SelectionDAGBuilder.cpp revision 517c4d7fdac82151f6f009ec5ba62f8727658678
1//===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements routines for translating from LLVM IR into SelectionDAG IR.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "SDNodeDbgValue.h"
16#include "SelectionDAGBuilder.h"
17#include "llvm/ADT/BitVector.h"
18#include "llvm/ADT/PostOrderIterator.h"
19#include "llvm/ADT/SmallSet.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/ConstantFolding.h"
22#include "llvm/Constants.h"
23#include "llvm/CallingConv.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Function.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/InlineAsm.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/IntrinsicInst.h"
31#include "llvm/LLVMContext.h"
32#include "llvm/Module.h"
33#include "llvm/CodeGen/Analysis.h"
34#include "llvm/CodeGen/FastISel.h"
35#include "llvm/CodeGen/FunctionLoweringInfo.h"
36#include "llvm/CodeGen/GCStrategy.h"
37#include "llvm/CodeGen/GCMetadata.h"
38#include "llvm/CodeGen/MachineFunction.h"
39#include "llvm/CodeGen/MachineFrameInfo.h"
40#include "llvm/CodeGen/MachineInstrBuilder.h"
41#include "llvm/CodeGen/MachineJumpTableInfo.h"
42#include "llvm/CodeGen/MachineModuleInfo.h"
43#include "llvm/CodeGen/MachineRegisterInfo.h"
44#include "llvm/CodeGen/SelectionDAG.h"
45#include "llvm/Analysis/DebugInfo.h"
46#include "llvm/Target/TargetData.h"
47#include "llvm/Target/TargetFrameLowering.h"
48#include "llvm/Target/TargetInstrInfo.h"
49#include "llvm/Target/TargetIntrinsicInfo.h"
50#include "llvm/Target/TargetLibraryInfo.h"
51#include "llvm/Target/TargetLowering.h"
52#include "llvm/Target/TargetOptions.h"
53#include "llvm/Support/CommandLine.h"
54#include "llvm/Support/Debug.h"
55#include "llvm/Support/ErrorHandling.h"
56#include "llvm/Support/MathExtras.h"
57#include "llvm/Support/raw_ostream.h"
58#include <algorithm>
59using namespace llvm;
60
61/// LimitFloatPrecision - Generate low-precision inline sequences for
62/// some float libcalls (6, 8 or 12 bits).
63static unsigned LimitFloatPrecision;
64
65static cl::opt<unsigned, true>
66LimitFPPrecision("limit-float-precision",
67                 cl::desc("Generate low-precision inline sequences "
68                          "for some float libcalls"),
69                 cl::location(LimitFloatPrecision),
70                 cl::init(0));
71
72// Limit the width of DAG chains. This is important in general to prevent
73// prevent DAG-based analysis from blowing up. For example, alias analysis and
74// load clustering may not complete in reasonable time. It is difficult to
75// recognize and avoid this situation within each individual analysis, and
76// future analyses are likely to have the same behavior. Limiting DAG width is
77// the safe approach, and will be especially important with global DAGs.
78//
79// MaxParallelChains default is arbitrarily high to avoid affecting
80// optimization, but could be lowered to improve compile time. Any ld-ld-st-st
81// sequence over this should have been converted to llvm.memcpy by the
82// frontend. It easy to induce this behavior with .ll code such as:
83// %buffer = alloca [4096 x i8]
84// %data = load [4096 x i8]* %argPtr
85// store [4096 x i8] %data, [4096 x i8]* %buffer
86static const unsigned MaxParallelChains = 64;
87
88static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
89                                      const SDValue *Parts, unsigned NumParts,
90                                      EVT PartVT, EVT ValueVT);
91
92/// getCopyFromParts - Create a value that contains the specified legal parts
93/// combined into the value they represent.  If the parts combine to a type
94/// larger then ValueVT then AssertOp can be used to specify whether the extra
95/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
96/// (ISD::AssertSext).
97static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL,
98                                const SDValue *Parts,
99                                unsigned NumParts, EVT PartVT, EVT ValueVT,
100                                ISD::NodeType AssertOp = ISD::DELETED_NODE) {
101  if (ValueVT.isVector())
102    return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT);
103
104  assert(NumParts > 0 && "No parts to assemble!");
105  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
106  SDValue Val = Parts[0];
107
108  if (NumParts > 1) {
109    // Assemble the value from multiple parts.
110    if (ValueVT.isInteger()) {
111      unsigned PartBits = PartVT.getSizeInBits();
112      unsigned ValueBits = ValueVT.getSizeInBits();
113
114      // Assemble the power of 2 part.
115      unsigned RoundParts = NumParts & (NumParts - 1) ?
116        1 << Log2_32(NumParts) : NumParts;
117      unsigned RoundBits = PartBits * RoundParts;
118      EVT RoundVT = RoundBits == ValueBits ?
119        ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
120      SDValue Lo, Hi;
121
122      EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
123
124      if (RoundParts > 2) {
125        Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
126                              PartVT, HalfVT);
127        Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
128                              RoundParts / 2, PartVT, HalfVT);
129      } else {
130        Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
131        Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
132      }
133
134      if (TLI.isBigEndian())
135        std::swap(Lo, Hi);
136
137      Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
138
139      if (RoundParts < NumParts) {
140        // Assemble the trailing non-power-of-2 part.
141        unsigned OddParts = NumParts - RoundParts;
142        EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
143        Hi = getCopyFromParts(DAG, DL,
144                              Parts + RoundParts, OddParts, PartVT, OddVT);
145
146        // Combine the round and odd parts.
147        Lo = Val;
148        if (TLI.isBigEndian())
149          std::swap(Lo, Hi);
150        EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
151        Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
152        Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
153                         DAG.getConstant(Lo.getValueType().getSizeInBits(),
154                                         TLI.getPointerTy()));
155        Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
156        Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
157      }
158    } else if (PartVT.isFloatingPoint()) {
159      // FP split into multiple FP parts (for ppcf128)
160      assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) &&
161             "Unexpected split");
162      SDValue Lo, Hi;
163      Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
164      Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
165      if (TLI.isBigEndian())
166        std::swap(Lo, Hi);
167      Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
168    } else {
169      // FP split into integer parts (soft fp)
170      assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
171             !PartVT.isVector() && "Unexpected split");
172      EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
173      Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT);
174    }
175  }
176
177  // There is now one part, held in Val.  Correct it to match ValueVT.
178  PartVT = Val.getValueType();
179
180  if (PartVT == ValueVT)
181    return Val;
182
183  if (PartVT.isInteger() && ValueVT.isInteger()) {
184    if (ValueVT.bitsLT(PartVT)) {
185      // For a truncate, see if we have any information to
186      // indicate whether the truncated bits will always be
187      // zero or sign-extension.
188      if (AssertOp != ISD::DELETED_NODE)
189        Val = DAG.getNode(AssertOp, DL, PartVT, Val,
190                          DAG.getValueType(ValueVT));
191      return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
192    }
193    return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
194  }
195
196  if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
197    // FP_ROUND's are always exact here.
198    if (ValueVT.bitsLT(Val.getValueType()))
199      return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val,
200                         DAG.getIntPtrConstant(1));
201
202    return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
203  }
204
205  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
206    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
207
208  llvm_unreachable("Unknown mismatch!");
209  return SDValue();
210}
211
212/// getCopyFromParts - Create a value that contains the specified legal parts
213/// combined into the value they represent.  If the parts combine to a type
214/// larger then ValueVT then AssertOp can be used to specify whether the extra
215/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
216/// (ISD::AssertSext).
217static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
218                                      const SDValue *Parts, unsigned NumParts,
219                                      EVT PartVT, EVT ValueVT) {
220  assert(ValueVT.isVector() && "Not a vector value");
221  assert(NumParts > 0 && "No parts to assemble!");
222  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
223  SDValue Val = Parts[0];
224
225  // Handle a multi-element vector.
226  if (NumParts > 1) {
227    EVT IntermediateVT, RegisterVT;
228    unsigned NumIntermediates;
229    unsigned NumRegs =
230    TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
231                               NumIntermediates, RegisterVT);
232    assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
233    NumParts = NumRegs; // Silence a compiler warning.
234    assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
235    assert(RegisterVT == Parts[0].getValueType() &&
236           "Part type doesn't match part!");
237
238    // Assemble the parts into intermediate operands.
239    SmallVector<SDValue, 8> Ops(NumIntermediates);
240    if (NumIntermediates == NumParts) {
241      // If the register was not expanded, truncate or copy the value,
242      // as appropriate.
243      for (unsigned i = 0; i != NumParts; ++i)
244        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
245                                  PartVT, IntermediateVT);
246    } else if (NumParts > 0) {
247      // If the intermediate type was expanded, build the intermediate
248      // operands from the parts.
249      assert(NumParts % NumIntermediates == 0 &&
250             "Must expand into a divisible number of parts!");
251      unsigned Factor = NumParts / NumIntermediates;
252      for (unsigned i = 0; i != NumIntermediates; ++i)
253        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
254                                  PartVT, IntermediateVT);
255    }
256
257    // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
258    // intermediate operands.
259    Val = DAG.getNode(IntermediateVT.isVector() ?
260                      ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL,
261                      ValueVT, &Ops[0], NumIntermediates);
262  }
263
264  // There is now one part, held in Val.  Correct it to match ValueVT.
265  PartVT = Val.getValueType();
266
267  if (PartVT == ValueVT)
268    return Val;
269
270  if (PartVT.isVector()) {
271    // If the element type of the source/dest vectors are the same, but the
272    // parts vector has more elements than the value vector, then we have a
273    // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
274    // elements we want.
275    if (PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
276      assert(PartVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
277             "Cannot narrow, it would be a lossy transformation");
278      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
279                         DAG.getIntPtrConstant(0));
280    }
281
282    // Vector/Vector bitcast.
283    if (ValueVT.getSizeInBits() == PartVT.getSizeInBits())
284      return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
285
286    assert(PartVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
287      "Cannot handle this kind of promotion");
288    // Promoted vector extract
289    bool Smaller = ValueVT.bitsLE(PartVT);
290    return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
291                       DL, ValueVT, Val);
292
293  }
294
295  // Trivial bitcast if the types are the same size and the destination
296  // vector type is legal.
297  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits() &&
298      TLI.isTypeLegal(ValueVT))
299    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
300
301  // Handle cases such as i8 -> <1 x i1>
302  assert(ValueVT.getVectorNumElements() == 1 &&
303         "Only trivial scalar-to-vector conversions should get here!");
304
305  if (ValueVT.getVectorNumElements() == 1 &&
306      ValueVT.getVectorElementType() != PartVT) {
307    bool Smaller = ValueVT.bitsLE(PartVT);
308    Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
309                       DL, ValueVT.getScalarType(), Val);
310  }
311
312  return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
313}
314
315
316
317
318static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl,
319                                 SDValue Val, SDValue *Parts, unsigned NumParts,
320                                 EVT PartVT);
321
322/// getCopyToParts - Create a series of nodes that contain the specified value
323/// split into legal parts.  If the parts contain more bits than Val, then, for
324/// integers, ExtendKind can be used to specify how to generate the extra bits.
325static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL,
326                           SDValue Val, SDValue *Parts, unsigned NumParts,
327                           EVT PartVT,
328                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
329  EVT ValueVT = Val.getValueType();
330
331  // Handle the vector case separately.
332  if (ValueVT.isVector())
333    return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT);
334
335  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
336  unsigned PartBits = PartVT.getSizeInBits();
337  unsigned OrigNumParts = NumParts;
338  assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
339
340  if (NumParts == 0)
341    return;
342
343  assert(!ValueVT.isVector() && "Vector case handled elsewhere");
344  if (PartVT == ValueVT) {
345    assert(NumParts == 1 && "No-op copy with multiple parts!");
346    Parts[0] = Val;
347    return;
348  }
349
350  if (NumParts * PartBits > ValueVT.getSizeInBits()) {
351    // If the parts cover more bits than the value has, promote the value.
352    if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
353      assert(NumParts == 1 && "Do not know what to promote to!");
354      Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
355    } else {
356      assert(PartVT.isInteger() && ValueVT.isInteger() &&
357             "Unknown mismatch!");
358      ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
359      Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
360    }
361  } else if (PartBits == ValueVT.getSizeInBits()) {
362    // Different types of the same size.
363    assert(NumParts == 1 && PartVT != ValueVT);
364    Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
365  } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
366    // If the parts cover less bits than value has, truncate the value.
367    assert(PartVT.isInteger() && ValueVT.isInteger() &&
368           "Unknown mismatch!");
369    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
370    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
371  }
372
373  // The value may have changed - recompute ValueVT.
374  ValueVT = Val.getValueType();
375  assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
376         "Failed to tile the value with PartVT!");
377
378  if (NumParts == 1) {
379    assert(PartVT == ValueVT && "Type conversion failed!");
380    Parts[0] = Val;
381    return;
382  }
383
384  // Expand the value into multiple parts.
385  if (NumParts & (NumParts - 1)) {
386    // The number of parts is not a power of 2.  Split off and copy the tail.
387    assert(PartVT.isInteger() && ValueVT.isInteger() &&
388           "Do not know what to expand to!");
389    unsigned RoundParts = 1 << Log2_32(NumParts);
390    unsigned RoundBits = RoundParts * PartBits;
391    unsigned OddParts = NumParts - RoundParts;
392    SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
393                                 DAG.getIntPtrConstant(RoundBits));
394    getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT);
395
396    if (TLI.isBigEndian())
397      // The odd parts were reversed by getCopyToParts - unreverse them.
398      std::reverse(Parts + RoundParts, Parts + NumParts);
399
400    NumParts = RoundParts;
401    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
402    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
403  }
404
405  // The number of parts is a power of 2.  Repeatedly bisect the value using
406  // EXTRACT_ELEMENT.
407  Parts[0] = DAG.getNode(ISD::BITCAST, DL,
408                         EVT::getIntegerVT(*DAG.getContext(),
409                                           ValueVT.getSizeInBits()),
410                         Val);
411
412  for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
413    for (unsigned i = 0; i < NumParts; i += StepSize) {
414      unsigned ThisBits = StepSize * PartBits / 2;
415      EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
416      SDValue &Part0 = Parts[i];
417      SDValue &Part1 = Parts[i+StepSize/2];
418
419      Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
420                          ThisVT, Part0, DAG.getIntPtrConstant(1));
421      Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
422                          ThisVT, Part0, DAG.getIntPtrConstant(0));
423
424      if (ThisBits == PartBits && ThisVT != PartVT) {
425        Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
426        Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
427      }
428    }
429  }
430
431  if (TLI.isBigEndian())
432    std::reverse(Parts, Parts + OrigNumParts);
433}
434
435
436/// getCopyToPartsVector - Create a series of nodes that contain the specified
437/// value split into legal parts.
438static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL,
439                                 SDValue Val, SDValue *Parts, unsigned NumParts,
440                                 EVT PartVT) {
441  EVT ValueVT = Val.getValueType();
442  assert(ValueVT.isVector() && "Not a vector");
443  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
444
445  if (NumParts == 1) {
446    if (PartVT == ValueVT) {
447      // Nothing to do.
448    } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
449      // Bitconvert vector->vector case.
450      Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
451    } else if (PartVT.isVector() &&
452               PartVT.getVectorElementType() == ValueVT.getVectorElementType() &&
453               PartVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
454      EVT ElementVT = PartVT.getVectorElementType();
455      // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
456      // undef elements.
457      SmallVector<SDValue, 16> Ops;
458      for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
459        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
460                                  ElementVT, Val, DAG.getIntPtrConstant(i)));
461
462      for (unsigned i = ValueVT.getVectorNumElements(),
463           e = PartVT.getVectorNumElements(); i != e; ++i)
464        Ops.push_back(DAG.getUNDEF(ElementVT));
465
466      Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size());
467
468      // FIXME: Use CONCAT for 2x -> 4x.
469
470      //SDValue UndefElts = DAG.getUNDEF(VectorTy);
471      //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
472    } else if (PartVT.isVector() &&
473               PartVT.getVectorElementType().bitsGE(
474                 ValueVT.getVectorElementType()) &&
475               PartVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
476
477      // Promoted vector extract
478      bool Smaller = PartVT.bitsLE(ValueVT);
479      Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
480                        DL, PartVT, Val);
481    } else{
482      // Vector -> scalar conversion.
483      assert(ValueVT.getVectorNumElements() == 1 &&
484             "Only trivial vector-to-scalar conversions should get here!");
485      Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
486                        PartVT, Val, DAG.getIntPtrConstant(0));
487
488      bool Smaller = ValueVT.bitsLE(PartVT);
489      Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
490                         DL, PartVT, Val);
491    }
492
493    Parts[0] = Val;
494    return;
495  }
496
497  // Handle a multi-element vector.
498  EVT IntermediateVT, RegisterVT;
499  unsigned NumIntermediates;
500  unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
501                                                IntermediateVT,
502                                                NumIntermediates, RegisterVT);
503  unsigned NumElements = ValueVT.getVectorNumElements();
504
505  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
506  NumParts = NumRegs; // Silence a compiler warning.
507  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
508
509  // Split the vector into intermediate operands.
510  SmallVector<SDValue, 8> Ops(NumIntermediates);
511  for (unsigned i = 0; i != NumIntermediates; ++i) {
512    if (IntermediateVT.isVector())
513      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
514                           IntermediateVT, Val,
515                   DAG.getIntPtrConstant(i * (NumElements / NumIntermediates)));
516    else
517      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
518                           IntermediateVT, Val, DAG.getIntPtrConstant(i));
519  }
520
521  // Split the intermediate operands into legal parts.
522  if (NumParts == NumIntermediates) {
523    // If the register was not expanded, promote or copy the value,
524    // as appropriate.
525    for (unsigned i = 0; i != NumParts; ++i)
526      getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT);
527  } else if (NumParts > 0) {
528    // If the intermediate type was expanded, split each the value into
529    // legal parts.
530    assert(NumParts % NumIntermediates == 0 &&
531           "Must expand into a divisible number of parts!");
532    unsigned Factor = NumParts / NumIntermediates;
533    for (unsigned i = 0; i != NumIntermediates; ++i)
534      getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT);
535  }
536}
537
538
539
540
541namespace {
542  /// RegsForValue - This struct represents the registers (physical or virtual)
543  /// that a particular set of values is assigned, and the type information
544  /// about the value. The most common situation is to represent one value at a
545  /// time, but struct or array values are handled element-wise as multiple
546  /// values.  The splitting of aggregates is performed recursively, so that we
547  /// never have aggregate-typed registers. The values at this point do not
548  /// necessarily have legal types, so each value may require one or more
549  /// registers of some legal type.
550  ///
551  struct RegsForValue {
552    /// ValueVTs - The value types of the values, which may not be legal, and
553    /// may need be promoted or synthesized from one or more registers.
554    ///
555    SmallVector<EVT, 4> ValueVTs;
556
557    /// RegVTs - The value types of the registers. This is the same size as
558    /// ValueVTs and it records, for each value, what the type of the assigned
559    /// register or registers are. (Individual values are never synthesized
560    /// from more than one type of register.)
561    ///
562    /// With virtual registers, the contents of RegVTs is redundant with TLI's
563    /// getRegisterType member function, however when with physical registers
564    /// it is necessary to have a separate record of the types.
565    ///
566    SmallVector<EVT, 4> RegVTs;
567
568    /// Regs - This list holds the registers assigned to the values.
569    /// Each legal or promoted value requires one register, and each
570    /// expanded value requires multiple registers.
571    ///
572    SmallVector<unsigned, 4> Regs;
573
574    RegsForValue() {}
575
576    RegsForValue(const SmallVector<unsigned, 4> &regs,
577                 EVT regvt, EVT valuevt)
578      : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
579
580    RegsForValue(LLVMContext &Context, const TargetLowering &tli,
581                 unsigned Reg, Type *Ty) {
582      ComputeValueVTs(tli, Ty, ValueVTs);
583
584      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
585        EVT ValueVT = ValueVTs[Value];
586        unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
587        EVT RegisterVT = tli.getRegisterType(Context, ValueVT);
588        for (unsigned i = 0; i != NumRegs; ++i)
589          Regs.push_back(Reg + i);
590        RegVTs.push_back(RegisterVT);
591        Reg += NumRegs;
592      }
593    }
594
595    /// areValueTypesLegal - Return true if types of all the values are legal.
596    bool areValueTypesLegal(const TargetLowering &TLI) {
597      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
598        EVT RegisterVT = RegVTs[Value];
599        if (!TLI.isTypeLegal(RegisterVT))
600          return false;
601      }
602      return true;
603    }
604
605    /// append - Add the specified values to this one.
606    void append(const RegsForValue &RHS) {
607      ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
608      RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
609      Regs.append(RHS.Regs.begin(), RHS.Regs.end());
610    }
611
612    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
613    /// this value and returns the result as a ValueVTs value.  This uses
614    /// Chain/Flag as the input and updates them for the output Chain/Flag.
615    /// If the Flag pointer is NULL, no flag is used.
616    SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
617                            DebugLoc dl,
618                            SDValue &Chain, SDValue *Flag) const;
619
620    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
621    /// specified value into the registers specified by this object.  This uses
622    /// Chain/Flag as the input and updates them for the output Chain/Flag.
623    /// If the Flag pointer is NULL, no flag is used.
624    void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
625                       SDValue &Chain, SDValue *Flag) const;
626
627    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
628    /// operand list.  This adds the code marker, matching input operand index
629    /// (if applicable), and includes the number of values added into it.
630    void AddInlineAsmOperands(unsigned Kind,
631                              bool HasMatching, unsigned MatchingIdx,
632                              SelectionDAG &DAG,
633                              std::vector<SDValue> &Ops) const;
634  };
635}
636
637/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
638/// this value and returns the result as a ValueVT value.  This uses
639/// Chain/Flag as the input and updates them for the output Chain/Flag.
640/// If the Flag pointer is NULL, no flag is used.
641SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
642                                      FunctionLoweringInfo &FuncInfo,
643                                      DebugLoc dl,
644                                      SDValue &Chain, SDValue *Flag) const {
645  // A Value with type {} or [0 x %t] needs no registers.
646  if (ValueVTs.empty())
647    return SDValue();
648
649  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
650
651  // Assemble the legal parts into the final values.
652  SmallVector<SDValue, 4> Values(ValueVTs.size());
653  SmallVector<SDValue, 8> Parts;
654  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
655    // Copy the legal parts from the registers.
656    EVT ValueVT = ValueVTs[Value];
657    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
658    EVT RegisterVT = RegVTs[Value];
659
660    Parts.resize(NumRegs);
661    for (unsigned i = 0; i != NumRegs; ++i) {
662      SDValue P;
663      if (Flag == 0) {
664        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
665      } else {
666        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
667        *Flag = P.getValue(2);
668      }
669
670      Chain = P.getValue(1);
671      Parts[i] = P;
672
673      // If the source register was virtual and if we know something about it,
674      // add an assert node.
675      if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
676          !RegisterVT.isInteger() || RegisterVT.isVector())
677        continue;
678
679      const FunctionLoweringInfo::LiveOutInfo *LOI =
680        FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
681      if (!LOI)
682        continue;
683
684      unsigned RegSize = RegisterVT.getSizeInBits();
685      unsigned NumSignBits = LOI->NumSignBits;
686      unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
687
688      // FIXME: We capture more information than the dag can represent.  For
689      // now, just use the tightest assertzext/assertsext possible.
690      bool isSExt = true;
691      EVT FromVT(MVT::Other);
692      if (NumSignBits == RegSize)
693        isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
694      else if (NumZeroBits >= RegSize-1)
695        isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
696      else if (NumSignBits > RegSize-8)
697        isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
698      else if (NumZeroBits >= RegSize-8)
699        isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
700      else if (NumSignBits > RegSize-16)
701        isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
702      else if (NumZeroBits >= RegSize-16)
703        isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
704      else if (NumSignBits > RegSize-32)
705        isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
706      else if (NumZeroBits >= RegSize-32)
707        isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
708      else
709        continue;
710
711      // Add an assertion node.
712      assert(FromVT != MVT::Other);
713      Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
714                             RegisterVT, P, DAG.getValueType(FromVT));
715    }
716
717    Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
718                                     NumRegs, RegisterVT, ValueVT);
719    Part += NumRegs;
720    Parts.clear();
721  }
722
723  return DAG.getNode(ISD::MERGE_VALUES, dl,
724                     DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
725                     &Values[0], ValueVTs.size());
726}
727
728/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
729/// specified value into the registers specified by this object.  This uses
730/// Chain/Flag as the input and updates them for the output Chain/Flag.
731/// If the Flag pointer is NULL, no flag is used.
732void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
733                                 SDValue &Chain, SDValue *Flag) const {
734  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
735
736  // Get the list of the values's legal parts.
737  unsigned NumRegs = Regs.size();
738  SmallVector<SDValue, 8> Parts(NumRegs);
739  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
740    EVT ValueVT = ValueVTs[Value];
741    unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
742    EVT RegisterVT = RegVTs[Value];
743
744    getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
745                   &Parts[Part], NumParts, RegisterVT);
746    Part += NumParts;
747  }
748
749  // Copy the parts into the registers.
750  SmallVector<SDValue, 8> Chains(NumRegs);
751  for (unsigned i = 0; i != NumRegs; ++i) {
752    SDValue Part;
753    if (Flag == 0) {
754      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
755    } else {
756      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
757      *Flag = Part.getValue(1);
758    }
759
760    Chains[i] = Part.getValue(0);
761  }
762
763  if (NumRegs == 1 || Flag)
764    // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
765    // flagged to it. That is the CopyToReg nodes and the user are considered
766    // a single scheduling unit. If we create a TokenFactor and return it as
767    // chain, then the TokenFactor is both a predecessor (operand) of the
768    // user as well as a successor (the TF operands are flagged to the user).
769    // c1, f1 = CopyToReg
770    // c2, f2 = CopyToReg
771    // c3     = TokenFactor c1, c2
772    // ...
773    //        = op c3, ..., f2
774    Chain = Chains[NumRegs-1];
775  else
776    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
777}
778
779/// AddInlineAsmOperands - Add this value to the specified inlineasm node
780/// operand list.  This adds the code marker and includes the number of
781/// values added into it.
782void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
783                                        unsigned MatchingIdx,
784                                        SelectionDAG &DAG,
785                                        std::vector<SDValue> &Ops) const {
786  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
787
788  unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
789  if (HasMatching)
790    Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
791  else if (!Regs.empty() &&
792           TargetRegisterInfo::isVirtualRegister(Regs.front())) {
793    // Put the register class of the virtual registers in the flag word.  That
794    // way, later passes can recompute register class constraints for inline
795    // assembly as well as normal instructions.
796    // Don't do this for tied operands that can use the regclass information
797    // from the def.
798    const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
799    const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
800    Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
801  }
802
803  SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
804  Ops.push_back(Res);
805
806  for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
807    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
808    EVT RegisterVT = RegVTs[Value];
809    for (unsigned i = 0; i != NumRegs; ++i) {
810      assert(Reg < Regs.size() && "Mismatch in # registers expected");
811      Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
812    }
813  }
814}
815
816void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa,
817                               const TargetLibraryInfo *li) {
818  AA = &aa;
819  GFI = gfi;
820  LibInfo = li;
821  TD = DAG.getTarget().getTargetData();
822  LPadToCallSiteMap.clear();
823}
824
825/// clear - Clear out the current SelectionDAG and the associated
826/// state and prepare this SelectionDAGBuilder object to be used
827/// for a new block. This doesn't clear out information about
828/// additional blocks that are needed to complete switch lowering
829/// or PHI node updating; that information is cleared out as it is
830/// consumed.
831void SelectionDAGBuilder::clear() {
832  NodeMap.clear();
833  UnusedArgNodeMap.clear();
834  PendingLoads.clear();
835  PendingExports.clear();
836  CurDebugLoc = DebugLoc();
837  HasTailCall = false;
838}
839
840/// clearDanglingDebugInfo - Clear the dangling debug information
841/// map. This function is seperated from the clear so that debug
842/// information that is dangling in a basic block can be properly
843/// resolved in a different basic block. This allows the
844/// SelectionDAG to resolve dangling debug information attached
845/// to PHI nodes.
846void SelectionDAGBuilder::clearDanglingDebugInfo() {
847  DanglingDebugInfoMap.clear();
848}
849
850/// getRoot - Return the current virtual root of the Selection DAG,
851/// flushing any PendingLoad items. This must be done before emitting
852/// a store or any other node that may need to be ordered after any
853/// prior load instructions.
854///
855SDValue SelectionDAGBuilder::getRoot() {
856  if (PendingLoads.empty())
857    return DAG.getRoot();
858
859  if (PendingLoads.size() == 1) {
860    SDValue Root = PendingLoads[0];
861    DAG.setRoot(Root);
862    PendingLoads.clear();
863    return Root;
864  }
865
866  // Otherwise, we have to make a token factor node.
867  SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
868                               &PendingLoads[0], PendingLoads.size());
869  PendingLoads.clear();
870  DAG.setRoot(Root);
871  return Root;
872}
873
874/// getControlRoot - Similar to getRoot, but instead of flushing all the
875/// PendingLoad items, flush all the PendingExports items. It is necessary
876/// to do this before emitting a terminator instruction.
877///
878SDValue SelectionDAGBuilder::getControlRoot() {
879  SDValue Root = DAG.getRoot();
880
881  if (PendingExports.empty())
882    return Root;
883
884  // Turn all of the CopyToReg chains into one factored node.
885  if (Root.getOpcode() != ISD::EntryToken) {
886    unsigned i = 0, e = PendingExports.size();
887    for (; i != e; ++i) {
888      assert(PendingExports[i].getNode()->getNumOperands() > 1);
889      if (PendingExports[i].getNode()->getOperand(0) == Root)
890        break;  // Don't add the root if we already indirectly depend on it.
891    }
892
893    if (i == e)
894      PendingExports.push_back(Root);
895  }
896
897  Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
898                     &PendingExports[0],
899                     PendingExports.size());
900  PendingExports.clear();
901  DAG.setRoot(Root);
902  return Root;
903}
904
905void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) {
906  if (DAG.GetOrdering(Node) != 0) return; // Already has ordering.
