SelectionDAGBuilder.cpp revision 425e951734c3a0615e22ec94ffa51cc16ce6e483
1//===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements routines for translating from LLVM IR into SelectionDAG IR.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "SelectionDAGBuilder.h"
16#include "SDNodeDbgValue.h"
17#include "llvm/ADT/BitVector.h"
18#include "llvm/ADT/PostOrderIterator.h"
19#include "llvm/ADT/SmallSet.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/ConstantFolding.h"
22#include "llvm/Analysis/ValueTracking.h"
23#include "llvm/CallingConv.h"
24#include "llvm/CodeGen/Analysis.h"
25#include "llvm/CodeGen/FastISel.h"
26#include "llvm/CodeGen/FunctionLoweringInfo.h"
27#include "llvm/CodeGen/GCMetadata.h"
28#include "llvm/CodeGen/GCStrategy.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineInstrBuilder.h"
32#include "llvm/CodeGen/MachineJumpTableInfo.h"
33#include "llvm/CodeGen/MachineModuleInfo.h"
34#include "llvm/CodeGen/MachineRegisterInfo.h"
35#include "llvm/CodeGen/SelectionDAG.h"
36#include "llvm/Constants.h"
37#include "llvm/DataLayout.h"
38#include "llvm/DebugInfo.h"
39#include "llvm/DerivedTypes.h"
40#include "llvm/Function.h"
41#include "llvm/GlobalVariable.h"
42#include "llvm/InlineAsm.h"
43#include "llvm/Instructions.h"
44#include "llvm/IntrinsicInst.h"
45#include "llvm/Intrinsics.h"
46#include "llvm/LLVMContext.h"
47#include "llvm/Module.h"
48#include "llvm/Support/CommandLine.h"
49#include "llvm/Support/Debug.h"
50#include "llvm/Support/ErrorHandling.h"
51#include "llvm/Support/IntegersSubsetMapping.h"
52#include "llvm/Support/MathExtras.h"
53#include "llvm/Support/raw_ostream.h"
54#include "llvm/Target/TargetFrameLowering.h"
55#include "llvm/Target/TargetInstrInfo.h"
56#include "llvm/Target/TargetIntrinsicInfo.h"
57#include "llvm/Target/TargetLibraryInfo.h"
58#include "llvm/Target/TargetLowering.h"
59#include "llvm/Target/TargetOptions.h"
60#include <algorithm>
61using namespace llvm;
62
63/// LimitFloatPrecision - Generate low-precision inline sequences for
64/// some float libcalls (6, 8 or 12 bits).
65static unsigned LimitFloatPrecision;
66
67static cl::opt<unsigned, true>
68LimitFPPrecision("limit-float-precision",
69                 cl::desc("Generate low-precision inline sequences "
70                          "for some float libcalls"),
71                 cl::location(LimitFloatPrecision),
72                 cl::init(0));
73
74// Limit the width of DAG chains. This is important in general to prevent
75// prevent DAG-based analysis from blowing up. For example, alias analysis and
76// load clustering may not complete in reasonable time. It is difficult to
77// recognize and avoid this situation within each individual analysis, and
78// future analyses are likely to have the same behavior. Limiting DAG width is
79// the safe approach, and will be especially important with global DAGs.
80//
81// MaxParallelChains default is arbitrarily high to avoid affecting
82// optimization, but could be lowered to improve compile time. Any ld-ld-st-st
83// sequence over this should have been converted to llvm.memcpy by the
84// frontend. It easy to induce this behavior with .ll code such as:
85// %buffer = alloca [4096 x i8]
86// %data = load [4096 x i8]* %argPtr
87// store [4096 x i8] %data, [4096 x i8]* %buffer
88static const unsigned MaxParallelChains = 64;
89
90static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
91                                      const SDValue *Parts, unsigned NumParts,
92                                      EVT PartVT, EVT ValueVT, const Value *V);
93
94/// getCopyFromParts - Create a value that contains the specified legal parts
95/// combined into the value they represent.  If the parts combine to a type
96/// larger then ValueVT then AssertOp can be used to specify whether the extra
97/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
98/// (ISD::AssertSext).
99static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL,
100                                const SDValue *Parts,
101                                unsigned NumParts, EVT PartVT, EVT ValueVT,
102                                const Value *V,
103                                ISD::NodeType AssertOp = ISD::DELETED_NODE) {
104  if (ValueVT.isVector())
105    return getCopyFromPartsVector(DAG, DL, Parts, NumParts,
106                                  PartVT, ValueVT, V);
107
108  assert(NumParts > 0 && "No parts to assemble!");
109  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
110  SDValue Val = Parts[0];
111
112  if (NumParts > 1) {
113    // Assemble the value from multiple parts.
114    if (ValueVT.isInteger()) {
115      unsigned PartBits = PartVT.getSizeInBits();
116      unsigned ValueBits = ValueVT.getSizeInBits();
117
118      // Assemble the power of 2 part.
119      unsigned RoundParts = NumParts & (NumParts - 1) ?
120        1 << Log2_32(NumParts) : NumParts;
121      unsigned RoundBits = PartBits * RoundParts;
122      EVT RoundVT = RoundBits == ValueBits ?
123        ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
124      SDValue Lo, Hi;
125
126      EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
127
128      if (RoundParts > 2) {
129        Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
130                              PartVT, HalfVT, V);
131        Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
132                              RoundParts / 2, PartVT, HalfVT, V);
133      } else {
134        Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
135        Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
136      }
137
138      if (TLI.isBigEndian())
139        std::swap(Lo, Hi);
140
141      Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
142
143      if (RoundParts < NumParts) {
144        // Assemble the trailing non-power-of-2 part.
145        unsigned OddParts = NumParts - RoundParts;
146        EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
147        Hi = getCopyFromParts(DAG, DL,
148                              Parts + RoundParts, OddParts, PartVT, OddVT, V);
149
150        // Combine the round and odd parts.
151        Lo = Val;
152        if (TLI.isBigEndian())
153          std::swap(Lo, Hi);
154        EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
155        Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
156        Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
157                         DAG.getConstant(Lo.getValueType().getSizeInBits(),
158                                         TLI.getPointerTy()));
159        Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
160        Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
161      }
162    } else if (PartVT.isFloatingPoint()) {
163      // FP split into multiple FP parts (for ppcf128)
164      assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) &&
165             "Unexpected split");
166      SDValue Lo, Hi;
167      Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
168      Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
169      if (TLI.isBigEndian())
170        std::swap(Lo, Hi);
171      Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
172    } else {
173      // FP split into integer parts (soft fp)
174      assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
175             !PartVT.isVector() && "Unexpected split");
176      EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
177      Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V);
178    }
179  }
180
181  // There is now one part, held in Val.  Correct it to match ValueVT.
182  PartVT = Val.getValueType();
183
184  if (PartVT == ValueVT)
185    return Val;
186
187  if (PartVT.isInteger() && ValueVT.isInteger()) {
188    if (ValueVT.bitsLT(PartVT)) {
189      // For a truncate, see if we have any information to
190      // indicate whether the truncated bits will always be
191      // zero or sign-extension.
192      if (AssertOp != ISD::DELETED_NODE)
193        Val = DAG.getNode(AssertOp, DL, PartVT, Val,
194                          DAG.getValueType(ValueVT));
195      return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
196    }
197    return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
198  }
199
200  if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
201    // FP_ROUND's are always exact here.
202    if (ValueVT.bitsLT(Val.getValueType()))
203      return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val,
204                         DAG.getTargetConstant(1, TLI.getPointerTy()));
205
206    return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
207  }
208
209  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
210    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
211
212  llvm_unreachable("Unknown mismatch!");
213}
214
215/// getCopyFromPartsVector - Create a value that contains the specified legal
216/// parts combined into the value they represent.  If the parts combine to a
217/// type larger then ValueVT then AssertOp can be used to specify whether the
218/// extra bits are known to be zero (ISD::AssertZext) or sign extended from
219/// ValueVT (ISD::AssertSext).
220static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
221                                      const SDValue *Parts, unsigned NumParts,
222                                      EVT PartVT, EVT ValueVT, const Value *V) {
223  assert(ValueVT.isVector() && "Not a vector value");
224  assert(NumParts > 0 && "No parts to assemble!");
225  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
226  SDValue Val = Parts[0];
227
228  // Handle a multi-element vector.
229  if (NumParts > 1) {
230    EVT IntermediateVT, RegisterVT;
231    unsigned NumIntermediates;
232    unsigned NumRegs =
233    TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
234                               NumIntermediates, RegisterVT);
235    assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
236    NumParts = NumRegs; // Silence a compiler warning.
237    assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
238    assert(RegisterVT == Parts[0].getValueType() &&
239           "Part type doesn't match part!");
240
241    // Assemble the parts into intermediate operands.
242    SmallVector<SDValue, 8> Ops(NumIntermediates);
243    if (NumIntermediates == NumParts) {
244      // If the register was not expanded, truncate or copy the value,
245      // as appropriate.
246      for (unsigned i = 0; i != NumParts; ++i)
247        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
248                                  PartVT, IntermediateVT, V);
249    } else if (NumParts > 0) {
250      // If the intermediate type was expanded, build the intermediate
251      // operands from the parts.
252      assert(NumParts % NumIntermediates == 0 &&
253             "Must expand into a divisible number of parts!");
254      unsigned Factor = NumParts / NumIntermediates;
255      for (unsigned i = 0; i != NumIntermediates; ++i)
256        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
257                                  PartVT, IntermediateVT, V);
258    }
259
260    // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
261    // intermediate operands.
262    Val = DAG.getNode(IntermediateVT.isVector() ?
263                      ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL,
264                      ValueVT, &Ops[0], NumIntermediates);
265  }
266
267  // There is now one part, held in Val.  Correct it to match ValueVT.
268  PartVT = Val.getValueType();
269
270  if (PartVT == ValueVT)
271    return Val;
272
273  if (PartVT.isVector()) {
274    // If the element type of the source/dest vectors are the same, but the
275    // parts vector has more elements than the value vector, then we have a
276    // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
277    // elements we want.
278    if (PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
279      assert(PartVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
280             "Cannot narrow, it would be a lossy transformation");
281      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
282                         DAG.getIntPtrConstant(0));
283    }
284
285    // Vector/Vector bitcast.
286    if (ValueVT.getSizeInBits() == PartVT.getSizeInBits())
287      return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
288
289    assert(PartVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
290      "Cannot handle this kind of promotion");
291    // Promoted vector extract
292    bool Smaller = ValueVT.bitsLE(PartVT);
293    return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
294                       DL, ValueVT, Val);
295
296  }
297
298  // Trivial bitcast if the types are the same size and the destination
299  // vector type is legal.
300  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits() &&
301      TLI.isTypeLegal(ValueVT))
302    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
303
304  // Handle cases such as i8 -> <1 x i1>
305  if (ValueVT.getVectorNumElements() != 1) {
306    LLVMContext &Ctx = *DAG.getContext();
307    Twine ErrMsg("non-trivial scalar-to-vector conversion");
308    if (const Instruction *I = dyn_cast_or_null<Instruction>(V)) {
309      if (const CallInst *CI = dyn_cast<CallInst>(I))
310        if (isa<InlineAsm>(CI->getCalledValue()))
311          ErrMsg = ErrMsg + ", possible invalid constraint for vector type";
312      Ctx.emitError(I, ErrMsg);
313    } else {
314      Ctx.emitError(ErrMsg);
315    }
316    report_fatal_error("Cannot handle scalar-to-vector conversion!");
317  }
318
319  if (ValueVT.getVectorNumElements() == 1 &&
320      ValueVT.getVectorElementType() != PartVT) {
321    bool Smaller = ValueVT.bitsLE(PartVT);
322    Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
323                       DL, ValueVT.getScalarType(), Val);
324  }
325
326  return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
327}
328
329static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl,
330                                 SDValue Val, SDValue *Parts, unsigned NumParts,
331                                 EVT PartVT, const Value *V);
332
333/// getCopyToParts - Create a series of nodes that contain the specified value
334/// split into legal parts.  If the parts contain more bits than Val, then, for
335/// integers, ExtendKind can be used to specify how to generate the extra bits.
336static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL,
337                           SDValue Val, SDValue *Parts, unsigned NumParts,
338                           EVT PartVT, const Value *V,
339                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
340  EVT ValueVT = Val.getValueType();
341
342  // Handle the vector case separately.
343  if (ValueVT.isVector())
344    return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V);
345
346  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
347  unsigned PartBits = PartVT.getSizeInBits();
348  unsigned OrigNumParts = NumParts;
349  assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
350
351  if (NumParts == 0)
352    return;
353
354  assert(!ValueVT.isVector() && "Vector case handled elsewhere");
355  if (PartVT == ValueVT) {
356    assert(NumParts == 1 && "No-op copy with multiple parts!");
357    Parts[0] = Val;
358    return;
359  }
360
361  if (NumParts * PartBits > ValueVT.getSizeInBits()) {
362    // If the parts cover more bits than the value has, promote the value.
363    if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
364      assert(NumParts == 1 && "Do not know what to promote to!");
365      Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
366    } else {
367      assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
368             ValueVT.isInteger() &&
369             "Unknown mismatch!");
370      ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
371      Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
372      if (PartVT == MVT::x86mmx)
373        Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
374    }
375  } else if (PartBits == ValueVT.getSizeInBits()) {
376    // Different types of the same size.
377    assert(NumParts == 1 && PartVT != ValueVT);
378    Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
379  } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
380    // If the parts cover less bits than value has, truncate the value.
381    assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
382           ValueVT.isInteger() &&
383           "Unknown mismatch!");
384    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
385    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
386    if (PartVT == MVT::x86mmx)
387      Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
388  }
389
390  // The value may have changed - recompute ValueVT.
391  ValueVT = Val.getValueType();
392  assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
393         "Failed to tile the value with PartVT!");
394
395  if (NumParts == 1) {
396    if (PartVT != ValueVT) {
397      LLVMContext &Ctx = *DAG.getContext();
398      Twine ErrMsg("scalar-to-vector conversion failed");
399      if (const Instruction *I = dyn_cast_or_null<Instruction>(V)) {
400        if (const CallInst *CI = dyn_cast<CallInst>(I))
401          if (isa<InlineAsm>(CI->getCalledValue()))
402            ErrMsg = ErrMsg + ", possible invalid constraint for vector type";
403        Ctx.emitError(I, ErrMsg);
404      } else {
405        Ctx.emitError(ErrMsg);
406      }
407    }
408
409    Parts[0] = Val;
410    return;
411  }
412
413  // Expand the value into multiple parts.
414  if (NumParts & (NumParts - 1)) {
415    // The number of parts is not a power of 2.  Split off and copy the tail.
416    assert(PartVT.isInteger() && ValueVT.isInteger() &&
417           "Do not know what to expand to!");
418    unsigned RoundParts = 1 << Log2_32(NumParts);
419    unsigned RoundBits = RoundParts * PartBits;
420    unsigned OddParts = NumParts - RoundParts;
421    SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
422                                 DAG.getIntPtrConstant(RoundBits));
423    getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V);
424
425    if (TLI.isBigEndian())
426      // The odd parts were reversed by getCopyToParts - unreverse them.
427      std::reverse(Parts + RoundParts, Parts + NumParts);
428
429    NumParts = RoundParts;
430    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
431    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
432  }
433
434  // The number of parts is a power of 2.  Repeatedly bisect the value using
435  // EXTRACT_ELEMENT.
436  Parts[0] = DAG.getNode(ISD::BITCAST, DL,
437                         EVT::getIntegerVT(*DAG.getContext(),
438                                           ValueVT.getSizeInBits()),
439                         Val);
440
441  for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
442    for (unsigned i = 0; i < NumParts; i += StepSize) {
443      unsigned ThisBits = StepSize * PartBits / 2;
444      EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
445      SDValue &Part0 = Parts[i];
446      SDValue &Part1 = Parts[i+StepSize/2];
447
448      Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
449                          ThisVT, Part0, DAG.getIntPtrConstant(1));
450      Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
451                          ThisVT, Part0, DAG.getIntPtrConstant(0));
452
453      if (ThisBits == PartBits && ThisVT != PartVT) {
454        Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
455        Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
456      }
457    }
458  }
459
460  if (TLI.isBigEndian())
461    std::reverse(Parts, Parts + OrigNumParts);
462}
463
464
465/// getCopyToPartsVector - Create a series of nodes that contain the specified
466/// value split into legal parts.
467static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL,
468                                 SDValue Val, SDValue *Parts, unsigned NumParts,
469                                 EVT PartVT, const Value *V) {
470  EVT ValueVT = Val.getValueType();
471  assert(ValueVT.isVector() && "Not a vector");
472  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
473
474  if (NumParts == 1) {
475    if (PartVT == ValueVT) {
476      // Nothing to do.
477    } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
478      // Bitconvert vector->vector case.
479      Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
480    } else if (PartVT.isVector() &&
481               PartVT.getVectorElementType() == ValueVT.getVectorElementType() &&
482               PartVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
483      EVT ElementVT = PartVT.getVectorElementType();
484      // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
485      // undef elements.
486      SmallVector<SDValue, 16> Ops;
487      for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
488        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
489                                  ElementVT, Val, DAG.getIntPtrConstant(i)));
490
491      for (unsigned i = ValueVT.getVectorNumElements(),
492           e = PartVT.getVectorNumElements(); i != e; ++i)
493        Ops.push_back(DAG.getUNDEF(ElementVT));
494
495      Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size());
496
497      // FIXME: Use CONCAT for 2x -> 4x.
498
499      //SDValue UndefElts = DAG.getUNDEF(VectorTy);
500      //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
501    } else if (PartVT.isVector() &&
502               PartVT.getVectorElementType().bitsGE(
503                 ValueVT.getVectorElementType()) &&
504               PartVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
505
506      // Promoted vector extract
507      bool Smaller = PartVT.bitsLE(ValueVT);
508      Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
509                        DL, PartVT, Val);
510    } else{
511      // Vector -> scalar conversion.
512      assert(ValueVT.getVectorNumElements() == 1 &&
513             "Only trivial vector-to-scalar conversions should get here!");
514      Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
515                        PartVT, Val, DAG.getIntPtrConstant(0));
516
517      bool Smaller = ValueVT.bitsLE(PartVT);
518      Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
519                         DL, PartVT, Val);
520    }
521
522    Parts[0] = Val;
523    return;
524  }
525
526  // Handle a multi-element vector.
527  EVT IntermediateVT, RegisterVT;
528  unsigned NumIntermediates;
529  unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
530                                                IntermediateVT,
531                                                NumIntermediates, RegisterVT);
532  unsigned NumElements = ValueVT.getVectorNumElements();
533
534  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
535  NumParts = NumRegs; // Silence a compiler warning.
536  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
537
538  // Split the vector into intermediate operands.
539  SmallVector<SDValue, 8> Ops(NumIntermediates);
540  for (unsigned i = 0; i != NumIntermediates; ++i) {
541    if (IntermediateVT.isVector())
542      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
543                           IntermediateVT, Val,
544                   DAG.getIntPtrConstant(i * (NumElements / NumIntermediates)));
545    else
546      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
547                           IntermediateVT, Val, DAG.getIntPtrConstant(i));
548  }
549
550  // Split the intermediate operands into legal parts.
551  if (NumParts == NumIntermediates) {
552    // If the register was not expanded, promote or copy the value,
553    // as appropriate.
554    for (unsigned i = 0; i != NumParts; ++i)
555      getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V);
556  } else if (NumParts > 0) {
557    // If the intermediate type was expanded, split each the value into
558    // legal parts.
559    assert(NumParts % NumIntermediates == 0 &&
560           "Must expand into a divisible number of parts!");
561    unsigned Factor = NumParts / NumIntermediates;
562    for (unsigned i = 0; i != NumIntermediates; ++i)
563      getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V);
564  }
565}
566
567namespace {
568  /// RegsForValue - This struct represents the registers (physical or virtual)
569  /// that a particular set of values is assigned, and the type information
570  /// about the value. The most common situation is to represent one value at a
571  /// time, but struct or array values are handled element-wise as multiple
572  /// values.  The splitting of aggregates is performed recursively, so that we
573  /// never have aggregate-typed registers. The values at this point do not
574  /// necessarily have legal types, so each value may require one or more
575  /// registers of some legal type.
576  ///
577  struct RegsForValue {
578    /// ValueVTs - The value types of the values, which may not be legal, and
579    /// may need be promoted or synthesized from one or more registers.
580    ///
581    SmallVector<EVT, 4> ValueVTs;
582
583    /// RegVTs - The value types of the registers. This is the same size as
584    /// ValueVTs and it records, for each value, what the type of the assigned
585    /// register or registers are. (Individual values are never synthesized
586    /// from more than one type of register.)
587    ///
588    /// With virtual registers, the contents of RegVTs is redundant with TLI's
589    /// getRegisterType member function, however when with physical registers
590    /// it is necessary to have a separate record of the types.
591    ///
592    SmallVector<EVT, 4> RegVTs;
593
594    /// Regs - This list holds the registers assigned to the values.
595    /// Each legal or promoted value requires one register, and each
596    /// expanded value requires multiple registers.
597    ///
598    SmallVector<unsigned, 4> Regs;
599
600    RegsForValue() {}
601
602    RegsForValue(const SmallVector<unsigned, 4> &regs,
603                 EVT regvt, EVT valuevt)
604      : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
605
606    RegsForValue(LLVMContext &Context, const TargetLowering &tli,
607                 unsigned Reg, Type *Ty) {
608      ComputeValueVTs(tli, Ty, ValueVTs);
609
610      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
611        EVT ValueVT = ValueVTs[Value];
612        unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
613        EVT RegisterVT = tli.getRegisterType(Context, ValueVT);
614        for (unsigned i = 0; i != NumRegs; ++i)
615          Regs.push_back(Reg + i);
616        RegVTs.push_back(RegisterVT);
617        Reg += NumRegs;
618      }
619    }
620
621    /// areValueTypesLegal - Return true if types of all the values are legal.
622    bool areValueTypesLegal(const TargetLowering &TLI) {
623      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
624        EVT RegisterVT = RegVTs[Value];
625        if (!TLI.isTypeLegal(RegisterVT))
626          return false;
627      }
628      return true;
629    }
630
631    /// append - Add the specified values to this one.
632    void append(const RegsForValue &RHS) {
633      ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
634      RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
635      Regs.append(RHS.Regs.begin(), RHS.Regs.end());
636    }
637
638    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
639    /// this value and returns the result as a ValueVTs value.  This uses
640    /// Chain/Flag as the input and updates them for the output Chain/Flag.
641    /// If the Flag pointer is NULL, no flag is used.
642    SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
643                            DebugLoc dl,
644                            SDValue &Chain, SDValue *Flag,
645                            const Value *V = 0) const;
646
647    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
648    /// specified value into the registers specified by this object.  This uses
649    /// Chain/Flag as the input and updates them for the output Chain/Flag.
650    /// If the Flag pointer is NULL, no flag is used.
651    void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
652                       SDValue &Chain, SDValue *Flag, const Value *V) const;
653
654    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
655    /// operand list.  This adds the code marker, matching input operand index
656    /// (if applicable), and includes the number of values added into it.
657    void AddInlineAsmOperands(unsigned Kind,
658                              bool HasMatching, unsigned MatchingIdx,
659                              SelectionDAG &DAG,
660                              std::vector<SDValue> &Ops) const;
661  };
662}
663
664/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
665/// this value and returns the result as a ValueVT value.  This uses
666/// Chain/Flag as the input and updates them for the output Chain/Flag.
667/// If the Flag pointer is NULL, no flag is used.
668SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
669                                      FunctionLoweringInfo &FuncInfo,
670                                      DebugLoc dl,
671                                      SDValue &Chain, SDValue *Flag,
672                                      const Value *V) const {
673  // A Value with type {} or [0 x %t] needs no registers.
674  if (ValueVTs.empty())
675    return SDValue();
676
677  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
678
679  // Assemble the legal parts into the final values.
680  SmallVector<SDValue, 4> Values(ValueVTs.size());
681  SmallVector<SDValue, 8> Parts;
682  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
683    // Copy the legal parts from the registers.
684    EVT ValueVT = ValueVTs[Value];
685    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
686    EVT RegisterVT = RegVTs[Value];
687
688    Parts.resize(NumRegs);
689    for (unsigned i = 0; i != NumRegs; ++i) {
690      SDValue P;
691      if (Flag == 0) {
692        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
693      } else {
694        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
695        *Flag = P.getValue(2);
696      }
697
698      Chain = P.getValue(1);
699      Parts[i] = P;
700
701      // If the source register was virtual and if we know something about it,
702      // add an assert node.
703      if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
704          !RegisterVT.isInteger() || RegisterVT.isVector())
705        continue;
706
707      const FunctionLoweringInfo::LiveOutInfo *LOI =
708        FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
709      if (!LOI)
710        continue;
711
712      unsigned RegSize = RegisterVT.getSizeInBits();
713      unsigned NumSignBits = LOI->NumSignBits;
714      unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
715
716      // FIXME: We capture more information than the dag can represent.  For
717      // now, just use the tightest assertzext/assertsext possible.
718      bool isSExt = true;
719      EVT FromVT(MVT::Other);
720      if (NumSignBits == RegSize)
721        isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
722      else if (NumZeroBits >= RegSize-1)
723        isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
724      else if (NumSignBits > RegSize-8)
725        isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
726      else if (NumZeroBits >= RegSize-8)
727        isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
728      else if (NumSignBits > RegSize-16)
729        isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
730      else if (NumZeroBits >= RegSize-16)
731        isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
732      else if (NumSignBits > RegSize-32)
733        isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
734      else if (NumZeroBits >= RegSize-32)
735        isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
736      else
737        continue;
738
739      // Add an assertion node.
740      assert(FromVT != MVT::Other);
741      Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
742                             RegisterVT, P, DAG.getValueType(FromVT));
743    }
744
745    Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
746                                     NumRegs, RegisterVT, ValueVT, V);
747    Part += NumRegs;
748    Parts.clear();
749  }
750
751  return DAG.getNode(ISD::MERGE_VALUES, dl,
752                     DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
753                     &Values[0], ValueVTs.size());
754}
755
756/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
757/// specified value into the registers specified by this object.  This uses
758/// Chain/Flag as the input and updates them for the output Chain/Flag.
759/// If the Flag pointer is NULL, no flag is used.
760void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
761                                 SDValue &Chain, SDValue *Flag,
762                                 const Value *V) const {
763  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
764
765  // Get the list of the values's legal parts.
766  unsigned NumRegs = Regs.size();
767  SmallVector<SDValue, 8> Parts(NumRegs);
768  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
769    EVT ValueVT = ValueVTs[Value];
770    unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
771    EVT RegisterVT = RegVTs[Value];
772    ISD::NodeType ExtendKind =
773      TLI.isZExtFree(Val, RegisterVT)? ISD::ZERO_EXTEND: ISD::ANY_EXTEND;
774
775    getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
776                   &Parts[Part], NumParts, RegisterVT, V, ExtendKind);
777    Part += NumParts;
778  }
779
780  // Copy the parts into the registers.
781  SmallVector<SDValue, 8> Chains(NumRegs);
782  for (unsigned i = 0; i != NumRegs; ++i) {
783    SDValue Part;
784    if (Flag == 0) {
785      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
786    } else {
787      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
788      *Flag = Part.getValue(1);
789    }
790
791    Chains[i] = Part.getValue(0);
792  }
793
794  if (NumRegs == 1 || Flag)
795    // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
796    // flagged to it. That is the CopyToReg nodes and the user are considered
797    // a single scheduling unit. If we create a TokenFactor and return it as
798    // chain, then the TokenFactor is both a predecessor (operand) of the
799    // user as well as a successor (the TF operands are flagged to the user).
800    // c1, f1 = CopyToReg
801    // c2, f2 = CopyToReg
802    // c3     = TokenFactor c1, c2
803    // ...
804    //        = op c3, ..., f2
805    Chain = Chains[NumRegs-1];
806  else
807    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
808}
809
810/// AddInlineAsmOperands - Add this value to the specified inlineasm node
811/// operand list.  This adds the code marker and includes the number of
812/// values added into it.
813void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
814                                        unsigned MatchingIdx,
815                                        SelectionDAG &DAG,
816                                        std::vector<SDValue> &Ops) const {
817  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
818
819  unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
820  if (HasMatching)
821    Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
822  else if (!Regs.empty() &&
823           TargetRegisterInfo::isVirtualRegister(Regs.front())) {
824    // Put the register class of the virtual registers in the flag word.  That
825    // way, later passes can recompute register class constraints for inline
826    // assembly as well as normal instructions.
827    // Don't do this for tied operands that can use the regclass information
828    // from the def.
829    const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
830    const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
831    Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
832  }
833
834  SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
835  Ops.push_back(Res);
836
837  for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
838    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
839    EVT RegisterVT = RegVTs[Value];
840    for (unsigned i = 0; i != NumRegs; ++i) {
841      assert(Reg < Regs.size() && "Mismatch in # registers expected");
842      Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
843    }
844  }
845}
846
847void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa,
848                               const TargetLibraryInfo *li) {
849  AA = &aa;
850  GFI = gfi;
851  LibInfo = li;
852  TD = DAG.getTarget().getDataLayout();
853  Context = DAG.getContext();
854  LPadToCallSiteMap.clear();
855}
856
857/// clear - Clear out the current SelectionDAG and the associated
858/// state and prepare this SelectionDAGBuilder object to be used
859/// for a new block. This doesn't clear out information about
860/// additional blocks that are needed to complete switch lowering
861/// or PHI node updating; that information is cleared out as it is
862/// consumed.
863void SelectionDAGBuilder::clear() {
864  NodeMap.clear();
865  UnusedArgNodeMap.clear();
866  PendingLoads.clear();
867  PendingExports.clear();
868  CurDebugLoc = DebugLoc();
869  HasTailCall = false;
870}
871
872/// clearDanglingDebugInfo - Clear the dangling debug information
873/// map. This function is separated from the clear so that debug
874/// information that is dangling in a basic block can be properly
875/// resolved in a different basic block. This allows the
876/// SelectionDAG to resolve dangling debug information attached
877/// to PHI nodes.
