SelectionDAGBuilder.cpp revision 4d6ccb5f68cd7c6418a209f1fa4dbade569e4493
1//===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements routines for translating from LLVM IR into SelectionDAG IR.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "SDNodeDbgValue.h"
16#include "SelectionDAGBuilder.h"
17#include "llvm/ADT/BitVector.h"
18#include "llvm/ADT/PostOrderIterator.h"
19#include "llvm/ADT/SmallSet.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/ConstantFolding.h"
22#include "llvm/Constants.h"
23#include "llvm/CallingConv.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Function.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/InlineAsm.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/IntrinsicInst.h"
31#include "llvm/LLVMContext.h"
32#include "llvm/Module.h"
33#include "llvm/CodeGen/Analysis.h"
34#include "llvm/CodeGen/FastISel.h"
35#include "llvm/CodeGen/FunctionLoweringInfo.h"
36#include "llvm/CodeGen/GCStrategy.h"
37#include "llvm/CodeGen/GCMetadata.h"
38#include "llvm/CodeGen/MachineFunction.h"
39#include "llvm/CodeGen/MachineFrameInfo.h"
40#include "llvm/CodeGen/MachineInstrBuilder.h"
41#include "llvm/CodeGen/MachineJumpTableInfo.h"
42#include "llvm/CodeGen/MachineModuleInfo.h"
43#include "llvm/CodeGen/MachineRegisterInfo.h"
44#include "llvm/CodeGen/SelectionDAG.h"
45#include "llvm/Analysis/DebugInfo.h"
46#include "llvm/Target/TargetData.h"
47#include "llvm/Target/TargetFrameLowering.h"
48#include "llvm/Target/TargetInstrInfo.h"
49#include "llvm/Target/TargetIntrinsicInfo.h"
50#include "llvm/Target/TargetLibraryInfo.h"
51#include "llvm/Target/TargetLowering.h"
52#include "llvm/Target/TargetOptions.h"
53#include "llvm/Support/CommandLine.h"
54#include "llvm/Support/Debug.h"
55#include "llvm/Support/ErrorHandling.h"
56#include "llvm/Support/MathExtras.h"
57#include "llvm/Support/raw_ostream.h"
58#include <algorithm>
59using namespace llvm;
60
61/// LimitFloatPrecision - Generate low-precision inline sequences for
62/// some float libcalls (6, 8 or 12 bits).
63static unsigned LimitFloatPrecision;
64
65static cl::opt<unsigned, true>
66LimitFPPrecision("limit-float-precision",
67                 cl::desc("Generate low-precision inline sequences "
68                          "for some float libcalls"),
69                 cl::location(LimitFloatPrecision),
70                 cl::init(0));
71
72// Limit the width of DAG chains. This is important in general to prevent
73// prevent DAG-based analysis from blowing up. For example, alias analysis and
74// load clustering may not complete in reasonable time. It is difficult to
75// recognize and avoid this situation within each individual analysis, and
76// future analyses are likely to have the same behavior. Limiting DAG width is
77// the safe approach, and will be especially important with global DAGs.
78//
79// MaxParallelChains default is arbitrarily high to avoid affecting
80// optimization, but could be lowered to improve compile time. Any ld-ld-st-st
81// sequence over this should have been converted to llvm.memcpy by the
82// frontend. It easy to induce this behavior with .ll code such as:
83// %buffer = alloca [4096 x i8]
84// %data = load [4096 x i8]* %argPtr
85// store [4096 x i8] %data, [4096 x i8]* %buffer
86static const unsigned MaxParallelChains = 64;
87
88static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
89                                      const SDValue *Parts, unsigned NumParts,
90                                      EVT PartVT, EVT ValueVT);
91
92/// getCopyFromParts - Create a value that contains the specified legal parts
93/// combined into the value they represent.  If the parts combine to a type
94/// larger then ValueVT then AssertOp can be used to specify whether the extra
95/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
96/// (ISD::AssertSext).
97static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL,
98                                const SDValue *Parts,
99                                unsigned NumParts, EVT PartVT, EVT ValueVT,
100                                ISD::NodeType AssertOp = ISD::DELETED_NODE) {
101  if (ValueVT.isVector())
102    return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT);
103
104  assert(NumParts > 0 && "No parts to assemble!");
105  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
106  SDValue Val = Parts[0];
107
108  if (NumParts > 1) {
109    // Assemble the value from multiple parts.
110    if (ValueVT.isInteger()) {
111      unsigned PartBits = PartVT.getSizeInBits();
112      unsigned ValueBits = ValueVT.getSizeInBits();
113
114      // Assemble the power of 2 part.
115      unsigned RoundParts = NumParts & (NumParts - 1) ?
116        1 << Log2_32(NumParts) : NumParts;
117      unsigned RoundBits = PartBits * RoundParts;
118      EVT RoundVT = RoundBits == ValueBits ?
119        ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
120      SDValue Lo, Hi;
121
122      EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
123
124      if (RoundParts > 2) {
125        Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
126                              PartVT, HalfVT);
127        Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
128                              RoundParts / 2, PartVT, HalfVT);
129      } else {
130        Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
131        Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
132      }
133
134      if (TLI.isBigEndian())
135        std::swap(Lo, Hi);
136
137      Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
138
139      if (RoundParts < NumParts) {
140        // Assemble the trailing non-power-of-2 part.
141        unsigned OddParts = NumParts - RoundParts;
142        EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
143        Hi = getCopyFromParts(DAG, DL,
144                              Parts + RoundParts, OddParts, PartVT, OddVT);
145
146        // Combine the round and odd parts.
147        Lo = Val;
148        if (TLI.isBigEndian())
149          std::swap(Lo, Hi);
150        EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
151        Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
152        Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
153                         DAG.getConstant(Lo.getValueType().getSizeInBits(),
154                                         TLI.getPointerTy()));
155        Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
156        Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
157      }
158    } else if (PartVT.isFloatingPoint()) {
159      // FP split into multiple FP parts (for ppcf128)
160      assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) &&
161             "Unexpected split");
162      SDValue Lo, Hi;
163      Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
164      Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
165      if (TLI.isBigEndian())
166        std::swap(Lo, Hi);
167      Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
168    } else {
169      // FP split into integer parts (soft fp)
170      assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
171             !PartVT.isVector() && "Unexpected split");
172      EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
173      Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT);
174    }
175  }
176
177  // There is now one part, held in Val.  Correct it to match ValueVT.
178  PartVT = Val.getValueType();
179
180  if (PartVT == ValueVT)
181    return Val;
182
183  if (PartVT.isInteger() && ValueVT.isInteger()) {
184    if (ValueVT.bitsLT(PartVT)) {
185      // For a truncate, see if we have any information to
186      // indicate whether the truncated bits will always be
187      // zero or sign-extension.
188      if (AssertOp != ISD::DELETED_NODE)
189        Val = DAG.getNode(AssertOp, DL, PartVT, Val,
190                          DAG.getValueType(ValueVT));
191      return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
192    }
193    return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
194  }
195
196  if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
197    // FP_ROUND's are always exact here.
198    if (ValueVT.bitsLT(Val.getValueType()))
199      return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val,
200                         DAG.getTargetConstant(1, TLI.getPointerTy()));
201
202    return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
203  }
204
205  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
206    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
207
208  llvm_unreachable("Unknown mismatch!");
209}
210
211/// getCopyFromParts - Create a value that contains the specified legal parts
212/// combined into the value they represent.  If the parts combine to a type
213/// larger then ValueVT then AssertOp can be used to specify whether the extra
214/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
215/// (ISD::AssertSext).
216static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
217                                      const SDValue *Parts, unsigned NumParts,
218                                      EVT PartVT, EVT ValueVT) {
219  assert(ValueVT.isVector() && "Not a vector value");
220  assert(NumParts > 0 && "No parts to assemble!");
221  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
222  SDValue Val = Parts[0];
223
224  // Handle a multi-element vector.
225  if (NumParts > 1) {
226    EVT IntermediateVT, RegisterVT;
227    unsigned NumIntermediates;
228    unsigned NumRegs =
229    TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
230                               NumIntermediates, RegisterVT);
231    assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
232    NumParts = NumRegs; // Silence a compiler warning.
233    assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
234    assert(RegisterVT == Parts[0].getValueType() &&
235           "Part type doesn't match part!");
236
237    // Assemble the parts into intermediate operands.
238    SmallVector<SDValue, 8> Ops(NumIntermediates);
239    if (NumIntermediates == NumParts) {
240      // If the register was not expanded, truncate or copy the value,
241      // as appropriate.
242      for (unsigned i = 0; i != NumParts; ++i)
243        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
244                                  PartVT, IntermediateVT);
245    } else if (NumParts > 0) {
246      // If the intermediate type was expanded, build the intermediate
247      // operands from the parts.
248      assert(NumParts % NumIntermediates == 0 &&
249             "Must expand into a divisible number of parts!");
250      unsigned Factor = NumParts / NumIntermediates;
251      for (unsigned i = 0; i != NumIntermediates; ++i)
252        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
253                                  PartVT, IntermediateVT);
254    }
255
256    // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
257    // intermediate operands.
258    Val = DAG.getNode(IntermediateVT.isVector() ?
259                      ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL,
260                      ValueVT, &Ops[0], NumIntermediates);
261  }
262
263  // There is now one part, held in Val.  Correct it to match ValueVT.
264  PartVT = Val.getValueType();
265
266  if (PartVT == ValueVT)
267    return Val;
268
269  if (PartVT.isVector()) {
270    // If the element type of the source/dest vectors are the same, but the
271    // parts vector has more elements than the value vector, then we have a
272    // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
273    // elements we want.
274    if (PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
275      assert(PartVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
276             "Cannot narrow, it would be a lossy transformation");
277      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
278                         DAG.getIntPtrConstant(0));
279    }
280
281    // Vector/Vector bitcast.
282    if (ValueVT.getSizeInBits() == PartVT.getSizeInBits())
283      return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
284
285    assert(PartVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
286      "Cannot handle this kind of promotion");
287    // Promoted vector extract
288    bool Smaller = ValueVT.bitsLE(PartVT);
289    return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
290                       DL, ValueVT, Val);
291
292  }
293
294  // Trivial bitcast if the types are the same size and the destination
295  // vector type is legal.
296  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits() &&
297      TLI.isTypeLegal(ValueVT))
298    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
299
300  // Handle cases such as i8 -> <1 x i1>
301  assert(ValueVT.getVectorNumElements() == 1 &&
302         "Only trivial scalar-to-vector conversions should get here!");
303
304  if (ValueVT.getVectorNumElements() == 1 &&
305      ValueVT.getVectorElementType() != PartVT) {
306    bool Smaller = ValueVT.bitsLE(PartVT);
307    Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
308                       DL, ValueVT.getScalarType(), Val);
309  }
310
311  return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
312}
313
314
315
316
317static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl,
318                                 SDValue Val, SDValue *Parts, unsigned NumParts,
319                                 EVT PartVT);
320
321/// getCopyToParts - Create a series of nodes that contain the specified value
322/// split into legal parts.  If the parts contain more bits than Val, then, for
323/// integers, ExtendKind can be used to specify how to generate the extra bits.
324static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL,
325                           SDValue Val, SDValue *Parts, unsigned NumParts,
326                           EVT PartVT,
327                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
328  EVT ValueVT = Val.getValueType();
329
330  // Handle the vector case separately.
331  if (ValueVT.isVector())
332    return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT);
333
334  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
335  unsigned PartBits = PartVT.getSizeInBits();
336  unsigned OrigNumParts = NumParts;
337  assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
338
339  if (NumParts == 0)
340    return;
341
342  assert(!ValueVT.isVector() && "Vector case handled elsewhere");
343  if (PartVT == ValueVT) {
344    assert(NumParts == 1 && "No-op copy with multiple parts!");
345    Parts[0] = Val;
346    return;
347  }
348
349  if (NumParts * PartBits > ValueVT.getSizeInBits()) {
350    // If the parts cover more bits than the value has, promote the value.
351    if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
352      assert(NumParts == 1 && "Do not know what to promote to!");
353      Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
354    } else {
355      assert(PartVT.isInteger() && ValueVT.isInteger() &&
356             "Unknown mismatch!");
357      ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
358      Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
359    }
360  } else if (PartBits == ValueVT.getSizeInBits()) {
361    // Different types of the same size.
362    assert(NumParts == 1 && PartVT != ValueVT);
363    Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
364  } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
365    // If the parts cover less bits than value has, truncate the value.
366    assert(PartVT.isInteger() && ValueVT.isInteger() &&
367           "Unknown mismatch!");
368    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
369    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
370  }
371
372  // The value may have changed - recompute ValueVT.
373  ValueVT = Val.getValueType();
374  assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
375         "Failed to tile the value with PartVT!");
376
377  if (NumParts == 1) {
378    assert(PartVT == ValueVT && "Type conversion failed!");
379    Parts[0] = Val;
380    return;
381  }
382
383  // Expand the value into multiple parts.
384  if (NumParts & (NumParts - 1)) {
385    // The number of parts is not a power of 2.  Split off and copy the tail.
386    assert(PartVT.isInteger() && ValueVT.isInteger() &&
387           "Do not know what to expand to!");
388    unsigned RoundParts = 1 << Log2_32(NumParts);
389    unsigned RoundBits = RoundParts * PartBits;
390    unsigned OddParts = NumParts - RoundParts;
391    SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
392                                 DAG.getIntPtrConstant(RoundBits));
393    getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT);
394
395    if (TLI.isBigEndian())
396      // The odd parts were reversed by getCopyToParts - unreverse them.
397      std::reverse(Parts + RoundParts, Parts + NumParts);
398
399    NumParts = RoundParts;
400    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
401    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
402  }
403
404  // The number of parts is a power of 2.  Repeatedly bisect the value using
405  // EXTRACT_ELEMENT.
406  Parts[0] = DAG.getNode(ISD::BITCAST, DL,
407                         EVT::getIntegerVT(*DAG.getContext(),
408                                           ValueVT.getSizeInBits()),
409                         Val);
410
411  for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
412    for (unsigned i = 0; i < NumParts; i += StepSize) {
413      unsigned ThisBits = StepSize * PartBits / 2;
414      EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
415      SDValue &Part0 = Parts[i];
416      SDValue &Part1 = Parts[i+StepSize/2];
417
418      Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
419                          ThisVT, Part0, DAG.getIntPtrConstant(1));
420      Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
421                          ThisVT, Part0, DAG.getIntPtrConstant(0));
422
423      if (ThisBits == PartBits && ThisVT != PartVT) {
424        Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
425        Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
426      }
427    }
428  }
429
430  if (TLI.isBigEndian())
431    std::reverse(Parts, Parts + OrigNumParts);
432}
433
434
435/// getCopyToPartsVector - Create a series of nodes that contain the specified
436/// value split into legal parts.
437static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL,
438                                 SDValue Val, SDValue *Parts, unsigned NumParts,
439                                 EVT PartVT) {
440  EVT ValueVT = Val.getValueType();
441  assert(ValueVT.isVector() && "Not a vector");
442  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
443
444  if (NumParts == 1) {
445    if (PartVT == ValueVT) {
446      // Nothing to do.
447    } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
448      // Bitconvert vector->vector case.
449      Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
450    } else if (PartVT.isVector() &&
451               PartVT.getVectorElementType() == ValueVT.getVectorElementType() &&
452               PartVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
453      EVT ElementVT = PartVT.getVectorElementType();
454      // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
455      // undef elements.
456      SmallVector<SDValue, 16> Ops;
457      for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
458        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
459                                  ElementVT, Val, DAG.getIntPtrConstant(i)));
460
461      for (unsigned i = ValueVT.getVectorNumElements(),
462           e = PartVT.getVectorNumElements(); i != e; ++i)
463        Ops.push_back(DAG.getUNDEF(ElementVT));
464
465      Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size());
466
467      // FIXME: Use CONCAT for 2x -> 4x.
468
469      //SDValue UndefElts = DAG.getUNDEF(VectorTy);
470      //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
471    } else if (PartVT.isVector() &&
472               PartVT.getVectorElementType().bitsGE(
473                 ValueVT.getVectorElementType()) &&
474               PartVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
475
476      // Promoted vector extract
477      bool Smaller = PartVT.bitsLE(ValueVT);
478      Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
479                        DL, PartVT, Val);
480    } else{
481      // Vector -> scalar conversion.
482      assert(ValueVT.getVectorNumElements() == 1 &&
483             "Only trivial vector-to-scalar conversions should get here!");
484      Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
485                        PartVT, Val, DAG.getIntPtrConstant(0));
486
487      bool Smaller = ValueVT.bitsLE(PartVT);
488      Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
489                         DL, PartVT, Val);
490    }
491
492    Parts[0] = Val;
493    return;
494  }
495
496  // Handle a multi-element vector.
497  EVT IntermediateVT, RegisterVT;
498  unsigned NumIntermediates;
499  unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
500                                                IntermediateVT,
501                                                NumIntermediates, RegisterVT);
502  unsigned NumElements = ValueVT.getVectorNumElements();
503
504  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
505  NumParts = NumRegs; // Silence a compiler warning.
506  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
507
508  // Split the vector into intermediate operands.
509  SmallVector<SDValue, 8> Ops(NumIntermediates);
510  for (unsigned i = 0; i != NumIntermediates; ++i) {
511    if (IntermediateVT.isVector())
512      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
513                           IntermediateVT, Val,
514                   DAG.getIntPtrConstant(i * (NumElements / NumIntermediates)));
515    else
516      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
517                           IntermediateVT, Val, DAG.getIntPtrConstant(i));
518  }
519
520  // Split the intermediate operands into legal parts.
521  if (NumParts == NumIntermediates) {
522    // If the register was not expanded, promote or copy the value,
523    // as appropriate.
524    for (unsigned i = 0; i != NumParts; ++i)
525      getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT);
526  } else if (NumParts > 0) {
527    // If the intermediate type was expanded, split each the value into
528    // legal parts.
529    assert(NumParts % NumIntermediates == 0 &&
530           "Must expand into a divisible number of parts!");
531    unsigned Factor = NumParts / NumIntermediates;
532    for (unsigned i = 0; i != NumIntermediates; ++i)
533      getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT);
534  }
535}
536
537
538
539
540namespace {
541  /// RegsForValue - This struct represents the registers (physical or virtual)
542  /// that a particular set of values is assigned, and the type information
543  /// about the value. The most common situation is to represent one value at a
544  /// time, but struct or array values are handled element-wise as multiple
545  /// values.  The splitting of aggregates is performed recursively, so that we
546  /// never have aggregate-typed registers. The values at this point do not
547  /// necessarily have legal types, so each value may require one or more
548  /// registers of some legal type.
549  ///
550  struct RegsForValue {
551    /// ValueVTs - The value types of the values, which may not be legal, and
552    /// may need be promoted or synthesized from one or more registers.
553    ///
554    SmallVector<EVT, 4> ValueVTs;
555
556    /// RegVTs - The value types of the registers. This is the same size as
557    /// ValueVTs and it records, for each value, what the type of the assigned
558    /// register or registers are. (Individual values are never synthesized
559    /// from more than one type of register.)
560    ///
561    /// With virtual registers, the contents of RegVTs is redundant with TLI's
562    /// getRegisterType member function, however when with physical registers
563    /// it is necessary to have a separate record of the types.
564    ///
565    SmallVector<EVT, 4> RegVTs;
566
567    /// Regs - This list holds the registers assigned to the values.
568    /// Each legal or promoted value requires one register, and each
569    /// expanded value requires multiple registers.
570    ///
571    SmallVector<unsigned, 4> Regs;
572
573    RegsForValue() {}
574
575    RegsForValue(const SmallVector<unsigned, 4> &regs,
576                 EVT regvt, EVT valuevt)
577      : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
578
579    RegsForValue(LLVMContext &Context, const TargetLowering &tli,
580                 unsigned Reg, Type *Ty) {
581      ComputeValueVTs(tli, Ty, ValueVTs);
582
583      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
584        EVT ValueVT = ValueVTs[Value];
585        unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
586        EVT RegisterVT = tli.getRegisterType(Context, ValueVT);
587        for (unsigned i = 0; i != NumRegs; ++i)
588          Regs.push_back(Reg + i);
589        RegVTs.push_back(RegisterVT);
590        Reg += NumRegs;
591      }
592    }
593
594    /// areValueTypesLegal - Return true if types of all the values are legal.
595    bool areValueTypesLegal(const TargetLowering &TLI) {
596      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
597        EVT RegisterVT = RegVTs[Value];
598        if (!TLI.isTypeLegal(RegisterVT))
599          return false;
600      }
601      return true;
602    }
603
604    /// append - Add the specified values to this one.
605    void append(const RegsForValue &RHS) {
606      ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
607      RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
608      Regs.append(RHS.Regs.begin(), RHS.Regs.end());
609    }
610
611    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
612    /// this value and returns the result as a ValueVTs value.  This uses
613    /// Chain/Flag as the input and updates them for the output Chain/Flag.
614    /// If the Flag pointer is NULL, no flag is used.
615    SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
616                            DebugLoc dl,
617                            SDValue &Chain, SDValue *Flag) const;
618
619    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
620    /// specified value into the registers specified by this object.  This uses
621    /// Chain/Flag as the input and updates them for the output Chain/Flag.
622    /// If the Flag pointer is NULL, no flag is used.
623    void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
624                       SDValue &Chain, SDValue *Flag) const;
625
626    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
627    /// operand list.  This adds the code marker, matching input operand index
628    /// (if applicable), and includes the number of values added into it.
629    void AddInlineAsmOperands(unsigned Kind,
630                              bool HasMatching, unsigned MatchingIdx,
631                              SelectionDAG &DAG,
632                              std::vector<SDValue> &Ops) const;
633  };
634}
635
636/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
637/// this value and returns the result as a ValueVT value.  This uses
638/// Chain/Flag as the input and updates them for the output Chain/Flag.
639/// If the Flag pointer is NULL, no flag is used.
640SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
641                                      FunctionLoweringInfo &FuncInfo,
642                                      DebugLoc dl,
643                                      SDValue &Chain, SDValue *Flag) const {
644  // A Value with type {} or [0 x %t] needs no registers.
645  if (ValueVTs.empty())
646    return SDValue();
647
648  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
649
650  // Assemble the legal parts into the final values.
651  SmallVector<SDValue, 4> Values(ValueVTs.size());
652  SmallVector<SDValue, 8> Parts;
653  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
654    // Copy the legal parts from the registers.
655    EVT ValueVT = ValueVTs[Value];
656    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
657    EVT RegisterVT = RegVTs[Value];
658
659    Parts.resize(NumRegs);
660    for (unsigned i = 0; i != NumRegs; ++i) {
661      SDValue P;
662      if (Flag == 0) {
663        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
664      } else {
665        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
666        *Flag = P.getValue(2);
667      }
668
669      Chain = P.getValue(1);
670      Parts[i] = P;
671
672      // If the source register was virtual and if we know something about it,
673      // add an assert node.
674      if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
675          !RegisterVT.isInteger() || RegisterVT.isVector())
676        continue;
677
678      const FunctionLoweringInfo::LiveOutInfo *LOI =
679        FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
680      if (!LOI)
681        continue;
682
683      unsigned RegSize = RegisterVT.getSizeInBits();
684      unsigned NumSignBits = LOI->NumSignBits;
685      unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
686
687      // FIXME: We capture more information than the dag can represent.  For
688      // now, just use the tightest assertzext/assertsext possible.
689      bool isSExt = true;
690      EVT FromVT(MVT::Other);
691      if (NumSignBits == RegSize)
692        isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
693      else if (NumZeroBits >= RegSize-1)
694        isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
695      else if (NumSignBits > RegSize-8)
696        isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
697      else if (NumZeroBits >= RegSize-8)
698        isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
699      else if (NumSignBits > RegSize-16)
700        isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
701      else if (NumZeroBits >= RegSize-16)
702        isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
703      else if (NumSignBits > RegSize-32)
704        isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
705      else if (NumZeroBits >= RegSize-32)
706        isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
707      else
708        continue;
709
710      // Add an assertion node.
711      assert(FromVT != MVT::Other);
712      Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
713                             RegisterVT, P, DAG.getValueType(FromVT));
714    }
715
716    Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
717                                     NumRegs, RegisterVT, ValueVT);
718    Part += NumRegs;
719    Parts.clear();
720  }
721
722  return DAG.getNode(ISD::MERGE_VALUES, dl,
723                     DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
724                     &Values[0], ValueVTs.size());
725}
726
727/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
728/// specified value into the registers specified by this object.  This uses
729/// Chain/Flag as the input and updates them for the output Chain/Flag.
730/// If the Flag pointer is NULL, no flag is used.
731void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
732                                 SDValue &Chain, SDValue *Flag) const {
733  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
734
735  // Get the list of the values's legal parts.
736  unsigned NumRegs = Regs.size();
737  SmallVector<SDValue, 8> Parts(NumRegs);
738  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
739    EVT ValueVT = ValueVTs[Value];
740    unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
741    EVT RegisterVT = RegVTs[Value];
742
743    getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
744                   &Parts[Part], NumParts, RegisterVT);
745    Part += NumParts;
746  }
747
748  // Copy the parts into the registers.
749  SmallVector<SDValue, 8> Chains(NumRegs);
750  for (unsigned i = 0; i != NumRegs; ++i) {
751    SDValue Part;
752    if (Flag == 0) {
753      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
754    } else {
755      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
756      *Flag = Part.getValue(1);
757    }
758
759    Chains[i] = Part.getValue(0);
760  }
761
762  if (NumRegs == 1 || Flag)
763    // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
764    // flagged to it. That is the CopyToReg nodes and the user are considered
765    // a single scheduling unit. If we create a TokenFactor and return it as
766    // chain, then the TokenFactor is both a predecessor (operand) of the
767    // user as well as a successor (the TF operands are flagged to the user).
768    // c1, f1 = CopyToReg
769    // c2, f2 = CopyToReg
770    // c3     = TokenFactor c1, c2
771    // ...
772    //        = op c3, ..., f2
773    Chain = Chains[NumRegs-1];
774  else
775    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
776}
777
778/// AddInlineAsmOperands - Add this value to the specified inlineasm node
779/// operand list.  This adds the code marker and includes the number of
780/// values added into it.
781void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
782                                        unsigned MatchingIdx,
783                                        SelectionDAG &DAG,
784                                        std::vector<SDValue> &Ops) const {
785  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
786
787  unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
788  if (HasMatching)
789    Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
790  else if (!Regs.empty() &&
791           TargetRegisterInfo::isVirtualRegister(Regs.front())) {
792    // Put the register class of the virtual registers in the flag word.  That
793    // way, later passes can recompute register class constraints for inline
794    // assembly as well as normal instructions.
795    // Don't do this for tied operands that can use the regclass information
796    // from the def.
797    const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
798    const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
799    Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
800  }
801
802  SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
803  Ops.push_back(Res);
804
805  for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
806    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
807    EVT RegisterVT = RegVTs[Value];
808    for (unsigned i = 0; i != NumRegs; ++i) {
809      assert(Reg < Regs.size() && "Mismatch in # registers expected");
810      Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
811    }
812  }
813}
814
815void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa,
816                               const TargetLibraryInfo *li) {
817  AA = &aa;
818  GFI = gfi;
819  LibInfo = li;
820  TD = DAG.getTarget().getTargetData();
821  LPadToCallSiteMap.clear();
822}
823
824/// clear - Clear out the current SelectionDAG and the associated
825/// state and prepare this SelectionDAGBuilder object to be used
826/// for a new block. This doesn't clear out information about
827/// additional blocks that are needed to complete switch lowering
828/// or PHI node updating; that information is cleared out as it is
829/// consumed.
830void SelectionDAGBuilder::clear() {
831  NodeMap.clear();
832  UnusedArgNodeMap.clear();
833  PendingLoads.clear();
834  PendingExports.clear();
835  CurDebugLoc = DebugLoc();
836  HasTailCall = false;
837}
838
839/// clearDanglingDebugInfo - Clear the dangling debug information
840/// map. This function is seperated from the clear so that debug
841/// information that is dangling in a basic block can be properly
842/// resolved in a different basic block. This allows the
843/// SelectionDAG to resolve dangling debug information attached
844/// to PHI nodes.
845void SelectionDAGBuilder::clearDanglingDebugInfo() {
846  DanglingDebugInfoMap.clear();
847}
848
849/// getRoot - Return the current virtual root of the Selection DAG,
850/// flushing any PendingLoad items. This must be done before emitting
851/// a store or any other node that may need to be ordered after any
852/// prior load instructions.
853///
854SDValue SelectionDAGBuilder::getRoot() {
855  if (PendingLoads.empty())
856    return DAG.getRoot();
857
858  if (PendingLoads.size() == 1) {
859    SDValue Root = PendingLoads[0];
860    DAG.setRoot(Root);
861    PendingLoads.clear();
862    return Root;
863  }
864
865  // Otherwise, we have to make a token factor node.
866  SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
867                               &PendingLoads[0], PendingLoads.size());
868  PendingLoads.clear();
869  DAG.setRoot(Root);
870  return Root;
871}
872
873/// getControlRoot - Similar to getRoot, but instead of flushing all the
874/// PendingLoad items, flush all the PendingExports items. It is necessary
875/// to do this before emitting a terminator instruction.
876///
877SDValue SelectionDAGBuilder::getControlRoot() {
878  SDValue Root = DAG.getRoot();
879
880  if (PendingExports.empty())
881    return Root;
882
883  // Turn all of the CopyToReg chains into one factored node.
884  if (Root.getOpcode() != ISD::EntryToken) {
885    unsigned i = 0, e = PendingExports.size();
886    for (; i != e; ++i) {
887      assert(PendingExports[i].getNode()->getNumOperands() > 1);
888      if (PendingExports[i].getNode()->getOperand(0) == Root)
889        break;  // Don't add the root if we already indirectly depend on it.
890    }
891
892    if (i == e)
893      PendingExports.push_back(Root);
894  }
895
896  Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
897                     &PendingExports[0],
898                     PendingExports.size());
899  PendingExports.clear();
900  DAG.setRoot(Root);
901  return Root;
902}
903
904void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) {
905  if (DAG.GetOrdering(Node) != 0) return; // Already has ordering.