907  DAG.AssignOrdering(Node, SDNodeOrder);
908
909  for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I)
910    AssignOrderingToNode(Node->getOperand(I).getNode());
911}
912
913void SelectionDAGBuilder::visit(const Instruction &I) {
914  // Set up outgoing PHI node register values before emitting the terminator.
915  if (isa<TerminatorInst>(&I))
916    HandlePHINodesInSuccessorBlocks(I.getParent());
917
918  CurDebugLoc = I.getDebugLoc();
919
920  visit(I.getOpcode(), I);
921
922  if (!isa<TerminatorInst>(&I) && !HasTailCall)
923    CopyToExportRegsIfNeeded(&I);
924
925  CurDebugLoc = DebugLoc();
926}
927
928void SelectionDAGBuilder::visitPHI(const PHINode &) {
929  llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
930}
931
932void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
933  // Note: this doesn't use InstVisitor, because it has to work with
934  // ConstantExpr's in addition to instructions.
935  switch (Opcode) {
936  default: llvm_unreachable("Unknown instruction type encountered!");
937    // Build the switch statement using the Instruction.def file.
938#define HANDLE_INST(NUM, OPCODE, CLASS) \
939    case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break;
940#include "llvm/Instruction.def"
941  }
942
943  // Assign the ordering to the freshly created DAG nodes.
944  if (NodeMap.count(&I)) {
945    ++SDNodeOrder;
946    AssignOrderingToNode(getValue(&I).getNode());
947  }
948}
949
950// resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
951// generate the debug data structures now that we've seen its definition.
952void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
953                                                   SDValue Val) {
954  DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
955  if (DDI.getDI()) {
956    const DbgValueInst *DI = DDI.getDI();
957    DebugLoc dl = DDI.getdl();
958    unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
959    MDNode *Variable = DI->getVariable();
960    uint64_t Offset = DI->getOffset();
961    SDDbgValue *SDV;
962    if (Val.getNode()) {
963      if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) {
964        SDV = DAG.getDbgValue(Variable, Val.getNode(),
965                              Val.getResNo(), Offset, dl, DbgSDNodeOrder);
966        DAG.AddDbgValue(SDV, Val.getNode(), false);
967      }
968    } else
969      DEBUG(dbgs() << "Dropping debug info for " << DI);
970    DanglingDebugInfoMap[V] = DanglingDebugInfo();
971  }
972}
973
974/// getValue - Return an SDValue for the given Value.
975SDValue SelectionDAGBuilder::getValue(const Value *V) {
976  // If we already have an SDValue for this value, use it. It's important
977  // to do this first, so that we don't create a CopyFromReg if we already
978  // have a regular SDValue.
979  SDValue &N = NodeMap[V];
980  if (N.getNode()) return N;
981
982  // If there's a virtual register allocated and initialized for this
983  // value, use it.
984  DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
985  if (It != FuncInfo.ValueMap.end()) {
986    unsigned InReg = It->second;
987    RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
988    SDValue Chain = DAG.getEntryNode();
989    N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL);
990    resolveDanglingDebugInfo(V, N);
991    return N;
992  }
993
994  // Otherwise create a new SDValue and remember it.
995  SDValue Val = getValueImpl(V);
996  NodeMap[V] = Val;
997  resolveDanglingDebugInfo(V, Val);
998  return Val;
999}
1000
1001/// getNonRegisterValue - Return an SDValue for the given Value, but
1002/// don't look in FuncInfo.ValueMap for a virtual register.
1003SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1004  // If we already have an SDValue for this value, use it.
1005  SDValue &N = NodeMap[V];
1006  if (N.getNode()) return N;
1007
1008  // Otherwise create a new SDValue and remember it.
1009  SDValue Val = getValueImpl(V);
1010  NodeMap[V] = Val;
1011  resolveDanglingDebugInfo(V, Val);
1012  return Val;
1013}
1014
1015/// getValueImpl - Helper function for getValue and getNonRegisterValue.
1016/// Create an SDValue for the given value.
1017SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1018  if (const Constant *C = dyn_cast<Constant>(V)) {
1019    EVT VT = TLI.getValueType(V->getType(), true);
1020
1021    if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1022      return DAG.getConstant(*CI, VT);
1023
1024    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1025      return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT);
1026
1027    if (isa<ConstantPointerNull>(C))
1028      return DAG.getConstant(0, TLI.getPointerTy());
1029
1030    if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1031      return DAG.getConstantFP(*CFP, VT);
1032
1033    if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1034      return DAG.getUNDEF(VT);
1035
1036    if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1037      visit(CE->getOpcode(), *CE);
1038      SDValue N1 = NodeMap[V];
1039      assert(N1.getNode() && "visit didn't populate the NodeMap!");
1040      return N1;
1041    }
1042
1043    if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1044      SmallVector<SDValue, 4> Constants;
1045      for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1046           OI != OE; ++OI) {
1047        SDNode *Val = getValue(*OI).getNode();
1048        // If the operand is an empty aggregate, there are no values.
1049        if (!Val) continue;
1050        // Add each leaf value from the operand to the Constants list
1051        // to form a flattened list of all the values.
1052        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1053          Constants.push_back(SDValue(Val, i));
1054      }
1055
1056      return DAG.getMergeValues(&Constants[0], Constants.size(),
1057                                getCurDebugLoc());
1058    }
1059
1060    if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1061      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1062             "Unknown struct or array constant!");
1063
1064      SmallVector<EVT, 4> ValueVTs;
1065      ComputeValueVTs(TLI, C->getType(), ValueVTs);
1066      unsigned NumElts = ValueVTs.size();
1067      if (NumElts == 0)
1068        return SDValue(); // empty struct
1069      SmallVector<SDValue, 4> Constants(NumElts);
1070      for (unsigned i = 0; i != NumElts; ++i) {
1071        EVT EltVT = ValueVTs[i];
1072        if (isa<UndefValue>(C))
1073          Constants[i] = DAG.getUNDEF(EltVT);
1074        else if (EltVT.isFloatingPoint())
1075          Constants[i] = DAG.getConstantFP(0, EltVT);
1076        else
1077          Constants[i] = DAG.getConstant(0, EltVT);
1078      }
1079
1080      return DAG.getMergeValues(&Constants[0], NumElts,
1081                                getCurDebugLoc());
1082    }
1083
1084    if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1085      return DAG.getBlockAddress(BA, VT);
1086
1087    VectorType *VecTy = cast<VectorType>(V->getType());
1088    unsigned NumElements = VecTy->getNumElements();
1089
1090    // Now that we know the number and type of the elements, get that number of
1091    // elements into the Ops array based on what kind of constant it is.
1092    SmallVector<SDValue, 16> Ops;
1093    if (const ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
1094      for (unsigned i = 0; i != NumElements; ++i)
1095        Ops.push_back(getValue(CP->getOperand(i)));
1096    } else {
1097      assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1098      EVT EltVT = TLI.getValueType(VecTy->getElementType());
1099
1100      SDValue Op;
1101      if (EltVT.isFloatingPoint())
1102        Op = DAG.getConstantFP(0, EltVT);
1103      else
1104        Op = DAG.getConstant(0, EltVT);
1105      Ops.assign(NumElements, Op);
1106    }
1107
1108    // Create a BUILD_VECTOR node.
1109    return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
1110                                    VT, &Ops[0], Ops.size());
1111  }
1112
1113  // If this is a static alloca, generate it as the frameindex instead of
1114  // computation.
1115  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1116    DenseMap<const AllocaInst*, int>::iterator SI =
1117      FuncInfo.StaticAllocaMap.find(AI);
1118    if (SI != FuncInfo.StaticAllocaMap.end())
1119      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
1120  }
1121
1122  // If this is an instruction which fast-isel has deferred, select it now.
1123  if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1124    unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1125    RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType());
1126    SDValue Chain = DAG.getEntryNode();
1127    return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL);
1128  }
1129
1130  llvm_unreachable("Can't get register for value!");
1131  return SDValue();
1132}
1133
1134void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1135  SDValue Chain = getControlRoot();
1136  SmallVector<ISD::OutputArg, 8> Outs;
1137  SmallVector<SDValue, 8> OutVals;
1138
1139  if (!FuncInfo.CanLowerReturn) {
1140    unsigned DemoteReg = FuncInfo.DemoteRegister;
1141    const Function *F = I.getParent()->getParent();
1142
1143    // Emit a store of the return value through the virtual register.
1144    // Leave Outs empty so that LowerReturn won't try to load return
1145    // registers the usual way.
1146    SmallVector<EVT, 1> PtrValueVTs;
1147    ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
1148                    PtrValueVTs);
1149
1150    SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
1151    SDValue RetOp = getValue(I.getOperand(0));
1152
1153    SmallVector<EVT, 4> ValueVTs;
1154    SmallVector<uint64_t, 4> Offsets;
1155    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1156    unsigned NumValues = ValueVTs.size();
1157
1158    SmallVector<SDValue, 4> Chains(NumValues);
1159    for (unsigned i = 0; i != NumValues; ++i) {
1160      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(),
1161                                RetPtr.getValueType(), RetPtr,
1162                                DAG.getIntPtrConstant(Offsets[i]));
1163      Chains[i] =
1164        DAG.getStore(Chain, getCurDebugLoc(),
1165                     SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1166                     // FIXME: better loc info would be nice.
1167                     Add, MachinePointerInfo(), false, false, 0);
1168    }
1169
1170    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
1171                        MVT::Other, &Chains[0], NumValues);
1172  } else if (I.getNumOperands() != 0) {
1173    SmallVector<EVT, 4> ValueVTs;
1174    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
1175    unsigned NumValues = ValueVTs.size();
1176    if (NumValues) {
1177      SDValue RetOp = getValue(I.getOperand(0));
1178      for (unsigned j = 0, f = NumValues; j != f; ++j) {
1179        EVT VT = ValueVTs[j];
1180
1181        ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1182
1183        const Function *F = I.getParent()->getParent();
1184        if (F->paramHasAttr(0, Attribute::SExt))
1185          ExtendKind = ISD::SIGN_EXTEND;
1186        else if (F->paramHasAttr(0, Attribute::ZExt))
1187          ExtendKind = ISD::ZERO_EXTEND;
1188
1189        if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1190          VT = TLI.getTypeForExtArgOrReturn(*DAG.getContext(), VT, ExtendKind);
1191
1192        unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
1193        EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
1194        SmallVector<SDValue, 4> Parts(NumParts);
1195        getCopyToParts(DAG, getCurDebugLoc(),
1196                       SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1197                       &Parts[0], NumParts, PartVT, ExtendKind);
1198
1199        // 'inreg' on function refers to return value
1200        ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1201        if (F->paramHasAttr(0, Attribute::InReg))
1202          Flags.setInReg();
1203
1204        // Propagate extension type if any
1205        if (ExtendKind == ISD::SIGN_EXTEND)
1206          Flags.setSExt();
1207        else if (ExtendKind == ISD::ZERO_EXTEND)
1208          Flags.setZExt();
1209
1210        for (unsigned i = 0; i < NumParts; ++i) {
1211          Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1212                                        /*isfixed=*/true));
1213          OutVals.push_back(Parts[i]);
1214        }
1215      }
1216    }
1217  }
1218
1219  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1220  CallingConv::ID CallConv =
1221    DAG.getMachineFunction().getFunction()->getCallingConv();
1222  Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
1223                          Outs, OutVals, getCurDebugLoc(), DAG);
1224
1225  // Verify that the target's LowerReturn behaved as expected.
1226  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1227         "LowerReturn didn't return a valid chain!");
1228
1229  // Update the DAG with the new chain value resulting from return lowering.
1230  DAG.setRoot(Chain);
1231}
1232
1233/// CopyToExportRegsIfNeeded - If the given value has virtual registers
1234/// created for it, emit nodes to copy the value into the virtual
1235/// registers.
1236void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1237  // Skip empty types
1238  if (V->getType()->isEmptyTy())
1239    return;
1240
1241  DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1242  if (VMI != FuncInfo.ValueMap.end()) {
1243    assert(!V->use_empty() && "Unused value assigned virtual registers!");
1244    CopyValueToVirtualRegister(V, VMI->second);
1245  }
1246}
1247
1248/// ExportFromCurrentBlock - If this condition isn't known to be exported from
1249/// the current basic block, add it to ValueMap now so that we'll get a
1250/// CopyTo/FromReg.
1251void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1252  // No need to export constants.
1253  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1254
1255  // Already exported?
1256  if (FuncInfo.isExportedInst(V)) return;
1257
1258  unsigned Reg = FuncInfo.InitializeRegForValue(V);
1259  CopyValueToVirtualRegister(V, Reg);
1260}
1261
1262bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1263                                                     const BasicBlock *FromBB) {
1264  // The operands of the setcc have to be in this block.  We don't know
1265  // how to export them from some other block.
1266  if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1267    // Can export from current BB.
1268    if (VI->getParent() == FromBB)
1269      return true;
1270
1271    // Is already exported, noop.
1272    return FuncInfo.isExportedInst(V);
1273  }
1274
1275  // If this is an argument, we can export it if the BB is the entry block or
1276  // if it is already exported.
1277  if (isa<Argument>(V)) {
1278    if (FromBB == &FromBB->getParent()->getEntryBlock())
1279      return true;
1280
1281    // Otherwise, can only export this if it is already exported.
1282    return FuncInfo.isExportedInst(V);
1283  }
1284
1285  // Otherwise, constants can always be exported.
1286  return true;
1287}
1288
1289/// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1290uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src,
1291                                            const MachineBasicBlock *Dst) const {
1292  BranchProbabilityInfo *BPI = FuncInfo.BPI;
1293  if (!BPI)
1294    return 0;
1295  const BasicBlock *SrcBB = Src->getBasicBlock();
1296  const BasicBlock *DstBB = Dst->getBasicBlock();
1297  return BPI->getEdgeWeight(SrcBB, DstBB);
1298}
1299
1300void SelectionDAGBuilder::
1301addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst,
1302                       uint32_t Weight /* = 0 */) {
1303  if (!Weight)
1304    Weight = getEdgeWeight(Src, Dst);
1305  Src->addSuccessor(Dst, Weight);
1306}
1307
1308
1309static bool InBlock(const Value *V, const BasicBlock *BB) {
1310  if (const Instruction *I = dyn_cast<Instruction>(V))
1311    return I->getParent() == BB;
1312  return true;
1313}
1314
1315/// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1316/// This function emits a branch and is used at the leaves of an OR or an
1317/// AND operator tree.
1318///
1319void
1320SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1321                                                  MachineBasicBlock *TBB,
1322                                                  MachineBasicBlock *FBB,
1323                                                  MachineBasicBlock *CurBB,
1324                                                  MachineBasicBlock *SwitchBB) {
1325  const BasicBlock *BB = CurBB->getBasicBlock();
1326
1327  // If the leaf of the tree is a comparison, merge the condition into
1328  // the caseblock.
1329  if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1330    // The operands of the cmp have to be in this block.  We don't know
1331    // how to export them from some other block.  If this is the first block
1332    // of the sequence, no exporting is needed.
1333    if (CurBB == SwitchBB ||
1334        (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1335         isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1336      ISD::CondCode Condition;
1337      if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1338        Condition = getICmpCondCode(IC->getPredicate());
1339      } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1340        Condition = getFCmpCondCode(FC->getPredicate());
1341        if (TM.Options.NoNaNsFPMath)
1342          Condition = getFCmpCodeWithoutNaN(Condition);
1343      } else {
1344        Condition = ISD::SETEQ; // silence warning.
1345        llvm_unreachable("Unknown compare instruction");
1346      }
1347
1348      CaseBlock CB(Condition, BOp->getOperand(0),
1349                   BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1350      SwitchCases.push_back(CB);
1351      return;
1352    }
1353  }
1354
1355  // Create a CaseBlock record representing this branch.
1356  CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1357               NULL, TBB, FBB, CurBB);
1358  SwitchCases.push_back(CB);
1359}
1360
1361/// FindMergedConditions - If Cond is an expression like
1362void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1363                                               MachineBasicBlock *TBB,
1364                                               MachineBasicBlock *FBB,
1365                                               MachineBasicBlock *CurBB,
1366                                               MachineBasicBlock *SwitchBB,
1367                                               unsigned Opc) {
1368  // If this node is not part of the or/and tree, emit it as a branch.
1369  const Instruction *BOp = dyn_cast<Instruction>(Cond);
1370  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1371      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1372      BOp->getParent() != CurBB->getBasicBlock() ||
1373      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1374      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1375    EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB);
1376    return;
1377  }
1378
1379  //  Create TmpBB after CurBB.
1380  MachineFunction::iterator BBI = CurBB;
1381  MachineFunction &MF = DAG.getMachineFunction();
1382  MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1383  CurBB->getParent()->insert(++BBI, TmpBB);
1384
1385  if (Opc == Instruction::Or) {
1386    // Codegen X | Y as:
1387    //   jmp_if_X TBB
1388    //   jmp TmpBB
1389    // TmpBB:
1390    //   jmp_if_Y TBB
1391    //   jmp FBB
1392    //
1393
1394    // Emit the LHS condition.
1395    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc);
1396
1397    // Emit the RHS condition into TmpBB.
1398    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1399  } else {
1400    assert(Opc == Instruction::And && "Unknown merge op!");
1401    // Codegen X & Y as:
1402    //   jmp_if_X TmpBB
1403    //   jmp FBB
1404    // TmpBB:
1405    //   jmp_if_Y TBB
1406    //   jmp FBB
1407    //
1408    //  This requires creation of TmpBB after CurBB.
1409
1410    // Emit the LHS condition.
1411    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc);
1412
1413    // Emit the RHS condition into TmpBB.
1414    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1415  }
1416}
1417
1418/// If the set of cases should be emitted as a series of branches, return true.
1419/// If we should emit this as a bunch of and/or'd together conditions, return
1420/// false.
1421bool
1422SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
1423  if (Cases.size() != 2) return true;
1424
1425  // If this is two comparisons of the same values or'd or and'd together, they
1426  // will get folded into a single comparison, so don't emit two blocks.
1427  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1428       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1429      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1430       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1431    return false;
1432  }
1433
1434  // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1435  // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1436  if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1437      Cases[0].CC == Cases[1].CC &&
1438      isa<Constant>(Cases[0].CmpRHS) &&
1439      cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1440    if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1441      return false;
1442    if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1443      return false;
1444  }
1445
1446  return true;
1447}
1448
1449void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1450  MachineBasicBlock *BrMBB = FuncInfo.MBB;
1451
1452  // Update machine-CFG edges.
1453  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1454
1455  // Figure out which block is immediately after the current one.
1456  MachineBasicBlock *NextBlock = 0;
1457  MachineFunction::iterator BBI = BrMBB;
1458  if (++BBI != FuncInfo.MF->end())
1459    NextBlock = BBI;
1460
1461  if (I.isUnconditional()) {
1462    // Update machine-CFG edges.
1463    BrMBB->addSuccessor(Succ0MBB);
1464
1465    // If this is not a fall-through branch, emit the branch.
1466    if (Succ0MBB != NextBlock)
1467      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1468                              MVT::Other, getControlRoot(),
1469                              DAG.getBasicBlock(Succ0MBB)));
1470
1471    return;
1472  }
1473
1474  // If this condition is one of the special cases we handle, do special stuff
1475  // now.
1476  const Value *CondVal = I.getCondition();
1477  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1478
1479  // If this is a series of conditions that are or'd or and'd together, emit
1480  // this as a sequence of branches instead of setcc's with and/or operations.
1481  // As long as jumps are not expensive, this should improve performance.
1482  // For example, instead of something like:
1483  //     cmp A, B
1484  //     C = seteq
1485  //     cmp D, E
1486  //     F = setle
1487  //     or C, F
1488  //     jnz foo
1489  // Emit:
1490  //     cmp A, B
1491  //     je foo
1492  //     cmp D, E
1493  //     jle foo
1494  //
1495  if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1496    if (!TLI.isJumpExpensive() &&
1497        BOp->hasOneUse() &&
1498        (BOp->getOpcode() == Instruction::And ||
1499         BOp->getOpcode() == Instruction::Or)) {
1500      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1501                           BOp->getOpcode());
1502      // If the compares in later blocks need to use values not currently
1503      // exported from this block, export them now.  This block should always
1504      // be the first entry.
1505      assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1506
1507      // Allow some cases to be rejected.
1508      if (ShouldEmitAsBranches(SwitchCases)) {
1509        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1510          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1511          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1512        }
1513
1514        // Emit the branch for this block.
1515        visitSwitchCase(SwitchCases[0], BrMBB);
1516        SwitchCases.erase(SwitchCases.begin());
1517        return;
1518      }
1519
1520      // Okay, we decided not to do this, remove any inserted MBB's and clear
1521      // SwitchCases.
1522      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1523        FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1524
1525      SwitchCases.clear();
1526    }
1527  }
1528
1529  // Create a CaseBlock record representing this branch.
1530  CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1531               NULL, Succ0MBB, Succ1MBB, BrMBB);
1532
1533  // Use visitSwitchCase to actually insert the fast branch sequence for this
1534  // cond branch.
1535  visitSwitchCase(CB, BrMBB);
1536}
1537
1538/// visitSwitchCase - Emits the necessary code to represent a single node in
1539/// the binary search tree resulting from lowering a switch instruction.
1540void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1541                                          MachineBasicBlock *SwitchBB) {
1542  SDValue Cond;
1543  SDValue CondLHS = getValue(CB.CmpLHS);
1544  DebugLoc dl = getCurDebugLoc();
1545
1546  // Build the setcc now.
1547  if (CB.CmpMHS == NULL) {
1548    // Fold "(X == true)" to X and "(X == false)" to !X to
1549    // handle common cases produced by branch lowering.
1550    if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1551        CB.CC == ISD::SETEQ)
1552      Cond = CondLHS;
1553    else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1554             CB.CC == ISD::SETEQ) {
1555      SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1556      Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1557    } else
1558      Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1559  } else {
1560    assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1561
1562    const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1563    const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
1564
1565    SDValue CmpOp = getValue(CB.CmpMHS);
1566    EVT VT = CmpOp.getValueType();
1567
1568    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1569      Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1570                          ISD::SETLE);
1571    } else {
1572      SDValue SUB = DAG.getNode(ISD::SUB, dl,
1573                                VT, CmpOp, DAG.getConstant(Low, VT));
1574      Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1575                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1576    }
1577  }
1578
1579  // Update successor info
1580  addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight);
1581  addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight);
1582
1583  // Set NextBlock to be the MBB immediately after the current one, if any.
1584  // This is used to avoid emitting unnecessary branches to the next block.
1585  MachineBasicBlock *NextBlock = 0;
1586  MachineFunction::iterator BBI = SwitchBB;
1587  if (++BBI != FuncInfo.MF->end())
1588    NextBlock = BBI;
1589
1590  // If the lhs block is the next block, invert the condition so that we can
1591  // fall through to the lhs instead of the rhs block.
1592  if (CB.TrueBB == NextBlock) {
1593    std::swap(CB.TrueBB, CB.FalseBB);
1594    SDValue True = DAG.getConstant(1, Cond.getValueType());
1595    Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1596  }
1597
1598  SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1599                               MVT::Other, getControlRoot(), Cond,
1600                               DAG.getBasicBlock(CB.TrueBB));
1601
1602  // Insert the false branch. Do this even if it's a fall through branch,
1603  // this makes it easier to do DAG optimizations which require inverting
1604  // the branch condition.
1605  BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1606                       DAG.getBasicBlock(CB.FalseBB));
1607
1608  DAG.setRoot(BrCond);
1609}
1610
1611/// visitJumpTable - Emit JumpTable node in the current MBB
1612void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1613  // Emit the code for the jump table
1614  assert(JT.Reg != -1U && "Should lower JT Header first!");
1615  EVT PTy = TLI.getPointerTy();
1616  SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1617                                     JT.Reg, PTy);
1618  SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1619  SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(),
1620                                    MVT::Other, Index.getValue(1),
1621                                    Table, Index);
1622  DAG.setRoot(BrJumpTable);
1623}
1624
1625/// visitJumpTableHeader - This function emits necessary code to produce index
1626/// in the JumpTable from switch case.
1627void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1628                                               JumpTableHeader &JTH,
1629                                               MachineBasicBlock *SwitchBB) {
1630  // Subtract the lowest switch case value from the value being switched on and
1631  // conditional branch to default mbb if the result is greater than the
1632  // difference between smallest and largest cases.
1633  SDValue SwitchOp = getValue(JTH.SValue);
1634  EVT VT = SwitchOp.getValueType();
1635  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1636                            DAG.getConstant(JTH.First, VT));
1637
1638  // The SDNode we just created, which holds the value being switched on minus
1639  // the smallest case value, needs to be copied to a virtual register so it
1640  // can be used as an index into the jump table in a subsequent basic block.
1641  // This value may be smaller or larger than the target's pointer type, and
1642  // therefore require extension or truncating.
1643  SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy());
1644
1645  unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy());
1646  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1647                                    JumpTableReg, SwitchOp);
1648  JT.Reg = JumpTableReg;
1649
1650  // Emit the range check for the jump table, and branch to the default block
1651  // for the switch statement if the value being switched on exceeds the largest
1652  // case in the switch.
1653  SDValue CMP = DAG.getSetCC(getCurDebugLoc(),
1654                             TLI.getSetCCResultType(Sub.getValueType()), Sub,
1655                             DAG.getConstant(JTH.Last-JTH.First,VT),
1656                             ISD::SETUGT);
1657
1658  // Set NextBlock to be the MBB immediately after the current one, if any.
1659  // This is used to avoid emitting unnecessary branches to the next block.
1660  MachineBasicBlock *NextBlock = 0;
1661  MachineFunction::iterator BBI = SwitchBB;
1662
1663  if (++BBI != FuncInfo.MF->end())
1664    NextBlock = BBI;
1665
1666  SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1667                               MVT::Other, CopyTo, CMP,
1668                               DAG.getBasicBlock(JT.Default));
1669
1670  if (JT.MBB != NextBlock)
1671    BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond,
1672                         DAG.getBasicBlock(JT.MBB));
1673
1674  DAG.setRoot(BrCond);
1675}
1676
1677/// visitBitTestHeader - This function emits necessary code to produce value
1678/// suitable for "bit tests"
1679void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1680                                             MachineBasicBlock *SwitchBB) {
1681  // Subtract the minimum value
1682  SDValue SwitchOp = getValue(B.SValue);
1683  EVT VT = SwitchOp.getValueType();
1684  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1685                            DAG.getConstant(B.First, VT));
1686
1687  // Check range
1688  SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(),
1689                                  TLI.getSetCCResultType(Sub.getValueType()),
1690                                  Sub, DAG.getConstant(B.Range, VT),
1691                                  ISD::SETUGT);
1692
1693  // Determine the type of the test operands.
1694  bool UsePtrType = false;
1695  if (!TLI.isTypeLegal(VT))
1696    UsePtrType = true;
1697  else {
1698    for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
1699      if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
1700        // Switch table case range are encoded into series of masks.
1701        // Just use pointer type, it's guaranteed to fit.
1702        UsePtrType = true;
1703        break;
1704      }
1705  }
1706  if (UsePtrType) {
1707    VT = TLI.getPointerTy();
1708    Sub = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), VT);
1709  }
1710
1711  B.RegVT = VT;
1712  B.Reg = FuncInfo.CreateReg(VT);
1713  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1714                                    B.Reg, Sub);
1715
1716  // Set NextBlock to be the MBB immediately after the current one, if any.
1717  // This is used to avoid emitting unnecessary branches to the next block.
1718  MachineBasicBlock *NextBlock = 0;
1719  MachineFunction::iterator BBI = SwitchBB;
1720  if (++BBI != FuncInfo.MF->end())
1721    NextBlock = BBI;
1722
1723  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1724
1725  addSuccessorWithWeight(SwitchBB, B.Default);
1726  addSuccessorWithWeight(SwitchBB, MBB);
1727
1728  SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1729                                MVT::Other, CopyTo, RangeCmp,
1730                                DAG.getBasicBlock(B.Default));
1731
1732  if (MBB != NextBlock)
1733    BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo,
1734                          DAG.getBasicBlock(MBB));
1735
1736  DAG.setRoot(BrRange);
1737}
1738
1739/// visitBitTestCase - this function produces one "bit test"
1740void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
1741                                           MachineBasicBlock* NextMBB,
1742                                           unsigned Reg,
1743                                           BitTestCase &B,
1744                                           MachineBasicBlock *SwitchBB) {
1745  EVT VT = BB.RegVT;
1746  SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1747                                       Reg, VT);
1748  SDValue Cmp;
1749  unsigned PopCount = CountPopulation_64(B.Mask);
1750  if (PopCount == 1) {
1751    // Testing for a single bit; just compare the shift count with what it
1752    // would need to be to shift a 1 bit in that position.
1753    Cmp = DAG.getSetCC(getCurDebugLoc(),
1754                       TLI.getSetCCResultType(VT),
1755                       ShiftOp,
1756                       DAG.getConstant(CountTrailingZeros_64(B.Mask), VT),
1757                       ISD::SETEQ);
1758  } else if (PopCount == BB.Range) {
1759    // There is only one zero bit in the range, test for it directly.
1760    Cmp = DAG.getSetCC(getCurDebugLoc(),
1761                       TLI.getSetCCResultType(VT),
1762                       ShiftOp,
1763                       DAG.getConstant(CountTrailingOnes_64(B.Mask), VT),
1764                       ISD::SETNE);
1765  } else {
1766    // Make desired shift
1767    SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), VT,
1768                                    DAG.getConstant(1, VT), ShiftOp);
1769
1770    // Emit bit tests and jumps
1771    SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(),
1772                                VT, SwitchVal, DAG.getConstant(B.Mask, VT));
1773    Cmp = DAG.getSetCC(getCurDebugLoc(),
1774                       TLI.getSetCCResultType(VT),
1775                       AndOp, DAG.getConstant(0, VT),
1776                       ISD::SETNE);
1777  }
1778
1779  addSuccessorWithWeight(SwitchBB, B.TargetBB);
1780  addSuccessorWithWeight(SwitchBB, NextMBB);
1781
1782  SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1783                              MVT::Other, getControlRoot(),
1784                              Cmp, DAG.getBasicBlock(B.TargetBB));
1785
1786  // Set NextBlock to be the MBB immediately after the current one, if any.