878void SelectionDAGBuilder::clearDanglingDebugInfo() {
879  DanglingDebugInfoMap.clear();
880}
881
882/// getRoot - Return the current virtual root of the Selection DAG,
883/// flushing any PendingLoad items. This must be done before emitting
884/// a store or any other node that may need to be ordered after any
885/// prior load instructions.
886///
887SDValue SelectionDAGBuilder::getRoot() {
888  if (PendingLoads.empty())
889    return DAG.getRoot();
890
891  if (PendingLoads.size() == 1) {
892    SDValue Root = PendingLoads[0];
893    DAG.setRoot(Root);
894    PendingLoads.clear();
895    return Root;
896  }
897
898  // Otherwise, we have to make a token factor node.
899  SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
900                               &PendingLoads[0], PendingLoads.size());
901  PendingLoads.clear();
902  DAG.setRoot(Root);
903  return Root;
904}
905
906/// getControlRoot - Similar to getRoot, but instead of flushing all the
907/// PendingLoad items, flush all the PendingExports items. It is necessary
908/// to do this before emitting a terminator instruction.
909///
910SDValue SelectionDAGBuilder::getControlRoot() {
911  SDValue Root = DAG.getRoot();
912
913  if (PendingExports.empty())
914    return Root;
915
916  // Turn all of the CopyToReg chains into one factored node.
917  if (Root.getOpcode() != ISD::EntryToken) {
918    unsigned i = 0, e = PendingExports.size();
919    for (; i != e; ++i) {
920      assert(PendingExports[i].getNode()->getNumOperands() > 1);
921      if (PendingExports[i].getNode()->getOperand(0) == Root)
922        break;  // Don't add the root if we already indirectly depend on it.
923    }
924
925    if (i == e)
926      PendingExports.push_back(Root);
927  }
928
929  Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
930                     &PendingExports[0],
931                     PendingExports.size());
932  PendingExports.clear();
933  DAG.setRoot(Root);
934  return Root;
935}
936
937void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) {
938  if (DAG.GetOrdering(Node) != 0) return; // Already has ordering.
939  DAG.AssignOrdering(Node, SDNodeOrder);
940
941  for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I)
942    AssignOrderingToNode(Node->getOperand(I).getNode());
943}
944
945void SelectionDAGBuilder::visit(const Instruction &I) {
946  // Set up outgoing PHI node register values before emitting the terminator.
947  if (isa<TerminatorInst>(&I))
948    HandlePHINodesInSuccessorBlocks(I.getParent());
949
950  CurDebugLoc = I.getDebugLoc();
951
952  visit(I.getOpcode(), I);
953
954  if (!isa<TerminatorInst>(&I) && !HasTailCall)
955    CopyToExportRegsIfNeeded(&I);
956
957  CurDebugLoc = DebugLoc();
958}
959
960void SelectionDAGBuilder::visitPHI(const PHINode &) {
961  llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
962}
963
964void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
965  // Note: this doesn't use InstVisitor, because it has to work with
966  // ConstantExpr's in addition to instructions.
967  switch (Opcode) {
968  default: llvm_unreachable("Unknown instruction type encountered!");
969    // Build the switch statement using the Instruction.def file.
970#define HANDLE_INST(NUM, OPCODE, CLASS) \
971    case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
972#include "llvm/Instruction.def"
973  }
974
975  // Assign the ordering to the freshly created DAG nodes.
976  if (NodeMap.count(&I)) {
977    ++SDNodeOrder;
978    AssignOrderingToNode(getValue(&I).getNode());
979  }
980}
981
982// resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
983// generate the debug data structures now that we've seen its definition.
984void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
985                                                   SDValue Val) {
986  DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
987  if (DDI.getDI()) {
988    const DbgValueInst *DI = DDI.getDI();
989    DebugLoc dl = DDI.getdl();
990    unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
991    MDNode *Variable = DI->getVariable();
992    uint64_t Offset = DI->getOffset();
993    SDDbgValue *SDV;
994    if (Val.getNode()) {
995      if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) {
996        SDV = DAG.getDbgValue(Variable, Val.getNode(),
997                              Val.getResNo(), Offset, dl, DbgSDNodeOrder);
998        DAG.AddDbgValue(SDV, Val.getNode(), false);
999      }
1000    } else
1001      DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
1002    DanglingDebugInfoMap[V] = DanglingDebugInfo();
1003  }
1004}
1005
1006/// getValue - Return an SDValue for the given Value.
1007SDValue SelectionDAGBuilder::getValue(const Value *V) {
1008  // If we already have an SDValue for this value, use it. It's important
1009  // to do this first, so that we don't create a CopyFromReg if we already
1010  // have a regular SDValue.
1011  SDValue &N = NodeMap[V];
1012  if (N.getNode()) return N;
1013
1014  // If there's a virtual register allocated and initialized for this
1015  // value, use it.
1016  DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
1017  if (It != FuncInfo.ValueMap.end()) {
1018    unsigned InReg = It->second;
1019    RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
1020    SDValue Chain = DAG.getEntryNode();
1021    N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL, V);
1022    resolveDanglingDebugInfo(V, N);
1023    return N;
1024  }
1025
1026  // Otherwise create a new SDValue and remember it.
1027  SDValue Val = getValueImpl(V);
1028  NodeMap[V] = Val;
1029  resolveDanglingDebugInfo(V, Val);
1030  return Val;
1031}
1032
1033/// getNonRegisterValue - Return an SDValue for the given Value, but
1034/// don't look in FuncInfo.ValueMap for a virtual register.
1035SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1036  // If we already have an SDValue for this value, use it.
1037  SDValue &N = NodeMap[V];
1038  if (N.getNode()) return N;
1039
1040  // Otherwise create a new SDValue and remember it.
1041  SDValue Val = getValueImpl(V);
1042  NodeMap[V] = Val;
1043  resolveDanglingDebugInfo(V, Val);
1044  return Val;
1045}
1046
1047/// getValueImpl - Helper function for getValue and getNonRegisterValue.
1048/// Create an SDValue for the given value.
1049SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1050  if (const Constant *C = dyn_cast<Constant>(V)) {
1051    EVT VT = TLI.getValueType(V->getType(), true);
1052
1053    if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1054      return DAG.getConstant(*CI, VT);
1055
1056    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1057      return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT);
1058
1059    if (isa<ConstantPointerNull>(C))
1060      return DAG.getConstant(0, TLI.getPointerTy());
1061
1062    if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1063      return DAG.getConstantFP(*CFP, VT);
1064
1065    if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1066      return DAG.getUNDEF(VT);
1067
1068    if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1069      visit(CE->getOpcode(), *CE);
1070      SDValue N1 = NodeMap[V];
1071      assert(N1.getNode() && "visit didn't populate the NodeMap!");
1072      return N1;
1073    }
1074
1075    if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1076      SmallVector<SDValue, 4> Constants;
1077      for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1078           OI != OE; ++OI) {
1079        SDNode *Val = getValue(*OI).getNode();
1080        // If the operand is an empty aggregate, there are no values.
1081        if (!Val) continue;
1082        // Add each leaf value from the operand to the Constants list
1083        // to form a flattened list of all the values.
1084        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1085          Constants.push_back(SDValue(Val, i));
1086      }
1087
1088      return DAG.getMergeValues(&Constants[0], Constants.size(),
1089                                getCurDebugLoc());
1090    }
1091
1092    if (const ConstantDataSequential *CDS =
1093          dyn_cast<ConstantDataSequential>(C)) {
1094      SmallVector<SDValue, 4> Ops;
1095      for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1096        SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1097        // Add each leaf value from the operand to the Constants list
1098        // to form a flattened list of all the values.
1099        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1100          Ops.push_back(SDValue(Val, i));
1101      }
1102
1103      if (isa<ArrayType>(CDS->getType()))
1104        return DAG.getMergeValues(&Ops[0], Ops.size(), getCurDebugLoc());
1105      return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
1106                                      VT, &Ops[0], Ops.size());
1107    }
1108
1109    if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1110      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1111             "Unknown struct or array constant!");
1112
1113      SmallVector<EVT, 4> ValueVTs;
1114      ComputeValueVTs(TLI, C->getType(), ValueVTs);
1115      unsigned NumElts = ValueVTs.size();
1116      if (NumElts == 0)
1117        return SDValue(); // empty struct
1118      SmallVector<SDValue, 4> Constants(NumElts);
1119      for (unsigned i = 0; i != NumElts; ++i) {
1120        EVT EltVT = ValueVTs[i];
1121        if (isa<UndefValue>(C))
1122          Constants[i] = DAG.getUNDEF(EltVT);
1123        else if (EltVT.isFloatingPoint())
1124          Constants[i] = DAG.getConstantFP(0, EltVT);
1125        else
1126          Constants[i] = DAG.getConstant(0, EltVT);
1127      }
1128
1129      return DAG.getMergeValues(&Constants[0], NumElts,
1130                                getCurDebugLoc());
1131    }
1132
1133    if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1134      return DAG.getBlockAddress(BA, VT);
1135
1136    VectorType *VecTy = cast<VectorType>(V->getType());
1137    unsigned NumElements = VecTy->getNumElements();
1138
1139    // Now that we know the number and type of the elements, get that number of
1140    // elements into the Ops array based on what kind of constant it is.
1141    SmallVector<SDValue, 16> Ops;
1142    if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1143      for (unsigned i = 0; i != NumElements; ++i)
1144        Ops.push_back(getValue(CV->getOperand(i)));
1145    } else {
1146      assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1147      EVT EltVT = TLI.getValueType(VecTy->getElementType());
1148
1149      SDValue Op;
1150      if (EltVT.isFloatingPoint())
1151        Op = DAG.getConstantFP(0, EltVT);
1152      else
1153        Op = DAG.getConstant(0, EltVT);
1154      Ops.assign(NumElements, Op);
1155    }
1156
1157    // Create a BUILD_VECTOR node.
1158    return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
1159                                    VT, &Ops[0], Ops.size());
1160  }
1161
1162  // If this is a static alloca, generate it as the frameindex instead of
1163  // computation.
1164  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1165    DenseMap<const AllocaInst*, int>::iterator SI =
1166      FuncInfo.StaticAllocaMap.find(AI);
1167    if (SI != FuncInfo.StaticAllocaMap.end())
1168      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
1169  }
1170
1171  // If this is an instruction which fast-isel has deferred, select it now.
1172  if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1173    unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1174    RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType());
1175    SDValue Chain = DAG.getEntryNode();
1176    return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL, V);
1177  }
1178
1179  llvm_unreachable("Can't get register for value!");
1180}
1181
1182void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1183  SDValue Chain = getControlRoot();
1184  SmallVector<ISD::OutputArg, 8> Outs;
1185  SmallVector<SDValue, 8> OutVals;
1186
1187  if (!FuncInfo.CanLowerReturn) {
1188    unsigned DemoteReg = FuncInfo.DemoteRegister;
1189    const Function *F = I.getParent()->getParent();
1190
1191    // Emit a store of the return value through the virtual register.
1192    // Leave Outs empty so that LowerReturn won't try to load return
1193    // registers the usual way.
1194    SmallVector<EVT, 1> PtrValueVTs;
1195    ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
1196                    PtrValueVTs);
1197
1198    SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
1199    SDValue RetOp = getValue(I.getOperand(0));
1200
1201    SmallVector<EVT, 4> ValueVTs;
1202    SmallVector<uint64_t, 4> Offsets;
1203    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1204    unsigned NumValues = ValueVTs.size();
1205
1206    SmallVector<SDValue, 4> Chains(NumValues);
1207    for (unsigned i = 0; i != NumValues; ++i) {
1208      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(),
1209                                RetPtr.getValueType(), RetPtr,
1210                                DAG.getIntPtrConstant(Offsets[i]));
1211      Chains[i] =
1212        DAG.getStore(Chain, getCurDebugLoc(),
1213                     SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1214                     // FIXME: better loc info would be nice.
1215                     Add, MachinePointerInfo(), false, false, 0);
1216    }
1217
1218    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
1219                        MVT::Other, &Chains[0], NumValues);
1220  } else if (I.getNumOperands() != 0) {
1221    SmallVector<EVT, 4> ValueVTs;
1222    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
1223    unsigned NumValues = ValueVTs.size();
1224    if (NumValues) {
1225      SDValue RetOp = getValue(I.getOperand(0));
1226      for (unsigned j = 0, f = NumValues; j != f; ++j) {
1227        EVT VT = ValueVTs[j];
1228
1229        ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1230
1231        const Function *F = I.getParent()->getParent();
1232        if (F->getRetAttributes().hasAttribute(Attributes::SExt))
1233          ExtendKind = ISD::SIGN_EXTEND;
1234        else if (F->getRetAttributes().hasAttribute(Attributes::ZExt))
1235          ExtendKind = ISD::ZERO_EXTEND;
1236
1237        if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1238          VT = TLI.getTypeForExtArgOrReturn(*DAG.getContext(), VT, ExtendKind);
1239
1240        unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
1241        EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
1242        SmallVector<SDValue, 4> Parts(NumParts);
1243        getCopyToParts(DAG, getCurDebugLoc(),
1244                       SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1245                       &Parts[0], NumParts, PartVT, &I, ExtendKind);
1246
1247        // 'inreg' on function refers to return value
1248        ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1249        if (F->getRetAttributes().hasAttribute(Attributes::InReg))
1250          Flags.setInReg();
1251
1252        // Propagate extension type if any
1253        if (ExtendKind == ISD::SIGN_EXTEND)
1254          Flags.setSExt();
1255        else if (ExtendKind == ISD::ZERO_EXTEND)
1256          Flags.setZExt();
1257
1258        for (unsigned i = 0; i < NumParts; ++i) {
1259          Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1260                                        /*isfixed=*/true, 0, 0));
1261          OutVals.push_back(Parts[i]);
1262        }
1263      }
1264    }
1265  }
1266
1267  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1268  CallingConv::ID CallConv =
1269    DAG.getMachineFunction().getFunction()->getCallingConv();
1270  Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
1271                          Outs, OutVals, getCurDebugLoc(), DAG);
1272
1273  // Verify that the target's LowerReturn behaved as expected.
1274  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1275         "LowerReturn didn't return a valid chain!");
1276
1277  // Update the DAG with the new chain value resulting from return lowering.
1278  DAG.setRoot(Chain);
1279}
1280
1281/// CopyToExportRegsIfNeeded - If the given value has virtual registers
1282/// created for it, emit nodes to copy the value into the virtual
1283/// registers.
1284void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1285  // Skip empty types
1286  if (V->getType()->isEmptyTy())
1287    return;
1288
1289  DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1290  if (VMI != FuncInfo.ValueMap.end()) {
1291    assert(!V->use_empty() && "Unused value assigned virtual registers!");
1292    CopyValueToVirtualRegister(V, VMI->second);
1293  }
1294}
1295
1296/// ExportFromCurrentBlock - If this condition isn't known to be exported from
1297/// the current basic block, add it to ValueMap now so that we'll get a
1298/// CopyTo/FromReg.
1299void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1300  // No need to export constants.
1301  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1302
1303  // Already exported?
1304  if (FuncInfo.isExportedInst(V)) return;
1305
1306  unsigned Reg = FuncInfo.InitializeRegForValue(V);
1307  CopyValueToVirtualRegister(V, Reg);
1308}
1309
1310bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1311                                                     const BasicBlock *FromBB) {
1312  // The operands of the setcc have to be in this block.  We don't know
1313  // how to export them from some other block.
1314  if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1315    // Can export from current BB.
1316    if (VI->getParent() == FromBB)
1317      return true;
1318
1319    // Is already exported, noop.
1320    return FuncInfo.isExportedInst(V);
1321  }
1322
1323  // If this is an argument, we can export it if the BB is the entry block or
1324  // if it is already exported.
1325  if (isa<Argument>(V)) {
1326    if (FromBB == &FromBB->getParent()->getEntryBlock())
1327      return true;
1328
1329    // Otherwise, can only export this if it is already exported.
1330    return FuncInfo.isExportedInst(V);
1331  }
1332
1333  // Otherwise, constants can always be exported.
1334  return true;
1335}
1336
1337/// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1338uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src,
1339                                            const MachineBasicBlock *Dst) const {
1340  BranchProbabilityInfo *BPI = FuncInfo.BPI;
1341  if (!BPI)
1342    return 0;
1343  const BasicBlock *SrcBB = Src->getBasicBlock();
1344  const BasicBlock *DstBB = Dst->getBasicBlock();
1345  return BPI->getEdgeWeight(SrcBB, DstBB);
1346}
1347
1348void SelectionDAGBuilder::
1349addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst,
1350                       uint32_t Weight /* = 0 */) {
1351  if (!Weight)
1352    Weight = getEdgeWeight(Src, Dst);
1353  Src->addSuccessor(Dst, Weight);
1354}
1355
1356
1357static bool InBlock(const Value *V, const BasicBlock *BB) {
1358  if (const Instruction *I = dyn_cast<Instruction>(V))
1359    return I->getParent() == BB;
1360  return true;
1361}
1362
1363/// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1364/// This function emits a branch and is used at the leaves of an OR or an
1365/// AND operator tree.
1366///
1367void
1368SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1369                                                  MachineBasicBlock *TBB,
1370                                                  MachineBasicBlock *FBB,
1371                                                  MachineBasicBlock *CurBB,
1372                                                  MachineBasicBlock *SwitchBB) {
1373  const BasicBlock *BB = CurBB->getBasicBlock();
1374
1375  // If the leaf of the tree is a comparison, merge the condition into
1376  // the caseblock.
1377  if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1378    // The operands of the cmp have to be in this block.  We don't know
1379    // how to export them from some other block.  If this is the first block
1380    // of the sequence, no exporting is needed.
1381    if (CurBB == SwitchBB ||
1382        (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1383         isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1384      ISD::CondCode Condition;
1385      if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1386        Condition = getICmpCondCode(IC->getPredicate());
1387      } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1388        Condition = getFCmpCondCode(FC->getPredicate());
1389        if (TM.Options.NoNaNsFPMath)
1390          Condition = getFCmpCodeWithoutNaN(Condition);
1391      } else {
1392        Condition = ISD::SETEQ; // silence warning.
1393        llvm_unreachable("Unknown compare instruction");
1394      }
1395
1396      CaseBlock CB(Condition, BOp->getOperand(0),
1397                   BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1398      SwitchCases.push_back(CB);
1399      return;
1400    }
1401  }
1402
1403  // Create a CaseBlock record representing this branch.
1404  CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1405               NULL, TBB, FBB, CurBB);
1406  SwitchCases.push_back(CB);
1407}
1408
1409/// FindMergedConditions - If Cond is an expression like
1410void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1411                                               MachineBasicBlock *TBB,
1412                                               MachineBasicBlock *FBB,
1413                                               MachineBasicBlock *CurBB,
1414                                               MachineBasicBlock *SwitchBB,
1415                                               unsigned Opc) {
1416  // If this node is not part of the or/and tree, emit it as a branch.
1417  const Instruction *BOp = dyn_cast<Instruction>(Cond);
1418  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1419      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1420      BOp->getParent() != CurBB->getBasicBlock() ||
1421      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1422      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1423    EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB);
1424    return;
1425  }
1426
1427  //  Create TmpBB after CurBB.
1428  MachineFunction::iterator BBI = CurBB;
1429  MachineFunction &MF = DAG.getMachineFunction();
1430  MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1431  CurBB->getParent()->insert(++BBI, TmpBB);
1432
1433  if (Opc == Instruction::Or) {
1434    // Codegen X | Y as:
1435    //   jmp_if_X TBB
1436    //   jmp TmpBB
1437    // TmpBB:
1438    //   jmp_if_Y TBB
1439    //   jmp FBB
1440    //
1441
1442    // Emit the LHS condition.
1443    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc);
1444
1445    // Emit the RHS condition into TmpBB.
1446    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1447  } else {
1448    assert(Opc == Instruction::And && "Unknown merge op!");
1449    // Codegen X & Y as:
1450    //   jmp_if_X TmpBB
1451    //   jmp FBB
1452    // TmpBB:
1453    //   jmp_if_Y TBB
1454    //   jmp FBB
1455    //
1456    //  This requires creation of TmpBB after CurBB.
1457
1458    // Emit the LHS condition.
1459    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc);
1460
1461    // Emit the RHS condition into TmpBB.
1462    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1463  }
1464}
1465
1466/// If the set of cases should be emitted as a series of branches, return true.
1467/// If we should emit this as a bunch of and/or'd together conditions, return
1468/// false.
1469bool
1470SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
1471  if (Cases.size() != 2) return true;
1472
1473  // If this is two comparisons of the same values or'd or and'd together, they
1474  // will get folded into a single comparison, so don't emit two blocks.
1475  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1476       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1477      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1478       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1479    return false;
1480  }
1481
1482  // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1483  // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1484  if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1485      Cases[0].CC == Cases[1].CC &&
1486      isa<Constant>(Cases[0].CmpRHS) &&
1487      cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1488    if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1489      return false;
1490    if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1491      return false;
1492  }
1493
1494  return true;
1495}
1496
1497void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1498  MachineBasicBlock *BrMBB = FuncInfo.MBB;
1499
1500  // Update machine-CFG edges.
1501  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1502
1503  // Figure out which block is immediately after the current one.
1504  MachineBasicBlock *NextBlock = 0;
1505  MachineFunction::iterator BBI = BrMBB;
1506  if (++BBI != FuncInfo.MF->end())
1507    NextBlock = BBI;
1508
1509  if (I.isUnconditional()) {
1510    // Update machine-CFG edges.
1511    BrMBB->addSuccessor(Succ0MBB);
1512
1513    // If this is not a fall-through branch, emit the branch.
1514    if (Succ0MBB != NextBlock)
1515      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1516                              MVT::Other, getControlRoot(),
1517                              DAG.getBasicBlock(Succ0MBB)));
1518
1519    return;
1520  }
1521
1522  // If this condition is one of the special cases we handle, do special stuff
1523  // now.
1524  const Value *CondVal = I.getCondition();
1525  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1526
1527  // If this is a series of conditions that are or'd or and'd together, emit
1528  // this as a sequence of branches instead of setcc's with and/or operations.
1529  // As long as jumps are not expensive, this should improve performance.
1530  // For example, instead of something like:
1531  //     cmp A, B
1532  //     C = seteq
1533  //     cmp D, E
1534  //     F = setle
1535  //     or C, F
1536  //     jnz foo
1537  // Emit:
1538  //     cmp A, B
1539  //     je foo
1540  //     cmp D, E
1541  //     jle foo
1542  //
1543  if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1544    if (!TLI.isJumpExpensive() &&
1545        BOp->hasOneUse() &&
1546        (BOp->getOpcode() == Instruction::And ||
1547         BOp->getOpcode() == Instruction::Or)) {
1548      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1549                           BOp->getOpcode());
1550      // If the compares in later blocks need to use values not currently
1551      // exported from this block, export them now.  This block should always
1552      // be the first entry.
1553      assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1554
1555      // Allow some cases to be rejected.
1556      if (ShouldEmitAsBranches(SwitchCases)) {
1557        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1558          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1559          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1560        }
1561
1562        // Emit the branch for this block.
1563        visitSwitchCase(SwitchCases[0], BrMBB);
1564        SwitchCases.erase(SwitchCases.begin());
1565        return;
1566      }
1567
1568      // Okay, we decided not to do this, remove any inserted MBB's and clear
1569      // SwitchCases.
1570      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1571        FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1572
1573      SwitchCases.clear();
1574    }
1575  }
1576
1577  // Create a CaseBlock record representing this branch.
1578  CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1579               NULL, Succ0MBB, Succ1MBB, BrMBB);
1580
1581  // Use visitSwitchCase to actually insert the fast branch sequence for this
1582  // cond branch.
1583  visitSwitchCase(CB, BrMBB);
1584}
1585
1586/// visitSwitchCase - Emits the necessary code to represent a single node in
1587/// the binary search tree resulting from lowering a switch instruction.
1588void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1589                                          MachineBasicBlock *SwitchBB) {
1590  SDValue Cond;
1591  SDValue CondLHS = getValue(CB.CmpLHS);
1592  DebugLoc dl = getCurDebugLoc();
1593
1594  // Build the setcc now.
1595  if (CB.CmpMHS == NULL) {
1596    // Fold "(X == true)" to X and "(X == false)" to !X to
1597    // handle common cases produced by branch lowering.
1598    if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1599        CB.CC == ISD::SETEQ)
1600      Cond = CondLHS;
1601    else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1602             CB.CC == ISD::SETEQ) {
1603      SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1604      Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1605    } else
1606      Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1607  } else {
1608    assert(CB.CC == ISD::SETCC_INVALID &&
1609           "Condition is undefined for to-the-range belonging check.");
1610
1611    const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1612    const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
1613
1614    SDValue CmpOp = getValue(CB.CmpMHS);
1615    EVT VT = CmpOp.getValueType();
1616
1617    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(false)) {
1618      Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1619                          ISD::SETULE);
1620    } else {
1621      SDValue SUB = DAG.getNode(ISD::SUB, dl,
1622                                VT, CmpOp, DAG.getConstant(Low, VT));
1623      Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1624                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1625    }
1626  }
1627
1628  // Update successor info
1629  addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight);
1630  // TrueBB and FalseBB are always different unless the incoming IR is
1631  // degenerate. This only happens when running llc on weird IR.
1632  if (CB.TrueBB != CB.FalseBB)
1633    addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight);
1634
1635  // Set NextBlock to be the MBB immediately after the current one, if any.
1636  // This is used to avoid emitting unnecessary branches to the next block.
1637  MachineBasicBlock *NextBlock = 0;
1638  MachineFunction::iterator BBI = SwitchBB;
1639  if (++BBI != FuncInfo.MF->end())
1640    NextBlock = BBI;
1641
1642  // If the lhs block is the next block, invert the condition so that we can
1643  // fall through to the lhs instead of the rhs block.
1644  if (CB.TrueBB == NextBlock) {
1645    std::swap(CB.TrueBB, CB.FalseBB);
1646    SDValue True = DAG.getConstant(1, Cond.getValueType());
1647    Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1648  }
1649
1650  SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1651                               MVT::Other, getControlRoot(), Cond,
1652                               DAG.getBasicBlock(CB.TrueBB));
1653
1654  // Insert the false branch. Do this even if it's a fall through branch,
1655  // this makes it easier to do DAG optimizations which require inverting
1656  // the branch condition.
1657  BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1658                       DAG.getBasicBlock(CB.FalseBB));
1659
1660  DAG.setRoot(BrCond);
1661}
1662
1663/// visitJumpTable - Emit JumpTable node in the current MBB
1664void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1665  // Emit the code for the jump table
1666  assert(JT.Reg != -1U && "Should lower JT Header first!");
1667  EVT PTy = TLI.getPointerTy();
1668  SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1669                                     JT.Reg, PTy);
1670  SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1671  SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(),
1672                                    MVT::Other, Index.getValue(1),
1673                                    Table, Index);
1674  DAG.setRoot(BrJumpTable);
1675}
1676
1677/// visitJumpTableHeader - This function emits necessary code to produce index
1678/// in the JumpTable from switch case.
1679void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1680                                               JumpTableHeader &JTH,
1681                                               MachineBasicBlock *SwitchBB) {
1682  // Subtract the lowest switch case value from the value being switched on and
1683  // conditional branch to default mbb if the result is greater than the
1684  // difference between smallest and largest cases.
1685  SDValue SwitchOp = getValue(JTH.SValue);
1686  EVT VT = SwitchOp.getValueType();
1687  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1688                            DAG.getConstant(JTH.First, VT));
1689
1690  // The SDNode we just created, which holds the value being switched on minus
1691  // the smallest case value, needs to be copied to a virtual register so it
1692  // can be used as an index into the jump table in a subsequent basic block.
1693  // This value may be smaller or larger than the target's pointer type, and
1694  // therefore require extension or truncating.
1695  SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy());
1696
1697  unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy());
1698  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1699                                    JumpTableReg, SwitchOp);
1700  JT.Reg = JumpTableReg;
1701
1702  // Emit the range check for the jump table, and branch to the default block
1703  // for the switch statement if the value being switched on exceeds the largest
1704  // case in the switch.
1705  SDValue CMP = DAG.getSetCC(getCurDebugLoc(),
1706                             TLI.getSetCCResultType(Sub.getValueType()), Sub,
1707                             DAG.getConstant(JTH.Last-JTH.First,VT),
1708                             ISD::SETUGT);
1709
1710  // Set NextBlock to be the MBB immediately after the current one, if any.
1711  // This is used to avoid emitting unnecessary branches to the next block.
1712  MachineBasicBlock *NextBlock = 0;
1713  MachineFunction::iterator BBI = SwitchBB;
1714
1715  if (++BBI != FuncInfo.MF->end())
1716    NextBlock = BBI;
1717
1718  SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1719                               MVT::Other, CopyTo, CMP,
1720                               DAG.getBasicBlock(JT.Default));
1721
1722  if (JT.MBB != NextBlock)
1723    BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond,
1724                         DAG.getBasicBlock(JT.MBB));
1725
1726  DAG.setRoot(BrCond);
1727}
1728
1729/// visitBitTestHeader - This function emits necessary code to produce value
1730/// suitable for "bit tests"
1731void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1732                                             MachineBasicBlock *SwitchBB) {
1733  // Subtract the minimum value
1734  SDValue SwitchOp = getValue(B.SValue);
1735  EVT VT = SwitchOp.getValueType();
1736  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1737                            DAG.getConstant(B.First, VT));
1738
1739  // Check range
1740  SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(),
1741                                  TLI.getSetCCResultType(Sub.getValueType()),
1742                                  Sub, DAG.getConstant(B.Range, VT),
1743                                  ISD::SETUGT);
1744
1745  // Determine the type of the test operands.
1746  bool UsePtrType = false;
1747  if (!TLI.isTypeLegal(VT))
1748    UsePtrType = true;
1749  else {
1750    for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
1751      if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
1752        // Switch table case range are encoded into series of masks.