906  DAG.AssignOrdering(Node, SDNodeOrder);
907
908  for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I)
909    AssignOrderingToNode(Node->getOperand(I).getNode());
910}
911
912void SelectionDAGBuilder::visit(const Instruction &I) {
913  // Set up outgoing PHI node register values before emitting the terminator.
914  if (isa<TerminatorInst>(&I))
915    HandlePHINodesInSuccessorBlocks(I.getParent());
916
917  CurDebugLoc = I.getDebugLoc();
918
919  visit(I.getOpcode(), I);
920
921  if (!isa<TerminatorInst>(&I) && !HasTailCall)
922    CopyToExportRegsIfNeeded(&I);
923
924  CurDebugLoc = DebugLoc();
925}
926
927void SelectionDAGBuilder::visitPHI(const PHINode &) {
928  llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
929}
930
931void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
932  // Note: this doesn't use InstVisitor, because it has to work with
933  // ConstantExpr's in addition to instructions.
934  switch (Opcode) {
935  default: llvm_unreachable("Unknown instruction type encountered!");
936    // Build the switch statement using the Instruction.def file.
937#define HANDLE_INST(NUM, OPCODE, CLASS) \
938    case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break;
939#include "llvm/Instruction.def"
940  }
941
942  // Assign the ordering to the freshly created DAG nodes.
943  if (NodeMap.count(&I)) {
944    ++SDNodeOrder;
945    AssignOrderingToNode(getValue(&I).getNode());
946  }
947}
948
949// resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
950// generate the debug data structures now that we've seen its definition.
951void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
952                                                   SDValue Val) {
953  DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
954  if (DDI.getDI()) {
955    const DbgValueInst *DI = DDI.getDI();
956    DebugLoc dl = DDI.getdl();
957    unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
958    MDNode *Variable = DI->getVariable();
959    uint64_t Offset = DI->getOffset();
960    SDDbgValue *SDV;
961    if (Val.getNode()) {
962      if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) {
963        SDV = DAG.getDbgValue(Variable, Val.getNode(),
964                              Val.getResNo(), Offset, dl, DbgSDNodeOrder);
965        DAG.AddDbgValue(SDV, Val.getNode(), false);
966      }
967    } else
968      DEBUG(dbgs() << "Dropping debug info for " << DI);
969    DanglingDebugInfoMap[V] = DanglingDebugInfo();
970  }
971}
972
973/// getValue - Return an SDValue for the given Value.
974SDValue SelectionDAGBuilder::getValue(const Value *V) {
975  // If we already have an SDValue for this value, use it. It's important
976  // to do this first, so that we don't create a CopyFromReg if we already
977  // have a regular SDValue.
978  SDValue &N = NodeMap[V];
979  if (N.getNode()) return N;
980
981  // If there's a virtual register allocated and initialized for this
982  // value, use it.
983  DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
984  if (It != FuncInfo.ValueMap.end()) {
985    unsigned InReg = It->second;
986    RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
987    SDValue Chain = DAG.getEntryNode();
988    N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL);
989    resolveDanglingDebugInfo(V, N);
990    return N;
991  }
992
993  // Otherwise create a new SDValue and remember it.
994  SDValue Val = getValueImpl(V);
995  NodeMap[V] = Val;
996  resolveDanglingDebugInfo(V, Val);
997  return Val;
998}
999
1000/// getNonRegisterValue - Return an SDValue for the given Value, but
1001/// don't look in FuncInfo.ValueMap for a virtual register.
1002SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1003  // If we already have an SDValue for this value, use it.
1004  SDValue &N = NodeMap[V];
1005  if (N.getNode()) return N;
1006
1007  // Otherwise create a new SDValue and remember it.
1008  SDValue Val = getValueImpl(V);
1009  NodeMap[V] = Val;
1010  resolveDanglingDebugInfo(V, Val);
1011  return Val;
1012}
1013
1014/// getValueImpl - Helper function for getValue and getNonRegisterValue.
1015/// Create an SDValue for the given value.
1016SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1017  if (const Constant *C = dyn_cast<Constant>(V)) {
1018    EVT VT = TLI.getValueType(V->getType(), true);
1019
1020    if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1021      return DAG.getConstant(*CI, VT);
1022
1023    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1024      return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT);
1025
1026    if (isa<ConstantPointerNull>(C))
1027      return DAG.getConstant(0, TLI.getPointerTy());
1028
1029    if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1030      return DAG.getConstantFP(*CFP, VT);
1031
1032    if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1033      return DAG.getUNDEF(VT);
1034
1035    if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1036      visit(CE->getOpcode(), *CE);
1037      SDValue N1 = NodeMap[V];
1038      assert(N1.getNode() && "visit didn't populate the NodeMap!");
1039      return N1;
1040    }
1041
1042    if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1043      SmallVector<SDValue, 4> Constants;
1044      for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1045           OI != OE; ++OI) {
1046        SDNode *Val = getValue(*OI).getNode();
1047        // If the operand is an empty aggregate, there are no values.
1048        if (!Val) continue;
1049        // Add each leaf value from the operand to the Constants list
1050        // to form a flattened list of all the values.
1051        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1052          Constants.push_back(SDValue(Val, i));
1053      }
1054
1055      return DAG.getMergeValues(&Constants[0], Constants.size(),
1056                                getCurDebugLoc());
1057    }
1058
1059    if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1060      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1061             "Unknown struct or array constant!");
1062
1063      SmallVector<EVT, 4> ValueVTs;
1064      ComputeValueVTs(TLI, C->getType(), ValueVTs);
1065      unsigned NumElts = ValueVTs.size();
1066      if (NumElts == 0)
1067        return SDValue(); // empty struct
1068      SmallVector<SDValue, 4> Constants(NumElts);
1069      for (unsigned i = 0; i != NumElts; ++i) {
1070        EVT EltVT = ValueVTs[i];
1071        if (isa<UndefValue>(C))
1072          Constants[i] = DAG.getUNDEF(EltVT);
1073        else if (EltVT.isFloatingPoint())
1074          Constants[i] = DAG.getConstantFP(0, EltVT);
1075        else
1076          Constants[i] = DAG.getConstant(0, EltVT);
1077      }
1078
1079      return DAG.getMergeValues(&Constants[0], NumElts,
1080                                getCurDebugLoc());
1081    }
1082
1083    if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1084      return DAG.getBlockAddress(BA, VT);
1085
1086    VectorType *VecTy = cast<VectorType>(V->getType());
1087    unsigned NumElements = VecTy->getNumElements();
1088
1089    // Now that we know the number and type of the elements, get that number of
1090    // elements into the Ops array based on what kind of constant it is.
1091    SmallVector<SDValue, 16> Ops;
1092    if (const ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
1093      for (unsigned i = 0; i != NumElements; ++i)
1094        Ops.push_back(getValue(CP->getOperand(i)));
1095    } else {
1096      assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1097      EVT EltVT = TLI.getValueType(VecTy->getElementType());
1098
1099      SDValue Op;
1100      if (EltVT.isFloatingPoint())
1101        Op = DAG.getConstantFP(0, EltVT);
1102      else
1103        Op = DAG.getConstant(0, EltVT);
1104      Ops.assign(NumElements, Op);
1105    }
1106
1107    // Create a BUILD_VECTOR node.
1108    return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
1109                                    VT, &Ops[0], Ops.size());
1110  }
1111
1112  // If this is a static alloca, generate it as the frameindex instead of
1113  // computation.
1114  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1115    DenseMap<const AllocaInst*, int>::iterator SI =
1116      FuncInfo.StaticAllocaMap.find(AI);
1117    if (SI != FuncInfo.StaticAllocaMap.end())
1118      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
1119  }
1120
1121  // If this is an instruction which fast-isel has deferred, select it now.
1122  if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1123    unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1124    RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType());
1125    SDValue Chain = DAG.getEntryNode();
1126    return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL);
1127  }
1128
1129  llvm_unreachable("Can't get register for value!");
1130}
1131
1132void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1133  SDValue Chain = getControlRoot();
1134  SmallVector<ISD::OutputArg, 8> Outs;
1135  SmallVector<SDValue, 8> OutVals;
1136
1137  if (!FuncInfo.CanLowerReturn) {
1138    unsigned DemoteReg = FuncInfo.DemoteRegister;
1139    const Function *F = I.getParent()->getParent();
1140
1141    // Emit a store of the return value through the virtual register.
1142    // Leave Outs empty so that LowerReturn won't try to load return
1143    // registers the usual way.
1144    SmallVector<EVT, 1> PtrValueVTs;
1145    ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
1146                    PtrValueVTs);
1147
1148    SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
1149    SDValue RetOp = getValue(I.getOperand(0));
1150
1151    SmallVector<EVT, 4> ValueVTs;
1152    SmallVector<uint64_t, 4> Offsets;
1153    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1154    unsigned NumValues = ValueVTs.size();
1155
1156    SmallVector<SDValue, 4> Chains(NumValues);
1157    for (unsigned i = 0; i != NumValues; ++i) {
1158      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(),
1159                                RetPtr.getValueType(), RetPtr,
1160                                DAG.getIntPtrConstant(Offsets[i]));
1161      Chains[i] =
1162        DAG.getStore(Chain, getCurDebugLoc(),
1163                     SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1164                     // FIXME: better loc info would be nice.
1165                     Add, MachinePointerInfo(), false, false, 0);
1166    }
1167
1168    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
1169                        MVT::Other, &Chains[0], NumValues);
1170  } else if (I.getNumOperands() != 0) {
1171    SmallVector<EVT, 4> ValueVTs;
1172    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
1173    unsigned NumValues = ValueVTs.size();
1174    if (NumValues) {
1175      SDValue RetOp = getValue(I.getOperand(0));
1176      for (unsigned j = 0, f = NumValues; j != f; ++j) {
1177        EVT VT = ValueVTs[j];
1178
1179        ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1180
1181        const Function *F = I.getParent()->getParent();
1182        if (F->paramHasAttr(0, Attribute::SExt))
1183          ExtendKind = ISD::SIGN_EXTEND;
1184        else if (F->paramHasAttr(0, Attribute::ZExt))
1185          ExtendKind = ISD::ZERO_EXTEND;
1186
1187        if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1188          VT = TLI.getTypeForExtArgOrReturn(*DAG.getContext(), VT, ExtendKind);
1189
1190        unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
1191        EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
1192        SmallVector<SDValue, 4> Parts(NumParts);
1193        getCopyToParts(DAG, getCurDebugLoc(),
1194                       SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1195                       &Parts[0], NumParts, PartVT, ExtendKind);
1196
1197        // 'inreg' on function refers to return value
1198        ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1199        if (F->paramHasAttr(0, Attribute::InReg))
1200          Flags.setInReg();
1201
1202        // Propagate extension type if any
1203        if (ExtendKind == ISD::SIGN_EXTEND)
1204          Flags.setSExt();
1205        else if (ExtendKind == ISD::ZERO_EXTEND)
1206          Flags.setZExt();
1207
1208        for (unsigned i = 0; i < NumParts; ++i) {
1209          Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1210                                        /*isfixed=*/true));
1211          OutVals.push_back(Parts[i]);
1212        }
1213      }
1214    }
1215  }
1216
1217  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1218  CallingConv::ID CallConv =
1219    DAG.getMachineFunction().getFunction()->getCallingConv();
1220  Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
1221                          Outs, OutVals, getCurDebugLoc(), DAG);
1222
1223  // Verify that the target's LowerReturn behaved as expected.
1224  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1225         "LowerReturn didn't return a valid chain!");
1226
1227  // Update the DAG with the new chain value resulting from return lowering.
1228  DAG.setRoot(Chain);
1229}
1230
1231/// CopyToExportRegsIfNeeded - If the given value has virtual registers
1232/// created for it, emit nodes to copy the value into the virtual
1233/// registers.
1234void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1235  // Skip empty types
1236  if (V->getType()->isEmptyTy())
1237    return;
1238
1239  DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1240  if (VMI != FuncInfo.ValueMap.end()) {
1241    assert(!V->use_empty() && "Unused value assigned virtual registers!");
1242    CopyValueToVirtualRegister(V, VMI->second);
1243  }
1244}
1245
1246/// ExportFromCurrentBlock - If this condition isn't known to be exported from
1247/// the current basic block, add it to ValueMap now so that we'll get a
1248/// CopyTo/FromReg.
1249void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1250  // No need to export constants.
1251  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1252
1253  // Already exported?
1254  if (FuncInfo.isExportedInst(V)) return;
1255
1256  unsigned Reg = FuncInfo.InitializeRegForValue(V);
1257  CopyValueToVirtualRegister(V, Reg);
1258}
1259
1260bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1261                                                     const BasicBlock *FromBB) {
1262  // The operands of the setcc have to be in this block.  We don't know
1263  // how to export them from some other block.
1264  if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1265    // Can export from current BB.
1266    if (VI->getParent() == FromBB)
1267      return true;
1268
1269    // Is already exported, noop.
1270    return FuncInfo.isExportedInst(V);
1271  }
1272
1273  // If this is an argument, we can export it if the BB is the entry block or
1274  // if it is already exported.
1275  if (isa<Argument>(V)) {
1276    if (FromBB == &FromBB->getParent()->getEntryBlock())
1277      return true;
1278
1279    // Otherwise, can only export this if it is already exported.
1280    return FuncInfo.isExportedInst(V);
1281  }
1282
1283  // Otherwise, constants can always be exported.
1284  return true;
1285}
1286
1287/// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1288uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src,
1289                                            const MachineBasicBlock *Dst) const {
1290  BranchProbabilityInfo *BPI = FuncInfo.BPI;
1291  if (!BPI)
1292    return 0;
1293  const BasicBlock *SrcBB = Src->getBasicBlock();
1294  const BasicBlock *DstBB = Dst->getBasicBlock();
1295  return BPI->getEdgeWeight(SrcBB, DstBB);
1296}
1297
1298void SelectionDAGBuilder::
1299addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst,
1300                       uint32_t Weight /* = 0 */) {
1301  if (!Weight)
1302    Weight = getEdgeWeight(Src, Dst);
1303  Src->addSuccessor(Dst, Weight);
1304}
1305
1306
1307static bool InBlock(const Value *V, const BasicBlock *BB) {
1308  if (const Instruction *I = dyn_cast<Instruction>(V))
1309    return I->getParent() == BB;
1310  return true;
1311}
1312
1313/// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1314/// This function emits a branch and is used at the leaves of an OR or an
1315/// AND operator tree.
1316///
1317void
1318SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1319                                                  MachineBasicBlock *TBB,
1320                                                  MachineBasicBlock *FBB,
1321                                                  MachineBasicBlock *CurBB,
1322                                                  MachineBasicBlock *SwitchBB) {
1323  const BasicBlock *BB = CurBB->getBasicBlock();
1324
1325  // If the leaf of the tree is a comparison, merge the condition into
1326  // the caseblock.
1327  if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1328    // The operands of the cmp have to be in this block.  We don't know
1329    // how to export them from some other block.  If this is the first block
1330    // of the sequence, no exporting is needed.
1331    if (CurBB == SwitchBB ||
1332        (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1333         isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1334      ISD::CondCode Condition;
1335      if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1336        Condition = getICmpCondCode(IC->getPredicate());
1337      } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1338        Condition = getFCmpCondCode(FC->getPredicate());
1339        if (TM.Options.NoNaNsFPMath)
1340          Condition = getFCmpCodeWithoutNaN(Condition);
1341      } else {
1342        Condition = ISD::SETEQ; // silence warning.
1343        llvm_unreachable("Unknown compare instruction");
1344      }
1345
1346      CaseBlock CB(Condition, BOp->getOperand(0),
1347                   BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1348      SwitchCases.push_back(CB);
1349      return;
1350    }
1351  }
1352
1353  // Create a CaseBlock record representing this branch.
1354  CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1355               NULL, TBB, FBB, CurBB);
1356  SwitchCases.push_back(CB);
1357}
1358
1359/// FindMergedConditions - If Cond is an expression like
1360void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1361                                               MachineBasicBlock *TBB,
1362                                               MachineBasicBlock *FBB,
1363                                               MachineBasicBlock *CurBB,
1364                                               MachineBasicBlock *SwitchBB,
1365                                               unsigned Opc) {
1366  // If this node is not part of the or/and tree, emit it as a branch.
1367  const Instruction *BOp = dyn_cast<Instruction>(Cond);
1368  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1369      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1370      BOp->getParent() != CurBB->getBasicBlock() ||
1371      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1372      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1373    EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB);
1374    return;
1375  }
1376
1377  //  Create TmpBB after CurBB.
1378  MachineFunction::iterator BBI = CurBB;
1379  MachineFunction &MF = DAG.getMachineFunction();
1380  MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1381  CurBB->getParent()->insert(++BBI, TmpBB);
1382
1383  if (Opc == Instruction::Or) {
1384    // Codegen X | Y as:
1385    //   jmp_if_X TBB
1386    //   jmp TmpBB
1387    // TmpBB:
1388    //   jmp_if_Y TBB
1389    //   jmp FBB
1390    //
1391
1392    // Emit the LHS condition.
1393    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc);
1394
1395    // Emit the RHS condition into TmpBB.
1396    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1397  } else {
1398    assert(Opc == Instruction::And && "Unknown merge op!");
1399    // Codegen X & Y as:
1400    //   jmp_if_X TmpBB
1401    //   jmp FBB
1402    // TmpBB:
1403    //   jmp_if_Y TBB
1404    //   jmp FBB
1405    //
1406    //  This requires creation of TmpBB after CurBB.
1407
1408    // Emit the LHS condition.
1409    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc);
1410
1411    // Emit the RHS condition into TmpBB.
1412    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1413  }
1414}
1415
1416/// If the set of cases should be emitted as a series of branches, return true.
1417/// If we should emit this as a bunch of and/or'd together conditions, return
1418/// false.
1419bool
1420SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
1421  if (Cases.size() != 2) return true;
1422
1423  // If this is two comparisons of the same values or'd or and'd together, they
1424  // will get folded into a single comparison, so don't emit two blocks.
1425  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1426       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1427      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1428       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1429    return false;
1430  }
1431
1432  // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1433  // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1434  if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1435      Cases[0].CC == Cases[1].CC &&
1436      isa<Constant>(Cases[0].CmpRHS) &&
1437      cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1438    if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1439      return false;
1440    if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1441      return false;
1442  }
1443
1444  return true;
1445}
1446
1447void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1448  MachineBasicBlock *BrMBB = FuncInfo.MBB;
1449
1450  // Update machine-CFG edges.
1451  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1452
1453  // Figure out which block is immediately after the current one.
1454  MachineBasicBlock *NextBlock = 0;
1455  MachineFunction::iterator BBI = BrMBB;
1456  if (++BBI != FuncInfo.MF->end())
1457    NextBlock = BBI;
1458
1459  if (I.isUnconditional()) {
1460    // Update machine-CFG edges.
1461    BrMBB->addSuccessor(Succ0MBB);
1462
1463    // If this is not a fall-through branch, emit the branch.
1464    if (Succ0MBB != NextBlock)
1465      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1466                              MVT::Other, getControlRoot(),
1467                              DAG.getBasicBlock(Succ0MBB)));
1468
1469    return;
1470  }
1471
1472  // If this condition is one of the special cases we handle, do special stuff
1473  // now.
1474  const Value *CondVal = I.getCondition();
1475  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1476
1477  // If this is a series of conditions that are or'd or and'd together, emit
1478  // this as a sequence of branches instead of setcc's with and/or operations.
1479  // As long as jumps are not expensive, this should improve performance.
1480  // For example, instead of something like:
1481  //     cmp A, B
1482  //     C = seteq
1483  //     cmp D, E
1484  //     F = setle
1485  //     or C, F
1486  //     jnz foo
1487  // Emit:
1488  //     cmp A, B
1489  //     je foo
1490  //     cmp D, E
1491  //     jle foo
1492  //
1493  if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1494    if (!TLI.isJumpExpensive() &&
1495        BOp->hasOneUse() &&
1496        (BOp->getOpcode() == Instruction::And ||
1497         BOp->getOpcode() == Instruction::Or)) {
1498      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1499                           BOp->getOpcode());
1500      // If the compares in later blocks need to use values not currently
1501      // exported from this block, export them now.  This block should always
1502      // be the first entry.
1503      assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1504
1505      // Allow some cases to be rejected.
1506      if (ShouldEmitAsBranches(SwitchCases)) {
1507        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1508          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1509          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1510        }
1511
1512        // Emit the branch for this block.
1513        visitSwitchCase(SwitchCases[0], BrMBB);
1514        SwitchCases.erase(SwitchCases.begin());
1515        return;
1516      }
1517
1518      // Okay, we decided not to do this, remove any inserted MBB's and clear
1519      // SwitchCases.
1520      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1521        FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1522
1523      SwitchCases.clear();
1524    }
1525  }
1526
1527  // Create a CaseBlock record representing this branch.
1528  CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1529               NULL, Succ0MBB, Succ1MBB, BrMBB);
1530
1531  // Use visitSwitchCase to actually insert the fast branch sequence for this
1532  // cond branch.
1533  visitSwitchCase(CB, BrMBB);
1534}
1535
1536/// visitSwitchCase - Emits the necessary code to represent a single node in
1537/// the binary search tree resulting from lowering a switch instruction.
1538void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1539                                          MachineBasicBlock *SwitchBB) {
1540  SDValue Cond;
1541  SDValue CondLHS = getValue(CB.CmpLHS);
1542  DebugLoc dl = getCurDebugLoc();
1543
1544  // Build the setcc now.
1545  if (CB.CmpMHS == NULL) {
1546    // Fold "(X == true)" to X and "(X == false)" to !X to
1547    // handle common cases produced by branch lowering.
1548    if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1549        CB.CC == ISD::SETEQ)
1550      Cond = CondLHS;
1551    else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1552             CB.CC == ISD::SETEQ) {
1553      SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1554      Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1555    } else
1556      Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1557  } else {
1558    assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1559
1560    const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1561    const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
1562
1563    SDValue CmpOp = getValue(CB.CmpMHS);
1564    EVT VT = CmpOp.getValueType();
1565
1566    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1567      Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1568                          ISD::SETLE);
1569    } else {
1570      SDValue SUB = DAG.getNode(ISD::SUB, dl,
1571                                VT, CmpOp, DAG.getConstant(Low, VT));
1572      Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1573                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1574    }
1575  }
1576
1577  // Update successor info
1578  addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight);
1579  addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight);
1580
1581  // Set NextBlock to be the MBB immediately after the current one, if any.
1582  // This is used to avoid emitting unnecessary branches to the next block.
1583  MachineBasicBlock *NextBlock = 0;
1584  MachineFunction::iterator BBI = SwitchBB;
1585  if (++BBI != FuncInfo.MF->end())
1586    NextBlock = BBI;
1587
1588  // If the lhs block is the next block, invert the condition so that we can
1589  // fall through to the lhs instead of the rhs block.
1590  if (CB.TrueBB == NextBlock) {
1591    std::swap(CB.TrueBB, CB.FalseBB);
1592    SDValue True = DAG.getConstant(1, Cond.getValueType());
1593    Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1594  }
1595
1596  SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1597                               MVT::Other, getControlRoot(), Cond,
1598                               DAG.getBasicBlock(CB.TrueBB));
1599
1600  // Insert the false branch. Do this even if it's a fall through branch,
1601  // this makes it easier to do DAG optimizations which require inverting
1602  // the branch condition.
1603  BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1604                       DAG.getBasicBlock(CB.FalseBB));
1605
1606  DAG.setRoot(BrCond);
1607}
1608
1609/// visitJumpTable - Emit JumpTable node in the current MBB
1610void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1611  // Emit the code for the jump table
1612  assert(JT.Reg != -1U && "Should lower JT Header first!");
1613  EVT PTy = TLI.getPointerTy();
1614  SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1615                                     JT.Reg, PTy);
1616  SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1617  SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(),
1618                                    MVT::Other, Index.getValue(1),
1619                                    Table, Index);
1620  DAG.setRoot(BrJumpTable);
1621}
1622
1623/// visitJumpTableHeader - This function emits necessary code to produce index
1624/// in the JumpTable from switch case.
1625void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1626                                               JumpTableHeader &JTH,
1627                                               MachineBasicBlock *SwitchBB) {
1628  // Subtract the lowest switch case value from the value being switched on and
1629  // conditional branch to default mbb if the result is greater than the
1630  // difference between smallest and largest cases.
1631  SDValue SwitchOp = getValue(JTH.SValue);
1632  EVT VT = SwitchOp.getValueType();
1633  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1634                            DAG.getConstant(JTH.First, VT));
1635
1636  // The SDNode we just created, which holds the value being switched on minus
1637  // the smallest case value, needs to be copied to a virtual register so it
1638  // can be used as an index into the jump table in a subsequent basic block.
1639  // This value may be smaller or larger than the target's pointer type, and
1640  // therefore require extension or truncating.
1641  SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy());
1642
1643  unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy());
1644  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1645                                    JumpTableReg, SwitchOp);
1646  JT.Reg = JumpTableReg;
1647
1648  // Emit the range check for the jump table, and branch to the default block
1649  // for the switch statement if the value being switched on exceeds the largest
1650  // case in the switch.
1651  SDValue CMP = DAG.getSetCC(getCurDebugLoc(),
1652                             TLI.getSetCCResultType(Sub.getValueType()), Sub,
1653                             DAG.getConstant(JTH.Last-JTH.First,VT),
1654                             ISD::SETUGT);
1655
1656  // Set NextBlock to be the MBB immediately after the current one, if any.
1657  // This is used to avoid emitting unnecessary branches to the next block.
1658  MachineBasicBlock *NextBlock = 0;
1659  MachineFunction::iterator BBI = SwitchBB;
1660
1661  if (++BBI != FuncInfo.MF->end())
1662    NextBlock = BBI;
1663
1664  SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1665                               MVT::Other, CopyTo, CMP,
1666                               DAG.getBasicBlock(JT.Default));
1667
1668  if (JT.MBB != NextBlock)
1669    BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond,
1670                         DAG.getBasicBlock(JT.MBB));
1671
1672  DAG.setRoot(BrCond);
1673}
1674
1675/// visitBitTestHeader - This function emits necessary code to produce value
1676/// suitable for "bit tests"
1677void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1678                                             MachineBasicBlock *SwitchBB) {
1679  // Subtract the minimum value
1680  SDValue SwitchOp = getValue(B.SValue);
1681  EVT VT = SwitchOp.getValueType();
1682  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1683                            DAG.getConstant(B.First, VT));
1684
1685  // Check range
1686  SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(),
1687                                  TLI.getSetCCResultType(Sub.getValueType()),
1688                                  Sub, DAG.getConstant(B.Range, VT),
1689                                  ISD::SETUGT);
1690
1691  // Determine the type of the test operands.
1692  bool UsePtrType = false;
1693  if (!TLI.isTypeLegal(VT))
1694    UsePtrType = true;
1695  else {
1696    for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
1697      if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
1698        // Switch table case range are encoded into series of masks.
1699        // Just use pointer type, it's guaranteed to fit.
1700        UsePtrType = true;
1701        break;
1702      }
1703  }
1704  if (UsePtrType) {
1705    VT = TLI.getPointerTy();
1706    Sub = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), VT);
1707  }
1708
1709  B.RegVT = VT;
1710  B.Reg = FuncInfo.CreateReg(VT);
1711  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1712                                    B.Reg, Sub);
1713
1714  // Set NextBlock to be the MBB immediately after the current one, if any.
1715  // This is used to avoid emitting unnecessary branches to the next block.
1716  MachineBasicBlock *NextBlock = 0;
1717  MachineFunction::iterator BBI = SwitchBB;
1718  if (++BBI != FuncInfo.MF->end())
1719    NextBlock = BBI;
1720
1721  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1722
1723  addSuccessorWithWeight(SwitchBB, B.Default);
1724  addSuccessorWithWeight(SwitchBB, MBB);
1725
1726  SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1727                                MVT::Other, CopyTo, RangeCmp,
1728                                DAG.getBasicBlock(B.Default));
1729
1730  if (MBB != NextBlock)
1731    BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo,
1732                          DAG.getBasicBlock(MBB));
1733
1734  DAG.setRoot(BrRange);
1735}
1736
1737/// visitBitTestCase - this function produces one "bit test"
1738void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
1739                                           MachineBasicBlock* NextMBB,
1740                                           unsigned Reg,
1741                                           BitTestCase &B,
1742                                           MachineBasicBlock *SwitchBB) {
1743  EVT VT = BB.RegVT;
1744  SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1745                                       Reg, VT);
1746  SDValue Cmp;
1747  unsigned PopCount = CountPopulation_64(B.Mask);
1748  if (PopCount == 1) {
1749    // Testing for a single bit; just compare the shift count with what it
1750    // would need to be to shift a 1 bit in that position.
1751    Cmp = DAG.getSetCC(getCurDebugLoc(),
1752                       TLI.getSetCCResultType(VT),
1753                       ShiftOp,
1754                       DAG.getConstant(CountTrailingZeros_64(B.Mask), VT),
1755                       ISD::SETEQ);
1756  } else if (PopCount == BB.Range) {
1757    // There is only one zero bit in the range, test for it directly.
1758    Cmp = DAG.getSetCC(getCurDebugLoc(),
1759                       TLI.getSetCCResultType(VT),
1760                       ShiftOp,
1761                       DAG.getConstant(CountTrailingOnes_64(B.Mask), VT),
1762                       ISD::SETNE);
1763  } else {
1764    // Make desired shift
1765    SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), VT,
1766                                    DAG.getConstant(1, VT), ShiftOp);
1767
1768    // Emit bit tests and jumps
1769    SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(),
1770                                VT, SwitchVal, DAG.getConstant(B.Mask, VT));
1771    Cmp = DAG.getSetCC(getCurDebugLoc(),
1772                       TLI.getSetCCResultType(VT),
1773                       AndOp, DAG.getConstant(0, VT),
1774                       ISD::SETNE);
1775  }
1776
1777  addSuccessorWithWeight(SwitchBB, B.TargetBB);
1778  addSuccessorWithWeight(SwitchBB, NextMBB);
1779
1780  SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1781                              MVT::Other, getControlRoot(),
1782                              Cmp, DAG.getBasicBlock(B.TargetBB));
1783
1784  // Set NextBlock to be the MBB immediately after the current one, if any.
1785  // This is used to avoid emitting unnecessary branches to the next block.