1787  // This is used to avoid emitting unnecessary branches to the next block.
1788  MachineBasicBlock *NextBlock = 0;
1789  MachineFunction::iterator BBI = SwitchBB;
1790  if (++BBI != FuncInfo.MF->end())
1791    NextBlock = BBI;
1792
1793  if (NextMBB != NextBlock)
1794    BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd,
1795                        DAG.getBasicBlock(NextMBB));
1796
1797  DAG.setRoot(BrAnd);
1798}
1799
1800void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1801  MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
1802
1803  // Retrieve successors.
1804  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1805  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1806
1807  const Value *Callee(I.getCalledValue());
1808  if (isa<InlineAsm>(Callee))
1809    visitInlineAsm(&I);
1810  else
1811    LowerCallTo(&I, getValue(Callee), false, LandingPad);
1812
1813  // If the value of the invoke is used outside of its defining block, make it
1814  // available as a virtual register.
1815  CopyToExportRegsIfNeeded(&I);
1816
1817  // Update successor info
1818  addSuccessorWithWeight(InvokeMBB, Return);
1819  addSuccessorWithWeight(InvokeMBB, LandingPad);
1820
1821  // Drop into normal successor.
1822  DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1823                          MVT::Other, getControlRoot(),
1824                          DAG.getBasicBlock(Return)));
1825}
1826
1827void SelectionDAGBuilder::visitUnwind(const UnwindInst &I) {
1828}
1829
1830void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
1831  llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
1832}
1833
1834void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
1835  assert(FuncInfo.MBB->isLandingPad() &&
1836         "Call to landingpad not in landing pad!");
1837
1838  MachineBasicBlock *MBB = FuncInfo.MBB;
1839  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
1840  AddLandingPadInfo(LP, MMI, MBB);
1841
1842  SmallVector<EVT, 2> ValueVTs;
1843  ComputeValueVTs(TLI, LP.getType(), ValueVTs);
1844
1845  // Insert the EXCEPTIONADDR instruction.
1846  assert(FuncInfo.MBB->isLandingPad() &&
1847         "Call to eh.exception not in landing pad!");
1848  SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
1849  SDValue Ops[2];
1850  Ops[0] = DAG.getRoot();
1851  SDValue Op1 = DAG.getNode(ISD::EXCEPTIONADDR, getCurDebugLoc(), VTs, Ops, 1);
1852  SDValue Chain = Op1.getValue(1);
1853
1854  // Insert the EHSELECTION instruction.
1855  VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
1856  Ops[0] = Op1;
1857  Ops[1] = Chain;
1858  SDValue Op2 = DAG.getNode(ISD::EHSELECTION, getCurDebugLoc(), VTs, Ops, 2);
1859  Chain = Op2.getValue(1);
1860  Op2 = DAG.getSExtOrTrunc(Op2, getCurDebugLoc(), MVT::i32);
1861
1862  Ops[0] = Op1;
1863  Ops[1] = Op2;
1864  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
1865                            DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
1866                            &Ops[0], 2);
1867
1868  std::pair<SDValue, SDValue> RetPair = std::make_pair(Res, Chain);
1869  setValue(&LP, RetPair.first);
1870  DAG.setRoot(RetPair.second);
1871}
1872
1873/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1874/// small case ranges).
1875bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
1876                                                 CaseRecVector& WorkList,
1877                                                 const Value* SV,
1878                                                 MachineBasicBlock *Default,
1879                                                 MachineBasicBlock *SwitchBB) {
1880  Case& BackCase  = *(CR.Range.second-1);
1881
1882  // Size is the number of Cases represented by this range.
1883  size_t Size = CR.Range.second - CR.Range.first;
1884  if (Size > 3)
1885    return false;
1886
1887  // Get the MachineFunction which holds the current MBB.  This is used when
1888  // inserting any additional MBBs necessary to represent the switch.
1889  MachineFunction *CurMF = FuncInfo.MF;
1890
1891  // Figure out which block is immediately after the current one.
1892  MachineBasicBlock *NextBlock = 0;
1893  MachineFunction::iterator BBI = CR.CaseBB;
1894
1895  if (++BBI != FuncInfo.MF->end())
1896    NextBlock = BBI;
1897
1898  // If any two of the cases has the same destination, and if one value
1899  // is the same as the other, but has one bit unset that the other has set,
1900  // use bit manipulation to do two compares at once.  For example:
1901  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1902  // TODO: This could be extended to merge any 2 cases in switches with 3 cases.
1903  // TODO: Handle cases where CR.CaseBB != SwitchBB.
1904  if (Size == 2 && CR.CaseBB == SwitchBB) {
1905    Case &Small = *CR.Range.first;
1906    Case &Big = *(CR.Range.second-1);
1907
1908    if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) {
1909      const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue();
1910      const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue();
1911
1912      // Check that there is only one bit different.
1913      if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 &&
1914          (SmallValue | BigValue) == BigValue) {
1915        // Isolate the common bit.
1916        APInt CommonBit = BigValue & ~SmallValue;
1917        assert((SmallValue | CommonBit) == BigValue &&
1918               CommonBit.countPopulation() == 1 && "Not a common bit?");
1919
1920        SDValue CondLHS = getValue(SV);
1921        EVT VT = CondLHS.getValueType();
1922        DebugLoc DL = getCurDebugLoc();
1923
1924        SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
1925                                 DAG.getConstant(CommonBit, VT));
1926        SDValue Cond = DAG.getSetCC(DL, MVT::i1,
1927                                    Or, DAG.getConstant(BigValue, VT),
1928                                    ISD::SETEQ);
1929
1930        // Update successor info.
1931        addSuccessorWithWeight(SwitchBB, Small.BB);
1932        addSuccessorWithWeight(SwitchBB, Default);
1933
1934        // Insert the true branch.
1935        SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other,
1936                                     getControlRoot(), Cond,
1937                                     DAG.getBasicBlock(Small.BB));
1938
1939        // Insert the false branch.
1940        BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
1941                             DAG.getBasicBlock(Default));
1942
1943        DAG.setRoot(BrCond);
1944        return true;
1945      }
1946    }
1947  }
1948
1949  // Rearrange the case blocks so that the last one falls through if possible.
1950  if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1951    // The last case block won't fall through into 'NextBlock' if we emit the
1952    // branches in this order.  See if rearranging a case value would help.
1953    for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1954      if (I->BB == NextBlock) {
1955        std::swap(*I, BackCase);
1956        break;
1957      }
1958    }
1959  }
1960
1961  // Create a CaseBlock record representing a conditional branch to
1962  // the Case's target mbb if the value being switched on SV is equal
1963  // to C.
1964  MachineBasicBlock *CurBlock = CR.CaseBB;
1965  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1966    MachineBasicBlock *FallThrough;
1967    if (I != E-1) {
1968      FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
1969      CurMF->insert(BBI, FallThrough);
1970
1971      // Put SV in a virtual register to make it available from the new blocks.
1972      ExportFromCurrentBlock(SV);
1973    } else {
1974      // If the last case doesn't match, go to the default block.
1975      FallThrough = Default;
1976    }
1977
1978    const Value *RHS, *LHS, *MHS;
1979    ISD::CondCode CC;
1980    if (I->High == I->Low) {
1981      // This is just small small case range :) containing exactly 1 case
1982      CC = ISD::SETEQ;
1983      LHS = SV; RHS = I->High; MHS = NULL;
1984    } else {
1985      CC = ISD::SETLE;
1986      LHS = I->Low; MHS = SV; RHS = I->High;
1987    }
1988
1989    uint32_t ExtraWeight = I->ExtraWeight;
1990    CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough,
1991                 /* me */ CurBlock,
1992                 /* trueweight */ ExtraWeight / 2, /* falseweight */ ExtraWeight / 2);
1993
1994    // If emitting the first comparison, just call visitSwitchCase to emit the
1995    // code into the current block.  Otherwise, push the CaseBlock onto the
1996    // vector to be later processed by SDISel, and insert the node's MBB
1997    // before the next MBB.
1998    if (CurBlock == SwitchBB)
1999      visitSwitchCase(CB, SwitchBB);
2000    else
2001      SwitchCases.push_back(CB);
2002
2003    CurBlock = FallThrough;
2004  }
2005
2006  return true;
2007}
2008
2009static inline bool areJTsAllowed(const TargetLowering &TLI) {
2010  return !TLI.getTargetMachine().Options.DisableJumpTables &&
2011          (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
2012           TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
2013}
2014
2015static APInt ComputeRange(const APInt &First, const APInt &Last) {
2016  uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
2017  APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth);
2018  return (LastExt - FirstExt + 1ULL);
2019}
2020
2021/// handleJTSwitchCase - Emit jumptable for current switch case range
2022bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR,
2023                                             CaseRecVector &WorkList,
2024                                             const Value *SV,
2025                                             MachineBasicBlock *Default,
2026                                             MachineBasicBlock *SwitchBB) {
2027  Case& FrontCase = *CR.Range.first;
2028  Case& BackCase  = *(CR.Range.second-1);
2029
2030  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2031  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2032
2033  APInt TSize(First.getBitWidth(), 0);
2034  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I)
2035    TSize += I->size();
2036
2037  if (!areJTsAllowed(TLI) || TSize.ult(4))
2038    return false;
2039
2040  APInt Range = ComputeRange(First, Last);
2041  // The density is TSize / Range. Require at least 40%.
2042  // It should not be possible for IntTSize to saturate for sane code, but make
2043  // sure we handle Range saturation correctly.
2044  uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10);
2045  uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10);
2046  if (IntTSize * 10 < IntRange * 4)
2047    return false;
2048
2049  DEBUG(dbgs() << "Lowering jump table\n"
2050               << "First entry: " << First << ". Last entry: " << Last << '\n'
2051               << "Range: " << Range << ". Size: " << TSize << ".\n\n");
2052
2053  // Get the MachineFunction which holds the current MBB.  This is used when
2054  // inserting any additional MBBs necessary to represent the switch.
2055  MachineFunction *CurMF = FuncInfo.MF;
2056
2057  // Figure out which block is immediately after the current one.
2058  MachineFunction::iterator BBI = CR.CaseBB;
2059  ++BBI;
2060
2061  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2062
2063  // Create a new basic block to hold the code for loading the address
2064  // of the jump table, and jumping to it.  Update successor information;
2065  // we will either branch to the default case for the switch, or the jump
2066  // table.
2067  MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2068  CurMF->insert(BBI, JumpTableBB);
2069
2070  addSuccessorWithWeight(CR.CaseBB, Default);
2071  addSuccessorWithWeight(CR.CaseBB, JumpTableBB);
2072
2073  // Build a vector of destination BBs, corresponding to each target
2074  // of the jump table. If the value of the jump table slot corresponds to
2075  // a case statement, push the case's BB onto the vector, otherwise, push
2076  // the default BB.
2077  std::vector<MachineBasicBlock*> DestBBs;
2078  APInt TEI = First;
2079  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
2080    const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
2081    const APInt &High = cast<ConstantInt>(I->High)->getValue();
2082
2083    if (Low.sle(TEI) && TEI.sle(High)) {
2084      DestBBs.push_back(I->BB);
2085      if (TEI==High)
2086        ++I;
2087    } else {
2088      DestBBs.push_back(Default);
2089    }
2090  }
2091
2092  // Update successor info. Add one edge to each unique successor.
2093  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
2094  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
2095         E = DestBBs.end(); I != E; ++I) {
2096    if (!SuccsHandled[(*I)->getNumber()]) {
2097      SuccsHandled[(*I)->getNumber()] = true;
2098      addSuccessorWithWeight(JumpTableBB, *I);
2099    }
2100  }
2101
2102  // Create a jump table index for this jump table.
2103  unsigned JTEncoding = TLI.getJumpTableEncoding();
2104  unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
2105                       ->createJumpTableIndex(DestBBs);
2106
2107  // Set the jump table information so that we can codegen it as a second
2108  // MachineBasicBlock
2109  JumpTable JT(-1U, JTI, JumpTableBB, Default);
2110  JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
2111  if (CR.CaseBB == SwitchBB)
2112    visitJumpTableHeader(JT, JTH, SwitchBB);
2113
2114  JTCases.push_back(JumpTableBlock(JTH, JT));
2115  return true;
2116}
2117
2118/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
2119/// 2 subtrees.
2120bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
2121                                                  CaseRecVector& WorkList,
2122                                                  const Value* SV,
2123                                                  MachineBasicBlock *Default,
2124                                                  MachineBasicBlock *SwitchBB) {
2125  // Get the MachineFunction which holds the current MBB.  This is used when
2126  // inserting any additional MBBs necessary to represent the switch.
2127  MachineFunction *CurMF = FuncInfo.MF;
2128
2129  // Figure out which block is immediately after the current one.
2130  MachineFunction::iterator BBI = CR.CaseBB;
2131  ++BBI;
2132
2133  Case& FrontCase = *CR.Range.first;
2134  Case& BackCase  = *(CR.Range.second-1);
2135  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2136
2137  // Size is the number of Cases represented by this range.
2138  unsigned Size = CR.Range.second - CR.Range.first;
2139
2140  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2141  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2142  double FMetric = 0;
2143  CaseItr Pivot = CR.Range.first + Size/2;
2144
2145  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
2146  // (heuristically) allow us to emit JumpTable's later.
2147  APInt TSize(First.getBitWidth(), 0);
2148  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2149       I!=E; ++I)
2150    TSize += I->size();
2151
2152  APInt LSize = FrontCase.size();
2153  APInt RSize = TSize-LSize;
2154  DEBUG(dbgs() << "Selecting best pivot: \n"
2155               << "First: " << First << ", Last: " << Last <<'\n'
2156               << "LSize: " << LSize << ", RSize: " << RSize << '\n');
2157  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
2158       J!=E; ++I, ++J) {
2159    const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
2160    const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
2161    APInt Range = ComputeRange(LEnd, RBegin);
2162    assert((Range - 2ULL).isNonNegative() &&
2163           "Invalid case distance");
2164    // Use volatile double here to avoid excess precision issues on some hosts,
2165    // e.g. that use 80-bit X87 registers.
2166    volatile double LDensity =
2167       (double)LSize.roundToDouble() /
2168                           (LEnd - First + 1ULL).roundToDouble();
2169    volatile double RDensity =
2170      (double)RSize.roundToDouble() /
2171                           (Last - RBegin + 1ULL).roundToDouble();
2172    double Metric = Range.logBase2()*(LDensity+RDensity);
2173    // Should always split in some non-trivial place
2174    DEBUG(dbgs() <<"=>Step\n"
2175                 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
2176                 << "LDensity: " << LDensity
2177                 << ", RDensity: " << RDensity << '\n'
2178                 << "Metric: " << Metric << '\n');
2179    if (FMetric < Metric) {
2180      Pivot = J;
2181      FMetric = Metric;
2182      DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
2183    }
2184
2185    LSize += J->size();
2186    RSize -= J->size();
2187  }
2188  if (areJTsAllowed(TLI)) {
2189    // If our case is dense we *really* should handle it earlier!
2190    assert((FMetric > 0) && "Should handle dense range earlier!");
2191  } else {
2192    Pivot = CR.Range.first + Size/2;
2193  }
2194
2195  CaseRange LHSR(CR.Range.first, Pivot);
2196  CaseRange RHSR(Pivot, CR.Range.second);
2197  Constant *C = Pivot->Low;
2198  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
2199
2200  // We know that we branch to the LHS if the Value being switched on is
2201  // less than the Pivot value, C.  We use this to optimize our binary
2202  // tree a bit, by recognizing that if SV is greater than or equal to the
2203  // LHS's Case Value, and that Case Value is exactly one less than the
2204  // Pivot's Value, then we can branch directly to the LHS's Target,
2205  // rather than creating a leaf node for it.
2206  if ((LHSR.second - LHSR.first) == 1 &&
2207      LHSR.first->High == CR.GE &&
2208      cast<ConstantInt>(C)->getValue() ==
2209      (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
2210    TrueBB = LHSR.first->BB;
2211  } else {
2212    TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2213    CurMF->insert(BBI, TrueBB);
2214    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
2215
2216    // Put SV in a virtual register to make it available from the new blocks.
2217    ExportFromCurrentBlock(SV);
2218  }
2219
2220  // Similar to the optimization above, if the Value being switched on is
2221  // known to be less than the Constant CR.LT, and the current Case Value
2222  // is CR.LT - 1, then we can branch directly to the target block for
2223  // the current Case Value, rather than emitting a RHS leaf node for it.
2224  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
2225      cast<ConstantInt>(RHSR.first->Low)->getValue() ==
2226      (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
2227    FalseBB = RHSR.first->BB;
2228  } else {
2229    FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2230    CurMF->insert(BBI, FalseBB);
2231    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
2232
2233    // Put SV in a virtual register to make it available from the new blocks.
2234    ExportFromCurrentBlock(SV);
2235  }
2236
2237  // Create a CaseBlock record representing a conditional branch to
2238  // the LHS node if the value being switched on SV is less than C.
2239  // Otherwise, branch to LHS.
2240  CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
2241
2242  if (CR.CaseBB == SwitchBB)
2243    visitSwitchCase(CB, SwitchBB);
2244  else
2245    SwitchCases.push_back(CB);
2246
2247  return true;
2248}
2249
2250/// handleBitTestsSwitchCase - if current case range has few destination and
2251/// range span less, than machine word bitwidth, encode case range into series
2252/// of masks and emit bit tests with these masks.
2253bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
2254                                                   CaseRecVector& WorkList,
2255                                                   const Value* SV,
2256                                                   MachineBasicBlock* Default,
2257                                                   MachineBasicBlock *SwitchBB){
2258  EVT PTy = TLI.getPointerTy();
2259  unsigned IntPtrBits = PTy.getSizeInBits();
2260
2261  Case& FrontCase = *CR.Range.first;
2262  Case& BackCase  = *(CR.Range.second-1);
2263
2264  // Get the MachineFunction which holds the current MBB.  This is used when
2265  // inserting any additional MBBs necessary to represent the switch.
2266  MachineFunction *CurMF = FuncInfo.MF;
2267
2268  // If target does not have legal shift left, do not emit bit tests at all.
2269  if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
2270    return false;
2271
2272  size_t numCmps = 0;
2273  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2274       I!=E; ++I) {
2275    // Single case counts one, case range - two.
2276    numCmps += (I->Low == I->High ? 1 : 2);
2277  }
2278
2279  // Count unique destinations
2280  SmallSet<MachineBasicBlock*, 4> Dests;
2281  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2282    Dests.insert(I->BB);
2283    if (Dests.size() > 3)
2284      // Don't bother the code below, if there are too much unique destinations
2285      return false;
2286  }
2287  DEBUG(dbgs() << "Total number of unique destinations: "
2288        << Dests.size() << '\n'
2289        << "Total number of comparisons: " << numCmps << '\n');
2290
2291  // Compute span of values.
2292  const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
2293  const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
2294  APInt cmpRange = maxValue - minValue;
2295
2296  DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
2297               << "Low bound: " << minValue << '\n'
2298               << "High bound: " << maxValue << '\n');
2299
2300  if (cmpRange.uge(IntPtrBits) ||
2301      (!(Dests.size() == 1 && numCmps >= 3) &&
2302       !(Dests.size() == 2 && numCmps >= 5) &&
2303       !(Dests.size() >= 3 && numCmps >= 6)))
2304    return false;
2305
2306  DEBUG(dbgs() << "Emitting bit tests\n");
2307  APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
2308
2309  // Optimize the case where all the case values fit in a
2310  // word without having to subtract minValue. In this case,
2311  // we can optimize away the subtraction.
2312  if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) {
2313    cmpRange = maxValue;
2314  } else {
2315    lowBound = minValue;
2316  }
2317
2318  CaseBitsVector CasesBits;
2319  unsigned i, count = 0;
2320
2321  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2322    MachineBasicBlock* Dest = I->BB;
2323    for (i = 0; i < count; ++i)
2324      if (Dest == CasesBits[i].BB)
2325        break;
2326
2327    if (i == count) {
2328      assert((count < 3) && "Too much destinations to test!");
2329      CasesBits.push_back(CaseBits(0, Dest, 0));
2330      count++;
2331    }
2332
2333    const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
2334    const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
2335
2336    uint64_t lo = (lowValue - lowBound).getZExtValue();
2337    uint64_t hi = (highValue - lowBound).getZExtValue();
2338
2339    for (uint64_t j = lo; j <= hi; j++) {
2340      CasesBits[i].Mask |=  1ULL << j;
2341      CasesBits[i].Bits++;
2342    }
2343
2344  }
2345  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2346
2347  BitTestInfo BTC;
2348
2349  // Figure out which block is immediately after the current one.
2350  MachineFunction::iterator BBI = CR.CaseBB;
2351  ++BBI;
2352
2353  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2354
2355  DEBUG(dbgs() << "Cases:\n");
2356  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2357    DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
2358                 << ", Bits: " << CasesBits[i].Bits
2359                 << ", BB: " << CasesBits[i].BB << '\n');
2360
2361    MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2362    CurMF->insert(BBI, CaseBB);
2363    BTC.push_back(BitTestCase(CasesBits[i].Mask,
2364                              CaseBB,
2365                              CasesBits[i].BB));
2366
2367    // Put SV in a virtual register to make it available from the new blocks.
2368    ExportFromCurrentBlock(SV);
2369  }
2370
2371  BitTestBlock BTB(lowBound, cmpRange, SV,
2372                   -1U, MVT::Other, (CR.CaseBB == SwitchBB),
2373                   CR.CaseBB, Default, BTC);
2374
2375  if (CR.CaseBB == SwitchBB)
2376    visitBitTestHeader(BTB, SwitchBB);
2377
2378  BitTestCases.push_back(BTB);
2379
2380  return true;
2381}
2382
2383/// Clusterify - Transform simple list of Cases into list of CaseRange's
2384size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
2385                                       const SwitchInst& SI) {
2386  size_t numCmps = 0;
2387
2388  BranchProbabilityInfo *BPI = FuncInfo.BPI;
2389  // Start with "simple" cases
2390  for (size_t i = 1; i < SI.getNumSuccessors(); ++i) {
2391    BasicBlock *SuccBB = SI.getSuccessor(i);
2392    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB];
2393
2394    uint32_t ExtraWeight = BPI ? BPI->getEdgeWeight(SI.getParent(), SuccBB) : 0;
2395
2396    Cases.push_back(Case(SI.getSuccessorValue(i),
2397                         SI.getSuccessorValue(i),
2398                         SMBB, ExtraWeight));
2399  }
2400  std::sort(Cases.begin(), Cases.end(), CaseCmp());
2401
2402  // Merge case into clusters
2403  if (Cases.size() >= 2)
2404    // Must recompute end() each iteration because it may be
2405    // invalidated by erase if we hold on to it
2406    for (CaseItr I = Cases.begin(), J = llvm::next(Cases.begin());
2407         J != Cases.end(); ) {
2408      const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
2409      const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
2410      MachineBasicBlock* nextBB = J->BB;
2411      MachineBasicBlock* currentBB = I->BB;
2412
2413      // If the two neighboring cases go to the same destination, merge them
2414      // into a single case.
2415      if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
2416        I->High = J->High;
2417        J = Cases.erase(J);
2418
2419        if (BranchProbabilityInfo *BPI = FuncInfo.BPI) {
2420          uint32_t CurWeight = currentBB->getBasicBlock() ?
2421            BPI->getEdgeWeight(SI.getParent(), currentBB->getBasicBlock()) : 16;
2422          uint32_t NextWeight = nextBB->getBasicBlock() ?
2423            BPI->getEdgeWeight(SI.getParent(), nextBB->getBasicBlock()) : 16;
2424
2425          BPI->setEdgeWeight(SI.getParent(), currentBB->getBasicBlock(),
2426                             CurWeight + NextWeight);
2427        }
2428      } else {
2429        I = J++;
2430      }
2431    }
2432
2433  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
2434    if (I->Low != I->High)
2435      // A range counts double, since it requires two compares.
2436      ++numCmps;
2437  }
2438
2439  return numCmps;
2440}
2441
2442void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2443                                           MachineBasicBlock *Last) {
2444  // Update JTCases.
2445  for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2446    if (JTCases[i].first.HeaderBB == First)
2447      JTCases[i].first.HeaderBB = Last;
2448
2449  // Update BitTestCases.
2450  for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2451    if (BitTestCases[i].Parent == First)
2452      BitTestCases[i].Parent = Last;
2453}
2454
2455void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
2456  MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
2457
2458  // Figure out which block is immediately after the current one.
2459  MachineBasicBlock *NextBlock = 0;
2460  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2461
2462  // If there is only the default destination, branch to it if it is not the
2463  // next basic block.  Otherwise, just fall through.
2464  if (SI.getNumCases() == 1) {
2465    // Update machine-CFG edges.
2466
2467    // If this is not a fall-through branch, emit the branch.
2468    SwitchMBB->addSuccessor(Default);
2469    if (Default != NextBlock)
2470      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
2471                              MVT::Other, getControlRoot(),
2472                              DAG.getBasicBlock(Default)));
2473
2474    return;
2475  }
2476
2477  // If there are any non-default case statements, create a vector of Cases
2478  // representing each one, and sort the vector so that we can efficiently
2479  // create a binary search tree from them.
2480  CaseVector Cases;
2481  size_t numCmps = Clusterify(Cases, SI);
2482  DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2483               << ". Total compares: " << numCmps << '\n');
2484  (void)numCmps;
2485
2486  // Get the Value to be switched on and default basic blocks, which will be
2487  // inserted into CaseBlock records, representing basic blocks in the binary
2488  // search tree.
2489  const Value *SV = SI.getCondition();
2490
2491  // Push the initial CaseRec onto the worklist
2492  CaseRecVector WorkList;
2493  WorkList.push_back(CaseRec(SwitchMBB,0,0,
2494                             CaseRange(Cases.begin(),Cases.end())));
2495
2496  while (!WorkList.empty()) {
2497    // Grab a record representing a case range to process off the worklist
2498    CaseRec CR = WorkList.back();
2499    WorkList.pop_back();
2500
2501    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2502      continue;
2503
2504    // If the range has few cases (two or less) emit a series of specific
2505    // tests.
2506    if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
2507      continue;
2508
2509    // If the switch has more than 5 blocks, and at least 40% dense, and the
2510    // target supports indirect branches, then emit a jump table rather than
2511    // lowering the switch to a binary tree of conditional branches.
2512    if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2513      continue;
2514
2515    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2516    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2517    handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
2518  }
2519}
2520
2521void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2522  MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2523
2524  // Update machine-CFG edges with unique successors.
2525  SmallVector<BasicBlock*, 32> succs;
2526  succs.reserve(I.getNumSuccessors());
2527  for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i)
2528    succs.push_back(I.getSuccessor(i));
2529  array_pod_sort(succs.begin(), succs.end());
2530  succs.erase(std::unique(succs.begin(), succs.end()), succs.end());
2531  for (unsigned i = 0, e = succs.size(); i != e; ++i) {
2532    MachineBasicBlock *Succ = FuncInfo.MBBMap[succs[i]];
2533    addSuccessorWithWeight(IndirectBrMBB, Succ);
2534  }
2535
2536  DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(),
2537                          MVT::Other, getControlRoot(),
2538                          getValue(I.getAddress())));
2539}
2540
2541void SelectionDAGBuilder::visitFSub(const User &I) {
2542  // -0.0 - X --> fneg
2543  Type *Ty = I.getType();
2544  if (isa<Constant>(I.getOperand(0)) &&
2545      I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2546    SDValue Op2 = getValue(I.getOperand(1));
2547    setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2548                             Op2.getValueType(), Op2));
2549    return;
2550  }
2551
2552  visitBinary(I, ISD::FSUB);
2553}
2554
2555void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2556  SDValue Op1 = getValue(I.getOperand(0));
2557  SDValue Op2 = getValue(I.getOperand(1));
2558  setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(),
2559                           Op1.getValueType(), Op1, Op2));
2560}
2561
2562void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2563  SDValue Op1 = getValue(I.getOperand(0));
2564  SDValue Op2 = getValue(I.getOperand(1));
2565
2566  MVT ShiftTy = TLI.getShiftAmountTy(Op2.getValueType());
2567
2568  // Coerce the shift amount to the right type if we can.
2569  if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2570    unsigned ShiftSize = ShiftTy.getSizeInBits();
2571    unsigned Op2Size = Op2.getValueType().getSizeInBits();
2572    DebugLoc DL = getCurDebugLoc();
2573
2574    // If the operand is smaller than the shift count type, promote it.
2575    if (ShiftSize > Op2Size)
2576      Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2577
2578    // If the operand is larger than the shift count type but the shift
2579    // count type has enough bits to represent any shift value, truncate
2580    // it now. This is a common case and it exposes the truncate to
2581    // optimization early.
2582    else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2583      Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2584    // Otherwise we'll need to temporarily settle for some other convenient
2585    // type.  Type legalization will make adjustments once the shiftee is split.
2586    else
2587      Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2588  }
2589
2590  setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(),
2591                           Op1.getValueType(), Op1, Op2));
2592}
2593
2594void SelectionDAGBuilder::visitSDiv(const User &I) {
2595  SDValue Op1 = getValue(I.getOperand(0));
2596  SDValue Op2 = getValue(I.getOperand(1));
2597
2598  // Turn exact SDivs into multiplications.
2599  // FIXME: This should be in DAGCombiner, but it doesn't have access to the
2600  // exact bit.
