SelectionDAGBuilder.cpp revision 46bb70cd23762d58173dbbc4c5a1bd6964624381
1//===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements routines for translating from LLVM IR into SelectionDAG IR.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "SDNodeDbgValue.h"
16#include "SelectionDAGBuilder.h"
17#include "llvm/ADT/BitVector.h"
18#include "llvm/ADT/PostOrderIterator.h"
19#include "llvm/ADT/SmallSet.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/ConstantFolding.h"
22#include "llvm/Constants.h"
23#include "llvm/CallingConv.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Function.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/InlineAsm.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/IntrinsicInst.h"
31#include "llvm/LLVMContext.h"
32#include "llvm/Module.h"
33#include "llvm/CodeGen/Analysis.h"
34#include "llvm/CodeGen/FastISel.h"
35#include "llvm/CodeGen/FunctionLoweringInfo.h"
36#include "llvm/CodeGen/GCStrategy.h"
37#include "llvm/CodeGen/GCMetadata.h"
38#include "llvm/CodeGen/MachineFunction.h"
39#include "llvm/CodeGen/MachineFrameInfo.h"
40#include "llvm/CodeGen/MachineInstrBuilder.h"
41#include "llvm/CodeGen/MachineJumpTableInfo.h"
42#include "llvm/CodeGen/MachineModuleInfo.h"
43#include "llvm/CodeGen/MachineRegisterInfo.h"
44#include "llvm/CodeGen/PseudoSourceValue.h"
45#include "llvm/CodeGen/SelectionDAG.h"
46#include "llvm/Analysis/DebugInfo.h"
47#include "llvm/Target/TargetData.h"
48#include "llvm/Target/TargetFrameLowering.h"
49#include "llvm/Target/TargetInstrInfo.h"
50#include "llvm/Target/TargetIntrinsicInfo.h"
51#include "llvm/Target/TargetLowering.h"
52#include "llvm/Target/TargetOptions.h"
53#include "llvm/Support/CommandLine.h"
54#include "llvm/Support/Debug.h"
55#include "llvm/Support/ErrorHandling.h"
56#include "llvm/Support/MathExtras.h"
57#include "llvm/Support/raw_ostream.h"
58#include <algorithm>
59using namespace llvm;
60
61/// LimitFloatPrecision - Generate low-precision inline sequences for
62/// some float libcalls (6, 8 or 12 bits).
63static unsigned LimitFloatPrecision;
64
65static cl::opt<unsigned, true>
66LimitFPPrecision("limit-float-precision",
67                 cl::desc("Generate low-precision inline sequences "
68                          "for some float libcalls"),
69                 cl::location(LimitFloatPrecision),
70                 cl::init(0));
71
72// Limit the width of DAG chains. This is important in general to prevent
73// prevent DAG-based analysis from blowing up. For example, alias analysis and
74// load clustering may not complete in reasonable time. It is difficult to
75// recognize and avoid this situation within each individual analysis, and
76// future analyses are likely to have the same behavior. Limiting DAG width is
77// the safe approach, and will be especially important with global DAGs.
78//
79// MaxParallelChains default is arbitrarily high to avoid affecting
80// optimization, but could be lowered to improve compile time. Any ld-ld-st-st
81// sequence over this should have been converted to llvm.memcpy by the
82// frontend. It easy to induce this behavior with .ll code such as:
83// %buffer = alloca [4096 x i8]
84// %data = load [4096 x i8]* %argPtr
85// store [4096 x i8] %data, [4096 x i8]* %buffer
86static const unsigned MaxParallelChains = 64;
87
88static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
89                                      const SDValue *Parts, unsigned NumParts,
90                                      EVT PartVT, EVT ValueVT);
91
92/// getCopyFromParts - Create a value that contains the specified legal parts
93/// combined into the value they represent.  If the parts combine to a type
94/// larger then ValueVT then AssertOp can be used to specify whether the extra
95/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
96/// (ISD::AssertSext).
97static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL,
98                                const SDValue *Parts,
99                                unsigned NumParts, EVT PartVT, EVT ValueVT,
100                                ISD::NodeType AssertOp = ISD::DELETED_NODE) {
101  if (ValueVT.isVector())
102    return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT);
103
104  assert(NumParts > 0 && "No parts to assemble!");
105  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
106  SDValue Val = Parts[0];
107
108  if (NumParts > 1) {
109    // Assemble the value from multiple parts.
110    if (ValueVT.isInteger()) {
111      unsigned PartBits = PartVT.getSizeInBits();
112      unsigned ValueBits = ValueVT.getSizeInBits();
113
114      // Assemble the power of 2 part.
115      unsigned RoundParts = NumParts & (NumParts - 1) ?
116        1 << Log2_32(NumParts) : NumParts;
117      unsigned RoundBits = PartBits * RoundParts;
118      EVT RoundVT = RoundBits == ValueBits ?
119        ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
120      SDValue Lo, Hi;
121
122      EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
123
124      if (RoundParts > 2) {
125        Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
126                              PartVT, HalfVT);
127        Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
128                              RoundParts / 2, PartVT, HalfVT);
129      } else {
130        Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
131        Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
132      }
133
134      if (TLI.isBigEndian())
135        std::swap(Lo, Hi);
136
137      Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
138
139      if (RoundParts < NumParts) {
140        // Assemble the trailing non-power-of-2 part.
141        unsigned OddParts = NumParts - RoundParts;
142        EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
143        Hi = getCopyFromParts(DAG, DL,
144                              Parts + RoundParts, OddParts, PartVT, OddVT);
145
146        // Combine the round and odd parts.
147        Lo = Val;
148        if (TLI.isBigEndian())
149          std::swap(Lo, Hi);
150        EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
151        Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
152        Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
153                         DAG.getConstant(Lo.getValueType().getSizeInBits(),
154                                         TLI.getPointerTy()));
155        Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
156        Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
157      }
158    } else if (PartVT.isFloatingPoint()) {
159      // FP split into multiple FP parts (for ppcf128)
160      assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) &&
161             "Unexpected split");
162      SDValue Lo, Hi;
163      Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
164      Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
165      if (TLI.isBigEndian())
166        std::swap(Lo, Hi);
167      Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
168    } else {
169      // FP split into integer parts (soft fp)
170      assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
171             !PartVT.isVector() && "Unexpected split");
172      EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
173      Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT);
174    }
175  }
176
177  // There is now one part, held in Val.  Correct it to match ValueVT.
178  PartVT = Val.getValueType();
179
180  if (PartVT == ValueVT)
181    return Val;
182
183  if (PartVT.isInteger() && ValueVT.isInteger()) {
184    if (ValueVT.bitsLT(PartVT)) {
185      // For a truncate, see if we have any information to
186      // indicate whether the truncated bits will always be
187      // zero or sign-extension.
188      if (AssertOp != ISD::DELETED_NODE)
189        Val = DAG.getNode(AssertOp, DL, PartVT, Val,
190                          DAG.getValueType(ValueVT));
191      return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
192    }
193    return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
194  }
195
196  if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
197    // FP_ROUND's are always exact here.
198    if (ValueVT.bitsLT(Val.getValueType()))
199      return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val,
200                         DAG.getIntPtrConstant(1));
201
202    return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
203  }
204
205  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
206    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
207
208  llvm_unreachable("Unknown mismatch!");
209  return SDValue();
210}
211
212/// getCopyFromParts - Create a value that contains the specified legal parts
213/// combined into the value they represent.  If the parts combine to a type
214/// larger then ValueVT then AssertOp can be used to specify whether the extra
215/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
216/// (ISD::AssertSext).
217static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
218                                      const SDValue *Parts, unsigned NumParts,
219                                      EVT PartVT, EVT ValueVT) {
220  assert(ValueVT.isVector() && "Not a vector value");
221  assert(NumParts > 0 && "No parts to assemble!");
222  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
223  SDValue Val = Parts[0];
224
225  // Handle a multi-element vector.
226  if (NumParts > 1) {
227    EVT IntermediateVT, RegisterVT;
228    unsigned NumIntermediates;
229    unsigned NumRegs =
230    TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
231                               NumIntermediates, RegisterVT);
232    assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
233    NumParts = NumRegs; // Silence a compiler warning.
234    assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
235    assert(RegisterVT == Parts[0].getValueType() &&
236           "Part type doesn't match part!");
237
238    // Assemble the parts into intermediate operands.
239    SmallVector<SDValue, 8> Ops(NumIntermediates);
240    if (NumIntermediates == NumParts) {
241      // If the register was not expanded, truncate or copy the value,
242      // as appropriate.
243      for (unsigned i = 0; i != NumParts; ++i)
244        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
245                                  PartVT, IntermediateVT);
246    } else if (NumParts > 0) {
247      // If the intermediate type was expanded, build the intermediate
248      // operands from the parts.
249      assert(NumParts % NumIntermediates == 0 &&
250             "Must expand into a divisible number of parts!");
251      unsigned Factor = NumParts / NumIntermediates;
252      for (unsigned i = 0; i != NumIntermediates; ++i)
253        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
254                                  PartVT, IntermediateVT);
255    }
256
257    // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
258    // intermediate operands.
259    Val = DAG.getNode(IntermediateVT.isVector() ?
260                      ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL,
261                      ValueVT, &Ops[0], NumIntermediates);
262  }
263
264  // There is now one part, held in Val.  Correct it to match ValueVT.
265  PartVT = Val.getValueType();
266
267  if (PartVT == ValueVT)
268    return Val;
269
270  if (PartVT.isVector()) {
271    // If the element type of the source/dest vectors are the same, but the
272    // parts vector has more elements than the value vector, then we have a
273    // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
274    // elements we want.
275    if (PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
276      assert(PartVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
277             "Cannot narrow, it would be a lossy transformation");
278      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
279                         DAG.getIntPtrConstant(0));
280    }
281
282    // Vector/Vector bitcast.
283    if (ValueVT.getSizeInBits() == PartVT.getSizeInBits())
284      return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
285
286    assert(PartVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
287      "Cannot handle this kind of promotion");
288    // Promoted vector extract
289    bool Smaller = ValueVT.bitsLE(PartVT);
290    return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
291                       DL, ValueVT, Val);
292
293  }
294
295  // Trivial bitcast if the types are the same size and the destination
296  // vector type is legal.
297  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits() &&
298      TLI.isTypeLegal(ValueVT))
299    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
300
301  // Handle cases such as i8 -> <1 x i1>
302  assert(ValueVT.getVectorNumElements() == 1 &&
303         "Only trivial scalar-to-vector conversions should get here!");
304
305  if (ValueVT.getVectorNumElements() == 1 &&
306      ValueVT.getVectorElementType() != PartVT) {
307    bool Smaller = ValueVT.bitsLE(PartVT);
308    Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
309                       DL, ValueVT.getScalarType(), Val);
310  }
311
312  return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
313}
314
315
316
317
318static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl,
319                                 SDValue Val, SDValue *Parts, unsigned NumParts,
320                                 EVT PartVT);
321
322/// getCopyToParts - Create a series of nodes that contain the specified value
323/// split into legal parts.  If the parts contain more bits than Val, then, for
324/// integers, ExtendKind can be used to specify how to generate the extra bits.
325static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL,
326                           SDValue Val, SDValue *Parts, unsigned NumParts,
327                           EVT PartVT,
328                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
329  EVT ValueVT = Val.getValueType();
330
331  // Handle the vector case separately.
332  if (ValueVT.isVector())
333    return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT);
334
335  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
336  unsigned PartBits = PartVT.getSizeInBits();
337  unsigned OrigNumParts = NumParts;
338  assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
339
340  if (NumParts == 0)
341    return;
342
343  assert(!ValueVT.isVector() && "Vector case handled elsewhere");
344  if (PartVT == ValueVT) {
345    assert(NumParts == 1 && "No-op copy with multiple parts!");
346    Parts[0] = Val;
347    return;
348  }
349
350  if (NumParts * PartBits > ValueVT.getSizeInBits()) {
351    // If the parts cover more bits than the value has, promote the value.
352    if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
353      assert(NumParts == 1 && "Do not know what to promote to!");
354      Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
355    } else {
356      assert(PartVT.isInteger() && ValueVT.isInteger() &&
357             "Unknown mismatch!");
358      ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
359      Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
360    }
361  } else if (PartBits == ValueVT.getSizeInBits()) {
362    // Different types of the same size.
363    assert(NumParts == 1 && PartVT != ValueVT);
364    Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
365  } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
366    // If the parts cover less bits than value has, truncate the value.
367    assert(PartVT.isInteger() && ValueVT.isInteger() &&
368           "Unknown mismatch!");
369    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
370    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
371  }
372
373  // The value may have changed - recompute ValueVT.
374  ValueVT = Val.getValueType();
375  assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
376         "Failed to tile the value with PartVT!");
377
378  if (NumParts == 1) {
379    assert(PartVT == ValueVT && "Type conversion failed!");
380    Parts[0] = Val;
381    return;
382  }
383
384  // Expand the value into multiple parts.
385  if (NumParts & (NumParts - 1)) {
386    // The number of parts is not a power of 2.  Split off and copy the tail.
387    assert(PartVT.isInteger() && ValueVT.isInteger() &&
388           "Do not know what to expand to!");
389    unsigned RoundParts = 1 << Log2_32(NumParts);
390    unsigned RoundBits = RoundParts * PartBits;
391    unsigned OddParts = NumParts - RoundParts;
392    SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
393                                 DAG.getIntPtrConstant(RoundBits));
394    getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT);
395
396    if (TLI.isBigEndian())
397      // The odd parts were reversed by getCopyToParts - unreverse them.
398      std::reverse(Parts + RoundParts, Parts + NumParts);
399
400    NumParts = RoundParts;
401    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
402    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
403  }
404
405  // The number of parts is a power of 2.  Repeatedly bisect the value using
406  // EXTRACT_ELEMENT.
407  Parts[0] = DAG.getNode(ISD::BITCAST, DL,
408                         EVT::getIntegerVT(*DAG.getContext(),
409                                           ValueVT.getSizeInBits()),
410                         Val);
411
412  for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
413    for (unsigned i = 0; i < NumParts; i += StepSize) {
414      unsigned ThisBits = StepSize * PartBits / 2;
415      EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
416      SDValue &Part0 = Parts[i];
417      SDValue &Part1 = Parts[i+StepSize/2];
418
419      Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
420                          ThisVT, Part0, DAG.getIntPtrConstant(1));
421      Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
422                          ThisVT, Part0, DAG.getIntPtrConstant(0));
423
424      if (ThisBits == PartBits && ThisVT != PartVT) {
425        Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
426        Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
427      }
428    }
429  }
430
431  if (TLI.isBigEndian())
432    std::reverse(Parts, Parts + OrigNumParts);
433}
434
435
436/// getCopyToPartsVector - Create a series of nodes that contain the specified
437/// value split into legal parts.
438static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL,
439                                 SDValue Val, SDValue *Parts, unsigned NumParts,
440                                 EVT PartVT) {
441  EVT ValueVT = Val.getValueType();
442  assert(ValueVT.isVector() && "Not a vector");
443  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
444
445  if (NumParts == 1) {
446    if (PartVT == ValueVT) {
447      // Nothing to do.
448    } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
449      // Bitconvert vector->vector case.
450      Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
451    } else if (PartVT.isVector() &&
452               PartVT.getVectorElementType() == ValueVT.getVectorElementType() &&
453               PartVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
454      EVT ElementVT = PartVT.getVectorElementType();
455      // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
456      // undef elements.
457      SmallVector<SDValue, 16> Ops;
458      for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
459        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
460                                  ElementVT, Val, DAG.getIntPtrConstant(i)));
461
462      for (unsigned i = ValueVT.getVectorNumElements(),
463           e = PartVT.getVectorNumElements(); i != e; ++i)
464        Ops.push_back(DAG.getUNDEF(ElementVT));
465
466      Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size());
467
468      // FIXME: Use CONCAT for 2x -> 4x.
469
470      //SDValue UndefElts = DAG.getUNDEF(VectorTy);
471      //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
472    } else if (PartVT.isVector() &&
473               PartVT.getVectorElementType().bitsGE(
474                 ValueVT.getVectorElementType()) &&
475               PartVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
476
477      // Promoted vector extract
478      bool Smaller = PartVT.bitsLE(ValueVT);
479      Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
480                        DL, PartVT, Val);
481    } else{
482      // Vector -> scalar conversion.
483      assert(ValueVT.getVectorNumElements() == 1 &&
484             "Only trivial vector-to-scalar conversions should get here!");
485      Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
486                        PartVT, Val, DAG.getIntPtrConstant(0));
487
488      bool Smaller = ValueVT.bitsLE(PartVT);
489      Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
490                         DL, PartVT, Val);
491    }
492
493    Parts[0] = Val;
494    return;
495  }
496
497  // Handle a multi-element vector.
498  EVT IntermediateVT, RegisterVT;
499  unsigned NumIntermediates;
500  unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
501                                                IntermediateVT,
502                                                NumIntermediates, RegisterVT);
503  unsigned NumElements = ValueVT.getVectorNumElements();
504
505  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
506  NumParts = NumRegs; // Silence a compiler warning.
507  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
508
509  // Split the vector into intermediate operands.
510  SmallVector<SDValue, 8> Ops(NumIntermediates);
511  for (unsigned i = 0; i != NumIntermediates; ++i) {
512    if (IntermediateVT.isVector())
513      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
514                           IntermediateVT, Val,
515                   DAG.getIntPtrConstant(i * (NumElements / NumIntermediates)));
516    else
517      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
518                           IntermediateVT, Val, DAG.getIntPtrConstant(i));
519  }
520
521  // Split the intermediate operands into legal parts.
522  if (NumParts == NumIntermediates) {
523    // If the register was not expanded, promote or copy the value,
524    // as appropriate.
525    for (unsigned i = 0; i != NumParts; ++i)
526      getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT);
527  } else if (NumParts > 0) {
528    // If the intermediate type was expanded, split each the value into
529    // legal parts.
530    assert(NumParts % NumIntermediates == 0 &&
531           "Must expand into a divisible number of parts!");
532    unsigned Factor = NumParts / NumIntermediates;
533    for (unsigned i = 0; i != NumIntermediates; ++i)
534      getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT);
535  }
536}
537
538
539
540
541namespace {
542  /// RegsForValue - This struct represents the registers (physical or virtual)
543  /// that a particular set of values is assigned, and the type information
544  /// about the value. The most common situation is to represent one value at a
545  /// time, but struct or array values are handled element-wise as multiple
546  /// values.  The splitting of aggregates is performed recursively, so that we
547  /// never have aggregate-typed registers. The values at this point do not
548  /// necessarily have legal types, so each value may require one or more
549  /// registers of some legal type.
550  ///
551  struct RegsForValue {
552    /// ValueVTs - The value types of the values, which may not be legal, and
553    /// may need be promoted or synthesized from one or more registers.
554    ///
555    SmallVector<EVT, 4> ValueVTs;
556
557    /// RegVTs - The value types of the registers. This is the same size as
558    /// ValueVTs and it records, for each value, what the type of the assigned
559    /// register or registers are. (Individual values are never synthesized
560    /// from more than one type of register.)
561    ///
562    /// With virtual registers, the contents of RegVTs is redundant with TLI's
563    /// getRegisterType member function, however when with physical registers
564    /// it is necessary to have a separate record of the types.
565    ///
566    SmallVector<EVT, 4> RegVTs;
567
568    /// Regs - This list holds the registers assigned to the values.
569    /// Each legal or promoted value requires one register, and each
570    /// expanded value requires multiple registers.
571    ///
572    SmallVector<unsigned, 4> Regs;
573
574    RegsForValue() {}
575
576    RegsForValue(const SmallVector<unsigned, 4> &regs,
577                 EVT regvt, EVT valuevt)
578      : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
579
580    RegsForValue(LLVMContext &Context, const TargetLowering &tli,
581                 unsigned Reg, Type *Ty) {
582      ComputeValueVTs(tli, Ty, ValueVTs);
583
584      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
585        EVT ValueVT = ValueVTs[Value];
586        unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
587        EVT RegisterVT = tli.getRegisterType(Context, ValueVT);
588        for (unsigned i = 0; i != NumRegs; ++i)
589          Regs.push_back(Reg + i);
590        RegVTs.push_back(RegisterVT);
591        Reg += NumRegs;
592      }
593    }
594
595    /// areValueTypesLegal - Return true if types of all the values are legal.
596    bool areValueTypesLegal(const TargetLowering &TLI) {
597      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
598        EVT RegisterVT = RegVTs[Value];
599        if (!TLI.isTypeLegal(RegisterVT))
600          return false;
601      }
602      return true;
603    }
604
605    /// append - Add the specified values to this one.
606    void append(const RegsForValue &RHS) {
607      ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
608      RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
609      Regs.append(RHS.Regs.begin(), RHS.Regs.end());
610    }
611
612    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
613    /// this value and returns the result as a ValueVTs value.  This uses
614    /// Chain/Flag as the input and updates them for the output Chain/Flag.
615    /// If the Flag pointer is NULL, no flag is used.
616    SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
617                            DebugLoc dl,
618                            SDValue &Chain, SDValue *Flag) const;
619
620    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
621    /// specified value into the registers specified by this object.  This uses
622    /// Chain/Flag as the input and updates them for the output Chain/Flag.
623    /// If the Flag pointer is NULL, no flag is used.
624    void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
625                       SDValue &Chain, SDValue *Flag) const;
626
627    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
628    /// operand list.  This adds the code marker, matching input operand index
629    /// (if applicable), and includes the number of values added into it.
630    void AddInlineAsmOperands(unsigned Kind,
631                              bool HasMatching, unsigned MatchingIdx,
632                              SelectionDAG &DAG,
633                              std::vector<SDValue> &Ops) const;
634  };
635}
636
637/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
638/// this value and returns the result as a ValueVT value.  This uses
639/// Chain/Flag as the input and updates them for the output Chain/Flag.
640/// If the Flag pointer is NULL, no flag is used.
641SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
642                                      FunctionLoweringInfo &FuncInfo,
643                                      DebugLoc dl,
644                                      SDValue &Chain, SDValue *Flag) const {
645  // A Value with type {} or [0 x %t] needs no registers.
646  if (ValueVTs.empty())
647    return SDValue();
648
649  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
650
651  // Assemble the legal parts into the final values.
652  SmallVector<SDValue, 4> Values(ValueVTs.size());
653  SmallVector<SDValue, 8> Parts;
654  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
655    // Copy the legal parts from the registers.
656    EVT ValueVT = ValueVTs[Value];
657    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
658    EVT RegisterVT = RegVTs[Value];
659
660    Parts.resize(NumRegs);
661    for (unsigned i = 0; i != NumRegs; ++i) {
662      SDValue P;
663      if (Flag == 0) {
664        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
665      } else {
666        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
667        *Flag = P.getValue(2);
668      }
669
670      Chain = P.getValue(1);
671      Parts[i] = P;
672
673      // If the source register was virtual and if we know something about it,
674      // add an assert node.
675      if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
676          !RegisterVT.isInteger() || RegisterVT.isVector())
677        continue;
678
679      const FunctionLoweringInfo::LiveOutInfo *LOI =
680        FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
681      if (!LOI)
682        continue;
683
684      unsigned RegSize = RegisterVT.getSizeInBits();
685      unsigned NumSignBits = LOI->NumSignBits;
686      unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
687
688      // FIXME: We capture more information than the dag can represent.  For
689      // now, just use the tightest assertzext/assertsext possible.
690      bool isSExt = true;
691      EVT FromVT(MVT::Other);
692      if (NumSignBits == RegSize)
693        isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
694      else if (NumZeroBits >= RegSize-1)
695        isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
696      else if (NumSignBits > RegSize-8)
697        isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
698      else if (NumZeroBits >= RegSize-8)
699        isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
700      else if (NumSignBits > RegSize-16)
701        isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
702      else if (NumZeroBits >= RegSize-16)
703        isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
704      else if (NumSignBits > RegSize-32)
705        isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
706      else if (NumZeroBits >= RegSize-32)
707        isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
708      else
709        continue;
710
711      // Add an assertion node.
712      assert(FromVT != MVT::Other);
713      Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
714                             RegisterVT, P, DAG.getValueType(FromVT));
715    }
716
717    Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
718                                     NumRegs, RegisterVT, ValueVT);
719    Part += NumRegs;
720    Parts.clear();
721  }
722
723  return DAG.getNode(ISD::MERGE_VALUES, dl,
724                     DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
725                     &Values[0], ValueVTs.size());
726}
727
728/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
729/// specified value into the registers specified by this object.  This uses
730/// Chain/Flag as the input and updates them for the output Chain/Flag.
731/// If the Flag pointer is NULL, no flag is used.
732void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
733                                 SDValue &Chain, SDValue *Flag) const {
734  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
735
736  // Get the list of the values's legal parts.
737  unsigned NumRegs = Regs.size();
738  SmallVector<SDValue, 8> Parts(NumRegs);
739  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
740    EVT ValueVT = ValueVTs[Value];
741    unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
742    EVT RegisterVT = RegVTs[Value];
743
744    getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
745                   &Parts[Part], NumParts, RegisterVT);
746    Part += NumParts;
747  }
748
749  // Copy the parts into the registers.
750  SmallVector<SDValue, 8> Chains(NumRegs);
751  for (unsigned i = 0; i != NumRegs; ++i) {
752    SDValue Part;
753    if (Flag == 0) {
754      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
755    } else {
756      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
757      *Flag = Part.getValue(1);
758    }
759
760    Chains[i] = Part.getValue(0);
761  }
762
763  if (NumRegs == 1 || Flag)
764    // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
765    // flagged to it. That is the CopyToReg nodes and the user are considered
766    // a single scheduling unit. If we create a TokenFactor and return it as
767    // chain, then the TokenFactor is both a predecessor (operand) of the
768    // user as well as a successor (the TF operands are flagged to the user).
769    // c1, f1 = CopyToReg
770    // c2, f2 = CopyToReg
771    // c3     = TokenFactor c1, c2
772    // ...
773    //        = op c3, ..., f2
774    Chain = Chains[NumRegs-1];
775  else
776    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
777}
778
779/// AddInlineAsmOperands - Add this value to the specified inlineasm node
780/// operand list.  This adds the code marker and includes the number of
781/// values added into it.
782void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
783                                        unsigned MatchingIdx,
784                                        SelectionDAG &DAG,
785                                        std::vector<SDValue> &Ops) const {
786  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
787
788  unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
789  if (HasMatching)
790    Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
791  else if (!Regs.empty() &&
792           TargetRegisterInfo::isVirtualRegister(Regs.front())) {
793    // Put the register class of the virtual registers in the flag word.  That
794    // way, later passes can recompute register class constraints for inline
795    // assembly as well as normal instructions.
796    // Don't do this for tied operands that can use the regclass information
797    // from the def.
798    const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
799    const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
800    Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
801  }
802
803  SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
804  Ops.push_back(Res);
805
806  for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
807    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
808    EVT RegisterVT = RegVTs[Value];
809    for (unsigned i = 0; i != NumRegs; ++i) {
810      assert(Reg < Regs.size() && "Mismatch in # registers expected");
811      Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
812    }
813  }
814}
815
816void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) {
817  AA = &aa;
818  GFI = gfi;
819  TD = DAG.getTarget().getTargetData();
820  LPadToCallSiteMap.clear();
821}
822
823/// clear - Clear out the current SelectionDAG and the associated
824/// state and prepare this SelectionDAGBuilder object to be used
825/// for a new block. This doesn't clear out information about
826/// additional blocks that are needed to complete switch lowering
827/// or PHI node updating; that information is cleared out as it is
828/// consumed.
829void SelectionDAGBuilder::clear() {
830  NodeMap.clear();
831  UnusedArgNodeMap.clear();
832  PendingLoads.clear();
833  PendingExports.clear();
834  CurDebugLoc = DebugLoc();
835  HasTailCall = false;
836}
837
838/// clearDanglingDebugInfo - Clear the dangling debug information
839/// map. This function is seperated from the clear so that debug
840/// information that is dangling in a basic block can be properly
841/// resolved in a different basic block. This allows the
842/// SelectionDAG to resolve dangling debug information attached
843/// to PHI nodes.
844void SelectionDAGBuilder::clearDanglingDebugInfo() {
845  DanglingDebugInfoMap.clear();
846}
847
848/// getRoot - Return the current virtual root of the Selection DAG,
849/// flushing any PendingLoad items. This must be done before emitting
850/// a store or any other node that may need to be ordered after any
851/// prior load instructions.
852///
853SDValue SelectionDAGBuilder::getRoot() {
854  if (PendingLoads.empty())
855    return DAG.getRoot();
856
857  if (PendingLoads.size() == 1) {
858    SDValue Root = PendingLoads[0];
859    DAG.setRoot(Root);
860    PendingLoads.clear();
861    return Root;
862  }
863
864  // Otherwise, we have to make a token factor node.
865  SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
866                               &PendingLoads[0], PendingLoads.size());
867  PendingLoads.clear();
868  DAG.setRoot(Root);
869  return Root;
870}
871
872/// getControlRoot - Similar to getRoot, but instead of flushing all the
873/// PendingLoad items, flush all the PendingExports items. It is necessary
874/// to do this before emitting a terminator instruction.
875///
876SDValue SelectionDAGBuilder::getControlRoot() {
877  SDValue Root = DAG.getRoot();
878
879  if (PendingExports.empty())
880    return Root;
881
882  // Turn all of the CopyToReg chains into one factored node.
