Other, &Chains[0], ChainI);
3353    if (isVolatile)
3354      DAG.setRoot(Chain);
3355    else
3356      PendingLoads.push_back(Chain);
3357  }
3358
3359  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3360                           DAG.getVTList(&ValueVTs[0], NumValues),
3361                           &Values[0], NumValues));
3362}
3363
3364void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3365  if (I.isAtomic())
3366    return visitAtomicStore(I);
3367
3368  const Value *SrcV = I.getOperand(0);
3369  const Value *PtrV = I.getOperand(1);
3370
3371  SmallVector<EVT, 4> ValueVTs;
3372  SmallVector<uint64_t, 4> Offsets;
3373  ComputeValueVTs(*TM.getTargetLowering(), SrcV->getType(), ValueVTs, &Offsets);
3374  unsigned NumValues = ValueVTs.size();
3375  if (NumValues == 0)
3376    return;
3377
3378  // Get the lowered operands. Note that we do this after
3379  // checking if NumResults is zero, because with zero results
3380  // the operands won't have values in the map.
3381  SDValue Src = getValue(SrcV);
3382  SDValue Ptr = getValue(PtrV);
3383
3384  SDValue Root = getRoot();
3385  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3386                                          NumValues));
3387  EVT PtrVT = Ptr.getValueType();
3388  bool isVolatile = I.isVolatile();
3389  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3390  unsigned Alignment = I.getAlignment();
3391  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3392
3393  unsigned ChainI = 0;
3394  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3395    // See visitLoad comments.
3396    if (ChainI == MaxParallelChains) {
3397      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
3398                                  MVT::Other, &Chains[0], ChainI);
3399      Root = Chain;
3400      ChainI = 0;
3401    }
3402    SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT, Ptr,
3403                              DAG.getConstant(Offsets[i], PtrVT));
3404    SDValue St = DAG.getStore(Root, getCurSDLoc(),
3405                              SDValue(Src.getNode(), Src.getResNo() + i),
3406                              Add, MachinePointerInfo(PtrV, Offsets[i]),
3407                              isVolatile, isNonTemporal, Alignment, TBAAInfo);
3408    Chains[ChainI] = St;
3409  }
3410
3411  SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
3412                                  MVT::Other, &Chains[0], ChainI);
3413  DAG.setRoot(StoreNode);
3414}
3415
3416static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order,
3417                                    SynchronizationScope Scope,
3418                                    bool Before, SDLoc dl,
3419                                    SelectionDAG &DAG,
3420                                    const TargetLowering &TLI) {
3421  // Fence, if necessary
3422  if (Before) {
3423    if (Order == AcquireRelease || Order == SequentiallyConsistent)
3424      Order = Release;
3425    else if (Order == Acquire || Order == Monotonic)
3426      return Chain;
3427  } else {
3428    if (Order == AcquireRelease)
3429      Order = Acquire;
3430    else if (Order == Release || Order == Monotonic)
3431      return Chain;
3432  }
3433  SDValue Ops[3];
3434  Ops[0] = Chain;
3435  Ops[1] = DAG.getConstant(Order, TLI.getPointerTy());
3436  Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy());
3437  return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3);
3438}
3439
3440void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
3441  SDLoc dl = getCurSDLoc();
3442  AtomicOrdering Order = I.getOrdering();
3443  SynchronizationScope Scope = I.getSynchScope();
3444
3445  SDValue InChain = getRoot();
3446
3447  const TargetLowering *TLI = TM.getTargetLowering();
3448  if (TLI->getInsertFencesForAtomic())
3449    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3450                                   DAG, *TLI);
3451
3452  SDValue L =
3453    DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl,
3454                  getValue(I.getCompareOperand()).getValueType().getSimpleVT(),
3455                  InChain,
3456                  getValue(I.getPointerOperand()),
3457                  getValue(I.getCompareOperand()),
3458                  getValue(I.getNewValOperand()),
3459                  MachinePointerInfo(I.getPointerOperand()), 0 /* Alignment */,
3460                  TLI->getInsertFencesForAtomic() ? Monotonic : Order,
3461                  Scope);
3462
3463  SDValue OutChain = L.getValue(1);
3464
3465  if (TLI->getInsertFencesForAtomic())
3466    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3467                                    DAG, *TLI);
3468
3469  setValue(&I, L);
3470  DAG.setRoot(OutChain);
3471}
3472
3473void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
3474  SDLoc dl = getCurSDLoc();
3475  ISD::NodeType NT;
3476  switch (I.getOperation()) {
3477  default: llvm_unreachable("Unknown atomicrmw operation");
3478  case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
3479  case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
3480  case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
3481  case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
3482  case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
3483  case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
3484  case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
3485  case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
3486  case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
3487  case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
3488  case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
3489  }
3490  AtomicOrdering Order = I.getOrdering();
3491  SynchronizationScope Scope = I.getSynchScope();
3492
3493  SDValue InChain = getRoot();
3494
3495  const TargetLowering *TLI = TM.getTargetLowering();
3496  if (TLI->getInsertFencesForAtomic())
3497    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3498                                   DAG, *TLI);
3499
3500  SDValue L =
3501    DAG.getAtomic(NT, dl,
3502                  getValue(I.getValOperand()).getValueType().getSimpleVT(),
3503                  InChain,
3504                  getValue(I.getPointerOperand()),
3505                  getValue(I.getValOperand()),
3506                  I.getPointerOperand(), 0 /* Alignment */,
3507                  TLI->getInsertFencesForAtomic() ? Monotonic : Order,
3508                  Scope);
3509
3510  SDValue OutChain = L.getValue(1);
3511
3512  if (TLI->getInsertFencesForAtomic())
3513    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3514                                    DAG, *TLI);
3515
3516  setValue(&I, L);
3517  DAG.setRoot(OutChain);
3518}
3519
3520void SelectionDAGBuilder::visitFence(const FenceInst &I) {
3521  SDLoc dl = getCurSDLoc();
3522  const TargetLowering *TLI = TM.getTargetLowering();
3523  SDValue Ops[3];
3524  Ops[0] = getRoot();
3525  Ops[1] = DAG.getConstant(I.getOrdering(), TLI->getPointerTy());
3526  Ops[2] = DAG.getConstant(I.getSynchScope(), TLI->getPointerTy());
3527  DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3));
3528}
3529
3530void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
3531  SDLoc dl = getCurSDLoc();
3532  AtomicOrdering Order = I.getOrdering();
3533  SynchronizationScope Scope = I.getSynchScope();
3534
3535  SDValue InChain = getRoot();
3536
3537  const TargetLowering *TLI = TM.getTargetLowering();
3538  EVT VT = TLI->getValueType(I.getType());
3539
3540  if (I.getAlignment() < VT.getSizeInBits() / 8)
3541    report_fatal_error("Cannot generate unaligned atomic load");
3542
3543  SDValue L =
3544    DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
3545                  getValue(I.getPointerOperand()),
3546                  I.getPointerOperand(), I.getAlignment(),
3547                  TLI->getInsertFencesForAtomic() ? Monotonic : Order,
3548                  Scope);
3549
3550  SDValue OutChain = L.getValue(1);
3551
3552  if (TLI->getInsertFencesForAtomic())
3553    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3554                                    DAG, *TLI);
3555
3556  setValue(&I, L);
3557  DAG.setRoot(OutChain);
3558}
3559
3560void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
3561  SDLoc dl = getCurSDLoc();
3562
3563  AtomicOrdering Order = I.getOrdering();
3564  SynchronizationScope Scope = I.getSynchScope();
3565
3566  SDValue InChain = getRoot();
3567
3568  const TargetLowering *TLI = TM.getTargetLowering();
3569  EVT VT = TLI->getValueType(I.getValueOperand()->getType());
3570
3571  if (I.getAlignment() < VT.getSizeInBits() / 8)
3572    report_fatal_error("Cannot generate unaligned atomic store");
3573
3574  if (TLI->getInsertFencesForAtomic())
3575    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3576                                   DAG, *TLI);
3577
3578  SDValue OutChain =
3579    DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
3580                  InChain,
3581                  getValue(I.getPointerOperand()),
3582                  getValue(I.getValueOperand()),
3583                  I.getPointerOperand(), I.getAlignment(),
3584                  TLI->getInsertFencesForAtomic() ? Monotonic : Order,
3585                  Scope);
3586
3587  if (TLI->getInsertFencesForAtomic())
3588    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3589                                    DAG, *TLI);
3590
3591  DAG.setRoot(OutChain);
3592}
3593
3594/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3595/// node.
3596void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3597                                               unsigned Intrinsic) {
3598  bool HasChain = !I.doesNotAccessMemory();
3599  bool OnlyLoad = HasChain && I.onlyReadsMemory();
3600
3601  // Build the operand list.
3602  SmallVector<SDValue, 8> Ops;
3603  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
3604    if (OnlyLoad) {
3605      // We don't need to serialize loads against other loads.
3606      Ops.push_back(DAG.getRoot());
3607    } else {
3608      Ops.push_back(getRoot());
3609    }
3610  }
3611
3612  // Info is set by getTgtMemInstrinsic
3613  TargetLowering::IntrinsicInfo Info;
3614  const TargetLowering *TLI = TM.getTargetLowering();
3615  bool IsTgtIntrinsic = TLI->getTgtMemIntrinsic(Info, I, Intrinsic);
3616
3617  // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3618  if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
3619      Info.opc == ISD::INTRINSIC_W_CHAIN)
3620    Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI->getPointerTy()));
3621
3622  // Add all operands of the call to the operand list.
3623  for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
3624    SDValue Op = getValue(I.getArgOperand(i));
3625    Ops.push_back(Op);
3626  }
3627
3628  SmallVector<EVT, 4> ValueVTs;
3629  ComputeValueVTs(*TLI, I.getType(), ValueVTs);
3630
3631  if (HasChain)
3632    ValueVTs.push_back(MVT::Other);
3633
3634  SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
3635
3636  // Create the node.
3637  SDValue Result;
3638  if (IsTgtIntrinsic) {
3639    // This is target intrinsic that touches memory
3640    Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(),
3641                                     VTs, &Ops[0], Ops.size(),
3642                                     Info.memVT,
3643                                   MachinePointerInfo(Info.ptrVal, Info.offset),
3644                                     Info.align, Info.vol,
3645                                     Info.readMem, Info.writeMem);
3646  } else if (!HasChain) {
3647    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(),
3648                         VTs, &Ops[0], Ops.size());
3649  } else if (!I.getType()->isVoidTy()) {
3650    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(),
3651                         VTs, &Ops[0], Ops.size());
3652  } else {
3653    Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(),
3654                         VTs, &Ops[0], Ops.size());
3655  }
3656
3657  if (HasChain) {
3658    SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3659    if (OnlyLoad)
3660      PendingLoads.push_back(Chain);
3661    else
3662      DAG.setRoot(Chain);
3663  }
3664
3665  if (!I.getType()->isVoidTy()) {
3666    if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3667      EVT VT = TLI->getValueType(PTy);
3668      Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
3669    }
3670
3671    setValue(&I, Result);
3672  }
3673}
3674
3675/// GetSignificand - Get the significand and build it into a floating-point
3676/// number with exponent of 1:
3677///
3678///   Op = (Op & 0x007fffff) | 0x3f800000;
3679///
3680/// where Op is the hexadecimal representation of floating point value.
3681static SDValue
3682GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) {
3683  SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3684                           DAG.getConstant(0x007fffff, MVT::i32));
3685  SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3686                           DAG.getConstant(0x3f800000, MVT::i32));
3687  return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
3688}
3689
3690/// GetExponent - Get the exponent:
3691///
3692///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3693///
3694/// where Op is the hexadecimal representation of floating point value.
3695static SDValue
3696GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3697            SDLoc dl) {
3698  SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3699                           DAG.getConstant(0x7f800000, MVT::i32));
3700  SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3701                           DAG.getConstant(23, TLI.getPointerTy()));
3702  SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3703                           DAG.getConstant(127, MVT::i32));
3704  return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3705}
3706
3707/// getF32Constant - Get 32-bit floating point constant.
3708static SDValue
3709getF32Constant(SelectionDAG &DAG, unsigned Flt) {
3710  return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)),
3711                           MVT::f32);
3712}
3713
3714/// expandExp - Lower an exp intrinsic. Handles the special sequences for
3715/// limited-precision mode.
3716static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG,
3717                         const TargetLowering &TLI) {
3718  if (Op.getValueType() == MVT::f32 &&
3719      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3720
3721    // Put the exponent in the right bit position for later addition to the
3722    // final result:
3723    //
3724    //   #define LOG2OFe 1.4426950f
3725    //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3726    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3727                             getF32Constant(DAG, 0x3fb8aa3b));
3728    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3729
3730    //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3731    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3732    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3733
3734    //   IntegerPartOfX <<= 23;
3735    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3736                                 DAG.getConstant(23, TLI.getPointerTy()));
3737
3738    SDValue TwoToFracPartOfX;
3739    if (LimitFloatPrecision <= 6) {
3740      // For floating-point precision of 6:
3741      //
3742      //   TwoToFractionalPartOfX =
3743      //     0.997535578f +
3744      //       (0.735607626f + 0.252464424f * x) * x;
3745      //
3746      // error 0.0144103317, which is 6 bits
3747      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3748                               getF32Constant(DAG, 0x3e814304));
3749      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3750                               getF32Constant(DAG, 0x3f3c50c8));
3751      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3752      TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3753                                     getF32Constant(DAG, 0x3f7f5e7e));
3754    } else if (LimitFloatPrecision <= 12) {
3755      // For floating-point precision of 12:
3756      //
3757      //   TwoToFractionalPartOfX =
3758      //     0.999892986f +
3759      //       (0.696457318f +
3760      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3761      //
3762      // 0.000107046256 error, which is 13 to 14 bits
3763      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3764                               getF32Constant(DAG, 0x3da235e3));
3765      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3766                               getF32Constant(DAG, 0x3e65b8f3));
3767      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3768      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3769                               getF32Constant(DAG, 0x3f324b07));
3770      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3771      TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3772                                     getF32Constant(DAG, 0x3f7ff8fd));
3773    } else { // LimitFloatPrecision <= 18
3774      // For floating-point precision of 18:
3775      //
3776      //   TwoToFractionalPartOfX =
3777      //     0.999999982f +
3778      //       (0.693148872f +
3779      //         (0.240227044f +
3780      //           (0.554906021e-1f +
3781      //             (0.961591928e-2f +
3782      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3783      //
3784      // error 2.47208000*10^(-7), which is better than 18 bits
3785      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3786                               getF32Constant(DAG, 0x3924b03e));
3787      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3788                               getF32Constant(DAG, 0x3ab24b87));
3789      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3790      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3791                               getF32Constant(DAG, 0x3c1d8c17));
3792      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3793      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3794                               getF32Constant(DAG, 0x3d634a1d));
3795      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3796      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3797                               getF32Constant(DAG, 0x3e75fe14));
3798      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3799      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3800                                getF32Constant(DAG, 0x3f317234));
3801      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3802      TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3803                                     getF32Constant(DAG, 0x3f800000));
3804    }
3805
3806    // Add the exponent into the result in integer domain.
3807    SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFracPartOfX);
3808    return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
3809                       DAG.getNode(ISD::ADD, dl, MVT::i32,
3810                                   t13, IntegerPartOfX));
3811  }
3812
3813  // No special expansion.
3814  return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
3815}
3816
3817/// expandLog - Lower a log intrinsic. Handles the special sequences for
3818/// limited-precision mode.
3819static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG,
3820                         const TargetLowering &TLI) {
3821  if (Op.getValueType() == MVT::f32 &&
3822      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3823    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3824
3825    // Scale the exponent by log(2) [0.69314718f].
3826    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3827    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3828                                        getF32Constant(DAG, 0x3f317218));
3829
3830    // Get the significand and build it into a floating-point number with
3831    // exponent of 1.
