SelectionDAGBuilder.cpp revision 6bb5c0074dc4cede2ad8efd420ec91288f91b012
1//===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements routines for translating from LLVM IR into SelectionDAG IR.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "SDNodeDbgValue.h"
16#include "SelectionDAGBuilder.h"
17#include "llvm/ADT/BitVector.h"
18#include "llvm/ADT/PostOrderIterator.h"
19#include "llvm/ADT/SmallSet.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/ConstantFolding.h"
22#include "llvm/Constants.h"
23#include "llvm/CallingConv.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Function.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/InlineAsm.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/IntrinsicInst.h"
31#include "llvm/LLVMContext.h"
32#include "llvm/Module.h"
33#include "llvm/CodeGen/Analysis.h"
34#include "llvm/CodeGen/FastISel.h"
35#include "llvm/CodeGen/FunctionLoweringInfo.h"
36#include "llvm/CodeGen/GCStrategy.h"
37#include "llvm/CodeGen/GCMetadata.h"
38#include "llvm/CodeGen/MachineFunction.h"
39#include "llvm/CodeGen/MachineFrameInfo.h"
40#include "llvm/CodeGen/MachineInstrBuilder.h"
41#include "llvm/CodeGen/MachineJumpTableInfo.h"
42#include "llvm/CodeGen/MachineModuleInfo.h"
43#include "llvm/CodeGen/MachineRegisterInfo.h"
44#include "llvm/CodeGen/SelectionDAG.h"
45#include "llvm/Analysis/DebugInfo.h"
46#include "llvm/Target/TargetData.h"
47#include "llvm/Target/TargetFrameLowering.h"
48#include "llvm/Target/TargetInstrInfo.h"
49#include "llvm/Target/TargetIntrinsicInfo.h"
50#include "llvm/Target/TargetLibraryInfo.h"
51#include "llvm/Target/TargetLowering.h"
52#include "llvm/Target/TargetOptions.h"
53#include "llvm/Support/CommandLine.h"
54#include "llvm/Support/IntegersSubsetMapping.h"
55#include "llvm/Support/Debug.h"
56#include "llvm/Support/ErrorHandling.h"
57#include "llvm/Support/MathExtras.h"
58#include "llvm/Support/raw_ostream.h"
59#include <algorithm>
60using namespace llvm;
61
62/// LimitFloatPrecision - Generate low-precision inline sequences for
63/// some float libcalls (6, 8 or 12 bits).
64static unsigned LimitFloatPrecision;
65
66static cl::opt<unsigned, true>
67LimitFPPrecision("limit-float-precision",
68                 cl::desc("Generate low-precision inline sequences "
69                          "for some float libcalls"),
70                 cl::location(LimitFloatPrecision),
71                 cl::init(0));
72
73// Limit the width of DAG chains. This is important in general to prevent
74// prevent DAG-based analysis from blowing up. For example, alias analysis and
75// load clustering may not complete in reasonable time. It is difficult to
76// recognize and avoid this situation within each individual analysis, and
77// future analyses are likely to have the same behavior. Limiting DAG width is
78// the safe approach, and will be especially important with global DAGs.
79//
80// MaxParallelChains default is arbitrarily high to avoid affecting
81// optimization, but could be lowered to improve compile time. Any ld-ld-st-st
82// sequence over this should have been converted to llvm.memcpy by the
83// frontend. It easy to induce this behavior with .ll code such as:
84// %buffer = alloca [4096 x i8]
85// %data = load [4096 x i8]* %argPtr
86// store [4096 x i8] %data, [4096 x i8]* %buffer
87static const unsigned MaxParallelChains = 64;
88
89static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
90                                      const SDValue *Parts, unsigned NumParts,
91                                      EVT PartVT, EVT ValueVT);
92
93/// getCopyFromParts - Create a value that contains the specified legal parts
94/// combined into the value they represent.  If the parts combine to a type
95/// larger then ValueVT then AssertOp can be used to specify whether the extra
96/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
97/// (ISD::AssertSext).
98static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL,
99                                const SDValue *Parts,
100                                unsigned NumParts, EVT PartVT, EVT ValueVT,
101                                ISD::NodeType AssertOp = ISD::DELETED_NODE) {
102  if (ValueVT.isVector())
103    return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT);
104
105  assert(NumParts > 0 && "No parts to assemble!");
106  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
107  SDValue Val = Parts[0];
108
109  if (NumParts > 1) {
110    // Assemble the value from multiple parts.
111    if (ValueVT.isInteger()) {
112      unsigned PartBits = PartVT.getSizeInBits();
113      unsigned ValueBits = ValueVT.getSizeInBits();
114
115      // Assemble the power of 2 part.
116      unsigned RoundParts = NumParts & (NumParts - 1) ?
117        1 << Log2_32(NumParts) : NumParts;
118      unsigned RoundBits = PartBits * RoundParts;
119      EVT RoundVT = RoundBits == ValueBits ?
120        ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
121      SDValue Lo, Hi;
122
123      EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
124
125      if (RoundParts > 2) {
126        Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
127                              PartVT, HalfVT);
128        Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
129                              RoundParts / 2, PartVT, HalfVT);
130      } else {
131        Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
132        Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
133      }
134
135      if (TLI.isBigEndian())
136        std::swap(Lo, Hi);
137
138      Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
139
140      if (RoundParts < NumParts) {
141        // Assemble the trailing non-power-of-2 part.
142        unsigned OddParts = NumParts - RoundParts;
143        EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
144        Hi = getCopyFromParts(DAG, DL,
145                              Parts + RoundParts, OddParts, PartVT, OddVT);
146
147        // Combine the round and odd parts.
148        Lo = Val;
149        if (TLI.isBigEndian())
150          std::swap(Lo, Hi);
151        EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
152        Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
153        Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
154                         DAG.getConstant(Lo.getValueType().getSizeInBits(),
155                                         TLI.getPointerTy()));
156        Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
157        Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
158      }
159    } else if (PartVT.isFloatingPoint()) {
160      // FP split into multiple FP parts (for ppcf128)
161      assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) &&
162             "Unexpected split");
163      SDValue Lo, Hi;
164      Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
165      Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
166      if (TLI.isBigEndian())
167        std::swap(Lo, Hi);
168      Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
169    } else {
170      // FP split into integer parts (soft fp)
171      assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
172             !PartVT.isVector() && "Unexpected split");
173      EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
174      Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT);
175    }
176  }
177
178  // There is now one part, held in Val.  Correct it to match ValueVT.
179  PartVT = Val.getValueType();
180
181  if (PartVT == ValueVT)
182    return Val;
183
184  if (PartVT.isInteger() && ValueVT.isInteger()) {
185    if (ValueVT.bitsLT(PartVT)) {
186      // For a truncate, see if we have any information to
187      // indicate whether the truncated bits will always be
188      // zero or sign-extension.
189      if (AssertOp != ISD::DELETED_NODE)
190        Val = DAG.getNode(AssertOp, DL, PartVT, Val,
191                          DAG.getValueType(ValueVT));
192      return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
193    }
194    return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
195  }
196
197  if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
198    // FP_ROUND's are always exact here.
199    if (ValueVT.bitsLT(Val.getValueType()))
200      return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val,
201                         DAG.getTargetConstant(1, TLI.getPointerTy()));
202
203    return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
204  }
205
206  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
207    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
208
209  llvm_unreachable("Unknown mismatch!");
210}
211
212/// getCopyFromParts - Create a value that contains the specified legal parts
213/// combined into the value they represent.  If the parts combine to a type
214/// larger then ValueVT then AssertOp can be used to specify whether the extra
215/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
216/// (ISD::AssertSext).
217static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
218                                      const SDValue *Parts, unsigned NumParts,
219                                      EVT PartVT, EVT ValueVT) {
220  assert(ValueVT.isVector() && "Not a vector value");
221  assert(NumParts > 0 && "No parts to assemble!");
222  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
223  SDValue Val = Parts[0];
224
225  // Handle a multi-element vector.
226  if (NumParts > 1) {
227    EVT IntermediateVT, RegisterVT;
228    unsigned NumIntermediates;
229    unsigned NumRegs =
230    TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
231                               NumIntermediates, RegisterVT);
232    assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
233    NumParts = NumRegs; // Silence a compiler warning.
234    assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
235    assert(RegisterVT == Parts[0].getValueType() &&
236           "Part type doesn't match part!");
237
238    // Assemble the parts into intermediate operands.
239    SmallVector<SDValue, 8> Ops(NumIntermediates);
240    if (NumIntermediates == NumParts) {
241      // If the register was not expanded, truncate or copy the value,
242      // as appropriate.
243      for (unsigned i = 0; i != NumParts; ++i)
244        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
245                                  PartVT, IntermediateVT);
246    } else if (NumParts > 0) {
247      // If the intermediate type was expanded, build the intermediate
248      // operands from the parts.
249      assert(NumParts % NumIntermediates == 0 &&
250             "Must expand into a divisible number of parts!");
251      unsigned Factor = NumParts / NumIntermediates;
252      for (unsigned i = 0; i != NumIntermediates; ++i)
253        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
254                                  PartVT, IntermediateVT);
255    }
256
257    // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
258    // intermediate operands.
259    Val = DAG.getNode(IntermediateVT.isVector() ?
260                      ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL,
261                      ValueVT, &Ops[0], NumIntermediates);
262  }
263
264  // There is now one part, held in Val.  Correct it to match ValueVT.
265  PartVT = Val.getValueType();
266
267  if (PartVT == ValueVT)
268    return Val;
269
270  if (PartVT.isVector()) {
271    // If the element type of the source/dest vectors are the same, but the
272    // parts vector has more elements than the value vector, then we have a
273    // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
274    // elements we want.
275    if (PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
276      assert(PartVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
277             "Cannot narrow, it would be a lossy transformation");
278      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
279                         DAG.getIntPtrConstant(0));
280    }
281
282    // Vector/Vector bitcast.
283    if (ValueVT.getSizeInBits() == PartVT.getSizeInBits())
284      return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
285
286    assert(PartVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
287      "Cannot handle this kind of promotion");
288    // Promoted vector extract
289    bool Smaller = ValueVT.bitsLE(PartVT);
290    return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
291                       DL, ValueVT, Val);
292
293  }
294
295  // Trivial bitcast if the types are the same size and the destination
296  // vector type is legal.