2601  if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() &&
2602      !isa<ConstantSDNode>(Op1) &&
2603      isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue())
2604    setValue(&I, TLI.BuildExactSDIV(Op1, Op2, getCurDebugLoc(), DAG));
2605  else
2606    setValue(&I, DAG.getNode(ISD::SDIV, getCurDebugLoc(), Op1.getValueType(),
2607                             Op1, Op2));
2608}
2609
2610void SelectionDAGBuilder::visitICmp(const User &I) {
2611  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2612  if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2613    predicate = IC->getPredicate();
2614  else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2615    predicate = ICmpInst::Predicate(IC->getPredicate());
2616  SDValue Op1 = getValue(I.getOperand(0));
2617  SDValue Op2 = getValue(I.getOperand(1));
2618  ISD::CondCode Opcode = getICmpCondCode(predicate);
2619
2620  EVT DestVT = TLI.getValueType(I.getType());
2621  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode));
2622}
2623
2624void SelectionDAGBuilder::visitFCmp(const User &I) {
2625  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2626  if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2627    predicate = FC->getPredicate();
2628  else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2629    predicate = FCmpInst::Predicate(FC->getPredicate());
2630  SDValue Op1 = getValue(I.getOperand(0));
2631  SDValue Op2 = getValue(I.getOperand(1));
2632  ISD::CondCode Condition = getFCmpCondCode(predicate);
2633  if (TM.Options.NoNaNsFPMath)
2634    Condition = getFCmpCodeWithoutNaN(Condition);
2635  EVT DestVT = TLI.getValueType(I.getType());
2636  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition));
2637}
2638
2639void SelectionDAGBuilder::visitSelect(const User &I) {
2640  SmallVector<EVT, 4> ValueVTs;
2641  ComputeValueVTs(TLI, I.getType(), ValueVTs);
2642  unsigned NumValues = ValueVTs.size();
2643  if (NumValues == 0) return;
2644
2645  SmallVector<SDValue, 4> Values(NumValues);
2646  SDValue Cond     = getValue(I.getOperand(0));
2647  SDValue TrueVal  = getValue(I.getOperand(1));
2648  SDValue FalseVal = getValue(I.getOperand(2));
2649  ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2650    ISD::VSELECT : ISD::SELECT;
2651
2652  for (unsigned i = 0; i != NumValues; ++i)
2653    Values[i] = DAG.getNode(OpCode, getCurDebugLoc(),
2654                            TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2655                            Cond,
2656                            SDValue(TrueVal.getNode(),
2657                                    TrueVal.getResNo() + i),
2658                            SDValue(FalseVal.getNode(),
2659                                    FalseVal.getResNo() + i));
2660
2661  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2662                           DAG.getVTList(&ValueVTs[0], NumValues),
2663                           &Values[0], NumValues));
2664}
2665
2666void SelectionDAGBuilder::visitTrunc(const User &I) {
2667  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2668  SDValue N = getValue(I.getOperand(0));
2669  EVT DestVT = TLI.getValueType(I.getType());
2670  setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N));
2671}
2672
2673void SelectionDAGBuilder::visitZExt(const User &I) {
2674  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2675  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2676  SDValue N = getValue(I.getOperand(0));
2677  EVT DestVT = TLI.getValueType(I.getType());
2678  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N));
2679}
2680
2681void SelectionDAGBuilder::visitSExt(const User &I) {
2682  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2683  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2684  SDValue N = getValue(I.getOperand(0));
2685  EVT DestVT = TLI.getValueType(I.getType());
2686  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N));
2687}
2688
2689void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2690  // FPTrunc is never a no-op cast, no need to check
2691  SDValue N = getValue(I.getOperand(0));
2692  EVT DestVT = TLI.getValueType(I.getType());
2693  setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(),
2694                           DestVT, N, DAG.getIntPtrConstant(0)));
2695}
2696
2697void SelectionDAGBuilder::visitFPExt(const User &I){
2698  // FPExt is never a no-op cast, no need to check
2699  SDValue N = getValue(I.getOperand(0));
2700  EVT DestVT = TLI.getValueType(I.getType());
2701  setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N));
2702}
2703
2704void SelectionDAGBuilder::visitFPToUI(const User &I) {
2705  // FPToUI is never a no-op cast, no need to check
2706  SDValue N = getValue(I.getOperand(0));
2707  EVT DestVT = TLI.getValueType(I.getType());
2708  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N));
2709}
2710
2711void SelectionDAGBuilder::visitFPToSI(const User &I) {
2712  // FPToSI is never a no-op cast, no need to check
2713  SDValue N = getValue(I.getOperand(0));
2714  EVT DestVT = TLI.getValueType(I.getType());
2715  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N));
2716}
2717
2718void SelectionDAGBuilder::visitUIToFP(const User &I) {
2719  // UIToFP is never a no-op cast, no need to check
2720  SDValue N = getValue(I.getOperand(0));
2721  EVT DestVT = TLI.getValueType(I.getType());
2722  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N));
2723}
2724
2725void SelectionDAGBuilder::visitSIToFP(const User &I){
2726  // SIToFP is never a no-op cast, no need to check
2727  SDValue N = getValue(I.getOperand(0));
2728  EVT DestVT = TLI.getValueType(I.getType());
2729  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N));
2730}
2731
2732void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2733  // What to do depends on the size of the integer and the size of the pointer.
2734  // We can either truncate, zero extend, or no-op, accordingly.
2735  SDValue N = getValue(I.getOperand(0));
2736  EVT DestVT = TLI.getValueType(I.getType());
2737  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2738}
2739
2740void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2741  // What to do depends on the size of the integer and the size of the pointer.
2742  // We can either truncate, zero extend, or no-op, accordingly.
2743  SDValue N = getValue(I.getOperand(0));
2744  EVT DestVT = TLI.getValueType(I.getType());
2745  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2746}
2747
2748void SelectionDAGBuilder::visitBitCast(const User &I) {
2749  SDValue N = getValue(I.getOperand(0));
2750  EVT DestVT = TLI.getValueType(I.getType());
2751
2752  // BitCast assures us that source and destination are the same size so this is
2753  // either a BITCAST or a no-op.
2754  if (DestVT != N.getValueType())
2755    setValue(&I, DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
2756                             DestVT, N)); // convert types.
2757  else
2758    setValue(&I, N);            // noop cast.
2759}
2760
2761void SelectionDAGBuilder::visitInsertElement(const User &I) {
2762  SDValue InVec = getValue(I.getOperand(0));
2763  SDValue InVal = getValue(I.getOperand(1));
2764  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2765                              TLI.getPointerTy(),
2766                              getValue(I.getOperand(2)));
2767  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(),
2768                           TLI.getValueType(I.getType()),
2769                           InVec, InVal, InIdx));
2770}
2771
2772void SelectionDAGBuilder::visitExtractElement(const User &I) {
2773  SDValue InVec = getValue(I.getOperand(0));
2774  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2775                              TLI.getPointerTy(),
2776                              getValue(I.getOperand(1)));
2777  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2778                           TLI.getValueType(I.getType()), InVec, InIdx));
2779}
2780
2781// Utility for visitShuffleVector - Returns true if the mask is mask starting
2782// from SIndx and increasing to the element length (undefs are allowed).
2783static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) {
2784  unsigned MaskNumElts = Mask.size();
2785  for (unsigned i = 0; i != MaskNumElts; ++i)
2786    if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx)))
2787      return false;
2788  return true;
2789}
2790
2791void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2792  SmallVector<int, 8> Mask;
2793  SDValue Src1 = getValue(I.getOperand(0));
2794  SDValue Src2 = getValue(I.getOperand(1));
2795
2796  // Convert the ConstantVector mask operand into an array of ints, with -1
2797  // representing undef values.
2798  SmallVector<Constant*, 8> MaskElts;
2799  cast<Constant>(I.getOperand(2))->getVectorElements(MaskElts);
2800  unsigned MaskNumElts = MaskElts.size();
2801  for (unsigned i = 0; i != MaskNumElts; ++i) {
2802    if (isa<UndefValue>(MaskElts[i]))
2803      Mask.push_back(-1);
2804    else
2805      Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue());
2806  }
2807
2808  EVT VT = TLI.getValueType(I.getType());
2809  EVT SrcVT = Src1.getValueType();
2810  unsigned SrcNumElts = SrcVT.getVectorNumElements();
2811
2812  if (SrcNumElts == MaskNumElts) {
2813    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2814                                      &Mask[0]));
2815    return;
2816  }
2817
2818  // Normalize the shuffle vector since mask and vector length don't match.
2819  if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2820    // Mask is longer than the source vectors and is a multiple of the source
2821    // vectors.  We can use concatenate vector to make the mask and vectors
2822    // lengths match.
2823    if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) {
2824      // The shuffle is concatenating two vectors together.
2825      setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2826                               VT, Src1, Src2));
2827      return;
2828    }
2829
2830    // Pad both vectors with undefs to make them the same length as the mask.
2831    unsigned NumConcat = MaskNumElts / SrcNumElts;
2832    bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2833    bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2834    SDValue UndefVal = DAG.getUNDEF(SrcVT);
2835
2836    SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2837    SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2838    MOps1[0] = Src1;
2839    MOps2[0] = Src2;
2840
2841    Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2842                                                  getCurDebugLoc(), VT,
2843                                                  &MOps1[0], NumConcat);
2844    Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2845                                                  getCurDebugLoc(), VT,
2846                                                  &MOps2[0], NumConcat);
2847
2848    // Readjust mask for new input vector length.
2849    SmallVector<int, 8> MappedOps;
2850    for (unsigned i = 0; i != MaskNumElts; ++i) {
2851      int Idx = Mask[i];
2852      if (Idx < (int)SrcNumElts)
2853        MappedOps.push_back(Idx);
2854      else
2855        MappedOps.push_back(Idx + MaskNumElts - SrcNumElts);
2856    }
2857
2858    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2859                                      &MappedOps[0]));
2860    return;
2861  }
2862
2863  if (SrcNumElts > MaskNumElts) {
2864    // Analyze the access pattern of the vector to see if we can extract
2865    // two subvectors and do the shuffle. The analysis is done by calculating
2866    // the range of elements the mask access on both vectors.
2867    int MinRange[2] = { static_cast<int>(SrcNumElts+1),
2868                        static_cast<int>(SrcNumElts+1)};
2869    int MaxRange[2] = {-1, -1};
2870
2871    for (unsigned i = 0; i != MaskNumElts; ++i) {
2872      int Idx = Mask[i];
2873      int Input = 0;
2874      if (Idx < 0)
2875        continue;
2876
2877      if (Idx >= (int)SrcNumElts) {
2878        Input = 1;
2879        Idx -= SrcNumElts;
2880      }
2881      if (Idx > MaxRange[Input])
2882        MaxRange[Input] = Idx;
2883      if (Idx < MinRange[Input])
2884        MinRange[Input] = Idx;
2885    }
2886
2887    // Check if the access is smaller than the vector size and can we find
2888    // a reasonable extract index.
2889    int RangeUse[2] = { 2, 2 };  // 0 = Unused, 1 = Extract, 2 = Can not
2890                                 // Extract.
2891    int StartIdx[2];  // StartIdx to extract from
2892    for (int Input=0; Input < 2; ++Input) {
2893      if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) {
2894        RangeUse[Input] = 0; // Unused
2895        StartIdx[Input] = 0;
2896      } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) {
2897        // Fits within range but we should see if we can find a good
2898        // start index that is a multiple of the mask length.
2899        if (MaxRange[Input] < (int)MaskNumElts) {
2900          RangeUse[Input] = 1; // Extract from beginning of the vector
2901          StartIdx[Input] = 0;
2902        } else {
2903          StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2904          if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2905              StartIdx[Input] + MaskNumElts <= SrcNumElts)
2906            RangeUse[Input] = 1; // Extract from a multiple of the mask length.
2907        }
2908      }
2909    }
2910
2911    if (RangeUse[0] == 0 && RangeUse[1] == 0) {
2912      setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
2913      return;
2914    }
2915    else if (RangeUse[0] < 2 && RangeUse[1] < 2) {
2916      // Extract appropriate subvector and generate a vector shuffle
2917      for (int Input=0; Input < 2; ++Input) {
2918        SDValue &Src = Input == 0 ? Src1 : Src2;
2919        if (RangeUse[Input] == 0)
2920          Src = DAG.getUNDEF(VT);
2921        else
2922          Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT,
2923                            Src, DAG.getIntPtrConstant(StartIdx[Input]));
2924      }
2925
2926      // Calculate new mask.
2927      SmallVector<int, 8> MappedOps;
2928      for (unsigned i = 0; i != MaskNumElts; ++i) {
2929        int Idx = Mask[i];
2930        if (Idx < 0)
2931          MappedOps.push_back(Idx);
2932        else if (Idx < (int)SrcNumElts)
2933          MappedOps.push_back(Idx - StartIdx[0]);
2934        else
2935          MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts);
2936      }
2937
2938      setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2939                                        &MappedOps[0]));
2940      return;
2941    }
2942  }
2943
2944  // We can't use either concat vectors or extract subvectors so fall back to
2945  // replacing the shuffle with extract and build vector.
2946  // to insert and build vector.
2947  EVT EltVT = VT.getVectorElementType();
2948  EVT PtrVT = TLI.getPointerTy();
2949  SmallVector<SDValue,8> Ops;
2950  for (unsigned i = 0; i != MaskNumElts; ++i) {
2951    if (Mask[i] < 0) {
2952      Ops.push_back(DAG.getUNDEF(EltVT));
2953    } else {
2954      int Idx = Mask[i];
2955      SDValue Res;
2956
2957      if (Idx < (int)SrcNumElts)
2958        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2959                          EltVT, Src1, DAG.getConstant(Idx, PtrVT));
2960      else
2961        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2962                          EltVT, Src2,
2963                          DAG.getConstant(Idx - SrcNumElts, PtrVT));
2964
2965      Ops.push_back(Res);
2966    }
2967  }
2968
2969  setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
2970                           VT, &Ops[0], Ops.size()));
2971}
2972
2973void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
2974  const Value *Op0 = I.getOperand(0);
2975  const Value *Op1 = I.getOperand(1);
2976  Type *AggTy = I.getType();
2977  Type *ValTy = Op1->getType();
2978  bool IntoUndef = isa<UndefValue>(Op0);
2979  bool FromUndef = isa<UndefValue>(Op1);
2980
2981  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
2982
2983  SmallVector<EVT, 4> AggValueVTs;
2984  ComputeValueVTs(TLI, AggTy, AggValueVTs);
2985  SmallVector<EVT, 4> ValValueVTs;
2986  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2987
2988  unsigned NumAggValues = AggValueVTs.size();
2989  unsigned NumValValues = ValValueVTs.size();
2990  SmallVector<SDValue, 4> Values(NumAggValues);
2991
2992  SDValue Agg = getValue(Op0);
2993  unsigned i = 0;
2994  // Copy the beginning value(s) from the original aggregate.
2995  for (; i != LinearIndex; ++i)
2996    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2997                SDValue(Agg.getNode(), Agg.getResNo() + i);
2998  // Copy values from the inserted value(s).
2999  if (NumValValues) {
3000    SDValue Val = getValue(Op1);
3001    for (; i != LinearIndex + NumValValues; ++i)
3002      Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3003                  SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3004  }
3005  // Copy remaining value(s) from the original aggregate.
3006  for (; i != NumAggValues; ++i)
3007    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3008                SDValue(Agg.getNode(), Agg.getResNo() + i);
3009
3010  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3011                           DAG.getVTList(&AggValueVTs[0], NumAggValues),
3012                           &Values[0], NumAggValues));
3013}
3014
3015void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
3016  const Value *Op0 = I.getOperand(0);
3017  Type *AggTy = Op0->getType();
3018  Type *ValTy = I.getType();
3019  bool OutOfUndef = isa<UndefValue>(Op0);
3020
3021  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3022
3023  SmallVector<EVT, 4> ValValueVTs;
3024  ComputeValueVTs(TLI, ValTy, ValValueVTs);
3025
3026  unsigned NumValValues = ValValueVTs.size();
3027
3028  // Ignore a extractvalue that produces an empty object
3029  if (!NumValValues) {
3030    setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3031    return;
3032  }
3033
3034  SmallVector<SDValue, 4> Values(NumValValues);
3035
3036  SDValue Agg = getValue(Op0);
3037  // Copy out the selected value(s).
3038  for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3039    Values[i - LinearIndex] =
3040      OutOfUndef ?
3041        DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3042        SDValue(Agg.getNode(), Agg.getResNo() + i);
3043
3044  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3045                           DAG.getVTList(&ValValueVTs[0], NumValValues),
3046                           &Values[0], NumValValues));
3047}
3048
3049void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3050  SDValue N = getValue(I.getOperand(0));
3051  Type *Ty = I.getOperand(0)->getType();
3052
3053  for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
3054       OI != E; ++OI) {
3055    const Value *Idx = *OI;
3056    if (StructType *StTy = dyn_cast<StructType>(Ty)) {
3057      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
3058      if (Field) {
3059        // N = N + Offset
3060        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
3061        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
3062                        DAG.getIntPtrConstant(Offset));
3063      }
3064
3065      Ty = StTy->getElementType(Field);
3066    } else {
3067      Ty = cast<SequentialType>(Ty)->getElementType();
3068
3069      // If this is a constant subscript, handle it quickly.
3070      if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
3071        if (CI->isZero()) continue;
3072        uint64_t Offs =
3073            TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
3074        SDValue OffsVal;
3075        EVT PTy = TLI.getPointerTy();
3076        unsigned PtrBits = PTy.getSizeInBits();
3077        if (PtrBits < 64)
3078          OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
3079                                TLI.getPointerTy(),
3080                                DAG.getConstant(Offs, MVT::i64));
3081        else
3082          OffsVal = DAG.getIntPtrConstant(Offs);
3083
3084        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
3085                        OffsVal);
3086        continue;
3087      }
3088
3089      // N = N + Idx * ElementSize;
3090      APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
3091                                TD->getTypeAllocSize(Ty));
3092      SDValue IdxN = getValue(Idx);
3093
3094      // If the index is smaller or larger than intptr_t, truncate or extend
3095      // it.
3096      IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType());
3097
3098      // If this is a multiply by a power of two, turn it into a shl
3099      // immediately.  This is a very common case.
3100      if (ElementSize != 1) {
3101        if (ElementSize.isPowerOf2()) {
3102          unsigned Amt = ElementSize.logBase2();
3103          IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(),
3104                             N.getValueType(), IdxN,
3105                             DAG.getConstant(Amt, IdxN.getValueType()));
3106        } else {
3107          SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy());
3108          IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(),
3109                             N.getValueType(), IdxN, Scale);
3110        }
3111      }
3112
3113      N = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3114                      N.getValueType(), N, IdxN);
3115    }
3116  }
3117
3118  setValue(&I, N);
3119}
3120
3121void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3122  // If this is a fixed sized alloca in the entry block of the function,
3123  // allocate it statically on the stack.
3124  if (FuncInfo.StaticAllocaMap.count(&I))
3125    return;   // getValue will auto-populate this.
3126
3127  Type *Ty = I.getAllocatedType();
3128  uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
3129  unsigned Align =
3130    std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
3131             I.getAlignment());
3132
3133  SDValue AllocSize = getValue(I.getArraySize());
3134
3135  EVT IntPtr = TLI.getPointerTy();
3136  if (AllocSize.getValueType() != IntPtr)
3137    AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr);
3138
3139  AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr,
3140                          AllocSize,
3141                          DAG.getConstant(TySize, IntPtr));
3142
3143  // Handle alignment.  If the requested alignment is less than or equal to
3144  // the stack alignment, ignore it.  If the size is greater than or equal to
3145  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3146  unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
3147  if (Align <= StackAlign)
3148    Align = 0;
3149
3150  // Round the size of the allocation up to the stack alignment size
3151  // by add SA-1 to the size.
3152  AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3153                          AllocSize.getValueType(), AllocSize,
3154                          DAG.getIntPtrConstant(StackAlign-1));
3155
3156  // Mask out the low bits for alignment purposes.
3157  AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(),
3158                          AllocSize.getValueType(), AllocSize,
3159                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
3160
3161  SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
3162  SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3163  SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(),
3164                            VTs, Ops, 3);
3165  setValue(&I, DSA);
3166  DAG.setRoot(DSA.getValue(1));
3167
3168  // Inform the Frame Information that we have just allocated a variable-sized
3169  // object.
3170  FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1);
3171}
3172
3173void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3174  if (I.isAtomic())
3175    return visitAtomicLoad(I);
3176
3177  const Value *SV = I.getOperand(0);
3178  SDValue Ptr = getValue(SV);
3179
3180  Type *Ty = I.getType();
3181
3182  bool isVolatile = I.isVolatile();
3183  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3184  bool isInvariant = I.getMetadata("invariant.load") != 0;
3185  unsigned Alignment = I.getAlignment();
3186  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3187
3188  SmallVector<EVT, 4> ValueVTs;
3189  SmallVector<uint64_t, 4> Offsets;
3190  ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
3191  unsigned NumValues = ValueVTs.size();
3192  if (NumValues == 0)
3193    return;
3194
3195  SDValue Root;
3196  bool ConstantMemory = false;
3197  if (I.isVolatile() || NumValues > MaxParallelChains)
3198    // Serialize volatile loads with other side effects.
3199    Root = getRoot();
3200  else if (AA->pointsToConstantMemory(
3201             AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) {
3202    // Do not serialize (non-volatile) loads of constant memory with anything.
3203    Root = DAG.getEntryNode();
3204    ConstantMemory = true;
3205  } else {
3206    // Do not serialize non-volatile loads against each other.
3207    Root = DAG.getRoot();
3208  }
3209
3210  SmallVector<SDValue, 4> Values(NumValues);
3211  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3212                                          NumValues));
3213  EVT PtrVT = Ptr.getValueType();
3214  unsigned ChainI = 0;
3215  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3216    // Serializing loads here may result in excessive register pressure, and
3217    // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3218    // could recover a bit by hoisting nodes upward in the chain by recognizing
3219    // they are side-effect free or do not alias. The optimizer should really
3220    // avoid this case by converting large object/array copies to llvm.memcpy
3221    // (MaxParallelChains should always remain as failsafe).
3222    if (ChainI == MaxParallelChains) {
3223      assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3224      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3225                                  MVT::Other, &Chains[0], ChainI);
3226      Root = Chain;
3227      ChainI = 0;
3228    }
3229    SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3230                            PtrVT, Ptr,
3231                            DAG.getConstant(Offsets[i], PtrVT));
3232    SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root,
3233                            A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
3234                            isNonTemporal, isInvariant, Alignment, TBAAInfo);
3235
3236    Values[i] = L;
3237    Chains[ChainI] = L.getValue(1);
3238  }
3239
3240  if (!ConstantMemory) {
3241    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3242                                MVT::Other, &Chains[0], ChainI);
3243    if (isVolatile)
3244      DAG.setRoot(Chain);
3245    else
3246      PendingLoads.push_back(Chain);
3247  }
3248
3249  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3250                           DAG.getVTList(&ValueVTs[0], NumValues),
3251                           &Values[0], NumValues));
3252}
3253
3254void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3255  if (I.isAtomic())
3256    return visitAtomicStore(I);
3257
3258  const Value *SrcV = I.getOperand(0);
3259  const Value *PtrV = I.getOperand(1);
3260
3261  SmallVector<EVT, 4> ValueVTs;
3262  SmallVector<uint64_t, 4> Offsets;
3263  ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
3264  unsigned NumValues = ValueVTs.size();
3265  if (NumValues == 0)
3266    return;
3267
3268  // Get the lowered operands. Note that we do this after
3269  // checking if NumResults is zero, because with zero results
3270  // the operands won't have values in the map.
3271  SDValue Src = getValue(SrcV);
3272  SDValue Ptr = getValue(PtrV);
3273
3274  SDValue Root = getRoot();
3275  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3276                                          NumValues));
3277  EVT PtrVT = Ptr.getValueType();
3278  bool isVolatile = I.isVolatile();
3279  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3280  unsigned Alignment = I.getAlignment();
3281  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3282
3283  unsigned ChainI = 0;
3284  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3285    // See visitLoad comments.
3286    if (ChainI == MaxParallelChains) {
3287      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3288                                  MVT::Other, &Chains[0], ChainI);
3289      Root = Chain;
3290      ChainI = 0;
3291    }
3292    SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr,
3293                              DAG.getConstant(Offsets[i], PtrVT));
3294    SDValue St = DAG.getStore(Root, getCurDebugLoc(),
3295                              SDValue(Src.getNode(), Src.getResNo() + i),
3296                              Add, MachinePointerInfo(PtrV, Offsets[i]),
3297                              isVolatile, isNonTemporal, Alignment, TBAAInfo);
3298    Chains[ChainI] = St;
3299  }
3300
3301  SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3302                                  MVT::Other, &Chains[0], ChainI);
3303  ++SDNodeOrder;
3304  AssignOrderingToNode(StoreNode.getNode());
3305  DAG.setRoot(StoreNode);
3306}
3307
3308static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order,
3309                                    SynchronizationScope Scope,
3310                                    bool Before, DebugLoc dl,
3311                                    SelectionDAG &DAG,
3312                                    const TargetLowering &TLI) {
3313  // Fence, if necessary
3314  if (Before) {
3315    if (Order == AcquireRelease || Order == SequentiallyConsistent)
3316      Order = Release;
3317    else if (Order == Acquire || Order == Monotonic)
3318      return Chain;
3319  } else {
3320    if (Order == AcquireRelease)
3321      Order = Acquire;
3322    else if (Order == Release || Order == Monotonic)
3323      return Chain;
3324  }
3325  SDValue Ops[3];
3326  Ops[0] = Chain;
3327  Ops[1] = DAG.getConstant(Order, TLI.getPointerTy());
3328  Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy());
3329  return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3);
3330}
3331
3332void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
3333  DebugLoc dl = getCurDebugLoc();
3334  AtomicOrdering Order = I.getOrdering();
3335  SynchronizationScope Scope = I.getSynchScope();
3336
3337  SDValue InChain = getRoot();
3338
3339  if (TLI.getInsertFencesForAtomic())
3340    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3341                                   DAG, TLI);
3342
3343  SDValue L =
3344    DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl,
3345                  getValue(I.getCompareOperand()).getValueType().getSimpleVT(),
3346                  InChain,
3347                  getValue(I.getPointerOperand()),
3348                  getValue(I.getCompareOperand()),
3349                  getValue(I.getNewValOperand()),
3350                  MachinePointerInfo(I.getPointerOperand()), 0 /* Alignment */,
3351                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3352                  Scope);
3353
3354  SDValue OutChain = L.getValue(1);
3355
3356  if (TLI.getInsertFencesForAtomic())
3357    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3358                                    DAG, TLI);
3359
3360  setValue(&I, L);
3361  DAG.setRoot(OutChain);
3362}
3363
3364void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
3365  DebugLoc dl = getCurDebugLoc();
3366  ISD::NodeType NT;
3367  switch (I.getOperation()) {
3368  default: llvm_unreachable("Unknown atomicrmw operation"); return;
3369  case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
3370  case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
3371  case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
3372  case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
3373  case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
3374  case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
3375  case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
3376  case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
3377  case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
3378  case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
3379  case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
3380  }
3381  AtomicOrdering Order = I.getOrdering();
3382  SynchronizationScope Scope = I.getSynchScope();
3383
3384  SDValue InChain = getRoot();
3385
3386  if (TLI.getInsertFencesForAtomic())
3387    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3388                                   DAG, TLI);
3389
3390  SDValue L =
3391    DAG.getAtomic(NT, dl,
3392                  getValue(I.getValOperand()).getValueType().getSimpleVT(),
3393                  InChain,
3394                  getValue(I.getPointerOperand()),
3395                  getValue(I.getValOperand()),
3396                  I.getPointerOperand(), 0 /* Alignment */,
3397                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3398                  Scope);
3399
3400  SDValue OutChain = L.getValue(1);
3401
3402  if (TLI.getInsertFencesForAtomic())
3403    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3404                                    DAG, TLI);
3405
3406  setValue(&I, L);
3407  DAG.setRoot(OutChain);
3408}
3409
3410void SelectionDAGBuilder::visitFence(const FenceInst &I) {
3411  DebugLoc dl = getCurDebugLoc();
3412  SDValue Ops[3];
3413  Ops[0] = getRoot();
3414  Ops[1] = DAG.getConstant(I.getOrdering(), TLI.getPointerTy());
3415  Ops[2] = DAG.getConstant(I.getSynchScope(), TLI.getPointerTy());
3416  DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3));
3417}
3418
3419void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
3420  DebugLoc dl = getCurDebugLoc();
3421  AtomicOrdering Order = I.getOrdering();
3422  SynchronizationScope Scope = I.getSynchScope();
3423
3424  SDValue InChain = getRoot();
3425
3426  EVT VT = EVT::getEVT(I.getType());
3427
3428  if (I.getAlignment() * 8 < VT.getSizeInBits())
3429    report_fatal_error("Cannot generate unaligned atomic load");
3430
3431  SDValue L =
3432    DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
3433                  getValue(I.getPointerOperand()),
3434                  I.getPointerOperand(), I.getAlignment(),
3435                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3436                  Scope);
3437
3438  SDValue OutChain = L.getValue(1);
3439
3440  if (TLI.getInsertFencesForAtomic())
3441    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3442                                    DAG, TLI);
3443
3444  setValue(&I, L);
3445  DAG.setRoot(OutChain);
3446}
3447
3448void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
3449  DebugLoc dl = getCurDebugLoc();
3450
3451  AtomicOrdering Order = I.getOrdering();
3452  SynchronizationScope Scope = I.getSynchScope();
3453
3454  SDValue InChain = getRoot();
3455
3456  EVT VT = EVT::getEVT(I.getValueOperand()->getType());
3457
3458  if (I.getAlignment() * 8 < VT.getSizeInBits())
3459    report_fatal_error("Cannot generate unaligned atomic store");
3460
3461  if (TLI.getInsertFencesForAtomic())
3462    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3463                                   DAG, TLI);
3464
3465  SDValue OutChain =
3466    DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
3467                  InChain,
3468                  getValue(I.getPointerOperand()),
3469                  getValue(I.getValueOperand()),
3470                  I.getPointerOperand(), I.getAlignment(),
3471                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3472                  Scope);
3473
3474  if (TLI.getInsertFencesForAtomic())
3475    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3476                                    DAG, TLI);
3477
3478  DAG.setRoot(OutChain);
3479}
3480
3481/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3482/// node.