3832    SDValue X = GetSignificand(DAG, Op1, dl);
3833
3834    SDValue LogOfMantissa;
3835    if (LimitFloatPrecision <= 6) {
3836      // For floating-point precision of 6:
3837      //
3838      //   LogofMantissa =
3839      //     -1.1609546f +
3840      //       (1.4034025f - 0.23903021f * x) * x;
3841      //
3842      // error 0.0034276066, which is better than 8 bits
3843      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3844                               getF32Constant(DAG, 0xbe74c456));
3845      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3846                               getF32Constant(DAG, 0x3fb3a2b1));
3847      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3848      LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3849                                  getF32Constant(DAG, 0x3f949a29));
3850    } else if (LimitFloatPrecision <= 12) {
3851      // For floating-point precision of 12:
3852      //
3853      //   LogOfMantissa =
3854      //     -1.7417939f +
3855      //       (2.8212026f +
3856      //         (-1.4699568f +
3857      //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3858      //
3859      // error 0.000061011436, which is 14 bits
3860      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3861                               getF32Constant(DAG, 0xbd67b6d6));
3862      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3863                               getF32Constant(DAG, 0x3ee4f4b8));
3864      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3865      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3866                               getF32Constant(DAG, 0x3fbc278b));
3867      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3868      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3869                               getF32Constant(DAG, 0x40348e95));
3870      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3871      LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3872                                  getF32Constant(DAG, 0x3fdef31a));
3873    } else { // LimitFloatPrecision <= 18
3874      // For floating-point precision of 18:
3875      //
3876      //   LogOfMantissa =
3877      //     -2.1072184f +
3878      //       (4.2372794f +
3879      //         (-3.7029485f +
3880      //           (2.2781945f +
3881      //             (-0.87823314f +
3882      //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3883      //
3884      // error 0.0000023660568, which is better than 18 bits
3885      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3886                               getF32Constant(DAG, 0xbc91e5ac));
3887      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3888                               getF32Constant(DAG, 0x3e4350aa));
3889      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3890      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3891                               getF32Constant(DAG, 0x3f60d3e3));
3892      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3893      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3894                               getF32Constant(DAG, 0x4011cdf0));
3895      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3896      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3897                               getF32Constant(DAG, 0x406cfd1c));
3898      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3899      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3900                               getF32Constant(DAG, 0x408797cb));
3901      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3902      LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3903                                  getF32Constant(DAG, 0x4006dcab));
3904    }
3905
3906    return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
3907  }
3908
3909  // No special expansion.
3910  return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
3911}
3912
3913/// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
3914/// limited-precision mode.
3915static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG,
3916                          const TargetLowering &TLI) {
3917  if (Op.getValueType() == MVT::f32 &&
3918      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3919    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3920
3921    // Get the exponent.
3922    SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3923
3924    // Get the significand and build it into a floating-point number with
3925    // exponent of 1.
3926    SDValue X = GetSignificand(DAG, Op1, dl);
3927
3928    // Different possible minimax approximations of significand in
3929    // floating-point for various degrees of accuracy over [1,2].
3930    SDValue Log2ofMantissa;
3931    if (LimitFloatPrecision <= 6) {
3932      // For floating-point precision of 6:
3933      //
3934      //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3935      //
3936      // error 0.0049451742, which is more than 7 bits
3937      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3938                               getF32Constant(DAG, 0xbeb08fe0));
3939      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3940                               getF32Constant(DAG, 0x40019463));
3941      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3942      Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3943                                   getF32Constant(DAG, 0x3fd6633d));
3944    } else if (LimitFloatPrecision <= 12) {
3945      // For floating-point precision of 12:
3946      //
3947      //   Log2ofMantissa =
3948      //     -2.51285454f +
3949      //       (4.07009056f +
3950      //         (-2.12067489f +
3951      //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3952      //
3953      // error 0.0000876136000, which is better than 13 bits
3954      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3955                               getF32Constant(DAG, 0xbda7262e));
3956      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3957                               getF32Constant(DAG, 0x3f25280b));
3958      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3959      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3960                               getF32Constant(DAG, 0x4007b923));
3961      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3962      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3963                               getF32Constant(DAG, 0x40823e2f));
3964      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3965      Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3966                                   getF32Constant(DAG, 0x4020d29c));
3967    } else { // LimitFloatPrecision <= 18
3968      // For floating-point precision of 18:
3969      //
3970      //   Log2ofMantissa =
3971      //     -3.0400495f +
3972      //       (6.1129976f +
3973      //         (-5.3420409f +
3974      //           (3.2865683f +
3975      //             (-1.2669343f +
3976      //               (0.27515199f -
3977      //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3978      //
3979      // error 0.0000018516, which is better than 18 bits
3980      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3981                               getF32Constant(DAG, 0xbcd2769e));
3982      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3983                               getF32Constant(DAG, 0x3e8ce0b9));
3984      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3985      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3986                               getF32Constant(DAG, 0x3fa22ae7));
3987      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3988      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3989                               getF32Constant(DAG, 0x40525723));
3990      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3991      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3992                               getF32Constant(DAG, 0x40aaf200));
3993      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3994      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3995                               getF32Constant(DAG, 0x40c39dad));
3996      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3997      Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3998                                   getF32Constant(DAG, 0x4042902c));
3999    }
4000
4001    return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
4002  }
4003
4004  // No special expansion.
4005  return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
4006}
4007
4008/// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
4009/// limited-precision mode.
4010static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4011                           const TargetLowering &TLI) {
4012  if (Op.getValueType() == MVT::f32 &&
4013      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4014    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4015
4016    // Scale the exponent by log10(2) [0.30102999f].
4017    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4018    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4019                                        getF32Constant(DAG, 0x3e9a209a));
4020
4021    // Get the significand and build it into a floating-point number with
4022    // exponent of 1.
4023    SDValue X = GetSignificand(DAG, Op1, dl);
4024
4025    SDValue Log10ofMantissa;
4026    if (LimitFloatPrecision <= 6) {
4027      // For floating-point precision of 6:
4028      //
4029      //   Log10ofMantissa =
4030      //     -0.50419619f +
4031      //       (0.60948995f - 0.10380950f * x) * x;
4032      //
4033      // error 0.0014886165, which is 6 bits
4034      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4035                               getF32Constant(DAG, 0xbdd49a13));
4036      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4037                               getF32Constant(DAG, 0x3f1c0789));
4038      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4039      Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4040                                    getF32Constant(DAG, 0x3f011300));
4041    } else if (LimitFloatPrecision <= 12) {
4042      // For floating-point precision of 12:
4043      //
4044      //   Log10ofMantissa =
4045      //     -0.64831180f +
4046      //       (0.91751397f +
4047      //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4048      //
4049      // error 0.00019228036, which is better than 12 bits
4050      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4051                               getF32Constant(DAG, 0x3d431f31));
4052      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4053                               getF32Constant(DAG, 0x3ea21fb2));
4054      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4055      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4056                               getF32Constant(DAG, 0x3f6ae232));
4057      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4058      Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4059                                    getF32Constant(DAG, 0x3f25f7c3));
4060    } else { // LimitFloatPrecision <= 18
4061      // For floating-point precision of 18:
4062      //
4063      //   Log10ofMantissa =
4064      //     -0.84299375f +
4065      //       (1.5327582f +
4066      //         (-1.0688956f +
4067      //           (0.49102474f +
4068      //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4069      //
4070      // error 0.0000037995730, which is better than 18 bits
4071      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4072                               getF32Constant(DAG, 0x3c5d51ce));
4073      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4074                               getF32Constant(DAG, 0x3e00685a));
4075      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4076      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4077                               getF32Constant(DAG, 0x3efb6798));
4078      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4079      SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4080                               getF32Constant(DAG, 0x3f88d192));
4081      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4082      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4083                               getF32Constant(DAG, 0x3fc4316c));
4084      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4085      Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4086                                    getF32Constant(DAG, 0x3f57ce70));
4087    }
4088
4089    return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
4090  }
4091
4092  // No special expansion.
4093  return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
4094}
4095
4096/// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4097/// limited-precision mode.
4098static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4099                          const TargetLowering &TLI) {
4100  if (Op.getValueType() == MVT::f32 &&
4101      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4102    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
4103
4104    //   FractionalPartOfX = x - (float)IntegerPartOfX;
4105    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4106    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
4107
4108    //   IntegerPartOfX <<= 23;
4109    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4110                                 DAG.getConstant(23, TLI.getPointerTy()));
4111
4112    SDValue TwoToFractionalPartOfX;
4113    if (LimitFloatPrecision <= 6) {
4114      // For floating-point precision of 6:
4115      //
4116      //   TwoToFractionalPartOfX =
4117      //     0.997535578f +
4118      //       (0.735607626f + 0.252464424f * x) * x;
4119      //
4120      // error 0.0144103317, which is 6 bits
4121      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4122                               getF32Constant(DAG, 0x3e814304));
4123      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4124                               getF32Constant(DAG, 0x3f3c50c8));
4125      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4126      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4127                                           getF32Constant(DAG, 0x3f7f5e7e));
4128    } else if (LimitFloatPrecision <= 12) {
4129      // For floating-point precision of 12:
4130      //
4131      //   TwoToFractionalPartOfX =
4132      //     0.999892986f +
4133      //       (0.696457318f +
4134      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4135      //
4136      // error 0.000107046256, which is 13 to 14 bits
4137      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4138                               getF32Constant(DAG, 0x3da235e3));
4139      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4140                               getF32Constant(DAG, 0x3e65b8f3));
4141      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4142      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4143                               getF32Constant(DAG, 0x3f324b07));
4144      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4145      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4146                                           getF32Constant(DAG, 0x3f7ff8fd));
4147    } else { // LimitFloatPrecision <= 18
4148      // For floating-point precision of 18:
4149      //
4150      //   TwoToFractionalPartOfX =
4151      //     0.999999982f +
4152      //       (0.693148872f +
4153      //         (0.240227044f +
4154      //           (0.554906021e-1f +
4155      //             (0.961591928e-2f +
4156      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4157      // error 2.47208000*10^(-7), which is better than 18 bits
4158      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4159                               getF32Constant(DAG, 0x3924b03e));
4160      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4161                               getF32Constant(DAG, 0x3ab24b87));
4162      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4163      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4164                               getF32Constant(DAG, 0x3c1d8c17));
4165      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4166      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4167                               getF32Constant(DAG, 0x3d634a1d));
4168      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4169      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4170                               getF32Constant(DAG, 0x3e75fe14));
4171      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4172      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4173                                getF32Constant(DAG, 0x3f317234));
4174      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4175      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4176                                           getF32Constant(DAG, 0x3f800000));
4177    }
4178
4179    // Add the exponent into the result in integer domain.
4180    SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32,
4181                              TwoToFractionalPartOfX);
4182    return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4183                       DAG.getNode(ISD::ADD, dl, MVT::i32,
4184                                   t13, IntegerPartOfX));
4185  }
4186
4187  // No special expansion.
4188  return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
4189}
4190
4191/// visitPow - Lower a pow intrinsic. Handles the special sequences for
4192/// limited-precision mode with x == 10.0f.
4193static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS,
4194                         SelectionDAG &DAG, const TargetLowering &TLI) {
4195  bool IsExp10 = false;
4196  if (LHS.getValueType() == MVT::f32 && LHS.getValueType() == MVT::f32 &&
4197      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4198    if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
4199      APFloat Ten(10.0f);
4200      IsExp10 = LHSC->isExactlyValue(Ten);
4201    }
4202  }
4203
4204  if (IsExp10) {
4205    // Put the exponent in the right bit position for later addition to the
4206    // final result:
4207    //
4208    //   #define LOG2OF10 3.3219281f
4209    //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
4210    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
4211                             getF32Constant(DAG, 0x40549a78));
4212    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4213
4214    //   FractionalPartOfX = x - (float)IntegerPartOfX;
4215    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4216    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4217
4218    //   IntegerPartOfX <<= 23;
4219    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4220                                 DAG.getConstant(23, TLI.getPointerTy()));
4221
4222    SDValue TwoToFractionalPartOfX;
4223    if (LimitFloatPrecision <= 6) {
4224      // For floating-point precision of 6:
4225      //
4226      //   twoToFractionalPartOfX =
4227      //     0.997535578f +
4228      //       (0.735607626f + 0.252464424f * x) * x;
4229      //
4230      // error 0.0144103317, which is 6 bits
4231      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4232                               getF32Constant(DAG, 0x3e814304));
4233      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4234                               getF32Constant(DAG, 0x3f3c50c8));
4235      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4236      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4237                                           getF32Constant(DAG, 0x3f7f5e7e));
4238    } else if (LimitFloatPrecision <= 12) {
4239      // For floating-point precision of 12:
4240      //
4241      //   TwoToFractionalPartOfX =
4242      //     0.999892986f +
4243      //       (0.696457318f +
4244      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4245      //
4246      // error 0.000107046256, which is 13 to 14 bits
4247      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4248                               getF32Constant(DAG, 0x3da235e3));
4249      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4250                               getF32Constant(DAG, 0x3e65b8f3));
4251      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4252      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4253                               getF32Constant(DAG, 0x3f324b07));
4254      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4255      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4256                                           getF32Constant(DAG, 0x3f7ff8fd));
4257    } else { // LimitFloatPrecision <= 18
4258      // For floating-point precision of 18:
4259      //
4260      //   TwoToFractionalPartOfX =
4261      //     0.999999982f +
4262      //       (0.693148872f +
4263      //         (0.240227044f +
4264      //           (0.554906021e-1f +
4265      //             (0.961591928e-2f +
4266      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4267      // error 2.47208000*10^(-7), which is better than 18 bits
4268      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4269                               getF32Constant(DAG, 0x3924b03e));
4270      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4271                               getF32Constant(DAG, 0x3ab24b87));
4272      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4273      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4274                               getF32Constant(DAG, 0x3c1d8c17));
4275      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4276      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4277                               getF32Constant(DAG, 0x3d634a1d));
4278      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4279      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4280                               getF32Constant(DAG, 0x3e75fe14));
4281      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4282      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4283                                getF32Constant(DAG, 0x3f317234));
4284      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4285      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4286                                           getF32Constant(DAG, 0x3f800000));
4287    }
4288
4289    SDValue t13 = DAG.getNode(ISD::BITCAST, dl,MVT::i32,TwoToFractionalPartOfX);
4290    return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4291                       DAG.getNode(ISD::ADD, dl, MVT::i32,
4292                                   t13, IntegerPartOfX));
4293  }
4294
4295  // No special expansion.
4296  return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
4297}
4298
4299
4300/// ExpandPowI - Expand a llvm.powi intrinsic.
4301static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS,
4302                          SelectionDAG &DAG) {
4303  // If RHS is a constant, we can expand this out to a multiplication tree,
4304  // otherwise we end up lowering to a call to __powidf2 (for example).  When
4305  // optimizing for size, we only want to do this if the expansion would produce
4306  // a small number of multiplies, otherwise we do the full expansion.
4307  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4308    // Get the exponent as a positive value.
4309    unsigned Val = RHSC->getSExtValue();
4310    if ((int)Val < 0) Val = -Val;
4311
4312    // powi(x, 0) -> 1.0
4313    if (Val == 0)
4314      return DAG.getConstantFP(1.0, LHS.getValueType());
4315
4316    const Function *F = DAG.getMachineFunction().getFunction();
4317    if (!F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
4318                                         Attribute::OptimizeForSize) ||
4319        // If optimizing for size, don't insert too many multiplies.  This
4320        // inserts up to 5 multiplies.
4321        CountPopulation_32(Val)+Log2_32(Val) < 7) {
4322      // We use the simple binary decomposition method to generate the multiply
4323      // sequence.  There are more optimal ways to do this (for example,
4324      // powi(x,15) generates one more multiply than it should), but this has
4325      // the benefit of being both really simple and much better than a libcall.
