SelectionDAGBuilder.cpp revision 462f6b57b6276502e1279d0e508c0b9fc24feb50
1//===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements routines for translating from LLVM IR into SelectionDAG IR.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "SDNodeDbgValue.h"
16#include "SelectionDAGBuilder.h"
17#include "FunctionLoweringInfo.h"
18#include "llvm/ADT/BitVector.h"
19#include "llvm/ADT/SmallSet.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/ConstantFolding.h"
22#include "llvm/Constants.h"
23#include "llvm/CallingConv.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Function.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/InlineAsm.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/IntrinsicInst.h"
31#include "llvm/LLVMContext.h"
32#include "llvm/Module.h"
33#include "llvm/CodeGen/Analysis.h"
34#include "llvm/CodeGen/FastISel.h"
35#include "llvm/CodeGen/GCStrategy.h"
36#include "llvm/CodeGen/GCMetadata.h"
37#include "llvm/CodeGen/MachineFunction.h"
38#include "llvm/CodeGen/MachineFrameInfo.h"
39#include "llvm/CodeGen/MachineInstrBuilder.h"
40#include "llvm/CodeGen/MachineJumpTableInfo.h"
41#include "llvm/CodeGen/MachineModuleInfo.h"
42#include "llvm/CodeGen/MachineRegisterInfo.h"
43#include "llvm/CodeGen/PseudoSourceValue.h"
44#include "llvm/CodeGen/SelectionDAG.h"
45#include "llvm/Analysis/DebugInfo.h"
46#include "llvm/Target/TargetRegisterInfo.h"
47#include "llvm/Target/TargetData.h"
48#include "llvm/Target/TargetFrameInfo.h"
49#include "llvm/Target/TargetInstrInfo.h"
50#include "llvm/Target/TargetIntrinsicInfo.h"
51#include "llvm/Target/TargetLowering.h"
52#include "llvm/Target/TargetOptions.h"
53#include "llvm/Support/Compiler.h"
54#include "llvm/Support/CommandLine.h"
55#include "llvm/Support/Debug.h"
56#include "llvm/Support/ErrorHandling.h"
57#include "llvm/Support/MathExtras.h"
58#include "llvm/Support/raw_ostream.h"
59#include <algorithm>
60using namespace llvm;
61
62/// LimitFloatPrecision - Generate low-precision inline sequences for
63/// some float libcalls (6, 8 or 12 bits).
64static unsigned LimitFloatPrecision;
65
66static cl::opt<unsigned, true>
67LimitFPPrecision("limit-float-precision",
68                 cl::desc("Generate low-precision inline sequences "
69                          "for some float libcalls"),
70                 cl::location(LimitFloatPrecision),
71                 cl::init(0));
72
73/// getCopyFromParts - Create a value that contains the specified legal parts
74/// combined into the value they represent.  If the parts combine to a type
75/// larger then ValueVT then AssertOp can be used to specify whether the extra
76/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
77/// (ISD::AssertSext).
78static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc dl,
79                                const SDValue *Parts,
80                                unsigned NumParts, EVT PartVT, EVT ValueVT,
81                                ISD::NodeType AssertOp = ISD::DELETED_NODE) {
82  assert(NumParts > 0 && "No parts to assemble!");
83  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
84  SDValue Val = Parts[0];
85
86  if (NumParts > 1) {
87    // Assemble the value from multiple parts.
88    if (!ValueVT.isVector() && ValueVT.isInteger()) {
89      unsigned PartBits = PartVT.getSizeInBits();
90      unsigned ValueBits = ValueVT.getSizeInBits();
91
92      // Assemble the power of 2 part.
93      unsigned RoundParts = NumParts & (NumParts - 1) ?
94        1 << Log2_32(NumParts) : NumParts;
95      unsigned RoundBits = PartBits * RoundParts;
96      EVT RoundVT = RoundBits == ValueBits ?
97        ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
98      SDValue Lo, Hi;
99
100      EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
101
102      if (RoundParts > 2) {
103        Lo = getCopyFromParts(DAG, dl, Parts, RoundParts / 2,
104                              PartVT, HalfVT);
105        Hi = getCopyFromParts(DAG, dl, Parts + RoundParts / 2,
106                              RoundParts / 2, PartVT, HalfVT);
107      } else {
108        Lo = DAG.getNode(ISD::BIT_CONVERT, dl, HalfVT, Parts[0]);
109        Hi = DAG.getNode(ISD::BIT_CONVERT, dl, HalfVT, Parts[1]);
110      }
111
112      if (TLI.isBigEndian())
113        std::swap(Lo, Hi);
114
115      Val = DAG.getNode(ISD::BUILD_PAIR, dl, RoundVT, Lo, Hi);
116
117      if (RoundParts < NumParts) {
118        // Assemble the trailing non-power-of-2 part.
119        unsigned OddParts = NumParts - RoundParts;
120        EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
121        Hi = getCopyFromParts(DAG, dl,
122                              Parts + RoundParts, OddParts, PartVT, OddVT);
123
124        // Combine the round and odd parts.
125        Lo = Val;
126        if (TLI.isBigEndian())
127          std::swap(Lo, Hi);
128        EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
129        Hi = DAG.getNode(ISD::ANY_EXTEND, dl, TotalVT, Hi);
130        Hi = DAG.getNode(ISD::SHL, dl, TotalVT, Hi,
131                         DAG.getConstant(Lo.getValueType().getSizeInBits(),
132                                         TLI.getPointerTy()));
133        Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, TotalVT, Lo);
134        Val = DAG.getNode(ISD::OR, dl, TotalVT, Lo, Hi);
135      }
136    } else if (ValueVT.isVector()) {
137      // Handle a multi-element vector.
138      EVT IntermediateVT, RegisterVT;
139      unsigned NumIntermediates;
140      unsigned NumRegs =
141        TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
142                                   NumIntermediates, RegisterVT);
143      assert(NumRegs == NumParts
144             && "Part count doesn't match vector breakdown!");
145      NumParts = NumRegs; // Silence a compiler warning.
146      assert(RegisterVT == PartVT
147             && "Part type doesn't match vector breakdown!");
148      assert(RegisterVT == Parts[0].getValueType() &&
149             "Part type doesn't match part!");
150
151      // Assemble the parts into intermediate operands.
152      SmallVector<SDValue, 8> Ops(NumIntermediates);
153      if (NumIntermediates == NumParts) {
154        // If the register was not expanded, truncate or copy the value,
155        // as appropriate.
156        for (unsigned i = 0; i != NumParts; ++i)
157          Ops[i] = getCopyFromParts(DAG, dl, &Parts[i], 1,
158                                    PartVT, IntermediateVT);
159      } else if (NumParts > 0) {
160        // If the intermediate type was expanded, build the intermediate
161        // operands from the parts.
162        assert(NumParts % NumIntermediates == 0 &&
163               "Must expand into a divisible number of parts!");
164        unsigned Factor = NumParts / NumIntermediates;
165        for (unsigned i = 0; i != NumIntermediates; ++i)
166          Ops[i] = getCopyFromParts(DAG, dl, &Parts[i * Factor], Factor,
167                                    PartVT, IntermediateVT);
168      }
169
170      // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
171      // intermediate operands.
172      Val = DAG.getNode(IntermediateVT.isVector() ?
173                        ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, dl,
174                        ValueVT, &Ops[0], NumIntermediates);
175    } else if (PartVT.isFloatingPoint()) {
176      // FP split into multiple FP parts (for ppcf128)
177      assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) &&
178             "Unexpected split");
179      SDValue Lo, Hi;
180      Lo = DAG.getNode(ISD::BIT_CONVERT, dl, EVT(MVT::f64), Parts[0]);
181      Hi = DAG.getNode(ISD::BIT_CONVERT, dl, EVT(MVT::f64), Parts[1]);
182      if (TLI.isBigEndian())
183        std::swap(Lo, Hi);
184      Val = DAG.getNode(ISD::BUILD_PAIR, dl, ValueVT, Lo, Hi);
185    } else {
186      // FP split into integer parts (soft fp)
187      assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
188             !PartVT.isVector() && "Unexpected split");
189      EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
190      Val = getCopyFromParts(DAG, dl, Parts, NumParts, PartVT, IntVT);
191    }
192  }
193
194  // There is now one part, held in Val.  Correct it to match ValueVT.
195  PartVT = Val.getValueType();
196
197  if (PartVT == ValueVT)
198    return Val;
199
200  if (PartVT.isVector()) {
201    assert(ValueVT.isVector() && "Unknown vector conversion!");
202    return DAG.getNode(ISD::BIT_CONVERT, dl, ValueVT, Val);
203  }
204
205  if (ValueVT.isVector()) {
206    assert(ValueVT.getVectorElementType() == PartVT &&
207           ValueVT.getVectorNumElements() == 1 &&
208           "Only trivial scalar-to-vector conversions should get here!");
209    return DAG.getNode(ISD::BUILD_VECTOR, dl, ValueVT, Val);
210  }
211
212  if (PartVT.isInteger() &&
213      ValueVT.isInteger()) {
214    if (ValueVT.bitsLT(PartVT)) {
215      // For a truncate, see if we have any information to
216      // indicate whether the truncated bits will always be
217      // zero or sign-extension.
218      if (AssertOp != ISD::DELETED_NODE)
219        Val = DAG.getNode(AssertOp, dl, PartVT, Val,
220                          DAG.getValueType(ValueVT));
221      return DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val);
222    } else {
223      return DAG.getNode(ISD::ANY_EXTEND, dl, ValueVT, Val);
224    }
225  }
226
227  if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
228    if (ValueVT.bitsLT(Val.getValueType())) {
229      // FP_ROUND's are always exact here.
230      return DAG.getNode(ISD::FP_ROUND, dl, ValueVT, Val,
231                         DAG.getIntPtrConstant(1));
232    }
233
234    return DAG.getNode(ISD::FP_EXTEND, dl, ValueVT, Val);
235  }
236
237  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
238    return DAG.getNode(ISD::BIT_CONVERT, dl, ValueVT, Val);
239
240  llvm_unreachable("Unknown mismatch!");
241  return SDValue();
242}
243
244/// getCopyToParts - Create a series of nodes that contain the specified value
245/// split into legal parts.  If the parts contain more bits than Val, then, for
246/// integers, ExtendKind can be used to specify how to generate the extra bits.
247static void getCopyToParts(SelectionDAG &DAG, DebugLoc dl,
248                           SDValue Val, SDValue *Parts, unsigned NumParts,
249                           EVT PartVT,
250                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
251  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
252  EVT PtrVT = TLI.getPointerTy();
253  EVT ValueVT = Val.getValueType();
254  unsigned PartBits = PartVT.getSizeInBits();
255  unsigned OrigNumParts = NumParts;
256  assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
257
258  if (!NumParts)
259    return;
260
261  if (!ValueVT.isVector()) {
262    if (PartVT == ValueVT) {
263      assert(NumParts == 1 && "No-op copy with multiple parts!");
264      Parts[0] = Val;
265      return;
266    }
267
268    if (NumParts * PartBits > ValueVT.getSizeInBits()) {
269      // If the parts cover more bits than the value has, promote the value.
270      if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
271        assert(NumParts == 1 && "Do not know what to promote to!");
272        Val = DAG.getNode(ISD::FP_EXTEND, dl, PartVT, Val);
273      } else if (PartVT.isInteger() && ValueVT.isInteger()) {
274        ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
275        Val = DAG.getNode(ExtendKind, dl, ValueVT, Val);
276      } else {
277        llvm_unreachable("Unknown mismatch!");
278      }
279    } else if (PartBits == ValueVT.getSizeInBits()) {
280      // Different types of the same size.
281      assert(NumParts == 1 && PartVT != ValueVT);
282      Val = DAG.getNode(ISD::BIT_CONVERT, dl, PartVT, Val);
283    } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
284      // If the parts cover less bits than value has, truncate the value.
285      if (PartVT.isInteger() && ValueVT.isInteger()) {
286        ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
287        Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val);
288      } else {
289        llvm_unreachable("Unknown mismatch!");
290      }
291    }
292
293    // The value may have changed - recompute ValueVT.
294    ValueVT = Val.getValueType();
295    assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
296           "Failed to tile the value with PartVT!");
297
298    if (NumParts == 1) {
299      assert(PartVT == ValueVT && "Type conversion failed!");
300      Parts[0] = Val;
301      return;
302    }
303
304    // Expand the value into multiple parts.
305    if (NumParts & (NumParts - 1)) {
306      // The number of parts is not a power of 2.  Split off and copy the tail.
307      assert(PartVT.isInteger() && ValueVT.isInteger() &&
308             "Do not know what to expand to!");
309      unsigned RoundParts = 1 << Log2_32(NumParts);
310      unsigned RoundBits = RoundParts * PartBits;
311      unsigned OddParts = NumParts - RoundParts;
312      SDValue OddVal = DAG.getNode(ISD::SRL, dl, ValueVT, Val,
313                                   DAG.getConstant(RoundBits,
314                                                   TLI.getPointerTy()));
315      getCopyToParts(DAG, dl, OddVal, Parts + RoundParts,
316                     OddParts, PartVT);
317
318      if (TLI.isBigEndian())
319        // The odd parts were reversed by getCopyToParts - unreverse them.
320        std::reverse(Parts + RoundParts, Parts + NumParts);
321
322      NumParts = RoundParts;
323      ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
324      Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val);
325    }
326
327    // The number of parts is a power of 2.  Repeatedly bisect the value using
328    // EXTRACT_ELEMENT.
329    Parts[0] = DAG.getNode(ISD::BIT_CONVERT, dl,
330                           EVT::getIntegerVT(*DAG.getContext(),
331                                             ValueVT.getSizeInBits()),
332                           Val);
333
334    for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
335      for (unsigned i = 0; i < NumParts; i += StepSize) {
336        unsigned ThisBits = StepSize * PartBits / 2;
337        EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
338        SDValue &Part0 = Parts[i];
339        SDValue &Part1 = Parts[i+StepSize/2];
340
341        Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
342                            ThisVT, Part0,
343                            DAG.getConstant(1, PtrVT));
344        Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
345                            ThisVT, Part0,
346                            DAG.getConstant(0, PtrVT));
347
348        if (ThisBits == PartBits && ThisVT != PartVT) {
349          Part0 = DAG.getNode(ISD::BIT_CONVERT, dl,
350                                                PartVT, Part0);
351          Part1 = DAG.getNode(ISD::BIT_CONVERT, dl,
352                                                PartVT, Part1);
353        }
354      }
355    }
356
357    if (TLI.isBigEndian())
358      std::reverse(Parts, Parts + OrigNumParts);
359
360    return;
361  }
362
363  // Vector ValueVT.
364  if (NumParts == 1) {
365    if (PartVT != ValueVT) {
366      if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
367        Val = DAG.getNode(ISD::BIT_CONVERT, dl, PartVT, Val);
368      } else {
369        assert(ValueVT.getVectorElementType() == PartVT &&
370               ValueVT.getVectorNumElements() == 1 &&
371               "Only trivial vector-to-scalar conversions should get here!");
372        Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
373                          PartVT, Val,
374                          DAG.getConstant(0, PtrVT));
375      }
376    }
377
378    Parts[0] = Val;
379    return;
380  }
381
382  // Handle a multi-element vector.
383  EVT IntermediateVT, RegisterVT;
384  unsigned NumIntermediates;
385  unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
386                              IntermediateVT, NumIntermediates, RegisterVT);
387  unsigned NumElements = ValueVT.getVectorNumElements();
388
389  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
390  NumParts = NumRegs; // Silence a compiler warning.
391  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
392
393  // Split the vector into intermediate operands.
394  SmallVector<SDValue, 8> Ops(NumIntermediates);
395  for (unsigned i = 0; i != NumIntermediates; ++i) {
396    if (IntermediateVT.isVector())
397      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl,
398                           IntermediateVT, Val,
399                           DAG.getConstant(i * (NumElements / NumIntermediates),
400                                           PtrVT));
401    else
402      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
403                           IntermediateVT, Val,
404                           DAG.getConstant(i, PtrVT));
405  }
406
407  // Split the intermediate operands into legal parts.
408  if (NumParts == NumIntermediates) {
409    // If the register was not expanded, promote or copy the value,
410    // as appropriate.
411    for (unsigned i = 0; i != NumParts; ++i)
412      getCopyToParts(DAG, dl, Ops[i], &Parts[i], 1, PartVT);
413  } else if (NumParts > 0) {
414    // If the intermediate type was expanded, split each the value into
415    // legal parts.
416    assert(NumParts % NumIntermediates == 0 &&
417           "Must expand into a divisible number of parts!");
418    unsigned Factor = NumParts / NumIntermediates;
419    for (unsigned i = 0; i != NumIntermediates; ++i)
420      getCopyToParts(DAG, dl, Ops[i], &Parts[i*Factor], Factor, PartVT);
421  }
422}
423
424namespace {
425  /// RegsForValue - This struct represents the registers (physical or virtual)
426  /// that a particular set of values is assigned, and the type information
427  /// about the value. The most common situation is to represent one value at a
428  /// time, but struct or array values are handled element-wise as multiple
429  /// values.  The splitting of aggregates is performed recursively, so that we
430  /// never have aggregate-typed registers. The values at this point do not
431  /// necessarily have legal types, so each value may require one or more
432  /// registers of some legal type.
433  ///
434  struct RegsForValue {
435    /// ValueVTs - The value types of the values, which may not be legal, and
436    /// may need be promoted or synthesized from one or more registers.
437    ///
438    SmallVector<EVT, 4> ValueVTs;
439
440    /// RegVTs - The value types of the registers. This is the same size as
441    /// ValueVTs and it records, for each value, what the type of the assigned
442    /// register or registers are. (Individual values are never synthesized
443    /// from more than one type of register.)
444    ///
445    /// With virtual registers, the contents of RegVTs is redundant with TLI's
446    /// getRegisterType member function, however when with physical registers
447    /// it is necessary to have a separate record of the types.
448    ///
449    SmallVector<EVT, 4> RegVTs;
450
451    /// Regs - This list holds the registers assigned to the values.
452    /// Each legal or promoted value requires one register, and each
453    /// expanded value requires multiple registers.
454    ///
455    SmallVector<unsigned, 4> Regs;
456
457    RegsForValue() {}
458
459    RegsForValue(const SmallVector<unsigned, 4> &regs,
460                 EVT regvt, EVT valuevt)
461      : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
462
463    RegsForValue(const SmallVector<unsigned, 4> &regs,
464                 const SmallVector<EVT, 4> &regvts,
465                 const SmallVector<EVT, 4> &valuevts)
466      : ValueVTs(valuevts), RegVTs(regvts), Regs(regs) {}
467
468    RegsForValue(LLVMContext &Context, const TargetLowering &tli,
469                 unsigned Reg, const Type *Ty) {
470      ComputeValueVTs(tli, Ty, ValueVTs);
471
472      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
473        EVT ValueVT = ValueVTs[Value];
474        unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
475        EVT RegisterVT = tli.getRegisterType(Context, ValueVT);
476        for (unsigned i = 0; i != NumRegs; ++i)
477          Regs.push_back(Reg + i);
478        RegVTs.push_back(RegisterVT);
479        Reg += NumRegs;
480      }
481    }
482
483    /// areValueTypesLegal - Return true if types of all the values are legal.
484    bool areValueTypesLegal(const TargetLowering &TLI) {
485      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
486        EVT RegisterVT = RegVTs[Value];
487        if (!TLI.isTypeLegal(RegisterVT))
488          return false;
489      }
490      return true;
491    }
492
493    /// append - Add the specified values to this one.
494    void append(const RegsForValue &RHS) {
495      ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
496      RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
497      Regs.append(RHS.Regs.begin(), RHS.Regs.end());
498    }
499
500    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
501    /// this value and returns the result as a ValueVTs value.  This uses
502    /// Chain/Flag as the input and updates them for the output Chain/Flag.
503    /// If the Flag pointer is NULL, no flag is used.
504    SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
505                            DebugLoc dl,
506                            SDValue &Chain, SDValue *Flag) const;
507
508    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
509    /// specified value into the registers specified by this object.  This uses
510    /// Chain/Flag as the input and updates them for the output Chain/Flag.
511    /// If the Flag pointer is NULL, no flag is used.
512    void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
513                       SDValue &Chain, SDValue *Flag) const;
514
515    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
516    /// operand list.  This adds the code marker, matching input operand index
517    /// (if applicable), and includes the number of values added into it.
518    void AddInlineAsmOperands(unsigned Kind,
519                              bool HasMatching, unsigned MatchingIdx,
520                              SelectionDAG &DAG,
521                              std::vector<SDValue> &Ops) const;
522  };
523}
524
525/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
526/// this value and returns the result as a ValueVT value.  This uses
527/// Chain/Flag as the input and updates them for the output Chain/Flag.
528/// If the Flag pointer is NULL, no flag is used.
529SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
530                                      FunctionLoweringInfo &FuncInfo,
531                                      DebugLoc dl,
532                                      SDValue &Chain, SDValue *Flag) const {
533  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
534
535  // Assemble the legal parts into the final values.
536  SmallVector<SDValue, 4> Values(ValueVTs.size());
537  SmallVector<SDValue, 8> Parts;
538  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
539    // Copy the legal parts from the registers.
540    EVT ValueVT = ValueVTs[Value];
541    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
542    EVT RegisterVT = RegVTs[Value];
543
544    Parts.resize(NumRegs);
545    for (unsigned i = 0; i != NumRegs; ++i) {
546      SDValue P;
547      if (Flag == 0) {
548        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
549      } else {
550        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
551        *Flag = P.getValue(2);
552      }
553
554      Chain = P.getValue(1);
555
556      // If the source register was virtual and if we know something about it,
557      // add an assert node.
558      if (TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) &&
559          RegisterVT.isInteger() && !RegisterVT.isVector()) {
560        unsigned SlotNo = Regs[Part+i]-TargetRegisterInfo::FirstVirtualRegister;
561        if (FuncInfo.LiveOutRegInfo.size() > SlotNo) {
562          const FunctionLoweringInfo::LiveOutInfo &LOI =
563            FuncInfo.LiveOutRegInfo[SlotNo];
564
565          unsigned RegSize = RegisterVT.getSizeInBits();
566          unsigned NumSignBits = LOI.NumSignBits;
567          unsigned NumZeroBits = LOI.KnownZero.countLeadingOnes();
568
569          // FIXME: We capture more information than the dag can represent.  For
570          // now, just use the tightest assertzext/assertsext possible.
571          bool isSExt = true;
572          EVT FromVT(MVT::Other);
573          if (NumSignBits == RegSize)
574            isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
575          else if (NumZeroBits >= RegSize-1)
576            isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
577          else if (NumSignBits > RegSize-8)
578            isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
579          else if (NumZeroBits >= RegSize-8)
580            isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
581          else if (NumSignBits > RegSize-16)
582            isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
583          else if (NumZeroBits >= RegSize-16)
584            isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
585          else if (NumSignBits > RegSize-32)
586            isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
587          else if (NumZeroBits >= RegSize-32)
588            isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
589
590          if (FromVT != MVT::Other)
591            P = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
592                            RegisterVT, P, DAG.getValueType(FromVT));
593        }
594      }
595
596      Parts[i] = P;
597    }
598
599    Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
600                                     NumRegs, RegisterVT, ValueVT);
601    Part += NumRegs;
602    Parts.clear();
603  }
604
605  return DAG.getNode(ISD::MERGE_VALUES, dl,
606                     DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
607                     &Values[0], ValueVTs.size());
608}
609
610/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
611/// specified value into the registers specified by this object.  This uses
612/// Chain/Flag as the input and updates them for the output Chain/Flag.
613/// If the Flag pointer is NULL, no flag is used.
614void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
615                                 SDValue &Chain, SDValue *Flag) const {
616  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
617
618  // Get the list of the values's legal parts.
619  unsigned NumRegs = Regs.size();
620  SmallVector<SDValue, 8> Parts(NumRegs);
621  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
622    EVT ValueVT = ValueVTs[Value];
623    unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
624    EVT RegisterVT = RegVTs[Value];
625
626    getCopyToParts(DAG, dl,
627                   Val.getValue(Val.getResNo() + Value),
628                   &Parts[Part], NumParts, RegisterVT);
629    Part += NumParts;
630  }
631
632  // Copy the parts into the registers.
633  SmallVector<SDValue, 8> Chains(NumRegs);
634  for (unsigned i = 0; i != NumRegs; ++i) {
635    SDValue Part;
636    if (Flag == 0) {
637      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
638    } else {
639      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
640      *Flag = Part.getValue(1);
641    }
642
643    Chains[i] = Part.getValue(0);
644  }
645
646  if (NumRegs == 1 || Flag)
647    // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
648    // flagged to it. That is the CopyToReg nodes and the user are considered
649    // a single scheduling unit. If we create a TokenFactor and return it as
650    // chain, then the TokenFactor is both a predecessor (operand) of the
651    // user as well as a successor (the TF operands are flagged to the user).
652    // c1, f1 = CopyToReg
653    // c2, f2 = CopyToReg
654    // c3     = TokenFactor c1, c2
655    // ...
656    //        = op c3, ..., f2
657    Chain = Chains[NumRegs-1];
658  else
659    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
660}
661
662/// AddInlineAsmOperands - Add this value to the specified inlineasm node
663/// operand list.  This adds the code marker and includes the number of
664/// values added into it.
665void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
666                                        unsigned MatchingIdx,
667                                        SelectionDAG &DAG,
668                                        std::vector<SDValue> &Ops) const {
669  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
670
671  unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
672  if (HasMatching)
673    Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
674  SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
675  Ops.push_back(Res);
676
677  for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
678    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
679    EVT RegisterVT = RegVTs[Value];
680    for (unsigned i = 0; i != NumRegs; ++i) {
681      assert(Reg < Regs.size() && "Mismatch in # registers expected");
682      Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
683    }
684  }
685}
686
687void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) {
688  AA = &aa;
689  GFI = gfi;
690  TD = DAG.getTarget().getTargetData();
691}
692
693/// clear - Clear out the current SelectionDAG and the associated
694/// state and prepare this SelectionDAGBuilder object to be used
695/// for a new block. This doesn't clear out information about
696/// additional blocks that are needed to complete switch lowering
697/// or PHI node updating; that information is cleared out as it is
698/// consumed.
699void SelectionDAGBuilder::clear() {
700  NodeMap.clear();
701  PendingLoads.clear();
702  PendingExports.clear();
703  CurDebugLoc = DebugLoc();
704  HasTailCall = false;
705}
706
707/// getRoot - Return the current virtual root of the Selection DAG,
708/// flushing any PendingLoad items. This must be done before emitting
709/// a store or any other node that may need to be ordered after any
710/// prior load instructions.
711///
712SDValue SelectionDAGBuilder::getRoot() {
713  if (PendingLoads.empty())
714    return DAG.getRoot();
715
716  if (PendingLoads.size() == 1) {
717    SDValue Root = PendingLoads[0];
718    DAG.setRoot(Root);
719    PendingLoads.clear();
720    return Root;
721  }
722
723  // Otherwise, we have to make a token factor node.
724  SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
725                               &PendingLoads[0], PendingLoads.size());
726  PendingLoads.clear();
727  DAG.setRoot(Root);
728  return Root;
729}
730
731/// getControlRoot - Similar to getRoot, but instead of flushing all the
732/// PendingLoad items, flush all the PendingExports items. It is necessary
733/// to do this before emitting a terminator instruction.