1753        // Just use pointer type, it's guaranteed to fit.
1754        UsePtrType = true;
1755        break;
1756      }
1757  }
1758  if (UsePtrType) {
1759    VT = TLI.getPointerTy();
1760    Sub = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), VT);
1761  }
1762
1763  B.RegVT = VT;
1764  B.Reg = FuncInfo.CreateReg(VT);
1765  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1766                                    B.Reg, Sub);
1767
1768  // Set NextBlock to be the MBB immediately after the current one, if any.
1769  // This is used to avoid emitting unnecessary branches to the next block.
1770  MachineBasicBlock *NextBlock = 0;
1771  MachineFunction::iterator BBI = SwitchBB;
1772  if (++BBI != FuncInfo.MF->end())
1773    NextBlock = BBI;
1774
1775  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1776
1777  addSuccessorWithWeight(SwitchBB, B.Default);
1778  addSuccessorWithWeight(SwitchBB, MBB);
1779
1780  SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1781                                MVT::Other, CopyTo, RangeCmp,
1782                                DAG.getBasicBlock(B.Default));
1783
1784  if (MBB != NextBlock)
1785    BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo,
1786                          DAG.getBasicBlock(MBB));
1787
1788  DAG.setRoot(BrRange);
1789}
1790
1791/// visitBitTestCase - this function produces one "bit test"
1792void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
1793                                           MachineBasicBlock* NextMBB,
1794                                           uint32_t BranchWeightToNext,
1795                                           unsigned Reg,
1796                                           BitTestCase &B,
1797                                           MachineBasicBlock *SwitchBB) {
1798  EVT VT = BB.RegVT;
1799  SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1800                                       Reg, VT);
1801  SDValue Cmp;
1802  unsigned PopCount = CountPopulation_64(B.Mask);
1803  if (PopCount == 1) {
1804    // Testing for a single bit; just compare the shift count with what it
1805    // would need to be to shift a 1 bit in that position.
1806    Cmp = DAG.getSetCC(getCurDebugLoc(),
1807                       TLI.getSetCCResultType(VT),
1808                       ShiftOp,
1809                       DAG.getConstant(CountTrailingZeros_64(B.Mask), VT),
1810                       ISD::SETEQ);
1811  } else if (PopCount == BB.Range) {
1812    // There is only one zero bit in the range, test for it directly.
1813    Cmp = DAG.getSetCC(getCurDebugLoc(),
1814                       TLI.getSetCCResultType(VT),
1815                       ShiftOp,
1816                       DAG.getConstant(CountTrailingOnes_64(B.Mask), VT),
1817                       ISD::SETNE);
1818  } else {
1819    // Make desired shift
1820    SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), VT,
1821                                    DAG.getConstant(1, VT), ShiftOp);
1822
1823    // Emit bit tests and jumps
1824    SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(),
1825                                VT, SwitchVal, DAG.getConstant(B.Mask, VT));
1826    Cmp = DAG.getSetCC(getCurDebugLoc(),
1827                       TLI.getSetCCResultType(VT),
1828                       AndOp, DAG.getConstant(0, VT),
1829                       ISD::SETNE);
1830  }
1831
1832  // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight.
1833  addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight);
1834  // The branch weight from SwitchBB to NextMBB is BranchWeightToNext.
1835  addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext);
1836
1837  SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1838                              MVT::Other, getControlRoot(),
1839                              Cmp, DAG.getBasicBlock(B.TargetBB));
1840
1841  // Set NextBlock to be the MBB immediately after the current one, if any.
1842  // This is used to avoid emitting unnecessary branches to the next block.
1843  MachineBasicBlock *NextBlock = 0;
1844  MachineFunction::iterator BBI = SwitchBB;
1845  if (++BBI != FuncInfo.MF->end())
1846    NextBlock = BBI;
1847
1848  if (NextMBB != NextBlock)
1849    BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd,
1850                        DAG.getBasicBlock(NextMBB));
1851
1852  DAG.setRoot(BrAnd);
1853}
1854
1855void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1856  MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
1857
1858  // Retrieve successors.
1859  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1860  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1861
1862  const Value *Callee(I.getCalledValue());
1863  const Function *Fn = dyn_cast<Function>(Callee);
1864  if (isa<InlineAsm>(Callee))
1865    visitInlineAsm(&I);
1866  else if (Fn && Fn->isIntrinsic()) {
1867    assert(Fn->getIntrinsicID() == Intrinsic::donothing);
1868    // Ignore invokes to @llvm.donothing: jump directly to the next BB.
1869  } else
1870    LowerCallTo(&I, getValue(Callee), false, LandingPad);
1871
1872  // If the value of the invoke is used outside of its defining block, make it
1873  // available as a virtual register.
1874  CopyToExportRegsIfNeeded(&I);
1875
1876  // Update successor info
1877  addSuccessorWithWeight(InvokeMBB, Return);
1878  addSuccessorWithWeight(InvokeMBB, LandingPad);
1879
1880  // Drop into normal successor.
1881  DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1882                          MVT::Other, getControlRoot(),
1883                          DAG.getBasicBlock(Return)));
1884}
1885
1886void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
1887  llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
1888}
1889
1890void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
1891  assert(FuncInfo.MBB->isLandingPad() &&
1892         "Call to landingpad not in landing pad!");
1893
1894  MachineBasicBlock *MBB = FuncInfo.MBB;
1895  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
1896  AddLandingPadInfo(LP, MMI, MBB);
1897
1898  // If there aren't registers to copy the values into (e.g., during SjLj
1899  // exceptions), then don't bother to create these DAG nodes.
1900  if (TLI.getExceptionPointerRegister() == 0 &&
1901      TLI.getExceptionSelectorRegister() == 0)
1902    return;
1903
1904  SmallVector<EVT, 2> ValueVTs;
1905  ComputeValueVTs(TLI, LP.getType(), ValueVTs);
1906
1907  // Insert the EXCEPTIONADDR instruction.
1908  assert(FuncInfo.MBB->isLandingPad() &&
1909         "Call to eh.exception not in landing pad!");
1910  SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
1911  SDValue Ops[2];
1912  Ops[0] = DAG.getRoot();
1913  SDValue Op1 = DAG.getNode(ISD::EXCEPTIONADDR, getCurDebugLoc(), VTs, Ops, 1);
1914  SDValue Chain = Op1.getValue(1);
1915
1916  // Insert the EHSELECTION instruction.
1917  VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
1918  Ops[0] = Op1;
1919  Ops[1] = Chain;
1920  SDValue Op2 = DAG.getNode(ISD::EHSELECTION, getCurDebugLoc(), VTs, Ops, 2);
1921  Chain = Op2.getValue(1);
1922  Op2 = DAG.getSExtOrTrunc(Op2, getCurDebugLoc(), MVT::i32);
1923
1924  Ops[0] = Op1;
1925  Ops[1] = Op2;
1926  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
1927                            DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
1928                            &Ops[0], 2);
1929
1930  std::pair<SDValue, SDValue> RetPair = std::make_pair(Res, Chain);
1931  setValue(&LP, RetPair.first);
1932  DAG.setRoot(RetPair.second);
1933}
1934
1935/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1936/// small case ranges).
1937bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
1938                                                 CaseRecVector& WorkList,
1939                                                 const Value* SV,
1940                                                 MachineBasicBlock *Default,
1941                                                 MachineBasicBlock *SwitchBB) {
1942  // Size is the number of Cases represented by this range.
1943  size_t Size = CR.Range.second - CR.Range.first;
1944  if (Size > 3)
1945    return false;
1946
1947  // Get the MachineFunction which holds the current MBB.  This is used when
1948  // inserting any additional MBBs necessary to represent the switch.
1949  MachineFunction *CurMF = FuncInfo.MF;
1950
1951  // Figure out which block is immediately after the current one.
1952  MachineBasicBlock *NextBlock = 0;
1953  MachineFunction::iterator BBI = CR.CaseBB;
1954
1955  if (++BBI != FuncInfo.MF->end())
1956    NextBlock = BBI;
1957
1958  BranchProbabilityInfo *BPI = FuncInfo.BPI;
1959  // If any two of the cases has the same destination, and if one value
1960  // is the same as the other, but has one bit unset that the other has set,
1961  // use bit manipulation to do two compares at once.  For example:
1962  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1963  // TODO: This could be extended to merge any 2 cases in switches with 3 cases.
1964  // TODO: Handle cases where CR.CaseBB != SwitchBB.
1965  if (Size == 2 && CR.CaseBB == SwitchBB) {
1966    Case &Small = *CR.Range.first;
1967    Case &Big = *(CR.Range.second-1);
1968
1969    if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) {
1970      const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue();
1971      const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue();
1972
1973      // Check that there is only one bit different.
1974      if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 &&
1975          (SmallValue | BigValue) == BigValue) {
1976        // Isolate the common bit.
1977        APInt CommonBit = BigValue & ~SmallValue;
1978        assert((SmallValue | CommonBit) == BigValue &&
1979               CommonBit.countPopulation() == 1 && "Not a common bit?");
1980
1981        SDValue CondLHS = getValue(SV);
1982        EVT VT = CondLHS.getValueType();
1983        DebugLoc DL = getCurDebugLoc();
1984
1985        SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
1986                                 DAG.getConstant(CommonBit, VT));
1987        SDValue Cond = DAG.getSetCC(DL, MVT::i1,
1988                                    Or, DAG.getConstant(BigValue, VT),
1989                                    ISD::SETEQ);
1990
1991        // Update successor info.
1992        // Both Small and Big will jump to Small.BB, so we sum up the weights.
1993        addSuccessorWithWeight(SwitchBB, Small.BB,
1994                               Small.ExtraWeight + Big.ExtraWeight);
1995        addSuccessorWithWeight(SwitchBB, Default,
1996          // The default destination is the first successor in IR.
1997          BPI ? BPI->getEdgeWeight(SwitchBB->getBasicBlock(), (unsigned)0) : 0);
1998
1999        // Insert the true branch.
2000        SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other,
2001                                     getControlRoot(), Cond,
2002                                     DAG.getBasicBlock(Small.BB));
2003
2004        // Insert the false branch.
2005        BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
2006                             DAG.getBasicBlock(Default));
2007
2008        DAG.setRoot(BrCond);
2009        return true;
2010      }
2011    }
2012  }
2013
2014  // Order cases by weight so the most likely case will be checked first.
2015  uint32_t UnhandledWeights = 0;
2016  if (BPI) {
2017    for (CaseItr I = CR.Range.first, IE = CR.Range.second; I != IE; ++I) {
2018      uint32_t IWeight = I->ExtraWeight;
2019      UnhandledWeights += IWeight;
2020      for (CaseItr J = CR.Range.first; J < I; ++J) {
2021        uint32_t JWeight = J->ExtraWeight;
2022        if (IWeight > JWeight)
2023          std::swap(*I, *J);
2024      }
2025    }
2026  }
2027  // Rearrange the case blocks so that the last one falls through if possible.
2028  Case &BackCase = *(CR.Range.second-1);
2029  if (Size > 1 &&
2030      NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
2031    // The last case block won't fall through into 'NextBlock' if we emit the
2032    // branches in this order.  See if rearranging a case value would help.
2033    // We start at the bottom as it's the case with the least weight.
2034    for (Case *I = &*(CR.Range.second-2), *E = &*CR.Range.first-1; I != E; --I){
2035      if (I->BB == NextBlock) {
2036        std::swap(*I, BackCase);
2037        break;
2038      }
2039    }
2040  }
2041
2042  // Create a CaseBlock record representing a conditional branch to
2043  // the Case's target mbb if the value being switched on SV is equal
2044  // to C.
2045  MachineBasicBlock *CurBlock = CR.CaseBB;
2046  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
2047    MachineBasicBlock *FallThrough;
2048    if (I != E-1) {
2049      FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
2050      CurMF->insert(BBI, FallThrough);
2051
2052      // Put SV in a virtual register to make it available from the new blocks.
2053      ExportFromCurrentBlock(SV);
2054    } else {
2055      // If the last case doesn't match, go to the default block.
2056      FallThrough = Default;
2057    }
2058
2059    const Value *RHS, *LHS, *MHS;
2060    ISD::CondCode CC;
2061    if (I->High == I->Low) {
2062      // This is just small small case range :) containing exactly 1 case
2063      CC = ISD::SETEQ;
2064      LHS = SV; RHS = I->High; MHS = NULL;
2065    } else {
2066      CC = ISD::SETCC_INVALID;
2067      LHS = I->Low; MHS = SV; RHS = I->High;
2068    }
2069
2070    // The false weight should be sum of all un-handled cases.
2071    UnhandledWeights -= I->ExtraWeight;
2072    CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough,
2073                 /* me */ CurBlock,
2074                 /* trueweight */ I->ExtraWeight,
2075                 /* falseweight */ UnhandledWeights);
2076
2077    // If emitting the first comparison, just call visitSwitchCase to emit the
2078    // code into the current block.  Otherwise, push the CaseBlock onto the
2079    // vector to be later processed by SDISel, and insert the node's MBB
2080    // before the next MBB.
2081    if (CurBlock == SwitchBB)
2082      visitSwitchCase(CB, SwitchBB);
2083    else
2084      SwitchCases.push_back(CB);
2085
2086    CurBlock = FallThrough;
2087  }
2088
2089  return true;
2090}
2091
2092static inline bool areJTsAllowed(const TargetLowering &TLI) {
2093  return TLI.supportJumpTables() &&
2094          (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
2095           TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
2096}
2097
2098static APInt ComputeRange(const APInt &First, const APInt &Last) {
2099  uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
2100  APInt LastExt = Last.zext(BitWidth), FirstExt = First.zext(BitWidth);
2101  return (LastExt - FirstExt + 1ULL);
2102}
2103
2104/// handleJTSwitchCase - Emit jumptable for current switch case range
2105bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR,
2106                                             CaseRecVector &WorkList,
2107                                             const Value *SV,
2108                                             MachineBasicBlock *Default,
2109                                             MachineBasicBlock *SwitchBB) {
2110  Case& FrontCase = *CR.Range.first;
2111  Case& BackCase  = *(CR.Range.second-1);
2112
2113  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2114  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2115
2116  APInt TSize(First.getBitWidth(), 0);
2117  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I)
2118    TSize += I->size();
2119
2120  if (!areJTsAllowed(TLI) || TSize.ult(TLI.getMinimumJumpTableEntries()))
2121    return false;
2122
2123  APInt Range = ComputeRange(First, Last);
2124  // The density is TSize / Range. Require at least 40%.
2125  // It should not be possible for IntTSize to saturate for sane code, but make
2126  // sure we handle Range saturation correctly.
2127  uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10);
2128  uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10);
2129  if (IntTSize * 10 < IntRange * 4)
2130    return false;
2131
2132  DEBUG(dbgs() << "Lowering jump table\n"
2133               << "First entry: " << First << ". Last entry: " << Last << '\n'
2134               << "Range: " << Range << ". Size: " << TSize << ".\n\n");
2135
2136  // Get the MachineFunction which holds the current MBB.  This is used when
2137  // inserting any additional MBBs necessary to represent the switch.
2138  MachineFunction *CurMF = FuncInfo.MF;
2139
2140  // Figure out which block is immediately after the current one.
2141  MachineFunction::iterator BBI = CR.CaseBB;
2142  ++BBI;
2143
2144  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2145
2146  // Create a new basic block to hold the code for loading the address
2147  // of the jump table, and jumping to it.  Update successor information;
2148  // we will either branch to the default case for the switch, or the jump
2149  // table.
2150  MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2151  CurMF->insert(BBI, JumpTableBB);
2152
2153  addSuccessorWithWeight(CR.CaseBB, Default);
2154  addSuccessorWithWeight(CR.CaseBB, JumpTableBB);
2155
2156  // Build a vector of destination BBs, corresponding to each target
2157  // of the jump table. If the value of the jump table slot corresponds to
2158  // a case statement, push the case's BB onto the vector, otherwise, push
2159  // the default BB.
2160  std::vector<MachineBasicBlock*> DestBBs;
2161  APInt TEI = First;
2162  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
2163    const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
2164    const APInt &High = cast<ConstantInt>(I->High)->getValue();
2165
2166    if (Low.ule(TEI) && TEI.ule(High)) {
2167      DestBBs.push_back(I->BB);
2168      if (TEI==High)
2169        ++I;
2170    } else {
2171      DestBBs.push_back(Default);
2172    }
2173  }
2174
2175  // Calculate weight for each unique destination in CR.
2176  DenseMap<MachineBasicBlock*, uint32_t> DestWeights;
2177  if (FuncInfo.BPI)
2178    for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
2179      DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr =
2180          DestWeights.find(I->BB);
2181      if (Itr != DestWeights.end())
2182        Itr->second += I->ExtraWeight;
2183      else
2184        DestWeights[I->BB] = I->ExtraWeight;
2185    }
2186
2187  // Update successor info. Add one edge to each unique successor.
2188  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
2189  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
2190         E = DestBBs.end(); I != E; ++I) {
2191    if (!SuccsHandled[(*I)->getNumber()]) {
2192      SuccsHandled[(*I)->getNumber()] = true;
2193      DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr =
2194          DestWeights.find(*I);
2195      addSuccessorWithWeight(JumpTableBB, *I,
2196                             Itr != DestWeights.end() ? Itr->second : 0);
2197    }
2198  }
2199
2200  // Create a jump table index for this jump table.
2201  unsigned JTEncoding = TLI.getJumpTableEncoding();
2202  unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
2203                       ->createJumpTableIndex(DestBBs);
2204
2205  // Set the jump table information so that we can codegen it as a second
2206  // MachineBasicBlock
2207  JumpTable JT(-1U, JTI, JumpTableBB, Default);
2208  JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
2209  if (CR.CaseBB == SwitchBB)
2210    visitJumpTableHeader(JT, JTH, SwitchBB);
2211
2212  JTCases.push_back(JumpTableBlock(JTH, JT));
2213  return true;
2214}
2215
2216/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
2217/// 2 subtrees.
2218bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
2219                                                  CaseRecVector& WorkList,
2220                                                  const Value* SV,
2221                                                  MachineBasicBlock *Default,
2222                                                  MachineBasicBlock *SwitchBB) {
2223  // Get the MachineFunction which holds the current MBB.  This is used when
2224  // inserting any additional MBBs necessary to represent the switch.
2225  MachineFunction *CurMF = FuncInfo.MF;
2226
2227  // Figure out which block is immediately after the current one.
2228  MachineFunction::iterator BBI = CR.CaseBB;
2229  ++BBI;
2230
2231  Case& FrontCase = *CR.Range.first;
2232  Case& BackCase  = *(CR.Range.second-1);
2233  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2234
2235  // Size is the number of Cases represented by this range.
2236  unsigned Size = CR.Range.second - CR.Range.first;
2237
2238  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2239  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2240  double FMetric = 0;
2241  CaseItr Pivot = CR.Range.first + Size/2;
2242
2243  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
2244  // (heuristically) allow us to emit JumpTable's later.
2245  APInt TSize(First.getBitWidth(), 0);
2246  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2247       I!=E; ++I)
2248    TSize += I->size();
2249
2250  APInt LSize = FrontCase.size();
2251  APInt RSize = TSize-LSize;
2252  DEBUG(dbgs() << "Selecting best pivot: \n"
2253               << "First: " << First << ", Last: " << Last <<'\n'
2254               << "LSize: " << LSize << ", RSize: " << RSize << '\n');
2255  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
2256       J!=E; ++I, ++J) {
2257    const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
2258    const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
2259    APInt Range = ComputeRange(LEnd, RBegin);
2260    assert((Range - 2ULL).isNonNegative() &&
2261           "Invalid case distance");
2262    // Use volatile double here to avoid excess precision issues on some hosts,
2263    // e.g. that use 80-bit X87 registers.
2264    volatile double LDensity =
2265       (double)LSize.roundToDouble() /
2266                           (LEnd - First + 1ULL).roundToDouble();
2267    volatile double RDensity =
2268      (double)RSize.roundToDouble() /
2269                           (Last - RBegin + 1ULL).roundToDouble();
2270    double Metric = Range.logBase2()*(LDensity+RDensity);
2271    // Should always split in some non-trivial place
2272    DEBUG(dbgs() <<"=>Step\n"
2273                 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
2274                 << "LDensity: " << LDensity
2275                 << ", RDensity: " << RDensity << '\n'
2276                 << "Metric: " << Metric << '\n');
2277    if (FMetric < Metric) {
2278      Pivot = J;
2279      FMetric = Metric;
2280      DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
2281    }
2282
2283    LSize += J->size();
2284    RSize -= J->size();
2285  }
2286  if (areJTsAllowed(TLI)) {
2287    // If our case is dense we *really* should handle it earlier!
2288    assert((FMetric > 0) && "Should handle dense range earlier!");
2289  } else {
2290    Pivot = CR.Range.first + Size/2;
2291  }
2292
2293  CaseRange LHSR(CR.Range.first, Pivot);
2294  CaseRange RHSR(Pivot, CR.Range.second);
2295  const Constant *C = Pivot->Low;
2296  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
2297
2298  // We know that we branch to the LHS if the Value being switched on is
2299  // less than the Pivot value, C.  We use this to optimize our binary
2300  // tree a bit, by recognizing that if SV is greater than or equal to the
2301  // LHS's Case Value, and that Case Value is exactly one less than the
2302  // Pivot's Value, then we can branch directly to the LHS's Target,
2303  // rather than creating a leaf node for it.
2304  if ((LHSR.second - LHSR.first) == 1 &&
2305      LHSR.first->High == CR.GE &&
2306      cast<ConstantInt>(C)->getValue() ==
2307      (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
2308    TrueBB = LHSR.first->BB;
2309  } else {
2310    TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2311    CurMF->insert(BBI, TrueBB);
2312    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
2313
2314    // Put SV in a virtual register to make it available from the new blocks.
2315    ExportFromCurrentBlock(SV);
2316  }
2317
2318  // Similar to the optimization above, if the Value being switched on is
2319  // known to be less than the Constant CR.LT, and the current Case Value
2320  // is CR.LT - 1, then we can branch directly to the target block for
2321  // the current Case Value, rather than emitting a RHS leaf node for it.
2322  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
2323      cast<ConstantInt>(RHSR.first->Low)->getValue() ==
2324      (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
2325    FalseBB = RHSR.first->BB;
2326  } else {
2327    FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2328    CurMF->insert(BBI, FalseBB);
2329    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
2330
2331    // Put SV in a virtual register to make it available from the new blocks.
2332    ExportFromCurrentBlock(SV);
2333  }
2334
2335  // Create a CaseBlock record representing a conditional branch to
2336  // the LHS node if the value being switched on SV is less than C.
2337  // Otherwise, branch to LHS.
2338  CaseBlock CB(ISD::SETULT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
2339
2340  if (CR.CaseBB == SwitchBB)
2341    visitSwitchCase(CB, SwitchBB);
2342  else
2343    SwitchCases.push_back(CB);
2344
2345  return true;
2346}
2347
2348/// handleBitTestsSwitchCase - if current case range has few destination and
2349/// range span less, than machine word bitwidth, encode case range into series
2350/// of masks and emit bit tests with these masks.
2351bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
2352                                                   CaseRecVector& WorkList,
2353                                                   const Value* SV,
2354                                                   MachineBasicBlock* Default,
2355                                                   MachineBasicBlock *SwitchBB){
2356  EVT PTy = TLI.getPointerTy();
2357  unsigned IntPtrBits = PTy.getSizeInBits();
2358
2359  Case& FrontCase = *CR.Range.first;
2360  Case& BackCase  = *(CR.Range.second-1);
2361
2362  // Get the MachineFunction which holds the current MBB.  This is used when
2363  // inserting any additional MBBs necessary to represent the switch.
2364  MachineFunction *CurMF = FuncInfo.MF;
2365
2366  // If target does not have legal shift left, do not emit bit tests at all.
2367  if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
2368    return false;
2369
2370  size_t numCmps = 0;
2371  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2372       I!=E; ++I) {
2373    // Single case counts one, case range - two.
2374    numCmps += (I->Low == I->High ? 1 : 2);
2375  }
2376
2377  // Count unique destinations
2378  SmallSet<MachineBasicBlock*, 4> Dests;
2379  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2380    Dests.insert(I->BB);
2381    if (Dests.size() > 3)
2382      // Don't bother the code below, if there are too much unique destinations
2383      return false;
2384  }
2385  DEBUG(dbgs() << "Total number of unique destinations: "
2386        << Dests.size() << '\n'
2387        << "Total number of comparisons: " << numCmps << '\n');
2388
2389  // Compute span of values.
2390  const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
2391  const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
2392  APInt cmpRange = maxValue - minValue;
2393
2394  DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
2395               << "Low bound: " << minValue << '\n'
2396               << "High bound: " << maxValue << '\n');
2397
2398  if (cmpRange.uge(IntPtrBits) ||
2399      (!(Dests.size() == 1 && numCmps >= 3) &&
2400       !(Dests.size() == 2 && numCmps >= 5) &&
2401       !(Dests.size() >= 3 && numCmps >= 6)))
2402    return false;
2403
2404  DEBUG(dbgs() << "Emitting bit tests\n");
2405  APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
2406
2407  // Optimize the case where all the case values fit in a
2408  // word without having to subtract minValue. In this case,
2409  // we can optimize away the subtraction.
2410  if (maxValue.ult(IntPtrBits)) {
2411    cmpRange = maxValue;
2412  } else {
2413    lowBound = minValue;
2414  }
2415
2416  CaseBitsVector CasesBits;
2417  unsigned i, count = 0;
2418
2419  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2420    MachineBasicBlock* Dest = I->BB;
2421    for (i = 0; i < count; ++i)
2422      if (Dest == CasesBits[i].BB)
2423        break;
2424
2425    if (i == count) {
2426      assert((count < 3) && "Too much destinations to test!");
2427      CasesBits.push_back(CaseBits(0, Dest, 0, 0/*Weight*/));
2428      count++;
2429    }
2430
2431    const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
2432    const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
2433
2434    uint64_t lo = (lowValue - lowBound).getZExtValue();
2435    uint64_t hi = (highValue - lowBound).getZExtValue();
2436    CasesBits[i].ExtraWeight += I->ExtraWeight;
2437
2438    for (uint64_t j = lo; j <= hi; j++) {
2439      CasesBits[i].Mask |=  1ULL << j;
2440      CasesBits[i].Bits++;
2441    }
2442
2443  }
2444  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2445
2446  BitTestInfo BTC;
2447
2448  // Figure out which block is immediately after the current one.
2449  MachineFunction::iterator BBI = CR.CaseBB;
2450  ++BBI;
2451
2452  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2453
2454  DEBUG(dbgs() << "Cases:\n");
2455  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2456    DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
2457                 << ", Bits: " << CasesBits[i].Bits
2458                 << ", BB: " << CasesBits[i].BB << '\n');
2459
2460    MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2461    CurMF->insert(BBI, CaseBB);
2462    BTC.push_back(BitTestCase(CasesBits[i].Mask,
2463                              CaseBB,
2464                              CasesBits[i].BB, CasesBits[i].ExtraWeight));
2465
2466    // Put SV in a virtual register to make it available from the new blocks.
2467    ExportFromCurrentBlock(SV);
2468  }
2469
2470  BitTestBlock BTB(lowBound, cmpRange, SV,
2471                   -1U, MVT::Other, (CR.CaseBB == SwitchBB),
2472                   CR.CaseBB, Default, BTC);
2473
2474  if (CR.CaseBB == SwitchBB)
2475    visitBitTestHeader(BTB, SwitchBB);
2476
2477  BitTestCases.push_back(BTB);
2478
2479  return true;
2480}
2481
2482/// Clusterify - Transform simple list of Cases into list of CaseRange's
2483size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
2484                                       const SwitchInst& SI) {
2485
2486  /// Use a shorter form of declaration, and also
2487  /// show the we want to use CRSBuilder as Clusterifier.
2488  typedef IntegersSubsetMapping<MachineBasicBlock> Clusterifier;
2489
2490  Clusterifier TheClusterifier;
2491
2492  BranchProbabilityInfo *BPI = FuncInfo.BPI;
2493  // Start with "simple" cases
2494  for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
2495       i != e; ++i) {
2496    const BasicBlock *SuccBB = i.getCaseSuccessor();
2497    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB];
2498
2499    TheClusterifier.add(i.getCaseValueEx(), SMBB,
2500        BPI ? BPI->getEdgeWeight(SI.getParent(), i.getSuccessorIndex()) : 0);
2501  }
2502
2503  TheClusterifier.optimize();
2504
2505  size_t numCmps = 0;
2506  for (Clusterifier::RangeIterator i = TheClusterifier.begin(),
2507       e = TheClusterifier.end(); i != e; ++i, ++numCmps) {
2508    Clusterifier::Cluster &C = *i;
2509    // Update edge weight for the cluster.
2510    unsigned W = C.first.Weight;
2511
2512    // FIXME: Currently work with ConstantInt based numbers.
2513    // Changing it to APInt based is a pretty heavy for this commit.
2514    Cases.push_back(Case(C.first.getLow().toConstantInt(),
2515                         C.first.getHigh().toConstantInt(), C.second, W));
2516
2517    if (C.first.getLow() != C.first.getHigh())
2518    // A range counts double, since it requires two compares.
2519    ++numCmps;
2520  }
2521
2522  return numCmps;
2523}
2524
2525void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2526                                           MachineBasicBlock *Last) {
2527  // Update JTCases.
2528  for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2529    if (JTCases[i].first.HeaderBB == First)
2530      JTCases[i].first.HeaderBB = Last;
2531
2532  // Update BitTestCases.
2533  for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2534    if (BitTestCases[i].Parent == First)
2535      BitTestCases[i].Parent = Last;
2536}
2537
2538void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
2539  MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
2540
2541  // Figure out which block is immediately after the current one.
2542  MachineBasicBlock *NextBlock = 0;
2543  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2544
2545  // If there is only the default destination, branch to it if it is not the
2546  // next basic block.  Otherwise, just fall through.
2547  if (!SI.getNumCases()) {
2548    // Update machine-CFG edges.