883  if (Root.getOpcode() != ISD::EntryToken) {
884    unsigned i = 0, e = PendingExports.size();
885    for (; i != e; ++i) {
886      assert(PendingExports[i].getNode()->getNumOperands() > 1);
887      if (PendingExports[i].getNode()->getOperand(0) == Root)
888        break;  // Don't add the root if we already indirectly depend on it.
889    }
890
891    if (i == e)
892      PendingExports.push_back(Root);
893  }
894
895  Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
896                     &PendingExports[0],
897                     PendingExports.size());
898  PendingExports.clear();
899  DAG.setRoot(Root);
900  return Root;
901}
902
903void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) {
904  if (DAG.GetOrdering(Node) != 0) return; // Already has ordering.
905  DAG.AssignOrdering(Node, SDNodeOrder);
906
907  for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I)
908    AssignOrderingToNode(Node->getOperand(I).getNode());
909}
910
911void SelectionDAGBuilder::visit(const Instruction &I) {
912  // Set up outgoing PHI node register values before emitting the terminator.
913  if (isa<TerminatorInst>(&I))
914    HandlePHINodesInSuccessorBlocks(I.getParent());
915
916  CurDebugLoc = I.getDebugLoc();
917
918  visit(I.getOpcode(), I);
919
920  if (!isa<TerminatorInst>(&I) && !HasTailCall)
921    CopyToExportRegsIfNeeded(&I);
922
923  CurDebugLoc = DebugLoc();
924}
925
926void SelectionDAGBuilder::visitPHI(const PHINode &) {
927  llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
928}
929
930void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
931  // Note: this doesn't use InstVisitor, because it has to work with
932  // ConstantExpr's in addition to instructions.
933  switch (Opcode) {
934  default: llvm_unreachable("Unknown instruction type encountered!");
935    // Build the switch statement using the Instruction.def file.
936#define HANDLE_INST(NUM, OPCODE, CLASS) \
937    case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break;
938#include "llvm/Instruction.def"
939  }
940
941  // Assign the ordering to the freshly created DAG nodes.
942  if (NodeMap.count(&I)) {
943    ++SDNodeOrder;
944    AssignOrderingToNode(getValue(&I).getNode());
945  }
946}
947
948// resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
949// generate the debug data structures now that we've seen its definition.
950void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
951                                                   SDValue Val) {
952  DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
953  if (DDI.getDI()) {
954    const DbgValueInst *DI = DDI.getDI();
955    DebugLoc dl = DDI.getdl();
956    unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
957    MDNode *Variable = DI->getVariable();
958    uint64_t Offset = DI->getOffset();
959    SDDbgValue *SDV;
960    if (Val.getNode()) {
961      if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) {
962        SDV = DAG.getDbgValue(Variable, Val.getNode(),
963                              Val.getResNo(), Offset, dl, DbgSDNodeOrder);
964        DAG.AddDbgValue(SDV, Val.getNode(), false);
965      }
966    } else
967      DEBUG(dbgs() << "Dropping debug info for " << DI);
968    DanglingDebugInfoMap[V] = DanglingDebugInfo();
969  }
970}
971
972/// getValue - Return an SDValue for the given Value.
973SDValue SelectionDAGBuilder::getValue(const Value *V) {
974  // If we already have an SDValue for this value, use it. It's important
975  // to do this first, so that we don't create a CopyFromReg if we already
976  // have a regular SDValue.
977  SDValue &N = NodeMap[V];
978  if (N.getNode()) return N;
979
980  // If there's a virtual register allocated and initialized for this
981  // value, use it.
982  DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
983  if (It != FuncInfo.ValueMap.end()) {
984    unsigned InReg = It->second;
985    RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
986    SDValue Chain = DAG.getEntryNode();
987    N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL);
988    resolveDanglingDebugInfo(V, N);
989    return N;
990  }
991
992  // Otherwise create a new SDValue and remember it.
993  SDValue Val = getValueImpl(V);
994  NodeMap[V] = Val;
995  resolveDanglingDebugInfo(V, Val);
996  return Val;
997}
998
999/// getNonRegisterValue - Return an SDValue for the given Value, but
1000/// don't look in FuncInfo.ValueMap for a virtual register.
1001SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1002  // If we already have an SDValue for this value, use it.
1003  SDValue &N = NodeMap[V];
1004  if (N.getNode()) return N;
1005
1006  // Otherwise create a new SDValue and remember it.
1007  SDValue Val = getValueImpl(V);
1008  NodeMap[V] = Val;
1009  resolveDanglingDebugInfo(V, Val);
1010  return Val;
1011}
1012
1013/// getValueImpl - Helper function for getValue and getNonRegisterValue.
1014/// Create an SDValue for the given value.
1015SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1016  if (const Constant *C = dyn_cast<Constant>(V)) {
1017    EVT VT = TLI.getValueType(V->getType(), true);
1018
1019    if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1020      return DAG.getConstant(*CI, VT);
1021
1022    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1023      return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT);
1024
1025    if (isa<ConstantPointerNull>(C))
1026      return DAG.getConstant(0, TLI.getPointerTy());
1027
1028    if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1029      return DAG.getConstantFP(*CFP, VT);
1030
1031    if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1032      return DAG.getUNDEF(VT);
1033
1034    if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1035      visit(CE->getOpcode(), *CE);
1036      SDValue N1 = NodeMap[V];
1037      assert(N1.getNode() && "visit didn't populate the NodeMap!");
1038      return N1;
1039    }
1040
1041    if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1042      SmallVector<SDValue, 4> Constants;
1043      for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1044           OI != OE; ++OI) {
1045        SDNode *Val = getValue(*OI).getNode();
1046        // If the operand is an empty aggregate, there are no values.
1047        if (!Val) continue;
1048        // Add each leaf value from the operand to the Constants list
1049        // to form a flattened list of all the values.
1050        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1051          Constants.push_back(SDValue(Val, i));
1052      }
1053
1054      return DAG.getMergeValues(&Constants[0], Constants.size(),
1055                                getCurDebugLoc());
1056    }
1057
1058    if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1059      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1060             "Unknown struct or array constant!");
1061
1062      SmallVector<EVT, 4> ValueVTs;
1063      ComputeValueVTs(TLI, C->getType(), ValueVTs);
1064      unsigned NumElts = ValueVTs.size();
1065      if (NumElts == 0)
1066        return SDValue(); // empty struct
1067      SmallVector<SDValue, 4> Constants(NumElts);
1068      for (unsigned i = 0; i != NumElts; ++i) {
1069        EVT EltVT = ValueVTs[i];
1070        if (isa<UndefValue>(C))
1071          Constants[i] = DAG.getUNDEF(EltVT);
1072        else if (EltVT.isFloatingPoint())
1073          Constants[i] = DAG.getConstantFP(0, EltVT);
1074        else
1075          Constants[i] = DAG.getConstant(0, EltVT);
1076      }
1077
1078      return DAG.getMergeValues(&Constants[0], NumElts,
1079                                getCurDebugLoc());
1080    }
1081
1082    if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1083      return DAG.getBlockAddress(BA, VT);
1084
1085    VectorType *VecTy = cast<VectorType>(V->getType());
1086    unsigned NumElements = VecTy->getNumElements();
1087
1088    // Now that we know the number and type of the elements, get that number of
1089    // elements into the Ops array based on what kind of constant it is.
1090    SmallVector<SDValue, 16> Ops;
1091    if (const ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
1092      for (unsigned i = 0; i != NumElements; ++i)
1093        Ops.push_back(getValue(CP->getOperand(i)));
1094    } else {
1095      assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1096      EVT EltVT = TLI.getValueType(VecTy->getElementType());
1097
1098      SDValue Op;
1099      if (EltVT.isFloatingPoint())
1100        Op = DAG.getConstantFP(0, EltVT);
1101      else
1102        Op = DAG.getConstant(0, EltVT);
1103      Ops.assign(NumElements, Op);
1104    }
1105
1106    // Create a BUILD_VECTOR node.
1107    return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
1108                                    VT, &Ops[0], Ops.size());
1109  }
1110
1111  // If this is a static alloca, generate it as the frameindex instead of
1112  // computation.
1113  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1114    DenseMap<const AllocaInst*, int>::iterator SI =
1115      FuncInfo.StaticAllocaMap.find(AI);
1116    if (SI != FuncInfo.StaticAllocaMap.end())
1117      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
1118  }
1119
1120  // If this is an instruction which fast-isel has deferred, select it now.
1121  if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1122    unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1123    RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType());
1124    SDValue Chain = DAG.getEntryNode();
1125    return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL);
1126  }
1127
1128  llvm_unreachable("Can't get register for value!");
1129  return SDValue();
1130}
1131
1132void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1133  SDValue Chain = getControlRoot();
1134  SmallVector<ISD::OutputArg, 8> Outs;
1135  SmallVector<SDValue, 8> OutVals;
1136
1137  if (!FuncInfo.CanLowerReturn) {
1138    unsigned DemoteReg = FuncInfo.DemoteRegister;
1139    const Function *F = I.getParent()->getParent();
1140
1141    // Emit a store of the return value through the virtual register.
1142    // Leave Outs empty so that LowerReturn won't try to load return
1143    // registers the usual way.
1144    SmallVector<EVT, 1> PtrValueVTs;
1145    ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
1146                    PtrValueVTs);
1147
1148    SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
1149    SDValue RetOp = getValue(I.getOperand(0));
1150
1151    SmallVector<EVT, 4> ValueVTs;
1152    SmallVector<uint64_t, 4> Offsets;
1153    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1154    unsigned NumValues = ValueVTs.size();
1155
1156    SmallVector<SDValue, 4> Chains(NumValues);
1157    for (unsigned i = 0; i != NumValues; ++i) {
1158      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(),
1159                                RetPtr.getValueType(), RetPtr,
1160                                DAG.getIntPtrConstant(Offsets[i]));
1161      Chains[i] =
1162        DAG.getStore(Chain, getCurDebugLoc(),
1163                     SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1164                     // FIXME: better loc info would be nice.
1165                     Add, MachinePointerInfo(), false, false, 0);
1166    }
1167
1168    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
1169                        MVT::Other, &Chains[0], NumValues);
1170  } else if (I.getNumOperands() != 0) {
1171    SmallVector<EVT, 4> ValueVTs;
1172    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
1173    unsigned NumValues = ValueVTs.size();
1174    if (NumValues) {
1175      SDValue RetOp = getValue(I.getOperand(0));
1176      for (unsigned j = 0, f = NumValues; j != f; ++j) {
1177        EVT VT = ValueVTs[j];
1178
1179        ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1180
1181        const Function *F = I.getParent()->getParent();
1182        if (F->paramHasAttr(0, Attribute::SExt))
1183          ExtendKind = ISD::SIGN_EXTEND;
1184        else if (F->paramHasAttr(0, Attribute::ZExt))
1185          ExtendKind = ISD::ZERO_EXTEND;
1186
1187        if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1188          VT = TLI.getTypeForExtArgOrReturn(*DAG.getContext(), VT, ExtendKind);
1189
1190        unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
1191        EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
1192        SmallVector<SDValue, 4> Parts(NumParts);
1193        getCopyToParts(DAG, getCurDebugLoc(),
1194                       SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1195                       &Parts[0], NumParts, PartVT, ExtendKind);
1196
1197        // 'inreg' on function refers to return value
1198        ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1199        if (F->paramHasAttr(0, Attribute::InReg))
1200          Flags.setInReg();
1201
1202        // Propagate extension type if any
1203        if (ExtendKind == ISD::SIGN_EXTEND)
1204          Flags.setSExt();
1205        else if (ExtendKind == ISD::ZERO_EXTEND)
1206          Flags.setZExt();
1207
1208        for (unsigned i = 0; i < NumParts; ++i) {
1209          Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1210                                        /*isfixed=*/true));
1211          OutVals.push_back(Parts[i]);
1212        }
1213      }
1214    }
1215  }
1216
1217  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1218  CallingConv::ID CallConv =
1219    DAG.getMachineFunction().getFunction()->getCallingConv();
1220  Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
1221                          Outs, OutVals, getCurDebugLoc(), DAG);
1222
1223  // Verify that the target's LowerReturn behaved as expected.
1224  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1225         "LowerReturn didn't return a valid chain!");
1226
1227  // Update the DAG with the new chain value resulting from return lowering.
1228  DAG.setRoot(Chain);
1229}
1230
1231/// CopyToExportRegsIfNeeded - If the given value has virtual registers
1232/// created for it, emit nodes to copy the value into the virtual
1233/// registers.
1234void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1235  // Skip empty types
1236  if (V->getType()->isEmptyTy())
1237    return;
1238
1239  DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1240  if (VMI != FuncInfo.ValueMap.end()) {
1241    assert(!V->use_empty() && "Unused value assigned virtual registers!");
1242    CopyValueToVirtualRegister(V, VMI->second);
1243  }
1244}
1245
1246/// ExportFromCurrentBlock - If this condition isn't known to be exported from
1247/// the current basic block, add it to ValueMap now so that we'll get a
1248/// CopyTo/FromReg.
1249void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1250  // No need to export constants.
1251  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1252
1253  // Already exported?
1254  if (FuncInfo.isExportedInst(V)) return;
1255
1256  unsigned Reg = FuncInfo.InitializeRegForValue(V);
1257  CopyValueToVirtualRegister(V, Reg);
1258}
1259
1260bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1261                                                     const BasicBlock *FromBB) {
1262  // The operands of the setcc have to be in this block.  We don't know
1263  // how to export them from some other block.
1264  if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1265    // Can export from current BB.
1266    if (VI->getParent() == FromBB)
1267      return true;
1268
1269    // Is already exported, noop.
1270    return FuncInfo.isExportedInst(V);
1271  }
1272
1273  // If this is an argument, we can export it if the BB is the entry block or
1274  // if it is already exported.
1275  if (isa<Argument>(V)) {
1276    if (FromBB == &FromBB->getParent()->getEntryBlock())
1277      return true;
1278
1279    // Otherwise, can only export this if it is already exported.
1280    return FuncInfo.isExportedInst(V);
1281  }
1282
1283  // Otherwise, constants can always be exported.
1284  return true;
1285}
1286
1287/// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1288uint32_t SelectionDAGBuilder::getEdgeWeight(MachineBasicBlock *Src,
1289                                            MachineBasicBlock *Dst) {
1290  BranchProbabilityInfo *BPI = FuncInfo.BPI;
1291  if (!BPI)
1292    return 0;
1293  const BasicBlock *SrcBB = Src->getBasicBlock();
1294  const BasicBlock *DstBB = Dst->getBasicBlock();
1295  return BPI->getEdgeWeight(SrcBB, DstBB);
1296}
1297
1298void SelectionDAGBuilder::
1299addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst,
1300                       uint32_t Weight /* = 0 */) {
1301  if (!Weight)
1302    Weight = getEdgeWeight(Src, Dst);
1303  Src->addSuccessor(Dst, Weight);
1304}
1305
1306
1307static bool InBlock(const Value *V, const BasicBlock *BB) {
1308  if (const Instruction *I = dyn_cast<Instruction>(V))
1309    return I->getParent() == BB;
1310  return true;
1311}
1312
1313/// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1314/// This function emits a branch and is used at the leaves of an OR or an
1315/// AND operator tree.
1316///
1317void
1318SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1319                                                  MachineBasicBlock *TBB,
1320                                                  MachineBasicBlock *FBB,
1321                                                  MachineBasicBlock *CurBB,
1322                                                  MachineBasicBlock *SwitchBB) {
1323  const BasicBlock *BB = CurBB->getBasicBlock();
1324
1325  // If the leaf of the tree is a comparison, merge the condition into
1326  // the caseblock.
1327  if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1328    // The operands of the cmp have to be in this block.  We don't know
1329    // how to export them from some other block.  If this is the first block
1330    // of the sequence, no exporting is needed.
1331    if (CurBB == SwitchBB ||
1332        (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1333         isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1334      ISD::CondCode Condition;
1335      if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1336        Condition = getICmpCondCode(IC->getPredicate());
1337      } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1338        Condition = getFCmpCondCode(FC->getPredicate());
1339      } else {
1340        Condition = ISD::SETEQ; // silence warning.
1341        llvm_unreachable("Unknown compare instruction");
1342      }
1343
1344      CaseBlock CB(Condition, BOp->getOperand(0),
1345                   BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1346      SwitchCases.push_back(CB);
1347      return;
1348    }
1349  }
1350
1351  // Create a CaseBlock record representing this branch.
1352  CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1353               NULL, TBB, FBB, CurBB);
1354  SwitchCases.push_back(CB);
1355}
1356
1357/// FindMergedConditions - If Cond is an expression like
1358void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1359                                               MachineBasicBlock *TBB,
1360                                               MachineBasicBlock *FBB,
1361                                               MachineBasicBlock *CurBB,
1362                                               MachineBasicBlock *SwitchBB,
1363                                               unsigned Opc) {
1364  // If this node is not part of the or/and tree, emit it as a branch.
1365  const Instruction *BOp = dyn_cast<Instruction>(Cond);
1366  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1367      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1368      BOp->getParent() != CurBB->getBasicBlock() ||
1369      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1370      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1371    EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB);
1372    return;
1373  }
1374
1375  //  Create TmpBB after CurBB.
1376  MachineFunction::iterator BBI = CurBB;
1377  MachineFunction &MF = DAG.getMachineFunction();
1378  MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1379  CurBB->getParent()->insert(++BBI, TmpBB);
1380
1381  if (Opc == Instruction::Or) {
1382    // Codegen X | Y as:
1383    //   jmp_if_X TBB
1384    //   jmp TmpBB
1385    // TmpBB:
1386    //   jmp_if_Y TBB
1387    //   jmp FBB
1388    //
1389
1390    // Emit the LHS condition.
1391    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc);
1392
1393    // Emit the RHS condition into TmpBB.
1394    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1395  } else {
1396    assert(Opc == Instruction::And && "Unknown merge op!");
1397    // Codegen X & Y as:
1398    //   jmp_if_X TmpBB
1399    //   jmp FBB
1400    // TmpBB:
1401    //   jmp_if_Y TBB
1402    //   jmp FBB
1403    //
1404    //  This requires creation of TmpBB after CurBB.
1405
1406    // Emit the LHS condition.
1407    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc);
1408
1409    // Emit the RHS condition into TmpBB.
1410    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1411  }
1412}
1413
1414/// If the set of cases should be emitted as a series of branches, return true.
1415/// If we should emit this as a bunch of and/or'd together conditions, return
1416/// false.
1417bool
1418SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
1419  if (Cases.size() != 2) return true;
1420
1421  // If this is two comparisons of the same values or'd or and'd together, they
1422  // will get folded into a single comparison, so don't emit two blocks.
1423  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1424       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1425      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1426       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1427    return false;
1428  }
1429
1430  // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1431  // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1432  if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1433      Cases[0].CC == Cases[1].CC &&
1434      isa<Constant>(Cases[0].CmpRHS) &&
1435      cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1436    if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1437      return false;
1438    if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1439      return false;
1440  }
1441
1442  return true;
1443}
1444
1445void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1446  MachineBasicBlock *BrMBB = FuncInfo.MBB;
1447
1448  // Update machine-CFG edges.
1449  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1450
1451  // Figure out which block is immediately after the current one.
1452  MachineBasicBlock *NextBlock = 0;
1453  MachineFunction::iterator BBI = BrMBB;
1454  if (++BBI != FuncInfo.MF->end())
1455    NextBlock = BBI;
1456
1457  if (I.isUnconditional()) {
1458    // Update machine-CFG edges.
1459    BrMBB->addSuccessor(Succ0MBB);
1460
1461    // If this is not a fall-through branch, emit the branch.
1462    if (Succ0MBB != NextBlock)
1463      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1464                              MVT::Other, getControlRoot(),
1465                              DAG.getBasicBlock(Succ0MBB)));
1466
1467    return;
1468  }
1469
1470  // If this condition is one of the special cases we handle, do special stuff
1471  // now.
1472  const Value *CondVal = I.getCondition();
1473  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1474
1475  // If this is a series of conditions that are or'd or and'd together, emit
1476  // this as a sequence of branches instead of setcc's with and/or operations.
1477  // As long as jumps are not expensive, this should improve performance.
1478  // For example, instead of something like:
1479  //     cmp A, B
1480  //     C = seteq
1481  //     cmp D, E
1482  //     F = setle
1483  //     or C, F
1484  //     jnz foo
1485  // Emit:
1486  //     cmp A, B
1487  //     je foo
1488  //     cmp D, E
1489  //     jle foo
1490  //
1491  if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1492    if (!TLI.isJumpExpensive() &&
1493        BOp->hasOneUse() &&
1494        (BOp->getOpcode() == Instruction::And ||
1495         BOp->getOpcode() == Instruction::Or)) {
1496      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1497                           BOp->getOpcode());
1498      // If the compares in later blocks need to use values not currently
1499      // exported from this block, export them now.  This block should always
1500      // be the first entry.
1501      assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1502
1503      // Allow some cases to be rejected.
1504      if (ShouldEmitAsBranches(SwitchCases)) {
1505        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1506          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1507          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1508        }
1509
1510        // Emit the branch for this block.
1511        visitSwitchCase(SwitchCases[0], BrMBB);
1512        SwitchCases.erase(SwitchCases.begin());
1513        return;
1514      }
1515
1516      // Okay, we decided not to do this, remove any inserted MBB's and clear
1517      // SwitchCases.
1518      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1519        FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1520
1521      SwitchCases.clear();
1522    }
1523  }
1524
1525  // Create a CaseBlock record representing this branch.
1526  CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1527               NULL, Succ0MBB, Succ1MBB, BrMBB);
1528
1529  // Use visitSwitchCase to actually insert the fast branch sequence for this
1530  // cond branch.
1531  visitSwitchCase(CB, BrMBB);
1532}
1533
1534/// visitSwitchCase - Emits the necessary code to represent a single node in
1535/// the binary search tree resulting from lowering a switch instruction.
1536void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1537                                          MachineBasicBlock *SwitchBB) {
1538  SDValue Cond;
1539  SDValue CondLHS = getValue(CB.CmpLHS);
1540  DebugLoc dl = getCurDebugLoc();
1541
1542  // Build the setcc now.
1543  if (CB.CmpMHS == NULL) {
1544    // Fold "(X == true)" to X and "(X == false)" to !X to
1545    // handle common cases produced by branch lowering.
1546    if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1547        CB.CC == ISD::SETEQ)
1548      Cond = CondLHS;
1549    else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1550             CB.CC == ISD::SETEQ) {
1551      SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1552      Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1553    } else
1554      Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1555  } else {
1556    assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1557
1558    const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1559    const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
1560
1561    SDValue CmpOp = getValue(CB.CmpMHS);
1562    EVT VT = CmpOp.getValueType();
1563
1564    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1565      Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1566                          ISD::SETLE);
1567    } else {
1568      SDValue SUB = DAG.getNode(ISD::SUB, dl,
1569                                VT, CmpOp, DAG.getConstant(Low, VT));
1570      Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1571                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1572    }
1573  }
1574
1575  // Update successor info
1576  addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight);
1577  addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight);
1578
1579  // Set NextBlock to be the MBB immediately after the current one, if any.
1580  // This is used to avoid emitting unnecessary branches to the next block.
1581  MachineBasicBlock *NextBlock = 0;
1582  MachineFunction::iterator BBI = SwitchBB;
1583  if (++BBI != FuncInfo.MF->end())
1584    NextBlock = BBI;
1585
1586  // If the lhs block is the next block, invert the condition so that we can
1587  // fall through to the lhs instead of the rhs block.
1588  if (CB.TrueBB == NextBlock) {
1589    std::swap(CB.TrueBB, CB.FalseBB);
1590    SDValue True = DAG.getConstant(1, Cond.getValueType());
1591    Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1592  }
1593
1594  SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1595                               MVT::Other, getControlRoot(), Cond,
1596                               DAG.getBasicBlock(CB.TrueBB));
1597
1598  // Insert the false branch. Do this even if it's a fall through branch,
1599  // this makes it easier to do DAG optimizations which require inverting
1600  // the branch condition.
1601  BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1602                       DAG.getBasicBlock(CB.FalseBB));
1603
1604  DAG.setRoot(BrCond);
1605}
1606
1607/// visitJumpTable - Emit JumpTable node in the current MBB
1608void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1609  // Emit the code for the jump table
1610  assert(JT.Reg != -1U && "Should lower JT Header first!");
1611  EVT PTy = TLI.getPointerTy();
1612  SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1613                                     JT.Reg, PTy);
1614  SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1615  SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(),
1616                                    MVT::Other, Index.getValue(1),
1617                                    Table, Index);
1618  DAG.setRoot(BrJumpTable);
1619}
1620
1621/// visitJumpTableHeader - This function emits necessary code to produce index
1622/// in the JumpTable from switch case.
1623void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1624                                               JumpTableHeader &JTH,
1625                                               MachineBasicBlock *SwitchBB) {
1626  // Subtract the lowest switch case value from the value being switched on and
1627  // conditional branch to default mbb if the result is greater than the
1628  // difference between smallest and largest cases.
1629  SDValue SwitchOp = getValue(JTH.SValue);
1630  EVT VT = SwitchOp.getValueType();
1631  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1632                            DAG.getConstant(JTH.First, VT));
1633
1634  // The SDNode we just created, which holds the value being switched on minus
1635  // the smallest case value, needs to be copied to a virtual register so it
1636  // can be used as an index into the jump table in a subsequent basic block.
1637  // This value may be smaller or larger than the target's pointer type, and
1638  // therefore require extension or truncating.
1639  SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy());
1640
1641  unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy());
1642  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1643                                    JumpTableReg, SwitchOp);
1644  JT.Reg = JumpTableReg;
1645
1646  // Emit the range check for the jump table, and branch to the default block
1647  // for the switch statement if the value being switched on exceeds the largest
1648  // case in the switch.
1649  SDValue CMP = DAG.getSetCC(getCurDebugLoc(),
1650                             TLI.getSetCCResultType(Sub.getValueType()), Sub,
1651                             DAG.getConstant(JTH.Last-JTH.First,VT),
1652                             ISD::SETUGT);
1653
1654  // Set NextBlock to be the MBB immediately after the current one, if any.
1655  // This is used to avoid emitting unnecessary branches to the next block.
1656  MachineBasicBlock *NextBlock = 0;
1657  MachineFunction::iterator BBI = SwitchBB;
1658
1659  if (++BBI != FuncInfo.MF->end())
1660    NextBlock = BBI;
1661
1662  SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1663                               MVT::Other, CopyTo, CMP,
1664                               DAG.getBasicBlock(JT.Default));
1665
1666  if (JT.MBB != NextBlock)
1667    BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond,
1668                         DAG.getBasicBlock(JT.MBB));
1669
1670  DAG.setRoot(BrCond);
1671}
1672
1673/// visitBitTestHeader - This function emits necessary code to produce value
1674/// suitable for "bit tests"
1675void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1676                                             MachineBasicBlock *SwitchBB) {
1677  // Subtract the minimum value
1678  SDValue SwitchOp = getValue(B.SValue);
1679  EVT VT = SwitchOp.getValueType();
1680  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1681                            DAG.getConstant(B.First, VT));
1682
1683  // Check range
1684  SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(),
1685                                  TLI.getSetCCResultType(Sub.getValueType()),
1686                                  Sub, DAG.getConstant(B.Range, VT),
1687                                  ISD::SETUGT);
1688
1689  // Determine the type of the test operands.
1690  bool UsePtrType = false;
1691  if (!TLI.isTypeLegal(VT))
1692    UsePtrType = true;
1693  else {
1694    for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
1695      if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
1696        // Switch table case range are encoded into series of masks.
1697        // Just use pointer type, it's guaranteed to fit.
1698        UsePtrType = true;
1699        break;
1700      }
1701  }
1702  if (UsePtrType) {
1703    VT = TLI.getPointerTy();
1704    Sub = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), VT);
1705  }
1706
1707  B.RegVT = VT;
1708  B.Reg = FuncInfo.CreateReg(VT);
1709  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1710                                    B.Reg, Sub);
1711
1712  // Set NextBlock to be the MBB immediately after the current one, if any.
1713  // This is used to avoid emitting unnecessary branches to the next block.
1714  MachineBasicBlock *NextBlock = 0;
1715  MachineFunction::iterator BBI = SwitchBB;
1716  if (++BBI != FuncInfo.MF->end())
1717    NextBlock = BBI;
1718
1719  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1720
1721  addSuccessorWithWeight(SwitchBB, B.Default);
1722  addSuccessorWithWeight(SwitchBB, MBB);
1723
1724  SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1725                                MVT::Other, CopyTo, RangeCmp,
1726                                DAG.getBasicBlock(B.Default));
1727
1728  if (MBB != NextBlock)
1729    BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo,
1730                          DAG.getBasicBlock(MBB));
1731
1732  DAG.setRoot(BrRange);
1733}
1734
1735/// visitBitTestCase - this function produces one "bit test"
1736void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
1737                                           MachineBasicBlock* NextMBB,
1738                                           unsigned Reg,
1739                                           BitTestCase &B,
1740                                           MachineBasicBlock *SwitchBB) {
1741  EVT VT = BB.RegVT;
1742  SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1743                                       Reg, VT);
1744  SDValue Cmp;
1745  unsigned PopCount = CountPopulation_64(B.Mask);
1746  if (PopCount == 1) {
1747    // Testing for a single bit; just compare the shift count with what it
1748    // would need to be to shift a 1 bit in that position.
