SelectionDAGBuilder.cpp revision 65ffec49f73d1f8856211b107712c58cc9636b78
1//===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements routines for translating from LLVM IR into SelectionDAG IR.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "SDNodeDbgValue.h"
16#include "SelectionDAGBuilder.h"
17#include "llvm/ADT/BitVector.h"
18#include "llvm/ADT/SmallSet.h"
19#include "llvm/Analysis/AliasAnalysis.h"
20#include "llvm/Analysis/ConstantFolding.h"
21#include "llvm/Constants.h"
22#include "llvm/CallingConv.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/Function.h"
25#include "llvm/GlobalVariable.h"
26#include "llvm/InlineAsm.h"
27#include "llvm/Instructions.h"
28#include "llvm/Intrinsics.h"
29#include "llvm/IntrinsicInst.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/Module.h"
32#include "llvm/CodeGen/Analysis.h"
33#include "llvm/CodeGen/FastISel.h"
34#include "llvm/CodeGen/FunctionLoweringInfo.h"
35#include "llvm/CodeGen/GCStrategy.h"
36#include "llvm/CodeGen/GCMetadata.h"
37#include "llvm/CodeGen/MachineFunction.h"
38#include "llvm/CodeGen/MachineFrameInfo.h"
39#include "llvm/CodeGen/MachineInstrBuilder.h"
40#include "llvm/CodeGen/MachineJumpTableInfo.h"
41#include "llvm/CodeGen/MachineModuleInfo.h"
42#include "llvm/CodeGen/MachineRegisterInfo.h"
43#include "llvm/CodeGen/PseudoSourceValue.h"
44#include "llvm/CodeGen/SelectionDAG.h"
45#include "llvm/Analysis/DebugInfo.h"
46#include "llvm/Target/TargetRegisterInfo.h"
47#include "llvm/Target/TargetData.h"
48#include "llvm/Target/TargetFrameInfo.h"
49#include "llvm/Target/TargetInstrInfo.h"
50#include "llvm/Target/TargetIntrinsicInfo.h"
51#include "llvm/Target/TargetLowering.h"
52#include "llvm/Target/TargetOptions.h"
53#include "llvm/Support/Compiler.h"
54#include "llvm/Support/CommandLine.h"
55#include "llvm/Support/Debug.h"
56#include "llvm/Support/ErrorHandling.h"
57#include "llvm/Support/MathExtras.h"
58#include "llvm/Support/raw_ostream.h"
59#include <algorithm>
60using namespace llvm;
61
62/// LimitFloatPrecision - Generate low-precision inline sequences for
63/// some float libcalls (6, 8 or 12 bits).
64static unsigned LimitFloatPrecision;
65
66static cl::opt<unsigned, true>
67LimitFPPrecision("limit-float-precision",
68                 cl::desc("Generate low-precision inline sequences "
69                          "for some float libcalls"),
70                 cl::location(LimitFloatPrecision),
71                 cl::init(0));
72
73static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
74                                      const SDValue *Parts, unsigned NumParts,
75                                      EVT PartVT, EVT ValueVT);
76
77/// getCopyFromParts - Create a value that contains the specified legal parts
78/// combined into the value they represent.  If the parts combine to a type
79/// larger then ValueVT then AssertOp can be used to specify whether the extra
80/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
81/// (ISD::AssertSext).
82static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL,
83                                const SDValue *Parts,
84                                unsigned NumParts, EVT PartVT, EVT ValueVT,
85                                ISD::NodeType AssertOp = ISD::DELETED_NODE) {
86  if (ValueVT.isVector())
87    return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT);
88
89  assert(NumParts > 0 && "No parts to assemble!");
90  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
91  SDValue Val = Parts[0];
92
93  if (NumParts > 1) {
94    // Assemble the value from multiple parts.
95    if (ValueVT.isInteger()) {
96      unsigned PartBits = PartVT.getSizeInBits();
97      unsigned ValueBits = ValueVT.getSizeInBits();
98
99      // Assemble the power of 2 part.
100      unsigned RoundParts = NumParts & (NumParts - 1) ?
101        1 << Log2_32(NumParts) : NumParts;
102      unsigned RoundBits = PartBits * RoundParts;
103      EVT RoundVT = RoundBits == ValueBits ?
104        ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
105      SDValue Lo, Hi;
106
107      EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
108
109      if (RoundParts > 2) {
110        Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
111                              PartVT, HalfVT);
112        Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
113                              RoundParts / 2, PartVT, HalfVT);
114      } else {
115        Lo = DAG.getNode(ISD::BIT_CONVERT, DL, HalfVT, Parts[0]);
116        Hi = DAG.getNode(ISD::BIT_CONVERT, DL, HalfVT, Parts[1]);
117      }
118
119      if (TLI.isBigEndian())
120        std::swap(Lo, Hi);
121
122      Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
123
124      if (RoundParts < NumParts) {
125        // Assemble the trailing non-power-of-2 part.
126        unsigned OddParts = NumParts - RoundParts;
127        EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
128        Hi = getCopyFromParts(DAG, DL,
129                              Parts + RoundParts, OddParts, PartVT, OddVT);
130
131        // Combine the round and odd parts.
132        Lo = Val;
133        if (TLI.isBigEndian())
134          std::swap(Lo, Hi);
135        EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
136        Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
137        Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
138                         DAG.getConstant(Lo.getValueType().getSizeInBits(),
139                                         TLI.getPointerTy()));
140        Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
141        Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
142      }
143    } else if (PartVT.isFloatingPoint()) {
144      // FP split into multiple FP parts (for ppcf128)
145      assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) &&
146             "Unexpected split");
147      SDValue Lo, Hi;
148      Lo = DAG.getNode(ISD::BIT_CONVERT, DL, EVT(MVT::f64), Parts[0]);
149      Hi = DAG.getNode(ISD::BIT_CONVERT, DL, EVT(MVT::f64), Parts[1]);
150      if (TLI.isBigEndian())
151        std::swap(Lo, Hi);
152      Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
153    } else {
154      // FP split into integer parts (soft fp)
155      assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
156             !PartVT.isVector() && "Unexpected split");
157      EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
158      Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT);
159    }
160  }
161
162  // There is now one part, held in Val.  Correct it to match ValueVT.
163  PartVT = Val.getValueType();
164
165  if (PartVT == ValueVT)
166    return Val;
167
168  if (PartVT.isInteger() && ValueVT.isInteger()) {
169    if (ValueVT.bitsLT(PartVT)) {
170      // For a truncate, see if we have any information to
171      // indicate whether the truncated bits will always be
172      // zero or sign-extension.
173      if (AssertOp != ISD::DELETED_NODE)
174        Val = DAG.getNode(AssertOp, DL, PartVT, Val,
175                          DAG.getValueType(ValueVT));
176      return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
177    }
178    return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
179  }
180
181  if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
182    // FP_ROUND's are always exact here.
183    if (ValueVT.bitsLT(Val.getValueType()))
184      return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val,
185                         DAG.getIntPtrConstant(1));
186
187    return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
188  }
189
190  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
191    return DAG.getNode(ISD::BIT_CONVERT, DL, ValueVT, Val);
192
193  llvm_unreachable("Unknown mismatch!");
194  return SDValue();
195}
196
197/// getCopyFromParts - Create a value that contains the specified legal parts
198/// combined into the value they represent.  If the parts combine to a type
199/// larger then ValueVT then AssertOp can be used to specify whether the extra
200/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
201/// (ISD::AssertSext).
202static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
203                                      const SDValue *Parts, unsigned NumParts,
204                                      EVT PartVT, EVT ValueVT) {
205  assert(ValueVT.isVector() && "Not a vector value");
206  assert(NumParts > 0 && "No parts to assemble!");
207  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
208  SDValue Val = Parts[0];
209
210  // Handle a multi-element vector.
211  if (NumParts > 1) {
212    EVT IntermediateVT, RegisterVT;
213    unsigned NumIntermediates;
214    unsigned NumRegs =
215    TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
216                               NumIntermediates, RegisterVT);
217    assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
218    NumParts = NumRegs; // Silence a compiler warning.
219    assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
220    assert(RegisterVT == Parts[0].getValueType() &&
221           "Part type doesn't match part!");
222
223    // Assemble the parts into intermediate operands.
224    SmallVector<SDValue, 8> Ops(NumIntermediates);
225    if (NumIntermediates == NumParts) {
226      // If the register was not expanded, truncate or copy the value,
227      // as appropriate.
228      for (unsigned i = 0; i != NumParts; ++i)
229        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
230                                  PartVT, IntermediateVT);
231    } else if (NumParts > 0) {
232      // If the intermediate type was expanded, build the intermediate
233      // operands from the parts.
234      assert(NumParts % NumIntermediates == 0 &&
235             "Must expand into a divisible number of parts!");
236      unsigned Factor = NumParts / NumIntermediates;
237      for (unsigned i = 0; i != NumIntermediates; ++i)
238        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
239                                  PartVT, IntermediateVT);
240    }
241
242    // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
243    // intermediate operands.
244    Val = DAG.getNode(IntermediateVT.isVector() ?
245                      ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL,
246                      ValueVT, &Ops[0], NumIntermediates);
247  }
248
249  // There is now one part, held in Val.  Correct it to match ValueVT.
250  PartVT = Val.getValueType();
251
252  if (PartVT == ValueVT)
253    return Val;
254
255  if (PartVT.isVector()) {
256    // If the element type of the source/dest vectors are the same, but the
257    // parts vector has more elements than the value vector, then we have a
258    // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
259    // elements we want.
260    if (PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
261      assert(PartVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
262             "Cannot narrow, it would be a lossy transformation");
263      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
264                         DAG.getIntPtrConstant(0));
265    }
266
267    // Vector/Vector bitcast.
268    return DAG.getNode(ISD::BIT_CONVERT, DL, ValueVT, Val);
269  }
270
271  assert(ValueVT.getVectorElementType() == PartVT &&
272         ValueVT.getVectorNumElements() == 1 &&
273         "Only trivial scalar-to-vector conversions should get here!");
274  return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
275}
276
277
278
279
280static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl,
281                                 SDValue Val, SDValue *Parts, unsigned NumParts,
282                                 EVT PartVT);
283
284/// getCopyToParts - Create a series of nodes that contain the specified value
285/// split into legal parts.  If the parts contain more bits than Val, then, for
286/// integers, ExtendKind can be used to specify how to generate the extra bits.
287static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL,
288                           SDValue Val, SDValue *Parts, unsigned NumParts,
289                           EVT PartVT,
290                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
291  EVT ValueVT = Val.getValueType();
292
293  // Handle the vector case separately.
294  if (ValueVT.isVector())
295    return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT);
296
297  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
298  unsigned PartBits = PartVT.getSizeInBits();
299  unsigned OrigNumParts = NumParts;
300  assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
301
302  if (NumParts == 0)
303    return;
304
305  assert(!ValueVT.isVector() && "Vector case handled elsewhere");
306  if (PartVT == ValueVT) {
307    assert(NumParts == 1 && "No-op copy with multiple parts!");
308    Parts[0] = Val;
309    return;
310  }
311
312  if (NumParts * PartBits > ValueVT.getSizeInBits()) {
313    // If the parts cover more bits than the value has, promote the value.
314    if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
315      assert(NumParts == 1 && "Do not know what to promote to!");
316      Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
317    } else {
318      assert(PartVT.isInteger() && ValueVT.isInteger() &&
319             "Unknown mismatch!");
320      ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
321      Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
322    }
323  } else if (PartBits == ValueVT.getSizeInBits()) {
324    // Different types of the same size.
325    assert(NumParts == 1 && PartVT != ValueVT);
326    Val = DAG.getNode(ISD::BIT_CONVERT, DL, PartVT, Val);
327  } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
328    // If the parts cover less bits than value has, truncate the value.
329    assert(PartVT.isInteger() && ValueVT.isInteger() &&
330           "Unknown mismatch!");
331    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
332    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
333  }
334
335  // The value may have changed - recompute ValueVT.
336  ValueVT = Val.getValueType();
337  assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
338         "Failed to tile the value with PartVT!");
339
340  if (NumParts == 1) {
341    assert(PartVT == ValueVT && "Type conversion failed!");
342    Parts[0] = Val;
343    return;
344  }
345
346  // Expand the value into multiple parts.
347  if (NumParts & (NumParts - 1)) {
348    // The number of parts is not a power of 2.  Split off and copy the tail.
349    assert(PartVT.isInteger() && ValueVT.isInteger() &&
350           "Do not know what to expand to!");
351    unsigned RoundParts = 1 << Log2_32(NumParts);
352    unsigned RoundBits = RoundParts * PartBits;
353    unsigned OddParts = NumParts - RoundParts;
354    SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
355                                 DAG.getIntPtrConstant(RoundBits));
356    getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT);
357
358    if (TLI.isBigEndian())
359      // The odd parts were reversed by getCopyToParts - unreverse them.
360      std::reverse(Parts + RoundParts, Parts + NumParts);
361
362    NumParts = RoundParts;
363    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
364    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
365  }
366
367  // The number of parts is a power of 2.  Repeatedly bisect the value using
368  // EXTRACT_ELEMENT.
369  Parts[0] = DAG.getNode(ISD::BIT_CONVERT, DL,
370                         EVT::getIntegerVT(*DAG.getContext(),
371                                           ValueVT.getSizeInBits()),
372                         Val);
373
374  for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
375    for (unsigned i = 0; i < NumParts; i += StepSize) {
376      unsigned ThisBits = StepSize * PartBits / 2;
377      EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
378      SDValue &Part0 = Parts[i];
379      SDValue &Part1 = Parts[i+StepSize/2];
380
381      Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
382                          ThisVT, Part0, DAG.getIntPtrConstant(1));
383      Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
384                          ThisVT, Part0, DAG.getIntPtrConstant(0));
385
386      if (ThisBits == PartBits && ThisVT != PartVT) {
387        Part0 = DAG.getNode(ISD::BIT_CONVERT, DL, PartVT, Part0);
388        Part1 = DAG.getNode(ISD::BIT_CONVERT, DL, PartVT, Part1);
389      }
390    }
391  }
392
393  if (TLI.isBigEndian())
394    std::reverse(Parts, Parts + OrigNumParts);
395}
396
397
398/// getCopyToPartsVector - Create a series of nodes that contain the specified
399/// value split into legal parts.
400static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL,
401                                 SDValue Val, SDValue *Parts, unsigned NumParts,
402                                 EVT PartVT) {
403  EVT ValueVT = Val.getValueType();
404  assert(ValueVT.isVector() && "Not a vector");
405  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
406
407  if (NumParts == 1) {
408    if (PartVT == ValueVT) {
409      // Nothing to do.
410    } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
411      // Bitconvert vector->vector case.
412      Val = DAG.getNode(ISD::BIT_CONVERT, DL, PartVT, Val);
413    } else if (PartVT.isVector() &&
414               PartVT.getVectorElementType() == ValueVT.getVectorElementType()&&
415               PartVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
416      EVT ElementVT = PartVT.getVectorElementType();
417      // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
418      // undef elements.
419      SmallVector<SDValue, 16> Ops;
420      for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
421        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
422                                  ElementVT, Val, DAG.getIntPtrConstant(i)));
423
424      for (unsigned i = ValueVT.getVectorNumElements(),
425           e = PartVT.getVectorNumElements(); i != e; ++i)
426        Ops.push_back(DAG.getUNDEF(ElementVT));
427
428      Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size());
429
430      // FIXME: Use CONCAT for 2x -> 4x.
431
432      //SDValue UndefElts = DAG.getUNDEF(VectorTy);
433      //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
434    } else {
435      // Vector -> scalar conversion.
436      assert(ValueVT.getVectorElementType() == PartVT &&
437             ValueVT.getVectorNumElements() == 1 &&
438             "Only trivial vector-to-scalar conversions should get here!");
439      Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
440                        PartVT, Val, DAG.getIntPtrConstant(0));
441    }
442
443    Parts[0] = Val;
444    return;
445  }
446
447  // Handle a multi-element vector.
448  EVT IntermediateVT, RegisterVT;
449  unsigned NumIntermediates;
450  unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
451                                                IntermediateVT,
452                                                NumIntermediates, RegisterVT);
453  unsigned NumElements = ValueVT.getVectorNumElements();
454
455  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
456  NumParts = NumRegs; // Silence a compiler warning.
457  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
458
459  // Split the vector into intermediate operands.
460  SmallVector<SDValue, 8> Ops(NumIntermediates);
461  for (unsigned i = 0; i != NumIntermediates; ++i) {
462    if (IntermediateVT.isVector())
463      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
464                           IntermediateVT, Val,
465                   DAG.getIntPtrConstant(i * (NumElements / NumIntermediates)));
466    else
467      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
468                           IntermediateVT, Val, DAG.getIntPtrConstant(i));
469  }
470
471  // Split the intermediate operands into legal parts.
472  if (NumParts == NumIntermediates) {
473    // If the register was not expanded, promote or copy the value,
474    // as appropriate.
475    for (unsigned i = 0; i != NumParts; ++i)
476      getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT);
477  } else if (NumParts > 0) {
478    // If the intermediate type was expanded, split each the value into
479    // legal parts.
480    assert(NumParts % NumIntermediates == 0 &&
481           "Must expand into a divisible number of parts!");
482    unsigned Factor = NumParts / NumIntermediates;
483    for (unsigned i = 0; i != NumIntermediates; ++i)
484      getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT);
485  }
486}
487
488
489
490
491namespace {
492  /// RegsForValue - This struct represents the registers (physical or virtual)
493  /// that a particular set of values is assigned, and the type information
494  /// about the value. The most common situation is to represent one value at a
495  /// time, but struct or array values are handled element-wise as multiple
496  /// values.  The splitting of aggregates is performed recursively, so that we
497  /// never have aggregate-typed registers. The values at this point do not
498  /// necessarily have legal types, so each value may require one or more
499  /// registers of some legal type.
500  ///
501  struct RegsForValue {
502    /// ValueVTs - The value types of the values, which may not be legal, and
503    /// may need be promoted or synthesized from one or more registers.
504    ///
505    SmallVector<EVT, 4> ValueVTs;
506
507    /// RegVTs - The value types of the registers. This is the same size as
508    /// ValueVTs and it records, for each value, what the type of the assigned
509    /// register or registers are. (Individual values are never synthesized
510    /// from more than one type of register.)
511    ///
512    /// With virtual registers, the contents of RegVTs is redundant with TLI's
513    /// getRegisterType member function, however when with physical registers
514    /// it is necessary to have a separate record of the types.
515    ///
516    SmallVector<EVT, 4> RegVTs;
517
518    /// Regs - This list holds the registers assigned to the values.
519    /// Each legal or promoted value requires one register, and each
520    /// expanded value requires multiple registers.
521    ///
522    SmallVector<unsigned, 4> Regs;
523
524    RegsForValue() {}
525
526    RegsForValue(const SmallVector<unsigned, 4> &regs,
527                 EVT regvt, EVT valuevt)
528      : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
529
530    RegsForValue(LLVMContext &Context, const TargetLowering &tli,
531                 unsigned Reg, const Type *Ty) {
532      ComputeValueVTs(tli, Ty, ValueVTs);
533
534      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
535        EVT ValueVT = ValueVTs[Value];
536        unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
537        EVT RegisterVT = tli.getRegisterType(Context, ValueVT);
538        for (unsigned i = 0; i != NumRegs; ++i)
539          Regs.push_back(Reg + i);
540        RegVTs.push_back(RegisterVT);
541        Reg += NumRegs;
542      }
543    }
544
545    /// areValueTypesLegal - Return true if types of all the values are legal.
546    bool areValueTypesLegal(const TargetLowering &TLI) {
547      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
548        EVT RegisterVT = RegVTs[Value];
549        if (!TLI.isTypeLegal(RegisterVT))
550          return false;
551      }
552      return true;
553    }
554
555    /// append - Add the specified values to this one.
556    void append(const RegsForValue &RHS) {
557      ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
558      RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
559      Regs.append(RHS.Regs.begin(), RHS.Regs.end());
560    }
561
562    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
563    /// this value and returns the result as a ValueVTs value.  This uses
564    /// Chain/Flag as the input and updates them for the output Chain/Flag.
565    /// If the Flag pointer is NULL, no flag is used.
566    SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
567                            DebugLoc dl,
568                            SDValue &Chain, SDValue *Flag) const;
569
570    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
571    /// specified value into the registers specified by this object.  This uses
572    /// Chain/Flag as the input and updates them for the output Chain/Flag.
573    /// If the Flag pointer is NULL, no flag is used.
574    void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
575                       SDValue &Chain, SDValue *Flag) const;
576
577    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
578    /// operand list.  This adds the code marker, matching input operand index
579    /// (if applicable), and includes the number of values added into it.
580    void AddInlineAsmOperands(unsigned Kind,
581                              bool HasMatching, unsigned MatchingIdx,
582                              SelectionDAG &DAG,
583                              std::vector<SDValue> &Ops) const;
584  };
585}
586
587/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
588/// this value and returns the result as a ValueVT value.  This uses
589/// Chain/Flag as the input and updates them for the output Chain/Flag.
590/// If the Flag pointer is NULL, no flag is used.
591SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
592                                      FunctionLoweringInfo &FuncInfo,
593                                      DebugLoc dl,
594                                      SDValue &Chain, SDValue *Flag) const {
595  // A Value with type {} or [0 x %t] needs no registers.
596  if (ValueVTs.empty())
597    return SDValue();
598
599  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
600
601  // Assemble the legal parts into the final values.
602  SmallVector<SDValue, 4> Values(ValueVTs.size());
603  SmallVector<SDValue, 8> Parts;
604  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
605    // Copy the legal parts from the registers.
606    EVT ValueVT = ValueVTs[Value];
607    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
608    EVT RegisterVT = RegVTs[Value];
609
610    Parts.resize(NumRegs);
611    for (unsigned i = 0; i != NumRegs; ++i) {
612      SDValue P;
613      if (Flag == 0) {
614        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
615      } else {
616        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
617        *Flag = P.getValue(2);
618      }
619
620      Chain = P.getValue(1);
621
622      // If the source register was virtual and if we know something about it,
623      // add an assert node.
624      if (TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) &&
625          RegisterVT.isInteger() && !RegisterVT.isVector()) {
626        unsigned SlotNo = Regs[Part+i]-TargetRegisterInfo::FirstVirtualRegister;
627        if (FuncInfo.LiveOutRegInfo.size() > SlotNo) {
628          const FunctionLoweringInfo::LiveOutInfo &LOI =
629            FuncInfo.LiveOutRegInfo[SlotNo];
630
631          unsigned RegSize = RegisterVT.getSizeInBits();
632          unsigned NumSignBits = LOI.NumSignBits;
633          unsigned NumZeroBits = LOI.KnownZero.countLeadingOnes();
634
635          // FIXME: We capture more information than the dag can represent.  For
636          // now, just use the tightest assertzext/assertsext possible.
637          bool isSExt = true;
638          EVT FromVT(MVT::Other);
639          if (NumSignBits == RegSize)
640            isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
641          else if (NumZeroBits >= RegSize-1)
642            isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
643          else if (NumSignBits > RegSize-8)
644            isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
645          else if (NumZeroBits >= RegSize-8)
646            isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
647          else if (NumSignBits > RegSize-16)
648            isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
649          else if (NumZeroBits >= RegSize-16)
650            isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
651          else if (NumSignBits > RegSize-32)
652            isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
653          else if (NumZeroBits >= RegSize-32)
654            isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
655
656          if (FromVT != MVT::Other)
657            P = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
658                            RegisterVT, P, DAG.getValueType(FromVT));
659        }
660      }
661
662      Parts[i] = P;
663    }
664
665    Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
666                                     NumRegs, RegisterVT, ValueVT);
667    Part += NumRegs;
668    Parts.clear();
669  }
670
671  return DAG.getNode(ISD::MERGE_VALUES, dl,
672                     DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
673                     &Values[0], ValueVTs.size());
674}
675
676/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
677/// specified value into the registers specified by this object.  This uses
678/// Chain/Flag as the input and updates them for the output Chain/Flag.
679/// If the Flag pointer is NULL, no flag is used.
680void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
681                                 SDValue &Chain, SDValue *Flag) const {
682  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
683
684  // Get the list of the values's legal parts.
685  unsigned NumRegs = Regs.size();
686  SmallVector<SDValue, 8> Parts(NumRegs);
687  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
688    EVT ValueVT = ValueVTs[Value];
689    unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
690    EVT RegisterVT = RegVTs[Value];
691
692    getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
693                   &Parts[Part], NumParts, RegisterVT);
694    Part += NumParts;
695  }
696
697  // Copy the parts into the registers.
698  SmallVector<SDValue, 8> Chains(NumRegs);
699  for (unsigned i = 0; i != NumRegs; ++i) {
700    SDValue Part;
701    if (Flag == 0) {
702      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
703    } else {
704      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
705      *Flag = Part.getValue(1);
706    }
707
708    Chains[i] = Part.getValue(0);
709  }
710
711  if (NumRegs == 1 || Flag)
712    // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
713    // flagged to it. That is the CopyToReg nodes and the user are considered
714    // a single scheduling unit. If we create a TokenFactor and return it as
715    // chain, then the TokenFactor is both a predecessor (operand) of the
716    // user as well as a successor (the TF operands are flagged to the user).
717    // c1, f1 = CopyToReg
718    // c2, f2 = CopyToReg
719    // c3     = TokenFactor c1, c2
720    // ...
721    //        = op c3, ..., f2
722    Chain = Chains[NumRegs-1];
723  else
724    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
725}
726
727/// AddInlineAsmOperands - Add this value to the specified inlineasm node
728/// operand list.  This adds the code marker and includes the number of
729/// values added into it.
730void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
731                                        unsigned MatchingIdx,
732                                        SelectionDAG &DAG,
733                                        std::vector<SDValue> &Ops) const {
734  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
735
736  unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
737  if (HasMatching)
738    Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
739  SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
740  Ops.push_back(Res);
741
742  for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
743    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
744    EVT RegisterVT = RegVTs[Value];
745    for (unsigned i = 0; i != NumRegs; ++i) {
746      assert(Reg < Regs.size() && "Mismatch in # registers expected");
747      Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
748    }
749  }
750}
751
752void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) {
753  AA = &aa;
754  GFI = gfi;
755  TD = DAG.getTarget().getTargetData();
756}
757
758/// clear - Clear out the current SelectionDAG and the associated
759/// state and prepare this SelectionDAGBuilder object to be used
760/// for a new block. This doesn't clear out information about
761/// additional blocks that are needed to complete switch lowering
762/// or PHI node updating; that information is cleared out as it is
763/// consumed.
764void SelectionDAGBuilder::clear() {
765  NodeMap.clear();
766  UnusedArgNodeMap.clear();
767  PendingLoads.clear();
768  PendingExports.clear();
769  DanglingDebugInfoMap.clear();
770  CurDebugLoc = DebugLoc();
771  HasTailCall = false;
772}
773
774/// getRoot - Return the current virtual root of the Selection DAG,
775/// flushing any PendingLoad items. This must be done before emitting
776/// a store or any other node that may need to be ordered after any
777/// prior load instructions.