2549
2550    // If this is not a fall-through branch, emit the branch.
2551    SwitchMBB->addSuccessor(Default);
2552    if (Default != NextBlock)
2553      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
2554                              MVT::Other, getControlRoot(),
2555                              DAG.getBasicBlock(Default)));
2556
2557    return;
2558  }
2559
2560  // If there are any non-default case statements, create a vector of Cases
2561  // representing each one, and sort the vector so that we can efficiently
2562  // create a binary search tree from them.
2563  CaseVector Cases;
2564  size_t numCmps = Clusterify(Cases, SI);
2565  DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2566               << ". Total compares: " << numCmps << '\n');
2567  (void)numCmps;
2568
2569  // Get the Value to be switched on and default basic blocks, which will be
2570  // inserted into CaseBlock records, representing basic blocks in the binary
2571  // search tree.
2572  const Value *SV = SI.getCondition();
2573
2574  // Push the initial CaseRec onto the worklist
2575  CaseRecVector WorkList;
2576  WorkList.push_back(CaseRec(SwitchMBB,0,0,
2577                             CaseRange(Cases.begin(),Cases.end())));
2578
2579  while (!WorkList.empty()) {
2580    // Grab a record representing a case range to process off the worklist
2581    CaseRec CR = WorkList.back();
2582    WorkList.pop_back();
2583
2584    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2585      continue;
2586
2587    // If the range has few cases (two or less) emit a series of specific
2588    // tests.
2589    if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
2590      continue;
2591
2592    // If the switch has more than N blocks, and is at least 40% dense, and the
2593    // target supports indirect branches, then emit a jump table rather than
2594    // lowering the switch to a binary tree of conditional branches.
2595    // N defaults to 4 and is controlled via TLS.getMinimumJumpTableEntries().
2596    if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2597      continue;
2598
2599    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2600    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2601    handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
2602  }
2603}
2604
2605void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2606  MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2607
2608  // Update machine-CFG edges with unique successors.
2609  SmallSet<BasicBlock*, 32> Done;
2610  for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2611    BasicBlock *BB = I.getSuccessor(i);
2612    bool Inserted = Done.insert(BB);
2613    if (!Inserted)
2614        continue;
2615
2616    MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2617    addSuccessorWithWeight(IndirectBrMBB, Succ);
2618  }
2619
2620  DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(),
2621                          MVT::Other, getControlRoot(),
2622                          getValue(I.getAddress())));
2623}
2624
2625void SelectionDAGBuilder::visitFSub(const User &I) {
2626  // -0.0 - X --> fneg
2627  Type *Ty = I.getType();
2628  if (isa<Constant>(I.getOperand(0)) &&
2629      I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2630    SDValue Op2 = getValue(I.getOperand(1));
2631    setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2632                             Op2.getValueType(), Op2));
2633    return;
2634  }
2635
2636  visitBinary(I, ISD::FSUB);
2637}
2638
2639void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2640  SDValue Op1 = getValue(I.getOperand(0));
2641  SDValue Op2 = getValue(I.getOperand(1));
2642  setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(),
2643                           Op1.getValueType(), Op1, Op2));
2644}
2645
2646void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2647  SDValue Op1 = getValue(I.getOperand(0));
2648  SDValue Op2 = getValue(I.getOperand(1));
2649
2650  MVT ShiftTy = TLI.getShiftAmountTy(Op2.getValueType());
2651
2652  // Coerce the shift amount to the right type if we can.
2653  if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2654    unsigned ShiftSize = ShiftTy.getSizeInBits();
2655    unsigned Op2Size = Op2.getValueType().getSizeInBits();
2656    DebugLoc DL = getCurDebugLoc();
2657
2658    // If the operand is smaller than the shift count type, promote it.
2659    if (ShiftSize > Op2Size)
2660      Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2661
2662    // If the operand is larger than the shift count type but the shift
2663    // count type has enough bits to represent any shift value, truncate
2664    // it now. This is a common case and it exposes the truncate to
2665    // optimization early.
2666    else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2667      Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2668    // Otherwise we'll need to temporarily settle for some other convenient
2669    // type.  Type legalization will make adjustments once the shiftee is split.
2670    else
2671      Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2672  }
2673
2674  setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(),
2675                           Op1.getValueType(), Op1, Op2));
2676}
2677
2678void SelectionDAGBuilder::visitSDiv(const User &I) {
2679  SDValue Op1 = getValue(I.getOperand(0));
2680  SDValue Op2 = getValue(I.getOperand(1));
2681
2682  // Turn exact SDivs into multiplications.
2683  // FIXME: This should be in DAGCombiner, but it doesn't have access to the
2684  // exact bit.
2685  if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() &&
2686      !isa<ConstantSDNode>(Op1) &&
2687      isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue())
2688    setValue(&I, TLI.BuildExactSDIV(Op1, Op2, getCurDebugLoc(), DAG));
2689  else
2690    setValue(&I, DAG.getNode(ISD::SDIV, getCurDebugLoc(), Op1.getValueType(),
2691                             Op1, Op2));
2692}
2693
2694void SelectionDAGBuilder::visitICmp(const User &I) {
2695  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2696  if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2697    predicate = IC->getPredicate();
2698  else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2699    predicate = ICmpInst::Predicate(IC->getPredicate());
2700  SDValue Op1 = getValue(I.getOperand(0));
2701  SDValue Op2 = getValue(I.getOperand(1));
2702  ISD::CondCode Opcode = getICmpCondCode(predicate);
2703
2704  EVT DestVT = TLI.getValueType(I.getType());
2705  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode));
2706}
2707
2708void SelectionDAGBuilder::visitFCmp(const User &I) {
2709  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2710  if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2711    predicate = FC->getPredicate();
2712  else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2713    predicate = FCmpInst::Predicate(FC->getPredicate());
2714  SDValue Op1 = getValue(I.getOperand(0));
2715  SDValue Op2 = getValue(I.getOperand(1));
2716  ISD::CondCode Condition = getFCmpCondCode(predicate);
2717  if (TM.Options.NoNaNsFPMath)
2718    Condition = getFCmpCodeWithoutNaN(Condition);
2719  EVT DestVT = TLI.getValueType(I.getType());
2720  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition));
2721}
2722
2723void SelectionDAGBuilder::visitSelect(const User &I) {
2724  SmallVector<EVT, 4> ValueVTs;
2725  ComputeValueVTs(TLI, I.getType(), ValueVTs);
2726  unsigned NumValues = ValueVTs.size();
2727  if (NumValues == 0) return;
2728
2729  SmallVector<SDValue, 4> Values(NumValues);
2730  SDValue Cond     = getValue(I.getOperand(0));
2731  SDValue TrueVal  = getValue(I.getOperand(1));
2732  SDValue FalseVal = getValue(I.getOperand(2));
2733  ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2734    ISD::VSELECT : ISD::SELECT;
2735
2736  for (unsigned i = 0; i != NumValues; ++i)
2737    Values[i] = DAG.getNode(OpCode, getCurDebugLoc(),
2738                            TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2739                            Cond,
2740                            SDValue(TrueVal.getNode(),
2741                                    TrueVal.getResNo() + i),
2742                            SDValue(FalseVal.getNode(),
2743                                    FalseVal.getResNo() + i));
2744
2745  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2746                           DAG.getVTList(&ValueVTs[0], NumValues),
2747                           &Values[0], NumValues));
2748}
2749
2750void SelectionDAGBuilder::visitTrunc(const User &I) {
2751  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2752  SDValue N = getValue(I.getOperand(0));
2753  EVT DestVT = TLI.getValueType(I.getType());
2754  setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N));
2755}
2756
2757void SelectionDAGBuilder::visitZExt(const User &I) {
2758  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2759  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2760  SDValue N = getValue(I.getOperand(0));
2761  EVT DestVT = TLI.getValueType(I.getType());
2762  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N));
2763}
2764
2765void SelectionDAGBuilder::visitSExt(const User &I) {
2766  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2767  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2768  SDValue N = getValue(I.getOperand(0));
2769  EVT DestVT = TLI.getValueType(I.getType());
2770  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N));
2771}
2772
2773void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2774  // FPTrunc is never a no-op cast, no need to check
2775  SDValue N = getValue(I.getOperand(0));
2776  EVT DestVT = TLI.getValueType(I.getType());
2777  setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(),
2778                           DestVT, N,
2779                           DAG.getTargetConstant(0, TLI.getPointerTy())));
2780}
2781
2782void SelectionDAGBuilder::visitFPExt(const User &I){
2783  // FPExt is never a no-op cast, no need to check
2784  SDValue N = getValue(I.getOperand(0));
2785  EVT DestVT = TLI.getValueType(I.getType());
2786  setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N));
2787}
2788
2789void SelectionDAGBuilder::visitFPToUI(const User &I) {
2790  // FPToUI is never a no-op cast, no need to check
2791  SDValue N = getValue(I.getOperand(0));
2792  EVT DestVT = TLI.getValueType(I.getType());
2793  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N));
2794}
2795
2796void SelectionDAGBuilder::visitFPToSI(const User &I) {
2797  // FPToSI is never a no-op cast, no need to check
2798  SDValue N = getValue(I.getOperand(0));
2799  EVT DestVT = TLI.getValueType(I.getType());
2800  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N));
2801}
2802
2803void SelectionDAGBuilder::visitUIToFP(const User &I) {
2804  // UIToFP is never a no-op cast, no need to check
2805  SDValue N = getValue(I.getOperand(0));
2806  EVT DestVT = TLI.getValueType(I.getType());
2807  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N));
2808}
2809
2810void SelectionDAGBuilder::visitSIToFP(const User &I){
2811  // SIToFP is never a no-op cast, no need to check
2812  SDValue N = getValue(I.getOperand(0));
2813  EVT DestVT = TLI.getValueType(I.getType());
2814  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N));
2815}
2816
2817void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2818  // What to do depends on the size of the integer and the size of the pointer.
2819  // We can either truncate, zero extend, or no-op, accordingly.
2820  SDValue N = getValue(I.getOperand(0));
2821  EVT DestVT = TLI.getValueType(I.getType());
2822  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2823}
2824
2825void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2826  // What to do depends on the size of the integer and the size of the pointer.
2827  // We can either truncate, zero extend, or no-op, accordingly.
2828  SDValue N = getValue(I.getOperand(0));
2829  EVT DestVT = TLI.getValueType(I.getType());
2830  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2831}
2832
2833void SelectionDAGBuilder::visitBitCast(const User &I) {
2834  SDValue N = getValue(I.getOperand(0));
2835  EVT DestVT = TLI.getValueType(I.getType());
2836
2837  // BitCast assures us that source and destination are the same size so this is
2838  // either a BITCAST or a no-op.
2839  if (DestVT != N.getValueType())
2840    setValue(&I, DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
2841                             DestVT, N)); // convert types.
2842  else
2843    setValue(&I, N);            // noop cast.
2844}
2845
2846void SelectionDAGBuilder::visitInsertElement(const User &I) {
2847  SDValue InVec = getValue(I.getOperand(0));
2848  SDValue InVal = getValue(I.getOperand(1));
2849  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2850                              TLI.getPointerTy(),
2851                              getValue(I.getOperand(2)));
2852  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(),
2853                           TLI.getValueType(I.getType()),
2854                           InVec, InVal, InIdx));
2855}
2856
2857void SelectionDAGBuilder::visitExtractElement(const User &I) {
2858  SDValue InVec = getValue(I.getOperand(0));
2859  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2860                              TLI.getPointerTy(),
2861                              getValue(I.getOperand(1)));
2862  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2863                           TLI.getValueType(I.getType()), InVec, InIdx));
2864}
2865
2866// Utility for visitShuffleVector - Return true if every element in Mask,
2867// beginning from position Pos and ending in Pos+Size, falls within the
2868// specified sequential range [L, L+Pos). or is undef.
2869static bool isSequentialInRange(const SmallVectorImpl<int> &Mask,
2870                                unsigned Pos, unsigned Size, int Low) {
2871  for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
2872    if (Mask[i] >= 0 && Mask[i] != Low)
2873      return false;
2874  return true;
2875}
2876
2877void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2878  SDValue Src1 = getValue(I.getOperand(0));
2879  SDValue Src2 = getValue(I.getOperand(1));
2880
2881  SmallVector<int, 8> Mask;
2882  ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
2883  unsigned MaskNumElts = Mask.size();
2884
2885  EVT VT = TLI.getValueType(I.getType());
2886  EVT SrcVT = Src1.getValueType();
2887  unsigned SrcNumElts = SrcVT.getVectorNumElements();
2888
2889  if (SrcNumElts == MaskNumElts) {
2890    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2891                                      &Mask[0]));
2892    return;
2893  }
2894
2895  // Normalize the shuffle vector since mask and vector length don't match.
2896  if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2897    // Mask is longer than the source vectors and is a multiple of the source
2898    // vectors.  We can use concatenate vector to make the mask and vectors
2899    // lengths match.
2900    if (SrcNumElts*2 == MaskNumElts) {
2901      // First check for Src1 in low and Src2 in high
2902      if (isSequentialInRange(Mask, 0, SrcNumElts, 0) &&
2903          isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) {
2904        // The shuffle is concatenating two vectors together.
2905        setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2906                                 VT, Src1, Src2));
2907        return;
2908      }
2909      // Then check for Src2 in low and Src1 in high
2910      if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) &&
2911          isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) {
2912        // The shuffle is concatenating two vectors together.
2913        setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2914                                 VT, Src2, Src1));
2915        return;
2916      }
2917    }
2918
2919    // Pad both vectors with undefs to make them the same length as the mask.
2920    unsigned NumConcat = MaskNumElts / SrcNumElts;
2921    bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2922    bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2923    SDValue UndefVal = DAG.getUNDEF(SrcVT);
2924
2925    SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2926    SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2927    MOps1[0] = Src1;
2928    MOps2[0] = Src2;
2929
2930    Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2931                                                  getCurDebugLoc(), VT,
2932                                                  &MOps1[0], NumConcat);
2933    Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2934                                                  getCurDebugLoc(), VT,
2935                                                  &MOps2[0], NumConcat);
2936
2937    // Readjust mask for new input vector length.
2938    SmallVector<int, 8> MappedOps;
2939    for (unsigned i = 0; i != MaskNumElts; ++i) {
2940      int Idx = Mask[i];
2941      if (Idx >= (int)SrcNumElts)
2942        Idx -= SrcNumElts - MaskNumElts;
2943      MappedOps.push_back(Idx);
2944    }
2945
2946    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2947                                      &MappedOps[0]));
2948    return;
2949  }
2950
2951  if (SrcNumElts > MaskNumElts) {
2952    // Analyze the access pattern of the vector to see if we can extract
2953    // two subvectors and do the shuffle. The analysis is done by calculating
2954    // the range of elements the mask access on both vectors.
2955    int MinRange[2] = { static_cast<int>(SrcNumElts),
2956                        static_cast<int>(SrcNumElts)};
2957    int MaxRange[2] = {-1, -1};
2958
2959    for (unsigned i = 0; i != MaskNumElts; ++i) {
2960      int Idx = Mask[i];
2961      unsigned Input = 0;
2962      if (Idx < 0)
2963        continue;
2964
2965      if (Idx >= (int)SrcNumElts) {
2966        Input = 1;
2967        Idx -= SrcNumElts;
2968      }
2969      if (Idx > MaxRange[Input])
2970        MaxRange[Input] = Idx;
2971      if (Idx < MinRange[Input])
2972        MinRange[Input] = Idx;
2973    }
2974
2975    // Check if the access is smaller than the vector size and can we find
2976    // a reasonable extract index.
2977    int RangeUse[2] = { -1, -1 };  // 0 = Unused, 1 = Extract, -1 = Can not
2978                                   // Extract.
2979    int StartIdx[2];  // StartIdx to extract from
2980    for (unsigned Input = 0; Input < 2; ++Input) {
2981      if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) {
2982        RangeUse[Input] = 0; // Unused
2983        StartIdx[Input] = 0;
2984        continue;
2985      }
2986
2987      // Find a good start index that is a multiple of the mask length. Then
2988      // see if the rest of the elements are in range.
2989      StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2990      if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2991          StartIdx[Input] + MaskNumElts <= SrcNumElts)
2992        RangeUse[Input] = 1; // Extract from a multiple of the mask length.
2993    }
2994
2995    if (RangeUse[0] == 0 && RangeUse[1] == 0) {
2996      setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
2997      return;
2998    }
2999    if (RangeUse[0] >= 0 && RangeUse[1] >= 0) {
3000      // Extract appropriate subvector and generate a vector shuffle
3001      for (unsigned Input = 0; Input < 2; ++Input) {
3002        SDValue &Src = Input == 0 ? Src1 : Src2;
3003        if (RangeUse[Input] == 0)
3004          Src = DAG.getUNDEF(VT);
3005        else
3006          Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT,
3007                            Src, DAG.getIntPtrConstant(StartIdx[Input]));
3008      }
3009
3010      // Calculate new mask.
3011      SmallVector<int, 8> MappedOps;
3012      for (unsigned i = 0; i != MaskNumElts; ++i) {
3013        int Idx = Mask[i];
3014        if (Idx >= 0) {
3015          if (Idx < (int)SrcNumElts)
3016            Idx -= StartIdx[0];
3017          else
3018            Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3019        }
3020        MappedOps.push_back(Idx);
3021      }
3022
3023      setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
3024                                        &MappedOps[0]));
3025      return;
3026    }
3027  }
3028
3029  // We can't use either concat vectors or extract subvectors so fall back to
3030  // replacing the shuffle with extract and build vector.
3031  // to insert and build vector.
3032  EVT EltVT = VT.getVectorElementType();
3033  EVT PtrVT = TLI.getPointerTy();
3034  SmallVector<SDValue,8> Ops;
3035  for (unsigned i = 0; i != MaskNumElts; ++i) {
3036    int Idx = Mask[i];
3037    SDValue Res;
3038
3039    if (Idx < 0) {
3040      Res = DAG.getUNDEF(EltVT);
3041    } else {
3042      SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3043      if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3044
3045      Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
3046                        EltVT, Src, DAG.getConstant(Idx, PtrVT));
3047    }
3048
3049    Ops.push_back(Res);
3050  }
3051
3052  setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
3053                           VT, &Ops[0], Ops.size()));
3054}
3055
3056void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
3057  const Value *Op0 = I.getOperand(0);
3058  const Value *Op1 = I.getOperand(1);
3059  Type *AggTy = I.getType();
3060  Type *ValTy = Op1->getType();
3061  bool IntoUndef = isa<UndefValue>(Op0);
3062  bool FromUndef = isa<UndefValue>(Op1);
3063
3064  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3065
3066  SmallVector<EVT, 4> AggValueVTs;
3067  ComputeValueVTs(TLI, AggTy, AggValueVTs);
3068  SmallVector<EVT, 4> ValValueVTs;
3069  ComputeValueVTs(TLI, ValTy, ValValueVTs);
3070
3071  unsigned NumAggValues = AggValueVTs.size();
3072  unsigned NumValValues = ValValueVTs.size();
3073  SmallVector<SDValue, 4> Values(NumAggValues);
3074
3075  SDValue Agg = getValue(Op0);
3076  unsigned i = 0;
3077  // Copy the beginning value(s) from the original aggregate.
3078  for (; i != LinearIndex; ++i)
3079    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3080                SDValue(Agg.getNode(), Agg.getResNo() + i);
3081  // Copy values from the inserted value(s).
3082  if (NumValValues) {
3083    SDValue Val = getValue(Op1);
3084    for (; i != LinearIndex + NumValValues; ++i)
3085      Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3086                  SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3087  }
3088  // Copy remaining value(s) from the original aggregate.
3089  for (; i != NumAggValues; ++i)
3090    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3091                SDValue(Agg.getNode(), Agg.getResNo() + i);
3092
3093  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3094                           DAG.getVTList(&AggValueVTs[0], NumAggValues),
3095                           &Values[0], NumAggValues));
3096}
3097
3098void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
3099  const Value *Op0 = I.getOperand(0);
3100  Type *AggTy = Op0->getType();
3101  Type *ValTy = I.getType();
3102  bool OutOfUndef = isa<UndefValue>(Op0);
3103
3104  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3105
3106  SmallVector<EVT, 4> ValValueVTs;
3107  ComputeValueVTs(TLI, ValTy, ValValueVTs);
3108
3109  unsigned NumValValues = ValValueVTs.size();
3110
3111  // Ignore a extractvalue that produces an empty object
3112  if (!NumValValues) {
3113    setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3114    return;
3115  }
3116
3117  SmallVector<SDValue, 4> Values(NumValValues);
3118
3119  SDValue Agg = getValue(Op0);
3120  // Copy out the selected value(s).
3121  for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3122    Values[i - LinearIndex] =
3123      OutOfUndef ?
3124        DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3125        SDValue(Agg.getNode(), Agg.getResNo() + i);
3126
3127  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3128                           DAG.getVTList(&ValValueVTs[0], NumValValues),
3129                           &Values[0], NumValValues));
3130}
3131
3132void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3133  SDValue N = getValue(I.getOperand(0));
3134  // Note that the pointer operand may be a vector of pointers. Take the scalar
3135  // element which holds a pointer.
3136  Type *Ty = I.getOperand(0)->getType()->getScalarType();
3137
3138  for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
3139       OI != E; ++OI) {
3140    const Value *Idx = *OI;
3141    if (StructType *StTy = dyn_cast<StructType>(Ty)) {
3142      unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3143      if (Field) {
3144        // N = N + Offset
3145        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
3146        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
3147                        DAG.getConstant(Offset, N.getValueType()));
3148      }
3149
3150      Ty = StTy->getElementType(Field);
3151    } else {
3152      Ty = cast<SequentialType>(Ty)->getElementType();
3153
3154      // If this is a constant subscript, handle it quickly.
3155      if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
3156        if (CI->isZero()) continue;
3157        uint64_t Offs =
3158            TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
3159        SDValue OffsVal;
3160        EVT PTy = TLI.getPointerTy();
3161        unsigned PtrBits = PTy.getSizeInBits();
3162        if (PtrBits < 64)
3163          OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
3164                                TLI.getPointerTy(),
3165                                DAG.getConstant(Offs, MVT::i64));
3166        else
3167          OffsVal = DAG.getIntPtrConstant(Offs);
3168
3169        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
3170                        OffsVal);
3171        continue;
3172      }
3173
3174      // N = N + Idx * ElementSize;
3175      APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
3176                                TD->getTypeAllocSize(Ty));
3177      SDValue IdxN = getValue(Idx);
3178
3179      // If the index is smaller or larger than intptr_t, truncate or extend
3180      // it.
3181      IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType());
3182
3183      // If this is a multiply by a power of two, turn it into a shl
3184      // immediately.  This is a very common case.
3185      if (ElementSize != 1) {
3186        if (ElementSize.isPowerOf2()) {
3187          unsigned Amt = ElementSize.logBase2();
3188          IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(),
3189                             N.getValueType(), IdxN,
3190                             DAG.getConstant(Amt, IdxN.getValueType()));
3191        } else {
3192          SDValue Scale = DAG.getConstant(ElementSize, IdxN.getValueType());
3193          IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(),
3194                             N.getValueType(), IdxN, Scale);
3195        }
3196      }
3197
3198      N = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3199                      N.getValueType(), N, IdxN);
3200    }
3201  }
3202
3203  setValue(&I, N);
3204}
3205
3206void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3207  // If this is a fixed sized alloca in the entry block of the function,
3208  // allocate it statically on the stack.
3209  if (FuncInfo.StaticAllocaMap.count(&I))
3210    return;   // getValue will auto-populate this.
3211
3212  Type *Ty = I.getAllocatedType();
3213  uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty);
3214  unsigned Align =
3215    std::max((unsigned)TLI.getDataLayout()->getPrefTypeAlignment(Ty),
3216             I.getAlignment());
3217
3218  SDValue AllocSize = getValue(I.getArraySize());
3219
3220  EVT IntPtr = TLI.getPointerTy();
3221  if (AllocSize.getValueType() != IntPtr)
3222    AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr);
3223
3224  AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr,
3225                          AllocSize,
3226                          DAG.getConstant(TySize, IntPtr));
3227
3228  // Handle alignment.  If the requested alignment is less than or equal to
3229  // the stack alignment, ignore it.  If the size is greater than or equal to
3230  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3231  unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
3232  if (Align <= StackAlign)
3233    Align = 0;
3234
3235  // Round the size of the allocation up to the stack alignment size
3236  // by add SA-1 to the size.
3237  AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3238                          AllocSize.getValueType(), AllocSize,
3239                          DAG.getIntPtrConstant(StackAlign-1));
3240
3241  // Mask out the low bits for alignment purposes.
3242  AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(),
3243                          AllocSize.getValueType(), AllocSize,
3244                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
3245
3246  SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
3247  SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3248  SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(),
3249                            VTs, Ops, 3);
3250  setValue(&I, DSA);
3251  DAG.setRoot(DSA.getValue(1));
3252
3253  // Inform the Frame Information that we have just allocated a variable-sized
3254  // object.
3255  FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1);
3256}
3257
3258void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3259  if (I.isAtomic())
3260    return visitAtomicLoad(I);
3261
3262  const Value *SV = I.getOperand(0);
3263  SDValue Ptr = getValue(SV);
3264
3265  Type *Ty = I.getType();
3266
3267  bool isVolatile = I.isVolatile();
3268  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3269  bool isInvariant = I.getMetadata("invariant.load") != 0;
3270  unsigned Alignment = I.getAlignment();
3271  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3272  const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3273
3274  SmallVector<EVT, 4> ValueVTs;
3275  SmallVector<uint64_t, 4> Offsets;
3276  ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
3277  unsigned NumValues = ValueVTs.size();
3278  if (NumValues == 0)
3279    return;
3280
3281  SDValue Root;
3282  bool ConstantMemory = false;
3283  if (I.isVolatile() || NumValues > MaxParallelChains)
3284    // Serialize volatile loads with other side effects.
3285    Root = getRoot();
3286  else if (AA->pointsToConstantMemory(
3287             AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) {
3288    // Do not serialize (non-volatile) loads of constant memory with anything.
3289    Root = DAG.getEntryNode();
3290    ConstantMemory = true;
3291  } else {
3292    // Do not serialize non-volatile loads against each other.
3293    Root = DAG.getRoot();
3294  }
3295
3296  SmallVector<SDValue, 4> Values(NumValues);
3297  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3298                                          NumValues));
3299  EVT PtrVT = Ptr.getValueType();
3300  unsigned ChainI = 0;
3301  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3302    // Serializing loads here may result in excessive register pressure, and
3303    // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3304    // could recover a bit by hoisting nodes upward in the chain by recognizing
3305    // they are side-effect free or do not alias. The optimizer should really
3306    // avoid this case by converting large object/array copies to llvm.memcpy
3307    // (MaxParallelChains should always remain as failsafe).
3308    if (ChainI == MaxParallelChains) {
3309      assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3310      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3311                                  MVT::Other, &Chains[0], ChainI);
3312      Root = Chain;
3313      ChainI = 0;
3314    }
3315    SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3316                            PtrVT, Ptr,
3317                            DAG.getConstant(Offsets[i], PtrVT));
3318    SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root,
3319                            A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
3320                            isNonTemporal, isInvariant, Alignment, TBAAInfo,
3321                            Ranges);
3322
3323    Values[i] = L;
3324    Chains[ChainI] = L.getValue(1);
3325  }
3326
3327  if (!ConstantMemory) {
3328    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3329                                MVT::Other, &Chains[0], ChainI);
3330    if (isVolatile)
3331      DAG.setRoot(Chain);
3332    else
3333      PendingLoads.push_back(Chain);
3334  }
3335
3336  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3337                           DAG.getVTList(&ValueVTs[0], NumValues),
3338                           &Values[0], NumValues));
3339}
3340
3341void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3342  if (I.isAtomic())
3343    return visitAtomicStore(I);
3344
3345  const Value *SrcV = I.getOperand(0);
3346  const Value *PtrV = I.getOperand(1);
3347
3348  SmallVector<EVT, 4> ValueVTs;
3349  SmallVector<uint64_t, 4> Offsets;
3350  ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
3351  unsigned NumValues = ValueVTs.size();
3352  if (NumValues == 0)
3353    return;
3354
3355  // Get the lowered operands. Note that we do this after
3356  // checking if NumResults is zero, because with zero results
3357  // the operands won't have values in the map.
3358  SDValue Src = getValue(SrcV);
3359  SDValue Ptr = getValue(PtrV);
3360
3361  SDValue Root = getRoot();
3362  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3363                                          NumValues));
3364  EVT PtrVT = Ptr.getValueType();
3365  bool isVolatile = I.isVolatile();
3366  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3367  unsigned Alignment = I.getAlignment();
3368  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3369
3370  unsigned ChainI = 0;
3371  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3372    // See visitLoad comments.