4326      SDValue Res;  // Logically starts equal to 1.0
4327      SDValue CurSquare = LHS;
4328      while (Val) {
4329        if (Val & 1) {
4330          if (Res.getNode())
4331            Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4332          else
4333            Res = CurSquare;  // 1.0*CurSquare.
4334        }
4335
4336        CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4337                                CurSquare, CurSquare);
4338        Val >>= 1;
4339      }
4340
4341      // If the original was negative, invert the result, producing 1/(x*x*x).
4342      if (RHSC->getSExtValue() < 0)
4343        Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4344                          DAG.getConstantFP(1.0, LHS.getValueType()), Res);
4345      return Res;
4346    }
4347  }
4348
4349  // Otherwise, expand to a libcall.
4350  return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4351}
4352
4353// getTruncatedArgReg - Find underlying register used for an truncated
4354// argument.
4355static unsigned getTruncatedArgReg(const SDValue &N) {
4356  if (N.getOpcode() != ISD::TRUNCATE)
4357    return 0;
4358
4359  const SDValue &Ext = N.getOperand(0);
4360  if (Ext.getOpcode() == ISD::AssertZext ||
4361      Ext.getOpcode() == ISD::AssertSext) {
4362    const SDValue &CFR = Ext.getOperand(0);
4363    if (CFR.getOpcode() == ISD::CopyFromReg)
4364      return cast<RegisterSDNode>(CFR.getOperand(1))->getReg();
4365    if (CFR.getOpcode() == ISD::TRUNCATE)
4366      return getTruncatedArgReg(CFR);
4367  }
4368  return 0;
4369}
4370
4371/// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4372/// argument, create the corresponding DBG_VALUE machine instruction for it now.
4373/// At the end of instruction selection, they will be inserted to the entry BB.
4374bool
4375SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
4376                                              int64_t Offset,
4377                                              const SDValue &N) {
4378  const Argument *Arg = dyn_cast<Argument>(V);
4379  if (!Arg)
4380    return false;
4381
4382  MachineFunction &MF = DAG.getMachineFunction();
4383  const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
4384
4385  // Ignore inlined function arguments here.
4386  DIVariable DV(Variable);
4387  if (DV.isInlinedFnArgument(MF.getFunction()))
4388    return false;
4389
4390  Optional<MachineOperand> Op;
4391  // Some arguments' frame index is recorded during argument lowering.
4392  if (int FI = FuncInfo.getArgumentFrameIndex(Arg))
4393    Op = MachineOperand::CreateFI(FI);
4394
4395  if (!Op && N.getNode()) {
4396    unsigned Reg;
4397    if (N.getOpcode() == ISD::CopyFromReg)
4398      Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
4399    else
4400      Reg = getTruncatedArgReg(N);
4401    if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4402      MachineRegisterInfo &RegInfo = MF.getRegInfo();
4403      unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4404      if (PR)
4405        Reg = PR;
4406    }
4407    if (Reg)
4408      Op = MachineOperand::CreateReg(Reg, false);
4409  }
4410
4411  if (!Op) {
4412    // Check if ValueMap has reg number.
4413    DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4414    if (VMI != FuncInfo.ValueMap.end())
4415      Op = MachineOperand::CreateReg(VMI->second, false);
4416  }
4417
4418  if (!Op && N.getNode())
4419    // Check if frame index is available.
4420    if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4421      if (FrameIndexSDNode *FINode =
4422          dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
4423        Op = MachineOperand::CreateFI(FINode->getIndex());
4424
4425  if (!Op)
4426    return false;
4427
4428  // FIXME: This does not handle register-indirect values at offset 0.
4429  bool IsIndirect = Offset != 0;
4430  if (Op->isReg())
4431    FuncInfo.ArgDbgValues.push_back(BuildMI(MF, getCurDebugLoc(),
4432                                            TII->get(TargetOpcode::DBG_VALUE),
4433                                            IsIndirect,
4434                                            Op->getReg(), Offset, Variable));
4435  else
4436    FuncInfo.ArgDbgValues.push_back(
4437      BuildMI(MF, getCurDebugLoc(), TII->get(TargetOpcode::DBG_VALUE))
4438          .addOperand(*Op).addImm(Offset).addMetadata(Variable));
4439
4440  return true;
4441}
4442
4443// VisualStudio defines setjmp as _setjmp
4444#if defined(_MSC_VER) && defined(setjmp) && \
4445                         !defined(setjmp_undefined_for_msvc)
4446#  pragma push_macro("setjmp")
4447#  undef setjmp
4448#  define setjmp_undefined_for_msvc
4449#endif
4450
4451/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4452/// we want to emit this as a call to a named external function, return the name
4453/// otherwise lower it and return null.
4454const char *
4455SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4456  const TargetLowering *TLI = TM.getTargetLowering();
4457  SDLoc sdl = getCurSDLoc();
4458  DebugLoc dl = getCurDebugLoc();
4459  SDValue Res;
4460
4461  switch (Intrinsic) {
4462  default:
4463    // By default, turn this into a target intrinsic node.
4464    visitTargetIntrinsic(I, Intrinsic);
4465    return 0;
4466  case Intrinsic::vastart:  visitVAStart(I); return 0;
4467  case Intrinsic::vaend:    visitVAEnd(I); return 0;
4468  case Intrinsic::vacopy:   visitVACopy(I); return 0;
4469  case Intrinsic::returnaddress:
4470    setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, TLI->getPointerTy(),
4471                             getValue(I.getArgOperand(0))));
4472    return 0;
4473  case Intrinsic::frameaddress:
4474    setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, TLI->getPointerTy(),
4475                             getValue(I.getArgOperand(0))));
4476    return 0;
4477  case Intrinsic::setjmp:
4478    return &"_setjmp"[!TLI->usesUnderscoreSetJmp()];
4479  case Intrinsic::longjmp:
4480    return &"_longjmp"[!TLI->usesUnderscoreLongJmp()];
4481  case Intrinsic::memcpy: {
4482    // Assert for address < 256 since we support only user defined address
4483    // spaces.
4484    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4485           < 256 &&
4486           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4487           < 256 &&
4488           "Unknown address space");
4489    SDValue Op1 = getValue(I.getArgOperand(0));
4490    SDValue Op2 = getValue(I.getArgOperand(1));
4491    SDValue Op3 = getValue(I.getArgOperand(2));
4492    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4493    if (!Align)
4494      Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment.
4495    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4496    DAG.setRoot(DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, false,
4497                              MachinePointerInfo(I.getArgOperand(0)),
4498                              MachinePointerInfo(I.getArgOperand(1))));
4499    return 0;
4500  }
4501  case Intrinsic::memset: {
4502    // Assert for address < 256 since we support only user defined address
4503    // spaces.
4504    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4505           < 256 &&
4506           "Unknown address space");
4507    SDValue Op1 = getValue(I.getArgOperand(0));
4508    SDValue Op2 = getValue(I.getArgOperand(1));
4509    SDValue Op3 = getValue(I.getArgOperand(2));
4510    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4511    if (!Align)
4512      Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment.
4513    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4514    DAG.setRoot(DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4515                              MachinePointerInfo(I.getArgOperand(0))));
4516    return 0;
4517  }
4518  case Intrinsic::memmove: {
4519    // Assert for address < 256 since we support only user defined address
4520    // spaces.
4521    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4522           < 256 &&
4523           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4524           < 256 &&
4525           "Unknown address space");
4526    SDValue Op1 = getValue(I.getArgOperand(0));
4527    SDValue Op2 = getValue(I.getArgOperand(1));
4528    SDValue Op3 = getValue(I.getArgOperand(2));
4529    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4530    if (!Align)
4531      Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment.
4532    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4533    DAG.setRoot(DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4534                               MachinePointerInfo(I.getArgOperand(0)),
4535                               MachinePointerInfo(I.getArgOperand(1))));
4536    return 0;
4537  }
4538  case Intrinsic::dbg_declare: {
4539    const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4540    MDNode *Variable = DI.getVariable();
4541    const Value *Address = DI.getAddress();
4542    DIVariable DIVar(Variable);
4543    assert((!DIVar || DIVar.isVariable()) &&
4544      "Variable in DbgDeclareInst should be either null or a DIVariable.");
4545    if (!Address || !DIVar) {
4546      DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4547      return 0;
4548    }
4549
4550    // Check if address has undef value.
4551    if (isa<UndefValue>(Address) ||
4552        (Address->use_empty() && !isa<Argument>(Address))) {
4553      DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4554      return 0;
4555    }
4556
4557    SDValue &N = NodeMap[Address];
4558    if (!N.getNode() && isa<Argument>(Address))
4559      // Check unused arguments map.
4560      N = UnusedArgNodeMap[Address];
4561    SDDbgValue *SDV;
4562    if (N.getNode()) {
4563      if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4564        Address = BCI->getOperand(0);
4565      // Parameters are handled specially.
4566      bool isParameter =
4567        (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable ||
4568         isa<Argument>(Address));
4569
4570      const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
4571
4572      if (isParameter && !AI) {
4573        FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4574        if (FINode)
4575          // Byval parameter.  We have a frame index at this point.
4576          SDV = DAG.getDbgValue(Variable, FINode->getIndex(),
4577                                0, dl, SDNodeOrder);
4578        else {
4579          // Address is an argument, so try to emit its dbg value using
4580          // virtual register info from the FuncInfo.ValueMap.
4581          EmitFuncArgumentDbgValue(Address, Variable, 0, N);
4582          return 0;
4583        }
4584      } else if (AI)
4585        SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
4586                              0, dl, SDNodeOrder);
4587      else {
4588        // Can't do anything with other non-AI cases yet.
4589        DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4590        DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t");
4591        DEBUG(Address->dump());
4592        return 0;
4593      }
4594      DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4595    } else {
4596      // If Address is an argument then try to emit its dbg value using
4597      // virtual register info from the FuncInfo.ValueMap.
4598      if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) {
4599        // If variable is pinned by a alloca in dominating bb then
4600        // use StaticAllocaMap.
4601        if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4602          if (AI->getParent() != DI.getParent()) {
4603            DenseMap<const AllocaInst*, int>::iterator SI =
4604              FuncInfo.StaticAllocaMap.find(AI);
4605            if (SI != FuncInfo.StaticAllocaMap.end()) {
4606              SDV = DAG.getDbgValue(Variable, SI->second,
4607                                    0, dl, SDNodeOrder);
4608              DAG.AddDbgValue(SDV, 0, false);
4609              return 0;
4610            }
4611          }
4612        }
4613        DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4614      }
4615    }
4616    return 0;
4617  }
4618  case Intrinsic::dbg_value: {
4619    const DbgValueInst &DI = cast<DbgValueInst>(I);
4620    DIVariable DIVar(DI.getVariable());
4621    assert((!DIVar || DIVar.isVariable()) &&
4622      "Variable in DbgValueInst should be either null or a DIVariable.");
4623    if (!DIVar)
4624      return 0;
4625
4626    MDNode *Variable = DI.getVariable();
4627    uint64_t Offset = DI.getOffset();
4628    const Value *V = DI.getValue();
4629    if (!V)
4630      return 0;
4631
4632    SDDbgValue *SDV;
4633    if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
4634      SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder);
4635      DAG.AddDbgValue(SDV, 0, false);
4636    } else {
4637      // Do not use getValue() in here; we don't want to generate code at
4638      // this point if it hasn't been done yet.
4639      SDValue N = NodeMap[V];
4640      if (!N.getNode() && isa<Argument>(V))
4641        // Check unused arguments map.
4642        N = UnusedArgNodeMap[V];
4643      if (N.getNode()) {
4644        if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) {
4645          SDV = DAG.getDbgValue(Variable, N.getNode(),
4646                                N.getResNo(), Offset, dl, SDNodeOrder);
4647          DAG.AddDbgValue(SDV, N.getNode(), false);
4648        }
4649      } else if (!V->use_empty() ) {
4650        // Do not call getValue(V) yet, as we don't want to generate code.
4651        // Remember it for later.
4652        DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4653        DanglingDebugInfoMap[V] = DDI;
4654      } else {
4655        // We may expand this to cover more cases.  One case where we have no
4656        // data available is an unreferenced parameter.
4657        DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4658      }
4659    }
4660
4661    // Build a debug info table entry.
4662    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4663      V = BCI->getOperand(0);
4664    const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4665    // Don't handle byval struct arguments or VLAs, for example.
4666    if (!AI) {
4667      DEBUG(dbgs() << "Dropping debug location info for:\n  " << DI << "\n");
4668      DEBUG(dbgs() << "  Last seen at:\n    " << *V << "\n");
4669      return 0;
4670    }
4671    DenseMap<const AllocaInst*, int>::iterator SI =
4672      FuncInfo.StaticAllocaMap.find(AI);
4673    if (SI == FuncInfo.StaticAllocaMap.end())
4674      return 0; // VLAs.
4675    int FI = SI->second;
4676
4677    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4678    if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
4679      MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
4680    return 0;
4681  }
4682
4683  case Intrinsic::eh_typeid_for: {
4684    // Find the type id for the given typeinfo.
4685    GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0));
4686    unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4687    Res = DAG.getConstant(TypeID, MVT::i32);
4688    setValue(&I, Res);
4689    return 0;
4690  }
4691
4692  case Intrinsic::eh_return_i32:
4693  case Intrinsic::eh_return_i64:
4694    DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4695    DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
4696                            MVT::Other,
4697                            getControlRoot(),
4698                            getValue(I.getArgOperand(0)),
4699                            getValue(I.getArgOperand(1))));
4700    return 0;
4701  case Intrinsic::eh_unwind_init:
4702    DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4703    return 0;
4704  case Intrinsic::eh_dwarf_cfa: {
4705    SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl,
4706                                        TLI->getPointerTy());
4707    SDValue Offset = DAG.getNode(ISD::ADD, sdl,
4708                                 TLI->getPointerTy(),
4709                                 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl,
4710                                             TLI->getPointerTy()),
4711                                 CfaArg);
4712    SDValue FA = DAG.getNode(ISD::FRAMEADDR, sdl,
4713                             TLI->getPointerTy(),
4714                             DAG.getConstant(0, TLI->getPointerTy()));
4715    setValue(&I, DAG.getNode(ISD::ADD, sdl, TLI->getPointerTy(),
4716                             FA, Offset));
4717    return 0;
4718  }
4719  case Intrinsic::eh_sjlj_callsite: {
4720    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4721    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4722    assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4723    assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4724
4725    MMI.setCurrentCallSite(CI->getZExtValue());
4726    return 0;
4727  }
4728  case Intrinsic::eh_sjlj_functioncontext: {
4729    // Get and store the index of the function context.