1786  MachineBasicBlock *NextBlock = 0;
1787  MachineFunction::iterator BBI = SwitchBB;
1788  if (++BBI != FuncInfo.MF->end())
1789    NextBlock = BBI;
1790
1791  if (NextMBB != NextBlock)
1792    BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd,
1793                        DAG.getBasicBlock(NextMBB));
1794
1795  DAG.setRoot(BrAnd);
1796}
1797
1798void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1799  MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
1800
1801  // Retrieve successors.
1802  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1803  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1804
1805  const Value *Callee(I.getCalledValue());
1806  if (isa<InlineAsm>(Callee))
1807    visitInlineAsm(&I);
1808  else
1809    LowerCallTo(&I, getValue(Callee), false, LandingPad);
1810
1811  // If the value of the invoke is used outside of its defining block, make it
1812  // available as a virtual register.
1813  CopyToExportRegsIfNeeded(&I);
1814
1815  // Update successor info
1816  addSuccessorWithWeight(InvokeMBB, Return);
1817  addSuccessorWithWeight(InvokeMBB, LandingPad);
1818
1819  // Drop into normal successor.
1820  DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1821                          MVT::Other, getControlRoot(),
1822                          DAG.getBasicBlock(Return)));
1823}
1824
1825void SelectionDAGBuilder::visitUnwind(const UnwindInst &I) {
1826}
1827
1828void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
1829  llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
1830}
1831
1832void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
1833  assert(FuncInfo.MBB->isLandingPad() &&
1834         "Call to landingpad not in landing pad!");
1835
1836  MachineBasicBlock *MBB = FuncInfo.MBB;
1837  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
1838  AddLandingPadInfo(LP, MMI, MBB);
1839
1840  SmallVector<EVT, 2> ValueVTs;
1841  ComputeValueVTs(TLI, LP.getType(), ValueVTs);
1842
1843  // Insert the EXCEPTIONADDR instruction.
1844  assert(FuncInfo.MBB->isLandingPad() &&
1845         "Call to eh.exception not in landing pad!");
1846  SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
1847  SDValue Ops[2];
1848  Ops[0] = DAG.getRoot();
1849  SDValue Op1 = DAG.getNode(ISD::EXCEPTIONADDR, getCurDebugLoc(), VTs, Ops, 1);
1850  SDValue Chain = Op1.getValue(1);
1851
1852  // Insert the EHSELECTION instruction.
1853  VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
1854  Ops[0] = Op1;
1855  Ops[1] = Chain;
1856  SDValue Op2 = DAG.getNode(ISD::EHSELECTION, getCurDebugLoc(), VTs, Ops, 2);
1857  Chain = Op2.getValue(1);
1858  Op2 = DAG.getSExtOrTrunc(Op2, getCurDebugLoc(), MVT::i32);
1859
1860  Ops[0] = Op1;
1861  Ops[1] = Op2;
1862  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
1863                            DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
1864                            &Ops[0], 2);
1865
1866  std::pair<SDValue, SDValue> RetPair = std::make_pair(Res, Chain);
1867  setValue(&LP, RetPair.first);
1868  DAG.setRoot(RetPair.second);
1869}
1870
1871/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1872/// small case ranges).
1873bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
1874                                                 CaseRecVector& WorkList,
1875                                                 const Value* SV,
1876                                                 MachineBasicBlock *Default,
1877                                                 MachineBasicBlock *SwitchBB) {
1878  Case& BackCase  = *(CR.Range.second-1);
1879
1880  // Size is the number of Cases represented by this range.
1881  size_t Size = CR.Range.second - CR.Range.first;
1882  if (Size > 3)
1883    return false;
1884
1885  // Get the MachineFunction which holds the current MBB.  This is used when
1886  // inserting any additional MBBs necessary to represent the switch.
1887  MachineFunction *CurMF = FuncInfo.MF;
1888
1889  // Figure out which block is immediately after the current one.
1890  MachineBasicBlock *NextBlock = 0;
1891  MachineFunction::iterator BBI = CR.CaseBB;
1892
1893  if (++BBI != FuncInfo.MF->end())
1894    NextBlock = BBI;
1895
1896  // If any two of the cases has the same destination, and if one value
1897  // is the same as the other, but has one bit unset that the other has set,
1898  // use bit manipulation to do two compares at once.  For example:
1899  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1900  // TODO: This could be extended to merge any 2 cases in switches with 3 cases.
1901  // TODO: Handle cases where CR.CaseBB != SwitchBB.
1902  if (Size == 2 && CR.CaseBB == SwitchBB) {
1903    Case &Small = *CR.Range.first;
1904    Case &Big = *(CR.Range.second-1);
1905
1906    if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) {
1907      const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue();
1908      const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue();
1909
1910      // Check that there is only one bit different.
1911      if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 &&
1912          (SmallValue | BigValue) == BigValue) {
1913        // Isolate the common bit.
1914        APInt CommonBit = BigValue & ~SmallValue;
1915        assert((SmallValue | CommonBit) == BigValue &&
1916               CommonBit.countPopulation() == 1 && "Not a common bit?");
1917
1918        SDValue CondLHS = getValue(SV);
1919        EVT VT = CondLHS.getValueType();
1920        DebugLoc DL = getCurDebugLoc();
1921
1922        SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
1923                                 DAG.getConstant(CommonBit, VT));
1924        SDValue Cond = DAG.getSetCC(DL, MVT::i1,
1925                                    Or, DAG.getConstant(BigValue, VT),
1926                                    ISD::SETEQ);
1927
1928        // Update successor info.
1929        addSuccessorWithWeight(SwitchBB, Small.BB);
1930        addSuccessorWithWeight(SwitchBB, Default);
1931
1932        // Insert the true branch.
1933        SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other,
1934                                     getControlRoot(), Cond,
1935                                     DAG.getBasicBlock(Small.BB));
1936
1937        // Insert the false branch.
1938        BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
1939                             DAG.getBasicBlock(Default));
1940
1941        DAG.setRoot(BrCond);
1942        return true;
1943      }
1944    }
1945  }
1946
1947  // Rearrange the case blocks so that the last one falls through if possible.
1948  if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1949    // The last case block won't fall through into 'NextBlock' if we emit the
1950    // branches in this order.  See if rearranging a case value would help.
1951    for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1952      if (I->BB == NextBlock) {
1953        std::swap(*I, BackCase);
1954        break;
1955      }
1956    }
1957  }
1958
1959  // Create a CaseBlock record representing a conditional branch to
1960  // the Case's target mbb if the value being switched on SV is equal
1961  // to C.
1962  MachineBasicBlock *CurBlock = CR.CaseBB;
1963  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1964    MachineBasicBlock *FallThrough;
1965    if (I != E-1) {
1966      FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
1967      CurMF->insert(BBI, FallThrough);
1968
1969      // Put SV in a virtual register to make it available from the new blocks.
1970      ExportFromCurrentBlock(SV);
1971    } else {
1972      // If the last case doesn't match, go to the default block.
1973      FallThrough = Default;
1974    }
1975
1976    const Value *RHS, *LHS, *MHS;
1977    ISD::CondCode CC;
1978    if (I->High == I->Low) {
1979      // This is just small small case range :) containing exactly 1 case
1980      CC = ISD::SETEQ;
1981      LHS = SV; RHS = I->High; MHS = NULL;
1982    } else {
1983      CC = ISD::SETLE;
1984      LHS = I->Low; MHS = SV; RHS = I->High;
1985    }
1986
1987    uint32_t ExtraWeight = I->ExtraWeight;
1988    CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough,
1989                 /* me */ CurBlock,
1990                 /* trueweight */ ExtraWeight / 2, /* falseweight */ ExtraWeight / 2);
1991
1992    // If emitting the first comparison, just call visitSwitchCase to emit the
1993    // code into the current block.  Otherwise, push the CaseBlock onto the
1994    // vector to be later processed by SDISel, and insert the node's MBB
1995    // before the next MBB.
1996    if (CurBlock == SwitchBB)
1997      visitSwitchCase(CB, SwitchBB);
1998    else
1999      SwitchCases.push_back(CB);
2000
2001    CurBlock = FallThrough;
2002  }
2003
2004  return true;
2005}
2006
2007static inline bool areJTsAllowed(const TargetLowering &TLI) {
2008  return !TLI.getTargetMachine().Options.DisableJumpTables &&
2009          (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
2010           TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
2011}
2012
2013static APInt ComputeRange(const APInt &First, const APInt &Last) {
2014  uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
2015  APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth);
2016  return (LastExt - FirstExt + 1ULL);
2017}
2018
2019/// handleJTSwitchCase - Emit jumptable for current switch case range
2020bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR,
2021                                             CaseRecVector &WorkList,
2022                                             const Value *SV,
2023                                             MachineBasicBlock *Default,
2024                                             MachineBasicBlock *SwitchBB) {
2025  Case& FrontCase = *CR.Range.first;
2026  Case& BackCase  = *(CR.Range.second-1);
2027
2028  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2029  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2030
2031  APInt TSize(First.getBitWidth(), 0);
2032  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I)
2033    TSize += I->size();
2034
2035  if (!areJTsAllowed(TLI) || TSize.ult(4))
2036    return false;
2037
2038  APInt Range = ComputeRange(First, Last);
2039  // The density is TSize / Range. Require at least 40%.
2040  // It should not be possible for IntTSize to saturate for sane code, but make
2041  // sure we handle Range saturation correctly.
2042  uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10);
2043  uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10);
2044  if (IntTSize * 10 < IntRange * 4)
2045    return false;
2046
2047  DEBUG(dbgs() << "Lowering jump table\n"
2048               << "First entry: " << First << ". Last entry: " << Last << '\n'
2049               << "Range: " << Range << ". Size: " << TSize << ".\n\n");
2050
2051  // Get the MachineFunction which holds the current MBB.  This is used when
2052  // inserting any additional MBBs necessary to represent the switch.
2053  MachineFunction *CurMF = FuncInfo.MF;
2054
2055  // Figure out which block is immediately after the current one.
2056  MachineFunction::iterator BBI = CR.CaseBB;
2057  ++BBI;
2058
2059  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2060
2061  // Create a new basic block to hold the code for loading the address
2062  // of the jump table, and jumping to it.  Update successor information;
2063  // we will either branch to the default case for the switch, or the jump
2064  // table.
2065  MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2066  CurMF->insert(BBI, JumpTableBB);
2067
2068  addSuccessorWithWeight(CR.CaseBB, Default);
2069  addSuccessorWithWeight(CR.CaseBB, JumpTableBB);
2070
2071  // Build a vector of destination BBs, corresponding to each target
2072  // of the jump table. If the value of the jump table slot corresponds to
2073  // a case statement, push the case's BB onto the vector, otherwise, push
2074  // the default BB.
2075  std::vector<MachineBasicBlock*> DestBBs;
2076  APInt TEI = First;
2077  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
2078    const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
2079    const APInt &High = cast<ConstantInt>(I->High)->getValue();
2080
2081    if (Low.sle(TEI) && TEI.sle(High)) {
2082      DestBBs.push_back(I->BB);
2083      if (TEI==High)
2084        ++I;
2085    } else {
2086      DestBBs.push_back(Default);
2087    }
2088  }
2089
2090  // Update successor info. Add one edge to each unique successor.
2091  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
2092  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
2093         E = DestBBs.end(); I != E; ++I) {
2094    if (!SuccsHandled[(*I)->getNumber()]) {
2095      SuccsHandled[(*I)->getNumber()] = true;
2096      addSuccessorWithWeight(JumpTableBB, *I);
2097    }
2098  }
2099
2100  // Create a jump table index for this jump table.
2101  unsigned JTEncoding = TLI.getJumpTableEncoding();
2102  unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
2103                       ->createJumpTableIndex(DestBBs);
2104
2105  // Set the jump table information so that we can codegen it as a second
2106  // MachineBasicBlock
2107  JumpTable JT(-1U, JTI, JumpTableBB, Default);
2108  JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
2109  if (CR.CaseBB == SwitchBB)
2110    visitJumpTableHeader(JT, JTH, SwitchBB);
2111
2112  JTCases.push_back(JumpTableBlock(JTH, JT));
2113  return true;
2114}
2115
2116/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
2117/// 2 subtrees.
2118bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
2119                                                  CaseRecVector& WorkList,
2120                                                  const Value* SV,
2121                                                  MachineBasicBlock *Default,
2122                                                  MachineBasicBlock *SwitchBB) {
2123  // Get the MachineFunction which holds the current MBB.  This is used when
2124  // inserting any additional MBBs necessary to represent the switch.
2125  MachineFunction *CurMF = FuncInfo.MF;
2126
2127  // Figure out which block is immediately after the current one.
2128  MachineFunction::iterator BBI = CR.CaseBB;
2129  ++BBI;
2130
2131  Case& FrontCase = *CR.Range.first;
2132  Case& BackCase  = *(CR.Range.second-1);
2133  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2134
2135  // Size is the number of Cases represented by this range.
2136  unsigned Size = CR.Range.second - CR.Range.first;
2137
2138  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2139  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2140  double FMetric = 0;
2141  CaseItr Pivot = CR.Range.first + Size/2;
2142
2143  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
2144  // (heuristically) allow us to emit JumpTable's later.
2145  APInt TSize(First.getBitWidth(), 0);
2146  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2147       I!=E; ++I)
2148    TSize += I->size();
2149
2150  APInt LSize = FrontCase.size();
2151  APInt RSize = TSize-LSize;
2152  DEBUG(dbgs() << "Selecting best pivot: \n"
2153               << "First: " << First << ", Last: " << Last <<'\n'
2154               << "LSize: " << LSize << ", RSize: " << RSize << '\n');
2155  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
2156       J!=E; ++I, ++J) {
2157    const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
2158    const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
2159    APInt Range = ComputeRange(LEnd, RBegin);
2160    assert((Range - 2ULL).isNonNegative() &&
2161           "Invalid case distance");
2162    // Use volatile double here to avoid excess precision issues on some hosts,
2163    // e.g. that use 80-bit X87 registers.
2164    volatile double LDensity =
2165       (double)LSize.roundToDouble() /
2166                           (LEnd - First + 1ULL).roundToDouble();
2167    volatile double RDensity =
2168      (double)RSize.roundToDouble() /
2169                           (Last - RBegin + 1ULL).roundToDouble();
2170    double Metric = Range.logBase2()*(LDensity+RDensity);
2171    // Should always split in some non-trivial place
2172    DEBUG(dbgs() <<"=>Step\n"
2173                 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
2174                 << "LDensity: " << LDensity
2175                 << ", RDensity: " << RDensity << '\n'
2176                 << "Metric: " << Metric << '\n');
2177    if (FMetric < Metric) {
2178      Pivot = J;
2179      FMetric = Metric;
2180      DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
2181    }
2182
2183    LSize += J->size();
2184    RSize -= J->size();
2185  }
2186  if (areJTsAllowed(TLI)) {
2187    // If our case is dense we *really* should handle it earlier!
2188    assert((FMetric > 0) && "Should handle dense range earlier!");
2189  } else {
2190    Pivot = CR.Range.first + Size/2;
2191  }
2192
2193  CaseRange LHSR(CR.Range.first, Pivot);
2194  CaseRange RHSR(Pivot, CR.Range.second);
2195  Constant *C = Pivot->Low;
2196  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
2197
2198  // We know that we branch to the LHS if the Value being switched on is
2199  // less than the Pivot value, C.  We use this to optimize our binary
2200  // tree a bit, by recognizing that if SV is greater than or equal to the
2201  // LHS's Case Value, and that Case Value is exactly one less than the
2202  // Pivot's Value, then we can branch directly to the LHS's Target,
2203  // rather than creating a leaf node for it.
2204  if ((LHSR.second - LHSR.first) == 1 &&
2205      LHSR.first->High == CR.GE &&
2206      cast<ConstantInt>(C)->getValue() ==
2207      (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
2208    TrueBB = LHSR.first->BB;
2209  } else {
2210    TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2211    CurMF->insert(BBI, TrueBB);
2212    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
2213
2214    // Put SV in a virtual register to make it available from the new blocks.
2215    ExportFromCurrentBlock(SV);
2216  }
2217
2218  // Similar to the optimization above, if the Value being switched on is
2219  // known to be less than the Constant CR.LT, and the current Case Value
2220  // is CR.LT - 1, then we can branch directly to the target block for
2221  // the current Case Value, rather than emitting a RHS leaf node for it.
2222  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
2223      cast<ConstantInt>(RHSR.first->Low)->getValue() ==
2224      (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
2225    FalseBB = RHSR.first->BB;
2226  } else {
2227    FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2228    CurMF->insert(BBI, FalseBB);
2229    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
2230
2231    // Put SV in a virtual register to make it available from the new blocks.
2232    ExportFromCurrentBlock(SV);
2233  }
2234
2235  // Create a CaseBlock record representing a conditional branch to
2236  // the LHS node if the value being switched on SV is less than C.
2237  // Otherwise, branch to LHS.
2238  CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
2239
2240  if (CR.CaseBB == SwitchBB)
2241    visitSwitchCase(CB, SwitchBB);
2242  else
2243    SwitchCases.push_back(CB);
2244
2245  return true;
2246}
2247
2248/// handleBitTestsSwitchCase - if current case range has few destination and
2249/// range span less, than machine word bitwidth, encode case range into series
2250/// of masks and emit bit tests with these masks.
2251bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
2252                                                   CaseRecVector& WorkList,
2253                                                   const Value* SV,
2254                                                   MachineBasicBlock* Default,
2255                                                   MachineBasicBlock *SwitchBB){
2256  EVT PTy = TLI.getPointerTy();
2257  unsigned IntPtrBits = PTy.getSizeInBits();
2258
2259  Case& FrontCase = *CR.Range.first;
2260  Case& BackCase  = *(CR.Range.second-1);
2261
2262  // Get the MachineFunction which holds the current MBB.  This is used when
2263  // inserting any additional MBBs necessary to represent the switch.
2264  MachineFunction *CurMF = FuncInfo.MF;
2265
2266  // If target does not have legal shift left, do not emit bit tests at all.
2267  if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
2268    return false;
2269
2270  size_t numCmps = 0;
2271  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2272       I!=E; ++I) {
2273    // Single case counts one, case range - two.
2274    numCmps += (I->Low == I->High ? 1 : 2);
2275  }
2276
2277  // Count unique destinations
2278  SmallSet<MachineBasicBlock*, 4> Dests;
2279  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2280    Dests.insert(I->BB);
2281    if (Dests.size() > 3)
2282      // Don't bother the code below, if there are too much unique destinations
2283      return false;
2284  }
2285  DEBUG(dbgs() << "Total number of unique destinations: "
2286        << Dests.size() << '\n'
2287        << "Total number of comparisons: " << numCmps << '\n');
2288
2289  // Compute span of values.
2290  const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
2291  const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
2292  APInt cmpRange = maxValue - minValue;
2293
2294  DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
2295               << "Low bound: " << minValue << '\n'
2296               << "High bound: " << maxValue << '\n');
2297
2298  if (cmpRange.uge(IntPtrBits) ||
2299      (!(Dests.size() == 1 && numCmps >= 3) &&
2300       !(Dests.size() == 2 && numCmps >= 5) &&
2301       !(Dests.size() >= 3 && numCmps >= 6)))
2302    return false;
2303
2304  DEBUG(dbgs() << "Emitting bit tests\n");
2305  APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
2306
2307  // Optimize the case where all the case values fit in a
2308  // word without having to subtract minValue. In this case,
2309  // we can optimize away the subtraction.
2310  if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) {
2311    cmpRange = maxValue;
2312  } else {
2313    lowBound = minValue;
2314  }
2315
2316  CaseBitsVector CasesBits;
2317  unsigned i, count = 0;
2318
2319  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2320    MachineBasicBlock* Dest = I->BB;
2321    for (i = 0; i < count; ++i)
2322      if (Dest == CasesBits[i].BB)
2323        break;
2324
2325    if (i == count) {
2326      assert((count < 3) && "Too much destinations to test!");
2327      CasesBits.push_back(CaseBits(0, Dest, 0));
2328      count++;
2329    }
2330
2331    const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
2332    const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
2333
2334    uint64_t lo = (lowValue - lowBound).getZExtValue();
2335    uint64_t hi = (highValue - lowBound).getZExtValue();
2336
2337    for (uint64_t j = lo; j <= hi; j++) {
2338      CasesBits[i].Mask |=  1ULL << j;
2339      CasesBits[i].Bits++;
2340    }
2341
2342  }
2343  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2344
2345  BitTestInfo BTC;
2346
2347  // Figure out which block is immediately after the current one.
2348  MachineFunction::iterator BBI = CR.CaseBB;
2349  ++BBI;
2350
2351  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2352
2353  DEBUG(dbgs() << "Cases:\n");
2354  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2355    DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
2356                 << ", Bits: " << CasesBits[i].Bits
2357                 << ", BB: " << CasesBits[i].BB << '\n');
2358
2359    MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2360    CurMF->insert(BBI, CaseBB);
2361    BTC.push_back(BitTestCase(CasesBits[i].Mask,
2362                              CaseBB,
2363                              CasesBits[i].BB));
2364
2365    // Put SV in a virtual register to make it available from the new blocks.
2366    ExportFromCurrentBlock(SV);
2367  }
2368
2369  BitTestBlock BTB(lowBound, cmpRange, SV,
2370                   -1U, MVT::Other, (CR.CaseBB == SwitchBB),
2371                   CR.CaseBB, Default, BTC);
2372
2373  if (CR.CaseBB == SwitchBB)
2374    visitBitTestHeader(BTB, SwitchBB);
2375
2376  BitTestCases.push_back(BTB);
2377
2378  return true;
2379}
2380
2381/// Clusterify - Transform simple list of Cases into list of CaseRange's
2382size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
2383                                       const SwitchInst& SI) {
2384  size_t numCmps = 0;
2385
2386  BranchProbabilityInfo *BPI = FuncInfo.BPI;
2387  // Start with "simple" cases
2388  for (size_t i = 1; i < SI.getNumSuccessors(); ++i) {
2389    BasicBlock *SuccBB = SI.getSuccessor(i);
2390    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB];
2391
2392    uint32_t ExtraWeight = BPI ? BPI->getEdgeWeight(SI.getParent(), SuccBB) : 0;
2393
2394    Cases.push_back(Case(SI.getSuccessorValue(i),
2395                         SI.getSuccessorValue(i),
2396                         SMBB, ExtraWeight));
2397  }
2398  std::sort(Cases.begin(), Cases.end(), CaseCmp());
2399
2400  // Merge case into clusters
2401  if (Cases.size() >= 2)
2402    // Must recompute end() each iteration because it may be
2403    // invalidated by erase if we hold on to it
2404    for (CaseItr I = Cases.begin(), J = llvm::next(Cases.begin());
2405         J != Cases.end(); ) {
2406      const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
2407      const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
2408      MachineBasicBlock* nextBB = J->BB;
2409      MachineBasicBlock* currentBB = I->BB;
2410
2411      // If the two neighboring cases go to the same destination, merge them
2412      // into a single case.
2413      if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
2414        I->High = J->High;
2415        J = Cases.erase(J);
2416
2417        if (BranchProbabilityInfo *BPI = FuncInfo.BPI) {
2418          uint32_t CurWeight = currentBB->getBasicBlock() ?
2419            BPI->getEdgeWeight(SI.getParent(), currentBB->getBasicBlock()) : 16;
2420          uint32_t NextWeight = nextBB->getBasicBlock() ?
2421            BPI->getEdgeWeight(SI.getParent(), nextBB->getBasicBlock()) : 16;
2422
2423          BPI->setEdgeWeight(SI.getParent(), currentBB->getBasicBlock(),
2424                             CurWeight + NextWeight);
2425        }
2426      } else {
2427        I = J++;
2428      }
2429    }
2430
2431  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
2432    if (I->Low != I->High)
2433      // A range counts double, since it requires two compares.
2434      ++numCmps;
2435  }
2436
2437  return numCmps;
2438}
2439
2440void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2441                                           MachineBasicBlock *Last) {
2442  // Update JTCases.
2443  for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2444    if (JTCases[i].first.HeaderBB == First)
2445      JTCases[i].first.HeaderBB = Last;
2446
2447  // Update BitTestCases.
2448  for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2449    if (BitTestCases[i].Parent == First)
2450      BitTestCases[i].Parent = Last;
2451}
2452
2453void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
2454  MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
2455
2456  // Figure out which block is immediately after the current one.
2457  MachineBasicBlock *NextBlock = 0;
2458  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2459
2460  // If there is only the default destination, branch to it if it is not the
2461  // next basic block.  Otherwise, just fall through.
2462  if (SI.getNumCases() == 1) {
2463    // Update machine-CFG edges.
2464
2465    // If this is not a fall-through branch, emit the branch.
2466    SwitchMBB->addSuccessor(Default);
2467    if (Default != NextBlock)
2468      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
2469                              MVT::Other, getControlRoot(),
2470                              DAG.getBasicBlock(Default)));
2471
2472    return;
2473  }
2474
2475  // If there are any non-default case statements, create a vector of Cases
2476  // representing each one, and sort the vector so that we can efficiently
2477  // create a binary search tree from them.
2478  CaseVector Cases;
2479  size_t numCmps = Clusterify(Cases, SI);
2480  DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2481               << ". Total compares: " << numCmps << '\n');
2482  (void)numCmps;
2483
2484  // Get the Value to be switched on and default basic blocks, which will be
2485  // inserted into CaseBlock records, representing basic blocks in the binary
2486  // search tree.
2487  const Value *SV = SI.getCondition();
2488
2489  // Push the initial CaseRec onto the worklist
2490  CaseRecVector WorkList;
2491  WorkList.push_back(CaseRec(SwitchMBB,0,0,
2492                             CaseRange(Cases.begin(),Cases.end())));
2493
2494  while (!WorkList.empty()) {
2495    // Grab a record representing a case range to process off the worklist
2496    CaseRec CR = WorkList.back();
2497    WorkList.pop_back();
2498
2499    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2500      continue;
2501
2502    // If the range has few cases (two or less) emit a series of specific
2503    // tests.
2504    if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
2505      continue;
2506
2507    // If the switch has more than 5 blocks, and at least 40% dense, and the
2508    // target supports indirect branches, then emit a jump table rather than
2509    // lowering the switch to a binary tree of conditional branches.
2510    if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2511      continue;
2512
2513    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2514    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2515    handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
2516  }
2517}
2518
2519void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2520  MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2521
2522  // Update machine-CFG edges with unique successors.
2523  SmallVector<BasicBlock*, 32> succs;
2524  succs.reserve(I.getNumSuccessors());
2525  for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i)
2526    succs.push_back(I.getSuccessor(i));
2527  array_pod_sort(succs.begin(), succs.end());
2528  succs.erase(std::unique(succs.begin(), succs.end()), succs.end());
2529  for (unsigned i = 0, e = succs.size(); i != e; ++i) {
2530    MachineBasicBlock *Succ = FuncInfo.MBBMap[succs[i]];
2531    addSuccessorWithWeight(IndirectBrMBB, Succ);
2532  }
2533
2534  DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(),
2535                          MVT::Other, getControlRoot(),
2536                          getValue(I.getAddress())));
2537}
2538
2539void SelectionDAGBuilder::visitFSub(const User &I) {
2540  // -0.0 - X --> fneg
2541  Type *Ty = I.getType();
2542  if (isa<Constant>(I.getOperand(0)) &&
2543      I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2544    SDValue Op2 = getValue(I.getOperand(1));
2545    setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2546                             Op2.getValueType(), Op2));
2547    return;
2548  }
2549
2550  visitBinary(I, ISD::FSUB);
2551}
2552
2553void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2554  SDValue Op1 = getValue(I.getOperand(0));
2555  SDValue Op2 = getValue(I.getOperand(1));
2556  setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(),
2557                           Op1.getValueType(), Op1, Op2));
2558}
2559
2560void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2561  SDValue Op1 = getValue(I.getOperand(0));
2562  SDValue Op2 = getValue(I.getOperand(1));
2563
2564  MVT ShiftTy = TLI.getShiftAmountTy(Op2.getValueType());
2565
2566  // Coerce the shift amount to the right type if we can.
2567  if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2568    unsigned ShiftSize = ShiftTy.getSizeInBits();
2569    unsigned Op2Size = Op2.getValueType().getSizeInBits();
2570    DebugLoc DL = getCurDebugLoc();
2571
2572    // If the operand is smaller than the shift count type, promote it.
2573    if (ShiftSize > Op2Size)
2574      Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2575
2576    // If the operand is larger than the shift count type but the shift
2577    // count type has enough bits to represent any shift value, truncate
2578    // it now. This is a common case and it exposes the truncate to
2579    // optimization early.
2580    else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2581      Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2582    // Otherwise we'll need to temporarily settle for some other convenient
2583    // type.  Type legalization will make adjustments once the shiftee is split.
2584    else
2585      Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2586  }
2587
2588  setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(),
2589                           Op1.getValueType(), Op1, Op2));
2590}
2591
2592void SelectionDAGBuilder::visitSDiv(const User &I) {
2593  SDValue Op1 = getValue(I.getOperand(0));
2594  SDValue Op2 = getValue(I.getOperand(1));
2595
2596  // Turn exact SDivs into multiplications.
2597  // FIXME: This should be in DAGCombiner, but it doesn't have access to the
2598  // exact bit.