3373    if (ChainI == MaxParallelChains) {
3374      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3375                                  MVT::Other, &Chains[0], ChainI);
3376      Root = Chain;
3377      ChainI = 0;
3378    }
3379    SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr,
3380                              DAG.getConstant(Offsets[i], PtrVT));
3381    SDValue St = DAG.getStore(Root, getCurDebugLoc(),
3382                              SDValue(Src.getNode(), Src.getResNo() + i),
3383                              Add, MachinePointerInfo(PtrV, Offsets[i]),
3384                              isVolatile, isNonTemporal, Alignment, TBAAInfo);
3385    Chains[ChainI] = St;
3386  }
3387
3388  SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3389                                  MVT::Other, &Chains[0], ChainI);
3390  ++SDNodeOrder;
3391  AssignOrderingToNode(StoreNode.getNode());
3392  DAG.setRoot(StoreNode);
3393}
3394
3395static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order,
3396                                    SynchronizationScope Scope,
3397                                    bool Before, DebugLoc dl,
3398                                    SelectionDAG &DAG,
3399                                    const TargetLowering &TLI) {
3400  // Fence, if necessary
3401  if (Before) {
3402    if (Order == AcquireRelease || Order == SequentiallyConsistent)
3403      Order = Release;
3404    else if (Order == Acquire || Order == Monotonic)
3405      return Chain;
3406  } else {
3407    if (Order == AcquireRelease)
3408      Order = Acquire;
3409    else if (Order == Release || Order == Monotonic)
3410      return Chain;
3411  }
3412  SDValue Ops[3];
3413  Ops[0] = Chain;
3414  Ops[1] = DAG.getConstant(Order, TLI.getPointerTy());
3415  Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy());
3416  return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3);
3417}
3418
3419void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
3420  DebugLoc dl = getCurDebugLoc();
3421  AtomicOrdering Order = I.getOrdering();
3422  SynchronizationScope Scope = I.getSynchScope();
3423
3424  SDValue InChain = getRoot();
3425
3426  if (TLI.getInsertFencesForAtomic())
3427    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3428                                   DAG, TLI);
3429
3430  SDValue L =
3431    DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl,
3432                  getValue(I.getCompareOperand()).getValueType().getSimpleVT(),
3433                  InChain,
3434                  getValue(I.getPointerOperand()),
3435                  getValue(I.getCompareOperand()),
3436                  getValue(I.getNewValOperand()),
3437                  MachinePointerInfo(I.getPointerOperand()), 0 /* Alignment */,
3438                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3439                  Scope);
3440
3441  SDValue OutChain = L.getValue(1);
3442
3443  if (TLI.getInsertFencesForAtomic())
3444    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3445                                    DAG, TLI);
3446
3447  setValue(&I, L);
3448  DAG.setRoot(OutChain);
3449}
3450
3451void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
3452  DebugLoc dl = getCurDebugLoc();
3453  ISD::NodeType NT;
3454  switch (I.getOperation()) {
3455  default: llvm_unreachable("Unknown atomicrmw operation");
3456  case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
3457  case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
3458  case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
3459  case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
3460  case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
3461  case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
3462  case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
3463  case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
3464  case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
3465  case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
3466  case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
3467  }
3468  AtomicOrdering Order = I.getOrdering();
3469  SynchronizationScope Scope = I.getSynchScope();
3470
3471  SDValue InChain = getRoot();
3472
3473  if (TLI.getInsertFencesForAtomic())
3474    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3475                                   DAG, TLI);
3476
3477  SDValue L =
3478    DAG.getAtomic(NT, dl,
3479                  getValue(I.getValOperand()).getValueType().getSimpleVT(),
3480                  InChain,
3481                  getValue(I.getPointerOperand()),
3482                  getValue(I.getValOperand()),
3483                  I.getPointerOperand(), 0 /* Alignment */,
3484                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3485                  Scope);
3486
3487  SDValue OutChain = L.getValue(1);
3488
3489  if (TLI.getInsertFencesForAtomic())
3490    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3491                                    DAG, TLI);
3492
3493  setValue(&I, L);
3494  DAG.setRoot(OutChain);
3495}
3496
3497void SelectionDAGBuilder::visitFence(const FenceInst &I) {
3498  DebugLoc dl = getCurDebugLoc();
3499  SDValue Ops[3];
3500  Ops[0] = getRoot();
3501  Ops[1] = DAG.getConstant(I.getOrdering(), TLI.getPointerTy());
3502  Ops[2] = DAG.getConstant(I.getSynchScope(), TLI.getPointerTy());
3503  DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3));
3504}
3505
3506void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
3507  DebugLoc dl = getCurDebugLoc();
3508  AtomicOrdering Order = I.getOrdering();
3509  SynchronizationScope Scope = I.getSynchScope();
3510
3511  SDValue InChain = getRoot();
3512
3513  EVT VT = TLI.getValueType(I.getType());
3514
3515  if (I.getAlignment() * 8 < VT.getSizeInBits())
3516    report_fatal_error("Cannot generate unaligned atomic load");
3517
3518  SDValue L =
3519    DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
3520                  getValue(I.getPointerOperand()),
3521                  I.getPointerOperand(), I.getAlignment(),
3522                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3523                  Scope);
3524
3525  SDValue OutChain = L.getValue(1);
3526
3527  if (TLI.getInsertFencesForAtomic())
3528    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3529                                    DAG, TLI);
3530
3531  setValue(&I, L);
3532  DAG.setRoot(OutChain);
3533}
3534
3535void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
3536  DebugLoc dl = getCurDebugLoc();
3537
3538  AtomicOrdering Order = I.getOrdering();
3539  SynchronizationScope Scope = I.getSynchScope();
3540
3541  SDValue InChain = getRoot();
3542
3543  EVT VT = TLI.getValueType(I.getValueOperand()->getType());
3544
3545  if (I.getAlignment() * 8 < VT.getSizeInBits())
3546    report_fatal_error("Cannot generate unaligned atomic store");
3547
3548  if (TLI.getInsertFencesForAtomic())
3549    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3550                                   DAG, TLI);
3551
3552  SDValue OutChain =
3553    DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
3554                  InChain,
3555                  getValue(I.getPointerOperand()),
3556                  getValue(I.getValueOperand()),
3557                  I.getPointerOperand(), I.getAlignment(),
3558                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3559                  Scope);
3560
3561  if (TLI.getInsertFencesForAtomic())
3562    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3563                                    DAG, TLI);
3564
3565  DAG.setRoot(OutChain);
3566}
3567
3568/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3569/// node.
3570void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3571                                               unsigned Intrinsic) {
3572  bool HasChain = !I.doesNotAccessMemory();
3573  bool OnlyLoad = HasChain && I.onlyReadsMemory();
3574
3575  // Build the operand list.
3576  SmallVector<SDValue, 8> Ops;
3577  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
3578    if (OnlyLoad) {
3579      // We don't need to serialize loads against other loads.
3580      Ops.push_back(DAG.getRoot());
3581    } else {
3582      Ops.push_back(getRoot());
3583    }
3584  }
3585
3586  // Info is set by getTgtMemInstrinsic
3587  TargetLowering::IntrinsicInfo Info;
3588  bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
3589
3590  // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3591  if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
3592      Info.opc == ISD::INTRINSIC_W_CHAIN)
3593    Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI.getPointerTy()));
3594
3595  // Add all operands of the call to the operand list.
3596  for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
3597    SDValue Op = getValue(I.getArgOperand(i));
3598    Ops.push_back(Op);
3599  }
3600
3601  SmallVector<EVT, 4> ValueVTs;
3602  ComputeValueVTs(TLI, I.getType(), ValueVTs);
3603
3604  if (HasChain)
3605    ValueVTs.push_back(MVT::Other);
3606
3607  SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
3608
3609  // Create the node.
3610  SDValue Result;
3611  if (IsTgtIntrinsic) {
3612    // This is target intrinsic that touches memory
3613    Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(),
3614                                     VTs, &Ops[0], Ops.size(),
3615                                     Info.memVT,
3616                                   MachinePointerInfo(Info.ptrVal, Info.offset),
3617                                     Info.align, Info.vol,
3618                                     Info.readMem, Info.writeMem);
3619  } else if (!HasChain) {
3620    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
3621                         VTs, &Ops[0], Ops.size());
3622  } else if (!I.getType()->isVoidTy()) {
3623    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
3624                         VTs, &Ops[0], Ops.size());
3625  } else {
3626    Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(),
3627                         VTs, &Ops[0], Ops.size());
3628  }
3629
3630  if (HasChain) {
3631    SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3632    if (OnlyLoad)
3633      PendingLoads.push_back(Chain);
3634    else
3635      DAG.setRoot(Chain);
3636  }
3637
3638  if (!I.getType()->isVoidTy()) {
3639    if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3640      EVT VT = TLI.getValueType(PTy);
3641      Result = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), VT, Result);
3642    }
3643
3644    setValue(&I, Result);
3645  } else {
3646    // Assign order to result here. If the intrinsic does not produce a result,
3647    // it won't be mapped to a SDNode and visit() will not assign it an order
3648    // number.
3649    ++SDNodeOrder;
3650    AssignOrderingToNode(Result.getNode());
3651  }
3652}
3653
3654/// GetSignificand - Get the significand and build it into a floating-point
3655/// number with exponent of 1:
3656///
3657///   Op = (Op & 0x007fffff) | 0x3f800000;
3658///
3659/// where Op is the hexidecimal representation of floating point value.
3660static SDValue
3661GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) {
3662  SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3663                           DAG.getConstant(0x007fffff, MVT::i32));
3664  SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3665                           DAG.getConstant(0x3f800000, MVT::i32));
3666  return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
3667}
3668
3669/// GetExponent - Get the exponent:
3670///
3671///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3672///
3673/// where Op is the hexidecimal representation of floating point value.
3674static SDValue
3675GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3676            DebugLoc dl) {
3677  SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3678                           DAG.getConstant(0x7f800000, MVT::i32));
3679  SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3680                           DAG.getConstant(23, TLI.getPointerTy()));
3681  SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3682                           DAG.getConstant(127, MVT::i32));
3683  return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3684}
3685
3686/// getF32Constant - Get 32-bit floating point constant.
3687static SDValue
3688getF32Constant(SelectionDAG &DAG, unsigned Flt) {
3689  return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32);
3690}
3691
3692/// expandExp - Lower an exp intrinsic. Handles the special sequences for
3693/// limited-precision mode.
3694static SDValue expandExp(DebugLoc dl, SDValue Op, SelectionDAG &DAG,
3695                         const TargetLowering &TLI) {
3696  if (Op.getValueType() == MVT::f32 &&
3697      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3698
3699    // Put the exponent in the right bit position for later addition to the
3700    // final result:
3701    //
3702    //   #define LOG2OFe 1.4426950f
3703    //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3704    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3705                             getF32Constant(DAG, 0x3fb8aa3b));
3706    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3707
3708    //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3709    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3710    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3711
3712    //   IntegerPartOfX <<= 23;
3713    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3714                                 DAG.getConstant(23, TLI.getPointerTy()));
3715
3716    SDValue TwoToFracPartOfX;
3717    if (LimitFloatPrecision <= 6) {
3718      // For floating-point precision of 6:
3719      //
3720      //   TwoToFractionalPartOfX =
3721      //     0.997535578f +
3722      //       (0.735607626f + 0.252464424f * x) * x;
3723      //
3724      // error 0.0144103317, which is 6 bits
3725      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3726                               getF32Constant(DAG, 0x3e814304));
3727      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3728                               getF32Constant(DAG, 0x3f3c50c8));
3729      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3730      TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3731                                     getF32Constant(DAG, 0x3f7f5e7e));
3732    } else if (LimitFloatPrecision <= 12) {
3733      // For floating-point precision of 12:
3734      //
3735      //   TwoToFractionalPartOfX =
3736      //     0.999892986f +
3737      //       (0.696457318f +
3738      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3739      //
3740      // 0.000107046256 error, which is 13 to 14 bits
3741      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3742                               getF32Constant(DAG, 0x3da235e3));
3743      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3744                               getF32Constant(DAG, 0x3e65b8f3));
3745      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3746      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3747                               getF32Constant(DAG, 0x3f324b07));
3748      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3749      TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3750                                     getF32Constant(DAG, 0x3f7ff8fd));
3751    } else { // LimitFloatPrecision <= 18
3752      // For floating-point precision of 18:
3753      //
3754      //   TwoToFractionalPartOfX =
3755      //     0.999999982f +
3756      //       (0.693148872f +
3757      //         (0.240227044f +
3758      //           (0.554906021e-1f +
3759      //             (0.961591928e-2f +
3760      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3761      //
3762      // error 2.47208000*10^(-7), which is better than 18 bits
3763      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3764                               getF32Constant(DAG, 0x3924b03e));
3765      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3766                               getF32Constant(DAG, 0x3ab24b87));
3767      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3768      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3769                               getF32Constant(DAG, 0x3c1d8c17));
3770      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3771      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3772                               getF32Constant(DAG, 0x3d634a1d));
3773      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3774      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3775                               getF32Constant(DAG, 0x3e75fe14));
3776      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3777      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3778                                getF32Constant(DAG, 0x3f317234));
3779      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3780      TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3781                                     getF32Constant(DAG, 0x3f800000));
3782    }
3783
3784    // Add the exponent into the result in integer domain.
3785    SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFracPartOfX);
3786    return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
3787                       DAG.getNode(ISD::ADD, dl, MVT::i32,
3788                                   t13, IntegerPartOfX));
3789  }
3790
3791  // No special expansion.
3792  return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
3793}
3794
3795/// expandLog - Lower a log intrinsic. Handles the special sequences for
3796/// limited-precision mode.
3797static SDValue expandLog(DebugLoc dl, SDValue Op, SelectionDAG &DAG,
3798                         const TargetLowering &TLI) {
3799  if (Op.getValueType() == MVT::f32 &&
3800      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3801    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3802
3803    // Scale the exponent by log(2) [0.69314718f].
3804    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3805    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3806                                        getF32Constant(DAG, 0x3f317218));
3807
3808    // Get the significand and build it into a floating-point number with
3809    // exponent of 1.
3810    SDValue X = GetSignificand(DAG, Op1, dl);
3811
3812    SDValue LogOfMantissa;
3813    if (LimitFloatPrecision <= 6) {
3814      // For floating-point precision of 6:
3815      //
3816      //   LogofMantissa =
3817      //     -1.1609546f +
3818      //       (1.4034025f - 0.23903021f * x) * x;
3819      //
3820      // error 0.0034276066, which is better than 8 bits
3821      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3822                               getF32Constant(DAG, 0xbe74c456));
3823      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3824                               getF32Constant(DAG, 0x3fb3a2b1));
3825      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3826      LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3827                                  getF32Constant(DAG, 0x3f949a29));
3828    } else if (LimitFloatPrecision <= 12) {
3829      // For floating-point precision of 12:
3830      //
3831      //   LogOfMantissa =
3832      //     -1.7417939f +
3833      //       (2.8212026f +
3834      //         (-1.4699568f +
3835      //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3836      //
3837      // error 0.000061011436, which is 14 bits
3838      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3839                               getF32Constant(DAG, 0xbd67b6d6));
3840      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3841                               getF32Constant(DAG, 0x3ee4f4b8));
3842      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3843      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3844                               getF32Constant(DAG, 0x3fbc278b));
3845      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3846      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3847                               getF32Constant(DAG, 0x40348e95));
3848      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3849      LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3850                                  getF32Constant(DAG, 0x3fdef31a));
3851    } else { // LimitFloatPrecision <= 18
3852      // For floating-point precision of 18:
3853      //
3854      //   LogOfMantissa =
3855      //     -2.1072184f +
3856      //       (4.2372794f +
3857      //         (-3.7029485f +
3858      //           (2.2781945f +
3859      //             (-0.87823314f +
3860      //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3861      //
3862      // error 0.0000023660568, which is better than 18 bits
3863      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3864                               getF32Constant(DAG, 0xbc91e5ac));
3865      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3866                               getF32Constant(DAG, 0x3e4350aa));
3867      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3868      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3869                               getF32Constant(DAG, 0x3f60d3e3));
3870      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3871      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3872                               getF32Constant(DAG, 0x4011cdf0));
3873      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3874      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3875                               getF32Constant(DAG, 0x406cfd1c));
3876      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3877      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3878                               getF32Constant(DAG, 0x408797cb));
3879      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3880      LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3881                                  getF32Constant(DAG, 0x4006dcab));
3882    }
3883
3884    return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
3885  }
3886
3887  // No special expansion.
3888  return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
3889}
3890
3891/// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
3892/// limited-precision mode.
3893static SDValue expandLog2(DebugLoc dl, SDValue Op, SelectionDAG &DAG,
3894                          const TargetLowering &TLI) {
3895  if (Op.getValueType() == MVT::f32 &&
3896      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3897    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3898
3899    // Get the exponent.
3900    SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3901
3902    // Get the significand and build it into a floating-point number with
3903    // exponent of 1.
3904    SDValue X = GetSignificand(DAG, Op1, dl);
3905
3906    // Different possible minimax approximations of significand in
3907    // floating-point for various degrees of accuracy over [1,2].
3908    SDValue Log2ofMantissa;
3909    if (LimitFloatPrecision <= 6) {
3910      // For floating-point precision of 6:
3911      //
3912      //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3913      //
3914      // error 0.0049451742, which is more than 7 bits
3915      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3916                               getF32Constant(DAG, 0xbeb08fe0));
3917      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3918                               getF32Constant(DAG, 0x40019463));
3919      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3920      Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3921                                   getF32Constant(DAG, 0x3fd6633d));
3922    } else if (LimitFloatPrecision <= 12) {
3923      // For floating-point precision of 12:
3924      //
3925      //   Log2ofMantissa =
3926      //     -2.51285454f +
3927      //       (4.07009056f +
3928      //         (-2.12067489f +
3929      //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3930      //
3931      // error 0.0000876136000, which is better than 13 bits
3932      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3933                               getF32Constant(DAG, 0xbda7262e));
3934      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3935                               getF32Constant(DAG, 0x3f25280b));
3936      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3937      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3938                               getF32Constant(DAG, 0x4007b923));
3939      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3940      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3941                               getF32Constant(DAG, 0x40823e2f));
3942      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3943      Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3944                                   getF32Constant(DAG, 0x4020d29c));
3945    } else { // LimitFloatPrecision <= 18
3946      // For floating-point precision of 18:
3947      //
3948      //   Log2ofMantissa =
3949      //     -3.0400495f +
3950      //       (6.1129976f +
3951      //         (-5.3420409f +
3952      //           (3.2865683f +
3953      //             (-1.2669343f +
3954      //               (0.27515199f -
3955      //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3956      //
3957      // error 0.0000018516, which is better than 18 bits
3958      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3959                               getF32Constant(DAG, 0xbcd2769e));
3960      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3961                               getF32Constant(DAG, 0x3e8ce0b9));
3962      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3963      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3964                               getF32Constant(DAG, 0x3fa22ae7));
3965      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3966      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3967                               getF32Constant(DAG, 0x40525723));
3968      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3969      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3970                               getF32Constant(DAG, 0x40aaf200));
3971      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3972      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3973                               getF32Constant(DAG, 0x40c39dad));
3974      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3975      Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3976                                   getF32Constant(DAG, 0x4042902c));
3977    }
3978
3979    return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
3980  }
3981
3982  // No special expansion.
3983  return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
3984}
3985
3986/// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
3987/// limited-precision mode.
3988static SDValue expandLog10(DebugLoc dl, SDValue Op, SelectionDAG &DAG,
3989                           const TargetLowering &TLI) {
3990  if (Op.getValueType() == MVT::f32 &&
3991      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3992    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3993
3994    // Scale the exponent by log10(2) [0.30102999f].
3995    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3996    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3997                                        getF32Constant(DAG, 0x3e9a209a));
3998
3999    // Get the significand and build it into a floating-point number with
4000    // exponent of 1.
4001    SDValue X = GetSignificand(DAG, Op1, dl);
4002
4003    SDValue Log10ofMantissa;
4004    if (LimitFloatPrecision <= 6) {
4005      // For floating-point precision of 6:
4006      //
4007      //   Log10ofMantissa =
4008      //     -0.50419619f +
4009      //       (0.60948995f - 0.10380950f * x) * x;
4010      //
4011      // error 0.0014886165, which is 6 bits
4012      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4013                               getF32Constant(DAG, 0xbdd49a13));
4014      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4015                               getF32Constant(DAG, 0x3f1c0789));
4016      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4017      Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4018                                    getF32Constant(DAG, 0x3f011300));
4019    } else if (LimitFloatPrecision <= 12) {
4020      // For floating-point precision of 12:
4021      //
4022      //   Log10ofMantissa =
4023      //     -0.64831180f +
4024      //       (0.91751397f +
4025      //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4026      //
4027      // error 0.00019228036, which is better than 12 bits
4028      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4029                               getF32Constant(DAG, 0x3d431f31));
4030      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4031                               getF32Constant(DAG, 0x3ea21fb2));
4032      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4033      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4034                               getF32Constant(DAG, 0x3f6ae232));
4035      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4036      Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4037                                    getF32Constant(DAG, 0x3f25f7c3));
4038    } else { // LimitFloatPrecision <= 18
4039      // For floating-point precision of 18:
4040      //
4041      //   Log10ofMantissa =
4042      //     -0.84299375f +
4043      //       (1.5327582f +
4044      //         (-1.0688956f +
4045      //           (0.49102474f +
4046      //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4047      //
4048      // error 0.0000037995730, which is better than 18 bits
4049      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4050                               getF32Constant(DAG, 0x3c5d51ce));
4051      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4052                               getF32Constant(DAG, 0x3e00685a));
4053      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4054      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4055                               getF32Constant(DAG, 0x3efb6798));
4056      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4057      SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4058                               getF32Constant(DAG, 0x3f88d192));
4059      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4060      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4061                               getF32Constant(DAG, 0x3fc4316c));
4062      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4063      Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4064                                    getF32Constant(DAG, 0x3f57ce70));
4065    }
4066
4067    return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
4068  }
4069
4070  // No special expansion.
4071  return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
4072}
4073
4074/// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4075/// limited-precision mode.
4076static SDValue expandExp2(DebugLoc dl, SDValue Op, SelectionDAG &DAG,
4077                          const TargetLowering &TLI) {
4078  if (Op.getValueType() == MVT::f32 &&
4079      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4080    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
4081
4082    //   FractionalPartOfX = x - (float)IntegerPartOfX;
4083    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4084    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
4085
4086    //   IntegerPartOfX <<= 23;
4087    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4088                                 DAG.getConstant(23, TLI.getPointerTy()));
4089
4090    SDValue TwoToFractionalPartOfX;
4091    if (LimitFloatPrecision <= 6) {
4092      // For floating-point precision of 6:
4093      //
4094      //   TwoToFractionalPartOfX =
4095      //     0.997535578f +
4096      //       (0.735607626f + 0.252464424f * x) * x;
4097      //
4098      // error 0.0144103317, which is 6 bits
4099      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4100                               getF32Constant(DAG, 0x3e814304));
4101      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4102                               getF32Constant(DAG, 0x3f3c50c8));
4103      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4104      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4105                                           getF32Constant(DAG, 0x3f7f5e7e));
4106    } else if (LimitFloatPrecision <= 12) {
4107      // For floating-point precision of 12:
4108      //
4109      //   TwoToFractionalPartOfX =
4110      //     0.999892986f +
4111      //       (0.696457318f +
4112      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4113      //
4114      // error 0.000107046256, which is 13 to 14 bits
4115      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4116                               getF32Constant(DAG, 0x3da235e3));
4117      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4118                               getF32Constant(DAG, 0x3e65b8f3));
4119      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4120      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4121                               getF32Constant(DAG, 0x3f324b07));
4122      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4123      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4124                                           getF32Constant(DAG, 0x3f7ff8fd));
4125    } else { // LimitFloatPrecision <= 18
4126      // For floating-point precision of 18:
4127      //
4128      //   TwoToFractionalPartOfX =
4129      //     0.999999982f +
4130      //       (0.693148872f +
4131      //         (0.240227044f +
4132      //           (0.554906021e-1f +
4133      //             (0.961591928e-2f +
4134      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4135      // error 2.47208000*10^(-7), which is better than 18 bits
4136      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4137                               getF32Constant(DAG, 0x3924b03e));
4138      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4139                               getF32Constant(DAG, 0x3ab24b87));
4140      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4141      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4142                               getF32Constant(DAG, 0x3c1d8c17));
4143      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4144      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4145                               getF32Constant(DAG, 0x3d634a1d));
4146      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4147      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4148                               getF32Constant(DAG, 0x3e75fe14));
4149      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4150      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4151                                getF32Constant(DAG, 0x3f317234));
4152      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4153      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4154                                           getF32Constant(DAG, 0x3f800000));
4155    }
4156
4157    // Add the exponent into the result in integer domain.
4158    SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32,
4159                              TwoToFractionalPartOfX);
4160    return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4161                       DAG.getNode(ISD::ADD, dl, MVT::i32,
4162                                   t13, IntegerPartOfX));
4163  }
4164
4165  // No special expansion.
4166  return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
4167}
4168
4169/// visitPow - Lower a pow intrinsic. Handles the special sequences for
4170/// limited-precision mode with x == 10.0f.
4171static SDValue expandPow(DebugLoc dl, SDValue LHS, SDValue RHS,
4172                         SelectionDAG &DAG, const TargetLowering &TLI) {
4173  bool IsExp10 = false;
4174  if (LHS.getValueType() == MVT::f32 && LHS.getValueType() == MVT::f32 &&
4175      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4176    if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
4177      APFloat Ten(10.0f);
4178      IsExp10 = LHSC->isExactlyValue(Ten);
4179    }
4180  }
4181
4182  if (IsExp10) {
4183    // Put the exponent in the right bit position for later addition to the
4184    // final result:
4185    //
4186    //   #define LOG2OF10 3.3219281f
4187    //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
4188    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
4189                             getF32Constant(DAG, 0x40549a78));
4190    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4191
4192    //   FractionalPartOfX = x - (float)IntegerPartOfX;
4193    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4194    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4195
4196    //   IntegerPartOfX <<= 23;
4197    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4198                                 DAG.getConstant(23, TLI.getPointerTy()));
4199
4200    SDValue TwoToFractionalPartOfX;
4201    if (LimitFloatPrecision <= 6) {
4202      // For floating-point precision of 6:
4203      //
4204      //   twoToFractionalPartOfX =
4205      //     0.997535578f +
4206      //       (0.735607626f + 0.252464424f * x) * x;
4207      //
4208      // error 0.0144103317, which is 6 bits
4209      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4210                               getF32Constant(DAG, 0x3e814304));
4211      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4212                               getF32Constant(DAG, 0x3f3c50c8));
4213      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4214      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4215                                           getF32Constant(DAG, 0x3f7f5e7e));
4216    } else if (LimitFloatPrecision <= 12) {
4217      // For floating-point precision of 12:
4218      //
4219      //   TwoToFractionalPartOfX =
4220      //     0.999892986f +
4221      //       (0.696457318f +
4222      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4223      //
4224      // error 0.000107046256, which is 13 to 14 bits
4225      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4226                               getF32Constant(DAG, 0x3da235e3));
4227      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4228                               getF32Constant(DAG, 0x3e65b8f3));
4229      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4230      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4231                               getF32Constant(DAG, 0x3f324b07));
4232      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4233      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4234                                           getF32Constant(DAG, 0x3f7ff8fd));
4235    } else { // LimitFloatPrecision <= 18
4236      // For floating-point precision of 18:
4237      //
4238      //   TwoToFractionalPartOfX =
4239      //     0.999999982f +
4240      //       (0.693148872f +
4241      //         (0.240227044f +
4242      //           (0.554906021e-1f +
4243      //             (0.961591928e-2f +
4244      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4245      // error 2.47208000*10^(-7), which is better than 18 bits
4246      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4247                               getF32Constant(DAG, 0x3924b03e));
4248      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4249                               getF32Constant(DAG, 0x3ab24b87));
4250      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4251      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4252                               getF32Constant(DAG, 0x3c1d8c17));
4253      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4254      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4255                               getF32Constant(DAG, 0x3d634a1d));
4256      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4257      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4258                               getF32Constant(DAG, 0x3e75fe14));
4259      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4260      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4261                                getF32Constant(DAG, 0x3f317234));
4262      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4263      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4264                                           getF32Constant(DAG, 0x3f800000));
4265    }
4266
4267    SDValue t13 = DAG.getNode(ISD::BITCAST, dl,MVT::i32,TwoToFractionalPartOfX);
4268    return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4269                       DAG.getNode(ISD::ADD, dl, MVT::i32,
4270                                   t13, IntegerPartOfX));
4271  }
4272
4273  // No special expansion.
4274  return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
4275}
4276
4277
4278/// ExpandPowI - Expand a llvm.powi intrinsic.
4279static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS,
4280                          SelectionDAG &DAG) {
4281  // If RHS is a constant, we can expand this out to a multiplication tree,
4282  // otherwise we end up lowering to a call to __powidf2 (for example).  When
4283  // optimizing for size, we only want to do this if the expansion would produce
4284  // a small number of multiplies, otherwise we do the full expansion.
4285  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4286    // Get the exponent as a positive value.
4287    unsigned Val = RHSC->getSExtValue();
4288    if ((int)Val < 0) Val = -Val;
4289
4290    // powi(x, 0) -> 1.0
4291    if (Val == 0)
4292      return DAG.getConstantFP(1.0, LHS.getValueType());
4293
4294    const Function *F = DAG.getMachineFunction().getFunction();
4295    if (!F->getFnAttributes().hasAttribute(Attributes::OptimizeForSize) ||
4296        // If optimizing for size, don't insert too many multiplies.  This
4297        // inserts up to 5 multiplies.
4298        CountPopulation_32(Val)+Log2_32(Val) < 7) {
4299      // We use the simple binary decomposition method to generate the multiply
4300      // sequence.  There are more optimal ways to do this (for example,
4301      // powi(x,15) generates one more multiply than it should), but this has
4302      // the benefit of being both really simple and much better than a libcall.
4303      SDValue Res;  // Logically starts equal to 1.0
4304      SDValue CurSquare = LHS;
4305      while (Val) {
4306        if (Val & 1) {
4307          if (Res.getNode())
4308            Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4309          else
4310            Res = CurSquare;  // 1.0*CurSquare.
4311        }
4312
4313        CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4314                                CurSquare, CurSquare);
4315        Val >>= 1;
4316      }
4317
4318      // If the original was negative, invert the result, producing 1/(x*x*x).
4319      if (RHSC->getSExtValue() < 0)
4320        Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4321                          DAG.getConstantFP(1.0, LHS.getValueType()), Res);
4322      return Res;
4323    }
4324  }
4325
4326  // Otherwise, expand to a libcall.
4327  return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4328}
4329
4330// getTruncatedArgReg - Find underlying register used for an truncated
4331// argument.