3483void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3484                                               unsigned Intrinsic) {
3485  bool HasChain = !I.doesNotAccessMemory();
3486  bool OnlyLoad = HasChain && I.onlyReadsMemory();
3487
3488  // Build the operand list.
3489  SmallVector<SDValue, 8> Ops;
3490  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
3491    if (OnlyLoad) {
3492      // We don't need to serialize loads against other loads.
3493      Ops.push_back(DAG.getRoot());
3494    } else {
3495      Ops.push_back(getRoot());
3496    }
3497  }
3498
3499  // Info is set by getTgtMemInstrinsic
3500  TargetLowering::IntrinsicInfo Info;
3501  bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
3502
3503  // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3504  if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
3505      Info.opc == ISD::INTRINSIC_W_CHAIN)
3506    Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
3507
3508  // Add all operands of the call to the operand list.
3509  for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
3510    SDValue Op = getValue(I.getArgOperand(i));
3511    Ops.push_back(Op);
3512  }
3513
3514  SmallVector<EVT, 4> ValueVTs;
3515  ComputeValueVTs(TLI, I.getType(), ValueVTs);
3516
3517  if (HasChain)
3518    ValueVTs.push_back(MVT::Other);
3519
3520  SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
3521
3522  // Create the node.
3523  SDValue Result;
3524  if (IsTgtIntrinsic) {
3525    // This is target intrinsic that touches memory
3526    Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(),
3527                                     VTs, &Ops[0], Ops.size(),
3528                                     Info.memVT,
3529                                   MachinePointerInfo(Info.ptrVal, Info.offset),
3530                                     Info.align, Info.vol,
3531                                     Info.readMem, Info.writeMem);
3532  } else if (!HasChain) {
3533    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
3534                         VTs, &Ops[0], Ops.size());
3535  } else if (!I.getType()->isVoidTy()) {
3536    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
3537                         VTs, &Ops[0], Ops.size());
3538  } else {
3539    Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(),
3540                         VTs, &Ops[0], Ops.size());
3541  }
3542
3543  if (HasChain) {
3544    SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3545    if (OnlyLoad)
3546      PendingLoads.push_back(Chain);
3547    else
3548      DAG.setRoot(Chain);
3549  }
3550
3551  if (!I.getType()->isVoidTy()) {
3552    if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3553      EVT VT = TLI.getValueType(PTy);
3554      Result = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), VT, Result);
3555    }
3556
3557    setValue(&I, Result);
3558  }
3559}
3560
3561/// GetSignificand - Get the significand and build it into a floating-point
3562/// number with exponent of 1:
3563///
3564///   Op = (Op & 0x007fffff) | 0x3f800000;
3565///
3566/// where Op is the hexidecimal representation of floating point value.
3567static SDValue
3568GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) {
3569  SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3570                           DAG.getConstant(0x007fffff, MVT::i32));
3571  SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3572                           DAG.getConstant(0x3f800000, MVT::i32));
3573  return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
3574}
3575
3576/// GetExponent - Get the exponent:
3577///
3578///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3579///
3580/// where Op is the hexidecimal representation of floating point value.
3581static SDValue
3582GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3583            DebugLoc dl) {
3584  SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3585                           DAG.getConstant(0x7f800000, MVT::i32));
3586  SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3587                           DAG.getConstant(23, TLI.getPointerTy()));
3588  SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3589                           DAG.getConstant(127, MVT::i32));
3590  return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3591}
3592
3593/// getF32Constant - Get 32-bit floating point constant.
3594static SDValue
3595getF32Constant(SelectionDAG &DAG, unsigned Flt) {
3596  return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32);
3597}
3598
3599// implVisitAluOverflow - Lower arithmetic overflow instrinsics.
3600const char *
3601SelectionDAGBuilder::implVisitAluOverflow(const CallInst &I, ISD::NodeType Op) {
3602  SDValue Op1 = getValue(I.getArgOperand(0));
3603  SDValue Op2 = getValue(I.getArgOperand(1));
3604
3605  SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
3606  setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2));
3607  return 0;
3608}
3609
3610/// visitExp - Lower an exp intrinsic. Handles the special sequences for
3611/// limited-precision mode.
3612void
3613SelectionDAGBuilder::visitExp(const CallInst &I) {
3614  SDValue result;
3615  DebugLoc dl = getCurDebugLoc();
3616
3617  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3618      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3619    SDValue Op = getValue(I.getArgOperand(0));
3620
3621    // Put the exponent in the right bit position for later addition to the
3622    // final result:
3623    //
3624    //   #define LOG2OFe 1.4426950f
3625    //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3626    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3627                             getF32Constant(DAG, 0x3fb8aa3b));
3628    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3629
3630    //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3631    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3632    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3633
3634    //   IntegerPartOfX <<= 23;
3635    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3636                                 DAG.getConstant(23, TLI.getPointerTy()));
3637
3638    if (LimitFloatPrecision <= 6) {
3639      // For floating-point precision of 6:
3640      //
3641      //   TwoToFractionalPartOfX =
3642      //     0.997535578f +
3643      //       (0.735607626f + 0.252464424f * x) * x;
3644      //
3645      // error 0.0144103317, which is 6 bits
3646      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3647                               getF32Constant(DAG, 0x3e814304));
3648      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3649                               getF32Constant(DAG, 0x3f3c50c8));
3650      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3651      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3652                               getF32Constant(DAG, 0x3f7f5e7e));
3653      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t5);
3654
3655      // Add the exponent into the result in integer domain.
3656      SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3657                               TwoToFracPartOfX, IntegerPartOfX);
3658
3659      result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t6);
3660    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3661      // For floating-point precision of 12:
3662      //
3663      //   TwoToFractionalPartOfX =
3664      //     0.999892986f +
3665      //       (0.696457318f +
3666      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3667      //
3668      // 0.000107046256 error, which is 13 to 14 bits
3669      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3670                               getF32Constant(DAG, 0x3da235e3));
3671      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3672                               getF32Constant(DAG, 0x3e65b8f3));
3673      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3674      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3675                               getF32Constant(DAG, 0x3f324b07));
3676      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3677      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3678                               getF32Constant(DAG, 0x3f7ff8fd));
3679      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t7);
3680
3681      // Add the exponent into the result in integer domain.
3682      SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3683                               TwoToFracPartOfX, IntegerPartOfX);
3684
3685      result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t8);
3686    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3687      // For floating-point precision of 18:
3688      //
3689      //   TwoToFractionalPartOfX =
3690      //     0.999999982f +
3691      //       (0.693148872f +
3692      //         (0.240227044f +
3693      //           (0.554906021e-1f +
3694      //             (0.961591928e-2f +
3695      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3696      //
3697      // error 2.47208000*10^(-7), which is better than 18 bits
3698      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3699                               getF32Constant(DAG, 0x3924b03e));
3700      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3701                               getF32Constant(DAG, 0x3ab24b87));
3702      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3703      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3704                               getF32Constant(DAG, 0x3c1d8c17));
3705      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3706      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3707                               getF32Constant(DAG, 0x3d634a1d));
3708      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3709      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3710                               getF32Constant(DAG, 0x3e75fe14));
3711      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3712      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3713                                getF32Constant(DAG, 0x3f317234));
3714      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3715      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3716                                getF32Constant(DAG, 0x3f800000));
3717      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,
3718                                             MVT::i32, t13);
3719
3720      // Add the exponent into the result in integer domain.
3721      SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3722                                TwoToFracPartOfX, IntegerPartOfX);
3723
3724      result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t14);
3725    }
3726  } else {
3727    // No special expansion.
3728    result = DAG.getNode(ISD::FEXP, dl,
3729                         getValue(I.getArgOperand(0)).getValueType(),
3730                         getValue(I.getArgOperand(0)));
3731  }
3732
3733  setValue(&I, result);
3734}
3735
3736/// visitLog - Lower a log intrinsic. Handles the special sequences for
3737/// limited-precision mode.
3738void
3739SelectionDAGBuilder::visitLog(const CallInst &I) {
3740  SDValue result;
3741  DebugLoc dl = getCurDebugLoc();
3742
3743  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3744      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3745    SDValue Op = getValue(I.getArgOperand(0));
3746    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3747
3748    // Scale the exponent by log(2) [0.69314718f].
3749    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3750    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3751                                        getF32Constant(DAG, 0x3f317218));
3752
3753    // Get the significand and build it into a floating-point number with
3754    // exponent of 1.
3755    SDValue X = GetSignificand(DAG, Op1, dl);
3756
3757    if (LimitFloatPrecision <= 6) {
3758      // For floating-point precision of 6:
3759      //
3760      //   LogofMantissa =
3761      //     -1.1609546f +
3762      //       (1.4034025f - 0.23903021f * x) * x;
3763      //
3764      // error 0.0034276066, which is better than 8 bits
3765      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3766                               getF32Constant(DAG, 0xbe74c456));
3767      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3768                               getF32Constant(DAG, 0x3fb3a2b1));
3769      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3770      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3771                                          getF32Constant(DAG, 0x3f949a29));
3772
3773      result = DAG.getNode(ISD::FADD, dl,
3774                           MVT::f32, LogOfExponent, LogOfMantissa);
3775    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3776      // For floating-point precision of 12:
3777      //
3778      //   LogOfMantissa =
3779      //     -1.7417939f +
3780      //       (2.8212026f +
3781      //         (-1.4699568f +
3782      //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3783      //
3784      // error 0.000061011436, which is 14 bits
3785      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3786                               getF32Constant(DAG, 0xbd67b6d6));
3787      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3788                               getF32Constant(DAG, 0x3ee4f4b8));
3789      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3790      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3791                               getF32Constant(DAG, 0x3fbc278b));
3792      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3793      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3794                               getF32Constant(DAG, 0x40348e95));
3795      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3796      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3797                                          getF32Constant(DAG, 0x3fdef31a));
3798
3799      result = DAG.getNode(ISD::FADD, dl,
3800                           MVT::f32, LogOfExponent, LogOfMantissa);
3801    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3802      // For floating-point precision of 18:
3803      //
3804      //   LogOfMantissa =
3805      //     -2.1072184f +
3806      //       (4.2372794f +
3807      //         (-3.7029485f +
3808      //           (2.2781945f +
3809      //             (-0.87823314f +
3810      //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3811      //
3812      // error 0.0000023660568, which is better than 18 bits
3813      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3814                               getF32Constant(DAG, 0xbc91e5ac));
3815      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3816                               getF32Constant(DAG, 0x3e4350aa));
3817      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3818      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3819                               getF32Constant(DAG, 0x3f60d3e3));
3820      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3821      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3822                               getF32Constant(DAG, 0x4011cdf0));
3823      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3824      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3825                               getF32Constant(DAG, 0x406cfd1c));
3826      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3827      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3828                               getF32Constant(DAG, 0x408797cb));
3829      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3830      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3831                                          getF32Constant(DAG, 0x4006dcab));
3832
3833      result = DAG.getNode(ISD::FADD, dl,
3834                           MVT::f32, LogOfExponent, LogOfMantissa);
3835    }
3836  } else {
3837    // No special expansion.
3838    result = DAG.getNode(ISD::FLOG, dl,
3839                         getValue(I.getArgOperand(0)).getValueType(),
3840                         getValue(I.getArgOperand(0)));
3841  }
3842
3843  setValue(&I, result);
3844}
3845
3846/// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for
3847/// limited-precision mode.
3848void
3849SelectionDAGBuilder::visitLog2(const CallInst &I) {
3850  SDValue result;
3851  DebugLoc dl = getCurDebugLoc();
3852
3853  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3854      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3855    SDValue Op = getValue(I.getArgOperand(0));
3856    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3857
3858    // Get the exponent.
3859    SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3860
3861    // Get the significand and build it into a floating-point number with
3862    // exponent of 1.
3863    SDValue X = GetSignificand(DAG, Op1, dl);
3864
3865    // Different possible minimax approximations of significand in
3866    // floating-point for various degrees of accuracy over [1,2].
3867    if (LimitFloatPrecision <= 6) {
3868      // For floating-point precision of 6:
3869      //
3870      //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3871      //
3872      // error 0.0049451742, which is more than 7 bits
3873      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3874                               getF32Constant(DAG, 0xbeb08fe0));
3875      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3876                               getF32Constant(DAG, 0x40019463));
3877      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3878      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3879                                           getF32Constant(DAG, 0x3fd6633d));
3880
3881      result = DAG.getNode(ISD::FADD, dl,
3882                           MVT::f32, LogOfExponent, Log2ofMantissa);
3883    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3884      // For floating-point precision of 12:
3885      //
3886      //   Log2ofMantissa =
3887      //     -2.51285454f +
3888      //       (4.07009056f +
3889      //         (-2.12067489f +
3890      //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3891      //
3892      // error 0.0000876136000, which is better than 13 bits
3893      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3894                               getF32Constant(DAG, 0xbda7262e));
3895      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3896                               getF32Constant(DAG, 0x3f25280b));
3897      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3898      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3899                               getF32Constant(DAG, 0x4007b923));
3900      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3901      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3902                               getF32Constant(DAG, 0x40823e2f));
3903      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3904      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3905                                           getF32Constant(DAG, 0x4020d29c));
3906
3907      result = DAG.getNode(ISD::FADD, dl,
3908                           MVT::f32, LogOfExponent, Log2ofMantissa);
3909    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3910      // For floating-point precision of 18:
3911      //
3912      //   Log2ofMantissa =
3913      //     -3.0400495f +
3914      //       (6.1129976f +
3915      //         (-5.3420409f +
3916      //           (3.2865683f +
3917      //             (-1.2669343f +
3918      //               (0.27515199f -
3919      //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3920      //
3921      // error 0.0000018516, which is better than 18 bits
3922      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3923                               getF32Constant(DAG, 0xbcd2769e));
3924      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3925                               getF32Constant(DAG, 0x3e8ce0b9));
3926      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3927      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3928                               getF32Constant(DAG, 0x3fa22ae7));
3929      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3930      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3931                               getF32Constant(DAG, 0x40525723));
3932      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3933      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3934                               getF32Constant(DAG, 0x40aaf200));
3935      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3936      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3937                               getF32Constant(DAG, 0x40c39dad));
3938      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3939      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3940                                           getF32Constant(DAG, 0x4042902c));
3941
3942      result = DAG.getNode(ISD::FADD, dl,
3943                           MVT::f32, LogOfExponent, Log2ofMantissa);
3944    }
3945  } else {
3946    // No special expansion.
3947    result = DAG.getNode(ISD::FLOG2, dl,
3948                         getValue(I.getArgOperand(0)).getValueType(),
3949                         getValue(I.getArgOperand(0)));
3950  }
3951
3952  setValue(&I, result);
3953}
3954
3955/// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for
3956/// limited-precision mode.
3957void
3958SelectionDAGBuilder::visitLog10(const CallInst &I) {
3959  SDValue result;
3960  DebugLoc dl = getCurDebugLoc();
3961
3962  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3963      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3964    SDValue Op = getValue(I.getArgOperand(0));
3965    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3966
3967    // Scale the exponent by log10(2) [0.30102999f].
3968    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3969    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3970                                        getF32Constant(DAG, 0x3e9a209a));
3971
3972    // Get the significand and build it into a floating-point number with
3973    // exponent of 1.
3974    SDValue X = GetSignificand(DAG, Op1, dl);
3975
3976    if (LimitFloatPrecision <= 6) {
3977      // For floating-point precision of 6:
3978      //
3979      //   Log10ofMantissa =
3980      //     -0.50419619f +
3981      //       (0.60948995f - 0.10380950f * x) * x;
3982      //
3983      // error 0.0014886165, which is 6 bits
3984      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3985                               getF32Constant(DAG, 0xbdd49a13));
3986      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3987                               getF32Constant(DAG, 0x3f1c0789));
3988      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3989      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3990                                            getF32Constant(DAG, 0x3f011300));
3991
3992      result = DAG.getNode(ISD::FADD, dl,
3993                           MVT::f32, LogOfExponent, Log10ofMantissa);
3994    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3995      // For floating-point precision of 12:
3996      //
3997      //   Log10ofMantissa =
3998      //     -0.64831180f +
3999      //       (0.91751397f +
4000      //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4001      //
4002      // error 0.00019228036, which is better than 12 bits
4003      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4004                               getF32Constant(DAG, 0x3d431f31));
4005      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4006                               getF32Constant(DAG, 0x3ea21fb2));
4007      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4008      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4009                               getF32Constant(DAG, 0x3f6ae232));
4010      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4011      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4012                                            getF32Constant(DAG, 0x3f25f7c3));
4013
4014      result = DAG.getNode(ISD::FADD, dl,
4015                           MVT::f32, LogOfExponent, Log10ofMantissa);
4016    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
4017      // For floating-point precision of 18:
4018      //
4019      //   Log10ofMantissa =
4020      //     -0.84299375f +
4021      //       (1.5327582f +
4022      //         (-1.0688956f +
4023      //           (0.49102474f +
4024      //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4025      //
4026      // error 0.0000037995730, which is better than 18 bits
4027      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4028                               getF32Constant(DAG, 0x3c5d51ce));
4029      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4030                               getF32Constant(DAG, 0x3e00685a));
4031      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4032      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4033                               getF32Constant(DAG, 0x3efb6798));
4034      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4035      SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4036                               getF32Constant(DAG, 0x3f88d192));
4037      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4038      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4039                               getF32Constant(DAG, 0x3fc4316c));
4040      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4041      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4042                                            getF32Constant(DAG, 0x3f57ce70));
4043
4044      result = DAG.getNode(ISD::FADD, dl,
4045                           MVT::f32, LogOfExponent, Log10ofMantissa);
4046    }
4047  } else {
4048    // No special expansion.
4049    result = DAG.getNode(ISD::FLOG10, dl,
4050                         getValue(I.getArgOperand(0)).getValueType(),
4051                         getValue(I.getArgOperand(0)));
4052  }
4053
4054  setValue(&I, result);
4055}
4056
4057/// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4058/// limited-precision mode.
4059void
4060SelectionDAGBuilder::visitExp2(const CallInst &I) {
4061  SDValue result;
4062  DebugLoc dl = getCurDebugLoc();
4063
4064  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
4065      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4066    SDValue Op = getValue(I.getArgOperand(0));
4067
4068    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
4069
4070    //   FractionalPartOfX = x - (float)IntegerPartOfX;
4071    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4072    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
4073
4074    //   IntegerPartOfX <<= 23;
4075    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4076                                 DAG.getConstant(23, TLI.getPointerTy()));
4077
4078    if (LimitFloatPrecision <= 6) {
4079      // For floating-point precision of 6:
4080      //
4081      //   TwoToFractionalPartOfX =
4082      //     0.997535578f +
4083      //       (0.735607626f + 0.252464424f * x) * x;
4084      //
4085      // error 0.0144103317, which is 6 bits
4086      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4087                               getF32Constant(DAG, 0x3e814304));
4088      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4089                               getF32Constant(DAG, 0x3f3c50c8));
4090      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4091      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4092                               getF32Constant(DAG, 0x3f7f5e7e));
4093      SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
4094      SDValue TwoToFractionalPartOfX =
4095        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
4096
4097      result = DAG.getNode(ISD::BITCAST, dl,
4098                           MVT::f32, TwoToFractionalPartOfX);
4099    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
4100      // For floating-point precision of 12:
4101      //
4102      //   TwoToFractionalPartOfX =
4103      //     0.999892986f +
4104      //       (0.696457318f +
4105      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4106      //
4107      // error 0.000107046256, which is 13 to 14 bits
4108      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4109                               getF32Constant(DAG, 0x3da235e3));
4110      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4111                               getF32Constant(DAG, 0x3e65b8f3));
4112      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4113      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4114                               getF32Constant(DAG, 0x3f324b07));
4115      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4116      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4117                               getF32Constant(DAG, 0x3f7ff8fd));
4118      SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
4119      SDValue TwoToFractionalPartOfX =
4120        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
4121
4122      result = DAG.getNode(ISD::BITCAST, dl,
4123                           MVT::f32, TwoToFractionalPartOfX);
4124    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
4125      // For floating-point precision of 18:
4126      //
4127      //   TwoToFractionalPartOfX =
4128      //     0.999999982f +
4129      //       (0.693148872f +
4130      //         (0.240227044f +
4131      //           (0.554906021e-1f +
4132      //             (0.961591928e-2f +
4133      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4134      // error 2.47208000*10^(-7), which is better than 18 bits
4135      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4136                               getF32Constant(DAG, 0x3924b03e));
4137      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4138                               getF32Constant(DAG, 0x3ab24b87));
4139      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4140      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4141                               getF32Constant(DAG, 0x3c1d8c17));
4142      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4143      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4144                               getF32Constant(DAG, 0x3d634a1d));
4145      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4146      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4147                               getF32Constant(DAG, 0x3e75fe14));
4148      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4149      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4150                                getF32Constant(DAG, 0x3f317234));
4151      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4152      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4153                                getF32Constant(DAG, 0x3f800000));
4154      SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
4155      SDValue TwoToFractionalPartOfX =
4156        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
4157
4158      result = DAG.getNode(ISD::BITCAST, dl,
4159                           MVT::f32, TwoToFractionalPartOfX);
4160    }
4161  } else {
4162    // No special expansion.
4163    result = DAG.getNode(ISD::FEXP2, dl,
4164                         getValue(I.getArgOperand(0)).getValueType(),
4165                         getValue(I.getArgOperand(0)));
4166  }
4167
4168  setValue(&I, result);
4169}
4170
4171/// visitPow - Lower a pow intrinsic. Handles the special sequences for
4172/// limited-precision mode with x == 10.0f.
4173void
4174SelectionDAGBuilder::visitPow(const CallInst &I) {
4175  SDValue result;
4176  const Value *Val = I.getArgOperand(0);
4177  DebugLoc dl = getCurDebugLoc();
4178  bool IsExp10 = false;
4179
4180  if (getValue(Val).getValueType() == MVT::f32 &&
4181      getValue(I.getArgOperand(1)).getValueType() == MVT::f32 &&
4182      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4183    if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) {
4184      if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
4185        APFloat Ten(10.0f);
4186        IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten);
4187      }
4188    }
4189  }
4190
4191  if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4192    SDValue Op = getValue(I.getArgOperand(1));
4193
4194    // Put the exponent in the right bit position for later addition to the
4195    // final result:
4196    //
4197    //   #define LOG2OF10 3.3219281f
4198    //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
4199    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4200                             getF32Constant(DAG, 0x40549a78));
4201    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4202
4203    //   FractionalPartOfX = x - (float)IntegerPartOfX;
4204    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4205    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4206
4207    //   IntegerPartOfX <<= 23;
4208    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4209                                 DAG.getConstant(23, TLI.getPointerTy()));
4210
4211    if (LimitFloatPrecision <= 6) {
4212      // For floating-point precision of 6:
4213      //
4214      //   twoToFractionalPartOfX =
4215      //     0.997535578f +
4216      //       (0.735607626f + 0.252464424f * x) * x;
4217      //
4218      // error 0.0144103317, which is 6 bits
4219      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4220                               getF32Constant(DAG, 0x3e814304));
4221      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4222                               getF32Constant(DAG, 0x3f3c50c8));
4223      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4224      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4225                               getF32Constant(DAG, 0x3f7f5e7e));
4226      SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
4227      SDValue TwoToFractionalPartOfX =
4228        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
4229
4230      result = DAG.getNode(ISD::BITCAST, dl,
4231                           MVT::f32, TwoToFractionalPartOfX);
4232    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
4233      // For floating-point precision of 12:
4234      //
4235      //   TwoToFractionalPartOfX =
4236      //     0.999892986f +
4237      //       (0.696457318f +
4238      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4239      //
4240      // error 0.000107046256, which is 13 to 14 bits
4241      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4242                               getF32Constant(DAG, 0x3da235e3));
4243      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4244                               getF32Constant(DAG, 0x3e65b8f3));
4245      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4246      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4247                               getF32Constant(DAG, 0x3f324b07));
4248      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4249      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4250                               getF32Constant(DAG, 0x3f7ff8fd));
4251      SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
4252      SDValue TwoToFractionalPartOfX =
4253        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
4254
4255      result = DAG.getNode(ISD::BITCAST, dl,
4256                           MVT::f32, TwoToFractionalPartOfX);
4257    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
4258      // For floating-point precision of 18:
4259      //
4260      //   TwoToFractionalPartOfX =
4261      //     0.999999982f +
4262      //       (0.693148872f +
4263      //         (0.240227044f +
4264      //           (0.554906021e-1f +
4265      //             (0.961591928e-2f +
4266      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4267      // error 2.47208000*10^(-7), which is better than 18 bits
4268      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4269                               getF32Constant(DAG, 0x3924b03e));
4270      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4271                               getF32Constant(DAG, 0x3ab24b87));
4272      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4273      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4274                               getF32Constant(DAG, 0x3c1d8c17));
4275      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4276      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4277                               getF32Constant(DAG, 0x3d634a1d));
4278      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4279      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4280                               getF32Constant(DAG, 0x3e75fe14));
4281      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4282      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4283                                getF32Constant(DAG, 0x3f317234));
4284      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4285      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4286                                getF32Constant(DAG, 0x3f800000));
4287      SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
4288      SDValue TwoToFractionalPartOfX =
4289        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
4290
4291      result = DAG.getNode(ISD::BITCAST, dl,
4292                           MVT::f32, TwoToFractionalPartOfX);
4293    }
4294  } else {
4295    // No special expansion.
4296    result = DAG.getNode(ISD::FPOW, dl,
4297                         getValue(I.getArgOperand(0)).getValueType(),
4298                         getValue(I.getArgOperand(0)),
4299                         getValue(I.getArgOperand(1)));
4300  }
4301
4302  setValue(&I, result);
4303}
4304
4305
4306/// ExpandPowI - Expand a llvm.powi intrinsic.
4307static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS,
4308                          SelectionDAG &DAG) {
4309  // If RHS is a constant, we can expand this out to a multiplication tree,
4310  // otherwise we end up lowering to a call to __powidf2 (for example).  When
4311  // optimizing for size, we only want to do this if the expansion would produce
4312  // a small number of multiplies, otherwise we do the full expansion.
4313  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4314    // Get the exponent as a positive value.
4315    unsigned Val = RHSC->getSExtValue();
4316    if ((int)Val < 0) Val = -Val;
4317
4318    // powi(x, 0) -> 1.0
4319    if (Val == 0)
4320      return DAG.getConstantFP(1.0, LHS.getValueType());
4321
4322    const Function *F = DAG.getMachineFunction().getFunction();
4323    if (!F->hasFnAttr(Attribute::OptimizeForSize) ||
4324        // If optimizing for size, don't insert too many multiplies.  This
4325        // inserts up to 5 multiplies.
4326        CountPopulation_32(Val)+Log2_32(Val) < 7) {
4327      // We use the simple binary decomposition method to generate the multiply
4328      // sequence.  There are more optimal ways to do this (for example,
4329      // powi(x,15) generates one more multiply than it should), but this has
4330      // the benefit of being both really simple and much better than a libcall.
4331      SDValue Res;  // Logically starts equal to 1.0
4332      SDValue CurSquare = LHS;
4333      while (Val) {
4334        if (Val & 1) {
4335          if (Res.getNode())
4336            Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4337          else
4338            Res = CurSquare;  // 1.0*CurSquare.
4339        }
4340
4341        CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4342                                CurSquare, CurSquare);
4343        Val >>= 1;
4344      }
4345
4346      // If the original was negative, invert the result, producing 1/(x*x*x).
4347      if (RHSC->getSExtValue() < 0)
4348        Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4349                          DAG.getConstantFP(1.0, LHS.getValueType()), Res);
4350      return Res;
4351    }
4352  }
4353
4354  // Otherwise, expand to a libcall.
4355  return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4356}
4357
4358// getTruncatedArgReg - Find underlying register used for an truncated
4359// argument.
4360static unsigned getTruncatedArgReg(const SDValue &N) {
4361  if (N.getOpcode() != ISD::TRUNCATE)
4362    return 0;
4363
4364  const SDValue &Ext = N.getOperand(0);
4365  if (Ext.getOpcode() == ISD::AssertZext || Ext.getOpcode() == ISD::AssertSext){
4366    const SDValue &CFR = Ext.getOperand(0);
4367    if (CFR.getOpcode() == ISD::CopyFromReg)
4368      return cast<RegisterSDNode>(CFR.getOperand(1))->getReg();
4369    else
4370      if (CFR.getOpcode() == ISD::TRUNCATE)
4371        return getTruncatedArgReg(CFR);
4372  }
4373  return 0;
4374}
4375
4376/// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4377/// argument, create the corresponding DBG_VALUE machine instruction for it now.
4378/// At the end of instruction selection, they will be inserted to the entry BB.
4379bool
4380SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
4381                                              int64_t Offset,
4382                                              const SDValue &N) {
4383  const Argument *Arg = dyn_cast<Argument>(V);
4384  if (!Arg)
4385    return false;
4386
4387  MachineFunction &MF = DAG.getMachineFunction();
4388  const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
4389  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
4390
4391  // Ignore inlined function arguments here.
4392  DIVariable DV(Variable);
4393  if (DV.isInlinedFnArgument(MF.getFunction()))
4394    return false;
4395
4396  unsigned Reg = 0;
4397  // Some arguments' frame index is recorded during argument lowering.
4398  Offset = FuncInfo.getArgumentFrameIndex(Arg);
4399  if (Offset)
4400      Reg = TRI->getFrameRegister(MF);
4401
4402  if (!Reg && N.getNode()) {
4403    if (N.getOpcode() == ISD::CopyFromReg)
4404      Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
4405    else
4406      Reg = getTruncatedArgReg(N);
4407    if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4408      MachineRegisterInfo &RegInfo = MF.getRegInfo();
4409      unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4410      if (PR)
4411        Reg = PR;
4412    }
4413  }
4414
4415  if (!Reg) {
4416    // Check if ValueMap has reg number.
4417    DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4418    if (VMI != FuncInfo.ValueMap.end())
4419      Reg = VMI->second;
4420  }
4421
4422  if (!Reg && N.getNode()) {
4423    // Check if frame index is available.