297  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits() &&
298      TLI.isTypeLegal(ValueVT))
299    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
300
301  // Handle cases such as i8 -> <1 x i1>
302  assert(ValueVT.getVectorNumElements() == 1 &&
303         "Only trivial scalar-to-vector conversions should get here!");
304
305  if (ValueVT.getVectorNumElements() == 1 &&
306      ValueVT.getVectorElementType() != PartVT) {
307    bool Smaller = ValueVT.bitsLE(PartVT);
308    Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
309                       DL, ValueVT.getScalarType(), Val);
310  }
311
312  return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
313}
314
315
316
317
318static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl,
319                                 SDValue Val, SDValue *Parts, unsigned NumParts,
320                                 EVT PartVT);
321
322/// getCopyToParts - Create a series of nodes that contain the specified value
323/// split into legal parts.  If the parts contain more bits than Val, then, for
324/// integers, ExtendKind can be used to specify how to generate the extra bits.
325static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL,
326                           SDValue Val, SDValue *Parts, unsigned NumParts,
327                           EVT PartVT,
328                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
329  EVT ValueVT = Val.getValueType();
330
331  // Handle the vector case separately.
332  if (ValueVT.isVector())
333    return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT);
334
335  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
336  unsigned PartBits = PartVT.getSizeInBits();
337  unsigned OrigNumParts = NumParts;
338  assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
339
340  if (NumParts == 0)
341    return;
342
343  assert(!ValueVT.isVector() && "Vector case handled elsewhere");
344  if (PartVT == ValueVT) {
345    assert(NumParts == 1 && "No-op copy with multiple parts!");
346    Parts[0] = Val;
347    return;
348  }
349
350  if (NumParts * PartBits > ValueVT.getSizeInBits()) {
351    // If the parts cover more bits than the value has, promote the value.
352    if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
353      assert(NumParts == 1 && "Do not know what to promote to!");
354      Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
355    } else {
356      assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
357             ValueVT.isInteger() &&
358             "Unknown mismatch!");
359      ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
360      Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
361      if (PartVT == MVT::x86mmx)
362        Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
363    }
364  } else if (PartBits == ValueVT.getSizeInBits()) {
365    // Different types of the same size.
366    assert(NumParts == 1 && PartVT != ValueVT);
367    Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
368  } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
369    // If the parts cover less bits than value has, truncate the value.
370    assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
371           ValueVT.isInteger() &&
372           "Unknown mismatch!");
373    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
374    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
375    if (PartVT == MVT::x86mmx)
376      Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
377  }
378
379  // The value may have changed - recompute ValueVT.
380  ValueVT = Val.getValueType();
381  assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
382         "Failed to tile the value with PartVT!");
383
384  if (NumParts == 1) {
385    assert(PartVT == ValueVT && "Type conversion failed!");
386    Parts[0] = Val;
387    return;
388  }
389
390  // Expand the value into multiple parts.
391  if (NumParts & (NumParts - 1)) {
392    // The number of parts is not a power of 2.  Split off and copy the tail.
393    assert(PartVT.isInteger() && ValueVT.isInteger() &&
394           "Do not know what to expand to!");
395    unsigned RoundParts = 1 << Log2_32(NumParts);
396    unsigned RoundBits = RoundParts * PartBits;
397    unsigned OddParts = NumParts - RoundParts;
398    SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
399                                 DAG.getIntPtrConstant(RoundBits));
400    getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT);
401
402    if (TLI.isBigEndian())
403      // The odd parts were reversed by getCopyToParts - unreverse them.
404      std::reverse(Parts + RoundParts, Parts + NumParts);
405
406    NumParts = RoundParts;
407    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
408    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
409  }
410
411  // The number of parts is a power of 2.  Repeatedly bisect the value using
412  // EXTRACT_ELEMENT.
413  Parts[0] = DAG.getNode(ISD::BITCAST, DL,
414                         EVT::getIntegerVT(*DAG.getContext(),
415                                           ValueVT.getSizeInBits()),
416                         Val);
417
418  for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
419    for (unsigned i = 0; i < NumParts; i += StepSize) {
420      unsigned ThisBits = StepSize * PartBits / 2;
421      EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
422      SDValue &Part0 = Parts[i];
423      SDValue &Part1 = Parts[i+StepSize/2];
424
425      Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
426                          ThisVT, Part0, DAG.getIntPtrConstant(1));
427      Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
428                          ThisVT, Part0, DAG.getIntPtrConstant(0));
429
430      if (ThisBits == PartBits && ThisVT != PartVT) {
431        Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
432        Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
433      }
434    }
435  }
436
437  if (TLI.isBigEndian())
438    std::reverse(Parts, Parts + OrigNumParts);
439}
440
441
442/// getCopyToPartsVector - Create a series of nodes that contain the specified
443/// value split into legal parts.
444static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL,
445                                 SDValue Val, SDValue *Parts, unsigned NumParts,
446                                 EVT PartVT) {
447  EVT ValueVT = Val.getValueType();
448  assert(ValueVT.isVector() && "Not a vector");
449  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
450
451  if (NumParts == 1) {
452    if (PartVT == ValueVT) {
453      // Nothing to do.
454    } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
455      // Bitconvert vector->vector case.
456      Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
457    } else if (PartVT.isVector() &&
458               PartVT.getVectorElementType() == ValueVT.getVectorElementType() &&
459               PartVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
460      EVT ElementVT = PartVT.getVectorElementType();
461      // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
462      // undef elements.
463      SmallVector<SDValue, 16> Ops;
464      for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
465        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
466                                  ElementVT, Val, DAG.getIntPtrConstant(i)));
467
468      for (unsigned i = ValueVT.getVectorNumElements(),
469           e = PartVT.getVectorNumElements(); i != e; ++i)
470        Ops.push_back(DAG.getUNDEF(ElementVT));
471
472      Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size());
473
474      // FIXME: Use CONCAT for 2x -> 4x.
475
476      //SDValue UndefElts = DAG.getUNDEF(VectorTy);
477      //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
478    } else if (PartVT.isVector() &&
479               PartVT.getVectorElementType().bitsGE(
480                 ValueVT.getVectorElementType()) &&
481               PartVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
482
483      // Promoted vector extract
484      bool Smaller = PartVT.bitsLE(ValueVT);
485      Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
486                        DL, PartVT, Val);
487    } else{
488      // Vector -> scalar conversion.
489      assert(ValueVT.getVectorNumElements() == 1 &&
490             "Only trivial vector-to-scalar conversions should get here!");
491      Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
492                        PartVT, Val, DAG.getIntPtrConstant(0));
493
494      bool Smaller = ValueVT.bitsLE(PartVT);
495      Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
496                         DL, PartVT, Val);
497    }
498
499    Parts[0] = Val;
500    return;
501  }
502
503  // Handle a multi-element vector.
504  EVT IntermediateVT, RegisterVT;
505  unsigned NumIntermediates;
506  unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
507                                                IntermediateVT,
508                                                NumIntermediates, RegisterVT);
509  unsigned NumElements = ValueVT.getVectorNumElements();
510
511  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
512  NumParts = NumRegs; // Silence a compiler warning.
513  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
514
515  // Split the vector into intermediate operands.
516  SmallVector<SDValue, 8> Ops(NumIntermediates);
517  for (unsigned i = 0; i != NumIntermediates; ++i) {
518    if (IntermediateVT.isVector())
519      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
520                           IntermediateVT, Val,
521                   DAG.getIntPtrConstant(i * (NumElements / NumIntermediates)));
522    else
523      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
524                           IntermediateVT, Val, DAG.getIntPtrConstant(i));
525  }
526
527  // Split the intermediate operands into legal parts.
528  if (NumParts == NumIntermediates) {
529    // If the register was not expanded, promote or copy the value,
530    // as appropriate.
531    for (unsigned i = 0; i != NumParts; ++i)
532      getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT);
533  } else if (NumParts > 0) {
534    // If the intermediate type was expanded, split each the value into
535    // legal parts.
536    assert(NumParts % NumIntermediates == 0 &&
537           "Must expand into a divisible number of parts!");
538    unsigned Factor = NumParts / NumIntermediates;
539    for (unsigned i = 0; i != NumIntermediates; ++i)
540      getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT);
541  }
542}
543
544
545
546
547namespace {
548  /// RegsForValue - This struct represents the registers (physical or virtual)
549  /// that a particular set of values is assigned, and the type information
550  /// about the value. The most common situation is to represent one value at a
551  /// time, but struct or array values are handled element-wise as multiple
552  /// values.  The splitting of aggregates is performed recursively, so that we
553  /// never have aggregate-typed registers. The values at this point do not
554  /// necessarily have legal types, so each value may require one or more
555  /// registers of some legal type.
556  ///
557  struct RegsForValue {
558    /// ValueVTs - The value types of the values, which may not be legal, and
559    /// may need be promoted or synthesized from one or more registers.
560    ///
561    SmallVector<EVT, 4> ValueVTs;
562
563    /// RegVTs - The value types of the registers. This is the same size as
564    /// ValueVTs and it records, for each value, what the type of the assigned
565    /// register or registers are. (Individual values are never synthesized
566    /// from more than one type of register.)
567    ///
568    /// With virtual registers, the contents of RegVTs is redundant with TLI's
569    /// getRegisterType member function, however when with physical registers
570    /// it is necessary to have a separate record of the types.
571    ///
572    SmallVector<EVT, 4> RegVTs;
573
574    /// Regs - This list holds the registers assigned to the values.
575    /// Each legal or promoted value requires one register, and each
576    /// expanded value requires multiple registers.
577    ///
578    SmallVector<unsigned, 4> Regs;
579
580    RegsForValue() {}
581
582    RegsForValue(const SmallVector<unsigned, 4> &regs,
583                 EVT regvt, EVT valuevt)
584      : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
585
586    RegsForValue(LLVMContext &Context, const TargetLowering &tli,
587                 unsigned Reg, Type *Ty) {
588      ComputeValueVTs(tli, Ty, ValueVTs);
589
590      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
591        EVT ValueVT = ValueVTs[Value];
592        unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
593        EVT RegisterVT = tli.getRegisterType(Context, ValueVT);
594        for (unsigned i = 0; i != NumRegs; ++i)
595          Regs.push_back(Reg + i);
596        RegVTs.push_back(RegisterVT);
597        Reg += NumRegs;
598      }
599    }
600
601    /// areValueTypesLegal - Return true if types of all the values are legal.
602    bool areValueTypesLegal(const TargetLowering &TLI) {
603      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
604        EVT RegisterVT = RegVTs[Value];
605        if (!TLI.isTypeLegal(RegisterVT))
606          return false;
607      }
608      return true;
609    }
610
611    /// append - Add the specified values to this one.
612    void append(const RegsForValue &RHS) {
613      ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
614      RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
615      Regs.append(RHS.Regs.begin(), RHS.Regs.end());
616    }
617
618    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
619    /// this value and returns the result as a ValueVTs value.  This uses
620    /// Chain/Flag as the input and updates them for the output Chain/Flag.
621    /// If the Flag pointer is NULL, no flag is used.
622    SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
623                            DebugLoc dl,
624                            SDValue &Chain, SDValue *Flag) const;
625
626    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
627    /// specified value into the registers specified by this object.  This uses
628    /// Chain/Flag as the input and updates them for the output Chain/Flag.