4332static unsigned getTruncatedArgReg(const SDValue &N) {
4333  if (N.getOpcode() != ISD::TRUNCATE)
4334    return 0;
4335
4336  const SDValue &Ext = N.getOperand(0);
4337  if (Ext.getOpcode() == ISD::AssertZext || Ext.getOpcode() == ISD::AssertSext){
4338    const SDValue &CFR = Ext.getOperand(0);
4339    if (CFR.getOpcode() == ISD::CopyFromReg)
4340      return cast<RegisterSDNode>(CFR.getOperand(1))->getReg();
4341    if (CFR.getOpcode() == ISD::TRUNCATE)
4342      return getTruncatedArgReg(CFR);
4343  }
4344  return 0;
4345}
4346
4347/// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4348/// argument, create the corresponding DBG_VALUE machine instruction for it now.
4349/// At the end of instruction selection, they will be inserted to the entry BB.
4350bool
4351SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
4352                                              int64_t Offset,
4353                                              const SDValue &N) {
4354  const Argument *Arg = dyn_cast<Argument>(V);
4355  if (!Arg)
4356    return false;
4357
4358  MachineFunction &MF = DAG.getMachineFunction();
4359  const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
4360  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
4361
4362  // Ignore inlined function arguments here.
4363  DIVariable DV(Variable);
4364  if (DV.isInlinedFnArgument(MF.getFunction()))
4365    return false;
4366
4367  unsigned Reg = 0;
4368  // Some arguments' frame index is recorded during argument lowering.
4369  Offset = FuncInfo.getArgumentFrameIndex(Arg);
4370  if (Offset)
4371    Reg = TRI->getFrameRegister(MF);
4372
4373  if (!Reg && N.getNode()) {
4374    if (N.getOpcode() == ISD::CopyFromReg)
4375      Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
4376    else
4377      Reg = getTruncatedArgReg(N);
4378    if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4379      MachineRegisterInfo &RegInfo = MF.getRegInfo();
4380      unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4381      if (PR)
4382        Reg = PR;
4383    }
4384  }
4385
4386  if (!Reg) {
4387    // Check if ValueMap has reg number.
4388    DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4389    if (VMI != FuncInfo.ValueMap.end())
4390      Reg = VMI->second;
4391  }
4392
4393  if (!Reg && N.getNode()) {
4394    // Check if frame index is available.
4395    if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4396      if (FrameIndexSDNode *FINode =
4397          dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) {
4398        Reg = TRI->getFrameRegister(MF);
4399        Offset = FINode->getIndex();
4400      }
4401  }
4402
4403  if (!Reg)
4404    return false;
4405
4406  MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(),
4407                                    TII->get(TargetOpcode::DBG_VALUE))
4408    .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable);
4409  FuncInfo.ArgDbgValues.push_back(&*MIB);
4410  return true;
4411}
4412
4413// VisualStudio defines setjmp as _setjmp
4414#if defined(_MSC_VER) && defined(setjmp) && \
4415                         !defined(setjmp_undefined_for_msvc)
4416#  pragma push_macro("setjmp")
4417#  undef setjmp
4418#  define setjmp_undefined_for_msvc
4419#endif
4420
4421/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4422/// we want to emit this as a call to a named external function, return the name
4423/// otherwise lower it and return null.
4424const char *
4425SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4426  DebugLoc dl = getCurDebugLoc();
4427  SDValue Res;
4428
4429  switch (Intrinsic) {
4430  default:
4431    // By default, turn this into a target intrinsic node.
4432    visitTargetIntrinsic(I, Intrinsic);
4433    return 0;
4434  case Intrinsic::vastart:  visitVAStart(I); return 0;
4435  case Intrinsic::vaend:    visitVAEnd(I); return 0;
4436  case Intrinsic::vacopy:   visitVACopy(I); return 0;
4437  case Intrinsic::returnaddress:
4438    setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(),
4439                             getValue(I.getArgOperand(0))));
4440    return 0;
4441  case Intrinsic::frameaddress:
4442    setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(),
4443                             getValue(I.getArgOperand(0))));
4444    return 0;
4445  case Intrinsic::setjmp:
4446    return &"_setjmp"[!TLI.usesUnderscoreSetJmp()];
4447  case Intrinsic::longjmp:
4448    return &"_longjmp"[!TLI.usesUnderscoreLongJmp()];
4449  case Intrinsic::memcpy: {
4450    // Assert for address < 256 since we support only user defined address
4451    // spaces.
4452    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4453           < 256 &&
4454           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4455           < 256 &&
4456           "Unknown address space");
4457    SDValue Op1 = getValue(I.getArgOperand(0));
4458    SDValue Op2 = getValue(I.getArgOperand(1));
4459    SDValue Op3 = getValue(I.getArgOperand(2));
4460    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4461    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4462    DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false,
4463                              MachinePointerInfo(I.getArgOperand(0)),
4464                              MachinePointerInfo(I.getArgOperand(1))));
4465    return 0;
4466  }
4467  case Intrinsic::memset: {
4468    // Assert for address < 256 since we support only user defined address
4469    // spaces.
4470    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4471           < 256 &&
4472           "Unknown address space");
4473    SDValue Op1 = getValue(I.getArgOperand(0));
4474    SDValue Op2 = getValue(I.getArgOperand(1));
4475    SDValue Op3 = getValue(I.getArgOperand(2));
4476    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4477    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4478    DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4479                              MachinePointerInfo(I.getArgOperand(0))));
4480    return 0;
4481  }
4482  case Intrinsic::memmove: {
4483    // Assert for address < 256 since we support only user defined address
4484    // spaces.
4485    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4486           < 256 &&
4487           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4488           < 256 &&
4489           "Unknown address space");
4490    SDValue Op1 = getValue(I.getArgOperand(0));
4491    SDValue Op2 = getValue(I.getArgOperand(1));
4492    SDValue Op3 = getValue(I.getArgOperand(2));
4493    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4494    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4495    DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4496                               MachinePointerInfo(I.getArgOperand(0)),
4497                               MachinePointerInfo(I.getArgOperand(1))));
4498    return 0;
4499  }
4500  case Intrinsic::dbg_declare: {
4501    const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4502    MDNode *Variable = DI.getVariable();
4503    const Value *Address = DI.getAddress();
4504    if (!Address || !DIVariable(Variable).Verify()) {
4505      DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4506      return 0;
4507    }
4508
4509    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4510    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4511    // absolute, but not relative, values are different depending on whether
4512    // debug info exists.
4513    ++SDNodeOrder;
4514
4515    // Check if address has undef value.
4516    if (isa<UndefValue>(Address) ||
4517        (Address->use_empty() && !isa<Argument>(Address))) {
4518      DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4519      return 0;
4520    }
4521
4522    SDValue &N = NodeMap[Address];
4523    if (!N.getNode() && isa<Argument>(Address))
4524      // Check unused arguments map.
4525      N = UnusedArgNodeMap[Address];
4526    SDDbgValue *SDV;
4527    if (N.getNode()) {
4528      if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4529        Address = BCI->getOperand(0);
4530      // Parameters are handled specially.
4531      bool isParameter =
4532        (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable ||
4533         isa<Argument>(Address));
4534
4535      const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
4536
4537      if (isParameter && !AI) {
4538        FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4539        if (FINode)
4540          // Byval parameter.  We have a frame index at this point.
4541          SDV = DAG.getDbgValue(Variable, FINode->getIndex(),
4542                                0, dl, SDNodeOrder);
4543        else {
4544          // Address is an argument, so try to emit its dbg value using
4545          // virtual register info from the FuncInfo.ValueMap.
4546          EmitFuncArgumentDbgValue(Address, Variable, 0, N);
4547          return 0;
4548        }
4549      } else if (AI)
4550        SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
4551                              0, dl, SDNodeOrder);
4552      else {
4553        // Can't do anything with other non-AI cases yet.
4554        DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4555        DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t");
4556        DEBUG(Address->dump());
4557        return 0;
4558      }
4559      DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4560    } else {
4561      // If Address is an argument then try to emit its dbg value using
4562      // virtual register info from the FuncInfo.ValueMap.
4563      if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) {
4564        // If variable is pinned by a alloca in dominating bb then
4565        // use StaticAllocaMap.
4566        if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4567          if (AI->getParent() != DI.getParent()) {
4568            DenseMap<const AllocaInst*, int>::iterator SI =
4569              FuncInfo.StaticAllocaMap.find(AI);
4570            if (SI != FuncInfo.StaticAllocaMap.end()) {
4571              SDV = DAG.getDbgValue(Variable, SI->second,
4572                                    0, dl, SDNodeOrder);
4573              DAG.AddDbgValue(SDV, 0, false);
4574              return 0;
4575            }
4576          }
4577        }
4578        DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4579      }
4580    }
4581    return 0;
4582  }
4583  case Intrinsic::dbg_value: {
4584    const DbgValueInst &DI = cast<DbgValueInst>(I);
4585    if (!DIVariable(DI.getVariable()).Verify())
4586      return 0;
4587
4588    MDNode *Variable = DI.getVariable();
4589    uint64_t Offset = DI.getOffset();
4590    const Value *V = DI.getValue();
4591    if (!V)
4592      return 0;
4593
4594    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4595    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4596    // absolute, but not relative, values are different depending on whether
4597    // debug info exists.
4598    ++SDNodeOrder;
4599    SDDbgValue *SDV;
4600    if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
4601      SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder);
4602      DAG.AddDbgValue(SDV, 0, false);
4603    } else {
4604      // Do not use getValue() in here; we don't want to generate code at
4605      // this point if it hasn't been done yet.
4606      SDValue N = NodeMap[V];
4607      if (!N.getNode() && isa<Argument>(V))
4608        // Check unused arguments map.
4609        N = UnusedArgNodeMap[V];
4610      if (N.getNode()) {
4611        if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) {
4612          SDV = DAG.getDbgValue(Variable, N.getNode(),
4613                                N.getResNo(), Offset, dl, SDNodeOrder);
4614          DAG.AddDbgValue(SDV, N.getNode(), false);
4615        }
4616      } else if (!V->use_empty() ) {
4617        // Do not call getValue(V) yet, as we don't want to generate code.
4618        // Remember it for later.
4619        DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4620        DanglingDebugInfoMap[V] = DDI;
4621      } else {
4622        // We may expand this to cover more cases.  One case where we have no
4623        // data available is an unreferenced parameter.
4624        DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4625      }
4626    }
4627
4628    // Build a debug info table entry.
4629    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4630      V = BCI->getOperand(0);
4631    const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4632    // Don't handle byval struct arguments or VLAs, for example.
4633    if (!AI) {
4634      DEBUG(dbgs() << "Dropping debug location info for:\n  " << DI << "\n");
4635      DEBUG(dbgs() << "  Last seen at:\n    " << *V << "\n");
4636      return 0;
4637    }
4638    DenseMap<const AllocaInst*, int>::iterator SI =
4639      FuncInfo.StaticAllocaMap.find(AI);
4640    if (SI == FuncInfo.StaticAllocaMap.end())
4641      return 0; // VLAs.
4642    int FI = SI->second;
4643
4644    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4645    if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
4646      MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
4647    return 0;
4648  }
4649
4650  case Intrinsic::eh_typeid_for: {
4651    // Find the type id for the given typeinfo.
4652    GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0));
4653    unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4654    Res = DAG.getConstant(TypeID, MVT::i32);
4655    setValue(&I, Res);
4656    return 0;
4657  }
4658
4659  case Intrinsic::eh_return_i32:
4660  case Intrinsic::eh_return_i64:
4661    DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4662    DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl,
4663                            MVT::Other,
4664                            getControlRoot(),
4665                            getValue(I.getArgOperand(0)),
4666                            getValue(I.getArgOperand(1))));
4667    return 0;
4668  case Intrinsic::eh_unwind_init:
4669    DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4670    return 0;
4671  case Intrinsic::eh_dwarf_cfa: {
4672    SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl,
4673                                        TLI.getPointerTy());
4674    SDValue Offset = DAG.getNode(ISD::ADD, dl,
4675                                 TLI.getPointerTy(),
4676                                 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
4677                                             TLI.getPointerTy()),
4678                                 CfaArg);
4679    SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl,
4680                             TLI.getPointerTy(),
4681                             DAG.getConstant(0, TLI.getPointerTy()));
4682    setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
4683                             FA, Offset));
4684    return 0;
4685  }
4686  case Intrinsic::eh_sjlj_callsite: {
4687    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4688    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4689    assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4690    assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4691
4692    MMI.setCurrentCallSite(CI->getZExtValue());
4693    return 0;
4694  }
4695  case Intrinsic::eh_sjlj_functioncontext: {
4696    // Get and store the index of the function context.
4697    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4698    AllocaInst *FnCtx =
4699      cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
4700    int FI = FuncInfo.StaticAllocaMap[FnCtx];
4701    MFI->setFunctionContextIndex(FI);
4702    return 0;
4703  }
4704  case Intrinsic::eh_sjlj_setjmp: {
4705    SDValue Ops[2];
4706    Ops[0] = getRoot();
4707    Ops[1] = getValue(I.getArgOperand(0));
4708    SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, dl,
4709                             DAG.getVTList(MVT::i32, MVT::Other),
4710                             Ops, 2);
4711    setValue(&I, Op.getValue(0));
4712    DAG.setRoot(Op.getValue(1));
4713    return 0;
4714  }
4715  case Intrinsic::eh_sjlj_longjmp: {
4716    DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other,
4717                            getRoot(), getValue(I.getArgOperand(0))));
4718    return 0;
4719  }
4720
4721  case Intrinsic::x86_mmx_pslli_w:
4722  case Intrinsic::x86_mmx_pslli_d:
4723  case Intrinsic::x86_mmx_pslli_q:
4724  case Intrinsic::x86_mmx_psrli_w:
4725  case Intrinsic::x86_mmx_psrli_d:
4726  case Intrinsic::x86_mmx_psrli_q:
4727  case Intrinsic::x86_mmx_psrai_w:
4728  case Intrinsic::x86_mmx_psrai_d: {
4729    SDValue ShAmt = getValue(I.getArgOperand(1));
4730    if (isa<ConstantSDNode>(ShAmt)) {
4731      visitTargetIntrinsic(I, Intrinsic);
4732      return 0;
4733    }
4734    unsigned NewIntrinsic = 0;
4735    EVT ShAmtVT = MVT::v2i32;
4736    switch (Intrinsic) {
4737    case Intrinsic::x86_mmx_pslli_w:
4738      NewIntrinsic = Intrinsic::x86_mmx_psll_w;
4739      break;
4740    case Intrinsic::x86_mmx_pslli_d:
4741      NewIntrinsic = Intrinsic::x86_mmx_psll_d;
4742      break;
4743    case Intrinsic::x86_mmx_pslli_q:
4744      NewIntrinsic = Intrinsic::x86_mmx_psll_q;
4745      break;
4746    case Intrinsic::x86_mmx_psrli_w:
4747      NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
4748      break;
4749    case Intrinsic::x86_mmx_psrli_d:
4750      NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
4751      break;
4752    case Intrinsic::x86_mmx_psrli_q:
4753      NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
4754      break;
4755    case Intrinsic::x86_mmx_psrai_w:
4756      NewIntrinsic = Intrinsic::x86_mmx_psra_w;
4757      break;
4758    case Intrinsic::x86_mmx_psrai_d:
4759      NewIntrinsic = Intrinsic::x86_mmx_psra_d;
4760      break;
4761    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4762    }
4763
4764    // The vector shift intrinsics with scalars uses 32b shift amounts but
4765    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
4766    // to be zero.
4767    // We must do this early because v2i32 is not a legal type.
4768    SDValue ShOps[2];
4769    ShOps[0] = ShAmt;
4770    ShOps[1] = DAG.getConstant(0, MVT::i32);
4771    ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
4772    EVT DestVT = TLI.getValueType(I.getType());
4773    ShAmt = DAG.getNode(ISD::BITCAST, dl, DestVT, ShAmt);
4774    Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
4775                       DAG.getConstant(NewIntrinsic, MVT::i32),
4776                       getValue(I.getArgOperand(0)), ShAmt);
4777    setValue(&I, Res);
4778    return 0;
4779  }
4780  case Intrinsic::x86_avx_vinsertf128_pd_256:
4781  case Intrinsic::x86_avx_vinsertf128_ps_256:
4782  case Intrinsic::x86_avx_vinsertf128_si_256:
4783  case Intrinsic::x86_avx2_vinserti128: {
4784    EVT DestVT = TLI.getValueType(I.getType());
4785    EVT ElVT = TLI.getValueType(I.getArgOperand(1)->getType());
4786    uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue() & 1) *
4787                   ElVT.getVectorNumElements();
4788    Res = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, DestVT,
4789                      getValue(I.getArgOperand(0)),
4790                      getValue(I.getArgOperand(1)),
4791                      DAG.getIntPtrConstant(Idx));
4792    setValue(&I, Res);
4793    return 0;
4794  }
4795  case Intrinsic::x86_avx_vextractf128_pd_256:
4796  case Intrinsic::x86_avx_vextractf128_ps_256:
4797  case Intrinsic::x86_avx_vextractf128_si_256:
4798  case Intrinsic::x86_avx2_vextracti128: {
4799    EVT DestVT = TLI.getValueType(I.getType());
4800    uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(1))->getZExtValue() & 1) *
4801                   DestVT.getVectorNumElements();
4802    Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT,
4803                      getValue(I.getArgOperand(0)),
4804                      DAG.getIntPtrConstant(Idx));
4805    setValue(&I, Res);
4806    return 0;
4807  }
4808  case Intrinsic::convertff:
4809  case Intrinsic::convertfsi:
4810  case Intrinsic::convertfui:
4811  case Intrinsic::convertsif:
4812  case Intrinsic::convertuif:
4813  case Intrinsic::convertss:
4814  case Intrinsic::convertsu:
4815  case Intrinsic::convertus:
4816  case Intrinsic::convertuu: {
4817    ISD::CvtCode Code = ISD::CVT_INVALID;
4818    switch (Intrinsic) {
4819    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4820    case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
4821    case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4822    case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4823    case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4824    case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4825    case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
4826    case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
4827    case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4828    case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4829    }
4830    EVT DestVT = TLI.getValueType(I.getType());
4831    const Value *Op1 = I.getArgOperand(0);
4832    Res = DAG.getConvertRndSat(DestVT, dl, getValue(Op1),
4833                               DAG.getValueType(DestVT),
4834                               DAG.getValueType(getValue(Op1).getValueType()),
4835                               getValue(I.getArgOperand(1)),
4836                               getValue(I.getArgOperand(2)),
4837                               Code);
4838    setValue(&I, Res);
4839    return 0;
4840  }
4841  case Intrinsic::powi:
4842    setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)),
4843                            getValue(I.getArgOperand(1)), DAG));
4844    return 0;
4845  case Intrinsic::log:
4846    setValue(&I, expandLog(dl, getValue(I.getArgOperand(0)), DAG, TLI));
4847    return 0;
4848  case Intrinsic::log2:
4849    setValue(&I, expandLog2(dl, getValue(I.getArgOperand(0)), DAG, TLI));
4850    return 0;
4851  case Intrinsic::log10:
4852    setValue(&I, expandLog10(dl, getValue(I.getArgOperand(0)), DAG, TLI));
4853    return 0;
4854  case Intrinsic::exp:
4855    setValue(&I, expandExp(dl, getValue(I.getArgOperand(0)), DAG, TLI));
4856    return 0;
4857  case Intrinsic::exp2:
4858    setValue(&I, expandExp2(dl, getValue(I.getArgOperand(0)), DAG, TLI));
4859    return 0;
4860  case Intrinsic::pow:
4861    setValue(&I, expandPow(dl, getValue(I.getArgOperand(0)),
4862                           getValue(I.getArgOperand(1)), DAG, TLI));
4863    return 0;
4864  case Intrinsic::sqrt:
4865  case Intrinsic::fabs:
4866  case Intrinsic::sin:
4867  case Intrinsic::cos:
4868  case Intrinsic::floor:
4869  case Intrinsic::ceil:
4870  case Intrinsic::trunc:
4871  case Intrinsic::rint:
4872  case Intrinsic::nearbyint: {
4873    unsigned Opcode;
4874    switch (Intrinsic) {
4875    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4876    case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
4877    case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
4878    case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
4879    case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
4880    case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
4881    case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
4882    case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
4883    case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
4884    case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
4885    }
4886
4887    setValue(&I, DAG.getNode(Opcode, dl,
4888                             getValue(I.getArgOperand(0)).getValueType(),
4889                             getValue(I.getArgOperand(0))));
4890    return 0;
4891  }
4892  case Intrinsic::fma:
4893    setValue(&I, DAG.getNode(ISD::FMA, dl,
4894                             getValue(I.getArgOperand(0)).getValueType(),
4895                             getValue(I.getArgOperand(0)),
4896                             getValue(I.getArgOperand(1)),
4897                             getValue(I.getArgOperand(2))));
4898    return 0;
4899  case Intrinsic::fmuladd: {
4900    EVT VT = TLI.getValueType(I.getType());
4901    if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
4902        TLI.isOperationLegalOrCustom(ISD::FMA, VT) &&
4903        TLI.isFMAFasterThanMulAndAdd(VT)){
4904      setValue(&I, DAG.getNode(ISD::FMA, dl,
4905                               getValue(I.getArgOperand(0)).getValueType(),
4906                               getValue(I.getArgOperand(0)),
4907                               getValue(I.getArgOperand(1)),
4908                               getValue(I.getArgOperand(2))));
4909    } else {
4910      SDValue Mul = DAG.getNode(ISD::FMUL, dl,
4911                                getValue(I.getArgOperand(0)).getValueType(),
4912                                getValue(I.getArgOperand(0)),
4913                                getValue(I.getArgOperand(1)));
4914      SDValue Add = DAG.getNode(ISD::FADD, dl,
4915                                getValue(I.getArgOperand(0)).getValueType(),
4916                                Mul,
4917                                getValue(I.getArgOperand(2)));
4918      setValue(&I, Add);
4919    }
4920    return 0;
4921  }
4922  case Intrinsic::convert_to_fp16:
4923    setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl,
4924                             MVT::i16, getValue(I.getArgOperand(0))));
4925    return 0;
4926  case Intrinsic::convert_from_fp16:
4927    setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl,
4928                             MVT::f32, getValue(I.getArgOperand(0))));
4929    return 0;
4930  case Intrinsic::pcmarker: {
4931    SDValue Tmp = getValue(I.getArgOperand(0));
4932    DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp));
4933    return 0;
4934  }
4935  case Intrinsic::readcyclecounter: {
4936    SDValue Op = getRoot();
4937    Res = DAG.getNode(ISD::READCYCLECOUNTER, dl,
4938                      DAG.getVTList(MVT::i64, MVT::Other),
4939                      &Op, 1);
4940    setValue(&I, Res);
4941    DAG.setRoot(Res.getValue(1));
4942    return 0;
4943  }
4944  case Intrinsic::bswap:
4945    setValue(&I, DAG.getNode(ISD::BSWAP, dl,
4946                             getValue(I.getArgOperand(0)).getValueType(),
4947                             getValue(I.getArgOperand(0))));
4948    return 0;
4949  case Intrinsic::cttz: {
4950    SDValue Arg = getValue(I.getArgOperand(0));
4951    ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
4952    EVT Ty = Arg.getValueType();
4953    setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
4954                             dl, Ty, Arg));
4955    return 0;
4956  }
4957  case Intrinsic::ctlz: {
4958    SDValue Arg = getValue(I.getArgOperand(0));
4959    ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
4960    EVT Ty = Arg.getValueType();
4961    setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
4962                             dl, Ty, Arg));
4963    return 0;
4964  }
4965  case Intrinsic::ctpop: {
4966    SDValue Arg = getValue(I.getArgOperand(0));
4967    EVT Ty = Arg.getValueType();
4968    setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg));
4969    return 0;
4970  }
4971  case Intrinsic::stacksave: {
4972    SDValue Op = getRoot();
4973    Res = DAG.getNode(ISD::STACKSAVE, dl,
4974                      DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
4975    setValue(&I, Res);
4976    DAG.setRoot(Res.getValue(1));
4977    return 0;
4978  }
4979  case Intrinsic::stackrestore: {
4980    Res = getValue(I.getArgOperand(0));
4981    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res));
4982    return 0;
4983  }
4984  case Intrinsic::stackprotector: {
4985    // Emit code into the DAG to store the stack guard onto the stack.
4986    MachineFunction &MF = DAG.getMachineFunction();
4987    MachineFrameInfo *MFI = MF.getFrameInfo();
4988    EVT PtrTy = TLI.getPointerTy();
4989
4990    SDValue Src = getValue(I.getArgOperand(0));   // The guard's value.
4991    AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
4992
4993    int FI = FuncInfo.StaticAllocaMap[Slot];
4994    MFI->setStackProtectorIndex(FI);
4995
4996    SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
4997
4998    // Store the stack protector onto the stack.
4999    Res = DAG.getStore(getRoot(), dl, Src, FIN,
5000                       MachinePointerInfo::getFixedStack(FI),
5001                       true, false, 0);
5002    setValue(&I, Res);
5003    DAG.setRoot(Res);
5004    return 0;
5005  }
5006  case Intrinsic::objectsize: {
5007    // If we don't know by now, we're never going to know.
5008    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
5009
5010    assert(CI && "Non-constant type in __builtin_object_size?");
5011
5012    SDValue Arg = getValue(I.getCalledValue());
5013    EVT Ty = Arg.getValueType();
5014
5015    if (CI->isZero())
5016      Res = DAG.getConstant(-1ULL, Ty);
5017    else
5018      Res = DAG.getConstant(0, Ty);
5019
5020    setValue(&I, Res);
5021    return 0;
5022  }
5023  case Intrinsic::var_annotation:
5024    // Discard annotate attributes
5025    return 0;
5026
5027  case Intrinsic::init_trampoline: {
5028    const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5029
5030    SDValue Ops[6];
5031    Ops[0] = getRoot();
5032    Ops[1] = getValue(I.getArgOperand(0));
5033    Ops[2] = getValue(I.getArgOperand(1));
5034    Ops[3] = getValue(I.getArgOperand(2));
5035    Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5036    Ops[5] = DAG.getSrcValue(F);
5037
5038    Res = DAG.getNode(ISD::INIT_TRAMPOLINE, dl, MVT::Other, Ops, 6);
5039
5040    DAG.setRoot(Res);
5041    return 0;
5042  }
5043  case Intrinsic::adjust_trampoline: {
5044    setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, dl,
5045                             TLI.getPointerTy(),
5046                             getValue(I.getArgOperand(0))));
5047    return 0;
5048  }
5049  case Intrinsic::gcroot:
5050    if (GFI) {
5051      const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
5052      const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
5053
5054      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
5055      GFI->addStackRoot(FI->getIndex(), TypeMap);
5056    }
5057    return 0;
5058  case Intrinsic::gcread:
5059  case Intrinsic::gcwrite:
5060    llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
5061  case Intrinsic::flt_rounds:
5062    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32));
5063    return 0;
5064
5065  case Intrinsic::expect: {
5066    // Just replace __builtin_expect(exp, c) with EXP.
5067    setValue(&I, getValue(I.getArgOperand(0)));
5068    return 0;
5069  }
5070
5071  case Intrinsic::debugtrap:
5072  case Intrinsic::trap: {
5073    StringRef TrapFuncName = TM.Options.getTrapFunctionName();
5074    if (TrapFuncName.empty()) {
5075      ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
5076        ISD::TRAP : ISD::DEBUGTRAP;
5077      DAG.setRoot(DAG.getNode(Op, dl,MVT::Other, getRoot()));
5078      return 0;
5079    }
5080    TargetLowering::ArgListTy Args;
5081    TargetLowering::
5082    CallLoweringInfo CLI(getRoot(), I.getType(),
5083                 false, false, false, false, 0, CallingConv::C,
5084                 /*isTailCall=*/false,
5085                 /*doesNotRet=*/false, /*isReturnValueUsed=*/true,
5086                 DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()),
5087                 Args, DAG, dl);
5088    std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
5089    DAG.setRoot(Result.second);
5090    return 0;
5091  }
5092
5093  case Intrinsic::uadd_with_overflow:
5094  case Intrinsic::sadd_with_overflow:
5095  case Intrinsic::usub_with_overflow:
5096  case Intrinsic::ssub_with_overflow:
5097  case Intrinsic::umul_with_overflow:
5098  case Intrinsic::smul_with_overflow: {
5099    ISD::NodeType Op;
5100    switch (Intrinsic) {
5101    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5102    case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
5103    case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
5104    case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
5105    case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
5106    case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
5107    case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
5108    }
5109    SDValue Op1 = getValue(I.getArgOperand(0));
5110    SDValue Op2 = getValue(I.getArgOperand(1));
5111
5112    SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
5113    setValue(&I, DAG.getNode(Op, dl, VTs, Op1, Op2));
5114    return 0;
5115  }
5116  case Intrinsic::prefetch: {
5117    SDValue Ops[5];
5118    unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
5119    Ops[0] = getRoot();
5120    Ops[1] = getValue(I.getArgOperand(0));
5121    Ops[2] = getValue(I.getArgOperand(1));
5122    Ops[3] = getValue(I.getArgOperand(2));
5123    Ops[4] = getValue(I.getArgOperand(3));
5124    DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, dl,
5125                                        DAG.getVTList(MVT::Other),
5126                                        &Ops[0], 5,
5127                                        EVT::getIntegerVT(*Context, 8),
5128                                        MachinePointerInfo(I.getArgOperand(0)),
5129                                        0, /* align */
5130                                        false, /* volatile */
5131                                        rw==0, /* read */
5132                                        rw==1)); /* write */
5133    return 0;
5134  }
5135  case Intrinsic::lifetime_start:
5136  case Intrinsic::lifetime_end: {
5137    bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
5138    // Stack coloring is not enabled in O0, discard region information.
5139    if (TM.getOptLevel() == CodeGenOpt::None)
5140      return 0;
5141
5142    SmallVector<Value *, 4> Allocas;
5143    GetUnderlyingObjects(I.getArgOperand(1), Allocas, TD);
5144
5145    for (SmallVector<Value*, 4>::iterator Object = Allocas.begin(),
5146         E = Allocas.end(); Object != E; ++Object) {
5147      AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
5148
5149      // Could not find an Alloca.