778///
779SDValue SelectionDAGBuilder::getRoot() {
780  if (PendingLoads.empty())
781    return DAG.getRoot();
782
783  if (PendingLoads.size() == 1) {
784    SDValue Root = PendingLoads[0];
785    DAG.setRoot(Root);
786    PendingLoads.clear();
787    return Root;
788  }
789
790  // Otherwise, we have to make a token factor node.
791  SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
792                               &PendingLoads[0], PendingLoads.size());
793  PendingLoads.clear();
794  DAG.setRoot(Root);
795  return Root;
796}
797
798/// getControlRoot - Similar to getRoot, but instead of flushing all the
799/// PendingLoad items, flush all the PendingExports items. It is necessary
800/// to do this before emitting a terminator instruction.
801///
802SDValue SelectionDAGBuilder::getControlRoot() {
803  SDValue Root = DAG.getRoot();
804
805  if (PendingExports.empty())
806    return Root;
807
808  // Turn all of the CopyToReg chains into one factored node.
809  if (Root.getOpcode() != ISD::EntryToken) {
810    unsigned i = 0, e = PendingExports.size();
811    for (; i != e; ++i) {
812      assert(PendingExports[i].getNode()->getNumOperands() > 1);
813      if (PendingExports[i].getNode()->getOperand(0) == Root)
814        break;  // Don't add the root if we already indirectly depend on it.
815    }
816
817    if (i == e)
818      PendingExports.push_back(Root);
819  }
820
821  Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
822                     &PendingExports[0],
823                     PendingExports.size());
824  PendingExports.clear();
825  DAG.setRoot(Root);
826  return Root;
827}
828
829void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) {
830  if (DAG.GetOrdering(Node) != 0) return; // Already has ordering.
831  DAG.AssignOrdering(Node, SDNodeOrder);
832
833  for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I)
834    AssignOrderingToNode(Node->getOperand(I).getNode());
835}
836
837void SelectionDAGBuilder::visit(const Instruction &I) {
838  // Set up outgoing PHI node register values before emitting the terminator.
839  if (isa<TerminatorInst>(&I))
840    HandlePHINodesInSuccessorBlocks(I.getParent());
841
842  CurDebugLoc = I.getDebugLoc();
843
844  visit(I.getOpcode(), I);
845
846  if (!isa<TerminatorInst>(&I) && !HasTailCall)
847    CopyToExportRegsIfNeeded(&I);
848
849  CurDebugLoc = DebugLoc();
850}
851
852void SelectionDAGBuilder::visitPHI(const PHINode &) {
853  llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
854}
855
856void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
857  // Note: this doesn't use InstVisitor, because it has to work with
858  // ConstantExpr's in addition to instructions.
859  switch (Opcode) {
860  default: llvm_unreachable("Unknown instruction type encountered!");
861    // Build the switch statement using the Instruction.def file.
862#define HANDLE_INST(NUM, OPCODE, CLASS) \
863    case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break;
864#include "llvm/Instruction.def"
865  }
866
867  // Assign the ordering to the freshly created DAG nodes.
868  if (NodeMap.count(&I)) {
869    ++SDNodeOrder;
870    AssignOrderingToNode(getValue(&I).getNode());
871  }
872}
873
874// resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
875// generate the debug data structures now that we've seen its definition.
876void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
877                                                   SDValue Val) {
878  DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
879  if (DDI.getDI()) {
880    const DbgValueInst *DI = DDI.getDI();
881    DebugLoc dl = DDI.getdl();
882    unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
883    MDNode *Variable = DI->getVariable();
884    uint64_t Offset = DI->getOffset();
885    SDDbgValue *SDV;
886    if (Val.getNode()) {
887      if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) {
888        SDV = DAG.getDbgValue(Variable, Val.getNode(),
889                              Val.getResNo(), Offset, dl, DbgSDNodeOrder);
890        DAG.AddDbgValue(SDV, Val.getNode(), false);
891      }
892    } else {
893      SDV = DAG.getDbgValue(Variable, UndefValue::get(V->getType()),
894                            Offset, dl, SDNodeOrder);
895      DAG.AddDbgValue(SDV, 0, false);
896    }
897    DanglingDebugInfoMap[V] = DanglingDebugInfo();
898  }
899}
900
901// getValue - Return an SDValue for the given Value.
902SDValue SelectionDAGBuilder::getValue(const Value *V) {
903  // If we already have an SDValue for this value, use it. It's important
904  // to do this first, so that we don't create a CopyFromReg if we already
905  // have a regular SDValue.
906  SDValue &N = NodeMap[V];
907  if (N.getNode()) return N;
908
909  // If there's a virtual register allocated and initialized for this
910  // value, use it.
911  DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
912  if (It != FuncInfo.ValueMap.end()) {
913    unsigned InReg = It->second;
914    RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
915    SDValue Chain = DAG.getEntryNode();
916    return N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain,NULL);
917  }
918
919  // Otherwise create a new SDValue and remember it.
920  SDValue Val = getValueImpl(V);
921  NodeMap[V] = Val;
922  resolveDanglingDebugInfo(V, Val);
923  return Val;
924}
925
926/// getNonRegisterValue - Return an SDValue for the given Value, but
927/// don't look in FuncInfo.ValueMap for a virtual register.
928SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
929  // If we already have an SDValue for this value, use it.
930  SDValue &N = NodeMap[V];
931  if (N.getNode()) return N;
932
933  // Otherwise create a new SDValue and remember it.
934  SDValue Val = getValueImpl(V);
935  NodeMap[V] = Val;
936  resolveDanglingDebugInfo(V, Val);
937  return Val;
938}
939
940/// getValueImpl - Helper function for getValue and getNonRegisterValue.
941/// Create an SDValue for the given value.
942SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
943  if (const Constant *C = dyn_cast<Constant>(V)) {
944    EVT VT = TLI.getValueType(V->getType(), true);
945
946    if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
947      return DAG.getConstant(*CI, VT);
948
949    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
950      return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT);
951
952    if (isa<ConstantPointerNull>(C))
953      return DAG.getConstant(0, TLI.getPointerTy());
954
955    if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
956      return DAG.getConstantFP(*CFP, VT);
957
958    if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
959      return DAG.getUNDEF(VT);
960
961    if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
962      visit(CE->getOpcode(), *CE);
963      SDValue N1 = NodeMap[V];
964      assert(N1.getNode() && "visit didn't populate the NodeMap!");
965      return N1;
966    }
967
968    if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
969      SmallVector<SDValue, 4> Constants;
970      for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
971           OI != OE; ++OI) {
972        SDNode *Val = getValue(*OI).getNode();
973        // If the operand is an empty aggregate, there are no values.
974        if (!Val) continue;
975        // Add each leaf value from the operand to the Constants list
976        // to form a flattened list of all the values.
977        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
978          Constants.push_back(SDValue(Val, i));
979      }
980
981      return DAG.getMergeValues(&Constants[0], Constants.size(),
982                                getCurDebugLoc());
983    }
984
985    if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
986      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
987             "Unknown struct or array constant!");
988
989      SmallVector<EVT, 4> ValueVTs;
990      ComputeValueVTs(TLI, C->getType(), ValueVTs);
991      unsigned NumElts = ValueVTs.size();
992      if (NumElts == 0)
993        return SDValue(); // empty struct
994      SmallVector<SDValue, 4> Constants(NumElts);
995      for (unsigned i = 0; i != NumElts; ++i) {
996        EVT EltVT = ValueVTs[i];
997        if (isa<UndefValue>(C))
998          Constants[i] = DAG.getUNDEF(EltVT);
999        else if (EltVT.isFloatingPoint())
1000          Constants[i] = DAG.getConstantFP(0, EltVT);
1001        else
1002          Constants[i] = DAG.getConstant(0, EltVT);
1003      }
1004
1005      return DAG.getMergeValues(&Constants[0], NumElts,
1006                                getCurDebugLoc());
1007    }
1008
1009    if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1010      return DAG.getBlockAddress(BA, VT);
1011
1012    const VectorType *VecTy = cast<VectorType>(V->getType());
1013    unsigned NumElements = VecTy->getNumElements();
1014
1015    // Now that we know the number and type of the elements, get that number of
1016    // elements into the Ops array based on what kind of constant it is.
1017    SmallVector<SDValue, 16> Ops;
1018    if (const ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
1019      for (unsigned i = 0; i != NumElements; ++i)
1020        Ops.push_back(getValue(CP->getOperand(i)));
1021    } else {
1022      assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1023      EVT EltVT = TLI.getValueType(VecTy->getElementType());
1024
1025      SDValue Op;
1026      if (EltVT.isFloatingPoint())
1027        Op = DAG.getConstantFP(0, EltVT);
1028      else
1029        Op = DAG.getConstant(0, EltVT);
1030      Ops.assign(NumElements, Op);
1031    }
1032
1033    // Create a BUILD_VECTOR node.
1034    return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
1035                                    VT, &Ops[0], Ops.size());
1036  }
1037
1038  // If this is a static alloca, generate it as the frameindex instead of
1039  // computation.
1040  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1041    DenseMap<const AllocaInst*, int>::iterator SI =
1042      FuncInfo.StaticAllocaMap.find(AI);
1043    if (SI != FuncInfo.StaticAllocaMap.end())
1044      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
1045  }
1046
1047  // If this is an instruction which fast-isel has deferred, select it now.
1048  if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1049    unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1050    RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType());
1051    SDValue Chain = DAG.getEntryNode();
1052    return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL);
1053  }
1054
1055  llvm_unreachable("Can't get register for value!");
1056  return SDValue();
1057}
1058
1059void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1060  SDValue Chain = getControlRoot();
1061  SmallVector<ISD::OutputArg, 8> Outs;
1062  SmallVector<SDValue, 8> OutVals;
1063
1064  if (!FuncInfo.CanLowerReturn) {
1065    unsigned DemoteReg = FuncInfo.DemoteRegister;
1066    const Function *F = I.getParent()->getParent();
1067
1068    // Emit a store of the return value through the virtual register.
1069    // Leave Outs empty so that LowerReturn won't try to load return
1070    // registers the usual way.
1071    SmallVector<EVT, 1> PtrValueVTs;
1072    ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
1073                    PtrValueVTs);
1074
1075    SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
1076    SDValue RetOp = getValue(I.getOperand(0));
1077
1078    SmallVector<EVT, 4> ValueVTs;
1079    SmallVector<uint64_t, 4> Offsets;
1080    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1081    unsigned NumValues = ValueVTs.size();
1082
1083    SmallVector<SDValue, 4> Chains(NumValues);
1084    for (unsigned i = 0; i != NumValues; ++i) {
1085      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(),
1086                                RetPtr.getValueType(), RetPtr,
1087                                DAG.getIntPtrConstant(Offsets[i]));
1088      Chains[i] =
1089        DAG.getStore(Chain, getCurDebugLoc(),
1090                     SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1091                     Add, NULL, Offsets[i], false, false, 0);
1092    }
1093
1094    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
1095                        MVT::Other, &Chains[0], NumValues);
1096  } else if (I.getNumOperands() != 0) {
1097    SmallVector<EVT, 4> ValueVTs;
1098    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
1099    unsigned NumValues = ValueVTs.size();
1100    if (NumValues) {
1101      SDValue RetOp = getValue(I.getOperand(0));
1102      for (unsigned j = 0, f = NumValues; j != f; ++j) {
1103        EVT VT = ValueVTs[j];
1104
1105        ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1106
1107        const Function *F = I.getParent()->getParent();
1108        if (F->paramHasAttr(0, Attribute::SExt))
1109          ExtendKind = ISD::SIGN_EXTEND;
1110        else if (F->paramHasAttr(0, Attribute::ZExt))
1111          ExtendKind = ISD::ZERO_EXTEND;
1112
1113        // FIXME: C calling convention requires the return type to be promoted
1114        // to at least 32-bit. But this is not necessary for non-C calling
1115        // conventions. The frontend should mark functions whose return values
1116        // require promoting with signext or zeroext attributes.
1117        if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
1118          EVT MinVT = TLI.getRegisterType(*DAG.getContext(), MVT::i32);
1119          if (VT.bitsLT(MinVT))
1120            VT = MinVT;
1121        }
1122
1123        unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
1124        EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
1125        SmallVector<SDValue, 4> Parts(NumParts);
1126        getCopyToParts(DAG, getCurDebugLoc(),
1127                       SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1128                       &Parts[0], NumParts, PartVT, ExtendKind);
1129
1130        // 'inreg' on function refers to return value
1131        ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1132        if (F->paramHasAttr(0, Attribute::InReg))
1133          Flags.setInReg();
1134
1135        // Propagate extension type if any
1136        if (F->paramHasAttr(0, Attribute::SExt))
1137          Flags.setSExt();
1138        else if (F->paramHasAttr(0, Attribute::ZExt))
1139          Flags.setZExt();
1140
1141        for (unsigned i = 0; i < NumParts; ++i) {
1142          Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1143                                        /*isfixed=*/true));
1144          OutVals.push_back(Parts[i]);
1145        }
1146      }
1147    }
1148  }
1149
1150  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1151  CallingConv::ID CallConv =
1152    DAG.getMachineFunction().getFunction()->getCallingConv();
1153  Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
1154                          Outs, OutVals, getCurDebugLoc(), DAG);
1155
1156  // Verify that the target's LowerReturn behaved as expected.
1157  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1158         "LowerReturn didn't return a valid chain!");
1159
1160  // Update the DAG with the new chain value resulting from return lowering.
1161  DAG.setRoot(Chain);
1162}
1163
1164/// CopyToExportRegsIfNeeded - If the given value has virtual registers
1165/// created for it, emit nodes to copy the value into the virtual
1166/// registers.
1167void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1168  DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1169  if (VMI != FuncInfo.ValueMap.end()) {
1170    assert(!V->use_empty() && "Unused value assigned virtual registers!");
1171    CopyValueToVirtualRegister(V, VMI->second);
1172  }
1173}
1174
1175/// ExportFromCurrentBlock - If this condition isn't known to be exported from
1176/// the current basic block, add it to ValueMap now so that we'll get a
1177/// CopyTo/FromReg.
1178void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1179  // No need to export constants.
1180  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1181
1182  // Already exported?
1183  if (FuncInfo.isExportedInst(V)) return;
1184
1185  unsigned Reg = FuncInfo.InitializeRegForValue(V);
1186  CopyValueToVirtualRegister(V, Reg);
1187}
1188
1189bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1190                                                     const BasicBlock *FromBB) {
1191  // The operands of the setcc have to be in this block.  We don't know
1192  // how to export them from some other block.
1193  if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1194    // Can export from current BB.
1195    if (VI->getParent() == FromBB)
1196      return true;
1197
1198    // Is already exported, noop.
1199    return FuncInfo.isExportedInst(V);
1200  }
1201
1202  // If this is an argument, we can export it if the BB is the entry block or
1203  // if it is already exported.
1204  if (isa<Argument>(V)) {
1205    if (FromBB == &FromBB->getParent()->getEntryBlock())
1206      return true;
1207
1208    // Otherwise, can only export this if it is already exported.
1209    return FuncInfo.isExportedInst(V);
1210  }
1211
1212  // Otherwise, constants can always be exported.
1213  return true;
1214}
1215
1216static bool InBlock(const Value *V, const BasicBlock *BB) {
1217  if (const Instruction *I = dyn_cast<Instruction>(V))
1218    return I->getParent() == BB;
1219  return true;
1220}
1221
1222/// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1223/// This function emits a branch and is used at the leaves of an OR or an
1224/// AND operator tree.
1225///
1226void
1227SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1228                                                  MachineBasicBlock *TBB,
1229                                                  MachineBasicBlock *FBB,
1230                                                  MachineBasicBlock *CurBB,
1231                                                  MachineBasicBlock *SwitchBB) {
1232  const BasicBlock *BB = CurBB->getBasicBlock();
1233
1234  // If the leaf of the tree is a comparison, merge the condition into
1235  // the caseblock.
1236  if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1237    // The operands of the cmp have to be in this block.  We don't know
1238    // how to export them from some other block.  If this is the first block
1239    // of the sequence, no exporting is needed.
1240    if (CurBB == SwitchBB ||
1241        (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1242         isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1243      ISD::CondCode Condition;
1244      if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1245        Condition = getICmpCondCode(IC->getPredicate());
1246      } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1247        Condition = getFCmpCondCode(FC->getPredicate());
1248      } else {
1249        Condition = ISD::SETEQ; // silence warning.
1250        llvm_unreachable("Unknown compare instruction");
1251      }
1252
1253      CaseBlock CB(Condition, BOp->getOperand(0),
1254                   BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1255      SwitchCases.push_back(CB);
1256      return;
1257    }
1258  }
1259
1260  // Create a CaseBlock record representing this branch.
1261  CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1262               NULL, TBB, FBB, CurBB);
1263  SwitchCases.push_back(CB);
1264}
1265
1266/// FindMergedConditions - If Cond is an expression like
1267void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1268                                               MachineBasicBlock *TBB,
1269                                               MachineBasicBlock *FBB,
1270                                               MachineBasicBlock *CurBB,
1271                                               MachineBasicBlock *SwitchBB,
1272                                               unsigned Opc) {
1273  // If this node is not part of the or/and tree, emit it as a branch.
1274  const Instruction *BOp = dyn_cast<Instruction>(Cond);
1275  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1276      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1277      BOp->getParent() != CurBB->getBasicBlock() ||
1278      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1279      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1280    EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB);
1281    return;
1282  }
1283
1284  //  Create TmpBB after CurBB.
1285  MachineFunction::iterator BBI = CurBB;
1286  MachineFunction &MF = DAG.getMachineFunction();
1287  MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1288  CurBB->getParent()->insert(++BBI, TmpBB);
1289
1290  if (Opc == Instruction::Or) {
1291    // Codegen X | Y as:
1292    //   jmp_if_X TBB
1293    //   jmp TmpBB
1294    // TmpBB:
1295    //   jmp_if_Y TBB
1296    //   jmp FBB
1297    //
1298
1299    // Emit the LHS condition.
1300    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc);
1301
1302    // Emit the RHS condition into TmpBB.
1303    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1304  } else {
1305    assert(Opc == Instruction::And && "Unknown merge op!");
1306    // Codegen X & Y as:
1307    //   jmp_if_X TmpBB
1308    //   jmp FBB
1309    // TmpBB:
1310    //   jmp_if_Y TBB
1311    //   jmp FBB
1312    //
1313    //  This requires creation of TmpBB after CurBB.
1314
1315    // Emit the LHS condition.
1316    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc);
1317
1318    // Emit the RHS condition into TmpBB.
1319    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1320  }
1321}
1322
1323/// If the set of cases should be emitted as a series of branches, return true.
1324/// If we should emit this as a bunch of and/or'd together conditions, return
1325/// false.
1326bool
1327SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
1328  if (Cases.size() != 2) return true;
1329
1330  // If this is two comparisons of the same values or'd or and'd together, they
1331  // will get folded into a single comparison, so don't emit two blocks.
1332  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1333       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1334      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1335       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1336    return false;
1337  }
1338
1339  // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1340  // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1341  if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1342      Cases[0].CC == Cases[1].CC &&
1343      isa<Constant>(Cases[0].CmpRHS) &&
1344      cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1345    if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1346      return false;
1347    if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1348      return false;
1349  }
1350
1351  return true;
1352}
1353
1354void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1355  MachineBasicBlock *BrMBB = FuncInfo.MBB;
1356
1357  // Update machine-CFG edges.
1358  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1359
1360  // Figure out which block is immediately after the current one.
1361  MachineBasicBlock *NextBlock = 0;
1362  MachineFunction::iterator BBI = BrMBB;
1363  if (++BBI != FuncInfo.MF->end())
1364    NextBlock = BBI;
1365
1366  if (I.isUnconditional()) {
1367    // Update machine-CFG edges.
1368    BrMBB->addSuccessor(Succ0MBB);
1369
1370    // If this is not a fall-through branch, emit the branch.
1371    if (Succ0MBB != NextBlock)
1372      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1373                              MVT::Other, getControlRoot(),
1374                              DAG.getBasicBlock(Succ0MBB)));
1375
1376    return;
1377  }
1378
1379  // If this condition is one of the special cases we handle, do special stuff
1380  // now.
1381  const Value *CondVal = I.getCondition();
1382  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1383
1384  // If this is a series of conditions that are or'd or and'd together, emit
1385  // this as a sequence of branches instead of setcc's with and/or operations.
1386  // For example, instead of something like:
1387  //     cmp A, B
1388  //     C = seteq
1389  //     cmp D, E
1390  //     F = setle
1391  //     or C, F
1392  //     jnz foo
1393  // Emit:
1394  //     cmp A, B
1395  //     je foo
1396  //     cmp D, E
1397  //     jle foo
1398  //
1399  if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1400    if (BOp->hasOneUse() &&
1401        (BOp->getOpcode() == Instruction::And ||
1402         BOp->getOpcode() == Instruction::Or)) {
1403      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1404                           BOp->getOpcode());
1405      // If the compares in later blocks need to use values not currently
1406      // exported from this block, export them now.  This block should always
1407      // be the first entry.
1408      assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1409
1410      // Allow some cases to be rejected.
1411      if (ShouldEmitAsBranches(SwitchCases)) {
1412        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1413          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1414          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1415        }
1416
1417        // Emit the branch for this block.
1418        visitSwitchCase(SwitchCases[0], BrMBB);
1419        SwitchCases.erase(SwitchCases.begin());
1420        return;
1421      }
1422
1423      // Okay, we decided not to do this, remove any inserted MBB's and clear
1424      // SwitchCases.
1425      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1426        FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1427
1428      SwitchCases.clear();
1429    }
1430  }
1431
1432  // Create a CaseBlock record representing this branch.
1433  CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1434               NULL, Succ0MBB, Succ1MBB, BrMBB);
1435
1436  // Use visitSwitchCase to actually insert the fast branch sequence for this
1437  // cond branch.
1438  visitSwitchCase(CB, BrMBB);
1439}
1440
1441/// visitSwitchCase - Emits the necessary code to represent a single node in
1442/// the binary search tree resulting from lowering a switch instruction.
1443void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1444                                          MachineBasicBlock *SwitchBB) {
1445  SDValue Cond;
1446  SDValue CondLHS = getValue(CB.CmpLHS);
1447  DebugLoc dl = getCurDebugLoc();
1448
1449  // Build the setcc now.
1450  if (CB.CmpMHS == NULL) {
1451    // Fold "(X == true)" to X and "(X == false)" to !X to
1452    // handle common cases produced by branch lowering.
1453    if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1454        CB.CC == ISD::SETEQ)
1455      Cond = CondLHS;
1456    else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1457             CB.CC == ISD::SETEQ) {
1458      SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1459      Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1460    } else
1461      Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1462  } else {
1463    assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1464
1465    const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1466    const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
1467
1468    SDValue CmpOp = getValue(CB.CmpMHS);
1469    EVT VT = CmpOp.getValueType();
1470
1471    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1472      Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1473                          ISD::SETLE);
1474    } else {
1475      SDValue SUB = DAG.getNode(ISD::SUB, dl,
1476                                VT, CmpOp, DAG.getConstant(Low, VT));
1477      Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1478                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1479    }
1480  }
1481
1482  // Update successor info
1483  SwitchBB->addSuccessor(CB.TrueBB);
1484  SwitchBB->addSuccessor(CB.FalseBB);
1485
1486  // Set NextBlock to be the MBB immediately after the current one, if any.
1487  // This is used to avoid emitting unnecessary branches to the next block.
1488  MachineBasicBlock *NextBlock = 0;
1489  MachineFunction::iterator BBI = SwitchBB;
1490  if (++BBI != FuncInfo.MF->end())
1491    NextBlock = BBI;
1492
1493  // If the lhs block is the next block, invert the condition so that we can
1494  // fall through to the lhs instead of the rhs block.
1495  if (CB.TrueBB == NextBlock) {
1496    std::swap(CB.TrueBB, CB.FalseBB);
1497    SDValue True = DAG.getConstant(1, Cond.getValueType());
1498    Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1499  }
1500
1501  SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1502                               MVT::Other, getControlRoot(), Cond,
1503                               DAG.getBasicBlock(CB.TrueBB));
1504
1505  // Insert the false branch.
1506  if (CB.FalseBB != NextBlock)
1507    BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1508                         DAG.getBasicBlock(CB.FalseBB));
1509
1510  DAG.setRoot(BrCond);
1511}
1512
1513/// visitJumpTable - Emit JumpTable node in the current MBB
1514void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1515  // Emit the code for the jump table
1516  assert(JT.Reg != -1U && "Should lower JT Header first!");
1517  EVT PTy = TLI.getPointerTy();
1518  SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1519                                     JT.Reg, PTy);
1520  SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1521  SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(),
1522                                    MVT::Other, Index.getValue(1),
1523                                    Table, Index);
1524  DAG.setRoot(BrJumpTable);
1525}
1526
1527/// visitJumpTableHeader - This function emits necessary code to produce index
1528/// in the JumpTable from switch case.
1529void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1530                                               JumpTableHeader &JTH,
1531                                               MachineBasicBlock *SwitchBB) {
1532  // Subtract the lowest switch case value from the value being switched on and
1533  // conditional branch to default mbb if the result is greater than the
1534  // difference between smallest and largest cases.
1535  SDValue SwitchOp = getValue(JTH.SValue);
1536  EVT VT = SwitchOp.getValueType();
1537  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1538                            DAG.getConstant(JTH.First, VT));
1539
1540  // The SDNode we just created, which holds the value being switched on minus
1541  // the smallest case value, needs to be copied to a virtual register so it
1542  // can be used as an index into the jump table in a subsequent basic block.
1543  // This value may be smaller or larger than the target's pointer type, and
1544  // therefore require extension or truncating.
1545  SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy());
1546
1547  unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy());
1548  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1549                                    JumpTableReg, SwitchOp);
1550  JT.Reg = JumpTableReg;
1551
1552  // Emit the range check for the jump table, and branch to the default block
1553  // for the switch statement if the value being switched on exceeds the largest
1554  // case in the switch.
1555  SDValue CMP = DAG.getSetCC(getCurDebugLoc(),
1556                             TLI.getSetCCResultType(Sub.getValueType()), Sub,
1557                             DAG.getConstant(JTH.Last-JTH.First,VT),
1558                             ISD::SETUGT);
1559
1560  // Set NextBlock to be the MBB immediately after the current one, if any.
1561  // This is used to avoid emitting unnecessary branches to the next block.
1562  MachineBasicBlock *NextBlock = 0;
1563  MachineFunction::iterator BBI = SwitchBB;
1564
1565  if (++BBI != FuncInfo.MF->end())
1566    NextBlock = BBI;
1567
1568  SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1569                               MVT::Other, CopyTo, CMP,
1570                               DAG.getBasicBlock(JT.Default));
1571
1572  if (JT.MBB != NextBlock)
1573    BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond,
1574                         DAG.getBasicBlock(JT.MBB));
1575
1576  DAG.setRoot(BrCond);
1577}
1578
1579/// visitBitTestHeader - This function emits necessary code to produce value
1580/// suitable for "bit tests"
1581void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1582                                             MachineBasicBlock *SwitchBB) {
1583  // Subtract the minimum value
1584  SDValue SwitchOp = getValue(B.SValue);
1585  EVT VT = SwitchOp.getValueType();
1586  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1587                            DAG.getConstant(B.First, VT));
1588
1589  // Check range
1590  SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(),
1591                                  TLI.getSetCCResultType(Sub.getValueType()),
1592                                  Sub, DAG.getConstant(B.Range, VT),
1593                                  ISD::SETUGT);
1594
1595  SDValue ShiftOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(),
1596                                       TLI.getPointerTy());
1597
1598  B.Reg = FuncInfo.CreateReg(TLI.getPointerTy());
1599  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1600                                    B.Reg, ShiftOp);
1601
1602  // Set NextBlock to be the MBB immediately after the current one, if any.