734///
735SDValue SelectionDAGBuilder::getControlRoot() {
736  SDValue Root = DAG.getRoot();
737
738  if (PendingExports.empty())
739    return Root;
740
741  // Turn all of the CopyToReg chains into one factored node.
742  if (Root.getOpcode() != ISD::EntryToken) {
743    unsigned i = 0, e = PendingExports.size();
744    for (; i != e; ++i) {
745      assert(PendingExports[i].getNode()->getNumOperands() > 1);
746      if (PendingExports[i].getNode()->getOperand(0) == Root)
747        break;  // Don't add the root if we already indirectly depend on it.
748    }
749
750    if (i == e)
751      PendingExports.push_back(Root);
752  }
753
754  Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
755                     &PendingExports[0],
756                     PendingExports.size());
757  PendingExports.clear();
758  DAG.setRoot(Root);
759  return Root;
760}
761
762void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) {
763  if (DAG.GetOrdering(Node) != 0) return; // Already has ordering.
764  DAG.AssignOrdering(Node, SDNodeOrder);
765
766  for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I)
767    AssignOrderingToNode(Node->getOperand(I).getNode());
768}
769
770void SelectionDAGBuilder::visit(const Instruction &I) {
771  // Set up outgoing PHI node register values before emitting the terminator.
772  if (isa<TerminatorInst>(&I))
773    HandlePHINodesInSuccessorBlocks(I.getParent());
774
775  CurDebugLoc = I.getDebugLoc();
776
777  visit(I.getOpcode(), I);
778
779  if (!isa<TerminatorInst>(&I) && !HasTailCall)
780    CopyToExportRegsIfNeeded(&I);
781
782  CurDebugLoc = DebugLoc();
783}
784
785void SelectionDAGBuilder::visitPHI(const PHINode &) {
786  llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
787}
788
789void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
790  // Note: this doesn't use InstVisitor, because it has to work with
791  // ConstantExpr's in addition to instructions.
792  switch (Opcode) {
793  default: llvm_unreachable("Unknown instruction type encountered!");
794    // Build the switch statement using the Instruction.def file.
795#define HANDLE_INST(NUM, OPCODE, CLASS) \
796    case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break;
797#include "llvm/Instruction.def"
798  }
799
800  // Assign the ordering to the freshly created DAG nodes.
801  if (NodeMap.count(&I)) {
802    ++SDNodeOrder;
803    AssignOrderingToNode(getValue(&I).getNode());
804  }
805}
806
807SDValue SelectionDAGBuilder::getValue(const Value *V) {
808  SDValue &N = NodeMap[V];
809  if (N.getNode()) return N;
810
811  if (const Constant *C = dyn_cast<Constant>(V)) {
812    EVT VT = TLI.getValueType(V->getType(), true);
813
814    if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
815      return N = DAG.getConstant(*CI, VT);
816
817    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
818      return N = DAG.getGlobalAddress(GV, VT);
819
820    if (isa<ConstantPointerNull>(C))
821      return N = DAG.getConstant(0, TLI.getPointerTy());
822
823    if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
824      return N = DAG.getConstantFP(*CFP, VT);
825
826    if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
827      return N = DAG.getUNDEF(VT);
828
829    if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
830      visit(CE->getOpcode(), *CE);
831      SDValue N1 = NodeMap[V];
832      assert(N1.getNode() && "visit didn't populate the NodeMap!");
833      return N1;
834    }
835
836    if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
837      SmallVector<SDValue, 4> Constants;
838      for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
839           OI != OE; ++OI) {
840        SDNode *Val = getValue(*OI).getNode();
841        // If the operand is an empty aggregate, there are no values.
842        if (!Val) continue;
843        // Add each leaf value from the operand to the Constants list
844        // to form a flattened list of all the values.
845        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
846          Constants.push_back(SDValue(Val, i));
847      }
848
849      return DAG.getMergeValues(&Constants[0], Constants.size(),
850                                getCurDebugLoc());
851    }
852
853    if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
854      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
855             "Unknown struct or array constant!");
856
857      SmallVector<EVT, 4> ValueVTs;
858      ComputeValueVTs(TLI, C->getType(), ValueVTs);
859      unsigned NumElts = ValueVTs.size();
860      if (NumElts == 0)
861        return SDValue(); // empty struct
862      SmallVector<SDValue, 4> Constants(NumElts);
863      for (unsigned i = 0; i != NumElts; ++i) {
864        EVT EltVT = ValueVTs[i];
865        if (isa<UndefValue>(C))
866          Constants[i] = DAG.getUNDEF(EltVT);
867        else if (EltVT.isFloatingPoint())
868          Constants[i] = DAG.getConstantFP(0, EltVT);
869        else
870          Constants[i] = DAG.getConstant(0, EltVT);
871      }
872
873      return DAG.getMergeValues(&Constants[0], NumElts,
874                                getCurDebugLoc());
875    }
876
877    if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
878      return DAG.getBlockAddress(BA, VT);
879
880    const VectorType *VecTy = cast<VectorType>(V->getType());
881    unsigned NumElements = VecTy->getNumElements();
882
883    // Now that we know the number and type of the elements, get that number of
884    // elements into the Ops array based on what kind of constant it is.
885    SmallVector<SDValue, 16> Ops;
886    if (const ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
887      for (unsigned i = 0; i != NumElements; ++i)
888        Ops.push_back(getValue(CP->getOperand(i)));
889    } else {
890      assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
891      EVT EltVT = TLI.getValueType(VecTy->getElementType());
892
893      SDValue Op;
894      if (EltVT.isFloatingPoint())
895        Op = DAG.getConstantFP(0, EltVT);
896      else
897        Op = DAG.getConstant(0, EltVT);
898      Ops.assign(NumElements, Op);
899    }
900
901    // Create a BUILD_VECTOR node.
902    return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
903                                    VT, &Ops[0], Ops.size());
904  }
905
906  // If this is a static alloca, generate it as the frameindex instead of
907  // computation.
908  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
909    DenseMap<const AllocaInst*, int>::iterator SI =
910      FuncInfo.StaticAllocaMap.find(AI);
911    if (SI != FuncInfo.StaticAllocaMap.end())
912      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
913  }
914
915  unsigned InReg = FuncInfo.ValueMap[V];
916  assert(InReg && "Value not in map!");
917
918  RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
919  SDValue Chain = DAG.getEntryNode();
920  return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL);
921}
922
923/// Get the EVTs and ArgFlags collections that represent the legalized return
924/// type of the given function.  This does not require a DAG or a return value,
925/// and is suitable for use before any DAGs for the function are constructed.
926static void getReturnInfo(const Type* ReturnType,
927                   Attributes attr, SmallVectorImpl<EVT> &OutVTs,
928                   SmallVectorImpl<ISD::ArgFlagsTy> &OutFlags,
929                   const TargetLowering &TLI,
930                   SmallVectorImpl<uint64_t> *Offsets = 0) {
931  SmallVector<EVT, 4> ValueVTs;
932  ComputeValueVTs(TLI, ReturnType, ValueVTs);
933  unsigned NumValues = ValueVTs.size();
934  if (NumValues == 0) return;
935  unsigned Offset = 0;
936
937  for (unsigned j = 0, f = NumValues; j != f; ++j) {
938    EVT VT = ValueVTs[j];
939    ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
940
941    if (attr & Attribute::SExt)
942      ExtendKind = ISD::SIGN_EXTEND;
943    else if (attr & Attribute::ZExt)
944      ExtendKind = ISD::ZERO_EXTEND;
945
946    // FIXME: C calling convention requires the return type to be promoted to
947    // at least 32-bit. But this is not necessary for non-C calling
948    // conventions. The frontend should mark functions whose return values
949    // require promoting with signext or zeroext attributes.
950    if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
951      EVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
952      if (VT.bitsLT(MinVT))
953        VT = MinVT;
954    }
955
956    unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT);
957    EVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT);
958    unsigned PartSize = TLI.getTargetData()->getTypeAllocSize(
959                        PartVT.getTypeForEVT(ReturnType->getContext()));
960
961    // 'inreg' on function refers to return value
962    ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
963    if (attr & Attribute::InReg)
964      Flags.setInReg();
965
966    // Propagate extension type if any
967    if (attr & Attribute::SExt)
968      Flags.setSExt();
969    else if (attr & Attribute::ZExt)
970      Flags.setZExt();
971
972    for (unsigned i = 0; i < NumParts; ++i) {
973      OutVTs.push_back(PartVT);
974      OutFlags.push_back(Flags);
975      if (Offsets)
976      {
977        Offsets->push_back(Offset);
978        Offset += PartSize;
979      }
980    }
981  }
982}
983
984void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
985  SDValue Chain = getControlRoot();
986  SmallVector<ISD::OutputArg, 8> Outs;
987
988  if (!FuncInfo.CanLowerReturn) {
989    unsigned DemoteReg = FuncInfo.DemoteRegister;
990    const Function *F = I.getParent()->getParent();
991
992    // Emit a store of the return value through the virtual register.
993    // Leave Outs empty so that LowerReturn won't try to load return
994    // registers the usual way.
995    SmallVector<EVT, 1> PtrValueVTs;
996    ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
997                    PtrValueVTs);
998
999    SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
1000    SDValue RetOp = getValue(I.getOperand(0));
1001
1002    SmallVector<EVT, 4> ValueVTs;
1003    SmallVector<uint64_t, 4> Offsets;
1004    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1005    unsigned NumValues = ValueVTs.size();
1006
1007    SmallVector<SDValue, 4> Chains(NumValues);
1008    EVT PtrVT = PtrValueVTs[0];
1009    for (unsigned i = 0; i != NumValues; ++i) {
1010      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, RetPtr,
1011                                DAG.getConstant(Offsets[i], PtrVT));
1012      Chains[i] =
1013        DAG.getStore(Chain, getCurDebugLoc(),
1014                     SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1015                     Add, NULL, Offsets[i], false, false, 0);
1016    }
1017
1018    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
1019                        MVT::Other, &Chains[0], NumValues);
1020  } else if (I.getNumOperands() != 0) {
1021    SmallVector<EVT, 4> ValueVTs;
1022    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
1023    unsigned NumValues = ValueVTs.size();
1024    if (NumValues) {
1025      SDValue RetOp = getValue(I.getOperand(0));
1026      for (unsigned j = 0, f = NumValues; j != f; ++j) {
1027        EVT VT = ValueVTs[j];
1028
1029        ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1030
1031        const Function *F = I.getParent()->getParent();
1032        if (F->paramHasAttr(0, Attribute::SExt))
1033          ExtendKind = ISD::SIGN_EXTEND;
1034        else if (F->paramHasAttr(0, Attribute::ZExt))
1035          ExtendKind = ISD::ZERO_EXTEND;
1036
1037        // FIXME: C calling convention requires the return type to be promoted
1038        // to at least 32-bit. But this is not necessary for non-C calling
1039        // conventions. The frontend should mark functions whose return values
1040        // require promoting with signext or zeroext attributes.
1041        if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
1042          EVT MinVT = TLI.getRegisterType(*DAG.getContext(), MVT::i32);
1043          if (VT.bitsLT(MinVT))
1044            VT = MinVT;
1045        }
1046
1047        unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
1048        EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
1049        SmallVector<SDValue, 4> Parts(NumParts);
1050        getCopyToParts(DAG, getCurDebugLoc(),
1051                       SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1052                       &Parts[0], NumParts, PartVT, ExtendKind);
1053
1054        // 'inreg' on function refers to return value
1055        ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1056        if (F->paramHasAttr(0, Attribute::InReg))
1057          Flags.setInReg();
1058
1059        // Propagate extension type if any
1060        if (F->paramHasAttr(0, Attribute::SExt))
1061          Flags.setSExt();
1062        else if (F->paramHasAttr(0, Attribute::ZExt))
1063          Flags.setZExt();
1064
1065        for (unsigned i = 0; i < NumParts; ++i)
1066          Outs.push_back(ISD::OutputArg(Flags, Parts[i], /*isfixed=*/true));
1067      }
1068    }
1069  }
1070
1071  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1072  CallingConv::ID CallConv =
1073    DAG.getMachineFunction().getFunction()->getCallingConv();
1074  Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
1075                          Outs, getCurDebugLoc(), DAG);
1076
1077  // Verify that the target's LowerReturn behaved as expected.
1078  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1079         "LowerReturn didn't return a valid chain!");
1080
1081  // Update the DAG with the new chain value resulting from return lowering.
1082  DAG.setRoot(Chain);
1083}
1084
1085/// CopyToExportRegsIfNeeded - If the given value has virtual registers
1086/// created for it, emit nodes to copy the value into the virtual
1087/// registers.
1088void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1089  DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1090  if (VMI != FuncInfo.ValueMap.end()) {
1091    assert(!V->use_empty() && "Unused value assigned virtual registers!");
1092    CopyValueToVirtualRegister(V, VMI->second);
1093  }
1094}
1095
1096/// ExportFromCurrentBlock - If this condition isn't known to be exported from
1097/// the current basic block, add it to ValueMap now so that we'll get a
1098/// CopyTo/FromReg.
1099void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1100  // No need to export constants.
1101  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1102
1103  // Already exported?
1104  if (FuncInfo.isExportedInst(V)) return;
1105
1106  unsigned Reg = FuncInfo.InitializeRegForValue(V);
1107  CopyValueToVirtualRegister(V, Reg);
1108}
1109
1110bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1111                                                     const BasicBlock *FromBB) {
1112  // The operands of the setcc have to be in this block.  We don't know
1113  // how to export them from some other block.
1114  if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1115    // Can export from current BB.
1116    if (VI->getParent() == FromBB)
1117      return true;
1118
1119    // Is already exported, noop.
1120    return FuncInfo.isExportedInst(V);
1121  }
1122
1123  // If this is an argument, we can export it if the BB is the entry block or
1124  // if it is already exported.
1125  if (isa<Argument>(V)) {
1126    if (FromBB == &FromBB->getParent()->getEntryBlock())
1127      return true;
1128
1129    // Otherwise, can only export this if it is already exported.
1130    return FuncInfo.isExportedInst(V);
1131  }
1132
1133  // Otherwise, constants can always be exported.
1134  return true;
1135}
1136
1137static bool InBlock(const Value *V, const BasicBlock *BB) {
1138  if (const Instruction *I = dyn_cast<Instruction>(V))
1139    return I->getParent() == BB;
1140  return true;
1141}
1142
1143/// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1144/// This function emits a branch and is used at the leaves of an OR or an
1145/// AND operator tree.
1146///
1147void
1148SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1149                                                  MachineBasicBlock *TBB,
1150                                                  MachineBasicBlock *FBB,
1151                                                  MachineBasicBlock *CurBB,
1152                                                  MachineBasicBlock *SwitchBB) {
1153  const BasicBlock *BB = CurBB->getBasicBlock();
1154
1155  // If the leaf of the tree is a comparison, merge the condition into
1156  // the caseblock.
1157  if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1158    // The operands of the cmp have to be in this block.  We don't know
1159    // how to export them from some other block.  If this is the first block
1160    // of the sequence, no exporting is needed.
1161    if (CurBB == SwitchBB ||
1162        (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1163         isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1164      ISD::CondCode Condition;
1165      if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1166        Condition = getICmpCondCode(IC->getPredicate());
1167      } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1168        Condition = getFCmpCondCode(FC->getPredicate());
1169      } else {
1170        Condition = ISD::SETEQ; // silence warning.
1171        llvm_unreachable("Unknown compare instruction");
1172      }
1173
1174      CaseBlock CB(Condition, BOp->getOperand(0),
1175                   BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1176      SwitchCases.push_back(CB);
1177      return;
1178    }
1179  }
1180
1181  // Create a CaseBlock record representing this branch.
1182  CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1183               NULL, TBB, FBB, CurBB);
1184  SwitchCases.push_back(CB);
1185}
1186
1187/// FindMergedConditions - If Cond is an expression like
1188void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1189                                               MachineBasicBlock *TBB,
1190                                               MachineBasicBlock *FBB,
1191                                               MachineBasicBlock *CurBB,
1192                                               MachineBasicBlock *SwitchBB,
1193                                               unsigned Opc) {
1194  // If this node is not part of the or/and tree, emit it as a branch.
1195  const Instruction *BOp = dyn_cast<Instruction>(Cond);
1196  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1197      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1198      BOp->getParent() != CurBB->getBasicBlock() ||
1199      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1200      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1201    EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB);
1202    return;
1203  }
1204
1205  //  Create TmpBB after CurBB.
1206  MachineFunction::iterator BBI = CurBB;
1207  MachineFunction &MF = DAG.getMachineFunction();
1208  MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1209  CurBB->getParent()->insert(++BBI, TmpBB);
1210
1211  if (Opc == Instruction::Or) {
1212    // Codegen X | Y as:
1213    //   jmp_if_X TBB
1214    //   jmp TmpBB
1215    // TmpBB:
1216    //   jmp_if_Y TBB
1217    //   jmp FBB
1218    //
1219
1220    // Emit the LHS condition.
1221    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc);
1222
1223    // Emit the RHS condition into TmpBB.
1224    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1225  } else {
1226    assert(Opc == Instruction::And && "Unknown merge op!");
1227    // Codegen X & Y as:
1228    //   jmp_if_X TmpBB
1229    //   jmp FBB
1230    // TmpBB:
1231    //   jmp_if_Y TBB
1232    //   jmp FBB
1233    //
1234    //  This requires creation of TmpBB after CurBB.
1235
1236    // Emit the LHS condition.
1237    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc);
1238
1239    // Emit the RHS condition into TmpBB.
1240    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1241  }
1242}
1243
1244/// If the set of cases should be emitted as a series of branches, return true.
1245/// If we should emit this as a bunch of and/or'd together conditions, return
1246/// false.
1247bool
1248SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
1249  if (Cases.size() != 2) return true;
1250
1251  // If this is two comparisons of the same values or'd or and'd together, they
1252  // will get folded into a single comparison, so don't emit two blocks.
1253  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1254       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1255      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1256       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1257    return false;
1258  }
1259
1260  // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1261  // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1262  if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1263      Cases[0].CC == Cases[1].CC &&
1264      isa<Constant>(Cases[0].CmpRHS) &&
1265      cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1266    if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1267      return false;
1268    if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1269      return false;
1270  }
1271
1272  return true;
1273}
1274
1275void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1276  MachineBasicBlock *BrMBB = FuncInfo.MBBMap[I.getParent()];
1277
1278  // Update machine-CFG edges.
1279  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1280
1281  // Figure out which block is immediately after the current one.
1282  MachineBasicBlock *NextBlock = 0;
1283  MachineFunction::iterator BBI = BrMBB;
1284  if (++BBI != FuncInfo.MF->end())
1285    NextBlock = BBI;
1286
1287  if (I.isUnconditional()) {
1288    // Update machine-CFG edges.
1289    BrMBB->addSuccessor(Succ0MBB);
1290
1291    // If this is not a fall-through branch, emit the branch.
1292    if (Succ0MBB != NextBlock)
1293      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1294                              MVT::Other, getControlRoot(),
1295                              DAG.getBasicBlock(Succ0MBB)));
1296
1297    return;
1298  }
1299
1300  // If this condition is one of the special cases we handle, do special stuff
1301  // now.
1302  const Value *CondVal = I.getCondition();
1303  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1304
1305  // If this is a series of conditions that are or'd or and'd together, emit
1306  // this as a sequence of branches instead of setcc's with and/or operations.
1307  // For example, instead of something like:
1308  //     cmp A, B
1309  //     C = seteq
1310  //     cmp D, E
1311  //     F = setle
1312  //     or C, F
1313  //     jnz foo
1314  // Emit:
1315  //     cmp A, B
1316  //     je foo
1317  //     cmp D, E
1318  //     jle foo
1319  //
1320  if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1321    if (BOp->hasOneUse() &&
1322        (BOp->getOpcode() == Instruction::And ||
1323         BOp->getOpcode() == Instruction::Or)) {
1324      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1325                           BOp->getOpcode());
1326      // If the compares in later blocks need to use values not currently
1327      // exported from this block, export them now.  This block should always
1328      // be the first entry.
1329      assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1330
1331      // Allow some cases to be rejected.
1332      if (ShouldEmitAsBranches(SwitchCases)) {
1333        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1334          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1335          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1336        }
1337
1338        // Emit the branch for this block.
1339        visitSwitchCase(SwitchCases[0], BrMBB);
1340        SwitchCases.erase(SwitchCases.begin());
1341        return;
1342      }
1343
1344      // Okay, we decided not to do this, remove any inserted MBB's and clear
1345      // SwitchCases.
1346      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1347        FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1348
1349      SwitchCases.clear();
1350    }
1351  }
1352
1353  // Create a CaseBlock record representing this branch.
1354  CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1355               NULL, Succ0MBB, Succ1MBB, BrMBB);
1356
1357  // Use visitSwitchCase to actually insert the fast branch sequence for this
1358  // cond branch.
1359  visitSwitchCase(CB, BrMBB);
1360}
1361
1362/// visitSwitchCase - Emits the necessary code to represent a single node in
1363/// the binary search tree resulting from lowering a switch instruction.
1364void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1365                                          MachineBasicBlock *SwitchBB) {
1366  SDValue Cond;
1367  SDValue CondLHS = getValue(CB.CmpLHS);
1368  DebugLoc dl = getCurDebugLoc();
1369
1370  // Build the setcc now.
1371  if (CB.CmpMHS == NULL) {
1372    // Fold "(X == true)" to X and "(X == false)" to !X to
1373    // handle common cases produced by branch lowering.
1374    if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1375        CB.CC == ISD::SETEQ)
1376      Cond = CondLHS;
1377    else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1378             CB.CC == ISD::SETEQ) {
1379      SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1380      Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1381    } else
1382      Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1383  } else {
1384    assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1385
1386    const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1387    const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
1388
1389    SDValue CmpOp = getValue(CB.CmpMHS);
1390    EVT VT = CmpOp.getValueType();
1391
1392    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1393      Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1394                          ISD::SETLE);
1395    } else {
1396      SDValue SUB = DAG.getNode(ISD::SUB, dl,
1397                                VT, CmpOp, DAG.getConstant(Low, VT));
1398      Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1399                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1400    }
1401  }
1402
1403  // Update successor info
1404  SwitchBB->addSuccessor(CB.TrueBB);
1405  SwitchBB->addSuccessor(CB.FalseBB);
1406
1407  // Set NextBlock to be the MBB immediately after the current one, if any.
1408  // This is used to avoid emitting unnecessary branches to the next block.
1409  MachineBasicBlock *NextBlock = 0;
1410  MachineFunction::iterator BBI = SwitchBB;
1411  if (++BBI != FuncInfo.MF->end())
1412    NextBlock = BBI;
1413
1414  // If the lhs block is the next block, invert the condition so that we can
1415  // fall through to the lhs instead of the rhs block.
1416  if (CB.TrueBB == NextBlock) {
1417    std::swap(CB.TrueBB, CB.FalseBB);
1418    SDValue True = DAG.getConstant(1, Cond.getValueType());
1419    Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1420  }
1421
1422  SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1423                               MVT::Other, getControlRoot(), Cond,
1424                               DAG.getBasicBlock(CB.TrueBB));
1425
1426  // If the branch was constant folded, fix up the CFG.
1427  if (BrCond.getOpcode() == ISD::BR) {
1428    SwitchBB->removeSuccessor(CB.FalseBB);
1429  } else {
1430    // Otherwise, go ahead and insert the false branch.
1431    if (BrCond == getControlRoot())
1432      SwitchBB->removeSuccessor(CB.TrueBB);
1433
1434    if (CB.FalseBB != NextBlock)
1435      BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1436                           DAG.getBasicBlock(CB.FalseBB));
1437  }
1438
1439  DAG.setRoot(BrCond);
1440}
1441
1442/// visitJumpTable - Emit JumpTable node in the current MBB
1443void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1444  // Emit the code for the jump table
1445  assert(JT.Reg != -1U && "Should lower JT Header first!");
1446  EVT PTy = TLI.getPointerTy();
1447  SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1448                                     JT.Reg, PTy);
1449  SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1450  SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(),
1451                                    MVT::Other, Index.getValue(1),
1452                                    Table, Index);
1453  DAG.setRoot(BrJumpTable);
1454}
1455
1456/// visitJumpTableHeader - This function emits necessary code to produce index
1457/// in the JumpTable from switch case.
1458void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1459                                               JumpTableHeader &JTH,
1460                                               MachineBasicBlock *SwitchBB) {
1461  // Subtract the lowest switch case value from the value being switched on and
1462  // conditional branch to default mbb if the result is greater than the
1463  // difference between smallest and largest cases.
1464  SDValue SwitchOp = getValue(JTH.SValue);
1465  EVT VT = SwitchOp.getValueType();
1466  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1467                            DAG.getConstant(JTH.First, VT));
1468
1469  // The SDNode we just created, which holds the value being switched on minus
1470  // the smallest case value, needs to be copied to a virtual register so it
1471  // can be used as an index into the jump table in a subsequent basic block.
1472  // This value may be smaller or larger than the target's pointer type, and
1473  // therefore require extension or truncating.
1474  SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy());
1475
1476  unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy());
1477  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1478                                    JumpTableReg, SwitchOp);
1479  JT.Reg = JumpTableReg;
1480
1481  // Emit the range check for the jump table, and branch to the default block
1482  // for the switch statement if the value being switched on exceeds the largest
1483  // case in the switch.
1484  SDValue CMP = DAG.getSetCC(getCurDebugLoc(),
1485                             TLI.getSetCCResultType(Sub.getValueType()), Sub,
1486                             DAG.getConstant(JTH.Last-JTH.First,VT),
1487                             ISD::SETUGT);
1488
1489  // Set NextBlock to be the MBB immediately after the current one, if any.
1490  // This is used to avoid emitting unnecessary branches to the next block.
1491  MachineBasicBlock *NextBlock = 0;
1492  MachineFunction::iterator BBI = SwitchBB;
1493
1494  if (++BBI != FuncInfo.MF->end())
1495    NextBlock = BBI;
1496
1497  SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1498                               MVT::Other, CopyTo, CMP,
1499                               DAG.getBasicBlock(JT.Default));
1500
1501  if (JT.MBB != NextBlock)
1502    BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond,
1503                         DAG.getBasicBlock(JT.MBB));
1504
1505  DAG.setRoot(BrCond);
1506}
1507
1508/// visitBitTestHeader - This function emits necessary code to produce value
1509/// suitable for "bit tests"
1510void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1511                                             MachineBasicBlock *SwitchBB) {
1512  // Subtract the minimum value
1513  SDValue SwitchOp = getValue(B.SValue);
1514  EVT VT = SwitchOp.getValueType();
1515  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1516                            DAG.getConstant(B.First, VT));
1517
1518  // Check range
1519  SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(),
1520                                  TLI.getSetCCResultType(Sub.getValueType()),
1521                                  Sub, DAG.getConstant(B.Range, VT),
1522                                  ISD::SETUGT);
1523
1524  SDValue ShiftOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(),
1525                                       TLI.getPointerTy());
1526
1527  B.Reg = FuncInfo.MakeReg(TLI.getPointerTy());
1528  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1529                                    B.Reg, ShiftOp);
1530
1531  // Set NextBlock to be the MBB immediately after the current one, if any.