5150      if (!LifetimeObject)
5151        continue;
5152
5153      int FI = FuncInfo.StaticAllocaMap[LifetimeObject];
5154
5155      SDValue Ops[2];
5156      Ops[0] = getRoot();
5157      Ops[1] = DAG.getFrameIndex(FI, TLI.getPointerTy(), true);
5158      unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END);
5159
5160      Res = DAG.getNode(Opcode, dl, MVT::Other, Ops, 2);
5161      DAG.setRoot(Res);
5162    }
5163  }
5164  case Intrinsic::invariant_start:
5165    // Discard region information.
5166    setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
5167    return 0;
5168  case Intrinsic::invariant_end:
5169    // Discard region information.
5170    return 0;
5171  case Intrinsic::donothing:
5172    // ignore
5173    return 0;
5174  }
5175}
5176
5177void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
5178                                      bool isTailCall,
5179                                      MachineBasicBlock *LandingPad) {
5180  PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
5181  FunctionType *FTy = cast<FunctionType>(PT->getElementType());
5182  Type *RetTy = FTy->getReturnType();
5183  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5184  MCSymbol *BeginLabel = 0;
5185
5186  TargetLowering::ArgListTy Args;
5187  TargetLowering::ArgListEntry Entry;
5188  Args.reserve(CS.arg_size());
5189
5190  // Check whether the function can return without sret-demotion.
5191  SmallVector<ISD::OutputArg, 4> Outs;
5192  GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(),
5193                Outs, TLI);
5194
5195  bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
5196                                           DAG.getMachineFunction(),
5197                                           FTy->isVarArg(), Outs,
5198                                           FTy->getContext());
5199
5200  SDValue DemoteStackSlot;
5201  int DemoteStackIdx = -100;
5202
5203  if (!CanLowerReturn) {
5204    uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(
5205                      FTy->getReturnType());
5206    unsigned Align  = TLI.getDataLayout()->getPrefTypeAlignment(
5207                      FTy->getReturnType());
5208    MachineFunction &MF = DAG.getMachineFunction();
5209    DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5210    Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
5211
5212    DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI.getPointerTy());
5213    Entry.Node = DemoteStackSlot;
5214    Entry.Ty = StackSlotPtrType;
5215    Entry.isSExt = false;
5216    Entry.isZExt = false;
5217    Entry.isInReg = false;
5218    Entry.isSRet = true;
5219    Entry.isNest = false;
5220    Entry.isByVal = false;
5221    Entry.Alignment = Align;
5222    Args.push_back(Entry);
5223    RetTy = Type::getVoidTy(FTy->getContext());
5224  }
5225
5226  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
5227       i != e; ++i) {
5228    const Value *V = *i;
5229
5230    // Skip empty types
5231    if (V->getType()->isEmptyTy())
5232      continue;
5233
5234    SDValue ArgNode = getValue(V);
5235    Entry.Node = ArgNode; Entry.Ty = V->getType();
5236
5237    unsigned attrInd = i - CS.arg_begin() + 1;
5238    Entry.isSExt  = CS.paramHasAttr(attrInd, Attributes::SExt);
5239    Entry.isZExt  = CS.paramHasAttr(attrInd, Attributes::ZExt);
5240    Entry.isInReg = CS.paramHasAttr(attrInd, Attributes::InReg);
5241    Entry.isSRet  = CS.paramHasAttr(attrInd, Attributes::StructRet);
5242    Entry.isNest  = CS.paramHasAttr(attrInd, Attributes::Nest);
5243    Entry.isByVal = CS.paramHasAttr(attrInd, Attributes::ByVal);
5244    Entry.Alignment = CS.getParamAlignment(attrInd);
5245    Args.push_back(Entry);
5246  }
5247
5248  if (LandingPad) {
5249    // Insert a label before the invoke call to mark the try range.  This can be
5250    // used to detect deletion of the invoke via the MachineModuleInfo.
5251    BeginLabel = MMI.getContext().CreateTempSymbol();
5252
5253    // For SjLj, keep track of which landing pads go with which invokes
5254    // so as to maintain the ordering of pads in the LSDA.
5255    unsigned CallSiteIndex = MMI.getCurrentCallSite();
5256    if (CallSiteIndex) {
5257      MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
5258      LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex);
5259
5260      // Now that the call site is handled, stop tracking it.
5261      MMI.setCurrentCallSite(0);
5262    }
5263
5264    // Both PendingLoads and PendingExports must be flushed here;
5265    // this call might not return.
5266    (void)getRoot();
5267    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel));
5268  }
5269
5270  // Check if target-independent constraints permit a tail call here.
5271  // Target-dependent constraints are checked within TLI.LowerCallTo.
5272  if (isTailCall &&
5273      !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI))
5274    isTailCall = false;
5275
5276  TargetLowering::
5277  CallLoweringInfo CLI(getRoot(), RetTy, FTy, isTailCall, Callee, Args, DAG,
5278                       getCurDebugLoc(), CS);
5279  std::pair<SDValue,SDValue> Result = TLI.LowerCallTo(CLI);
5280  assert((isTailCall || Result.second.getNode()) &&
5281         "Non-null chain expected with non-tail call!");
5282  assert((Result.second.getNode() || !Result.first.getNode()) &&
5283         "Null value expected with tail call!");
5284  if (Result.first.getNode()) {
5285    setValue(CS.getInstruction(), Result.first);
5286  } else if (!CanLowerReturn && Result.second.getNode()) {
5287    // The instruction result is the result of loading from the
5288    // hidden sret parameter.
5289    SmallVector<EVT, 1> PVTs;
5290    Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
5291
5292    ComputeValueVTs(TLI, PtrRetTy, PVTs);
5293    assert(PVTs.size() == 1 && "Pointers should fit in one register");
5294    EVT PtrVT = PVTs[0];
5295
5296    SmallVector<EVT, 4> RetTys;
5297    SmallVector<uint64_t, 4> Offsets;
5298    RetTy = FTy->getReturnType();
5299    ComputeValueVTs(TLI, RetTy, RetTys, &Offsets);
5300
5301    unsigned NumValues = RetTys.size();
5302    SmallVector<SDValue, 4> Values(NumValues);
5303    SmallVector<SDValue, 4> Chains(NumValues);
5304
5305    for (unsigned i = 0; i < NumValues; ++i) {
5306      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT,
5307                                DemoteStackSlot,
5308                                DAG.getConstant(Offsets[i], PtrVT));
5309      SDValue L = DAG.getLoad(RetTys[i], getCurDebugLoc(), Result.second, Add,
5310                  MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]),
5311                              false, false, false, 1);
5312      Values[i] = L;
5313      Chains[i] = L.getValue(1);
5314    }
5315
5316    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
5317                                MVT::Other, &Chains[0], NumValues);
5318    PendingLoads.push_back(Chain);
5319
5320    setValue(CS.getInstruction(),
5321             DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
5322                         DAG.getVTList(&RetTys[0], RetTys.size()),
5323                         &Values[0], Values.size()));
5324  }
5325
5326  // Assign order to nodes here. If the call does not produce a result, it won't
5327  // be mapped to a SDNode and visit() will not assign it an order number.
5328  if (!Result.second.getNode()) {
5329    // As a special case, a null chain means that a tail call has been emitted and
5330    // the DAG root is already updated.
5331    HasTailCall = true;
5332    ++SDNodeOrder;
5333    AssignOrderingToNode(DAG.getRoot().getNode());
5334  } else {
5335    DAG.setRoot(Result.second);
5336    ++SDNodeOrder;
5337    AssignOrderingToNode(Result.second.getNode());
5338  }
5339
5340  if (LandingPad) {
5341    // Insert a label at the end of the invoke call to mark the try range.  This
5342    // can be used to detect deletion of the invoke via the MachineModuleInfo.
5343    MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
5344    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel));
5345
5346    // Inform MachineModuleInfo of range.
5347    MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
5348  }
5349}
5350
5351/// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
5352/// value is equal or not-equal to zero.
5353static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
5354  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
5355       UI != E; ++UI) {
5356    if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
5357      if (IC->isEquality())
5358        if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
5359          if (C->isNullValue())
5360            continue;
5361    // Unknown instruction.
5362    return false;
5363  }
5364  return true;
5365}
5366
5367static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
5368                             Type *LoadTy,
5369                             SelectionDAGBuilder &Builder) {
5370
5371  // Check to see if this load can be trivially constant folded, e.g. if the
5372  // input is from a string literal.
5373  if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5374    // Cast pointer to the type we really want to load.
5375    LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5376                                         PointerType::getUnqual(LoadTy));
5377
5378    if (const Constant *LoadCst =
5379          ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
5380                                       Builder.TD))
5381      return Builder.getValue(LoadCst);
5382  }
5383
5384  // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
5385  // still constant memory, the input chain can be the entry node.
5386  SDValue Root;
5387  bool ConstantMemory = false;
5388
5389  // Do not serialize (non-volatile) loads of constant memory with anything.
5390  if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5391    Root = Builder.DAG.getEntryNode();
5392    ConstantMemory = true;
5393  } else {
5394    // Do not serialize non-volatile loads against each other.
5395    Root = Builder.DAG.getRoot();
5396  }
5397
5398  SDValue Ptr = Builder.getValue(PtrVal);
5399  SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root,
5400                                        Ptr, MachinePointerInfo(PtrVal),
5401                                        false /*volatile*/,
5402                                        false /*nontemporal*/,
5403                                        false /*isinvariant*/, 1 /* align=1 */);
5404
5405  if (!ConstantMemory)
5406    Builder.PendingLoads.push_back(LoadVal.getValue(1));
5407  return LoadVal;
5408}
5409
5410
5411/// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5412/// If so, return true and lower it, otherwise return false and it will be
5413/// lowered like a normal call.
5414bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5415  // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
5416  if (I.getNumArgOperands() != 3)
5417    return false;
5418
5419  const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5420  if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5421      !I.getArgOperand(2)->getType()->isIntegerTy() ||
5422      !I.getType()->isIntegerTy())
5423    return false;
5424
5425  const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2));
5426
5427  // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
5428  // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
5429  if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) {
5430    bool ActuallyDoIt = true;
5431    MVT LoadVT;
5432    Type *LoadTy;
5433    switch (Size->getZExtValue()) {
5434    default:
5435      LoadVT = MVT::Other;
5436      LoadTy = 0;
5437      ActuallyDoIt = false;
5438      break;
5439    case 2:
5440      LoadVT = MVT::i16;
5441      LoadTy = Type::getInt16Ty(Size->getContext());
5442      break;
5443    case 4:
5444      LoadVT = MVT::i32;
5445      LoadTy = Type::getInt32Ty(Size->getContext());
5446      break;
5447    case 8:
5448      LoadVT = MVT::i64;
5449      LoadTy = Type::getInt64Ty(Size->getContext());
5450      break;
5451        /*
5452    case 16:
5453      LoadVT = MVT::v4i32;
5454      LoadTy = Type::getInt32Ty(Size->getContext());
5455      LoadTy = VectorType::get(LoadTy, 4);
5456      break;
5457         */
5458    }
5459
5460    // This turns into unaligned loads.  We only do this if the target natively
5461    // supports the MVT we'll be loading or if it is small enough (<= 4) that
5462    // we'll only produce a small number of byte loads.
5463
5464    // Require that we can find a legal MVT, and only do this if the target
5465    // supports unaligned loads of that type.  Expanding into byte loads would
5466    // bloat the code.
5467    if (ActuallyDoIt && Size->getZExtValue() > 4) {
5468      // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5469      // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5470      if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT))
5471        ActuallyDoIt = false;
5472    }
5473
5474    if (ActuallyDoIt) {
5475      SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5476      SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5477
5478      SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal,
5479                                 ISD::SETNE);
5480      EVT CallVT = TLI.getValueType(I.getType(), true);
5481      setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT));
5482      return true;
5483    }
5484  }
5485
5486
5487  return false;
5488}
5489
5490/// visitUnaryFloatCall - If a call instruction is a unary floating-point
5491/// operation (as expected), translate it to an SDNode with the specified opcode
5492/// and return true.
5493bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
5494                                              unsigned Opcode) {
5495  // Sanity check that it really is a unary floating-point call.
5496  if (I.getNumArgOperands() != 1 ||
5497      !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
5498      I.getType() != I.getArgOperand(0)->getType() ||
5499      !I.onlyReadsMemory())
5500    return false;
5501
5502  SDValue Tmp = getValue(I.getArgOperand(0));
5503  setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(), Tmp.getValueType(), Tmp));
5504  return true;
5505}
5506
5507void SelectionDAGBuilder::visitCall(const CallInst &I) {
5508  // Handle inline assembly differently.
5509  if (isa<InlineAsm>(I.getCalledValue())) {
5510    visitInlineAsm(&I);
5511    return;
5512  }
5513
5514  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5515  ComputeUsesVAFloatArgument(I, &MMI);
5516
5517  const char *RenameFn = 0;
5518  if (Function *F = I.getCalledFunction()) {
5519    if (F->isDeclaration()) {
5520      if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
5521        if (unsigned IID = II->getIntrinsicID(F)) {
5522          RenameFn = visitIntrinsicCall(I, IID);
5523          if (!RenameFn)
5524            return;
5525        }
5526      }
5527      if (unsigned IID = F->getIntrinsicID()) {
5528        RenameFn = visitIntrinsicCall(I, IID);
5529        if (!RenameFn)
5530          return;
5531      }
5532    }
5533
5534    // Check for well-known libc/libm calls.  If the function is internal, it
5535    // can't be a library call.
5536    LibFunc::Func Func;
5537    if (!F->hasLocalLinkage() && F->hasName() &&
5538        LibInfo->getLibFunc(F->getName(), Func) &&
5539        LibInfo->hasOptimizedCodeGen(Func)) {
5540      switch (Func) {
5541      default: break;
5542      case LibFunc::copysign:
5543      case LibFunc::copysignf:
5544      case LibFunc::copysignl:
5545        if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
5546            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5547            I.getType() == I.getArgOperand(0)->getType() &&
5548            I.getType() == I.getArgOperand(1)->getType() &&
5549            I.onlyReadsMemory()) {
5550          SDValue LHS = getValue(I.getArgOperand(0));
5551          SDValue RHS = getValue(I.getArgOperand(1));
5552          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(),
5553                                   LHS.getValueType(), LHS, RHS));
5554          return;
5555        }
5556        break;
5557      case LibFunc::fabs:
5558      case LibFunc::fabsf:
5559      case LibFunc::fabsl:
5560        if (visitUnaryFloatCall(I, ISD::FABS))
5561          return;
5562        break;
5563      case LibFunc::sin:
5564      case LibFunc::sinf:
5565      case LibFunc::sinl:
5566        if (visitUnaryFloatCall(I, ISD::FSIN))
5567          return;
5568        break;
5569      case LibFunc::cos:
5570      case LibFunc::cosf:
5571      case LibFunc::cosl:
5572        if (visitUnaryFloatCall(I, ISD::FCOS))
5573          return;
5574        break;
5575      case LibFunc::sqrt:
5576      case LibFunc::sqrtf:
5577      case LibFunc::sqrtl:
5578        if (visitUnaryFloatCall(I, ISD::FSQRT))
5579          return;
5580        break;
5581      case LibFunc::floor:
5582      case LibFunc::floorf:
5583      case LibFunc::floorl:
5584        if (visitUnaryFloatCall(I, ISD::FFLOOR))
5585          return;
5586        break;
5587      case LibFunc::nearbyint:
5588      case LibFunc::nearbyintf:
5589      case LibFunc::nearbyintl:
5590        if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
5591          return;
5592        break;
5593      case LibFunc::ceil:
5594      case LibFunc::ceilf:
5595      case LibFunc::ceill:
5596        if (visitUnaryFloatCall(I, ISD::FCEIL))
5597          return;
5598        break;
5599      case LibFunc::rint:
5600      case LibFunc::rintf:
5601      case LibFunc::rintl:
5602        if (visitUnaryFloatCall(I, ISD::FRINT))
5603          return;
5604        break;
5605      case LibFunc::trunc:
5606      case LibFunc::truncf:
5607      case LibFunc::truncl:
5608        if (visitUnaryFloatCall(I, ISD::FTRUNC))
5609          return;
5610        break;
5611      case LibFunc::log2:
5612      case LibFunc::log2f:
5613      case LibFunc::log2l:
5614        if (visitUnaryFloatCall(I, ISD::FLOG2))
5615          return;
5616        break;
5617      case LibFunc::exp2:
5618      case LibFunc::exp2f:
5619      case LibFunc::exp2l:
5620        if (visitUnaryFloatCall(I, ISD::FEXP2))
5621          return;
5622        break;
5623      case LibFunc::memcmp:
5624        if (visitMemCmpCall(I))
5625          return;
5626        break;
5627      }
5628    }
5629  }
5630
5631  SDValue Callee;
5632  if (!RenameFn)
5633    Callee = getValue(I.getCalledValue());
5634  else
5635    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
5636
5637  // Check if we can potentially perform a tail call. More detailed checking is
5638  // be done within LowerCallTo, after more information about the call is known.
5639  LowerCallTo(&I, Callee, I.isTailCall());
5640}
5641
5642namespace {
5643
5644/// AsmOperandInfo - This contains information for each constraint that we are
5645/// lowering.
5646class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
5647public:
5648  /// CallOperand - If this is the result output operand or a clobber
5649  /// this is null, otherwise it is the incoming operand to the CallInst.
5650  /// This gets modified as the asm is processed.
5651  SDValue CallOperand;
5652
5653  /// AssignedRegs - If this is a register or register class operand, this
5654  /// contains the set of register corresponding to the operand.
5655  RegsForValue AssignedRegs;
5656
5657  explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
5658    : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
5659  }
5660
5661  /// getCallOperandValEVT - Return the EVT of the Value* that this operand
5662  /// corresponds to.  If there is no Value* for this operand, it returns
5663  /// MVT::Other.
5664  EVT getCallOperandValEVT(LLVMContext &Context,
5665                           const TargetLowering &TLI,
5666                           const DataLayout *TD) const {
5667    if (CallOperandVal == 0) return MVT::Other;
5668
5669    if (isa<BasicBlock>(CallOperandVal))
5670      return TLI.getPointerTy();
5671
5672    llvm::Type *OpTy = CallOperandVal->getType();
5673
5674    // FIXME: code duplicated from TargetLowering::ParseConstraints().
5675    // If this is an indirect operand, the operand is a pointer to the
5676    // accessed type.
5677    if (isIndirect) {
5678      llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
5679      if (!PtrTy)
5680        report_fatal_error("Indirect operand for inline asm not a pointer!");
5681      OpTy = PtrTy->getElementType();
5682    }
5683
5684    // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
5685    if (StructType *STy = dyn_cast<StructType>(OpTy))
5686      if (STy->getNumElements() == 1)
5687        OpTy = STy->getElementType(0);
5688
5689    // If OpTy is not a single value, it may be a struct/union that we
5690    // can tile with integers.
5691    if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5692      unsigned BitSize = TD->getTypeSizeInBits(OpTy);
5693      switch (BitSize) {
5694      default: break;
5695      case 1:
5696      case 8:
5697      case 16:
5698      case 32:
5699      case 64:
5700      case 128:
5701        OpTy = IntegerType::get(Context, BitSize);
5702        break;
5703      }
5704    }
5705
5706    return TLI.getValueType(OpTy, true);
5707  }
5708};
5709
5710typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
5711
5712} // end anonymous namespace
5713
5714/// GetRegistersForValue - Assign registers (virtual or physical) for the
5715/// specified operand.  We prefer to assign virtual registers, to allow the
5716/// register allocator to handle the assignment process.  However, if the asm
5717/// uses features that we can't model on machineinstrs, we have SDISel do the
5718/// allocation.  This produces generally horrible, but correct, code.
5719///
5720///   OpInfo describes the operand.
5721///
5722static void GetRegistersForValue(SelectionDAG &DAG,
5723                                 const TargetLowering &TLI,
5724                                 DebugLoc DL,
5725                                 SDISelAsmOperandInfo &OpInfo) {
5726  LLVMContext &Context = *DAG.getContext();
5727
5728  MachineFunction &MF = DAG.getMachineFunction();
5729  SmallVector<unsigned, 4> Regs;
5730
5731  // If this is a constraint for a single physreg, or a constraint for a
5732  // register class, find it.
5733  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
5734    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5735                                     OpInfo.ConstraintVT);
5736
5737  unsigned NumRegs = 1;
5738  if (OpInfo.ConstraintVT != MVT::Other) {
5739    // If this is a FP input in an integer register (or visa versa) insert a bit
5740    // cast of the input value.  More generally, handle any case where the input
5741    // value disagrees with the register class we plan to stick this in.
5742    if (OpInfo.Type == InlineAsm::isInput &&
5743        PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
5744      // Try to convert to the first EVT that the reg class contains.  If the
5745      // types are identical size, use a bitcast to convert (e.g. two differing
5746      // vector types).
5747      EVT RegVT = *PhysReg.second->vt_begin();
5748      if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
5749        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5750                                         RegVT, OpInfo.CallOperand);
5751        OpInfo.ConstraintVT = RegVT;
5752      } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
5753        // If the input is a FP value and we want it in FP registers, do a
5754        // bitcast to the corresponding integer type.  This turns an f64 value
5755        // into i64, which can be passed with two i32 values on a 32-bit
5756        // machine.
5757        RegVT = EVT::getIntegerVT(Context,
5758                                  OpInfo.ConstraintVT.getSizeInBits());
5759        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5760                                         RegVT, OpInfo.CallOperand);
5761        OpInfo.ConstraintVT = RegVT;
5762      }
5763    }
5764
5765    NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
5766  }
5767
5768  EVT RegVT;
5769  EVT ValueVT = OpInfo.ConstraintVT;
5770
5771  // If this is a constraint for a specific physical register, like {r17},
5772  // assign it now.
5773  if (unsigned AssignedReg = PhysReg.first) {
5774    const TargetRegisterClass *RC = PhysReg.second;
5775    if (OpInfo.ConstraintVT == MVT::Other)
5776      ValueVT = *RC->vt_begin();
5777
5778    // Get the actual register value type.  This is important, because the user
5779    // may have asked for (e.g.) the AX register in i32 type.  We need to
5780    // remember that AX is actually i16 to get the right extension.
5781    RegVT = *RC->vt_begin();
5782
5783    // This is a explicit reference to a physical register.
5784    Regs.push_back(AssignedReg);
5785
5786    // If this is an expanded reference, add the rest of the regs to Regs.
5787    if (NumRegs != 1) {
5788      TargetRegisterClass::iterator I = RC->begin();
5789      for (; *I != AssignedReg; ++I)
5790        assert(I != RC->end() && "Didn't find reg!");
5791
5792      // Already added the first reg.
5793      --NumRegs; ++I;
5794      for (; NumRegs; --NumRegs, ++I) {
5795        assert(I != RC->end() && "Ran out of registers to allocate!");
5796        Regs.push_back(*I);
5797      }
5798    }
5799
5800    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5801    return;
5802  }
5803
5804  // Otherwise, if this was a reference to an LLVM register class, create vregs
5805  // for this reference.
5806  if (const TargetRegisterClass *RC = PhysReg.second) {
5807    RegVT = *RC->vt_begin();
5808    if (OpInfo.ConstraintVT == MVT::Other)
5809      ValueVT = RegVT;
5810
5811    // Create the appropriate number of virtual registers.
5812    MachineRegisterInfo &RegInfo = MF.getRegInfo();
5813    for (; NumRegs; --NumRegs)
5814      Regs.push_back(RegInfo.createVirtualRegister(RC));
5815
5816    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5817    return;
5818  }
5819
5820  // Otherwise, we couldn't allocate enough registers for this.
5821}
5822
5823/// visitInlineAsm - Handle a call to an InlineAsm object.
5824///
5825void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
5826  const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
5827
5828  /// ConstraintOperands - Information about all of the constraints.
5829  SDISelAsmOperandInfoVector ConstraintOperands;
5830
5831  TargetLowering::AsmOperandInfoVector
5832    TargetConstraints = TLI.ParseConstraints(CS);
5833
5834  bool hasMemory = false;
5835
5836  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
5837  unsigned ResNo = 0;   // ResNo - The result number of the next output.
5838  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
5839    ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
5840    SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
5841
5842    EVT OpVT = MVT::Other;
5843
5844    // Compute the value type for each operand.
5845    switch (OpInfo.Type) {
5846    case InlineAsm::isOutput:
5847      // Indirect outputs just consume an argument.
5848      if (OpInfo.isIndirect) {
5849        OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5850        break;
5851      }
5852
5853      // The return value of the call is this value.  As such, there is no
5854      // corresponding argument.
5855      assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
5856      if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
5857        OpVT = TLI.getValueType(STy->getElementType(ResNo));
5858      } else {
5859        assert(ResNo == 0 && "Asm only has one result!");
5860        OpVT = TLI.getValueType(CS.getType());
5861      }
5862      ++ResNo;
5863      break;
5864    case InlineAsm::isInput:
5865      OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5866      break;
5867    case InlineAsm::isClobber:
5868      // Nothing to do.
5869      break;
5870    }
5871
5872    // If this is an input or an indirect output, process the call argument.
5873    // BasicBlocks are labels, currently appearing only in asm's.
5874    if (OpInfo.CallOperandVal) {
5875      if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
5876        OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
5877      } else {
5878        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
5879      }
5880
5881      OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD);
5882    }
5883
5884    OpInfo.ConstraintVT = OpVT;
5885
5886    // Indirect operand accesses access memory.
5887    if (OpInfo.isIndirect)
5888      hasMemory = true;
5889    else {
5890      for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
5891        TargetLowering::ConstraintType
5892          CType = TLI.getConstraintType(OpInfo.Codes[j]);
5893        if (CType == TargetLowering::C_Memory) {
5894          hasMemory = true;
5895          break;
5896        }
5897      }
5898    }
5899  }
5900
5901  SDValue Chain, Flag;
5902
5903  // We won't need to flush pending loads if this asm doesn't touch
5904  // memory and is nonvolatile.
5905  if (hasMemory || IA->hasSideEffects())
5906    Chain = getRoot();
5907  else
5908    Chain = DAG.getRoot();
5909
5910  // Second pass over the constraints: compute which constraint option to use
5911  // and assign registers to constraints that want a specific physreg.
5912  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5913    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5914
5915    // If this is an output operand with a matching input operand, look up the
5916    // matching input. If their types mismatch, e.g. one is an integer, the
5917    // other is floating point, or their sizes are different, flag it as an
5918    // error.
5919    if (OpInfo.hasMatchingInput()) {
5920      SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5921
5922      if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5923        std::pair<unsigned, const TargetRegisterClass*> MatchRC =
5924          TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5925                                           OpInfo.ConstraintVT);
5926        std::pair<unsigned, const TargetRegisterClass*> InputRC =
5927          TLI.getRegForInlineAsmConstraint(Input.ConstraintCode,
5928                                           Input.ConstraintVT);
5929        if ((OpInfo.ConstraintVT.isInteger() !=
5930             Input.ConstraintVT.isInteger()) ||
5931            (MatchRC.second != InputRC.second)) {
5932          report_fatal_error("Unsupported asm: input constraint"
5933                             " with a matching output constraint of"
5934                             " incompatible type!");
5935        }
5936        Input.ConstraintVT = OpInfo.ConstraintVT;
5937      }
5938    }
5939
5940    // Compute the constraint code and ConstraintType to use.
5941    TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
5942
5943    // If this is a memory input, and if the operand is not indirect, do what we
5944    // need to to provide an address for the memory input.
5945    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5946        !OpInfo.isIndirect) {
5947      assert((OpInfo.isMultipleAlternative ||
5948              (OpInfo.Type == InlineAsm::isInput)) &&
5949             "Can only indirectify direct input operands!");
5950
5951      // Memory operands really want the address of the value.  If we don't have
5952      // an indirect input, put it in the constpool if we can, otherwise spill
5953      // it to a stack slot.
5954      // TODO: This isn't quite right. We need to handle these according to
5955      // the addressing mode that the constraint wants. Also, this may take
5956      // an additional register for the computation and we don't want that
5957      // either.
5958
5959      // If the operand is a float, integer, or vector constant, spill to a
5960      // constant pool entry to get its address.
5961      const Value *OpVal = OpInfo.CallOperandVal;
5962      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
5963          isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
5964        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
5965                                                 TLI.getPointerTy());
5966      } else {
5967        // Otherwise, create a stack slot and emit a store to it before the
5968        // asm.
5969        Type *Ty = OpVal->getType();
5970        uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty);
5971        unsigned Align  = TLI.getDataLayout()->getPrefTypeAlignment(Ty);
5972        MachineFunction &MF = DAG.getMachineFunction();
5973        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5974        SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
5975        Chain = DAG.getStore(Chain, getCurDebugLoc(),
5976                             OpInfo.CallOperand, StackSlot,
5977                             MachinePointerInfo::getFixedStack(SSFI),
5978                             false, false, 0);
5979        OpInfo.CallOperand = StackSlot;
5980      }
5981
5982      // There is no longer a Value* corresponding to this operand.
5983      OpInfo.CallOperandVal = 0;
5984
5985      // It is now an indirect operand.
5986      OpInfo.isIndirect = true;
5987    }
5988
5989    // If this constraint is for a specific register, allocate it before
5990    // anything else.
5991    if (OpInfo.ConstraintType == TargetLowering::C_Register)
5992      GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo);
5993  }
5994
5995  // Second pass - Loop over all of the operands, assigning virtual or physregs
5996  // to register class operands.
5997  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5998    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5999
6000    // C_Register operands have already been allocated, Other/Memory don't need
6001    // to be.
6002    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
6003      GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo);
6004  }
6005
6006  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
6007  std::vector<SDValue> AsmNodeOperands;
6008  AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
6009  AsmNodeOperands.push_back(
6010          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
6011                                      TLI.getPointerTy()));
6012
6013  // If we have a !srcloc metadata node associated with it, we want to attach
6014  // this to the ultimately generated inline asm machineinstr.  To do this, we
6015  // pass in the third operand as this (potentially null) inline asm MDNode.