629    /// If the Flag pointer is NULL, no flag is used.
630    void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
631                       SDValue &Chain, SDValue *Flag) const;
632
633    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
634    /// operand list.  This adds the code marker, matching input operand index
635    /// (if applicable), and includes the number of values added into it.
636    void AddInlineAsmOperands(unsigned Kind,
637                              bool HasMatching, unsigned MatchingIdx,
638                              SelectionDAG &DAG,
639                              std::vector<SDValue> &Ops) const;
640  };
641}
642
643/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
644/// this value and returns the result as a ValueVT value.  This uses
645/// Chain/Flag as the input and updates them for the output Chain/Flag.
646/// If the Flag pointer is NULL, no flag is used.
647SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
648                                      FunctionLoweringInfo &FuncInfo,
649                                      DebugLoc dl,
650                                      SDValue &Chain, SDValue *Flag) const {
651  // A Value with type {} or [0 x %t] needs no registers.
652  if (ValueVTs.empty())
653    return SDValue();
654
655  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
656
657  // Assemble the legal parts into the final values.
658  SmallVector<SDValue, 4> Values(ValueVTs.size());
659  SmallVector<SDValue, 8> Parts;
660  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
661    // Copy the legal parts from the registers.
662    EVT ValueVT = ValueVTs[Value];
663    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
664    EVT RegisterVT = RegVTs[Value];
665
666    Parts.resize(NumRegs);
667    for (unsigned i = 0; i != NumRegs; ++i) {
668      SDValue P;
669      if (Flag == 0) {
670        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
671      } else {
672        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
673        *Flag = P.getValue(2);
674      }
675
676      Chain = P.getValue(1);
677      Parts[i] = P;
678
679      // If the source register was virtual and if we know something about it,
680      // add an assert node.
681      if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
682          !RegisterVT.isInteger() || RegisterVT.isVector())
683        continue;
684
685      const FunctionLoweringInfo::LiveOutInfo *LOI =
686        FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
687      if (!LOI)
688        continue;
689
690      unsigned RegSize = RegisterVT.getSizeInBits();
691      unsigned NumSignBits = LOI->NumSignBits;
692      unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
693
694      // FIXME: We capture more information than the dag can represent.  For
695      // now, just use the tightest assertzext/assertsext possible.
696      bool isSExt = true;
697      EVT FromVT(MVT::Other);
698      if (NumSignBits == RegSize)
699        isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
700      else if (NumZeroBits >= RegSize-1)
701        isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
702      else if (NumSignBits > RegSize-8)
703        isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
704      else if (NumZeroBits >= RegSize-8)
705        isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
706      else if (NumSignBits > RegSize-16)
707        isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
708      else if (NumZeroBits >= RegSize-16)
709        isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
710      else if (NumSignBits > RegSize-32)
711        isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
712      else if (NumZeroBits >= RegSize-32)
713        isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
714      else
715        continue;
716
717      // Add an assertion node.
718      assert(FromVT != MVT::Other);
719      Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
720                             RegisterVT, P, DAG.getValueType(FromVT));
721    }
722
723    Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
724                                     NumRegs, RegisterVT, ValueVT);
725    Part += NumRegs;
726    Parts.clear();
727  }
728
729  return DAG.getNode(ISD::MERGE_VALUES, dl,
730                     DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
731                     &Values[0], ValueVTs.size());
732}
733
734/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
735/// specified value into the registers specified by this object.  This uses
736/// Chain/Flag as the input and updates them for the output Chain/Flag.
737/// If the Flag pointer is NULL, no flag is used.
738void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
739                                 SDValue &Chain, SDValue *Flag) const {
740  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
741
742  // Get the list of the values's legal parts.
743  unsigned NumRegs = Regs.size();
744  SmallVector<SDValue, 8> Parts(NumRegs);
745  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
746    EVT ValueVT = ValueVTs[Value];
747    unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
748    EVT RegisterVT = RegVTs[Value];
749
750    getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
751                   &Parts[Part], NumParts, RegisterVT);
752    Part += NumParts;
753  }
754
755  // Copy the parts into the registers.
756  SmallVector<SDValue, 8> Chains(NumRegs);
757  for (unsigned i = 0; i != NumRegs; ++i) {
758    SDValue Part;
759    if (Flag == 0) {
760      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
761    } else {
762      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
763      *Flag = Part.getValue(1);
764    }
765
766    Chains[i] = Part.getValue(0);
767  }
768
769  if (NumRegs == 1 || Flag)
770    // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
771    // flagged to it. That is the CopyToReg nodes and the user are considered
772    // a single scheduling unit. If we create a TokenFactor and return it as
773    // chain, then the TokenFactor is both a predecessor (operand) of the
774    // user as well as a successor (the TF operands are flagged to the user).
775    // c1, f1 = CopyToReg
776    // c2, f2 = CopyToReg
777    // c3     = TokenFactor c1, c2
778    // ...
779    //        = op c3, ..., f2
780    Chain = Chains[NumRegs-1];
781  else
782    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
783}
784
785/// AddInlineAsmOperands - Add this value to the specified inlineasm node
786/// operand list.  This adds the code marker and includes the number of
787/// values added into it.
788void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
789                                        unsigned MatchingIdx,
790                                        SelectionDAG &DAG,
791                                        std::vector<SDValue> &Ops) const {
792  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
793
794  unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
795  if (HasMatching)
796    Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
797  else if (!Regs.empty() &&
798           TargetRegisterInfo::isVirtualRegister(Regs.front())) {
799    // Put the register class of the virtual registers in the flag word.  That
800    // way, later passes can recompute register class constraints for inline
801    // assembly as well as normal instructions.
802    // Don't do this for tied operands that can use the regclass information
803    // from the def.
804    const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
805    const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
806    Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
807  }
808
809  SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
810  Ops.push_back(Res);
811
812  for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
813    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
814    EVT RegisterVT = RegVTs[Value];
815    for (unsigned i = 0; i != NumRegs; ++i) {
816      assert(Reg < Regs.size() && "Mismatch in # registers expected");
817      Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
818    }
819  }
820}
821
822void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa,
823                               const TargetLibraryInfo *li) {
824  AA = &aa;
825  GFI = gfi;
826  LibInfo = li;
827  TD = DAG.getTarget().getTargetData();
828  LPadToCallSiteMap.clear();
829}
830
831/// clear - Clear out the current SelectionDAG and the associated
832/// state and prepare this SelectionDAGBuilder object to be used
833/// for a new block. This doesn't clear out information about
834/// additional blocks that are needed to complete switch lowering
835/// or PHI node updating; that information is cleared out as it is
836/// consumed.
837void SelectionDAGBuilder::clear() {
838  NodeMap.clear();
839  UnusedArgNodeMap.clear();
840  PendingLoads.clear();
841  PendingExports.clear();
842  CurDebugLoc = DebugLoc();
843  HasTailCall = false;
844}
845
846/// clearDanglingDebugInfo - Clear the dangling debug information
847/// map. This function is seperated from the clear so that debug
848/// information that is dangling in a basic block can be properly
849/// resolved in a different basic block. This allows the
850/// SelectionDAG to resolve dangling debug information attached
851/// to PHI nodes.
852void SelectionDAGBuilder::clearDanglingDebugInfo() {
853  DanglingDebugInfoMap.clear();
854}
855
856/// getRoot - Return the current virtual root of the Selection DAG,
857/// flushing any PendingLoad items. This must be done before emitting
858/// a store or any other node that may need to be ordered after any
859/// prior load instructions.
860///
861SDValue SelectionDAGBuilder::getRoot() {
862  if (PendingLoads.empty())
863    return DAG.getRoot();
864
865  if (PendingLoads.size() == 1) {
866    SDValue Root = PendingLoads[0];
867    DAG.setRoot(Root);
868    PendingLoads.clear();
869    return Root;
870  }
871
872  // Otherwise, we have to make a token factor node.
873  SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
874                               &PendingLoads[0], PendingLoads.size());
875  PendingLoads.clear();
876  DAG.setRoot(Root);
877  return Root;
878}
879
880/// getControlRoot - Similar to getRoot, but instead of flushing all the
881/// PendingLoad items, flush all the PendingExports items. It is necessary
882/// to do this before emitting a terminator instruction.
883///
884SDValue SelectionDAGBuilder::getControlRoot() {
885  SDValue Root = DAG.getRoot();
886
887  if (PendingExports.empty())
888    return Root;
889
890  // Turn all of the CopyToReg chains into one factored node.
891  if (Root.getOpcode() != ISD::EntryToken) {
892    unsigned i = 0, e = PendingExports.size();
893    for (; i != e; ++i) {
894      assert(PendingExports[i].getNode()->getNumOperands() > 1);
895      if (PendingExports[i].getNode()->getOperand(0) == Root)
896        break;  // Don't add the root if we already indirectly depend on it.
897    }
898
899    if (i == e)
900      PendingExports.push_back(Root);
901  }
902
903  Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
904                     &PendingExports[0],
905                     PendingExports.size());
906  PendingExports.clear();
907  DAG.setRoot(Root);
908  return Root;
909}
910
911void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) {
912  if (DAG.GetOrdering(Node) != 0) return; // Already has ordering.
913  DAG.AssignOrdering(Node, SDNodeOrder);
914
915  for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I)
916    AssignOrderingToNode(Node->getOperand(I).getNode());
917}
918
919void SelectionDAGBuilder::visit(const Instruction &I) {
920  // Set up outgoing PHI node register values before emitting the terminator.
921  if (isa<TerminatorInst>(&I))
922    HandlePHINodesInSuccessorBlocks(I.getParent());
923
924  CurDebugLoc = I.getDebugLoc();
925
926  visit(I.getOpcode(), I);
927
928  if (!isa<TerminatorInst>(&I) && !HasTailCall)
929    CopyToExportRegsIfNeeded(&I);
930
931  CurDebugLoc = DebugLoc();
932}
933
934void SelectionDAGBuilder::visitPHI(const PHINode &) {
935  llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
936}
937
938void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
939  // Note: this doesn't use InstVisitor, because it has to work with
940  // ConstantExpr's in addition to instructions.
941  switch (Opcode) {
942  default: llvm_unreachable("Unknown instruction type encountered!");
943    // Build the switch statement using the Instruction.def file.
944#define HANDLE_INST(NUM, OPCODE, CLASS) \
945    case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break;
946#include "llvm/Instruction.def"
947  }
948
949  // Assign the ordering to the freshly created DAG nodes.
950  if (NodeMap.count(&I)) {
951    ++SDNodeOrder;
952    AssignOrderingToNode(getValue(&I).getNode());
953  }
954}
955
956// resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
957// generate the debug data structures now that we've seen its definition.