1603  // This is used to avoid emitting unnecessary branches to the next block.
1604  MachineBasicBlock *NextBlock = 0;
1605  MachineFunction::iterator BBI = SwitchBB;
1606  if (++BBI != FuncInfo.MF->end())
1607    NextBlock = BBI;
1608
1609  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1610
1611  SwitchBB->addSuccessor(B.Default);
1612  SwitchBB->addSuccessor(MBB);
1613
1614  SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1615                                MVT::Other, CopyTo, RangeCmp,
1616                                DAG.getBasicBlock(B.Default));
1617
1618  if (MBB != NextBlock)
1619    BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo,
1620                          DAG.getBasicBlock(MBB));
1621
1622  DAG.setRoot(BrRange);
1623}
1624
1625/// visitBitTestCase - this function produces one "bit test"
1626void SelectionDAGBuilder::visitBitTestCase(MachineBasicBlock* NextMBB,
1627                                           unsigned Reg,
1628                                           BitTestCase &B,
1629                                           MachineBasicBlock *SwitchBB) {
1630  SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), Reg,
1631                                       TLI.getPointerTy());
1632  SDValue Cmp;
1633  if (CountPopulation_64(B.Mask) == 1) {
1634    // Testing for a single bit; just compare the shift count with what it
1635    // would need to be to shift a 1 bit in that position.
1636    Cmp = DAG.getSetCC(getCurDebugLoc(),
1637                       TLI.getSetCCResultType(ShiftOp.getValueType()),
1638                       ShiftOp,
1639                       DAG.getConstant(CountTrailingZeros_64(B.Mask),
1640                                       TLI.getPointerTy()),
1641                       ISD::SETEQ);
1642  } else {
1643    // Make desired shift
1644    SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(),
1645                                    TLI.getPointerTy(),
1646                                    DAG.getConstant(1, TLI.getPointerTy()),
1647                                    ShiftOp);
1648
1649    // Emit bit tests and jumps
1650    SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(),
1651                                TLI.getPointerTy(), SwitchVal,
1652                                DAG.getConstant(B.Mask, TLI.getPointerTy()));
1653    Cmp = DAG.getSetCC(getCurDebugLoc(),
1654                       TLI.getSetCCResultType(AndOp.getValueType()),
1655                       AndOp, DAG.getConstant(0, TLI.getPointerTy()),
1656                       ISD::SETNE);
1657  }
1658
1659  SwitchBB->addSuccessor(B.TargetBB);
1660  SwitchBB->addSuccessor(NextMBB);
1661
1662  SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1663                              MVT::Other, getControlRoot(),
1664                              Cmp, DAG.getBasicBlock(B.TargetBB));
1665
1666  // Set NextBlock to be the MBB immediately after the current one, if any.
1667  // This is used to avoid emitting unnecessary branches to the next block.
1668  MachineBasicBlock *NextBlock = 0;
1669  MachineFunction::iterator BBI = SwitchBB;
1670  if (++BBI != FuncInfo.MF->end())
1671    NextBlock = BBI;
1672
1673  if (NextMBB != NextBlock)
1674    BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd,
1675                        DAG.getBasicBlock(NextMBB));
1676
1677  DAG.setRoot(BrAnd);
1678}
1679
1680void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1681  MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
1682
1683  // Retrieve successors.
1684  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1685  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1686
1687  const Value *Callee(I.getCalledValue());
1688  if (isa<InlineAsm>(Callee))
1689    visitInlineAsm(&I);
1690  else
1691    LowerCallTo(&I, getValue(Callee), false, LandingPad);
1692
1693  // If the value of the invoke is used outside of its defining block, make it
1694  // available as a virtual register.
1695  CopyToExportRegsIfNeeded(&I);
1696
1697  // Update successor info
1698  InvokeMBB->addSuccessor(Return);
1699  InvokeMBB->addSuccessor(LandingPad);
1700
1701  // Drop into normal successor.
1702  DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1703                          MVT::Other, getControlRoot(),
1704                          DAG.getBasicBlock(Return)));
1705}
1706
1707void SelectionDAGBuilder::visitUnwind(const UnwindInst &I) {
1708}
1709
1710/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1711/// small case ranges).
1712bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
1713                                                 CaseRecVector& WorkList,
1714                                                 const Value* SV,
1715                                                 MachineBasicBlock *Default,
1716                                                 MachineBasicBlock *SwitchBB) {
1717  Case& BackCase  = *(CR.Range.second-1);
1718
1719  // Size is the number of Cases represented by this range.
1720  size_t Size = CR.Range.second - CR.Range.first;
1721  if (Size > 3)
1722    return false;
1723
1724  // Get the MachineFunction which holds the current MBB.  This is used when
1725  // inserting any additional MBBs necessary to represent the switch.
1726  MachineFunction *CurMF = FuncInfo.MF;
1727
1728  // Figure out which block is immediately after the current one.
1729  MachineBasicBlock *NextBlock = 0;
1730  MachineFunction::iterator BBI = CR.CaseBB;
1731
1732  if (++BBI != FuncInfo.MF->end())
1733    NextBlock = BBI;
1734
1735  // TODO: If any two of the cases has the same destination, and if one value
1736  // is the same as the other, but has one bit unset that the other has set,
1737  // use bit manipulation to do two compares at once.  For example:
1738  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1739
1740  // Rearrange the case blocks so that the last one falls through if possible.
1741  if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1742    // The last case block won't fall through into 'NextBlock' if we emit the
1743    // branches in this order.  See if rearranging a case value would help.
1744    for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1745      if (I->BB == NextBlock) {
1746        std::swap(*I, BackCase);
1747        break;
1748      }
1749    }
1750  }
1751
1752  // Create a CaseBlock record representing a conditional branch to
1753  // the Case's target mbb if the value being switched on SV is equal
1754  // to C.
1755  MachineBasicBlock *CurBlock = CR.CaseBB;
1756  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1757    MachineBasicBlock *FallThrough;
1758    if (I != E-1) {
1759      FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
1760      CurMF->insert(BBI, FallThrough);
1761
1762      // Put SV in a virtual register to make it available from the new blocks.
1763      ExportFromCurrentBlock(SV);
1764    } else {
1765      // If the last case doesn't match, go to the default block.
1766      FallThrough = Default;
1767    }
1768
1769    const Value *RHS, *LHS, *MHS;
1770    ISD::CondCode CC;
1771    if (I->High == I->Low) {
1772      // This is just small small case range :) containing exactly 1 case
1773      CC = ISD::SETEQ;
1774      LHS = SV; RHS = I->High; MHS = NULL;
1775    } else {
1776      CC = ISD::SETLE;
1777      LHS = I->Low; MHS = SV; RHS = I->High;
1778    }
1779    CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock);
1780
1781    // If emitting the first comparison, just call visitSwitchCase to emit the
1782    // code into the current block.  Otherwise, push the CaseBlock onto the
1783    // vector to be later processed by SDISel, and insert the node's MBB
1784    // before the next MBB.
1785    if (CurBlock == SwitchBB)
1786      visitSwitchCase(CB, SwitchBB);
1787    else
1788      SwitchCases.push_back(CB);
1789
1790    CurBlock = FallThrough;
1791  }
1792
1793  return true;
1794}
1795
1796static inline bool areJTsAllowed(const TargetLowering &TLI) {
1797  return !DisableJumpTables &&
1798          (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
1799           TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
1800}
1801
1802static APInt ComputeRange(const APInt &First, const APInt &Last) {
1803  APInt LastExt(Last), FirstExt(First);
1804  uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
1805  LastExt.sext(BitWidth); FirstExt.sext(BitWidth);
1806  return (LastExt - FirstExt + 1ULL);
1807}
1808
1809/// handleJTSwitchCase - Emit jumptable for current switch case range
1810bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec& CR,
1811                                             CaseRecVector& WorkList,
1812                                             const Value* SV,
1813                                             MachineBasicBlock* Default,
1814                                             MachineBasicBlock *SwitchBB) {
1815  Case& FrontCase = *CR.Range.first;
1816  Case& BackCase  = *(CR.Range.second-1);
1817
1818  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
1819  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
1820
1821  APInt TSize(First.getBitWidth(), 0);
1822  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1823       I!=E; ++I)
1824    TSize += I->size();
1825
1826  if (!areJTsAllowed(TLI) || TSize.ult(4))
1827    return false;
1828
1829  APInt Range = ComputeRange(First, Last);
1830  double Density = TSize.roundToDouble() / Range.roundToDouble();
1831  if (Density < 0.4)
1832    return false;
1833
1834  DEBUG(dbgs() << "Lowering jump table\n"
1835               << "First entry: " << First << ". Last entry: " << Last << '\n'
1836               << "Range: " << Range
1837               << "Size: " << TSize << ". Density: " << Density << "\n\n");
1838
1839  // Get the MachineFunction which holds the current MBB.  This is used when
1840  // inserting any additional MBBs necessary to represent the switch.
1841  MachineFunction *CurMF = FuncInfo.MF;
1842
1843  // Figure out which block is immediately after the current one.
1844  MachineFunction::iterator BBI = CR.CaseBB;
1845  ++BBI;
1846
1847  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1848
1849  // Create a new basic block to hold the code for loading the address
1850  // of the jump table, and jumping to it.  Update successor information;
1851  // we will either branch to the default case for the switch, or the jump
1852  // table.
1853  MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1854  CurMF->insert(BBI, JumpTableBB);
1855  CR.CaseBB->addSuccessor(Default);
1856  CR.CaseBB->addSuccessor(JumpTableBB);
1857
1858  // Build a vector of destination BBs, corresponding to each target
1859  // of the jump table. If the value of the jump table slot corresponds to
1860  // a case statement, push the case's BB onto the vector, otherwise, push
1861  // the default BB.
1862  std::vector<MachineBasicBlock*> DestBBs;
1863  APInt TEI = First;
1864  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
1865    const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
1866    const APInt &High = cast<ConstantInt>(I->High)->getValue();
1867
1868    if (Low.sle(TEI) && TEI.sle(High)) {
1869      DestBBs.push_back(I->BB);
1870      if (TEI==High)
1871        ++I;
1872    } else {
1873      DestBBs.push_back(Default);
1874    }
1875  }
1876
1877  // Update successor info. Add one edge to each unique successor.
1878  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
1879  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
1880         E = DestBBs.end(); I != E; ++I) {
1881    if (!SuccsHandled[(*I)->getNumber()]) {
1882      SuccsHandled[(*I)->getNumber()] = true;
1883      JumpTableBB->addSuccessor(*I);
1884    }
1885  }
1886
1887  // Create a jump table index for this jump table.
1888  unsigned JTEncoding = TLI.getJumpTableEncoding();
1889  unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
1890                       ->createJumpTableIndex(DestBBs);
1891
1892  // Set the jump table information so that we can codegen it as a second
1893  // MachineBasicBlock
1894  JumpTable JT(-1U, JTI, JumpTableBB, Default);
1895  JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
1896  if (CR.CaseBB == SwitchBB)
1897    visitJumpTableHeader(JT, JTH, SwitchBB);
1898
1899  JTCases.push_back(JumpTableBlock(JTH, JT));
1900
1901  return true;
1902}
1903
1904/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
1905/// 2 subtrees.
1906bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
1907                                                  CaseRecVector& WorkList,
1908                                                  const Value* SV,
1909                                                  MachineBasicBlock *Default,
1910                                                  MachineBasicBlock *SwitchBB) {
1911  // Get the MachineFunction which holds the current MBB.  This is used when
1912  // inserting any additional MBBs necessary to represent the switch.
1913  MachineFunction *CurMF = FuncInfo.MF;
1914
1915  // Figure out which block is immediately after the current one.
1916  MachineFunction::iterator BBI = CR.CaseBB;
1917  ++BBI;
1918
1919  Case& FrontCase = *CR.Range.first;
1920  Case& BackCase  = *(CR.Range.second-1);
1921  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1922
1923  // Size is the number of Cases represented by this range.
1924  unsigned Size = CR.Range.second - CR.Range.first;
1925
1926  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
1927  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
1928  double FMetric = 0;
1929  CaseItr Pivot = CR.Range.first + Size/2;
1930
1931  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
1932  // (heuristically) allow us to emit JumpTable's later.
1933  APInt TSize(First.getBitWidth(), 0);
1934  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1935       I!=E; ++I)
1936    TSize += I->size();
1937
1938  APInt LSize = FrontCase.size();
1939  APInt RSize = TSize-LSize;
1940  DEBUG(dbgs() << "Selecting best pivot: \n"
1941               << "First: " << First << ", Last: " << Last <<'\n'
1942               << "LSize: " << LSize << ", RSize: " << RSize << '\n');
1943  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
1944       J!=E; ++I, ++J) {
1945    const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
1946    const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
1947    APInt Range = ComputeRange(LEnd, RBegin);
1948    assert((Range - 2ULL).isNonNegative() &&
1949           "Invalid case distance");
1950    double LDensity = (double)LSize.roundToDouble() /
1951                           (LEnd - First + 1ULL).roundToDouble();
1952    double RDensity = (double)RSize.roundToDouble() /
1953                           (Last - RBegin + 1ULL).roundToDouble();
1954    double Metric = Range.logBase2()*(LDensity+RDensity);
1955    // Should always split in some non-trivial place
1956    DEBUG(dbgs() <<"=>Step\n"
1957                 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
1958                 << "LDensity: " << LDensity
1959                 << ", RDensity: " << RDensity << '\n'
1960                 << "Metric: " << Metric << '\n');
1961    if (FMetric < Metric) {
1962      Pivot = J;
1963      FMetric = Metric;
1964      DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
1965    }
1966
1967    LSize += J->size();
1968    RSize -= J->size();
1969  }
1970  if (areJTsAllowed(TLI)) {
1971    // If our case is dense we *really* should handle it earlier!
1972    assert((FMetric > 0) && "Should handle dense range earlier!");
1973  } else {
1974    Pivot = CR.Range.first + Size/2;
1975  }
1976
1977  CaseRange LHSR(CR.Range.first, Pivot);
1978  CaseRange RHSR(Pivot, CR.Range.second);
1979  Constant *C = Pivot->Low;
1980  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
1981
1982  // We know that we branch to the LHS if the Value being switched on is
1983  // less than the Pivot value, C.  We use this to optimize our binary
1984  // tree a bit, by recognizing that if SV is greater than or equal to the
1985  // LHS's Case Value, and that Case Value is exactly one less than the
1986  // Pivot's Value, then we can branch directly to the LHS's Target,
1987  // rather than creating a leaf node for it.
1988  if ((LHSR.second - LHSR.first) == 1 &&
1989      LHSR.first->High == CR.GE &&
1990      cast<ConstantInt>(C)->getValue() ==
1991      (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
1992    TrueBB = LHSR.first->BB;
1993  } else {
1994    TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1995    CurMF->insert(BBI, TrueBB);
1996    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
1997
1998    // Put SV in a virtual register to make it available from the new blocks.
1999    ExportFromCurrentBlock(SV);
2000  }
2001
2002  // Similar to the optimization above, if the Value being switched on is
2003  // known to be less than the Constant CR.LT, and the current Case Value
2004  // is CR.LT - 1, then we can branch directly to the target block for
2005  // the current Case Value, rather than emitting a RHS leaf node for it.
2006  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
2007      cast<ConstantInt>(RHSR.first->Low)->getValue() ==
2008      (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
2009    FalseBB = RHSR.first->BB;
2010  } else {
2011    FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2012    CurMF->insert(BBI, FalseBB);
2013    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
2014
2015    // Put SV in a virtual register to make it available from the new blocks.
2016    ExportFromCurrentBlock(SV);
2017  }
2018
2019  // Create a CaseBlock record representing a conditional branch to
2020  // the LHS node if the value being switched on SV is less than C.
2021  // Otherwise, branch to LHS.
2022  CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
2023
2024  if (CR.CaseBB == SwitchBB)
2025    visitSwitchCase(CB, SwitchBB);
2026  else
2027    SwitchCases.push_back(CB);
2028
2029  return true;
2030}
2031
2032/// handleBitTestsSwitchCase - if current case range has few destination and
2033/// range span less, than machine word bitwidth, encode case range into series
2034/// of masks and emit bit tests with these masks.
2035bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
2036                                                   CaseRecVector& WorkList,
2037                                                   const Value* SV,
2038                                                   MachineBasicBlock* Default,
2039                                                   MachineBasicBlock *SwitchBB){
2040  EVT PTy = TLI.getPointerTy();
2041  unsigned IntPtrBits = PTy.getSizeInBits();
2042
2043  Case& FrontCase = *CR.Range.first;
2044  Case& BackCase  = *(CR.Range.second-1);
2045
2046  // Get the MachineFunction which holds the current MBB.  This is used when
2047  // inserting any additional MBBs necessary to represent the switch.
2048  MachineFunction *CurMF = FuncInfo.MF;
2049
2050  // If target does not have legal shift left, do not emit bit tests at all.
2051  if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
2052    return false;
2053
2054  size_t numCmps = 0;
2055  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2056       I!=E; ++I) {
2057    // Single case counts one, case range - two.
2058    numCmps += (I->Low == I->High ? 1 : 2);
2059  }
2060
2061  // Count unique destinations
2062  SmallSet<MachineBasicBlock*, 4> Dests;
2063  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2064    Dests.insert(I->BB);
2065    if (Dests.size() > 3)
2066      // Don't bother the code below, if there are too much unique destinations
2067      return false;
2068  }
2069  DEBUG(dbgs() << "Total number of unique destinations: "
2070        << Dests.size() << '\n'
2071        << "Total number of comparisons: " << numCmps << '\n');
2072
2073  // Compute span of values.
2074  const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
2075  const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
2076  APInt cmpRange = maxValue - minValue;
2077
2078  DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
2079               << "Low bound: " << minValue << '\n'
2080               << "High bound: " << maxValue << '\n');
2081
2082  if (cmpRange.uge(IntPtrBits) ||
2083      (!(Dests.size() == 1 && numCmps >= 3) &&
2084       !(Dests.size() == 2 && numCmps >= 5) &&
2085       !(Dests.size() >= 3 && numCmps >= 6)))
2086    return false;
2087
2088  DEBUG(dbgs() << "Emitting bit tests\n");
2089  APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
2090
2091  // Optimize the case where all the case values fit in a
2092  // word without having to subtract minValue. In this case,
2093  // we can optimize away the subtraction.
2094  if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) {
2095    cmpRange = maxValue;
2096  } else {
2097    lowBound = minValue;
2098  }
2099
2100  CaseBitsVector CasesBits;
2101  unsigned i, count = 0;
2102
2103  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2104    MachineBasicBlock* Dest = I->BB;
2105    for (i = 0; i < count; ++i)
2106      if (Dest == CasesBits[i].BB)
2107        break;
2108
2109    if (i == count) {
2110      assert((count < 3) && "Too much destinations to test!");
2111      CasesBits.push_back(CaseBits(0, Dest, 0));
2112      count++;
2113    }
2114
2115    const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
2116    const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
2117
2118    uint64_t lo = (lowValue - lowBound).getZExtValue();
2119    uint64_t hi = (highValue - lowBound).getZExtValue();
2120
2121    for (uint64_t j = lo; j <= hi; j++) {
2122      CasesBits[i].Mask |=  1ULL << j;
2123      CasesBits[i].Bits++;
2124    }
2125
2126  }
2127  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2128
2129  BitTestInfo BTC;
2130
2131  // Figure out which block is immediately after the current one.
2132  MachineFunction::iterator BBI = CR.CaseBB;
2133  ++BBI;
2134
2135  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2136
2137  DEBUG(dbgs() << "Cases:\n");
2138  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2139    DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
2140                 << ", Bits: " << CasesBits[i].Bits
2141                 << ", BB: " << CasesBits[i].BB << '\n');
2142
2143    MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2144    CurMF->insert(BBI, CaseBB);
2145    BTC.push_back(BitTestCase(CasesBits[i].Mask,
2146                              CaseBB,
2147                              CasesBits[i].BB));
2148
2149    // Put SV in a virtual register to make it available from the new blocks.
2150    ExportFromCurrentBlock(SV);
2151  }
2152
2153  BitTestBlock BTB(lowBound, cmpRange, SV,
2154                   -1U, (CR.CaseBB == SwitchBB),
2155                   CR.CaseBB, Default, BTC);
2156
2157  if (CR.CaseBB == SwitchBB)
2158    visitBitTestHeader(BTB, SwitchBB);
2159
2160  BitTestCases.push_back(BTB);
2161
2162  return true;
2163}
2164
2165/// Clusterify - Transform simple list of Cases into list of CaseRange's
2166size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
2167                                       const SwitchInst& SI) {
2168  size_t numCmps = 0;
2169
2170  // Start with "simple" cases
2171  for (size_t i = 1; i < SI.getNumSuccessors(); ++i) {
2172    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
2173    Cases.push_back(Case(SI.getSuccessorValue(i),
2174                         SI.getSuccessorValue(i),
2175                         SMBB));
2176  }
2177  std::sort(Cases.begin(), Cases.end(), CaseCmp());
2178
2179  // Merge case into clusters
2180  if (Cases.size() >= 2)
2181    // Must recompute end() each iteration because it may be
2182    // invalidated by erase if we hold on to it
2183    for (CaseItr I = Cases.begin(), J = ++(Cases.begin()); J != Cases.end(); ) {
2184      const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
2185      const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
2186      MachineBasicBlock* nextBB = J->BB;
2187      MachineBasicBlock* currentBB = I->BB;
2188
2189      // If the two neighboring cases go to the same destination, merge them
2190      // into a single case.
2191      if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
2192        I->High = J->High;
2193        J = Cases.erase(J);
2194      } else {
2195        I = J++;
2196      }
2197    }
2198
2199  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
2200    if (I->Low != I->High)
2201      // A range counts double, since it requires two compares.
2202      ++numCmps;
2203  }
2204
2205  return numCmps;
2206}
2207
2208void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
2209  MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
2210
2211  // Figure out which block is immediately after the current one.
2212  MachineBasicBlock *NextBlock = 0;
2213  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2214
2215  // If there is only the default destination, branch to it if it is not the
2216  // next basic block.  Otherwise, just fall through.
2217  if (SI.getNumOperands() == 2) {
2218    // Update machine-CFG edges.
2219
2220    // If this is not a fall-through branch, emit the branch.
2221    SwitchMBB->addSuccessor(Default);
2222    if (Default != NextBlock)
2223      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
2224                              MVT::Other, getControlRoot(),
2225                              DAG.getBasicBlock(Default)));
2226
2227    return;
2228  }
2229
2230  // If there are any non-default case statements, create a vector of Cases
2231  // representing each one, and sort the vector so that we can efficiently
2232  // create a binary search tree from them.
2233  CaseVector Cases;
2234  size_t numCmps = Clusterify(Cases, SI);
2235  DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2236               << ". Total compares: " << numCmps << '\n');
2237  numCmps = 0;
2238
2239  // Get the Value to be switched on and default basic blocks, which will be
2240  // inserted into CaseBlock records, representing basic blocks in the binary
2241  // search tree.
2242  const Value *SV = SI.getOperand(0);
2243
2244  // Push the initial CaseRec onto the worklist
2245  CaseRecVector WorkList;
2246  WorkList.push_back(CaseRec(SwitchMBB,0,0,
2247                             CaseRange(Cases.begin(),Cases.end())));
2248
2249  while (!WorkList.empty()) {
2250    // Grab a record representing a case range to process off the worklist
2251    CaseRec CR = WorkList.back();
2252    WorkList.pop_back();
2253
2254    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2255      continue;
2256
2257    // If the range has few cases (two or less) emit a series of specific
2258    // tests.
2259    if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
2260      continue;
2261
2262    // If the switch has more than 5 blocks, and at least 40% dense, and the
2263    // target supports indirect branches, then emit a jump table rather than
2264    // lowering the switch to a binary tree of conditional branches.
2265    if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2266      continue;
2267
2268    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2269    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2270    handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
2271  }
2272}
2273
2274void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2275  MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2276
2277  // Update machine-CFG edges with unique successors.
2278  SmallVector<BasicBlock*, 32> succs;
2279  succs.reserve(I.getNumSuccessors());
2280  for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i)
2281    succs.push_back(I.getSuccessor(i));
2282  array_pod_sort(succs.begin(), succs.end());
2283  succs.erase(std::unique(succs.begin(), succs.end()), succs.end());
2284  for (unsigned i = 0, e = succs.size(); i != e; ++i)
2285    IndirectBrMBB->addSuccessor(FuncInfo.MBBMap[succs[i]]);
2286
2287  DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(),
2288                          MVT::Other, getControlRoot(),
2289                          getValue(I.getAddress())));
2290}
2291
2292void SelectionDAGBuilder::visitFSub(const User &I) {
2293  // -0.0 - X --> fneg
2294  const Type *Ty = I.getType();
2295  if (Ty->isVectorTy()) {
2296    if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) {
2297      const VectorType *DestTy = cast<VectorType>(I.getType());
2298      const Type *ElTy = DestTy->getElementType();
2299      unsigned VL = DestTy->getNumElements();
2300      std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy));
2301      Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size());
2302      if (CV == CNZ) {
2303        SDValue Op2 = getValue(I.getOperand(1));
2304        setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2305                                 Op2.getValueType(), Op2));
2306        return;
2307      }
2308    }
2309  }
2310
2311  if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
2312    if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) {
2313      SDValue Op2 = getValue(I.getOperand(1));
2314      setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2315                               Op2.getValueType(), Op2));
2316      return;
2317    }
2318
2319  visitBinary(I, ISD::FSUB);
2320}
2321
2322void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2323  SDValue Op1 = getValue(I.getOperand(0));
2324  SDValue Op2 = getValue(I.getOperand(1));
2325  setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(),
2326                           Op1.getValueType(), Op1, Op2));
2327}
2328
2329void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2330  SDValue Op1 = getValue(I.getOperand(0));
2331  SDValue Op2 = getValue(I.getOperand(1));
2332  if (!I.getType()->isVectorTy() &&
2333      Op2.getValueType() != TLI.getShiftAmountTy()) {
2334    // If the operand is smaller than the shift count type, promote it.
2335    EVT PTy = TLI.getPointerTy();
2336    EVT STy = TLI.getShiftAmountTy();
2337    if (STy.bitsGT(Op2.getValueType()))
2338      Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(),
2339                        TLI.getShiftAmountTy(), Op2);
2340    // If the operand is larger than the shift count type but the shift
2341    // count type has enough bits to represent any shift value, truncate
2342    // it now. This is a common case and it exposes the truncate to
2343    // optimization early.
2344    else if (STy.getSizeInBits() >=
2345             Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2346      Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2347                        TLI.getShiftAmountTy(), Op2);
2348    // Otherwise we'll need to temporarily settle for some other
2349    // convenient type; type legalization will make adjustments as
2350    // needed.