4424    if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4425      if (FrameIndexSDNode *FINode =
4426          dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) {
4427        Reg = TRI->getFrameRegister(MF);
4428        Offset = FINode->getIndex();
4429      }
4430  }
4431
4432  if (!Reg)
4433    return false;
4434
4435  MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(),
4436                                    TII->get(TargetOpcode::DBG_VALUE))
4437    .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable);
4438  FuncInfo.ArgDbgValues.push_back(&*MIB);
4439  return true;
4440}
4441
4442// VisualStudio defines setjmp as _setjmp
4443#if defined(_MSC_VER) && defined(setjmp) && \
4444                         !defined(setjmp_undefined_for_msvc)
4445#  pragma push_macro("setjmp")
4446#  undef setjmp
4447#  define setjmp_undefined_for_msvc
4448#endif
4449
4450/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4451/// we want to emit this as a call to a named external function, return the name
4452/// otherwise lower it and return null.
4453const char *
4454SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4455  DebugLoc dl = getCurDebugLoc();
4456  SDValue Res;
4457
4458  switch (Intrinsic) {
4459  default:
4460    // By default, turn this into a target intrinsic node.
4461    visitTargetIntrinsic(I, Intrinsic);
4462    return 0;
4463  case Intrinsic::vastart:  visitVAStart(I); return 0;
4464  case Intrinsic::vaend:    visitVAEnd(I); return 0;
4465  case Intrinsic::vacopy:   visitVACopy(I); return 0;
4466  case Intrinsic::returnaddress:
4467    setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(),
4468                             getValue(I.getArgOperand(0))));
4469    return 0;
4470  case Intrinsic::frameaddress:
4471    setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(),
4472                             getValue(I.getArgOperand(0))));
4473    return 0;
4474  case Intrinsic::setjmp:
4475    return "_setjmp"+!TLI.usesUnderscoreSetJmp();
4476  case Intrinsic::longjmp:
4477    return "_longjmp"+!TLI.usesUnderscoreLongJmp();
4478  case Intrinsic::memcpy: {
4479    // Assert for address < 256 since we support only user defined address
4480    // spaces.
4481    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4482           < 256 &&
4483           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4484           < 256 &&
4485           "Unknown address space");
4486    SDValue Op1 = getValue(I.getArgOperand(0));
4487    SDValue Op2 = getValue(I.getArgOperand(1));
4488    SDValue Op3 = getValue(I.getArgOperand(2));
4489    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4490    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4491    DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false,
4492                              MachinePointerInfo(I.getArgOperand(0)),
4493                              MachinePointerInfo(I.getArgOperand(1))));
4494    return 0;
4495  }
4496  case Intrinsic::memset: {
4497    // Assert for address < 256 since we support only user defined address
4498    // spaces.
4499    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4500           < 256 &&
4501           "Unknown address space");
4502    SDValue Op1 = getValue(I.getArgOperand(0));
4503    SDValue Op2 = getValue(I.getArgOperand(1));
4504    SDValue Op3 = getValue(I.getArgOperand(2));
4505    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4506    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4507    DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4508                              MachinePointerInfo(I.getArgOperand(0))));
4509    return 0;
4510  }
4511  case Intrinsic::memmove: {
4512    // Assert for address < 256 since we support only user defined address
4513    // spaces.
4514    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4515           < 256 &&
4516           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4517           < 256 &&
4518           "Unknown address space");
4519    SDValue Op1 = getValue(I.getArgOperand(0));
4520    SDValue Op2 = getValue(I.getArgOperand(1));
4521    SDValue Op3 = getValue(I.getArgOperand(2));
4522    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4523    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4524    DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4525                               MachinePointerInfo(I.getArgOperand(0)),
4526                               MachinePointerInfo(I.getArgOperand(1))));
4527    return 0;
4528  }
4529  case Intrinsic::dbg_declare: {
4530    const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4531    MDNode *Variable = DI.getVariable();
4532    const Value *Address = DI.getAddress();
4533    if (!Address || !DIVariable(Variable).Verify())
4534      return 0;
4535
4536    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4537    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4538    // absolute, but not relative, values are different depending on whether
4539    // debug info exists.
4540    ++SDNodeOrder;
4541
4542    // Check if address has undef value.
4543    if (isa<UndefValue>(Address) ||
4544        (Address->use_empty() && !isa<Argument>(Address))) {
4545      DEBUG(dbgs() << "Dropping debug info for " << DI);
4546      return 0;
4547    }
4548
4549    SDValue &N = NodeMap[Address];
4550    if (!N.getNode() && isa<Argument>(Address))
4551      // Check unused arguments map.
4552      N = UnusedArgNodeMap[Address];
4553    SDDbgValue *SDV;
4554    if (N.getNode()) {
4555      // Parameters are handled specially.
4556      bool isParameter =
4557        DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable;
4558      if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4559        Address = BCI->getOperand(0);
4560      const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
4561
4562      if (isParameter && !AI) {
4563        FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4564        if (FINode)
4565          // Byval parameter.  We have a frame index at this point.
4566          SDV = DAG.getDbgValue(Variable, FINode->getIndex(),
4567                                0, dl, SDNodeOrder);
4568        else {
4569          // Address is an argument, so try to emit its dbg value using
4570          // virtual register info from the FuncInfo.ValueMap.
4571          EmitFuncArgumentDbgValue(Address, Variable, 0, N);
4572          return 0;
4573        }
4574      } else if (AI)
4575        SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
4576                              0, dl, SDNodeOrder);
4577      else {
4578        // Can't do anything with other non-AI cases yet.
4579        DEBUG(dbgs() << "Dropping debug info for " << DI);
4580        return 0;
4581      }
4582      DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4583    } else {
4584      // If Address is an argument then try to emit its dbg value using
4585      // virtual register info from the FuncInfo.ValueMap.
4586      if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) {
4587        // If variable is pinned by a alloca in dominating bb then
4588        // use StaticAllocaMap.
4589        if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4590          if (AI->getParent() != DI.getParent()) {
4591            DenseMap<const AllocaInst*, int>::iterator SI =
4592              FuncInfo.StaticAllocaMap.find(AI);
4593            if (SI != FuncInfo.StaticAllocaMap.end()) {
4594              SDV = DAG.getDbgValue(Variable, SI->second,
4595                                    0, dl, SDNodeOrder);
4596              DAG.AddDbgValue(SDV, 0, false);
4597              return 0;
4598            }
4599          }
4600        }
4601        DEBUG(dbgs() << "Dropping debug info for " << DI);
4602      }
4603    }
4604    return 0;
4605  }
4606  case Intrinsic::dbg_value: {
4607    const DbgValueInst &DI = cast<DbgValueInst>(I);
4608    if (!DIVariable(DI.getVariable()).Verify())
4609      return 0;
4610
4611    MDNode *Variable = DI.getVariable();
4612    uint64_t Offset = DI.getOffset();
4613    const Value *V = DI.getValue();
4614    if (!V)
4615      return 0;
4616
4617    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4618    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4619    // absolute, but not relative, values are different depending on whether
4620    // debug info exists.
4621    ++SDNodeOrder;
4622    SDDbgValue *SDV;
4623    if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
4624      SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder);
4625      DAG.AddDbgValue(SDV, 0, false);
4626    } else {
4627      // Do not use getValue() in here; we don't want to generate code at
4628      // this point if it hasn't been done yet.
4629      SDValue N = NodeMap[V];
4630      if (!N.getNode() && isa<Argument>(V))
4631        // Check unused arguments map.
4632        N = UnusedArgNodeMap[V];
4633      if (N.getNode()) {
4634        if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) {
4635          SDV = DAG.getDbgValue(Variable, N.getNode(),
4636                                N.getResNo(), Offset, dl, SDNodeOrder);
4637          DAG.AddDbgValue(SDV, N.getNode(), false);
4638        }
4639      } else if (!V->use_empty() ) {
4640        // Do not call getValue(V) yet, as we don't want to generate code.
4641        // Remember it for later.
4642        DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4643        DanglingDebugInfoMap[V] = DDI;
4644      } else {
4645        // We may expand this to cover more cases.  One case where we have no
4646        // data available is an unreferenced parameter.
4647        DEBUG(dbgs() << "Dropping debug info for " << DI);
4648      }
4649    }
4650
4651    // Build a debug info table entry.
4652    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4653      V = BCI->getOperand(0);
4654    const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4655    // Don't handle byval struct arguments or VLAs, for example.
4656    if (!AI)
4657      return 0;
4658    DenseMap<const AllocaInst*, int>::iterator SI =
4659      FuncInfo.StaticAllocaMap.find(AI);
4660    if (SI == FuncInfo.StaticAllocaMap.end())
4661      return 0; // VLAs.
4662    int FI = SI->second;
4663
4664    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4665    if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
4666      MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
4667    return 0;
4668  }
4669  case Intrinsic::eh_exception: {
4670    // Insert the EXCEPTIONADDR instruction.
4671    assert(FuncInfo.MBB->isLandingPad() &&
4672           "Call to eh.exception not in landing pad!");
4673    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4674    SDValue Ops[1];
4675    Ops[0] = DAG.getRoot();
4676    SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1);
4677    setValue(&I, Op);
4678    DAG.setRoot(Op.getValue(1));
4679    return 0;
4680  }
4681
4682  case Intrinsic::eh_selector: {
4683    MachineBasicBlock *CallMBB = FuncInfo.MBB;
4684    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4685    if (CallMBB->isLandingPad())
4686      AddCatchInfo(I, &MMI, CallMBB);
4687    else {
4688#ifndef NDEBUG
4689      FuncInfo.CatchInfoLost.insert(&I);
4690#endif
4691      // FIXME: Mark exception selector register as live in.  Hack for PR1508.
4692      unsigned Reg = TLI.getExceptionSelectorRegister();
4693      if (Reg) FuncInfo.MBB->addLiveIn(Reg);
4694    }
4695
4696    // Insert the EHSELECTION instruction.
4697    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4698    SDValue Ops[2];
4699    Ops[0] = getValue(I.getArgOperand(0));
4700    Ops[1] = getRoot();
4701    SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2);
4702    DAG.setRoot(Op.getValue(1));
4703    setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32));
4704    return 0;
4705  }
4706
4707  case Intrinsic::eh_typeid_for: {
4708    // Find the type id for the given typeinfo.
4709    GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0));
4710    unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4711    Res = DAG.getConstant(TypeID, MVT::i32);
4712    setValue(&I, Res);
4713    return 0;
4714  }
4715
4716  case Intrinsic::eh_return_i32:
4717  case Intrinsic::eh_return_i64:
4718    DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4719    DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl,
4720                            MVT::Other,
4721                            getControlRoot(),
4722                            getValue(I.getArgOperand(0)),
4723                            getValue(I.getArgOperand(1))));
4724    return 0;
4725  case Intrinsic::eh_unwind_init:
4726    DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4727    return 0;
4728  case Intrinsic::eh_dwarf_cfa: {
4729    SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl,
4730                                        TLI.getPointerTy());
4731    SDValue Offset = DAG.getNode(ISD::ADD, dl,
4732                                 TLI.getPointerTy(),
4733                                 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
4734                                             TLI.getPointerTy()),
4735                                 CfaArg);
4736    SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl,
4737                             TLI.getPointerTy(),
4738                             DAG.getConstant(0, TLI.getPointerTy()));
4739    setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
4740                             FA, Offset));
4741    return 0;
4742  }
4743  case Intrinsic::eh_sjlj_callsite: {
4744    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4745    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4746    assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4747    assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4748
4749    MMI.setCurrentCallSite(CI->getZExtValue());
4750    return 0;
4751  }
4752  case Intrinsic::eh_sjlj_functioncontext: {
4753    // Get and store the index of the function context.
4754    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4755    AllocaInst *FnCtx =
4756      cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
4757    int FI = FuncInfo.StaticAllocaMap[FnCtx];
4758    MFI->setFunctionContextIndex(FI);
4759    return 0;
4760  }
4761  case Intrinsic::eh_sjlj_setjmp: {
4762    SDValue Ops[2];
4763    Ops[0] = getRoot();
4764    Ops[1] = getValue(I.getArgOperand(0));
4765    SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, dl,
4766                             DAG.getVTList(MVT::i32, MVT::Other),
4767                             Ops, 2);
4768    setValue(&I, Op.getValue(0));
4769    DAG.setRoot(Op.getValue(1));
4770    return 0;
4771  }
4772  case Intrinsic::eh_sjlj_longjmp: {
4773    DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other,
4774                            getRoot(), getValue(I.getArgOperand(0))));
4775    return 0;
4776  }
4777
4778  case Intrinsic::x86_mmx_pslli_w:
4779  case Intrinsic::x86_mmx_pslli_d:
4780  case Intrinsic::x86_mmx_pslli_q:
4781  case Intrinsic::x86_mmx_psrli_w:
4782  case Intrinsic::x86_mmx_psrli_d:
4783  case Intrinsic::x86_mmx_psrli_q:
4784  case Intrinsic::x86_mmx_psrai_w:
4785  case Intrinsic::x86_mmx_psrai_d: {
4786    SDValue ShAmt = getValue(I.getArgOperand(1));
4787    if (isa<ConstantSDNode>(ShAmt)) {
4788      visitTargetIntrinsic(I, Intrinsic);
4789      return 0;
4790    }
4791    unsigned NewIntrinsic = 0;
4792    EVT ShAmtVT = MVT::v2i32;
4793    switch (Intrinsic) {
4794    case Intrinsic::x86_mmx_pslli_w:
4795      NewIntrinsic = Intrinsic::x86_mmx_psll_w;
4796      break;
4797    case Intrinsic::x86_mmx_pslli_d:
4798      NewIntrinsic = Intrinsic::x86_mmx_psll_d;
4799      break;
4800    case Intrinsic::x86_mmx_pslli_q:
4801      NewIntrinsic = Intrinsic::x86_mmx_psll_q;
4802      break;
4803    case Intrinsic::x86_mmx_psrli_w:
4804      NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
4805      break;
4806    case Intrinsic::x86_mmx_psrli_d:
4807      NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
4808      break;
4809    case Intrinsic::x86_mmx_psrli_q:
4810      NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
4811      break;
4812    case Intrinsic::x86_mmx_psrai_w:
4813      NewIntrinsic = Intrinsic::x86_mmx_psra_w;
4814      break;
4815    case Intrinsic::x86_mmx_psrai_d:
4816      NewIntrinsic = Intrinsic::x86_mmx_psra_d;
4817      break;
4818    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4819    }
4820
4821    // The vector shift intrinsics with scalars uses 32b shift amounts but
4822    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
4823    // to be zero.
4824    // We must do this early because v2i32 is not a legal type.
4825    DebugLoc dl = getCurDebugLoc();
4826    SDValue ShOps[2];
4827    ShOps[0] = ShAmt;
4828    ShOps[1] = DAG.getConstant(0, MVT::i32);
4829    ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
4830    EVT DestVT = TLI.getValueType(I.getType());
4831    ShAmt = DAG.getNode(ISD::BITCAST, dl, DestVT, ShAmt);
4832    Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
4833                       DAG.getConstant(NewIntrinsic, MVT::i32),
4834                       getValue(I.getArgOperand(0)), ShAmt);
4835    setValue(&I, Res);
4836    return 0;
4837  }
4838  case Intrinsic::convertff:
4839  case Intrinsic::convertfsi:
4840  case Intrinsic::convertfui:
4841  case Intrinsic::convertsif:
4842  case Intrinsic::convertuif:
4843  case Intrinsic::convertss:
4844  case Intrinsic::convertsu:
4845  case Intrinsic::convertus:
4846  case Intrinsic::convertuu: {
4847    ISD::CvtCode Code = ISD::CVT_INVALID;
4848    switch (Intrinsic) {
4849    case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
4850    case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4851    case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4852    case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4853    case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4854    case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
4855    case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
4856    case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4857    case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4858    }
4859    EVT DestVT = TLI.getValueType(I.getType());
4860    const Value *Op1 = I.getArgOperand(0);
4861    Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1),
4862                               DAG.getValueType(DestVT),
4863                               DAG.getValueType(getValue(Op1).getValueType()),
4864                               getValue(I.getArgOperand(1)),
4865                               getValue(I.getArgOperand(2)),
4866                               Code);
4867    setValue(&I, Res);
4868    return 0;
4869  }
4870  case Intrinsic::sqrt:
4871    setValue(&I, DAG.getNode(ISD::FSQRT, dl,
4872                             getValue(I.getArgOperand(0)).getValueType(),
4873                             getValue(I.getArgOperand(0))));
4874    return 0;
4875  case Intrinsic::powi:
4876    setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)),
4877                            getValue(I.getArgOperand(1)), DAG));
4878    return 0;
4879  case Intrinsic::sin:
4880    setValue(&I, DAG.getNode(ISD::FSIN, dl,
4881                             getValue(I.getArgOperand(0)).getValueType(),
4882                             getValue(I.getArgOperand(0))));
4883    return 0;
4884  case Intrinsic::cos:
4885    setValue(&I, DAG.getNode(ISD::FCOS, dl,
4886                             getValue(I.getArgOperand(0)).getValueType(),
4887                             getValue(I.getArgOperand(0))));
4888    return 0;
4889  case Intrinsic::log:
4890    visitLog(I);
4891    return 0;
4892  case Intrinsic::log2:
4893    visitLog2(I);
4894    return 0;
4895  case Intrinsic::log10:
4896    visitLog10(I);
4897    return 0;
4898  case Intrinsic::exp:
4899    visitExp(I);
4900    return 0;
4901  case Intrinsic::exp2:
4902    visitExp2(I);
4903    return 0;
4904  case Intrinsic::pow:
4905    visitPow(I);
4906    return 0;
4907  case Intrinsic::fma:
4908    setValue(&I, DAG.getNode(ISD::FMA, dl,
4909                             getValue(I.getArgOperand(0)).getValueType(),
4910                             getValue(I.getArgOperand(0)),
4911                             getValue(I.getArgOperand(1)),
4912                             getValue(I.getArgOperand(2))));
4913    return 0;
4914  case Intrinsic::convert_to_fp16:
4915    setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl,
4916                             MVT::i16, getValue(I.getArgOperand(0))));
4917    return 0;
4918  case Intrinsic::convert_from_fp16:
4919    setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl,
4920                             MVT::f32, getValue(I.getArgOperand(0))));
4921    return 0;
4922  case Intrinsic::pcmarker: {
4923    SDValue Tmp = getValue(I.getArgOperand(0));
4924    DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp));
4925    return 0;
4926  }
4927  case Intrinsic::readcyclecounter: {
4928    SDValue Op = getRoot();
4929    Res = DAG.getNode(ISD::READCYCLECOUNTER, dl,
4930                      DAG.getVTList(MVT::i64, MVT::Other),
4931                      &Op, 1);
4932    setValue(&I, Res);
4933    DAG.setRoot(Res.getValue(1));
4934    return 0;
4935  }
4936  case Intrinsic::bswap:
4937    setValue(&I, DAG.getNode(ISD::BSWAP, dl,
4938                             getValue(I.getArgOperand(0)).getValueType(),
4939                             getValue(I.getArgOperand(0))));
4940    return 0;
4941  case Intrinsic::cttz: {
4942    SDValue Arg = getValue(I.getArgOperand(0));
4943    ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
4944    EVT Ty = Arg.getValueType();
4945    setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
4946                             dl, Ty, Arg));
4947    return 0;
4948  }
4949  case Intrinsic::ctlz: {
4950    SDValue Arg = getValue(I.getArgOperand(0));
4951    ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
4952    EVT Ty = Arg.getValueType();
4953    setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
4954                             dl, Ty, Arg));
4955    return 0;
4956  }
4957  case Intrinsic::ctpop: {
4958    SDValue Arg = getValue(I.getArgOperand(0));
4959    EVT Ty = Arg.getValueType();
4960    setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg));
4961    return 0;
4962  }
4963  case Intrinsic::stacksave: {
4964    SDValue Op = getRoot();
4965    Res = DAG.getNode(ISD::STACKSAVE, dl,
4966                      DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
4967    setValue(&I, Res);
4968    DAG.setRoot(Res.getValue(1));
4969    return 0;
4970  }
4971  case Intrinsic::stackrestore: {
4972    Res = getValue(I.getArgOperand(0));
4973    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res));
4974    return 0;
4975  }
4976  case Intrinsic::stackprotector: {
4977    // Emit code into the DAG to store the stack guard onto the stack.
4978    MachineFunction &MF = DAG.getMachineFunction();
4979    MachineFrameInfo *MFI = MF.getFrameInfo();
4980    EVT PtrTy = TLI.getPointerTy();
4981
4982    SDValue Src = getValue(I.getArgOperand(0));   // The guard's value.
4983    AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
4984
4985    int FI = FuncInfo.StaticAllocaMap[Slot];
4986    MFI->setStackProtectorIndex(FI);
4987
4988    SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
4989
4990    // Store the stack protector onto the stack.
4991    Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN,
4992                       MachinePointerInfo::getFixedStack(FI),
4993                       true, false, 0);
4994    setValue(&I, Res);
4995    DAG.setRoot(Res);
4996    return 0;
4997  }
4998  case Intrinsic::objectsize: {
4999    // If we don't know by now, we're never going to know.
5000    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
5001
5002    assert(CI && "Non-constant type in __builtin_object_size?");
5003
5004    SDValue Arg = getValue(I.getCalledValue());
5005    EVT Ty = Arg.getValueType();
5006
5007    if (CI->isZero())
5008      Res = DAG.getConstant(-1ULL, Ty);
5009    else
5010      Res = DAG.getConstant(0, Ty);
5011
5012    setValue(&I, Res);
5013    return 0;
5014  }
5015  case Intrinsic::var_annotation:
5016    // Discard annotate attributes
5017    return 0;
5018
5019  case Intrinsic::init_trampoline: {
5020    const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5021
5022    SDValue Ops[6];
5023    Ops[0] = getRoot();
5024    Ops[1] = getValue(I.getArgOperand(0));
5025    Ops[2] = getValue(I.getArgOperand(1));
5026    Ops[3] = getValue(I.getArgOperand(2));
5027    Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5028    Ops[5] = DAG.getSrcValue(F);
5029
5030    Res = DAG.getNode(ISD::INIT_TRAMPOLINE, dl, MVT::Other, Ops, 6);
5031
5032    DAG.setRoot(Res);
5033    return 0;
5034  }
5035  case Intrinsic::adjust_trampoline: {
5036    setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, dl,
5037                             TLI.getPointerTy(),
5038                             getValue(I.getArgOperand(0))));
5039    return 0;
5040  }
5041  case Intrinsic::gcroot:
5042    if (GFI) {
5043      const Value *Alloca = I.getArgOperand(0);
5044      const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
5045
5046      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
5047      GFI->addStackRoot(FI->getIndex(), TypeMap);
5048    }
5049    return 0;
5050  case Intrinsic::gcread:
5051  case Intrinsic::gcwrite:
5052    llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
5053    return 0;
5054  case Intrinsic::flt_rounds:
5055    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32));
5056    return 0;
5057
5058  case Intrinsic::expect: {
5059    // Just replace __builtin_expect(exp, c) with EXP.
5060    setValue(&I, getValue(I.getArgOperand(0)));
5061    return 0;
5062  }
5063
5064  case Intrinsic::trap: {
5065    StringRef TrapFuncName = TM.Options.getTrapFunctionName();
5066    if (TrapFuncName.empty()) {
5067      DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot()));
5068      return 0;
5069    }
5070    TargetLowering::ArgListTy Args;
5071    std::pair<SDValue, SDValue> Result =
5072      TLI.LowerCallTo(getRoot(), I.getType(),
5073                 false, false, false, false, 0, CallingConv::C,
5074                 /*isTailCall=*/false, /*isReturnValueUsed=*/true,
5075                 DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()),
5076                 Args, DAG, getCurDebugLoc());
5077    DAG.setRoot(Result.second);
5078    return 0;
5079  }
5080  case Intrinsic::uadd_with_overflow:
5081    return implVisitAluOverflow(I, ISD::UADDO);
5082  case Intrinsic::sadd_with_overflow:
5083    return implVisitAluOverflow(I, ISD::SADDO);
5084  case Intrinsic::usub_with_overflow:
5085    return implVisitAluOverflow(I, ISD::USUBO);
5086  case Intrinsic::ssub_with_overflow:
5087    return implVisitAluOverflow(I, ISD::SSUBO);
5088  case Intrinsic::umul_with_overflow:
5089    return implVisitAluOverflow(I, ISD::UMULO);
5090  case Intrinsic::smul_with_overflow:
5091    return implVisitAluOverflow(I, ISD::SMULO);
5092
5093  case Intrinsic::prefetch: {
5094    SDValue Ops[5];
5095    unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
5096    Ops[0] = getRoot();
5097    Ops[1] = getValue(I.getArgOperand(0));
5098    Ops[2] = getValue(I.getArgOperand(1));
5099    Ops[3] = getValue(I.getArgOperand(2));
5100    Ops[4] = getValue(I.getArgOperand(3));
5101    DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, dl,
5102                                        DAG.getVTList(MVT::Other),
5103                                        &Ops[0], 5,
5104                                        EVT::getIntegerVT(*Context, 8),
5105                                        MachinePointerInfo(I.getArgOperand(0)),
5106                                        0, /* align */
5107                                        false, /* volatile */
5108                                        rw==0, /* read */
5109                                        rw==1)); /* write */
5110    return 0;
5111  }
5112
5113  case Intrinsic::invariant_start:
5114  case Intrinsic::lifetime_start:
5115    // Discard region information.
5116    setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
5117    return 0;
5118  case Intrinsic::invariant_end:
5119  case Intrinsic::lifetime_end:
5120    // Discard region information.
5121    return 0;
5122  }
5123}
5124
5125void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
5126                                      bool isTailCall,
5127                                      MachineBasicBlock *LandingPad) {
5128  PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
5129  FunctionType *FTy = cast<FunctionType>(PT->getElementType());
5130  Type *RetTy = FTy->getReturnType();
5131  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5132  MCSymbol *BeginLabel = 0;
5133
5134  TargetLowering::ArgListTy Args;
5135  TargetLowering::ArgListEntry Entry;
5136  Args.reserve(CS.arg_size());
5137
5138  // Check whether the function can return without sret-demotion.
5139  SmallVector<ISD::OutputArg, 4> Outs;
5140  SmallVector<uint64_t, 4> Offsets;
5141  GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(),
5142                Outs, TLI, &Offsets);
5143
5144  bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
5145					   DAG.getMachineFunction(),
5146					   FTy->isVarArg(), Outs,
5147					   FTy->getContext());
5148
5149  SDValue DemoteStackSlot;
5150  int DemoteStackIdx = -100;
5151
5152  if (!CanLowerReturn) {
5153    uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(
5154                      FTy->getReturnType());
5155    unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(
5156                      FTy->getReturnType());
5157    MachineFunction &MF = DAG.getMachineFunction();
5158    DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5159    Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
5160
5161    DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI.getPointerTy());
5162    Entry.Node = DemoteStackSlot;
5163    Entry.Ty = StackSlotPtrType;
5164    Entry.isSExt = false;
5165    Entry.isZExt = false;
5166    Entry.isInReg = false;
5167    Entry.isSRet = true;
5168    Entry.isNest = false;
5169    Entry.isByVal = false;
5170    Entry.Alignment = Align;
5171    Args.push_back(Entry);
5172    RetTy = Type::getVoidTy(FTy->getContext());
5173  }
5174
5175  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
5176       i != e; ++i) {
5177    const Value *V = *i;
5178
5179    // Skip empty types
5180    if (V->getType()->isEmptyTy())
5181      continue;
5182
5183    SDValue ArgNode = getValue(V);
5184    Entry.Node = ArgNode; Entry.Ty = V->getType();
5185
5186    unsigned attrInd = i - CS.arg_begin() + 1;
5187    Entry.isSExt  = CS.paramHasAttr(attrInd, Attribute::SExt);
5188    Entry.isZExt  = CS.paramHasAttr(attrInd, Attribute::ZExt);
5189    Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg);
5190    Entry.isSRet  = CS.paramHasAttr(attrInd, Attribute::StructRet);
5191    Entry.isNest  = CS.paramHasAttr(attrInd, Attribute::Nest);
5192    Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal);
5193    Entry.Alignment = CS.getParamAlignment(attrInd);
5194    Args.push_back(Entry);
5195  }
5196
5197  if (LandingPad) {
5198    // Insert a label before the invoke call to mark the try range.  This can be
5199    // used to detect deletion of the invoke via the MachineModuleInfo.
5200    BeginLabel = MMI.getContext().CreateTempSymbol();
5201
5202    // For SjLj, keep track of which landing pads go with which invokes
5203    // so as to maintain the ordering of pads in the LSDA.
5204    unsigned CallSiteIndex = MMI.getCurrentCallSite();
5205    if (CallSiteIndex) {
5206      MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
5207      LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex);
5208
5209      // Now that the call site is handled, stop tracking it.
5210      MMI.setCurrentCallSite(0);
5211    }
5212
5213    // Both PendingLoads and PendingExports must be flushed here;
5214    // this call might not return.
5215    (void)getRoot();
5216    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel));
5217  }
5218
5219  // Check if target-independent constraints permit a tail call here.
5220  // Target-dependent constraints are checked within TLI.LowerCallTo.
5221  if (isTailCall &&
5222      !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI))
5223    isTailCall = false;
5224
5225  // If there's a possibility that fast-isel has already selected some amount
5226  // of the current basic block, don't emit a tail call.
5227  if (isTailCall && TM.Options.EnableFastISel)
5228    isTailCall = false;
5229
5230  std::pair<SDValue,SDValue> Result =
5231    TLI.LowerCallTo(getRoot(), RetTy,
5232                    CS.paramHasAttr(0, Attribute::SExt),
5233                    CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(),
5234                    CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(),
5235                    CS.getCallingConv(),
5236                    isTailCall,
5237                    !CS.getInstruction()->use_empty(),
5238                    Callee, Args, DAG, getCurDebugLoc());
5239  assert((isTailCall || Result.second.getNode()) &&
5240         "Non-null chain expected with non-tail call!");
5241  assert((Result.second.getNode() || !Result.first.getNode()) &&
5242         "Null value expected with tail call!");
5243  if (Result.first.getNode()) {
5244    setValue(CS.getInstruction(), Result.first);
5245  } else if (!CanLowerReturn && Result.second.getNode()) {
5246    // The instruction result is the result of loading from the
5247    // hidden sret parameter.