958void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
959                                                   SDValue Val) {
960  DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
961  if (DDI.getDI()) {
962    const DbgValueInst *DI = DDI.getDI();
963    DebugLoc dl = DDI.getdl();
964    unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
965    MDNode *Variable = DI->getVariable();
966    uint64_t Offset = DI->getOffset();
967    SDDbgValue *SDV;
968    if (Val.getNode()) {
969      if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) {
970        SDV = DAG.getDbgValue(Variable, Val.getNode(),
971                              Val.getResNo(), Offset, dl, DbgSDNodeOrder);
972        DAG.AddDbgValue(SDV, Val.getNode(), false);
973      }
974    } else
975      DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
976    DanglingDebugInfoMap[V] = DanglingDebugInfo();
977  }
978}
979
980/// getValue - Return an SDValue for the given Value.
981SDValue SelectionDAGBuilder::getValue(const Value *V) {
982  // If we already have an SDValue for this value, use it. It's important
983  // to do this first, so that we don't create a CopyFromReg if we already
984  // have a regular SDValue.
985  SDValue &N = NodeMap[V];
986  if (N.getNode()) return N;
987
988  // If there's a virtual register allocated and initialized for this
989  // value, use it.
990  DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
991  if (It != FuncInfo.ValueMap.end()) {
992    unsigned InReg = It->second;
993    RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
994    SDValue Chain = DAG.getEntryNode();
995    N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL);
996    resolveDanglingDebugInfo(V, N);
997    return N;
998  }
999
1000  // Otherwise create a new SDValue and remember it.
1001  SDValue Val = getValueImpl(V);
1002  NodeMap[V] = Val;
1003  resolveDanglingDebugInfo(V, Val);
1004  return Val;
1005}
1006
1007/// getNonRegisterValue - Return an SDValue for the given Value, but
1008/// don't look in FuncInfo.ValueMap for a virtual register.
1009SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1010  // If we already have an SDValue for this value, use it.
1011  SDValue &N = NodeMap[V];
1012  if (N.getNode()) return N;
1013
1014  // Otherwise create a new SDValue and remember it.
1015  SDValue Val = getValueImpl(V);
1016  NodeMap[V] = Val;
1017  resolveDanglingDebugInfo(V, Val);
1018  return Val;
1019}
1020
1021/// getValueImpl - Helper function for getValue and getNonRegisterValue.
1022/// Create an SDValue for the given value.
1023SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1024  if (const Constant *C = dyn_cast<Constant>(V)) {
1025    EVT VT = TLI.getValueType(V->getType(), true);
1026
1027    if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1028      return DAG.getConstant(*CI, VT);
1029
1030    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1031      return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT);
1032
1033    if (isa<ConstantPointerNull>(C))
1034      return DAG.getConstant(0, TLI.getPointerTy());
1035
1036    if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1037      return DAG.getConstantFP(*CFP, VT);
1038
1039    if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1040      return DAG.getUNDEF(VT);
1041
1042    if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1043      visit(CE->getOpcode(), *CE);
1044      SDValue N1 = NodeMap[V];
1045      assert(N1.getNode() && "visit didn't populate the NodeMap!");
1046      return N1;
1047    }
1048
1049    if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1050      SmallVector<SDValue, 4> Constants;
1051      for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1052           OI != OE; ++OI) {
1053        SDNode *Val = getValue(*OI).getNode();
1054        // If the operand is an empty aggregate, there are no values.
1055        if (!Val) continue;
1056        // Add each leaf value from the operand to the Constants list
1057        // to form a flattened list of all the values.
1058        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1059          Constants.push_back(SDValue(Val, i));
1060      }
1061
1062      return DAG.getMergeValues(&Constants[0], Constants.size(),
1063                                getCurDebugLoc());
1064    }
1065
1066    if (const ConstantDataSequential *CDS =
1067          dyn_cast<ConstantDataSequential>(C)) {
1068      SmallVector<SDValue, 4> Ops;
1069      for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1070        SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1071        // Add each leaf value from the operand to the Constants list
1072        // to form a flattened list of all the values.
1073        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1074          Ops.push_back(SDValue(Val, i));
1075      }
1076
1077      if (isa<ArrayType>(CDS->getType()))
1078        return DAG.getMergeValues(&Ops[0], Ops.size(), getCurDebugLoc());
1079      return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
1080                                      VT, &Ops[0], Ops.size());
1081    }
1082
1083    if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1084      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1085             "Unknown struct or array constant!");
1086
1087      SmallVector<EVT, 4> ValueVTs;
1088      ComputeValueVTs(TLI, C->getType(), ValueVTs);
1089      unsigned NumElts = ValueVTs.size();
1090      if (NumElts == 0)
1091        return SDValue(); // empty struct
1092      SmallVector<SDValue, 4> Constants(NumElts);
1093      for (unsigned i = 0; i != NumElts; ++i) {
1094        EVT EltVT = ValueVTs[i];
1095        if (isa<UndefValue>(C))
1096          Constants[i] = DAG.getUNDEF(EltVT);
1097        else if (EltVT.isFloatingPoint())
1098          Constants[i] = DAG.getConstantFP(0, EltVT);
1099        else
1100          Constants[i] = DAG.getConstant(0, EltVT);
1101      }
1102
1103      return DAG.getMergeValues(&Constants[0], NumElts,
1104                                getCurDebugLoc());
1105    }
1106
1107    if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1108      return DAG.getBlockAddress(BA, VT);
1109
1110    VectorType *VecTy = cast<VectorType>(V->getType());
1111    unsigned NumElements = VecTy->getNumElements();
1112
1113    // Now that we know the number and type of the elements, get that number of
1114    // elements into the Ops array based on what kind of constant it is.
1115    SmallVector<SDValue, 16> Ops;
1116    if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1117      for (unsigned i = 0; i != NumElements; ++i)
1118        Ops.push_back(getValue(CV->getOperand(i)));
1119    } else {
1120      assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1121      EVT EltVT = TLI.getValueType(VecTy->getElementType());
1122
1123      SDValue Op;
1124      if (EltVT.isFloatingPoint())
1125        Op = DAG.getConstantFP(0, EltVT);
1126      else
1127        Op = DAG.getConstant(0, EltVT);
1128      Ops.assign(NumElements, Op);
1129    }
1130
1131    // Create a BUILD_VECTOR node.
1132    return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
1133                                    VT, &Ops[0], Ops.size());
1134  }
1135
1136  // If this is a static alloca, generate it as the frameindex instead of
1137  // computation.
1138  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1139    DenseMap<const AllocaInst*, int>::iterator SI =
1140      FuncInfo.StaticAllocaMap.find(AI);
1141    if (SI != FuncInfo.StaticAllocaMap.end())
1142      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
1143  }
1144
1145  // If this is an instruction which fast-isel has deferred, select it now.
1146  if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1147    unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1148    RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType());
1149    SDValue Chain = DAG.getEntryNode();
1150    return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL);
1151  }
1152
1153  llvm_unreachable("Can't get register for value!");
1154}
1155
1156void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1157  SDValue Chain = getControlRoot();
1158  SmallVector<ISD::OutputArg, 8> Outs;
1159  SmallVector<SDValue, 8> OutVals;
1160
1161  if (!FuncInfo.CanLowerReturn) {
1162    unsigned DemoteReg = FuncInfo.DemoteRegister;
1163    const Function *F = I.getParent()->getParent();
1164
1165    // Emit a store of the return value through the virtual register.
1166    // Leave Outs empty so that LowerReturn won't try to load return
1167    // registers the usual way.
1168    SmallVector<EVT, 1> PtrValueVTs;
1169    ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
1170                    PtrValueVTs);
1171
1172    SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
1173    SDValue RetOp = getValue(I.getOperand(0));
1174
1175    SmallVector<EVT, 4> ValueVTs;
1176    SmallVector<uint64_t, 4> Offsets;
1177    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1178    unsigned NumValues = ValueVTs.size();
1179
1180    SmallVector<SDValue, 4> Chains(NumValues);
1181    for (unsigned i = 0; i != NumValues; ++i) {
1182      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(),
1183                                RetPtr.getValueType(), RetPtr,
1184                                DAG.getIntPtrConstant(Offsets[i]));
1185      Chains[i] =
1186        DAG.getStore(Chain, getCurDebugLoc(),
1187                     SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1188                     // FIXME: better loc info would be nice.
1189                     Add, MachinePointerInfo(), false, false, 0);
1190    }
1191
1192    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
1193                        MVT::Other, &Chains[0], NumValues);
1194  } else if (I.getNumOperands() != 0) {
1195    SmallVector<EVT, 4> ValueVTs;
1196    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
1197    unsigned NumValues = ValueVTs.size();
1198    if (NumValues) {
1199      SDValue RetOp = getValue(I.getOperand(0));
1200      for (unsigned j = 0, f = NumValues; j != f; ++j) {
1201        EVT VT = ValueVTs[j];
1202
1203        ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1204
1205        const Function *F = I.getParent()->getParent();
1206        if (F->paramHasAttr(0, Attribute::SExt))
1207          ExtendKind = ISD::SIGN_EXTEND;
1208        else if (F->paramHasAttr(0, Attribute::ZExt))
1209          ExtendKind = ISD::ZERO_EXTEND;
1210
1211        if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1212          VT = TLI.getTypeForExtArgOrReturn(*DAG.getContext(), VT, ExtendKind);
1213
1214        unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
1215        EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
1216        SmallVector<SDValue, 4> Parts(NumParts);
1217        getCopyToParts(DAG, getCurDebugLoc(),
1218                       SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1219                       &Parts[0], NumParts, PartVT, ExtendKind);
1220
1221        // 'inreg' on function refers to return value
1222        ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1223        if (F->paramHasAttr(0, Attribute::InReg))
1224          Flags.setInReg();
1225
1226        // Propagate extension type if any
1227        if (ExtendKind == ISD::SIGN_EXTEND)
1228          Flags.setSExt();
1229        else if (ExtendKind == ISD::ZERO_EXTEND)
1230          Flags.setZExt();
1231
1232        for (unsigned i = 0; i < NumParts; ++i) {
1233          Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1234                                        /*isfixed=*/true));
1235          OutVals.push_back(Parts[i]);
1236        }
1237      }
1238    }
1239  }
1240
1241  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1242  CallingConv::ID CallConv =
1243    DAG.getMachineFunction().getFunction()->getCallingConv();
1244  Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
1245                          Outs, OutVals, getCurDebugLoc(), DAG);
1246
1247  // Verify that the target's LowerReturn behaved as expected.
1248  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1249         "LowerReturn didn't return a valid chain!");
1250
1251  // Update the DAG with the new chain value resulting from return lowering.