2351    else if (PTy.bitsLT(Op2.getValueType()))
2352      Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2353                        TLI.getPointerTy(), Op2);
2354    else if (PTy.bitsGT(Op2.getValueType()))
2355      Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(),
2356                        TLI.getPointerTy(), Op2);
2357  }
2358
2359  setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(),
2360                           Op1.getValueType(), Op1, Op2));
2361}
2362
2363void SelectionDAGBuilder::visitICmp(const User &I) {
2364  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2365  if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2366    predicate = IC->getPredicate();
2367  else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2368    predicate = ICmpInst::Predicate(IC->getPredicate());
2369  SDValue Op1 = getValue(I.getOperand(0));
2370  SDValue Op2 = getValue(I.getOperand(1));
2371  ISD::CondCode Opcode = getICmpCondCode(predicate);
2372
2373  EVT DestVT = TLI.getValueType(I.getType());
2374  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode));
2375}
2376
2377void SelectionDAGBuilder::visitFCmp(const User &I) {
2378  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2379  if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2380    predicate = FC->getPredicate();
2381  else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2382    predicate = FCmpInst::Predicate(FC->getPredicate());
2383  SDValue Op1 = getValue(I.getOperand(0));
2384  SDValue Op2 = getValue(I.getOperand(1));
2385  ISD::CondCode Condition = getFCmpCondCode(predicate);
2386  EVT DestVT = TLI.getValueType(I.getType());
2387  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition));
2388}
2389
2390void SelectionDAGBuilder::visitSelect(const User &I) {
2391  SmallVector<EVT, 4> ValueVTs;
2392  ComputeValueVTs(TLI, I.getType(), ValueVTs);
2393  unsigned NumValues = ValueVTs.size();
2394  if (NumValues == 0) return;
2395
2396  SmallVector<SDValue, 4> Values(NumValues);
2397  SDValue Cond     = getValue(I.getOperand(0));
2398  SDValue TrueVal  = getValue(I.getOperand(1));
2399  SDValue FalseVal = getValue(I.getOperand(2));
2400
2401  for (unsigned i = 0; i != NumValues; ++i)
2402    Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(),
2403                          TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2404                            Cond,
2405                            SDValue(TrueVal.getNode(),
2406                                    TrueVal.getResNo() + i),
2407                            SDValue(FalseVal.getNode(),
2408                                    FalseVal.getResNo() + i));
2409
2410  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2411                           DAG.getVTList(&ValueVTs[0], NumValues),
2412                           &Values[0], NumValues));
2413}
2414
2415void SelectionDAGBuilder::visitTrunc(const User &I) {
2416  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2417  SDValue N = getValue(I.getOperand(0));
2418  EVT DestVT = TLI.getValueType(I.getType());
2419  setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N));
2420}
2421
2422void SelectionDAGBuilder::visitZExt(const User &I) {
2423  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2424  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2425  SDValue N = getValue(I.getOperand(0));
2426  EVT DestVT = TLI.getValueType(I.getType());
2427  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N));
2428}
2429
2430void SelectionDAGBuilder::visitSExt(const User &I) {
2431  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2432  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2433  SDValue N = getValue(I.getOperand(0));
2434  EVT DestVT = TLI.getValueType(I.getType());
2435  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N));
2436}
2437
2438void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2439  // FPTrunc is never a no-op cast, no need to check
2440  SDValue N = getValue(I.getOperand(0));
2441  EVT DestVT = TLI.getValueType(I.getType());
2442  setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(),
2443                           DestVT, N, DAG.getIntPtrConstant(0)));
2444}
2445
2446void SelectionDAGBuilder::visitFPExt(const User &I){
2447  // FPTrunc is never a no-op cast, no need to check
2448  SDValue N = getValue(I.getOperand(0));
2449  EVT DestVT = TLI.getValueType(I.getType());
2450  setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N));
2451}
2452
2453void SelectionDAGBuilder::visitFPToUI(const User &I) {
2454  // FPToUI is never a no-op cast, no need to check
2455  SDValue N = getValue(I.getOperand(0));
2456  EVT DestVT = TLI.getValueType(I.getType());
2457  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N));
2458}
2459
2460void SelectionDAGBuilder::visitFPToSI(const User &I) {
2461  // FPToSI is never a no-op cast, no need to check
2462  SDValue N = getValue(I.getOperand(0));
2463  EVT DestVT = TLI.getValueType(I.getType());
2464  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N));
2465}
2466
2467void SelectionDAGBuilder::visitUIToFP(const User &I) {
2468  // UIToFP is never a no-op cast, no need to check
2469  SDValue N = getValue(I.getOperand(0));
2470  EVT DestVT = TLI.getValueType(I.getType());
2471  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N));
2472}
2473
2474void SelectionDAGBuilder::visitSIToFP(const User &I){
2475  // SIToFP is never a no-op cast, no need to check
2476  SDValue N = getValue(I.getOperand(0));
2477  EVT DestVT = TLI.getValueType(I.getType());
2478  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N));
2479}
2480
2481void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2482  // What to do depends on the size of the integer and the size of the pointer.
2483  // We can either truncate, zero extend, or no-op, accordingly.
2484  SDValue N = getValue(I.getOperand(0));
2485  EVT DestVT = TLI.getValueType(I.getType());
2486  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2487}
2488
2489void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2490  // What to do depends on the size of the integer and the size of the pointer.
2491  // We can either truncate, zero extend, or no-op, accordingly.
2492  SDValue N = getValue(I.getOperand(0));
2493  EVT DestVT = TLI.getValueType(I.getType());
2494  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2495}
2496
2497void SelectionDAGBuilder::visitBitCast(const User &I) {
2498  SDValue N = getValue(I.getOperand(0));
2499  EVT DestVT = TLI.getValueType(I.getType());
2500
2501  // BitCast assures us that source and destination are the same size so this is
2502  // either a BIT_CONVERT or a no-op.
2503  if (DestVT != N.getValueType())
2504    setValue(&I, DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
2505                             DestVT, N)); // convert types.
2506  else
2507    setValue(&I, N);            // noop cast.
2508}
2509
2510void SelectionDAGBuilder::visitInsertElement(const User &I) {
2511  SDValue InVec = getValue(I.getOperand(0));
2512  SDValue InVal = getValue(I.getOperand(1));
2513  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2514                              TLI.getPointerTy(),
2515                              getValue(I.getOperand(2)));
2516  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(),
2517                           TLI.getValueType(I.getType()),
2518                           InVec, InVal, InIdx));
2519}
2520
2521void SelectionDAGBuilder::visitExtractElement(const User &I) {
2522  SDValue InVec = getValue(I.getOperand(0));
2523  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2524                              TLI.getPointerTy(),
2525                              getValue(I.getOperand(1)));
2526  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2527                           TLI.getValueType(I.getType()), InVec, InIdx));
2528}
2529
2530// Utility for visitShuffleVector - Returns true if the mask is mask starting
2531// from SIndx and increasing to the element length (undefs are allowed).
2532static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) {
2533  unsigned MaskNumElts = Mask.size();
2534  for (unsigned i = 0; i != MaskNumElts; ++i)
2535    if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx)))
2536      return false;
2537  return true;
2538}
2539
2540void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2541  SmallVector<int, 8> Mask;
2542  SDValue Src1 = getValue(I.getOperand(0));
2543  SDValue Src2 = getValue(I.getOperand(1));
2544
2545  // Convert the ConstantVector mask operand into an array of ints, with -1
2546  // representing undef values.
2547  SmallVector<Constant*, 8> MaskElts;
2548  cast<Constant>(I.getOperand(2))->getVectorElements(MaskElts);
2549  unsigned MaskNumElts = MaskElts.size();
2550  for (unsigned i = 0; i != MaskNumElts; ++i) {
2551    if (isa<UndefValue>(MaskElts[i]))
2552      Mask.push_back(-1);
2553    else
2554      Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue());
2555  }
2556
2557  EVT VT = TLI.getValueType(I.getType());
2558  EVT SrcVT = Src1.getValueType();
2559  unsigned SrcNumElts = SrcVT.getVectorNumElements();
2560
2561  if (SrcNumElts == MaskNumElts) {
2562    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2563                                      &Mask[0]));
2564    return;
2565  }
2566
2567  // Normalize the shuffle vector since mask and vector length don't match.
2568  if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2569    // Mask is longer than the source vectors and is a multiple of the source
2570    // vectors.  We can use concatenate vector to make the mask and vectors
2571    // lengths match.
2572    if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) {
2573      // The shuffle is concatenating two vectors together.
2574      setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2575                               VT, Src1, Src2));
2576      return;
2577    }
2578
2579    // Pad both vectors with undefs to make them the same length as the mask.
2580    unsigned NumConcat = MaskNumElts / SrcNumElts;
2581    bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2582    bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2583    SDValue UndefVal = DAG.getUNDEF(SrcVT);
2584
2585    SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2586    SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2587    MOps1[0] = Src1;
2588    MOps2[0] = Src2;
2589
2590    Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2591                                                  getCurDebugLoc(), VT,
2592                                                  &MOps1[0], NumConcat);
2593    Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2594                                                  getCurDebugLoc(), VT,
2595                                                  &MOps2[0], NumConcat);
2596
2597    // Readjust mask for new input vector length.
2598    SmallVector<int, 8> MappedOps;
2599    for (unsigned i = 0; i != MaskNumElts; ++i) {
2600      int Idx = Mask[i];
2601      if (Idx < (int)SrcNumElts)
2602        MappedOps.push_back(Idx);
2603      else
2604        MappedOps.push_back(Idx + MaskNumElts - SrcNumElts);
2605    }
2606
2607    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2608                                      &MappedOps[0]));
2609    return;
2610  }
2611
2612  if (SrcNumElts > MaskNumElts) {
2613    // Analyze the access pattern of the vector to see if we can extract
2614    // two subvectors and do the shuffle. The analysis is done by calculating
2615    // the range of elements the mask access on both vectors.
2616    int MinRange[2] = { SrcNumElts+1, SrcNumElts+1};
2617    int MaxRange[2] = {-1, -1};
2618
2619    for (unsigned i = 0; i != MaskNumElts; ++i) {
2620      int Idx = Mask[i];
2621      int Input = 0;
2622      if (Idx < 0)
2623        continue;
2624
2625      if (Idx >= (int)SrcNumElts) {
2626        Input = 1;
2627        Idx -= SrcNumElts;
2628      }
2629      if (Idx > MaxRange[Input])
2630        MaxRange[Input] = Idx;
2631      if (Idx < MinRange[Input])
2632        MinRange[Input] = Idx;
2633    }
2634
2635    // Check if the access is smaller than the vector size and can we find
2636    // a reasonable extract index.
2637    int RangeUse[2] = { 2, 2 };  // 0 = Unused, 1 = Extract, 2 = Can not
2638                                 // Extract.
2639    int StartIdx[2];  // StartIdx to extract from
2640    for (int Input=0; Input < 2; ++Input) {
2641      if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) {
2642        RangeUse[Input] = 0; // Unused
2643        StartIdx[Input] = 0;
2644      } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) {
2645        // Fits within range but we should see if we can find a good
2646        // start index that is a multiple of the mask length.
2647        if (MaxRange[Input] < (int)MaskNumElts) {
2648          RangeUse[Input] = 1; // Extract from beginning of the vector
2649          StartIdx[Input] = 0;
2650        } else {
2651          StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2652          if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2653              StartIdx[Input] + MaskNumElts < SrcNumElts)
2654            RangeUse[Input] = 1; // Extract from a multiple of the mask length.
2655        }
2656      }
2657    }
2658
2659    if (RangeUse[0] == 0 && RangeUse[1] == 0) {
2660      setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
2661      return;
2662    }
2663    else if (RangeUse[0] < 2 && RangeUse[1] < 2) {
2664      // Extract appropriate subvector and generate a vector shuffle
2665      for (int Input=0; Input < 2; ++Input) {
2666        SDValue &Src = Input == 0 ? Src1 : Src2;
2667        if (RangeUse[Input] == 0)
2668          Src = DAG.getUNDEF(VT);
2669        else
2670          Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT,
2671                            Src, DAG.getIntPtrConstant(StartIdx[Input]));
2672      }
2673
2674      // Calculate new mask.
2675      SmallVector<int, 8> MappedOps;
2676      for (unsigned i = 0; i != MaskNumElts; ++i) {
2677        int Idx = Mask[i];
2678        if (Idx < 0)
2679          MappedOps.push_back(Idx);
2680        else if (Idx < (int)SrcNumElts)
2681          MappedOps.push_back(Idx - StartIdx[0]);
2682        else
2683          MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts);
2684      }
2685
2686      setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2687                                        &MappedOps[0]));
2688      return;
2689    }
2690  }
2691
2692  // We can't use either concat vectors or extract subvectors so fall back to
2693  // replacing the shuffle with extract and build vector.
2694  // to insert and build vector.
2695  EVT EltVT = VT.getVectorElementType();
2696  EVT PtrVT = TLI.getPointerTy();
2697  SmallVector<SDValue,8> Ops;
2698  for (unsigned i = 0; i != MaskNumElts; ++i) {
2699    if (Mask[i] < 0) {
2700      Ops.push_back(DAG.getUNDEF(EltVT));
2701    } else {
2702      int Idx = Mask[i];
2703      SDValue Res;
2704
2705      if (Idx < (int)SrcNumElts)
2706        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2707                          EltVT, Src1, DAG.getConstant(Idx, PtrVT));
2708      else
2709        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2710                          EltVT, Src2,
2711                          DAG.getConstant(Idx - SrcNumElts, PtrVT));
2712
2713      Ops.push_back(Res);
2714    }
2715  }
2716
2717  setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
2718                           VT, &Ops[0], Ops.size()));
2719}
2720
2721void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
2722  const Value *Op0 = I.getOperand(0);
2723  const Value *Op1 = I.getOperand(1);
2724  const Type *AggTy = I.getType();
2725  const Type *ValTy = Op1->getType();
2726  bool IntoUndef = isa<UndefValue>(Op0);
2727  bool FromUndef = isa<UndefValue>(Op1);
2728
2729  unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
2730                                            I.idx_begin(), I.idx_end());
2731
2732  SmallVector<EVT, 4> AggValueVTs;
2733  ComputeValueVTs(TLI, AggTy, AggValueVTs);
2734  SmallVector<EVT, 4> ValValueVTs;
2735  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2736
2737  unsigned NumAggValues = AggValueVTs.size();
2738  unsigned NumValValues = ValValueVTs.size();
2739  SmallVector<SDValue, 4> Values(NumAggValues);
2740
2741  SDValue Agg = getValue(Op0);
2742  SDValue Val = getValue(Op1);
2743  unsigned i = 0;
2744  // Copy the beginning value(s) from the original aggregate.
2745  for (; i != LinearIndex; ++i)
2746    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2747                SDValue(Agg.getNode(), Agg.getResNo() + i);
2748  // Copy values from the inserted value(s).
2749  for (; i != LinearIndex + NumValValues; ++i)
2750    Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2751                SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
2752  // Copy remaining value(s) from the original aggregate.
2753  for (; i != NumAggValues; ++i)
2754    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2755                SDValue(Agg.getNode(), Agg.getResNo() + i);
2756
2757  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2758                           DAG.getVTList(&AggValueVTs[0], NumAggValues),
2759                           &Values[0], NumAggValues));
2760}
2761
2762void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
2763  const Value *Op0 = I.getOperand(0);
2764  const Type *AggTy = Op0->getType();
2765  const Type *ValTy = I.getType();
2766  bool OutOfUndef = isa<UndefValue>(Op0);
2767
2768  unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
2769                                            I.idx_begin(), I.idx_end());
2770
2771  SmallVector<EVT, 4> ValValueVTs;
2772  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2773
2774  unsigned NumValValues = ValValueVTs.size();
2775  SmallVector<SDValue, 4> Values(NumValValues);
2776
2777  SDValue Agg = getValue(Op0);
2778  // Copy out the selected value(s).
2779  for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
2780    Values[i - LinearIndex] =
2781      OutOfUndef ?
2782        DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
2783        SDValue(Agg.getNode(), Agg.getResNo() + i);
2784
2785  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2786                           DAG.getVTList(&ValValueVTs[0], NumValValues),
2787                           &Values[0], NumValValues));
2788}
2789
2790void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
2791  SDValue N = getValue(I.getOperand(0));
2792  const Type *Ty = I.getOperand(0)->getType();
2793
2794  for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
2795       OI != E; ++OI) {
2796    const Value *Idx = *OI;
2797    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2798      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2799      if (Field) {
2800        // N = N + Offset
2801        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
2802        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2803                        DAG.getIntPtrConstant(Offset));
2804      }
2805
2806      Ty = StTy->getElementType(Field);
2807    } else {
2808      Ty = cast<SequentialType>(Ty)->getElementType();
2809
2810      // If this is a constant subscript, handle it quickly.
2811      if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2812        if (CI->isZero()) continue;
2813        uint64_t Offs =
2814            TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
2815        SDValue OffsVal;
2816        EVT PTy = TLI.getPointerTy();
2817        unsigned PtrBits = PTy.getSizeInBits();
2818        if (PtrBits < 64)
2819          OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2820                                TLI.getPointerTy(),
2821                                DAG.getConstant(Offs, MVT::i64));
2822        else
2823          OffsVal = DAG.getIntPtrConstant(Offs);
2824
2825        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2826                        OffsVal);
2827        continue;
2828      }
2829
2830      // N = N + Idx * ElementSize;
2831      APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
2832                                TD->getTypeAllocSize(Ty));
2833      SDValue IdxN = getValue(Idx);
2834
2835      // If the index is smaller or larger than intptr_t, truncate or extend
2836      // it.
2837      IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType());
2838
2839      // If this is a multiply by a power of two, turn it into a shl
2840      // immediately.  This is a very common case.
2841      if (ElementSize != 1) {
2842        if (ElementSize.isPowerOf2()) {
2843          unsigned Amt = ElementSize.logBase2();
2844          IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(),
2845                             N.getValueType(), IdxN,
2846                             DAG.getConstant(Amt, TLI.getPointerTy()));
2847        } else {
2848          SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy());
2849          IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(),
2850                             N.getValueType(), IdxN, Scale);
2851        }
2852      }
2853
2854      N = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2855                      N.getValueType(), N, IdxN);
2856    }
2857  }
2858
2859  setValue(&I, N);
2860}
2861
2862void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
2863  // If this is a fixed sized alloca in the entry block of the function,
2864  // allocate it statically on the stack.
2865  if (FuncInfo.StaticAllocaMap.count(&I))
2866    return;   // getValue will auto-populate this.
2867
2868  const Type *Ty = I.getAllocatedType();
2869  uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
2870  unsigned Align =
2871    std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
2872             I.getAlignment());
2873
2874  SDValue AllocSize = getValue(I.getArraySize());
2875
2876  EVT IntPtr = TLI.getPointerTy();
2877  if (AllocSize.getValueType() != IntPtr)
2878    AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr);
2879
2880  AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr,
2881                          AllocSize,
2882                          DAG.getConstant(TySize, IntPtr));
2883
2884  // Handle alignment.  If the requested alignment is less than or equal to
2885  // the stack alignment, ignore it.  If the size is greater than or equal to
2886  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
2887  unsigned StackAlign = TM.getFrameInfo()->getStackAlignment();
2888  if (Align <= StackAlign)
2889    Align = 0;
2890
2891  // Round the size of the allocation up to the stack alignment size
2892  // by add SA-1 to the size.
2893  AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2894                          AllocSize.getValueType(), AllocSize,
2895                          DAG.getIntPtrConstant(StackAlign-1));
2896
2897  // Mask out the low bits for alignment purposes.
2898  AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(),
2899                          AllocSize.getValueType(), AllocSize,
2900                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
2901
2902  SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
2903  SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
2904  SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(),
2905                            VTs, Ops, 3);
2906  setValue(&I, DSA);
2907  DAG.setRoot(DSA.getValue(1));
2908
2909  // Inform the Frame Information that we have just allocated a variable-sized
2910  // object.
2911  FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1);
2912}
2913
2914void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
2915  const Value *SV = I.getOperand(0);
2916  SDValue Ptr = getValue(SV);
2917
2918  const Type *Ty = I.getType();
2919
2920  bool isVolatile = I.isVolatile();
2921  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
2922  unsigned Alignment = I.getAlignment();
2923
2924  SmallVector<EVT, 4> ValueVTs;
2925  SmallVector<uint64_t, 4> Offsets;
2926  ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
2927  unsigned NumValues = ValueVTs.size();
2928  if (NumValues == 0)
2929    return;
2930
2931  SDValue Root;
2932  bool ConstantMemory = false;
2933  if (I.isVolatile())
2934    // Serialize volatile loads with other side effects.
2935    Root = getRoot();
2936  else if (AA->pointsToConstantMemory(SV)) {
2937    // Do not serialize (non-volatile) loads of constant memory with anything.
2938    Root = DAG.getEntryNode();
2939    ConstantMemory = true;
2940  } else {
2941    // Do not serialize non-volatile loads against each other.
2942    Root = DAG.getRoot();
2943  }
2944
2945  SmallVector<SDValue, 4> Values(NumValues);
2946  SmallVector<SDValue, 4> Chains(NumValues);
2947  EVT PtrVT = Ptr.getValueType();
2948  for (unsigned i = 0; i != NumValues; ++i) {
2949    SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2950                            PtrVT, Ptr,
2951                            DAG.getConstant(Offsets[i], PtrVT));
2952    SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root,
2953                            A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
2954                            isNonTemporal, Alignment);
2955
2956    Values[i] = L;
2957    Chains[i] = L.getValue(1);
2958  }
2959
2960  if (!ConstantMemory) {
2961    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
2962                                MVT::Other, &Chains[0], NumValues);
2963    if (isVolatile)
2964      DAG.setRoot(Chain);
2965    else
2966      PendingLoads.push_back(Chain);
2967  }
2968
2969  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2970                           DAG.getVTList(&ValueVTs[0], NumValues),
2971                           &Values[0], NumValues));
2972}
2973
2974void SelectionDAGBuilder::visitStore(const StoreInst &I) {
2975  const Value *SrcV = I.getOperand(0);
2976  const Value *PtrV = I.getOperand(1);
2977
2978  SmallVector<EVT, 4> ValueVTs;
2979  SmallVector<uint64_t, 4> Offsets;
2980  ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
2981  unsigned NumValues = ValueVTs.size();
2982  if (NumValues == 0)
2983    return;
2984
2985  // Get the lowered operands. Note that we do this after
2986  // checking if NumResults is zero, because with zero results
2987  // the operands won't have values in the map.
2988  SDValue Src = getValue(SrcV);
2989  SDValue Ptr = getValue(PtrV);
2990
2991  SDValue Root = getRoot();
2992  SmallVector<SDValue, 4> Chains(NumValues);
2993  EVT PtrVT = Ptr.getValueType();
2994  bool isVolatile = I.isVolatile();
2995  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
2996  unsigned Alignment = I.getAlignment();
2997
2998  for (unsigned i = 0; i != NumValues; ++i) {
2999    SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr,
3000                              DAG.getConstant(Offsets[i], PtrVT));
3001    Chains[i] = DAG.getStore(Root, getCurDebugLoc(),
3002                             SDValue(Src.getNode(), Src.getResNo() + i),
3003                             Add, PtrV, Offsets[i], isVolatile,
3004                             isNonTemporal, Alignment);
3005  }
3006
3007  DAG.setRoot(DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3008                          MVT::Other, &Chains[0], NumValues));
3009}
3010
3011/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3012/// node.
3013void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3014                                               unsigned Intrinsic) {
3015  bool HasChain = !I.doesNotAccessMemory();
3016  bool OnlyLoad = HasChain && I.onlyReadsMemory();
3017
3018  // Build the operand list.
3019  SmallVector<SDValue, 8> Ops;
3020  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
3021    if (OnlyLoad) {
3022      // We don't need to serialize loads against other loads.
3023      Ops.push_back(DAG.getRoot());
3024    } else {
3025      Ops.push_back(getRoot());
3026    }
3027  }
3028
3029  // Info is set by getTgtMemInstrinsic
3030  TargetLowering::IntrinsicInfo Info;
3031  bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
3032
3033  // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3034  if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
3035      Info.opc == ISD::INTRINSIC_W_CHAIN)
3036    Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
3037
3038  // Add all operands of the call to the operand list.
3039  for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
3040    SDValue Op = getValue(I.getArgOperand(i));
3041    assert(TLI.isTypeLegal(Op.getValueType()) &&
3042           "Intrinsic uses a non-legal type?");
3043    Ops.push_back(Op);
3044  }
3045
3046  SmallVector<EVT, 4> ValueVTs;
3047  ComputeValueVTs(TLI, I.getType(), ValueVTs);
3048#ifndef NDEBUG
3049  for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) {
3050    assert(TLI.isTypeLegal(ValueVTs[Val]) &&
3051           "Intrinsic uses a non-legal type?");
3052  }
3053#endif // NDEBUG
3054
3055  if (HasChain)
3056    ValueVTs.push_back(MVT::Other);
3057
3058  SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
3059
3060  // Create the node.
3061  SDValue Result;
3062  if (IsTgtIntrinsic) {
3063    // This is target intrinsic that touches memory
3064    Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(),
3065                                     VTs, &Ops[0], Ops.size(),
3066                                     Info.memVT,
3067                                   MachinePointerInfo(Info.ptrVal, Info.offset),
3068                                     Info.align, Info.vol,
3069                                     Info.readMem, Info.writeMem);
3070  } else if (!HasChain) {
3071    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
3072                         VTs, &Ops[0], Ops.size());
3073  } else if (!I.getType()->isVoidTy()) {
3074    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
3075                         VTs, &Ops[0], Ops.size());
3076  } else {
3077    Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(),
3078                         VTs, &Ops[0], Ops.size());
3079  }
3080
3081  if (HasChain) {
3082    SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3083    if (OnlyLoad)
3084      PendingLoads.push_back(Chain);
3085    else
3086      DAG.setRoot(Chain);
3087  }
3088
3089  if (!I.getType()->isVoidTy()) {
3090    if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3091      EVT VT = TLI.getValueType(PTy);
3092      Result = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), VT, Result);
3093    }
3094
3095    setValue(&I, Result);
3096  }
3097}
3098
3099/// GetSignificand - Get the significand and build it into a floating-point
3100/// number with exponent of 1:
3101///
3102///   Op = (Op & 0x007fffff) | 0x3f800000;
3103///
3104/// where Op is the hexidecimal representation of floating point value.
3105static SDValue
3106GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) {
3107  SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3108                           DAG.getConstant(0x007fffff, MVT::i32));
3109  SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3110                           DAG.getConstant(0x3f800000, MVT::i32));
3111  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t2);
3112}
3113
3114/// GetExponent - Get the exponent:
3115///
3116///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3117///
3118/// where Op is the hexidecimal representation of floating point value.
3119static SDValue
3120GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3121            DebugLoc dl) {
3122  SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3123                           DAG.getConstant(0x7f800000, MVT::i32));
3124  SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3125                           DAG.getConstant(23, TLI.getPointerTy()));
3126  SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3127                           DAG.getConstant(127, MVT::i32));
3128  return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3129}
3130
3131/// getF32Constant - Get 32-bit floating point constant.