2599  if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() &&
2600      !isa<ConstantSDNode>(Op1) &&
2601      isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue())
2602    setValue(&I, TLI.BuildExactSDIV(Op1, Op2, getCurDebugLoc(), DAG));
2603  else
2604    setValue(&I, DAG.getNode(ISD::SDIV, getCurDebugLoc(), Op1.getValueType(),
2605                             Op1, Op2));
2606}
2607
2608void SelectionDAGBuilder::visitICmp(const User &I) {
2609  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2610  if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2611    predicate = IC->getPredicate();
2612  else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2613    predicate = ICmpInst::Predicate(IC->getPredicate());
2614  SDValue Op1 = getValue(I.getOperand(0));
2615  SDValue Op2 = getValue(I.getOperand(1));
2616  ISD::CondCode Opcode = getICmpCondCode(predicate);
2617
2618  EVT DestVT = TLI.getValueType(I.getType());
2619  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode));
2620}
2621
2622void SelectionDAGBuilder::visitFCmp(const User &I) {
2623  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2624  if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2625    predicate = FC->getPredicate();
2626  else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2627    predicate = FCmpInst::Predicate(FC->getPredicate());
2628  SDValue Op1 = getValue(I.getOperand(0));
2629  SDValue Op2 = getValue(I.getOperand(1));
2630  ISD::CondCode Condition = getFCmpCondCode(predicate);
2631  if (TM.Options.NoNaNsFPMath)
2632    Condition = getFCmpCodeWithoutNaN(Condition);
2633  EVT DestVT = TLI.getValueType(I.getType());
2634  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition));
2635}
2636
2637void SelectionDAGBuilder::visitSelect(const User &I) {
2638  SmallVector<EVT, 4> ValueVTs;
2639  ComputeValueVTs(TLI, I.getType(), ValueVTs);
2640  unsigned NumValues = ValueVTs.size();
2641  if (NumValues == 0) return;
2642
2643  SmallVector<SDValue, 4> Values(NumValues);
2644  SDValue Cond     = getValue(I.getOperand(0));
2645  SDValue TrueVal  = getValue(I.getOperand(1));
2646  SDValue FalseVal = getValue(I.getOperand(2));
2647  ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2648    ISD::VSELECT : ISD::SELECT;
2649
2650  for (unsigned i = 0; i != NumValues; ++i)
2651    Values[i] = DAG.getNode(OpCode, getCurDebugLoc(),
2652                            TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2653                            Cond,
2654                            SDValue(TrueVal.getNode(),
2655                                    TrueVal.getResNo() + i),
2656                            SDValue(FalseVal.getNode(),
2657                                    FalseVal.getResNo() + i));
2658
2659  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2660                           DAG.getVTList(&ValueVTs[0], NumValues),
2661                           &Values[0], NumValues));
2662}
2663
2664void SelectionDAGBuilder::visitTrunc(const User &I) {
2665  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2666  SDValue N = getValue(I.getOperand(0));
2667  EVT DestVT = TLI.getValueType(I.getType());
2668  setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N));
2669}
2670
2671void SelectionDAGBuilder::visitZExt(const User &I) {
2672  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2673  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2674  SDValue N = getValue(I.getOperand(0));
2675  EVT DestVT = TLI.getValueType(I.getType());
2676  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N));
2677}
2678
2679void SelectionDAGBuilder::visitSExt(const User &I) {
2680  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2681  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2682  SDValue N = getValue(I.getOperand(0));
2683  EVT DestVT = TLI.getValueType(I.getType());
2684  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N));
2685}
2686
2687void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2688  // FPTrunc is never a no-op cast, no need to check
2689  SDValue N = getValue(I.getOperand(0));
2690  EVT DestVT = TLI.getValueType(I.getType());
2691  setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(),
2692                           DestVT, N,
2693                           DAG.getTargetConstant(0, TLI.getPointerTy())));
2694}
2695
2696void SelectionDAGBuilder::visitFPExt(const User &I){
2697  // FPExt is never a no-op cast, no need to check
2698  SDValue N = getValue(I.getOperand(0));
2699  EVT DestVT = TLI.getValueType(I.getType());
2700  setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N));
2701}
2702
2703void SelectionDAGBuilder::visitFPToUI(const User &I) {
2704  // FPToUI is never a no-op cast, no need to check
2705  SDValue N = getValue(I.getOperand(0));
2706  EVT DestVT = TLI.getValueType(I.getType());
2707  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N));
2708}
2709
2710void SelectionDAGBuilder::visitFPToSI(const User &I) {
2711  // FPToSI is never a no-op cast, no need to check
2712  SDValue N = getValue(I.getOperand(0));
2713  EVT DestVT = TLI.getValueType(I.getType());
2714  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N));
2715}
2716
2717void SelectionDAGBuilder::visitUIToFP(const User &I) {
2718  // UIToFP is never a no-op cast, no need to check
2719  SDValue N = getValue(I.getOperand(0));
2720  EVT DestVT = TLI.getValueType(I.getType());
2721  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N));
2722}
2723
2724void SelectionDAGBuilder::visitSIToFP(const User &I){
2725  // SIToFP is never a no-op cast, no need to check
2726  SDValue N = getValue(I.getOperand(0));
2727  EVT DestVT = TLI.getValueType(I.getType());
2728  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N));
2729}
2730
2731void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2732  // What to do depends on the size of the integer and the size of the pointer.
2733  // We can either truncate, zero extend, or no-op, accordingly.
2734  SDValue N = getValue(I.getOperand(0));
2735  EVT DestVT = TLI.getValueType(I.getType());
2736  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2737}
2738
2739void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2740  // What to do depends on the size of the integer and the size of the pointer.
2741  // We can either truncate, zero extend, or no-op, accordingly.
2742  SDValue N = getValue(I.getOperand(0));
2743  EVT DestVT = TLI.getValueType(I.getType());
2744  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2745}
2746
2747void SelectionDAGBuilder::visitBitCast(const User &I) {
2748  SDValue N = getValue(I.getOperand(0));
2749  EVT DestVT = TLI.getValueType(I.getType());
2750
2751  // BitCast assures us that source and destination are the same size so this is
2752  // either a BITCAST or a no-op.
2753  if (DestVT != N.getValueType())
2754    setValue(&I, DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
2755                             DestVT, N)); // convert types.
2756  else
2757    setValue(&I, N);            // noop cast.
2758}
2759
2760void SelectionDAGBuilder::visitInsertElement(const User &I) {
2761  SDValue InVec = getValue(I.getOperand(0));
2762  SDValue InVal = getValue(I.getOperand(1));
2763  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2764                              TLI.getPointerTy(),
2765                              getValue(I.getOperand(2)));
2766  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(),
2767                           TLI.getValueType(I.getType()),
2768                           InVec, InVal, InIdx));
2769}
2770
2771void SelectionDAGBuilder::visitExtractElement(const User &I) {
2772  SDValue InVec = getValue(I.getOperand(0));
2773  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2774                              TLI.getPointerTy(),
2775                              getValue(I.getOperand(1)));
2776  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2777                           TLI.getValueType(I.getType()), InVec, InIdx));
2778}
2779
2780// Utility for visitShuffleVector - Return true if every element in Mask,
2781// begining // from position Pos and ending in Pos+Size, falls within the
2782// specified sequential range [L, L+Pos). or is undef.
2783static bool isSequentialInRange(const SmallVectorImpl<int> &Mask,
2784                                int Pos, int Size, int Low) {
2785  for (int i = Pos, e = Pos+Size; i != e; ++i, ++Low)
2786    if (Mask[i] >= 0 && Mask[i] != Low)
2787      return false;
2788  return true;
2789}
2790
2791void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2792  SmallVector<int, 8> Mask;
2793  SDValue Src1 = getValue(I.getOperand(0));
2794  SDValue Src2 = getValue(I.getOperand(1));
2795
2796  // Convert the ConstantVector mask operand into an array of ints, with -1
2797  // representing undef values.
2798  SmallVector<Constant*, 8> MaskElts;
2799  cast<Constant>(I.getOperand(2))->getVectorElements(MaskElts);
2800  unsigned MaskNumElts = MaskElts.size();
2801  for (unsigned i = 0; i != MaskNumElts; ++i) {
2802    if (isa<UndefValue>(MaskElts[i]))
2803      Mask.push_back(-1);
2804    else
2805      Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue());
2806  }
2807
2808  EVT VT = TLI.getValueType(I.getType());
2809  EVT SrcVT = Src1.getValueType();
2810  unsigned SrcNumElts = SrcVT.getVectorNumElements();
2811
2812  if (SrcNumElts == MaskNumElts) {
2813    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2814                                      &Mask[0]));
2815    return;
2816  }
2817
2818  // Normalize the shuffle vector since mask and vector length don't match.
2819  if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2820    // Mask is longer than the source vectors and is a multiple of the source
2821    // vectors.  We can use concatenate vector to make the mask and vectors
2822    // lengths match.
2823    if (SrcNumElts*2 == MaskNumElts) {
2824      // First check for Src1 in low and Src2 in high
2825      if (isSequentialInRange(Mask, 0, SrcNumElts, 0) &&
2826          isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) {
2827        // The shuffle is concatenating two vectors together.
2828        setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2829                                 VT, Src1, Src2));
2830        return;
2831      }
2832      // Then check for Src2 in low and Src1 in high
2833      if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) &&
2834          isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) {
2835        // The shuffle is concatenating two vectors together.
2836        setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2837                                 VT, Src2, Src1));
2838        return;
2839      }
2840    }
2841
2842    // Pad both vectors with undefs to make them the same length as the mask.
2843    unsigned NumConcat = MaskNumElts / SrcNumElts;
2844    bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2845    bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2846    SDValue UndefVal = DAG.getUNDEF(SrcVT);
2847
2848    SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2849    SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2850    MOps1[0] = Src1;
2851    MOps2[0] = Src2;
2852
2853    Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2854                                                  getCurDebugLoc(), VT,
2855                                                  &MOps1[0], NumConcat);
2856    Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2857                                                  getCurDebugLoc(), VT,
2858                                                  &MOps2[0], NumConcat);
2859
2860    // Readjust mask for new input vector length.
2861    SmallVector<int, 8> MappedOps;
2862    for (unsigned i = 0; i != MaskNumElts; ++i) {
2863      int Idx = Mask[i];
2864      if (Idx < (int)SrcNumElts)
2865        MappedOps.push_back(Idx);
2866      else
2867        MappedOps.push_back(Idx + MaskNumElts - SrcNumElts);
2868    }
2869
2870    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2871                                      &MappedOps[0]));
2872    return;
2873  }
2874
2875  if (SrcNumElts > MaskNumElts) {
2876    // Analyze the access pattern of the vector to see if we can extract
2877    // two subvectors and do the shuffle. The analysis is done by calculating
2878    // the range of elements the mask access on both vectors.
2879    int MinRange[2] = { static_cast<int>(SrcNumElts+1),
2880                        static_cast<int>(SrcNumElts+1)};
2881    int MaxRange[2] = {-1, -1};
2882
2883    for (unsigned i = 0; i != MaskNumElts; ++i) {
2884      int Idx = Mask[i];
2885      int Input = 0;
2886      if (Idx < 0)
2887        continue;
2888
2889      if (Idx >= (int)SrcNumElts) {
2890        Input = 1;
2891        Idx -= SrcNumElts;
2892      }
2893      if (Idx > MaxRange[Input])
2894        MaxRange[Input] = Idx;
2895      if (Idx < MinRange[Input])
2896        MinRange[Input] = Idx;
2897    }
2898
2899    // Check if the access is smaller than the vector size and can we find
2900    // a reasonable extract index.
2901    int RangeUse[2] = { 2, 2 };  // 0 = Unused, 1 = Extract, 2 = Can not
2902                                 // Extract.
2903    int StartIdx[2];  // StartIdx to extract from
2904    for (int Input=0; Input < 2; ++Input) {
2905      if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) {
2906        RangeUse[Input] = 0; // Unused
2907        StartIdx[Input] = 0;
2908      } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) {
2909        // Fits within range but we should see if we can find a good
2910        // start index that is a multiple of the mask length.
2911        if (MaxRange[Input] < (int)MaskNumElts) {
2912          RangeUse[Input] = 1; // Extract from beginning of the vector
2913          StartIdx[Input] = 0;
2914        } else {
2915          StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2916          if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2917              StartIdx[Input] + MaskNumElts <= SrcNumElts)
2918            RangeUse[Input] = 1; // Extract from a multiple of the mask length.
2919        }
2920      }
2921    }
2922
2923    if (RangeUse[0] == 0 && RangeUse[1] == 0) {
2924      setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
2925      return;
2926    }
2927    else if (RangeUse[0] < 2 && RangeUse[1] < 2) {
2928      // Extract appropriate subvector and generate a vector shuffle
2929      for (int Input=0; Input < 2; ++Input) {
2930        SDValue &Src = Input == 0 ? Src1 : Src2;
2931        if (RangeUse[Input] == 0)
2932          Src = DAG.getUNDEF(VT);
2933        else
2934          Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT,
2935                            Src, DAG.getIntPtrConstant(StartIdx[Input]));
2936      }
2937
2938      // Calculate new mask.
2939      SmallVector<int, 8> MappedOps;
2940      for (unsigned i = 0; i != MaskNumElts; ++i) {
2941        int Idx = Mask[i];
2942        if (Idx < 0)
2943          MappedOps.push_back(Idx);
2944        else if (Idx < (int)SrcNumElts)
2945          MappedOps.push_back(Idx - StartIdx[0]);
2946        else
2947          MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts);
2948      }
2949
2950      setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2951                                        &MappedOps[0]));
2952      return;
2953    }
2954  }
2955
2956  // We can't use either concat vectors or extract subvectors so fall back to
2957  // replacing the shuffle with extract and build vector.
2958  // to insert and build vector.
2959  EVT EltVT = VT.getVectorElementType();
2960  EVT PtrVT = TLI.getPointerTy();
2961  SmallVector<SDValue,8> Ops;
2962  for (unsigned i = 0; i != MaskNumElts; ++i) {
2963    if (Mask[i] < 0) {
2964      Ops.push_back(DAG.getUNDEF(EltVT));
2965    } else {
2966      int Idx = Mask[i];
2967      SDValue Res;
2968
2969      if (Idx < (int)SrcNumElts)
2970        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2971                          EltVT, Src1, DAG.getConstant(Idx, PtrVT));
2972      else
2973        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2974                          EltVT, Src2,
2975                          DAG.getConstant(Idx - SrcNumElts, PtrVT));
2976
2977      Ops.push_back(Res);
2978    }
2979  }
2980
2981  setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
2982                           VT, &Ops[0], Ops.size()));
2983}
2984
2985void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
2986  const Value *Op0 = I.getOperand(0);
2987  const Value *Op1 = I.getOperand(1);
2988  Type *AggTy = I.getType();
2989  Type *ValTy = Op1->getType();
2990  bool IntoUndef = isa<UndefValue>(Op0);
2991  bool FromUndef = isa<UndefValue>(Op1);
2992
2993  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
2994
2995  SmallVector<EVT, 4> AggValueVTs;
2996  ComputeValueVTs(TLI, AggTy, AggValueVTs);
2997  SmallVector<EVT, 4> ValValueVTs;
2998  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2999
3000  unsigned NumAggValues = AggValueVTs.size();
3001  unsigned NumValValues = ValValueVTs.size();
3002  SmallVector<SDValue, 4> Values(NumAggValues);
3003
3004  SDValue Agg = getValue(Op0);
3005  unsigned i = 0;
3006  // Copy the beginning value(s) from the original aggregate.
3007  for (; i != LinearIndex; ++i)
3008    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3009                SDValue(Agg.getNode(), Agg.getResNo() + i);
3010  // Copy values from the inserted value(s).
3011  if (NumValValues) {
3012    SDValue Val = getValue(Op1);
3013    for (; i != LinearIndex + NumValValues; ++i)
3014      Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3015                  SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3016  }
3017  // Copy remaining value(s) from the original aggregate.
3018  for (; i != NumAggValues; ++i)
3019    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3020                SDValue(Agg.getNode(), Agg.getResNo() + i);
3021
3022  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3023                           DAG.getVTList(&AggValueVTs[0], NumAggValues),
3024                           &Values[0], NumAggValues));
3025}
3026
3027void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
3028  const Value *Op0 = I.getOperand(0);
3029  Type *AggTy = Op0->getType();
3030  Type *ValTy = I.getType();
3031  bool OutOfUndef = isa<UndefValue>(Op0);
3032
3033  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3034
3035  SmallVector<EVT, 4> ValValueVTs;
3036  ComputeValueVTs(TLI, ValTy, ValValueVTs);
3037
3038  unsigned NumValValues = ValValueVTs.size();
3039
3040  // Ignore a extractvalue that produces an empty object
3041  if (!NumValValues) {
3042    setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3043    return;
3044  }
3045
3046  SmallVector<SDValue, 4> Values(NumValValues);
3047
3048  SDValue Agg = getValue(Op0);
3049  // Copy out the selected value(s).
3050  for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3051    Values[i - LinearIndex] =
3052      OutOfUndef ?
3053        DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3054        SDValue(Agg.getNode(), Agg.getResNo() + i);
3055
3056  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3057                           DAG.getVTList(&ValValueVTs[0], NumValValues),
3058                           &Values[0], NumValValues));
3059}
3060
3061void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3062  SDValue N = getValue(I.getOperand(0));
3063  Type *Ty = I.getOperand(0)->getType();
3064
3065  for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
3066       OI != E; ++OI) {
3067    const Value *Idx = *OI;
3068    if (StructType *StTy = dyn_cast<StructType>(Ty)) {
3069      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
3070      if (Field) {
3071        // N = N + Offset
3072        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
3073        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
3074                        DAG.getIntPtrConstant(Offset));
3075      }
3076
3077      Ty = StTy->getElementType(Field);
3078    } else {
3079      Ty = cast<SequentialType>(Ty)->getElementType();
3080
3081      // If this is a constant subscript, handle it quickly.
3082      if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
3083        if (CI->isZero()) continue;
3084        uint64_t Offs =
3085            TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
3086        SDValue OffsVal;
3087        EVT PTy = TLI.getPointerTy();
3088        unsigned PtrBits = PTy.getSizeInBits();
3089        if (PtrBits < 64)
3090          OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
3091                                TLI.getPointerTy(),
3092                                DAG.getConstant(Offs, MVT::i64));
3093        else
3094          OffsVal = DAG.getIntPtrConstant(Offs);
3095
3096        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
3097                        OffsVal);
3098        continue;
3099      }
3100
3101      // N = N + Idx * ElementSize;
3102      APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
3103                                TD->getTypeAllocSize(Ty));
3104      SDValue IdxN = getValue(Idx);
3105
3106      // If the index is smaller or larger than intptr_t, truncate or extend
3107      // it.
3108      IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType());
3109
3110      // If this is a multiply by a power of two, turn it into a shl
3111      // immediately.  This is a very common case.
3112      if (ElementSize != 1) {
3113        if (ElementSize.isPowerOf2()) {
3114          unsigned Amt = ElementSize.logBase2();
3115          IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(),
3116                             N.getValueType(), IdxN,
3117                             DAG.getConstant(Amt, IdxN.getValueType()));
3118        } else {
3119          SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy());
3120          IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(),
3121                             N.getValueType(), IdxN, Scale);
3122        }
3123      }
3124
3125      N = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3126                      N.getValueType(), N, IdxN);
3127    }
3128  }
3129
3130  setValue(&I, N);
3131}
3132
3133void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3134  // If this is a fixed sized alloca in the entry block of the function,
3135  // allocate it statically on the stack.
3136  if (FuncInfo.StaticAllocaMap.count(&I))
3137    return;   // getValue will auto-populate this.
3138
3139  Type *Ty = I.getAllocatedType();
3140  uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
3141  unsigned Align =
3142    std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
3143             I.getAlignment());
3144
3145  SDValue AllocSize = getValue(I.getArraySize());
3146
3147  EVT IntPtr = TLI.getPointerTy();
3148  if (AllocSize.getValueType() != IntPtr)
3149    AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr);
3150
3151  AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr,
3152                          AllocSize,
3153                          DAG.getConstant(TySize, IntPtr));
3154
3155  // Handle alignment.  If the requested alignment is less than or equal to
3156  // the stack alignment, ignore it.  If the size is greater than or equal to
3157  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3158  unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
3159  if (Align <= StackAlign)
3160    Align = 0;
3161
3162  // Round the size of the allocation up to the stack alignment size
3163  // by add SA-1 to the size.
3164  AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3165                          AllocSize.getValueType(), AllocSize,
3166                          DAG.getIntPtrConstant(StackAlign-1));
3167
3168  // Mask out the low bits for alignment purposes.
3169  AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(),
3170                          AllocSize.getValueType(), AllocSize,
3171                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
3172
3173  SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
3174  SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3175  SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(),
3176                            VTs, Ops, 3);
3177  setValue(&I, DSA);
3178  DAG.setRoot(DSA.getValue(1));
3179
3180  // Inform the Frame Information that we have just allocated a variable-sized
3181  // object.
3182  FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1);
3183}
3184
3185void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3186  if (I.isAtomic())
3187    return visitAtomicLoad(I);
3188
3189  const Value *SV = I.getOperand(0);
3190  SDValue Ptr = getValue(SV);
3191
3192  Type *Ty = I.getType();
3193
3194  bool isVolatile = I.isVolatile();
3195  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3196  bool isInvariant = I.getMetadata("invariant.load") != 0;
3197  unsigned Alignment = I.getAlignment();
3198  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3199
3200  SmallVector<EVT, 4> ValueVTs;
3201  SmallVector<uint64_t, 4> Offsets;
3202  ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
3203  unsigned NumValues = ValueVTs.size();
3204  if (NumValues == 0)
3205    return;
3206
3207  SDValue Root;
3208  bool ConstantMemory = false;
3209  if (I.isVolatile() || NumValues > MaxParallelChains)
3210    // Serialize volatile loads with other side effects.
3211    Root = getRoot();
3212  else if (AA->pointsToConstantMemory(
3213             AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) {
3214    // Do not serialize (non-volatile) loads of constant memory with anything.
3215    Root = DAG.getEntryNode();
3216    ConstantMemory = true;
3217  } else {
3218    // Do not serialize non-volatile loads against each other.
3219    Root = DAG.getRoot();
3220  }
3221
3222  SmallVector<SDValue, 4> Values(NumValues);
3223  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3224                                          NumValues));
3225  EVT PtrVT = Ptr.getValueType();
3226  unsigned ChainI = 0;
3227  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3228    // Serializing loads here may result in excessive register pressure, and
3229    // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3230    // could recover a bit by hoisting nodes upward in the chain by recognizing
3231    // they are side-effect free or do not alias. The optimizer should really
3232    // avoid this case by converting large object/array copies to llvm.memcpy
3233    // (MaxParallelChains should always remain as failsafe).
3234    if (ChainI == MaxParallelChains) {
3235      assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3236      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3237                                  MVT::Other, &Chains[0], ChainI);
3238      Root = Chain;
3239      ChainI = 0;
3240    }
3241    SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3242                            PtrVT, Ptr,
3243                            DAG.getConstant(Offsets[i], PtrVT));
3244    SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root,
3245                            A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
3246                            isNonTemporal, isInvariant, Alignment, TBAAInfo);
3247
3248    Values[i] = L;
3249    Chains[ChainI] = L.getValue(1);
3250  }
3251
3252  if (!ConstantMemory) {
3253    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3254                                MVT::Other, &Chains[0], ChainI);
3255    if (isVolatile)
3256      DAG.setRoot(Chain);
3257    else
3258      PendingLoads.push_back(Chain);
3259  }
3260
3261  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3262                           DAG.getVTList(&ValueVTs[0], NumValues),
3263                           &Values[0], NumValues));
3264}
3265
3266void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3267  if (I.isAtomic())
3268    return visitAtomicStore(I);
3269
3270  const Value *SrcV = I.getOperand(0);
3271  const Value *PtrV = I.getOperand(1);
3272
3273  SmallVector<EVT, 4> ValueVTs;
3274  SmallVector<uint64_t, 4> Offsets;
3275  ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
3276  unsigned NumValues = ValueVTs.size();
3277  if (NumValues == 0)
3278    return;
3279
3280  // Get the lowered operands. Note that we do this after
3281  // checking if NumResults is zero, because with zero results
3282  // the operands won't have values in the map.
3283  SDValue Src = getValue(SrcV);
3284  SDValue Ptr = getValue(PtrV);
3285
3286  SDValue Root = getRoot();
3287  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3288                                          NumValues));
3289  EVT PtrVT = Ptr.getValueType();
3290  bool isVolatile = I.isVolatile();
3291  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3292  unsigned Alignment = I.getAlignment();
3293  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3294
3295  unsigned ChainI = 0;
3296  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3297    // See visitLoad comments.
3298    if (ChainI == MaxParallelChains) {
3299      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3300                                  MVT::Other, &Chains[0], ChainI);
3301      Root = Chain;
3302      ChainI = 0;
3303    }
3304    SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr,
3305                              DAG.getConstant(Offsets[i], PtrVT));
3306    SDValue St = DAG.getStore(Root, getCurDebugLoc(),
3307                              SDValue(Src.getNode(), Src.getResNo() + i),
3308                              Add, MachinePointerInfo(PtrV, Offsets[i]),
3309                              isVolatile, isNonTemporal, Alignment, TBAAInfo);
3310    Chains[ChainI] = St;
3311  }
3312
3313  SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3314                                  MVT::Other, &Chains[0], ChainI);
3315  ++SDNodeOrder;
3316  AssignOrderingToNode(StoreNode.getNode());
3317  DAG.setRoot(StoreNode);
3318}
3319
3320static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order,
3321                                    SynchronizationScope Scope,
3322                                    bool Before, DebugLoc dl,
3323                                    SelectionDAG &DAG,
3324                                    const TargetLowering &TLI) {
3325  // Fence, if necessary
3326  if (Before) {
3327    if (Order == AcquireRelease || Order == SequentiallyConsistent)
3328      Order = Release;
3329    else if (Order == Acquire || Order == Monotonic)
3330      return Chain;
3331  } else {
3332    if (Order == AcquireRelease)
3333      Order = Acquire;
3334    else if (Order == Release || Order == Monotonic)
3335      return Chain;
3336  }
3337  SDValue Ops[3];
3338  Ops[0] = Chain;
3339  Ops[1] = DAG.getConstant(Order, TLI.getPointerTy());
3340  Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy());
3341  return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3);
3342}
3343
3344void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
3345  DebugLoc dl = getCurDebugLoc();
3346  AtomicOrdering Order = I.getOrdering();
3347  SynchronizationScope Scope = I.getSynchScope();
3348
3349  SDValue InChain = getRoot();
3350
3351  if (TLI.getInsertFencesForAtomic())
3352    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3353                                   DAG, TLI);
3354
3355  SDValue L =
3356    DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl,
3357                  getValue(I.getCompareOperand()).getValueType().getSimpleVT(),
3358                  InChain,
3359                  getValue(I.getPointerOperand()),
3360                  getValue(I.getCompareOperand()),
3361                  getValue(I.getNewValOperand()),
3362                  MachinePointerInfo(I.getPointerOperand()), 0 /* Alignment */,
3363                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3364                  Scope);
3365
3366  SDValue OutChain = L.getValue(1);
3367
3368  if (TLI.getInsertFencesForAtomic())
3369    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3370                                    DAG, TLI);
3371
3372  setValue(&I, L);
3373  DAG.setRoot(OutChain);
3374}
3375
3376void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
3377  DebugLoc dl = getCurDebugLoc();
3378  ISD::NodeType NT;
3379  switch (I.getOperation()) {
3380  default: llvm_unreachable("Unknown atomicrmw operation");
3381  case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
3382  case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
3383  case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
3384  case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
3385  case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
3386  case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
3387  case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
3388  case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
3389  case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
3390  case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
3391  case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
3392  }
3393  AtomicOrdering Order = I.getOrdering();
3394  SynchronizationScope Scope = I.getSynchScope();
3395
3396  SDValue InChain = getRoot();
3397
3398  if (TLI.getInsertFencesForAtomic())
3399    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3400                                   DAG, TLI);
3401
3402  SDValue L =
3403    DAG.getAtomic(NT, dl,
3404                  getValue(I.getValOperand()).getValueType().getSimpleVT(),
3405                  InChain,
3406                  getValue(I.getPointerOperand()),
3407                  getValue(I.getValOperand()),
3408                  I.getPointerOperand(), 0 /* Alignment */,
3409                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3410                  Scope);
3411
3412  SDValue OutChain = L.getValue(1);
3413
3414  if (TLI.getInsertFencesForAtomic())
3415    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3416                                    DAG, TLI);
3417
3418  setValue(&I, L);
3419  DAG.setRoot(OutChain);
3420}
3421
3422void SelectionDAGBuilder::visitFence(const FenceInst &I) {
3423  DebugLoc dl = getCurDebugLoc();
3424  SDValue Ops[3];
3425  Ops[0] = getRoot();
3426  Ops[1] = DAG.getConstant(I.getOrdering(), TLI.getPointerTy());
3427  Ops[2] = DAG.getConstant(I.getSynchScope(), TLI.getPointerTy());
3428  DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3));
3429}
3430
3431void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
3432  DebugLoc dl = getCurDebugLoc();
3433  AtomicOrdering Order = I.getOrdering();
3434  SynchronizationScope Scope = I.getSynchScope();
3435
3436  SDValue InChain = getRoot();
3437
3438  EVT VT = EVT::getEVT(I.getType());
3439
3440  if (I.getAlignment() * 8 < VT.getSizeInBits())
3441    report_fatal_error("Cannot generate unaligned atomic load");
3442
3443  SDValue L =
3444    DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
3445                  getValue(I.getPointerOperand()),
3446                  I.getPointerOperand(), I.getAlignment(),
3447                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3448                  Scope);
3449
3450  SDValue OutChain = L.getValue(1);
3451
3452  if (TLI.getInsertFencesForAtomic())
3453    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3454                                    DAG, TLI);
3455
3456  setValue(&I, L);
3457  DAG.setRoot(OutChain);
3458}
3459
3460void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
3461  DebugLoc dl = getCurDebugLoc();
3462
3463  AtomicOrdering Order = I.getOrdering();
3464  SynchronizationScope Scope = I.getSynchScope();
3465
3466  SDValue InChain = getRoot();
3467
3468  EVT VT = EVT::getEVT(I.getValueOperand()->getType());
3469
3470  if (I.getAlignment() * 8 < VT.getSizeInBits())
3471    report_fatal_error("Cannot generate unaligned atomic store");
3472
3473  if (TLI.getInsertFencesForAtomic())
3474    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3475                                   DAG, TLI);
3476
3477  SDValue OutChain =
3478    DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
3479                  InChain,
3480                  getValue(I.getPointerOperand()),
3481                  getValue(I.getValueOperand()),
3482                  I.getPointerOperand(), I.getAlignment(),
3483                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3484                  Scope);
3485
3486  if (TLI.getInsertFencesForAtomic())
3487    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3488                                    DAG, TLI);
3489
3490  DAG.setRoot(OutChain);
3491}
3492
3493/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3494/// node.