1252  DAG.setRoot(Chain);
1253}
1254
1255/// CopyToExportRegsIfNeeded - If the given value has virtual registers
1256/// created for it, emit nodes to copy the value into the virtual
1257/// registers.
1258void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1259  // Skip empty types
1260  if (V->getType()->isEmptyTy())
1261    return;
1262
1263  DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1264  if (VMI != FuncInfo.ValueMap.end()) {
1265    assert(!V->use_empty() && "Unused value assigned virtual registers!");
1266    CopyValueToVirtualRegister(V, VMI->second);
1267  }
1268}
1269
1270/// ExportFromCurrentBlock - If this condition isn't known to be exported from
1271/// the current basic block, add it to ValueMap now so that we'll get a
1272/// CopyTo/FromReg.
1273void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1274  // No need to export constants.
1275  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1276
1277  // Already exported?
1278  if (FuncInfo.isExportedInst(V)) return;
1279
1280  unsigned Reg = FuncInfo.InitializeRegForValue(V);
1281  CopyValueToVirtualRegister(V, Reg);
1282}
1283
1284bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1285                                                     const BasicBlock *FromBB) {
1286  // The operands of the setcc have to be in this block.  We don't know
1287  // how to export them from some other block.
1288  if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1289    // Can export from current BB.
1290    if (VI->getParent() == FromBB)
1291      return true;
1292
1293    // Is already exported, noop.
1294    return FuncInfo.isExportedInst(V);
1295  }
1296
1297  // If this is an argument, we can export it if the BB is the entry block or
1298  // if it is already exported.
1299  if (isa<Argument>(V)) {
1300    if (FromBB == &FromBB->getParent()->getEntryBlock())
1301      return true;
1302
1303    // Otherwise, can only export this if it is already exported.
1304    return FuncInfo.isExportedInst(V);
1305  }
1306
1307  // Otherwise, constants can always be exported.
1308  return true;
1309}
1310
1311/// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1312uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src,
1313                                            const MachineBasicBlock *Dst) const {
1314  BranchProbabilityInfo *BPI = FuncInfo.BPI;
1315  if (!BPI)
1316    return 0;
1317  const BasicBlock *SrcBB = Src->getBasicBlock();
1318  const BasicBlock *DstBB = Dst->getBasicBlock();
1319  return BPI->getEdgeWeight(SrcBB, DstBB);
1320}
1321
1322void SelectionDAGBuilder::
1323addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst,
1324                       uint32_t Weight /* = 0 */) {
1325  if (!Weight)
1326    Weight = getEdgeWeight(Src, Dst);
1327  Src->addSuccessor(Dst, Weight);
1328}
1329
1330
1331static bool InBlock(const Value *V, const BasicBlock *BB) {
1332  if (const Instruction *I = dyn_cast<Instruction>(V))
1333    return I->getParent() == BB;
1334  return true;
1335}
1336
1337/// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1338/// This function emits a branch and is used at the leaves of an OR or an
1339/// AND operator tree.
1340///
1341void
1342SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1343                                                  MachineBasicBlock *TBB,
1344                                                  MachineBasicBlock *FBB,
1345                                                  MachineBasicBlock *CurBB,
1346                                                  MachineBasicBlock *SwitchBB) {
1347  const BasicBlock *BB = CurBB->getBasicBlock();
1348
1349  // If the leaf of the tree is a comparison, merge the condition into
1350  // the caseblock.
1351  if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1352    // The operands of the cmp have to be in this block.  We don't know
1353    // how to export them from some other block.  If this is the first block
1354    // of the sequence, no exporting is needed.
1355    if (CurBB == SwitchBB ||
1356        (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1357         isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1358      ISD::CondCode Condition;
1359      if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1360        Condition = getICmpCondCode(IC->getPredicate());
1361      } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1362        Condition = getFCmpCondCode(FC->getPredicate());
1363        if (TM.Options.NoNaNsFPMath)
1364          Condition = getFCmpCodeWithoutNaN(Condition);
1365      } else {
1366        Condition = ISD::SETEQ; // silence warning.
1367        llvm_unreachable("Unknown compare instruction");
1368      }
1369
1370      CaseBlock CB(Condition, BOp->getOperand(0),
1371                   BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1372      SwitchCases.push_back(CB);
1373      return;
1374    }
1375  }
1376
1377  // Create a CaseBlock record representing this branch.
1378  CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1379               NULL, TBB, FBB, CurBB);
1380  SwitchCases.push_back(CB);
1381}
1382
1383/// FindMergedConditions - If Cond is an expression like
1384void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1385                                               MachineBasicBlock *TBB,
1386                                               MachineBasicBlock *FBB,
1387                                               MachineBasicBlock *CurBB,
1388                                               MachineBasicBlock *SwitchBB,
1389                                               unsigned Opc) {
1390  // If this node is not part of the or/and tree, emit it as a branch.
1391  const Instruction *BOp = dyn_cast<Instruction>(Cond);
1392  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1393      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1394      BOp->getParent() != CurBB->getBasicBlock() ||
1395      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1396      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1397    EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB);
1398    return;
1399  }
1400
1401  //  Create TmpBB after CurBB.
1402  MachineFunction::iterator BBI = CurBB;
1403  MachineFunction &MF = DAG.getMachineFunction();
1404  MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1405  CurBB->getParent()->insert(++BBI, TmpBB);
1406
1407  if (Opc == Instruction::Or) {
1408    // Codegen X | Y as:
1409    //   jmp_if_X TBB
1410    //   jmp TmpBB
1411    // TmpBB:
1412    //   jmp_if_Y TBB
1413    //   jmp FBB
1414    //
1415
1416    // Emit the LHS condition.
1417    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc);
1418
1419    // Emit the RHS condition into TmpBB.
1420    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1421  } else {
1422    assert(Opc == Instruction::And && "Unknown merge op!");
1423    // Codegen X & Y as:
1424    //   jmp_if_X TmpBB
1425    //   jmp FBB
1426    // TmpBB:
1427    //   jmp_if_Y TBB
1428    //   jmp FBB
1429    //
1430    //  This requires creation of TmpBB after CurBB.
1431
1432    // Emit the LHS condition.
1433    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc);
1434
1435    // Emit the RHS condition into TmpBB.
1436    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1437  }
1438}
1439
1440/// If the set of cases should be emitted as a series of branches, return true.
1441/// If we should emit this as a bunch of and/or'd together conditions, return
1442/// false.
1443bool
1444SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
1445  if (Cases.size() != 2) return true;
1446
1447  // If this is two comparisons of the same values or'd or and'd together, they
1448  // will get folded into a single comparison, so don't emit two blocks.
1449  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1450       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1451      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1452       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1453    return false;
1454  }
1455
1456  // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1457  // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1458  if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1459      Cases[0].CC == Cases[1].CC &&
1460      isa<Constant>(Cases[0].CmpRHS) &&
1461      cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1462    if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1463      return false;
1464    if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1465      return false;
1466  }
1467
1468  return true;
1469}
1470
1471void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1472  MachineBasicBlock *BrMBB = FuncInfo.MBB;
1473
1474  // Update machine-CFG edges.
1475  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1476
1477  // Figure out which block is immediately after the current one.
1478  MachineBasicBlock *NextBlock = 0;
1479  MachineFunction::iterator BBI = BrMBB;
1480  if (++BBI != FuncInfo.MF->end())
1481    NextBlock = BBI;
1482
1483  if (I.isUnconditional()) {
1484    // Update machine-CFG edges.
1485    BrMBB->addSuccessor(Succ0MBB);
1486
1487    // If this is not a fall-through branch, emit the branch.
1488    if (Succ0MBB != NextBlock)
1489      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1490                              MVT::Other, getControlRoot(),
1491                              DAG.getBasicBlock(Succ0MBB)));
1492
1493    return;
1494  }
1495
1496  // If this condition is one of the special cases we handle, do special stuff
1497  // now.
1498  const Value *CondVal = I.getCondition();
1499  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1500
1501  // If this is a series of conditions that are or'd or and'd together, emit
1502  // this as a sequence of branches instead of setcc's with and/or operations.
1503  // As long as jumps are not expensive, this should improve performance.
1504  // For example, instead of something like:
1505  //     cmp A, B
1506  //     C = seteq
1507  //     cmp D, E
1508  //     F = setle
1509  //     or C, F
1510  //     jnz foo
1511  // Emit:
1512  //     cmp A, B
1513  //     je foo
1514  //     cmp D, E
1515  //     jle foo
1516  //
1517  if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1518    if (!TLI.isJumpExpensive() &&
1519        BOp->hasOneUse() &&
1520        (BOp->getOpcode() == Instruction::And ||
1521         BOp->getOpcode() == Instruction::Or)) {
1522      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1523                           BOp->getOpcode());
1524      // If the compares in later blocks need to use values not currently
1525      // exported from this block, export them now.  This block should always
1526      // be the first entry.
1527      assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1528
1529      // Allow some cases to be rejected.
1530      if (ShouldEmitAsBranches(SwitchCases)) {
1531        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1532          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1533          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1534        }
1535
1536        // Emit the branch for this block.
1537        visitSwitchCase(SwitchCases[0], BrMBB);
1538        SwitchCases.erase(SwitchCases.begin());
1539        return;
1540      }
1541
1542      // Okay, we decided not to do this, remove any inserted MBB's and clear
1543      // SwitchCases.
1544      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1545        FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1546
1547      SwitchCases.clear();
1548    }
1549  }
1550
1551  // Create a CaseBlock record representing this branch.
1552  CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1553               NULL, Succ0MBB, Succ1MBB, BrMBB);
1554
1555  // Use visitSwitchCase to actually insert the fast branch sequence for this
1556  // cond branch.
1557  visitSwitchCase(CB, BrMBB);
1558}
1559
1560/// visitSwitchCase - Emits the necessary code to represent a single node in
1561/// the binary search tree resulting from lowering a switch instruction.
1562void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1563                                          MachineBasicBlock *SwitchBB) {
1564  SDValue Cond;
1565  SDValue CondLHS = getValue(CB.CmpLHS);
1566  DebugLoc dl = getCurDebugLoc();
1567
1568  // Build the setcc now.
1569  if (CB.CmpMHS == NULL) {
1570    // Fold "(X == true)" to X and "(X == false)" to !X to
1571    // handle common cases produced by branch lowering.
1572    if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1573        CB.CC == ISD::SETEQ)
1574      Cond = CondLHS;
1575    else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1576             CB.CC == ISD::SETEQ) {
1577      SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1578      Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1579    } else
1580      Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1581  } else {
1582    assert(CB.CC == ISD::SETCC_INVALID &&
1583           "Condition is undefined for to-the-range belonging check.");
1584
1585    const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1586    const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
1587
1588    SDValue CmpOp = getValue(CB.CmpMHS);
1589    EVT VT = CmpOp.getValueType();
1590
1591    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(false)) {
1592      Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1593                          ISD::SETULE);
1594    } else {
1595      SDValue SUB = DAG.getNode(ISD::SUB, dl,
1596                                VT, CmpOp, DAG.getConstant(Low, VT));
1597      Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1598                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1599    }
1600  }
1601
1602  // Update successor info
1603  addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight);
1604  addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight);
1605
1606  // Set NextBlock to be the MBB immediately after the current one, if any.