1749    Cmp = DAG.getSetCC(getCurDebugLoc(),
1750                       TLI.getSetCCResultType(VT),
1751                       ShiftOp,
1752                       DAG.getConstant(CountTrailingZeros_64(B.Mask), VT),
1753                       ISD::SETEQ);
1754  } else if (PopCount == BB.Range) {
1755    // There is only one zero bit in the range, test for it directly.
1756    Cmp = DAG.getSetCC(getCurDebugLoc(),
1757                       TLI.getSetCCResultType(VT),
1758                       ShiftOp,
1759                       DAG.getConstant(CountTrailingOnes_64(B.Mask), VT),
1760                       ISD::SETNE);
1761  } else {
1762    // Make desired shift
1763    SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), VT,
1764                                    DAG.getConstant(1, VT), ShiftOp);
1765
1766    // Emit bit tests and jumps
1767    SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(),
1768                                VT, SwitchVal, DAG.getConstant(B.Mask, VT));
1769    Cmp = DAG.getSetCC(getCurDebugLoc(),
1770                       TLI.getSetCCResultType(VT),
1771                       AndOp, DAG.getConstant(0, VT),
1772                       ISD::SETNE);
1773  }
1774
1775  addSuccessorWithWeight(SwitchBB, B.TargetBB);
1776  addSuccessorWithWeight(SwitchBB, NextMBB);
1777
1778  SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1779                              MVT::Other, getControlRoot(),
1780                              Cmp, DAG.getBasicBlock(B.TargetBB));
1781
1782  // Set NextBlock to be the MBB immediately after the current one, if any.
1783  // This is used to avoid emitting unnecessary branches to the next block.
1784  MachineBasicBlock *NextBlock = 0;
1785  MachineFunction::iterator BBI = SwitchBB;
1786  if (++BBI != FuncInfo.MF->end())
1787    NextBlock = BBI;
1788
1789  if (NextMBB != NextBlock)
1790    BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd,
1791                        DAG.getBasicBlock(NextMBB));
1792
1793  DAG.setRoot(BrAnd);
1794}
1795
1796void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1797  MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
1798
1799  // Retrieve successors.
1800  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1801  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1802
1803  const Value *Callee(I.getCalledValue());
1804  if (isa<InlineAsm>(Callee))
1805    visitInlineAsm(&I);
1806  else
1807    LowerCallTo(&I, getValue(Callee), false, LandingPad);
1808
1809  // If the value of the invoke is used outside of its defining block, make it
1810  // available as a virtual register.
1811  CopyToExportRegsIfNeeded(&I);
1812
1813  // Update successor info
1814  InvokeMBB->addSuccessor(Return);
1815  InvokeMBB->addSuccessor(LandingPad);
1816
1817  // Drop into normal successor.
1818  DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1819                          MVT::Other, getControlRoot(),
1820                          DAG.getBasicBlock(Return)));
1821}
1822
1823void SelectionDAGBuilder::visitUnwind(const UnwindInst &I) {
1824}
1825
1826void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
1827  llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
1828}
1829
1830void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
1831  assert(FuncInfo.MBB->isLandingPad() &&
1832         "Call to landingpad not in landing pad!");
1833
1834  MachineBasicBlock *MBB = FuncInfo.MBB;
1835  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
1836  AddLandingPadInfo(LP, MMI, MBB);
1837
1838  SmallVector<EVT, 2> ValueVTs;
1839  ComputeValueVTs(TLI, LP.getType(), ValueVTs);
1840
1841  // Insert the EXCEPTIONADDR instruction.
1842  assert(FuncInfo.MBB->isLandingPad() &&
1843         "Call to eh.exception not in landing pad!");
1844  SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
1845  SDValue Ops[2];
1846  Ops[0] = DAG.getRoot();
1847  SDValue Op1 = DAG.getNode(ISD::EXCEPTIONADDR, getCurDebugLoc(), VTs, Ops, 1);
1848  SDValue Chain = Op1.getValue(1);
1849
1850  // Insert the EHSELECTION instruction.
1851  VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
1852  Ops[0] = Op1;
1853  Ops[1] = Chain;
1854  SDValue Op2 = DAG.getNode(ISD::EHSELECTION, getCurDebugLoc(), VTs, Ops, 2);
1855  Chain = Op2.getValue(1);
1856  Op2 = DAG.getSExtOrTrunc(Op2, getCurDebugLoc(), MVT::i32);
1857
1858  Ops[0] = Op1;
1859  Ops[1] = Op2;
1860  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
1861                            DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
1862                            &Ops[0], 2);
1863
1864  std::pair<SDValue, SDValue> RetPair = std::make_pair(Res, Chain);
1865  setValue(&LP, RetPair.first);
1866  DAG.setRoot(RetPair.second);
1867}
1868
1869/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1870/// small case ranges).
1871bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
1872                                                 CaseRecVector& WorkList,
1873                                                 const Value* SV,
1874                                                 MachineBasicBlock *Default,
1875                                                 MachineBasicBlock *SwitchBB) {
1876  Case& BackCase  = *(CR.Range.second-1);
1877
1878  // Size is the number of Cases represented by this range.
1879  size_t Size = CR.Range.second - CR.Range.first;
1880  if (Size > 3)
1881    return false;
1882
1883  // Get the MachineFunction which holds the current MBB.  This is used when
1884  // inserting any additional MBBs necessary to represent the switch.
1885  MachineFunction *CurMF = FuncInfo.MF;
1886
1887  // Figure out which block is immediately after the current one.
1888  MachineBasicBlock *NextBlock = 0;
1889  MachineFunction::iterator BBI = CR.CaseBB;
1890
1891  if (++BBI != FuncInfo.MF->end())
1892    NextBlock = BBI;
1893
1894  // If any two of the cases has the same destination, and if one value
1895  // is the same as the other, but has one bit unset that the other has set,
1896  // use bit manipulation to do two compares at once.  For example:
1897  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1898  // TODO: This could be extended to merge any 2 cases in switches with 3 cases.
1899  // TODO: Handle cases where CR.CaseBB != SwitchBB.
1900  if (Size == 2 && CR.CaseBB == SwitchBB) {
1901    Case &Small = *CR.Range.first;
1902    Case &Big = *(CR.Range.second-1);
1903
1904    if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) {
1905      const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue();
1906      const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue();
1907
1908      // Check that there is only one bit different.
1909      if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 &&
1910          (SmallValue | BigValue) == BigValue) {
1911        // Isolate the common bit.
1912        APInt CommonBit = BigValue & ~SmallValue;
1913        assert((SmallValue | CommonBit) == BigValue &&
1914               CommonBit.countPopulation() == 1 && "Not a common bit?");
1915
1916        SDValue CondLHS = getValue(SV);
1917        EVT VT = CondLHS.getValueType();
1918        DebugLoc DL = getCurDebugLoc();
1919
1920        SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
1921                                 DAG.getConstant(CommonBit, VT));
1922        SDValue Cond = DAG.getSetCC(DL, MVT::i1,
1923                                    Or, DAG.getConstant(BigValue, VT),
1924                                    ISD::SETEQ);
1925
1926        // Update successor info.
1927        addSuccessorWithWeight(SwitchBB, Small.BB);
1928        addSuccessorWithWeight(SwitchBB, Default);
1929
1930        // Insert the true branch.
1931        SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other,
1932                                     getControlRoot(), Cond,
1933                                     DAG.getBasicBlock(Small.BB));
1934
1935        // Insert the false branch.
1936        BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
1937                             DAG.getBasicBlock(Default));
1938
1939        DAG.setRoot(BrCond);
1940        return true;
1941      }
1942    }
1943  }
1944
1945  // Rearrange the case blocks so that the last one falls through if possible.
1946  if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1947    // The last case block won't fall through into 'NextBlock' if we emit the
1948    // branches in this order.  See if rearranging a case value would help.
1949    for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1950      if (I->BB == NextBlock) {
1951        std::swap(*I, BackCase);
1952        break;
1953      }
1954    }
1955  }
1956
1957  // Create a CaseBlock record representing a conditional branch to
1958  // the Case's target mbb if the value being switched on SV is equal
1959  // to C.
1960  MachineBasicBlock *CurBlock = CR.CaseBB;
1961  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1962    MachineBasicBlock *FallThrough;
1963    if (I != E-1) {
1964      FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
1965      CurMF->insert(BBI, FallThrough);
1966
1967      // Put SV in a virtual register to make it available from the new blocks.
1968      ExportFromCurrentBlock(SV);
1969    } else {
1970      // If the last case doesn't match, go to the default block.
1971      FallThrough = Default;
1972    }
1973
1974    const Value *RHS, *LHS, *MHS;
1975    ISD::CondCode CC;
1976    if (I->High == I->Low) {
1977      // This is just small small case range :) containing exactly 1 case
1978      CC = ISD::SETEQ;
1979      LHS = SV; RHS = I->High; MHS = NULL;
1980    } else {
1981      CC = ISD::SETLE;
1982      LHS = I->Low; MHS = SV; RHS = I->High;
1983    }
1984
1985    uint32_t ExtraWeight = I->ExtraWeight;
1986    CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough,
1987                 /* me */ CurBlock,
1988                 /* trueweight */ ExtraWeight / 2, /* falseweight */ ExtraWeight / 2);
1989
1990    // If emitting the first comparison, just call visitSwitchCase to emit the
1991    // code into the current block.  Otherwise, push the CaseBlock onto the
1992    // vector to be later processed by SDISel, and insert the node's MBB
1993    // before the next MBB.
1994    if (CurBlock == SwitchBB)
1995      visitSwitchCase(CB, SwitchBB);
1996    else
1997      SwitchCases.push_back(CB);
1998
1999    CurBlock = FallThrough;
2000  }
2001
2002  return true;
2003}
2004
2005static inline bool areJTsAllowed(const TargetLowering &TLI) {
2006  return !DisableJumpTables &&
2007          (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
2008           TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
2009}
2010
2011static APInt ComputeRange(const APInt &First, const APInt &Last) {
2012  uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
2013  APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth);
2014  return (LastExt - FirstExt + 1ULL);
2015}
2016
2017/// handleJTSwitchCase - Emit jumptable for current switch case range
2018bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR,
2019                                             CaseRecVector &WorkList,
2020                                             const Value *SV,
2021                                             MachineBasicBlock *Default,
2022                                             MachineBasicBlock *SwitchBB) {
2023  Case& FrontCase = *CR.Range.first;
2024  Case& BackCase  = *(CR.Range.second-1);
2025
2026  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2027  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2028
2029  APInt TSize(First.getBitWidth(), 0);
2030  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I)
2031    TSize += I->size();
2032
2033  if (!areJTsAllowed(TLI) || TSize.ult(4))
2034    return false;
2035
2036  APInt Range = ComputeRange(First, Last);
2037  double Density = TSize.roundToDouble() / Range.roundToDouble();
2038  if (Density < 0.4)
2039    return false;
2040
2041  DEBUG(dbgs() << "Lowering jump table\n"
2042               << "First entry: " << First << ". Last entry: " << Last << '\n'
2043               << "Range: " << Range
2044               << ". Size: " << TSize << ". Density: " << Density << "\n\n");
2045
2046  // Get the MachineFunction which holds the current MBB.  This is used when
2047  // inserting any additional MBBs necessary to represent the switch.
2048  MachineFunction *CurMF = FuncInfo.MF;
2049
2050  // Figure out which block is immediately after the current one.
2051  MachineFunction::iterator BBI = CR.CaseBB;
2052  ++BBI;
2053
2054  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2055
2056  // Create a new basic block to hold the code for loading the address
2057  // of the jump table, and jumping to it.  Update successor information;
2058  // we will either branch to the default case for the switch, or the jump
2059  // table.
2060  MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2061  CurMF->insert(BBI, JumpTableBB);
2062
2063  addSuccessorWithWeight(CR.CaseBB, Default);
2064  addSuccessorWithWeight(CR.CaseBB, JumpTableBB);
2065
2066  // Build a vector of destination BBs, corresponding to each target
2067  // of the jump table. If the value of the jump table slot corresponds to
2068  // a case statement, push the case's BB onto the vector, otherwise, push
2069  // the default BB.
2070  std::vector<MachineBasicBlock*> DestBBs;
2071  APInt TEI = First;
2072  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
2073    const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
2074    const APInt &High = cast<ConstantInt>(I->High)->getValue();
2075
2076    if (Low.sle(TEI) && TEI.sle(High)) {
2077      DestBBs.push_back(I->BB);
2078      if (TEI==High)
2079        ++I;
2080    } else {
2081      DestBBs.push_back(Default);
2082    }
2083  }
2084
2085  // Update successor info. Add one edge to each unique successor.
2086  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
2087  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
2088         E = DestBBs.end(); I != E; ++I) {
2089    if (!SuccsHandled[(*I)->getNumber()]) {
2090      SuccsHandled[(*I)->getNumber()] = true;
2091      addSuccessorWithWeight(JumpTableBB, *I);
2092    }
2093  }
2094
2095  // Create a jump table index for this jump table.
2096  unsigned JTEncoding = TLI.getJumpTableEncoding();
2097  unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
2098                       ->createJumpTableIndex(DestBBs);
2099
2100  // Set the jump table information so that we can codegen it as a second
2101  // MachineBasicBlock
2102  JumpTable JT(-1U, JTI, JumpTableBB, Default);
2103  JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
2104  if (CR.CaseBB == SwitchBB)
2105    visitJumpTableHeader(JT, JTH, SwitchBB);
2106
2107  JTCases.push_back(JumpTableBlock(JTH, JT));
2108  return true;
2109}
2110
2111/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
2112/// 2 subtrees.
2113bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
2114                                                  CaseRecVector& WorkList,
2115                                                  const Value* SV,
2116                                                  MachineBasicBlock *Default,
2117                                                  MachineBasicBlock *SwitchBB) {
2118  // Get the MachineFunction which holds the current MBB.  This is used when
2119  // inserting any additional MBBs necessary to represent the switch.
2120  MachineFunction *CurMF = FuncInfo.MF;
2121
2122  // Figure out which block is immediately after the current one.
2123  MachineFunction::iterator BBI = CR.CaseBB;
2124  ++BBI;
2125
2126  Case& FrontCase = *CR.Range.first;
2127  Case& BackCase  = *(CR.Range.second-1);
2128  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2129
2130  // Size is the number of Cases represented by this range.
2131  unsigned Size = CR.Range.second - CR.Range.first;
2132
2133  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2134  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2135  double FMetric = 0;
2136  CaseItr Pivot = CR.Range.first + Size/2;
2137
2138  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
2139  // (heuristically) allow us to emit JumpTable's later.
2140  APInt TSize(First.getBitWidth(), 0);
2141  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2142       I!=E; ++I)
2143    TSize += I->size();
2144
2145  APInt LSize = FrontCase.size();
2146  APInt RSize = TSize-LSize;
2147  DEBUG(dbgs() << "Selecting best pivot: \n"
2148               << "First: " << First << ", Last: " << Last <<'\n'
2149               << "LSize: " << LSize << ", RSize: " << RSize << '\n');
2150  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
2151       J!=E; ++I, ++J) {
2152    const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
2153    const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
2154    APInt Range = ComputeRange(LEnd, RBegin);
2155    assert((Range - 2ULL).isNonNegative() &&
2156           "Invalid case distance");
2157    // Use volatile double here to avoid excess precision issues on some hosts,
2158    // e.g. that use 80-bit X87 registers.
2159    volatile double LDensity =
2160       (double)LSize.roundToDouble() /
2161                           (LEnd - First + 1ULL).roundToDouble();
2162    volatile double RDensity =
2163      (double)RSize.roundToDouble() /
2164                           (Last - RBegin + 1ULL).roundToDouble();
2165    double Metric = Range.logBase2()*(LDensity+RDensity);
2166    // Should always split in some non-trivial place
2167    DEBUG(dbgs() <<"=>Step\n"
2168                 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
2169                 << "LDensity: " << LDensity
2170                 << ", RDensity: " << RDensity << '\n'
2171                 << "Metric: " << Metric << '\n');
2172    if (FMetric < Metric) {
2173      Pivot = J;
2174      FMetric = Metric;
2175      DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
2176    }
2177
2178    LSize += J->size();
2179    RSize -= J->size();
2180  }
2181  if (areJTsAllowed(TLI)) {
2182    // If our case is dense we *really* should handle it earlier!
2183    assert((FMetric > 0) && "Should handle dense range earlier!");
2184  } else {
2185    Pivot = CR.Range.first + Size/2;
2186  }
2187
2188  CaseRange LHSR(CR.Range.first, Pivot);
2189  CaseRange RHSR(Pivot, CR.Range.second);
2190  Constant *C = Pivot->Low;
2191  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
2192
2193  // We know that we branch to the LHS if the Value being switched on is
2194  // less than the Pivot value, C.  We use this to optimize our binary
2195  // tree a bit, by recognizing that if SV is greater than or equal to the
2196  // LHS's Case Value, and that Case Value is exactly one less than the
2197  // Pivot's Value, then we can branch directly to the LHS's Target,
2198  // rather than creating a leaf node for it.
2199  if ((LHSR.second - LHSR.first) == 1 &&
2200      LHSR.first->High == CR.GE &&
2201      cast<ConstantInt>(C)->getValue() ==
2202      (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
2203    TrueBB = LHSR.first->BB;
2204  } else {
2205    TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2206    CurMF->insert(BBI, TrueBB);
2207    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
2208
2209    // Put SV in a virtual register to make it available from the new blocks.
2210    ExportFromCurrentBlock(SV);
2211  }
2212
2213  // Similar to the optimization above, if the Value being switched on is
2214  // known to be less than the Constant CR.LT, and the current Case Value
2215  // is CR.LT - 1, then we can branch directly to the target block for
2216  // the current Case Value, rather than emitting a RHS leaf node for it.
2217  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
2218      cast<ConstantInt>(RHSR.first->Low)->getValue() ==
2219      (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
2220    FalseBB = RHSR.first->BB;
2221  } else {
2222    FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2223    CurMF->insert(BBI, FalseBB);
2224    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
2225
2226    // Put SV in a virtual register to make it available from the new blocks.
2227    ExportFromCurrentBlock(SV);
2228  }
2229
2230  // Create a CaseBlock record representing a conditional branch to
2231  // the LHS node if the value being switched on SV is less than C.
2232  // Otherwise, branch to LHS.
2233  CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
2234
2235  if (CR.CaseBB == SwitchBB)
2236    visitSwitchCase(CB, SwitchBB);
2237  else
2238    SwitchCases.push_back(CB);
2239
2240  return true;
2241}
2242
2243/// handleBitTestsSwitchCase - if current case range has few destination and
2244/// range span less, than machine word bitwidth, encode case range into series
2245/// of masks and emit bit tests with these masks.
2246bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
2247                                                   CaseRecVector& WorkList,
2248                                                   const Value* SV,
2249                                                   MachineBasicBlock* Default,
2250                                                   MachineBasicBlock *SwitchBB){
2251  EVT PTy = TLI.getPointerTy();
2252  unsigned IntPtrBits = PTy.getSizeInBits();
2253
2254  Case& FrontCase = *CR.Range.first;
2255  Case& BackCase  = *(CR.Range.second-1);
2256
2257  // Get the MachineFunction which holds the current MBB.  This is used when
2258  // inserting any additional MBBs necessary to represent the switch.
2259  MachineFunction *CurMF = FuncInfo.MF;
2260
2261  // If target does not have legal shift left, do not emit bit tests at all.
2262  if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
2263    return false;
2264
2265  size_t numCmps = 0;
2266  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2267       I!=E; ++I) {
2268    // Single case counts one, case range - two.
2269    numCmps += (I->Low == I->High ? 1 : 2);
2270  }
2271
2272  // Count unique destinations
2273  SmallSet<MachineBasicBlock*, 4> Dests;
2274  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2275    Dests.insert(I->BB);
2276    if (Dests.size() > 3)
2277      // Don't bother the code below, if there are too much unique destinations
2278      return false;
2279  }
2280  DEBUG(dbgs() << "Total number of unique destinations: "
2281        << Dests.size() << '\n'
2282        << "Total number of comparisons: " << numCmps << '\n');
2283
2284  // Compute span of values.
2285  const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
2286  const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
2287  APInt cmpRange = maxValue - minValue;
2288
2289  DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
2290               << "Low bound: " << minValue << '\n'
2291               << "High bound: " << maxValue << '\n');
2292
2293  if (cmpRange.uge(IntPtrBits) ||
2294      (!(Dests.size() == 1 && numCmps >= 3) &&
2295       !(Dests.size() == 2 && numCmps >= 5) &&
2296       !(Dests.size() >= 3 && numCmps >= 6)))
2297    return false;
2298
2299  DEBUG(dbgs() << "Emitting bit tests\n");
2300  APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
2301
2302  // Optimize the case where all the case values fit in a
2303  // word without having to subtract minValue. In this case,
2304  // we can optimize away the subtraction.
2305  if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) {
2306    cmpRange = maxValue;
2307  } else {
2308    lowBound = minValue;
2309  }
2310
2311  CaseBitsVector CasesBits;
2312  unsigned i, count = 0;
2313
2314  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2315    MachineBasicBlock* Dest = I->BB;
2316    for (i = 0; i < count; ++i)
2317      if (Dest == CasesBits[i].BB)
2318        break;
2319
2320    if (i == count) {
2321      assert((count < 3) && "Too much destinations to test!");
2322      CasesBits.push_back(CaseBits(0, Dest, 0));
2323      count++;
2324    }
2325
2326    const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
2327    const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
2328
2329    uint64_t lo = (lowValue - lowBound).getZExtValue();
2330    uint64_t hi = (highValue - lowBound).getZExtValue();
2331
2332    for (uint64_t j = lo; j <= hi; j++) {
2333      CasesBits[i].Mask |=  1ULL << j;
2334      CasesBits[i].Bits++;
2335    }
2336
2337  }
2338  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2339
2340  BitTestInfo BTC;
2341
2342  // Figure out which block is immediately after the current one.
2343  MachineFunction::iterator BBI = CR.CaseBB;
2344  ++BBI;
2345
2346  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2347
2348  DEBUG(dbgs() << "Cases:\n");
2349  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2350    DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
2351                 << ", Bits: " << CasesBits[i].Bits
2352                 << ", BB: " << CasesBits[i].BB << '\n');
2353
2354    MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2355    CurMF->insert(BBI, CaseBB);
2356    BTC.push_back(BitTestCase(CasesBits[i].Mask,
2357                              CaseBB,
2358                              CasesBits[i].BB));
2359
2360    // Put SV in a virtual register to make it available from the new blocks.
2361    ExportFromCurrentBlock(SV);
2362  }
2363
2364  BitTestBlock BTB(lowBound, cmpRange, SV,
2365                   -1U, MVT::Other, (CR.CaseBB == SwitchBB),
2366                   CR.CaseBB, Default, BTC);
2367
2368  if (CR.CaseBB == SwitchBB)
2369    visitBitTestHeader(BTB, SwitchBB);
2370
2371  BitTestCases.push_back(BTB);
2372
2373  return true;
2374}
2375
2376/// Clusterify - Transform simple list of Cases into list of CaseRange's
2377size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
2378                                       const SwitchInst& SI) {
2379  size_t numCmps = 0;
2380
2381  BranchProbabilityInfo *BPI = FuncInfo.BPI;
2382  // Start with "simple" cases
2383  for (size_t i = 1; i < SI.getNumSuccessors(); ++i) {
2384    BasicBlock *SuccBB = SI.getSuccessor(i);
2385    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB];
2386
2387    uint32_t ExtraWeight = BPI ? BPI->getEdgeWeight(SI.getParent(), SuccBB) : 0;
2388
2389    Cases.push_back(Case(SI.getSuccessorValue(i),
2390                         SI.getSuccessorValue(i),
2391                         SMBB, ExtraWeight));
2392  }
2393  std::sort(Cases.begin(), Cases.end(), CaseCmp());
2394
2395  // Merge case into clusters
2396  if (Cases.size() >= 2)
2397    // Must recompute end() each iteration because it may be
2398    // invalidated by erase if we hold on to it
2399    for (CaseItr I = Cases.begin(), J = llvm::next(Cases.begin());
2400         J != Cases.end(); ) {
2401      const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
2402      const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
2403      MachineBasicBlock* nextBB = J->BB;
2404      MachineBasicBlock* currentBB = I->BB;
2405
2406      // If the two neighboring cases go to the same destination, merge them
2407      // into a single case.
2408      if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
2409        I->High = J->High;
2410        J = Cases.erase(J);
2411
2412        if (BranchProbabilityInfo *BPI = FuncInfo.BPI) {
2413          uint32_t CurWeight = currentBB->getBasicBlock() ?
2414            BPI->getEdgeWeight(SI.getParent(), currentBB->getBasicBlock()) : 16;
2415          uint32_t NextWeight = nextBB->getBasicBlock() ?
2416            BPI->getEdgeWeight(SI.getParent(), nextBB->getBasicBlock()) : 16;
2417
2418          BPI->setEdgeWeight(SI.getParent(), currentBB->getBasicBlock(),
2419                             CurWeight + NextWeight);
2420        }
2421      } else {
2422        I = J++;
2423      }
2424    }
2425
2426  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
2427    if (I->Low != I->High)
2428      // A range counts double, since it requires two compares.
2429      ++numCmps;
2430  }
2431
2432  return numCmps;
2433}
2434
2435void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2436                                           MachineBasicBlock *Last) {
2437  // Update JTCases.
2438  for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2439    if (JTCases[i].first.HeaderBB == First)
2440      JTCases[i].first.HeaderBB = Last;
2441
2442  // Update BitTestCases.
2443  for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2444    if (BitTestCases[i].Parent == First)
2445      BitTestCases[i].Parent = Last;
2446}
2447
2448void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
2449  MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
2450
2451  // Figure out which block is immediately after the current one.
2452  MachineBasicBlock *NextBlock = 0;
2453  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2454
2455  // If there is only the default destination, branch to it if it is not the
2456  // next basic block.  Otherwise, just fall through.
2457  if (SI.getNumCases() == 1) {
2458    // Update machine-CFG edges.
2459
2460    // If this is not a fall-through branch, emit the branch.
2461    SwitchMBB->addSuccessor(Default);
2462    if (Default != NextBlock)
2463      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
2464                              MVT::Other, getControlRoot(),
2465                              DAG.getBasicBlock(Default)));
2466
2467    return;
2468  }
2469
2470  // If there are any non-default case statements, create a vector of Cases
2471  // representing each one, and sort the vector so that we can efficiently
2472  // create a binary search tree from them.
2473  CaseVector Cases;
2474  size_t numCmps = Clusterify(Cases, SI);
2475  DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2476               << ". Total compares: " << numCmps << '\n');
2477  numCmps = 0;
2478
2479  // Get the Value to be switched on and default basic blocks, which will be
2480  // inserted into CaseBlock records, representing basic blocks in the binary
2481  // search tree.
2482  const Value *SV = SI.getCondition();
2483
2484  // Push the initial CaseRec onto the worklist
2485  CaseRecVector WorkList;
2486  WorkList.push_back(CaseRec(SwitchMBB,0,0,
2487                             CaseRange(Cases.begin(),Cases.end())));
2488
2489  while (!WorkList.empty()) {
2490    // Grab a record representing a case range to process off the worklist
2491    CaseRec CR = WorkList.back();
2492    WorkList.pop_back();
2493
2494    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2495      continue;
2496
2497    // If the range has few cases (two or less) emit a series of specific
2498    // tests.
2499    if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
2500      continue;
2501
2502    // If the switch has more than 5 blocks, and at least 40% dense, and the
2503    // target supports indirect branches, then emit a jump table rather than
2504    // lowering the switch to a binary tree of conditional branches.
2505    if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2506      continue;
2507
2508    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2509    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2510    handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
2511  }
2512}
2513
2514void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2515  MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2516
2517  // Update machine-CFG edges with unique successors.
2518  SmallVector<BasicBlock*, 32> succs;
2519  succs.reserve(I.getNumSuccessors());
2520  for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i)
2521    succs.push_back(I.getSuccessor(i));
2522  array_pod_sort(succs.begin(), succs.end());
2523  succs.erase(std::unique(succs.begin(), succs.end()), succs.end());
2524  for (unsigned i = 0, e = succs.size(); i != e; ++i) {
2525    MachineBasicBlock *Succ = FuncInfo.MBBMap[succs[i]];
2526    addSuccessorWithWeight(IndirectBrMBB, Succ);
2527  }
2528
2529  DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(),
2530                          MVT::Other, getControlRoot(),
2531                          getValue(I.getAddress())));
2532}
2533
2534void SelectionDAGBuilder::visitFSub(const User &I) {
2535  // -0.0 - X --> fneg
2536  Type *Ty = I.getType();
2537  if (isa<Constant>(I.getOperand(0)) &&
2538      I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2539    SDValue Op2 = getValue(I.getOperand(1));
2540    setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2541                             Op2.getValueType(), Op2));
2542    return;
2543  }
2544
2545  visitBinary(I, ISD::FSUB);
2546}
2547
2548void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2549  SDValue Op1 = getValue(I.getOperand(0));
2550  SDValue Op2 = getValue(I.getOperand(1));
2551  setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(),
2552                           Op1.getValueType(), Op1, Op2));
2553}
2554
2555void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2556  SDValue Op1 = getValue(I.getOperand(0));
2557  SDValue Op2 = getValue(I.getOperand(1));
2558
2559  MVT ShiftTy = TLI.getShiftAmountTy(Op2.getValueType());
2560
2561  // Coerce the shift amount to the right type if we can.