3132static SDValue
3133getF32Constant(SelectionDAG &DAG, unsigned Flt) {
3134  return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32);
3135}
3136
3137/// Inlined utility function to implement binary input atomic intrinsics for
3138/// visitIntrinsicCall: I is a call instruction
3139///                     Op is the associated NodeType for I
3140const char *
3141SelectionDAGBuilder::implVisitBinaryAtomic(const CallInst& I,
3142                                           ISD::NodeType Op) {
3143  SDValue Root = getRoot();
3144  SDValue L =
3145    DAG.getAtomic(Op, getCurDebugLoc(),
3146                  getValue(I.getArgOperand(1)).getValueType().getSimpleVT(),
3147                  Root,
3148                  getValue(I.getArgOperand(0)),
3149                  getValue(I.getArgOperand(1)),
3150                  I.getArgOperand(0));
3151  setValue(&I, L);
3152  DAG.setRoot(L.getValue(1));
3153  return 0;
3154}
3155
3156// implVisitAluOverflow - Lower arithmetic overflow instrinsics.
3157const char *
3158SelectionDAGBuilder::implVisitAluOverflow(const CallInst &I, ISD::NodeType Op) {
3159  SDValue Op1 = getValue(I.getArgOperand(0));
3160  SDValue Op2 = getValue(I.getArgOperand(1));
3161
3162  SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
3163  setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2));
3164  return 0;
3165}
3166
3167/// visitExp - Lower an exp intrinsic. Handles the special sequences for
3168/// limited-precision mode.
3169void
3170SelectionDAGBuilder::visitExp(const CallInst &I) {
3171  SDValue result;
3172  DebugLoc dl = getCurDebugLoc();
3173
3174  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3175      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3176    SDValue Op = getValue(I.getArgOperand(0));
3177
3178    // Put the exponent in the right bit position for later addition to the
3179    // final result:
3180    //
3181    //   #define LOG2OFe 1.4426950f
3182    //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3183    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3184                             getF32Constant(DAG, 0x3fb8aa3b));
3185    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3186
3187    //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3188    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3189    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3190
3191    //   IntegerPartOfX <<= 23;
3192    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3193                                 DAG.getConstant(23, TLI.getPointerTy()));
3194
3195    if (LimitFloatPrecision <= 6) {
3196      // For floating-point precision of 6:
3197      //
3198      //   TwoToFractionalPartOfX =
3199      //     0.997535578f +
3200      //       (0.735607626f + 0.252464424f * x) * x;
3201      //
3202      // error 0.0144103317, which is 6 bits
3203      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3204                               getF32Constant(DAG, 0x3e814304));
3205      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3206                               getF32Constant(DAG, 0x3f3c50c8));
3207      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3208      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3209                               getF32Constant(DAG, 0x3f7f5e7e));
3210      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t5);
3211
3212      // Add the exponent into the result in integer domain.
3213      SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3214                               TwoToFracPartOfX, IntegerPartOfX);
3215
3216      result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t6);
3217    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3218      // For floating-point precision of 12:
3219      //
3220      //   TwoToFractionalPartOfX =
3221      //     0.999892986f +
3222      //       (0.696457318f +
3223      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3224      //
3225      // 0.000107046256 error, which is 13 to 14 bits
3226      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3227                               getF32Constant(DAG, 0x3da235e3));
3228      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3229                               getF32Constant(DAG, 0x3e65b8f3));
3230      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3231      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3232                               getF32Constant(DAG, 0x3f324b07));
3233      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3234      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3235                               getF32Constant(DAG, 0x3f7ff8fd));
3236      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t7);
3237
3238      // Add the exponent into the result in integer domain.
3239      SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3240                               TwoToFracPartOfX, IntegerPartOfX);
3241
3242      result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t8);
3243    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3244      // For floating-point precision of 18:
3245      //
3246      //   TwoToFractionalPartOfX =
3247      //     0.999999982f +
3248      //       (0.693148872f +
3249      //         (0.240227044f +
3250      //           (0.554906021e-1f +
3251      //             (0.961591928e-2f +
3252      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3253      //
3254      // error 2.47208000*10^(-7), which is better than 18 bits
3255      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3256                               getF32Constant(DAG, 0x3924b03e));
3257      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3258                               getF32Constant(DAG, 0x3ab24b87));
3259      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3260      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3261                               getF32Constant(DAG, 0x3c1d8c17));
3262      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3263      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3264                               getF32Constant(DAG, 0x3d634a1d));
3265      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3266      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3267                               getF32Constant(DAG, 0x3e75fe14));
3268      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3269      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3270                                getF32Constant(DAG, 0x3f317234));
3271      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3272      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3273                                getF32Constant(DAG, 0x3f800000));
3274      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,
3275                                             MVT::i32, t13);
3276
3277      // Add the exponent into the result in integer domain.
3278      SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3279                                TwoToFracPartOfX, IntegerPartOfX);
3280
3281      result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t14);
3282    }
3283  } else {
3284    // No special expansion.
3285    result = DAG.getNode(ISD::FEXP, dl,
3286                         getValue(I.getArgOperand(0)).getValueType(),
3287                         getValue(I.getArgOperand(0)));
3288  }
3289
3290  setValue(&I, result);
3291}
3292
3293/// visitLog - Lower a log intrinsic. Handles the special sequences for
3294/// limited-precision mode.
3295void
3296SelectionDAGBuilder::visitLog(const CallInst &I) {
3297  SDValue result;
3298  DebugLoc dl = getCurDebugLoc();
3299
3300  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3301      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3302    SDValue Op = getValue(I.getArgOperand(0));
3303    SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
3304
3305    // Scale the exponent by log(2) [0.69314718f].
3306    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3307    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3308                                        getF32Constant(DAG, 0x3f317218));
3309
3310    // Get the significand and build it into a floating-point number with
3311    // exponent of 1.
3312    SDValue X = GetSignificand(DAG, Op1, dl);
3313
3314    if (LimitFloatPrecision <= 6) {
3315      // For floating-point precision of 6:
3316      //
3317      //   LogofMantissa =
3318      //     -1.1609546f +
3319      //       (1.4034025f - 0.23903021f * x) * x;
3320      //
3321      // error 0.0034276066, which is better than 8 bits
3322      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3323                               getF32Constant(DAG, 0xbe74c456));
3324      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3325                               getF32Constant(DAG, 0x3fb3a2b1));
3326      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3327      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3328                                          getF32Constant(DAG, 0x3f949a29));
3329
3330      result = DAG.getNode(ISD::FADD, dl,
3331                           MVT::f32, LogOfExponent, LogOfMantissa);
3332    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3333      // For floating-point precision of 12:
3334      //
3335      //   LogOfMantissa =
3336      //     -1.7417939f +
3337      //       (2.8212026f +
3338      //         (-1.4699568f +
3339      //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3340      //
3341      // error 0.000061011436, which is 14 bits
3342      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3343                               getF32Constant(DAG, 0xbd67b6d6));
3344      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3345                               getF32Constant(DAG, 0x3ee4f4b8));
3346      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3347      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3348                               getF32Constant(DAG, 0x3fbc278b));
3349      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3350      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3351                               getF32Constant(DAG, 0x40348e95));
3352      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3353      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3354                                          getF32Constant(DAG, 0x3fdef31a));
3355
3356      result = DAG.getNode(ISD::FADD, dl,
3357                           MVT::f32, LogOfExponent, LogOfMantissa);
3358    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3359      // For floating-point precision of 18:
3360      //
3361      //   LogOfMantissa =
3362      //     -2.1072184f +
3363      //       (4.2372794f +
3364      //         (-3.7029485f +
3365      //           (2.2781945f +
3366      //             (-0.87823314f +
3367      //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3368      //
3369      // error 0.0000023660568, which is better than 18 bits
3370      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3371                               getF32Constant(DAG, 0xbc91e5ac));
3372      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3373                               getF32Constant(DAG, 0x3e4350aa));
3374      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3375      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3376                               getF32Constant(DAG, 0x3f60d3e3));
3377      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3378      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3379                               getF32Constant(DAG, 0x4011cdf0));
3380      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3381      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3382                               getF32Constant(DAG, 0x406cfd1c));
3383      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3384      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3385                               getF32Constant(DAG, 0x408797cb));
3386      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3387      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3388                                          getF32Constant(DAG, 0x4006dcab));
3389
3390      result = DAG.getNode(ISD::FADD, dl,
3391                           MVT::f32, LogOfExponent, LogOfMantissa);
3392    }
3393  } else {
3394    // No special expansion.
3395    result = DAG.getNode(ISD::FLOG, dl,
3396                         getValue(I.getArgOperand(0)).getValueType(),
3397                         getValue(I.getArgOperand(0)));
3398  }
3399
3400  setValue(&I, result);
3401}
3402
3403/// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for
3404/// limited-precision mode.
3405void
3406SelectionDAGBuilder::visitLog2(const CallInst &I) {
3407  SDValue result;
3408  DebugLoc dl = getCurDebugLoc();
3409
3410  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3411      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3412    SDValue Op = getValue(I.getArgOperand(0));
3413    SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
3414
3415    // Get the exponent.
3416    SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3417
3418    // Get the significand and build it into a floating-point number with
3419    // exponent of 1.
3420    SDValue X = GetSignificand(DAG, Op1, dl);
3421
3422    // Different possible minimax approximations of significand in
3423    // floating-point for various degrees of accuracy over [1,2].
3424    if (LimitFloatPrecision <= 6) {
3425      // For floating-point precision of 6:
3426      //
3427      //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3428      //
3429      // error 0.0049451742, which is more than 7 bits
3430      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3431                               getF32Constant(DAG, 0xbeb08fe0));
3432      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3433                               getF32Constant(DAG, 0x40019463));
3434      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3435      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3436                                           getF32Constant(DAG, 0x3fd6633d));
3437
3438      result = DAG.getNode(ISD::FADD, dl,
3439                           MVT::f32, LogOfExponent, Log2ofMantissa);
3440    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3441      // For floating-point precision of 12:
3442      //
3443      //   Log2ofMantissa =
3444      //     -2.51285454f +
3445      //       (4.07009056f +
3446      //         (-2.12067489f +
3447      //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3448      //
3449      // error 0.0000876136000, which is better than 13 bits
3450      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3451                               getF32Constant(DAG, 0xbda7262e));
3452      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3453                               getF32Constant(DAG, 0x3f25280b));
3454      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3455      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3456                               getF32Constant(DAG, 0x4007b923));
3457      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3458      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3459                               getF32Constant(DAG, 0x40823e2f));
3460      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3461      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3462                                           getF32Constant(DAG, 0x4020d29c));
3463
3464      result = DAG.getNode(ISD::FADD, dl,
3465                           MVT::f32, LogOfExponent, Log2ofMantissa);
3466    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3467      // For floating-point precision of 18:
3468      //
3469      //   Log2ofMantissa =
3470      //     -3.0400495f +
3471      //       (6.1129976f +
3472      //         (-5.3420409f +
3473      //           (3.2865683f +
3474      //             (-1.2669343f +
3475      //               (0.27515199f -
3476      //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3477      //
3478      // error 0.0000018516, which is better than 18 bits
3479      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3480                               getF32Constant(DAG, 0xbcd2769e));
3481      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3482                               getF32Constant(DAG, 0x3e8ce0b9));
3483      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3484      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3485                               getF32Constant(DAG, 0x3fa22ae7));
3486      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3487      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3488                               getF32Constant(DAG, 0x40525723));
3489      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3490      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3491                               getF32Constant(DAG, 0x40aaf200));
3492      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3493      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3494                               getF32Constant(DAG, 0x40c39dad));
3495      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3496      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3497                                           getF32Constant(DAG, 0x4042902c));
3498
3499      result = DAG.getNode(ISD::FADD, dl,
3500                           MVT::f32, LogOfExponent, Log2ofMantissa);
3501    }
3502  } else {
3503    // No special expansion.
3504    result = DAG.getNode(ISD::FLOG2, dl,
3505                         getValue(I.getArgOperand(0)).getValueType(),
3506                         getValue(I.getArgOperand(0)));
3507  }
3508
3509  setValue(&I, result);
3510}
3511
3512/// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for
3513/// limited-precision mode.
3514void
3515SelectionDAGBuilder::visitLog10(const CallInst &I) {
3516  SDValue result;
3517  DebugLoc dl = getCurDebugLoc();
3518
3519  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3520      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3521    SDValue Op = getValue(I.getArgOperand(0));
3522    SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
3523
3524    // Scale the exponent by log10(2) [0.30102999f].
3525    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3526    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3527                                        getF32Constant(DAG, 0x3e9a209a));
3528
3529    // Get the significand and build it into a floating-point number with
3530    // exponent of 1.
3531    SDValue X = GetSignificand(DAG, Op1, dl);
3532
3533    if (LimitFloatPrecision <= 6) {
3534      // For floating-point precision of 6:
3535      //
3536      //   Log10ofMantissa =
3537      //     -0.50419619f +
3538      //       (0.60948995f - 0.10380950f * x) * x;
3539      //
3540      // error 0.0014886165, which is 6 bits
3541      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3542                               getF32Constant(DAG, 0xbdd49a13));
3543      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3544                               getF32Constant(DAG, 0x3f1c0789));
3545      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3546      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3547                                            getF32Constant(DAG, 0x3f011300));
3548
3549      result = DAG.getNode(ISD::FADD, dl,
3550                           MVT::f32, LogOfExponent, Log10ofMantissa);
3551    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3552      // For floating-point precision of 12:
3553      //
3554      //   Log10ofMantissa =
3555      //     -0.64831180f +
3556      //       (0.91751397f +
3557      //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
3558      //
3559      // error 0.00019228036, which is better than 12 bits
3560      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3561                               getF32Constant(DAG, 0x3d431f31));
3562      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3563                               getF32Constant(DAG, 0x3ea21fb2));
3564      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3565      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3566                               getF32Constant(DAG, 0x3f6ae232));
3567      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3568      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3569                                            getF32Constant(DAG, 0x3f25f7c3));
3570
3571      result = DAG.getNode(ISD::FADD, dl,
3572                           MVT::f32, LogOfExponent, Log10ofMantissa);
3573    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3574      // For floating-point precision of 18:
3575      //
3576      //   Log10ofMantissa =
3577      //     -0.84299375f +
3578      //       (1.5327582f +
3579      //         (-1.0688956f +
3580      //           (0.49102474f +
3581      //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
3582      //
3583      // error 0.0000037995730, which is better than 18 bits
3584      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3585                               getF32Constant(DAG, 0x3c5d51ce));
3586      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3587                               getF32Constant(DAG, 0x3e00685a));
3588      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3589      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3590                               getF32Constant(DAG, 0x3efb6798));
3591      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3592      SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3593                               getF32Constant(DAG, 0x3f88d192));
3594      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3595      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3596                               getF32Constant(DAG, 0x3fc4316c));
3597      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3598      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
3599                                            getF32Constant(DAG, 0x3f57ce70));
3600
3601      result = DAG.getNode(ISD::FADD, dl,
3602                           MVT::f32, LogOfExponent, Log10ofMantissa);
3603    }
3604  } else {
3605    // No special expansion.
3606    result = DAG.getNode(ISD::FLOG10, dl,
3607                         getValue(I.getArgOperand(0)).getValueType(),
3608                         getValue(I.getArgOperand(0)));
3609  }
3610
3611  setValue(&I, result);
3612}
3613
3614/// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for
3615/// limited-precision mode.
3616void
3617SelectionDAGBuilder::visitExp2(const CallInst &I) {
3618  SDValue result;
3619  DebugLoc dl = getCurDebugLoc();
3620
3621  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3622      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3623    SDValue Op = getValue(I.getArgOperand(0));
3624
3625    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
3626
3627    //   FractionalPartOfX = x - (float)IntegerPartOfX;
3628    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3629    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
3630
3631    //   IntegerPartOfX <<= 23;
3632    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3633                                 DAG.getConstant(23, TLI.getPointerTy()));
3634
3635    if (LimitFloatPrecision <= 6) {
3636      // For floating-point precision of 6:
3637      //
3638      //   TwoToFractionalPartOfX =
3639      //     0.997535578f +
3640      //       (0.735607626f + 0.252464424f * x) * x;
3641      //
3642      // error 0.0144103317, which is 6 bits
3643      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3644                               getF32Constant(DAG, 0x3e814304));
3645      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3646                               getF32Constant(DAG, 0x3f3c50c8));
3647      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3648      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3649                               getF32Constant(DAG, 0x3f7f5e7e));
3650      SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5);
3651      SDValue TwoToFractionalPartOfX =
3652        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3653
3654      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3655                           MVT::f32, TwoToFractionalPartOfX);
3656    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3657      // For floating-point precision of 12:
3658      //
3659      //   TwoToFractionalPartOfX =
3660      //     0.999892986f +
3661      //       (0.696457318f +
3662      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3663      //
3664      // error 0.000107046256, which is 13 to 14 bits
3665      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3666                               getF32Constant(DAG, 0x3da235e3));
3667      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3668                               getF32Constant(DAG, 0x3e65b8f3));
3669      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3670      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3671                               getF32Constant(DAG, 0x3f324b07));
3672      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3673      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3674                               getF32Constant(DAG, 0x3f7ff8fd));
3675      SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7);
3676      SDValue TwoToFractionalPartOfX =
3677        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
3678
3679      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3680                           MVT::f32, TwoToFractionalPartOfX);
3681    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3682      // For floating-point precision of 18:
3683      //
3684      //   TwoToFractionalPartOfX =
3685      //     0.999999982f +
3686      //       (0.693148872f +
3687      //         (0.240227044f +
3688      //           (0.554906021e-1f +
3689      //             (0.961591928e-2f +
3690      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3691      // error 2.47208000*10^(-7), which is better than 18 bits
3692      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3693                               getF32Constant(DAG, 0x3924b03e));
3694      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3695                               getF32Constant(DAG, 0x3ab24b87));
3696      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3697      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3698                               getF32Constant(DAG, 0x3c1d8c17));
3699      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3700      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3701                               getF32Constant(DAG, 0x3d634a1d));
3702      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3703      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3704                               getF32Constant(DAG, 0x3e75fe14));
3705      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3706      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3707                                getF32Constant(DAG, 0x3f317234));
3708      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3709      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3710                                getF32Constant(DAG, 0x3f800000));
3711      SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13);
3712      SDValue TwoToFractionalPartOfX =
3713        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
3714
3715      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3716                           MVT::f32, TwoToFractionalPartOfX);
3717    }
3718  } else {
3719    // No special expansion.
3720    result = DAG.getNode(ISD::FEXP2, dl,
3721                         getValue(I.getArgOperand(0)).getValueType(),
3722                         getValue(I.getArgOperand(0)));
3723  }
3724
3725  setValue(&I, result);
3726}
3727
3728/// visitPow - Lower a pow intrinsic. Handles the special sequences for
3729/// limited-precision mode with x == 10.0f.
3730void
3731SelectionDAGBuilder::visitPow(const CallInst &I) {
3732  SDValue result;
3733  const Value *Val = I.getArgOperand(0);
3734  DebugLoc dl = getCurDebugLoc();
3735  bool IsExp10 = false;
3736
3737  if (getValue(Val).getValueType() == MVT::f32 &&
3738      getValue(I.getArgOperand(1)).getValueType() == MVT::f32 &&
3739      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3740    if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) {
3741      if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
3742        APFloat Ten(10.0f);
3743        IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten);
3744      }
3745    }
3746  }
3747
3748  if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3749    SDValue Op = getValue(I.getArgOperand(1));
3750
3751    // Put the exponent in the right bit position for later addition to the
3752    // final result:
3753    //
3754    //   #define LOG2OF10 3.3219281f
3755    //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
3756    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3757                             getF32Constant(DAG, 0x40549a78));
3758    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3759
3760    //   FractionalPartOfX = x - (float)IntegerPartOfX;
3761    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3762    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3763
3764    //   IntegerPartOfX <<= 23;
3765    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3766                                 DAG.getConstant(23, TLI.getPointerTy()));
3767
3768    if (LimitFloatPrecision <= 6) {
3769      // For floating-point precision of 6:
3770      //
3771      //   twoToFractionalPartOfX =
3772      //     0.997535578f +
3773      //       (0.735607626f + 0.252464424f * x) * x;
3774      //
3775      // error 0.0144103317, which is 6 bits
3776      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3777                               getF32Constant(DAG, 0x3e814304));
3778      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3779                               getF32Constant(DAG, 0x3f3c50c8));
3780      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3781      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3782                               getF32Constant(DAG, 0x3f7f5e7e));
3783      SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5);
3784      SDValue TwoToFractionalPartOfX =
3785        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3786
3787      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3788                           MVT::f32, TwoToFractionalPartOfX);
3789    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3790      // For floating-point precision of 12:
3791      //
3792      //   TwoToFractionalPartOfX =
3793      //     0.999892986f +
3794      //       (0.696457318f +
3795      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3796      //
3797      // error 0.000107046256, which is 13 to 14 bits
3798      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3799                               getF32Constant(DAG, 0x3da235e3));
3800      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3801                               getF32Constant(DAG, 0x3e65b8f3));
3802      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3803      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3804                               getF32Constant(DAG, 0x3f324b07));
3805      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3806      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3807                               getF32Constant(DAG, 0x3f7ff8fd));
3808      SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7);
3809      SDValue TwoToFractionalPartOfX =
3810        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
3811
3812      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3813                           MVT::f32, TwoToFractionalPartOfX);
3814    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3815      // For floating-point precision of 18:
3816      //
3817      //   TwoToFractionalPartOfX =
3818      //     0.999999982f +
3819      //       (0.693148872f +
3820      //         (0.240227044f +
3821      //           (0.554906021e-1f +
3822      //             (0.961591928e-2f +
3823      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3824      // error 2.47208000*10^(-7), which is better than 18 bits
3825      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3826                               getF32Constant(DAG, 0x3924b03e));
3827      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3828                               getF32Constant(DAG, 0x3ab24b87));
3829      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3830      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3831                               getF32Constant(DAG, 0x3c1d8c17));
3832      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3833      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3834                               getF32Constant(DAG, 0x3d634a1d));
3835      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3836      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3837                               getF32Constant(DAG, 0x3e75fe14));
3838      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3839      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3840                                getF32Constant(DAG, 0x3f317234));
3841      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3842      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3843                                getF32Constant(DAG, 0x3f800000));
3844      SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13);
3845      SDValue TwoToFractionalPartOfX =
3846        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
3847
3848      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3849                           MVT::f32, TwoToFractionalPartOfX);
3850    }
3851  } else {
3852    // No special expansion.
3853    result = DAG.getNode(ISD::FPOW, dl,
3854                         getValue(I.getArgOperand(0)).getValueType(),
3855                         getValue(I.getArgOperand(0)),
3856                         getValue(I.getArgOperand(1)));
3857  }
3858
3859  setValue(&I, result);
3860}
3861
3862
3863/// ExpandPowI - Expand a llvm.powi intrinsic.
3864static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS,
3865                          SelectionDAG &DAG) {
3866  // If RHS is a constant, we can expand this out to a multiplication tree,
3867  // otherwise we end up lowering to a call to __powidf2 (for example).  When
3868  // optimizing for size, we only want to do this if the expansion would produce
3869  // a small number of multiplies, otherwise we do the full expansion.
3870  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3871    // Get the exponent as a positive value.
3872    unsigned Val = RHSC->getSExtValue();
3873    if ((int)Val < 0) Val = -Val;
3874
3875    // powi(x, 0) -> 1.0
3876    if (Val == 0)
3877      return DAG.getConstantFP(1.0, LHS.getValueType());
3878
3879    const Function *F = DAG.getMachineFunction().getFunction();
3880    if (!F->hasFnAttr(Attribute::OptimizeForSize) ||
3881        // If optimizing for size, don't insert too many multiplies.  This
3882        // inserts up to 5 multiplies.
3883        CountPopulation_32(Val)+Log2_32(Val) < 7) {
3884      // We use the simple binary decomposition method to generate the multiply
3885      // sequence.  There are more optimal ways to do this (for example,
3886      // powi(x,15) generates one more multiply than it should), but this has
3887      // the benefit of being both really simple and much better than a libcall.
3888      SDValue Res;  // Logically starts equal to 1.0
3889      SDValue CurSquare = LHS;
3890      while (Val) {
3891        if (Val & 1) {
3892          if (Res.getNode())
3893            Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
3894          else
3895            Res = CurSquare;  // 1.0*CurSquare.
3896        }
3897
3898        CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
3899                                CurSquare, CurSquare);
3900        Val >>= 1;
3901      }
3902
3903      // If the original was negative, invert the result, producing 1/(x*x*x).
3904      if (RHSC->getSExtValue() < 0)
3905        Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
3906                          DAG.getConstantFP(1.0, LHS.getValueType()), Res);
3907      return Res;
3908    }
3909  }
3910
3911  // Otherwise, expand to a libcall.
3912  return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
3913}
3914
3915/// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
3916/// argument, create the corresponding DBG_VALUE machine instruction for it now.
3917/// At the end of instruction selection, they will be inserted to the entry BB.
3918bool
3919SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
3920                                              int64_t Offset,
3921                                              const SDValue &N) {
3922  const Argument *Arg = dyn_cast<Argument>(V);
3923  if (!Arg)
3924    return false;
3925
3926  MachineFunction &MF = DAG.getMachineFunction();
3927  // Ignore inlined function arguments here.
3928  DIVariable DV(Variable);
3929  if (DV.isInlinedFnArgument(MF.getFunction()))
3930    return false;
3931
3932  MachineBasicBlock *MBB = FuncInfo.MBB;
3933  if (MBB != &MF.front())
3934    return false;
3935
3936  unsigned Reg = 0;
3937  if (Arg->hasByValAttr()) {
3938    // Byval arguments' frame index is recorded during argument lowering.
3939    // Use this info directly.
3940    const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
3941    Reg = TRI->getFrameRegister(MF);
3942    Offset = FuncInfo.getByValArgumentFrameIndex(Arg);
3943  }
3944
3945  if (N.getNode() && N.getOpcode() == ISD::CopyFromReg) {
3946    Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
3947    if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
3948      MachineRegisterInfo &RegInfo = MF.getRegInfo();
3949      unsigned PR = RegInfo.getLiveInPhysReg(Reg);
3950      if (PR)
3951        Reg = PR;
3952    }
3953  }
3954
3955  if (!Reg) {
3956    DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
3957    if (VMI == FuncInfo.ValueMap.end())
3958      return false;
3959    Reg = VMI->second;
3960  }
3961
3962  const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
3963  MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(),
3964                                    TII->get(TargetOpcode::DBG_VALUE))
3965    .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable);
3966  FuncInfo.ArgDbgValues.push_back(&*MIB);
3967  return true;
3968}
3969
3970// VisualStudio defines setjmp as _setjmp
3971#if defined(_MSC_VER) && defined(setjmp)
3972#define setjmp_undefined_for_visual_studio
3973#undef setjmp
3974#endif
3975
3976/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
3977/// we want to emit this as a call to a named external function, return the name
3978/// otherwise lower it and return null.
3979const char *
3980SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
3981  DebugLoc dl = getCurDebugLoc();
3982  SDValue Res;
3983
3984  switch (Intrinsic) {
3985  default:
3986    // By default, turn this into a target intrinsic node.