1607  // This is used to avoid emitting unnecessary branches to the next block.
1608  MachineBasicBlock *NextBlock = 0;
1609  MachineFunction::iterator BBI = SwitchBB;
1610  if (++BBI != FuncInfo.MF->end())
1611    NextBlock = BBI;
1612
1613  // If the lhs block is the next block, invert the condition so that we can
1614  // fall through to the lhs instead of the rhs block.
1615  if (CB.TrueBB == NextBlock) {
1616    std::swap(CB.TrueBB, CB.FalseBB);
1617    SDValue True = DAG.getConstant(1, Cond.getValueType());
1618    Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1619  }
1620
1621  SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1622                               MVT::Other, getControlRoot(), Cond,
1623                               DAG.getBasicBlock(CB.TrueBB));
1624
1625  // Insert the false branch. Do this even if it's a fall through branch,
1626  // this makes it easier to do DAG optimizations which require inverting
1627  // the branch condition.
1628  BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1629                       DAG.getBasicBlock(CB.FalseBB));
1630
1631  DAG.setRoot(BrCond);
1632}
1633
1634/// visitJumpTable - Emit JumpTable node in the current MBB
1635void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1636  // Emit the code for the jump table
1637  assert(JT.Reg != -1U && "Should lower JT Header first!");
1638  EVT PTy = TLI.getPointerTy();
1639  SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1640                                     JT.Reg, PTy);
1641  SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1642  SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(),
1643                                    MVT::Other, Index.getValue(1),
1644                                    Table, Index);
1645  DAG.setRoot(BrJumpTable);
1646}
1647
1648/// visitJumpTableHeader - This function emits necessary code to produce index
1649/// in the JumpTable from switch case.
1650void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1651                                               JumpTableHeader &JTH,
1652                                               MachineBasicBlock *SwitchBB) {
1653  // Subtract the lowest switch case value from the value being switched on and
1654  // conditional branch to default mbb if the result is greater than the
1655  // difference between smallest and largest cases.
1656  SDValue SwitchOp = getValue(JTH.SValue);
1657  EVT VT = SwitchOp.getValueType();
1658  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1659                            DAG.getConstant(JTH.First, VT));
1660
1661  // The SDNode we just created, which holds the value being switched on minus
1662  // the smallest case value, needs to be copied to a virtual register so it
1663  // can be used as an index into the jump table in a subsequent basic block.
1664  // This value may be smaller or larger than the target's pointer type, and
1665  // therefore require extension or truncating.
1666  SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy());
1667
1668  unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy());
1669  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1670                                    JumpTableReg, SwitchOp);
1671  JT.Reg = JumpTableReg;
1672
1673  // Emit the range check for the jump table, and branch to the default block
1674  // for the switch statement if the value being switched on exceeds the largest
1675  // case in the switch.
1676  SDValue CMP = DAG.getSetCC(getCurDebugLoc(),
1677                             TLI.getSetCCResultType(Sub.getValueType()), Sub,
1678                             DAG.getConstant(JTH.Last-JTH.First,VT),
1679                             ISD::SETUGT);
1680
1681  // Set NextBlock to be the MBB immediately after the current one, if any.
1682  // This is used to avoid emitting unnecessary branches to the next block.
1683  MachineBasicBlock *NextBlock = 0;
1684  MachineFunction::iterator BBI = SwitchBB;
1685
1686  if (++BBI != FuncInfo.MF->end())
1687    NextBlock = BBI;
1688
1689  SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1690                               MVT::Other, CopyTo, CMP,
1691                               DAG.getBasicBlock(JT.Default));
1692
1693  if (JT.MBB != NextBlock)
1694    BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond,
1695                         DAG.getBasicBlock(JT.MBB));
1696
1697  DAG.setRoot(BrCond);
1698}
1699
1700/// visitBitTestHeader - This function emits necessary code to produce value
1701/// suitable for "bit tests"
1702void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1703                                             MachineBasicBlock *SwitchBB) {
1704  // Subtract the minimum value
1705  SDValue SwitchOp = getValue(B.SValue);
1706  EVT VT = SwitchOp.getValueType();
1707  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1708                            DAG.getConstant(B.First, VT));
1709
1710  // Check range
1711  SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(),
1712                                  TLI.getSetCCResultType(Sub.getValueType()),
1713                                  Sub, DAG.getConstant(B.Range, VT),
1714                                  ISD::SETUGT);
1715
1716  // Determine the type of the test operands.
1717  bool UsePtrType = false;
1718  if (!TLI.isTypeLegal(VT))
1719    UsePtrType = true;
1720  else {
1721    for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
1722      if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
1723        // Switch table case range are encoded into series of masks.
1724        // Just use pointer type, it's guaranteed to fit.
1725        UsePtrType = true;
1726        break;
1727      }
1728  }
1729  if (UsePtrType) {
1730    VT = TLI.getPointerTy();
1731    Sub = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), VT);
1732  }
1733
1734  B.RegVT = VT;
1735  B.Reg = FuncInfo.CreateReg(VT);
1736  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1737                                    B.Reg, Sub);
1738
1739  // Set NextBlock to be the MBB immediately after the current one, if any.
1740  // This is used to avoid emitting unnecessary branches to the next block.
1741  MachineBasicBlock *NextBlock = 0;
1742  MachineFunction::iterator BBI = SwitchBB;
1743  if (++BBI != FuncInfo.MF->end())
1744    NextBlock = BBI;
1745
1746  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1747
1748  addSuccessorWithWeight(SwitchBB, B.Default);
1749  addSuccessorWithWeight(SwitchBB, MBB);
1750
1751  SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1752                                MVT::Other, CopyTo, RangeCmp,
1753                                DAG.getBasicBlock(B.Default));
1754
1755  if (MBB != NextBlock)
1756    BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo,
1757                          DAG.getBasicBlock(MBB));
1758
1759  DAG.setRoot(BrRange);
1760}
1761
1762/// visitBitTestCase - this function produces one "bit test"
1763void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
1764                                           MachineBasicBlock* NextMBB,
1765                                           unsigned Reg,
1766                                           BitTestCase &B,
1767                                           MachineBasicBlock *SwitchBB) {
1768  EVT VT = BB.RegVT;
1769  SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1770                                       Reg, VT);
1771  SDValue Cmp;
1772  unsigned PopCount = CountPopulation_64(B.Mask);
1773  if (PopCount == 1) {
1774    // Testing for a single bit; just compare the shift count with what it
1775    // would need to be to shift a 1 bit in that position.
1776    Cmp = DAG.getSetCC(getCurDebugLoc(),
1777                       TLI.getSetCCResultType(VT),
1778                       ShiftOp,
1779                       DAG.getConstant(CountTrailingZeros_64(B.Mask), VT),
1780                       ISD::SETEQ);
1781  } else if (PopCount == BB.Range) {
1782    // There is only one zero bit in the range, test for it directly.
1783    Cmp = DAG.getSetCC(getCurDebugLoc(),
1784                       TLI.getSetCCResultType(VT),
1785                       ShiftOp,
1786                       DAG.getConstant(CountTrailingOnes_64(B.Mask), VT),
1787                       ISD::SETNE);
1788  } else {
1789    // Make desired shift
1790    SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), VT,
1791                                    DAG.getConstant(1, VT), ShiftOp);
1792
1793    // Emit bit tests and jumps
1794    SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(),
1795                                VT, SwitchVal, DAG.getConstant(B.Mask, VT));
1796    Cmp = DAG.getSetCC(getCurDebugLoc(),
1797                       TLI.getSetCCResultType(VT),
1798                       AndOp, DAG.getConstant(0, VT),
1799                       ISD::SETNE);
1800  }
1801
1802  addSuccessorWithWeight(SwitchBB, B.TargetBB);
1803  addSuccessorWithWeight(SwitchBB, NextMBB);
1804
1805  SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1806                              MVT::Other, getControlRoot(),
1807                              Cmp, DAG.getBasicBlock(B.TargetBB));
1808
1809  // Set NextBlock to be the MBB immediately after the current one, if any.
1810  // This is used to avoid emitting unnecessary branches to the next block.
1811  MachineBasicBlock *NextBlock = 0;
1812  MachineFunction::iterator BBI = SwitchBB;
1813  if (++BBI != FuncInfo.MF->end())
1814    NextBlock = BBI;
1815
1816  if (NextMBB != NextBlock)
1817    BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd,
1818                        DAG.getBasicBlock(NextMBB));
1819
1820  DAG.setRoot(BrAnd);
1821}
1822
1823void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1824  MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
1825
1826  // Retrieve successors.
1827  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1828  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1829
1830  const Value *Callee(I.getCalledValue());
1831  if (isa<InlineAsm>(Callee))
1832    visitInlineAsm(&I);
1833  else
1834    LowerCallTo(&I, getValue(Callee), false, LandingPad);
1835
1836  // If the value of the invoke is used outside of its defining block, make it
1837  // available as a virtual register.
1838  CopyToExportRegsIfNeeded(&I);
1839
1840  // Update successor info
1841  addSuccessorWithWeight(InvokeMBB, Return);
1842  addSuccessorWithWeight(InvokeMBB, LandingPad);
1843
1844  // Drop into normal successor.
1845  DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1846                          MVT::Other, getControlRoot(),
1847                          DAG.getBasicBlock(Return)));
1848}
1849
1850void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
1851  llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
1852}
1853
1854void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
1855  assert(FuncInfo.MBB->isLandingPad() &&
1856         "Call to landingpad not in landing pad!");
1857
1858  MachineBasicBlock *MBB = FuncInfo.MBB;
1859  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
1860  AddLandingPadInfo(LP, MMI, MBB);
1861
1862  // If there aren't registers to copy the values into (e.g., during SjLj
1863  // exceptions), then don't bother to create these DAG nodes.
1864  if (TLI.getExceptionPointerRegister() == 0 &&
1865      TLI.getExceptionSelectorRegister() == 0)
1866    return;
1867
1868  SmallVector<EVT, 2> ValueVTs;
1869  ComputeValueVTs(TLI, LP.getType(), ValueVTs);
1870
1871  // Insert the EXCEPTIONADDR instruction.