3495void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3496                                               unsigned Intrinsic) {
3497  bool HasChain = !I.doesNotAccessMemory();
3498  bool OnlyLoad = HasChain && I.onlyReadsMemory();
3499
3500  // Build the operand list.
3501  SmallVector<SDValue, 8> Ops;
3502  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
3503    if (OnlyLoad) {
3504      // We don't need to serialize loads against other loads.
3505      Ops.push_back(DAG.getRoot());
3506    } else {
3507      Ops.push_back(getRoot());
3508    }
3509  }
3510
3511  // Info is set by getTgtMemInstrinsic
3512  TargetLowering::IntrinsicInfo Info;
3513  bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
3514
3515  // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3516  if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
3517      Info.opc == ISD::INTRINSIC_W_CHAIN)
3518    Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI.getPointerTy()));
3519
3520  // Add all operands of the call to the operand list.
3521  for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
3522    SDValue Op = getValue(I.getArgOperand(i));
3523    Ops.push_back(Op);
3524  }
3525
3526  SmallVector<EVT, 4> ValueVTs;
3527  ComputeValueVTs(TLI, I.getType(), ValueVTs);
3528
3529  if (HasChain)
3530    ValueVTs.push_back(MVT::Other);
3531
3532  SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
3533
3534  // Create the node.
3535  SDValue Result;
3536  if (IsTgtIntrinsic) {
3537    // This is target intrinsic that touches memory
3538    Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(),
3539                                     VTs, &Ops[0], Ops.size(),
3540                                     Info.memVT,
3541                                   MachinePointerInfo(Info.ptrVal, Info.offset),
3542                                     Info.align, Info.vol,
3543                                     Info.readMem, Info.writeMem);
3544  } else if (!HasChain) {
3545    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
3546                         VTs, &Ops[0], Ops.size());
3547  } else if (!I.getType()->isVoidTy()) {
3548    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
3549                         VTs, &Ops[0], Ops.size());
3550  } else {
3551    Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(),
3552                         VTs, &Ops[0], Ops.size());
3553  }
3554
3555  if (HasChain) {
3556    SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3557    if (OnlyLoad)
3558      PendingLoads.push_back(Chain);
3559    else
3560      DAG.setRoot(Chain);
3561  }
3562
3563  if (!I.getType()->isVoidTy()) {
3564    if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3565      EVT VT = TLI.getValueType(PTy);
3566      Result = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), VT, Result);
3567    }
3568
3569    setValue(&I, Result);
3570  }
3571}
3572
3573/// GetSignificand - Get the significand and build it into a floating-point
3574/// number with exponent of 1:
3575///
3576///   Op = (Op & 0x007fffff) | 0x3f800000;
3577///
3578/// where Op is the hexidecimal representation of floating point value.
3579static SDValue
3580GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) {
3581  SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3582                           DAG.getConstant(0x007fffff, MVT::i32));
3583  SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3584                           DAG.getConstant(0x3f800000, MVT::i32));
3585  return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
3586}
3587
3588/// GetExponent - Get the exponent:
3589///
3590///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3591///
3592/// where Op is the hexidecimal representation of floating point value.
3593static SDValue
3594GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3595            DebugLoc dl) {
3596  SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3597                           DAG.getConstant(0x7f800000, MVT::i32));
3598  SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3599                           DAG.getConstant(23, TLI.getPointerTy()));
3600  SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3601                           DAG.getConstant(127, MVT::i32));
3602  return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3603}
3604
3605/// getF32Constant - Get 32-bit floating point constant.
3606static SDValue
3607getF32Constant(SelectionDAG &DAG, unsigned Flt) {
3608  return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32);
3609}
3610
3611// implVisitAluOverflow - Lower arithmetic overflow instrinsics.
3612const char *
3613SelectionDAGBuilder::implVisitAluOverflow(const CallInst &I, ISD::NodeType Op) {
3614  SDValue Op1 = getValue(I.getArgOperand(0));
3615  SDValue Op2 = getValue(I.getArgOperand(1));
3616
3617  SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
3618  setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2));
3619  return 0;
3620}
3621
3622/// visitExp - Lower an exp intrinsic. Handles the special sequences for
3623/// limited-precision mode.
3624void
3625SelectionDAGBuilder::visitExp(const CallInst &I) {
3626  SDValue result;
3627  DebugLoc dl = getCurDebugLoc();
3628
3629  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3630      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3631    SDValue Op = getValue(I.getArgOperand(0));
3632
3633    // Put the exponent in the right bit position for later addition to the
3634    // final result:
3635    //
3636    //   #define LOG2OFe 1.4426950f
3637    //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3638    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3639                             getF32Constant(DAG, 0x3fb8aa3b));
3640    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3641
3642    //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3643    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3644    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3645
3646    //   IntegerPartOfX <<= 23;
3647    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3648                                 DAG.getConstant(23, TLI.getPointerTy()));
3649
3650    if (LimitFloatPrecision <= 6) {
3651      // For floating-point precision of 6:
3652      //
3653      //   TwoToFractionalPartOfX =
3654      //     0.997535578f +
3655      //       (0.735607626f + 0.252464424f * x) * x;
3656      //
3657      // error 0.0144103317, which is 6 bits
3658      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3659                               getF32Constant(DAG, 0x3e814304));
3660      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3661                               getF32Constant(DAG, 0x3f3c50c8));
3662      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3663      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3664                               getF32Constant(DAG, 0x3f7f5e7e));
3665      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t5);
3666
3667      // Add the exponent into the result in integer domain.
3668      SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3669                               TwoToFracPartOfX, IntegerPartOfX);
3670
3671      result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t6);
3672    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3673      // For floating-point precision of 12:
3674      //
3675      //   TwoToFractionalPartOfX =
3676      //     0.999892986f +
3677      //       (0.696457318f +
3678      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3679      //
3680      // 0.000107046256 error, which is 13 to 14 bits
3681      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3682                               getF32Constant(DAG, 0x3da235e3));
3683      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3684                               getF32Constant(DAG, 0x3e65b8f3));
3685      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3686      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3687                               getF32Constant(DAG, 0x3f324b07));
3688      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3689      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3690                               getF32Constant(DAG, 0x3f7ff8fd));
3691      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t7);
3692
3693      // Add the exponent into the result in integer domain.
3694      SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3695                               TwoToFracPartOfX, IntegerPartOfX);
3696
3697      result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t8);
3698    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3699      // For floating-point precision of 18:
3700      //
3701      //   TwoToFractionalPartOfX =
3702      //     0.999999982f +
3703      //       (0.693148872f +
3704      //         (0.240227044f +
3705      //           (0.554906021e-1f +
3706      //             (0.961591928e-2f +
3707      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3708      //
3709      // error 2.47208000*10^(-7), which is better than 18 bits
3710      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3711                               getF32Constant(DAG, 0x3924b03e));
3712      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3713                               getF32Constant(DAG, 0x3ab24b87));
3714      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3715      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3716                               getF32Constant(DAG, 0x3c1d8c17));
3717      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3718      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3719                               getF32Constant(DAG, 0x3d634a1d));
3720      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3721      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3722                               getF32Constant(DAG, 0x3e75fe14));
3723      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3724      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3725                                getF32Constant(DAG, 0x3f317234));
3726      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3727      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3728                                getF32Constant(DAG, 0x3f800000));
3729      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,
3730                                             MVT::i32, t13);
3731
3732      // Add the exponent into the result in integer domain.
3733      SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3734                                TwoToFracPartOfX, IntegerPartOfX);
3735
3736      result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t14);
3737    }
3738  } else {
3739    // No special expansion.
3740    result = DAG.getNode(ISD::FEXP, dl,
3741                         getValue(I.getArgOperand(0)).getValueType(),
3742                         getValue(I.getArgOperand(0)));
3743  }
3744
3745  setValue(&I, result);
3746}
3747
3748/// visitLog - Lower a log intrinsic. Handles the special sequences for
3749/// limited-precision mode.
3750void
3751SelectionDAGBuilder::visitLog(const CallInst &I) {
3752  SDValue result;
3753  DebugLoc dl = getCurDebugLoc();
3754
3755  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3756      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3757    SDValue Op = getValue(I.getArgOperand(0));
3758    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3759
3760    // Scale the exponent by log(2) [0.69314718f].
3761    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3762    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3763                                        getF32Constant(DAG, 0x3f317218));
3764
3765    // Get the significand and build it into a floating-point number with
3766    // exponent of 1.
3767    SDValue X = GetSignificand(DAG, Op1, dl);
3768
3769    if (LimitFloatPrecision <= 6) {
3770      // For floating-point precision of 6:
3771      //
3772      //   LogofMantissa =
3773      //     -1.1609546f +
3774      //       (1.4034025f - 0.23903021f * x) * x;
3775      //
3776      // error 0.0034276066, which is better than 8 bits
3777      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3778                               getF32Constant(DAG, 0xbe74c456));
3779      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3780                               getF32Constant(DAG, 0x3fb3a2b1));
3781      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3782      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3783                                          getF32Constant(DAG, 0x3f949a29));
3784
3785      result = DAG.getNode(ISD::FADD, dl,
3786                           MVT::f32, LogOfExponent, LogOfMantissa);
3787    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3788      // For floating-point precision of 12:
3789      //
3790      //   LogOfMantissa =
3791      //     -1.7417939f +
3792      //       (2.8212026f +
3793      //         (-1.4699568f +
3794      //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3795      //
3796      // error 0.000061011436, which is 14 bits
3797      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3798                               getF32Constant(DAG, 0xbd67b6d6));
3799      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3800                               getF32Constant(DAG, 0x3ee4f4b8));
3801      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3802      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3803                               getF32Constant(DAG, 0x3fbc278b));
3804      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3805      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3806                               getF32Constant(DAG, 0x40348e95));
3807      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3808      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3809                                          getF32Constant(DAG, 0x3fdef31a));
3810
3811      result = DAG.getNode(ISD::FADD, dl,
3812                           MVT::f32, LogOfExponent, LogOfMantissa);
3813    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3814      // For floating-point precision of 18:
3815      //
3816      //   LogOfMantissa =
3817      //     -2.1072184f +
3818      //       (4.2372794f +
3819      //         (-3.7029485f +
3820      //           (2.2781945f +
3821      //             (-0.87823314f +
3822      //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3823      //
3824      // error 0.0000023660568, which is better than 18 bits
3825      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3826                               getF32Constant(DAG, 0xbc91e5ac));
3827      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3828                               getF32Constant(DAG, 0x3e4350aa));
3829      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3830      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3831                               getF32Constant(DAG, 0x3f60d3e3));
3832      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3833      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3834                               getF32Constant(DAG, 0x4011cdf0));
3835      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3836      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3837                               getF32Constant(DAG, 0x406cfd1c));
3838      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3839      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3840                               getF32Constant(DAG, 0x408797cb));
3841      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3842      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3843                                          getF32Constant(DAG, 0x4006dcab));
3844
3845      result = DAG.getNode(ISD::FADD, dl,
3846                           MVT::f32, LogOfExponent, LogOfMantissa);
3847    }
3848  } else {
3849    // No special expansion.
3850    result = DAG.getNode(ISD::FLOG, dl,
3851                         getValue(I.getArgOperand(0)).getValueType(),
3852                         getValue(I.getArgOperand(0)));
3853  }
3854
3855  setValue(&I, result);
3856}
3857
3858/// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for
3859/// limited-precision mode.
3860void
3861SelectionDAGBuilder::visitLog2(const CallInst &I) {
3862  SDValue result;
3863  DebugLoc dl = getCurDebugLoc();
3864
3865  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3866      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3867    SDValue Op = getValue(I.getArgOperand(0));
3868    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3869
3870    // Get the exponent.
3871    SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3872
3873    // Get the significand and build it into a floating-point number with
3874    // exponent of 1.
3875    SDValue X = GetSignificand(DAG, Op1, dl);
3876
3877    // Different possible minimax approximations of significand in
3878    // floating-point for various degrees of accuracy over [1,2].
3879    if (LimitFloatPrecision <= 6) {
3880      // For floating-point precision of 6:
3881      //
3882      //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3883      //
3884      // error 0.0049451742, which is more than 7 bits
3885      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3886                               getF32Constant(DAG, 0xbeb08fe0));
3887      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3888                               getF32Constant(DAG, 0x40019463));
3889      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3890      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3891                                           getF32Constant(DAG, 0x3fd6633d));
3892
3893      result = DAG.getNode(ISD::FADD, dl,
3894                           MVT::f32, LogOfExponent, Log2ofMantissa);
3895    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3896      // For floating-point precision of 12:
3897      //
3898      //   Log2ofMantissa =
3899      //     -2.51285454f +
3900      //       (4.07009056f +
3901      //         (-2.12067489f +
3902      //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3903      //
3904      // error 0.0000876136000, which is better than 13 bits
3905      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3906                               getF32Constant(DAG, 0xbda7262e));
3907      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3908                               getF32Constant(DAG, 0x3f25280b));
3909      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3910      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3911                               getF32Constant(DAG, 0x4007b923));
3912      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3913      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3914                               getF32Constant(DAG, 0x40823e2f));
3915      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3916      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3917                                           getF32Constant(DAG, 0x4020d29c));
3918
3919      result = DAG.getNode(ISD::FADD, dl,
3920                           MVT::f32, LogOfExponent, Log2ofMantissa);
3921    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3922      // For floating-point precision of 18:
3923      //
3924      //   Log2ofMantissa =
3925      //     -3.0400495f +
3926      //       (6.1129976f +
3927      //         (-5.3420409f +
3928      //           (3.2865683f +
3929      //             (-1.2669343f +
3930      //               (0.27515199f -
3931      //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3932      //
3933      // error 0.0000018516, which is better than 18 bits
3934      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3935                               getF32Constant(DAG, 0xbcd2769e));
3936      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3937                               getF32Constant(DAG, 0x3e8ce0b9));
3938      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3939      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3940                               getF32Constant(DAG, 0x3fa22ae7));
3941      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3942      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3943                               getF32Constant(DAG, 0x40525723));
3944      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3945      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3946                               getF32Constant(DAG, 0x40aaf200));
3947      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3948      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3949                               getF32Constant(DAG, 0x40c39dad));
3950      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3951      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3952                                           getF32Constant(DAG, 0x4042902c));
3953
3954      result = DAG.getNode(ISD::FADD, dl,
3955                           MVT::f32, LogOfExponent, Log2ofMantissa);
3956    }
3957  } else {
3958    // No special expansion.
3959    result = DAG.getNode(ISD::FLOG2, dl,
3960                         getValue(I.getArgOperand(0)).getValueType(),
3961                         getValue(I.getArgOperand(0)));
3962  }
3963
3964  setValue(&I, result);
3965}
3966
3967/// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for
3968/// limited-precision mode.
3969void
3970SelectionDAGBuilder::visitLog10(const CallInst &I) {
3971  SDValue result;
3972  DebugLoc dl = getCurDebugLoc();
3973
3974  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3975      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3976    SDValue Op = getValue(I.getArgOperand(0));
3977    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3978
3979    // Scale the exponent by log10(2) [0.30102999f].
3980    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3981    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3982                                        getF32Constant(DAG, 0x3e9a209a));
3983
3984    // Get the significand and build it into a floating-point number with
3985    // exponent of 1.
3986    SDValue X = GetSignificand(DAG, Op1, dl);
3987
3988    if (LimitFloatPrecision <= 6) {
3989      // For floating-point precision of 6:
3990      //
3991      //   Log10ofMantissa =
3992      //     -0.50419619f +
3993      //       (0.60948995f - 0.10380950f * x) * x;
3994      //
3995      // error 0.0014886165, which is 6 bits
3996      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3997                               getF32Constant(DAG, 0xbdd49a13));
3998      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3999                               getF32Constant(DAG, 0x3f1c0789));
4000      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4001      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4002                                            getF32Constant(DAG, 0x3f011300));
4003
4004      result = DAG.getNode(ISD::FADD, dl,
4005                           MVT::f32, LogOfExponent, Log10ofMantissa);
4006    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
4007      // For floating-point precision of 12:
4008      //
4009      //   Log10ofMantissa =
4010      //     -0.64831180f +
4011      //       (0.91751397f +
4012      //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4013      //
4014      // error 0.00019228036, which is better than 12 bits
4015      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4016                               getF32Constant(DAG, 0x3d431f31));
4017      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4018                               getF32Constant(DAG, 0x3ea21fb2));
4019      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4020      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4021                               getF32Constant(DAG, 0x3f6ae232));
4022      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4023      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4024                                            getF32Constant(DAG, 0x3f25f7c3));
4025
4026      result = DAG.getNode(ISD::FADD, dl,
4027                           MVT::f32, LogOfExponent, Log10ofMantissa);
4028    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
4029      // For floating-point precision of 18:
4030      //
4031      //   Log10ofMantissa =
4032      //     -0.84299375f +
4033      //       (1.5327582f +
4034      //         (-1.0688956f +
4035      //           (0.49102474f +
4036      //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4037      //
4038      // error 0.0000037995730, which is better than 18 bits
4039      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4040                               getF32Constant(DAG, 0x3c5d51ce));
4041      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4042                               getF32Constant(DAG, 0x3e00685a));
4043      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4044      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4045                               getF32Constant(DAG, 0x3efb6798));
4046      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4047      SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4048                               getF32Constant(DAG, 0x3f88d192));
4049      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4050      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4051                               getF32Constant(DAG, 0x3fc4316c));
4052      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4053      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4054                                            getF32Constant(DAG, 0x3f57ce70));
4055
4056      result = DAG.getNode(ISD::FADD, dl,
4057                           MVT::f32, LogOfExponent, Log10ofMantissa);
4058    }
4059  } else {
4060    // No special expansion.
4061    result = DAG.getNode(ISD::FLOG10, dl,
4062                         getValue(I.getArgOperand(0)).getValueType(),
4063                         getValue(I.getArgOperand(0)));
4064  }
4065
4066  setValue(&I, result);
4067}
4068
4069/// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4070/// limited-precision mode.
4071void
4072SelectionDAGBuilder::visitExp2(const CallInst &I) {
4073  SDValue result;
4074  DebugLoc dl = getCurDebugLoc();
4075
4076  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
4077      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4078    SDValue Op = getValue(I.getArgOperand(0));
4079
4080    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
4081
4082    //   FractionalPartOfX = x - (float)IntegerPartOfX;
4083    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4084    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
4085
4086    //   IntegerPartOfX <<= 23;
4087    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4088                                 DAG.getConstant(23, TLI.getPointerTy()));
4089
4090    if (LimitFloatPrecision <= 6) {
4091      // For floating-point precision of 6:
4092      //
4093      //   TwoToFractionalPartOfX =
4094      //     0.997535578f +
4095      //       (0.735607626f + 0.252464424f * x) * x;
4096      //
4097      // error 0.0144103317, which is 6 bits
4098      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4099                               getF32Constant(DAG, 0x3e814304));
4100      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4101                               getF32Constant(DAG, 0x3f3c50c8));
4102      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4103      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4104                               getF32Constant(DAG, 0x3f7f5e7e));
4105      SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
4106      SDValue TwoToFractionalPartOfX =
4107        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
4108
4109      result = DAG.getNode(ISD::BITCAST, dl,
4110                           MVT::f32, TwoToFractionalPartOfX);
4111    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
4112      // For floating-point precision of 12:
4113      //
4114      //   TwoToFractionalPartOfX =
4115      //     0.999892986f +
4116      //       (0.696457318f +
4117      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4118      //
4119      // error 0.000107046256, which is 13 to 14 bits
4120      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4121                               getF32Constant(DAG, 0x3da235e3));
4122      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4123                               getF32Constant(DAG, 0x3e65b8f3));
4124      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4125      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4126                               getF32Constant(DAG, 0x3f324b07));
4127      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4128      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4129                               getF32Constant(DAG, 0x3f7ff8fd));
4130      SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
4131      SDValue TwoToFractionalPartOfX =
4132        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
4133
4134      result = DAG.getNode(ISD::BITCAST, dl,
4135                           MVT::f32, TwoToFractionalPartOfX);
4136    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
4137      // For floating-point precision of 18:
4138      //
4139      //   TwoToFractionalPartOfX =
4140      //     0.999999982f +
4141      //       (0.693148872f +
4142      //         (0.240227044f +
4143      //           (0.554906021e-1f +
4144      //             (0.961591928e-2f +
4145      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4146      // error 2.47208000*10^(-7), which is better than 18 bits
4147      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4148                               getF32Constant(DAG, 0x3924b03e));
4149      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4150                               getF32Constant(DAG, 0x3ab24b87));
4151      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4152      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4153                               getF32Constant(DAG, 0x3c1d8c17));
4154      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4155      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4156                               getF32Constant(DAG, 0x3d634a1d));
4157      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4158      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4159                               getF32Constant(DAG, 0x3e75fe14));
4160      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4161      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4162                                getF32Constant(DAG, 0x3f317234));
4163      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4164      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4165                                getF32Constant(DAG, 0x3f800000));
4166      SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
4167      SDValue TwoToFractionalPartOfX =
4168        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
4169
4170      result = DAG.getNode(ISD::BITCAST, dl,
4171                           MVT::f32, TwoToFractionalPartOfX);
4172    }
4173  } else {
4174    // No special expansion.
4175    result = DAG.getNode(ISD::FEXP2, dl,
4176                         getValue(I.getArgOperand(0)).getValueType(),
4177                         getValue(I.getArgOperand(0)));
4178  }
4179
4180  setValue(&I, result);
4181}
4182
4183/// visitPow - Lower a pow intrinsic. Handles the special sequences for
4184/// limited-precision mode with x == 10.0f.
4185void
4186SelectionDAGBuilder::visitPow(const CallInst &I) {
4187  SDValue result;
4188  const Value *Val = I.getArgOperand(0);
4189  DebugLoc dl = getCurDebugLoc();
4190  bool IsExp10 = false;
4191
4192  if (getValue(Val).getValueType() == MVT::f32 &&
4193      getValue(I.getArgOperand(1)).getValueType() == MVT::f32 &&
4194      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4195    if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) {
4196      if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
4197        APFloat Ten(10.0f);
4198        IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten);
4199      }
4200    }
4201  }
4202
4203  if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4204    SDValue Op = getValue(I.getArgOperand(1));
4205
4206    // Put the exponent in the right bit position for later addition to the
4207    // final result:
4208    //
4209    //   #define LOG2OF10 3.3219281f
4210    //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
4211    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4212                             getF32Constant(DAG, 0x40549a78));
4213    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4214
4215    //   FractionalPartOfX = x - (float)IntegerPartOfX;
4216    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4217    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4218
4219    //   IntegerPartOfX <<= 23;
4220    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4221                                 DAG.getConstant(23, TLI.getPointerTy()));
4222
4223    if (LimitFloatPrecision <= 6) {
4224      // For floating-point precision of 6:
4225      //
4226      //   twoToFractionalPartOfX =
4227      //     0.997535578f +
4228      //       (0.735607626f + 0.252464424f * x) * x;
4229      //
4230      // error 0.0144103317, which is 6 bits
4231      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4232                               getF32Constant(DAG, 0x3e814304));
4233      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4234                               getF32Constant(DAG, 0x3f3c50c8));
4235      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4236      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4237                               getF32Constant(DAG, 0x3f7f5e7e));
4238      SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
4239      SDValue TwoToFractionalPartOfX =
4240        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
4241
4242      result = DAG.getNode(ISD::BITCAST, dl,
4243                           MVT::f32, TwoToFractionalPartOfX);
4244    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
4245      // For floating-point precision of 12:
4246      //
4247      //   TwoToFractionalPartOfX =
4248      //     0.999892986f +
4249      //       (0.696457318f +
4250      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4251      //
4252      // error 0.000107046256, which is 13 to 14 bits
4253      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4254                               getF32Constant(DAG, 0x3da235e3));
4255      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4256                               getF32Constant(DAG, 0x3e65b8f3));
4257      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4258      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4259                               getF32Constant(DAG, 0x3f324b07));
4260      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4261      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4262                               getF32Constant(DAG, 0x3f7ff8fd));
4263      SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
4264      SDValue TwoToFractionalPartOfX =
4265        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
4266
4267      result = DAG.getNode(ISD::BITCAST, dl,
4268                           MVT::f32, TwoToFractionalPartOfX);
4269    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
4270      // For floating-point precision of 18:
4271      //
4272      //   TwoToFractionalPartOfX =
4273      //     0.999999982f +
4274      //       (0.693148872f +
4275      //         (0.240227044f +
4276      //           (0.554906021e-1f +
4277      //             (0.961591928e-2f +
4278      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4279      // error 2.47208000*10^(-7), which is better than 18 bits
4280      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4281                               getF32Constant(DAG, 0x3924b03e));
4282      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4283                               getF32Constant(DAG, 0x3ab24b87));
4284      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4285      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4286                               getF32Constant(DAG, 0x3c1d8c17));
4287      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4288      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4289                               getF32Constant(DAG, 0x3d634a1d));
4290      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4291      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4292                               getF32Constant(DAG, 0x3e75fe14));
4293      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4294      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4295                                getF32Constant(DAG, 0x3f317234));
4296      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4297      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4298                                getF32Constant(DAG, 0x3f800000));
4299      SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
4300      SDValue TwoToFractionalPartOfX =
4301        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
4302
4303      result = DAG.getNode(ISD::BITCAST, dl,
4304                           MVT::f32, TwoToFractionalPartOfX);
4305    }
4306  } else {
4307    // No special expansion.
4308    result = DAG.getNode(ISD::FPOW, dl,
4309                         getValue(I.getArgOperand(0)).getValueType(),
4310                         getValue(I.getArgOperand(0)),
4311                         getValue(I.getArgOperand(1)));
4312  }
4313
4314  setValue(&I, result);
4315}
4316
4317
4318/// ExpandPowI - Expand a llvm.powi intrinsic.
4319static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS,
4320                          SelectionDAG &DAG) {
4321  // If RHS is a constant, we can expand this out to a multiplication tree,
4322  // otherwise we end up lowering to a call to __powidf2 (for example).  When
4323  // optimizing for size, we only want to do this if the expansion would produce
4324  // a small number of multiplies, otherwise we do the full expansion.
4325  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4326    // Get the exponent as a positive value.
4327    unsigned Val = RHSC->getSExtValue();
4328    if ((int)Val < 0) Val = -Val;
4329
4330    // powi(x, 0) -> 1.0
4331    if (Val == 0)
4332      return DAG.getConstantFP(1.0, LHS.getValueType());
4333
4334    const Function *F = DAG.getMachineFunction().getFunction();
4335    if (!F->hasFnAttr(Attribute::OptimizeForSize) ||
4336        // If optimizing for size, don't insert too many multiplies.  This
4337        // inserts up to 5 multiplies.
4338        CountPopulation_32(Val)+Log2_32(Val) < 7) {
4339      // We use the simple binary decomposition method to generate the multiply
4340      // sequence.  There are more optimal ways to do this (for example,
4341      // powi(x,15) generates one more multiply than it should), but this has
4342      // the benefit of being both really simple and much better than a libcall.
4343      SDValue Res;  // Logically starts equal to 1.0
4344      SDValue CurSquare = LHS;
4345      while (Val) {
4346        if (Val & 1) {
4347          if (Res.getNode())
4348            Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4349          else
4350            Res = CurSquare;  // 1.0*CurSquare.
4351        }
4352
4353        CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4354                                CurSquare, CurSquare);
4355        Val >>= 1;
4356      }
4357
4358      // If the original was negative, invert the result, producing 1/(x*x*x).
4359      if (RHSC->getSExtValue() < 0)
4360        Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4361                          DAG.getConstantFP(1.0, LHS.getValueType()), Res);
4362      return Res;
4363    }
4364  }
4365
4366  // Otherwise, expand to a libcall.
4367  return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4368}
4369
4370// getTruncatedArgReg - Find underlying register used for an truncated
4371// argument.
4372static unsigned getTruncatedArgReg(const SDValue &N) {
4373  if (N.getOpcode() != ISD::TRUNCATE)
4374    return 0;
4375
4376  const SDValue &Ext = N.getOperand(0);
4377  if (Ext.getOpcode() == ISD::AssertZext || Ext.getOpcode() == ISD::AssertSext){
4378    const SDValue &CFR = Ext.getOperand(0);
4379    if (CFR.getOpcode() == ISD::CopyFromReg)
4380      return cast<RegisterSDNode>(CFR.getOperand(1))->getReg();
4381    else
4382      if (CFR.getOpcode() == ISD::TRUNCATE)
4383        return getTruncatedArgReg(CFR);
4384  }
4385  return 0;
4386}
4387
4388/// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4389/// argument, create the corresponding DBG_VALUE machine instruction for it now.
4390/// At the end of instruction selection, they will be inserted to the entry BB.
4391bool
4392SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
4393                                              int64_t Offset,
4394                                              const SDValue &N) {
4395  const Argument *Arg = dyn_cast<Argument>(V);
4396  if (!Arg)
4397    return false;
4398
4399  MachineFunction &MF = DAG.getMachineFunction();
4400  const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
4401  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
4402
4403  // Ignore inlined function arguments here.
4404  DIVariable DV(Variable);
4405  if (DV.isInlinedFnArgument(MF.getFunction()))
4406    return false;
4407
4408  unsigned Reg = 0;
4409  // Some arguments' frame index is recorded during argument lowering.
4410  Offset = FuncInfo.getArgumentFrameIndex(Arg);
4411  if (Offset)
4412      Reg = TRI->getFrameRegister(MF);
4413
4414  if (!Reg && N.getNode()) {
4415    if (N.getOpcode() == ISD::CopyFromReg)
4416      Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
4417    else
4418      Reg = getTruncatedArgReg(N);
4419    if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4420      MachineRegisterInfo &RegInfo = MF.getRegInfo();
4421      unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4422      if (PR)
4423        Reg = PR;
4424    }
4425  }
4426
4427  if (!Reg) {
4428    // Check if ValueMap has reg number.
4429    DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4430    if (VMI != FuncInfo.ValueMap.end())
4431      Reg = VMI->second;
4432  }
4433
4434  if (!Reg && N.getNode()) {
4435    // Check if frame index is available.