1532  // This is used to avoid emitting unnecessary branches to the next block.
1533  MachineBasicBlock *NextBlock = 0;
1534  MachineFunction::iterator BBI = SwitchBB;
1535  if (++BBI != FuncInfo.MF->end())
1536    NextBlock = BBI;
1537
1538  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1539
1540  SwitchBB->addSuccessor(B.Default);
1541  SwitchBB->addSuccessor(MBB);
1542
1543  SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1544                                MVT::Other, CopyTo, RangeCmp,
1545                                DAG.getBasicBlock(B.Default));
1546
1547  if (MBB != NextBlock)
1548    BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo,
1549                          DAG.getBasicBlock(MBB));
1550
1551  DAG.setRoot(BrRange);
1552}
1553
1554/// visitBitTestCase - this function produces one "bit test"
1555void SelectionDAGBuilder::visitBitTestCase(MachineBasicBlock* NextMBB,
1556                                           unsigned Reg,
1557                                           BitTestCase &B,
1558                                           MachineBasicBlock *SwitchBB) {
1559  // Make desired shift
1560  SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), Reg,
1561                                       TLI.getPointerTy());
1562  SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(),
1563                                  TLI.getPointerTy(),
1564                                  DAG.getConstant(1, TLI.getPointerTy()),
1565                                  ShiftOp);
1566
1567  // Emit bit tests and jumps
1568  SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(),
1569                              TLI.getPointerTy(), SwitchVal,
1570                              DAG.getConstant(B.Mask, TLI.getPointerTy()));
1571  SDValue AndCmp = DAG.getSetCC(getCurDebugLoc(),
1572                                TLI.getSetCCResultType(AndOp.getValueType()),
1573                                AndOp, DAG.getConstant(0, TLI.getPointerTy()),
1574                                ISD::SETNE);
1575
1576  SwitchBB->addSuccessor(B.TargetBB);
1577  SwitchBB->addSuccessor(NextMBB);
1578
1579  SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1580                              MVT::Other, getControlRoot(),
1581                              AndCmp, DAG.getBasicBlock(B.TargetBB));
1582
1583  // Set NextBlock to be the MBB immediately after the current one, if any.
1584  // This is used to avoid emitting unnecessary branches to the next block.
1585  MachineBasicBlock *NextBlock = 0;
1586  MachineFunction::iterator BBI = SwitchBB;
1587  if (++BBI != FuncInfo.MF->end())
1588    NextBlock = BBI;
1589
1590  if (NextMBB != NextBlock)
1591    BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd,
1592                        DAG.getBasicBlock(NextMBB));
1593
1594  DAG.setRoot(BrAnd);
1595}
1596
1597void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1598  MachineBasicBlock *InvokeMBB = FuncInfo.MBBMap[I.getParent()];
1599
1600  // Retrieve successors.
1601  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1602  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1603
1604  const Value *Callee(I.getCalledValue());
1605  if (isa<InlineAsm>(Callee))
1606    visitInlineAsm(&I);
1607  else
1608    LowerCallTo(&I, getValue(Callee), false, LandingPad);
1609
1610  // If the value of the invoke is used outside of its defining block, make it
1611  // available as a virtual register.
1612  CopyToExportRegsIfNeeded(&I);
1613
1614  // Update successor info
1615  InvokeMBB->addSuccessor(Return);
1616  InvokeMBB->addSuccessor(LandingPad);
1617
1618  // Drop into normal successor.
1619  DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1620                          MVT::Other, getControlRoot(),
1621                          DAG.getBasicBlock(Return)));
1622}
1623
1624void SelectionDAGBuilder::visitUnwind(const UnwindInst &I) {
1625}
1626
1627/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1628/// small case ranges).
1629bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
1630                                                 CaseRecVector& WorkList,
1631                                                 const Value* SV,
1632                                                 MachineBasicBlock *Default,
1633                                                 MachineBasicBlock *SwitchBB) {
1634  Case& BackCase  = *(CR.Range.second-1);
1635
1636  // Size is the number of Cases represented by this range.
1637  size_t Size = CR.Range.second - CR.Range.first;
1638  if (Size > 3)
1639    return false;
1640
1641  // Get the MachineFunction which holds the current MBB.  This is used when
1642  // inserting any additional MBBs necessary to represent the switch.
1643  MachineFunction *CurMF = FuncInfo.MF;
1644
1645  // Figure out which block is immediately after the current one.
1646  MachineBasicBlock *NextBlock = 0;
1647  MachineFunction::iterator BBI = CR.CaseBB;
1648
1649  if (++BBI != FuncInfo.MF->end())
1650    NextBlock = BBI;
1651
1652  // TODO: If any two of the cases has the same destination, and if one value
1653  // is the same as the other, but has one bit unset that the other has set,
1654  // use bit manipulation to do two compares at once.  For example:
1655  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1656
1657  // Rearrange the case blocks so that the last one falls through if possible.
1658  if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1659    // The last case block won't fall through into 'NextBlock' if we emit the
1660    // branches in this order.  See if rearranging a case value would help.
1661    for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1662      if (I->BB == NextBlock) {
1663        std::swap(*I, BackCase);
1664        break;
1665      }
1666    }
1667  }
1668
1669  // Create a CaseBlock record representing a conditional branch to
1670  // the Case's target mbb if the value being switched on SV is equal
1671  // to C.
1672  MachineBasicBlock *CurBlock = CR.CaseBB;
1673  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1674    MachineBasicBlock *FallThrough;
1675    if (I != E-1) {
1676      FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
1677      CurMF->insert(BBI, FallThrough);
1678
1679      // Put SV in a virtual register to make it available from the new blocks.
1680      ExportFromCurrentBlock(SV);
1681    } else {
1682      // If the last case doesn't match, go to the default block.
1683      FallThrough = Default;
1684    }
1685
1686    const Value *RHS, *LHS, *MHS;
1687    ISD::CondCode CC;
1688    if (I->High == I->Low) {
1689      // This is just small small case range :) containing exactly 1 case
1690      CC = ISD::SETEQ;
1691      LHS = SV; RHS = I->High; MHS = NULL;
1692    } else {
1693      CC = ISD::SETLE;
1694      LHS = I->Low; MHS = SV; RHS = I->High;
1695    }
1696    CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock);
1697
1698    // If emitting the first comparison, just call visitSwitchCase to emit the
1699    // code into the current block.  Otherwise, push the CaseBlock onto the
1700    // vector to be later processed by SDISel, and insert the node's MBB
1701    // before the next MBB.
1702    if (CurBlock == SwitchBB)
1703      visitSwitchCase(CB, SwitchBB);
1704    else
1705      SwitchCases.push_back(CB);
1706
1707    CurBlock = FallThrough;
1708  }
1709
1710  return true;
1711}
1712
1713static inline bool areJTsAllowed(const TargetLowering &TLI) {
1714  return !DisableJumpTables &&
1715          (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
1716           TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
1717}
1718
1719static APInt ComputeRange(const APInt &First, const APInt &Last) {
1720  APInt LastExt(Last), FirstExt(First);
1721  uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
1722  LastExt.sext(BitWidth); FirstExt.sext(BitWidth);
1723  return (LastExt - FirstExt + 1ULL);
1724}
1725
1726/// handleJTSwitchCase - Emit jumptable for current switch case range
1727bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec& CR,
1728                                             CaseRecVector& WorkList,
1729                                             const Value* SV,
1730                                             MachineBasicBlock* Default,
1731                                             MachineBasicBlock *SwitchBB) {
1732  Case& FrontCase = *CR.Range.first;
1733  Case& BackCase  = *(CR.Range.second-1);
1734
1735  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
1736  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
1737
1738  APInt TSize(First.getBitWidth(), 0);
1739  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1740       I!=E; ++I)
1741    TSize += I->size();
1742
1743  if (!areJTsAllowed(TLI) || TSize.ult(4))
1744    return false;
1745
1746  APInt Range = ComputeRange(First, Last);
1747  double Density = TSize.roundToDouble() / Range.roundToDouble();
1748  if (Density < 0.4)
1749    return false;
1750
1751  DEBUG(dbgs() << "Lowering jump table\n"
1752               << "First entry: " << First << ". Last entry: " << Last << '\n'
1753               << "Range: " << Range
1754               << "Size: " << TSize << ". Density: " << Density << "\n\n");
1755
1756  // Get the MachineFunction which holds the current MBB.  This is used when
1757  // inserting any additional MBBs necessary to represent the switch.
1758  MachineFunction *CurMF = FuncInfo.MF;
1759
1760  // Figure out which block is immediately after the current one.
1761  MachineFunction::iterator BBI = CR.CaseBB;
1762  ++BBI;
1763
1764  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1765
1766  // Create a new basic block to hold the code for loading the address
1767  // of the jump table, and jumping to it.  Update successor information;
1768  // we will either branch to the default case for the switch, or the jump
1769  // table.
1770  MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1771  CurMF->insert(BBI, JumpTableBB);
1772  CR.CaseBB->addSuccessor(Default);
1773  CR.CaseBB->addSuccessor(JumpTableBB);
1774
1775  // Build a vector of destination BBs, corresponding to each target
1776  // of the jump table. If the value of the jump table slot corresponds to
1777  // a case statement, push the case's BB onto the vector, otherwise, push
1778  // the default BB.
1779  std::vector<MachineBasicBlock*> DestBBs;
1780  APInt TEI = First;
1781  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
1782    const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
1783    const APInt &High = cast<ConstantInt>(I->High)->getValue();
1784
1785    if (Low.sle(TEI) && TEI.sle(High)) {
1786      DestBBs.push_back(I->BB);
1787      if (TEI==High)
1788        ++I;
1789    } else {
1790      DestBBs.push_back(Default);
1791    }
1792  }
1793
1794  // Update successor info. Add one edge to each unique successor.
1795  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
1796  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
1797         E = DestBBs.end(); I != E; ++I) {
1798    if (!SuccsHandled[(*I)->getNumber()]) {
1799      SuccsHandled[(*I)->getNumber()] = true;
1800      JumpTableBB->addSuccessor(*I);
1801    }
1802  }
1803
1804  // Create a jump table index for this jump table.
1805  unsigned JTEncoding = TLI.getJumpTableEncoding();
1806  unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
1807                       ->createJumpTableIndex(DestBBs);
1808
1809  // Set the jump table information so that we can codegen it as a second
1810  // MachineBasicBlock
1811  JumpTable JT(-1U, JTI, JumpTableBB, Default);
1812  JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
1813  if (CR.CaseBB == SwitchBB)
1814    visitJumpTableHeader(JT, JTH, SwitchBB);
1815
1816  JTCases.push_back(JumpTableBlock(JTH, JT));
1817
1818  return true;
1819}
1820
1821/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
1822/// 2 subtrees.
1823bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
1824                                                  CaseRecVector& WorkList,
1825                                                  const Value* SV,
1826                                                  MachineBasicBlock *Default,
1827                                                  MachineBasicBlock *SwitchBB) {
1828  // Get the MachineFunction which holds the current MBB.  This is used when
1829  // inserting any additional MBBs necessary to represent the switch.
1830  MachineFunction *CurMF = FuncInfo.MF;
1831
1832  // Figure out which block is immediately after the current one.
1833  MachineFunction::iterator BBI = CR.CaseBB;
1834  ++BBI;
1835
1836  Case& FrontCase = *CR.Range.first;
1837  Case& BackCase  = *(CR.Range.second-1);
1838  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1839
1840  // Size is the number of Cases represented by this range.
1841  unsigned Size = CR.Range.second - CR.Range.first;
1842
1843  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
1844  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
1845  double FMetric = 0;
1846  CaseItr Pivot = CR.Range.first + Size/2;
1847
1848  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
1849  // (heuristically) allow us to emit JumpTable's later.
1850  APInt TSize(First.getBitWidth(), 0);
1851  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1852       I!=E; ++I)
1853    TSize += I->size();
1854
1855  APInt LSize = FrontCase.size();
1856  APInt RSize = TSize-LSize;
1857  DEBUG(dbgs() << "Selecting best pivot: \n"
1858               << "First: " << First << ", Last: " << Last <<'\n'
1859               << "LSize: " << LSize << ", RSize: " << RSize << '\n');
1860  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
1861       J!=E; ++I, ++J) {
1862    const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
1863    const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
1864    APInt Range = ComputeRange(LEnd, RBegin);
1865    assert((Range - 2ULL).isNonNegative() &&
1866           "Invalid case distance");
1867    double LDensity = (double)LSize.roundToDouble() /
1868                           (LEnd - First + 1ULL).roundToDouble();
1869    double RDensity = (double)RSize.roundToDouble() /
1870                           (Last - RBegin + 1ULL).roundToDouble();
1871    double Metric = Range.logBase2()*(LDensity+RDensity);
1872    // Should always split in some non-trivial place
1873    DEBUG(dbgs() <<"=>Step\n"
1874                 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
1875                 << "LDensity: " << LDensity
1876                 << ", RDensity: " << RDensity << '\n'
1877                 << "Metric: " << Metric << '\n');
1878    if (FMetric < Metric) {
1879      Pivot = J;
1880      FMetric = Metric;
1881      DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
1882    }
1883
1884    LSize += J->size();
1885    RSize -= J->size();
1886  }
1887  if (areJTsAllowed(TLI)) {
1888    // If our case is dense we *really* should handle it earlier!
1889    assert((FMetric > 0) && "Should handle dense range earlier!");
1890  } else {
1891    Pivot = CR.Range.first + Size/2;
1892  }
1893
1894  CaseRange LHSR(CR.Range.first, Pivot);
1895  CaseRange RHSR(Pivot, CR.Range.second);
1896  Constant *C = Pivot->Low;
1897  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
1898
1899  // We know that we branch to the LHS if the Value being switched on is
1900  // less than the Pivot value, C.  We use this to optimize our binary
1901  // tree a bit, by recognizing that if SV is greater than or equal to the
1902  // LHS's Case Value, and that Case Value is exactly one less than the
1903  // Pivot's Value, then we can branch directly to the LHS's Target,
1904  // rather than creating a leaf node for it.
1905  if ((LHSR.second - LHSR.first) == 1 &&
1906      LHSR.first->High == CR.GE &&
1907      cast<ConstantInt>(C)->getValue() ==
1908      (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
1909    TrueBB = LHSR.first->BB;
1910  } else {
1911    TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1912    CurMF->insert(BBI, TrueBB);
1913    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
1914
1915    // Put SV in a virtual register to make it available from the new blocks.
1916    ExportFromCurrentBlock(SV);
1917  }
1918
1919  // Similar to the optimization above, if the Value being switched on is
1920  // known to be less than the Constant CR.LT, and the current Case Value
1921  // is CR.LT - 1, then we can branch directly to the target block for
1922  // the current Case Value, rather than emitting a RHS leaf node for it.
1923  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
1924      cast<ConstantInt>(RHSR.first->Low)->getValue() ==
1925      (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
1926    FalseBB = RHSR.first->BB;
1927  } else {
1928    FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1929    CurMF->insert(BBI, FalseBB);
1930    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
1931
1932    // Put SV in a virtual register to make it available from the new blocks.
1933    ExportFromCurrentBlock(SV);
1934  }
1935
1936  // Create a CaseBlock record representing a conditional branch to
1937  // the LHS node if the value being switched on SV is less than C.
1938  // Otherwise, branch to LHS.
1939  CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
1940
1941  if (CR.CaseBB == SwitchBB)
1942    visitSwitchCase(CB, SwitchBB);
1943  else
1944    SwitchCases.push_back(CB);
1945
1946  return true;
1947}
1948
1949/// handleBitTestsSwitchCase - if current case range has few destination and
1950/// range span less, than machine word bitwidth, encode case range into series
1951/// of masks and emit bit tests with these masks.
1952bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
1953                                                   CaseRecVector& WorkList,
1954                                                   const Value* SV,
1955                                                   MachineBasicBlock* Default,
1956                                                   MachineBasicBlock *SwitchBB){
1957  EVT PTy = TLI.getPointerTy();
1958  unsigned IntPtrBits = PTy.getSizeInBits();
1959
1960  Case& FrontCase = *CR.Range.first;
1961  Case& BackCase  = *(CR.Range.second-1);
1962
1963  // Get the MachineFunction which holds the current MBB.  This is used when
1964  // inserting any additional MBBs necessary to represent the switch.
1965  MachineFunction *CurMF = FuncInfo.MF;
1966
1967  // If target does not have legal shift left, do not emit bit tests at all.
1968  if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
1969    return false;
1970
1971  size_t numCmps = 0;
1972  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1973       I!=E; ++I) {
1974    // Single case counts one, case range - two.
1975    numCmps += (I->Low == I->High ? 1 : 2);
1976  }
1977
1978  // Count unique destinations
1979  SmallSet<MachineBasicBlock*, 4> Dests;
1980  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
1981    Dests.insert(I->BB);
1982    if (Dests.size() > 3)
1983      // Don't bother the code below, if there are too much unique destinations
1984      return false;
1985  }
1986  DEBUG(dbgs() << "Total number of unique destinations: "
1987        << Dests.size() << '\n'
1988        << "Total number of comparisons: " << numCmps << '\n');
1989
1990  // Compute span of values.
1991  const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
1992  const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
1993  APInt cmpRange = maxValue - minValue;
1994
1995  DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
1996               << "Low bound: " << minValue << '\n'
1997               << "High bound: " << maxValue << '\n');
1998
1999  if (cmpRange.uge(IntPtrBits) ||
2000      (!(Dests.size() == 1 && numCmps >= 3) &&
2001       !(Dests.size() == 2 && numCmps >= 5) &&
2002       !(Dests.size() >= 3 && numCmps >= 6)))
2003    return false;
2004
2005  DEBUG(dbgs() << "Emitting bit tests\n");
2006  APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
2007
2008  // Optimize the case where all the case values fit in a
2009  // word without having to subtract minValue. In this case,
2010  // we can optimize away the subtraction.
2011  if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) {
2012    cmpRange = maxValue;
2013  } else {
2014    lowBound = minValue;
2015  }
2016
2017  CaseBitsVector CasesBits;
2018  unsigned i, count = 0;
2019
2020  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2021    MachineBasicBlock* Dest = I->BB;
2022    for (i = 0; i < count; ++i)
2023      if (Dest == CasesBits[i].BB)
2024        break;
2025
2026    if (i == count) {
2027      assert((count < 3) && "Too much destinations to test!");
2028      CasesBits.push_back(CaseBits(0, Dest, 0));
2029      count++;
2030    }
2031
2032    const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
2033    const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
2034
2035    uint64_t lo = (lowValue - lowBound).getZExtValue();
2036    uint64_t hi = (highValue - lowBound).getZExtValue();
2037
2038    for (uint64_t j = lo; j <= hi; j++) {
2039      CasesBits[i].Mask |=  1ULL << j;
2040      CasesBits[i].Bits++;
2041    }
2042
2043  }
2044  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2045
2046  BitTestInfo BTC;
2047
2048  // Figure out which block is immediately after the current one.
2049  MachineFunction::iterator BBI = CR.CaseBB;
2050  ++BBI;
2051
2052  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2053
2054  DEBUG(dbgs() << "Cases:\n");
2055  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2056    DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
2057                 << ", Bits: " << CasesBits[i].Bits
2058                 << ", BB: " << CasesBits[i].BB << '\n');
2059
2060    MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2061    CurMF->insert(BBI, CaseBB);
2062    BTC.push_back(BitTestCase(CasesBits[i].Mask,
2063                              CaseBB,
2064                              CasesBits[i].BB));
2065
2066    // Put SV in a virtual register to make it available from the new blocks.
2067    ExportFromCurrentBlock(SV);
2068  }
2069
2070  BitTestBlock BTB(lowBound, cmpRange, SV,
2071                   -1U, (CR.CaseBB == SwitchBB),
2072                   CR.CaseBB, Default, BTC);
2073
2074  if (CR.CaseBB == SwitchBB)
2075    visitBitTestHeader(BTB, SwitchBB);
2076
2077  BitTestCases.push_back(BTB);
2078
2079  return true;
2080}
2081
2082/// Clusterify - Transform simple list of Cases into list of CaseRange's
2083size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
2084                                       const SwitchInst& SI) {
2085  size_t numCmps = 0;
2086
2087  // Start with "simple" cases
2088  for (size_t i = 1; i < SI.getNumSuccessors(); ++i) {
2089    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
2090    Cases.push_back(Case(SI.getSuccessorValue(i),
2091                         SI.getSuccessorValue(i),
2092                         SMBB));
2093  }
2094  std::sort(Cases.begin(), Cases.end(), CaseCmp());
2095
2096  // Merge case into clusters
2097  if (Cases.size() >= 2)
2098    // Must recompute end() each iteration because it may be
2099    // invalidated by erase if we hold on to it
2100    for (CaseItr I = Cases.begin(), J = ++(Cases.begin()); J != Cases.end(); ) {
2101      const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
2102      const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
2103      MachineBasicBlock* nextBB = J->BB;
2104      MachineBasicBlock* currentBB = I->BB;
2105
2106      // If the two neighboring cases go to the same destination, merge them
2107      // into a single case.
2108      if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
2109        I->High = J->High;
2110        J = Cases.erase(J);
2111      } else {
2112        I = J++;
2113      }
2114    }
2115
2116  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
2117    if (I->Low != I->High)
2118      // A range counts double, since it requires two compares.
2119      ++numCmps;
2120  }
2121
2122  return numCmps;
2123}
2124
2125void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
2126  MachineBasicBlock *SwitchMBB = FuncInfo.MBBMap[SI.getParent()];
2127
2128  // Figure out which block is immediately after the current one.
2129  MachineBasicBlock *NextBlock = 0;
2130  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2131
2132  // If there is only the default destination, branch to it if it is not the
2133  // next basic block.  Otherwise, just fall through.
2134  if (SI.getNumOperands() == 2) {
2135    // Update machine-CFG edges.
2136
2137    // If this is not a fall-through branch, emit the branch.
2138    SwitchMBB->addSuccessor(Default);
2139    if (Default != NextBlock)
2140      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
2141                              MVT::Other, getControlRoot(),
2142                              DAG.getBasicBlock(Default)));
2143
2144    return;
2145  }
2146
2147  // If there are any non-default case statements, create a vector of Cases
2148  // representing each one, and sort the vector so that we can efficiently
2149  // create a binary search tree from them.
2150  CaseVector Cases;
2151  size_t numCmps = Clusterify(Cases, SI);
2152  DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2153               << ". Total compares: " << numCmps << '\n');
2154  numCmps = 0;
2155
2156  // Get the Value to be switched on and default basic blocks, which will be
2157  // inserted into CaseBlock records, representing basic blocks in the binary
2158  // search tree.
2159  const Value *SV = SI.getOperand(0);
2160
2161  // Push the initial CaseRec onto the worklist
2162  CaseRecVector WorkList;
2163  WorkList.push_back(CaseRec(SwitchMBB,0,0,
2164                             CaseRange(Cases.begin(),Cases.end())));
2165
2166  while (!WorkList.empty()) {
2167    // Grab a record representing a case range to process off the worklist
2168    CaseRec CR = WorkList.back();
2169    WorkList.pop_back();
2170
2171    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2172      continue;
2173
2174    // If the range has few cases (two or less) emit a series of specific
2175    // tests.
2176    if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
2177      continue;
2178
2179    // If the switch has more than 5 blocks, and at least 40% dense, and the
2180    // target supports indirect branches, then emit a jump table rather than
2181    // lowering the switch to a binary tree of conditional branches.
2182    if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2183      continue;
2184
2185    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2186    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2187    handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
2188  }
2189}
2190
2191void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2192  MachineBasicBlock *IndirectBrMBB = FuncInfo.MBBMap[I.getParent()];
2193
2194  // Update machine-CFG edges with unique successors.
2195  SmallVector<BasicBlock*, 32> succs;
2196  succs.reserve(I.getNumSuccessors());
2197  for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i)
2198    succs.push_back(I.getSuccessor(i));
2199  array_pod_sort(succs.begin(), succs.end());
2200  succs.erase(std::unique(succs.begin(), succs.end()), succs.end());
2201  for (unsigned i = 0, e = succs.size(); i != e; ++i)
2202    IndirectBrMBB->addSuccessor(FuncInfo.MBBMap[succs[i]]);
2203
2204  DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(),
2205                          MVT::Other, getControlRoot(),
2206                          getValue(I.getAddress())));
2207}
2208
2209void SelectionDAGBuilder::visitFSub(const User &I) {
2210  // -0.0 - X --> fneg
2211  const Type *Ty = I.getType();
2212  if (Ty->isVectorTy()) {
2213    if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) {
2214      const VectorType *DestTy = cast<VectorType>(I.getType());
2215      const Type *ElTy = DestTy->getElementType();
2216      unsigned VL = DestTy->getNumElements();
2217      std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy));
2218      Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size());
2219      if (CV == CNZ) {
2220        SDValue Op2 = getValue(I.getOperand(1));
2221        setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2222                                 Op2.getValueType(), Op2));
2223        return;
2224      }
2225    }
2226  }
2227
2228  if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
2229    if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) {
2230      SDValue Op2 = getValue(I.getOperand(1));
2231      setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2232                               Op2.getValueType(), Op2));
2233      return;
2234    }
2235
2236  visitBinary(I, ISD::FSUB);
2237}
2238
2239void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2240  SDValue Op1 = getValue(I.getOperand(0));
2241  SDValue Op2 = getValue(I.getOperand(1));
2242  setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(),
2243                           Op1.getValueType(), Op1, Op2));
2244}
2245
2246void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2247  SDValue Op1 = getValue(I.getOperand(0));
2248  SDValue Op2 = getValue(I.getOperand(1));
2249  if (!I.getType()->isVectorTy() &&
2250      Op2.getValueType() != TLI.getShiftAmountTy()) {
2251    // If the operand is smaller than the shift count type, promote it.
2252    EVT PTy = TLI.getPointerTy();
2253    EVT STy = TLI.getShiftAmountTy();
2254    if (STy.bitsGT(Op2.getValueType()))
2255      Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(),
2256                        TLI.getShiftAmountTy(), Op2);
2257    // If the operand is larger than the shift count type but the shift
2258    // count type has enough bits to represent any shift value, truncate
2259    // it now. This is a common case and it exposes the truncate to
2260    // optimization early.
2261    else if (STy.getSizeInBits() >=
2262             Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2263      Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2264                        TLI.getShiftAmountTy(), Op2);
2265    // Otherwise we'll need to temporarily settle for some other
2266    // convenient type; type legalization will make adjustments as
2267    // needed.