1872  assert(FuncInfo.MBB->isLandingPad() &&
1873         "Call to eh.exception not in landing pad!");
1874  SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
1875  SDValue Ops[2];
1876  Ops[0] = DAG.getRoot();
1877  SDValue Op1 = DAG.getNode(ISD::EXCEPTIONADDR, getCurDebugLoc(), VTs, Ops, 1);
1878  SDValue Chain = Op1.getValue(1);
1879
1880  // Insert the EHSELECTION instruction.
1881  VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
1882  Ops[0] = Op1;
1883  Ops[1] = Chain;
1884  SDValue Op2 = DAG.getNode(ISD::EHSELECTION, getCurDebugLoc(), VTs, Ops, 2);
1885  Chain = Op2.getValue(1);
1886  Op2 = DAG.getSExtOrTrunc(Op2, getCurDebugLoc(), MVT::i32);
1887
1888  Ops[0] = Op1;
1889  Ops[1] = Op2;
1890  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
1891                            DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
1892                            &Ops[0], 2);
1893
1894  std::pair<SDValue, SDValue> RetPair = std::make_pair(Res, Chain);
1895  setValue(&LP, RetPair.first);
1896  DAG.setRoot(RetPair.second);
1897}
1898
1899/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1900/// small case ranges).
1901bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
1902                                                 CaseRecVector& WorkList,
1903                                                 const Value* SV,
1904                                                 MachineBasicBlock *Default,
1905                                                 MachineBasicBlock *SwitchBB) {
1906  // Size is the number of Cases represented by this range.
1907  size_t Size = CR.Range.second - CR.Range.first;
1908  if (Size > 3)
1909    return false;
1910
1911  // Get the MachineFunction which holds the current MBB.  This is used when
1912  // inserting any additional MBBs necessary to represent the switch.
1913  MachineFunction *CurMF = FuncInfo.MF;
1914
1915  // Figure out which block is immediately after the current one.
1916  MachineBasicBlock *NextBlock = 0;
1917  MachineFunction::iterator BBI = CR.CaseBB;
1918
1919  if (++BBI != FuncInfo.MF->end())
1920    NextBlock = BBI;
1921
1922  // If any two of the cases has the same destination, and if one value
1923  // is the same as the other, but has one bit unset that the other has set,
1924  // use bit manipulation to do two compares at once.  For example:
1925  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1926  // TODO: This could be extended to merge any 2 cases in switches with 3 cases.
1927  // TODO: Handle cases where CR.CaseBB != SwitchBB.
1928  if (Size == 2 && CR.CaseBB == SwitchBB) {
1929    Case &Small = *CR.Range.first;
1930    Case &Big = *(CR.Range.second-1);
1931
1932    if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) {
1933      const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue();
1934      const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue();
1935
1936      // Check that there is only one bit different.
1937      if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 &&
1938          (SmallValue | BigValue) == BigValue) {
1939        // Isolate the common bit.
1940        APInt CommonBit = BigValue & ~SmallValue;
1941        assert((SmallValue | CommonBit) == BigValue &&
1942               CommonBit.countPopulation() == 1 && "Not a common bit?");
1943
1944        SDValue CondLHS = getValue(SV);
1945        EVT VT = CondLHS.getValueType();
1946        DebugLoc DL = getCurDebugLoc();
1947
1948        SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
1949                                 DAG.getConstant(CommonBit, VT));
1950        SDValue Cond = DAG.getSetCC(DL, MVT::i1,
1951                                    Or, DAG.getConstant(BigValue, VT),
1952                                    ISD::SETEQ);
1953
1954        // Update successor info.
1955        addSuccessorWithWeight(SwitchBB, Small.BB);
1956        addSuccessorWithWeight(SwitchBB, Default);
1957
1958        // Insert the true branch.
1959        SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other,
1960                                     getControlRoot(), Cond,
1961                                     DAG.getBasicBlock(Small.BB));
1962
1963        // Insert the false branch.
1964        BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
1965                             DAG.getBasicBlock(Default));
1966
1967        DAG.setRoot(BrCond);
1968        return true;
1969      }
1970    }
1971  }
1972
1973  // Order cases by weight so the most likely case will be checked first.
1974  BranchProbabilityInfo *BPI = FuncInfo.BPI;
1975  if (BPI) {
1976    for (CaseItr I = CR.Range.first, IE = CR.Range.second; I != IE; ++I) {
1977      uint32_t IWeight = BPI->getEdgeWeight(SwitchBB->getBasicBlock(),
1978                                            I->BB->getBasicBlock());
1979      for (CaseItr J = CR.Range.first; J < I; ++J) {
1980        uint32_t JWeight = BPI->getEdgeWeight(SwitchBB->getBasicBlock(),
1981                                              J->BB->getBasicBlock());
1982        if (IWeight > JWeight)
1983          std::swap(*I, *J);
1984      }
1985    }
1986  }
1987  // Rearrange the case blocks so that the last one falls through if possible.
1988  Case &BackCase = *(CR.Range.second-1);
1989  if (Size > 1 &&
1990      NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1991    // The last case block won't fall through into 'NextBlock' if we emit the
1992    // branches in this order.  See if rearranging a case value would help.
1993    // We start at the bottom as it's the case with the least weight.
1994    for (Case *I = &*(CR.Range.second-2), *E = &*CR.Range.first-1; I != E; --I){
1995      if (I->BB == NextBlock) {
1996        std::swap(*I, BackCase);
1997        break;
1998      }
1999    }
2000  }
2001
2002  // Create a CaseBlock record representing a conditional branch to
2003  // the Case's target mbb if the value being switched on SV is equal
2004  // to C.
2005  MachineBasicBlock *CurBlock = CR.CaseBB;
2006  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
2007    MachineBasicBlock *FallThrough;
2008    if (I != E-1) {
2009      FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
2010      CurMF->insert(BBI, FallThrough);
2011
2012      // Put SV in a virtual register to make it available from the new blocks.
2013      ExportFromCurrentBlock(SV);
2014    } else {
2015      // If the last case doesn't match, go to the default block.
2016      FallThrough = Default;
2017    }
2018
2019    const Value *RHS, *LHS, *MHS;
2020    ISD::CondCode CC;
2021    if (I->High == I->Low) {
2022      // This is just small small case range :) containing exactly 1 case
2023      CC = ISD::SETEQ;
2024      LHS = SV; RHS = I->High; MHS = NULL;
2025    } else {
2026      CC = ISD::SETCC_INVALID;
2027      LHS = I->Low; MHS = SV; RHS = I->High;
2028    }
2029
2030    uint32_t ExtraWeight = I->ExtraWeight;
2031    CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough,
2032                 /* me */ CurBlock,
2033                 /* trueweight */ ExtraWeight / 2, /* falseweight */ ExtraWeight / 2);
2034
2035    // If emitting the first comparison, just call visitSwitchCase to emit the
2036    // code into the current block.  Otherwise, push the CaseBlock onto the
2037    // vector to be later processed by SDISel, and insert the node's MBB
2038    // before the next MBB.
2039    if (CurBlock == SwitchBB)
2040      visitSwitchCase(CB, SwitchBB);
2041    else
2042      SwitchCases.push_back(CB);
2043
2044    CurBlock = FallThrough;
2045  }
2046
2047  return true;
2048}
2049
2050static inline bool areJTsAllowed(const TargetLowering &TLI) {
2051  return !TLI.getTargetMachine().Options.DisableJumpTables &&
2052          (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
2053           TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
2054}
2055
2056static APInt ComputeRange(const APInt &First, const APInt &Last) {
2057  uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
2058  APInt LastExt = Last.zext(BitWidth), FirstExt = First.zext(BitWidth);
2059  return (LastExt - FirstExt + 1ULL);
2060}
2061
2062/// handleJTSwitchCase - Emit jumptable for current switch case range
2063bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR,
2064                                             CaseRecVector &WorkList,
2065                                             const Value *SV,
2066                                             MachineBasicBlock *Default,
2067                                             MachineBasicBlock *SwitchBB) {
2068  Case& FrontCase = *CR.Range.first;
2069  Case& BackCase  = *(CR.Range.second-1);
2070
2071  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2072  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2073
2074  APInt TSize(First.getBitWidth(), 0);
2075  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I)
2076    TSize += I->size();
2077
2078  if (!areJTsAllowed(TLI) || TSize.ult(4))
2079    return false;
2080
2081  APInt Range = ComputeRange(First, Last);
2082  // The density is TSize / Range. Require at least 40%.
2083  // It should not be possible for IntTSize to saturate for sane code, but make
2084  // sure we handle Range saturation correctly.
2085  uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10);
2086  uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10);
2087  if (IntTSize * 10 < IntRange * 4)
2088    return false;
2089
2090  DEBUG(dbgs() << "Lowering jump table\n"
2091               << "First entry: " << First << ". Last entry: " << Last << '\n'
2092               << "Range: " << Range << ". Size: " << TSize << ".\n\n");
2093
2094  // Get the MachineFunction which holds the current MBB.  This is used when
2095  // inserting any additional MBBs necessary to represent the switch.
2096  MachineFunction *CurMF = FuncInfo.MF;
2097
2098  // Figure out which block is immediately after the current one.
2099  MachineFunction::iterator BBI = CR.CaseBB;
2100  ++BBI;
2101
2102  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2103
2104  // Create a new basic block to hold the code for loading the address
2105  // of the jump table, and jumping to it.  Update successor information;
2106  // we will either branch to the default case for the switch, or the jump
2107  // table.
2108  MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2109  CurMF->insert(BBI, JumpTableBB);
2110
2111  addSuccessorWithWeight(CR.CaseBB, Default);
2112  addSuccessorWithWeight(CR.CaseBB, JumpTableBB);
2113
2114  // Build a vector of destination BBs, corresponding to each target
2115  // of the jump table. If the value of the jump table slot corresponds to
2116  // a case statement, push the case's BB onto the vector, otherwise, push
2117  // the default BB.
2118  std::vector<MachineBasicBlock*> DestBBs;
2119  APInt TEI = First;
2120  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
2121    const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
2122    const APInt &High = cast<ConstantInt>(I->High)->getValue();
2123
2124    if (Low.ule(TEI) && TEI.ule(High)) {
2125      DestBBs.push_back(I->BB);
2126      if (TEI==High)
2127        ++I;
2128    } else {
2129      DestBBs.push_back(Default);
2130    }
2131  }
2132
2133  // Update successor info. Add one edge to each unique successor.
2134  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
2135  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
2136         E = DestBBs.end(); I != E; ++I) {
2137    if (!SuccsHandled[(*I)->getNumber()]) {
2138      SuccsHandled[(*I)->getNumber()] = true;
2139      addSuccessorWithWeight(JumpTableBB, *I);
2140    }
2141  }
2142
2143  // Create a jump table index for this jump table.