3987    visitTargetIntrinsic(I, Intrinsic);
3988    return 0;
3989  case Intrinsic::vastart:  visitVAStart(I); return 0;
3990  case Intrinsic::vaend:    visitVAEnd(I); return 0;
3991  case Intrinsic::vacopy:   visitVACopy(I); return 0;
3992  case Intrinsic::returnaddress:
3993    setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(),
3994                             getValue(I.getArgOperand(0))));
3995    return 0;
3996  case Intrinsic::frameaddress:
3997    setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(),
3998                             getValue(I.getArgOperand(0))));
3999    return 0;
4000  case Intrinsic::setjmp:
4001    return "_setjmp"+!TLI.usesUnderscoreSetJmp();
4002  case Intrinsic::longjmp:
4003    return "_longjmp"+!TLI.usesUnderscoreLongJmp();
4004  case Intrinsic::memcpy: {
4005    // Assert for address < 256 since we support only user defined address
4006    // spaces.
4007    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4008           < 256 &&
4009           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4010           < 256 &&
4011           "Unknown address space");
4012    SDValue Op1 = getValue(I.getArgOperand(0));
4013    SDValue Op2 = getValue(I.getArgOperand(1));
4014    SDValue Op3 = getValue(I.getArgOperand(2));
4015    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4016    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4017    DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false,
4018                              MachinePointerInfo(I.getArgOperand(0)),
4019                              MachinePointerInfo(I.getArgOperand(1))));
4020    return 0;
4021  }
4022  case Intrinsic::memset: {
4023    // Assert for address < 256 since we support only user defined address
4024    // spaces.
4025    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4026           < 256 &&
4027           "Unknown address space");
4028    SDValue Op1 = getValue(I.getArgOperand(0));
4029    SDValue Op2 = getValue(I.getArgOperand(1));
4030    SDValue Op3 = getValue(I.getArgOperand(2));
4031    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4032    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4033    DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4034                              MachinePointerInfo(I.getArgOperand(0))));
4035    return 0;
4036  }
4037  case Intrinsic::memmove: {
4038    // Assert for address < 256 since we support only user defined address
4039    // spaces.
4040    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4041           < 256 &&
4042           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4043           < 256 &&
4044           "Unknown address space");
4045    SDValue Op1 = getValue(I.getArgOperand(0));
4046    SDValue Op2 = getValue(I.getArgOperand(1));
4047    SDValue Op3 = getValue(I.getArgOperand(2));
4048    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4049    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4050
4051    // If the source and destination are known to not be aliases, we can
4052    // lower memmove as memcpy.
4053    uint64_t Size = -1ULL;
4054    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3))
4055      Size = C->getZExtValue();
4056    if (AA->alias(I.getArgOperand(0), Size, I.getArgOperand(1), Size) ==
4057        AliasAnalysis::NoAlias) {
4058      DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4059                                false, MachinePointerInfo(I.getArgOperand(0)),
4060                                MachinePointerInfo(I.getArgOperand(1))));
4061      return 0;
4062    }
4063
4064    DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4065                               MachinePointerInfo(I.getArgOperand(0)),
4066                               MachinePointerInfo(I.getArgOperand(1))));
4067    return 0;
4068  }
4069  case Intrinsic::dbg_declare: {
4070    const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4071    MDNode *Variable = DI.getVariable();
4072    const Value *Address = DI.getAddress();
4073    if (!Address || !DIVariable(DI.getVariable()).Verify())
4074      return 0;
4075
4076    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4077    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4078    // absolute, but not relative, values are different depending on whether
4079    // debug info exists.
4080    ++SDNodeOrder;
4081
4082    // Check if address has undef value.
4083    if (isa<UndefValue>(Address) ||
4084        (Address->use_empty() && !isa<Argument>(Address))) {
4085      SDDbgValue*SDV =
4086        DAG.getDbgValue(Variable, UndefValue::get(Address->getType()),
4087                        0, dl, SDNodeOrder);
4088      DAG.AddDbgValue(SDV, 0, false);
4089      return 0;
4090    }
4091
4092    SDValue &N = NodeMap[Address];
4093    if (!N.getNode() && isa<Argument>(Address))
4094      // Check unused arguments map.
4095      N = UnusedArgNodeMap[Address];
4096    SDDbgValue *SDV;
4097    if (N.getNode()) {
4098      // Parameters are handled specially.
4099      bool isParameter =
4100        DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable;
4101      if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4102        Address = BCI->getOperand(0);
4103      const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
4104
4105      if (isParameter && !AI) {
4106        FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4107        if (FINode)
4108          // Byval parameter.  We have a frame index at this point.
4109          SDV = DAG.getDbgValue(Variable, FINode->getIndex(),
4110                                0, dl, SDNodeOrder);
4111        else
4112          // Can't do anything with other non-AI cases yet.  This might be a
4113          // parameter of a callee function that got inlined, for example.
4114          return 0;
4115      } else if (AI)
4116        SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
4117                              0, dl, SDNodeOrder);
4118      else
4119        // Can't do anything with other non-AI cases yet.
4120        return 0;
4121      DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4122    } else {
4123      // If Address is an arugment then try to emits its dbg value using
4124      // virtual register info from the FuncInfo.ValueMap.
4125      if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) {
4126        // If variable is pinned by a alloca in dominating bb then
4127        // use StaticAllocaMap.
4128        if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4129          if (AI->getParent() != DI.getParent()) {
4130            DenseMap<const AllocaInst*, int>::iterator SI =
4131              FuncInfo.StaticAllocaMap.find(AI);
4132            if (SI != FuncInfo.StaticAllocaMap.end()) {
4133              SDV = DAG.getDbgValue(Variable, SI->second,
4134                                    0, dl, SDNodeOrder);
4135              DAG.AddDbgValue(SDV, 0, false);
4136              return 0;
4137            }
4138          }
4139        }
4140        // Otherwise add undef to help track missing debug info.
4141        SDV = DAG.getDbgValue(Variable, UndefValue::get(Address->getType()),
4142                              0, dl, SDNodeOrder);
4143        DAG.AddDbgValue(SDV, 0, false);
4144      }
4145    }
4146    return 0;
4147  }
4148  case Intrinsic::dbg_value: {
4149    const DbgValueInst &DI = cast<DbgValueInst>(I);
4150    if (!DIVariable(DI.getVariable()).Verify())
4151      return 0;
4152
4153    MDNode *Variable = DI.getVariable();
4154    uint64_t Offset = DI.getOffset();
4155    const Value *V = DI.getValue();
4156    if (!V)
4157      return 0;
4158
4159    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4160    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4161    // absolute, but not relative, values are different depending on whether
4162    // debug info exists.
4163    ++SDNodeOrder;
4164    SDDbgValue *SDV;
4165    if (isa<ConstantInt>(V) || isa<ConstantFP>(V)) {
4166      SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder);
4167      DAG.AddDbgValue(SDV, 0, false);
4168    } else {
4169      // Do not use getValue() in here; we don't want to generate code at
4170      // this point if it hasn't been done yet.
4171      SDValue N = NodeMap[V];
4172      if (!N.getNode() && isa<Argument>(V))
4173        // Check unused arguments map.
4174        N = UnusedArgNodeMap[V];
4175      if (N.getNode()) {
4176        if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) {
4177          SDV = DAG.getDbgValue(Variable, N.getNode(),
4178                                N.getResNo(), Offset, dl, SDNodeOrder);
4179          DAG.AddDbgValue(SDV, N.getNode(), false);
4180        }
4181      } else if (isa<PHINode>(V) && !V->use_empty() ) {
4182        // Do not call getValue(V) yet, as we don't want to generate code.
4183        // Remember it for later.
4184        DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4185        DanglingDebugInfoMap[V] = DDI;
4186      } else {
4187        // We may expand this to cover more cases.  One case where we have no
4188        // data available is an unreferenced parameter; we need this fallback.
4189        SDV = DAG.getDbgValue(Variable, UndefValue::get(V->getType()),
4190                              Offset, dl, SDNodeOrder);
4191        DAG.AddDbgValue(SDV, 0, false);
4192      }
4193    }
4194
4195    // Build a debug info table entry.
4196    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4197      V = BCI->getOperand(0);
4198    const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4199    // Don't handle byval struct arguments or VLAs, for example.
4200    if (!AI)
4201      return 0;
4202    DenseMap<const AllocaInst*, int>::iterator SI =
4203      FuncInfo.StaticAllocaMap.find(AI);
4204    if (SI == FuncInfo.StaticAllocaMap.end())
4205      return 0; // VLAs.
4206    int FI = SI->second;
4207
4208    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4209    if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
4210      MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
4211    return 0;
4212  }
4213  case Intrinsic::eh_exception: {
4214    // Insert the EXCEPTIONADDR instruction.
4215    assert(FuncInfo.MBB->isLandingPad() &&
4216           "Call to eh.exception not in landing pad!");
4217    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4218    SDValue Ops[1];
4219    Ops[0] = DAG.getRoot();
4220    SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1);
4221    setValue(&I, Op);
4222    DAG.setRoot(Op.getValue(1));
4223    return 0;
4224  }
4225
4226  case Intrinsic::eh_selector: {
4227    MachineBasicBlock *CallMBB = FuncInfo.MBB;
4228    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4229    if (CallMBB->isLandingPad())
4230      AddCatchInfo(I, &MMI, CallMBB);
4231    else {
4232#ifndef NDEBUG
4233      FuncInfo.CatchInfoLost.insert(&I);
4234#endif
4235      // FIXME: Mark exception selector register as live in.  Hack for PR1508.
4236      unsigned Reg = TLI.getExceptionSelectorRegister();
4237      if (Reg) FuncInfo.MBB->addLiveIn(Reg);
4238    }
4239
4240    // Insert the EHSELECTION instruction.
4241    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4242    SDValue Ops[2];
4243    Ops[0] = getValue(I.getArgOperand(0));
4244    Ops[1] = getRoot();
4245    SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2);
4246    DAG.setRoot(Op.getValue(1));
4247    setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32));
4248    return 0;
4249  }
4250
4251  case Intrinsic::eh_typeid_for: {
4252    // Find the type id for the given typeinfo.
4253    GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0));
4254    unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4255    Res = DAG.getConstant(TypeID, MVT::i32);
4256    setValue(&I, Res);
4257    return 0;
4258  }
4259
4260  case Intrinsic::eh_return_i32:
4261  case Intrinsic::eh_return_i64:
4262    DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4263    DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl,
4264                            MVT::Other,
4265                            getControlRoot(),
4266                            getValue(I.getArgOperand(0)),
4267                            getValue(I.getArgOperand(1))));
4268    return 0;
4269  case Intrinsic::eh_unwind_init:
4270    DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4271    return 0;
4272  case Intrinsic::eh_dwarf_cfa: {
4273    SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl,
4274                                        TLI.getPointerTy());
4275    SDValue Offset = DAG.getNode(ISD::ADD, dl,
4276                                 TLI.getPointerTy(),
4277                                 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
4278                                             TLI.getPointerTy()),
4279                                 CfaArg);
4280    SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl,
4281                             TLI.getPointerTy(),
4282                             DAG.getConstant(0, TLI.getPointerTy()));
4283    setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
4284                             FA, Offset));
4285    return 0;
4286  }
4287  case Intrinsic::eh_sjlj_callsite: {
4288    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4289    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4290    assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4291    assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4292
4293    MMI.setCurrentCallSite(CI->getZExtValue());
4294    return 0;
4295  }
4296  case Intrinsic::eh_sjlj_setjmp: {
4297    setValue(&I, DAG.getNode(ISD::EH_SJLJ_SETJMP, dl, MVT::i32, getRoot(),
4298                             getValue(I.getArgOperand(0))));
4299    return 0;
4300  }
4301  case Intrinsic::eh_sjlj_longjmp: {
4302    DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other,
4303                            getRoot(),
4304                            getValue(I.getArgOperand(0))));
4305    return 0;
4306  }
4307
4308  case Intrinsic::convertff:
4309  case Intrinsic::convertfsi:
4310  case Intrinsic::convertfui:
4311  case Intrinsic::convertsif:
4312  case Intrinsic::convertuif:
4313  case Intrinsic::convertss:
4314  case Intrinsic::convertsu:
4315  case Intrinsic::convertus:
4316  case Intrinsic::convertuu: {
4317    ISD::CvtCode Code = ISD::CVT_INVALID;
4318    switch (Intrinsic) {
4319    case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
4320    case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4321    case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4322    case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4323    case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4324    case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
4325    case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
4326    case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4327    case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4328    }
4329    EVT DestVT = TLI.getValueType(I.getType());
4330    const Value *Op1 = I.getArgOperand(0);
4331    Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1),
4332                               DAG.getValueType(DestVT),
4333                               DAG.getValueType(getValue(Op1).getValueType()),
4334                               getValue(I.getArgOperand(1)),
4335                               getValue(I.getArgOperand(2)),
4336                               Code);
4337    setValue(&I, Res);
4338    return 0;
4339  }
4340  case Intrinsic::sqrt:
4341    setValue(&I, DAG.getNode(ISD::FSQRT, dl,
4342                             getValue(I.getArgOperand(0)).getValueType(),
4343                             getValue(I.getArgOperand(0))));
4344    return 0;
4345  case Intrinsic::powi:
4346    setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)),
4347                            getValue(I.getArgOperand(1)), DAG));
4348    return 0;
4349  case Intrinsic::sin:
4350    setValue(&I, DAG.getNode(ISD::FSIN, dl,
4351                             getValue(I.getArgOperand(0)).getValueType(),
4352                             getValue(I.getArgOperand(0))));
4353    return 0;
4354  case Intrinsic::cos:
4355    setValue(&I, DAG.getNode(ISD::FCOS, dl,
4356                             getValue(I.getArgOperand(0)).getValueType(),
4357                             getValue(I.getArgOperand(0))));
4358    return 0;
4359  case Intrinsic::log:
4360    visitLog(I);
4361    return 0;
4362  case Intrinsic::log2:
4363    visitLog2(I);
4364    return 0;
4365  case Intrinsic::log10:
4366    visitLog10(I);
4367    return 0;
4368  case Intrinsic::exp:
4369    visitExp(I);
4370    return 0;
4371  case Intrinsic::exp2:
4372    visitExp2(I);
4373    return 0;
4374  case Intrinsic::pow:
4375    visitPow(I);
4376    return 0;
4377  case Intrinsic::convert_to_fp16:
4378    setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl,
4379                             MVT::i16, getValue(I.getArgOperand(0))));
4380    return 0;
4381  case Intrinsic::convert_from_fp16:
4382    setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl,
4383                             MVT::f32, getValue(I.getArgOperand(0))));
4384    return 0;
4385  case Intrinsic::pcmarker: {
4386    SDValue Tmp = getValue(I.getArgOperand(0));
4387    DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp));
4388    return 0;
4389  }
4390  case Intrinsic::readcyclecounter: {
4391    SDValue Op = getRoot();
4392    Res = DAG.getNode(ISD::READCYCLECOUNTER, dl,
4393                      DAG.getVTList(MVT::i64, MVT::Other),
4394                      &Op, 1);
4395    setValue(&I, Res);
4396    DAG.setRoot(Res.getValue(1));
4397    return 0;
4398  }
4399  case Intrinsic::bswap:
4400    setValue(&I, DAG.getNode(ISD::BSWAP, dl,
4401                             getValue(I.getArgOperand(0)).getValueType(),
4402                             getValue(I.getArgOperand(0))));
4403    return 0;
4404  case Intrinsic::cttz: {
4405    SDValue Arg = getValue(I.getArgOperand(0));
4406    EVT Ty = Arg.getValueType();
4407    setValue(&I, DAG.getNode(ISD::CTTZ, dl, Ty, Arg));
4408    return 0;
4409  }
4410  case Intrinsic::ctlz: {
4411    SDValue Arg = getValue(I.getArgOperand(0));
4412    EVT Ty = Arg.getValueType();
4413    setValue(&I, DAG.getNode(ISD::CTLZ, dl, Ty, Arg));
4414    return 0;
4415  }
4416  case Intrinsic::ctpop: {
4417    SDValue Arg = getValue(I.getArgOperand(0));
4418    EVT Ty = Arg.getValueType();
4419    setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg));
4420    return 0;
4421  }
4422  case Intrinsic::stacksave: {
4423    SDValue Op = getRoot();
4424    Res = DAG.getNode(ISD::STACKSAVE, dl,
4425                      DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
4426    setValue(&I, Res);
4427    DAG.setRoot(Res.getValue(1));
4428    return 0;
4429  }
4430  case Intrinsic::stackrestore: {
4431    Res = getValue(I.getArgOperand(0));
4432    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res));
4433    return 0;
4434  }
4435  case Intrinsic::stackprotector: {
4436    // Emit code into the DAG to store the stack guard onto the stack.
4437    MachineFunction &MF = DAG.getMachineFunction();
4438    MachineFrameInfo *MFI = MF.getFrameInfo();
4439    EVT PtrTy = TLI.getPointerTy();
4440
4441    SDValue Src = getValue(I.getArgOperand(0));   // The guard's value.
4442    AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
4443
4444    int FI = FuncInfo.StaticAllocaMap[Slot];
4445    MFI->setStackProtectorIndex(FI);
4446
4447    SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
4448
4449    // Store the stack protector onto the stack.
4450    Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN,
4451                       PseudoSourceValue::getFixedStack(FI),
4452                       0, true, false, 0);
4453    setValue(&I, Res);
4454    DAG.setRoot(Res);
4455    return 0;
4456  }
4457  case Intrinsic::objectsize: {
4458    // If we don't know by now, we're never going to know.
4459    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
4460
4461    assert(CI && "Non-constant type in __builtin_object_size?");
4462
4463    SDValue Arg = getValue(I.getCalledValue());
4464    EVT Ty = Arg.getValueType();
4465
4466    if (CI->isZero())
4467      Res = DAG.getConstant(-1ULL, Ty);
4468    else
4469      Res = DAG.getConstant(0, Ty);
4470
4471    setValue(&I, Res);
4472    return 0;
4473  }
4474  case Intrinsic::var_annotation:
4475    // Discard annotate attributes
4476    return 0;
4477
4478  case Intrinsic::init_trampoline: {
4479    const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
4480
4481    SDValue Ops[6];
4482    Ops[0] = getRoot();
4483    Ops[1] = getValue(I.getArgOperand(0));
4484    Ops[2] = getValue(I.getArgOperand(1));
4485    Ops[3] = getValue(I.getArgOperand(2));
4486    Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
4487    Ops[5] = DAG.getSrcValue(F);
4488
4489    Res = DAG.getNode(ISD::TRAMPOLINE, dl,
4490                      DAG.getVTList(TLI.getPointerTy(), MVT::Other),
4491                      Ops, 6);
4492
4493    setValue(&I, Res);
4494    DAG.setRoot(Res.getValue(1));
4495    return 0;
4496  }
4497  case Intrinsic::gcroot:
4498    if (GFI) {
4499      const Value *Alloca = I.getArgOperand(0);
4500      const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
4501
4502      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
4503      GFI->addStackRoot(FI->getIndex(), TypeMap);
4504    }
4505    return 0;
4506  case Intrinsic::gcread:
4507  case Intrinsic::gcwrite:
4508    llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
4509    return 0;
4510  case Intrinsic::flt_rounds:
4511    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32));
4512    return 0;
4513  case Intrinsic::trap:
4514    DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot()));
4515    return 0;
4516  case Intrinsic::uadd_with_overflow:
4517    return implVisitAluOverflow(I, ISD::UADDO);
4518  case Intrinsic::sadd_with_overflow:
4519    return implVisitAluOverflow(I, ISD::SADDO);
4520  case Intrinsic::usub_with_overflow:
4521    return implVisitAluOverflow(I, ISD::USUBO);
4522  case Intrinsic::ssub_with_overflow:
4523    return implVisitAluOverflow(I, ISD::SSUBO);
4524  case Intrinsic::umul_with_overflow:
4525    return implVisitAluOverflow(I, ISD::UMULO);
4526  case Intrinsic::smul_with_overflow:
4527    return implVisitAluOverflow(I, ISD::SMULO);
4528
4529  case Intrinsic::prefetch: {
4530    SDValue Ops[4];
4531    Ops[0] = getRoot();
4532    Ops[1] = getValue(I.getArgOperand(0));
4533    Ops[2] = getValue(I.getArgOperand(1));
4534    Ops[3] = getValue(I.getArgOperand(2));
4535    DAG.setRoot(DAG.getNode(ISD::PREFETCH, dl, MVT::Other, &Ops[0], 4));
4536    return 0;
4537  }
4538
4539  case Intrinsic::memory_barrier: {
4540    SDValue Ops[6];
4541    Ops[0] = getRoot();
4542    for (int x = 1; x < 6; ++x)
4543      Ops[x] = getValue(I.getArgOperand(x - 1));
4544
4545    DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6));
4546    return 0;
4547  }
4548  case Intrinsic::atomic_cmp_swap: {
4549    SDValue Root = getRoot();
4550    SDValue L =
4551      DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(),
4552                    getValue(I.getArgOperand(1)).getValueType().getSimpleVT(),
4553                    Root,
4554                    getValue(I.getArgOperand(0)),
4555                    getValue(I.getArgOperand(1)),
4556                    getValue(I.getArgOperand(2)),
4557                    MachinePointerInfo(I.getArgOperand(0)));
4558    setValue(&I, L);
4559    DAG.setRoot(L.getValue(1));
4560    return 0;
4561  }
4562  case Intrinsic::atomic_load_add:
4563    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD);
4564  case Intrinsic::atomic_load_sub:
4565    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB);
4566  case Intrinsic::atomic_load_or:
4567    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR);
4568  case Intrinsic::atomic_load_xor:
4569    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR);
4570  case Intrinsic::atomic_load_and:
4571    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND);
4572  case Intrinsic::atomic_load_nand:
4573    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND);
4574  case Intrinsic::atomic_load_max:
4575    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX);
4576  case Intrinsic::atomic_load_min:
4577    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN);
4578  case Intrinsic::atomic_load_umin:
4579    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN);
4580  case Intrinsic::atomic_load_umax:
4581    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX);
4582  case Intrinsic::atomic_swap:
4583    return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP);
4584
4585  case Intrinsic::invariant_start:
4586  case Intrinsic::lifetime_start:
4587    // Discard region information.
4588    setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
4589    return 0;
4590  case Intrinsic::invariant_end:
4591  case Intrinsic::lifetime_end:
4592    // Discard region information.
4593    return 0;
4594  }
4595}
4596
4597void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
4598                                      bool isTailCall,
4599                                      MachineBasicBlock *LandingPad) {
4600  const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
4601  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
4602  const Type *RetTy = FTy->getReturnType();
4603  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4604  MCSymbol *BeginLabel = 0;
4605
4606  TargetLowering::ArgListTy Args;
4607  TargetLowering::ArgListEntry Entry;
4608  Args.reserve(CS.arg_size());
4609
4610  // Check whether the function can return without sret-demotion.
4611  SmallVector<ISD::OutputArg, 4> Outs;
4612  SmallVector<uint64_t, 4> Offsets;
4613  GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(),
4614                Outs, TLI, &Offsets);
4615
4616  bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
4617                        FTy->isVarArg(), Outs, FTy->getContext());
4618
4619  SDValue DemoteStackSlot;
4620  int DemoteStackIdx = -100;
4621
4622  if (!CanLowerReturn) {
4623    uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(
4624                      FTy->getReturnType());
4625    unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(
4626                      FTy->getReturnType());
4627    MachineFunction &MF = DAG.getMachineFunction();
4628    DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
4629    const Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
4630
4631    DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI.getPointerTy());
4632    Entry.Node = DemoteStackSlot;
4633    Entry.Ty = StackSlotPtrType;
4634    Entry.isSExt = false;
4635    Entry.isZExt = false;
4636    Entry.isInReg = false;
4637    Entry.isSRet = true;
4638    Entry.isNest = false;
4639    Entry.isByVal = false;
4640    Entry.Alignment = Align;
4641    Args.push_back(Entry);
4642    RetTy = Type::getVoidTy(FTy->getContext());
4643  }
4644
4645  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
4646       i != e; ++i) {
4647    SDValue ArgNode = getValue(*i);
4648    Entry.Node = ArgNode; Entry.Ty = (*i)->getType();
4649
4650    unsigned attrInd = i - CS.arg_begin() + 1;
4651    Entry.isSExt  = CS.paramHasAttr(attrInd, Attribute::SExt);
4652    Entry.isZExt  = CS.paramHasAttr(attrInd, Attribute::ZExt);
4653    Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg);
4654    Entry.isSRet  = CS.paramHasAttr(attrInd, Attribute::StructRet);
4655    Entry.isNest  = CS.paramHasAttr(attrInd, Attribute::Nest);
4656    Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal);
4657    Entry.Alignment = CS.getParamAlignment(attrInd);
4658    Args.push_back(Entry);
4659  }
4660
4661  if (LandingPad) {
4662    // Insert a label before the invoke call to mark the try range.  This can be
4663    // used to detect deletion of the invoke via the MachineModuleInfo.
4664    BeginLabel = MMI.getContext().CreateTempSymbol();
4665
4666    // For SjLj, keep track of which landing pads go with which invokes
4667    // so as to maintain the ordering of pads in the LSDA.
4668    unsigned CallSiteIndex = MMI.getCurrentCallSite();
4669    if (CallSiteIndex) {
4670      MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
4671      // Now that the call site is handled, stop tracking it.
4672      MMI.setCurrentCallSite(0);
4673    }
4674
4675    // Both PendingLoads and PendingExports must be flushed here;
4676    // this call might not return.
4677    (void)getRoot();
4678    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel));
4679  }
4680
4681  // Check if target-independent constraints permit a tail call here.
4682  // Target-dependent constraints are checked within TLI.LowerCallTo.
4683  if (isTailCall &&
4684      !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI))
4685    isTailCall = false;
4686
4687  // If there's a possibility that fast-isel has already selected some amount
4688  // of the current basic block, don't emit a tail call.
4689  if (isTailCall && EnableFastISel)
4690    isTailCall = false;
4691
4692  std::pair<SDValue,SDValue> Result =
4693    TLI.LowerCallTo(getRoot(), RetTy,
4694                    CS.paramHasAttr(0, Attribute::SExt),
4695                    CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(),
4696                    CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(),
4697                    CS.getCallingConv(),
4698                    isTailCall,
4699                    !CS.getInstruction()->use_empty(),
4700                    Callee, Args, DAG, getCurDebugLoc());
4701  assert((isTailCall || Result.second.getNode()) &&
4702         "Non-null chain expected with non-tail call!");
4703  assert((Result.second.getNode() || !Result.first.getNode()) &&
4704         "Null value expected with tail call!");
4705  if (Result.first.getNode()) {
4706    setValue(CS.getInstruction(), Result.first);
4707  } else if (!CanLowerReturn && Result.second.getNode()) {
4708    // The instruction result is the result of loading from the
4709    // hidden sret parameter.