2562  if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2563    unsigned ShiftSize = ShiftTy.getSizeInBits();
2564    unsigned Op2Size = Op2.getValueType().getSizeInBits();
2565    DebugLoc DL = getCurDebugLoc();
2566
2567    // If the operand is smaller than the shift count type, promote it.
2568    if (ShiftSize > Op2Size)
2569      Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2570
2571    // If the operand is larger than the shift count type but the shift
2572    // count type has enough bits to represent any shift value, truncate
2573    // it now. This is a common case and it exposes the truncate to
2574    // optimization early.
2575    else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2576      Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2577    // Otherwise we'll need to temporarily settle for some other convenient
2578    // type.  Type legalization will make adjustments once the shiftee is split.
2579    else
2580      Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2581  }
2582
2583  setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(),
2584                           Op1.getValueType(), Op1, Op2));
2585}
2586
2587void SelectionDAGBuilder::visitSDiv(const User &I) {
2588  SDValue Op1 = getValue(I.getOperand(0));
2589  SDValue Op2 = getValue(I.getOperand(1));
2590
2591  // Turn exact SDivs into multiplications.
2592  // FIXME: This should be in DAGCombiner, but it doesn't have access to the
2593  // exact bit.
2594  if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() &&
2595      !isa<ConstantSDNode>(Op1) &&
2596      isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue())
2597    setValue(&I, TLI.BuildExactSDIV(Op1, Op2, getCurDebugLoc(), DAG));
2598  else
2599    setValue(&I, DAG.getNode(ISD::SDIV, getCurDebugLoc(), Op1.getValueType(),
2600                             Op1, Op2));
2601}
2602
2603void SelectionDAGBuilder::visitICmp(const User &I) {
2604  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2605  if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2606    predicate = IC->getPredicate();
2607  else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2608    predicate = ICmpInst::Predicate(IC->getPredicate());
2609  SDValue Op1 = getValue(I.getOperand(0));
2610  SDValue Op2 = getValue(I.getOperand(1));
2611  ISD::CondCode Opcode = getICmpCondCode(predicate);
2612
2613  EVT DestVT = TLI.getValueType(I.getType());
2614  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode));
2615}
2616
2617void SelectionDAGBuilder::visitFCmp(const User &I) {
2618  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2619  if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2620    predicate = FC->getPredicate();
2621  else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2622    predicate = FCmpInst::Predicate(FC->getPredicate());
2623  SDValue Op1 = getValue(I.getOperand(0));
2624  SDValue Op2 = getValue(I.getOperand(1));
2625  ISD::CondCode Condition = getFCmpCondCode(predicate);
2626  EVT DestVT = TLI.getValueType(I.getType());
2627  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition));
2628}
2629
2630void SelectionDAGBuilder::visitSelect(const User &I) {
2631  SmallVector<EVT, 4> ValueVTs;
2632  ComputeValueVTs(TLI, I.getType(), ValueVTs);
2633  unsigned NumValues = ValueVTs.size();
2634  if (NumValues == 0) return;
2635
2636  SmallVector<SDValue, 4> Values(NumValues);
2637  SDValue Cond     = getValue(I.getOperand(0));
2638  SDValue TrueVal  = getValue(I.getOperand(1));
2639  SDValue FalseVal = getValue(I.getOperand(2));
2640  ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2641    ISD::VSELECT : ISD::SELECT;
2642
2643  for (unsigned i = 0; i != NumValues; ++i)
2644    Values[i] = DAG.getNode(OpCode, getCurDebugLoc(),
2645                            TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2646                            Cond,
2647                            SDValue(TrueVal.getNode(),
2648                                    TrueVal.getResNo() + i),
2649                            SDValue(FalseVal.getNode(),
2650                                    FalseVal.getResNo() + i));
2651
2652  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2653                           DAG.getVTList(&ValueVTs[0], NumValues),
2654                           &Values[0], NumValues));
2655}
2656
2657void SelectionDAGBuilder::visitTrunc(const User &I) {
2658  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2659  SDValue N = getValue(I.getOperand(0));
2660  EVT DestVT = TLI.getValueType(I.getType());
2661  setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N));
2662}
2663
2664void SelectionDAGBuilder::visitZExt(const User &I) {
2665  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2666  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2667  SDValue N = getValue(I.getOperand(0));
2668  EVT DestVT = TLI.getValueType(I.getType());
2669  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N));
2670}
2671
2672void SelectionDAGBuilder::visitSExt(const User &I) {
2673  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2674  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2675  SDValue N = getValue(I.getOperand(0));
2676  EVT DestVT = TLI.getValueType(I.getType());
2677  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N));
2678}
2679
2680void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2681  // FPTrunc is never a no-op cast, no need to check
2682  SDValue N = getValue(I.getOperand(0));
2683  EVT DestVT = TLI.getValueType(I.getType());
2684  setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(),
2685                           DestVT, N, DAG.getIntPtrConstant(0)));
2686}
2687
2688void SelectionDAGBuilder::visitFPExt(const User &I){
2689  // FPExt is never a no-op cast, no need to check
2690  SDValue N = getValue(I.getOperand(0));
2691  EVT DestVT = TLI.getValueType(I.getType());
2692  setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N));
2693}
2694
2695void SelectionDAGBuilder::visitFPToUI(const User &I) {
2696  // FPToUI is never a no-op cast, no need to check
2697  SDValue N = getValue(I.getOperand(0));
2698  EVT DestVT = TLI.getValueType(I.getType());
2699  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N));
2700}
2701
2702void SelectionDAGBuilder::visitFPToSI(const User &I) {
2703  // FPToSI is never a no-op cast, no need to check
2704  SDValue N = getValue(I.getOperand(0));
2705  EVT DestVT = TLI.getValueType(I.getType());
2706  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N));
2707}
2708
2709void SelectionDAGBuilder::visitUIToFP(const User &I) {
2710  // UIToFP is never a no-op cast, no need to check
2711  SDValue N = getValue(I.getOperand(0));
2712  EVT DestVT = TLI.getValueType(I.getType());
2713  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N));
2714}
2715
2716void SelectionDAGBuilder::visitSIToFP(const User &I){
2717  // SIToFP is never a no-op cast, no need to check
2718  SDValue N = getValue(I.getOperand(0));
2719  EVT DestVT = TLI.getValueType(I.getType());
2720  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N));
2721}
2722
2723void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2724  // What to do depends on the size of the integer and the size of the pointer.
2725  // We can either truncate, zero extend, or no-op, accordingly.
2726  SDValue N = getValue(I.getOperand(0));
2727  EVT DestVT = TLI.getValueType(I.getType());
2728  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2729}
2730
2731void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2732  // What to do depends on the size of the integer and the size of the pointer.
2733  // We can either truncate, zero extend, or no-op, accordingly.
2734  SDValue N = getValue(I.getOperand(0));
2735  EVT DestVT = TLI.getValueType(I.getType());
2736  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2737}
2738
2739void SelectionDAGBuilder::visitBitCast(const User &I) {
2740  SDValue N = getValue(I.getOperand(0));
2741  EVT DestVT = TLI.getValueType(I.getType());
2742
2743  // BitCast assures us that source and destination are the same size so this is
2744  // either a BITCAST or a no-op.
2745  if (DestVT != N.getValueType())
2746    setValue(&I, DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
2747                             DestVT, N)); // convert types.
2748  else
2749    setValue(&I, N);            // noop cast.
2750}
2751
2752void SelectionDAGBuilder::visitInsertElement(const User &I) {
2753  SDValue InVec = getValue(I.getOperand(0));
2754  SDValue InVal = getValue(I.getOperand(1));
2755  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2756                              TLI.getPointerTy(),
2757                              getValue(I.getOperand(2)));
2758  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(),
2759                           TLI.getValueType(I.getType()),
2760                           InVec, InVal, InIdx));
2761}
2762
2763void SelectionDAGBuilder::visitExtractElement(const User &I) {
2764  SDValue InVec = getValue(I.getOperand(0));
2765  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2766                              TLI.getPointerTy(),
2767                              getValue(I.getOperand(1)));
2768  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2769                           TLI.getValueType(I.getType()), InVec, InIdx));
2770}
2771
2772// Utility for visitShuffleVector - Returns true if the mask is mask starting
2773// from SIndx and increasing to the element length (undefs are allowed).
2774static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) {
2775  unsigned MaskNumElts = Mask.size();
2776  for (unsigned i = 0; i != MaskNumElts; ++i)
2777    if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx)))
2778      return false;
2779  return true;
2780}
2781
2782void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2783  SmallVector<int, 8> Mask;
2784  SDValue Src1 = getValue(I.getOperand(0));
2785  SDValue Src2 = getValue(I.getOperand(1));
2786
2787  // Convert the ConstantVector mask operand into an array of ints, with -1
2788  // representing undef values.
2789  SmallVector<Constant*, 8> MaskElts;
2790  cast<Constant>(I.getOperand(2))->getVectorElements(MaskElts);
2791  unsigned MaskNumElts = MaskElts.size();
2792  for (unsigned i = 0; i != MaskNumElts; ++i) {
2793    if (isa<UndefValue>(MaskElts[i]))
2794      Mask.push_back(-1);
2795    else
2796      Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue());
2797  }
2798
2799  EVT VT = TLI.getValueType(I.getType());
2800  EVT SrcVT = Src1.getValueType();
2801  unsigned SrcNumElts = SrcVT.getVectorNumElements();
2802
2803  if (SrcNumElts == MaskNumElts) {
2804    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2805                                      &Mask[0]));
2806    return;
2807  }
2808
2809  // Normalize the shuffle vector since mask and vector length don't match.
2810  if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2811    // Mask is longer than the source vectors and is a multiple of the source
2812    // vectors.  We can use concatenate vector to make the mask and vectors
2813    // lengths match.
2814    if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) {
2815      // The shuffle is concatenating two vectors together.
2816      setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2817                               VT, Src1, Src2));
2818      return;
2819    }
2820
2821    // Pad both vectors with undefs to make them the same length as the mask.
2822    unsigned NumConcat = MaskNumElts / SrcNumElts;
2823    bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2824    bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2825    SDValue UndefVal = DAG.getUNDEF(SrcVT);
2826
2827    SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2828    SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2829    MOps1[0] = Src1;
2830    MOps2[0] = Src2;
2831
2832    Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2833                                                  getCurDebugLoc(), VT,
2834                                                  &MOps1[0], NumConcat);
2835    Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2836                                                  getCurDebugLoc(), VT,
2837                                                  &MOps2[0], NumConcat);
2838
2839    // Readjust mask for new input vector length.
2840    SmallVector<int, 8> MappedOps;
2841    for (unsigned i = 0; i != MaskNumElts; ++i) {
2842      int Idx = Mask[i];
2843      if (Idx < (int)SrcNumElts)
2844        MappedOps.push_back(Idx);
2845      else
2846        MappedOps.push_back(Idx + MaskNumElts - SrcNumElts);
2847    }
2848
2849    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2850                                      &MappedOps[0]));
2851    return;
2852  }
2853
2854  if (SrcNumElts > MaskNumElts) {
2855    // Analyze the access pattern of the vector to see if we can extract
2856    // two subvectors and do the shuffle. The analysis is done by calculating
2857    // the range of elements the mask access on both vectors.
2858    int MinRange[2] = { static_cast<int>(SrcNumElts+1),
2859                        static_cast<int>(SrcNumElts+1)};
2860    int MaxRange[2] = {-1, -1};
2861
2862    for (unsigned i = 0; i != MaskNumElts; ++i) {
2863      int Idx = Mask[i];
2864      int Input = 0;
2865      if (Idx < 0)
2866        continue;
2867
2868      if (Idx >= (int)SrcNumElts) {
2869        Input = 1;
2870        Idx -= SrcNumElts;
2871      }
2872      if (Idx > MaxRange[Input])
2873        MaxRange[Input] = Idx;
2874      if (Idx < MinRange[Input])
2875        MinRange[Input] = Idx;
2876    }
2877
2878    // Check if the access is smaller than the vector size and can we find
2879    // a reasonable extract index.
2880    int RangeUse[2] = { 2, 2 };  // 0 = Unused, 1 = Extract, 2 = Can not
2881                                 // Extract.
2882    int StartIdx[2];  // StartIdx to extract from
2883    for (int Input=0; Input < 2; ++Input) {
2884      if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) {
2885        RangeUse[Input] = 0; // Unused
2886        StartIdx[Input] = 0;
2887      } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) {
2888        // Fits within range but we should see if we can find a good
2889        // start index that is a multiple of the mask length.
2890        if (MaxRange[Input] < (int)MaskNumElts) {
2891          RangeUse[Input] = 1; // Extract from beginning of the vector
2892          StartIdx[Input] = 0;
2893        } else {
2894          StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2895          if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2896              StartIdx[Input] + MaskNumElts <= SrcNumElts)
2897            RangeUse[Input] = 1; // Extract from a multiple of the mask length.
2898        }
2899      }
2900    }
2901
2902    if (RangeUse[0] == 0 && RangeUse[1] == 0) {
2903      setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
2904      return;
2905    }
2906    else if (RangeUse[0] < 2 && RangeUse[1] < 2) {
2907      // Extract appropriate subvector and generate a vector shuffle
2908      for (int Input=0; Input < 2; ++Input) {
2909        SDValue &Src = Input == 0 ? Src1 : Src2;
2910        if (RangeUse[Input] == 0)
2911          Src = DAG.getUNDEF(VT);
2912        else
2913          Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT,
2914                            Src, DAG.getIntPtrConstant(StartIdx[Input]));
2915      }
2916
2917      // Calculate new mask.
2918      SmallVector<int, 8> MappedOps;
2919      for (unsigned i = 0; i != MaskNumElts; ++i) {
2920        int Idx = Mask[i];
2921        if (Idx < 0)
2922          MappedOps.push_back(Idx);
2923        else if (Idx < (int)SrcNumElts)
2924          MappedOps.push_back(Idx - StartIdx[0]);
2925        else
2926          MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts);
2927      }
2928
2929      setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2930                                        &MappedOps[0]));
2931      return;
2932    }
2933  }
2934
2935  // We can't use either concat vectors or extract subvectors so fall back to
2936  // replacing the shuffle with extract and build vector.
2937  // to insert and build vector.
2938  EVT EltVT = VT.getVectorElementType();
2939  EVT PtrVT = TLI.getPointerTy();
2940  SmallVector<SDValue,8> Ops;
2941  for (unsigned i = 0; i != MaskNumElts; ++i) {
2942    if (Mask[i] < 0) {
2943      Ops.push_back(DAG.getUNDEF(EltVT));
2944    } else {
2945      int Idx = Mask[i];
2946      SDValue Res;
2947
2948      if (Idx < (int)SrcNumElts)
2949        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2950                          EltVT, Src1, DAG.getConstant(Idx, PtrVT));
2951      else
2952        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2953                          EltVT, Src2,
2954                          DAG.getConstant(Idx - SrcNumElts, PtrVT));
2955
2956      Ops.push_back(Res);
2957    }
2958  }
2959
2960  setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
2961                           VT, &Ops[0], Ops.size()));
2962}
2963
2964void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
2965  const Value *Op0 = I.getOperand(0);
2966  const Value *Op1 = I.getOperand(1);
2967  Type *AggTy = I.getType();
2968  Type *ValTy = Op1->getType();
2969  bool IntoUndef = isa<UndefValue>(Op0);
2970  bool FromUndef = isa<UndefValue>(Op1);
2971
2972  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
2973
2974  SmallVector<EVT, 4> AggValueVTs;
2975  ComputeValueVTs(TLI, AggTy, AggValueVTs);
2976  SmallVector<EVT, 4> ValValueVTs;
2977  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2978
2979  unsigned NumAggValues = AggValueVTs.size();
2980  unsigned NumValValues = ValValueVTs.size();
2981  SmallVector<SDValue, 4> Values(NumAggValues);
2982
2983  SDValue Agg = getValue(Op0);
2984  unsigned i = 0;
2985  // Copy the beginning value(s) from the original aggregate.
2986  for (; i != LinearIndex; ++i)
2987    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2988                SDValue(Agg.getNode(), Agg.getResNo() + i);
2989  // Copy values from the inserted value(s).
2990  if (NumValValues) {
2991    SDValue Val = getValue(Op1);
2992    for (; i != LinearIndex + NumValValues; ++i)
2993      Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2994                  SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
2995  }
2996  // Copy remaining value(s) from the original aggregate.
2997  for (; i != NumAggValues; ++i)
2998    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2999                SDValue(Agg.getNode(), Agg.getResNo() + i);
3000
3001  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3002                           DAG.getVTList(&AggValueVTs[0], NumAggValues),
3003                           &Values[0], NumAggValues));
3004}
3005
3006void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
3007  const Value *Op0 = I.getOperand(0);
3008  Type *AggTy = Op0->getType();
3009  Type *ValTy = I.getType();
3010  bool OutOfUndef = isa<UndefValue>(Op0);
3011
3012  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3013
3014  SmallVector<EVT, 4> ValValueVTs;
3015  ComputeValueVTs(TLI, ValTy, ValValueVTs);
3016
3017  unsigned NumValValues = ValValueVTs.size();
3018
3019  // Ignore a extractvalue that produces an empty object
3020  if (!NumValValues) {
3021    setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3022    return;
3023  }
3024
3025  SmallVector<SDValue, 4> Values(NumValValues);
3026
3027  SDValue Agg = getValue(Op0);
3028  // Copy out the selected value(s).
3029  for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3030    Values[i - LinearIndex] =
3031      OutOfUndef ?
3032        DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3033        SDValue(Agg.getNode(), Agg.getResNo() + i);
3034
3035  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3036                           DAG.getVTList(&ValValueVTs[0], NumValValues),
3037                           &Values[0], NumValValues));
3038}
3039
3040void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3041  SDValue N = getValue(I.getOperand(0));
3042  Type *Ty = I.getOperand(0)->getType();
3043
3044  for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
3045       OI != E; ++OI) {
3046    const Value *Idx = *OI;
3047    if (StructType *StTy = dyn_cast<StructType>(Ty)) {
3048      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
3049      if (Field) {
3050        // N = N + Offset
3051        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
3052        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
3053                        DAG.getIntPtrConstant(Offset));
3054      }
3055
3056      Ty = StTy->getElementType(Field);
3057    } else {
3058      Ty = cast<SequentialType>(Ty)->getElementType();
3059
3060      // If this is a constant subscript, handle it quickly.
3061      if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
3062        if (CI->isZero()) continue;
3063        uint64_t Offs =
3064            TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
3065        SDValue OffsVal;
3066        EVT PTy = TLI.getPointerTy();
3067        unsigned PtrBits = PTy.getSizeInBits();
3068        if (PtrBits < 64)
3069          OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
3070                                TLI.getPointerTy(),
3071                                DAG.getConstant(Offs, MVT::i64));
3072        else
3073          OffsVal = DAG.getIntPtrConstant(Offs);
3074
3075        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
3076                        OffsVal);
3077        continue;
3078      }
3079
3080      // N = N + Idx * ElementSize;
3081      APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
3082                                TD->getTypeAllocSize(Ty));
3083      SDValue IdxN = getValue(Idx);
3084
3085      // If the index is smaller or larger than intptr_t, truncate or extend
3086      // it.
3087      IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType());
3088
3089      // If this is a multiply by a power of two, turn it into a shl
3090      // immediately.  This is a very common case.
3091      if (ElementSize != 1) {
3092        if (ElementSize.isPowerOf2()) {
3093          unsigned Amt = ElementSize.logBase2();
3094          IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(),
3095                             N.getValueType(), IdxN,
3096                             DAG.getConstant(Amt, TLI.getPointerTy()));
3097        } else {
3098          SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy());
3099          IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(),
3100                             N.getValueType(), IdxN, Scale);
3101        }
3102      }
3103
3104      N = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3105                      N.getValueType(), N, IdxN);
3106    }
3107  }
3108
3109  setValue(&I, N);
3110}
3111
3112void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3113  // If this is a fixed sized alloca in the entry block of the function,
3114  // allocate it statically on the stack.
3115  if (FuncInfo.StaticAllocaMap.count(&I))
3116    return;   // getValue will auto-populate this.
3117
3118  Type *Ty = I.getAllocatedType();
3119  uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
3120  unsigned Align =
3121    std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
3122             I.getAlignment());
3123
3124  SDValue AllocSize = getValue(I.getArraySize());
3125
3126  EVT IntPtr = TLI.getPointerTy();
3127  if (AllocSize.getValueType() != IntPtr)
3128    AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr);
3129
3130  AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr,
3131                          AllocSize,
3132                          DAG.getConstant(TySize, IntPtr));
3133
3134  // Handle alignment.  If the requested alignment is less than or equal to
3135  // the stack alignment, ignore it.  If the size is greater than or equal to
3136  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3137  unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
3138  if (Align <= StackAlign)
3139    Align = 0;
3140
3141  // Round the size of the allocation up to the stack alignment size
3142  // by add SA-1 to the size.
3143  AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3144                          AllocSize.getValueType(), AllocSize,
3145                          DAG.getIntPtrConstant(StackAlign-1));
3146
3147  // Mask out the low bits for alignment purposes.
3148  AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(),
3149                          AllocSize.getValueType(), AllocSize,
3150                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
3151
3152  SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
3153  SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3154  SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(),
3155                            VTs, Ops, 3);
3156  setValue(&I, DSA);
3157  DAG.setRoot(DSA.getValue(1));
3158
3159  // Inform the Frame Information that we have just allocated a variable-sized
3160  // object.
3161  FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1);
3162}
3163
3164void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3165  if (I.isAtomic())
3166    return visitAtomicLoad(I);
3167
3168  const Value *SV = I.getOperand(0);
3169  SDValue Ptr = getValue(SV);
3170
3171  Type *Ty = I.getType();
3172
3173  bool isVolatile = I.isVolatile();
3174  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3175  unsigned Alignment = I.getAlignment();
3176  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3177
3178  SmallVector<EVT, 4> ValueVTs;
3179  SmallVector<uint64_t, 4> Offsets;
3180  ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
3181  unsigned NumValues = ValueVTs.size();
3182  if (NumValues == 0)
3183    return;
3184
3185  SDValue Root;
3186  bool ConstantMemory = false;
3187  if (I.isVolatile() || NumValues > MaxParallelChains)
3188    // Serialize volatile loads with other side effects.
3189    Root = getRoot();
3190  else if (AA->pointsToConstantMemory(
3191             AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) {
3192    // Do not serialize (non-volatile) loads of constant memory with anything.
3193    Root = DAG.getEntryNode();
3194    ConstantMemory = true;
3195  } else {
3196    // Do not serialize non-volatile loads against each other.
3197    Root = DAG.getRoot();
3198  }
3199
3200  SmallVector<SDValue, 4> Values(NumValues);
3201  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3202                                          NumValues));
3203  EVT PtrVT = Ptr.getValueType();
3204  unsigned ChainI = 0;
3205  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3206    // Serializing loads here may result in excessive register pressure, and
3207    // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3208    // could recover a bit by hoisting nodes upward in the chain by recognizing
3209    // they are side-effect free or do not alias. The optimizer should really
3210    // avoid this case by converting large object/array copies to llvm.memcpy
3211    // (MaxParallelChains should always remain as failsafe).
3212    if (ChainI == MaxParallelChains) {
3213      assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3214      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3215                                  MVT::Other, &Chains[0], ChainI);
3216      Root = Chain;
3217      ChainI = 0;
3218    }
3219    SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3220                            PtrVT, Ptr,
3221                            DAG.getConstant(Offsets[i], PtrVT));
3222    SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root,
3223                            A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
3224                            isNonTemporal, Alignment, TBAAInfo);
3225
3226    Values[i] = L;
3227    Chains[ChainI] = L.getValue(1);
3228  }
3229
3230  if (!ConstantMemory) {
3231    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3232                                MVT::Other, &Chains[0], ChainI);
3233    if (isVolatile)
3234      DAG.setRoot(Chain);
3235    else
3236      PendingLoads.push_back(Chain);
3237  }
3238
3239  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3240                           DAG.getVTList(&ValueVTs[0], NumValues),
3241                           &Values[0], NumValues));
3242}
3243
3244void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3245  if (I.isAtomic())
3246    return visitAtomicStore(I);
3247
3248  const Value *SrcV = I.getOperand(0);
3249  const Value *PtrV = I.getOperand(1);
3250
3251  SmallVector<EVT, 4> ValueVTs;
3252  SmallVector<uint64_t, 4> Offsets;
3253  ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
3254  unsigned NumValues = ValueVTs.size();
3255  if (NumValues == 0)
3256    return;
3257
3258  // Get the lowered operands. Note that we do this after
3259  // checking if NumResults is zero, because with zero results
3260  // the operands won't have values in the map.
3261  SDValue Src = getValue(SrcV);
3262  SDValue Ptr = getValue(PtrV);
3263
3264  SDValue Root = getRoot();
3265  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3266                                          NumValues));
3267  EVT PtrVT = Ptr.getValueType();
3268  bool isVolatile = I.isVolatile();
3269  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3270  unsigned Alignment = I.getAlignment();
3271  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3272
3273  unsigned ChainI = 0;
3274  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3275    // See visitLoad comments.
3276    if (ChainI == MaxParallelChains) {
3277      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3278                                  MVT::Other, &Chains[0], ChainI);
3279      Root = Chain;
3280      ChainI = 0;
3281    }
3282    SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr,
3283                              DAG.getConstant(Offsets[i], PtrVT));
3284    SDValue St = DAG.getStore(Root, getCurDebugLoc(),
3285                              SDValue(Src.getNode(), Src.getResNo() + i),
3286                              Add, MachinePointerInfo(PtrV, Offsets[i]),
3287                              isVolatile, isNonTemporal, Alignment, TBAAInfo);
3288    Chains[ChainI] = St;
3289  }
3290
3291  SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3292                                  MVT::Other, &Chains[0], ChainI);
3293  ++SDNodeOrder;
3294  AssignOrderingToNode(StoreNode.getNode());
3295  DAG.setRoot(StoreNode);
3296}
3297
3298static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order,
3299                                    SynchronizationScope Scope,
3300                                    bool Before, DebugLoc dl,
3301                                    SelectionDAG &DAG,
3302                                    const TargetLowering &TLI) {
3303  // Fence, if necessary
3304  if (Before) {
3305    if (Order == AcquireRelease || Order == SequentiallyConsistent)
3306      Order = Release;
3307    else if (Order == Acquire || Order == Monotonic)
3308      return Chain;
3309  } else {
3310    if (Order == AcquireRelease)
3311      Order = Acquire;
3312    else if (Order == Release || Order == Monotonic)
3313      return Chain;
3314  }
3315  SDValue Ops[3];
3316  Ops[0] = Chain;
3317  Ops[1] = DAG.getConstant(Order, TLI.getPointerTy());
3318  Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy());
3319  return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3);
3320}
3321
3322void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
3323  DebugLoc dl = getCurDebugLoc();
3324  AtomicOrdering Order = I.getOrdering();
3325  SynchronizationScope Scope = I.getSynchScope();
3326
3327  SDValue InChain = getRoot();
3328
3329  if (TLI.getInsertFencesForAtomic())
3330    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3331                                   DAG, TLI);
3332
3333  SDValue L =
3334    DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl,
3335                  getValue(I.getCompareOperand()).getValueType().getSimpleVT(),
3336                  InChain,
3337                  getValue(I.getPointerOperand()),
3338                  getValue(I.getCompareOperand()),
3339                  getValue(I.getNewValOperand()),
3340                  MachinePointerInfo(I.getPointerOperand()), 0 /* Alignment */,
3341                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3342                  Scope);
3343
3344  SDValue OutChain = L.getValue(1);
3345
3346  if (TLI.getInsertFencesForAtomic())
3347    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3348                                    DAG, TLI);
3349
3350  setValue(&I, L);
3351  DAG.setRoot(OutChain);
3352}
3353
3354void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
3355  DebugLoc dl = getCurDebugLoc();
3356  ISD::NodeType NT;
3357  switch (I.getOperation()) {
3358  default: llvm_unreachable("Unknown atomicrmw operation"); return;
3359  case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
3360  case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
3361  case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
3362  case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
3363  case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
3364  case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
3365  case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
3366  case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
3367  case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
3368  case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
3369  case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
3370  }
3371  AtomicOrdering Order = I.getOrdering();
3372  SynchronizationScope Scope = I.getSynchScope();
3373
3374  SDValue InChain = getRoot();
3375
3376  if (TLI.getInsertFencesForAtomic())
3377    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3378                                   DAG, TLI);
3379
3380  SDValue L =
3381    DAG.getAtomic(NT, dl,
3382                  getValue(I.getValOperand()).getValueType().getSimpleVT(),
3383                  InChain,
3384                  getValue(I.getPointerOperand()),
3385                  getValue(I.getValOperand()),
3386                  I.getPointerOperand(), 0 /* Alignment */,
3387                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3388                  Scope);
3389
3390  SDValue OutChain = L.getValue(1);
3391
3392  if (TLI.getInsertFencesForAtomic())
3393    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3394                                    DAG, TLI);
3395
3396  setValue(&I, L);
3397  DAG.setRoot(OutChain);
3398}
3399
3400void SelectionDAGBuilder::visitFence(const FenceInst &I) {
3401  DebugLoc dl = getCurDebugLoc();
3402  SDValue Ops[3];
3403  Ops[0] = getRoot();
3404  Ops[1] = DAG.getConstant(I.getOrdering(), TLI.getPointerTy());
3405  Ops[2] = DAG.getConstant(I.getSynchScope(), TLI.getPointerTy());
3406  DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3));
3407}
3408
3409void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
3410  DebugLoc dl = getCurDebugLoc();
3411  AtomicOrdering Order = I.getOrdering();
3412  SynchronizationScope Scope = I.getSynchScope();
3413
3414  SDValue InChain = getRoot();
3415
3416  EVT VT = EVT::getEVT(I.getType());
3417
3418  if (I.getAlignment() * 8 < VT.getSizeInBits())
3419    report_fatal_error("Cannot generate unaligned atomic load");
3420
3421  SDValue L =
3422    DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
3423                  getValue(I.getPointerOperand()),
3424                  I.getPointerOperand(), I.getAlignment(),
3425                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3426                  Scope);
3427
3428  SDValue OutChain = L.getValue(1);
3429
3430  if (TLI.getInsertFencesForAtomic())
3431    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3432                                    DAG, TLI);
3433
3434  setValue(&I, L);
3435  DAG.setRoot(OutChain);
3436}
3437
3438void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
3439  DebugLoc dl = getCurDebugLoc();
3440
3441  AtomicOrdering Order = I.getOrdering();
3442  SynchronizationScope Scope = I.getSynchScope();
3443
3444  SDValue InChain = getRoot();
3445
3446  EVT VT = EVT::getEVT(I.getValueOperand()->getType());
3447
3448  if (I.getAlignment() * 8 < VT.getSizeInBits())
3449    report_fatal_error("Cannot generate unaligned atomic store");
3450
3451  if (TLI.getInsertFencesForAtomic())
3452    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3453                                   DAG, TLI);
3454
3455  SDValue OutChain =
3456    DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
3457                  InChain,
3458                  getValue(I.getPointerOperand()),
3459                  getValue(I.getValueOperand()),
3460                  I.getPointerOperand(), I.getAlignment(),
3461                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3462                  Scope);
3463
3464  if (TLI.getInsertFencesForAtomic())
3465    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3466                                    DAG, TLI);
3467
3468  DAG.setRoot(OutChain);
3469}
3470
3471/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3472/// node.