5248    SmallVector<EVT, 1> PVTs;
5249    Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
5250
5251    ComputeValueVTs(TLI, PtrRetTy, PVTs);
5252    assert(PVTs.size() == 1 && "Pointers should fit in one register");
5253    EVT PtrVT = PVTs[0];
5254    unsigned NumValues = Outs.size();
5255    SmallVector<SDValue, 4> Values(NumValues);
5256    SmallVector<SDValue, 4> Chains(NumValues);
5257
5258    for (unsigned i = 0; i < NumValues; ++i) {
5259      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT,
5260                                DemoteStackSlot,
5261                                DAG.getConstant(Offsets[i], PtrVT));
5262      SDValue L = DAG.getLoad(Outs[i].VT, getCurDebugLoc(), Result.second,
5263                              Add,
5264                  MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]),
5265                              false, false, false, 1);
5266      Values[i] = L;
5267      Chains[i] = L.getValue(1);
5268    }
5269
5270    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
5271                                MVT::Other, &Chains[0], NumValues);
5272    PendingLoads.push_back(Chain);
5273
5274    // Collect the legal value parts into potentially illegal values
5275    // that correspond to the original function's return values.
5276    SmallVector<EVT, 4> RetTys;
5277    RetTy = FTy->getReturnType();
5278    ComputeValueVTs(TLI, RetTy, RetTys);
5279    ISD::NodeType AssertOp = ISD::DELETED_NODE;
5280    SmallVector<SDValue, 4> ReturnValues;
5281    unsigned CurReg = 0;
5282    for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
5283      EVT VT = RetTys[I];
5284      EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT);
5285      unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT);
5286
5287      SDValue ReturnValue =
5288        getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs,
5289                         RegisterVT, VT, AssertOp);
5290      ReturnValues.push_back(ReturnValue);
5291      CurReg += NumRegs;
5292    }
5293
5294    setValue(CS.getInstruction(),
5295             DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
5296                         DAG.getVTList(&RetTys[0], RetTys.size()),
5297                         &ReturnValues[0], ReturnValues.size()));
5298  }
5299
5300  // Assign order to nodes here. If the call does not produce a result, it won't
5301  // be mapped to a SDNode and visit() will not assign it an order number.
5302  if (!Result.second.getNode()) {
5303    // As a special case, a null chain means that a tail call has been emitted and
5304    // the DAG root is already updated.
5305    HasTailCall = true;
5306    ++SDNodeOrder;
5307    AssignOrderingToNode(DAG.getRoot().getNode());
5308  } else {
5309    DAG.setRoot(Result.second);
5310    ++SDNodeOrder;
5311    AssignOrderingToNode(Result.second.getNode());
5312  }
5313
5314  if (LandingPad) {
5315    // Insert a label at the end of the invoke call to mark the try range.  This
5316    // can be used to detect deletion of the invoke via the MachineModuleInfo.
5317    MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
5318    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel));
5319
5320    // Inform MachineModuleInfo of range.
5321    MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
5322  }
5323}
5324
5325/// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
5326/// value is equal or not-equal to zero.
5327static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
5328  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
5329       UI != E; ++UI) {
5330    if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
5331      if (IC->isEquality())
5332        if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
5333          if (C->isNullValue())
5334            continue;
5335    // Unknown instruction.
5336    return false;
5337  }
5338  return true;
5339}
5340
5341static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
5342                             Type *LoadTy,
5343                             SelectionDAGBuilder &Builder) {
5344
5345  // Check to see if this load can be trivially constant folded, e.g. if the
5346  // input is from a string literal.
5347  if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5348    // Cast pointer to the type we really want to load.
5349    LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5350                                         PointerType::getUnqual(LoadTy));
5351
5352    if (const Constant *LoadCst =
5353          ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
5354                                       Builder.TD))
5355      return Builder.getValue(LoadCst);
5356  }
5357
5358  // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
5359  // still constant memory, the input chain can be the entry node.
5360  SDValue Root;
5361  bool ConstantMemory = false;
5362
5363  // Do not serialize (non-volatile) loads of constant memory with anything.
5364  if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5365    Root = Builder.DAG.getEntryNode();
5366    ConstantMemory = true;
5367  } else {
5368    // Do not serialize non-volatile loads against each other.
5369    Root = Builder.DAG.getRoot();
5370  }
5371
5372  SDValue Ptr = Builder.getValue(PtrVal);
5373  SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root,
5374                                        Ptr, MachinePointerInfo(PtrVal),
5375                                        false /*volatile*/,
5376                                        false /*nontemporal*/,
5377                                        false /*isinvariant*/, 1 /* align=1 */);
5378
5379  if (!ConstantMemory)
5380    Builder.PendingLoads.push_back(LoadVal.getValue(1));
5381  return LoadVal;
5382}
5383
5384
5385/// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5386/// If so, return true and lower it, otherwise return false and it will be
5387/// lowered like a normal call.
5388bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5389  // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
5390  if (I.getNumArgOperands() != 3)
5391    return false;
5392
5393  const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5394  if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5395      !I.getArgOperand(2)->getType()->isIntegerTy() ||
5396      !I.getType()->isIntegerTy())
5397    return false;
5398
5399  const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2));
5400
5401  // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
5402  // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
5403  if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) {
5404    bool ActuallyDoIt = true;
5405    MVT LoadVT;
5406    Type *LoadTy;
5407    switch (Size->getZExtValue()) {
5408    default:
5409      LoadVT = MVT::Other;
5410      LoadTy = 0;
5411      ActuallyDoIt = false;
5412      break;
5413    case 2:
5414      LoadVT = MVT::i16;
5415      LoadTy = Type::getInt16Ty(Size->getContext());
5416      break;
5417    case 4:
5418      LoadVT = MVT::i32;
5419      LoadTy = Type::getInt32Ty(Size->getContext());
5420      break;
5421    case 8:
5422      LoadVT = MVT::i64;
5423      LoadTy = Type::getInt64Ty(Size->getContext());
5424      break;
5425        /*
5426    case 16:
5427      LoadVT = MVT::v4i32;
5428      LoadTy = Type::getInt32Ty(Size->getContext());
5429      LoadTy = VectorType::get(LoadTy, 4);
5430      break;
5431         */
5432    }
5433
5434    // This turns into unaligned loads.  We only do this if the target natively
5435    // supports the MVT we'll be loading or if it is small enough (<= 4) that
5436    // we'll only produce a small number of byte loads.
5437
5438    // Require that we can find a legal MVT, and only do this if the target
5439    // supports unaligned loads of that type.  Expanding into byte loads would
5440    // bloat the code.
5441    if (ActuallyDoIt && Size->getZExtValue() > 4) {
5442      // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5443      // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5444      if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT))
5445        ActuallyDoIt = false;
5446    }
5447
5448    if (ActuallyDoIt) {
5449      SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5450      SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5451
5452      SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal,
5453                                 ISD::SETNE);
5454      EVT CallVT = TLI.getValueType(I.getType(), true);
5455      setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT));
5456      return true;
5457    }
5458  }
5459
5460
5461  return false;
5462}
5463
5464
5465void SelectionDAGBuilder::visitCall(const CallInst &I) {
5466  // Handle inline assembly differently.
5467  if (isa<InlineAsm>(I.getCalledValue())) {
5468    visitInlineAsm(&I);
5469    return;
5470  }
5471
5472  // See if any floating point values are being passed to this function. This is
5473  // used to emit an undefined reference to fltused on Windows.
5474  FunctionType *FT =
5475    cast<FunctionType>(I.getCalledValue()->getType()->getContainedType(0));
5476  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5477  if (FT->isVarArg() &&
5478      !MMI.callsExternalVAFunctionWithFloatingPointArguments()) {
5479    for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
5480      Type* T = I.getArgOperand(i)->getType();
5481      for (po_iterator<Type*> i = po_begin(T), e = po_end(T);
5482           i != e; ++i) {
5483        if (!i->isFloatingPointTy()) continue;
5484        MMI.setCallsExternalVAFunctionWithFloatingPointArguments(true);
5485        break;
5486      }
5487    }
5488  }
5489
5490  const char *RenameFn = 0;
5491  if (Function *F = I.getCalledFunction()) {
5492    if (F->isDeclaration()) {
5493      if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
5494        if (unsigned IID = II->getIntrinsicID(F)) {
5495          RenameFn = visitIntrinsicCall(I, IID);
5496          if (!RenameFn)
5497            return;
5498        }
5499      }
5500      if (unsigned IID = F->getIntrinsicID()) {
5501        RenameFn = visitIntrinsicCall(I, IID);
5502        if (!RenameFn)
5503          return;
5504      }
5505    }
5506
5507    // Check for well-known libc/libm calls.  If the function is internal, it
5508    // can't be a library call.
5509    if (!F->hasLocalLinkage() && F->hasName()) {
5510      StringRef Name = F->getName();
5511      if ((LibInfo->has(LibFunc::copysign) && Name == "copysign") ||
5512          (LibInfo->has(LibFunc::copysignf) && Name == "copysignf") ||
5513          (LibInfo->has(LibFunc::copysignl) && Name == "copysignl")) {
5514        if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
5515            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5516            I.getType() == I.getArgOperand(0)->getType() &&
5517            I.getType() == I.getArgOperand(1)->getType()) {
5518          SDValue LHS = getValue(I.getArgOperand(0));
5519          SDValue RHS = getValue(I.getArgOperand(1));
5520          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(),
5521                                   LHS.getValueType(), LHS, RHS));
5522          return;
5523        }
5524      } else if ((LibInfo->has(LibFunc::fabs) && Name == "fabs") ||
5525                 (LibInfo->has(LibFunc::fabsf) && Name == "fabsf") ||
5526                 (LibInfo->has(LibFunc::fabsl) && Name == "fabsl")) {
5527        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5528            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5529            I.getType() == I.getArgOperand(0)->getType()) {
5530          SDValue Tmp = getValue(I.getArgOperand(0));
5531          setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(),
5532                                   Tmp.getValueType(), Tmp));
5533          return;
5534        }
5535      } else if ((LibInfo->has(LibFunc::sin) && Name == "sin") ||
5536                 (LibInfo->has(LibFunc::sinf) && Name == "sinf") ||
5537                 (LibInfo->has(LibFunc::sinl) && Name == "sinl")) {
5538        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5539            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5540            I.getType() == I.getArgOperand(0)->getType() &&
5541            I.onlyReadsMemory()) {
5542          SDValue Tmp = getValue(I.getArgOperand(0));
5543          setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(),
5544                                   Tmp.getValueType(), Tmp));
5545          return;
5546        }
5547      } else if ((LibInfo->has(LibFunc::cos) && Name == "cos") ||
5548                 (LibInfo->has(LibFunc::cosf) && Name == "cosf") ||
5549                 (LibInfo->has(LibFunc::cosl) && Name == "cosl")) {
5550        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5551            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5552            I.getType() == I.getArgOperand(0)->getType() &&
5553            I.onlyReadsMemory()) {
5554          SDValue Tmp = getValue(I.getArgOperand(0));
5555          setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(),
5556                                   Tmp.getValueType(), Tmp));
5557          return;
5558        }
5559      } else if ((LibInfo->has(LibFunc::sqrt) && Name == "sqrt") ||
5560                 (LibInfo->has(LibFunc::sqrtf) && Name == "sqrtf") ||
5561                 (LibInfo->has(LibFunc::sqrtl) && Name == "sqrtl")) {
5562        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5563            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5564            I.getType() == I.getArgOperand(0)->getType() &&
5565            I.onlyReadsMemory()) {
5566          SDValue Tmp = getValue(I.getArgOperand(0));
5567          setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(),
5568                                   Tmp.getValueType(), Tmp));
5569          return;
5570        }
5571      } else if ((LibInfo->has(LibFunc::floor) && Name == "floor") ||
5572                 (LibInfo->has(LibFunc::floorf) && Name == "floorf") ||
5573                 (LibInfo->has(LibFunc::floorl) && Name == "floorl")) {
5574        if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5575            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5576            I.getType() == I.getArgOperand(0)->getType()) {
5577          SDValue Tmp = getValue(I.getArgOperand(0));
5578          setValue(&I, DAG.getNode(ISD::FFLOOR, getCurDebugLoc(),
5579                                   Tmp.getValueType(), Tmp));
5580          return;
5581        }
5582      } else if ((LibInfo->has(LibFunc::nearbyint) && Name == "nearbyint") ||
5583                 (LibInfo->has(LibFunc::nearbyintf) && Name == "nearbyintf") ||
5584                 (LibInfo->has(LibFunc::nearbyintl) && Name == "nearbyintl")) {
5585        if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5586            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5587            I.getType() == I.getArgOperand(0)->getType()) {
5588          SDValue Tmp = getValue(I.getArgOperand(0));
5589          setValue(&I, DAG.getNode(ISD::FNEARBYINT, getCurDebugLoc(),
5590                                   Tmp.getValueType(), Tmp));
5591          return;
5592        }
5593      } else if ((LibInfo->has(LibFunc::ceil) && Name == "ceil") ||
5594                 (LibInfo->has(LibFunc::ceilf) && Name == "ceilf") ||
5595                 (LibInfo->has(LibFunc::ceill) && Name == "ceill")) {
5596        if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5597            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5598            I.getType() == I.getArgOperand(0)->getType()) {
5599          SDValue Tmp = getValue(I.getArgOperand(0));
5600          setValue(&I, DAG.getNode(ISD::FCEIL, getCurDebugLoc(),
5601                                   Tmp.getValueType(), Tmp));
5602          return;
5603        }
5604      } else if ((LibInfo->has(LibFunc::rint) && Name == "rint") ||
5605                 (LibInfo->has(LibFunc::rintf) && Name == "rintf") ||
5606                 (LibInfo->has(LibFunc::rintl) && Name == "rintl")) {
5607        if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5608            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5609            I.getType() == I.getArgOperand(0)->getType()) {
5610          SDValue Tmp = getValue(I.getArgOperand(0));
5611          setValue(&I, DAG.getNode(ISD::FRINT, getCurDebugLoc(),
5612                                   Tmp.getValueType(), Tmp));
5613          return;
5614        }
5615      } else if ((LibInfo->has(LibFunc::trunc) && Name == "trunc") ||
5616                 (LibInfo->has(LibFunc::truncf) && Name == "truncf") ||
5617                 (LibInfo->has(LibFunc::truncl) && Name == "truncl")) {
5618        if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5619            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5620            I.getType() == I.getArgOperand(0)->getType()) {
5621          SDValue Tmp = getValue(I.getArgOperand(0));
5622          setValue(&I, DAG.getNode(ISD::FTRUNC, getCurDebugLoc(),
5623                                   Tmp.getValueType(), Tmp));
5624          return;
5625        }
5626      } else if ((LibInfo->has(LibFunc::log2) && Name == "log2") ||
5627                 (LibInfo->has(LibFunc::log2f) && Name == "log2f") ||
5628                 (LibInfo->has(LibFunc::log2l) && Name == "log2l")) {
5629        if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5630            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5631            I.getType() == I.getArgOperand(0)->getType()) {
5632          SDValue Tmp = getValue(I.getArgOperand(0));
5633          setValue(&I, DAG.getNode(ISD::FLOG2, getCurDebugLoc(),
5634                                   Tmp.getValueType(), Tmp));
5635          return;
5636        }
5637      } else if ((LibInfo->has(LibFunc::exp2) && Name == "exp2") ||
5638                 (LibInfo->has(LibFunc::exp2f) && Name == "exp2f") ||
5639                 (LibInfo->has(LibFunc::exp2l) && Name == "exp2l")) {
5640        if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5641            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5642            I.getType() == I.getArgOperand(0)->getType()) {
5643          SDValue Tmp = getValue(I.getArgOperand(0));
5644          setValue(&I, DAG.getNode(ISD::FEXP2, getCurDebugLoc(),
5645                                   Tmp.getValueType(), Tmp));
5646          return;
5647        }
5648      } else if (Name == "memcmp") {
5649        if (visitMemCmpCall(I))
5650          return;
5651      }
5652    }
5653  }
5654
5655  SDValue Callee;
5656  if (!RenameFn)
5657    Callee = getValue(I.getCalledValue());
5658  else
5659    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
5660
5661  // Check if we can potentially perform a tail call. More detailed checking is
5662  // be done within LowerCallTo, after more information about the call is known.
5663  LowerCallTo(&I, Callee, I.isTailCall());
5664}
5665
5666namespace {
5667
5668/// AsmOperandInfo - This contains information for each constraint that we are
5669/// lowering.
5670class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
5671public:
5672  /// CallOperand - If this is the result output operand or a clobber
5673  /// this is null, otherwise it is the incoming operand to the CallInst.
5674  /// This gets modified as the asm is processed.
5675  SDValue CallOperand;
5676
5677  /// AssignedRegs - If this is a register or register class operand, this
5678  /// contains the set of register corresponding to the operand.
5679  RegsForValue AssignedRegs;
5680
5681  explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
5682    : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
5683  }
5684
5685  /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
5686  /// busy in OutputRegs/InputRegs.
5687  void MarkAllocatedRegs(bool isOutReg, bool isInReg,
5688                         std::set<unsigned> &OutputRegs,
5689                         std::set<unsigned> &InputRegs,
5690                         const TargetRegisterInfo &TRI) const {
5691    if (isOutReg) {
5692      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
5693        MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
5694    }
5695    if (isInReg) {
5696      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
5697        MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
5698    }
5699  }
5700
5701  /// getCallOperandValEVT - Return the EVT of the Value* that this operand
5702  /// corresponds to.  If there is no Value* for this operand, it returns
5703  /// MVT::Other.
5704  EVT getCallOperandValEVT(LLVMContext &Context,
5705                           const TargetLowering &TLI,
5706                           const TargetData *TD) const {
5707    if (CallOperandVal == 0) return MVT::Other;
5708
5709    if (isa<BasicBlock>(CallOperandVal))
5710      return TLI.getPointerTy();
5711
5712    llvm::Type *OpTy = CallOperandVal->getType();
5713
5714    // FIXME: code duplicated from TargetLowering::ParseConstraints().
5715    // If this is an indirect operand, the operand is a pointer to the
5716    // accessed type.
5717    if (isIndirect) {
5718      llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
5719      if (!PtrTy)
5720        report_fatal_error("Indirect operand for inline asm not a pointer!");
5721      OpTy = PtrTy->getElementType();
5722    }
5723
5724    // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
5725    if (StructType *STy = dyn_cast<StructType>(OpTy))
5726      if (STy->getNumElements() == 1)
5727        OpTy = STy->getElementType(0);
5728
5729    // If OpTy is not a single value, it may be a struct/union that we
5730    // can tile with integers.
5731    if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5732      unsigned BitSize = TD->getTypeSizeInBits(OpTy);
5733      switch (BitSize) {
5734      default: break;
5735      case 1:
5736      case 8:
5737      case 16:
5738      case 32:
5739      case 64:
5740      case 128:
5741        OpTy = IntegerType::get(Context, BitSize);
5742        break;
5743      }
5744    }
5745
5746    return TLI.getValueType(OpTy, true);
5747  }
5748
5749private:
5750  /// MarkRegAndAliases - Mark the specified register and all aliases in the
5751  /// specified set.
5752  static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
5753                                const TargetRegisterInfo &TRI) {
5754    assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
5755    Regs.insert(Reg);
5756    if (const unsigned *Aliases = TRI.getAliasSet(Reg))
5757      for (; *Aliases; ++Aliases)
5758        Regs.insert(*Aliases);
5759  }
5760};
5761
5762typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
5763
5764} // end anonymous namespace
5765
5766/// GetRegistersForValue - Assign registers (virtual or physical) for the
5767/// specified operand.  We prefer to assign virtual registers, to allow the
5768/// register allocator to handle the assignment process.  However, if the asm
5769/// uses features that we can't model on machineinstrs, we have SDISel do the
5770/// allocation.  This produces generally horrible, but correct, code.
5771///
5772///   OpInfo describes the operand.
5773///   Input and OutputRegs are the set of already allocated physical registers.
5774///
5775static void GetRegistersForValue(SelectionDAG &DAG,
5776                                 const TargetLowering &TLI,
5777                                 DebugLoc DL,
5778                                 SDISelAsmOperandInfo &OpInfo,
5779                                 std::set<unsigned> &OutputRegs,
5780                                 std::set<unsigned> &InputRegs) {
5781  LLVMContext &Context = *DAG.getContext();
5782
5783  // Compute whether this value requires an input register, an output register,
5784  // or both.
5785  bool isOutReg = false;
5786  bool isInReg = false;
5787  switch (OpInfo.Type) {
5788  case InlineAsm::isOutput:
5789    isOutReg = true;
5790
5791    // If there is an input constraint that matches this, we need to reserve
5792    // the input register so no other inputs allocate to it.
5793    isInReg = OpInfo.hasMatchingInput();
5794    break;
5795  case InlineAsm::isInput:
5796    isInReg = true;
5797    isOutReg = false;
5798    break;
5799  case InlineAsm::isClobber:
5800    isOutReg = true;
5801    isInReg = true;
5802    break;
5803  }
5804
5805
5806  MachineFunction &MF = DAG.getMachineFunction();
5807  SmallVector<unsigned, 4> Regs;
5808
5809  // If this is a constraint for a single physreg, or a constraint for a
5810  // register class, find it.
5811  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
5812    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5813                                     OpInfo.ConstraintVT);
5814
5815  unsigned NumRegs = 1;
5816  if (OpInfo.ConstraintVT != MVT::Other) {
5817    // If this is a FP input in an integer register (or visa versa) insert a bit
5818    // cast of the input value.  More generally, handle any case where the input
5819    // value disagrees with the register class we plan to stick this in.
5820    if (OpInfo.Type == InlineAsm::isInput &&
5821        PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
5822      // Try to convert to the first EVT that the reg class contains.  If the
5823      // types are identical size, use a bitcast to convert (e.g. two differing
5824      // vector types).
5825      EVT RegVT = *PhysReg.second->vt_begin();
5826      if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
5827        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5828                                         RegVT, OpInfo.CallOperand);
5829        OpInfo.ConstraintVT = RegVT;
5830      } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
5831        // If the input is a FP value and we want it in FP registers, do a
5832        // bitcast to the corresponding integer type.  This turns an f64 value
5833        // into i64, which can be passed with two i32 values on a 32-bit
5834        // machine.
5835        RegVT = EVT::getIntegerVT(Context,
5836                                  OpInfo.ConstraintVT.getSizeInBits());
5837        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5838                                         RegVT, OpInfo.CallOperand);
5839        OpInfo.ConstraintVT = RegVT;
5840      }
5841    }
5842
5843    NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
5844  }
5845
5846  EVT RegVT;
5847  EVT ValueVT = OpInfo.ConstraintVT;
5848
5849  // If this is a constraint for a specific physical register, like {r17},
5850  // assign it now.
5851  if (unsigned AssignedReg = PhysReg.first) {
5852    const TargetRegisterClass *RC = PhysReg.second;
5853    if (OpInfo.ConstraintVT == MVT::Other)
5854      ValueVT = *RC->vt_begin();
5855
5856    // Get the actual register value type.  This is important, because the user
5857    // may have asked for (e.g.) the AX register in i32 type.  We need to
5858    // remember that AX is actually i16 to get the right extension.
5859    RegVT = *RC->vt_begin();
5860
5861    // This is a explicit reference to a physical register.
5862    Regs.push_back(AssignedReg);
5863
5864    // If this is an expanded reference, add the rest of the regs to Regs.
5865    if (NumRegs != 1) {
5866      TargetRegisterClass::iterator I = RC->begin();
5867      for (; *I != AssignedReg; ++I)
5868        assert(I != RC->end() && "Didn't find reg!");
5869
5870      // Already added the first reg.
5871      --NumRegs; ++I;
5872      for (; NumRegs; --NumRegs, ++I) {
5873        assert(I != RC->end() && "Ran out of registers to allocate!");
5874        Regs.push_back(*I);
5875      }
5876    }
5877
5878    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5879    const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5880    OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5881    return;
5882  }
5883
5884  // Otherwise, if this was a reference to an LLVM register class, create vregs
5885  // for this reference.
5886  if (const TargetRegisterClass *RC = PhysReg.second) {
5887    RegVT = *RC->vt_begin();
5888    if (OpInfo.ConstraintVT == MVT::Other)
5889      ValueVT = RegVT;
5890
5891    // Create the appropriate number of virtual registers.
5892    MachineRegisterInfo &RegInfo = MF.getRegInfo();
5893    for (; NumRegs; --NumRegs)
5894      Regs.push_back(RegInfo.createVirtualRegister(RC));
5895
5896    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5897    return;
5898  }
5899
5900  // Otherwise, we couldn't allocate enough registers for this.
5901}
5902
5903/// visitInlineAsm - Handle a call to an InlineAsm object.
5904///
5905void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
5906  const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
5907
5908  /// ConstraintOperands - Information about all of the constraints.
5909  SDISelAsmOperandInfoVector ConstraintOperands;
5910
5911  std::set<unsigned> OutputRegs, InputRegs;
5912
5913  TargetLowering::AsmOperandInfoVector
5914    TargetConstraints = TLI.ParseConstraints(CS);
5915
5916  bool hasMemory = false;
5917
5918  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
5919  unsigned ResNo = 0;   // ResNo - The result number of the next output.
5920  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
5921    ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
5922    SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
5923
5924    EVT OpVT = MVT::Other;
5925
5926    // Compute the value type for each operand.
5927    switch (OpInfo.Type) {
5928    case InlineAsm::isOutput:
5929      // Indirect outputs just consume an argument.
5930      if (OpInfo.isIndirect) {
5931        OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5932        break;
5933      }
5934
5935      // The return value of the call is this value.  As such, there is no
5936      // corresponding argument.
5937      assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
5938      if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
5939        OpVT = TLI.getValueType(STy->getElementType(ResNo));
5940      } else {
5941        assert(ResNo == 0 && "Asm only has one result!");
5942        OpVT = TLI.getValueType(CS.getType());
5943      }
5944      ++ResNo;
5945      break;
5946    case InlineAsm::isInput:
5947      OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5948      break;
5949    case InlineAsm::isClobber:
5950      // Nothing to do.
5951      break;
5952    }
5953
5954    // If this is an input or an indirect output, process the call argument.
5955    // BasicBlocks are labels, currently appearing only in asm's.
5956    if (OpInfo.CallOperandVal) {
5957      if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
5958        OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
5959      } else {
5960        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
5961      }
5962
5963      OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD);
5964    }
5965
5966    OpInfo.ConstraintVT = OpVT;
5967
5968    // Indirect operand accesses access memory.
5969    if (OpInfo.isIndirect)
5970      hasMemory = true;
5971    else {
5972      for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
5973        TargetLowering::ConstraintType
5974          CType = TLI.getConstraintType(OpInfo.Codes[j]);
5975        if (CType == TargetLowering::C_Memory) {
5976          hasMemory = true;
5977          break;
5978        }
5979      }
5980    }
5981  }
5982
5983  SDValue Chain, Flag;
5984
5985  // We won't need to flush pending loads if this asm doesn't touch
5986  // memory and is nonvolatile.
5987  if (hasMemory || IA->hasSideEffects())
5988    Chain = getRoot();
5989  else
5990    Chain = DAG.getRoot();
5991
5992  // Second pass over the constraints: compute which constraint option to use
5993  // and assign registers to constraints that want a specific physreg.
5994  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5995    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5996
5997    // If this is an output operand with a matching input operand, look up the
5998    // matching input. If their types mismatch, e.g. one is an integer, the
5999    // other is floating point, or their sizes are different, flag it as an
6000    // error.
6001    if (OpInfo.hasMatchingInput()) {
6002      SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
6003
6004      if (OpInfo.ConstraintVT != Input.ConstraintVT) {
6005	std::pair<unsigned, const TargetRegisterClass*> MatchRC =
6006	  TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
6007                                           OpInfo.ConstraintVT);
6008	std::pair<unsigned, const TargetRegisterClass*> InputRC =
6009	  TLI.getRegForInlineAsmConstraint(Input.ConstraintCode,
6010                                           Input.ConstraintVT);
6011        if ((OpInfo.ConstraintVT.isInteger() !=
6012             Input.ConstraintVT.isInteger()) ||
6013            (MatchRC.second != InputRC.second)) {
6014          report_fatal_error("Unsupported asm: input constraint"
6015                             " with a matching output constraint of"
6016                             " incompatible type!");
6017        }
6018        Input.ConstraintVT = OpInfo.ConstraintVT;
6019      }
6020    }
6021
6022    // Compute the constraint code and ConstraintType to use.
6023    TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
6024
6025    // If this is a memory input, and if the operand is not indirect, do what we
6026    // need to to provide an address for the memory input.
6027    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
6028        !OpInfo.isIndirect) {
6029      assert((OpInfo.isMultipleAlternative ||
6030              (OpInfo.Type == InlineAsm::isInput)) &&
6031             "Can only indirectify direct input operands!");
6032
6033      // Memory operands really want the address of the value.  If we don't have
6034      // an indirect input, put it in the constpool if we can, otherwise spill
6035      // it to a stack slot.
6036      // TODO: This isn't quite right. We need to handle these according to
6037      // the addressing mode that the constraint wants. Also, this may take
6038      // an additional register for the computation and we don't want that
6039      // either.
6040
6041      // If the operand is a float, integer, or vector constant, spill to a
6042      // constant pool entry to get its address.
6043      const Value *OpVal = OpInfo.CallOperandVal;
6044      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
6045          isa<ConstantVector>(OpVal)) {
6046        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
6047                                                 TLI.getPointerTy());
6048      } else {
6049        // Otherwise, create a stack slot and emit a store to it before the
6050        // asm.
6051        Type *Ty = OpVal->getType();
6052        uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
6053        unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
6054        MachineFunction &MF = DAG.getMachineFunction();
6055        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
6056        SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
6057        Chain = DAG.getStore(Chain, getCurDebugLoc(),
6058                             OpInfo.CallOperand, StackSlot,
6059                             MachinePointerInfo::getFixedStack(SSFI),
6060                             false, false, 0);
6061        OpInfo.CallOperand = StackSlot;
6062      }
6063
6064      // There is no longer a Value* corresponding to this operand.