4730    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4731    AllocaInst *FnCtx =
4732      cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
4733    int FI = FuncInfo.StaticAllocaMap[FnCtx];
4734    MFI->setFunctionContextIndex(FI);
4735    return 0;
4736  }
4737  case Intrinsic::eh_sjlj_setjmp: {
4738    SDValue Ops[2];
4739    Ops[0] = getRoot();
4740    Ops[1] = getValue(I.getArgOperand(0));
4741    SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
4742                             DAG.getVTList(MVT::i32, MVT::Other),
4743                             Ops, 2);
4744    setValue(&I, Op.getValue(0));
4745    DAG.setRoot(Op.getValue(1));
4746    return 0;
4747  }
4748  case Intrinsic::eh_sjlj_longjmp: {
4749    DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
4750                            getRoot(), getValue(I.getArgOperand(0))));
4751    return 0;
4752  }
4753
4754  case Intrinsic::x86_mmx_pslli_w:
4755  case Intrinsic::x86_mmx_pslli_d:
4756  case Intrinsic::x86_mmx_pslli_q:
4757  case Intrinsic::x86_mmx_psrli_w:
4758  case Intrinsic::x86_mmx_psrli_d:
4759  case Intrinsic::x86_mmx_psrli_q:
4760  case Intrinsic::x86_mmx_psrai_w:
4761  case Intrinsic::x86_mmx_psrai_d: {
4762    SDValue ShAmt = getValue(I.getArgOperand(1));
4763    if (isa<ConstantSDNode>(ShAmt)) {
4764      visitTargetIntrinsic(I, Intrinsic);
4765      return 0;
4766    }
4767    unsigned NewIntrinsic = 0;
4768    EVT ShAmtVT = MVT::v2i32;
4769    switch (Intrinsic) {
4770    case Intrinsic::x86_mmx_pslli_w:
4771      NewIntrinsic = Intrinsic::x86_mmx_psll_w;
4772      break;
4773    case Intrinsic::x86_mmx_pslli_d:
4774      NewIntrinsic = Intrinsic::x86_mmx_psll_d;
4775      break;
4776    case Intrinsic::x86_mmx_pslli_q:
4777      NewIntrinsic = Intrinsic::x86_mmx_psll_q;
4778      break;
4779    case Intrinsic::x86_mmx_psrli_w:
4780      NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
4781      break;
4782    case Intrinsic::x86_mmx_psrli_d:
4783      NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
4784      break;
4785    case Intrinsic::x86_mmx_psrli_q:
4786      NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
4787      break;
4788    case Intrinsic::x86_mmx_psrai_w:
4789      NewIntrinsic = Intrinsic::x86_mmx_psra_w;
4790      break;
4791    case Intrinsic::x86_mmx_psrai_d:
4792      NewIntrinsic = Intrinsic::x86_mmx_psra_d;
4793      break;
4794    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4795    }
4796
4797    // The vector shift intrinsics with scalars uses 32b shift amounts but
4798    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
4799    // to be zero.
4800    // We must do this early because v2i32 is not a legal type.
4801    SDValue ShOps[2];
4802    ShOps[0] = ShAmt;
4803    ShOps[1] = DAG.getConstant(0, MVT::i32);
4804    ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, &ShOps[0], 2);
4805    EVT DestVT = TLI->getValueType(I.getType());
4806    ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt);
4807    Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT,
4808                       DAG.getConstant(NewIntrinsic, MVT::i32),
4809                       getValue(I.getArgOperand(0)), ShAmt);
4810    setValue(&I, Res);
4811    return 0;
4812  }
4813  case Intrinsic::x86_avx_vinsertf128_pd_256:
4814  case Intrinsic::x86_avx_vinsertf128_ps_256:
4815  case Intrinsic::x86_avx_vinsertf128_si_256:
4816  case Intrinsic::x86_avx2_vinserti128: {
4817    EVT DestVT = TLI->getValueType(I.getType());
4818    EVT ElVT = TLI->getValueType(I.getArgOperand(1)->getType());
4819    uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue() & 1) *
4820                   ElVT.getVectorNumElements();
4821    Res = DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, DestVT,
4822                      getValue(I.getArgOperand(0)),
4823                      getValue(I.getArgOperand(1)),
4824                      DAG.getConstant(Idx, TLI->getVectorIdxTy()));
4825    setValue(&I, Res);
4826    return 0;
4827  }
4828  case Intrinsic::x86_avx_vextractf128_pd_256:
4829  case Intrinsic::x86_avx_vextractf128_ps_256:
4830  case Intrinsic::x86_avx_vextractf128_si_256:
4831  case Intrinsic::x86_avx2_vextracti128: {
4832    EVT DestVT = TLI->getValueType(I.getType());
4833    uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(1))->getZExtValue() & 1) *
4834                   DestVT.getVectorNumElements();
4835    Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, DestVT,
4836                      getValue(I.getArgOperand(0)),
4837                      DAG.getConstant(Idx, TLI->getVectorIdxTy()));
4838    setValue(&I, Res);
4839    return 0;
4840  }
4841  case Intrinsic::convertff:
4842  case Intrinsic::convertfsi:
4843  case Intrinsic::convertfui:
4844  case Intrinsic::convertsif:
4845  case Intrinsic::convertuif:
4846  case Intrinsic::convertss:
4847  case Intrinsic::convertsu:
4848  case Intrinsic::convertus:
4849  case Intrinsic::convertuu: {
4850    ISD::CvtCode Code = ISD::CVT_INVALID;
4851    switch (Intrinsic) {
4852    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4853    case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
4854    case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4855    case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4856    case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4857    case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4858    case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
4859    case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
4860    case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4861    case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4862    }
4863    EVT DestVT = TLI->getValueType(I.getType());
4864    const Value *Op1 = I.getArgOperand(0);
4865    Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1),
4866                               DAG.getValueType(DestVT),
4867                               DAG.getValueType(getValue(Op1).getValueType()),
4868                               getValue(I.getArgOperand(1)),
4869                               getValue(I.getArgOperand(2)),
4870                               Code);
4871    setValue(&I, Res);
4872    return 0;
4873  }
4874  case Intrinsic::powi:
4875    setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
4876                            getValue(I.getArgOperand(1)), DAG));
4877    return 0;
4878  case Intrinsic::log:
4879    setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, *TLI));
4880    return 0;
4881  case Intrinsic::log2:
4882    setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, *TLI));
4883    return 0;
4884  case Intrinsic::log10:
4885    setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, *TLI));
4886    return 0;
4887  case Intrinsic::exp:
4888    setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, *TLI));
4889    return 0;
4890  case Intrinsic::exp2:
4891    setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, *TLI));
4892    return 0;
4893  case Intrinsic::pow:
4894    setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
4895                           getValue(I.getArgOperand(1)), DAG, *TLI));
4896    return 0;
4897  case Intrinsic::sqrt:
4898  case Intrinsic::fabs:
4899  case Intrinsic::sin:
4900  case Intrinsic::cos:
4901  case Intrinsic::floor:
4902  case Intrinsic::ceil:
4903  case Intrinsic::trunc:
4904  case Intrinsic::rint:
4905  case Intrinsic::nearbyint: {
4906    unsigned Opcode;
4907    switch (Intrinsic) {
4908    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4909    case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
4910    case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
4911    case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
4912    case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
4913    case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
4914    case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
4915    case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
4916    case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
4917    case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
4918    }
4919
4920    setValue(&I, DAG.getNode(Opcode, sdl,
4921                             getValue(I.getArgOperand(0)).getValueType(),
4922                             getValue(I.getArgOperand(0))));
4923    return 0;
4924  }
4925  case Intrinsic::fma:
4926    setValue(&I, DAG.getNode(ISD::FMA, sdl,
4927                             getValue(I.getArgOperand(0)).getValueType(),
4928                             getValue(I.getArgOperand(0)),
4929                             getValue(I.getArgOperand(1)),
4930                             getValue(I.getArgOperand(2))));
4931    return 0;
4932  case Intrinsic::fmuladd: {
4933    EVT VT = TLI->getValueType(I.getType());
4934    if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
4935        TLI->isFMAFasterThanFMulAndFAdd(VT)) {
4936      setValue(&I, DAG.getNode(ISD::FMA, sdl,
4937                               getValue(I.getArgOperand(0)).getValueType(),
4938                               getValue(I.getArgOperand(0)),
4939                               getValue(I.getArgOperand(1)),
4940                               getValue(I.getArgOperand(2))));
4941    } else {
4942      SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
4943                                getValue(I.getArgOperand(0)).getValueType(),
4944                                getValue(I.getArgOperand(0)),
4945                                getValue(I.getArgOperand(1)));
4946      SDValue Add = DAG.getNode(ISD::FADD, sdl,
4947                                getValue(I.getArgOperand(0)).getValueType(),
4948                                Mul,
4949                                getValue(I.getArgOperand(2)));
4950      setValue(&I, Add);
4951    }
4952    return 0;
4953  }
4954  case Intrinsic::convert_to_fp16:
4955    setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, sdl,
4956                             MVT::i16, getValue(I.getArgOperand(0))));
4957    return 0;
4958  case Intrinsic::convert_from_fp16:
4959    setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, sdl,
4960                             MVT::f32, getValue(I.getArgOperand(0))));
4961    return 0;
4962  case Intrinsic::pcmarker: {
4963    SDValue Tmp = getValue(I.getArgOperand(0));
4964    DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
4965    return 0;
4966  }
4967  case Intrinsic::readcyclecounter: {
4968    SDValue Op = getRoot();
4969    Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
4970                      DAG.getVTList(MVT::i64, MVT::Other),
4971                      &Op, 1);
4972    setValue(&I, Res);
4973    DAG.setRoot(Res.getValue(1));
4974    return 0;
4975  }
4976  case Intrinsic::bswap:
4977    setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
4978                             getValue(I.getArgOperand(0)).getValueType(),
4979                             getValue(I.getArgOperand(0))));
4980    return 0;
4981  case Intrinsic::cttz: {
4982    SDValue Arg = getValue(I.getArgOperand(0));
4983    ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
4984    EVT Ty = Arg.getValueType();
4985    setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
4986                             sdl, Ty, Arg));
4987    return 0;
4988  }
4989  case Intrinsic::ctlz: {
4990    SDValue Arg = getValue(I.getArgOperand(0));
4991    ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
4992    EVT Ty = Arg.getValueType();
4993    setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
4994                             sdl, Ty, Arg));
4995    return 0;
4996  }
4997  case Intrinsic::ctpop: {
4998    SDValue Arg = getValue(I.getArgOperand(0));
4999    EVT Ty = Arg.getValueType();
5000    setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
5001    return 0;
5002  }
5003  case Intrinsic::stacksave: {
5004    SDValue Op = getRoot();
5005    Res = DAG.getNode(ISD::STACKSAVE, sdl,
5006                      DAG.getVTList(TLI->getPointerTy(), MVT::Other), &Op, 1);
5007    setValue(&I, Res);
5008    DAG.setRoot(Res.getValue(1));
5009    return 0;
5010  }
5011  case Intrinsic::stackrestore: {
5012    Res = getValue(I.getArgOperand(0));
5013    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
5014    return 0;
5015  }
5016  case Intrinsic::stackprotector: {
5017    // Emit code into the DAG to store the stack guard onto the stack.
5018    MachineFunction &MF = DAG.getMachineFunction();
5019    MachineFrameInfo *MFI = MF.getFrameInfo();
5020    EVT PtrTy = TLI->getPointerTy();
5021
5022    SDValue Src = getValue(I.getArgOperand(0));   // The guard's value.
5023    AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
5024
5025    int FI = FuncInfo.StaticAllocaMap[Slot];
5026    MFI->setStackProtectorIndex(FI);
5027
5028    SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
5029
5030    // Store the stack protector onto the stack.
5031    Res = DAG.getStore(getRoot(), sdl, Src, FIN,
5032                       MachinePointerInfo::getFixedStack(FI),
5033                       true, false, 0);
5034    setValue(&I, Res);
5035    DAG.setRoot(Res);
5036    return 0;
5037  }
5038  case Intrinsic::objectsize: {
5039    // If we don't know by now, we're never going to know.
5040    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
5041
5042    assert(CI && "Non-constant type in __builtin_object_size?");
5043
5044    SDValue Arg = getValue(I.getCalledValue());
5045    EVT Ty = Arg.getValueType();
5046
5047    if (CI->isZero())
5048      Res = DAG.getConstant(-1ULL, Ty);
5049    else
5050      Res = DAG.getConstant(0, Ty);
5051
5052    setValue(&I, Res);
5053    return 0;
5054  }
5055  case Intrinsic::annotation:
5056  case Intrinsic::ptr_annotation:
5057    // Drop the intrinsic, but forward the value
5058    setValue(&I, getValue(I.getOperand(0)));
5059    return 0;
5060  case Intrinsic::var_annotation:
5061    // Discard annotate attributes
5062    return 0;
5063
5064  case Intrinsic::init_trampoline: {
5065    const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5066
5067    SDValue Ops[6];
5068    Ops[0] = getRoot();
5069    Ops[1] = getValue(I.getArgOperand(0));
5070    Ops[2] = getValue(I.getArgOperand(1));
5071    Ops[3] = getValue(I.getArgOperand(2));
5072    Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5073    Ops[5] = DAG.getSrcValue(F);
5074
5075    Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops, 6);
5076
5077    DAG.setRoot(Res);
5078    return 0;
5079  }
5080  case Intrinsic::adjust_trampoline: {
5081    setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
5082                             TLI->getPointerTy(),
5083                             getValue(I.getArgOperand(0))));
5084    return 0;
5085  }
5086  case Intrinsic::gcroot:
5087    if (GFI) {
5088      const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
5089      const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
5090
5091      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
5092      GFI->addStackRoot(FI->getIndex(), TypeMap);
5093    }
5094    return 0;
5095  case Intrinsic::gcread:
5096  case Intrinsic::gcwrite:
5097    llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
5098  case Intrinsic::flt_rounds:
5099    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
5100    return 0;
5101
5102  case Intrinsic::expect: {
5103    // Just replace __builtin_expect(exp, c) with EXP.
5104    setValue(&I, getValue(I.getArgOperand(0)));
5105    return 0;
5106  }
5107
5108  case Intrinsic::debugtrap:
5109  case Intrinsic::trap: {
5110    StringRef TrapFuncName = TM.Options.getTrapFunctionName();
5111    if (TrapFuncName.empty()) {
5112      ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
5113        ISD::TRAP : ISD::DEBUGTRAP;
5114      DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
5115      return 0;
5116    }
5117    TargetLowering::ArgListTy Args;
5118    TargetLowering::
5119    CallLoweringInfo CLI(getRoot(), I.getType(),
5120                 false, false, false, false, 0, CallingConv::C,
5121                 /*isTailCall=*/false,
5122                 /*doesNotRet=*/false, /*isReturnValueUsed=*/true,
5123                 DAG.getExternalSymbol(TrapFuncName.data(),
5124                                       TLI->getPointerTy()),
5125                 Args, DAG, sdl);
5126    std::pair<SDValue, SDValue> Result = TLI->LowerCallTo(CLI);
5127    DAG.setRoot(Result.second);
5128    return 0;
5129  }
5130
5131  case Intrinsic::uadd_with_overflow:
5132  case Intrinsic::sadd_with_overflow:
5133  case Intrinsic::usub_with_overflow:
5134  case Intrinsic::ssub_with_overflow:
5135  case Intrinsic::umul_with_overflow:
5136  case Intrinsic::smul_with_overflow: {
5137    ISD::NodeType Op;
5138    switch (Intrinsic) {
5139    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5140    case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
5141    case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
5142    case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
5143    case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
5144    case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
5145    case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
5146    }
5147    SDValue Op1 = getValue(I.getArgOperand(0));
5148    SDValue Op2 = getValue(I.getArgOperand(1));
5149
5150    SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
5151    setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
5152    return 0;
5153  }
5154  case Intrinsic::prefetch: {
5155    SDValue Ops[5];
5156    unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
5157    Ops[0] = getRoot();
5158    Ops[1] = getValue(I.getArgOperand(0));
5159    Ops[2] = getValue(I.getArgOperand(1));
5160    Ops[3] = getValue(I.getArgOperand(2));
5161    Ops[4] = getValue(I.getArgOperand(3));
5162    DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
5163                                        DAG.getVTList(MVT::Other),
5164                                        &Ops[0], 5,
5165                                        EVT::getIntegerVT(*Context, 8),
5166                                        MachinePointerInfo(I.getArgOperand(0)),
5167                                        0, /* align */
5168                                        false, /* volatile */
5169                                        rw==0, /* read */
5170                                        rw==1)); /* write */
5171    return 0;
5172  }
5173  case Intrinsic::lifetime_start:
5174  case Intrinsic::lifetime_end: {
5175    bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
5176    // Stack coloring is not enabled in O0, discard region information.