3473void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3474                                               unsigned Intrinsic) {
3475  bool HasChain = !I.doesNotAccessMemory();
3476  bool OnlyLoad = HasChain && I.onlyReadsMemory();
3477
3478  // Build the operand list.
3479  SmallVector<SDValue, 8> Ops;
3480  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
3481    if (OnlyLoad) {
3482      // We don't need to serialize loads against other loads.
3483      Ops.push_back(DAG.getRoot());
3484    } else {
3485      Ops.push_back(getRoot());
3486    }
3487  }
3488
3489  // Info is set by getTgtMemInstrinsic
3490  TargetLowering::IntrinsicInfo Info;
3491  bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
3492
3493  // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3494  if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
3495      Info.opc == ISD::INTRINSIC_W_CHAIN)
3496    Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
3497
3498  // Add all operands of the call to the operand list.
3499  for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
3500    SDValue Op = getValue(I.getArgOperand(i));
3501    assert(TLI.isTypeLegal(Op.getValueType()) &&
3502           "Intrinsic uses a non-legal type?");
3503    Ops.push_back(Op);
3504  }
3505
3506  SmallVector<EVT, 4> ValueVTs;
3507  ComputeValueVTs(TLI, I.getType(), ValueVTs);
3508#ifndef NDEBUG
3509  for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) {
3510    assert(TLI.isTypeLegal(ValueVTs[Val]) &&
3511           "Intrinsic uses a non-legal type?");
3512  }
3513#endif // NDEBUG
3514
3515  if (HasChain)
3516    ValueVTs.push_back(MVT::Other);
3517
3518  SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
3519
3520  // Create the node.
3521  SDValue Result;
3522  if (IsTgtIntrinsic) {
3523    // This is target intrinsic that touches memory
3524    Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(),
3525                                     VTs, &Ops[0], Ops.size(),
3526                                     Info.memVT,
3527                                   MachinePointerInfo(Info.ptrVal, Info.offset),
3528                                     Info.align, Info.vol,
3529                                     Info.readMem, Info.writeMem);
3530  } else if (!HasChain) {
3531    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
3532                         VTs, &Ops[0], Ops.size());
3533  } else if (!I.getType()->isVoidTy()) {
3534    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
3535                         VTs, &Ops[0], Ops.size());
3536  } else {
3537    Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(),
3538                         VTs, &Ops[0], Ops.size());
3539  }
3540
3541  if (HasChain) {
3542    SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3543    if (OnlyLoad)
3544      PendingLoads.push_back(Chain);
3545    else
3546      DAG.setRoot(Chain);
3547  }
3548
3549  if (!I.getType()->isVoidTy()) {
3550    if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3551      EVT VT = TLI.getValueType(PTy);
3552      Result = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), VT, Result);
3553    }
3554
3555    setValue(&I, Result);
3556  }
3557}
3558
3559/// GetSignificand - Get the significand and build it into a floating-point
3560/// number with exponent of 1:
3561///
3562///   Op = (Op & 0x007fffff) | 0x3f800000;
3563///
3564/// where Op is the hexidecimal representation of floating point value.
3565static SDValue
3566GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) {
3567  SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3568                           DAG.getConstant(0x007fffff, MVT::i32));
3569  SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3570                           DAG.getConstant(0x3f800000, MVT::i32));
3571  return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
3572}
3573
3574/// GetExponent - Get the exponent:
3575///
3576///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3577///
3578/// where Op is the hexidecimal representation of floating point value.
3579static SDValue
3580GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3581            DebugLoc dl) {
3582  SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3583                           DAG.getConstant(0x7f800000, MVT::i32));
3584  SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3585                           DAG.getConstant(23, TLI.getPointerTy()));
3586  SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3587                           DAG.getConstant(127, MVT::i32));
3588  return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3589}
3590
3591/// getF32Constant - Get 32-bit floating point constant.
3592static SDValue
3593getF32Constant(SelectionDAG &DAG, unsigned Flt) {
3594  return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32);
3595}
3596
3597// implVisitAluOverflow - Lower arithmetic overflow instrinsics.
3598const char *
3599SelectionDAGBuilder::implVisitAluOverflow(const CallInst &I, ISD::NodeType Op) {
3600  SDValue Op1 = getValue(I.getArgOperand(0));
3601  SDValue Op2 = getValue(I.getArgOperand(1));
3602
3603  SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
3604  setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2));
3605  return 0;
3606}
3607
3608/// visitExp - Lower an exp intrinsic. Handles the special sequences for
3609/// limited-precision mode.
3610void
3611SelectionDAGBuilder::visitExp(const CallInst &I) {
3612  SDValue result;
3613  DebugLoc dl = getCurDebugLoc();
3614
3615  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3616      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3617    SDValue Op = getValue(I.getArgOperand(0));
3618
3619    // Put the exponent in the right bit position for later addition to the
3620    // final result:
3621    //
3622    //   #define LOG2OFe 1.4426950f
3623    //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3624    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3625                             getF32Constant(DAG, 0x3fb8aa3b));
3626    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3627
3628    //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3629    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3630    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3631
3632    //   IntegerPartOfX <<= 23;
3633    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3634                                 DAG.getConstant(23, TLI.getPointerTy()));
3635
3636    if (LimitFloatPrecision <= 6) {
3637      // For floating-point precision of 6:
3638      //
3639      //   TwoToFractionalPartOfX =
3640      //     0.997535578f +
3641      //       (0.735607626f + 0.252464424f * x) * x;
3642      //
3643      // error 0.0144103317, which is 6 bits
3644      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3645                               getF32Constant(DAG, 0x3e814304));
3646      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3647                               getF32Constant(DAG, 0x3f3c50c8));
3648      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3649      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3650                               getF32Constant(DAG, 0x3f7f5e7e));
3651      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t5);
3652
3653      // Add the exponent into the result in integer domain.
3654      SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3655                               TwoToFracPartOfX, IntegerPartOfX);
3656
3657      result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t6);
3658    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3659      // For floating-point precision of 12:
3660      //
3661      //   TwoToFractionalPartOfX =
3662      //     0.999892986f +
3663      //       (0.696457318f +
3664      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3665      //
3666      // 0.000107046256 error, which is 13 to 14 bits
3667      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3668                               getF32Constant(DAG, 0x3da235e3));
3669      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3670                               getF32Constant(DAG, 0x3e65b8f3));
3671      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3672      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3673                               getF32Constant(DAG, 0x3f324b07));
3674      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3675      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3676                               getF32Constant(DAG, 0x3f7ff8fd));
3677      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t7);
3678
3679      // Add the exponent into the result in integer domain.
3680      SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3681                               TwoToFracPartOfX, IntegerPartOfX);
3682
3683      result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t8);
3684    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3685      // For floating-point precision of 18:
3686      //
3687      //   TwoToFractionalPartOfX =
3688      //     0.999999982f +
3689      //       (0.693148872f +
3690      //         (0.240227044f +
3691      //           (0.554906021e-1f +
3692      //             (0.961591928e-2f +
3693      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3694      //
3695      // error 2.47208000*10^(-7), which is better than 18 bits
3696      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3697                               getF32Constant(DAG, 0x3924b03e));
3698      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3699                               getF32Constant(DAG, 0x3ab24b87));
3700      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3701      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3702                               getF32Constant(DAG, 0x3c1d8c17));
3703      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3704      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3705                               getF32Constant(DAG, 0x3d634a1d));
3706      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3707      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3708                               getF32Constant(DAG, 0x3e75fe14));
3709      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3710      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3711                                getF32Constant(DAG, 0x3f317234));
3712      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3713      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3714                                getF32Constant(DAG, 0x3f800000));
3715      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,
3716                                             MVT::i32, t13);
3717
3718      // Add the exponent into the result in integer domain.
3719      SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3720                                TwoToFracPartOfX, IntegerPartOfX);
3721
3722      result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t14);
3723    }
3724  } else {
3725    // No special expansion.
3726    result = DAG.getNode(ISD::FEXP, dl,
3727                         getValue(I.getArgOperand(0)).getValueType(),
3728                         getValue(I.getArgOperand(0)));
3729  }
3730
3731  setValue(&I, result);
3732}
3733
3734/// visitLog - Lower a log intrinsic. Handles the special sequences for
3735/// limited-precision mode.
3736void
3737SelectionDAGBuilder::visitLog(const CallInst &I) {
3738  SDValue result;
3739  DebugLoc dl = getCurDebugLoc();
3740
3741  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3742      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3743    SDValue Op = getValue(I.getArgOperand(0));
3744    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3745
3746    // Scale the exponent by log(2) [0.69314718f].
3747    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3748    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3749                                        getF32Constant(DAG, 0x3f317218));
3750
3751    // Get the significand and build it into a floating-point number with
3752    // exponent of 1.
3753    SDValue X = GetSignificand(DAG, Op1, dl);
3754
3755    if (LimitFloatPrecision <= 6) {
3756      // For floating-point precision of 6:
3757      //
3758      //   LogofMantissa =
3759      //     -1.1609546f +
3760      //       (1.4034025f - 0.23903021f * x) * x;
3761      //
3762      // error 0.0034276066, which is better than 8 bits
3763      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3764                               getF32Constant(DAG, 0xbe74c456));
3765      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3766                               getF32Constant(DAG, 0x3fb3a2b1));
3767      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3768      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3769                                          getF32Constant(DAG, 0x3f949a29));
3770
3771      result = DAG.getNode(ISD::FADD, dl,
3772                           MVT::f32, LogOfExponent, LogOfMantissa);
3773    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3774      // For floating-point precision of 12:
3775      //
3776      //   LogOfMantissa =
3777      //     -1.7417939f +
3778      //       (2.8212026f +
3779      //         (-1.4699568f +
3780      //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3781      //
3782      // error 0.000061011436, which is 14 bits
3783      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3784                               getF32Constant(DAG, 0xbd67b6d6));
3785      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3786                               getF32Constant(DAG, 0x3ee4f4b8));
3787      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3788      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3789                               getF32Constant(DAG, 0x3fbc278b));
3790      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3791      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3792                               getF32Constant(DAG, 0x40348e95));
3793      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3794      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3795                                          getF32Constant(DAG, 0x3fdef31a));
3796
3797      result = DAG.getNode(ISD::FADD, dl,
3798                           MVT::f32, LogOfExponent, LogOfMantissa);
3799    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3800      // For floating-point precision of 18:
3801      //
3802      //   LogOfMantissa =
3803      //     -2.1072184f +
3804      //       (4.2372794f +
3805      //         (-3.7029485f +
3806      //           (2.2781945f +
3807      //             (-0.87823314f +
3808      //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3809      //
3810      // error 0.0000023660568, which is better than 18 bits
3811      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3812                               getF32Constant(DAG, 0xbc91e5ac));
3813      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3814                               getF32Constant(DAG, 0x3e4350aa));
3815      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3816      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3817                               getF32Constant(DAG, 0x3f60d3e3));
3818      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3819      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3820                               getF32Constant(DAG, 0x4011cdf0));
3821      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3822      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3823                               getF32Constant(DAG, 0x406cfd1c));
3824      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3825      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3826                               getF32Constant(DAG, 0x408797cb));
3827      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3828      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3829                                          getF32Constant(DAG, 0x4006dcab));
3830
3831      result = DAG.getNode(ISD::FADD, dl,
3832                           MVT::f32, LogOfExponent, LogOfMantissa);
3833    }
3834  } else {
3835    // No special expansion.
3836    result = DAG.getNode(ISD::FLOG, dl,
3837                         getValue(I.getArgOperand(0)).getValueType(),
3838                         getValue(I.getArgOperand(0)));
3839  }
3840
3841  setValue(&I, result);
3842}
3843
3844/// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for
3845/// limited-precision mode.
3846void
3847SelectionDAGBuilder::visitLog2(const CallInst &I) {
3848  SDValue result;
3849  DebugLoc dl = getCurDebugLoc();
3850
3851  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3852      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3853    SDValue Op = getValue(I.getArgOperand(0));
3854    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3855
3856    // Get the exponent.
3857    SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3858
3859    // Get the significand and build it into a floating-point number with
3860    // exponent of 1.
3861    SDValue X = GetSignificand(DAG, Op1, dl);
3862
3863    // Different possible minimax approximations of significand in
3864    // floating-point for various degrees of accuracy over [1,2].
3865    if (LimitFloatPrecision <= 6) {
3866      // For floating-point precision of 6:
3867      //
3868      //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3869      //
3870      // error 0.0049451742, which is more than 7 bits
3871      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3872                               getF32Constant(DAG, 0xbeb08fe0));
3873      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3874                               getF32Constant(DAG, 0x40019463));
3875      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3876      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3877                                           getF32Constant(DAG, 0x3fd6633d));
3878
3879      result = DAG.getNode(ISD::FADD, dl,
3880                           MVT::f32, LogOfExponent, Log2ofMantissa);
3881    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3882      // For floating-point precision of 12:
3883      //
3884      //   Log2ofMantissa =
3885      //     -2.51285454f +
3886      //       (4.07009056f +
3887      //         (-2.12067489f +
3888      //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3889      //
3890      // error 0.0000876136000, which is better than 13 bits
3891      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3892                               getF32Constant(DAG, 0xbda7262e));
3893      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3894                               getF32Constant(DAG, 0x3f25280b));
3895      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3896      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3897                               getF32Constant(DAG, 0x4007b923));
3898      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3899      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3900                               getF32Constant(DAG, 0x40823e2f));
3901      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3902      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3903                                           getF32Constant(DAG, 0x4020d29c));
3904
3905      result = DAG.getNode(ISD::FADD, dl,
3906                           MVT::f32, LogOfExponent, Log2ofMantissa);
3907    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3908      // For floating-point precision of 18:
3909      //
3910      //   Log2ofMantissa =
3911      //     -3.0400495f +
3912      //       (6.1129976f +
3913      //         (-5.3420409f +
3914      //           (3.2865683f +
3915      //             (-1.2669343f +
3916      //               (0.27515199f -
3917      //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3918      //
3919      // error 0.0000018516, which is better than 18 bits
3920      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3921                               getF32Constant(DAG, 0xbcd2769e));
3922      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3923                               getF32Constant(DAG, 0x3e8ce0b9));
3924      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3925      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3926                               getF32Constant(DAG, 0x3fa22ae7));
3927      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3928      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3929                               getF32Constant(DAG, 0x40525723));
3930      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3931      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3932                               getF32Constant(DAG, 0x40aaf200));
3933      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3934      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3935                               getF32Constant(DAG, 0x40c39dad));
3936      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3937      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3938                                           getF32Constant(DAG, 0x4042902c));
3939
3940      result = DAG.getNode(ISD::FADD, dl,
3941                           MVT::f32, LogOfExponent, Log2ofMantissa);
3942    }
3943  } else {
3944    // No special expansion.
3945    result = DAG.getNode(ISD::FLOG2, dl,
3946                         getValue(I.getArgOperand(0)).getValueType(),
3947                         getValue(I.getArgOperand(0)));
3948  }
3949
3950  setValue(&I, result);
3951}
3952
3953/// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for
3954/// limited-precision mode.
3955void
3956SelectionDAGBuilder::visitLog10(const CallInst &I) {
3957  SDValue result;
3958  DebugLoc dl = getCurDebugLoc();
3959
3960  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3961      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3962    SDValue Op = getValue(I.getArgOperand(0));
3963    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3964
3965    // Scale the exponent by log10(2) [0.30102999f].
3966    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3967    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3968                                        getF32Constant(DAG, 0x3e9a209a));
3969
3970    // Get the significand and build it into a floating-point number with
3971    // exponent of 1.
3972    SDValue X = GetSignificand(DAG, Op1, dl);
3973
3974    if (LimitFloatPrecision <= 6) {
3975      // For floating-point precision of 6:
3976      //
3977      //   Log10ofMantissa =
3978      //     -0.50419619f +
3979      //       (0.60948995f - 0.10380950f * x) * x;
3980      //
3981      // error 0.0014886165, which is 6 bits
3982      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3983                               getF32Constant(DAG, 0xbdd49a13));
3984      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3985                               getF32Constant(DAG, 0x3f1c0789));
3986      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3987      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3988                                            getF32Constant(DAG, 0x3f011300));
3989
3990      result = DAG.getNode(ISD::FADD, dl,
3991                           MVT::f32, LogOfExponent, Log10ofMantissa);
3992    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3993      // For floating-point precision of 12:
3994      //
3995      //   Log10ofMantissa =
3996      //     -0.64831180f +
3997      //       (0.91751397f +
3998      //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
3999      //
4000      // error 0.00019228036, which is better than 12 bits
4001      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4002                               getF32Constant(DAG, 0x3d431f31));
4003      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4004                               getF32Constant(DAG, 0x3ea21fb2));
4005      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4006      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4007                               getF32Constant(DAG, 0x3f6ae232));
4008      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4009      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4010                                            getF32Constant(DAG, 0x3f25f7c3));
4011
4012      result = DAG.getNode(ISD::FADD, dl,
4013                           MVT::f32, LogOfExponent, Log10ofMantissa);
4014    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
4015      // For floating-point precision of 18:
4016      //
4017      //   Log10ofMantissa =
4018      //     -0.84299375f +
4019      //       (1.5327582f +
4020      //         (-1.0688956f +
4021      //           (0.49102474f +
4022      //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4023      //
4024      // error 0.0000037995730, which is better than 18 bits
4025      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4026                               getF32Constant(DAG, 0x3c5d51ce));
4027      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4028                               getF32Constant(DAG, 0x3e00685a));
4029      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4030      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4031                               getF32Constant(DAG, 0x3efb6798));
4032      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4033      SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4034                               getF32Constant(DAG, 0x3f88d192));
4035      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4036      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4037                               getF32Constant(DAG, 0x3fc4316c));
4038      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4039      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4040                                            getF32Constant(DAG, 0x3f57ce70));
4041
4042      result = DAG.getNode(ISD::FADD, dl,
4043                           MVT::f32, LogOfExponent, Log10ofMantissa);
4044    }
4045  } else {
4046    // No special expansion.
4047    result = DAG.getNode(ISD::FLOG10, dl,
4048                         getValue(I.getArgOperand(0)).getValueType(),
4049                         getValue(I.getArgOperand(0)));
4050  }
4051
4052  setValue(&I, result);
4053}
4054
4055/// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4056/// limited-precision mode.
4057void
4058SelectionDAGBuilder::visitExp2(const CallInst &I) {
4059  SDValue result;
4060  DebugLoc dl = getCurDebugLoc();
4061
4062  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
4063      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4064    SDValue Op = getValue(I.getArgOperand(0));
4065
4066    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
4067
4068    //   FractionalPartOfX = x - (float)IntegerPartOfX;
4069    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4070    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
4071
4072    //   IntegerPartOfX <<= 23;
4073    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4074                                 DAG.getConstant(23, TLI.getPointerTy()));
4075
4076    if (LimitFloatPrecision <= 6) {
4077      // For floating-point precision of 6:
4078      //
4079      //   TwoToFractionalPartOfX =
4080      //     0.997535578f +
4081      //       (0.735607626f + 0.252464424f * x) * x;
4082      //
4083      // error 0.0144103317, which is 6 bits
4084      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4085                               getF32Constant(DAG, 0x3e814304));
4086      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4087                               getF32Constant(DAG, 0x3f3c50c8));
4088      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4089      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4090                               getF32Constant(DAG, 0x3f7f5e7e));
4091      SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
4092      SDValue TwoToFractionalPartOfX =
4093        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
4094
4095      result = DAG.getNode(ISD::BITCAST, dl,
4096                           MVT::f32, TwoToFractionalPartOfX);
4097    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
4098      // For floating-point precision of 12:
4099      //
4100      //   TwoToFractionalPartOfX =
4101      //     0.999892986f +
4102      //       (0.696457318f +
4103      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4104      //
4105      // error 0.000107046256, which is 13 to 14 bits
4106      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4107                               getF32Constant(DAG, 0x3da235e3));
4108      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4109                               getF32Constant(DAG, 0x3e65b8f3));
4110      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4111      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4112                               getF32Constant(DAG, 0x3f324b07));
4113      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4114      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4115                               getF32Constant(DAG, 0x3f7ff8fd));
4116      SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
4117      SDValue TwoToFractionalPartOfX =
4118        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
4119
4120      result = DAG.getNode(ISD::BITCAST, dl,
4121                           MVT::f32, TwoToFractionalPartOfX);
4122    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
4123      // For floating-point precision of 18:
4124      //
4125      //   TwoToFractionalPartOfX =
4126      //     0.999999982f +
4127      //       (0.693148872f +
4128      //         (0.240227044f +
4129      //           (0.554906021e-1f +
4130      //             (0.961591928e-2f +
4131      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4132      // error 2.47208000*10^(-7), which is better than 18 bits
4133      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4134                               getF32Constant(DAG, 0x3924b03e));
4135      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4136                               getF32Constant(DAG, 0x3ab24b87));
4137      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4138      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4139                               getF32Constant(DAG, 0x3c1d8c17));
4140      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4141      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4142                               getF32Constant(DAG, 0x3d634a1d));
4143      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4144      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4145                               getF32Constant(DAG, 0x3e75fe14));
4146      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4147      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4148                                getF32Constant(DAG, 0x3f317234));
4149      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4150      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4151                                getF32Constant(DAG, 0x3f800000));
4152      SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
4153      SDValue TwoToFractionalPartOfX =
4154        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
4155
4156      result = DAG.getNode(ISD::BITCAST, dl,
4157                           MVT::f32, TwoToFractionalPartOfX);
4158    }
4159  } else {
4160    // No special expansion.
4161    result = DAG.getNode(ISD::FEXP2, dl,
4162                         getValue(I.getArgOperand(0)).getValueType(),
4163                         getValue(I.getArgOperand(0)));
4164  }
4165
4166  setValue(&I, result);
4167}
4168
4169/// visitPow - Lower a pow intrinsic. Handles the special sequences for
4170/// limited-precision mode with x == 10.0f.
4171void
4172SelectionDAGBuilder::visitPow(const CallInst &I) {
4173  SDValue result;
4174  const Value *Val = I.getArgOperand(0);
4175  DebugLoc dl = getCurDebugLoc();
4176  bool IsExp10 = false;
4177
4178  if (getValue(Val).getValueType() == MVT::f32 &&
4179      getValue(I.getArgOperand(1)).getValueType() == MVT::f32 &&
4180      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4181    if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) {
4182      if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
4183        APFloat Ten(10.0f);
4184        IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten);
4185      }
4186    }
4187  }
4188
4189  if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4190    SDValue Op = getValue(I.getArgOperand(1));
4191
4192    // Put the exponent in the right bit position for later addition to the
4193    // final result:
4194    //
4195    //   #define LOG2OF10 3.3219281f
4196    //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
4197    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4198                             getF32Constant(DAG, 0x40549a78));
4199    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4200
4201    //   FractionalPartOfX = x - (float)IntegerPartOfX;
4202    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4203    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4204
4205    //   IntegerPartOfX <<= 23;
4206    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4207                                 DAG.getConstant(23, TLI.getPointerTy()));
4208
4209    if (LimitFloatPrecision <= 6) {
4210      // For floating-point precision of 6:
4211      //
4212      //   twoToFractionalPartOfX =
4213      //     0.997535578f +
4214      //       (0.735607626f + 0.252464424f * x) * x;
4215      //
4216      // error 0.0144103317, which is 6 bits
4217      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4218                               getF32Constant(DAG, 0x3e814304));
4219      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4220                               getF32Constant(DAG, 0x3f3c50c8));
4221      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4222      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4223                               getF32Constant(DAG, 0x3f7f5e7e));
4224      SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
4225      SDValue TwoToFractionalPartOfX =
4226        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
4227
4228      result = DAG.getNode(ISD::BITCAST, dl,
4229                           MVT::f32, TwoToFractionalPartOfX);
4230    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
4231      // For floating-point precision of 12:
4232      //
4233      //   TwoToFractionalPartOfX =
4234      //     0.999892986f +
4235      //       (0.696457318f +
4236      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4237      //
4238      // error 0.000107046256, which is 13 to 14 bits
4239      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4240                               getF32Constant(DAG, 0x3da235e3));
4241      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4242                               getF32Constant(DAG, 0x3e65b8f3));
4243      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4244      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4245                               getF32Constant(DAG, 0x3f324b07));
4246      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4247      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4248                               getF32Constant(DAG, 0x3f7ff8fd));
4249      SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
4250      SDValue TwoToFractionalPartOfX =
4251        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
4252
4253      result = DAG.getNode(ISD::BITCAST, dl,
4254                           MVT::f32, TwoToFractionalPartOfX);
4255    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
4256      // For floating-point precision of 18:
4257      //
4258      //   TwoToFractionalPartOfX =
4259      //     0.999999982f +
4260      //       (0.693148872f +
4261      //         (0.240227044f +
4262      //           (0.554906021e-1f +
4263      //             (0.961591928e-2f +
4264      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4265      // error 2.47208000*10^(-7), which is better than 18 bits
4266      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4267                               getF32Constant(DAG, 0x3924b03e));
4268      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4269                               getF32Constant(DAG, 0x3ab24b87));
4270      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4271      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4272                               getF32Constant(DAG, 0x3c1d8c17));
4273      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4274      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4275                               getF32Constant(DAG, 0x3d634a1d));
4276      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4277      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4278                               getF32Constant(DAG, 0x3e75fe14));
4279      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4280      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4281                                getF32Constant(DAG, 0x3f317234));
4282      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4283      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4284                                getF32Constant(DAG, 0x3f800000));
4285      SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
4286      SDValue TwoToFractionalPartOfX =
4287        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
4288
4289      result = DAG.getNode(ISD::BITCAST, dl,
4290                           MVT::f32, TwoToFractionalPartOfX);
4291    }
4292  } else {
4293    // No special expansion.
4294    result = DAG.getNode(ISD::FPOW, dl,
4295                         getValue(I.getArgOperand(0)).getValueType(),
4296                         getValue(I.getArgOperand(0)),
4297                         getValue(I.getArgOperand(1)));
4298  }
4299
4300  setValue(&I, result);
4301}
4302
4303
4304/// ExpandPowI - Expand a llvm.powi intrinsic.
4305static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS,
4306                          SelectionDAG &DAG) {
4307  // If RHS is a constant, we can expand this out to a multiplication tree,
4308  // otherwise we end up lowering to a call to __powidf2 (for example).  When
4309  // optimizing for size, we only want to do this if the expansion would produce
4310  // a small number of multiplies, otherwise we do the full expansion.
4311  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4312    // Get the exponent as a positive value.
4313    unsigned Val = RHSC->getSExtValue();
4314    if ((int)Val < 0) Val = -Val;
4315
4316    // powi(x, 0) -> 1.0
4317    if (Val == 0)
4318      return DAG.getConstantFP(1.0, LHS.getValueType());
4319
4320    const Function *F = DAG.getMachineFunction().getFunction();
4321    if (!F->hasFnAttr(Attribute::OptimizeForSize) ||
4322        // If optimizing for size, don't insert too many multiplies.  This
4323        // inserts up to 5 multiplies.
4324        CountPopulation_32(Val)+Log2_32(Val) < 7) {
4325      // We use the simple binary decomposition method to generate the multiply
4326      // sequence.  There are more optimal ways to do this (for example,
4327      // powi(x,15) generates one more multiply than it should), but this has
4328      // the benefit of being both really simple and much better than a libcall.