6065      OpInfo.CallOperandVal = 0;
6066
6067      // It is now an indirect operand.
6068      OpInfo.isIndirect = true;
6069    }
6070
6071    // If this constraint is for a specific register, allocate it before
6072    // anything else.
6073    if (OpInfo.ConstraintType == TargetLowering::C_Register)
6074      GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo, OutputRegs,
6075                           InputRegs);
6076  }
6077
6078  // Second pass - Loop over all of the operands, assigning virtual or physregs
6079  // to register class operands.
6080  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6081    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6082
6083    // C_Register operands have already been allocated, Other/Memory don't need
6084    // to be.
6085    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
6086      GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo, OutputRegs,
6087                           InputRegs);
6088  }
6089
6090  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
6091  std::vector<SDValue> AsmNodeOperands;
6092  AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
6093  AsmNodeOperands.push_back(
6094          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
6095                                      TLI.getPointerTy()));
6096
6097  // If we have a !srcloc metadata node associated with it, we want to attach
6098  // this to the ultimately generated inline asm machineinstr.  To do this, we
6099  // pass in the third operand as this (potentially null) inline asm MDNode.
6100  const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
6101  AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
6102
6103  // Remember the HasSideEffect and AlignStack bits as operand 3.
6104  unsigned ExtraInfo = 0;
6105  if (IA->hasSideEffects())
6106    ExtraInfo |= InlineAsm::Extra_HasSideEffects;
6107  if (IA->isAlignStack())
6108    ExtraInfo |= InlineAsm::Extra_IsAlignStack;
6109  AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo,
6110                                                  TLI.getPointerTy()));
6111
6112  // Loop over all of the inputs, copying the operand values into the
6113  // appropriate registers and processing the output regs.
6114  RegsForValue RetValRegs;
6115
6116  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
6117  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
6118
6119  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6120    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6121
6122    switch (OpInfo.Type) {
6123    case InlineAsm::isOutput: {
6124      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
6125          OpInfo.ConstraintType != TargetLowering::C_Register) {
6126        // Memory output, or 'other' output (e.g. 'X' constraint).
6127        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
6128
6129        // Add information to the INLINEASM node to know about this output.
6130        unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6131        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
6132                                                        TLI.getPointerTy()));
6133        AsmNodeOperands.push_back(OpInfo.CallOperand);
6134        break;
6135      }
6136
6137      // Otherwise, this is a register or register class output.
6138
6139      // Copy the output from the appropriate register.  Find a register that
6140      // we can use.
6141      if (OpInfo.AssignedRegs.Regs.empty())
6142        report_fatal_error("Couldn't allocate output reg for constraint '" +
6143                           Twine(OpInfo.ConstraintCode) + "'!");
6144
6145      // If this is an indirect operand, store through the pointer after the
6146      // asm.
6147      if (OpInfo.isIndirect) {
6148        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
6149                                                      OpInfo.CallOperandVal));
6150      } else {
6151        // This is the result value of the call.
6152        assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6153        // Concatenate this output onto the outputs list.
6154        RetValRegs.append(OpInfo.AssignedRegs);
6155      }
6156
6157      // Add information to the INLINEASM node to know that this register is
6158      // set.
6159      OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
6160                                           InlineAsm::Kind_RegDefEarlyClobber :
6161                                               InlineAsm::Kind_RegDef,
6162                                               false,
6163                                               0,
6164                                               DAG,
6165                                               AsmNodeOperands);
6166      break;
6167    }
6168    case InlineAsm::isInput: {
6169      SDValue InOperandVal = OpInfo.CallOperand;
6170
6171      if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
6172        // If this is required to match an output register we have already set,
6173        // just use its register.
6174        unsigned OperandNo = OpInfo.getMatchedOperand();
6175
6176        // Scan until we find the definition we already emitted of this operand.
6177        // When we find it, create a RegsForValue operand.
6178        unsigned CurOp = InlineAsm::Op_FirstOperand;
6179        for (; OperandNo; --OperandNo) {
6180          // Advance to the next operand.
6181          unsigned OpFlag =
6182            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6183          assert((InlineAsm::isRegDefKind(OpFlag) ||
6184                  InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
6185                  InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
6186          CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
6187        }
6188
6189        unsigned OpFlag =
6190          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6191        if (InlineAsm::isRegDefKind(OpFlag) ||
6192            InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
6193          // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
6194          if (OpInfo.isIndirect) {
6195            // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
6196            LLVMContext &Ctx = *DAG.getContext();
6197            Ctx.emitError(CS.getInstruction(),  "inline asm not supported yet:"
6198                          " don't know how to handle tied "
6199                          "indirect register inputs");
6200          }
6201
6202          RegsForValue MatchedRegs;
6203          MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
6204          EVT RegVT = AsmNodeOperands[CurOp+1].getValueType();
6205          MatchedRegs.RegVTs.push_back(RegVT);
6206          MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
6207          for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
6208               i != e; ++i)
6209            MatchedRegs.Regs.push_back
6210              (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)));
6211
6212          // Use the produced MatchedRegs object to
6213          MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
6214                                    Chain, &Flag);
6215          MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
6216                                           true, OpInfo.getMatchedOperand(),
6217                                           DAG, AsmNodeOperands);
6218          break;
6219        }
6220
6221        assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
6222        assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
6223               "Unexpected number of operands");
6224        // Add information to the INLINEASM node to know about this input.
6225        // See InlineAsm.h isUseOperandTiedToDef.
6226        OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
6227                                                    OpInfo.getMatchedOperand());
6228        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
6229                                                        TLI.getPointerTy()));
6230        AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
6231        break;
6232      }
6233
6234      // Treat indirect 'X' constraint as memory.
6235      if (OpInfo.ConstraintType == TargetLowering::C_Other &&
6236          OpInfo.isIndirect)
6237        OpInfo.ConstraintType = TargetLowering::C_Memory;
6238
6239      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
6240        std::vector<SDValue> Ops;
6241        TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
6242                                         Ops, DAG);
6243        if (Ops.empty())
6244          report_fatal_error("Invalid operand for inline asm constraint '" +
6245                             Twine(OpInfo.ConstraintCode) + "'!");
6246
6247        // Add information to the INLINEASM node to know about this input.
6248        unsigned ResOpType =
6249          InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
6250        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6251                                                        TLI.getPointerTy()));
6252        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
6253        break;
6254      }
6255
6256      if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
6257        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
6258        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
6259               "Memory operands expect pointer values");
6260
6261        // Add information to the INLINEASM node to know about this input.
6262        unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6263        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6264                                                        TLI.getPointerTy()));
6265        AsmNodeOperands.push_back(InOperandVal);
6266        break;
6267      }
6268
6269      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
6270              OpInfo.ConstraintType == TargetLowering::C_Register) &&
6271             "Unknown constraint type!");
6272      assert(!OpInfo.isIndirect &&
6273             "Don't know how to handle indirect register inputs yet!");
6274
6275      // Copy the input into the appropriate registers.
6276      if (OpInfo.AssignedRegs.Regs.empty())
6277        report_fatal_error("Couldn't allocate input reg for constraint '" +
6278                           Twine(OpInfo.ConstraintCode) + "'!");
6279
6280      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
6281                                        Chain, &Flag);
6282
6283      OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
6284                                               DAG, AsmNodeOperands);
6285      break;
6286    }
6287    case InlineAsm::isClobber: {
6288      // Add the clobbered value to the operand list, so that the register
6289      // allocator is aware that the physreg got clobbered.
6290      if (!OpInfo.AssignedRegs.Regs.empty())
6291        OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
6292                                                 false, 0, DAG,
6293                                                 AsmNodeOperands);
6294      break;
6295    }
6296    }
6297  }
6298
6299  // Finish up input operands.  Set the input chain and add the flag last.
6300  AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
6301  if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
6302
6303  Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(),
6304                      DAG.getVTList(MVT::Other, MVT::Glue),
6305                      &AsmNodeOperands[0], AsmNodeOperands.size());
6306  Flag = Chain.getValue(1);
6307
6308  // If this asm returns a register value, copy the result from that register
6309  // and set it as the value of the call.
6310  if (!RetValRegs.Regs.empty()) {
6311    SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
6312                                             Chain, &Flag);
6313
6314    // FIXME: Why don't we do this for inline asms with MRVs?
6315    if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
6316      EVT ResultType = TLI.getValueType(CS.getType());
6317
6318      // If any of the results of the inline asm is a vector, it may have the
6319      // wrong width/num elts.  This can happen for register classes that can
6320      // contain multiple different value types.  The preg or vreg allocated may
6321      // not have the same VT as was expected.  Convert it to the right type
6322      // with bit_convert.
6323      if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
6324        Val = DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
6325                          ResultType, Val);
6326
6327      } else if (ResultType != Val.getValueType() &&
6328                 ResultType.isInteger() && Val.getValueType().isInteger()) {
6329        // If a result value was tied to an input value, the computed result may
6330        // have a wider width than the expected result.  Extract the relevant
6331        // portion.
6332        Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val);
6333      }
6334
6335      assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
6336    }
6337
6338    setValue(CS.getInstruction(), Val);
6339    // Don't need to use this as a chain in this case.
6340    if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
6341      return;
6342  }
6343
6344  std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
6345
6346  // Process indirect outputs, first output all of the flagged copies out of
6347  // physregs.
6348  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
6349    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
6350    const Value *Ptr = IndirectStoresToEmit[i].second;
6351    SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
6352                                             Chain, &Flag);
6353    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
6354  }
6355
6356  // Emit the non-flagged stores from the physregs.
6357  SmallVector<SDValue, 8> OutChains;
6358  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
6359    SDValue Val = DAG.getStore(Chain, getCurDebugLoc(),
6360                               StoresToEmit[i].first,
6361                               getValue(StoresToEmit[i].second),
6362                               MachinePointerInfo(StoresToEmit[i].second),
6363                               false, false, 0);
6364    OutChains.push_back(Val);
6365  }
6366
6367  if (!OutChains.empty())
6368    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
6369                        &OutChains[0], OutChains.size());
6370
6371  DAG.setRoot(Chain);
6372}
6373
6374void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
6375  DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(),
6376                          MVT::Other, getRoot(),
6377                          getValue(I.getArgOperand(0)),
6378                          DAG.getSrcValue(I.getArgOperand(0))));
6379}
6380
6381void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
6382  const TargetData &TD = *TLI.getTargetData();
6383  SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(),
6384                           getRoot(), getValue(I.getOperand(0)),
6385                           DAG.getSrcValue(I.getOperand(0)),
6386                           TD.getABITypeAlignment(I.getType()));
6387  setValue(&I, V);
6388  DAG.setRoot(V.getValue(1));
6389}
6390
6391void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
6392  DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(),
6393                          MVT::Other, getRoot(),
6394                          getValue(I.getArgOperand(0)),
6395                          DAG.getSrcValue(I.getArgOperand(0))));
6396}
6397
6398void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
6399  DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(),
6400                          MVT::Other, getRoot(),
6401                          getValue(I.getArgOperand(0)),
6402                          getValue(I.getArgOperand(1)),
6403                          DAG.getSrcValue(I.getArgOperand(0)),
6404                          DAG.getSrcValue(I.getArgOperand(1))));
6405}
6406
6407/// TargetLowering::LowerCallTo - This is the default LowerCallTo
6408/// implementation, which just calls LowerCall.
6409/// FIXME: When all targets are
6410/// migrated to using LowerCall, this hook should be integrated into SDISel.
6411std::pair<SDValue, SDValue>
6412TargetLowering::LowerCallTo(SDValue Chain, Type *RetTy,
6413                            bool RetSExt, bool RetZExt, bool isVarArg,
6414                            bool isInreg, unsigned NumFixedArgs,
6415                            CallingConv::ID CallConv, bool isTailCall,
6416                            bool isReturnValueUsed,
6417                            SDValue Callee,
6418                            ArgListTy &Args, SelectionDAG &DAG,
6419                            DebugLoc dl) const {
6420  // Handle all of the outgoing arguments.
6421  SmallVector<ISD::OutputArg, 32> Outs;
6422  SmallVector<SDValue, 32> OutVals;
6423  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
6424    SmallVector<EVT, 4> ValueVTs;
6425    ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
6426    for (unsigned Value = 0, NumValues = ValueVTs.size();
6427         Value != NumValues; ++Value) {
6428      EVT VT = ValueVTs[Value];
6429      Type *ArgTy = VT.getTypeForEVT(RetTy->getContext());
6430      SDValue Op = SDValue(Args[i].Node.getNode(),
6431                           Args[i].Node.getResNo() + Value);
6432      ISD::ArgFlagsTy Flags;
6433      unsigned OriginalAlignment =
6434        getTargetData()->getABITypeAlignment(ArgTy);
6435
6436      if (Args[i].isZExt)
6437        Flags.setZExt();
6438      if (Args[i].isSExt)
6439        Flags.setSExt();
6440      if (Args[i].isInReg)
6441        Flags.setInReg();
6442      if (Args[i].isSRet)
6443        Flags.setSRet();
6444      if (Args[i].isByVal) {
6445        Flags.setByVal();
6446        PointerType *Ty = cast<PointerType>(Args[i].Ty);
6447        Type *ElementTy = Ty->getElementType();
6448        Flags.setByValSize(getTargetData()->getTypeAllocSize(ElementTy));
6449        // For ByVal, alignment should come from FE.  BE will guess if this
6450        // info is not there but there are cases it cannot get right.
6451        unsigned FrameAlign;
6452        if (Args[i].Alignment)
6453          FrameAlign = Args[i].Alignment;
6454        else
6455          FrameAlign = getByValTypeAlignment(ElementTy);
6456        Flags.setByValAlign(FrameAlign);
6457      }
6458      if (Args[i].isNest)
6459        Flags.setNest();
6460      Flags.setOrigAlign(OriginalAlignment);
6461
6462      EVT PartVT = getRegisterType(RetTy->getContext(), VT);
6463      unsigned NumParts = getNumRegisters(RetTy->getContext(), VT);
6464      SmallVector<SDValue, 4> Parts(NumParts);
6465      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
6466
6467      if (Args[i].isSExt)
6468        ExtendKind = ISD::SIGN_EXTEND;
6469      else if (Args[i].isZExt)
6470        ExtendKind = ISD::ZERO_EXTEND;
6471
6472      getCopyToParts(DAG, dl, Op, &Parts[0], NumParts,
6473                     PartVT, ExtendKind);
6474
6475      for (unsigned j = 0; j != NumParts; ++j) {
6476        // if it isn't first piece, alignment must be 1
6477        ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(),
6478                               i < NumFixedArgs);
6479        if (NumParts > 1 && j == 0)
6480          MyFlags.Flags.setSplit();
6481        else if (j != 0)
6482          MyFlags.Flags.setOrigAlign(1);
6483
6484        Outs.push_back(MyFlags);
6485        OutVals.push_back(Parts[j]);
6486      }
6487    }
6488  }
6489
6490  // Handle the incoming return values from the call.
6491  SmallVector<ISD::InputArg, 32> Ins;
6492  SmallVector<EVT, 4> RetTys;
6493  ComputeValueVTs(*this, RetTy, RetTys);
6494  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6495    EVT VT = RetTys[I];
6496    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
6497    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
6498    for (unsigned i = 0; i != NumRegs; ++i) {
6499      ISD::InputArg MyFlags;
6500      MyFlags.VT = RegisterVT.getSimpleVT();
6501      MyFlags.Used = isReturnValueUsed;
6502      if (RetSExt)
6503        MyFlags.Flags.setSExt();
6504      if (RetZExt)
6505        MyFlags.Flags.setZExt();
6506      if (isInreg)
6507        MyFlags.Flags.setInReg();
6508      Ins.push_back(MyFlags);
6509    }
6510  }
6511
6512  SmallVector<SDValue, 4> InVals;
6513  Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall,
6514                    Outs, OutVals, Ins, dl, DAG, InVals);
6515
6516  // Verify that the target's LowerCall behaved as expected.
6517  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
6518         "LowerCall didn't return a valid chain!");
6519  assert((!isTailCall || InVals.empty()) &&
6520         "LowerCall emitted a return value for a tail call!");
6521  assert((isTailCall || InVals.size() == Ins.size()) &&
6522         "LowerCall didn't emit the correct number of values!");
6523
6524  // For a tail call, the return value is merely live-out and there aren't
6525  // any nodes in the DAG representing it. Return a special value to
6526  // indicate that a tail call has been emitted and no more Instructions
6527  // should be processed in the current block.
6528  if (isTailCall) {
6529    DAG.setRoot(Chain);
6530    return std::make_pair(SDValue(), SDValue());
6531  }
6532
6533  DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6534          assert(InVals[i].getNode() &&
6535                 "LowerCall emitted a null value!");
6536          assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6537                 "LowerCall emitted a value with the wrong type!");
6538        });
6539
6540  // Collect the legal value parts into potentially illegal values
6541  // that correspond to the original function's return values.
6542  ISD::NodeType AssertOp = ISD::DELETED_NODE;
6543  if (RetSExt)
6544    AssertOp = ISD::AssertSext;
6545  else if (RetZExt)
6546    AssertOp = ISD::AssertZext;
6547  SmallVector<SDValue, 4> ReturnValues;
6548  unsigned CurReg = 0;
6549  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6550    EVT VT = RetTys[I];
6551    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
6552    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
6553
6554    ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg],
6555                                            NumRegs, RegisterVT, VT,
6556                                            AssertOp));
6557    CurReg += NumRegs;
6558  }
6559
6560  // For a function returning void, there is no return value. We can't create
6561  // such a node, so we just return a null return value in that case. In
6562  // that case, nothing will actually look at the value.
6563  if (ReturnValues.empty())
6564    return std::make_pair(SDValue(), Chain);
6565
6566  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
6567                            DAG.getVTList(&RetTys[0], RetTys.size()),
6568                            &ReturnValues[0], ReturnValues.size());
6569  return std::make_pair(Res, Chain);
6570}
6571
6572void TargetLowering::LowerOperationWrapper(SDNode *N,
6573                                           SmallVectorImpl<SDValue> &Results,
6574                                           SelectionDAG &DAG) const {
6575  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
6576  if (Res.getNode())
6577    Results.push_back(Res);
6578}
6579
6580SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
6581  llvm_unreachable("LowerOperation not implemented for this target!");
6582  return SDValue();
6583}
6584
6585void
6586SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
6587  SDValue Op = getNonRegisterValue(V);
6588  assert((Op.getOpcode() != ISD::CopyFromReg ||
6589          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
6590         "Copy from a reg to the same reg!");
6591  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
6592
6593  RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
6594  SDValue Chain = DAG.getEntryNode();
6595  RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0);
6596  PendingExports.push_back(Chain);
6597}
6598
6599#include "llvm/CodeGen/SelectionDAGISel.h"
6600
6601/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
6602/// entry block, return true.  This includes arguments used by switches, since
6603/// the switch may expand into multiple basic blocks.
6604static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
6605  // With FastISel active, we may be splitting blocks, so force creation
6606  // of virtual registers for all non-dead arguments.
6607  if (FastISel)
6608    return A->use_empty();
6609
6610  const BasicBlock *Entry = A->getParent()->begin();
6611  for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end();
6612       UI != E; ++UI) {
6613    const User *U = *UI;
6614    if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U))
6615      return false;  // Use not in entry block.
6616  }
6617  return true;
6618}
6619
6620void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) {
6621  // If this is the entry block, emit arguments.
6622  const Function &F = *LLVMBB->getParent();
6623  SelectionDAG &DAG = SDB->DAG;
6624  DebugLoc dl = SDB->getCurDebugLoc();
6625  const TargetData *TD = TLI.getTargetData();
6626  SmallVector<ISD::InputArg, 16> Ins;
6627
6628  // Check whether the function can return without sret-demotion.
6629  SmallVector<ISD::OutputArg, 4> Outs;
6630  GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
6631                Outs, TLI);
6632
6633  if (!FuncInfo->CanLowerReturn) {
6634    // Put in an sret pointer parameter before all the other parameters.
6635    SmallVector<EVT, 1> ValueVTs;
6636    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6637
6638    // NOTE: Assuming that a pointer will never break down to more than one VT
6639    // or one register.
6640    ISD::ArgFlagsTy Flags;
6641    Flags.setSRet();
6642    EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]);
6643    ISD::InputArg RetArg(Flags, RegisterVT, true);
6644    Ins.push_back(RetArg);
6645  }
6646
6647  // Set up the incoming argument description vector.
6648  unsigned Idx = 1;
6649  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
6650       I != E; ++I, ++Idx) {
6651    SmallVector<EVT, 4> ValueVTs;
6652    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6653    bool isArgValueUsed = !I->use_empty();
6654    for (unsigned Value = 0, NumValues = ValueVTs.size();
6655         Value != NumValues; ++Value) {
6656      EVT VT = ValueVTs[Value];
6657      Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
6658      ISD::ArgFlagsTy Flags;
6659      unsigned OriginalAlignment =
6660        TD->getABITypeAlignment(ArgTy);
6661
6662      if (F.paramHasAttr(Idx, Attribute::ZExt))
6663        Flags.setZExt();
6664      if (F.paramHasAttr(Idx, Attribute::SExt))
6665        Flags.setSExt();
6666      if (F.paramHasAttr(Idx, Attribute::InReg))
6667        Flags.setInReg();
6668      if (F.paramHasAttr(Idx, Attribute::StructRet))
6669        Flags.setSRet();
6670      if (F.paramHasAttr(Idx, Attribute::ByVal)) {
6671        Flags.setByVal();
6672        PointerType *Ty = cast<PointerType>(I->getType());
6673        Type *ElementTy = Ty->getElementType();
6674        Flags.setByValSize(TD->getTypeAllocSize(ElementTy));
6675        // For ByVal, alignment should be passed from FE.  BE will guess if
6676        // this info is not there but there are cases it cannot get right.
6677        unsigned FrameAlign;
6678        if (F.getParamAlignment(Idx))
6679          FrameAlign = F.getParamAlignment(Idx);
6680        else
6681          FrameAlign = TLI.getByValTypeAlignment(ElementTy);
6682        Flags.setByValAlign(FrameAlign);
6683      }
6684      if (F.paramHasAttr(Idx, Attribute::Nest))
6685        Flags.setNest();
6686      Flags.setOrigAlign(OriginalAlignment);
6687
6688      EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6689      unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6690      for (unsigned i = 0; i != NumRegs; ++i) {
6691        ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed);
6692        if (NumRegs > 1 && i == 0)
6693          MyFlags.Flags.setSplit();
6694        // if it isn't first piece, alignment must be 1
6695        else if (i > 0)
6696          MyFlags.Flags.setOrigAlign(1);
6697        Ins.push_back(MyFlags);
6698      }
6699    }
6700  }
6701
6702  // Call the target to set up the argument values.
6703  SmallVector<SDValue, 8> InVals;
6704  SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
6705                                             F.isVarArg(), Ins,
6706                                             dl, DAG, InVals);
6707
6708  // Verify that the target's LowerFormalArguments behaved as expected.
6709  assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
6710         "LowerFormalArguments didn't return a valid chain!");
6711  assert(InVals.size() == Ins.size() &&
6712         "LowerFormalArguments didn't emit the correct number of values!");
6713  DEBUG({
6714      for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6715        assert(InVals[i].getNode() &&
6716               "LowerFormalArguments emitted a null value!");
6717        assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6718               "LowerFormalArguments emitted a value with the wrong type!");
6719      }
6720    });
6721
6722  // Update the DAG with the new chain value resulting from argument lowering.
6723  DAG.setRoot(NewRoot);
6724
6725  // Set up the argument values.
6726  unsigned i = 0;
6727  Idx = 1;
6728  if (!FuncInfo->CanLowerReturn) {
6729    // Create a virtual register for the sret pointer, and put in a copy
6730    // from the sret argument into it.
6731    SmallVector<EVT, 1> ValueVTs;
6732    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6733    EVT VT = ValueVTs[0];
6734    EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6735    ISD::NodeType AssertOp = ISD::DELETED_NODE;
6736    SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
6737                                        RegVT, VT, AssertOp);
6738
6739    MachineFunction& MF = SDB->DAG.getMachineFunction();
6740    MachineRegisterInfo& RegInfo = MF.getRegInfo();
6741    unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT));
6742    FuncInfo->DemoteRegister = SRetReg;
6743    NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(),
6744                                    SRetReg, ArgValue);
6745    DAG.setRoot(NewRoot);
6746
6747    // i indexes lowered arguments.  Bump it past the hidden sret argument.
6748    // Idx indexes LLVM arguments.  Don't touch it.
6749    ++i;
6750  }
6751
6752  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
6753      ++I, ++Idx) {
6754    SmallVector<SDValue, 4> ArgValues;
6755    SmallVector<EVT, 4> ValueVTs;
6756    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6757    unsigned NumValues = ValueVTs.size();
6758
6759    // If this argument is unused then remember its value. It is used to generate
6760    // debugging information.
6761    if (I->use_empty() && NumValues)
6762      SDB->setUnusedArgValue(I, InVals[i]);
6763
6764    for (unsigned Val = 0; Val != NumValues; ++Val) {
6765      EVT VT = ValueVTs[Val];
6766      EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6767      unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6768
6769      if (!I->use_empty()) {
6770        ISD::NodeType AssertOp = ISD::DELETED_NODE;
6771        if (F.paramHasAttr(Idx, Attribute::SExt))
6772          AssertOp = ISD::AssertSext;
6773        else if (F.paramHasAttr(Idx, Attribute::ZExt))
6774          AssertOp = ISD::AssertZext;
6775
6776        ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
6777                                             NumParts, PartVT, VT,
6778                                             AssertOp));
6779      }
6780
6781      i += NumParts;
6782    }
6783
6784    // We don't need to do anything else for unused arguments.
6785    if (ArgValues.empty())
6786      continue;
6787
6788    // Note down frame index.
6789    if (FrameIndexSDNode *FI =
6790	dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
6791      FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
6792
6793    SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues,
6794                                     SDB->getCurDebugLoc());
6795
6796    SDB->setValue(I, Res);
6797    if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
6798      if (LoadSDNode *LNode =
6799          dyn_cast<LoadSDNode>(Res.getOperand(0).getNode()))
6800        if (FrameIndexSDNode *FI =
6801            dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
6802        FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
6803    }
6804
6805    // If this argument is live outside of the entry block, insert a copy from
6806    // wherever we got it to the vreg that other BB's will reference it as.
6807    if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
6808      // If we can, though, try to skip creating an unnecessary vreg.
6809      // FIXME: This isn't very clean... it would be nice to make this more
6810      // general.  It's also subtly incompatible with the hacks FastISel
6811      // uses with vregs.
6812      unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
6813      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
6814        FuncInfo->ValueMap[I] = Reg;
6815        continue;
6816      }
6817    }
6818    if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) {
6819      FuncInfo->InitializeRegForValue(I);
6820      SDB->CopyToExportRegsIfNeeded(I);
6821    }
6822  }
6823
6824  assert(i == InVals.size() && "Argument register count mismatch!");
6825
6826  // Finally, if the target has anything special to do, allow it to do so.
6827  // FIXME: this should insert code into the DAG!
6828  EmitFunctionEntryCode();
6829}
6830
6831/// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
6832/// ensure constants are generated when needed.  Remember the virtual registers
6833/// that need to be added to the Machine PHI nodes as input.  We cannot just
6834/// directly add them, because expansion might result in multiple MBB's for one
6835/// BB.  As such, the start of the BB might correspond to a different MBB than
6836/// the end.
6837///
6838void
6839SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
6840  const TerminatorInst *TI = LLVMBB->getTerminator();
6841
6842  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6843
6844  // Check successor nodes' PHI nodes that expect a constant to be available
6845  // from this block.
6846  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6847    const BasicBlock *SuccBB = TI->getSuccessor(succ);
6848    if (!isa<PHINode>(SuccBB->begin())) continue;
6849    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
6850
6851    // If this terminator has multiple identical successors (common for
6852    // switches), only handle each succ once.
6853    if (!SuccsHandled.insert(SuccMBB)) continue;
6854
6855    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6856
6857    // At this point we know that there is a 1-1 correspondence between LLVM PHI
6858    // nodes and Machine PHI nodes, but the incoming operands have not been
6859    // emitted yet.
6860    for (BasicBlock::const_iterator I = SuccBB->begin();
6861         const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
6862      // Ignore dead phi's.
6863      if (PN->use_empty()) continue;
6864
6865      // Skip empty types
6866      if (PN->getType()->isEmptyTy())
6867        continue;
6868
6869      unsigned Reg;
6870      const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6871
6872      if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
6873        unsigned &RegOut = ConstantsOut[C];
6874        if (RegOut == 0) {
6875          RegOut = FuncInfo.CreateRegs(C->getType());
6876          CopyValueToVirtualRegister(C, RegOut);
6877        }
6878        Reg = RegOut;
6879      } else {
6880        DenseMap<const Value *, unsigned>::iterator I =
6881          FuncInfo.ValueMap.find(PHIOp);
6882        if (I != FuncInfo.ValueMap.end())
6883          Reg = I->second;
6884        else {
6885          assert(isa<AllocaInst>(PHIOp) &&
6886                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
6887                 "Didn't codegen value into a register!??");
6888          Reg = FuncInfo.CreateRegs(PHIOp->getType());
6889          CopyValueToVirtualRegister(PHIOp, Reg);
6890        }
6891      }
6892
6893      // Remember that this register needs to added to the machine PHI node as
6894      // the input for this MBB.
6895      SmallVector<EVT, 4> ValueVTs;
6896      ComputeValueVTs(TLI, PN->getType(), ValueVTs);
6897      for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
6898        EVT VT = ValueVTs[vti];
6899        unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
6900        for (unsigned i = 0, e = NumRegisters; i != e; ++i)
6901          FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
6902        Reg += NumRegisters;
6903      }
6904    }
6905  }
6906  ConstantsOut.clear();
6907}
6908