5177    if (TM.getOptLevel() == CodeGenOpt::None)
5178      return 0;
5179
5180    SmallVector<Value *, 4> Allocas;
5181    GetUnderlyingObjects(I.getArgOperand(1), Allocas, TD);
5182
5183    for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(),
5184           E = Allocas.end(); Object != E; ++Object) {
5185      AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
5186
5187      // Could not find an Alloca.
5188      if (!LifetimeObject)
5189        continue;
5190
5191      int FI = FuncInfo.StaticAllocaMap[LifetimeObject];
5192
5193      SDValue Ops[2];
5194      Ops[0] = getRoot();
5195      Ops[1] = DAG.getFrameIndex(FI, TLI->getPointerTy(), true);
5196      unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END);
5197
5198      Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops, 2);
5199      DAG.setRoot(Res);
5200    }
5201    return 0;
5202  }
5203  case Intrinsic::invariant_start:
5204    // Discard region information.
5205    setValue(&I, DAG.getUNDEF(TLI->getPointerTy()));
5206    return 0;
5207  case Intrinsic::invariant_end:
5208    // Discard region information.
5209    return 0;
5210  case Intrinsic::donothing:
5211    // ignore
5212    return 0;
5213  }
5214}
5215
5216void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
5217                                      bool isTailCall,
5218                                      MachineBasicBlock *LandingPad) {
5219  PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
5220  FunctionType *FTy = cast<FunctionType>(PT->getElementType());
5221  Type *RetTy = FTy->getReturnType();
5222  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5223  MCSymbol *BeginLabel = 0;
5224
5225  TargetLowering::ArgListTy Args;
5226  TargetLowering::ArgListEntry Entry;
5227  Args.reserve(CS.arg_size());
5228
5229  // Check whether the function can return without sret-demotion.
5230  SmallVector<ISD::OutputArg, 4> Outs;
5231  const TargetLowering *TLI = TM.getTargetLowering();
5232  GetReturnInfo(RetTy, CS.getAttributes(), Outs, *TLI);
5233
5234  bool CanLowerReturn = TLI->CanLowerReturn(CS.getCallingConv(),
5235                                            DAG.getMachineFunction(),
5236                                            FTy->isVarArg(), Outs,
5237                                            FTy->getContext());
5238
5239  SDValue DemoteStackSlot;
5240  int DemoteStackIdx = -100;
5241
5242  if (!CanLowerReturn) {
5243    uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(
5244                      FTy->getReturnType());
5245    unsigned Align  = TLI->getDataLayout()->getPrefTypeAlignment(
5246                      FTy->getReturnType());
5247    MachineFunction &MF = DAG.getMachineFunction();
5248    DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5249    Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
5250
5251    DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI->getPointerTy());
5252    Entry.Node = DemoteStackSlot;
5253    Entry.Ty = StackSlotPtrType;
5254    Entry.isSExt = false;
5255    Entry.isZExt = false;
5256    Entry.isInReg = false;
5257    Entry.isSRet = true;
5258    Entry.isNest = false;
5259    Entry.isByVal = false;
5260    Entry.isReturned = false;
5261    Entry.Alignment = Align;
5262    Args.push_back(Entry);
5263    RetTy = Type::getVoidTy(FTy->getContext());
5264  }
5265
5266  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
5267       i != e; ++i) {
5268    const Value *V = *i;
5269
5270    // Skip empty types
5271    if (V->getType()->isEmptyTy())
5272      continue;
5273
5274    SDValue ArgNode = getValue(V);
5275    Entry.Node = ArgNode; Entry.Ty = V->getType();
5276
5277    unsigned attrInd = i - CS.arg_begin() + 1;
5278    Entry.isSExt     = CS.paramHasAttr(attrInd, Attribute::SExt);
5279    Entry.isZExt     = CS.paramHasAttr(attrInd, Attribute::ZExt);
5280    Entry.isInReg    = CS.paramHasAttr(attrInd, Attribute::InReg);
5281    Entry.isSRet     = CS.paramHasAttr(attrInd, Attribute::StructRet);
5282    Entry.isNest     = CS.paramHasAttr(attrInd, Attribute::Nest);
5283    Entry.isByVal    = CS.paramHasAttr(attrInd, Attribute::ByVal);
5284    Entry.isReturned = CS.paramHasAttr(attrInd, Attribute::Returned);
5285    Entry.Alignment  = CS.getParamAlignment(attrInd);
5286    Args.push_back(Entry);
5287  }
5288
5289  if (LandingPad) {
5290    // Insert a label before the invoke call to mark the try range.  This can be
5291    // used to detect deletion of the invoke via the MachineModuleInfo.
5292    BeginLabel = MMI.getContext().CreateTempSymbol();
5293
5294    // For SjLj, keep track of which landing pads go with which invokes
5295    // so as to maintain the ordering of pads in the LSDA.
5296    unsigned CallSiteIndex = MMI.getCurrentCallSite();
5297    if (CallSiteIndex) {
5298      MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
5299      LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex);
5300
5301      // Now that the call site is handled, stop tracking it.
5302      MMI.setCurrentCallSite(0);
5303    }
5304
5305    // Both PendingLoads and PendingExports must be flushed here;
5306    // this call might not return.
5307    (void)getRoot();
5308    DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
5309  }
5310
5311  // Check if target-independent constraints permit a tail call here.
5312  // Target-dependent constraints are checked within TLI->LowerCallTo.
5313  if (isTailCall && !isInTailCallPosition(CS, *TLI))
5314    isTailCall = false;
5315
5316  TargetLowering::
5317  CallLoweringInfo CLI(getRoot(), RetTy, FTy, isTailCall, Callee, Args, DAG,
5318                       getCurSDLoc(), CS);
5319  std::pair<SDValue,SDValue> Result = TLI->LowerCallTo(CLI);
5320  assert((isTailCall || Result.second.getNode()) &&
5321         "Non-null chain expected with non-tail call!");
5322  assert((Result.second.getNode() || !Result.first.getNode()) &&
5323         "Null value expected with tail call!");
5324  if (Result.first.getNode()) {
5325    setValue(CS.getInstruction(), Result.first);
5326  } else if (!CanLowerReturn && Result.second.getNode()) {
5327    // The instruction result is the result of loading from the
5328    // hidden sret parameter.
5329    SmallVector<EVT, 1> PVTs;
5330    Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
5331
5332    ComputeValueVTs(*TLI, PtrRetTy, PVTs);
5333    assert(PVTs.size() == 1 && "Pointers should fit in one register");
5334    EVT PtrVT = PVTs[0];
5335
5336    SmallVector<EVT, 4> RetTys;
5337    SmallVector<uint64_t, 4> Offsets;
5338    RetTy = FTy->getReturnType();
5339    ComputeValueVTs(*TLI, RetTy, RetTys, &Offsets);
5340
5341    unsigned NumValues = RetTys.size();
5342    SmallVector<SDValue, 4> Values(NumValues);
5343    SmallVector<SDValue, 4> Chains(NumValues);
5344
5345    for (unsigned i = 0; i < NumValues; ++i) {
5346      SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT,
5347                                DemoteStackSlot,
5348                                DAG.getConstant(Offsets[i], PtrVT));
5349      SDValue L = DAG.getLoad(RetTys[i], getCurSDLoc(), Result.second, Add,
5350                  MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]),
5351                              false, false, false, 1);
5352      Values[i] = L;
5353      Chains[i] = L.getValue(1);
5354    }
5355
5356    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
5357                                MVT::Other, &Chains[0], NumValues);
5358    PendingLoads.push_back(Chain);
5359
5360    setValue(CS.getInstruction(),
5361             DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
5362                         DAG.getVTList(&RetTys[0], RetTys.size()),
5363                         &Values[0], Values.size()));
5364  }
5365
5366  if (!Result.second.getNode()) {
5367    // As a special case, a null chain means that a tail call has been emitted and
5368    // the DAG root is already updated.
5369    HasTailCall = true;
5370
5371    // Since there's no actual continuation from this block, nothing can be
5372    // relying on us setting vregs for them.
5373    PendingExports.clear();
5374  } else {
5375    DAG.setRoot(Result.second);
5376  }
5377
5378  if (LandingPad) {
5379    // Insert a label at the end of the invoke call to mark the try range.  This
5380    // can be used to detect deletion of the invoke via the MachineModuleInfo.
5381    MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
5382    DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
5383
5384    // Inform MachineModuleInfo of range.
5385    MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
5386  }
5387}
5388
5389/// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
5390/// value is equal or not-equal to zero.
5391static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
5392  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
5393       UI != E; ++UI) {
5394    if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
5395      if (IC->isEquality())
5396        if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
5397          if (C->isNullValue())
5398            continue;
5399    // Unknown instruction.
5400    return false;
5401  }
5402  return true;
5403}
5404
5405static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
5406                             Type *LoadTy,
5407                             SelectionDAGBuilder &Builder) {
5408
5409  // Check to see if this load can be trivially constant folded, e.g. if the
5410  // input is from a string literal.
5411  if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5412    // Cast pointer to the type we really want to load.
5413    LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5414                                         PointerType::getUnqual(LoadTy));
5415
5416    if (const Constant *LoadCst =
5417          ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
5418                                       Builder.TD))
5419      return Builder.getValue(LoadCst);
5420  }
5421
5422  // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
5423  // still constant memory, the input chain can be the entry node.
5424  SDValue Root;
5425  bool ConstantMemory = false;
5426
5427  // Do not serialize (non-volatile) loads of constant memory with anything.
5428  if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5429    Root = Builder.DAG.getEntryNode();
5430    ConstantMemory = true;
5431  } else {
5432    // Do not serialize non-volatile loads against each other.
5433    Root = Builder.DAG.getRoot();
5434  }
5435
5436  SDValue Ptr = Builder.getValue(PtrVal);
5437  SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
5438                                        Ptr, MachinePointerInfo(PtrVal),
5439                                        false /*volatile*/,
5440                                        false /*nontemporal*/,
5441                                        false /*isinvariant*/, 1 /* align=1 */);
5442
5443  if (!ConstantMemory)
5444    Builder.PendingLoads.push_back(LoadVal.getValue(1));
5445  return LoadVal;
5446}
5447
5448
5449/// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5450/// If so, return true and lower it, otherwise return false and it will be
5451/// lowered like a normal call.
5452bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5453  // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
5454  if (I.getNumArgOperands() != 3)
5455    return false;
5456
5457  const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5458  if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5459      !I.getArgOperand(2)->getType()->isIntegerTy() ||
5460      !I.getType()->isIntegerTy())
5461    return false;
5462
5463  const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2));
5464
5465  // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
5466  // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
5467  if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) {
5468    bool ActuallyDoIt = true;
5469    MVT LoadVT;
5470    Type *LoadTy;
5471    switch (Size->getZExtValue()) {
5472    default:
5473      LoadVT = MVT::Other;
5474      LoadTy = 0;
5475      ActuallyDoIt = false;
5476      break;
5477    case 2:
5478      LoadVT = MVT::i16;
5479      LoadTy = Type::getInt16Ty(Size->getContext());
5480      break;
5481    case 4:
5482      LoadVT = MVT::i32;
5483      LoadTy = Type::getInt32Ty(Size->getContext());
5484      break;
5485    case 8:
5486      LoadVT = MVT::i64;
5487      LoadTy = Type::getInt64Ty(Size->getContext());
5488      break;
5489        /*
5490    case 16:
5491      LoadVT = MVT::v4i32;
5492      LoadTy = Type::getInt32Ty(Size->getContext());
5493      LoadTy = VectorType::get(LoadTy, 4);
5494      break;
5495         */
5496    }
5497
5498    // This turns into unaligned loads.  We only do this if the target natively
5499    // supports the MVT we'll be loading or if it is small enough (<= 4) that
5500    // we'll only produce a small number of byte loads.
5501
5502    // Require that we can find a legal MVT, and only do this if the target
5503    // supports unaligned loads of that type.  Expanding into byte loads would
5504    // bloat the code.
5505    const TargetLowering *TLI = TM.getTargetLowering();
5506    if (ActuallyDoIt && Size->getZExtValue() > 4) {
5507      // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5508      // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5509      if (!TLI->isTypeLegal(LoadVT) ||!TLI->allowsUnalignedMemoryAccesses(LoadVT))
5510        ActuallyDoIt = false;
5511    }
5512
5513    if (ActuallyDoIt) {
5514      SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5515      SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5516
5517      SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal,
5518                                 ISD::SETNE);
5519      EVT CallVT = TLI->getValueType(I.getType(), true);
5520      setValue(&I, DAG.getZExtOrTrunc(Res, getCurSDLoc(), CallVT));
5521      return true;
5522    }
5523  }
5524
5525
5526  return false;
5527}
5528
5529/// visitUnaryFloatCall - If a call instruction is a unary floating-point
5530/// operation (as expected), translate it to an SDNode with the specified opcode
5531/// and return true.
5532bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
5533                                              unsigned Opcode) {
5534  // Sanity check that it really is a unary floating-point call.
5535  if (I.getNumArgOperands() != 1 ||
5536      !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
5537      I.getType() != I.getArgOperand(0)->getType() ||
5538      !I.onlyReadsMemory())
5539    return false;
5540
5541  SDValue Tmp = getValue(I.getArgOperand(0));
5542  setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
5543  return true;
5544}
5545
5546void SelectionDAGBuilder::visitCall(const CallInst &I) {
5547  // Handle inline assembly differently.
5548  if (isa<InlineAsm>(I.getCalledValue())) {
5549    visitInlineAsm(&I);
5550    return;
5551  }
5552
5553  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5554  ComputeUsesVAFloatArgument(I, &MMI);
5555
5556  const char *RenameFn = 0;
5557  if (Function *F = I.getCalledFunction()) {
5558    if (F->isDeclaration()) {
5559      if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
5560        if (unsigned IID = II->getIntrinsicID(F)) {
5561          RenameFn = visitIntrinsicCall(I, IID);
5562          if (!RenameFn)
5563            return;
5564        }
5565      }
5566      if (unsigned IID = F->getIntrinsicID()) {
5567        RenameFn = visitIntrinsicCall(I, IID);
5568        if (!RenameFn)
5569          return;
5570      }
5571    }
5572
5573    // Check for well-known libc/libm calls.  If the function is internal, it
5574    // can't be a library call.