4329      SDValue Res;  // Logically starts equal to 1.0
4330      SDValue CurSquare = LHS;
4331      while (Val) {
4332        if (Val & 1) {
4333          if (Res.getNode())
4334            Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4335          else
4336            Res = CurSquare;  // 1.0*CurSquare.
4337        }
4338
4339        CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4340                                CurSquare, CurSquare);
4341        Val >>= 1;
4342      }
4343
4344      // If the original was negative, invert the result, producing 1/(x*x*x).
4345      if (RHSC->getSExtValue() < 0)
4346        Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4347                          DAG.getConstantFP(1.0, LHS.getValueType()), Res);
4348      return Res;
4349    }
4350  }
4351
4352  // Otherwise, expand to a libcall.
4353  return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4354}
4355
4356// getTruncatedArgReg - Find underlying register used for an truncated
4357// argument.
4358static unsigned getTruncatedArgReg(const SDValue &N) {
4359  if (N.getOpcode() != ISD::TRUNCATE)
4360    return 0;
4361
4362  const SDValue &Ext = N.getOperand(0);
4363  if (Ext.getOpcode() == ISD::AssertZext || Ext.getOpcode() == ISD::AssertSext){
4364    const SDValue &CFR = Ext.getOperand(0);
4365    if (CFR.getOpcode() == ISD::CopyFromReg)
4366      return cast<RegisterSDNode>(CFR.getOperand(1))->getReg();
4367    else
4368      if (CFR.getOpcode() == ISD::TRUNCATE)
4369        return getTruncatedArgReg(CFR);
4370  }
4371  return 0;
4372}
4373
4374/// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4375/// argument, create the corresponding DBG_VALUE machine instruction for it now.
4376/// At the end of instruction selection, they will be inserted to the entry BB.
4377bool
4378SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
4379                                              int64_t Offset,
4380                                              const SDValue &N) {
4381  const Argument *Arg = dyn_cast<Argument>(V);
4382  if (!Arg)
4383    return false;
4384
4385  MachineFunction &MF = DAG.getMachineFunction();
4386  const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
4387  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
4388
4389  // Ignore inlined function arguments here.
4390  DIVariable DV(Variable);
4391  if (DV.isInlinedFnArgument(MF.getFunction()))
4392    return false;
4393
4394  unsigned Reg = 0;
4395  // Some arguments' frame index is recorded during argument lowering.
4396  Offset = FuncInfo.getArgumentFrameIndex(Arg);
4397  if (Offset)
4398      Reg = TRI->getFrameRegister(MF);
4399
4400  if (!Reg && N.getNode()) {
4401    if (N.getOpcode() == ISD::CopyFromReg)
4402      Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
4403    else
4404      Reg = getTruncatedArgReg(N);
4405    if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4406      MachineRegisterInfo &RegInfo = MF.getRegInfo();
4407      unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4408      if (PR)
4409        Reg = PR;
4410    }
4411  }
4412
4413  if (!Reg) {
4414    // Check if ValueMap has reg number.
4415    DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4416    if (VMI != FuncInfo.ValueMap.end())
4417      Reg = VMI->second;
4418  }
4419
4420  if (!Reg && N.getNode()) {
4421    // Check if frame index is available.
4422    if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4423      if (FrameIndexSDNode *FINode =
4424          dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) {
4425        Reg = TRI->getFrameRegister(MF);
4426        Offset = FINode->getIndex();
4427      }
4428  }
4429
4430  if (!Reg)
4431    return false;
4432
4433  MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(),
4434                                    TII->get(TargetOpcode::DBG_VALUE))
4435    .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable);
4436  FuncInfo.ArgDbgValues.push_back(&*MIB);
4437  return true;
4438}
4439
4440// VisualStudio defines setjmp as _setjmp
4441#if defined(_MSC_VER) && defined(setjmp) && \
4442                         !defined(setjmp_undefined_for_msvc)
4443#  pragma push_macro("setjmp")
4444#  undef setjmp
4445#  define setjmp_undefined_for_msvc
4446#endif
4447
4448/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4449/// we want to emit this as a call to a named external function, return the name
4450/// otherwise lower it and return null.
4451const char *
4452SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4453  DebugLoc dl = getCurDebugLoc();
4454  SDValue Res;
4455
4456  switch (Intrinsic) {
4457  default:
4458    // By default, turn this into a target intrinsic node.
4459    visitTargetIntrinsic(I, Intrinsic);
4460    return 0;
4461  case Intrinsic::vastart:  visitVAStart(I); return 0;
4462  case Intrinsic::vaend:    visitVAEnd(I); return 0;
4463  case Intrinsic::vacopy:   visitVACopy(I); return 0;
4464  case Intrinsic::returnaddress:
4465    setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(),
4466                             getValue(I.getArgOperand(0))));
4467    return 0;
4468  case Intrinsic::frameaddress:
4469    setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(),
4470                             getValue(I.getArgOperand(0))));
4471    return 0;
4472  case Intrinsic::setjmp:
4473    return "_setjmp"+!TLI.usesUnderscoreSetJmp();
4474  case Intrinsic::longjmp:
4475    return "_longjmp"+!TLI.usesUnderscoreLongJmp();
4476  case Intrinsic::memcpy: {
4477    // Assert for address < 256 since we support only user defined address
4478    // spaces.
4479    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4480           < 256 &&
4481           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4482           < 256 &&
4483           "Unknown address space");
4484    SDValue Op1 = getValue(I.getArgOperand(0));
4485    SDValue Op2 = getValue(I.getArgOperand(1));
4486    SDValue Op3 = getValue(I.getArgOperand(2));
4487    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4488    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4489    DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false,
4490                              MachinePointerInfo(I.getArgOperand(0)),
4491                              MachinePointerInfo(I.getArgOperand(1))));
4492    return 0;
4493  }
4494  case Intrinsic::memset: {
4495    // Assert for address < 256 since we support only user defined address
4496    // spaces.
4497    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4498           < 256 &&
4499           "Unknown address space");
4500    SDValue Op1 = getValue(I.getArgOperand(0));
4501    SDValue Op2 = getValue(I.getArgOperand(1));
4502    SDValue Op3 = getValue(I.getArgOperand(2));
4503    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4504    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4505    DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4506                              MachinePointerInfo(I.getArgOperand(0))));
4507    return 0;
4508  }
4509  case Intrinsic::memmove: {
4510    // Assert for address < 256 since we support only user defined address
4511    // spaces.
4512    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4513           < 256 &&
4514           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4515           < 256 &&
4516           "Unknown address space");
4517    SDValue Op1 = getValue(I.getArgOperand(0));
4518    SDValue Op2 = getValue(I.getArgOperand(1));
4519    SDValue Op3 = getValue(I.getArgOperand(2));
4520    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4521    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4522    DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4523                               MachinePointerInfo(I.getArgOperand(0)),
4524                               MachinePointerInfo(I.getArgOperand(1))));
4525    return 0;
4526  }
4527  case Intrinsic::dbg_declare: {
4528    const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4529    MDNode *Variable = DI.getVariable();
4530    const Value *Address = DI.getAddress();
4531    if (!Address || !DIVariable(Variable).Verify())
4532      return 0;
4533
4534    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4535    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4536    // absolute, but not relative, values are different depending on whether
4537    // debug info exists.
4538    ++SDNodeOrder;
4539
4540    // Check if address has undef value.
4541    if (isa<UndefValue>(Address) ||
4542        (Address->use_empty() && !isa<Argument>(Address))) {
4543      DEBUG(dbgs() << "Dropping debug info for " << DI);
4544      return 0;
4545    }
4546
4547    SDValue &N = NodeMap[Address];
4548    if (!N.getNode() && isa<Argument>(Address))
4549      // Check unused arguments map.
4550      N = UnusedArgNodeMap[Address];
4551    SDDbgValue *SDV;
4552    if (N.getNode()) {
4553      // Parameters are handled specially.
4554      bool isParameter =
4555        DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable;
4556      if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4557        Address = BCI->getOperand(0);
4558      const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
4559
4560      if (isParameter && !AI) {
4561        FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4562        if (FINode)
4563          // Byval parameter.  We have a frame index at this point.
4564          SDV = DAG.getDbgValue(Variable, FINode->getIndex(),
4565                                0, dl, SDNodeOrder);
4566        else {
4567          // Address is an argument, so try to emit its dbg value using
4568          // virtual register info from the FuncInfo.ValueMap.
4569          EmitFuncArgumentDbgValue(Address, Variable, 0, N);
4570          return 0;
4571        }
4572      } else if (AI)
4573        SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
4574                              0, dl, SDNodeOrder);
4575      else {
4576        // Can't do anything with other non-AI cases yet.
4577        DEBUG(dbgs() << "Dropping debug info for " << DI);
4578        return 0;
4579      }
4580      DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4581    } else {
4582      // If Address is an argument then try to emit its dbg value using
4583      // virtual register info from the FuncInfo.ValueMap.
4584      if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) {
4585        // If variable is pinned by a alloca in dominating bb then
4586        // use StaticAllocaMap.
4587        if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4588          if (AI->getParent() != DI.getParent()) {
4589            DenseMap<const AllocaInst*, int>::iterator SI =
4590              FuncInfo.StaticAllocaMap.find(AI);
4591            if (SI != FuncInfo.StaticAllocaMap.end()) {
4592              SDV = DAG.getDbgValue(Variable, SI->second,
4593                                    0, dl, SDNodeOrder);
4594              DAG.AddDbgValue(SDV, 0, false);
4595              return 0;
4596            }
4597          }
4598        }
4599        DEBUG(dbgs() << "Dropping debug info for " << DI);
4600      }
4601    }
4602    return 0;
4603  }
4604  case Intrinsic::dbg_value: {
4605    const DbgValueInst &DI = cast<DbgValueInst>(I);
4606    if (!DIVariable(DI.getVariable()).Verify())
4607      return 0;
4608
4609    MDNode *Variable = DI.getVariable();
4610    uint64_t Offset = DI.getOffset();
4611    const Value *V = DI.getValue();
4612    if (!V)
4613      return 0;
4614
4615    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4616    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4617    // absolute, but not relative, values are different depending on whether
4618    // debug info exists.
4619    ++SDNodeOrder;
4620    SDDbgValue *SDV;
4621    if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
4622      SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder);
4623      DAG.AddDbgValue(SDV, 0, false);
4624    } else {
4625      // Do not use getValue() in here; we don't want to generate code at
4626      // this point if it hasn't been done yet.
4627      SDValue N = NodeMap[V];
4628      if (!N.getNode() && isa<Argument>(V))
4629        // Check unused arguments map.
4630        N = UnusedArgNodeMap[V];
4631      if (N.getNode()) {
4632        if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) {
4633          SDV = DAG.getDbgValue(Variable, N.getNode(),
4634                                N.getResNo(), Offset, dl, SDNodeOrder);
4635          DAG.AddDbgValue(SDV, N.getNode(), false);
4636        }
4637      } else if (!V->use_empty() ) {
4638        // Do not call getValue(V) yet, as we don't want to generate code.
4639        // Remember it for later.
4640        DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4641        DanglingDebugInfoMap[V] = DDI;
4642      } else {
4643        // We may expand this to cover more cases.  One case where we have no
4644        // data available is an unreferenced parameter.
4645        DEBUG(dbgs() << "Dropping debug info for " << DI);
4646      }
4647    }
4648
4649    // Build a debug info table entry.
4650    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4651      V = BCI->getOperand(0);
4652    const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4653    // Don't handle byval struct arguments or VLAs, for example.
4654    if (!AI)
4655      return 0;
4656    DenseMap<const AllocaInst*, int>::iterator SI =
4657      FuncInfo.StaticAllocaMap.find(AI);
4658    if (SI == FuncInfo.StaticAllocaMap.end())
4659      return 0; // VLAs.
4660    int FI = SI->second;
4661
4662    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4663    if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
4664      MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
4665    return 0;
4666  }
4667  case Intrinsic::eh_exception: {
4668    // Insert the EXCEPTIONADDR instruction.
4669    assert(FuncInfo.MBB->isLandingPad() &&
4670           "Call to eh.exception not in landing pad!");
4671    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4672    SDValue Ops[1];
4673    Ops[0] = DAG.getRoot();
4674    SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1);
4675    setValue(&I, Op);
4676    DAG.setRoot(Op.getValue(1));
4677    return 0;
4678  }
4679
4680  case Intrinsic::eh_selector: {
4681    MachineBasicBlock *CallMBB = FuncInfo.MBB;
4682    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4683    if (CallMBB->isLandingPad())
4684      AddCatchInfo(I, &MMI, CallMBB);
4685    else {
4686#ifndef NDEBUG
4687      FuncInfo.CatchInfoLost.insert(&I);
4688#endif
4689      // FIXME: Mark exception selector register as live in.  Hack for PR1508.
4690      unsigned Reg = TLI.getExceptionSelectorRegister();
4691      if (Reg) FuncInfo.MBB->addLiveIn(Reg);
4692    }
4693
4694    // Insert the EHSELECTION instruction.
4695    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4696    SDValue Ops[2];
4697    Ops[0] = getValue(I.getArgOperand(0));
4698    Ops[1] = getRoot();
4699    SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2);
4700    DAG.setRoot(Op.getValue(1));
4701    setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32));
4702    return 0;
4703  }
4704
4705  case Intrinsic::eh_typeid_for: {
4706    // Find the type id for the given typeinfo.
4707    GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0));
4708    unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4709    Res = DAG.getConstant(TypeID, MVT::i32);
4710    setValue(&I, Res);
4711    return 0;
4712  }
4713
4714  case Intrinsic::eh_return_i32:
4715  case Intrinsic::eh_return_i64:
4716    DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4717    DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl,
4718                            MVT::Other,
4719                            getControlRoot(),
4720                            getValue(I.getArgOperand(0)),
4721                            getValue(I.getArgOperand(1))));
4722    return 0;
4723  case Intrinsic::eh_unwind_init:
4724    DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4725    return 0;
4726  case Intrinsic::eh_dwarf_cfa: {
4727    SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl,
4728                                        TLI.getPointerTy());
4729    SDValue Offset = DAG.getNode(ISD::ADD, dl,
4730                                 TLI.getPointerTy(),
4731                                 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
4732                                             TLI.getPointerTy()),
4733                                 CfaArg);
4734    SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl,
4735                             TLI.getPointerTy(),
4736                             DAG.getConstant(0, TLI.getPointerTy()));
4737    setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
4738                             FA, Offset));
4739    return 0;
4740  }
4741  case Intrinsic::eh_sjlj_callsite: {
4742    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4743    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4744    assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4745    assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4746
4747    MMI.setCurrentCallSite(CI->getZExtValue());
4748    return 0;
4749  }
4750  case Intrinsic::eh_sjlj_functioncontext: {
4751    // Get and store the index of the function context.
4752    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4753    AllocaInst *FnCtx =
4754      cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
4755    int FI = FuncInfo.StaticAllocaMap[FnCtx];
4756    MFI->setFunctionContextIndex(FI);
4757    return 0;
4758  }
4759  case Intrinsic::eh_sjlj_setjmp: {
4760    SDValue Ops[2];
4761    Ops[0] = getRoot();
4762    Ops[1] = getValue(I.getArgOperand(0));
4763    SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, dl,
4764                             DAG.getVTList(MVT::i32, MVT::Other),
4765                             Ops, 2);
4766    setValue(&I, Op.getValue(0));
4767    DAG.setRoot(Op.getValue(1));
4768    return 0;
4769  }
4770  case Intrinsic::eh_sjlj_longjmp: {
4771    DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other,
4772                            getRoot(), getValue(I.getArgOperand(0))));
4773    return 0;
4774  }
4775  case Intrinsic::eh_sjlj_dispatch_setup: {
4776    DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_DISPATCHSETUP, dl, MVT::Other,
4777                            getRoot(), getValue(I.getArgOperand(0))));
4778    return 0;
4779  }
4780
4781  case Intrinsic::x86_mmx_pslli_w:
4782  case Intrinsic::x86_mmx_pslli_d:
4783  case Intrinsic::x86_mmx_pslli_q:
4784  case Intrinsic::x86_mmx_psrli_w:
4785  case Intrinsic::x86_mmx_psrli_d:
4786  case Intrinsic::x86_mmx_psrli_q:
4787  case Intrinsic::x86_mmx_psrai_w:
4788  case Intrinsic::x86_mmx_psrai_d: {
4789    SDValue ShAmt = getValue(I.getArgOperand(1));
4790    if (isa<ConstantSDNode>(ShAmt)) {
4791      visitTargetIntrinsic(I, Intrinsic);
4792      return 0;
4793    }
4794    unsigned NewIntrinsic = 0;
4795    EVT ShAmtVT = MVT::v2i32;
4796    switch (Intrinsic) {
4797    case Intrinsic::x86_mmx_pslli_w:
4798      NewIntrinsic = Intrinsic::x86_mmx_psll_w;
4799      break;
4800    case Intrinsic::x86_mmx_pslli_d:
4801      NewIntrinsic = Intrinsic::x86_mmx_psll_d;
4802      break;
4803    case Intrinsic::x86_mmx_pslli_q:
4804      NewIntrinsic = Intrinsic::x86_mmx_psll_q;
4805      break;
4806    case Intrinsic::x86_mmx_psrli_w:
4807      NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
4808      break;
4809    case Intrinsic::x86_mmx_psrli_d:
4810      NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
4811      break;
4812    case Intrinsic::x86_mmx_psrli_q:
4813      NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
4814      break;
4815    case Intrinsic::x86_mmx_psrai_w:
4816      NewIntrinsic = Intrinsic::x86_mmx_psra_w;
4817      break;
4818    case Intrinsic::x86_mmx_psrai_d:
4819      NewIntrinsic = Intrinsic::x86_mmx_psra_d;
4820      break;
4821    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4822    }
4823
4824    // The vector shift intrinsics with scalars uses 32b shift amounts but
4825    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
4826    // to be zero.
4827    // We must do this early because v2i32 is not a legal type.
4828    DebugLoc dl = getCurDebugLoc();
4829    SDValue ShOps[2];
4830    ShOps[0] = ShAmt;
4831    ShOps[1] = DAG.getConstant(0, MVT::i32);
4832    ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
4833    EVT DestVT = TLI.getValueType(I.getType());
4834    ShAmt = DAG.getNode(ISD::BITCAST, dl, DestVT, ShAmt);
4835    Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
4836                       DAG.getConstant(NewIntrinsic, MVT::i32),
4837                       getValue(I.getArgOperand(0)), ShAmt);
4838    setValue(&I, Res);
4839    return 0;
4840  }
4841  case Intrinsic::convertff:
4842  case Intrinsic::convertfsi:
4843  case Intrinsic::convertfui:
4844  case Intrinsic::convertsif:
4845  case Intrinsic::convertuif:
4846  case Intrinsic::convertss:
4847  case Intrinsic::convertsu:
4848  case Intrinsic::convertus:
4849  case Intrinsic::convertuu: {
4850    ISD::CvtCode Code = ISD::CVT_INVALID;
4851    switch (Intrinsic) {
4852    case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
4853    case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4854    case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4855    case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4856    case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4857    case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
4858    case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
4859    case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4860    case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4861    }
4862    EVT DestVT = TLI.getValueType(I.getType());
4863    const Value *Op1 = I.getArgOperand(0);
4864    Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1),
4865                               DAG.getValueType(DestVT),
4866                               DAG.getValueType(getValue(Op1).getValueType()),
4867                               getValue(I.getArgOperand(1)),
4868                               getValue(I.getArgOperand(2)),
4869                               Code);
4870    setValue(&I, Res);
4871    return 0;
4872  }
4873  case Intrinsic::sqrt:
4874    setValue(&I, DAG.getNode(ISD::FSQRT, dl,
4875                             getValue(I.getArgOperand(0)).getValueType(),
4876                             getValue(I.getArgOperand(0))));
4877    return 0;
4878  case Intrinsic::powi:
4879    setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)),
4880                            getValue(I.getArgOperand(1)), DAG));
4881    return 0;
4882  case Intrinsic::sin:
4883    setValue(&I, DAG.getNode(ISD::FSIN, dl,
4884                             getValue(I.getArgOperand(0)).getValueType(),
4885                             getValue(I.getArgOperand(0))));
4886    return 0;
4887  case Intrinsic::cos:
4888    setValue(&I, DAG.getNode(ISD::FCOS, dl,
4889                             getValue(I.getArgOperand(0)).getValueType(),
4890                             getValue(I.getArgOperand(0))));
4891    return 0;
4892  case Intrinsic::log:
4893    visitLog(I);
4894    return 0;
4895  case Intrinsic::log2:
4896    visitLog2(I);
4897    return 0;
4898  case Intrinsic::log10:
4899    visitLog10(I);
4900    return 0;
4901  case Intrinsic::exp:
4902    visitExp(I);
4903    return 0;
4904  case Intrinsic::exp2:
4905    visitExp2(I);
4906    return 0;
4907  case Intrinsic::pow:
4908    visitPow(I);
4909    return 0;
4910  case Intrinsic::fma:
4911    setValue(&I, DAG.getNode(ISD::FMA, dl,
4912                             getValue(I.getArgOperand(0)).getValueType(),
4913                             getValue(I.getArgOperand(0)),
4914                             getValue(I.getArgOperand(1)),
4915                             getValue(I.getArgOperand(2))));
4916    return 0;
4917  case Intrinsic::convert_to_fp16:
4918    setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl,
4919                             MVT::i16, getValue(I.getArgOperand(0))));
4920    return 0;
4921  case Intrinsic::convert_from_fp16:
4922    setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl,
4923                             MVT::f32, getValue(I.getArgOperand(0))));
4924    return 0;
4925  case Intrinsic::pcmarker: {
4926    SDValue Tmp = getValue(I.getArgOperand(0));
4927    DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp));
4928    return 0;
4929  }
4930  case Intrinsic::readcyclecounter: {
4931    SDValue Op = getRoot();
4932    Res = DAG.getNode(ISD::READCYCLECOUNTER, dl,
4933                      DAG.getVTList(MVT::i64, MVT::Other),
4934                      &Op, 1);
4935    setValue(&I, Res);
4936    DAG.setRoot(Res.getValue(1));
4937    return 0;
4938  }
4939  case Intrinsic::bswap:
4940    setValue(&I, DAG.getNode(ISD::BSWAP, dl,
4941                             getValue(I.getArgOperand(0)).getValueType(),
4942                             getValue(I.getArgOperand(0))));
4943    return 0;
4944  case Intrinsic::cttz: {
4945    SDValue Arg = getValue(I.getArgOperand(0));
4946    EVT Ty = Arg.getValueType();
4947    setValue(&I, DAG.getNode(ISD::CTTZ, dl, Ty, Arg));
4948    return 0;
4949  }
4950  case Intrinsic::ctlz: {
4951    SDValue Arg = getValue(I.getArgOperand(0));
4952    EVT Ty = Arg.getValueType();
4953    setValue(&I, DAG.getNode(ISD::CTLZ, dl, Ty, Arg));
4954    return 0;
4955  }
4956  case Intrinsic::ctpop: {
4957    SDValue Arg = getValue(I.getArgOperand(0));
4958    EVT Ty = Arg.getValueType();
4959    setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg));
4960    return 0;
4961  }
4962  case Intrinsic::stacksave: {
4963    SDValue Op = getRoot();
4964    Res = DAG.getNode(ISD::STACKSAVE, dl,
4965                      DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
4966    setValue(&I, Res);
4967    DAG.setRoot(Res.getValue(1));
4968    return 0;
4969  }
4970  case Intrinsic::stackrestore: {
4971    Res = getValue(I.getArgOperand(0));
4972    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res));
4973    return 0;
4974  }
4975  case Intrinsic::stackprotector: {
4976    // Emit code into the DAG to store the stack guard onto the stack.
4977    MachineFunction &MF = DAG.getMachineFunction();
4978    MachineFrameInfo *MFI = MF.getFrameInfo();
4979    EVT PtrTy = TLI.getPointerTy();
4980
4981    SDValue Src = getValue(I.getArgOperand(0));   // The guard's value.
4982    AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
4983
4984    int FI = FuncInfo.StaticAllocaMap[Slot];
4985    MFI->setStackProtectorIndex(FI);
4986
4987    SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
4988
4989    // Store the stack protector onto the stack.
4990    Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN,
4991                       MachinePointerInfo::getFixedStack(FI),
4992                       true, false, 0);
4993    setValue(&I, Res);
4994    DAG.setRoot(Res);
4995    return 0;
4996  }
4997  case Intrinsic::objectsize: {
4998    // If we don't know by now, we're never going to know.
4999    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
5000
5001    assert(CI && "Non-constant type in __builtin_object_size?");
5002
5003    SDValue Arg = getValue(I.getCalledValue());
5004    EVT Ty = Arg.getValueType();
5005
5006    if (CI->isZero())
5007      Res = DAG.getConstant(-1ULL, Ty);
5008    else
5009      Res = DAG.getConstant(0, Ty);
5010
5011    setValue(&I, Res);
5012    return 0;
5013  }
5014  case Intrinsic::var_annotation:
5015    // Discard annotate attributes
5016    return 0;
5017
5018  case Intrinsic::init_trampoline: {
5019    const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5020
5021    SDValue Ops[6];
5022    Ops[0] = getRoot();
5023    Ops[1] = getValue(I.getArgOperand(0));
5024    Ops[2] = getValue(I.getArgOperand(1));
5025    Ops[3] = getValue(I.getArgOperand(2));
5026    Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5027    Ops[5] = DAG.getSrcValue(F);
5028
5029    Res = DAG.getNode(ISD::INIT_TRAMPOLINE, dl, MVT::Other, Ops, 6);
5030
5031    DAG.setRoot(Res);
5032    return 0;
5033  }
5034  case Intrinsic::adjust_trampoline: {
5035    setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, dl,
5036                             TLI.getPointerTy(),
5037                             getValue(I.getArgOperand(0))));
5038    return 0;
5039  }
5040  case Intrinsic::gcroot:
5041    if (GFI) {
5042      const Value *Alloca = I.getArgOperand(0);
5043      const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
5044
5045      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
5046      GFI->addStackRoot(FI->getIndex(), TypeMap);
5047    }
5048    return 0;
5049  case Intrinsic::gcread:
5050  case Intrinsic::gcwrite:
5051    llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
5052    return 0;
5053  case Intrinsic::flt_rounds:
5054    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32));
5055    return 0;
5056
5057  case Intrinsic::expect: {
5058    // Just replace __builtin_expect(exp, c) with EXP.
5059    setValue(&I, getValue(I.getArgOperand(0)));
5060    return 0;
5061  }
5062
5063  case Intrinsic::trap: {
5064    StringRef TrapFuncName = getTrapFunctionName();
5065    if (TrapFuncName.empty()) {
5066      DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot()));
5067      return 0;
5068    }
5069    TargetLowering::ArgListTy Args;
5070    std::pair<SDValue, SDValue> Result =
5071      TLI.LowerCallTo(getRoot(), I.getType(),
5072                 false, false, false, false, 0, CallingConv::C,
5073                 /*isTailCall=*/false, /*isReturnValueUsed=*/true,
5074                 DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()),
5075                 Args, DAG, getCurDebugLoc());
5076    DAG.setRoot(Result.second);
5077    return 0;
5078  }
5079  case Intrinsic::uadd_with_overflow:
5080    return implVisitAluOverflow(I, ISD::UADDO);
5081  case Intrinsic::sadd_with_overflow:
5082    return implVisitAluOverflow(I, ISD::SADDO);
5083  case Intrinsic::usub_with_overflow:
5084    return implVisitAluOverflow(I, ISD::USUBO);
5085  case Intrinsic::ssub_with_overflow:
5086    return implVisitAluOverflow(I, ISD::SSUBO);
5087  case Intrinsic::umul_with_overflow:
5088    return implVisitAluOverflow(I, ISD::UMULO);
5089  case Intrinsic::smul_with_overflow:
5090    return implVisitAluOverflow(I, ISD::SMULO);
5091
5092  case Intrinsic::prefetch: {
5093    SDValue Ops[5];
5094    unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
5095    Ops[0] = getRoot();
5096    Ops[1] = getValue(I.getArgOperand(0));
5097    Ops[2] = getValue(I.getArgOperand(1));
5098    Ops[3] = getValue(I.getArgOperand(2));
5099    Ops[4] = getValue(I.getArgOperand(3));
5100    DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, dl,
5101                                        DAG.getVTList(MVT::Other),
5102                                        &Ops[0], 5,
5103                                        EVT::getIntegerVT(*Context, 8),
5104                                        MachinePointerInfo(I.getArgOperand(0)),
5105                                        0, /* align */
5106                                        false, /* volatile */
5107                                        rw==0, /* read */
5108                                        rw==1)); /* write */
5109    return 0;
5110  }
5111
5112  case Intrinsic::invariant_start:
5113  case Intrinsic::lifetime_start:
5114    // Discard region information.
5115    setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
5116    return 0;
5117  case Intrinsic::invariant_end:
5118  case Intrinsic::lifetime_end:
5119    // Discard region information.
5120    return 0;
5121  }
5122}
5123
5124void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
5125                                      bool isTailCall,
5126                                      MachineBasicBlock *LandingPad) {
5127  PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
5128  FunctionType *FTy = cast<FunctionType>(PT->getElementType());
5129  Type *RetTy = FTy->getReturnType();
5130  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5131  MCSymbol *BeginLabel = 0;
5132
5133  TargetLowering::ArgListTy Args;
5134  TargetLowering::ArgListEntry Entry;
5135  Args.reserve(CS.arg_size());
5136
5137  // Check whether the function can return without sret-demotion.