4710    SmallVector<EVT, 1> PVTs;
4711    const Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
4712
4713    ComputeValueVTs(TLI, PtrRetTy, PVTs);
4714    assert(PVTs.size() == 1 && "Pointers should fit in one register");
4715    EVT PtrVT = PVTs[0];
4716    unsigned NumValues = Outs.size();
4717    SmallVector<SDValue, 4> Values(NumValues);
4718    SmallVector<SDValue, 4> Chains(NumValues);
4719
4720    for (unsigned i = 0; i < NumValues; ++i) {
4721      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT,
4722                                DemoteStackSlot,
4723                                DAG.getConstant(Offsets[i], PtrVT));
4724      SDValue L = DAG.getLoad(Outs[i].VT, getCurDebugLoc(), Result.second,
4725                              Add,
4726                  MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]),
4727                              false, false, 1);
4728      Values[i] = L;
4729      Chains[i] = L.getValue(1);
4730    }
4731
4732    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
4733                                MVT::Other, &Chains[0], NumValues);
4734    PendingLoads.push_back(Chain);
4735
4736    // Collect the legal value parts into potentially illegal values
4737    // that correspond to the original function's return values.
4738    SmallVector<EVT, 4> RetTys;
4739    RetTy = FTy->getReturnType();
4740    ComputeValueVTs(TLI, RetTy, RetTys);
4741    ISD::NodeType AssertOp = ISD::DELETED_NODE;
4742    SmallVector<SDValue, 4> ReturnValues;
4743    unsigned CurReg = 0;
4744    for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
4745      EVT VT = RetTys[I];
4746      EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT);
4747      unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT);
4748
4749      SDValue ReturnValue =
4750        getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs,
4751                         RegisterVT, VT, AssertOp);
4752      ReturnValues.push_back(ReturnValue);
4753      CurReg += NumRegs;
4754    }
4755
4756    setValue(CS.getInstruction(),
4757             DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
4758                         DAG.getVTList(&RetTys[0], RetTys.size()),
4759                         &ReturnValues[0], ReturnValues.size()));
4760
4761  }
4762
4763  // As a special case, a null chain means that a tail call has been emitted and
4764  // the DAG root is already updated.
4765  if (Result.second.getNode())
4766    DAG.setRoot(Result.second);
4767  else
4768    HasTailCall = true;
4769
4770  if (LandingPad) {
4771    // Insert a label at the end of the invoke call to mark the try range.  This
4772    // can be used to detect deletion of the invoke via the MachineModuleInfo.
4773    MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
4774    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel));
4775
4776    // Inform MachineModuleInfo of range.
4777    MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
4778  }
4779}
4780
4781/// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
4782/// value is equal or not-equal to zero.
4783static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
4784  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
4785       UI != E; ++UI) {
4786    if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
4787      if (IC->isEquality())
4788        if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
4789          if (C->isNullValue())
4790            continue;
4791    // Unknown instruction.
4792    return false;
4793  }
4794  return true;
4795}
4796
4797static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
4798                             const Type *LoadTy,
4799                             SelectionDAGBuilder &Builder) {
4800
4801  // Check to see if this load can be trivially constant folded, e.g. if the
4802  // input is from a string literal.
4803  if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
4804    // Cast pointer to the type we really want to load.
4805    LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
4806                                         PointerType::getUnqual(LoadTy));
4807
4808    if (const Constant *LoadCst =
4809          ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
4810                                       Builder.TD))
4811      return Builder.getValue(LoadCst);
4812  }
4813
4814  // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
4815  // still constant memory, the input chain can be the entry node.
4816  SDValue Root;
4817  bool ConstantMemory = false;
4818
4819  // Do not serialize (non-volatile) loads of constant memory with anything.
4820  if (Builder.AA->pointsToConstantMemory(PtrVal)) {
4821    Root = Builder.DAG.getEntryNode();
4822    ConstantMemory = true;
4823  } else {
4824    // Do not serialize non-volatile loads against each other.
4825    Root = Builder.DAG.getRoot();
4826  }
4827
4828  SDValue Ptr = Builder.getValue(PtrVal);
4829  SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root,
4830                                        Ptr, MachinePointerInfo(PtrVal),
4831                                        false /*volatile*/,
4832                                        false /*nontemporal*/, 1 /* align=1 */);
4833
4834  if (!ConstantMemory)
4835    Builder.PendingLoads.push_back(LoadVal.getValue(1));
4836  return LoadVal;
4837}
4838
4839
4840/// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
4841/// If so, return true and lower it, otherwise return false and it will be
4842/// lowered like a normal call.
4843bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
4844  // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
4845  if (I.getNumArgOperands() != 3)
4846    return false;
4847
4848  const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
4849  if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
4850      !I.getArgOperand(2)->getType()->isIntegerTy() ||
4851      !I.getType()->isIntegerTy())
4852    return false;
4853
4854  const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2));
4855
4856  // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
4857  // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
4858  if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) {
4859    bool ActuallyDoIt = true;
4860    MVT LoadVT;
4861    const Type *LoadTy;
4862    switch (Size->getZExtValue()) {
4863    default:
4864      LoadVT = MVT::Other;
4865      LoadTy = 0;
4866      ActuallyDoIt = false;
4867      break;
4868    case 2:
4869      LoadVT = MVT::i16;
4870      LoadTy = Type::getInt16Ty(Size->getContext());
4871      break;
4872    case 4:
4873      LoadVT = MVT::i32;
4874      LoadTy = Type::getInt32Ty(Size->getContext());
4875      break;
4876    case 8:
4877      LoadVT = MVT::i64;
4878      LoadTy = Type::getInt64Ty(Size->getContext());
4879      break;
4880        /*
4881    case 16:
4882      LoadVT = MVT::v4i32;
4883      LoadTy = Type::getInt32Ty(Size->getContext());
4884      LoadTy = VectorType::get(LoadTy, 4);
4885      break;
4886         */
4887    }
4888
4889    // This turns into unaligned loads.  We only do this if the target natively
4890    // supports the MVT we'll be loading or if it is small enough (<= 4) that
4891    // we'll only produce a small number of byte loads.
4892
4893    // Require that we can find a legal MVT, and only do this if the target
4894    // supports unaligned loads of that type.  Expanding into byte loads would
4895    // bloat the code.
4896    if (ActuallyDoIt && Size->getZExtValue() > 4) {
4897      // TODO: Handle 5 byte compare as 4-byte + 1 byte.
4898      // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
4899      if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT))
4900        ActuallyDoIt = false;
4901    }
4902
4903    if (ActuallyDoIt) {
4904      SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
4905      SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
4906
4907      SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal,
4908                                 ISD::SETNE);
4909      EVT CallVT = TLI.getValueType(I.getType(), true);
4910      setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT));
4911      return true;
4912    }
4913  }
4914
4915
4916  return false;
4917}
4918
4919
4920void SelectionDAGBuilder::visitCall(const CallInst &I) {
4921  // Handle inline assembly differently.
4922  if (isa<InlineAsm>(I.getCalledValue())) {
4923    visitInlineAsm(&I);
4924    return;
4925  }
4926
4927  const char *RenameFn = 0;
4928  if (Function *F = I.getCalledFunction()) {
4929    if (F->isDeclaration()) {
4930      if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
4931        if (unsigned IID = II->getIntrinsicID(F)) {
4932          RenameFn = visitIntrinsicCall(I, IID);
4933          if (!RenameFn)
4934            return;
4935        }
4936      }
4937      if (unsigned IID = F->getIntrinsicID()) {
4938        RenameFn = visitIntrinsicCall(I, IID);
4939        if (!RenameFn)
4940          return;
4941      }
4942    }
4943
4944    // Check for well-known libc/libm calls.  If the function is internal, it
4945    // can't be a library call.
4946    if (!F->hasLocalLinkage() && F->hasName()) {
4947      StringRef Name = F->getName();
4948      if (Name == "copysign" || Name == "copysignf" || Name == "copysignl") {
4949        if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
4950            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
4951            I.getType() == I.getArgOperand(0)->getType() &&
4952            I.getType() == I.getArgOperand(1)->getType()) {
4953          SDValue LHS = getValue(I.getArgOperand(0));
4954          SDValue RHS = getValue(I.getArgOperand(1));
4955          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(),
4956                                   LHS.getValueType(), LHS, RHS));
4957          return;
4958        }
4959      } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") {
4960        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
4961            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
4962            I.getType() == I.getArgOperand(0)->getType()) {
4963          SDValue Tmp = getValue(I.getArgOperand(0));
4964          setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(),
4965                                   Tmp.getValueType(), Tmp));
4966          return;
4967        }
4968      } else if (Name == "sin" || Name == "sinf" || Name == "sinl") {
4969        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
4970            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
4971            I.getType() == I.getArgOperand(0)->getType() &&
4972            I.onlyReadsMemory()) {
4973          SDValue Tmp = getValue(I.getArgOperand(0));
4974          setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(),
4975                                   Tmp.getValueType(), Tmp));
4976          return;
4977        }
4978      } else if (Name == "cos" || Name == "cosf" || Name == "cosl") {
4979        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
4980            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
4981            I.getType() == I.getArgOperand(0)->getType() &&
4982            I.onlyReadsMemory()) {
4983          SDValue Tmp = getValue(I.getArgOperand(0));
4984          setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(),
4985                                   Tmp.getValueType(), Tmp));
4986          return;
4987        }
4988      } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") {
4989        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
4990            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
4991            I.getType() == I.getArgOperand(0)->getType() &&
4992            I.onlyReadsMemory()) {
4993          SDValue Tmp = getValue(I.getArgOperand(0));
4994          setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(),
4995                                   Tmp.getValueType(), Tmp));
4996          return;
4997        }
4998      } else if (Name == "memcmp") {
4999        if (visitMemCmpCall(I))
5000          return;
5001      }
5002    }
5003  }
5004
5005  SDValue Callee;
5006  if (!RenameFn)
5007    Callee = getValue(I.getCalledValue());
5008  else
5009    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
5010
5011  // Check if we can potentially perform a tail call. More detailed checking is
5012  // be done within LowerCallTo, after more information about the call is known.
5013  LowerCallTo(&I, Callee, I.isTailCall());
5014}
5015
5016namespace llvm {
5017
5018/// AsmOperandInfo - This contains information for each constraint that we are
5019/// lowering.
5020class LLVM_LIBRARY_VISIBILITY SDISelAsmOperandInfo :
5021    public TargetLowering::AsmOperandInfo {
5022public:
5023  /// CallOperand - If this is the result output operand or a clobber
5024  /// this is null, otherwise it is the incoming operand to the CallInst.
5025  /// This gets modified as the asm is processed.
5026  SDValue CallOperand;
5027
5028  /// AssignedRegs - If this is a register or register class operand, this
5029  /// contains the set of register corresponding to the operand.
5030  RegsForValue AssignedRegs;
5031
5032  explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
5033    : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
5034  }
5035
5036  /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
5037  /// busy in OutputRegs/InputRegs.
5038  void MarkAllocatedRegs(bool isOutReg, bool isInReg,
5039                         std::set<unsigned> &OutputRegs,
5040                         std::set<unsigned> &InputRegs,
5041                         const TargetRegisterInfo &TRI) const {
5042    if (isOutReg) {
5043      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
5044        MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
5045    }
5046    if (isInReg) {
5047      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
5048        MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
5049    }
5050  }
5051
5052  /// getCallOperandValEVT - Return the EVT of the Value* that this operand
5053  /// corresponds to.  If there is no Value* for this operand, it returns
5054  /// MVT::Other.
5055  EVT getCallOperandValEVT(LLVMContext &Context,
5056                           const TargetLowering &TLI,
5057                           const TargetData *TD) const {
5058    if (CallOperandVal == 0) return MVT::Other;
5059
5060    if (isa<BasicBlock>(CallOperandVal))
5061      return TLI.getPointerTy();
5062
5063    const llvm::Type *OpTy = CallOperandVal->getType();
5064
5065    // If this is an indirect operand, the operand is a pointer to the
5066    // accessed type.
5067    if (isIndirect) {
5068      const llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
5069      if (!PtrTy)
5070        report_fatal_error("Indirect operand for inline asm not a pointer!");
5071      OpTy = PtrTy->getElementType();
5072    }
5073
5074    // If OpTy is not a single value, it may be a struct/union that we
5075    // can tile with integers.
5076    if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5077      unsigned BitSize = TD->getTypeSizeInBits(OpTy);
5078      switch (BitSize) {
5079      default: break;
5080      case 1:
5081      case 8:
5082      case 16:
5083      case 32:
5084      case 64:
5085      case 128:
5086        OpTy = IntegerType::get(Context, BitSize);
5087        break;
5088      }
5089    }
5090
5091    return TLI.getValueType(OpTy, true);
5092  }
5093
5094private:
5095  /// MarkRegAndAliases - Mark the specified register and all aliases in the
5096  /// specified set.
5097  static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
5098                                const TargetRegisterInfo &TRI) {
5099    assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
5100    Regs.insert(Reg);
5101    if (const unsigned *Aliases = TRI.getAliasSet(Reg))
5102      for (; *Aliases; ++Aliases)
5103        Regs.insert(*Aliases);
5104  }
5105};
5106
5107} // end llvm namespace.
5108
5109/// isAllocatableRegister - If the specified register is safe to allocate,
5110/// i.e. it isn't a stack pointer or some other special register, return the
5111/// register class for the register.  Otherwise, return null.
5112static const TargetRegisterClass *
5113isAllocatableRegister(unsigned Reg, MachineFunction &MF,
5114                      const TargetLowering &TLI,
5115                      const TargetRegisterInfo *TRI) {
5116  EVT FoundVT = MVT::Other;
5117  const TargetRegisterClass *FoundRC = 0;
5118  for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(),
5119       E = TRI->regclass_end(); RCI != E; ++RCI) {
5120    EVT ThisVT = MVT::Other;
5121
5122    const TargetRegisterClass *RC = *RCI;
5123    // If none of the value types for this register class are valid, we
5124    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
5125    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
5126         I != E; ++I) {
5127      if (TLI.isTypeLegal(*I)) {
5128        // If we have already found this register in a different register class,
5129        // choose the one with the largest VT specified.  For example, on
5130        // PowerPC, we favor f64 register classes over f32.
5131        if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) {
5132          ThisVT = *I;
5133          break;
5134        }
5135      }
5136    }
5137
5138    if (ThisVT == MVT::Other) continue;
5139
5140    // NOTE: This isn't ideal.  In particular, this might allocate the
5141    // frame pointer in functions that need it (due to them not being taken
5142    // out of allocation, because a variable sized allocation hasn't been seen
5143    // yet).  This is a slight code pessimization, but should still work.
5144    for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
5145         E = RC->allocation_order_end(MF); I != E; ++I)
5146      if (*I == Reg) {
5147        // We found a matching register class.  Keep looking at others in case
5148        // we find one with larger registers that this physreg is also in.
5149        FoundRC = RC;
5150        FoundVT = ThisVT;
5151        break;
5152      }
5153  }
5154  return FoundRC;
5155}
5156
5157/// GetRegistersForValue - Assign registers (virtual or physical) for the
5158/// specified operand.  We prefer to assign virtual registers, to allow the
5159/// register allocator to handle the assignment process.  However, if the asm
5160/// uses features that we can't model on machineinstrs, we have SDISel do the
5161/// allocation.  This produces generally horrible, but correct, code.
5162///
5163///   OpInfo describes the operand.
5164///   Input and OutputRegs are the set of already allocated physical registers.
5165///
5166void SelectionDAGBuilder::
5167GetRegistersForValue(SDISelAsmOperandInfo &OpInfo,
5168                     std::set<unsigned> &OutputRegs,
5169                     std::set<unsigned> &InputRegs) {
5170  LLVMContext &Context = FuncInfo.Fn->getContext();
5171
5172  // Compute whether this value requires an input register, an output register,
5173  // or both.
5174  bool isOutReg = false;
5175  bool isInReg = false;
5176  switch (OpInfo.Type) {
5177  case InlineAsm::isOutput:
5178    isOutReg = true;
5179
5180    // If there is an input constraint that matches this, we need to reserve
5181    // the input register so no other inputs allocate to it.
5182    isInReg = OpInfo.hasMatchingInput();
5183    break;
5184  case InlineAsm::isInput:
5185    isInReg = true;
5186    isOutReg = false;
5187    break;
5188  case InlineAsm::isClobber:
5189    isOutReg = true;
5190    isInReg = true;
5191    break;
5192  }
5193
5194
5195  MachineFunction &MF = DAG.getMachineFunction();
5196  SmallVector<unsigned, 4> Regs;
5197
5198  // If this is a constraint for a single physreg, or a constraint for a
5199  // register class, find it.
5200  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
5201    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5202                                     OpInfo.ConstraintVT);
5203
5204  unsigned NumRegs = 1;
5205  if (OpInfo.ConstraintVT != MVT::Other) {
5206    // If this is a FP input in an integer register (or visa versa) insert a bit
5207    // cast of the input value.  More generally, handle any case where the input
5208    // value disagrees with the register class we plan to stick this in.
5209    if (OpInfo.Type == InlineAsm::isInput &&
5210        PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
5211      // Try to convert to the first EVT that the reg class contains.  If the
5212      // types are identical size, use a bitcast to convert (e.g. two differing
5213      // vector types).
5214      EVT RegVT = *PhysReg.second->vt_begin();
5215      if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
5216        OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
5217                                         RegVT, OpInfo.CallOperand);
5218        OpInfo.ConstraintVT = RegVT;
5219      } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
5220        // If the input is a FP value and we want it in FP registers, do a
5221        // bitcast to the corresponding integer type.  This turns an f64 value
5222        // into i64, which can be passed with two i32 values on a 32-bit
5223        // machine.
5224        RegVT = EVT::getIntegerVT(Context,
5225                                  OpInfo.ConstraintVT.getSizeInBits());
5226        OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
5227                                         RegVT, OpInfo.CallOperand);
5228        OpInfo.ConstraintVT = RegVT;
5229      }
5230    }
5231
5232    NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
5233  }
5234
5235  EVT RegVT;
5236  EVT ValueVT = OpInfo.ConstraintVT;
5237
5238  // If this is a constraint for a specific physical register, like {r17},
5239  // assign it now.
5240  if (unsigned AssignedReg = PhysReg.first) {
5241    const TargetRegisterClass *RC = PhysReg.second;
5242    if (OpInfo.ConstraintVT == MVT::Other)
5243      ValueVT = *RC->vt_begin();
5244
5245    // Get the actual register value type.  This is important, because the user
5246    // may have asked for (e.g.) the AX register in i32 type.  We need to
5247    // remember that AX is actually i16 to get the right extension.
5248    RegVT = *RC->vt_begin();
5249
5250    // This is a explicit reference to a physical register.
5251    Regs.push_back(AssignedReg);
5252
5253    // If this is an expanded reference, add the rest of the regs to Regs.
5254    if (NumRegs != 1) {
5255      TargetRegisterClass::iterator I = RC->begin();
5256      for (; *I != AssignedReg; ++I)
5257        assert(I != RC->end() && "Didn't find reg!");
5258
5259      // Already added the first reg.
5260      --NumRegs; ++I;
5261      for (; NumRegs; --NumRegs, ++I) {
5262        assert(I != RC->end() && "Ran out of registers to allocate!");
5263        Regs.push_back(*I);
5264      }
5265    }
5266
5267    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5268    const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5269    OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5270    return;
5271  }
5272
5273  // Otherwise, if this was a reference to an LLVM register class, create vregs
5274  // for this reference.
5275  if (const TargetRegisterClass *RC = PhysReg.second) {
5276    RegVT = *RC->vt_begin();
5277    if (OpInfo.ConstraintVT == MVT::Other)
5278      ValueVT = RegVT;
5279
5280    // Create the appropriate number of virtual registers.
5281    MachineRegisterInfo &RegInfo = MF.getRegInfo();
5282    for (; NumRegs; --NumRegs)
5283      Regs.push_back(RegInfo.createVirtualRegister(RC));
5284
5285    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5286    return;
5287  }
5288
5289  // This is a reference to a register class that doesn't directly correspond
5290  // to an LLVM register class.  Allocate NumRegs consecutive, available,
5291  // registers from the class.
5292  std::vector<unsigned> RegClassRegs
5293    = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
5294                                            OpInfo.ConstraintVT);
5295
5296  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5297  unsigned NumAllocated = 0;
5298  for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
5299    unsigned Reg = RegClassRegs[i];
5300    // See if this register is available.
5301    if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
5302        (isInReg  && InputRegs.count(Reg))) {    // Already used.
5303      // Make sure we find consecutive registers.
5304      NumAllocated = 0;
5305      continue;
5306    }
5307
5308    // Check to see if this register is allocatable (i.e. don't give out the
5309    // stack pointer).
5310    const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, TRI);
5311    if (!RC) {        // Couldn't allocate this register.
5312      // Reset NumAllocated to make sure we return consecutive registers.
5313      NumAllocated = 0;
5314      continue;
5315    }
5316
5317    // Okay, this register is good, we can use it.
5318    ++NumAllocated;
5319
5320    // If we allocated enough consecutive registers, succeed.
5321    if (NumAllocated == NumRegs) {
5322      unsigned RegStart = (i-NumAllocated)+1;
5323      unsigned RegEnd   = i+1;
5324      // Mark all of the allocated registers used.
5325      for (unsigned i = RegStart; i != RegEnd; ++i)
5326        Regs.push_back(RegClassRegs[i]);
5327
5328      OpInfo.AssignedRegs = RegsForValue(Regs, *RC->vt_begin(),
5329                                         OpInfo.ConstraintVT);
5330      OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5331      return;
5332    }
5333  }
5334
5335  // Otherwise, we couldn't allocate enough registers for this.
5336}
5337
5338/// visitInlineAsm - Handle a call to an InlineAsm object.
5339///
5340void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
5341  const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
5342
5343  /// ConstraintOperands - Information about all of the constraints.
5344  std::vector<SDISelAsmOperandInfo> ConstraintOperands;
5345
5346  std::set<unsigned> OutputRegs, InputRegs;
5347
5348  std::vector<TargetLowering::AsmOperandInfo> TargetConstraints = TLI.ParseConstraints(CS);
5349  bool hasMemory = false;
5350
5351  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
5352  unsigned ResNo = 0;   // ResNo - The result number of the next output.
5353  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
5354    ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
5355    SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
5356
5357    EVT OpVT = MVT::Other;
5358
5359    // Compute the value type for each operand.
5360    switch (OpInfo.Type) {
5361    case InlineAsm::isOutput:
5362      // Indirect outputs just consume an argument.
5363      if (OpInfo.isIndirect) {
5364        OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5365        break;
5366      }
5367
5368      // The return value of the call is this value.  As such, there is no
5369      // corresponding argument.
5370      assert(!CS.getType()->isVoidTy() &&
5371             "Bad inline asm!");
5372      if (const StructType *STy = dyn_cast<StructType>(CS.getType())) {
5373        OpVT = TLI.getValueType(STy->getElementType(ResNo));
5374      } else {
5375        assert(ResNo == 0 && "Asm only has one result!");
5376        OpVT = TLI.getValueType(CS.getType());
5377      }
5378      ++ResNo;
5379      break;
5380    case InlineAsm::isInput:
5381      OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5382      break;
5383    case InlineAsm::isClobber:
5384      // Nothing to do.
5385      break;
5386    }
5387
5388    // If this is an input or an indirect output, process the call argument.
5389    // BasicBlocks are labels, currently appearing only in asm's.
5390    if (OpInfo.CallOperandVal) {
5391      // Strip bitcasts, if any.  This mostly comes up for functions.
5392      OpInfo.CallOperandVal = OpInfo.CallOperandVal->stripPointerCasts();
5393
5394      if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
5395        OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
5396      } else {
5397        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
5398      }
5399
5400      OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD);
5401    }
5402
5403    OpInfo.ConstraintVT = OpVT;
5404
5405    // Indirect operand accesses access memory.
5406    if (OpInfo.isIndirect)
5407      hasMemory = true;
5408    else {
5409      for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
5410        TargetLowering::ConstraintType CType = TLI.getConstraintType(OpInfo.Codes[j]);
5411        if (CType == TargetLowering::C_Memory) {
5412          hasMemory = true;
5413          break;
5414        }
5415      }
5416    }
5417  }
5418
5419  SDValue Chain, Flag;
5420
5421  // We won't need to flush pending loads if this asm doesn't touch
5422  // memory and is nonvolatile.
5423  if (hasMemory || IA->hasSideEffects())
5424    Chain = getRoot();
5425  else
5426    Chain = DAG.getRoot();
5427
5428  // Second pass over the constraints: compute which constraint option to use
5429  // and assign registers to constraints that want a specific physreg.
5430  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5431    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5432
5433    // Compute the constraint code and ConstraintType to use.
5434    TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
5435
5436    // If this is a memory input, and if the operand is not indirect, do what we
5437    // need to to provide an address for the memory input.
5438    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5439        !OpInfo.isIndirect) {
5440      assert((OpInfo.isMultipleAlternative || (OpInfo.Type == InlineAsm::isInput)) &&
5441             "Can only indirectify direct input operands!");
5442
5443      // Memory operands really want the address of the value.  If we don't have
5444      // an indirect input, put it in the constpool if we can, otherwise spill
5445      // it to a stack slot.
5446
5447      // If the operand is a float, integer, or vector constant, spill to a
5448      // constant pool entry to get its address.
5449      const Value *OpVal = OpInfo.CallOperandVal;
5450      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
5451          isa<ConstantVector>(OpVal)) {
5452        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
5453                                                 TLI.getPointerTy());
5454      } else {
5455        // Otherwise, create a stack slot and emit a store to it before the
5456        // asm.
5457        const Type *Ty = OpVal->getType();
5458        uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
5459        unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
5460        MachineFunction &MF = DAG.getMachineFunction();
5461        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5462        SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
5463        Chain = DAG.getStore(Chain, getCurDebugLoc(),
5464                             OpInfo.CallOperand, StackSlot,
5465                             MachinePointerInfo::getFixedStack(SSFI),
5466                             false, false, 0);
5467        OpInfo.CallOperand = StackSlot;
5468      }
5469
5470      // There is no longer a Value* corresponding to this operand.
5471      OpInfo.CallOperandVal = 0;
5472
5473      // It is now an indirect operand.
5474      OpInfo.isIndirect = true;
5475    }
5476
5477    // If this constraint is for a specific register, allocate it before
5478    // anything else.
5479    if (OpInfo.ConstraintType == TargetLowering::C_Register)
5480      GetRegistersForValue(OpInfo, OutputRegs, InputRegs);
5481  }
5482
5483  // Second pass - Loop over all of the operands, assigning virtual or physregs
5484  // to register class operands.
5485  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5486    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5487
5488    // C_Register operands have already been allocated, Other/Memory don't need
5489    // to be.
5490    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
5491      GetRegistersForValue(OpInfo, OutputRegs, InputRegs);
5492  }
5493
5494  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
5495  std::vector<SDValue> AsmNodeOperands;
5496  AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
5497  AsmNodeOperands.push_back(
5498          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
5499                                      TLI.getPointerTy()));
5500
5501  // If we have a !srcloc metadata node associated with it, we want to attach
5502  // this to the ultimately generated inline asm machineinstr.  To do this, we
5503  // pass in the third operand as this (potentially null) inline asm MDNode.
5504  const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
5505  AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
5506
5507  // Remember the AlignStack bit as operand 3.
5508  AsmNodeOperands.push_back(DAG.getTargetConstant(IA->isAlignStack() ? 1 : 0,
5509                                            MVT::i1));
5510
5511  // Loop over all of the inputs, copying the operand values into the
5512  // appropriate registers and processing the output regs.