4436    if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4437      if (FrameIndexSDNode *FINode =
4438          dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) {
4439        Reg = TRI->getFrameRegister(MF);
4440        Offset = FINode->getIndex();
4441      }
4442  }
4443
4444  if (!Reg)
4445    return false;
4446
4447  MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(),
4448                                    TII->get(TargetOpcode::DBG_VALUE))
4449    .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable);
4450  FuncInfo.ArgDbgValues.push_back(&*MIB);
4451  return true;
4452}
4453
4454// VisualStudio defines setjmp as _setjmp
4455#if defined(_MSC_VER) && defined(setjmp) && \
4456                         !defined(setjmp_undefined_for_msvc)
4457#  pragma push_macro("setjmp")
4458#  undef setjmp
4459#  define setjmp_undefined_for_msvc
4460#endif
4461
4462/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4463/// we want to emit this as a call to a named external function, return the name
4464/// otherwise lower it and return null.
4465const char *
4466SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4467  DebugLoc dl = getCurDebugLoc();
4468  SDValue Res;
4469
4470  switch (Intrinsic) {
4471  default:
4472    // By default, turn this into a target intrinsic node.
4473    visitTargetIntrinsic(I, Intrinsic);
4474    return 0;
4475  case Intrinsic::vastart:  visitVAStart(I); return 0;
4476  case Intrinsic::vaend:    visitVAEnd(I); return 0;
4477  case Intrinsic::vacopy:   visitVACopy(I); return 0;
4478  case Intrinsic::returnaddress:
4479    setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(),
4480                             getValue(I.getArgOperand(0))));
4481    return 0;
4482  case Intrinsic::frameaddress:
4483    setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(),
4484                             getValue(I.getArgOperand(0))));
4485    return 0;
4486  case Intrinsic::setjmp:
4487    return "_setjmp"+!TLI.usesUnderscoreSetJmp();
4488  case Intrinsic::longjmp:
4489    return "_longjmp"+!TLI.usesUnderscoreLongJmp();
4490  case Intrinsic::memcpy: {
4491    // Assert for address < 256 since we support only user defined address
4492    // spaces.
4493    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4494           < 256 &&
4495           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4496           < 256 &&
4497           "Unknown address space");
4498    SDValue Op1 = getValue(I.getArgOperand(0));
4499    SDValue Op2 = getValue(I.getArgOperand(1));
4500    SDValue Op3 = getValue(I.getArgOperand(2));
4501    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4502    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4503    DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false,
4504                              MachinePointerInfo(I.getArgOperand(0)),
4505                              MachinePointerInfo(I.getArgOperand(1))));
4506    return 0;
4507  }
4508  case Intrinsic::memset: {
4509    // Assert for address < 256 since we support only user defined address
4510    // spaces.
4511    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4512           < 256 &&
4513           "Unknown address space");
4514    SDValue Op1 = getValue(I.getArgOperand(0));
4515    SDValue Op2 = getValue(I.getArgOperand(1));
4516    SDValue Op3 = getValue(I.getArgOperand(2));
4517    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4518    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4519    DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4520                              MachinePointerInfo(I.getArgOperand(0))));
4521    return 0;
4522  }
4523  case Intrinsic::memmove: {
4524    // Assert for address < 256 since we support only user defined address
4525    // spaces.
4526    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4527           < 256 &&
4528           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4529           < 256 &&
4530           "Unknown address space");
4531    SDValue Op1 = getValue(I.getArgOperand(0));
4532    SDValue Op2 = getValue(I.getArgOperand(1));
4533    SDValue Op3 = getValue(I.getArgOperand(2));
4534    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4535    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4536    DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4537                               MachinePointerInfo(I.getArgOperand(0)),
4538                               MachinePointerInfo(I.getArgOperand(1))));
4539    return 0;
4540  }
4541  case Intrinsic::dbg_declare: {
4542    const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4543    MDNode *Variable = DI.getVariable();
4544    const Value *Address = DI.getAddress();
4545    if (!Address || !DIVariable(Variable).Verify())
4546      return 0;
4547
4548    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4549    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4550    // absolute, but not relative, values are different depending on whether
4551    // debug info exists.
4552    ++SDNodeOrder;
4553
4554    // Check if address has undef value.
4555    if (isa<UndefValue>(Address) ||
4556        (Address->use_empty() && !isa<Argument>(Address))) {
4557      DEBUG(dbgs() << "Dropping debug info for " << DI);
4558      return 0;
4559    }
4560
4561    SDValue &N = NodeMap[Address];
4562    if (!N.getNode() && isa<Argument>(Address))
4563      // Check unused arguments map.
4564      N = UnusedArgNodeMap[Address];
4565    SDDbgValue *SDV;
4566    if (N.getNode()) {
4567      // Parameters are handled specially.
4568      bool isParameter =
4569        DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable;
4570      if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4571        Address = BCI->getOperand(0);
4572      const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
4573
4574      if (isParameter && !AI) {
4575        FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4576        if (FINode)
4577          // Byval parameter.  We have a frame index at this point.
4578          SDV = DAG.getDbgValue(Variable, FINode->getIndex(),
4579                                0, dl, SDNodeOrder);
4580        else {
4581          // Address is an argument, so try to emit its dbg value using
4582          // virtual register info from the FuncInfo.ValueMap.
4583          EmitFuncArgumentDbgValue(Address, Variable, 0, N);
4584          return 0;
4585        }
4586      } else if (AI)
4587        SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
4588                              0, dl, SDNodeOrder);
4589      else {
4590        // Can't do anything with other non-AI cases yet.
4591        DEBUG(dbgs() << "Dropping debug info for " << DI);
4592        return 0;
4593      }
4594      DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4595    } else {
4596      // If Address is an argument then try to emit its dbg value using
4597      // virtual register info from the FuncInfo.ValueMap.
4598      if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) {
4599        // If variable is pinned by a alloca in dominating bb then
4600        // use StaticAllocaMap.
4601        if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4602          if (AI->getParent() != DI.getParent()) {
4603            DenseMap<const AllocaInst*, int>::iterator SI =
4604              FuncInfo.StaticAllocaMap.find(AI);
4605            if (SI != FuncInfo.StaticAllocaMap.end()) {
4606              SDV = DAG.getDbgValue(Variable, SI->second,
4607                                    0, dl, SDNodeOrder);
4608              DAG.AddDbgValue(SDV, 0, false);
4609              return 0;
4610            }
4611          }
4612        }
4613        DEBUG(dbgs() << "Dropping debug info for " << DI);
4614      }
4615    }
4616    return 0;
4617  }
4618  case Intrinsic::dbg_value: {
4619    const DbgValueInst &DI = cast<DbgValueInst>(I);
4620    if (!DIVariable(DI.getVariable()).Verify())
4621      return 0;
4622
4623    MDNode *Variable = DI.getVariable();
4624    uint64_t Offset = DI.getOffset();
4625    const Value *V = DI.getValue();
4626    if (!V)
4627      return 0;
4628
4629    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4630    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4631    // absolute, but not relative, values are different depending on whether
4632    // debug info exists.
4633    ++SDNodeOrder;
4634    SDDbgValue *SDV;
4635    if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
4636      SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder);
4637      DAG.AddDbgValue(SDV, 0, false);
4638    } else {
4639      // Do not use getValue() in here; we don't want to generate code at
4640      // this point if it hasn't been done yet.
4641      SDValue N = NodeMap[V];
4642      if (!N.getNode() && isa<Argument>(V))
4643        // Check unused arguments map.
4644        N = UnusedArgNodeMap[V];
4645      if (N.getNode()) {
4646        if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) {
4647          SDV = DAG.getDbgValue(Variable, N.getNode(),
4648                                N.getResNo(), Offset, dl, SDNodeOrder);
4649          DAG.AddDbgValue(SDV, N.getNode(), false);
4650        }
4651      } else if (!V->use_empty() ) {
4652        // Do not call getValue(V) yet, as we don't want to generate code.
4653        // Remember it for later.
4654        DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4655        DanglingDebugInfoMap[V] = DDI;
4656      } else {
4657        // We may expand this to cover more cases.  One case where we have no
4658        // data available is an unreferenced parameter.
4659        DEBUG(dbgs() << "Dropping debug info for " << DI);
4660      }
4661    }
4662
4663    // Build a debug info table entry.
4664    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4665      V = BCI->getOperand(0);
4666    const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4667    // Don't handle byval struct arguments or VLAs, for example.
4668    if (!AI)
4669      return 0;
4670    DenseMap<const AllocaInst*, int>::iterator SI =
4671      FuncInfo.StaticAllocaMap.find(AI);
4672    if (SI == FuncInfo.StaticAllocaMap.end())
4673      return 0; // VLAs.
4674    int FI = SI->second;
4675
4676    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4677    if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
4678      MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
4679    return 0;
4680  }
4681  case Intrinsic::eh_exception: {
4682    // Insert the EXCEPTIONADDR instruction.
4683    assert(FuncInfo.MBB->isLandingPad() &&
4684           "Call to eh.exception not in landing pad!");
4685    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4686    SDValue Ops[1];
4687    Ops[0] = DAG.getRoot();
4688    SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1);
4689    setValue(&I, Op);
4690    DAG.setRoot(Op.getValue(1));
4691    return 0;
4692  }
4693
4694  case Intrinsic::eh_selector: {
4695    MachineBasicBlock *CallMBB = FuncInfo.MBB;
4696    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4697    if (CallMBB->isLandingPad())
4698      AddCatchInfo(I, &MMI, CallMBB);
4699    else {
4700#ifndef NDEBUG
4701      FuncInfo.CatchInfoLost.insert(&I);
4702#endif
4703      // FIXME: Mark exception selector register as live in.  Hack for PR1508.
4704      unsigned Reg = TLI.getExceptionSelectorRegister();
4705      if (Reg) FuncInfo.MBB->addLiveIn(Reg);
4706    }
4707
4708    // Insert the EHSELECTION instruction.
4709    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4710    SDValue Ops[2];
4711    Ops[0] = getValue(I.getArgOperand(0));
4712    Ops[1] = getRoot();
4713    SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2);
4714    DAG.setRoot(Op.getValue(1));
4715    setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32));
4716    return 0;
4717  }
4718
4719  case Intrinsic::eh_typeid_for: {
4720    // Find the type id for the given typeinfo.
4721    GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0));
4722    unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4723    Res = DAG.getConstant(TypeID, MVT::i32);
4724    setValue(&I, Res);
4725    return 0;
4726  }
4727
4728  case Intrinsic::eh_return_i32:
4729  case Intrinsic::eh_return_i64:
4730    DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4731    DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl,
4732                            MVT::Other,
4733                            getControlRoot(),
4734                            getValue(I.getArgOperand(0)),
4735                            getValue(I.getArgOperand(1))));
4736    return 0;
4737  case Intrinsic::eh_unwind_init:
4738    DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4739    return 0;
4740  case Intrinsic::eh_dwarf_cfa: {
4741    SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl,
4742                                        TLI.getPointerTy());
4743    SDValue Offset = DAG.getNode(ISD::ADD, dl,
4744                                 TLI.getPointerTy(),
4745                                 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
4746                                             TLI.getPointerTy()),
4747                                 CfaArg);
4748    SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl,
4749                             TLI.getPointerTy(),
4750                             DAG.getConstant(0, TLI.getPointerTy()));
4751    setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
4752                             FA, Offset));
4753    return 0;
4754  }
4755  case Intrinsic::eh_sjlj_callsite: {
4756    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4757    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4758    assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4759    assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4760
4761    MMI.setCurrentCallSite(CI->getZExtValue());
4762    return 0;
4763  }
4764  case Intrinsic::eh_sjlj_functioncontext: {
4765    // Get and store the index of the function context.
4766    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4767    AllocaInst *FnCtx =
4768      cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
4769    int FI = FuncInfo.StaticAllocaMap[FnCtx];
4770    MFI->setFunctionContextIndex(FI);
4771    return 0;
4772  }
4773  case Intrinsic::eh_sjlj_setjmp: {
4774    SDValue Ops[2];
4775    Ops[0] = getRoot();
4776    Ops[1] = getValue(I.getArgOperand(0));
4777    SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, dl,
4778                             DAG.getVTList(MVT::i32, MVT::Other),
4779                             Ops, 2);
4780    setValue(&I, Op.getValue(0));
4781    DAG.setRoot(Op.getValue(1));
4782    return 0;
4783  }
4784  case Intrinsic::eh_sjlj_longjmp: {
4785    DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other,
4786                            getRoot(), getValue(I.getArgOperand(0))));
4787    return 0;
4788  }
4789
4790  case Intrinsic::x86_mmx_pslli_w:
4791  case Intrinsic::x86_mmx_pslli_d:
4792  case Intrinsic::x86_mmx_pslli_q:
4793  case Intrinsic::x86_mmx_psrli_w:
4794  case Intrinsic::x86_mmx_psrli_d:
4795  case Intrinsic::x86_mmx_psrli_q:
4796  case Intrinsic::x86_mmx_psrai_w:
4797  case Intrinsic::x86_mmx_psrai_d: {
4798    SDValue ShAmt = getValue(I.getArgOperand(1));
4799    if (isa<ConstantSDNode>(ShAmt)) {
4800      visitTargetIntrinsic(I, Intrinsic);
4801      return 0;
4802    }
4803    unsigned NewIntrinsic = 0;
4804    EVT ShAmtVT = MVT::v2i32;
4805    switch (Intrinsic) {
4806    case Intrinsic::x86_mmx_pslli_w:
4807      NewIntrinsic = Intrinsic::x86_mmx_psll_w;
4808      break;
4809    case Intrinsic::x86_mmx_pslli_d:
4810      NewIntrinsic = Intrinsic::x86_mmx_psll_d;
4811      break;
4812    case Intrinsic::x86_mmx_pslli_q:
4813      NewIntrinsic = Intrinsic::x86_mmx_psll_q;
4814      break;
4815    case Intrinsic::x86_mmx_psrli_w:
4816      NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
4817      break;
4818    case Intrinsic::x86_mmx_psrli_d:
4819      NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
4820      break;
4821    case Intrinsic::x86_mmx_psrli_q:
4822      NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
4823      break;
4824    case Intrinsic::x86_mmx_psrai_w:
4825      NewIntrinsic = Intrinsic::x86_mmx_psra_w;
4826      break;
4827    case Intrinsic::x86_mmx_psrai_d:
4828      NewIntrinsic = Intrinsic::x86_mmx_psra_d;
4829      break;
4830    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4831    }
4832
4833    // The vector shift intrinsics with scalars uses 32b shift amounts but
4834    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
4835    // to be zero.
4836    // We must do this early because v2i32 is not a legal type.
4837    DebugLoc dl = getCurDebugLoc();
4838    SDValue ShOps[2];
4839    ShOps[0] = ShAmt;
4840    ShOps[1] = DAG.getConstant(0, MVT::i32);
4841    ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
4842    EVT DestVT = TLI.getValueType(I.getType());
4843    ShAmt = DAG.getNode(ISD::BITCAST, dl, DestVT, ShAmt);
4844    Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
4845                       DAG.getConstant(NewIntrinsic, MVT::i32),
4846                       getValue(I.getArgOperand(0)), ShAmt);
4847    setValue(&I, Res);
4848    return 0;
4849  }
4850  case Intrinsic::convertff:
4851  case Intrinsic::convertfsi:
4852  case Intrinsic::convertfui:
4853  case Intrinsic::convertsif:
4854  case Intrinsic::convertuif:
4855  case Intrinsic::convertss:
4856  case Intrinsic::convertsu:
4857  case Intrinsic::convertus:
4858  case Intrinsic::convertuu: {
4859    ISD::CvtCode Code = ISD::CVT_INVALID;
4860    switch (Intrinsic) {
4861    case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
4862    case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4863    case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4864    case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4865    case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4866    case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
4867    case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
4868    case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4869    case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4870    }
4871    EVT DestVT = TLI.getValueType(I.getType());
4872    const Value *Op1 = I.getArgOperand(0);
4873    Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1),
4874                               DAG.getValueType(DestVT),
4875                               DAG.getValueType(getValue(Op1).getValueType()),
4876                               getValue(I.getArgOperand(1)),
4877                               getValue(I.getArgOperand(2)),
4878                               Code);
4879    setValue(&I, Res);
4880    return 0;
4881  }
4882  case Intrinsic::sqrt:
4883    setValue(&I, DAG.getNode(ISD::FSQRT, dl,
4884                             getValue(I.getArgOperand(0)).getValueType(),
4885                             getValue(I.getArgOperand(0))));
4886    return 0;
4887  case Intrinsic::powi:
4888    setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)),
4889                            getValue(I.getArgOperand(1)), DAG));
4890    return 0;
4891  case Intrinsic::sin:
4892    setValue(&I, DAG.getNode(ISD::FSIN, dl,
4893                             getValue(I.getArgOperand(0)).getValueType(),
4894                             getValue(I.getArgOperand(0))));
4895    return 0;
4896  case Intrinsic::cos:
4897    setValue(&I, DAG.getNode(ISD::FCOS, dl,
4898                             getValue(I.getArgOperand(0)).getValueType(),
4899                             getValue(I.getArgOperand(0))));
4900    return 0;
4901  case Intrinsic::log:
4902    visitLog(I);
4903    return 0;
4904  case Intrinsic::log2:
4905    visitLog2(I);
4906    return 0;
4907  case Intrinsic::log10:
4908    visitLog10(I);
4909    return 0;
4910  case Intrinsic::exp:
4911    visitExp(I);
4912    return 0;
4913  case Intrinsic::exp2:
4914    visitExp2(I);
4915    return 0;
4916  case Intrinsic::pow:
4917    visitPow(I);
4918    return 0;
4919  case Intrinsic::fma:
4920    setValue(&I, DAG.getNode(ISD::FMA, dl,
4921                             getValue(I.getArgOperand(0)).getValueType(),
4922                             getValue(I.getArgOperand(0)),
4923                             getValue(I.getArgOperand(1)),
4924                             getValue(I.getArgOperand(2))));
4925    return 0;
4926  case Intrinsic::convert_to_fp16:
4927    setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl,
4928                             MVT::i16, getValue(I.getArgOperand(0))));
4929    return 0;
4930  case Intrinsic::convert_from_fp16:
4931    setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl,
4932                             MVT::f32, getValue(I.getArgOperand(0))));
4933    return 0;
4934  case Intrinsic::pcmarker: {
4935    SDValue Tmp = getValue(I.getArgOperand(0));
4936    DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp));
4937    return 0;
4938  }
4939  case Intrinsic::readcyclecounter: {
4940    SDValue Op = getRoot();
4941    Res = DAG.getNode(ISD::READCYCLECOUNTER, dl,
4942                      DAG.getVTList(MVT::i64, MVT::Other),
4943                      &Op, 1);
4944    setValue(&I, Res);
4945    DAG.setRoot(Res.getValue(1));
4946    return 0;
4947  }
4948  case Intrinsic::bswap:
4949    setValue(&I, DAG.getNode(ISD::BSWAP, dl,
4950                             getValue(I.getArgOperand(0)).getValueType(),
4951                             getValue(I.getArgOperand(0))));
4952    return 0;
4953  case Intrinsic::cttz: {
4954    SDValue Arg = getValue(I.getArgOperand(0));
4955    ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
4956    EVT Ty = Arg.getValueType();
4957    setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
4958                             dl, Ty, Arg));
4959    return 0;
4960  }
4961  case Intrinsic::ctlz: {
4962    SDValue Arg = getValue(I.getArgOperand(0));
4963    ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
4964    EVT Ty = Arg.getValueType();
4965    setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
4966                             dl, Ty, Arg));
4967    return 0;
4968  }
4969  case Intrinsic::ctpop: {
4970    SDValue Arg = getValue(I.getArgOperand(0));
4971    EVT Ty = Arg.getValueType();
4972    setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg));
4973    return 0;
4974  }
4975  case Intrinsic::stacksave: {
4976    SDValue Op = getRoot();
4977    Res = DAG.getNode(ISD::STACKSAVE, dl,
4978                      DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
4979    setValue(&I, Res);
4980    DAG.setRoot(Res.getValue(1));
4981    return 0;
4982  }
4983  case Intrinsic::stackrestore: {
4984    Res = getValue(I.getArgOperand(0));
4985    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res));
4986    return 0;
4987  }
4988  case Intrinsic::stackprotector: {
4989    // Emit code into the DAG to store the stack guard onto the stack.
4990    MachineFunction &MF = DAG.getMachineFunction();
4991    MachineFrameInfo *MFI = MF.getFrameInfo();
4992    EVT PtrTy = TLI.getPointerTy();
4993
4994    SDValue Src = getValue(I.getArgOperand(0));   // The guard's value.
4995    AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
4996
4997    int FI = FuncInfo.StaticAllocaMap[Slot];
4998    MFI->setStackProtectorIndex(FI);
4999
5000    SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
5001
5002    // Store the stack protector onto the stack.
5003    Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN,
5004                       MachinePointerInfo::getFixedStack(FI),
5005                       true, false, 0);
5006    setValue(&I, Res);
5007    DAG.setRoot(Res);
5008    return 0;
5009  }
5010  case Intrinsic::objectsize: {
5011    // If we don't know by now, we're never going to know.
5012    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
5013
5014    assert(CI && "Non-constant type in __builtin_object_size?");
5015
5016    SDValue Arg = getValue(I.getCalledValue());
5017    EVT Ty = Arg.getValueType();
5018
5019    if (CI->isZero())
5020      Res = DAG.getConstant(-1ULL, Ty);
5021    else
5022      Res = DAG.getConstant(0, Ty);
5023
5024    setValue(&I, Res);
5025    return 0;
5026  }
5027  case Intrinsic::var_annotation:
5028    // Discard annotate attributes
5029    return 0;
5030
5031  case Intrinsic::init_trampoline: {
5032    const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5033
5034    SDValue Ops[6];
5035    Ops[0] = getRoot();
5036    Ops[1] = getValue(I.getArgOperand(0));
5037    Ops[2] = getValue(I.getArgOperand(1));
5038    Ops[3] = getValue(I.getArgOperand(2));
5039    Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5040    Ops[5] = DAG.getSrcValue(F);
5041
5042    Res = DAG.getNode(ISD::INIT_TRAMPOLINE, dl, MVT::Other, Ops, 6);
5043
5044    DAG.setRoot(Res);
5045    return 0;
5046  }
5047  case Intrinsic::adjust_trampoline: {
5048    setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, dl,
5049                             TLI.getPointerTy(),
5050                             getValue(I.getArgOperand(0))));
5051    return 0;
5052  }
5053  case Intrinsic::gcroot:
5054    if (GFI) {
5055      const Value *Alloca = I.getArgOperand(0);
5056      const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
5057
5058      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
5059      GFI->addStackRoot(FI->getIndex(), TypeMap);
5060    }
5061    return 0;
5062  case Intrinsic::gcread:
5063  case Intrinsic::gcwrite:
5064    llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
5065  case Intrinsic::flt_rounds:
5066    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32));
5067    return 0;
5068
5069  case Intrinsic::expect: {
5070    // Just replace __builtin_expect(exp, c) with EXP.
5071    setValue(&I, getValue(I.getArgOperand(0)));
5072    return 0;
5073  }
5074
5075  case Intrinsic::trap: {
5076    StringRef TrapFuncName = TM.Options.getTrapFunctionName();
5077    if (TrapFuncName.empty()) {
5078      DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot()));
5079      return 0;
5080    }
5081    TargetLowering::ArgListTy Args;
5082    std::pair<SDValue, SDValue> Result =
5083      TLI.LowerCallTo(getRoot(), I.getType(),
5084                 false, false, false, false, 0, CallingConv::C,
5085                 /*isTailCall=*/false, /*isReturnValueUsed=*/true,
5086                 DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()),
5087                 Args, DAG, getCurDebugLoc());
5088    DAG.setRoot(Result.second);
5089    return 0;
5090  }
5091  case Intrinsic::uadd_with_overflow:
5092    return implVisitAluOverflow(I, ISD::UADDO);
5093  case Intrinsic::sadd_with_overflow:
5094    return implVisitAluOverflow(I, ISD::SADDO);
5095  case Intrinsic::usub_with_overflow:
5096    return implVisitAluOverflow(I, ISD::USUBO);
5097  case Intrinsic::ssub_with_overflow:
5098    return implVisitAluOverflow(I, ISD::SSUBO);
5099  case Intrinsic::umul_with_overflow:
5100    return implVisitAluOverflow(I, ISD::UMULO);
5101  case Intrinsic::smul_with_overflow:
5102    return implVisitAluOverflow(I, ISD::SMULO);
5103
5104  case Intrinsic::prefetch: {
5105    SDValue Ops[5];
5106    unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
5107    Ops[0] = getRoot();
5108    Ops[1] = getValue(I.getArgOperand(0));
5109    Ops[2] = getValue(I.getArgOperand(1));
5110    Ops[3] = getValue(I.getArgOperand(2));
5111    Ops[4] = getValue(I.getArgOperand(3));
5112    DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, dl,
5113                                        DAG.getVTList(MVT::Other),
5114                                        &Ops[0], 5,
5115                                        EVT::getIntegerVT(*Context, 8),
5116                                        MachinePointerInfo(I.getArgOperand(0)),
5117                                        0, /* align */
5118                                        false, /* volatile */
5119                                        rw==0, /* read */
5120                                        rw==1)); /* write */
5121    return 0;
5122  }
5123
5124  case Intrinsic::invariant_start:
5125  case Intrinsic::lifetime_start:
5126    // Discard region information.
5127    setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
5128    return 0;
5129  case Intrinsic::invariant_end:
5130  case Intrinsic::lifetime_end:
5131    // Discard region information.
5132    return 0;
5133  }
5134}
5135
5136void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
5137                                      bool isTailCall,
5138                                      MachineBasicBlock *LandingPad) {
5139  PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
5140  FunctionType *FTy = cast<FunctionType>(PT->getElementType());
5141  Type *RetTy = FTy->getReturnType();
5142  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5143  MCSymbol *BeginLabel = 0;
5144
5145  TargetLowering::ArgListTy Args;
5146  TargetLowering::ArgListEntry Entry;
5147  Args.reserve(CS.arg_size());
5148
5149  // Check whether the function can return without sret-demotion.
5150  SmallVector<ISD::OutputArg, 4> Outs;
5151  SmallVector<uint64_t, 4> Offsets;
5152  GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(),
5153                Outs, TLI, &Offsets);
5154
5155  bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
5156					   DAG.getMachineFunction(),
5157					   FTy->isVarArg(), Outs,
5158					   FTy->getContext());
5159
5160  SDValue DemoteStackSlot;
5161  int DemoteStackIdx = -100;
5162
5163  if (!CanLowerReturn) {
5164    uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(
5165                      FTy->getReturnType());
5166    unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(
5167                      FTy->getReturnType());
5168    MachineFunction &MF = DAG.getMachineFunction();
5169    DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5170    Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
5171
5172    DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI.getPointerTy());
5173    Entry.Node = DemoteStackSlot;
5174    Entry.Ty = StackSlotPtrType;
5175    Entry.isSExt = false;
5176    Entry.isZExt = false;
5177    Entry.isInReg = false;
5178    Entry.isSRet = true;
5179    Entry.isNest = false;
5180    Entry.isByVal = false;
5181    Entry.Alignment = Align;
5182    Args.push_back(Entry);
5183    RetTy = Type::getVoidTy(FTy->getContext());
5184  }
5185
5186  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
5187       i != e; ++i) {
5188    const Value *V = *i;
5189
5190    // Skip empty types
5191    if (V->getType()->isEmptyTy())
5192      continue;
5193
5194    SDValue ArgNode = getValue(V);
5195    Entry.Node = ArgNode; Entry.Ty = V->getType();
5196
5197    unsigned attrInd = i - CS.arg_begin() + 1;
5198    Entry.isSExt  = CS.paramHasAttr(attrInd, Attribute::SExt);
5199    Entry.isZExt  = CS.paramHasAttr(attrInd, Attribute::ZExt);
5200    Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg);
5201    Entry.isSRet  = CS.paramHasAttr(attrInd, Attribute::StructRet);
5202    Entry.isNest  = CS.paramHasAttr(attrInd, Attribute::Nest);
5203    Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal);
5204    Entry.Alignment = CS.getParamAlignment(attrInd);
5205    Args.push_back(Entry);
5206  }
5207
5208  if (LandingPad) {
5209    // Insert a label before the invoke call to mark the try range.  This can be
5210    // used to detect deletion of the invoke via the MachineModuleInfo.
5211    BeginLabel = MMI.getContext().CreateTempSymbol();
5212
5213    // For SjLj, keep track of which landing pads go with which invokes
5214    // so as to maintain the ordering of pads in the LSDA.
5215    unsigned CallSiteIndex = MMI.getCurrentCallSite();
5216    if (CallSiteIndex) {
5217      MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
5218      LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex);
5219
5220      // Now that the call site is handled, stop tracking it.
5221      MMI.setCurrentCallSite(0);
5222    }
5223
5224    // Both PendingLoads and PendingExports must be flushed here;
5225    // this call might not return.
5226    (void)getRoot();
5227    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel));
5228  }
5229
5230  // Check if target-independent constraints permit a tail call here.
5231  // Target-dependent constraints are checked within TLI.LowerCallTo.
5232  if (isTailCall &&
5233      !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI))
5234    isTailCall = false;
5235
5236  // If there's a possibility that fast-isel has already selected some amount
5237  // of the current basic block, don't emit a tail call.
5238  if (isTailCall && TM.Options.EnableFastISel)
5239    isTailCall = false;
5240
5241  std::pair<SDValue,SDValue> Result =
5242    TLI.LowerCallTo(getRoot(), RetTy,
5243                    CS.paramHasAttr(0, Attribute::SExt),
5244                    CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(),
5245                    CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(),
5246                    CS.getCallingConv(),
5247                    isTailCall,
5248                    !CS.getInstruction()->use_empty(),
5249                    Callee, Args, DAG, getCurDebugLoc());
5250  assert((isTailCall || Result.second.getNode()) &&
5251         "Non-null chain expected with non-tail call!");
5252  assert((Result.second.getNode() || !Result.first.getNode()) &&
5253         "Null value expected with tail call!");
5254  if (Result.first.getNode()) {
5255    setValue(CS.getInstruction(), Result.first);
5256  } else if (!CanLowerReturn && Result.second.getNode()) {
5257    // The instruction result is the result of loading from the
5258    // hidden sret parameter.