5138  SmallVector<ISD::OutputArg, 4> Outs;
5139  SmallVector<uint64_t, 4> Offsets;
5140  GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(),
5141                Outs, TLI, &Offsets);
5142
5143  bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
5144					   DAG.getMachineFunction(),
5145					   FTy->isVarArg(), Outs,
5146					   FTy->getContext());
5147
5148  SDValue DemoteStackSlot;
5149  int DemoteStackIdx = -100;
5150
5151  if (!CanLowerReturn) {
5152    uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(
5153                      FTy->getReturnType());
5154    unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(
5155                      FTy->getReturnType());
5156    MachineFunction &MF = DAG.getMachineFunction();
5157    DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5158    Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
5159
5160    DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI.getPointerTy());
5161    Entry.Node = DemoteStackSlot;
5162    Entry.Ty = StackSlotPtrType;
5163    Entry.isSExt = false;
5164    Entry.isZExt = false;
5165    Entry.isInReg = false;
5166    Entry.isSRet = true;
5167    Entry.isNest = false;
5168    Entry.isByVal = false;
5169    Entry.Alignment = Align;
5170    Args.push_back(Entry);
5171    RetTy = Type::getVoidTy(FTy->getContext());
5172  }
5173
5174  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
5175       i != e; ++i) {
5176    const Value *V = *i;
5177
5178    // Skip empty types
5179    if (V->getType()->isEmptyTy())
5180      continue;
5181
5182    SDValue ArgNode = getValue(V);
5183    Entry.Node = ArgNode; Entry.Ty = V->getType();
5184
5185    unsigned attrInd = i - CS.arg_begin() + 1;
5186    Entry.isSExt  = CS.paramHasAttr(attrInd, Attribute::SExt);
5187    Entry.isZExt  = CS.paramHasAttr(attrInd, Attribute::ZExt);
5188    Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg);
5189    Entry.isSRet  = CS.paramHasAttr(attrInd, Attribute::StructRet);
5190    Entry.isNest  = CS.paramHasAttr(attrInd, Attribute::Nest);
5191    Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal);
5192    Entry.Alignment = CS.getParamAlignment(attrInd);
5193    Args.push_back(Entry);
5194  }
5195
5196  if (LandingPad) {
5197    // Insert a label before the invoke call to mark the try range.  This can be
5198    // used to detect deletion of the invoke via the MachineModuleInfo.
5199    BeginLabel = MMI.getContext().CreateTempSymbol();
5200
5201    // For SjLj, keep track of which landing pads go with which invokes
5202    // so as to maintain the ordering of pads in the LSDA.
5203    unsigned CallSiteIndex = MMI.getCurrentCallSite();
5204    if (CallSiteIndex) {
5205      MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
5206      LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex);
5207
5208      // Now that the call site is handled, stop tracking it.
5209      MMI.setCurrentCallSite(0);
5210    }
5211
5212    // Both PendingLoads and PendingExports must be flushed here;
5213    // this call might not return.
5214    (void)getRoot();
5215    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel));
5216  }
5217
5218  // Check if target-independent constraints permit a tail call here.
5219  // Target-dependent constraints are checked within TLI.LowerCallTo.
5220  if (isTailCall &&
5221      !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI))
5222    isTailCall = false;
5223
5224  // If there's a possibility that fast-isel has already selected some amount
5225  // of the current basic block, don't emit a tail call.
5226  if (isTailCall && EnableFastISel)
5227    isTailCall = false;
5228
5229  std::pair<SDValue,SDValue> Result =
5230    TLI.LowerCallTo(getRoot(), RetTy,
5231                    CS.paramHasAttr(0, Attribute::SExt),
5232                    CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(),
5233                    CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(),
5234                    CS.getCallingConv(),
5235                    isTailCall,
5236                    !CS.getInstruction()->use_empty(),
5237                    Callee, Args, DAG, getCurDebugLoc());
5238  assert((isTailCall || Result.second.getNode()) &&
5239         "Non-null chain expected with non-tail call!");
5240  assert((Result.second.getNode() || !Result.first.getNode()) &&
5241         "Null value expected with tail call!");
5242  if (Result.first.getNode()) {
5243    setValue(CS.getInstruction(), Result.first);
5244  } else if (!CanLowerReturn && Result.second.getNode()) {
5245    // The instruction result is the result of loading from the
5246    // hidden sret parameter.
5247    SmallVector<EVT, 1> PVTs;
5248    Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
5249
5250    ComputeValueVTs(TLI, PtrRetTy, PVTs);
5251    assert(PVTs.size() == 1 && "Pointers should fit in one register");
5252    EVT PtrVT = PVTs[0];
5253    unsigned NumValues = Outs.size();
5254    SmallVector<SDValue, 4> Values(NumValues);
5255    SmallVector<SDValue, 4> Chains(NumValues);
5256
5257    for (unsigned i = 0; i < NumValues; ++i) {
5258      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT,
5259                                DemoteStackSlot,
5260                                DAG.getConstant(Offsets[i], PtrVT));
5261      SDValue L = DAG.getLoad(Outs[i].VT, getCurDebugLoc(), Result.second,
5262                              Add,
5263                  MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]),
5264                              false, false, 1);
5265      Values[i] = L;
5266      Chains[i] = L.getValue(1);
5267    }
5268
5269    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
5270                                MVT::Other, &Chains[0], NumValues);
5271    PendingLoads.push_back(Chain);
5272
5273    // Collect the legal value parts into potentially illegal values
5274    // that correspond to the original function's return values.
5275    SmallVector<EVT, 4> RetTys;
5276    RetTy = FTy->getReturnType();
5277    ComputeValueVTs(TLI, RetTy, RetTys);
5278    ISD::NodeType AssertOp = ISD::DELETED_NODE;
5279    SmallVector<SDValue, 4> ReturnValues;
5280    unsigned CurReg = 0;
5281    for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
5282      EVT VT = RetTys[I];
5283      EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT);
5284      unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT);
5285
5286      SDValue ReturnValue =
5287        getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs,
5288                         RegisterVT, VT, AssertOp);
5289      ReturnValues.push_back(ReturnValue);
5290      CurReg += NumRegs;
5291    }
5292
5293    setValue(CS.getInstruction(),
5294             DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
5295                         DAG.getVTList(&RetTys[0], RetTys.size()),
5296                         &ReturnValues[0], ReturnValues.size()));
5297  }
5298
5299  // Assign order to nodes here. If the call does not produce a result, it won't
5300  // be mapped to a SDNode and visit() will not assign it an order number.
5301  if (!Result.second.getNode()) {
5302    // As a special case, a null chain means that a tail call has been emitted and
5303    // the DAG root is already updated.
5304    HasTailCall = true;
5305    ++SDNodeOrder;
5306    AssignOrderingToNode(DAG.getRoot().getNode());
5307  } else {
5308    DAG.setRoot(Result.second);
5309    ++SDNodeOrder;
5310    AssignOrderingToNode(Result.second.getNode());
5311  }
5312
5313  if (LandingPad) {
5314    // Insert a label at the end of the invoke call to mark the try range.  This
5315    // can be used to detect deletion of the invoke via the MachineModuleInfo.
5316    MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
5317    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel));
5318
5319    // Inform MachineModuleInfo of range.
5320    MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
5321  }
5322}
5323
5324/// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
5325/// value is equal or not-equal to zero.
5326static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
5327  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
5328       UI != E; ++UI) {
5329    if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
5330      if (IC->isEquality())
5331        if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
5332          if (C->isNullValue())
5333            continue;
5334    // Unknown instruction.
5335    return false;
5336  }
5337  return true;
5338}
5339
5340static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
5341                             Type *LoadTy,
5342                             SelectionDAGBuilder &Builder) {
5343
5344  // Check to see if this load can be trivially constant folded, e.g. if the
5345  // input is from a string literal.
5346  if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5347    // Cast pointer to the type we really want to load.
5348    LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5349                                         PointerType::getUnqual(LoadTy));
5350
5351    if (const Constant *LoadCst =
5352          ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
5353                                       Builder.TD))
5354      return Builder.getValue(LoadCst);
5355  }
5356
5357  // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
5358  // still constant memory, the input chain can be the entry node.
5359  SDValue Root;
5360  bool ConstantMemory = false;
5361
5362  // Do not serialize (non-volatile) loads of constant memory with anything.
5363  if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5364    Root = Builder.DAG.getEntryNode();
5365    ConstantMemory = true;
5366  } else {
5367    // Do not serialize non-volatile loads against each other.
5368    Root = Builder.DAG.getRoot();
5369  }
5370
5371  SDValue Ptr = Builder.getValue(PtrVal);
5372  SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root,
5373                                        Ptr, MachinePointerInfo(PtrVal),
5374                                        false /*volatile*/,
5375                                        false /*nontemporal*/, 1 /* align=1 */);
5376
5377  if (!ConstantMemory)
5378    Builder.PendingLoads.push_back(LoadVal.getValue(1));
5379  return LoadVal;
5380}
5381
5382
5383/// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5384/// If so, return true and lower it, otherwise return false and it will be
5385/// lowered like a normal call.
5386bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5387  // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
5388  if (I.getNumArgOperands() != 3)
5389    return false;
5390
5391  const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5392  if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5393      !I.getArgOperand(2)->getType()->isIntegerTy() ||
5394      !I.getType()->isIntegerTy())
5395    return false;
5396
5397  const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2));
5398
5399  // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
5400  // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
5401  if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) {
5402    bool ActuallyDoIt = true;
5403    MVT LoadVT;
5404    Type *LoadTy;
5405    switch (Size->getZExtValue()) {
5406    default:
5407      LoadVT = MVT::Other;
5408      LoadTy = 0;
5409      ActuallyDoIt = false;
5410      break;
5411    case 2:
5412      LoadVT = MVT::i16;
5413      LoadTy = Type::getInt16Ty(Size->getContext());
5414      break;
5415    case 4:
5416      LoadVT = MVT::i32;
5417      LoadTy = Type::getInt32Ty(Size->getContext());
5418      break;
5419    case 8:
5420      LoadVT = MVT::i64;
5421      LoadTy = Type::getInt64Ty(Size->getContext());
5422      break;
5423        /*
5424    case 16:
5425      LoadVT = MVT::v4i32;
5426      LoadTy = Type::getInt32Ty(Size->getContext());
5427      LoadTy = VectorType::get(LoadTy, 4);
5428      break;
5429         */
5430    }
5431
5432    // This turns into unaligned loads.  We only do this if the target natively
5433    // supports the MVT we'll be loading or if it is small enough (<= 4) that
5434    // we'll only produce a small number of byte loads.
5435
5436    // Require that we can find a legal MVT, and only do this if the target
5437    // supports unaligned loads of that type.  Expanding into byte loads would
5438    // bloat the code.
5439    if (ActuallyDoIt && Size->getZExtValue() > 4) {
5440      // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5441      // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5442      if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT))
5443        ActuallyDoIt = false;
5444    }
5445
5446    if (ActuallyDoIt) {
5447      SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5448      SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5449
5450      SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal,
5451                                 ISD::SETNE);
5452      EVT CallVT = TLI.getValueType(I.getType(), true);
5453      setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT));
5454      return true;
5455    }
5456  }
5457
5458
5459  return false;
5460}
5461
5462
5463void SelectionDAGBuilder::visitCall(const CallInst &I) {
5464  // Handle inline assembly differently.
5465  if (isa<InlineAsm>(I.getCalledValue())) {
5466    visitInlineAsm(&I);
5467    return;
5468  }
5469
5470  // See if any floating point values are being passed to this function. This is
5471  // used to emit an undefined reference to fltused on Windows.
5472  FunctionType *FT =
5473    cast<FunctionType>(I.getCalledValue()->getType()->getContainedType(0));
5474  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5475  if (FT->isVarArg() &&
5476      !MMI.callsExternalVAFunctionWithFloatingPointArguments()) {
5477    for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
5478      Type* T = I.getArgOperand(i)->getType();
5479      for (po_iterator<Type*> i = po_begin(T), e = po_end(T);
5480           i != e; ++i) {
5481        if (!i->isFloatingPointTy()) continue;
5482        MMI.setCallsExternalVAFunctionWithFloatingPointArguments(true);
5483        break;
5484      }
5485    }
5486  }
5487
5488  const char *RenameFn = 0;
5489  if (Function *F = I.getCalledFunction()) {
5490    if (F->isDeclaration()) {
5491      if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
5492        if (unsigned IID = II->getIntrinsicID(F)) {
5493          RenameFn = visitIntrinsicCall(I, IID);
5494          if (!RenameFn)
5495            return;
5496        }
5497      }
5498      if (unsigned IID = F->getIntrinsicID()) {
5499        RenameFn = visitIntrinsicCall(I, IID);
5500        if (!RenameFn)
5501          return;
5502      }
5503    }
5504
5505    // Check for well-known libc/libm calls.  If the function is internal, it
5506    // can't be a library call.
5507    if (!F->hasLocalLinkage() && F->hasName()) {
5508      StringRef Name = F->getName();
5509      if (Name == "copysign" || Name == "copysignf" || Name == "copysignl") {
5510        if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
5511            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5512            I.getType() == I.getArgOperand(0)->getType() &&
5513            I.getType() == I.getArgOperand(1)->getType()) {
5514          SDValue LHS = getValue(I.getArgOperand(0));
5515          SDValue RHS = getValue(I.getArgOperand(1));
5516          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(),
5517                                   LHS.getValueType(), LHS, RHS));
5518          return;
5519        }
5520      } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") {
5521        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5522            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5523            I.getType() == I.getArgOperand(0)->getType()) {
5524          SDValue Tmp = getValue(I.getArgOperand(0));
5525          setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(),
5526                                   Tmp.getValueType(), Tmp));
5527          return;
5528        }
5529      } else if (Name == "sin" || Name == "sinf" || Name == "sinl") {
5530        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5531            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5532            I.getType() == I.getArgOperand(0)->getType() &&
5533            I.onlyReadsMemory()) {
5534          SDValue Tmp = getValue(I.getArgOperand(0));
5535          setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(),
5536                                   Tmp.getValueType(), Tmp));
5537          return;
5538        }
5539      } else if (Name == "cos" || Name == "cosf" || Name == "cosl") {
5540        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5541            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5542            I.getType() == I.getArgOperand(0)->getType() &&
5543            I.onlyReadsMemory()) {
5544          SDValue Tmp = getValue(I.getArgOperand(0));
5545          setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(),
5546                                   Tmp.getValueType(), Tmp));
5547          return;
5548        }
5549      } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") {
5550        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5551            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5552            I.getType() == I.getArgOperand(0)->getType() &&
5553            I.onlyReadsMemory()) {
5554          SDValue Tmp = getValue(I.getArgOperand(0));
5555          setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(),
5556                                   Tmp.getValueType(), Tmp));
5557          return;
5558        }
5559      } else if (Name == "memcmp") {
5560        if (visitMemCmpCall(I))
5561          return;
5562      }
5563    }
5564  }
5565
5566  SDValue Callee;
5567  if (!RenameFn)
5568    Callee = getValue(I.getCalledValue());
5569  else
5570    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
5571
5572  // Check if we can potentially perform a tail call. More detailed checking is
5573  // be done within LowerCallTo, after more information about the call is known.
5574  LowerCallTo(&I, Callee, I.isTailCall());
5575}
5576
5577namespace {
5578
5579/// AsmOperandInfo - This contains information for each constraint that we are
5580/// lowering.
5581class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
5582public:
5583  /// CallOperand - If this is the result output operand or a clobber
5584  /// this is null, otherwise it is the incoming operand to the CallInst.
5585  /// This gets modified as the asm is processed.
5586  SDValue CallOperand;
5587
5588  /// AssignedRegs - If this is a register or register class operand, this
5589  /// contains the set of register corresponding to the operand.
5590  RegsForValue AssignedRegs;
5591
5592  explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
5593    : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
5594  }
5595
5596  /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
5597  /// busy in OutputRegs/InputRegs.
5598  void MarkAllocatedRegs(bool isOutReg, bool isInReg,
5599                         std::set<unsigned> &OutputRegs,
5600                         std::set<unsigned> &InputRegs,
5601                         const TargetRegisterInfo &TRI) const {
5602    if (isOutReg) {
5603      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
5604        MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
5605    }
5606    if (isInReg) {
5607      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
5608        MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
5609    }
5610  }
5611
5612  /// getCallOperandValEVT - Return the EVT of the Value* that this operand
5613  /// corresponds to.  If there is no Value* for this operand, it returns
5614  /// MVT::Other.
5615  EVT getCallOperandValEVT(LLVMContext &Context,
5616                           const TargetLowering &TLI,
5617                           const TargetData *TD) const {
5618    if (CallOperandVal == 0) return MVT::Other;
5619
5620    if (isa<BasicBlock>(CallOperandVal))
5621      return TLI.getPointerTy();
5622
5623    llvm::Type *OpTy = CallOperandVal->getType();
5624
5625    // FIXME: code duplicated from TargetLowering::ParseConstraints().
5626    // If this is an indirect operand, the operand is a pointer to the
5627    // accessed type.
5628    if (isIndirect) {
5629      llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
5630      if (!PtrTy)
5631        report_fatal_error("Indirect operand for inline asm not a pointer!");
5632      OpTy = PtrTy->getElementType();
5633    }
5634
5635    // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
5636    if (StructType *STy = dyn_cast<StructType>(OpTy))
5637      if (STy->getNumElements() == 1)
5638        OpTy = STy->getElementType(0);
5639
5640    // If OpTy is not a single value, it may be a struct/union that we
5641    // can tile with integers.
5642    if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5643      unsigned BitSize = TD->getTypeSizeInBits(OpTy);
5644      switch (BitSize) {
5645      default: break;
5646      case 1:
5647      case 8:
5648      case 16:
5649      case 32:
5650      case 64:
5651      case 128:
5652        OpTy = IntegerType::get(Context, BitSize);
5653        break;
5654      }
5655    }
5656
5657    return TLI.getValueType(OpTy, true);
5658  }
5659
5660private:
5661  /// MarkRegAndAliases - Mark the specified register and all aliases in the
5662  /// specified set.
5663  static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
5664                                const TargetRegisterInfo &TRI) {
5665    assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
5666    Regs.insert(Reg);
5667    if (const unsigned *Aliases = TRI.getAliasSet(Reg))
5668      for (; *Aliases; ++Aliases)
5669        Regs.insert(*Aliases);
5670  }
5671};
5672
5673typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
5674
5675} // end anonymous namespace
5676
5677/// GetRegistersForValue - Assign registers (virtual or physical) for the
5678/// specified operand.  We prefer to assign virtual registers, to allow the
5679/// register allocator to handle the assignment process.  However, if the asm
5680/// uses features that we can't model on machineinstrs, we have SDISel do the
5681/// allocation.  This produces generally horrible, but correct, code.
5682///
5683///   OpInfo describes the operand.
5684///   Input and OutputRegs are the set of already allocated physical registers.
5685///
5686static void GetRegistersForValue(SelectionDAG &DAG,
5687                                 const TargetLowering &TLI,
5688                                 DebugLoc DL,
5689                                 SDISelAsmOperandInfo &OpInfo,
5690                                 std::set<unsigned> &OutputRegs,
5691                                 std::set<unsigned> &InputRegs) {
5692  LLVMContext &Context = *DAG.getContext();
5693
5694  // Compute whether this value requires an input register, an output register,
5695  // or both.
5696  bool isOutReg = false;
5697  bool isInReg = false;
5698  switch (OpInfo.Type) {
5699  case InlineAsm::isOutput:
5700    isOutReg = true;
5701
5702    // If there is an input constraint that matches this, we need to reserve
5703    // the input register so no other inputs allocate to it.
5704    isInReg = OpInfo.hasMatchingInput();
5705    break;
5706  case InlineAsm::isInput:
5707    isInReg = true;
5708    isOutReg = false;
5709    break;
5710  case InlineAsm::isClobber:
5711    isOutReg = true;
5712    isInReg = true;
5713    break;
5714  }
5715
5716
5717  MachineFunction &MF = DAG.getMachineFunction();
5718  SmallVector<unsigned, 4> Regs;
5719
5720  // If this is a constraint for a single physreg, or a constraint for a
5721  // register class, find it.
5722  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
5723    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5724                                     OpInfo.ConstraintVT);
5725
5726  unsigned NumRegs = 1;
5727  if (OpInfo.ConstraintVT != MVT::Other) {
5728    // If this is a FP input in an integer register (or visa versa) insert a bit
5729    // cast of the input value.  More generally, handle any case where the input
5730    // value disagrees with the register class we plan to stick this in.
5731    if (OpInfo.Type == InlineAsm::isInput &&
5732        PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
5733      // Try to convert to the first EVT that the reg class contains.  If the
5734      // types are identical size, use a bitcast to convert (e.g. two differing
5735      // vector types).
5736      EVT RegVT = *PhysReg.second->vt_begin();
5737      if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
5738        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5739                                         RegVT, OpInfo.CallOperand);
5740        OpInfo.ConstraintVT = RegVT;
5741      } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
5742        // If the input is a FP value and we want it in FP registers, do a
5743        // bitcast to the corresponding integer type.  This turns an f64 value
5744        // into i64, which can be passed with two i32 values on a 32-bit
5745        // machine.
5746        RegVT = EVT::getIntegerVT(Context,
5747                                  OpInfo.ConstraintVT.getSizeInBits());
5748        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5749                                         RegVT, OpInfo.CallOperand);
5750        OpInfo.ConstraintVT = RegVT;
5751      }
5752    }
5753
5754    NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
5755  }
5756
5757  EVT RegVT;
5758  EVT ValueVT = OpInfo.ConstraintVT;
5759
5760  // If this is a constraint for a specific physical register, like {r17},
5761  // assign it now.
5762  if (unsigned AssignedReg = PhysReg.first) {
5763    const TargetRegisterClass *RC = PhysReg.second;
5764    if (OpInfo.ConstraintVT == MVT::Other)
5765      ValueVT = *RC->vt_begin();
5766
5767    // Get the actual register value type.  This is important, because the user
5768    // may have asked for (e.g.) the AX register in i32 type.  We need to
5769    // remember that AX is actually i16 to get the right extension.
5770    RegVT = *RC->vt_begin();
5771
5772    // This is a explicit reference to a physical register.
5773    Regs.push_back(AssignedReg);
5774
5775    // If this is an expanded reference, add the rest of the regs to Regs.
5776    if (NumRegs != 1) {
5777      TargetRegisterClass::iterator I = RC->begin();
5778      for (; *I != AssignedReg; ++I)
5779        assert(I != RC->end() && "Didn't find reg!");
5780
5781      // Already added the first reg.
5782      --NumRegs; ++I;
5783      for (; NumRegs; --NumRegs, ++I) {
5784        assert(I != RC->end() && "Ran out of registers to allocate!");
5785        Regs.push_back(*I);
5786      }
5787    }
5788
5789    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5790    const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5791    OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5792    return;
5793  }
5794
5795  // Otherwise, if this was a reference to an LLVM register class, create vregs
5796  // for this reference.
5797  if (const TargetRegisterClass *RC = PhysReg.second) {
5798    RegVT = *RC->vt_begin();
5799    if (OpInfo.ConstraintVT == MVT::Other)
5800      ValueVT = RegVT;
5801
5802    // Create the appropriate number of virtual registers.
5803    MachineRegisterInfo &RegInfo = MF.getRegInfo();
5804    for (; NumRegs; --NumRegs)
5805      Regs.push_back(RegInfo.createVirtualRegister(RC));
5806
5807    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5808    return;
5809  }
5810
5811  // Otherwise, we couldn't allocate enough registers for this.
5812}
5813
5814/// visitInlineAsm - Handle a call to an InlineAsm object.
5815///
5816void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
5817  const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
5818
5819  /// ConstraintOperands - Information about all of the constraints.
5820  SDISelAsmOperandInfoVector ConstraintOperands;
5821
5822  std::set<unsigned> OutputRegs, InputRegs;
5823
5824  TargetLowering::AsmOperandInfoVector
5825    TargetConstraints = TLI.ParseConstraints(CS);
5826
5827  bool hasMemory = false;
5828
5829  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
5830  unsigned ResNo = 0;   // ResNo - The result number of the next output.
5831  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
5832    ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
5833    SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
5834
5835    EVT OpVT = MVT::Other;
5836
5837    // Compute the value type for each operand.
5838    switch (OpInfo.Type) {
5839    case InlineAsm::isOutput:
5840      // Indirect outputs just consume an argument.
5841      if (OpInfo.isIndirect) {
5842        OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5843        break;
5844      }
5845
5846      // The return value of the call is this value.  As such, there is no
5847      // corresponding argument.
5848      assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
5849      if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
5850        OpVT = TLI.getValueType(STy->getElementType(ResNo));
5851      } else {
5852        assert(ResNo == 0 && "Asm only has one result!");
5853        OpVT = TLI.getValueType(CS.getType());
5854      }
5855      ++ResNo;
5856      break;
5857    case InlineAsm::isInput:
5858      OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5859      break;
5860    case InlineAsm::isClobber:
5861      // Nothing to do.
5862      break;
5863    }
5864
5865    // If this is an input or an indirect output, process the call argument.
5866    // BasicBlocks are labels, currently appearing only in asm's.
5867    if (OpInfo.CallOperandVal) {
5868      if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
5869        OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
5870      } else {
5871        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
5872      }
5873
5874      OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD);
5875    }
5876
5877    OpInfo.ConstraintVT = OpVT;
5878
5879    // Indirect operand accesses access memory.
5880    if (OpInfo.isIndirect)
5881      hasMemory = true;
5882    else {
5883      for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
5884        TargetLowering::ConstraintType
5885          CType = TLI.getConstraintType(OpInfo.Codes[j]);
5886        if (CType == TargetLowering::C_Memory) {
5887          hasMemory = true;
5888          break;
5889        }
5890      }
5891    }
5892  }
5893
5894  SDValue Chain, Flag;
5895
5896  // We won't need to flush pending loads if this asm doesn't touch
5897  // memory and is nonvolatile.
5898  if (hasMemory || IA->hasSideEffects())
5899    Chain = getRoot();
5900  else
5901    Chain = DAG.getRoot();
5902
5903  // Second pass over the constraints: compute which constraint option to use
5904  // and assign registers to constraints that want a specific physreg.
5905  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5906    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5907
5908    // If this is an output operand with a matching input operand, look up the
5909    // matching input. If their types mismatch, e.g. one is an integer, the
5910    // other is floating point, or their sizes are different, flag it as an
5911    // error.
5912    if (OpInfo.hasMatchingInput()) {
5913      SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5914
5915      if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5916	std::pair<unsigned, const TargetRegisterClass*> MatchRC =
5917	  TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5918                                           OpInfo.ConstraintVT);
5919	std::pair<unsigned, const TargetRegisterClass*> InputRC =
5920	  TLI.getRegForInlineAsmConstraint(Input.ConstraintCode,
5921                                           Input.ConstraintVT);
5922        if ((OpInfo.ConstraintVT.isInteger() !=
5923             Input.ConstraintVT.isInteger()) ||
5924            (MatchRC.second != InputRC.second)) {
5925          report_fatal_error("Unsupported asm: input constraint"
5926                             " with a matching output constraint of"
5927                             " incompatible type!");
5928        }
5929        Input.ConstraintVT = OpInfo.ConstraintVT;
5930      }
5931    }
5932
5933    // Compute the constraint code and ConstraintType to use.
5934    TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
5935
5936    // If this is a memory input, and if the operand is not indirect, do what we
5937    // need to to provide an address for the memory input.
5938    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5939        !OpInfo.isIndirect) {
5940      assert((OpInfo.isMultipleAlternative ||
5941              (OpInfo.Type == InlineAsm::isInput)) &&
5942             "Can only indirectify direct input operands!");
5943
5944      // Memory operands really want the address of the value.  If we don't have
5945      // an indirect input, put it in the constpool if we can, otherwise spill
5946      // it to a stack slot.
5947      // TODO: This isn't quite right. We need to handle these according to
5948      // the addressing mode that the constraint wants. Also, this may take
5949      // an additional register for the computation and we don't want that
5950      // either.
5951
5952      // If the operand is a float, integer, or vector constant, spill to a
5953      // constant pool entry to get its address.
5954      const Value *OpVal = OpInfo.CallOperandVal;
5955      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
5956          isa<ConstantVector>(OpVal)) {
5957        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
5958                                                 TLI.getPointerTy());
5959      } else {
5960        // Otherwise, create a stack slot and emit a store to it before the
5961        // asm.
5962        Type *Ty = OpVal->getType();
5963        uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
5964        unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
5965        MachineFunction &MF = DAG.getMachineFunction();
5966        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5967        SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
5968        Chain = DAG.getStore(Chain, getCurDebugLoc(),
5969                             OpInfo.CallOperand, StackSlot,
5970                             MachinePointerInfo::getFixedStack(SSFI),
5971                             false, false, 0);
5972        OpInfo.CallOperand = StackSlot;
5973      }
5974
5975      // There is no longer a Value* corresponding to this operand.
5976      OpInfo.CallOperandVal = 0;
5977
5978      // It is now an indirect operand.
5979      OpInfo.isIndirect = true;
5980    }
5981
5982    // If this constraint is for a specific register, allocate it before
5983    // anything else.
5984    if (OpInfo.ConstraintType == TargetLowering::C_Register)
5985      GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo, OutputRegs,
5986                           InputRegs);
5987  }
5988
5989  // Second pass - Loop over all of the operands, assigning virtual or physregs
5990  // to register class operands.