2268    else if (PTy.bitsLT(Op2.getValueType()))
2269      Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2270                        TLI.getPointerTy(), Op2);
2271    else if (PTy.bitsGT(Op2.getValueType()))
2272      Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(),
2273                        TLI.getPointerTy(), Op2);
2274  }
2275
2276  setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(),
2277                           Op1.getValueType(), Op1, Op2));
2278}
2279
2280void SelectionDAGBuilder::visitICmp(const User &I) {
2281  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2282  if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2283    predicate = IC->getPredicate();
2284  else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2285    predicate = ICmpInst::Predicate(IC->getPredicate());
2286  SDValue Op1 = getValue(I.getOperand(0));
2287  SDValue Op2 = getValue(I.getOperand(1));
2288  ISD::CondCode Opcode = getICmpCondCode(predicate);
2289
2290  EVT DestVT = TLI.getValueType(I.getType());
2291  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode));
2292}
2293
2294void SelectionDAGBuilder::visitFCmp(const User &I) {
2295  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2296  if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2297    predicate = FC->getPredicate();
2298  else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2299    predicate = FCmpInst::Predicate(FC->getPredicate());
2300  SDValue Op1 = getValue(I.getOperand(0));
2301  SDValue Op2 = getValue(I.getOperand(1));
2302  ISD::CondCode Condition = getFCmpCondCode(predicate);
2303  EVT DestVT = TLI.getValueType(I.getType());
2304  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition));
2305}
2306
2307void SelectionDAGBuilder::visitSelect(const User &I) {
2308  SmallVector<EVT, 4> ValueVTs;
2309  ComputeValueVTs(TLI, I.getType(), ValueVTs);
2310  unsigned NumValues = ValueVTs.size();
2311  if (NumValues == 0) return;
2312
2313  SmallVector<SDValue, 4> Values(NumValues);
2314  SDValue Cond     = getValue(I.getOperand(0));
2315  SDValue TrueVal  = getValue(I.getOperand(1));
2316  SDValue FalseVal = getValue(I.getOperand(2));
2317
2318  for (unsigned i = 0; i != NumValues; ++i)
2319    Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(),
2320                          TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2321                            Cond,
2322                            SDValue(TrueVal.getNode(),
2323                                    TrueVal.getResNo() + i),
2324                            SDValue(FalseVal.getNode(),
2325                                    FalseVal.getResNo() + i));
2326
2327  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2328                           DAG.getVTList(&ValueVTs[0], NumValues),
2329                           &Values[0], NumValues));
2330}
2331
2332void SelectionDAGBuilder::visitTrunc(const User &I) {
2333  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2334  SDValue N = getValue(I.getOperand(0));
2335  EVT DestVT = TLI.getValueType(I.getType());
2336  setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N));
2337}
2338
2339void SelectionDAGBuilder::visitZExt(const User &I) {
2340  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2341  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2342  SDValue N = getValue(I.getOperand(0));
2343  EVT DestVT = TLI.getValueType(I.getType());
2344  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N));
2345}
2346
2347void SelectionDAGBuilder::visitSExt(const User &I) {
2348  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2349  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2350  SDValue N = getValue(I.getOperand(0));
2351  EVT DestVT = TLI.getValueType(I.getType());
2352  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N));
2353}
2354
2355void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2356  // FPTrunc is never a no-op cast, no need to check
2357  SDValue N = getValue(I.getOperand(0));
2358  EVT DestVT = TLI.getValueType(I.getType());
2359  setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(),
2360                           DestVT, N, DAG.getIntPtrConstant(0)));
2361}
2362
2363void SelectionDAGBuilder::visitFPExt(const User &I){
2364  // FPTrunc is never a no-op cast, no need to check
2365  SDValue N = getValue(I.getOperand(0));
2366  EVT DestVT = TLI.getValueType(I.getType());
2367  setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N));
2368}
2369
2370void SelectionDAGBuilder::visitFPToUI(const User &I) {
2371  // FPToUI is never a no-op cast, no need to check
2372  SDValue N = getValue(I.getOperand(0));
2373  EVT DestVT = TLI.getValueType(I.getType());
2374  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N));
2375}
2376
2377void SelectionDAGBuilder::visitFPToSI(const User &I) {
2378  // FPToSI is never a no-op cast, no need to check
2379  SDValue N = getValue(I.getOperand(0));
2380  EVT DestVT = TLI.getValueType(I.getType());
2381  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N));
2382}
2383
2384void SelectionDAGBuilder::visitUIToFP(const User &I) {
2385  // UIToFP is never a no-op cast, no need to check
2386  SDValue N = getValue(I.getOperand(0));
2387  EVT DestVT = TLI.getValueType(I.getType());
2388  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N));
2389}
2390
2391void SelectionDAGBuilder::visitSIToFP(const User &I){
2392  // SIToFP is never a no-op cast, no need to check
2393  SDValue N = getValue(I.getOperand(0));
2394  EVT DestVT = TLI.getValueType(I.getType());
2395  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N));
2396}
2397
2398void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2399  // What to do depends on the size of the integer and the size of the pointer.
2400  // We can either truncate, zero extend, or no-op, accordingly.
2401  SDValue N = getValue(I.getOperand(0));
2402  EVT SrcVT = N.getValueType();
2403  EVT DestVT = TLI.getValueType(I.getType());
2404  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2405}
2406
2407void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2408  // What to do depends on the size of the integer and the size of the pointer.
2409  // We can either truncate, zero extend, or no-op, accordingly.
2410  SDValue N = getValue(I.getOperand(0));
2411  EVT SrcVT = N.getValueType();
2412  EVT DestVT = TLI.getValueType(I.getType());
2413  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2414}
2415
2416void SelectionDAGBuilder::visitBitCast(const User &I) {
2417  SDValue N = getValue(I.getOperand(0));
2418  EVT DestVT = TLI.getValueType(I.getType());
2419
2420  // BitCast assures us that source and destination are the same size so this is
2421  // either a BIT_CONVERT or a no-op.
2422  if (DestVT != N.getValueType())
2423    setValue(&I, DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
2424                             DestVT, N)); // convert types.
2425  else
2426    setValue(&I, N);            // noop cast.
2427}
2428
2429void SelectionDAGBuilder::visitInsertElement(const User &I) {
2430  SDValue InVec = getValue(I.getOperand(0));
2431  SDValue InVal = getValue(I.getOperand(1));
2432  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2433                              TLI.getPointerTy(),
2434                              getValue(I.getOperand(2)));
2435  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(),
2436                           TLI.getValueType(I.getType()),
2437                           InVec, InVal, InIdx));
2438}
2439
2440void SelectionDAGBuilder::visitExtractElement(const User &I) {
2441  SDValue InVec = getValue(I.getOperand(0));
2442  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2443                              TLI.getPointerTy(),
2444                              getValue(I.getOperand(1)));
2445  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2446                           TLI.getValueType(I.getType()), InVec, InIdx));
2447}
2448
2449// Utility for visitShuffleVector - Returns true if the mask is mask starting
2450// from SIndx and increasing to the element length (undefs are allowed).
2451static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) {
2452  unsigned MaskNumElts = Mask.size();
2453  for (unsigned i = 0; i != MaskNumElts; ++i)
2454    if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx)))
2455      return false;
2456  return true;
2457}
2458
2459void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2460  SmallVector<int, 8> Mask;
2461  SDValue Src1 = getValue(I.getOperand(0));
2462  SDValue Src2 = getValue(I.getOperand(1));
2463
2464  // Convert the ConstantVector mask operand into an array of ints, with -1
2465  // representing undef values.
2466  SmallVector<Constant*, 8> MaskElts;
2467  cast<Constant>(I.getOperand(2))->getVectorElements(MaskElts);
2468  unsigned MaskNumElts = MaskElts.size();
2469  for (unsigned i = 0; i != MaskNumElts; ++i) {
2470    if (isa<UndefValue>(MaskElts[i]))
2471      Mask.push_back(-1);
2472    else
2473      Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue());
2474  }
2475
2476  EVT VT = TLI.getValueType(I.getType());
2477  EVT SrcVT = Src1.getValueType();
2478  unsigned SrcNumElts = SrcVT.getVectorNumElements();
2479
2480  if (SrcNumElts == MaskNumElts) {
2481    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2482                                      &Mask[0]));
2483    return;
2484  }
2485
2486  // Normalize the shuffle vector since mask and vector length don't match.
2487  if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2488    // Mask is longer than the source vectors and is a multiple of the source
2489    // vectors.  We can use concatenate vector to make the mask and vectors
2490    // lengths match.
2491    if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) {
2492      // The shuffle is concatenating two vectors together.
2493      setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2494                               VT, Src1, Src2));
2495      return;
2496    }
2497
2498    // Pad both vectors with undefs to make them the same length as the mask.
2499    unsigned NumConcat = MaskNumElts / SrcNumElts;
2500    bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2501    bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2502    SDValue UndefVal = DAG.getUNDEF(SrcVT);
2503
2504    SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2505    SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2506    MOps1[0] = Src1;
2507    MOps2[0] = Src2;
2508
2509    Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2510                                                  getCurDebugLoc(), VT,
2511                                                  &MOps1[0], NumConcat);
2512    Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2513                                                  getCurDebugLoc(), VT,
2514                                                  &MOps2[0], NumConcat);
2515
2516    // Readjust mask for new input vector length.
2517    SmallVector<int, 8> MappedOps;
2518    for (unsigned i = 0; i != MaskNumElts; ++i) {
2519      int Idx = Mask[i];
2520      if (Idx < (int)SrcNumElts)
2521        MappedOps.push_back(Idx);
2522      else
2523        MappedOps.push_back(Idx + MaskNumElts - SrcNumElts);
2524    }
2525
2526    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2527                                      &MappedOps[0]));
2528    return;
2529  }
2530
2531  if (SrcNumElts > MaskNumElts) {
2532    // Analyze the access pattern of the vector to see if we can extract
2533    // two subvectors and do the shuffle. The analysis is done by calculating
2534    // the range of elements the mask access on both vectors.
2535    int MinRange[2] = { SrcNumElts+1, SrcNumElts+1};
2536    int MaxRange[2] = {-1, -1};
2537
2538    for (unsigned i = 0; i != MaskNumElts; ++i) {
2539      int Idx = Mask[i];
2540      int Input = 0;
2541      if (Idx < 0)
2542        continue;
2543
2544      if (Idx >= (int)SrcNumElts) {
2545        Input = 1;
2546        Idx -= SrcNumElts;
2547      }
2548      if (Idx > MaxRange[Input])
2549        MaxRange[Input] = Idx;
2550      if (Idx < MinRange[Input])
2551        MinRange[Input] = Idx;
2552    }
2553
2554    // Check if the access is smaller than the vector size and can we find
2555    // a reasonable extract index.
2556    int RangeUse[2] = { 2, 2 };  // 0 = Unused, 1 = Extract, 2 = Can not
2557                                 // Extract.
2558    int StartIdx[2];  // StartIdx to extract from
2559    for (int Input=0; Input < 2; ++Input) {
2560      if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) {
2561        RangeUse[Input] = 0; // Unused
2562        StartIdx[Input] = 0;
2563      } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) {
2564        // Fits within range but we should see if we can find a good
2565        // start index that is a multiple of the mask length.
2566        if (MaxRange[Input] < (int)MaskNumElts) {
2567          RangeUse[Input] = 1; // Extract from beginning of the vector
2568          StartIdx[Input] = 0;
2569        } else {
2570          StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2571          if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2572              StartIdx[Input] + MaskNumElts < SrcNumElts)
2573            RangeUse[Input] = 1; // Extract from a multiple of the mask length.
2574        }
2575      }
2576    }
2577
2578    if (RangeUse[0] == 0 && RangeUse[1] == 0) {
2579      setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
2580      return;
2581    }
2582    else if (RangeUse[0] < 2 && RangeUse[1] < 2) {
2583      // Extract appropriate subvector and generate a vector shuffle
2584      for (int Input=0; Input < 2; ++Input) {
2585        SDValue &Src = Input == 0 ? Src1 : Src2;
2586        if (RangeUse[Input] == 0)
2587          Src = DAG.getUNDEF(VT);
2588        else
2589          Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT,
2590                            Src, DAG.getIntPtrConstant(StartIdx[Input]));
2591      }
2592
2593      // Calculate new mask.
2594      SmallVector<int, 8> MappedOps;
2595      for (unsigned i = 0; i != MaskNumElts; ++i) {
2596        int Idx = Mask[i];
2597        if (Idx < 0)
2598          MappedOps.push_back(Idx);
2599        else if (Idx < (int)SrcNumElts)
2600          MappedOps.push_back(Idx - StartIdx[0]);
2601        else
2602          MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts);
2603      }
2604
2605      setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2606                                        &MappedOps[0]));
2607      return;
2608    }
2609  }
2610
2611  // We can't use either concat vectors or extract subvectors so fall back to
2612  // replacing the shuffle with extract and build vector.
2613  // to insert and build vector.
2614  EVT EltVT = VT.getVectorElementType();
2615  EVT PtrVT = TLI.getPointerTy();
2616  SmallVector<SDValue,8> Ops;
2617  for (unsigned i = 0; i != MaskNumElts; ++i) {
2618    if (Mask[i] < 0) {
2619      Ops.push_back(DAG.getUNDEF(EltVT));
2620    } else {
2621      int Idx = Mask[i];
2622      SDValue Res;
2623
2624      if (Idx < (int)SrcNumElts)
2625        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2626                          EltVT, Src1, DAG.getConstant(Idx, PtrVT));
2627      else
2628        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2629                          EltVT, Src2,
2630                          DAG.getConstant(Idx - SrcNumElts, PtrVT));
2631
2632      Ops.push_back(Res);
2633    }
2634  }
2635
2636  setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
2637                           VT, &Ops[0], Ops.size()));
2638}
2639
2640void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
2641  const Value *Op0 = I.getOperand(0);
2642  const Value *Op1 = I.getOperand(1);
2643  const Type *AggTy = I.getType();
2644  const Type *ValTy = Op1->getType();
2645  bool IntoUndef = isa<UndefValue>(Op0);
2646  bool FromUndef = isa<UndefValue>(Op1);
2647
2648  unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
2649                                            I.idx_begin(), I.idx_end());
2650
2651  SmallVector<EVT, 4> AggValueVTs;
2652  ComputeValueVTs(TLI, AggTy, AggValueVTs);
2653  SmallVector<EVT, 4> ValValueVTs;
2654  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2655
2656  unsigned NumAggValues = AggValueVTs.size();
2657  unsigned NumValValues = ValValueVTs.size();
2658  SmallVector<SDValue, 4> Values(NumAggValues);
2659
2660  SDValue Agg = getValue(Op0);
2661  SDValue Val = getValue(Op1);
2662  unsigned i = 0;
2663  // Copy the beginning value(s) from the original aggregate.
2664  for (; i != LinearIndex; ++i)
2665    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2666                SDValue(Agg.getNode(), Agg.getResNo() + i);
2667  // Copy values from the inserted value(s).
2668  for (; i != LinearIndex + NumValValues; ++i)
2669    Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2670                SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
2671  // Copy remaining value(s) from the original aggregate.
2672  for (; i != NumAggValues; ++i)
2673    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2674                SDValue(Agg.getNode(), Agg.getResNo() + i);
2675
2676  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2677                           DAG.getVTList(&AggValueVTs[0], NumAggValues),
2678                           &Values[0], NumAggValues));
2679}
2680
2681void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
2682  const Value *Op0 = I.getOperand(0);
2683  const Type *AggTy = Op0->getType();
2684  const Type *ValTy = I.getType();
2685  bool OutOfUndef = isa<UndefValue>(Op0);
2686
2687  unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
2688                                            I.idx_begin(), I.idx_end());
2689
2690  SmallVector<EVT, 4> ValValueVTs;
2691  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2692
2693  unsigned NumValValues = ValValueVTs.size();
2694  SmallVector<SDValue, 4> Values(NumValValues);
2695
2696  SDValue Agg = getValue(Op0);
2697  // Copy out the selected value(s).
2698  for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
2699    Values[i - LinearIndex] =
2700      OutOfUndef ?
2701        DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
2702        SDValue(Agg.getNode(), Agg.getResNo() + i);
2703
2704  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2705                           DAG.getVTList(&ValValueVTs[0], NumValValues),
2706                           &Values[0], NumValValues));
2707}
2708
2709void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
2710  SDValue N = getValue(I.getOperand(0));
2711  const Type *Ty = I.getOperand(0)->getType();
2712
2713  for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
2714       OI != E; ++OI) {
2715    const Value *Idx = *OI;
2716    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2717      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2718      if (Field) {
2719        // N = N + Offset
2720        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
2721        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2722                        DAG.getIntPtrConstant(Offset));
2723      }
2724
2725      Ty = StTy->getElementType(Field);
2726    } else if (const UnionType *UnTy = dyn_cast<UnionType>(Ty)) {
2727      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2728
2729      // Offset canonically 0 for unions, but type changes
2730      Ty = UnTy->getElementType(Field);
2731    } else {
2732      Ty = cast<SequentialType>(Ty)->getElementType();
2733
2734      // If this is a constant subscript, handle it quickly.
2735      if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2736        if (CI->getZExtValue() == 0) continue;
2737        uint64_t Offs =
2738            TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
2739        SDValue OffsVal;
2740        EVT PTy = TLI.getPointerTy();
2741        unsigned PtrBits = PTy.getSizeInBits();
2742        if (PtrBits < 64)
2743          OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2744                                TLI.getPointerTy(),
2745                                DAG.getConstant(Offs, MVT::i64));
2746        else
2747          OffsVal = DAG.getIntPtrConstant(Offs);
2748
2749        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2750                        OffsVal);
2751        continue;
2752      }
2753
2754      // N = N + Idx * ElementSize;
2755      APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
2756                                TD->getTypeAllocSize(Ty));
2757      SDValue IdxN = getValue(Idx);
2758
2759      // If the index is smaller or larger than intptr_t, truncate or extend
2760      // it.
2761      IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType());
2762
2763      // If this is a multiply by a power of two, turn it into a shl
2764      // immediately.  This is a very common case.
2765      if (ElementSize != 1) {
2766        if (ElementSize.isPowerOf2()) {
2767          unsigned Amt = ElementSize.logBase2();
2768          IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(),
2769                             N.getValueType(), IdxN,
2770                             DAG.getConstant(Amt, TLI.getPointerTy()));
2771        } else {
2772          SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy());
2773          IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(),
2774                             N.getValueType(), IdxN, Scale);
2775        }
2776      }
2777
2778      N = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2779                      N.getValueType(), N, IdxN);
2780    }
2781  }
2782
2783  setValue(&I, N);
2784}
2785
2786void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
2787  // If this is a fixed sized alloca in the entry block of the function,
2788  // allocate it statically on the stack.
2789  if (FuncInfo.StaticAllocaMap.count(&I))
2790    return;   // getValue will auto-populate this.
2791
2792  const Type *Ty = I.getAllocatedType();
2793  uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
2794  unsigned Align =
2795    std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
2796             I.getAlignment());
2797
2798  SDValue AllocSize = getValue(I.getArraySize());
2799
2800  EVT IntPtr = TLI.getPointerTy();
2801  if (AllocSize.getValueType() != IntPtr)
2802    AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr);
2803
2804  AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr,
2805                          AllocSize,
2806                          DAG.getConstant(TySize, IntPtr));
2807
2808  // Handle alignment.  If the requested alignment is less than or equal to
2809  // the stack alignment, ignore it.  If the size is greater than or equal to
2810  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
2811  unsigned StackAlign = TM.getFrameInfo()->getStackAlignment();
2812  if (Align <= StackAlign)
2813    Align = 0;
2814
2815  // Round the size of the allocation up to the stack alignment size
2816  // by add SA-1 to the size.
2817  AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2818                          AllocSize.getValueType(), AllocSize,
2819                          DAG.getIntPtrConstant(StackAlign-1));
2820
2821  // Mask out the low bits for alignment purposes.
2822  AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(),
2823                          AllocSize.getValueType(), AllocSize,
2824                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
2825
2826  SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
2827  SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
2828  SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(),
2829                            VTs, Ops, 3);
2830  setValue(&I, DSA);
2831  DAG.setRoot(DSA.getValue(1));
2832
2833  // Inform the Frame Information that we have just allocated a variable-sized
2834  // object.
2835  FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject();
2836}
2837
2838void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
2839  const Value *SV = I.getOperand(0);
2840  SDValue Ptr = getValue(SV);
2841
2842  const Type *Ty = I.getType();
2843
2844  bool isVolatile = I.isVolatile();
2845  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
2846  unsigned Alignment = I.getAlignment();
2847
2848  SmallVector<EVT, 4> ValueVTs;
2849  SmallVector<uint64_t, 4> Offsets;
2850  ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
2851  unsigned NumValues = ValueVTs.size();
2852  if (NumValues == 0)
2853    return;
2854
2855  SDValue Root;
2856  bool ConstantMemory = false;
2857  if (I.isVolatile())
2858    // Serialize volatile loads with other side effects.
2859    Root = getRoot();
2860  else if (AA->pointsToConstantMemory(SV)) {
2861    // Do not serialize (non-volatile) loads of constant memory with anything.
2862    Root = DAG.getEntryNode();
2863    ConstantMemory = true;
2864  } else {
2865    // Do not serialize non-volatile loads against each other.
2866    Root = DAG.getRoot();
2867  }
2868
2869  SmallVector<SDValue, 4> Values(NumValues);
2870  SmallVector<SDValue, 4> Chains(NumValues);
2871  EVT PtrVT = Ptr.getValueType();
2872  for (unsigned i = 0; i != NumValues; ++i) {
2873    SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2874                            PtrVT, Ptr,
2875                            DAG.getConstant(Offsets[i], PtrVT));
2876    SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root,
2877                            A, SV, Offsets[i], isVolatile,
2878                            isNonTemporal, Alignment);
2879
2880    Values[i] = L;
2881    Chains[i] = L.getValue(1);
2882  }
2883
2884  if (!ConstantMemory) {
2885    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
2886                                MVT::Other, &Chains[0], NumValues);
2887    if (isVolatile)
2888      DAG.setRoot(Chain);
2889    else
2890      PendingLoads.push_back(Chain);
2891  }
2892
2893  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2894                           DAG.getVTList(&ValueVTs[0], NumValues),
2895                           &Values[0], NumValues));
2896}
2897
2898void SelectionDAGBuilder::visitStore(const StoreInst &I) {
2899  const Value *SrcV = I.getOperand(0);
2900  const Value *PtrV = I.getOperand(1);
2901
2902  SmallVector<EVT, 4> ValueVTs;
2903  SmallVector<uint64_t, 4> Offsets;
2904  ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
2905  unsigned NumValues = ValueVTs.size();
2906  if (NumValues == 0)
2907    return;
2908
2909  // Get the lowered operands. Note that we do this after
2910  // checking if NumResults is zero, because with zero results
2911  // the operands won't have values in the map.
2912  SDValue Src = getValue(SrcV);
2913  SDValue Ptr = getValue(PtrV);
2914
2915  SDValue Root = getRoot();
2916  SmallVector<SDValue, 4> Chains(NumValues);
2917  EVT PtrVT = Ptr.getValueType();
2918  bool isVolatile = I.isVolatile();
2919  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
2920  unsigned Alignment = I.getAlignment();
2921
2922  for (unsigned i = 0; i != NumValues; ++i) {
2923    SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr,
2924                              DAG.getConstant(Offsets[i], PtrVT));
2925    Chains[i] = DAG.getStore(Root, getCurDebugLoc(),
2926                             SDValue(Src.getNode(), Src.getResNo() + i),
2927                             Add, PtrV, Offsets[i], isVolatile,
2928                             isNonTemporal, Alignment);
2929  }
2930
2931  DAG.setRoot(DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
2932                          MVT::Other, &Chains[0], NumValues));
2933}
2934
2935/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
2936/// node.
2937void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
2938                                               unsigned Intrinsic) {
2939  bool HasChain = !I.doesNotAccessMemory();
2940  bool OnlyLoad = HasChain && I.onlyReadsMemory();
2941
2942  // Build the operand list.
2943  SmallVector<SDValue, 8> Ops;
2944  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
2945    if (OnlyLoad) {
2946      // We don't need to serialize loads against other loads.
2947      Ops.push_back(DAG.getRoot());
2948    } else {
2949      Ops.push_back(getRoot());
2950    }
2951  }
2952
2953  // Info is set by getTgtMemInstrinsic
2954  TargetLowering::IntrinsicInfo Info;
2955  bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
2956
2957  // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
2958  if (!IsTgtIntrinsic)
2959    Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
2960
2961  // Add all operands of the call to the operand list.
2962  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
2963    SDValue Op = getValue(I.getOperand(i));
2964    assert(TLI.isTypeLegal(Op.getValueType()) &&
2965           "Intrinsic uses a non-legal type?");
2966    Ops.push_back(Op);
2967  }
2968
2969  SmallVector<EVT, 4> ValueVTs;
2970  ComputeValueVTs(TLI, I.getType(), ValueVTs);
2971#ifndef NDEBUG
2972  for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) {
2973    assert(TLI.isTypeLegal(ValueVTs[Val]) &&
2974           "Intrinsic uses a non-legal type?");
2975  }
2976#endif // NDEBUG
2977
2978  if (HasChain)
2979    ValueVTs.push_back(MVT::Other);
2980
2981  SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
2982
2983  // Create the node.
2984  SDValue Result;
2985  if (IsTgtIntrinsic) {
2986    // This is target intrinsic that touches memory
2987    Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(),
2988                                     VTs, &Ops[0], Ops.size(),
2989                                     Info.memVT, Info.ptrVal, Info.offset,
2990                                     Info.align, Info.vol,
2991                                     Info.readMem, Info.writeMem);
2992  } else if (!HasChain) {
2993    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
2994                         VTs, &Ops[0], Ops.size());
2995  } else if (!I.getType()->isVoidTy()) {
2996    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
2997                         VTs, &Ops[0], Ops.size());
2998  } else {
2999    Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(),
3000                         VTs, &Ops[0], Ops.size());
3001  }
3002
3003  if (HasChain) {
3004    SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3005    if (OnlyLoad)
3006      PendingLoads.push_back(Chain);
3007    else
3008      DAG.setRoot(Chain);
3009  }
3010
3011  if (!I.getType()->isVoidTy()) {
3012    if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3013      EVT VT = TLI.getValueType(PTy);
3014      Result = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), VT, Result);
3015    }
3016
3017    setValue(&I, Result);
3018  }
3019}
3020
3021/// GetSignificand - Get the significand and build it into a floating-point
3022/// number with exponent of 1:
3023///
3024///   Op = (Op & 0x007fffff) | 0x3f800000;
3025///
3026/// where Op is the hexidecimal representation of floating point value.
3027static SDValue
3028GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) {
3029  SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3030                           DAG.getConstant(0x007fffff, MVT::i32));
3031  SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3032                           DAG.getConstant(0x3f800000, MVT::i32));
3033  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t2);
3034}
3035
3036/// GetExponent - Get the exponent:
3037///
3038///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3039///
3040/// where Op is the hexidecimal representation of floating point value.
3041static SDValue
3042GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3043            DebugLoc dl) {
3044  SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3045                           DAG.getConstant(0x7f800000, MVT::i32));
3046  SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3047                           DAG.getConstant(23, TLI.getPointerTy()));
3048  SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3049                           DAG.getConstant(127, MVT::i32));
3050  return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3051}
3052
3053/// getF32Constant - Get 32-bit floating point constant.