5575    LibFunc::Func Func;
5576    if (!F->hasLocalLinkage() && F->hasName() &&
5577        LibInfo->getLibFunc(F->getName(), Func) &&
5578        LibInfo->hasOptimizedCodeGen(Func)) {
5579      switch (Func) {
5580      default: break;
5581      case LibFunc::copysign:
5582      case LibFunc::copysignf:
5583      case LibFunc::copysignl:
5584        if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
5585            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5586            I.getType() == I.getArgOperand(0)->getType() &&
5587            I.getType() == I.getArgOperand(1)->getType() &&
5588            I.onlyReadsMemory()) {
5589          SDValue LHS = getValue(I.getArgOperand(0));
5590          SDValue RHS = getValue(I.getArgOperand(1));
5591          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
5592                                   LHS.getValueType(), LHS, RHS));
5593          return;
5594        }
5595        break;
5596      case LibFunc::fabs:
5597      case LibFunc::fabsf:
5598      case LibFunc::fabsl:
5599        if (visitUnaryFloatCall(I, ISD::FABS))
5600          return;
5601        break;
5602      case LibFunc::sin:
5603      case LibFunc::sinf:
5604      case LibFunc::sinl:
5605        if (visitUnaryFloatCall(I, ISD::FSIN))
5606          return;
5607        break;
5608      case LibFunc::cos:
5609      case LibFunc::cosf:
5610      case LibFunc::cosl:
5611        if (visitUnaryFloatCall(I, ISD::FCOS))
5612          return;
5613        break;
5614      case LibFunc::sqrt:
5615      case LibFunc::sqrtf:
5616      case LibFunc::sqrtl:
5617      case LibFunc::sqrt_finite:
5618      case LibFunc::sqrtf_finite:
5619      case LibFunc::sqrtl_finite:
5620        if (visitUnaryFloatCall(I, ISD::FSQRT))
5621          return;
5622        break;
5623      case LibFunc::floor:
5624      case LibFunc::floorf:
5625      case LibFunc::floorl:
5626        if (visitUnaryFloatCall(I, ISD::FFLOOR))
5627          return;
5628        break;
5629      case LibFunc::nearbyint:
5630      case LibFunc::nearbyintf:
5631      case LibFunc::nearbyintl:
5632        if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
5633          return;
5634        break;
5635      case LibFunc::ceil:
5636      case LibFunc::ceilf:
5637      case LibFunc::ceill:
5638        if (visitUnaryFloatCall(I, ISD::FCEIL))
5639          return;
5640        break;
5641      case LibFunc::rint:
5642      case LibFunc::rintf:
5643      case LibFunc::rintl:
5644        if (visitUnaryFloatCall(I, ISD::FRINT))
5645          return;
5646        break;
5647      case LibFunc::trunc:
5648      case LibFunc::truncf:
5649      case LibFunc::truncl:
5650        if (visitUnaryFloatCall(I, ISD::FTRUNC))
5651          return;
5652        break;
5653      case LibFunc::log2:
5654      case LibFunc::log2f:
5655      case LibFunc::log2l:
5656        if (visitUnaryFloatCall(I, ISD::FLOG2))
5657          return;
5658        break;
5659      case LibFunc::exp2:
5660      case LibFunc::exp2f:
5661      case LibFunc::exp2l:
5662        if (visitUnaryFloatCall(I, ISD::FEXP2))
5663          return;
5664        break;
5665      case LibFunc::memcmp:
5666        if (visitMemCmpCall(I))
5667          return;
5668        break;
5669      }
5670    }
5671  }
5672
5673  SDValue Callee;
5674  if (!RenameFn)
5675    Callee = getValue(I.getCalledValue());
5676  else
5677    Callee = DAG.getExternalSymbol(RenameFn,
5678                                   TM.getTargetLowering()->getPointerTy());
5679
5680  // Check if we can potentially perform a tail call. More detailed checking is
5681  // be done within LowerCallTo, after more information about the call is known.
5682  LowerCallTo(&I, Callee, I.isTailCall());
5683}
5684
5685namespace {
5686
5687/// AsmOperandInfo - This contains information for each constraint that we are
5688/// lowering.
5689class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
5690public:
5691  /// CallOperand - If this is the result output operand or a clobber
5692  /// this is null, otherwise it is the incoming operand to the CallInst.
5693  /// This gets modified as the asm is processed.
5694  SDValue CallOperand;
5695
5696  /// AssignedRegs - If this is a register or register class operand, this
5697  /// contains the set of register corresponding to the operand.
5698  RegsForValue AssignedRegs;
5699
5700  explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
5701    : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
5702  }
5703
5704  /// getCallOperandValEVT - Return the EVT of the Value* that this operand
5705  /// corresponds to.  If there is no Value* for this operand, it returns
5706  /// MVT::Other.
5707  EVT getCallOperandValEVT(LLVMContext &Context,
5708                           const TargetLowering &TLI,
5709                           const DataLayout *TD) const {
5710    if (CallOperandVal == 0) return MVT::Other;
5711
5712    if (isa<BasicBlock>(CallOperandVal))
5713      return TLI.getPointerTy();
5714
5715    llvm::Type *OpTy = CallOperandVal->getType();
5716
5717    // FIXME: code duplicated from TargetLowering::ParseConstraints().
5718    // If this is an indirect operand, the operand is a pointer to the
5719    // accessed type.
5720    if (isIndirect) {
5721      llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
5722      if (!PtrTy)
5723        report_fatal_error("Indirect operand for inline asm not a pointer!");
5724      OpTy = PtrTy->getElementType();
5725    }
5726
5727    // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
5728    if (StructType *STy = dyn_cast<StructType>(OpTy))
5729      if (STy->getNumElements() == 1)
5730        OpTy = STy->getElementType(0);
5731
5732    // If OpTy is not a single value, it may be a struct/union that we
5733    // can tile with integers.
5734    if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5735      unsigned BitSize = TD->getTypeSizeInBits(OpTy);
5736      switch (BitSize) {
5737      default: break;
5738      case 1:
5739      case 8:
5740      case 16:
5741      case 32:
5742      case 64:
5743      case 128:
5744        OpTy = IntegerType::get(Context, BitSize);
5745        break;
5746      }
5747    }
5748
5749    return TLI.getValueType(OpTy, true);
5750  }
5751};
5752
5753typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
5754
5755} // end anonymous namespace
5756
5757/// GetRegistersForValue - Assign registers (virtual or physical) for the
5758/// specified operand.  We prefer to assign virtual registers, to allow the
5759/// register allocator to handle the assignment process.  However, if the asm
5760/// uses features that we can't model on machineinstrs, we have SDISel do the
5761/// allocation.  This produces generally horrible, but correct, code.
5762///
5763///   OpInfo describes the operand.
5764///
5765static void GetRegistersForValue(SelectionDAG &DAG,
5766                                 const TargetLowering &TLI,
5767                                 SDLoc DL,
5768                                 SDISelAsmOperandInfo &OpInfo) {
5769  LLVMContext &Context = *DAG.getContext();
5770
5771  MachineFunction &MF = DAG.getMachineFunction();
5772  SmallVector<unsigned, 4> Regs;
5773
5774  // If this is a constraint for a single physreg, or a constraint for a
5775  // register class, find it.
5776  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
5777    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5778                                     OpInfo.ConstraintVT);
5779
5780  unsigned NumRegs = 1;
5781  if (OpInfo.ConstraintVT != MVT::Other) {
5782    // If this is a FP input in an integer register (or visa versa) insert a bit
5783    // cast of the input value.  More generally, handle any case where the input
5784    // value disagrees with the register class we plan to stick this in.
5785    if (OpInfo.Type == InlineAsm::isInput &&
5786        PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
5787      // Try to convert to the first EVT that the reg class contains.  If the
5788      // types are identical size, use a bitcast to convert (e.g. two differing
5789      // vector types).
5790      MVT RegVT = *PhysReg.second->vt_begin();
5791      if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
5792        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5793                                         RegVT, OpInfo.CallOperand);
5794        OpInfo.ConstraintVT = RegVT;
5795      } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
5796        // If the input is a FP value and we want it in FP registers, do a
5797        // bitcast to the corresponding integer type.  This turns an f64 value
5798        // into i64, which can be passed with two i32 values on a 32-bit
5799        // machine.
5800        RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
5801        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5802                                         RegVT, OpInfo.CallOperand);
5803        OpInfo.ConstraintVT = RegVT;
5804      }
5805    }
5806
5807    NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
5808  }
5809
5810  MVT RegVT;
5811  EVT ValueVT = OpInfo.ConstraintVT;
5812
5813  // If this is a constraint for a specific physical register, like {r17},
5814  // assign it now.
5815  if (unsigned AssignedReg = PhysReg.first) {
5816    const TargetRegisterClass *RC = PhysReg.second;
5817    if (OpInfo.ConstraintVT == MVT::Other)
5818      ValueVT = *RC->vt_begin();
5819
5820    // Get the actual register value type.  This is important, because the user
5821    // may have asked for (e.g.) the AX register in i32 type.  We need to
5822    // remember that AX is actually i16 to get the right extension.
5823    RegVT = *RC->vt_begin();
5824
5825    // This is a explicit reference to a physical register.
5826    Regs.push_back(AssignedReg);
5827
5828    // If this is an expanded reference, add the rest of the regs to Regs.
5829    if (NumRegs != 1) {
5830      TargetRegisterClass::iterator I = RC->begin();
5831      for (; *I != AssignedReg; ++I)
5832        assert(I != RC->end() && "Didn't find reg!");
5833
5834      // Already added the first reg.
5835      --NumRegs; ++I;
5836      for (; NumRegs; --NumRegs, ++I) {
5837        assert(I != RC->end() && "Ran out of registers to allocate!");
5838        Regs.push_back(*I);
5839      }
5840    }
5841
5842    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5843    return;
5844  }
5845
5846  // Otherwise, if this was a reference to an LLVM register class, create vregs
5847  // for this reference.
5848  if (const TargetRegisterClass *RC = PhysReg.second) {
5849    RegVT = *RC->vt_begin();
5850    if (OpInfo.ConstraintVT == MVT::Other)
5851      ValueVT = RegVT;
5852
5853    // Create the appropriate number of virtual registers.
5854    MachineRegisterInfo &RegInfo = MF.getRegInfo();
5855    for (; NumRegs; --NumRegs)
5856      Regs.push_back(RegInfo.createVirtualRegister(RC));
5857
5858    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5859    return;
5860  }
5861
5862  // Otherwise, we couldn't allocate enough registers for this.
5863}
5864
5865/// visitInlineAsm - Handle a call to an InlineAsm object.
5866///
5867void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
5868  const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
5869
5870  /// ConstraintOperands - Information about all of the constraints.
5871  SDISelAsmOperandInfoVector ConstraintOperands;
5872
5873  const TargetLowering *TLI = TM.getTargetLowering();
5874  TargetLowering::AsmOperandInfoVector
5875    TargetConstraints = TLI->ParseConstraints(CS);
5876
5877  bool hasMemory = false;
5878
5879  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
5880  unsigned ResNo = 0;   // ResNo - The result number of the next output.
5881  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
5882    ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
5883    SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
5884
5885    MVT OpVT = MVT::Other;
5886
5887    // Compute the value type for each operand.
5888    switch (OpInfo.Type) {
5889    case InlineAsm::isOutput:
5890      // Indirect outputs just consume an argument.
5891      if (OpInfo.isIndirect) {
5892        OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5893        break;
5894      }
5895
5896      // The return value of the call is this value.  As such, there is no
5897      // corresponding argument.
5898      assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
5899      if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
5900        OpVT = TLI->getSimpleValueType(STy->getElementType(ResNo));
5901      } else {
5902        assert(ResNo == 0 && "Asm only has one result!");
5903        OpVT = TLI->getSimpleValueType(CS.getType());
5904      }
5905      ++ResNo;
5906      break;
5907    case InlineAsm::isInput:
5908      OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5909      break;
5910    case InlineAsm::isClobber:
5911      // Nothing to do.
5912      break;
5913    }
5914
5915    // If this is an input or an indirect output, process the call argument.
5916    // BasicBlocks are labels, currently appearing only in asm's.
5917    if (OpInfo.CallOperandVal) {
5918      if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
5919        OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
5920      } else {
5921        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
5922      }
5923
5924      OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), *TLI, TD).
5925        getSimpleVT();
5926    }
5927
5928    OpInfo.ConstraintVT = OpVT;
5929
5930    // Indirect operand accesses access memory.
5931    if (OpInfo.isIndirect)
5932      hasMemory = true;
5933    else {
5934      for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
5935        TargetLowering::ConstraintType
5936          CType = TLI->getConstraintType(OpInfo.Codes[j]);
5937        if (CType == TargetLowering::C_Memory) {
5938          hasMemory = true;
5939          break;
5940        }
5941      }
5942    }
5943  }
5944
5945  SDValue Chain, Flag;
5946
5947  // We won't need to flush pending loads if this asm doesn't touch
5948  // memory and is nonvolatile.
5949  if (hasMemory || IA->hasSideEffects())
5950    Chain = getRoot();
5951  else
5952    Chain = DAG.getRoot();
5953
5954  // Second pass over the constraints: compute which constraint option to use
5955  // and assign registers to constraints that want a specific physreg.
5956  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5957    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5958
5959    // If this is an output operand with a matching input operand, look up the
5960    // matching input. If their types mismatch, e.g. one is an integer, the
5961    // other is floating point, or their sizes are different, flag it as an
5962    // error.
5963    if (OpInfo.hasMatchingInput()) {
5964      SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5965
5966      if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5967        std::pair<unsigned, const TargetRegisterClass*> MatchRC =
5968          TLI->getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5969                                            OpInfo.ConstraintVT);
5970        std::pair<unsigned, const TargetRegisterClass*> InputRC =
5971          TLI->getRegForInlineAsmConstraint(Input.ConstraintCode,
5972                                            Input.ConstraintVT);
5973        if ((OpInfo.ConstraintVT.isInteger() !=
5974             Input.ConstraintVT.isInteger()) ||
5975            (MatchRC.second != InputRC.second)) {
5976          report_fatal_error("Unsupported asm: input constraint"
5977                             " with a matching output constraint of"
5978                             " incompatible type!");
5979        }
5980        Input.ConstraintVT = OpInfo.ConstraintVT;
5981      }
5982    }
5983
5984    // Compute the constraint code and ConstraintType to use.
5985    TLI->ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
5986
5987    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5988        OpInfo.Type == InlineAsm::isClobber)
5989      continue;
5990
5991    // If this is a memory input, and if the operand is not indirect, do what we
5992    // need to to provide an address for the memory input.
5993    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5994        !OpInfo.isIndirect) {
5995      assert((OpInfo.isMultipleAlternative ||
5996              (OpInfo.Type == InlineAsm::isInput)) &&
5997             "Can only indirectify direct input operands!");
5998
5999      // Memory operands really want the address of the value.  If we don't have
6000      // an indirect input, put it in the constpool if we can, otherwise spill
6001      // it to a stack slot.
6002      // TODO: This isn't quite right. We need to handle these according to
6003      // the addressing mode that the constraint wants. Also, this may take
6004      // an additional register for the computation and we don't want that
6005      // either.
6006
6007      // If the operand is a float, integer, or vector constant, spill to a
6008      // constant pool entry to get its address.
6009      const Value *OpVal = OpInfo.CallOperandVal;
6010      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
6011          isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
6012        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
6013                                                 TLI->getPointerTy());
6014      } else {
6015        // Otherwise, create a stack slot and emit a store to it before the
6016        // asm.
6017        Type *Ty = OpVal->getType();
6018        uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty);
6019        unsigned Align  = TLI->getDataLayout()->getPrefTypeAlignment(Ty);
6020        MachineFunction &MF = DAG.getMachineFunction();
6021        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
6022        SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI->getPointerTy());
6023        Chain = DAG.getStore(Chain, getCurSDLoc(),
6024                             OpInfo.CallOperand, StackSlot,
6025                             MachinePointerInfo::getFixedStack(SSFI),
6026                             false, false, 0);
6027        OpInfo.CallOperand = StackSlot;
6028      }
6029
6030      // There is no longer a Value* corresponding to this operand.
6031      OpInfo.CallOperandVal = 0;
6032
6033      // It is now an indirect operand.
6034      OpInfo.isIndirect = true;
6035    }
6036
6037    // If this constraint is for a specific register, allocate it before
6038    // anything else.
6039    if (OpInfo.ConstraintType == TargetLowering::C_Register)
6040      GetRegistersForValue(DAG, *TLI, getCurSDLoc(), OpInfo);
6041  }
6042
6043  // Second pass - Loop over all of the operands, assigning virtual or physregs
6044  // to register class operands.
6045  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6046    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6047
6048    // C_Register operands have already been allocated, Other/Memory don't need
6049    // to be.
6050    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
6051      GetRegistersForValue(DAG, *TLI, getCurSDLoc(), OpInfo);
6052  }
6053
6054  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
6055  std::vector<SDValue> AsmNodeOperands;
6056  AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
6057  AsmNodeOperands.push_back(
6058          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
6059                                      TLI->getPointerTy()));
6060
6061  // If we have a !srcloc metadata node associated with it, we want to attach
6062  // this to the ultimately generated inline asm machineinstr.  To do this, we
6063  // pass in the third operand as this (potentially null) inline asm MDNode.
6064  const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
6065  AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
6066
6067  // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
6068  // bits as operand 3.