5259    SmallVector<EVT, 1> PVTs;
5260    Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
5261
5262    ComputeValueVTs(TLI, PtrRetTy, PVTs);
5263    assert(PVTs.size() == 1 && "Pointers should fit in one register");
5264    EVT PtrVT = PVTs[0];
5265    unsigned NumValues = Outs.size();
5266    SmallVector<SDValue, 4> Values(NumValues);
5267    SmallVector<SDValue, 4> Chains(NumValues);
5268
5269    for (unsigned i = 0; i < NumValues; ++i) {
5270      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT,
5271                                DemoteStackSlot,
5272                                DAG.getConstant(Offsets[i], PtrVT));
5273      SDValue L = DAG.getLoad(Outs[i].VT, getCurDebugLoc(), Result.second,
5274                              Add,
5275                  MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]),
5276                              false, false, false, 1);
5277      Values[i] = L;
5278      Chains[i] = L.getValue(1);
5279    }
5280
5281    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
5282                                MVT::Other, &Chains[0], NumValues);
5283    PendingLoads.push_back(Chain);
5284
5285    // Collect the legal value parts into potentially illegal values
5286    // that correspond to the original function's return values.
5287    SmallVector<EVT, 4> RetTys;
5288    RetTy = FTy->getReturnType();
5289    ComputeValueVTs(TLI, RetTy, RetTys);
5290    ISD::NodeType AssertOp = ISD::DELETED_NODE;
5291    SmallVector<SDValue, 4> ReturnValues;
5292    unsigned CurReg = 0;
5293    for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
5294      EVT VT = RetTys[I];
5295      EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT);
5296      unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT);
5297
5298      SDValue ReturnValue =
5299        getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs,
5300                         RegisterVT, VT, AssertOp);
5301      ReturnValues.push_back(ReturnValue);
5302      CurReg += NumRegs;
5303    }
5304
5305    setValue(CS.getInstruction(),
5306             DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
5307                         DAG.getVTList(&RetTys[0], RetTys.size()),
5308                         &ReturnValues[0], ReturnValues.size()));
5309  }
5310
5311  // Assign order to nodes here. If the call does not produce a result, it won't
5312  // be mapped to a SDNode and visit() will not assign it an order number.
5313  if (!Result.second.getNode()) {
5314    // As a special case, a null chain means that a tail call has been emitted and
5315    // the DAG root is already updated.
5316    HasTailCall = true;
5317    ++SDNodeOrder;
5318    AssignOrderingToNode(DAG.getRoot().getNode());
5319  } else {
5320    DAG.setRoot(Result.second);
5321    ++SDNodeOrder;
5322    AssignOrderingToNode(Result.second.getNode());
5323  }
5324
5325  if (LandingPad) {
5326    // Insert a label at the end of the invoke call to mark the try range.  This
5327    // can be used to detect deletion of the invoke via the MachineModuleInfo.
5328    MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
5329    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel));
5330
5331    // Inform MachineModuleInfo of range.
5332    MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
5333  }
5334}
5335
5336/// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
5337/// value is equal or not-equal to zero.
5338static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
5339  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
5340       UI != E; ++UI) {
5341    if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
5342      if (IC->isEquality())
5343        if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
5344          if (C->isNullValue())
5345            continue;
5346    // Unknown instruction.
5347    return false;
5348  }
5349  return true;
5350}
5351
5352static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
5353                             Type *LoadTy,
5354                             SelectionDAGBuilder &Builder) {
5355
5356  // Check to see if this load can be trivially constant folded, e.g. if the
5357  // input is from a string literal.
5358  if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5359    // Cast pointer to the type we really want to load.
5360    LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5361                                         PointerType::getUnqual(LoadTy));
5362
5363    if (const Constant *LoadCst =
5364          ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
5365                                       Builder.TD))
5366      return Builder.getValue(LoadCst);
5367  }
5368
5369  // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
5370  // still constant memory, the input chain can be the entry node.
5371  SDValue Root;
5372  bool ConstantMemory = false;
5373
5374  // Do not serialize (non-volatile) loads of constant memory with anything.
5375  if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5376    Root = Builder.DAG.getEntryNode();
5377    ConstantMemory = true;
5378  } else {
5379    // Do not serialize non-volatile loads against each other.
5380    Root = Builder.DAG.getRoot();
5381  }
5382
5383  SDValue Ptr = Builder.getValue(PtrVal);
5384  SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root,
5385                                        Ptr, MachinePointerInfo(PtrVal),
5386                                        false /*volatile*/,
5387                                        false /*nontemporal*/,
5388                                        false /*isinvariant*/, 1 /* align=1 */);
5389
5390  if (!ConstantMemory)
5391    Builder.PendingLoads.push_back(LoadVal.getValue(1));
5392  return LoadVal;
5393}
5394
5395
5396/// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5397/// If so, return true and lower it, otherwise return false and it will be
5398/// lowered like a normal call.
5399bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5400  // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
5401  if (I.getNumArgOperands() != 3)
5402    return false;
5403
5404  const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5405  if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5406      !I.getArgOperand(2)->getType()->isIntegerTy() ||
5407      !I.getType()->isIntegerTy())
5408    return false;
5409
5410  const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2));
5411
5412  // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
5413  // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
5414  if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) {
5415    bool ActuallyDoIt = true;
5416    MVT LoadVT;
5417    Type *LoadTy;
5418    switch (Size->getZExtValue()) {
5419    default:
5420      LoadVT = MVT::Other;
5421      LoadTy = 0;
5422      ActuallyDoIt = false;
5423      break;
5424    case 2:
5425      LoadVT = MVT::i16;
5426      LoadTy = Type::getInt16Ty(Size->getContext());
5427      break;
5428    case 4:
5429      LoadVT = MVT::i32;
5430      LoadTy = Type::getInt32Ty(Size->getContext());
5431      break;
5432    case 8:
5433      LoadVT = MVT::i64;
5434      LoadTy = Type::getInt64Ty(Size->getContext());
5435      break;
5436        /*
5437    case 16:
5438      LoadVT = MVT::v4i32;
5439      LoadTy = Type::getInt32Ty(Size->getContext());
5440      LoadTy = VectorType::get(LoadTy, 4);
5441      break;
5442         */
5443    }
5444
5445    // This turns into unaligned loads.  We only do this if the target natively
5446    // supports the MVT we'll be loading or if it is small enough (<= 4) that
5447    // we'll only produce a small number of byte loads.
5448
5449    // Require that we can find a legal MVT, and only do this if the target
5450    // supports unaligned loads of that type.  Expanding into byte loads would
5451    // bloat the code.
5452    if (ActuallyDoIt && Size->getZExtValue() > 4) {
5453      // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5454      // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5455      if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT))
5456        ActuallyDoIt = false;
5457    }
5458
5459    if (ActuallyDoIt) {
5460      SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5461      SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5462
5463      SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal,
5464                                 ISD::SETNE);
5465      EVT CallVT = TLI.getValueType(I.getType(), true);
5466      setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT));
5467      return true;
5468    }
5469  }
5470
5471
5472  return false;
5473}
5474
5475
5476void SelectionDAGBuilder::visitCall(const CallInst &I) {
5477  // Handle inline assembly differently.
5478  if (isa<InlineAsm>(I.getCalledValue())) {
5479    visitInlineAsm(&I);
5480    return;
5481  }
5482
5483  // See if any floating point values are being passed to this function. This is
5484  // used to emit an undefined reference to fltused on Windows.
5485  FunctionType *FT =
5486    cast<FunctionType>(I.getCalledValue()->getType()->getContainedType(0));
5487  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5488  if (FT->isVarArg() &&
5489      !MMI.callsExternalVAFunctionWithFloatingPointArguments()) {
5490    for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
5491      Type* T = I.getArgOperand(i)->getType();
5492      for (po_iterator<Type*> i = po_begin(T), e = po_end(T);
5493           i != e; ++i) {
5494        if (!i->isFloatingPointTy()) continue;
5495        MMI.setCallsExternalVAFunctionWithFloatingPointArguments(true);
5496        break;
5497      }
5498    }
5499  }
5500
5501  const char *RenameFn = 0;
5502  if (Function *F = I.getCalledFunction()) {
5503    if (F->isDeclaration()) {
5504      if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
5505        if (unsigned IID = II->getIntrinsicID(F)) {
5506          RenameFn = visitIntrinsicCall(I, IID);
5507          if (!RenameFn)
5508            return;
5509        }
5510      }
5511      if (unsigned IID = F->getIntrinsicID()) {
5512        RenameFn = visitIntrinsicCall(I, IID);
5513        if (!RenameFn)
5514          return;
5515      }
5516    }
5517
5518    // Check for well-known libc/libm calls.  If the function is internal, it
5519    // can't be a library call.
5520    if (!F->hasLocalLinkage() && F->hasName()) {
5521      StringRef Name = F->getName();
5522      if ((LibInfo->has(LibFunc::copysign) && Name == "copysign") ||
5523          (LibInfo->has(LibFunc::copysignf) && Name == "copysignf") ||
5524          (LibInfo->has(LibFunc::copysignl) && Name == "copysignl")) {
5525        if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
5526            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5527            I.getType() == I.getArgOperand(0)->getType() &&
5528            I.getType() == I.getArgOperand(1)->getType()) {
5529          SDValue LHS = getValue(I.getArgOperand(0));
5530          SDValue RHS = getValue(I.getArgOperand(1));
5531          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(),
5532                                   LHS.getValueType(), LHS, RHS));
5533          return;
5534        }
5535      } else if ((LibInfo->has(LibFunc::fabs) && Name == "fabs") ||
5536                 (LibInfo->has(LibFunc::fabsf) && Name == "fabsf") ||
5537                 (LibInfo->has(LibFunc::fabsl) && Name == "fabsl")) {
5538        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5539            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5540            I.getType() == I.getArgOperand(0)->getType()) {
5541          SDValue Tmp = getValue(I.getArgOperand(0));
5542          setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(),
5543                                   Tmp.getValueType(), Tmp));
5544          return;
5545        }
5546      } else if ((LibInfo->has(LibFunc::sin) && Name == "sin") ||
5547                 (LibInfo->has(LibFunc::sinf) && Name == "sinf") ||
5548                 (LibInfo->has(LibFunc::sinl) && Name == "sinl")) {
5549        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5550            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5551            I.getType() == I.getArgOperand(0)->getType() &&
5552            I.onlyReadsMemory()) {
5553          SDValue Tmp = getValue(I.getArgOperand(0));
5554          setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(),
5555                                   Tmp.getValueType(), Tmp));
5556          return;
5557        }
5558      } else if ((LibInfo->has(LibFunc::cos) && Name == "cos") ||
5559                 (LibInfo->has(LibFunc::cosf) && Name == "cosf") ||
5560                 (LibInfo->has(LibFunc::cosl) && Name == "cosl")) {
5561        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5562            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5563            I.getType() == I.getArgOperand(0)->getType() &&
5564            I.onlyReadsMemory()) {
5565          SDValue Tmp = getValue(I.getArgOperand(0));
5566          setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(),
5567                                   Tmp.getValueType(), Tmp));
5568          return;
5569        }
5570      } else if ((LibInfo->has(LibFunc::sqrt) && Name == "sqrt") ||
5571                 (LibInfo->has(LibFunc::sqrtf) && Name == "sqrtf") ||
5572                 (LibInfo->has(LibFunc::sqrtl) && Name == "sqrtl")) {
5573        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5574            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5575            I.getType() == I.getArgOperand(0)->getType() &&
5576            I.onlyReadsMemory()) {
5577          SDValue Tmp = getValue(I.getArgOperand(0));
5578          setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(),
5579                                   Tmp.getValueType(), Tmp));
5580          return;
5581        }
5582      } else if ((LibInfo->has(LibFunc::floor) && Name == "floor") ||
5583                 (LibInfo->has(LibFunc::floorf) && Name == "floorf") ||
5584                 (LibInfo->has(LibFunc::floorl) && Name == "floorl")) {
5585        if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5586            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5587            I.getType() == I.getArgOperand(0)->getType()) {
5588          SDValue Tmp = getValue(I.getArgOperand(0));
5589          setValue(&I, DAG.getNode(ISD::FFLOOR, getCurDebugLoc(),
5590                                   Tmp.getValueType(), Tmp));
5591          return;
5592        }
5593      } else if ((LibInfo->has(LibFunc::nearbyint) && Name == "nearbyint") ||
5594                 (LibInfo->has(LibFunc::nearbyintf) && Name == "nearbyintf") ||
5595                 (LibInfo->has(LibFunc::nearbyintl) && Name == "nearbyintl")) {
5596        if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5597            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5598            I.getType() == I.getArgOperand(0)->getType()) {
5599          SDValue Tmp = getValue(I.getArgOperand(0));
5600          setValue(&I, DAG.getNode(ISD::FNEARBYINT, getCurDebugLoc(),
5601                                   Tmp.getValueType(), Tmp));
5602          return;
5603        }
5604      } else if ((LibInfo->has(LibFunc::ceil) && Name == "ceil") ||
5605                 (LibInfo->has(LibFunc::ceilf) && Name == "ceilf") ||
5606                 (LibInfo->has(LibFunc::ceill) && Name == "ceill")) {
5607        if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5608            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5609            I.getType() == I.getArgOperand(0)->getType()) {
5610          SDValue Tmp = getValue(I.getArgOperand(0));
5611          setValue(&I, DAG.getNode(ISD::FCEIL, getCurDebugLoc(),
5612                                   Tmp.getValueType(), Tmp));
5613          return;
5614        }
5615      } else if ((LibInfo->has(LibFunc::rint) && Name == "rint") ||
5616                 (LibInfo->has(LibFunc::rintf) && Name == "rintf") ||
5617                 (LibInfo->has(LibFunc::rintl) && Name == "rintl")) {
5618        if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5619            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5620            I.getType() == I.getArgOperand(0)->getType()) {
5621          SDValue Tmp = getValue(I.getArgOperand(0));
5622          setValue(&I, DAG.getNode(ISD::FRINT, getCurDebugLoc(),
5623                                   Tmp.getValueType(), Tmp));
5624          return;
5625        }
5626      } else if ((LibInfo->has(LibFunc::trunc) && Name == "trunc") ||
5627                 (LibInfo->has(LibFunc::truncf) && Name == "truncf") ||
5628                 (LibInfo->has(LibFunc::truncl) && Name == "truncl")) {
5629        if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5630            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5631            I.getType() == I.getArgOperand(0)->getType()) {
5632          SDValue Tmp = getValue(I.getArgOperand(0));
5633          setValue(&I, DAG.getNode(ISD::FTRUNC, getCurDebugLoc(),
5634                                   Tmp.getValueType(), Tmp));
5635          return;
5636        }
5637      } else if ((LibInfo->has(LibFunc::log2) && Name == "log2") ||
5638                 (LibInfo->has(LibFunc::log2f) && Name == "log2f") ||
5639                 (LibInfo->has(LibFunc::log2l) && Name == "log2l")) {
5640        if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5641            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5642            I.getType() == I.getArgOperand(0)->getType()) {
5643          SDValue Tmp = getValue(I.getArgOperand(0));
5644          setValue(&I, DAG.getNode(ISD::FLOG2, getCurDebugLoc(),
5645                                   Tmp.getValueType(), Tmp));
5646          return;
5647        }
5648      } else if ((LibInfo->has(LibFunc::exp2) && Name == "exp2") ||
5649                 (LibInfo->has(LibFunc::exp2f) && Name == "exp2f") ||
5650                 (LibInfo->has(LibFunc::exp2l) && Name == "exp2l")) {
5651        if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5652            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5653            I.getType() == I.getArgOperand(0)->getType()) {
5654          SDValue Tmp = getValue(I.getArgOperand(0));
5655          setValue(&I, DAG.getNode(ISD::FEXP2, getCurDebugLoc(),
5656                                   Tmp.getValueType(), Tmp));
5657          return;
5658        }
5659      } else if (Name == "memcmp") {
5660        if (visitMemCmpCall(I))
5661          return;
5662      }
5663    }
5664  }
5665
5666  SDValue Callee;
5667  if (!RenameFn)
5668    Callee = getValue(I.getCalledValue());
5669  else
5670    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
5671
5672  // Check if we can potentially perform a tail call. More detailed checking is
5673  // be done within LowerCallTo, after more information about the call is known.
5674  LowerCallTo(&I, Callee, I.isTailCall());
5675}
5676
5677namespace {
5678
5679/// AsmOperandInfo - This contains information for each constraint that we are
5680/// lowering.
5681class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
5682public:
5683  /// CallOperand - If this is the result output operand or a clobber
5684  /// this is null, otherwise it is the incoming operand to the CallInst.
5685  /// This gets modified as the asm is processed.
5686  SDValue CallOperand;
5687
5688  /// AssignedRegs - If this is a register or register class operand, this
5689  /// contains the set of register corresponding to the operand.
5690  RegsForValue AssignedRegs;
5691
5692  explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
5693    : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
5694  }
5695
5696  /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
5697  /// busy in OutputRegs/InputRegs.
5698  void MarkAllocatedRegs(bool isOutReg, bool isInReg,
5699                         std::set<unsigned> &OutputRegs,
5700                         std::set<unsigned> &InputRegs,
5701                         const TargetRegisterInfo &TRI) const {
5702    if (isOutReg) {
5703      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
5704        MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
5705    }
5706    if (isInReg) {
5707      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
5708        MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
5709    }
5710  }
5711
5712  /// getCallOperandValEVT - Return the EVT of the Value* that this operand
5713  /// corresponds to.  If there is no Value* for this operand, it returns
5714  /// MVT::Other.
5715  EVT getCallOperandValEVT(LLVMContext &Context,
5716                           const TargetLowering &TLI,
5717                           const TargetData *TD) const {
5718    if (CallOperandVal == 0) return MVT::Other;
5719
5720    if (isa<BasicBlock>(CallOperandVal))
5721      return TLI.getPointerTy();
5722
5723    llvm::Type *OpTy = CallOperandVal->getType();
5724
5725    // FIXME: code duplicated from TargetLowering::ParseConstraints().
5726    // If this is an indirect operand, the operand is a pointer to the
5727    // accessed type.
5728    if (isIndirect) {
5729      llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
5730      if (!PtrTy)
5731        report_fatal_error("Indirect operand for inline asm not a pointer!");
5732      OpTy = PtrTy->getElementType();
5733    }
5734
5735    // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
5736    if (StructType *STy = dyn_cast<StructType>(OpTy))
5737      if (STy->getNumElements() == 1)
5738        OpTy = STy->getElementType(0);
5739
5740    // If OpTy is not a single value, it may be a struct/union that we
5741    // can tile with integers.
5742    if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5743      unsigned BitSize = TD->getTypeSizeInBits(OpTy);
5744      switch (BitSize) {
5745      default: break;
5746      case 1:
5747      case 8:
5748      case 16:
5749      case 32:
5750      case 64:
5751      case 128:
5752        OpTy = IntegerType::get(Context, BitSize);
5753        break;
5754      }
5755    }
5756
5757    return TLI.getValueType(OpTy, true);
5758  }
5759
5760private:
5761  /// MarkRegAndAliases - Mark the specified register and all aliases in the
5762  /// specified set.
5763  static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
5764                                const TargetRegisterInfo &TRI) {
5765    assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
5766    Regs.insert(Reg);
5767    if (const unsigned *Aliases = TRI.getAliasSet(Reg))
5768      for (; *Aliases; ++Aliases)
5769        Regs.insert(*Aliases);
5770  }
5771};
5772
5773typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
5774
5775} // end anonymous namespace
5776
5777/// GetRegistersForValue - Assign registers (virtual or physical) for the
5778/// specified operand.  We prefer to assign virtual registers, to allow the
5779/// register allocator to handle the assignment process.  However, if the asm
5780/// uses features that we can't model on machineinstrs, we have SDISel do the
5781/// allocation.  This produces generally horrible, but correct, code.
5782///
5783///   OpInfo describes the operand.
5784///   Input and OutputRegs are the set of already allocated physical registers.
5785///
5786static void GetRegistersForValue(SelectionDAG &DAG,
5787                                 const TargetLowering &TLI,
5788                                 DebugLoc DL,
5789                                 SDISelAsmOperandInfo &OpInfo,
5790                                 std::set<unsigned> &OutputRegs,
5791                                 std::set<unsigned> &InputRegs) {
5792  LLVMContext &Context = *DAG.getContext();
5793
5794  // Compute whether this value requires an input register, an output register,
5795  // or both.
5796  bool isOutReg = false;
5797  bool isInReg = false;
5798  switch (OpInfo.Type) {
5799  case InlineAsm::isOutput:
5800    isOutReg = true;
5801
5802    // If there is an input constraint that matches this, we need to reserve
5803    // the input register so no other inputs allocate to it.
5804    isInReg = OpInfo.hasMatchingInput();
5805    break;
5806  case InlineAsm::isInput:
5807    isInReg = true;
5808    isOutReg = false;
5809    break;
5810  case InlineAsm::isClobber:
5811    isOutReg = true;
5812    isInReg = true;
5813    break;
5814  }
5815
5816
5817  MachineFunction &MF = DAG.getMachineFunction();
5818  SmallVector<unsigned, 4> Regs;
5819
5820  // If this is a constraint for a single physreg, or a constraint for a
5821  // register class, find it.
5822  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
5823    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5824                                     OpInfo.ConstraintVT);
5825
5826  unsigned NumRegs = 1;
5827  if (OpInfo.ConstraintVT != MVT::Other) {
5828    // If this is a FP input in an integer register (or visa versa) insert a bit
5829    // cast of the input value.  More generally, handle any case where the input
5830    // value disagrees with the register class we plan to stick this in.
5831    if (OpInfo.Type == InlineAsm::isInput &&
5832        PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
5833      // Try to convert to the first EVT that the reg class contains.  If the
5834      // types are identical size, use a bitcast to convert (e.g. two differing
5835      // vector types).
5836      EVT RegVT = *PhysReg.second->vt_begin();
5837      if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
5838        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5839                                         RegVT, OpInfo.CallOperand);
5840        OpInfo.ConstraintVT = RegVT;
5841      } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
5842        // If the input is a FP value and we want it in FP registers, do a
5843        // bitcast to the corresponding integer type.  This turns an f64 value
5844        // into i64, which can be passed with two i32 values on a 32-bit
5845        // machine.
5846        RegVT = EVT::getIntegerVT(Context,
5847                                  OpInfo.ConstraintVT.getSizeInBits());
5848        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5849                                         RegVT, OpInfo.CallOperand);
5850        OpInfo.ConstraintVT = RegVT;
5851      }
5852    }
5853
5854    NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
5855  }
5856
5857  EVT RegVT;
5858  EVT ValueVT = OpInfo.ConstraintVT;
5859
5860  // If this is a constraint for a specific physical register, like {r17},
5861  // assign it now.
5862  if (unsigned AssignedReg = PhysReg.first) {
5863    const TargetRegisterClass *RC = PhysReg.second;
5864    if (OpInfo.ConstraintVT == MVT::Other)
5865      ValueVT = *RC->vt_begin();
5866
5867    // Get the actual register value type.  This is important, because the user
5868    // may have asked for (e.g.) the AX register in i32 type.  We need to
5869    // remember that AX is actually i16 to get the right extension.
5870    RegVT = *RC->vt_begin();
5871
5872    // This is a explicit reference to a physical register.
5873    Regs.push_back(AssignedReg);
5874
5875    // If this is an expanded reference, add the rest of the regs to Regs.
5876    if (NumRegs != 1) {
5877      TargetRegisterClass::iterator I = RC->begin();
5878      for (; *I != AssignedReg; ++I)
5879        assert(I != RC->end() && "Didn't find reg!");
5880
5881      // Already added the first reg.
5882      --NumRegs; ++I;
5883      for (; NumRegs; --NumRegs, ++I) {
5884        assert(I != RC->end() && "Ran out of registers to allocate!");
5885        Regs.push_back(*I);
5886      }
5887    }
5888
5889    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5890    const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5891    OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5892    return;
5893  }
5894
5895  // Otherwise, if this was a reference to an LLVM register class, create vregs
5896  // for this reference.
5897  if (const TargetRegisterClass *RC = PhysReg.second) {
5898    RegVT = *RC->vt_begin();
5899    if (OpInfo.ConstraintVT == MVT::Other)
5900      ValueVT = RegVT;
5901
5902    // Create the appropriate number of virtual registers.
5903    MachineRegisterInfo &RegInfo = MF.getRegInfo();
5904    for (; NumRegs; --NumRegs)
5905      Regs.push_back(RegInfo.createVirtualRegister(RC));
5906
5907    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5908    return;
5909  }
5910
5911  // Otherwise, we couldn't allocate enough registers for this.
5912}
5913
5914/// visitInlineAsm - Handle a call to an InlineAsm object.
5915///
5916void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
5917  const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
5918
5919  /// ConstraintOperands - Information about all of the constraints.
5920  SDISelAsmOperandInfoVector ConstraintOperands;
5921
5922  std::set<unsigned> OutputRegs, InputRegs;
5923
5924  TargetLowering::AsmOperandInfoVector
5925    TargetConstraints = TLI.ParseConstraints(CS);
5926
5927  bool hasMemory = false;
5928
5929  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
5930  unsigned ResNo = 0;   // ResNo - The result number of the next output.
5931  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
5932    ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
5933    SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
5934
5935    EVT OpVT = MVT::Other;
5936
5937    // Compute the value type for each operand.
5938    switch (OpInfo.Type) {
5939    case InlineAsm::isOutput:
5940      // Indirect outputs just consume an argument.
5941      if (OpInfo.isIndirect) {
5942        OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5943        break;
5944      }
5945
5946      // The return value of the call is this value.  As such, there is no
5947      // corresponding argument.
5948      assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
5949      if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
5950        OpVT = TLI.getValueType(STy->getElementType(ResNo));
5951      } else {
5952        assert(ResNo == 0 && "Asm only has one result!");
5953        OpVT = TLI.getValueType(CS.getType());
5954      }
5955      ++ResNo;
5956      break;
5957    case InlineAsm::isInput:
5958      OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5959      break;
5960    case InlineAsm::isClobber:
5961      // Nothing to do.
5962      break;
5963    }
5964
5965    // If this is an input or an indirect output, process the call argument.
5966    // BasicBlocks are labels, currently appearing only in asm's.
5967    if (OpInfo.CallOperandVal) {
5968      if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
5969        OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
5970      } else {
5971        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
5972      }
5973
5974      OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD);
5975    }
5976
5977    OpInfo.ConstraintVT = OpVT;
5978
5979    // Indirect operand accesses access memory.
5980    if (OpInfo.isIndirect)
5981      hasMemory = true;
5982    else {
5983      for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
5984        TargetLowering::ConstraintType
5985          CType = TLI.getConstraintType(OpInfo.Codes[j]);
5986        if (CType == TargetLowering::C_Memory) {
5987          hasMemory = true;
5988          break;
5989        }
5990      }
5991    }
5992  }
5993
5994  SDValue Chain, Flag;
5995
5996  // We won't need to flush pending loads if this asm doesn't touch
5997  // memory and is nonvolatile.
5998  if (hasMemory || IA->hasSideEffects())
5999    Chain = getRoot();
6000  else
6001    Chain = DAG.getRoot();
6002
6003  // Second pass over the constraints: compute which constraint option to use
6004  // and assign registers to constraints that want a specific physreg.
6005  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6006    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6007
6008    // If this is an output operand with a matching input operand, look up the
6009    // matching input. If their types mismatch, e.g. one is an integer, the
6010    // other is floating point, or their sizes are different, flag it as an
6011    // error.
6012    if (OpInfo.hasMatchingInput()) {
6013      SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
6014
6015      if (OpInfo.ConstraintVT != Input.ConstraintVT) {
6016	std::pair<unsigned, const TargetRegisterClass*> MatchRC =
6017	  TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
6018                                           OpInfo.ConstraintVT);
6019	std::pair<unsigned, const TargetRegisterClass*> InputRC =
6020	  TLI.getRegForInlineAsmConstraint(Input.ConstraintCode,
6021                                           Input.ConstraintVT);
6022        if ((OpInfo.ConstraintVT.isInteger() !=
6023             Input.ConstraintVT.isInteger()) ||
6024            (MatchRC.second != InputRC.second)) {
6025          report_fatal_error("Unsupported asm: input constraint"
6026                             " with a matching output constraint of"
6027                             " incompatible type!");
6028        }
6029        Input.ConstraintVT = OpInfo.ConstraintVT;
6030      }
6031    }
6032
6033    // Compute the constraint code and ConstraintType to use.
6034    TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
6035
6036    // If this is a memory input, and if the operand is not indirect, do what we
6037    // need to to provide an address for the memory input.
6038    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
6039        !OpInfo.isIndirect) {
6040      assert((OpInfo.isMultipleAlternative ||
6041              (OpInfo.Type == InlineAsm::isInput)) &&
6042             "Can only indirectify direct input operands!");
6043
6044      // Memory operands really want the address of the value.  If we don't have
6045      // an indirect input, put it in the constpool if we can, otherwise spill
6046      // it to a stack slot.
6047      // TODO: This isn't quite right. We need to handle these according to
6048      // the addressing mode that the constraint wants. Also, this may take
6049      // an additional register for the computation and we don't want that
6050      // either.
6051
6052      // If the operand is a float, integer, or vector constant, spill to a
6053      // constant pool entry to get its address.
6054      const Value *OpVal = OpInfo.CallOperandVal;
6055      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
6056          isa<ConstantVector>(OpVal)) {
6057        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
6058                                                 TLI.getPointerTy());
6059      } else {
6060        // Otherwise, create a stack slot and emit a store to it before the
6061        // asm.
6062        Type *Ty = OpVal->getType();
6063        uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
6064        unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
6065        MachineFunction &MF = DAG.getMachineFunction();
6066        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
6067        SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
6068        Chain = DAG.getStore(Chain, getCurDebugLoc(),
6069                             OpInfo.CallOperand, StackSlot,
6070                             MachinePointerInfo::getFixedStack(SSFI),
6071                             false, false, 0);
6072        OpInfo.CallOperand = StackSlot;
6073      }
6074
6075      // There is no longer a Value* corresponding to this operand.