3054static SDValue
3055getF32Constant(SelectionDAG &DAG, unsigned Flt) {
3056  return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32);
3057}
3058
3059/// Inlined utility function to implement binary input atomic intrinsics for
3060/// visitIntrinsicCall: I is a call instruction
3061///                     Op is the associated NodeType for I
3062const char *
3063SelectionDAGBuilder::implVisitBinaryAtomic(const CallInst& I,
3064                                           ISD::NodeType Op) {
3065  SDValue Root = getRoot();
3066  SDValue L =
3067    DAG.getAtomic(Op, getCurDebugLoc(),
3068                  getValue(I.getOperand(2)).getValueType().getSimpleVT(),
3069                  Root,
3070                  getValue(I.getOperand(1)),
3071                  getValue(I.getOperand(2)),
3072                  I.getOperand(1));
3073  setValue(&I, L);
3074  DAG.setRoot(L.getValue(1));
3075  return 0;
3076}
3077
3078// implVisitAluOverflow - Lower arithmetic overflow instrinsics.
3079const char *
3080SelectionDAGBuilder::implVisitAluOverflow(const CallInst &I, ISD::NodeType Op) {
3081  SDValue Op1 = getValue(I.getOperand(1));
3082  SDValue Op2 = getValue(I.getOperand(2));
3083
3084  SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
3085  setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2));
3086  return 0;
3087}
3088
3089/// visitExp - Lower an exp intrinsic. Handles the special sequences for
3090/// limited-precision mode.
3091void
3092SelectionDAGBuilder::visitExp(const CallInst &I) {
3093  SDValue result;
3094  DebugLoc dl = getCurDebugLoc();
3095
3096  if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
3097      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3098    SDValue Op = getValue(I.getOperand(1));
3099
3100    // Put the exponent in the right bit position for later addition to the
3101    // final result:
3102    //
3103    //   #define LOG2OFe 1.4426950f
3104    //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3105    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3106                             getF32Constant(DAG, 0x3fb8aa3b));
3107    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3108
3109    //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3110    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3111    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3112
3113    //   IntegerPartOfX <<= 23;
3114    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3115                                 DAG.getConstant(23, TLI.getPointerTy()));
3116
3117    if (LimitFloatPrecision <= 6) {
3118      // For floating-point precision of 6:
3119      //
3120      //   TwoToFractionalPartOfX =
3121      //     0.997535578f +
3122      //       (0.735607626f + 0.252464424f * x) * x;
3123      //
3124      // error 0.0144103317, which is 6 bits
3125      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3126                               getF32Constant(DAG, 0x3e814304));
3127      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3128                               getF32Constant(DAG, 0x3f3c50c8));
3129      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3130      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3131                               getF32Constant(DAG, 0x3f7f5e7e));
3132      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t5);
3133
3134      // Add the exponent into the result in integer domain.
3135      SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3136                               TwoToFracPartOfX, IntegerPartOfX);
3137
3138      result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t6);
3139    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3140      // For floating-point precision of 12:
3141      //
3142      //   TwoToFractionalPartOfX =
3143      //     0.999892986f +
3144      //       (0.696457318f +
3145      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3146      //
3147      // 0.000107046256 error, which is 13 to 14 bits
3148      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3149                               getF32Constant(DAG, 0x3da235e3));
3150      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3151                               getF32Constant(DAG, 0x3e65b8f3));
3152      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3153      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3154                               getF32Constant(DAG, 0x3f324b07));
3155      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3156      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3157                               getF32Constant(DAG, 0x3f7ff8fd));
3158      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t7);
3159
3160      // Add the exponent into the result in integer domain.
3161      SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3162                               TwoToFracPartOfX, IntegerPartOfX);
3163
3164      result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t8);
3165    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3166      // For floating-point precision of 18:
3167      //
3168      //   TwoToFractionalPartOfX =
3169      //     0.999999982f +
3170      //       (0.693148872f +
3171      //         (0.240227044f +
3172      //           (0.554906021e-1f +
3173      //             (0.961591928e-2f +
3174      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3175      //
3176      // error 2.47208000*10^(-7), which is better than 18 bits
3177      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3178                               getF32Constant(DAG, 0x3924b03e));
3179      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3180                               getF32Constant(DAG, 0x3ab24b87));
3181      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3182      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3183                               getF32Constant(DAG, 0x3c1d8c17));
3184      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3185      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3186                               getF32Constant(DAG, 0x3d634a1d));
3187      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3188      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3189                               getF32Constant(DAG, 0x3e75fe14));
3190      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3191      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3192                                getF32Constant(DAG, 0x3f317234));
3193      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3194      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3195                                getF32Constant(DAG, 0x3f800000));
3196      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,
3197                                             MVT::i32, t13);
3198
3199      // Add the exponent into the result in integer domain.
3200      SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3201                                TwoToFracPartOfX, IntegerPartOfX);
3202
3203      result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t14);
3204    }
3205  } else {
3206    // No special expansion.
3207    result = DAG.getNode(ISD::FEXP, dl,
3208                         getValue(I.getOperand(1)).getValueType(),
3209                         getValue(I.getOperand(1)));
3210  }
3211
3212  setValue(&I, result);
3213}
3214
3215/// visitLog - Lower a log intrinsic. Handles the special sequences for
3216/// limited-precision mode.
3217void
3218SelectionDAGBuilder::visitLog(const CallInst &I) {
3219  SDValue result;
3220  DebugLoc dl = getCurDebugLoc();
3221
3222  if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
3223      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3224    SDValue Op = getValue(I.getOperand(1));
3225    SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
3226
3227    // Scale the exponent by log(2) [0.69314718f].
3228    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3229    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3230                                        getF32Constant(DAG, 0x3f317218));
3231
3232    // Get the significand and build it into a floating-point number with
3233    // exponent of 1.
3234    SDValue X = GetSignificand(DAG, Op1, dl);
3235
3236    if (LimitFloatPrecision <= 6) {
3237      // For floating-point precision of 6:
3238      //
3239      //   LogofMantissa =
3240      //     -1.1609546f +
3241      //       (1.4034025f - 0.23903021f * x) * x;
3242      //
3243      // error 0.0034276066, which is better than 8 bits
3244      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3245                               getF32Constant(DAG, 0xbe74c456));
3246      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3247                               getF32Constant(DAG, 0x3fb3a2b1));
3248      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3249      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3250                                          getF32Constant(DAG, 0x3f949a29));
3251
3252      result = DAG.getNode(ISD::FADD, dl,
3253                           MVT::f32, LogOfExponent, LogOfMantissa);
3254    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3255      // For floating-point precision of 12:
3256      //
3257      //   LogOfMantissa =
3258      //     -1.7417939f +
3259      //       (2.8212026f +
3260      //         (-1.4699568f +
3261      //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3262      //
3263      // error 0.000061011436, which is 14 bits
3264      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3265                               getF32Constant(DAG, 0xbd67b6d6));
3266      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3267                               getF32Constant(DAG, 0x3ee4f4b8));
3268      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3269      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3270                               getF32Constant(DAG, 0x3fbc278b));
3271      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3272      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3273                               getF32Constant(DAG, 0x40348e95));
3274      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3275      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3276                                          getF32Constant(DAG, 0x3fdef31a));
3277
3278      result = DAG.getNode(ISD::FADD, dl,
3279                           MVT::f32, LogOfExponent, LogOfMantissa);
3280    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3281      // For floating-point precision of 18:
3282      //
3283      //   LogOfMantissa =
3284      //     -2.1072184f +
3285      //       (4.2372794f +
3286      //         (-3.7029485f +
3287      //           (2.2781945f +
3288      //             (-0.87823314f +
3289      //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3290      //
3291      // error 0.0000023660568, which is better than 18 bits
3292      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3293                               getF32Constant(DAG, 0xbc91e5ac));
3294      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3295                               getF32Constant(DAG, 0x3e4350aa));
3296      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3297      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3298                               getF32Constant(DAG, 0x3f60d3e3));
3299      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3300      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3301                               getF32Constant(DAG, 0x4011cdf0));
3302      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3303      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3304                               getF32Constant(DAG, 0x406cfd1c));
3305      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3306      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3307                               getF32Constant(DAG, 0x408797cb));
3308      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3309      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3310                                          getF32Constant(DAG, 0x4006dcab));
3311
3312      result = DAG.getNode(ISD::FADD, dl,
3313                           MVT::f32, LogOfExponent, LogOfMantissa);
3314    }
3315  } else {
3316    // No special expansion.
3317    result = DAG.getNode(ISD::FLOG, dl,
3318                         getValue(I.getOperand(1)).getValueType(),
3319                         getValue(I.getOperand(1)));
3320  }
3321
3322  setValue(&I, result);
3323}
3324
3325/// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for
3326/// limited-precision mode.
3327void
3328SelectionDAGBuilder::visitLog2(const CallInst &I) {
3329  SDValue result;
3330  DebugLoc dl = getCurDebugLoc();
3331
3332  if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
3333      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3334    SDValue Op = getValue(I.getOperand(1));
3335    SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
3336
3337    // Get the exponent.
3338    SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3339
3340    // Get the significand and build it into a floating-point number with
3341    // exponent of 1.
3342    SDValue X = GetSignificand(DAG, Op1, dl);
3343
3344    // Different possible minimax approximations of significand in
3345    // floating-point for various degrees of accuracy over [1,2].
3346    if (LimitFloatPrecision <= 6) {
3347      // For floating-point precision of 6:
3348      //
3349      //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3350      //
3351      // error 0.0049451742, which is more than 7 bits
3352      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3353                               getF32Constant(DAG, 0xbeb08fe0));
3354      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3355                               getF32Constant(DAG, 0x40019463));
3356      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3357      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3358                                           getF32Constant(DAG, 0x3fd6633d));
3359
3360      result = DAG.getNode(ISD::FADD, dl,
3361                           MVT::f32, LogOfExponent, Log2ofMantissa);
3362    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3363      // For floating-point precision of 12:
3364      //
3365      //   Log2ofMantissa =
3366      //     -2.51285454f +
3367      //       (4.07009056f +
3368      //         (-2.12067489f +
3369      //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3370      //
3371      // error 0.0000876136000, which is better than 13 bits
3372      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3373                               getF32Constant(DAG, 0xbda7262e));
3374      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3375                               getF32Constant(DAG, 0x3f25280b));
3376      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3377      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3378                               getF32Constant(DAG, 0x4007b923));
3379      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3380      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3381                               getF32Constant(DAG, 0x40823e2f));
3382      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3383      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3384                                           getF32Constant(DAG, 0x4020d29c));
3385
3386      result = DAG.getNode(ISD::FADD, dl,
3387                           MVT::f32, LogOfExponent, Log2ofMantissa);
3388    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3389      // For floating-point precision of 18:
3390      //
3391      //   Log2ofMantissa =
3392      //     -3.0400495f +
3393      //       (6.1129976f +
3394      //         (-5.3420409f +
3395      //           (3.2865683f +
3396      //             (-1.2669343f +
3397      //               (0.27515199f -
3398      //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3399      //
3400      // error 0.0000018516, which is better than 18 bits
3401      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3402                               getF32Constant(DAG, 0xbcd2769e));
3403      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3404                               getF32Constant(DAG, 0x3e8ce0b9));
3405      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3406      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3407                               getF32Constant(DAG, 0x3fa22ae7));
3408      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3409      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3410                               getF32Constant(DAG, 0x40525723));
3411      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3412      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3413                               getF32Constant(DAG, 0x40aaf200));
3414      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3415      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3416                               getF32Constant(DAG, 0x40c39dad));
3417      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3418      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3419                                           getF32Constant(DAG, 0x4042902c));
3420
3421      result = DAG.getNode(ISD::FADD, dl,
3422                           MVT::f32, LogOfExponent, Log2ofMantissa);
3423    }
3424  } else {
3425    // No special expansion.
3426    result = DAG.getNode(ISD::FLOG2, dl,
3427                         getValue(I.getOperand(1)).getValueType(),
3428                         getValue(I.getOperand(1)));
3429  }
3430
3431  setValue(&I, result);
3432}
3433
3434/// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for
3435/// limited-precision mode.
3436void
3437SelectionDAGBuilder::visitLog10(const CallInst &I) {
3438  SDValue result;
3439  DebugLoc dl = getCurDebugLoc();
3440
3441  if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
3442      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3443    SDValue Op = getValue(I.getOperand(1));
3444    SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
3445
3446    // Scale the exponent by log10(2) [0.30102999f].
3447    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3448    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3449                                        getF32Constant(DAG, 0x3e9a209a));
3450
3451    // Get the significand and build it into a floating-point number with
3452    // exponent of 1.
3453    SDValue X = GetSignificand(DAG, Op1, dl);
3454
3455    if (LimitFloatPrecision <= 6) {
3456      // For floating-point precision of 6:
3457      //
3458      //   Log10ofMantissa =
3459      //     -0.50419619f +
3460      //       (0.60948995f - 0.10380950f * x) * x;
3461      //
3462      // error 0.0014886165, which is 6 bits
3463      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3464                               getF32Constant(DAG, 0xbdd49a13));
3465      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3466                               getF32Constant(DAG, 0x3f1c0789));
3467      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3468      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3469                                            getF32Constant(DAG, 0x3f011300));
3470
3471      result = DAG.getNode(ISD::FADD, dl,
3472                           MVT::f32, LogOfExponent, Log10ofMantissa);
3473    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3474      // For floating-point precision of 12:
3475      //
3476      //   Log10ofMantissa =
3477      //     -0.64831180f +
3478      //       (0.91751397f +
3479      //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
3480      //
3481      // error 0.00019228036, which is better than 12 bits
3482      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3483                               getF32Constant(DAG, 0x3d431f31));
3484      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3485                               getF32Constant(DAG, 0x3ea21fb2));
3486      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3487      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3488                               getF32Constant(DAG, 0x3f6ae232));
3489      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3490      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3491                                            getF32Constant(DAG, 0x3f25f7c3));
3492
3493      result = DAG.getNode(ISD::FADD, dl,
3494                           MVT::f32, LogOfExponent, Log10ofMantissa);
3495    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3496      // For floating-point precision of 18:
3497      //
3498      //   Log10ofMantissa =
3499      //     -0.84299375f +
3500      //       (1.5327582f +
3501      //         (-1.0688956f +
3502      //           (0.49102474f +
3503      //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
3504      //
3505      // error 0.0000037995730, which is better than 18 bits
3506      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3507                               getF32Constant(DAG, 0x3c5d51ce));
3508      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3509                               getF32Constant(DAG, 0x3e00685a));
3510      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3511      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3512                               getF32Constant(DAG, 0x3efb6798));
3513      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3514      SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3515                               getF32Constant(DAG, 0x3f88d192));
3516      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3517      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3518                               getF32Constant(DAG, 0x3fc4316c));
3519      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3520      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
3521                                            getF32Constant(DAG, 0x3f57ce70));
3522
3523      result = DAG.getNode(ISD::FADD, dl,
3524                           MVT::f32, LogOfExponent, Log10ofMantissa);
3525    }
3526  } else {
3527    // No special expansion.
3528    result = DAG.getNode(ISD::FLOG10, dl,
3529                         getValue(I.getOperand(1)).getValueType(),
3530                         getValue(I.getOperand(1)));
3531  }
3532
3533  setValue(&I, result);
3534}
3535
3536/// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for
3537/// limited-precision mode.
3538void
3539SelectionDAGBuilder::visitExp2(const CallInst &I) {
3540  SDValue result;
3541  DebugLoc dl = getCurDebugLoc();
3542
3543  if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
3544      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3545    SDValue Op = getValue(I.getOperand(1));
3546
3547    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
3548
3549    //   FractionalPartOfX = x - (float)IntegerPartOfX;
3550    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3551    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
3552
3553    //   IntegerPartOfX <<= 23;
3554    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3555                                 DAG.getConstant(23, TLI.getPointerTy()));
3556
3557    if (LimitFloatPrecision <= 6) {
3558      // For floating-point precision of 6:
3559      //
3560      //   TwoToFractionalPartOfX =
3561      //     0.997535578f +
3562      //       (0.735607626f + 0.252464424f * x) * x;
3563      //
3564      // error 0.0144103317, which is 6 bits
3565      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3566                               getF32Constant(DAG, 0x3e814304));
3567      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3568                               getF32Constant(DAG, 0x3f3c50c8));
3569      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3570      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3571                               getF32Constant(DAG, 0x3f7f5e7e));
3572      SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5);
3573      SDValue TwoToFractionalPartOfX =
3574        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3575
3576      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3577                           MVT::f32, TwoToFractionalPartOfX);
3578    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3579      // For floating-point precision of 12:
3580      //
3581      //   TwoToFractionalPartOfX =
3582      //     0.999892986f +
3583      //       (0.696457318f +
3584      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3585      //
3586      // error 0.000107046256, which is 13 to 14 bits
3587      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3588                               getF32Constant(DAG, 0x3da235e3));
3589      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3590                               getF32Constant(DAG, 0x3e65b8f3));
3591      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3592      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3593                               getF32Constant(DAG, 0x3f324b07));
3594      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3595      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3596                               getF32Constant(DAG, 0x3f7ff8fd));
3597      SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7);
3598      SDValue TwoToFractionalPartOfX =
3599        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
3600
3601      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3602                           MVT::f32, TwoToFractionalPartOfX);
3603    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3604      // For floating-point precision of 18:
3605      //
3606      //   TwoToFractionalPartOfX =
3607      //     0.999999982f +
3608      //       (0.693148872f +
3609      //         (0.240227044f +
3610      //           (0.554906021e-1f +
3611      //             (0.961591928e-2f +
3612      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3613      // error 2.47208000*10^(-7), which is better than 18 bits
3614      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3615                               getF32Constant(DAG, 0x3924b03e));
3616      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3617                               getF32Constant(DAG, 0x3ab24b87));
3618      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3619      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3620                               getF32Constant(DAG, 0x3c1d8c17));
3621      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3622      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3623                               getF32Constant(DAG, 0x3d634a1d));
3624      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3625      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3626                               getF32Constant(DAG, 0x3e75fe14));
3627      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3628      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3629                                getF32Constant(DAG, 0x3f317234));
3630      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3631      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3632                                getF32Constant(DAG, 0x3f800000));
3633      SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13);
3634      SDValue TwoToFractionalPartOfX =
3635        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
3636
3637      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3638                           MVT::f32, TwoToFractionalPartOfX);
3639    }
3640  } else {
3641    // No special expansion.
3642    result = DAG.getNode(ISD::FEXP2, dl,
3643                         getValue(I.getOperand(1)).getValueType(),
3644                         getValue(I.getOperand(1)));
3645  }
3646
3647  setValue(&I, result);
3648}
3649
3650/// visitPow - Lower a pow intrinsic. Handles the special sequences for
3651/// limited-precision mode with x == 10.0f.
3652void
3653SelectionDAGBuilder::visitPow(const CallInst &I) {
3654  SDValue result;
3655  const Value *Val = I.getOperand(1);
3656  DebugLoc dl = getCurDebugLoc();
3657  bool IsExp10 = false;
3658
3659  if (getValue(Val).getValueType() == MVT::f32 &&
3660      getValue(I.getOperand(2)).getValueType() == MVT::f32 &&
3661      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3662    if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) {
3663      if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
3664        APFloat Ten(10.0f);
3665        IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten);
3666      }
3667    }
3668  }
3669
3670  if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3671    SDValue Op = getValue(I.getOperand(2));
3672
3673    // Put the exponent in the right bit position for later addition to the
3674    // final result:
3675    //
3676    //   #define LOG2OF10 3.3219281f
3677    //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
3678    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3679                             getF32Constant(DAG, 0x40549a78));
3680    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3681
3682    //   FractionalPartOfX = x - (float)IntegerPartOfX;
3683    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3684    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3685
3686    //   IntegerPartOfX <<= 23;
3687    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3688                                 DAG.getConstant(23, TLI.getPointerTy()));
3689
3690    if (LimitFloatPrecision <= 6) {
3691      // For floating-point precision of 6:
3692      //
3693      //   twoToFractionalPartOfX =
3694      //     0.997535578f +
3695      //       (0.735607626f + 0.252464424f * x) * x;
3696      //
3697      // error 0.0144103317, which is 6 bits
3698      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3699                               getF32Constant(DAG, 0x3e814304));
3700      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3701                               getF32Constant(DAG, 0x3f3c50c8));
3702      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3703      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3704                               getF32Constant(DAG, 0x3f7f5e7e));
3705      SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5);
3706      SDValue TwoToFractionalPartOfX =
3707        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3708
3709      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3710                           MVT::f32, TwoToFractionalPartOfX);
3711    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3712      // For floating-point precision of 12:
3713      //
3714      //   TwoToFractionalPartOfX =
3715      //     0.999892986f +
3716      //       (0.696457318f +
3717      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3718      //
3719      // error 0.000107046256, which is 13 to 14 bits
3720      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3721                               getF32Constant(DAG, 0x3da235e3));
3722      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3723                               getF32Constant(DAG, 0x3e65b8f3));
3724      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3725      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3726                               getF32Constant(DAG, 0x3f324b07));
3727      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3728      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3729                               getF32Constant(DAG, 0x3f7ff8fd));
3730      SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7);
3731      SDValue TwoToFractionalPartOfX =
3732        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
3733
3734      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3735                           MVT::f32, TwoToFractionalPartOfX);
3736    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3737      // For floating-point precision of 18:
3738      //
3739      //   TwoToFractionalPartOfX =
3740      //     0.999999982f +
3741      //       (0.693148872f +
3742      //         (0.240227044f +
3743      //           (0.554906021e-1f +
3744      //             (0.961591928e-2f +
3745      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3746      // error 2.47208000*10^(-7), which is better than 18 bits
3747      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3748                               getF32Constant(DAG, 0x3924b03e));
3749      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3750                               getF32Constant(DAG, 0x3ab24b87));
3751      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3752      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3753                               getF32Constant(DAG, 0x3c1d8c17));
3754      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3755      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3756                               getF32Constant(DAG, 0x3d634a1d));
3757      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3758      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3759                               getF32Constant(DAG, 0x3e75fe14));
3760      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3761      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3762                                getF32Constant(DAG, 0x3f317234));
3763      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3764      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3765                                getF32Constant(DAG, 0x3f800000));
3766      SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13);
3767      SDValue TwoToFractionalPartOfX =
3768        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
3769
3770      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3771                           MVT::f32, TwoToFractionalPartOfX);
3772    }
3773  } else {
3774    // No special expansion.
3775    result = DAG.getNode(ISD::FPOW, dl,
3776                         getValue(I.getOperand(1)).getValueType(),
3777                         getValue(I.getOperand(1)),
3778                         getValue(I.getOperand(2)));
3779  }
3780
3781  setValue(&I, result);
3782}
3783
3784
3785/// ExpandPowI - Expand a llvm.powi intrinsic.
3786static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS,
3787                          SelectionDAG &DAG) {
3788  // If RHS is a constant, we can expand this out to a multiplication tree,
3789  // otherwise we end up lowering to a call to __powidf2 (for example).  When
3790  // optimizing for size, we only want to do this if the expansion would produce
3791  // a small number of multiplies, otherwise we do the full expansion.
3792  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3793    // Get the exponent as a positive value.
3794    unsigned Val = RHSC->getSExtValue();
3795    if ((int)Val < 0) Val = -Val;
3796
3797    // powi(x, 0) -> 1.0
3798    if (Val == 0)
3799      return DAG.getConstantFP(1.0, LHS.getValueType());
3800
3801    const Function *F = DAG.getMachineFunction().getFunction();
3802    if (!F->hasFnAttr(Attribute::OptimizeForSize) ||
3803        // If optimizing for size, don't insert too many multiplies.  This
3804        // inserts up to 5 multiplies.
3805        CountPopulation_32(Val)+Log2_32(Val) < 7) {
3806      // We use the simple binary decomposition method to generate the multiply
3807      // sequence.  There are more optimal ways to do this (for example,
3808      // powi(x,15) generates one more multiply than it should), but this has
3809      // the benefit of being both really simple and much better than a libcall.
3810      SDValue Res;  // Logically starts equal to 1.0
3811      SDValue CurSquare = LHS;
3812      while (Val) {
3813        if (Val & 1) {
3814          if (Res.getNode())
3815            Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
3816          else
3817            Res = CurSquare;  // 1.0*CurSquare.
3818        }
3819
3820        CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
3821                                CurSquare, CurSquare);
3822        Val >>= 1;
3823      }
3824
3825      // If the original was negative, invert the result, producing 1/(x*x*x).
3826      if (RHSC->getSExtValue() < 0)
3827        Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
3828                          DAG.getConstantFP(1.0, LHS.getValueType()), Res);
3829      return Res;
3830    }
3831  }
3832
3833  // Otherwise, expand to a libcall.
3834  return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
3835}
3836
3837/// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
3838/// argument, create the corresponding DBG_VALUE machine instruction for it now.
3839/// At the end of instruction selection, they will be inserted to the entry BB.
3840bool
3841SelectionDAGBuilder::EmitFuncArgumentDbgValue(const DbgValueInst &DI,
3842                                              const Value *V, MDNode *Variable,
3843                                              uint64_t Offset,
3844                                              const SDValue &N) {
3845  if (!isa<Argument>(V))
3846    return false;
3847
3848  MachineFunction &MF = DAG.getMachineFunction();
3849  // Ignore inlined function arguments here.
3850  DIVariable DV(Variable);
3851  if (DV.isInlinedFnArgument(MF.getFunction()))
3852    return false;
3853
3854  MachineBasicBlock *MBB = FuncInfo.MBBMap[DI.getParent()];
3855  if (MBB != &MF.front())
3856    return false;
3857
3858  unsigned Reg = 0;
3859  if (N.getOpcode() == ISD::CopyFromReg) {
3860    Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
3861    if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
3862      MachineRegisterInfo &RegInfo = MF.getRegInfo();
3863      unsigned PR = RegInfo.getLiveInPhysReg(Reg);
3864      if (PR)
3865        Reg = PR;
3866    }
3867  }
3868
3869  if (!Reg) {
3870    DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
3871    if (VMI == FuncInfo.ValueMap.end())
3872      return false;
3873    Reg = VMI->second;
3874  }
3875
3876  const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
3877  MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(),
3878                                    TII->get(TargetOpcode::DBG_VALUE))
3879    .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable);
3880  FuncInfo.ArgDbgValues.push_back(&*MIB);
3881  return true;
3882}
3883
3884// VisualStudio defines setjmp as _setjmp
3885#if defined(_MSC_VER) && defined(setjmp)
3886#define setjmp_undefined_for_visual_studio
3887#undef setjmp
3888#endif
3889
3890/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
3891/// we want to emit this as a call to a named external function, return the name
3892/// otherwise lower it and return null.
3893const char *
3894SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
3895  DebugLoc dl = getCurDebugLoc();
3896  SDValue Res;
3897
3898  switch (Intrinsic) {
3899  default:
3900    // By default, turn this into a target intrinsic node.
3901    visitTargetIntrinsic(I, Intrinsic);
3902    return 0;
3903  case Intrinsic::vastart:  visitVAStart(I); return 0;
3904  case Intrinsic::vaend:    visitVAEnd(I); return 0;
3905  case Intrinsic::vacopy:   visitVACopy(I); return 0;
3906  case Intrinsic::returnaddress:
3907    setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(),
3908                             getValue(I.getOperand(1))));
3909    return 0;
3910  case Intrinsic::frameaddress:
3911    setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(),
3912                             getValue(I.getOperand(1))));
3913    return 0;
3914  case Intrinsic::setjmp:
3915    return "_setjmp"+!TLI.usesUnderscoreSetJmp();
3916  case Intrinsic::longjmp:
3917    return "_longjmp"+!TLI.usesUnderscoreLongJmp();
3918  case Intrinsic::memcpy: {
3919    // Assert for address < 256 since we support only user defined address
3920    // spaces.