6016  const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
6017  AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
6018
6019  // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
6020  // bits as operand 3.
6021  unsigned ExtraInfo = 0;
6022  if (IA->hasSideEffects())
6023    ExtraInfo |= InlineAsm::Extra_HasSideEffects;
6024  if (IA->isAlignStack())
6025    ExtraInfo |= InlineAsm::Extra_IsAlignStack;
6026  // Set the asm dialect.
6027  ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
6028
6029  // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
6030  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
6031    TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
6032
6033    // Compute the constraint code and ConstraintType to use.
6034    TLI.ComputeConstraintToUse(OpInfo, SDValue());
6035
6036    // Ideally, we would only check against memory constraints.  However, the
6037    // meaning of an other constraint can be target-specific and we can't easily
6038    // reason about it.  Therefore, be conservative and set MayLoad/MayStore
6039    // for other constriants as well.
6040    if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
6041        OpInfo.ConstraintType == TargetLowering::C_Other) {
6042      if (OpInfo.Type == InlineAsm::isInput)
6043        ExtraInfo |= InlineAsm::Extra_MayLoad;
6044      else if (OpInfo.Type == InlineAsm::isOutput)
6045        ExtraInfo |= InlineAsm::Extra_MayStore;
6046    }
6047  }
6048
6049  AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo,
6050                                                  TLI.getPointerTy()));
6051
6052  // Loop over all of the inputs, copying the operand values into the
6053  // appropriate registers and processing the output regs.
6054  RegsForValue RetValRegs;
6055
6056  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
6057  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
6058
6059  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6060    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6061
6062    switch (OpInfo.Type) {
6063    case InlineAsm::isOutput: {
6064      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
6065          OpInfo.ConstraintType != TargetLowering::C_Register) {
6066        // Memory output, or 'other' output (e.g. 'X' constraint).
6067        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
6068
6069        // Add information to the INLINEASM node to know about this output.
6070        unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6071        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
6072                                                        TLI.getPointerTy()));
6073        AsmNodeOperands.push_back(OpInfo.CallOperand);
6074        break;
6075      }
6076
6077      // Otherwise, this is a register or register class output.
6078
6079      // Copy the output from the appropriate register.  Find a register that
6080      // we can use.
6081      if (OpInfo.AssignedRegs.Regs.empty()) {
6082        LLVMContext &Ctx = *DAG.getContext();
6083        Ctx.emitError(CS.getInstruction(),
6084                      "couldn't allocate output register for constraint '" +
6085                           Twine(OpInfo.ConstraintCode) + "'");
6086        break;
6087      }
6088
6089      // If this is an indirect operand, store through the pointer after the
6090      // asm.
6091      if (OpInfo.isIndirect) {
6092        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
6093                                                      OpInfo.CallOperandVal));
6094      } else {
6095        // This is the result value of the call.
6096        assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6097        // Concatenate this output onto the outputs list.
6098        RetValRegs.append(OpInfo.AssignedRegs);
6099      }
6100
6101      // Add information to the INLINEASM node to know that this register is
6102      // set.
6103      OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
6104                                           InlineAsm::Kind_RegDefEarlyClobber :
6105                                               InlineAsm::Kind_RegDef,
6106                                               false,
6107                                               0,
6108                                               DAG,
6109                                               AsmNodeOperands);
6110      break;
6111    }
6112    case InlineAsm::isInput: {
6113      SDValue InOperandVal = OpInfo.CallOperand;
6114
6115      if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
6116        // If this is required to match an output register we have already set,
6117        // just use its register.
6118        unsigned OperandNo = OpInfo.getMatchedOperand();
6119
6120        // Scan until we find the definition we already emitted of this operand.
6121        // When we find it, create a RegsForValue operand.
6122        unsigned CurOp = InlineAsm::Op_FirstOperand;
6123        for (; OperandNo; --OperandNo) {
6124          // Advance to the next operand.
6125          unsigned OpFlag =
6126            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6127          assert((InlineAsm::isRegDefKind(OpFlag) ||
6128                  InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
6129                  InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
6130          CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
6131        }
6132
6133        unsigned OpFlag =
6134          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6135        if (InlineAsm::isRegDefKind(OpFlag) ||
6136            InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
6137          // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
6138          if (OpInfo.isIndirect) {
6139            // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
6140            LLVMContext &Ctx = *DAG.getContext();
6141            Ctx.emitError(CS.getInstruction(),  "inline asm not supported yet:"
6142                          " don't know how to handle tied "
6143                          "indirect register inputs");
6144          }
6145
6146          RegsForValue MatchedRegs;
6147          MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
6148          EVT RegVT = AsmNodeOperands[CurOp+1].getValueType();
6149          MatchedRegs.RegVTs.push_back(RegVT);
6150          MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
6151          for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
6152               i != e; ++i)
6153            MatchedRegs.Regs.push_back
6154              (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)));
6155
6156          // Use the produced MatchedRegs object to
6157          MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
6158                                    Chain, &Flag, CS.getInstruction());
6159          MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
6160                                           true, OpInfo.getMatchedOperand(),
6161                                           DAG, AsmNodeOperands);
6162          break;
6163        }
6164
6165        assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
6166        assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
6167               "Unexpected number of operands");
6168        // Add information to the INLINEASM node to know about this input.
6169        // See InlineAsm.h isUseOperandTiedToDef.
6170        OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
6171                                                    OpInfo.getMatchedOperand());
6172        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
6173                                                        TLI.getPointerTy()));
6174        AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
6175        break;
6176      }
6177
6178      // Treat indirect 'X' constraint as memory.
6179      if (OpInfo.ConstraintType == TargetLowering::C_Other &&
6180          OpInfo.isIndirect)
6181        OpInfo.ConstraintType = TargetLowering::C_Memory;
6182
6183      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
6184        std::vector<SDValue> Ops;
6185        TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
6186                                         Ops, DAG);
6187        if (Ops.empty()) {
6188          LLVMContext &Ctx = *DAG.getContext();
6189          Ctx.emitError(CS.getInstruction(),
6190                        "invalid operand for inline asm constraint '" +
6191                        Twine(OpInfo.ConstraintCode) + "'");
6192          break;
6193        }
6194
6195        // Add information to the INLINEASM node to know about this input.
6196        unsigned ResOpType =
6197          InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
6198        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6199                                                        TLI.getPointerTy()));
6200        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
6201        break;
6202      }
6203
6204      if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
6205        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
6206        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
6207               "Memory operands expect pointer values");
6208
6209        // Add information to the INLINEASM node to know about this input.
6210        unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6211        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6212                                                        TLI.getPointerTy()));
6213        AsmNodeOperands.push_back(InOperandVal);
6214        break;
6215      }
6216
6217      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
6218              OpInfo.ConstraintType == TargetLowering::C_Register) &&
6219             "Unknown constraint type!");
6220
6221      // TODO: Support this.
6222      if (OpInfo.isIndirect) {
6223        LLVMContext &Ctx = *DAG.getContext();
6224        Ctx.emitError(CS.getInstruction(),
6225                      "Don't know how to handle indirect register inputs yet "
6226                      "for constraint '" + Twine(OpInfo.ConstraintCode) + "'");
6227        break;
6228      }
6229
6230      // Copy the input into the appropriate registers.
6231      if (OpInfo.AssignedRegs.Regs.empty()) {
6232        LLVMContext &Ctx = *DAG.getContext();
6233        Ctx.emitError(CS.getInstruction(),
6234                      "couldn't allocate input reg for constraint '" +
6235                           Twine(OpInfo.ConstraintCode) + "'");
6236        break;
6237      }
6238
6239      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
6240                                        Chain, &Flag, CS.getInstruction());
6241
6242      OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
6243                                               DAG, AsmNodeOperands);
6244      break;
6245    }
6246    case InlineAsm::isClobber: {
6247      // Add the clobbered value to the operand list, so that the register
6248      // allocator is aware that the physreg got clobbered.
6249      if (!OpInfo.AssignedRegs.Regs.empty())
6250        OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
6251                                                 false, 0, DAG,
6252                                                 AsmNodeOperands);
6253      break;
6254    }
6255    }
6256  }
6257
6258  // Finish up input operands.  Set the input chain and add the flag last.
6259  AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
6260  if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
6261
6262  Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(),
6263                      DAG.getVTList(MVT::Other, MVT::Glue),
6264                      &AsmNodeOperands[0], AsmNodeOperands.size());
6265  Flag = Chain.getValue(1);
6266
6267  // If this asm returns a register value, copy the result from that register
6268  // and set it as the value of the call.
6269  if (!RetValRegs.Regs.empty()) {
6270    SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
6271                                             Chain, &Flag, CS.getInstruction());
6272
6273    // FIXME: Why don't we do this for inline asms with MRVs?
6274    if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
6275      EVT ResultType = TLI.getValueType(CS.getType());
6276
6277      // If any of the results of the inline asm is a vector, it may have the
6278      // wrong width/num elts.  This can happen for register classes that can
6279      // contain multiple different value types.  The preg or vreg allocated may
6280      // not have the same VT as was expected.  Convert it to the right type
6281      // with bit_convert.
6282      if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
6283        Val = DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
6284                          ResultType, Val);
6285
6286      } else if (ResultType != Val.getValueType() &&
6287                 ResultType.isInteger() && Val.getValueType().isInteger()) {
6288        // If a result value was tied to an input value, the computed result may
6289        // have a wider width than the expected result.  Extract the relevant
6290        // portion.
6291        Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val);
6292      }
6293
6294      assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
6295    }
6296
6297    setValue(CS.getInstruction(), Val);
6298    // Don't need to use this as a chain in this case.
6299    if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
6300      return;
6301  }
6302
6303  std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
6304
6305  // Process indirect outputs, first output all of the flagged copies out of
6306  // physregs.
6307  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
6308    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
6309    const Value *Ptr = IndirectStoresToEmit[i].second;
6310    SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
6311                                             Chain, &Flag, IA);
6312    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
6313  }
6314
6315  // Emit the non-flagged stores from the physregs.
6316  SmallVector<SDValue, 8> OutChains;
6317  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
6318    SDValue Val = DAG.getStore(Chain, getCurDebugLoc(),
6319                               StoresToEmit[i].first,
6320                               getValue(StoresToEmit[i].second),
6321                               MachinePointerInfo(StoresToEmit[i].second),
6322                               false, false, 0);
6323    OutChains.push_back(Val);
6324  }
6325
6326  if (!OutChains.empty())
6327    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
6328                        &OutChains[0], OutChains.size());
6329
6330  DAG.setRoot(Chain);
6331}
6332
6333void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
6334  DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(),
6335                          MVT::Other, getRoot(),
6336                          getValue(I.getArgOperand(0)),
6337                          DAG.getSrcValue(I.getArgOperand(0))));
6338}
6339
6340void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
6341  const DataLayout &TD = *TLI.getDataLayout();
6342  SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(),
6343                           getRoot(), getValue(I.getOperand(0)),
6344                           DAG.getSrcValue(I.getOperand(0)),
6345                           TD.getABITypeAlignment(I.getType()));
6346  setValue(&I, V);
6347  DAG.setRoot(V.getValue(1));
6348}
6349
6350void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
6351  DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(),
6352                          MVT::Other, getRoot(),
6353                          getValue(I.getArgOperand(0)),
6354                          DAG.getSrcValue(I.getArgOperand(0))));
6355}
6356
6357void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
6358  DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(),
6359                          MVT::Other, getRoot(),
6360                          getValue(I.getArgOperand(0)),
6361                          getValue(I.getArgOperand(1)),
6362                          DAG.getSrcValue(I.getArgOperand(0)),
6363                          DAG.getSrcValue(I.getArgOperand(1))));
6364}
6365
6366/// TargetLowering::LowerCallTo - This is the default LowerCallTo
6367/// implementation, which just calls LowerCall.
6368/// FIXME: When all targets are
6369/// migrated to using LowerCall, this hook should be integrated into SDISel.
6370std::pair<SDValue, SDValue>
6371TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
6372  // Handle all of the outgoing arguments.
6373  CLI.Outs.clear();
6374  CLI.OutVals.clear();
6375  ArgListTy &Args = CLI.Args;
6376  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
6377    SmallVector<EVT, 4> ValueVTs;
6378    ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
6379    for (unsigned Value = 0, NumValues = ValueVTs.size();
6380         Value != NumValues; ++Value) {
6381      EVT VT = ValueVTs[Value];
6382      Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
6383      SDValue Op = SDValue(Args[i].Node.getNode(),
6384                           Args[i].Node.getResNo() + Value);
6385      ISD::ArgFlagsTy Flags;
6386      unsigned OriginalAlignment =
6387        getDataLayout()->getABITypeAlignment(ArgTy);
6388
6389      if (Args[i].isZExt)
6390        Flags.setZExt();
6391      if (Args[i].isSExt)
6392        Flags.setSExt();
6393      if (Args[i].isInReg)
6394        Flags.setInReg();
6395      if (Args[i].isSRet)
6396        Flags.setSRet();
6397      if (Args[i].isByVal) {
6398        Flags.setByVal();
6399        PointerType *Ty = cast<PointerType>(Args[i].Ty);
6400        Type *ElementTy = Ty->getElementType();
6401        Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy));
6402        // For ByVal, alignment should come from FE.  BE will guess if this
6403        // info is not there but there are cases it cannot get right.
6404        unsigned FrameAlign;
6405        if (Args[i].Alignment)
6406          FrameAlign = Args[i].Alignment;
6407        else
6408          FrameAlign = getByValTypeAlignment(ElementTy);
6409        Flags.setByValAlign(FrameAlign);
6410      }
6411      if (Args[i].isNest)
6412        Flags.setNest();
6413      Flags.setOrigAlign(OriginalAlignment);
6414
6415      EVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT);
6416      unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT);
6417      SmallVector<SDValue, 4> Parts(NumParts);
6418      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
6419
6420      if (Args[i].isSExt)
6421        ExtendKind = ISD::SIGN_EXTEND;
6422      else if (Args[i].isZExt)
6423        ExtendKind = ISD::ZERO_EXTEND;
6424
6425      getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts,
6426                     PartVT, CLI.CS ? CLI.CS->getInstruction() : 0, ExtendKind);
6427
6428      for (unsigned j = 0; j != NumParts; ++j) {
6429        // if it isn't first piece, alignment must be 1
6430        ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(),
6431                               i < CLI.NumFixedArgs,
6432                               i, j*Parts[j].getValueType().getStoreSize());
6433        if (NumParts > 1 && j == 0)
6434          MyFlags.Flags.setSplit();
6435        else if (j != 0)
6436          MyFlags.Flags.setOrigAlign(1);
6437
6438        CLI.Outs.push_back(MyFlags);
6439        CLI.OutVals.push_back(Parts[j]);
6440      }
6441    }
6442  }
6443
6444  // Handle the incoming return values from the call.
6445  CLI.Ins.clear();
6446  SmallVector<EVT, 4> RetTys;
6447  ComputeValueVTs(*this, CLI.RetTy, RetTys);
6448  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6449    EVT VT = RetTys[I];
6450    EVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
6451    unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
6452    for (unsigned i = 0; i != NumRegs; ++i) {
6453      ISD::InputArg MyFlags;
6454      MyFlags.VT = RegisterVT.getSimpleVT();
6455      MyFlags.Used = CLI.IsReturnValueUsed;
6456      if (CLI.RetSExt)
6457        MyFlags.Flags.setSExt();
6458      if (CLI.RetZExt)
6459        MyFlags.Flags.setZExt();
6460      if (CLI.IsInReg)
6461        MyFlags.Flags.setInReg();
6462      CLI.Ins.push_back(MyFlags);
6463    }
6464  }
6465
6466  SmallVector<SDValue, 4> InVals;
6467  CLI.Chain = LowerCall(CLI, InVals);
6468
6469  // Verify that the target's LowerCall behaved as expected.
6470  assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
6471         "LowerCall didn't return a valid chain!");
6472  assert((!CLI.IsTailCall || InVals.empty()) &&
6473         "LowerCall emitted a return value for a tail call!");
6474  assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
6475         "LowerCall didn't emit the correct number of values!");
6476
6477  // For a tail call, the return value is merely live-out and there aren't
6478  // any nodes in the DAG representing it. Return a special value to
6479  // indicate that a tail call has been emitted and no more Instructions
6480  // should be processed in the current block.
6481  if (CLI.IsTailCall) {
6482    CLI.DAG.setRoot(CLI.Chain);
6483    return std::make_pair(SDValue(), SDValue());
6484  }
6485
6486  DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
6487          assert(InVals[i].getNode() &&
6488                 "LowerCall emitted a null value!");
6489          assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
6490                 "LowerCall emitted a value with the wrong type!");
6491        });
6492
6493  // Collect the legal value parts into potentially illegal values
6494  // that correspond to the original function's return values.
6495  ISD::NodeType AssertOp = ISD::DELETED_NODE;
6496  if (CLI.RetSExt)
6497    AssertOp = ISD::AssertSext;
6498  else if (CLI.RetZExt)
6499    AssertOp = ISD::AssertZext;
6500  SmallVector<SDValue, 4> ReturnValues;
6501  unsigned CurReg = 0;
6502  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6503    EVT VT = RetTys[I];
6504    EVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
6505    unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
6506
6507    ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
6508                                            NumRegs, RegisterVT, VT, NULL,
6509                                            AssertOp));
6510    CurReg += NumRegs;
6511  }
6512
6513  // For a function returning void, there is no return value. We can't create
6514  // such a node, so we just return a null return value in that case. In
6515  // that case, nothing will actually look at the value.
6516  if (ReturnValues.empty())
6517    return std::make_pair(SDValue(), CLI.Chain);
6518
6519  SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
6520                                CLI.DAG.getVTList(&RetTys[0], RetTys.size()),
6521                            &ReturnValues[0], ReturnValues.size());
6522  return std::make_pair(Res, CLI.Chain);
6523}
6524
6525void TargetLowering::LowerOperationWrapper(SDNode *N,
6526                                           SmallVectorImpl<SDValue> &Results,
6527                                           SelectionDAG &DAG) const {
6528  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
6529  if (Res.getNode())
6530    Results.push_back(Res);
6531}
6532
6533SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
6534  llvm_unreachable("LowerOperation not implemented for this target!");
6535}
6536
6537void
6538SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
6539  SDValue Op = getNonRegisterValue(V);
6540  assert((Op.getOpcode() != ISD::CopyFromReg ||
6541          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
6542         "Copy from a reg to the same reg!");
6543  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
6544
6545  RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
6546  SDValue Chain = DAG.getEntryNode();
6547  RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0, V);
6548  PendingExports.push_back(Chain);
6549}
6550
6551#include "llvm/CodeGen/SelectionDAGISel.h"
6552
6553/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
6554/// entry block, return true.  This includes arguments used by switches, since
6555/// the switch may expand into multiple basic blocks.
6556static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
6557  // With FastISel active, we may be splitting blocks, so force creation
6558  // of virtual registers for all non-dead arguments.
6559  if (FastISel)
6560    return A->use_empty();
6561
6562  const BasicBlock *Entry = A->getParent()->begin();
6563  for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end();
6564       UI != E; ++UI) {
6565    const User *U = *UI;
6566    if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U))
6567      return false;  // Use not in entry block.
6568  }
6569  return true;
6570}
6571
6572void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) {
6573  // If this is the entry block, emit arguments.
6574  const Function &F = *LLVMBB->getParent();
6575  SelectionDAG &DAG = SDB->DAG;
6576  DebugLoc dl = SDB->getCurDebugLoc();
6577  const DataLayout *TD = TLI.getDataLayout();
6578  SmallVector<ISD::InputArg, 16> Ins;
6579
6580  // Check whether the function can return without sret-demotion.
6581  SmallVector<ISD::OutputArg, 4> Outs;
6582  GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
6583                Outs, TLI);
6584
6585  if (!FuncInfo->CanLowerReturn) {
6586    // Put in an sret pointer parameter before all the other parameters.
6587    SmallVector<EVT, 1> ValueVTs;
6588    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6589
6590    // NOTE: Assuming that a pointer will never break down to more than one VT
6591    // or one register.
6592    ISD::ArgFlagsTy Flags;
6593    Flags.setSRet();
6594    EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]);
6595    ISD::InputArg RetArg(Flags, RegisterVT, true, 0, 0);
6596    Ins.push_back(RetArg);
6597  }
6598
6599  // Set up the incoming argument description vector.
6600  unsigned Idx = 1;
6601  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
6602       I != E; ++I, ++Idx) {
6603    SmallVector<EVT, 4> ValueVTs;
6604    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6605    bool isArgValueUsed = !I->use_empty();
6606    for (unsigned Value = 0, NumValues = ValueVTs.size();
6607         Value != NumValues; ++Value) {
6608      EVT VT = ValueVTs[Value];
6609      Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
6610      ISD::ArgFlagsTy Flags;
6611      unsigned OriginalAlignment =
6612        TD->getABITypeAlignment(ArgTy);
6613
6614      if (F.getParamAttributes(Idx).hasAttribute(Attributes::ZExt))
6615        Flags.setZExt();
6616      if (F.getParamAttributes(Idx).hasAttribute(Attributes::SExt))
6617        Flags.setSExt();
6618      if (F.getParamAttributes(Idx).hasAttribute(Attributes::InReg))
6619        Flags.setInReg();
6620      if (F.getParamAttributes(Idx).hasAttribute(Attributes::StructRet))
6621        Flags.setSRet();
6622      if (F.getParamAttributes(Idx).hasAttribute(Attributes::ByVal)) {
6623        Flags.setByVal();
6624        PointerType *Ty = cast<PointerType>(I->getType());
6625        Type *ElementTy = Ty->getElementType();
6626        Flags.setByValSize(TD->getTypeAllocSize(ElementTy));
6627        // For ByVal, alignment should be passed from FE.  BE will guess if
6628        // this info is not there but there are cases it cannot get right.
6629        unsigned FrameAlign;
6630        if (F.getParamAlignment(Idx))
6631          FrameAlign = F.getParamAlignment(Idx);
6632        else
6633          FrameAlign = TLI.getByValTypeAlignment(ElementTy);
6634        Flags.setByValAlign(FrameAlign);
6635      }
6636      if (F.getParamAttributes(Idx).hasAttribute(Attributes::Nest))
6637        Flags.setNest();
6638      Flags.setOrigAlign(OriginalAlignment);
6639
6640      EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6641      unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6642      for (unsigned i = 0; i != NumRegs; ++i) {
6643        ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed,
6644                              Idx-1, i*RegisterVT.getStoreSize());
6645        if (NumRegs > 1 && i == 0)
6646          MyFlags.Flags.setSplit();
6647        // if it isn't first piece, alignment must be 1
6648        else if (i > 0)
6649          MyFlags.Flags.setOrigAlign(1);
6650        Ins.push_back(MyFlags);
6651      }
6652    }
6653  }
6654
6655  // Call the target to set up the argument values.
6656  SmallVector<SDValue, 8> InVals;
6657  SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
6658                                             F.isVarArg(), Ins,
6659                                             dl, DAG, InVals);
6660
6661  // Verify that the target's LowerFormalArguments behaved as expected.
6662  assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
6663         "LowerFormalArguments didn't return a valid chain!");
6664  assert(InVals.size() == Ins.size() &&
6665         "LowerFormalArguments didn't emit the correct number of values!");
6666  DEBUG({
6667      for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6668        assert(InVals[i].getNode() &&
6669               "LowerFormalArguments emitted a null value!");
6670        assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6671               "LowerFormalArguments emitted a value with the wrong type!");
6672      }
6673    });
6674
6675  // Update the DAG with the new chain value resulting from argument lowering.
6676  DAG.setRoot(NewRoot);
6677
6678  // Set up the argument values.
6679  unsigned i = 0;
6680  Idx = 1;
6681  if (!FuncInfo->CanLowerReturn) {
6682    // Create a virtual register for the sret pointer, and put in a copy
6683    // from the sret argument into it.
6684    SmallVector<EVT, 1> ValueVTs;
6685    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6686    EVT VT = ValueVTs[0];
6687    EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6688    ISD::NodeType AssertOp = ISD::DELETED_NODE;
6689    SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
6690                                        RegVT, VT, NULL, AssertOp);
6691
6692    MachineFunction& MF = SDB->DAG.getMachineFunction();
6693    MachineRegisterInfo& RegInfo = MF.getRegInfo();
6694    unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT));
6695    FuncInfo->DemoteRegister = SRetReg;
6696    NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(),
6697                                    SRetReg, ArgValue);
6698    DAG.setRoot(NewRoot);
6699
6700    // i indexes lowered arguments.  Bump it past the hidden sret argument.
6701    // Idx indexes LLVM arguments.  Don't touch it.
6702    ++i;
6703  }
6704
6705  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
6706      ++I, ++Idx) {
6707    SmallVector<SDValue, 4> ArgValues;
6708    SmallVector<EVT, 4> ValueVTs;
6709    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6710    unsigned NumValues = ValueVTs.size();
6711
6712    // If this argument is unused then remember its value. It is used to generate
6713    // debugging information.
6714    if (I->use_empty() && NumValues)
6715      SDB->setUnusedArgValue(I, InVals[i]);
6716
6717    for (unsigned Val = 0; Val != NumValues; ++Val) {
6718      EVT VT = ValueVTs[Val];
6719      EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6720      unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6721
6722      if (!I->use_empty()) {
6723        ISD::NodeType AssertOp = ISD::DELETED_NODE;
6724        if (F.getParamAttributes(Idx).hasAttribute(Attributes::SExt))
6725          AssertOp = ISD::AssertSext;
6726        else if (F.getParamAttributes(Idx).hasAttribute(Attributes::ZExt))
6727          AssertOp = ISD::AssertZext;
6728
6729        ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
6730                                             NumParts, PartVT, VT,
6731                                             NULL, AssertOp));
6732      }
6733
6734      i += NumParts;
6735    }
6736
6737    // We don't need to do anything else for unused arguments.
6738    if (ArgValues.empty())
6739      continue;
6740
6741    // Note down frame index.
6742    if (FrameIndexSDNode *FI =
6743        dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
6744      FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
6745
6746    SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues,
6747                                     SDB->getCurDebugLoc());
6748
6749    SDB->setValue(I, Res);
6750    if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
6751      if (LoadSDNode *LNode =
6752          dyn_cast<LoadSDNode>(Res.getOperand(0).getNode()))
6753        if (FrameIndexSDNode *FI =
6754            dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
6755        FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
6756    }
6757
6758    // If this argument is live outside of the entry block, insert a copy from
6759    // wherever we got it to the vreg that other BB's will reference it as.
6760    if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
6761      // If we can, though, try to skip creating an unnecessary vreg.
6762      // FIXME: This isn't very clean... it would be nice to make this more
6763      // general.  It's also subtly incompatible with the hacks FastISel
6764      // uses with vregs.
6765      unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
6766      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
6767        FuncInfo->ValueMap[I] = Reg;
6768        continue;
6769      }
6770    }
6771    if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) {
6772      FuncInfo->InitializeRegForValue(I);
6773      SDB->CopyToExportRegsIfNeeded(I);
6774    }
6775  }
6776
6777  assert(i == InVals.size() && "Argument register count mismatch!");
6778
6779  // Finally, if the target has anything special to do, allow it to do so.
6780  // FIXME: this should insert code into the DAG!
6781  EmitFunctionEntryCode();
6782}
6783
6784/// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
6785/// ensure constants are generated when needed.  Remember the virtual registers
6786/// that need to be added to the Machine PHI nodes as input.  We cannot just
6787/// directly add them, because expansion might result in multiple MBB's for one
6788/// BB.  As such, the start of the BB might correspond to a different MBB than
6789/// the end.
6790///
6791void
6792SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
6793  const TerminatorInst *TI = LLVMBB->getTerminator();
6794
6795  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6796
6797  // Check successor nodes' PHI nodes that expect a constant to be available
6798  // from this block.
6799  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6800    const BasicBlock *SuccBB = TI->getSuccessor(succ);
6801    if (!isa<PHINode>(SuccBB->begin())) continue;
6802    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
6803
6804    // If this terminator has multiple identical successors (common for
6805    // switches), only handle each succ once.
6806    if (!SuccsHandled.insert(SuccMBB)) continue;
6807
6808    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6809
6810    // At this point we know that there is a 1-1 correspondence between LLVM PHI
6811    // nodes and Machine PHI nodes, but the incoming operands have not been
6812    // emitted yet.
6813    for (BasicBlock::const_iterator I = SuccBB->begin();
6814         const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
6815      // Ignore dead phi's.
6816      if (PN->use_empty()) continue;
6817
6818      // Skip empty types
6819      if (PN->getType()->isEmptyTy())
6820        continue;
6821
6822      unsigned Reg;
6823      const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6824
6825      if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
6826        unsigned &RegOut = ConstantsOut[C];
6827        if (RegOut == 0) {
6828          RegOut = FuncInfo.CreateRegs(C->getType());
6829          CopyValueToVirtualRegister(C, RegOut);
6830        }
6831        Reg = RegOut;
6832      } else {
6833        DenseMap<const Value *, unsigned>::iterator I =
6834          FuncInfo.ValueMap.find(PHIOp);
6835        if (I != FuncInfo.ValueMap.end())
6836          Reg = I->second;
6837        else {
6838          assert(isa<AllocaInst>(PHIOp) &&
6839                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
6840                 "Didn't codegen value into a register!??");
6841          Reg = FuncInfo.CreateRegs(PHIOp->getType());
6842          CopyValueToVirtualRegister(PHIOp, Reg);
6843        }
6844      }
6845
6846      // Remember that this register needs to added to the machine PHI node as
6847      // the input for this MBB.
6848      SmallVector<EVT, 4> ValueVTs;
6849      ComputeValueVTs(TLI, PN->getType(), ValueVTs);
6850      for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
6851        EVT VT = ValueVTs[vti];
6852        unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
6853        for (unsigned i = 0, e = NumRegisters; i != e; ++i)
6854          FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
6855        Reg += NumRegisters;
6856      }
6857    }
6858  }
6859  ConstantsOut.clear();
6860}
6861