6076      OpInfo.CallOperandVal = 0;
6077
6078      // It is now an indirect operand.
6079      OpInfo.isIndirect = true;
6080    }
6081
6082    // If this constraint is for a specific register, allocate it before
6083    // anything else.
6084    if (OpInfo.ConstraintType == TargetLowering::C_Register)
6085      GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo, OutputRegs,
6086                           InputRegs);
6087  }
6088
6089  // Second pass - Loop over all of the operands, assigning virtual or physregs
6090  // to register class operands.
6091  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6092    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6093
6094    // C_Register operands have already been allocated, Other/Memory don't need
6095    // to be.
6096    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
6097      GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo, OutputRegs,
6098                           InputRegs);
6099  }
6100
6101  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
6102  std::vector<SDValue> AsmNodeOperands;
6103  AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
6104  AsmNodeOperands.push_back(
6105          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
6106                                      TLI.getPointerTy()));
6107
6108  // If we have a !srcloc metadata node associated with it, we want to attach
6109  // this to the ultimately generated inline asm machineinstr.  To do this, we
6110  // pass in the third operand as this (potentially null) inline asm MDNode.
6111  const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
6112  AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
6113
6114  // Remember the HasSideEffect and AlignStack bits as operand 3.
6115  unsigned ExtraInfo = 0;
6116  if (IA->hasSideEffects())
6117    ExtraInfo |= InlineAsm::Extra_HasSideEffects;
6118  if (IA->isAlignStack())
6119    ExtraInfo |= InlineAsm::Extra_IsAlignStack;
6120  AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo,
6121                                                  TLI.getPointerTy()));
6122
6123  // Loop over all of the inputs, copying the operand values into the
6124  // appropriate registers and processing the output regs.
6125  RegsForValue RetValRegs;
6126
6127  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
6128  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
6129
6130  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6131    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6132
6133    switch (OpInfo.Type) {
6134    case InlineAsm::isOutput: {
6135      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
6136          OpInfo.ConstraintType != TargetLowering::C_Register) {
6137        // Memory output, or 'other' output (e.g. 'X' constraint).
6138        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
6139
6140        // Add information to the INLINEASM node to know about this output.
6141        unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6142        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
6143                                                        TLI.getPointerTy()));
6144        AsmNodeOperands.push_back(OpInfo.CallOperand);
6145        break;
6146      }
6147
6148      // Otherwise, this is a register or register class output.
6149
6150      // Copy the output from the appropriate register.  Find a register that
6151      // we can use.
6152      if (OpInfo.AssignedRegs.Regs.empty()) {
6153        LLVMContext &Ctx = *DAG.getContext();
6154        Ctx.emitError(CS.getInstruction(),
6155                      "couldn't allocate output register for constraint '" +
6156                           Twine(OpInfo.ConstraintCode) + "'");
6157        break;
6158      }
6159
6160      // If this is an indirect operand, store through the pointer after the
6161      // asm.
6162      if (OpInfo.isIndirect) {
6163        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
6164                                                      OpInfo.CallOperandVal));
6165      } else {
6166        // This is the result value of the call.
6167        assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6168        // Concatenate this output onto the outputs list.
6169        RetValRegs.append(OpInfo.AssignedRegs);
6170      }
6171
6172      // Add information to the INLINEASM node to know that this register is
6173      // set.
6174      OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
6175                                           InlineAsm::Kind_RegDefEarlyClobber :
6176                                               InlineAsm::Kind_RegDef,
6177                                               false,
6178                                               0,
6179                                               DAG,
6180                                               AsmNodeOperands);
6181      break;
6182    }
6183    case InlineAsm::isInput: {
6184      SDValue InOperandVal = OpInfo.CallOperand;
6185
6186      if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
6187        // If this is required to match an output register we have already set,
6188        // just use its register.
6189        unsigned OperandNo = OpInfo.getMatchedOperand();
6190
6191        // Scan until we find the definition we already emitted of this operand.
6192        // When we find it, create a RegsForValue operand.
6193        unsigned CurOp = InlineAsm::Op_FirstOperand;
6194        for (; OperandNo; --OperandNo) {
6195          // Advance to the next operand.
6196          unsigned OpFlag =
6197            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6198          assert((InlineAsm::isRegDefKind(OpFlag) ||
6199                  InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
6200                  InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
6201          CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
6202        }
6203
6204        unsigned OpFlag =
6205          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6206        if (InlineAsm::isRegDefKind(OpFlag) ||
6207            InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
6208          // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
6209          if (OpInfo.isIndirect) {
6210            // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
6211            LLVMContext &Ctx = *DAG.getContext();
6212            Ctx.emitError(CS.getInstruction(),  "inline asm not supported yet:"
6213                          " don't know how to handle tied "
6214                          "indirect register inputs");
6215          }
6216
6217          RegsForValue MatchedRegs;
6218          MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
6219          EVT RegVT = AsmNodeOperands[CurOp+1].getValueType();
6220          MatchedRegs.RegVTs.push_back(RegVT);
6221          MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
6222          for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
6223               i != e; ++i)
6224            MatchedRegs.Regs.push_back
6225              (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)));
6226
6227          // Use the produced MatchedRegs object to
6228          MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
6229                                    Chain, &Flag);
6230          MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
6231                                           true, OpInfo.getMatchedOperand(),
6232                                           DAG, AsmNodeOperands);
6233          break;
6234        }
6235
6236        assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
6237        assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
6238               "Unexpected number of operands");
6239        // Add information to the INLINEASM node to know about this input.
6240        // See InlineAsm.h isUseOperandTiedToDef.
6241        OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
6242                                                    OpInfo.getMatchedOperand());
6243        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
6244                                                        TLI.getPointerTy()));
6245        AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
6246        break;
6247      }
6248
6249      // Treat indirect 'X' constraint as memory.
6250      if (OpInfo.ConstraintType == TargetLowering::C_Other &&
6251          OpInfo.isIndirect)
6252        OpInfo.ConstraintType = TargetLowering::C_Memory;
6253
6254      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
6255        std::vector<SDValue> Ops;
6256        TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
6257                                         Ops, DAG);
6258        if (Ops.empty()) {
6259          LLVMContext &Ctx = *DAG.getContext();
6260          Ctx.emitError(CS.getInstruction(),
6261                        "invalid operand for inline asm constraint '" +
6262                        Twine(OpInfo.ConstraintCode) + "'");
6263          break;
6264        }
6265
6266        // Add information to the INLINEASM node to know about this input.
6267        unsigned ResOpType =
6268          InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
6269        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6270                                                        TLI.getPointerTy()));
6271        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
6272        break;
6273      }
6274
6275      if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
6276        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
6277        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
6278               "Memory operands expect pointer values");
6279
6280        // Add information to the INLINEASM node to know about this input.
6281        unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6282        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6283                                                        TLI.getPointerTy()));
6284        AsmNodeOperands.push_back(InOperandVal);
6285        break;
6286      }
6287
6288      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
6289              OpInfo.ConstraintType == TargetLowering::C_Register) &&
6290             "Unknown constraint type!");
6291      assert(!OpInfo.isIndirect &&
6292             "Don't know how to handle indirect register inputs yet!");
6293
6294      // Copy the input into the appropriate registers.
6295      if (OpInfo.AssignedRegs.Regs.empty()) {
6296        LLVMContext &Ctx = *DAG.getContext();
6297        Ctx.emitError(CS.getInstruction(),
6298                      "couldn't allocate input reg for constraint '" +
6299                           Twine(OpInfo.ConstraintCode) + "'");
6300        break;
6301      }
6302
6303      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
6304                                        Chain, &Flag);
6305
6306      OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
6307                                               DAG, AsmNodeOperands);
6308      break;
6309    }
6310    case InlineAsm::isClobber: {
6311      // Add the clobbered value to the operand list, so that the register
6312      // allocator is aware that the physreg got clobbered.
6313      if (!OpInfo.AssignedRegs.Regs.empty())
6314        OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
6315                                                 false, 0, DAG,
6316                                                 AsmNodeOperands);
6317      break;
6318    }
6319    }
6320  }
6321
6322  // Finish up input operands.  Set the input chain and add the flag last.
6323  AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
6324  if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
6325
6326  Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(),
6327                      DAG.getVTList(MVT::Other, MVT::Glue),
6328                      &AsmNodeOperands[0], AsmNodeOperands.size());
6329  Flag = Chain.getValue(1);
6330
6331  // If this asm returns a register value, copy the result from that register
6332  // and set it as the value of the call.
6333  if (!RetValRegs.Regs.empty()) {
6334    SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
6335                                             Chain, &Flag);
6336
6337    // FIXME: Why don't we do this for inline asms with MRVs?
6338    if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
6339      EVT ResultType = TLI.getValueType(CS.getType());
6340
6341      // If any of the results of the inline asm is a vector, it may have the
6342      // wrong width/num elts.  This can happen for register classes that can
6343      // contain multiple different value types.  The preg or vreg allocated may
6344      // not have the same VT as was expected.  Convert it to the right type
6345      // with bit_convert.
6346      if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
6347        Val = DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
6348                          ResultType, Val);
6349
6350      } else if (ResultType != Val.getValueType() &&
6351                 ResultType.isInteger() && Val.getValueType().isInteger()) {
6352        // If a result value was tied to an input value, the computed result may
6353        // have a wider width than the expected result.  Extract the relevant
6354        // portion.
6355        Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val);
6356      }
6357
6358      assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
6359    }
6360
6361    setValue(CS.getInstruction(), Val);
6362    // Don't need to use this as a chain in this case.
6363    if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
6364      return;
6365  }
6366
6367  std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
6368
6369  // Process indirect outputs, first output all of the flagged copies out of
6370  // physregs.
6371  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
6372    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
6373    const Value *Ptr = IndirectStoresToEmit[i].second;
6374    SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
6375                                             Chain, &Flag);
6376    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
6377  }
6378
6379  // Emit the non-flagged stores from the physregs.
6380  SmallVector<SDValue, 8> OutChains;
6381  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
6382    SDValue Val = DAG.getStore(Chain, getCurDebugLoc(),
6383                               StoresToEmit[i].first,
6384                               getValue(StoresToEmit[i].second),
6385                               MachinePointerInfo(StoresToEmit[i].second),
6386                               false, false, 0);
6387    OutChains.push_back(Val);
6388  }
6389
6390  if (!OutChains.empty())
6391    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
6392                        &OutChains[0], OutChains.size());
6393
6394  DAG.setRoot(Chain);
6395}
6396
6397void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
6398  DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(),
6399                          MVT::Other, getRoot(),
6400                          getValue(I.getArgOperand(0)),
6401                          DAG.getSrcValue(I.getArgOperand(0))));
6402}
6403
6404void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
6405  const TargetData &TD = *TLI.getTargetData();
6406  SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(),
6407                           getRoot(), getValue(I.getOperand(0)),
6408                           DAG.getSrcValue(I.getOperand(0)),
6409                           TD.getABITypeAlignment(I.getType()));
6410  setValue(&I, V);
6411  DAG.setRoot(V.getValue(1));
6412}
6413
6414void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
6415  DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(),
6416                          MVT::Other, getRoot(),
6417                          getValue(I.getArgOperand(0)),
6418                          DAG.getSrcValue(I.getArgOperand(0))));
6419}
6420
6421void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
6422  DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(),
6423                          MVT::Other, getRoot(),
6424                          getValue(I.getArgOperand(0)),
6425                          getValue(I.getArgOperand(1)),
6426                          DAG.getSrcValue(I.getArgOperand(0)),
6427                          DAG.getSrcValue(I.getArgOperand(1))));
6428}
6429
6430/// TargetLowering::LowerCallTo - This is the default LowerCallTo
6431/// implementation, which just calls LowerCall.
6432/// FIXME: When all targets are
6433/// migrated to using LowerCall, this hook should be integrated into SDISel.
6434std::pair<SDValue, SDValue>
6435TargetLowering::LowerCallTo(SDValue Chain, Type *RetTy,
6436                            bool RetSExt, bool RetZExt, bool isVarArg,
6437                            bool isInreg, unsigned NumFixedArgs,
6438                            CallingConv::ID CallConv, bool isTailCall,
6439                            bool isReturnValueUsed,
6440                            SDValue Callee,
6441                            ArgListTy &Args, SelectionDAG &DAG,
6442                            DebugLoc dl) const {
6443  // Handle all of the outgoing arguments.
6444  SmallVector<ISD::OutputArg, 32> Outs;
6445  SmallVector<SDValue, 32> OutVals;
6446  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
6447    SmallVector<EVT, 4> ValueVTs;
6448    ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
6449    for (unsigned Value = 0, NumValues = ValueVTs.size();
6450         Value != NumValues; ++Value) {
6451      EVT VT = ValueVTs[Value];
6452      Type *ArgTy = VT.getTypeForEVT(RetTy->getContext());
6453      SDValue Op = SDValue(Args[i].Node.getNode(),
6454                           Args[i].Node.getResNo() + Value);
6455      ISD::ArgFlagsTy Flags;
6456      unsigned OriginalAlignment =
6457        getTargetData()->getABITypeAlignment(ArgTy);
6458
6459      if (Args[i].isZExt)
6460        Flags.setZExt();
6461      if (Args[i].isSExt)
6462        Flags.setSExt();
6463      if (Args[i].isInReg)
6464        Flags.setInReg();
6465      if (Args[i].isSRet)
6466        Flags.setSRet();
6467      if (Args[i].isByVal) {
6468        Flags.setByVal();
6469        PointerType *Ty = cast<PointerType>(Args[i].Ty);
6470        Type *ElementTy = Ty->getElementType();
6471        Flags.setByValSize(getTargetData()->getTypeAllocSize(ElementTy));
6472        // For ByVal, alignment should come from FE.  BE will guess if this
6473        // info is not there but there are cases it cannot get right.
6474        unsigned FrameAlign;
6475        if (Args[i].Alignment)
6476          FrameAlign = Args[i].Alignment;
6477        else
6478          FrameAlign = getByValTypeAlignment(ElementTy);
6479        Flags.setByValAlign(FrameAlign);
6480      }
6481      if (Args[i].isNest)
6482        Flags.setNest();
6483      Flags.setOrigAlign(OriginalAlignment);
6484
6485      EVT PartVT = getRegisterType(RetTy->getContext(), VT);
6486      unsigned NumParts = getNumRegisters(RetTy->getContext(), VT);
6487      SmallVector<SDValue, 4> Parts(NumParts);
6488      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
6489
6490      if (Args[i].isSExt)
6491        ExtendKind = ISD::SIGN_EXTEND;
6492      else if (Args[i].isZExt)
6493        ExtendKind = ISD::ZERO_EXTEND;
6494
6495      getCopyToParts(DAG, dl, Op, &Parts[0], NumParts,
6496                     PartVT, ExtendKind);
6497
6498      for (unsigned j = 0; j != NumParts; ++j) {
6499        // if it isn't first piece, alignment must be 1
6500        ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(),
6501                               i < NumFixedArgs);
6502        if (NumParts > 1 && j == 0)
6503          MyFlags.Flags.setSplit();
6504        else if (j != 0)
6505          MyFlags.Flags.setOrigAlign(1);
6506
6507        Outs.push_back(MyFlags);
6508        OutVals.push_back(Parts[j]);
6509      }
6510    }
6511  }
6512
6513  // Handle the incoming return values from the call.
6514  SmallVector<ISD::InputArg, 32> Ins;
6515  SmallVector<EVT, 4> RetTys;
6516  ComputeValueVTs(*this, RetTy, RetTys);
6517  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6518    EVT VT = RetTys[I];
6519    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
6520    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
6521    for (unsigned i = 0; i != NumRegs; ++i) {
6522      ISD::InputArg MyFlags;
6523      MyFlags.VT = RegisterVT.getSimpleVT();
6524      MyFlags.Used = isReturnValueUsed;
6525      if (RetSExt)
6526        MyFlags.Flags.setSExt();
6527      if (RetZExt)
6528        MyFlags.Flags.setZExt();
6529      if (isInreg)
6530        MyFlags.Flags.setInReg();
6531      Ins.push_back(MyFlags);
6532    }
6533  }
6534
6535  SmallVector<SDValue, 4> InVals;
6536  Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall,
6537                    Outs, OutVals, Ins, dl, DAG, InVals);
6538
6539  // Verify that the target's LowerCall behaved as expected.
6540  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
6541         "LowerCall didn't return a valid chain!");
6542  assert((!isTailCall || InVals.empty()) &&
6543         "LowerCall emitted a return value for a tail call!");
6544  assert((isTailCall || InVals.size() == Ins.size()) &&
6545         "LowerCall didn't emit the correct number of values!");
6546
6547  // For a tail call, the return value is merely live-out and there aren't
6548  // any nodes in the DAG representing it. Return a special value to
6549  // indicate that a tail call has been emitted and no more Instructions
6550  // should be processed in the current block.
6551  if (isTailCall) {
6552    DAG.setRoot(Chain);
6553    return std::make_pair(SDValue(), SDValue());
6554  }
6555
6556  DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6557          assert(InVals[i].getNode() &&
6558                 "LowerCall emitted a null value!");
6559          assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6560                 "LowerCall emitted a value with the wrong type!");
6561        });
6562
6563  // Collect the legal value parts into potentially illegal values
6564  // that correspond to the original function's return values.
6565  ISD::NodeType AssertOp = ISD::DELETED_NODE;
6566  if (RetSExt)
6567    AssertOp = ISD::AssertSext;
6568  else if (RetZExt)
6569    AssertOp = ISD::AssertZext;
6570  SmallVector<SDValue, 4> ReturnValues;
6571  unsigned CurReg = 0;
6572  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6573    EVT VT = RetTys[I];
6574    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
6575    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
6576
6577    ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg],
6578                                            NumRegs, RegisterVT, VT,
6579                                            AssertOp));
6580    CurReg += NumRegs;
6581  }
6582
6583  // For a function returning void, there is no return value. We can't create
6584  // such a node, so we just return a null return value in that case. In
6585  // that case, nothing will actually look at the value.
6586  if (ReturnValues.empty())
6587    return std::make_pair(SDValue(), Chain);
6588
6589  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
6590                            DAG.getVTList(&RetTys[0], RetTys.size()),
6591                            &ReturnValues[0], ReturnValues.size());
6592  return std::make_pair(Res, Chain);
6593}
6594
6595void TargetLowering::LowerOperationWrapper(SDNode *N,
6596                                           SmallVectorImpl<SDValue> &Results,
6597                                           SelectionDAG &DAG) const {
6598  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
6599  if (Res.getNode())
6600    Results.push_back(Res);
6601}
6602
6603SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
6604  llvm_unreachable("LowerOperation not implemented for this target!");
6605}
6606
6607void
6608SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
6609  SDValue Op = getNonRegisterValue(V);
6610  assert((Op.getOpcode() != ISD::CopyFromReg ||
6611          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
6612         "Copy from a reg to the same reg!");
6613  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
6614
6615  RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
6616  SDValue Chain = DAG.getEntryNode();
6617  RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0);
6618  PendingExports.push_back(Chain);
6619}
6620
6621#include "llvm/CodeGen/SelectionDAGISel.h"
6622
6623/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
6624/// entry block, return true.  This includes arguments used by switches, since
6625/// the switch may expand into multiple basic blocks.
6626static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
6627  // With FastISel active, we may be splitting blocks, so force creation
6628  // of virtual registers for all non-dead arguments.
6629  if (FastISel)
6630    return A->use_empty();
6631
6632  const BasicBlock *Entry = A->getParent()->begin();
6633  for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end();
6634       UI != E; ++UI) {
6635    const User *U = *UI;
6636    if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U))
6637      return false;  // Use not in entry block.
6638  }
6639  return true;
6640}
6641
6642void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) {
6643  // If this is the entry block, emit arguments.
6644  const Function &F = *LLVMBB->getParent();
6645  SelectionDAG &DAG = SDB->DAG;
6646  DebugLoc dl = SDB->getCurDebugLoc();
6647  const TargetData *TD = TLI.getTargetData();
6648  SmallVector<ISD::InputArg, 16> Ins;
6649
6650  // Check whether the function can return without sret-demotion.
6651  SmallVector<ISD::OutputArg, 4> Outs;
6652  GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
6653                Outs, TLI);
6654
6655  if (!FuncInfo->CanLowerReturn) {
6656    // Put in an sret pointer parameter before all the other parameters.
6657    SmallVector<EVT, 1> ValueVTs;
6658    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6659
6660    // NOTE: Assuming that a pointer will never break down to more than one VT
6661    // or one register.
6662    ISD::ArgFlagsTy Flags;
6663    Flags.setSRet();
6664    EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]);
6665    ISD::InputArg RetArg(Flags, RegisterVT, true);
6666    Ins.push_back(RetArg);
6667  }
6668
6669  // Set up the incoming argument description vector.
6670  unsigned Idx = 1;
6671  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
6672       I != E; ++I, ++Idx) {
6673    SmallVector<EVT, 4> ValueVTs;
6674    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6675    bool isArgValueUsed = !I->use_empty();
6676    for (unsigned Value = 0, NumValues = ValueVTs.size();
6677         Value != NumValues; ++Value) {
6678      EVT VT = ValueVTs[Value];
6679      Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
6680      ISD::ArgFlagsTy Flags;
6681      unsigned OriginalAlignment =
6682        TD->getABITypeAlignment(ArgTy);
6683
6684      if (F.paramHasAttr(Idx, Attribute::ZExt))
6685        Flags.setZExt();
6686      if (F.paramHasAttr(Idx, Attribute::SExt))
6687        Flags.setSExt();
6688      if (F.paramHasAttr(Idx, Attribute::InReg))
6689        Flags.setInReg();
6690      if (F.paramHasAttr(Idx, Attribute::StructRet))
6691        Flags.setSRet();
6692      if (F.paramHasAttr(Idx, Attribute::ByVal)) {
6693        Flags.setByVal();
6694        PointerType *Ty = cast<PointerType>(I->getType());
6695        Type *ElementTy = Ty->getElementType();
6696        Flags.setByValSize(TD->getTypeAllocSize(ElementTy));
6697        // For ByVal, alignment should be passed from FE.  BE will guess if
6698        // this info is not there but there are cases it cannot get right.
6699        unsigned FrameAlign;
6700        if (F.getParamAlignment(Idx))
6701          FrameAlign = F.getParamAlignment(Idx);
6702        else
6703          FrameAlign = TLI.getByValTypeAlignment(ElementTy);
6704        Flags.setByValAlign(FrameAlign);
6705      }
6706      if (F.paramHasAttr(Idx, Attribute::Nest))
6707        Flags.setNest();
6708      Flags.setOrigAlign(OriginalAlignment);
6709
6710      EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6711      unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6712      for (unsigned i = 0; i != NumRegs; ++i) {
6713        ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed);
6714        if (NumRegs > 1 && i == 0)
6715          MyFlags.Flags.setSplit();
6716        // if it isn't first piece, alignment must be 1
6717        else if (i > 0)
6718          MyFlags.Flags.setOrigAlign(1);
6719        Ins.push_back(MyFlags);
6720      }
6721    }
6722  }
6723
6724  // Call the target to set up the argument values.
6725  SmallVector<SDValue, 8> InVals;
6726  SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
6727                                             F.isVarArg(), Ins,
6728                                             dl, DAG, InVals);
6729
6730  // Verify that the target's LowerFormalArguments behaved as expected.
6731  assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
6732         "LowerFormalArguments didn't return a valid chain!");
6733  assert(InVals.size() == Ins.size() &&
6734         "LowerFormalArguments didn't emit the correct number of values!");
6735  DEBUG({
6736      for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6737        assert(InVals[i].getNode() &&
6738               "LowerFormalArguments emitted a null value!");
6739        assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6740               "LowerFormalArguments emitted a value with the wrong type!");
6741      }
6742    });
6743
6744  // Update the DAG with the new chain value resulting from argument lowering.
6745  DAG.setRoot(NewRoot);
6746
6747  // Set up the argument values.
6748  unsigned i = 0;
6749  Idx = 1;
6750  if (!FuncInfo->CanLowerReturn) {
6751    // Create a virtual register for the sret pointer, and put in a copy
6752    // from the sret argument into it.
6753    SmallVector<EVT, 1> ValueVTs;
6754    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6755    EVT VT = ValueVTs[0];
6756    EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6757    ISD::NodeType AssertOp = ISD::DELETED_NODE;
6758    SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
6759                                        RegVT, VT, AssertOp);
6760
6761    MachineFunction& MF = SDB->DAG.getMachineFunction();
6762    MachineRegisterInfo& RegInfo = MF.getRegInfo();
6763    unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT));
6764    FuncInfo->DemoteRegister = SRetReg;
6765    NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(),
6766                                    SRetReg, ArgValue);
6767    DAG.setRoot(NewRoot);
6768
6769    // i indexes lowered arguments.  Bump it past the hidden sret argument.
6770    // Idx indexes LLVM arguments.  Don't touch it.
6771    ++i;
6772  }
6773
6774  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
6775      ++I, ++Idx) {
6776    SmallVector<SDValue, 4> ArgValues;
6777    SmallVector<EVT, 4> ValueVTs;
6778    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6779    unsigned NumValues = ValueVTs.size();
6780
6781    // If this argument is unused then remember its value. It is used to generate
6782    // debugging information.
6783    if (I->use_empty() && NumValues)
6784      SDB->setUnusedArgValue(I, InVals[i]);
6785
6786    for (unsigned Val = 0; Val != NumValues; ++Val) {
6787      EVT VT = ValueVTs[Val];
6788      EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6789      unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6790
6791      if (!I->use_empty()) {
6792        ISD::NodeType AssertOp = ISD::DELETED_NODE;
6793        if (F.paramHasAttr(Idx, Attribute::SExt))
6794          AssertOp = ISD::AssertSext;
6795        else if (F.paramHasAttr(Idx, Attribute::ZExt))
6796          AssertOp = ISD::AssertZext;
6797
6798        ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
6799                                             NumParts, PartVT, VT,
6800                                             AssertOp));
6801      }
6802
6803      i += NumParts;
6804    }
6805
6806    // We don't need to do anything else for unused arguments.
6807    if (ArgValues.empty())
6808      continue;
6809
6810    // Note down frame index.
6811    if (FrameIndexSDNode *FI =
6812	dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
6813      FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
6814
6815    SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues,
6816                                     SDB->getCurDebugLoc());
6817
6818    SDB->setValue(I, Res);
6819    if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
6820      if (LoadSDNode *LNode =
6821          dyn_cast<LoadSDNode>(Res.getOperand(0).getNode()))
6822        if (FrameIndexSDNode *FI =
6823            dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
6824        FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
6825    }
6826
6827    // If this argument is live outside of the entry block, insert a copy from
6828    // wherever we got it to the vreg that other BB's will reference it as.
6829    if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
6830      // If we can, though, try to skip creating an unnecessary vreg.
6831      // FIXME: This isn't very clean... it would be nice to make this more
6832      // general.  It's also subtly incompatible with the hacks FastISel
6833      // uses with vregs.
6834      unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
6835      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
6836        FuncInfo->ValueMap[I] = Reg;
6837        continue;
6838      }
6839    }
6840    if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) {
6841      FuncInfo->InitializeRegForValue(I);
6842      SDB->CopyToExportRegsIfNeeded(I);
6843    }
6844  }
6845
6846  assert(i == InVals.size() && "Argument register count mismatch!");
6847
6848  // Finally, if the target has anything special to do, allow it to do so.
6849  // FIXME: this should insert code into the DAG!
6850  EmitFunctionEntryCode();
6851}
6852
6853/// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
6854/// ensure constants are generated when needed.  Remember the virtual registers
6855/// that need to be added to the Machine PHI nodes as input.  We cannot just
6856/// directly add them, because expansion might result in multiple MBB's for one
6857/// BB.  As such, the start of the BB might correspond to a different MBB than
6858/// the end.
6859///
6860void
6861SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
6862  const TerminatorInst *TI = LLVMBB->getTerminator();
6863
6864  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6865
6866  // Check successor nodes' PHI nodes that expect a constant to be available
6867  // from this block.
6868  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6869    const BasicBlock *SuccBB = TI->getSuccessor(succ);
6870    if (!isa<PHINode>(SuccBB->begin())) continue;
6871    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
6872
6873    // If this terminator has multiple identical successors (common for
6874    // switches), only handle each succ once.
6875    if (!SuccsHandled.insert(SuccMBB)) continue;
6876
6877    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6878
6879    // At this point we know that there is a 1-1 correspondence between LLVM PHI
6880    // nodes and Machine PHI nodes, but the incoming operands have not been
6881    // emitted yet.
6882    for (BasicBlock::const_iterator I = SuccBB->begin();
6883         const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
6884      // Ignore dead phi's.
6885      if (PN->use_empty()) continue;
6886
6887      // Skip empty types
6888      if (PN->getType()->isEmptyTy())
6889        continue;
6890
6891      unsigned Reg;
6892      const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6893
6894      if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
6895        unsigned &RegOut = ConstantsOut[C];
6896        if (RegOut == 0) {
6897          RegOut = FuncInfo.CreateRegs(C->getType());
6898          CopyValueToVirtualRegister(C, RegOut);
6899        }
6900        Reg = RegOut;
6901      } else {
6902        DenseMap<const Value *, unsigned>::iterator I =
6903          FuncInfo.ValueMap.find(PHIOp);
6904        if (I != FuncInfo.ValueMap.end())
6905          Reg = I->second;
6906        else {
6907          assert(isa<AllocaInst>(PHIOp) &&
6908                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
6909                 "Didn't codegen value into a register!??");
6910          Reg = FuncInfo.CreateRegs(PHIOp->getType());
6911          CopyValueToVirtualRegister(PHIOp, Reg);
6912        }
6913      }
6914
6915      // Remember that this register needs to added to the machine PHI node as
6916      // the input for this MBB.
6917      SmallVector<EVT, 4> ValueVTs;
6918      ComputeValueVTs(TLI, PN->getType(), ValueVTs);
6919      for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
6920        EVT VT = ValueVTs[vti];
6921        unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
6922        for (unsigned i = 0, e = NumRegisters; i != e; ++i)
6923          FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
6924        Reg += NumRegisters;
6925      }
6926    }
6927  }
6928  ConstantsOut.clear();
6929}
6930