3921    assert(cast<PointerType>(I.getOperand(1)->getType())->getAddressSpace()
3922           < 256 &&
3923           cast<PointerType>(I.getOperand(2)->getType())->getAddressSpace()
3924           < 256 &&
3925           "Unknown address space");
3926    SDValue Op1 = getValue(I.getOperand(1));
3927    SDValue Op2 = getValue(I.getOperand(2));
3928    SDValue Op3 = getValue(I.getOperand(3));
3929    unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3930    bool isVol = cast<ConstantInt>(I.getOperand(5))->getZExtValue();
3931    DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false,
3932                              I.getOperand(1), 0, I.getOperand(2), 0));
3933    return 0;
3934  }
3935  case Intrinsic::memset: {
3936    // Assert for address < 256 since we support only user defined address
3937    // spaces.
3938    assert(cast<PointerType>(I.getOperand(1)->getType())->getAddressSpace()
3939           < 256 &&
3940           "Unknown address space");
3941    SDValue Op1 = getValue(I.getOperand(1));
3942    SDValue Op2 = getValue(I.getOperand(2));
3943    SDValue Op3 = getValue(I.getOperand(3));
3944    unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3945    bool isVol = cast<ConstantInt>(I.getOperand(5))->getZExtValue();
3946    DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
3947                              I.getOperand(1), 0));
3948    return 0;
3949  }
3950  case Intrinsic::memmove: {
3951    // Assert for address < 256 since we support only user defined address
3952    // spaces.
3953    assert(cast<PointerType>(I.getOperand(1)->getType())->getAddressSpace()
3954           < 256 &&
3955           cast<PointerType>(I.getOperand(2)->getType())->getAddressSpace()
3956           < 256 &&
3957           "Unknown address space");
3958    SDValue Op1 = getValue(I.getOperand(1));
3959    SDValue Op2 = getValue(I.getOperand(2));
3960    SDValue Op3 = getValue(I.getOperand(3));
3961    unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3962    bool isVol = cast<ConstantInt>(I.getOperand(5))->getZExtValue();
3963
3964    // If the source and destination are known to not be aliases, we can
3965    // lower memmove as memcpy.
3966    uint64_t Size = -1ULL;
3967    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3))
3968      Size = C->getZExtValue();
3969    if (AA->alias(I.getOperand(1), Size, I.getOperand(2), Size) ==
3970        AliasAnalysis::NoAlias) {
3971      DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
3972                                false, I.getOperand(1), 0, I.getOperand(2), 0));
3973      return 0;
3974    }
3975
3976    DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
3977                               I.getOperand(1), 0, I.getOperand(2), 0));
3978    return 0;
3979  }
3980  case Intrinsic::dbg_declare: {
3981    const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
3982    if (!DIVariable(DI.getVariable()).Verify())
3983      return 0;
3984
3985    MDNode *Variable = DI.getVariable();
3986    // Parameters are handled specially.
3987    bool isParameter =
3988      DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable;
3989    const Value *Address = DI.getAddress();
3990    if (!Address)
3991      return 0;
3992    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
3993      Address = BCI->getOperand(0);
3994    const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
3995    if (AI) {
3996      // Don't handle byval arguments or VLAs, for example.
3997      // Non-byval arguments are handled here (they refer to the stack temporary
3998      // alloca at this point).
3999      DenseMap<const AllocaInst*, int>::iterator SI =
4000        FuncInfo.StaticAllocaMap.find(AI);
4001      if (SI == FuncInfo.StaticAllocaMap.end())
4002        return 0; // VLAs.
4003      int FI = SI->second;
4004
4005      MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4006      if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
4007        MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
4008    }
4009
4010    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4011    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4012    // absolute, but not relative, values are different depending on whether
4013    // debug info exists.
4014    ++SDNodeOrder;
4015    SDValue &N = NodeMap[Address];
4016    SDDbgValue *SDV;
4017    if (N.getNode()) {
4018      if (isParameter && !AI) {
4019        FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4020        if (FINode)
4021          // Byval parameter.  We have a frame index at this point.
4022          SDV = DAG.getDbgValue(Variable, FINode->getIndex(),
4023                                0, dl, SDNodeOrder);
4024        else
4025          // Can't do anything with other non-AI cases yet.  This might be a
4026          // parameter of a callee function that got inlined, for example.
4027          return 0;
4028      } else if (AI)
4029        SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
4030                              0, dl, SDNodeOrder);
4031      else
4032        // Can't do anything with other non-AI cases yet.
4033        return 0;
4034      DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4035    } else {
4036      // This isn't useful, but it shows what we're missing.
4037      SDV = DAG.getDbgValue(Variable, UndefValue::get(Address->getType()),
4038                            0, dl, SDNodeOrder);
4039      DAG.AddDbgValue(SDV, 0, isParameter);
4040    }
4041    return 0;
4042  }
4043  case Intrinsic::dbg_value: {
4044    const DbgValueInst &DI = cast<DbgValueInst>(I);
4045    if (!DIVariable(DI.getVariable()).Verify())
4046      return 0;
4047
4048    MDNode *Variable = DI.getVariable();
4049    uint64_t Offset = DI.getOffset();
4050    const Value *V = DI.getValue();
4051    if (!V)
4052      return 0;
4053
4054    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4055    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4056    // absolute, but not relative, values are different depending on whether
4057    // debug info exists.
4058    ++SDNodeOrder;
4059    SDDbgValue *SDV;
4060    if (isa<ConstantInt>(V) || isa<ConstantFP>(V)) {
4061      SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder);
4062      DAG.AddDbgValue(SDV, 0, false);
4063    } else {
4064      bool createUndef = false;
4065      // FIXME : Why not use getValue() directly ?
4066      SDValue &N = NodeMap[V];
4067      if (N.getNode()) {
4068        if (!EmitFuncArgumentDbgValue(DI, V, Variable, Offset, N)) {
4069          SDV = DAG.getDbgValue(Variable, N.getNode(),
4070                                N.getResNo(), Offset, dl, SDNodeOrder);
4071          DAG.AddDbgValue(SDV, N.getNode(), false);
4072        }
4073      } else if (isa<PHINode>(V) && !V->use_empty()) {
4074        SDValue N = getValue(V);
4075        if (N.getNode()) {
4076          if (!EmitFuncArgumentDbgValue(DI, V, Variable, Offset, N)) {
4077            SDV = DAG.getDbgValue(Variable, N.getNode(),
4078                                  N.getResNo(), Offset, dl, SDNodeOrder);
4079            DAG.AddDbgValue(SDV, N.getNode(), false);
4080          }
4081        } else
4082          createUndef = true;
4083      } else
4084        createUndef = true;
4085      if (createUndef) {
4086        // We may expand this to cover more cases.  One case where we have no
4087        // data available is an unreferenced parameter; we need this fallback.
4088        SDV = DAG.getDbgValue(Variable, UndefValue::get(V->getType()),
4089                              Offset, dl, SDNodeOrder);
4090        DAG.AddDbgValue(SDV, 0, false);
4091      }
4092    }
4093
4094    // Build a debug info table entry.
4095    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4096      V = BCI->getOperand(0);
4097    const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4098    // Don't handle byval struct arguments or VLAs, for example.
4099    if (!AI)
4100      return 0;
4101    DenseMap<const AllocaInst*, int>::iterator SI =
4102      FuncInfo.StaticAllocaMap.find(AI);
4103    if (SI == FuncInfo.StaticAllocaMap.end())
4104      return 0; // VLAs.
4105    int FI = SI->second;
4106
4107    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4108    if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
4109      MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
4110    return 0;
4111  }
4112  case Intrinsic::eh_exception: {
4113    // Insert the EXCEPTIONADDR instruction.
4114    assert(FuncInfo.MBBMap[I.getParent()]->isLandingPad() &&
4115           "Call to eh.exception not in landing pad!");
4116    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4117    SDValue Ops[1];
4118    Ops[0] = DAG.getRoot();
4119    SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1);
4120    setValue(&I, Op);
4121    DAG.setRoot(Op.getValue(1));
4122    return 0;
4123  }
4124
4125  case Intrinsic::eh_selector: {
4126    MachineBasicBlock *CallMBB = FuncInfo.MBBMap[I.getParent()];
4127    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4128    if (CallMBB->isLandingPad())
4129      AddCatchInfo(I, &MMI, CallMBB);
4130    else {
4131#ifndef NDEBUG
4132      FuncInfo.CatchInfoLost.insert(&I);
4133#endif
4134      // FIXME: Mark exception selector register as live in.  Hack for PR1508.
4135      unsigned Reg = TLI.getExceptionSelectorRegister();
4136      if (Reg) FuncInfo.MBBMap[I.getParent()]->addLiveIn(Reg);
4137    }
4138
4139    // Insert the EHSELECTION instruction.
4140    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4141    SDValue Ops[2];
4142    Ops[0] = getValue(I.getOperand(1));
4143    Ops[1] = getRoot();
4144    SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2);
4145    DAG.setRoot(Op.getValue(1));
4146    setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32));
4147    return 0;
4148  }
4149
4150  case Intrinsic::eh_typeid_for: {
4151    // Find the type id for the given typeinfo.
4152    GlobalVariable *GV = ExtractTypeInfo(I.getOperand(1));
4153    unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4154    Res = DAG.getConstant(TypeID, MVT::i32);
4155    setValue(&I, Res);
4156    return 0;
4157  }
4158
4159  case Intrinsic::eh_return_i32:
4160  case Intrinsic::eh_return_i64:
4161    DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4162    DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl,
4163                            MVT::Other,
4164                            getControlRoot(),
4165                            getValue(I.getOperand(1)),
4166                            getValue(I.getOperand(2))));
4167    return 0;
4168  case Intrinsic::eh_unwind_init:
4169    DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4170    return 0;
4171  case Intrinsic::eh_dwarf_cfa: {
4172    EVT VT = getValue(I.getOperand(1)).getValueType();
4173    SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), dl,
4174                                        TLI.getPointerTy());
4175    SDValue Offset = DAG.getNode(ISD::ADD, dl,
4176                                 TLI.getPointerTy(),
4177                                 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
4178                                             TLI.getPointerTy()),
4179                                 CfaArg);
4180    SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl,
4181                             TLI.getPointerTy(),
4182                             DAG.getConstant(0, TLI.getPointerTy()));
4183    setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
4184                             FA, Offset));
4185    return 0;
4186  }
4187  case Intrinsic::eh_sjlj_callsite: {
4188    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4189    ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1));
4190    assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4191    assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4192
4193    MMI.setCurrentCallSite(CI->getZExtValue());
4194    return 0;
4195  }
4196  case Intrinsic::eh_sjlj_setjmp: {
4197    setValue(&I, DAG.getNode(ISD::EH_SJLJ_SETJMP, dl, MVT::i32, getRoot(),
4198                             getValue(I.getOperand(1))));
4199    return 0;
4200  }
4201  case Intrinsic::eh_sjlj_longjmp: {
4202    DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other,
4203                            getRoot(),
4204                            getValue(I.getOperand(1))));
4205    return 0;
4206  }
4207
4208  case Intrinsic::convertff:
4209  case Intrinsic::convertfsi:
4210  case Intrinsic::convertfui:
4211  case Intrinsic::convertsif:
4212  case Intrinsic::convertuif:
4213  case Intrinsic::convertss:
4214  case Intrinsic::convertsu:
4215  case Intrinsic::convertus:
4216  case Intrinsic::convertuu: {
4217    ISD::CvtCode Code = ISD::CVT_INVALID;
4218    switch (Intrinsic) {
4219    case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
4220    case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4221    case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4222    case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4223    case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4224    case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
4225    case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
4226    case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4227    case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4228    }
4229    EVT DestVT = TLI.getValueType(I.getType());
4230    const Value *Op1 = I.getOperand(1);
4231    Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1),
4232                               DAG.getValueType(DestVT),
4233                               DAG.getValueType(getValue(Op1).getValueType()),
4234                               getValue(I.getOperand(2)),
4235                               getValue(I.getOperand(3)),
4236                               Code);
4237    setValue(&I, Res);
4238    return 0;
4239  }
4240  case Intrinsic::sqrt:
4241    setValue(&I, DAG.getNode(ISD::FSQRT, dl,
4242                             getValue(I.getOperand(1)).getValueType(),
4243                             getValue(I.getOperand(1))));
4244    return 0;
4245  case Intrinsic::powi:
4246    setValue(&I, ExpandPowI(dl, getValue(I.getOperand(1)),
4247                            getValue(I.getOperand(2)), DAG));
4248    return 0;
4249  case Intrinsic::sin:
4250    setValue(&I, DAG.getNode(ISD::FSIN, dl,
4251                             getValue(I.getOperand(1)).getValueType(),
4252                             getValue(I.getOperand(1))));
4253    return 0;
4254  case Intrinsic::cos:
4255    setValue(&I, DAG.getNode(ISD::FCOS, dl,
4256                             getValue(I.getOperand(1)).getValueType(),
4257                             getValue(I.getOperand(1))));
4258    return 0;
4259  case Intrinsic::log:
4260    visitLog(I);
4261    return 0;
4262  case Intrinsic::log2:
4263    visitLog2(I);
4264    return 0;
4265  case Intrinsic::log10:
4266    visitLog10(I);
4267    return 0;
4268  case Intrinsic::exp:
4269    visitExp(I);
4270    return 0;
4271  case Intrinsic::exp2:
4272    visitExp2(I);
4273    return 0;
4274  case Intrinsic::pow:
4275    visitPow(I);
4276    return 0;
4277  case Intrinsic::convert_to_fp16:
4278    setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl,
4279                             MVT::i16, getValue(I.getOperand(1))));
4280    return 0;
4281  case Intrinsic::convert_from_fp16:
4282    setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl,
4283                             MVT::f32, getValue(I.getOperand(1))));
4284    return 0;
4285  case Intrinsic::pcmarker: {
4286    SDValue Tmp = getValue(I.getOperand(1));
4287    DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp));
4288    return 0;
4289  }
4290  case Intrinsic::readcyclecounter: {
4291    SDValue Op = getRoot();
4292    Res = DAG.getNode(ISD::READCYCLECOUNTER, dl,
4293                      DAG.getVTList(MVT::i64, MVT::Other),
4294                      &Op, 1);
4295    setValue(&I, Res);
4296    DAG.setRoot(Res.getValue(1));
4297    return 0;
4298  }
4299  case Intrinsic::bswap:
4300    setValue(&I, DAG.getNode(ISD::BSWAP, dl,
4301                             getValue(I.getOperand(1)).getValueType(),
4302                             getValue(I.getOperand(1))));
4303    return 0;
4304  case Intrinsic::cttz: {
4305    SDValue Arg = getValue(I.getOperand(1));
4306    EVT Ty = Arg.getValueType();
4307    setValue(&I, DAG.getNode(ISD::CTTZ, dl, Ty, Arg));
4308    return 0;
4309  }
4310  case Intrinsic::ctlz: {
4311    SDValue Arg = getValue(I.getOperand(1));
4312    EVT Ty = Arg.getValueType();
4313    setValue(&I, DAG.getNode(ISD::CTLZ, dl, Ty, Arg));
4314    return 0;
4315  }
4316  case Intrinsic::ctpop: {
4317    SDValue Arg = getValue(I.getOperand(1));
4318    EVT Ty = Arg.getValueType();
4319    setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg));
4320    return 0;
4321  }
4322  case Intrinsic::stacksave: {
4323    SDValue Op = getRoot();
4324    Res = DAG.getNode(ISD::STACKSAVE, dl,
4325                      DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
4326    setValue(&I, Res);
4327    DAG.setRoot(Res.getValue(1));
4328    return 0;
4329  }
4330  case Intrinsic::stackrestore: {
4331    Res = getValue(I.getOperand(1));
4332    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res));
4333    return 0;
4334  }
4335  case Intrinsic::stackprotector: {
4336    // Emit code into the DAG to store the stack guard onto the stack.
4337    MachineFunction &MF = DAG.getMachineFunction();
4338    MachineFrameInfo *MFI = MF.getFrameInfo();
4339    EVT PtrTy = TLI.getPointerTy();
4340
4341    SDValue Src = getValue(I.getOperand(1));   // The guard's value.
4342    AllocaInst *Slot = cast<AllocaInst>(I.getOperand(2));
4343
4344    int FI = FuncInfo.StaticAllocaMap[Slot];
4345    MFI->setStackProtectorIndex(FI);
4346
4347    SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
4348
4349    // Store the stack protector onto the stack.
4350    Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN,
4351                       PseudoSourceValue::getFixedStack(FI),
4352                       0, true, false, 0);
4353    setValue(&I, Res);
4354    DAG.setRoot(Res);
4355    return 0;
4356  }
4357  case Intrinsic::objectsize: {
4358    // If we don't know by now, we're never going to know.
4359    ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(2));
4360
4361    assert(CI && "Non-constant type in __builtin_object_size?");
4362
4363    SDValue Arg = getValue(I.getOperand(0));
4364    EVT Ty = Arg.getValueType();
4365
4366    if (CI->getZExtValue() == 0)
4367      Res = DAG.getConstant(-1ULL, Ty);
4368    else
4369      Res = DAG.getConstant(0, Ty);
4370
4371    setValue(&I, Res);
4372    return 0;
4373  }
4374  case Intrinsic::var_annotation:
4375    // Discard annotate attributes
4376    return 0;
4377
4378  case Intrinsic::init_trampoline: {
4379    const Function *F = cast<Function>(I.getOperand(2)->stripPointerCasts());
4380
4381    SDValue Ops[6];
4382    Ops[0] = getRoot();
4383    Ops[1] = getValue(I.getOperand(1));
4384    Ops[2] = getValue(I.getOperand(2));
4385    Ops[3] = getValue(I.getOperand(3));
4386    Ops[4] = DAG.getSrcValue(I.getOperand(1));
4387    Ops[5] = DAG.getSrcValue(F);
4388
4389    Res = DAG.getNode(ISD::TRAMPOLINE, dl,
4390                      DAG.getVTList(TLI.getPointerTy(), MVT::Other),
4391                      Ops, 6);
4392
4393    setValue(&I, Res);
4394    DAG.setRoot(Res.getValue(1));
4395    return 0;
4396  }
4397  case Intrinsic::gcroot:
4398    if (GFI) {
4399      const Value *Alloca = I.getOperand(1);
4400      const Constant *TypeMap = cast<Constant>(I.getOperand(2));
4401
4402      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
4403      GFI->addStackRoot(FI->getIndex(), TypeMap);
4404    }
4405    return 0;
4406  case Intrinsic::gcread:
4407  case Intrinsic::gcwrite:
4408    llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
4409    return 0;
4410  case Intrinsic::flt_rounds:
4411    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32));
4412    return 0;
4413  case Intrinsic::trap:
4414    DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot()));
4415    return 0;
4416  case Intrinsic::uadd_with_overflow:
4417    return implVisitAluOverflow(I, ISD::UADDO);
4418  case Intrinsic::sadd_with_overflow:
4419    return implVisitAluOverflow(I, ISD::SADDO);
4420  case Intrinsic::usub_with_overflow:
4421    return implVisitAluOverflow(I, ISD::USUBO);
4422  case Intrinsic::ssub_with_overflow:
4423    return implVisitAluOverflow(I, ISD::SSUBO);
4424  case Intrinsic::umul_with_overflow:
4425    return implVisitAluOverflow(I, ISD::UMULO);
4426  case Intrinsic::smul_with_overflow:
4427    return implVisitAluOverflow(I, ISD::SMULO);
4428
4429  case Intrinsic::prefetch: {
4430    SDValue Ops[4];
4431    Ops[0] = getRoot();
4432    Ops[1] = getValue(I.getOperand(1));
4433    Ops[2] = getValue(I.getOperand(2));
4434    Ops[3] = getValue(I.getOperand(3));
4435    DAG.setRoot(DAG.getNode(ISD::PREFETCH, dl, MVT::Other, &Ops[0], 4));
4436    return 0;
4437  }
4438
4439  case Intrinsic::memory_barrier: {
4440    SDValue Ops[6];
4441    Ops[0] = getRoot();
4442    for (int x = 1; x < 6; ++x)
4443      Ops[x] = getValue(I.getOperand(x));
4444
4445    DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6));
4446    return 0;
4447  }
4448  case Intrinsic::atomic_cmp_swap: {
4449    SDValue Root = getRoot();
4450    SDValue L =
4451      DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(),
4452                    getValue(I.getOperand(2)).getValueType().getSimpleVT(),
4453                    Root,
4454                    getValue(I.getOperand(1)),
4455                    getValue(I.getOperand(2)),
4456                    getValue(I.getOperand(3)),
4457                    I.getOperand(1));
4458    setValue(&I, L);
4459    DAG.setRoot(L.getValue(1));
4460    return 0;
4461  }
4462  case Intrinsic::atomic_load_add:
4463    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD);
4464  case Intrinsic::atomic_load_sub:
4465    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB);
4466  case Intrinsic::atomic_load_or:
4467    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR);
4468  case Intrinsic::atomic_load_xor:
4469    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR);
4470  case Intrinsic::atomic_load_and:
4471    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND);
4472  case Intrinsic::atomic_load_nand:
4473    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND);
4474  case Intrinsic::atomic_load_max:
4475    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX);
4476  case Intrinsic::atomic_load_min:
4477    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN);
4478  case Intrinsic::atomic_load_umin:
4479    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN);
4480  case Intrinsic::atomic_load_umax:
4481    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX);
4482  case Intrinsic::atomic_swap:
4483    return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP);
4484
4485  case Intrinsic::invariant_start:
4486  case Intrinsic::lifetime_start:
4487    // Discard region information.
4488    setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
4489    return 0;
4490  case Intrinsic::invariant_end:
4491  case Intrinsic::lifetime_end:
4492    // Discard region information.
4493    return 0;
4494  }
4495}
4496
4497void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
4498                                      bool isTailCall,
4499                                      MachineBasicBlock *LandingPad) {
4500  const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
4501  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
4502  const Type *RetTy = FTy->getReturnType();
4503  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4504  MCSymbol *BeginLabel = 0;
4505
4506  TargetLowering::ArgListTy Args;
4507  TargetLowering::ArgListEntry Entry;
4508  Args.reserve(CS.arg_size());
4509
4510  // Check whether the function can return without sret-demotion.
4511  SmallVector<EVT, 4> OutVTs;
4512  SmallVector<ISD::ArgFlagsTy, 4> OutsFlags;
4513  SmallVector<uint64_t, 4> Offsets;
4514  getReturnInfo(RetTy, CS.getAttributes().getRetAttributes(),
4515                OutVTs, OutsFlags, TLI, &Offsets);
4516
4517  bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
4518                        FTy->isVarArg(), OutVTs, OutsFlags, DAG);
4519
4520  SDValue DemoteStackSlot;
4521
4522  if (!CanLowerReturn) {
4523    uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(
4524                      FTy->getReturnType());
4525    unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(
4526                      FTy->getReturnType());
4527    MachineFunction &MF = DAG.getMachineFunction();
4528    int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
4529    const Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
4530
4531    DemoteStackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
4532    Entry.Node = DemoteStackSlot;
4533    Entry.Ty = StackSlotPtrType;
4534    Entry.isSExt = false;
4535    Entry.isZExt = false;
4536    Entry.isInReg = false;
4537    Entry.isSRet = true;
4538    Entry.isNest = false;
4539    Entry.isByVal = false;
4540    Entry.Alignment = Align;
4541    Args.push_back(Entry);
4542    RetTy = Type::getVoidTy(FTy->getContext());
4543  }
4544
4545  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
4546       i != e; ++i) {
4547    SDValue ArgNode = getValue(*i);
4548    Entry.Node = ArgNode; Entry.Ty = (*i)->getType();
4549
4550    unsigned attrInd = i - CS.arg_begin() + 1;
4551    Entry.isSExt  = CS.paramHasAttr(attrInd, Attribute::SExt);
4552    Entry.isZExt  = CS.paramHasAttr(attrInd, Attribute::ZExt);
4553    Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg);
4554    Entry.isSRet  = CS.paramHasAttr(attrInd, Attribute::StructRet);
4555    Entry.isNest  = CS.paramHasAttr(attrInd, Attribute::Nest);
4556    Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal);
4557    Entry.Alignment = CS.getParamAlignment(attrInd);
4558    Args.push_back(Entry);
4559  }
4560
4561  if (LandingPad) {
4562    // Insert a label before the invoke call to mark the try range.  This can be
4563    // used to detect deletion of the invoke via the MachineModuleInfo.
4564    BeginLabel = MMI.getContext().CreateTempSymbol();
4565
4566    // For SjLj, keep track of which landing pads go with which invokes
4567    // so as to maintain the ordering of pads in the LSDA.
4568    unsigned CallSiteIndex = MMI.getCurrentCallSite();
4569    if (CallSiteIndex) {
4570      MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
4571      // Now that the call site is handled, stop tracking it.
4572      MMI.setCurrentCallSite(0);
4573    }
4574
4575    // Both PendingLoads and PendingExports must be flushed here;
4576    // this call might not return.
4577    (void)getRoot();
4578    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel));
4579  }
4580
4581  // Check if target-independent constraints permit a tail call here.
4582  // Target-dependent constraints are checked within TLI.LowerCallTo.
4583  if (isTailCall &&
4584      !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI))
4585    isTailCall = false;
4586
4587  std::pair<SDValue,SDValue> Result =
4588    TLI.LowerCallTo(getRoot(), RetTy,
4589                    CS.paramHasAttr(0, Attribute::SExt),
4590                    CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(),
4591                    CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(),
4592                    CS.getCallingConv(),
4593                    isTailCall,
4594                    !CS.getInstruction()->use_empty(),
4595                    Callee, Args, DAG, getCurDebugLoc());
4596  assert((isTailCall || Result.second.getNode()) &&
4597         "Non-null chain expected with non-tail call!");
4598  assert((Result.second.getNode() || !Result.first.getNode()) &&
4599         "Null value expected with tail call!");
4600  if (Result.first.getNode()) {
4601    setValue(CS.getInstruction(), Result.first);
4602  } else if (!CanLowerReturn && Result.second.getNode()) {
4603    // The instruction result is the result of loading from the
4604    // hidden sret parameter.
4605    SmallVector<EVT, 1> PVTs;
4606    const Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
4607
4608    ComputeValueVTs(TLI, PtrRetTy, PVTs);
4609    assert(PVTs.size() == 1 && "Pointers should fit in one register");
4610    EVT PtrVT = PVTs[0];
4611    unsigned NumValues = OutVTs.size();
4612    SmallVector<SDValue, 4> Values(NumValues);
4613    SmallVector<SDValue, 4> Chains(NumValues);
4614
4615    for (unsigned i = 0; i < NumValues; ++i) {
4616      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT,
4617                                DemoteStackSlot,
4618                                DAG.getConstant(Offsets[i], PtrVT));
4619      SDValue L = DAG.getLoad(OutVTs[i], getCurDebugLoc(), Result.second,
4620                              Add, NULL, Offsets[i], false, false, 1);
4621      Values[i] = L;
4622      Chains[i] = L.getValue(1);
4623    }
4624
4625    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
4626                                MVT::Other, &Chains[0], NumValues);
4627    PendingLoads.push_back(Chain);
4628
4629    // Collect the legal value parts into potentially illegal values
4630    // that correspond to the original function's return values.