5513  RegsForValue RetValRegs;
5514
5515  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
5516  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
5517
5518  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5519    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5520
5521    switch (OpInfo.Type) {
5522    case InlineAsm::isOutput: {
5523      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
5524          OpInfo.ConstraintType != TargetLowering::C_Register) {
5525        // Memory output, or 'other' output (e.g. 'X' constraint).
5526        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
5527
5528        // Add information to the INLINEASM node to know about this output.
5529        unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
5530        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
5531                                                        TLI.getPointerTy()));
5532        AsmNodeOperands.push_back(OpInfo.CallOperand);
5533        break;
5534      }
5535
5536      // Otherwise, this is a register or register class output.
5537
5538      // Copy the output from the appropriate register.  Find a register that
5539      // we can use.
5540      if (OpInfo.AssignedRegs.Regs.empty())
5541        report_fatal_error("Couldn't allocate output reg for constraint '" +
5542                           Twine(OpInfo.ConstraintCode) + "'!");
5543
5544      // If this is an indirect operand, store through the pointer after the
5545      // asm.
5546      if (OpInfo.isIndirect) {
5547        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
5548                                                      OpInfo.CallOperandVal));
5549      } else {
5550        // This is the result value of the call.
5551        assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
5552        // Concatenate this output onto the outputs list.
5553        RetValRegs.append(OpInfo.AssignedRegs);
5554      }
5555
5556      // Add information to the INLINEASM node to know that this register is
5557      // set.
5558      OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
5559                                           InlineAsm::Kind_RegDefEarlyClobber :
5560                                               InlineAsm::Kind_RegDef,
5561                                               false,
5562                                               0,
5563                                               DAG,
5564                                               AsmNodeOperands);
5565      break;
5566    }
5567    case InlineAsm::isInput: {
5568      SDValue InOperandVal = OpInfo.CallOperand;
5569
5570      if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
5571        // If this is required to match an output register we have already set,
5572        // just use its register.
5573        unsigned OperandNo = OpInfo.getMatchedOperand();
5574
5575        // Scan until we find the definition we already emitted of this operand.
5576        // When we find it, create a RegsForValue operand.
5577        unsigned CurOp = InlineAsm::Op_FirstOperand;
5578        for (; OperandNo; --OperandNo) {
5579          // Advance to the next operand.
5580          unsigned OpFlag =
5581            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5582          assert((InlineAsm::isRegDefKind(OpFlag) ||
5583                  InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
5584                  InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
5585          CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
5586        }
5587
5588        unsigned OpFlag =
5589          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5590        if (InlineAsm::isRegDefKind(OpFlag) ||
5591            InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
5592          // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
5593          if (OpInfo.isIndirect) {
5594            // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
5595            LLVMContext &Ctx = *DAG.getContext();
5596            Ctx.emitError(CS.getInstruction(),  "inline asm not supported yet:"
5597                          " don't know how to handle tied "
5598                          "indirect register inputs");
5599          }
5600
5601          RegsForValue MatchedRegs;
5602          MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
5603          EVT RegVT = AsmNodeOperands[CurOp+1].getValueType();
5604          MatchedRegs.RegVTs.push_back(RegVT);
5605          MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
5606          for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
5607               i != e; ++i)
5608            MatchedRegs.Regs.push_back
5609              (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)));
5610
5611          // Use the produced MatchedRegs object to
5612          MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
5613                                    Chain, &Flag);
5614          MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
5615                                           true, OpInfo.getMatchedOperand(),
5616                                           DAG, AsmNodeOperands);
5617          break;
5618        }
5619
5620        assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
5621        assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
5622               "Unexpected number of operands");
5623        // Add information to the INLINEASM node to know about this input.
5624        // See InlineAsm.h isUseOperandTiedToDef.
5625        OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
5626                                                    OpInfo.getMatchedOperand());
5627        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
5628                                                        TLI.getPointerTy()));
5629        AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
5630        break;
5631      }
5632
5633      // Treat indirect 'X' constraint as memory.
5634      if (OpInfo.ConstraintType == TargetLowering::C_Other &&
5635          OpInfo.isIndirect)
5636        OpInfo.ConstraintType = TargetLowering::C_Memory;
5637
5638      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
5639        std::vector<SDValue> Ops;
5640        TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0],
5641                                         Ops, DAG);
5642        if (Ops.empty())
5643          report_fatal_error("Invalid operand for inline asm constraint '" +
5644                             Twine(OpInfo.ConstraintCode) + "'!");
5645
5646        // Add information to the INLINEASM node to know about this input.
5647        unsigned ResOpType =
5648          InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
5649        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5650                                                        TLI.getPointerTy()));
5651        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
5652        break;
5653      }
5654
5655      if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
5656        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
5657        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
5658               "Memory operands expect pointer values");
5659
5660        // Add information to the INLINEASM node to know about this input.
5661        unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
5662        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5663                                                        TLI.getPointerTy()));
5664        AsmNodeOperands.push_back(InOperandVal);
5665        break;
5666      }
5667
5668      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
5669              OpInfo.ConstraintType == TargetLowering::C_Register) &&
5670             "Unknown constraint type!");
5671      assert(!OpInfo.isIndirect &&
5672             "Don't know how to handle indirect register inputs yet!");
5673
5674      // Copy the input into the appropriate registers.
5675      if (OpInfo.AssignedRegs.Regs.empty() ||
5676          !OpInfo.AssignedRegs.areValueTypesLegal(TLI))
5677        report_fatal_error("Couldn't allocate input reg for constraint '" +
5678                           Twine(OpInfo.ConstraintCode) + "'!");
5679
5680      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
5681                                        Chain, &Flag);
5682
5683      OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
5684                                               DAG, AsmNodeOperands);
5685      break;
5686    }
5687    case InlineAsm::isClobber: {
5688      // Add the clobbered value to the operand list, so that the register
5689      // allocator is aware that the physreg got clobbered.
5690      if (!OpInfo.AssignedRegs.Regs.empty())
5691        OpInfo.AssignedRegs.AddInlineAsmOperands(
5692                                            InlineAsm::Kind_RegDefEarlyClobber,
5693                                                 false, 0, DAG,
5694                                                 AsmNodeOperands);
5695      break;
5696    }
5697    }
5698  }
5699
5700  // Finish up input operands.  Set the input chain and add the flag last.
5701  AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
5702  if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
5703
5704  Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(),
5705                      DAG.getVTList(MVT::Other, MVT::Flag),
5706                      &AsmNodeOperands[0], AsmNodeOperands.size());
5707  Flag = Chain.getValue(1);
5708
5709  // If this asm returns a register value, copy the result from that register
5710  // and set it as the value of the call.
5711  if (!RetValRegs.Regs.empty()) {
5712    SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
5713                                             Chain, &Flag);
5714
5715    // FIXME: Why don't we do this for inline asms with MRVs?
5716    if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
5717      EVT ResultType = TLI.getValueType(CS.getType());
5718
5719      // If any of the results of the inline asm is a vector, it may have the
5720      // wrong width/num elts.  This can happen for register classes that can
5721      // contain multiple different value types.  The preg or vreg allocated may
5722      // not have the same VT as was expected.  Convert it to the right type
5723      // with bit_convert.
5724      if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
5725        Val = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
5726                          ResultType, Val);
5727
5728      } else if (ResultType != Val.getValueType() &&
5729                 ResultType.isInteger() && Val.getValueType().isInteger()) {
5730        // If a result value was tied to an input value, the computed result may
5731        // have a wider width than the expected result.  Extract the relevant
5732        // portion.
5733        Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val);
5734      }
5735
5736      assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
5737    }
5738
5739    setValue(CS.getInstruction(), Val);
5740    // Don't need to use this as a chain in this case.
5741    if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
5742      return;
5743  }
5744
5745  std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
5746
5747  // Process indirect outputs, first output all of the flagged copies out of
5748  // physregs.
5749  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
5750    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
5751    const Value *Ptr = IndirectStoresToEmit[i].second;
5752    SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
5753                                             Chain, &Flag);
5754    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
5755  }
5756
5757  // Emit the non-flagged stores from the physregs.
5758  SmallVector<SDValue, 8> OutChains;
5759  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
5760    SDValue Val = DAG.getStore(Chain, getCurDebugLoc(),
5761                               StoresToEmit[i].first,
5762                               getValue(StoresToEmit[i].second),
5763                               StoresToEmit[i].second, 0,
5764                               false, false, 0);
5765    OutChains.push_back(Val);
5766  }
5767
5768  if (!OutChains.empty())
5769    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
5770                        &OutChains[0], OutChains.size());
5771
5772  DAG.setRoot(Chain);
5773}
5774
5775void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
5776  DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(),
5777                          MVT::Other, getRoot(),
5778                          getValue(I.getArgOperand(0)),
5779                          DAG.getSrcValue(I.getArgOperand(0))));
5780}
5781
5782void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
5783  const TargetData &TD = *TLI.getTargetData();
5784  SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(),
5785                           getRoot(), getValue(I.getOperand(0)),
5786                           DAG.getSrcValue(I.getOperand(0)),
5787                           TD.getABITypeAlignment(I.getType()));
5788  setValue(&I, V);
5789  DAG.setRoot(V.getValue(1));
5790}
5791
5792void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
5793  DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(),
5794                          MVT::Other, getRoot(),
5795                          getValue(I.getArgOperand(0)),
5796                          DAG.getSrcValue(I.getArgOperand(0))));
5797}
5798
5799void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
5800  DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(),
5801                          MVT::Other, getRoot(),
5802                          getValue(I.getArgOperand(0)),
5803                          getValue(I.getArgOperand(1)),
5804                          DAG.getSrcValue(I.getArgOperand(0)),
5805                          DAG.getSrcValue(I.getArgOperand(1))));
5806}
5807
5808/// TargetLowering::LowerCallTo - This is the default LowerCallTo
5809/// implementation, which just calls LowerCall.
5810/// FIXME: When all targets are
5811/// migrated to using LowerCall, this hook should be integrated into SDISel.
5812std::pair<SDValue, SDValue>
5813TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy,
5814                            bool RetSExt, bool RetZExt, bool isVarArg,
5815                            bool isInreg, unsigned NumFixedArgs,
5816                            CallingConv::ID CallConv, bool isTailCall,
5817                            bool isReturnValueUsed,
5818                            SDValue Callee,
5819                            ArgListTy &Args, SelectionDAG &DAG,
5820                            DebugLoc dl) const {
5821  // Handle all of the outgoing arguments.
5822  SmallVector<ISD::OutputArg, 32> Outs;
5823  SmallVector<SDValue, 32> OutVals;
5824  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
5825    SmallVector<EVT, 4> ValueVTs;
5826    ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
5827    for (unsigned Value = 0, NumValues = ValueVTs.size();
5828         Value != NumValues; ++Value) {
5829      EVT VT = ValueVTs[Value];
5830      const Type *ArgTy = VT.getTypeForEVT(RetTy->getContext());
5831      SDValue Op = SDValue(Args[i].Node.getNode(),
5832                           Args[i].Node.getResNo() + Value);
5833      ISD::ArgFlagsTy Flags;
5834      unsigned OriginalAlignment =
5835        getTargetData()->getABITypeAlignment(ArgTy);
5836
5837      if (Args[i].isZExt)
5838        Flags.setZExt();
5839      if (Args[i].isSExt)
5840        Flags.setSExt();
5841      if (Args[i].isInReg)
5842        Flags.setInReg();
5843      if (Args[i].isSRet)
5844        Flags.setSRet();
5845      if (Args[i].isByVal) {
5846        Flags.setByVal();
5847        const PointerType *Ty = cast<PointerType>(Args[i].Ty);
5848        const Type *ElementTy = Ty->getElementType();
5849        unsigned FrameAlign = getByValTypeAlignment(ElementTy);
5850        unsigned FrameSize  = getTargetData()->getTypeAllocSize(ElementTy);
5851        // For ByVal, alignment should come from FE.  BE will guess if this
5852        // info is not there but there are cases it cannot get right.
5853        if (Args[i].Alignment)
5854          FrameAlign = Args[i].Alignment;
5855        Flags.setByValAlign(FrameAlign);
5856        Flags.setByValSize(FrameSize);
5857      }
5858      if (Args[i].isNest)
5859        Flags.setNest();
5860      Flags.setOrigAlign(OriginalAlignment);
5861
5862      EVT PartVT = getRegisterType(RetTy->getContext(), VT);
5863      unsigned NumParts = getNumRegisters(RetTy->getContext(), VT);
5864      SmallVector<SDValue, 4> Parts(NumParts);
5865      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
5866
5867      if (Args[i].isSExt)
5868        ExtendKind = ISD::SIGN_EXTEND;
5869      else if (Args[i].isZExt)
5870        ExtendKind = ISD::ZERO_EXTEND;
5871
5872      getCopyToParts(DAG, dl, Op, &Parts[0], NumParts,
5873                     PartVT, ExtendKind);
5874
5875      for (unsigned j = 0; j != NumParts; ++j) {
5876        // if it isn't first piece, alignment must be 1
5877        ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(),
5878                               i < NumFixedArgs);
5879        if (NumParts > 1 && j == 0)
5880          MyFlags.Flags.setSplit();
5881        else if (j != 0)
5882          MyFlags.Flags.setOrigAlign(1);
5883
5884        Outs.push_back(MyFlags);
5885        OutVals.push_back(Parts[j]);
5886      }
5887    }
5888  }
5889
5890  // Handle the incoming return values from the call.
5891  SmallVector<ISD::InputArg, 32> Ins;
5892  SmallVector<EVT, 4> RetTys;
5893  ComputeValueVTs(*this, RetTy, RetTys);
5894  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
5895    EVT VT = RetTys[I];
5896    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
5897    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
5898    for (unsigned i = 0; i != NumRegs; ++i) {
5899      ISD::InputArg MyFlags;
5900      MyFlags.VT = RegisterVT;
5901      MyFlags.Used = isReturnValueUsed;
5902      if (RetSExt)
5903        MyFlags.Flags.setSExt();
5904      if (RetZExt)
5905        MyFlags.Flags.setZExt();
5906      if (isInreg)
5907        MyFlags.Flags.setInReg();
5908      Ins.push_back(MyFlags);
5909    }
5910  }
5911
5912  SmallVector<SDValue, 4> InVals;
5913  Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall,
5914                    Outs, OutVals, Ins, dl, DAG, InVals);
5915
5916  // Verify that the target's LowerCall behaved as expected.
5917  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
5918         "LowerCall didn't return a valid chain!");
5919  assert((!isTailCall || InVals.empty()) &&
5920         "LowerCall emitted a return value for a tail call!");
5921  assert((isTailCall || InVals.size() == Ins.size()) &&
5922         "LowerCall didn't emit the correct number of values!");
5923
5924  // For a tail call, the return value is merely live-out and there aren't
5925  // any nodes in the DAG representing it. Return a special value to
5926  // indicate that a tail call has been emitted and no more Instructions
5927  // should be processed in the current block.
5928  if (isTailCall) {
5929    DAG.setRoot(Chain);
5930    return std::make_pair(SDValue(), SDValue());
5931  }
5932
5933  DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
5934          assert(InVals[i].getNode() &&
5935                 "LowerCall emitted a null value!");
5936          assert(Ins[i].VT == InVals[i].getValueType() &&
5937                 "LowerCall emitted a value with the wrong type!");
5938        });
5939
5940  // Collect the legal value parts into potentially illegal values
5941  // that correspond to the original function's return values.
5942  ISD::NodeType AssertOp = ISD::DELETED_NODE;
5943  if (RetSExt)
5944    AssertOp = ISD::AssertSext;
5945  else if (RetZExt)
5946    AssertOp = ISD::AssertZext;
5947  SmallVector<SDValue, 4> ReturnValues;
5948  unsigned CurReg = 0;
5949  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
5950    EVT VT = RetTys[I];
5951    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
5952    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
5953
5954    ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg],
5955                                            NumRegs, RegisterVT, VT,
5956                                            AssertOp));
5957    CurReg += NumRegs;
5958  }
5959
5960  // For a function returning void, there is no return value. We can't create
5961  // such a node, so we just return a null return value in that case. In
5962  // that case, nothing will actualy look at the value.
5963  if (ReturnValues.empty())
5964    return std::make_pair(SDValue(), Chain);
5965
5966  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
5967                            DAG.getVTList(&RetTys[0], RetTys.size()),
5968                            &ReturnValues[0], ReturnValues.size());
5969  return std::make_pair(Res, Chain);
5970}
5971
5972void TargetLowering::LowerOperationWrapper(SDNode *N,
5973                                           SmallVectorImpl<SDValue> &Results,
5974                                           SelectionDAG &DAG) const {
5975  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
5976  if (Res.getNode())
5977    Results.push_back(Res);
5978}
5979
5980SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
5981  llvm_unreachable("LowerOperation not implemented for this target!");
5982  return SDValue();
5983}
5984
5985void
5986SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
5987  SDValue Op = getNonRegisterValue(V);
5988  assert((Op.getOpcode() != ISD::CopyFromReg ||
5989          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
5990         "Copy from a reg to the same reg!");
5991  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
5992
5993  RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
5994  SDValue Chain = DAG.getEntryNode();
5995  RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0);
5996  PendingExports.push_back(Chain);
5997}
5998
5999#include "llvm/CodeGen/SelectionDAGISel.h"
6000
6001void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) {
6002  // If this is the entry block, emit arguments.
6003  const Function &F = *LLVMBB->getParent();
6004  SelectionDAG &DAG = SDB->DAG;
6005  DebugLoc dl = SDB->getCurDebugLoc();
6006  const TargetData *TD = TLI.getTargetData();
6007  SmallVector<ISD::InputArg, 16> Ins;
6008
6009  // Check whether the function can return without sret-demotion.
6010  SmallVector<ISD::OutputArg, 4> Outs;
6011  GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
6012                Outs, TLI);
6013
6014  if (!FuncInfo->CanLowerReturn) {
6015    // Put in an sret pointer parameter before all the other parameters.
6016    SmallVector<EVT, 1> ValueVTs;
6017    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6018
6019    // NOTE: Assuming that a pointer will never break down to more than one VT
6020    // or one register.
6021    ISD::ArgFlagsTy Flags;
6022    Flags.setSRet();
6023    EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]);
6024    ISD::InputArg RetArg(Flags, RegisterVT, true);
6025    Ins.push_back(RetArg);
6026  }
6027
6028  // Set up the incoming argument description vector.
6029  unsigned Idx = 1;
6030  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
6031       I != E; ++I, ++Idx) {
6032    SmallVector<EVT, 4> ValueVTs;
6033    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6034    bool isArgValueUsed = !I->use_empty();
6035    for (unsigned Value = 0, NumValues = ValueVTs.size();
6036         Value != NumValues; ++Value) {
6037      EVT VT = ValueVTs[Value];
6038      const Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
6039      ISD::ArgFlagsTy Flags;
6040      unsigned OriginalAlignment =
6041        TD->getABITypeAlignment(ArgTy);
6042
6043      if (F.paramHasAttr(Idx, Attribute::ZExt))
6044        Flags.setZExt();
6045      if (F.paramHasAttr(Idx, Attribute::SExt))
6046        Flags.setSExt();
6047      if (F.paramHasAttr(Idx, Attribute::InReg))
6048        Flags.setInReg();
6049      if (F.paramHasAttr(Idx, Attribute::StructRet))
6050        Flags.setSRet();
6051      if (F.paramHasAttr(Idx, Attribute::ByVal)) {
6052        Flags.setByVal();
6053        const PointerType *Ty = cast<PointerType>(I->getType());
6054        const Type *ElementTy = Ty->getElementType();
6055        unsigned FrameAlign = TLI.getByValTypeAlignment(ElementTy);
6056        unsigned FrameSize  = TD->getTypeAllocSize(ElementTy);
6057        // For ByVal, alignment should be passed from FE.  BE will guess if
6058        // this info is not there but there are cases it cannot get right.
6059        if (F.getParamAlignment(Idx))
6060          FrameAlign = F.getParamAlignment(Idx);
6061        Flags.setByValAlign(FrameAlign);
6062        Flags.setByValSize(FrameSize);
6063      }
6064      if (F.paramHasAttr(Idx, Attribute::Nest))
6065        Flags.setNest();
6066      Flags.setOrigAlign(OriginalAlignment);
6067
6068      EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6069      unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6070      for (unsigned i = 0; i != NumRegs; ++i) {
6071        ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed);
6072        if (NumRegs > 1 && i == 0)
6073          MyFlags.Flags.setSplit();
6074        // if it isn't first piece, alignment must be 1
6075        else if (i > 0)
6076          MyFlags.Flags.setOrigAlign(1);
6077        Ins.push_back(MyFlags);
6078      }
6079    }
6080  }
6081
6082  // Call the target to set up the argument values.
6083  SmallVector<SDValue, 8> InVals;
6084  SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
6085                                             F.isVarArg(), Ins,
6086                                             dl, DAG, InVals);
6087
6088  // Verify that the target's LowerFormalArguments behaved as expected.
6089  assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
6090         "LowerFormalArguments didn't return a valid chain!");
6091  assert(InVals.size() == Ins.size() &&
6092         "LowerFormalArguments didn't emit the correct number of values!");
6093  DEBUG({
6094      for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6095        assert(InVals[i].getNode() &&
6096               "LowerFormalArguments emitted a null value!");
6097        assert(Ins[i].VT == InVals[i].getValueType() &&
6098               "LowerFormalArguments emitted a value with the wrong type!");
6099      }
6100    });
6101
6102  // Update the DAG with the new chain value resulting from argument lowering.
6103  DAG.setRoot(NewRoot);
6104
6105  // Set up the argument values.
6106  unsigned i = 0;
6107  Idx = 1;
6108  if (!FuncInfo->CanLowerReturn) {
6109    // Create a virtual register for the sret pointer, and put in a copy
6110    // from the sret argument into it.
6111    SmallVector<EVT, 1> ValueVTs;
6112    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6113    EVT VT = ValueVTs[0];
6114    EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6115    ISD::NodeType AssertOp = ISD::DELETED_NODE;
6116    SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
6117                                        RegVT, VT, AssertOp);
6118
6119    MachineFunction& MF = SDB->DAG.getMachineFunction();
6120    MachineRegisterInfo& RegInfo = MF.getRegInfo();
6121    unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT));
6122    FuncInfo->DemoteRegister = SRetReg;
6123    NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(),
6124                                    SRetReg, ArgValue);
6125    DAG.setRoot(NewRoot);
6126
6127    // i indexes lowered arguments.  Bump it past the hidden sret argument.
6128    // Idx indexes LLVM arguments.  Don't touch it.
6129    ++i;
6130  }
6131
6132  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
6133      ++I, ++Idx) {
6134    SmallVector<SDValue, 4> ArgValues;
6135    SmallVector<EVT, 4> ValueVTs;
6136    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6137    unsigned NumValues = ValueVTs.size();
6138
6139    // If this argument is unused then remember its value. It is used to generate
6140    // debugging information.
6141    if (I->use_empty() && NumValues)
6142      SDB->setUnusedArgValue(I, InVals[i]);
6143
6144    for (unsigned Value = 0; Value != NumValues; ++Value) {
6145      EVT VT = ValueVTs[Value];
6146      EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6147      unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6148
6149      if (!I->use_empty()) {
6150        ISD::NodeType AssertOp = ISD::DELETED_NODE;
6151        if (F.paramHasAttr(Idx, Attribute::SExt))
6152          AssertOp = ISD::AssertSext;
6153        else if (F.paramHasAttr(Idx, Attribute::ZExt))
6154          AssertOp = ISD::AssertZext;
6155
6156        ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
6157                                             NumParts, PartVT, VT,
6158                                             AssertOp));
6159      }
6160
6161      i += NumParts;
6162    }
6163
6164    // Note down frame index for byval arguments.
6165    if (I->hasByValAttr() && !ArgValues.empty())
6166      if (FrameIndexSDNode *FI =
6167          dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
6168        FuncInfo->setByValArgumentFrameIndex(I, FI->getIndex());
6169
6170    if (!I->use_empty()) {
6171      SDValue Res;
6172      if (!ArgValues.empty())
6173        Res = DAG.getMergeValues(&ArgValues[0], NumValues,
6174                                 SDB->getCurDebugLoc());
6175      SDB->setValue(I, Res);
6176
6177      // If this argument is live outside of the entry block, insert a copy from
6178      // whereever we got it to the vreg that other BB's will reference it as.
6179      SDB->CopyToExportRegsIfNeeded(I);
6180    }
6181  }
6182
6183  assert(i == InVals.size() && "Argument register count mismatch!");
6184
6185  // Finally, if the target has anything special to do, allow it to do so.
6186  // FIXME: this should insert code into the DAG!
6187  EmitFunctionEntryCode();
6188}
6189
6190/// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
6191/// ensure constants are generated when needed.  Remember the virtual registers
6192/// that need to be added to the Machine PHI nodes as input.  We cannot just
6193/// directly add them, because expansion might result in multiple MBB's for one
6194/// BB.  As such, the start of the BB might correspond to a different MBB than
6195/// the end.
6196///
6197void
6198SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
6199  const TerminatorInst *TI = LLVMBB->getTerminator();
6200
6201  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6202
6203  // Check successor nodes' PHI nodes that expect a constant to be available
6204  // from this block.
6205  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6206    const BasicBlock *SuccBB = TI->getSuccessor(succ);
6207    if (!isa<PHINode>(SuccBB->begin())) continue;
6208    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
6209
6210    // If this terminator has multiple identical successors (common for
6211    // switches), only handle each succ once.
6212    if (!SuccsHandled.insert(SuccMBB)) continue;
6213
6214    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6215
6216    // At this point we know that there is a 1-1 correspondence between LLVM PHI
6217    // nodes and Machine PHI nodes, but the incoming operands have not been
6218    // emitted yet.
6219    for (BasicBlock::const_iterator I = SuccBB->begin();
6220         const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
6221      // Ignore dead phi's.
6222      if (PN->use_empty()) continue;
6223
6224      unsigned Reg;
6225      const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6226
6227      if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
6228        unsigned &RegOut = ConstantsOut[C];
6229        if (RegOut == 0) {
6230          RegOut = FuncInfo.CreateRegs(C->getType());
6231          CopyValueToVirtualRegister(C, RegOut);
6232        }
6233        Reg = RegOut;
6234      } else {
6235        DenseMap<const Value *, unsigned>::iterator I =
6236          FuncInfo.ValueMap.find(PHIOp);
6237        if (I != FuncInfo.ValueMap.end())
6238          Reg = I->second;
6239        else {
6240          assert(isa<AllocaInst>(PHIOp) &&
6241                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
6242                 "Didn't codegen value into a register!??");
6243          Reg = FuncInfo.CreateRegs(PHIOp->getType());
6244          CopyValueToVirtualRegister(PHIOp, Reg);
6245        }
6246      }
6247
6248      // Remember that this register needs to added to the machine PHI node as
6249      // the input for this MBB.
6250      SmallVector<EVT, 4> ValueVTs;
6251      ComputeValueVTs(TLI, PN->getType(), ValueVTs);
6252      for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
6253        EVT VT = ValueVTs[vti];
6254        unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
6255        for (unsigned i = 0, e = NumRegisters; i != e; ++i)
6256          FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
6257        Reg += NumRegisters;
6258      }
6259    }
6260  }
6261  ConstantsOut.clear();
6262}
6263