6069  unsigned ExtraInfo = 0;
6070  if (IA->hasSideEffects())
6071    ExtraInfo |= InlineAsm::Extra_HasSideEffects;
6072  if (IA->isAlignStack())
6073    ExtraInfo |= InlineAsm::Extra_IsAlignStack;
6074  // Set the asm dialect.
6075  ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
6076
6077  // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
6078  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
6079    TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
6080
6081    // Compute the constraint code and ConstraintType to use.
6082    TLI->ComputeConstraintToUse(OpInfo, SDValue());
6083
6084    // Ideally, we would only check against memory constraints.  However, the
6085    // meaning of an other constraint can be target-specific and we can't easily
6086    // reason about it.  Therefore, be conservative and set MayLoad/MayStore
6087    // for other constriants as well.
6088    if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
6089        OpInfo.ConstraintType == TargetLowering::C_Other) {
6090      if (OpInfo.Type == InlineAsm::isInput)
6091        ExtraInfo |= InlineAsm::Extra_MayLoad;
6092      else if (OpInfo.Type == InlineAsm::isOutput)
6093        ExtraInfo |= InlineAsm::Extra_MayStore;
6094      else if (OpInfo.Type == InlineAsm::isClobber)
6095        ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
6096    }
6097  }
6098
6099  AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo,
6100                                                  TLI->getPointerTy()));
6101
6102  // Loop over all of the inputs, copying the operand values into the
6103  // appropriate registers and processing the output regs.
6104  RegsForValue RetValRegs;
6105
6106  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
6107  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
6108
6109  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6110    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6111
6112    switch (OpInfo.Type) {
6113    case InlineAsm::isOutput: {
6114      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
6115          OpInfo.ConstraintType != TargetLowering::C_Register) {
6116        // Memory output, or 'other' output (e.g. 'X' constraint).
6117        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
6118
6119        // Add information to the INLINEASM node to know about this output.
6120        unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6121        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
6122                                                        TLI->getPointerTy()));
6123        AsmNodeOperands.push_back(OpInfo.CallOperand);
6124        break;
6125      }
6126
6127      // Otherwise, this is a register or register class output.
6128
6129      // Copy the output from the appropriate register.  Find a register that
6130      // we can use.
6131      if (OpInfo.AssignedRegs.Regs.empty()) {
6132        LLVMContext &Ctx = *DAG.getContext();
6133        Ctx.emitError(CS.getInstruction(),
6134                      "couldn't allocate output register for constraint '" +
6135                          Twine(OpInfo.ConstraintCode) + "'");
6136        return;
6137      }
6138
6139      // If this is an indirect operand, store through the pointer after the
6140      // asm.
6141      if (OpInfo.isIndirect) {
6142        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
6143                                                      OpInfo.CallOperandVal));
6144      } else {
6145        // This is the result value of the call.
6146        assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6147        // Concatenate this output onto the outputs list.
6148        RetValRegs.append(OpInfo.AssignedRegs);
6149      }
6150
6151      // Add information to the INLINEASM node to know that this register is
6152      // set.
6153      OpInfo.AssignedRegs
6154          .AddInlineAsmOperands(OpInfo.isEarlyClobber
6155                                    ? InlineAsm::Kind_RegDefEarlyClobber
6156                                    : InlineAsm::Kind_RegDef,
6157                                false, 0, DAG, AsmNodeOperands);
6158      break;
6159    }
6160    case InlineAsm::isInput: {
6161      SDValue InOperandVal = OpInfo.CallOperand;
6162
6163      if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
6164        // If this is required to match an output register we have already set,
6165        // just use its register.
6166        unsigned OperandNo = OpInfo.getMatchedOperand();
6167
6168        // Scan until we find the definition we already emitted of this operand.
6169        // When we find it, create a RegsForValue operand.
6170        unsigned CurOp = InlineAsm::Op_FirstOperand;
6171        for (; OperandNo; --OperandNo) {
6172          // Advance to the next operand.
6173          unsigned OpFlag =
6174            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6175          assert((InlineAsm::isRegDefKind(OpFlag) ||
6176                  InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
6177                  InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
6178          CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
6179        }
6180
6181        unsigned OpFlag =
6182          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6183        if (InlineAsm::isRegDefKind(OpFlag) ||
6184            InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
6185          // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
6186          if (OpInfo.isIndirect) {
6187            // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
6188            LLVMContext &Ctx = *DAG.getContext();
6189            Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:"
6190                                               " don't know how to handle tied "
6191                                               "indirect register inputs");
6192            return;
6193          }
6194
6195          RegsForValue MatchedRegs;
6196          MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
6197          MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
6198          MatchedRegs.RegVTs.push_back(RegVT);
6199          MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
6200          for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
6201               i != e; ++i) {
6202            if (const TargetRegisterClass *RC = TLI->getRegClassFor(RegVT))
6203              MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC));
6204            else {
6205              LLVMContext &Ctx = *DAG.getContext();
6206              Ctx.emitError(CS.getInstruction(),
6207                            "inline asm error: This value"
6208                            " type register class is not natively supported!");
6209              return;
6210            }
6211          }
6212          // Use the produced MatchedRegs object to
6213          MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(),
6214                                    Chain, &Flag, CS.getInstruction());
6215          MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
6216                                           true, OpInfo.getMatchedOperand(),
6217                                           DAG, AsmNodeOperands);
6218          break;
6219        }
6220
6221        assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
6222        assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
6223               "Unexpected number of operands");
6224        // Add information to the INLINEASM node to know about this input.
6225        // See InlineAsm.h isUseOperandTiedToDef.
6226        OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
6227                                                    OpInfo.getMatchedOperand());
6228        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
6229                                                        TLI->getPointerTy()));
6230        AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
6231        break;
6232      }
6233
6234      // Treat indirect 'X' constraint as memory.
6235      if (OpInfo.ConstraintType == TargetLowering::C_Other &&
6236          OpInfo.isIndirect)
6237        OpInfo.ConstraintType = TargetLowering::C_Memory;
6238
6239      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
6240        std::vector<SDValue> Ops;
6241        TLI->LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
6242                                          Ops, DAG);
6243        if (Ops.empty()) {
6244          LLVMContext &Ctx = *DAG.getContext();
6245          Ctx.emitError(CS.getInstruction(),
6246                        "invalid operand for inline asm constraint '" +
6247                            Twine(OpInfo.ConstraintCode) + "'");
6248          return;
6249        }
6250
6251        // Add information to the INLINEASM node to know about this input.
6252        unsigned ResOpType =
6253          InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
6254        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6255                                                        TLI->getPointerTy()));
6256        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
6257        break;
6258      }
6259
6260      if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
6261        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
6262        assert(InOperandVal.getValueType() == TLI->getPointerTy() &&
6263               "Memory operands expect pointer values");
6264
6265        // Add information to the INLINEASM node to know about this input.
6266        unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6267        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6268                                                        TLI->getPointerTy()));
6269        AsmNodeOperands.push_back(InOperandVal);
6270        break;
6271      }
6272
6273      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
6274              OpInfo.ConstraintType == TargetLowering::C_Register) &&
6275             "Unknown constraint type!");
6276
6277      // TODO: Support this.
6278      if (OpInfo.isIndirect) {
6279        LLVMContext &Ctx = *DAG.getContext();
6280        Ctx.emitError(CS.getInstruction(),
6281                      "Don't know how to handle indirect register inputs yet "
6282                      "for constraint '" +
6283                          Twine(OpInfo.ConstraintCode) + "'");
6284        return;
6285      }
6286
6287      // Copy the input into the appropriate registers.
6288      if (OpInfo.AssignedRegs.Regs.empty()) {
6289        LLVMContext &Ctx = *DAG.getContext();
6290        Ctx.emitError(CS.getInstruction(),
6291                      "couldn't allocate input reg for constraint '" +
6292                          Twine(OpInfo.ConstraintCode) + "'");
6293        return;
6294      }
6295
6296      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(),
6297                                        Chain, &Flag, CS.getInstruction());
6298
6299      OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
6300                                               DAG, AsmNodeOperands);
6301      break;
6302    }
6303    case InlineAsm::isClobber: {
6304      // Add the clobbered value to the operand list, so that the register
6305      // allocator is aware that the physreg got clobbered.
6306      if (!OpInfo.AssignedRegs.Regs.empty())
6307        OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
6308                                                 false, 0, DAG,
6309                                                 AsmNodeOperands);
6310      break;
6311    }
6312    }
6313  }
6314
6315  // Finish up input operands.  Set the input chain and add the flag last.
6316  AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
6317  if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
6318
6319  Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(),
6320                      DAG.getVTList(MVT::Other, MVT::Glue),
6321                      &AsmNodeOperands[0], AsmNodeOperands.size());
6322  Flag = Chain.getValue(1);
6323
6324  // If this asm returns a register value, copy the result from that register
6325  // and set it as the value of the call.
6326  if (!RetValRegs.Regs.empty()) {
6327    SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
6328                                             Chain, &Flag, CS.getInstruction());
6329
6330    // FIXME: Why don't we do this for inline asms with MRVs?
6331    if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
6332      EVT ResultType = TLI->getValueType(CS.getType());
6333
6334      // If any of the results of the inline asm is a vector, it may have the
6335      // wrong width/num elts.  This can happen for register classes that can
6336      // contain multiple different value types.  The preg or vreg allocated may
6337      // not have the same VT as was expected.  Convert it to the right type
6338      // with bit_convert.
6339      if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
6340        Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(),
6341                          ResultType, Val);
6342
6343      } else if (ResultType != Val.getValueType() &&
6344                 ResultType.isInteger() && Val.getValueType().isInteger()) {
6345        // If a result value was tied to an input value, the computed result may
6346        // have a wider width than the expected result.  Extract the relevant
6347        // portion.
6348        Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val);
6349      }
6350
6351      assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
6352    }
6353
6354    setValue(CS.getInstruction(), Val);
6355    // Don't need to use this as a chain in this case.
6356    if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
6357      return;
6358  }
6359
6360  std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
6361
6362  // Process indirect outputs, first output all of the flagged copies out of
6363  // physregs.
6364  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
6365    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
6366    const Value *Ptr = IndirectStoresToEmit[i].second;
6367    SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
6368                                             Chain, &Flag, IA);
6369    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
6370  }
6371
6372  // Emit the non-flagged stores from the physregs.
6373  SmallVector<SDValue, 8> OutChains;
6374  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
6375    SDValue Val = DAG.getStore(Chain, getCurSDLoc(),
6376                               StoresToEmit[i].first,
6377                               getValue(StoresToEmit[i].second),
6378                               MachinePointerInfo(StoresToEmit[i].second),
6379                               false, false, 0);
6380    OutChains.push_back(Val);
6381  }
6382
6383  if (!OutChains.empty())
6384    Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
6385                        &OutChains[0], OutChains.size());
6386
6387  DAG.setRoot(Chain);
6388}
6389
6390void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
6391  DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
6392                          MVT::Other, getRoot(),
6393                          getValue(I.getArgOperand(0)),
6394                          DAG.getSrcValue(I.getArgOperand(0))));
6395}
6396
6397void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
6398  const TargetLowering *TLI = TM.getTargetLowering();
6399  const DataLayout &TD = *TLI->getDataLayout();
6400  SDValue V = DAG.getVAArg(TLI->getValueType(I.getType()), getCurSDLoc(),
6401                           getRoot(), getValue(I.getOperand(0)),
6402                           DAG.getSrcValue(I.getOperand(0)),
6403                           TD.getABITypeAlignment(I.getType()));
6404  setValue(&I, V);
6405  DAG.setRoot(V.getValue(1));
6406}
6407
6408void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
6409  DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
6410                          MVT::Other, getRoot(),
6411                          getValue(I.getArgOperand(0)),
6412                          DAG.getSrcValue(I.getArgOperand(0))));
6413}
6414
6415void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
6416  DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
6417                          MVT::Other, getRoot(),
6418                          getValue(I.getArgOperand(0)),
6419                          getValue(I.getArgOperand(1)),
6420                          DAG.getSrcValue(I.getArgOperand(0)),
6421                          DAG.getSrcValue(I.getArgOperand(1))));
6422}
6423
6424/// TargetLowering::LowerCallTo - This is the default LowerCallTo
6425/// implementation, which just calls LowerCall.
6426/// FIXME: When all targets are
6427/// migrated to using LowerCall, this hook should be integrated into SDISel.
6428std::pair<SDValue, SDValue>
6429TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
6430  // Handle the incoming return values from the call.
6431  CLI.Ins.clear();
6432  SmallVector<EVT, 4> RetTys;
6433  ComputeValueVTs(*this, CLI.RetTy, RetTys);
6434  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6435    EVT VT = RetTys[I];
6436    MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
6437    unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
6438    for (unsigned i = 0; i != NumRegs; ++i) {
6439      ISD::InputArg MyFlags;
6440      MyFlags.VT = RegisterVT;
6441      MyFlags.Used = CLI.IsReturnValueUsed;
6442      if (CLI.RetSExt)
6443        MyFlags.Flags.setSExt();
6444      if (CLI.RetZExt)
6445        MyFlags.Flags.setZExt();
6446      if (CLI.IsInReg)
6447        MyFlags.Flags.setInReg();
6448      CLI.Ins.push_back(MyFlags);
6449    }
6450  }
6451
6452  // Handle all of the outgoing arguments.
6453  CLI.Outs.clear();
6454  CLI.OutVals.clear();
6455  ArgListTy &Args = CLI.Args;
6456  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
6457    SmallVector<EVT, 4> ValueVTs;
6458    ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
6459    for (unsigned Value = 0, NumValues = ValueVTs.size();
6460         Value != NumValues; ++Value) {
6461      EVT VT = ValueVTs[Value];
6462      Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
6463      SDValue Op = SDValue(Args[i].Node.getNode(),
6464                           Args[i].Node.getResNo() + Value);
6465      ISD::ArgFlagsTy Flags;
6466      unsigned OriginalAlignment =
6467        getDataLayout()->getABITypeAlignment(ArgTy);
6468
6469      if (Args[i].isZExt)
6470        Flags.setZExt();
6471      if (Args[i].isSExt)
6472        Flags.setSExt();
6473      if (Args[i].isInReg)
6474        Flags.setInReg();
6475      if (Args[i].isSRet)
6476        Flags.setSRet();
6477      if (Args[i].isByVal) {
6478        Flags.setByVal();
6479        PointerType *Ty = cast<PointerType>(Args[i].Ty);
6480        Type *ElementTy = Ty->getElementType();
6481        Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy));
6482        // For ByVal, alignment should come from FE.  BE will guess if this
6483        // info is not there but there are cases it cannot get right.
6484        unsigned FrameAlign;
6485        if (Args[i].Alignment)
6486          FrameAlign = Args[i].Alignment;
6487        else
6488          FrameAlign = getByValTypeAlignment(ElementTy);
6489        Flags.setByValAlign(FrameAlign);
6490      }
6491      if (Args[i].isNest)
6492        Flags.setNest();
6493      Flags.setOrigAlign(OriginalAlignment);
6494
6495      MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT);
6496      unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT);
6497      SmallVector<SDValue, 4> Parts(NumParts);
6498      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
6499
6500      if (Args[i].isSExt)
6501        ExtendKind = ISD::SIGN_EXTEND;
6502      else if (Args[i].isZExt)
6503        ExtendKind = ISD::ZERO_EXTEND;
6504
6505      // Conservatively only handle 'returned' on non-vectors for now
6506      if (Args[i].isReturned && !Op.getValueType().isVector()) {
6507        assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues &&
6508               "unexpected use of 'returned'");
6509        // Before passing 'returned' to the target lowering code, ensure that
6510        // either the register MVT and the actual EVT are the same size or that
6511        // the return value and argument are extended in the same way; in these
6512        // cases it's safe to pass the argument register value unchanged as the
6513        // return register value (although it's at the target's option whether
6514        // to do so)
6515        // TODO: allow code generation to take advantage of partially preserved
6516        // registers rather than clobbering the entire register when the
6517        // parameter extension method is not compatible with the return
6518        // extension method
6519        if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
6520            (ExtendKind != ISD::ANY_EXTEND &&
6521             CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt))
6522        Flags.setReturned();
6523      }
6524
6525      getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts,
6526                     PartVT, CLI.CS ? CLI.CS->getInstruction() : 0, ExtendKind);
6527
6528      for (unsigned j = 0; j != NumParts; ++j) {
6529        // if it isn't first piece, alignment must be 1
6530        ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(),
6531                               i < CLI.NumFixedArgs,
6532                               i, j*Parts[j].getValueType().getStoreSize());
6533        if (NumParts > 1 && j == 0)
6534          MyFlags.Flags.setSplit();
6535        else if (j != 0)
6536          MyFlags.Flags.setOrigAlign(1);
6537
6538        CLI.Outs.push_back(MyFlags);
6539        CLI.OutVals.push_back(Parts[j]);
6540      }
6541    }
6542  }
6543
6544  SmallVector<SDValue, 4> InVals;
6545  CLI.Chain = LowerCall(CLI, InVals);
6546
6547  // Verify that the target's LowerCall behaved as expected.