4631    SmallVector<EVT, 4> RetTys;
4632    RetTy = FTy->getReturnType();
4633    ComputeValueVTs(TLI, RetTy, RetTys);
4634    ISD::NodeType AssertOp = ISD::DELETED_NODE;
4635    SmallVector<SDValue, 4> ReturnValues;
4636    unsigned CurReg = 0;
4637    for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
4638      EVT VT = RetTys[I];
4639      EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT);
4640      unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT);
4641
4642      SDValue ReturnValue =
4643        getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs,
4644                         RegisterVT, VT, AssertOp);
4645      ReturnValues.push_back(ReturnValue);
4646      CurReg += NumRegs;
4647    }
4648
4649    setValue(CS.getInstruction(),
4650             DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
4651                         DAG.getVTList(&RetTys[0], RetTys.size()),
4652                         &ReturnValues[0], ReturnValues.size()));
4653
4654  }
4655
4656  // As a special case, a null chain means that a tail call has been emitted and
4657  // the DAG root is already updated.
4658  if (Result.second.getNode())
4659    DAG.setRoot(Result.second);
4660  else
4661    HasTailCall = true;
4662
4663  if (LandingPad) {
4664    // Insert a label at the end of the invoke call to mark the try range.  This
4665    // can be used to detect deletion of the invoke via the MachineModuleInfo.
4666    MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
4667    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel));
4668
4669    // Inform MachineModuleInfo of range.
4670    MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
4671  }
4672}
4673
4674/// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
4675/// value is equal or not-equal to zero.
4676static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
4677  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
4678       UI != E; ++UI) {
4679    if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
4680      if (IC->isEquality())
4681        if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
4682          if (C->isNullValue())
4683            continue;
4684    // Unknown instruction.
4685    return false;
4686  }
4687  return true;
4688}
4689
4690static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
4691                             const Type *LoadTy,
4692                             SelectionDAGBuilder &Builder) {
4693
4694  // Check to see if this load can be trivially constant folded, e.g. if the
4695  // input is from a string literal.
4696  if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
4697    // Cast pointer to the type we really want to load.
4698    LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
4699                                         PointerType::getUnqual(LoadTy));
4700
4701    if (const Constant *LoadCst =
4702          ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
4703                                       Builder.TD))
4704      return Builder.getValue(LoadCst);
4705  }
4706
4707  // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
4708  // still constant memory, the input chain can be the entry node.
4709  SDValue Root;
4710  bool ConstantMemory = false;
4711
4712  // Do not serialize (non-volatile) loads of constant memory with anything.
4713  if (Builder.AA->pointsToConstantMemory(PtrVal)) {
4714    Root = Builder.DAG.getEntryNode();
4715    ConstantMemory = true;
4716  } else {
4717    // Do not serialize non-volatile loads against each other.
4718    Root = Builder.DAG.getRoot();
4719  }
4720
4721  SDValue Ptr = Builder.getValue(PtrVal);
4722  SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root,
4723                                        Ptr, PtrVal /*SrcValue*/, 0/*SVOffset*/,
4724                                        false /*volatile*/,
4725                                        false /*nontemporal*/, 1 /* align=1 */);
4726
4727  if (!ConstantMemory)
4728    Builder.PendingLoads.push_back(LoadVal.getValue(1));
4729  return LoadVal;
4730}
4731
4732
4733/// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
4734/// If so, return true and lower it, otherwise return false and it will be
4735/// lowered like a normal call.
4736bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
4737  // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
4738  if (I.getNumOperands() != 4)
4739    return false;
4740
4741  const Value *LHS = I.getOperand(1), *RHS = I.getOperand(2);
4742  if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
4743      !I.getOperand(3)->getType()->isIntegerTy() ||
4744      !I.getType()->isIntegerTy())
4745    return false;
4746
4747  const ConstantInt *Size = dyn_cast<ConstantInt>(I.getOperand(3));
4748
4749  // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
4750  // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
4751  if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) {
4752    bool ActuallyDoIt = true;
4753    MVT LoadVT;
4754    const Type *LoadTy;
4755    switch (Size->getZExtValue()) {
4756    default:
4757      LoadVT = MVT::Other;
4758      LoadTy = 0;
4759      ActuallyDoIt = false;
4760      break;
4761    case 2:
4762      LoadVT = MVT::i16;
4763      LoadTy = Type::getInt16Ty(Size->getContext());
4764      break;
4765    case 4:
4766      LoadVT = MVT::i32;
4767      LoadTy = Type::getInt32Ty(Size->getContext());
4768      break;
4769    case 8:
4770      LoadVT = MVT::i64;
4771      LoadTy = Type::getInt64Ty(Size->getContext());
4772      break;
4773        /*
4774    case 16:
4775      LoadVT = MVT::v4i32;
4776      LoadTy = Type::getInt32Ty(Size->getContext());
4777      LoadTy = VectorType::get(LoadTy, 4);
4778      break;
4779         */
4780    }
4781
4782    // This turns into unaligned loads.  We only do this if the target natively
4783    // supports the MVT we'll be loading or if it is small enough (<= 4) that
4784    // we'll only produce a small number of byte loads.
4785
4786    // Require that we can find a legal MVT, and only do this if the target
4787    // supports unaligned loads of that type.  Expanding into byte loads would
4788    // bloat the code.
4789    if (ActuallyDoIt && Size->getZExtValue() > 4) {
4790      // TODO: Handle 5 byte compare as 4-byte + 1 byte.
4791      // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
4792      if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT))
4793        ActuallyDoIt = false;
4794    }
4795
4796    if (ActuallyDoIt) {
4797      SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
4798      SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
4799
4800      SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal,
4801                                 ISD::SETNE);
4802      EVT CallVT = TLI.getValueType(I.getType(), true);
4803      setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT));
4804      return true;
4805    }
4806  }
4807
4808
4809  return false;
4810}
4811
4812
4813void SelectionDAGBuilder::visitCall(const CallInst &I) {
4814  const char *RenameFn = 0;
4815  if (Function *F = I.getCalledFunction()) {
4816    if (F->isDeclaration()) {
4817      const TargetIntrinsicInfo *II = TM.getIntrinsicInfo();
4818      if (II) {
4819        if (unsigned IID = II->getIntrinsicID(F)) {
4820          RenameFn = visitIntrinsicCall(I, IID);
4821          if (!RenameFn)
4822            return;
4823        }
4824      }
4825      if (unsigned IID = F->getIntrinsicID()) {
4826        RenameFn = visitIntrinsicCall(I, IID);
4827        if (!RenameFn)
4828          return;
4829      }
4830    }
4831
4832    // Check for well-known libc/libm calls.  If the function is internal, it
4833    // can't be a library call.
4834    if (!F->hasLocalLinkage() && F->hasName()) {
4835      StringRef Name = F->getName();
4836      if (Name == "copysign" || Name == "copysignf" || Name == "copysignl") {
4837        if (I.getNumOperands() == 3 &&   // Basic sanity checks.
4838            I.getOperand(1)->getType()->isFloatingPointTy() &&
4839            I.getType() == I.getOperand(1)->getType() &&
4840            I.getType() == I.getOperand(2)->getType()) {
4841          SDValue LHS = getValue(I.getOperand(1));
4842          SDValue RHS = getValue(I.getOperand(2));
4843          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(),
4844                                   LHS.getValueType(), LHS, RHS));
4845          return;
4846        }
4847      } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") {
4848        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
4849            I.getOperand(1)->getType()->isFloatingPointTy() &&
4850            I.getType() == I.getOperand(1)->getType()) {
4851          SDValue Tmp = getValue(I.getOperand(1));
4852          setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(),
4853                                   Tmp.getValueType(), Tmp));
4854          return;
4855        }
4856      } else if (Name == "sin" || Name == "sinf" || Name == "sinl") {
4857        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
4858            I.getOperand(1)->getType()->isFloatingPointTy() &&
4859            I.getType() == I.getOperand(1)->getType() &&
4860            I.onlyReadsMemory()) {
4861          SDValue Tmp = getValue(I.getOperand(1));
4862          setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(),
4863                                   Tmp.getValueType(), Tmp));
4864          return;
4865        }
4866      } else if (Name == "cos" || Name == "cosf" || Name == "cosl") {
4867        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
4868            I.getOperand(1)->getType()->isFloatingPointTy() &&
4869            I.getType() == I.getOperand(1)->getType() &&
4870            I.onlyReadsMemory()) {
4871          SDValue Tmp = getValue(I.getOperand(1));
4872          setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(),
4873                                   Tmp.getValueType(), Tmp));
4874          return;
4875        }
4876      } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") {
4877        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
4878            I.getOperand(1)->getType()->isFloatingPointTy() &&
4879            I.getType() == I.getOperand(1)->getType() &&
4880            I.onlyReadsMemory()) {
4881          SDValue Tmp = getValue(I.getOperand(1));
4882          setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(),
4883                                   Tmp.getValueType(), Tmp));
4884          return;
4885        }
4886      } else if (Name == "memcmp") {
4887        if (visitMemCmpCall(I))
4888          return;
4889      }
4890    }
4891  } else if (isa<InlineAsm>(I.getOperand(0))) {
4892    visitInlineAsm(&I);
4893    return;
4894  }
4895
4896  SDValue Callee;
4897  if (!RenameFn)
4898    Callee = getValue(I.getOperand(0));
4899  else
4900    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
4901
4902  // Check if we can potentially perform a tail call. More detailed checking is
4903  // be done within LowerCallTo, after more information about the call is known.
4904  LowerCallTo(&I, Callee, I.isTailCall());
4905}
4906
4907namespace llvm {
4908
4909/// AsmOperandInfo - This contains information for each constraint that we are
4910/// lowering.
4911class LLVM_LIBRARY_VISIBILITY SDISelAsmOperandInfo :
4912    public TargetLowering::AsmOperandInfo {
4913public:
4914  /// CallOperand - If this is the result output operand or a clobber
4915  /// this is null, otherwise it is the incoming operand to the CallInst.
4916  /// This gets modified as the asm is processed.
4917  SDValue CallOperand;
4918
4919  /// AssignedRegs - If this is a register or register class operand, this
4920  /// contains the set of register corresponding to the operand.
4921  RegsForValue AssignedRegs;
4922
4923  explicit SDISelAsmOperandInfo(const InlineAsm::ConstraintInfo &info)
4924    : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
4925  }
4926
4927  /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
4928  /// busy in OutputRegs/InputRegs.
4929  void MarkAllocatedRegs(bool isOutReg, bool isInReg,
4930                         std::set<unsigned> &OutputRegs,
4931                         std::set<unsigned> &InputRegs,
4932                         const TargetRegisterInfo &TRI) const {
4933    if (isOutReg) {
4934      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
4935        MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
4936    }
4937    if (isInReg) {
4938      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
4939        MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
4940    }
4941  }
4942
4943  /// getCallOperandValEVT - Return the EVT of the Value* that this operand
4944  /// corresponds to.  If there is no Value* for this operand, it returns
4945  /// MVT::Other.
4946  EVT getCallOperandValEVT(LLVMContext &Context,
4947                           const TargetLowering &TLI,
4948                           const TargetData *TD) const {
4949    if (CallOperandVal == 0) return MVT::Other;
4950
4951    if (isa<BasicBlock>(CallOperandVal))
4952      return TLI.getPointerTy();
4953
4954    const llvm::Type *OpTy = CallOperandVal->getType();
4955
4956    // If this is an indirect operand, the operand is a pointer to the
4957    // accessed type.
4958    if (isIndirect) {
4959      const llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
4960      if (!PtrTy)
4961        report_fatal_error("Indirect operand for inline asm not a pointer!");
4962      OpTy = PtrTy->getElementType();
4963    }
4964
4965    // If OpTy is not a single value, it may be a struct/union that we
4966    // can tile with integers.
4967    if (!OpTy->isSingleValueType() && OpTy->isSized()) {
4968      unsigned BitSize = TD->getTypeSizeInBits(OpTy);
4969      switch (BitSize) {
4970      default: break;
4971      case 1:
4972      case 8:
4973      case 16:
4974      case 32:
4975      case 64:
4976      case 128:
4977        OpTy = IntegerType::get(Context, BitSize);
4978        break;
4979      }
4980    }
4981
4982    return TLI.getValueType(OpTy, true);
4983  }
4984
4985private:
4986  /// MarkRegAndAliases - Mark the specified register and all aliases in the
4987  /// specified set.
4988  static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
4989                                const TargetRegisterInfo &TRI) {
4990    assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
4991    Regs.insert(Reg);
4992    if (const unsigned *Aliases = TRI.getAliasSet(Reg))
4993      for (; *Aliases; ++Aliases)
4994        Regs.insert(*Aliases);
4995  }
4996};
4997
4998} // end llvm namespace.
4999
5000/// isAllocatableRegister - If the specified register is safe to allocate,
5001/// i.e. it isn't a stack pointer or some other special register, return the
5002/// register class for the register.  Otherwise, return null.
5003static const TargetRegisterClass *
5004isAllocatableRegister(unsigned Reg, MachineFunction &MF,
5005                      const TargetLowering &TLI,
5006                      const TargetRegisterInfo *TRI) {
5007  EVT FoundVT = MVT::Other;
5008  const TargetRegisterClass *FoundRC = 0;
5009  for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(),
5010       E = TRI->regclass_end(); RCI != E; ++RCI) {
5011    EVT ThisVT = MVT::Other;
5012
5013    const TargetRegisterClass *RC = *RCI;
5014    // If none of the value types for this register class are valid, we
5015    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
5016    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
5017         I != E; ++I) {
5018      if (TLI.isTypeLegal(*I)) {
5019        // If we have already found this register in a different register class,
5020        // choose the one with the largest VT specified.  For example, on
5021        // PowerPC, we favor f64 register classes over f32.
5022        if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) {
5023          ThisVT = *I;
5024          break;
5025        }
5026      }
5027    }
5028
5029    if (ThisVT == MVT::Other) continue;
5030
5031    // NOTE: This isn't ideal.  In particular, this might allocate the
5032    // frame pointer in functions that need it (due to them not being taken
5033    // out of allocation, because a variable sized allocation hasn't been seen
5034    // yet).  This is a slight code pessimization, but should still work.
5035    for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
5036         E = RC->allocation_order_end(MF); I != E; ++I)
5037      if (*I == Reg) {
5038        // We found a matching register class.  Keep looking at others in case
5039        // we find one with larger registers that this physreg is also in.
5040        FoundRC = RC;
5041        FoundVT = ThisVT;
5042        break;
5043      }
5044  }
5045  return FoundRC;
5046}
5047
5048/// GetRegistersForValue - Assign registers (virtual or physical) for the
5049/// specified operand.  We prefer to assign virtual registers, to allow the
5050/// register allocator to handle the assignment process.  However, if the asm
5051/// uses features that we can't model on machineinstrs, we have SDISel do the
5052/// allocation.  This produces generally horrible, but correct, code.
5053///
5054///   OpInfo describes the operand.
5055///   Input and OutputRegs are the set of already allocated physical registers.
5056///
5057void SelectionDAGBuilder::
5058GetRegistersForValue(SDISelAsmOperandInfo &OpInfo,
5059                     std::set<unsigned> &OutputRegs,
5060                     std::set<unsigned> &InputRegs) {
5061  LLVMContext &Context = FuncInfo.Fn->getContext();
5062
5063  // Compute whether this value requires an input register, an output register,
5064  // or both.
5065  bool isOutReg = false;
5066  bool isInReg = false;
5067  switch (OpInfo.Type) {
5068  case InlineAsm::isOutput:
5069    isOutReg = true;
5070
5071    // If there is an input constraint that matches this, we need to reserve
5072    // the input register so no other inputs allocate to it.
5073    isInReg = OpInfo.hasMatchingInput();
5074    break;
5075  case InlineAsm::isInput:
5076    isInReg = true;
5077    isOutReg = false;
5078    break;
5079  case InlineAsm::isClobber:
5080    isOutReg = true;
5081    isInReg = true;
5082    break;
5083  }
5084
5085
5086  MachineFunction &MF = DAG.getMachineFunction();
5087  SmallVector<unsigned, 4> Regs;
5088
5089  // If this is a constraint for a single physreg, or a constraint for a
5090  // register class, find it.
5091  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
5092    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5093                                     OpInfo.ConstraintVT);
5094
5095  unsigned NumRegs = 1;
5096  if (OpInfo.ConstraintVT != MVT::Other) {
5097    // If this is a FP input in an integer register (or visa versa) insert a bit
5098    // cast of the input value.  More generally, handle any case where the input
5099    // value disagrees with the register class we plan to stick this in.
5100    if (OpInfo.Type == InlineAsm::isInput &&
5101        PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
5102      // Try to convert to the first EVT that the reg class contains.  If the
5103      // types are identical size, use a bitcast to convert (e.g. two differing
5104      // vector types).
5105      EVT RegVT = *PhysReg.second->vt_begin();
5106      if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
5107        OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
5108                                         RegVT, OpInfo.CallOperand);
5109        OpInfo.ConstraintVT = RegVT;
5110      } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
5111        // If the input is a FP value and we want it in FP registers, do a
5112        // bitcast to the corresponding integer type.  This turns an f64 value
5113        // into i64, which can be passed with two i32 values on a 32-bit
5114        // machine.
5115        RegVT = EVT::getIntegerVT(Context,
5116                                  OpInfo.ConstraintVT.getSizeInBits());
5117        OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
5118                                         RegVT, OpInfo.CallOperand);
5119        OpInfo.ConstraintVT = RegVT;
5120      }
5121    }
5122
5123    NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
5124  }
5125
5126  EVT RegVT;
5127  EVT ValueVT = OpInfo.ConstraintVT;
5128
5129  // If this is a constraint for a specific physical register, like {r17},
5130  // assign it now.
5131  if (unsigned AssignedReg = PhysReg.first) {
5132    const TargetRegisterClass *RC = PhysReg.second;
5133    if (OpInfo.ConstraintVT == MVT::Other)
5134      ValueVT = *RC->vt_begin();
5135
5136    // Get the actual register value type.  This is important, because the user
5137    // may have asked for (e.g.) the AX register in i32 type.  We need to
5138    // remember that AX is actually i16 to get the right extension.
5139    RegVT = *RC->vt_begin();
5140
5141    // This is a explicit reference to a physical register.
5142    Regs.push_back(AssignedReg);
5143
5144    // If this is an expanded reference, add the rest of the regs to Regs.
5145    if (NumRegs != 1) {
5146      TargetRegisterClass::iterator I = RC->begin();
5147      for (; *I != AssignedReg; ++I)
5148        assert(I != RC->end() && "Didn't find reg!");
5149
5150      // Already added the first reg.
5151      --NumRegs; ++I;
5152      for (; NumRegs; --NumRegs, ++I) {
5153        assert(I != RC->end() && "Ran out of registers to allocate!");
5154        Regs.push_back(*I);
5155      }
5156    }
5157
5158    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5159    const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5160    OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5161    return;
5162  }
5163
5164  // Otherwise, if this was a reference to an LLVM register class, create vregs
5165  // for this reference.
5166  if (const TargetRegisterClass *RC = PhysReg.second) {
5167    RegVT = *RC->vt_begin();
5168    if (OpInfo.ConstraintVT == MVT::Other)
5169      ValueVT = RegVT;
5170
5171    // Create the appropriate number of virtual registers.
5172    MachineRegisterInfo &RegInfo = MF.getRegInfo();
5173    for (; NumRegs; --NumRegs)
5174      Regs.push_back(RegInfo.createVirtualRegister(RC));
5175
5176    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5177    return;
5178  }
5179
5180  // This is a reference to a register class that doesn't directly correspond
5181  // to an LLVM register class.  Allocate NumRegs consecutive, available,
5182  // registers from the class.
5183  std::vector<unsigned> RegClassRegs
5184    = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
5185                                            OpInfo.ConstraintVT);
5186
5187  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5188  unsigned NumAllocated = 0;
5189  for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
5190    unsigned Reg = RegClassRegs[i];
5191    // See if this register is available.
5192    if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
5193        (isInReg  && InputRegs.count(Reg))) {    // Already used.
5194      // Make sure we find consecutive registers.
5195      NumAllocated = 0;
5196      continue;
5197    }
5198
5199    // Check to see if this register is allocatable (i.e. don't give out the
5200    // stack pointer).
5201    const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, TRI);
5202    if (!RC) {        // Couldn't allocate this register.
5203      // Reset NumAllocated to make sure we return consecutive registers.
5204      NumAllocated = 0;
5205      continue;
5206    }
5207
5208    // Okay, this register is good, we can use it.
5209    ++NumAllocated;
5210
5211    // If we allocated enough consecutive registers, succeed.
5212    if (NumAllocated == NumRegs) {
5213      unsigned RegStart = (i-NumAllocated)+1;
5214      unsigned RegEnd   = i+1;
5215      // Mark all of the allocated registers used.
5216      for (unsigned i = RegStart; i != RegEnd; ++i)
5217        Regs.push_back(RegClassRegs[i]);
5218
5219      OpInfo.AssignedRegs = RegsForValue(Regs, *RC->vt_begin(),
5220                                         OpInfo.ConstraintVT);
5221      OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5222      return;
5223    }
5224  }
5225
5226  // Otherwise, we couldn't allocate enough registers for this.
5227}
5228
5229/// visitInlineAsm - Handle a call to an InlineAsm object.
5230///
5231void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
5232  const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
5233
5234  /// ConstraintOperands - Information about all of the constraints.
5235  std::vector<SDISelAsmOperandInfo> ConstraintOperands;
5236
5237  std::set<unsigned> OutputRegs, InputRegs;
5238
5239  // Do a prepass over the constraints, canonicalizing them, and building up the
5240  // ConstraintOperands list.
5241  std::vector<InlineAsm::ConstraintInfo>
5242    ConstraintInfos = IA->ParseConstraints();
5243
5244  bool hasMemory = hasInlineAsmMemConstraint(ConstraintInfos, TLI);
5245
5246  SDValue Chain, Flag;
5247
5248  // We won't need to flush pending loads if this asm doesn't touch
5249  // memory and is nonvolatile.
5250  if (hasMemory || IA->hasSideEffects())
5251    Chain = getRoot();
5252  else
5253    Chain = DAG.getRoot();
5254
5255  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
5256  unsigned ResNo = 0;   // ResNo - The result number of the next output.
5257  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
5258    ConstraintOperands.push_back(SDISelAsmOperandInfo(ConstraintInfos[i]));
5259    SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
5260
5261    EVT OpVT = MVT::Other;
5262
5263    // Compute the value type for each operand.
5264    switch (OpInfo.Type) {
5265    case InlineAsm::isOutput:
5266      // Indirect outputs just consume an argument.
5267      if (OpInfo.isIndirect) {
5268        OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5269        break;
5270      }
5271
5272      // The return value of the call is this value.  As such, there is no
5273      // corresponding argument.
5274      assert(!CS.getType()->isVoidTy() &&
5275             "Bad inline asm!");
5276      if (const StructType *STy = dyn_cast<StructType>(CS.getType())) {
5277        OpVT = TLI.getValueType(STy->getElementType(ResNo));
5278      } else {
5279        assert(ResNo == 0 && "Asm only has one result!");
5280        OpVT = TLI.getValueType(CS.getType());
5281      }
5282      ++ResNo;
5283      break;
5284    case InlineAsm::isInput:
5285      OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5286      break;
5287    case InlineAsm::isClobber:
5288      // Nothing to do.
5289      break;
5290    }
5291
5292    // If this is an input or an indirect output, process the call argument.
5293    // BasicBlocks are labels, currently appearing only in asm's.
5294    if (OpInfo.CallOperandVal) {
5295      // Strip bitcasts, if any.  This mostly comes up for functions.
5296      OpInfo.CallOperandVal = OpInfo.CallOperandVal->stripPointerCasts();
5297
5298      if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
5299        OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
5300      } else {
5301        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
5302      }
5303
5304      OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD);
5305    }
5306
5307    OpInfo.ConstraintVT = OpVT;
5308  }
5309
5310  // Second pass over the constraints: compute which constraint option to use
5311  // and assign registers to constraints that want a specific physreg.
5312  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
5313    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5314
5315    // If this is an output operand with a matching input operand, look up the
5316    // matching input. If their types mismatch, e.g. one is an integer, the
5317    // other is floating point, or their sizes are different, flag it as an
5318    // error.
5319    if (OpInfo.hasMatchingInput()) {
5320      SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5321
5322      if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5323        if ((OpInfo.ConstraintVT.isInteger() !=
5324             Input.ConstraintVT.isInteger()) ||
5325            (OpInfo.ConstraintVT.getSizeInBits() !=
5326             Input.ConstraintVT.getSizeInBits())) {
5327          report_fatal_error("Unsupported asm: input constraint"
5328                             " with a matching output constraint of"
5329                             " incompatible type!");
5330        }
5331        Input.ConstraintVT = OpInfo.ConstraintVT;
5332      }
5333    }
5334
5335    // Compute the constraint code and ConstraintType to use.
5336    TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, hasMemory, &DAG);
5337
5338    // If this is a memory input, and if the operand is not indirect, do what we
5339    // need to to provide an address for the memory input.
5340    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5341        !OpInfo.isIndirect) {
5342      assert(OpInfo.Type == InlineAsm::isInput &&
5343             "Can only indirectify direct input operands!");
5344
5345      // Memory operands really want the address of the value.  If we don't have
5346      // an indirect input, put it in the constpool if we can, otherwise spill
5347      // it to a stack slot.
5348
5349      // If the operand is a float, integer, or vector constant, spill to a
5350      // constant pool entry to get its address.
5351      const Value *OpVal = OpInfo.CallOperandVal;
5352      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
5353          isa<ConstantVector>(OpVal)) {
5354        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
5355                                                 TLI.getPointerTy());
5356      } else {
5357        // Otherwise, create a stack slot and emit a store to it before the
5358        // asm.
5359        const Type *Ty = OpVal->getType();
5360        uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
5361        unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
5362        MachineFunction &MF = DAG.getMachineFunction();
5363        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5364        SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
5365        Chain = DAG.getStore(Chain, getCurDebugLoc(),
5366                             OpInfo.CallOperand, StackSlot, NULL, 0,
5367                             false, false, 0);
5368        OpInfo.CallOperand = StackSlot;
5369      }
5370
5371      // There is no longer a Value* corresponding to this operand.
5372      OpInfo.CallOperandVal = 0;
5373
5374      // It is now an indirect operand.
5375      OpInfo.isIndirect = true;
5376    }
5377
5378    // If this constraint is for a specific register, allocate it before
5379    // anything else.
5380    if (OpInfo.ConstraintType == TargetLowering::C_Register)
5381      GetRegistersForValue(OpInfo, OutputRegs, InputRegs);
5382  }
5383
5384  ConstraintInfos.clear();
5385
5386  // Second pass - Loop over all of the operands, assigning virtual or physregs
5387  // to register class operands.
5388  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5389    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5390
5391    // C_Register operands have already been allocated, Other/Memory don't need
5392    // to be.