5991  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5992    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5993
5994    // C_Register operands have already been allocated, Other/Memory don't need
5995    // to be.
5996    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
5997      GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo, OutputRegs,
5998                           InputRegs);
5999  }
6000
6001  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
6002  std::vector<SDValue> AsmNodeOperands;
6003  AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
6004  AsmNodeOperands.push_back(
6005          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
6006                                      TLI.getPointerTy()));
6007
6008  // If we have a !srcloc metadata node associated with it, we want to attach
6009  // this to the ultimately generated inline asm machineinstr.  To do this, we
6010  // pass in the third operand as this (potentially null) inline asm MDNode.
6011  const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
6012  AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
6013
6014  // Remember the HasSideEffect and AlignStack bits as operand 3.
6015  unsigned ExtraInfo = 0;
6016  if (IA->hasSideEffects())
6017    ExtraInfo |= InlineAsm::Extra_HasSideEffects;
6018  if (IA->isAlignStack())
6019    ExtraInfo |= InlineAsm::Extra_IsAlignStack;
6020  AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo,
6021                                                  TLI.getPointerTy()));
6022
6023  // Loop over all of the inputs, copying the operand values into the
6024  // appropriate registers and processing the output regs.
6025  RegsForValue RetValRegs;
6026
6027  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
6028  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
6029
6030  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6031    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6032
6033    switch (OpInfo.Type) {
6034    case InlineAsm::isOutput: {
6035      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
6036          OpInfo.ConstraintType != TargetLowering::C_Register) {
6037        // Memory output, or 'other' output (e.g. 'X' constraint).
6038        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
6039
6040        // Add information to the INLINEASM node to know about this output.
6041        unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6042        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
6043                                                        TLI.getPointerTy()));
6044        AsmNodeOperands.push_back(OpInfo.CallOperand);
6045        break;
6046      }
6047
6048      // Otherwise, this is a register or register class output.
6049
6050      // Copy the output from the appropriate register.  Find a register that
6051      // we can use.
6052      if (OpInfo.AssignedRegs.Regs.empty())
6053        report_fatal_error("Couldn't allocate output reg for constraint '" +
6054                           Twine(OpInfo.ConstraintCode) + "'!");
6055
6056      // If this is an indirect operand, store through the pointer after the
6057      // asm.
6058      if (OpInfo.isIndirect) {
6059        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
6060                                                      OpInfo.CallOperandVal));
6061      } else {
6062        // This is the result value of the call.
6063        assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6064        // Concatenate this output onto the outputs list.
6065        RetValRegs.append(OpInfo.AssignedRegs);
6066      }
6067
6068      // Add information to the INLINEASM node to know that this register is
6069      // set.
6070      OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
6071                                           InlineAsm::Kind_RegDefEarlyClobber :
6072                                               InlineAsm::Kind_RegDef,
6073                                               false,
6074                                               0,
6075                                               DAG,
6076                                               AsmNodeOperands);
6077      break;
6078    }
6079    case InlineAsm::isInput: {
6080      SDValue InOperandVal = OpInfo.CallOperand;
6081
6082      if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
6083        // If this is required to match an output register we have already set,
6084        // just use its register.
6085        unsigned OperandNo = OpInfo.getMatchedOperand();
6086
6087        // Scan until we find the definition we already emitted of this operand.
6088        // When we find it, create a RegsForValue operand.
6089        unsigned CurOp = InlineAsm::Op_FirstOperand;
6090        for (; OperandNo; --OperandNo) {
6091          // Advance to the next operand.
6092          unsigned OpFlag =
6093            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6094          assert((InlineAsm::isRegDefKind(OpFlag) ||
6095                  InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
6096                  InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
6097          CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
6098        }
6099
6100        unsigned OpFlag =
6101          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6102        if (InlineAsm::isRegDefKind(OpFlag) ||
6103            InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
6104          // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
6105          if (OpInfo.isIndirect) {
6106            // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
6107            LLVMContext &Ctx = *DAG.getContext();
6108            Ctx.emitError(CS.getInstruction(),  "inline asm not supported yet:"
6109                          " don't know how to handle tied "
6110                          "indirect register inputs");
6111          }
6112
6113          RegsForValue MatchedRegs;
6114          MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
6115          EVT RegVT = AsmNodeOperands[CurOp+1].getValueType();
6116          MatchedRegs.RegVTs.push_back(RegVT);
6117          MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
6118          for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
6119               i != e; ++i)
6120            MatchedRegs.Regs.push_back
6121              (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)));
6122
6123          // Use the produced MatchedRegs object to
6124          MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
6125                                    Chain, &Flag);
6126          MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
6127                                           true, OpInfo.getMatchedOperand(),
6128                                           DAG, AsmNodeOperands);
6129          break;
6130        }
6131
6132        assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
6133        assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
6134               "Unexpected number of operands");
6135        // Add information to the INLINEASM node to know about this input.
6136        // See InlineAsm.h isUseOperandTiedToDef.
6137        OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
6138                                                    OpInfo.getMatchedOperand());
6139        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
6140                                                        TLI.getPointerTy()));
6141        AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
6142        break;
6143      }
6144
6145      // Treat indirect 'X' constraint as memory.
6146      if (OpInfo.ConstraintType == TargetLowering::C_Other &&
6147          OpInfo.isIndirect)
6148        OpInfo.ConstraintType = TargetLowering::C_Memory;
6149
6150      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
6151        std::vector<SDValue> Ops;
6152        TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
6153                                         Ops, DAG);
6154        if (Ops.empty())
6155          report_fatal_error("Invalid operand for inline asm constraint '" +
6156                             Twine(OpInfo.ConstraintCode) + "'!");
6157
6158        // Add information to the INLINEASM node to know about this input.
6159        unsigned ResOpType =
6160          InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
6161        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6162                                                        TLI.getPointerTy()));
6163        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
6164        break;
6165      }
6166
6167      if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
6168        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
6169        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
6170               "Memory operands expect pointer values");
6171
6172        // Add information to the INLINEASM node to know about this input.
6173        unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6174        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6175                                                        TLI.getPointerTy()));
6176        AsmNodeOperands.push_back(InOperandVal);
6177        break;
6178      }
6179
6180      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
6181              OpInfo.ConstraintType == TargetLowering::C_Register) &&
6182             "Unknown constraint type!");
6183      assert(!OpInfo.isIndirect &&
6184             "Don't know how to handle indirect register inputs yet!");
6185
6186      // Copy the input into the appropriate registers.
6187      if (OpInfo.AssignedRegs.Regs.empty())
6188        report_fatal_error("Couldn't allocate input reg for constraint '" +
6189                           Twine(OpInfo.ConstraintCode) + "'!");
6190
6191      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
6192                                        Chain, &Flag);
6193
6194      OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
6195                                               DAG, AsmNodeOperands);
6196      break;
6197    }
6198    case InlineAsm::isClobber: {
6199      // Add the clobbered value to the operand list, so that the register
6200      // allocator is aware that the physreg got clobbered.
6201      if (!OpInfo.AssignedRegs.Regs.empty())
6202        OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
6203                                                 false, 0, DAG,
6204                                                 AsmNodeOperands);
6205      break;
6206    }
6207    }
6208  }
6209
6210  // Finish up input operands.  Set the input chain and add the flag last.
6211  AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
6212  if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
6213
6214  Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(),
6215                      DAG.getVTList(MVT::Other, MVT::Glue),
6216                      &AsmNodeOperands[0], AsmNodeOperands.size());
6217  Flag = Chain.getValue(1);
6218
6219  // If this asm returns a register value, copy the result from that register
6220  // and set it as the value of the call.
6221  if (!RetValRegs.Regs.empty()) {
6222    SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
6223                                             Chain, &Flag);
6224
6225    // FIXME: Why don't we do this for inline asms with MRVs?
6226    if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
6227      EVT ResultType = TLI.getValueType(CS.getType());
6228
6229      // If any of the results of the inline asm is a vector, it may have the
6230      // wrong width/num elts.  This can happen for register classes that can
6231      // contain multiple different value types.  The preg or vreg allocated may
6232      // not have the same VT as was expected.  Convert it to the right type
6233      // with bit_convert.
6234      if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
6235        Val = DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
6236                          ResultType, Val);
6237
6238      } else if (ResultType != Val.getValueType() &&
6239                 ResultType.isInteger() && Val.getValueType().isInteger()) {
6240        // If a result value was tied to an input value, the computed result may
6241        // have a wider width than the expected result.  Extract the relevant
6242        // portion.
6243        Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val);
6244      }
6245
6246      assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
6247    }
6248
6249    setValue(CS.getInstruction(), Val);
6250    // Don't need to use this as a chain in this case.
6251    if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
6252      return;
6253  }
6254
6255  std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
6256
6257  // Process indirect outputs, first output all of the flagged copies out of
6258  // physregs.
6259  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
6260    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
6261    const Value *Ptr = IndirectStoresToEmit[i].second;
6262    SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
6263                                             Chain, &Flag);
6264    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
6265  }
6266
6267  // Emit the non-flagged stores from the physregs.
6268  SmallVector<SDValue, 8> OutChains;
6269  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
6270    SDValue Val = DAG.getStore(Chain, getCurDebugLoc(),
6271                               StoresToEmit[i].first,
6272                               getValue(StoresToEmit[i].second),
6273                               MachinePointerInfo(StoresToEmit[i].second),
6274                               false, false, 0);
6275    OutChains.push_back(Val);
6276  }
6277
6278  if (!OutChains.empty())
6279    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
6280                        &OutChains[0], OutChains.size());
6281
6282  DAG.setRoot(Chain);
6283}
6284
6285void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
6286  DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(),
6287                          MVT::Other, getRoot(),
6288                          getValue(I.getArgOperand(0)),
6289                          DAG.getSrcValue(I.getArgOperand(0))));
6290}
6291
6292void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
6293  const TargetData &TD = *TLI.getTargetData();
6294  SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(),
6295                           getRoot(), getValue(I.getOperand(0)),
6296                           DAG.getSrcValue(I.getOperand(0)),
6297                           TD.getABITypeAlignment(I.getType()));
6298  setValue(&I, V);
6299  DAG.setRoot(V.getValue(1));
6300}
6301
6302void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
6303  DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(),
6304                          MVT::Other, getRoot(),
6305                          getValue(I.getArgOperand(0)),
6306                          DAG.getSrcValue(I.getArgOperand(0))));
6307}
6308
6309void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
6310  DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(),
6311                          MVT::Other, getRoot(),
6312                          getValue(I.getArgOperand(0)),
6313                          getValue(I.getArgOperand(1)),
6314                          DAG.getSrcValue(I.getArgOperand(0)),
6315                          DAG.getSrcValue(I.getArgOperand(1))));
6316}
6317
6318/// TargetLowering::LowerCallTo - This is the default LowerCallTo
6319/// implementation, which just calls LowerCall.
6320/// FIXME: When all targets are
6321/// migrated to using LowerCall, this hook should be integrated into SDISel.
6322std::pair<SDValue, SDValue>
6323TargetLowering::LowerCallTo(SDValue Chain, Type *RetTy,
6324                            bool RetSExt, bool RetZExt, bool isVarArg,
6325                            bool isInreg, unsigned NumFixedArgs,
6326                            CallingConv::ID CallConv, bool isTailCall,
6327                            bool isReturnValueUsed,
6328                            SDValue Callee,
6329                            ArgListTy &Args, SelectionDAG &DAG,
6330                            DebugLoc dl) const {
6331  // Handle all of the outgoing arguments.
6332  SmallVector<ISD::OutputArg, 32> Outs;
6333  SmallVector<SDValue, 32> OutVals;
6334  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
6335    SmallVector<EVT, 4> ValueVTs;
6336    ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
6337    for (unsigned Value = 0, NumValues = ValueVTs.size();
6338         Value != NumValues; ++Value) {
6339      EVT VT = ValueVTs[Value];
6340      Type *ArgTy = VT.getTypeForEVT(RetTy->getContext());
6341      SDValue Op = SDValue(Args[i].Node.getNode(),
6342                           Args[i].Node.getResNo() + Value);
6343      ISD::ArgFlagsTy Flags;
6344      unsigned OriginalAlignment =
6345        getTargetData()->getABITypeAlignment(ArgTy);
6346
6347      if (Args[i].isZExt)
6348        Flags.setZExt();
6349      if (Args[i].isSExt)
6350        Flags.setSExt();
6351      if (Args[i].isInReg)
6352        Flags.setInReg();
6353      if (Args[i].isSRet)
6354        Flags.setSRet();
6355      if (Args[i].isByVal) {
6356        Flags.setByVal();
6357        PointerType *Ty = cast<PointerType>(Args[i].Ty);
6358        Type *ElementTy = Ty->getElementType();
6359        Flags.setByValSize(getTargetData()->getTypeAllocSize(ElementTy));
6360        // For ByVal, alignment should come from FE.  BE will guess if this
6361        // info is not there but there are cases it cannot get right.
6362        unsigned FrameAlign;
6363        if (Args[i].Alignment)
6364          FrameAlign = Args[i].Alignment;
6365        else
6366          FrameAlign = getByValTypeAlignment(ElementTy);
6367        Flags.setByValAlign(FrameAlign);
6368      }
6369      if (Args[i].isNest)
6370        Flags.setNest();
6371      Flags.setOrigAlign(OriginalAlignment);
6372
6373      EVT PartVT = getRegisterType(RetTy->getContext(), VT);
6374      unsigned NumParts = getNumRegisters(RetTy->getContext(), VT);
6375      SmallVector<SDValue, 4> Parts(NumParts);
6376      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
6377
6378      if (Args[i].isSExt)
6379        ExtendKind = ISD::SIGN_EXTEND;
6380      else if (Args[i].isZExt)
6381        ExtendKind = ISD::ZERO_EXTEND;
6382
6383      getCopyToParts(DAG, dl, Op, &Parts[0], NumParts,
6384                     PartVT, ExtendKind);
6385
6386      for (unsigned j = 0; j != NumParts; ++j) {
6387        // if it isn't first piece, alignment must be 1
6388        ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(),
6389                               i < NumFixedArgs);
6390        if (NumParts > 1 && j == 0)
6391          MyFlags.Flags.setSplit();
6392        else if (j != 0)
6393          MyFlags.Flags.setOrigAlign(1);
6394
6395        Outs.push_back(MyFlags);
6396        OutVals.push_back(Parts[j]);
6397      }
6398    }
6399  }
6400
6401  // Handle the incoming return values from the call.
6402  SmallVector<ISD::InputArg, 32> Ins;
6403  SmallVector<EVT, 4> RetTys;
6404  ComputeValueVTs(*this, RetTy, RetTys);
6405  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6406    EVT VT = RetTys[I];
6407    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
6408    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
6409    for (unsigned i = 0; i != NumRegs; ++i) {
6410      ISD::InputArg MyFlags;
6411      MyFlags.VT = RegisterVT.getSimpleVT();
6412      MyFlags.Used = isReturnValueUsed;
6413      if (RetSExt)
6414        MyFlags.Flags.setSExt();
6415      if (RetZExt)
6416        MyFlags.Flags.setZExt();
6417      if (isInreg)
6418        MyFlags.Flags.setInReg();
6419      Ins.push_back(MyFlags);
6420    }
6421  }
6422
6423  SmallVector<SDValue, 4> InVals;
6424  Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall,
6425                    Outs, OutVals, Ins, dl, DAG, InVals);
6426
6427  // Verify that the target's LowerCall behaved as expected.
6428  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
6429         "LowerCall didn't return a valid chain!");
6430  assert((!isTailCall || InVals.empty()) &&
6431         "LowerCall emitted a return value for a tail call!");
6432  assert((isTailCall || InVals.size() == Ins.size()) &&
6433         "LowerCall didn't emit the correct number of values!");
6434
6435  // For a tail call, the return value is merely live-out and there aren't
6436  // any nodes in the DAG representing it. Return a special value to
6437  // indicate that a tail call has been emitted and no more Instructions
6438  // should be processed in the current block.
6439  if (isTailCall) {
6440    DAG.setRoot(Chain);
6441    return std::make_pair(SDValue(), SDValue());
6442  }
6443
6444  DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6445          assert(InVals[i].getNode() &&
6446                 "LowerCall emitted a null value!");
6447          assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6448                 "LowerCall emitted a value with the wrong type!");
6449        });
6450
6451  // Collect the legal value parts into potentially illegal values
6452  // that correspond to the original function's return values.
6453  ISD::NodeType AssertOp = ISD::DELETED_NODE;
6454  if (RetSExt)
6455    AssertOp = ISD::AssertSext;
6456  else if (RetZExt)
6457    AssertOp = ISD::AssertZext;
6458  SmallVector<SDValue, 4> ReturnValues;
6459  unsigned CurReg = 0;
6460  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6461    EVT VT = RetTys[I];
6462    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
6463    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
6464
6465    ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg],
6466                                            NumRegs, RegisterVT, VT,
6467                                            AssertOp));
6468    CurReg += NumRegs;
6469  }
6470
6471  // For a function returning void, there is no return value. We can't create
6472  // such a node, so we just return a null return value in that case. In
6473  // that case, nothing will actually look at the value.
6474  if (ReturnValues.empty())
6475    return std::make_pair(SDValue(), Chain);
6476
6477  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
6478                            DAG.getVTList(&RetTys[0], RetTys.size()),
6479                            &ReturnValues[0], ReturnValues.size());
6480  return std::make_pair(Res, Chain);
6481}
6482
6483void TargetLowering::LowerOperationWrapper(SDNode *N,
6484                                           SmallVectorImpl<SDValue> &Results,
6485                                           SelectionDAG &DAG) const {
6486  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
6487  if (Res.getNode())
6488    Results.push_back(Res);
6489}
6490
6491SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
6492  llvm_unreachable("LowerOperation not implemented for this target!");
6493  return SDValue();
6494}
6495
6496void
6497SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
6498  SDValue Op = getNonRegisterValue(V);
6499  assert((Op.getOpcode() != ISD::CopyFromReg ||
6500          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
6501         "Copy from a reg to the same reg!");
6502  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
6503
6504  RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
6505  SDValue Chain = DAG.getEntryNode();
6506  RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0);
6507  PendingExports.push_back(Chain);
6508}
6509
6510#include "llvm/CodeGen/SelectionDAGISel.h"
6511
6512/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
6513/// entry block, return true.  This includes arguments used by switches, since
6514/// the switch may expand into multiple basic blocks.
6515static bool isOnlyUsedInEntryBlock(const Argument *A) {
6516  // With FastISel active, we may be splitting blocks, so force creation
6517  // of virtual registers for all non-dead arguments.
6518  if (EnableFastISel)
6519    return A->use_empty();
6520
6521  const BasicBlock *Entry = A->getParent()->begin();
6522  for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end();
6523       UI != E; ++UI) {
6524    const User *U = *UI;
6525    if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U))
6526      return false;  // Use not in entry block.
6527  }
6528  return true;
6529}
6530
6531void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) {
6532  // If this is the entry block, emit arguments.
6533  const Function &F = *LLVMBB->getParent();
6534  SelectionDAG &DAG = SDB->DAG;
6535  DebugLoc dl = SDB->getCurDebugLoc();
6536  const TargetData *TD = TLI.getTargetData();
6537  SmallVector<ISD::InputArg, 16> Ins;
6538
6539  // Check whether the function can return without sret-demotion.
6540  SmallVector<ISD::OutputArg, 4> Outs;
6541  GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
6542                Outs, TLI);
6543
6544  if (!FuncInfo->CanLowerReturn) {
6545    // Put in an sret pointer parameter before all the other parameters.
6546    SmallVector<EVT, 1> ValueVTs;
6547    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6548
6549    // NOTE: Assuming that a pointer will never break down to more than one VT
6550    // or one register.
6551    ISD::ArgFlagsTy Flags;
6552    Flags.setSRet();
6553    EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]);
6554    ISD::InputArg RetArg(Flags, RegisterVT, true);
6555    Ins.push_back(RetArg);
6556  }
6557
6558  // Set up the incoming argument description vector.
6559  unsigned Idx = 1;
6560  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
6561       I != E; ++I, ++Idx) {
6562    SmallVector<EVT, 4> ValueVTs;
6563    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6564    bool isArgValueUsed = !I->use_empty();
6565    for (unsigned Value = 0, NumValues = ValueVTs.size();
6566         Value != NumValues; ++Value) {
6567      EVT VT = ValueVTs[Value];
6568      Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
6569      ISD::ArgFlagsTy Flags;
6570      unsigned OriginalAlignment =
6571        TD->getABITypeAlignment(ArgTy);
6572
6573      if (F.paramHasAttr(Idx, Attribute::ZExt))
6574        Flags.setZExt();
6575      if (F.paramHasAttr(Idx, Attribute::SExt))
6576        Flags.setSExt();
6577      if (F.paramHasAttr(Idx, Attribute::InReg))
6578        Flags.setInReg();
6579      if (F.paramHasAttr(Idx, Attribute::StructRet))
6580        Flags.setSRet();
6581      if (F.paramHasAttr(Idx, Attribute::ByVal)) {
6582        Flags.setByVal();
6583        PointerType *Ty = cast<PointerType>(I->getType());
6584        Type *ElementTy = Ty->getElementType();
6585        Flags.setByValSize(TD->getTypeAllocSize(ElementTy));
6586        // For ByVal, alignment should be passed from FE.  BE will guess if
6587        // this info is not there but there are cases it cannot get right.
6588        unsigned FrameAlign;
6589        if (F.getParamAlignment(Idx))
6590          FrameAlign = F.getParamAlignment(Idx);
6591        else
6592          FrameAlign = TLI.getByValTypeAlignment(ElementTy);
6593        Flags.setByValAlign(FrameAlign);
6594      }
6595      if (F.paramHasAttr(Idx, Attribute::Nest))
6596        Flags.setNest();
6597      Flags.setOrigAlign(OriginalAlignment);
6598
6599      EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6600      unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6601      for (unsigned i = 0; i != NumRegs; ++i) {
6602        ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed);
6603        if (NumRegs > 1 && i == 0)
6604          MyFlags.Flags.setSplit();
6605        // if it isn't first piece, alignment must be 1
6606        else if (i > 0)
6607          MyFlags.Flags.setOrigAlign(1);
6608        Ins.push_back(MyFlags);
6609      }
6610    }
6611  }
6612
6613  // Call the target to set up the argument values.
6614  SmallVector<SDValue, 8> InVals;
6615  SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
6616                                             F.isVarArg(), Ins,
6617                                             dl, DAG, InVals);
6618
6619  // Verify that the target's LowerFormalArguments behaved as expected.
6620  assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
6621         "LowerFormalArguments didn't return a valid chain!");
6622  assert(InVals.size() == Ins.size() &&
6623         "LowerFormalArguments didn't emit the correct number of values!");
6624  DEBUG({
6625      for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6626        assert(InVals[i].getNode() &&
6627               "LowerFormalArguments emitted a null value!");
6628        assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6629               "LowerFormalArguments emitted a value with the wrong type!");
6630      }
6631    });
6632
6633  // Update the DAG with the new chain value resulting from argument lowering.
6634  DAG.setRoot(NewRoot);
6635
6636  // Set up the argument values.
6637  unsigned i = 0;
6638  Idx = 1;
6639  if (!FuncInfo->CanLowerReturn) {
6640    // Create a virtual register for the sret pointer, and put in a copy
6641    // from the sret argument into it.
6642    SmallVector<EVT, 1> ValueVTs;
6643    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6644    EVT VT = ValueVTs[0];
6645    EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6646    ISD::NodeType AssertOp = ISD::DELETED_NODE;
6647    SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
6648                                        RegVT, VT, AssertOp);
6649
6650    MachineFunction& MF = SDB->DAG.getMachineFunction();
6651    MachineRegisterInfo& RegInfo = MF.getRegInfo();
6652    unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT));
6653    FuncInfo->DemoteRegister = SRetReg;
6654    NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(),
6655                                    SRetReg, ArgValue);
6656    DAG.setRoot(NewRoot);
6657
6658    // i indexes lowered arguments.  Bump it past the hidden sret argument.
6659    // Idx indexes LLVM arguments.  Don't touch it.
6660    ++i;
6661  }
6662
6663  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
6664      ++I, ++Idx) {
6665    SmallVector<SDValue, 4> ArgValues;
6666    SmallVector<EVT, 4> ValueVTs;
6667    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6668    unsigned NumValues = ValueVTs.size();
6669
6670    // If this argument is unused then remember its value. It is used to generate
6671    // debugging information.
6672    if (I->use_empty() && NumValues)
6673      SDB->setUnusedArgValue(I, InVals[i]);
6674
6675    for (unsigned Val = 0; Val != NumValues; ++Val) {
6676      EVT VT = ValueVTs[Val];
6677      EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6678      unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6679
6680      if (!I->use_empty()) {
6681        ISD::NodeType AssertOp = ISD::DELETED_NODE;
6682        if (F.paramHasAttr(Idx, Attribute::SExt))
6683          AssertOp = ISD::AssertSext;
6684        else if (F.paramHasAttr(Idx, Attribute::ZExt))
6685          AssertOp = ISD::AssertZext;
6686
6687        ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
6688                                             NumParts, PartVT, VT,
6689                                             AssertOp));
6690      }
6691
6692      i += NumParts;
6693    }
6694
6695    // We don't need to do anything else for unused arguments.
6696    if (ArgValues.empty())
6697      continue;
6698
6699    // Note down frame index.
6700    if (FrameIndexSDNode *FI =
6701	dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
6702      FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
6703
6704    SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues,
6705                                     SDB->getCurDebugLoc());
6706
6707    SDB->setValue(I, Res);
6708    if (!EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
6709      if (LoadSDNode *LNode =
6710          dyn_cast<LoadSDNode>(Res.getOperand(0).getNode()))
6711        if (FrameIndexSDNode *FI =
6712            dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
6713        FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
6714    }
6715
6716    // If this argument is live outside of the entry block, insert a copy from
6717    // wherever we got it to the vreg that other BB's will reference it as.
6718    if (!EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
6719      // If we can, though, try to skip creating an unnecessary vreg.
6720      // FIXME: This isn't very clean... it would be nice to make this more
6721      // general.  It's also subtly incompatible with the hacks FastISel
6722      // uses with vregs.
6723      unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
6724      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
6725        FuncInfo->ValueMap[I] = Reg;
6726        continue;
6727      }
6728    }
6729    if (!isOnlyUsedInEntryBlock(I)) {
6730      FuncInfo->InitializeRegForValue(I);
6731      SDB->CopyToExportRegsIfNeeded(I);
6732    }
6733  }
6734
6735  assert(i == InVals.size() && "Argument register count mismatch!");
6736
6737  // Finally, if the target has anything special to do, allow it to do so.
6738  // FIXME: this should insert code into the DAG!
6739  EmitFunctionEntryCode();
6740}
6741
6742/// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
6743/// ensure constants are generated when needed.  Remember the virtual registers
6744/// that need to be added to the Machine PHI nodes as input.  We cannot just
6745/// directly add them, because expansion might result in multiple MBB's for one
6746/// BB.  As such, the start of the BB might correspond to a different MBB than
6747/// the end.
6748///
6749void
6750SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
6751  const TerminatorInst *TI = LLVMBB->getTerminator();
6752
6753  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6754
6755  // Check successor nodes' PHI nodes that expect a constant to be available
6756  // from this block.
6757  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6758    const BasicBlock *SuccBB = TI->getSuccessor(succ);
6759    if (!isa<PHINode>(SuccBB->begin())) continue;
6760    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
6761
6762    // If this terminator has multiple identical successors (common for
6763    // switches), only handle each succ once.
6764    if (!SuccsHandled.insert(SuccMBB)) continue;
6765
6766    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6767
6768    // At this point we know that there is a 1-1 correspondence between LLVM PHI
6769    // nodes and Machine PHI nodes, but the incoming operands have not been
6770    // emitted yet.
6771    for (BasicBlock::const_iterator I = SuccBB->begin();
6772         const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
6773      // Ignore dead phi's.
6774      if (PN->use_empty()) continue;
6775
6776      // Skip empty types
6777      if (PN->getType()->isEmptyTy())
6778        continue;
6779
6780      unsigned Reg;
6781      const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6782
6783      if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
6784        unsigned &RegOut = ConstantsOut[C];
6785        if (RegOut == 0) {
6786          RegOut = FuncInfo.CreateRegs(C->getType());
6787          CopyValueToVirtualRegister(C, RegOut);
6788        }
6789        Reg = RegOut;
6790      } else {
6791        DenseMap<const Value *, unsigned>::iterator I =
6792          FuncInfo.ValueMap.find(PHIOp);
6793        if (I != FuncInfo.ValueMap.end())
6794          Reg = I->second;
6795        else {
6796          assert(isa<AllocaInst>(PHIOp) &&
6797                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
6798                 "Didn't codegen value into a register!??");
6799          Reg = FuncInfo.CreateRegs(PHIOp->getType());
6800          CopyValueToVirtualRegister(PHIOp, Reg);
6801        }
6802      }
6803
6804      // Remember that this register needs to added to the machine PHI node as
6805      // the input for this MBB.
6806      SmallVector<EVT, 4> ValueVTs;
6807      ComputeValueVTs(TLI, PN->getType(), ValueVTs);
6808      for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
6809        EVT VT = ValueVTs[vti];
6810        unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
6811        for (unsigned i = 0, e = NumRegisters; i != e; ++i)
6812          FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
6813        Reg += NumRegisters;
6814      }
6815    }
6816  }
6817  ConstantsOut.clear();
6818}
6819