6548  assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
6549         "LowerCall didn't return a valid chain!");
6550  assert((!CLI.IsTailCall || InVals.empty()) &&
6551         "LowerCall emitted a return value for a tail call!");
6552  assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
6553         "LowerCall didn't emit the correct number of values!");
6554
6555  // For a tail call, the return value is merely live-out and there aren't
6556  // any nodes in the DAG representing it. Return a special value to
6557  // indicate that a tail call has been emitted and no more Instructions
6558  // should be processed in the current block.
6559  if (CLI.IsTailCall) {
6560    CLI.DAG.setRoot(CLI.Chain);
6561    return std::make_pair(SDValue(), SDValue());
6562  }
6563
6564  DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
6565          assert(InVals[i].getNode() &&
6566                 "LowerCall emitted a null value!");
6567          assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
6568                 "LowerCall emitted a value with the wrong type!");
6569        });
6570
6571  // Collect the legal value parts into potentially illegal values
6572  // that correspond to the original function's return values.
6573  ISD::NodeType AssertOp = ISD::DELETED_NODE;
6574  if (CLI.RetSExt)
6575    AssertOp = ISD::AssertSext;
6576  else if (CLI.RetZExt)
6577    AssertOp = ISD::AssertZext;
6578  SmallVector<SDValue, 4> ReturnValues;
6579  unsigned CurReg = 0;
6580  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6581    EVT VT = RetTys[I];
6582    MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
6583    unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
6584
6585    ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
6586                                            NumRegs, RegisterVT, VT, NULL,
6587                                            AssertOp));
6588    CurReg += NumRegs;
6589  }
6590
6591  // For a function returning void, there is no return value. We can't create
6592  // such a node, so we just return a null return value in that case. In
6593  // that case, nothing will actually look at the value.
6594  if (ReturnValues.empty())
6595    return std::make_pair(SDValue(), CLI.Chain);
6596
6597  SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
6598                                CLI.DAG.getVTList(&RetTys[0], RetTys.size()),
6599                            &ReturnValues[0], ReturnValues.size());
6600  return std::make_pair(Res, CLI.Chain);
6601}
6602
6603void TargetLowering::LowerOperationWrapper(SDNode *N,
6604                                           SmallVectorImpl<SDValue> &Results,
6605                                           SelectionDAG &DAG) const {
6606  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
6607  if (Res.getNode())
6608    Results.push_back(Res);
6609}
6610
6611SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
6612  llvm_unreachable("LowerOperation not implemented for this target!");
6613}
6614
6615void
6616SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
6617  SDValue Op = getNonRegisterValue(V);
6618  assert((Op.getOpcode() != ISD::CopyFromReg ||
6619          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
6620         "Copy from a reg to the same reg!");
6621  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
6622
6623  const TargetLowering *TLI = TM.getTargetLowering();
6624  RegsForValue RFV(V->getContext(), *TLI, Reg, V->getType());
6625  SDValue Chain = DAG.getEntryNode();
6626  RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, 0, V);
6627  PendingExports.push_back(Chain);
6628}
6629
6630#include "llvm/CodeGen/SelectionDAGISel.h"
6631
6632/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
6633/// entry block, return true.  This includes arguments used by switches, since
6634/// the switch may expand into multiple basic blocks.
6635static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
6636  // With FastISel active, we may be splitting blocks, so force creation
6637  // of virtual registers for all non-dead arguments.
6638  if (FastISel)
6639    return A->use_empty();
6640
6641  const BasicBlock *Entry = A->getParent()->begin();
6642  for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end();
6643       UI != E; ++UI) {
6644    const User *U = *UI;
6645    if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U))
6646      return false;  // Use not in entry block.
6647  }
6648  return true;
6649}
6650
6651void SelectionDAGISel::LowerArguments(const Function &F) {
6652  SelectionDAG &DAG = SDB->DAG;
6653  SDLoc dl = SDB->getCurSDLoc();
6654  const TargetLowering *TLI = getTargetLowering();
6655  const DataLayout *TD = TLI->getDataLayout();
6656  SmallVector<ISD::InputArg, 16> Ins;
6657
6658  if (!FuncInfo->CanLowerReturn) {
6659    // Put in an sret pointer parameter before all the other parameters.
6660    SmallVector<EVT, 1> ValueVTs;
6661    ComputeValueVTs(*getTargetLowering(),
6662                    PointerType::getUnqual(F.getReturnType()), ValueVTs);
6663
6664    // NOTE: Assuming that a pointer will never break down to more than one VT
6665    // or one register.
6666    ISD::ArgFlagsTy Flags;
6667    Flags.setSRet();
6668    MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
6669    ISD::InputArg RetArg(Flags, RegisterVT, true, 0, 0);
6670    Ins.push_back(RetArg);
6671  }
6672
6673  // Set up the incoming argument description vector.
6674  unsigned Idx = 1;
6675  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
6676       I != E; ++I, ++Idx) {
6677    SmallVector<EVT, 4> ValueVTs;
6678    ComputeValueVTs(*TLI, I->getType(), ValueVTs);
6679    bool isArgValueUsed = !I->use_empty();
6680    for (unsigned Value = 0, NumValues = ValueVTs.size();
6681         Value != NumValues; ++Value) {
6682      EVT VT = ValueVTs[Value];
6683      Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
6684      ISD::ArgFlagsTy Flags;
6685      unsigned OriginalAlignment =
6686        TD->getABITypeAlignment(ArgTy);
6687
6688      if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
6689        Flags.setZExt();
6690      if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
6691        Flags.setSExt();
6692      if (F.getAttributes().hasAttribute(Idx, Attribute::InReg))
6693        Flags.setInReg();
6694      if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet))
6695        Flags.setSRet();
6696      if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) {
6697        Flags.setByVal();
6698        PointerType *Ty = cast<PointerType>(I->getType());
6699        Type *ElementTy = Ty->getElementType();
6700        Flags.setByValSize(TD->getTypeAllocSize(ElementTy));
6701        // For ByVal, alignment should be passed from FE.  BE will guess if
6702        // this info is not there but there are cases it cannot get right.
6703        unsigned FrameAlign;
6704        if (F.getParamAlignment(Idx))
6705          FrameAlign = F.getParamAlignment(Idx);
6706        else
6707          FrameAlign = TLI->getByValTypeAlignment(ElementTy);
6708        Flags.setByValAlign(FrameAlign);
6709      }
6710      if (F.getAttributes().hasAttribute(Idx, Attribute::Nest))
6711        Flags.setNest();
6712      Flags.setOrigAlign(OriginalAlignment);
6713
6714      MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
6715      unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT);
6716      for (unsigned i = 0; i != NumRegs; ++i) {
6717        ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed,
6718                              Idx-1, i*RegisterVT.getStoreSize());
6719        if (NumRegs > 1 && i == 0)
6720          MyFlags.Flags.setSplit();
6721        // if it isn't first piece, alignment must be 1
6722        else if (i > 0)
6723          MyFlags.Flags.setOrigAlign(1);
6724        Ins.push_back(MyFlags);
6725      }
6726    }
6727  }
6728
6729  // Call the target to set up the argument values.
6730  SmallVector<SDValue, 8> InVals;
6731  SDValue NewRoot = TLI->LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
6732                                              F.isVarArg(), Ins,
6733                                              dl, DAG, InVals);
6734
6735  // Verify that the target's LowerFormalArguments behaved as expected.
6736  assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
6737         "LowerFormalArguments didn't return a valid chain!");
6738  assert(InVals.size() == Ins.size() &&
6739         "LowerFormalArguments didn't emit the correct number of values!");
6740  DEBUG({
6741      for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6742        assert(InVals[i].getNode() &&
6743               "LowerFormalArguments emitted a null value!");
6744        assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6745               "LowerFormalArguments emitted a value with the wrong type!");
6746      }
6747    });
6748
6749  // Update the DAG with the new chain value resulting from argument lowering.
6750  DAG.setRoot(NewRoot);
6751
6752  // Set up the argument values.
6753  unsigned i = 0;
6754  Idx = 1;
6755  if (!FuncInfo->CanLowerReturn) {
6756    // Create a virtual register for the sret pointer, and put in a copy
6757    // from the sret argument into it.
6758    SmallVector<EVT, 1> ValueVTs;
6759    ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6760    MVT VT = ValueVTs[0].getSimpleVT();
6761    MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
6762    ISD::NodeType AssertOp = ISD::DELETED_NODE;
6763    SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
6764                                        RegVT, VT, NULL, AssertOp);
6765
6766    MachineFunction& MF = SDB->DAG.getMachineFunction();
6767    MachineRegisterInfo& RegInfo = MF.getRegInfo();
6768    unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
6769    FuncInfo->DemoteRegister = SRetReg;
6770    NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(),
6771                                    SRetReg, ArgValue);
6772    DAG.setRoot(NewRoot);
6773
6774    // i indexes lowered arguments.  Bump it past the hidden sret argument.
6775    // Idx indexes LLVM arguments.  Don't touch it.
6776    ++i;
6777  }
6778
6779  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
6780      ++I, ++Idx) {
6781    SmallVector<SDValue, 4> ArgValues;
6782    SmallVector<EVT, 4> ValueVTs;
6783    ComputeValueVTs(*TLI, I->getType(), ValueVTs);
6784    unsigned NumValues = ValueVTs.size();
6785
6786    // If this argument is unused then remember its value. It is used to generate
6787    // debugging information.
6788    if (I->use_empty() && NumValues) {
6789      SDB->setUnusedArgValue(I, InVals[i]);
6790
6791      // Also remember any frame index for use in FastISel.
6792      if (FrameIndexSDNode *FI =
6793          dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
6794        FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
6795    }
6796
6797    for (unsigned Val = 0; Val != NumValues; ++Val) {
6798      EVT VT = ValueVTs[Val];
6799      MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
6800      unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT);
6801
6802      if (!I->use_empty()) {
6803        ISD::NodeType AssertOp = ISD::DELETED_NODE;
6804        if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
6805          AssertOp = ISD::AssertSext;
6806        else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
6807          AssertOp = ISD::AssertZext;
6808
6809        ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
6810                                             NumParts, PartVT, VT,
6811                                             NULL, AssertOp));
6812      }
6813
6814      i += NumParts;
6815    }
6816
6817    // We don't need to do anything else for unused arguments.
6818    if (ArgValues.empty())
6819      continue;
6820
6821    // Note down frame index.
6822    if (FrameIndexSDNode *FI =
6823        dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
6824      FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
6825
6826    SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues,
6827                                     SDB->getCurSDLoc());
6828
6829    SDB->setValue(I, Res);
6830    if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
6831      if (LoadSDNode *LNode =
6832          dyn_cast<LoadSDNode>(Res.getOperand(0).getNode()))
6833        if (FrameIndexSDNode *FI =
6834            dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
6835        FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
6836    }
6837
6838    // If this argument is live outside of the entry block, insert a copy from
6839    // wherever we got it to the vreg that other BB's will reference it as.
6840    if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
6841      // If we can, though, try to skip creating an unnecessary vreg.
6842      // FIXME: This isn't very clean... it would be nice to make this more
6843      // general.  It's also subtly incompatible with the hacks FastISel
6844      // uses with vregs.
6845      unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
6846      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
6847        FuncInfo->ValueMap[I] = Reg;
6848        continue;
6849      }
6850    }
6851    if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) {
6852      FuncInfo->InitializeRegForValue(I);
6853      SDB->CopyToExportRegsIfNeeded(I);
6854    }
6855  }
6856
6857  assert(i == InVals.size() && "Argument register count mismatch!");
6858
6859  // Finally, if the target has anything special to do, allow it to do so.
6860  // FIXME: this should insert code into the DAG!
6861  EmitFunctionEntryCode();
6862}
6863
6864/// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
6865/// ensure constants are generated when needed.  Remember the virtual registers
6866/// that need to be added to the Machine PHI nodes as input.  We cannot just
6867/// directly add them, because expansion might result in multiple MBB's for one
6868/// BB.  As such, the start of the BB might correspond to a different MBB than
6869/// the end.
6870///
6871void
6872SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
6873  const TerminatorInst *TI = LLVMBB->getTerminator();
6874
6875  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6876
6877  // Check successor nodes' PHI nodes that expect a constant to be available
6878  // from this block.
6879  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6880    const BasicBlock *SuccBB = TI->getSuccessor(succ);
6881    if (!isa<PHINode>(SuccBB->begin())) continue;
6882    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
6883
6884    // If this terminator has multiple identical successors (common for
6885    // switches), only handle each succ once.
6886    if (!SuccsHandled.insert(SuccMBB)) continue;
6887
6888    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6889
6890    // At this point we know that there is a 1-1 correspondence between LLVM PHI
6891    // nodes and Machine PHI nodes, but the incoming operands have not been
6892    // emitted yet.
6893    for (BasicBlock::const_iterator I = SuccBB->begin();
6894         const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
6895      // Ignore dead phi's.
6896      if (PN->use_empty()) continue;
6897
6898      // Skip empty types
6899      if (PN->getType()->isEmptyTy())
6900        continue;
6901
6902      unsigned Reg;
6903      const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6904
6905      if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
6906        unsigned &RegOut = ConstantsOut[C];
6907        if (RegOut == 0) {
6908          RegOut = FuncInfo.CreateRegs(C->getType());
6909          CopyValueToVirtualRegister(C, RegOut);
6910        }
6911        Reg = RegOut;
6912      } else {
6913        DenseMap<const Value *, unsigned>::iterator I =
6914          FuncInfo.ValueMap.find(PHIOp);
6915        if (I != FuncInfo.ValueMap.end())
6916          Reg = I->second;
6917        else {
6918          assert(isa<AllocaInst>(PHIOp) &&
6919                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
6920                 "Didn't codegen value into a register!??");
6921          Reg = FuncInfo.CreateRegs(PHIOp->getType());
6922          CopyValueToVirtualRegister(PHIOp, Reg);
6923        }
6924      }
6925
6926      // Remember that this register needs to added to the machine PHI node as
6927      // the input for this MBB.
6928      SmallVector<EVT, 4> ValueVTs;
6929      const TargetLowering *TLI = TM.getTargetLowering();
6930      ComputeValueVTs(*TLI, PN->getType(), ValueVTs);
6931      for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
6932        EVT VT = ValueVTs[vti];
6933        unsigned NumRegisters = TLI->getNumRegisters(*DAG.getContext(), VT);
6934        for (unsigned i = 0, e = NumRegisters; i != e; ++i)
6935          FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
6936        Reg += NumRegisters;
6937      }
6938    }
6939  }
6940
6941  ConstantsOut.clear();
6942}
6943