5393    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
5394      GetRegistersForValue(OpInfo, OutputRegs, InputRegs);
5395  }
5396
5397  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
5398  std::vector<SDValue> AsmNodeOperands;
5399  AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
5400  AsmNodeOperands.push_back(
5401          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
5402                                      TLI.getPointerTy()));
5403
5404  // If we have a !srcloc metadata node associated with it, we want to attach
5405  // this to the ultimately generated inline asm machineinstr.  To do this, we
5406  // pass in the third operand as this (potentially null) inline asm MDNode.
5407  const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
5408  AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
5409
5410  // Loop over all of the inputs, copying the operand values into the
5411  // appropriate registers and processing the output regs.
5412  RegsForValue RetValRegs;
5413
5414  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
5415  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
5416
5417  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5418    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5419
5420    switch (OpInfo.Type) {
5421    case InlineAsm::isOutput: {
5422      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
5423          OpInfo.ConstraintType != TargetLowering::C_Register) {
5424        // Memory output, or 'other' output (e.g. 'X' constraint).
5425        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
5426
5427        // Add information to the INLINEASM node to know about this output.
5428        unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
5429        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
5430                                                        TLI.getPointerTy()));
5431        AsmNodeOperands.push_back(OpInfo.CallOperand);
5432        break;
5433      }
5434
5435      // Otherwise, this is a register or register class output.
5436
5437      // Copy the output from the appropriate register.  Find a register that
5438      // we can use.
5439      if (OpInfo.AssignedRegs.Regs.empty())
5440        report_fatal_error("Couldn't allocate output reg for constraint '" +
5441                           Twine(OpInfo.ConstraintCode) + "'!");
5442
5443      // If this is an indirect operand, store through the pointer after the
5444      // asm.
5445      if (OpInfo.isIndirect) {
5446        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
5447                                                      OpInfo.CallOperandVal));
5448      } else {
5449        // This is the result value of the call.
5450        assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
5451        // Concatenate this output onto the outputs list.
5452        RetValRegs.append(OpInfo.AssignedRegs);
5453      }
5454
5455      // Add information to the INLINEASM node to know that this register is
5456      // set.
5457      OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
5458                                           InlineAsm::Kind_RegDefEarlyClobber :
5459                                               InlineAsm::Kind_RegDef,
5460                                               false,
5461                                               0,
5462                                               DAG,
5463                                               AsmNodeOperands);
5464      break;
5465    }
5466    case InlineAsm::isInput: {
5467      SDValue InOperandVal = OpInfo.CallOperand;
5468
5469      if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
5470        // If this is required to match an output register we have already set,
5471        // just use its register.
5472        unsigned OperandNo = OpInfo.getMatchedOperand();
5473
5474        // Scan until we find the definition we already emitted of this operand.
5475        // When we find it, create a RegsForValue operand.
5476        unsigned CurOp = InlineAsm::Op_FirstOperand;
5477        for (; OperandNo; --OperandNo) {
5478          // Advance to the next operand.
5479          unsigned OpFlag =
5480            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5481          assert((InlineAsm::isRegDefKind(OpFlag) ||
5482                  InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
5483                  InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
5484          CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
5485        }
5486
5487        unsigned OpFlag =
5488          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5489        if (InlineAsm::isRegDefKind(OpFlag) ||
5490            InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
5491          // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
5492          if (OpInfo.isIndirect) {
5493            // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
5494            LLVMContext &Ctx = *DAG.getContext();
5495            Ctx.emitError(CS.getInstruction(),  "inline asm not supported yet:"
5496                          " don't know how to handle tied "
5497                          "indirect register inputs");
5498          }
5499
5500          RegsForValue MatchedRegs;
5501          MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
5502          EVT RegVT = AsmNodeOperands[CurOp+1].getValueType();
5503          MatchedRegs.RegVTs.push_back(RegVT);
5504          MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
5505          for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
5506               i != e; ++i)
5507            MatchedRegs.Regs.push_back
5508              (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)));
5509
5510          // Use the produced MatchedRegs object to
5511          MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
5512                                    Chain, &Flag);
5513          MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
5514                                           true, OpInfo.getMatchedOperand(),
5515                                           DAG, AsmNodeOperands);
5516          break;
5517        }
5518
5519        assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
5520        assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
5521               "Unexpected number of operands");
5522        // Add information to the INLINEASM node to know about this input.
5523        // See InlineAsm.h isUseOperandTiedToDef.
5524        OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
5525                                                    OpInfo.getMatchedOperand());
5526        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
5527                                                        TLI.getPointerTy()));
5528        AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
5529        break;
5530      }
5531
5532      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
5533        assert(!OpInfo.isIndirect &&
5534               "Don't know how to handle indirect other inputs yet!");
5535
5536        std::vector<SDValue> Ops;
5537        TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0],
5538                                         hasMemory, Ops, DAG);
5539        if (Ops.empty())
5540          report_fatal_error("Invalid operand for inline asm constraint '" +
5541                             Twine(OpInfo.ConstraintCode) + "'!");
5542
5543        // Add information to the INLINEASM node to know about this input.
5544        unsigned ResOpType =
5545          InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
5546        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5547                                                        TLI.getPointerTy()));
5548        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
5549        break;
5550      }
5551
5552      if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
5553        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
5554        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
5555               "Memory operands expect pointer values");
5556
5557        // Add information to the INLINEASM node to know about this input.
5558        unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
5559        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5560                                                        TLI.getPointerTy()));
5561        AsmNodeOperands.push_back(InOperandVal);
5562        break;
5563      }
5564
5565      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
5566              OpInfo.ConstraintType == TargetLowering::C_Register) &&
5567             "Unknown constraint type!");
5568      assert(!OpInfo.isIndirect &&
5569             "Don't know how to handle indirect register inputs yet!");
5570
5571      // Copy the input into the appropriate registers.
5572      if (OpInfo.AssignedRegs.Regs.empty() ||
5573          !OpInfo.AssignedRegs.areValueTypesLegal(TLI))
5574        report_fatal_error("Couldn't allocate input reg for constraint '" +
5575                           Twine(OpInfo.ConstraintCode) + "'!");
5576
5577      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
5578                                        Chain, &Flag);
5579
5580      OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
5581                                               DAG, AsmNodeOperands);
5582      break;
5583    }
5584    case InlineAsm::isClobber: {
5585      // Add the clobbered value to the operand list, so that the register
5586      // allocator is aware that the physreg got clobbered.
5587      if (!OpInfo.AssignedRegs.Regs.empty())
5588        OpInfo.AssignedRegs.AddInlineAsmOperands(
5589                                            InlineAsm::Kind_RegDefEarlyClobber,
5590                                                 false, 0, DAG,
5591                                                 AsmNodeOperands);
5592      break;
5593    }
5594    }
5595  }
5596
5597  // Finish up input operands.  Set the input chain and add the flag last.
5598  AsmNodeOperands[0] = Chain;
5599  if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
5600
5601  Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(),
5602                      DAG.getVTList(MVT::Other, MVT::Flag),
5603                      &AsmNodeOperands[0], AsmNodeOperands.size());
5604  Flag = Chain.getValue(1);
5605
5606  // If this asm returns a register value, copy the result from that register
5607  // and set it as the value of the call.
5608  if (!RetValRegs.Regs.empty()) {
5609    SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
5610                                             Chain, &Flag);
5611
5612    // FIXME: Why don't we do this for inline asms with MRVs?
5613    if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
5614      EVT ResultType = TLI.getValueType(CS.getType());
5615
5616      // If any of the results of the inline asm is a vector, it may have the
5617      // wrong width/num elts.  This can happen for register classes that can
5618      // contain multiple different value types.  The preg or vreg allocated may
5619      // not have the same VT as was expected.  Convert it to the right type
5620      // with bit_convert.
5621      if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
5622        Val = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
5623                          ResultType, Val);
5624
5625      } else if (ResultType != Val.getValueType() &&
5626                 ResultType.isInteger() && Val.getValueType().isInteger()) {
5627        // If a result value was tied to an input value, the computed result may
5628        // have a wider width than the expected result.  Extract the relevant
5629        // portion.
5630        Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val);
5631      }
5632
5633      assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
5634    }
5635
5636    setValue(CS.getInstruction(), Val);
5637    // Don't need to use this as a chain in this case.
5638    if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
5639      return;
5640  }
5641
5642  std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
5643
5644  // Process indirect outputs, first output all of the flagged copies out of
5645  // physregs.
5646  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
5647    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
5648    const Value *Ptr = IndirectStoresToEmit[i].second;
5649    SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
5650                                             Chain, &Flag);
5651    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
5652  }
5653
5654  // Emit the non-flagged stores from the physregs.
5655  SmallVector<SDValue, 8> OutChains;
5656  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
5657    SDValue Val = DAG.getStore(Chain, getCurDebugLoc(),
5658                               StoresToEmit[i].first,
5659                               getValue(StoresToEmit[i].second),
5660                               StoresToEmit[i].second, 0,
5661                               false, false, 0);
5662    OutChains.push_back(Val);
5663  }
5664
5665  if (!OutChains.empty())
5666    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
5667                        &OutChains[0], OutChains.size());
5668
5669  DAG.setRoot(Chain);
5670}
5671
5672void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
5673  DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(),
5674                          MVT::Other, getRoot(),
5675                          getValue(I.getOperand(1)),
5676                          DAG.getSrcValue(I.getOperand(1))));
5677}
5678
5679void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
5680  SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(),
5681                           getRoot(), getValue(I.getOperand(0)),
5682                           DAG.getSrcValue(I.getOperand(0)));
5683  setValue(&I, V);
5684  DAG.setRoot(V.getValue(1));
5685}
5686
5687void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
5688  DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(),
5689                          MVT::Other, getRoot(),
5690                          getValue(I.getOperand(1)),
5691                          DAG.getSrcValue(I.getOperand(1))));
5692}
5693
5694void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
5695  DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(),
5696                          MVT::Other, getRoot(),
5697                          getValue(I.getOperand(1)),
5698                          getValue(I.getOperand(2)),
5699                          DAG.getSrcValue(I.getOperand(1)),
5700                          DAG.getSrcValue(I.getOperand(2))));
5701}
5702
5703/// TargetLowering::LowerCallTo - This is the default LowerCallTo
5704/// implementation, which just calls LowerCall.
5705/// FIXME: When all targets are
5706/// migrated to using LowerCall, this hook should be integrated into SDISel.
5707std::pair<SDValue, SDValue>
5708TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy,
5709                            bool RetSExt, bool RetZExt, bool isVarArg,
5710                            bool isInreg, unsigned NumFixedArgs,
5711                            CallingConv::ID CallConv, bool isTailCall,
5712                            bool isReturnValueUsed,
5713                            SDValue Callee,
5714                            ArgListTy &Args, SelectionDAG &DAG,
5715                            DebugLoc dl) const {
5716  // Handle all of the outgoing arguments.
5717  SmallVector<ISD::OutputArg, 32> Outs;
5718  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
5719    SmallVector<EVT, 4> ValueVTs;
5720    ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
5721    for (unsigned Value = 0, NumValues = ValueVTs.size();
5722         Value != NumValues; ++Value) {
5723      EVT VT = ValueVTs[Value];
5724      const Type *ArgTy = VT.getTypeForEVT(RetTy->getContext());
5725      SDValue Op = SDValue(Args[i].Node.getNode(),
5726                           Args[i].Node.getResNo() + Value);
5727      ISD::ArgFlagsTy Flags;
5728      unsigned OriginalAlignment =
5729        getTargetData()->getABITypeAlignment(ArgTy);
5730
5731      if (Args[i].isZExt)
5732        Flags.setZExt();
5733      if (Args[i].isSExt)
5734        Flags.setSExt();
5735      if (Args[i].isInReg)
5736        Flags.setInReg();
5737      if (Args[i].isSRet)
5738        Flags.setSRet();
5739      if (Args[i].isByVal) {
5740        Flags.setByVal();
5741        const PointerType *Ty = cast<PointerType>(Args[i].Ty);
5742        const Type *ElementTy = Ty->getElementType();
5743        unsigned FrameAlign = getByValTypeAlignment(ElementTy);
5744        unsigned FrameSize  = getTargetData()->getTypeAllocSize(ElementTy);
5745        // For ByVal, alignment should come from FE.  BE will guess if this
5746        // info is not there but there are cases it cannot get right.
5747        if (Args[i].Alignment)
5748          FrameAlign = Args[i].Alignment;
5749        Flags.setByValAlign(FrameAlign);
5750        Flags.setByValSize(FrameSize);
5751      }
5752      if (Args[i].isNest)
5753        Flags.setNest();
5754      Flags.setOrigAlign(OriginalAlignment);
5755
5756      EVT PartVT = getRegisterType(RetTy->getContext(), VT);
5757      unsigned NumParts = getNumRegisters(RetTy->getContext(), VT);
5758      SmallVector<SDValue, 4> Parts(NumParts);
5759      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
5760
5761      if (Args[i].isSExt)
5762        ExtendKind = ISD::SIGN_EXTEND;
5763      else if (Args[i].isZExt)
5764        ExtendKind = ISD::ZERO_EXTEND;
5765
5766      getCopyToParts(DAG, dl, Op, &Parts[0], NumParts,
5767                     PartVT, ExtendKind);
5768
5769      for (unsigned j = 0; j != NumParts; ++j) {
5770        // if it isn't first piece, alignment must be 1
5771        ISD::OutputArg MyFlags(Flags, Parts[j], i < NumFixedArgs);
5772        if (NumParts > 1 && j == 0)
5773          MyFlags.Flags.setSplit();
5774        else if (j != 0)
5775          MyFlags.Flags.setOrigAlign(1);
5776
5777        Outs.push_back(MyFlags);
5778      }
5779    }
5780  }
5781
5782  // Handle the incoming return values from the call.
5783  SmallVector<ISD::InputArg, 32> Ins;
5784  SmallVector<EVT, 4> RetTys;
5785  ComputeValueVTs(*this, RetTy, RetTys);
5786  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
5787    EVT VT = RetTys[I];
5788    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
5789    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
5790    for (unsigned i = 0; i != NumRegs; ++i) {
5791      ISD::InputArg MyFlags;
5792      MyFlags.VT = RegisterVT;
5793      MyFlags.Used = isReturnValueUsed;
5794      if (RetSExt)
5795        MyFlags.Flags.setSExt();
5796      if (RetZExt)
5797        MyFlags.Flags.setZExt();
5798      if (isInreg)
5799        MyFlags.Flags.setInReg();
5800      Ins.push_back(MyFlags);
5801    }
5802  }
5803
5804  SmallVector<SDValue, 4> InVals;
5805  Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall,
5806                    Outs, Ins, dl, DAG, InVals);
5807
5808  // Verify that the target's LowerCall behaved as expected.
5809  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
5810         "LowerCall didn't return a valid chain!");
5811  assert((!isTailCall || InVals.empty()) &&
5812         "LowerCall emitted a return value for a tail call!");
5813  assert((isTailCall || InVals.size() == Ins.size()) &&
5814         "LowerCall didn't emit the correct number of values!");
5815
5816  // For a tail call, the return value is merely live-out and there aren't
5817  // any nodes in the DAG representing it. Return a special value to
5818  // indicate that a tail call has been emitted and no more Instructions
5819  // should be processed in the current block.
5820  if (isTailCall) {
5821    DAG.setRoot(Chain);
5822    return std::make_pair(SDValue(), SDValue());
5823  }
5824
5825  DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
5826          assert(InVals[i].getNode() &&
5827                 "LowerCall emitted a null value!");
5828          assert(Ins[i].VT == InVals[i].getValueType() &&
5829                 "LowerCall emitted a value with the wrong type!");
5830        });
5831
5832  // Collect the legal value parts into potentially illegal values
5833  // that correspond to the original function's return values.
5834  ISD::NodeType AssertOp = ISD::DELETED_NODE;
5835  if (RetSExt)
5836    AssertOp = ISD::AssertSext;
5837  else if (RetZExt)
5838    AssertOp = ISD::AssertZext;
5839  SmallVector<SDValue, 4> ReturnValues;
5840  unsigned CurReg = 0;
5841  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
5842    EVT VT = RetTys[I];
5843    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
5844    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
5845
5846    ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg],
5847                                            NumRegs, RegisterVT, VT,
5848                                            AssertOp));
5849    CurReg += NumRegs;
5850  }
5851
5852  // For a function returning void, there is no return value. We can't create
5853  // such a node, so we just return a null return value in that case. In
5854  // that case, nothing will actualy look at the value.
5855  if (ReturnValues.empty())
5856    return std::make_pair(SDValue(), Chain);
5857
5858  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
5859                            DAG.getVTList(&RetTys[0], RetTys.size()),
5860                            &ReturnValues[0], ReturnValues.size());
5861  return std::make_pair(Res, Chain);
5862}
5863
5864void TargetLowering::LowerOperationWrapper(SDNode *N,
5865                                           SmallVectorImpl<SDValue> &Results,
5866                                           SelectionDAG &DAG) const {
5867  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
5868  if (Res.getNode())
5869    Results.push_back(Res);
5870}
5871
5872SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
5873  llvm_unreachable("LowerOperation not implemented for this target!");
5874  return SDValue();
5875}
5876
5877void
5878SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
5879  SDValue Op = getValue(V);
5880  assert((Op.getOpcode() != ISD::CopyFromReg ||
5881          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
5882         "Copy from a reg to the same reg!");
5883  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
5884
5885  RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
5886  SDValue Chain = DAG.getEntryNode();
5887  RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0);
5888  PendingExports.push_back(Chain);
5889}
5890
5891#include "llvm/CodeGen/SelectionDAGISel.h"
5892
5893void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) {
5894  // If this is the entry block, emit arguments.
5895  const Function &F = *LLVMBB->getParent();
5896  SelectionDAG &DAG = SDB->DAG;
5897  SDValue OldRoot = DAG.getRoot();
5898  DebugLoc dl = SDB->getCurDebugLoc();
5899  const TargetData *TD = TLI.getTargetData();
5900  SmallVector<ISD::InputArg, 16> Ins;
5901
5902  // Check whether the function can return without sret-demotion.
5903  SmallVector<EVT, 4> OutVTs;
5904  SmallVector<ISD::ArgFlagsTy, 4> OutsFlags;
5905  getReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
5906                OutVTs, OutsFlags, TLI);
5907
5908  FuncInfo->CanLowerReturn = TLI.CanLowerReturn(F.getCallingConv(),
5909                                                F.isVarArg(),
5910                                                OutVTs, OutsFlags, DAG);
5911  if (!FuncInfo->CanLowerReturn) {
5912    // Put in an sret pointer parameter before all the other parameters.
5913    SmallVector<EVT, 1> ValueVTs;
5914    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
5915
5916    // NOTE: Assuming that a pointer will never break down to more than one VT
5917    // or one register.
5918    ISD::ArgFlagsTy Flags;
5919    Flags.setSRet();
5920    EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]);
5921    ISD::InputArg RetArg(Flags, RegisterVT, true);
5922    Ins.push_back(RetArg);
5923  }
5924
5925  // Set up the incoming argument description vector.
5926  unsigned Idx = 1;
5927  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
5928       I != E; ++I, ++Idx) {
5929    SmallVector<EVT, 4> ValueVTs;
5930    ComputeValueVTs(TLI, I->getType(), ValueVTs);
5931    bool isArgValueUsed = !I->use_empty();
5932    for (unsigned Value = 0, NumValues = ValueVTs.size();
5933         Value != NumValues; ++Value) {
5934      EVT VT = ValueVTs[Value];
5935      const Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
5936      ISD::ArgFlagsTy Flags;
5937      unsigned OriginalAlignment =
5938        TD->getABITypeAlignment(ArgTy);
5939
5940      if (F.paramHasAttr(Idx, Attribute::ZExt))
5941        Flags.setZExt();
5942      if (F.paramHasAttr(Idx, Attribute::SExt))
5943        Flags.setSExt();
5944      if (F.paramHasAttr(Idx, Attribute::InReg))
5945        Flags.setInReg();
5946      if (F.paramHasAttr(Idx, Attribute::StructRet))
5947        Flags.setSRet();
5948      if (F.paramHasAttr(Idx, Attribute::ByVal)) {
5949        Flags.setByVal();
5950        const PointerType *Ty = cast<PointerType>(I->getType());
5951        const Type *ElementTy = Ty->getElementType();
5952        unsigned FrameAlign = TLI.getByValTypeAlignment(ElementTy);
5953        unsigned FrameSize  = TD->getTypeAllocSize(ElementTy);
5954        // For ByVal, alignment should be passed from FE.  BE will guess if
5955        // this info is not there but there are cases it cannot get right.
5956        if (F.getParamAlignment(Idx))
5957          FrameAlign = F.getParamAlignment(Idx);
5958        Flags.setByValAlign(FrameAlign);
5959        Flags.setByValSize(FrameSize);
5960      }
5961      if (F.paramHasAttr(Idx, Attribute::Nest))
5962        Flags.setNest();
5963      Flags.setOrigAlign(OriginalAlignment);
5964
5965      EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
5966      unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
5967      for (unsigned i = 0; i != NumRegs; ++i) {
5968        ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed);
5969        if (NumRegs > 1 && i == 0)
5970          MyFlags.Flags.setSplit();
5971        // if it isn't first piece, alignment must be 1
5972        else if (i > 0)
5973          MyFlags.Flags.setOrigAlign(1);
5974        Ins.push_back(MyFlags);
5975      }
5976    }
5977  }
5978
5979  // Call the target to set up the argument values.
5980  SmallVector<SDValue, 8> InVals;
5981  SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
5982                                             F.isVarArg(), Ins,
5983                                             dl, DAG, InVals);
5984
5985  // Verify that the target's LowerFormalArguments behaved as expected.
5986  assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
5987         "LowerFormalArguments didn't return a valid chain!");
5988  assert(InVals.size() == Ins.size() &&
5989         "LowerFormalArguments didn't emit the correct number of values!");
5990  DEBUG({
5991      for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
5992        assert(InVals[i].getNode() &&
5993               "LowerFormalArguments emitted a null value!");
5994        assert(Ins[i].VT == InVals[i].getValueType() &&
5995               "LowerFormalArguments emitted a value with the wrong type!");
5996      }
5997    });
5998
5999  // Update the DAG with the new chain value resulting from argument lowering.
6000  DAG.setRoot(NewRoot);
6001
6002  // Set up the argument values.
6003  unsigned i = 0;
6004  Idx = 1;
6005  if (!FuncInfo->CanLowerReturn) {
6006    // Create a virtual register for the sret pointer, and put in a copy
6007    // from the sret argument into it.
6008    SmallVector<EVT, 1> ValueVTs;
6009    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6010    EVT VT = ValueVTs[0];
6011    EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6012    ISD::NodeType AssertOp = ISD::DELETED_NODE;
6013    SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
6014                                        RegVT, VT, AssertOp);
6015
6016    MachineFunction& MF = SDB->DAG.getMachineFunction();
6017    MachineRegisterInfo& RegInfo = MF.getRegInfo();
6018    unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT));
6019    FuncInfo->DemoteRegister = SRetReg;
6020    NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(),
6021                                    SRetReg, ArgValue);
6022    DAG.setRoot(NewRoot);
6023
6024    // i indexes lowered arguments.  Bump it past the hidden sret argument.
6025    // Idx indexes LLVM arguments.  Don't touch it.
6026    ++i;
6027  }
6028
6029  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
6030      ++I, ++Idx) {
6031    SmallVector<SDValue, 4> ArgValues;
6032    SmallVector<EVT, 4> ValueVTs;
6033    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6034    unsigned NumValues = ValueVTs.size();
6035    for (unsigned Value = 0; Value != NumValues; ++Value) {
6036      EVT VT = ValueVTs[Value];
6037      EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6038      unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6039
6040      if (!I->use_empty()) {
6041        ISD::NodeType AssertOp = ISD::DELETED_NODE;
6042        if (F.paramHasAttr(Idx, Attribute::SExt))
6043          AssertOp = ISD::AssertSext;
6044        else if (F.paramHasAttr(Idx, Attribute::ZExt))
6045          AssertOp = ISD::AssertZext;
6046
6047        ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
6048                                             NumParts, PartVT, VT,
6049                                             AssertOp));
6050      }
6051
6052      i += NumParts;
6053    }
6054
6055    if (!I->use_empty()) {
6056      SDValue Res;
6057      if (!ArgValues.empty())
6058        Res = DAG.getMergeValues(&ArgValues[0], NumValues,
6059                                 SDB->getCurDebugLoc());
6060      SDB->setValue(I, Res);
6061
6062      // If this argument is live outside of the entry block, insert a copy from
6063      // whereever we got it to the vreg that other BB's will reference it as.
6064      SDB->CopyToExportRegsIfNeeded(I);
6065    }
6066  }
6067
6068  assert(i == InVals.size() && "Argument register count mismatch!");
6069
6070  // Finally, if the target has anything special to do, allow it to do so.
6071  // FIXME: this should insert code into the DAG!
6072  EmitFunctionEntryCode();
6073}
6074
6075/// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
6076/// ensure constants are generated when needed.  Remember the virtual registers
6077/// that need to be added to the Machine PHI nodes as input.  We cannot just
6078/// directly add them, because expansion might result in multiple MBB's for one
6079/// BB.  As such, the start of the BB might correspond to a different MBB than
6080/// the end.
6081///
6082void
6083SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
6084  const TerminatorInst *TI = LLVMBB->getTerminator();
6085
6086  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6087
6088  // Check successor nodes' PHI nodes that expect a constant to be available
6089  // from this block.
6090  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6091    const BasicBlock *SuccBB = TI->getSuccessor(succ);
6092    if (!isa<PHINode>(SuccBB->begin())) continue;
6093    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
6094
6095    // If this terminator has multiple identical successors (common for
6096    // switches), only handle each succ once.
6097    if (!SuccsHandled.insert(SuccMBB)) continue;
6098
6099    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6100
6101    // At this point we know that there is a 1-1 correspondence between LLVM PHI
6102    // nodes and Machine PHI nodes, but the incoming operands have not been
6103    // emitted yet.
6104    for (BasicBlock::const_iterator I = SuccBB->begin();
6105         const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
6106      // Ignore dead phi's.
6107      if (PN->use_empty()) continue;
6108
6109      unsigned Reg;
6110      const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6111
6112      if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
6113        unsigned &RegOut = ConstantsOut[C];
6114        if (RegOut == 0) {
6115          RegOut = FuncInfo.CreateRegForValue(C);
6116          CopyValueToVirtualRegister(C, RegOut);
6117        }
6118        Reg = RegOut;
6119      } else {
6120        Reg = FuncInfo.ValueMap[PHIOp];
6121        if (Reg == 0) {
6122          assert(isa<AllocaInst>(PHIOp) &&
6123                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
6124                 "Didn't codegen value into a register!??");
6125          Reg = FuncInfo.CreateRegForValue(PHIOp);
6126          CopyValueToVirtualRegister(PHIOp, Reg);
6127        }
6128      }
6129
6130      // Remember that this register needs to added to the machine PHI node as
6131      // the input for this MBB.
6132      SmallVector<EVT, 4> ValueVTs;
6133      ComputeValueVTs(TLI, PN->getType(), ValueVTs);
6134      for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
6135        EVT VT = ValueVTs[vti];
6136        unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
6137        for (unsigned i = 0, e = NumRegisters; i != e; ++i)
6138          FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
6139        Reg += NumRegisters;
6140      }
6141    }
6142  }
6143  ConstantsOut.clear();
6144}
6145