2144  unsigned JTEncoding = TLI.getJumpTableEncoding();
2145  unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
2146                       ->createJumpTableIndex(DestBBs);
2147
2148  // Set the jump table information so that we can codegen it as a second
2149  // MachineBasicBlock
2150  JumpTable JT(-1U, JTI, JumpTableBB, Default);
2151  JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
2152  if (CR.CaseBB == SwitchBB)
2153    visitJumpTableHeader(JT, JTH, SwitchBB);
2154
2155  JTCases.push_back(JumpTableBlock(JTH, JT));
2156  return true;
2157}
2158
2159/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
2160/// 2 subtrees.
2161bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
2162                                                  CaseRecVector& WorkList,
2163                                                  const Value* SV,
2164                                                  MachineBasicBlock *Default,
2165                                                  MachineBasicBlock *SwitchBB) {
2166  // Get the MachineFunction which holds the current MBB.  This is used when
2167  // inserting any additional MBBs necessary to represent the switch.
2168  MachineFunction *CurMF = FuncInfo.MF;
2169
2170  // Figure out which block is immediately after the current one.
2171  MachineFunction::iterator BBI = CR.CaseBB;
2172  ++BBI;
2173
2174  Case& FrontCase = *CR.Range.first;
2175  Case& BackCase  = *(CR.Range.second-1);
2176  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2177
2178  // Size is the number of Cases represented by this range.
2179  unsigned Size = CR.Range.second - CR.Range.first;
2180
2181  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2182  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2183  double FMetric = 0;
2184  CaseItr Pivot = CR.Range.first + Size/2;
2185
2186  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
2187  // (heuristically) allow us to emit JumpTable's later.
2188  APInt TSize(First.getBitWidth(), 0);
2189  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2190       I!=E; ++I)
2191    TSize += I->size();
2192
2193  APInt LSize = FrontCase.size();
2194  APInt RSize = TSize-LSize;
2195  DEBUG(dbgs() << "Selecting best pivot: \n"
2196               << "First: " << First << ", Last: " << Last <<'\n'
2197               << "LSize: " << LSize << ", RSize: " << RSize << '\n');
2198  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
2199       J!=E; ++I, ++J) {
2200    const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
2201    const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
2202    APInt Range = ComputeRange(LEnd, RBegin);
2203    assert((Range - 2ULL).isNonNegative() &&
2204           "Invalid case distance");
2205    // Use volatile double here to avoid excess precision issues on some hosts,
2206    // e.g. that use 80-bit X87 registers.
2207    volatile double LDensity =
2208       (double)LSize.roundToDouble() /
2209                           (LEnd - First + 1ULL).roundToDouble();
2210    volatile double RDensity =
2211      (double)RSize.roundToDouble() /
2212                           (Last - RBegin + 1ULL).roundToDouble();
2213    double Metric = Range.logBase2()*(LDensity+RDensity);
2214    // Should always split in some non-trivial place
2215    DEBUG(dbgs() <<"=>Step\n"
2216                 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
2217                 << "LDensity: " << LDensity
2218                 << ", RDensity: " << RDensity << '\n'
2219                 << "Metric: " << Metric << '\n');
2220    if (FMetric < Metric) {
2221      Pivot = J;
2222      FMetric = Metric;
2223      DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
2224    }
2225
2226    LSize += J->size();
2227    RSize -= J->size();
2228  }
2229  if (areJTsAllowed(TLI)) {
2230    // If our case is dense we *really* should handle it earlier!
2231    assert((FMetric > 0) && "Should handle dense range earlier!");
2232  } else {
2233    Pivot = CR.Range.first + Size/2;
2234  }
2235
2236  CaseRange LHSR(CR.Range.first, Pivot);
2237  CaseRange RHSR(Pivot, CR.Range.second);
2238  const Constant *C = Pivot->Low;
2239  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
2240
2241  // We know that we branch to the LHS if the Value being switched on is
2242  // less than the Pivot value, C.  We use this to optimize our binary
2243  // tree a bit, by recognizing that if SV is greater than or equal to the
2244  // LHS's Case Value, and that Case Value is exactly one less than the
2245  // Pivot's Value, then we can branch directly to the LHS's Target,
2246  // rather than creating a leaf node for it.
2247  if ((LHSR.second - LHSR.first) == 1 &&
2248      LHSR.first->High == CR.GE &&
2249      cast<ConstantInt>(C)->getValue() ==
2250      (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
2251    TrueBB = LHSR.first->BB;
2252  } else {
2253    TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2254    CurMF->insert(BBI, TrueBB);
2255    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
2256
2257    // Put SV in a virtual register to make it available from the new blocks.
2258    ExportFromCurrentBlock(SV);
2259  }
2260
2261  // Similar to the optimization above, if the Value being switched on is
2262  // known to be less than the Constant CR.LT, and the current Case Value
2263  // is CR.LT - 1, then we can branch directly to the target block for
2264  // the current Case Value, rather than emitting a RHS leaf node for it.
2265  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
2266      cast<ConstantInt>(RHSR.first->Low)->getValue() ==
2267      (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
2268    FalseBB = RHSR.first->BB;
2269  } else {
2270    FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2271    CurMF->insert(BBI, FalseBB);
2272    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
2273
2274    // Put SV in a virtual register to make it available from the new blocks.
2275    ExportFromCurrentBlock(SV);
2276  }
2277
2278  // Create a CaseBlock record representing a conditional branch to
2279  // the LHS node if the value being switched on SV is less than C.
2280  // Otherwise, branch to LHS.
2281  CaseBlock CB(ISD::SETULT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
2282
2283  if (CR.CaseBB == SwitchBB)
2284    visitSwitchCase(CB, SwitchBB);
2285  else
2286    SwitchCases.push_back(CB);
2287
2288  return true;
2289}
2290
2291/// handleBitTestsSwitchCase - if current case range has few destination and
2292/// range span less, than machine word bitwidth, encode case range into series
2293/// of masks and emit bit tests with these masks.
2294bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
2295                                                   CaseRecVector& WorkList,
2296                                                   const Value* SV,
2297                                                   MachineBasicBlock* Default,
2298                                                   MachineBasicBlock *SwitchBB){
2299  EVT PTy = TLI.getPointerTy();
2300  unsigned IntPtrBits = PTy.getSizeInBits();
2301
2302  Case& FrontCase = *CR.Range.first;
2303  Case& BackCase  = *(CR.Range.second-1);
2304
2305  // Get the MachineFunction which holds the current MBB.  This is used when
2306  // inserting any additional MBBs necessary to represent the switch.
2307  MachineFunction *CurMF = FuncInfo.MF;
2308
2309  // If target does not have legal shift left, do not emit bit tests at all.
2310  if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
2311    return false;
2312
2313  size_t numCmps = 0;
2314  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2315       I!=E; ++I) {
2316    // Single case counts one, case range - two.
2317    numCmps += (I->Low == I->High ? 1 : 2);
2318  }
2319
2320  // Count unique destinations
2321  SmallSet<MachineBasicBlock*, 4> Dests;
2322  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2323    Dests.insert(I->BB);
2324    if (Dests.size() > 3)
2325      // Don't bother the code below, if there are too much unique destinations
2326      return false;
2327  }
2328  DEBUG(dbgs() << "Total number of unique destinations: "
2329        << Dests.size() << '\n'
2330        << "Total number of comparisons: " << numCmps << '\n');
2331
2332  // Compute span of values.
2333  const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
2334  const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
2335  APInt cmpRange = maxValue - minValue;
2336
2337  DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
2338               << "Low bound: " << minValue << '\n'
2339               << "High bound: " << maxValue << '\n');
2340
2341  if (cmpRange.uge(IntPtrBits) ||
2342      (!(Dests.size() == 1 && numCmps >= 3) &&
2343       !(Dests.size() == 2 && numCmps >= 5) &&
2344       !(Dests.size() >= 3 && numCmps >= 6)))
2345    return false;
2346
2347  DEBUG(dbgs() << "Emitting bit tests\n");
2348  APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
2349
2350  // Optimize the case where all the case values fit in a
2351  // word without having to subtract minValue. In this case,
2352  // we can optimize away the subtraction.
2353  if (maxValue.ult(IntPtrBits)) {
2354    cmpRange = maxValue;
2355  } else {
2356    lowBound = minValue;
2357  }
2358
2359  CaseBitsVector CasesBits;
2360  unsigned i, count = 0;
2361
2362  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2363    MachineBasicBlock* Dest = I->BB;
2364    for (i = 0; i < count; ++i)
2365      if (Dest == CasesBits[i].BB)
2366        break;
2367
2368    if (i == count) {
2369      assert((count < 3) && "Too much destinations to test!");
2370      CasesBits.push_back(CaseBits(0, Dest, 0));
2371      count++;
2372    }
2373
2374    const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
2375    const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
2376
2377    uint64_t lo = (lowValue - lowBound).getZExtValue();
2378    uint64_t hi = (highValue - lowBound).getZExtValue();
2379
2380    for (uint64_t j = lo; j <= hi; j++) {
2381      CasesBits[i].Mask |=  1ULL << j;
2382      CasesBits[i].Bits++;
2383    }
2384
2385  }
2386  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2387
2388  BitTestInfo BTC;
2389
2390  // Figure out which block is immediately after the current one.
2391  MachineFunction::iterator BBI = CR.CaseBB;
2392  ++BBI;
2393
2394  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2395
2396  DEBUG(dbgs() << "Cases:\n");
2397  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2398    DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
2399                 << ", Bits: " << CasesBits[i].Bits
2400                 << ", BB: " << CasesBits[i].BB << '\n');
2401
2402    MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2403    CurMF->insert(BBI, CaseBB);
2404    BTC.push_back(BitTestCase(CasesBits[i].Mask,
2405                              CaseBB,
2406                              CasesBits[i].BB));
2407
2408    // Put SV in a virtual register to make it available from the new blocks.
2409    ExportFromCurrentBlock(SV);
2410  }
2411
2412  BitTestBlock BTB(lowBound, cmpRange, SV,
2413                   -1U, MVT::Other, (CR.CaseBB == SwitchBB),
2414                   CR.CaseBB, Default, BTC);
2415
2416  if (CR.CaseBB == SwitchBB)
2417    visitBitTestHeader(BTB, SwitchBB);
2418
2419  BitTestCases.push_back(BTB);
2420
2421  return true;
2422}
2423
2424/// Clusterify - Transform simple list of Cases into list of CaseRange's
2425size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
2426                                       const SwitchInst& SI) {
2427
2428  /// Use a shorter form of declaration, and also
2429  /// show the we want to use CRSBuilder as Clusterifier.
2430  typedef IntegersSubsetMapping<MachineBasicBlock, IntegersSubset> Clusterifier;
2431
2432  Clusterifier TheClusterifier;
2433
2434  // Start with "simple" cases
2435  for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
2436       i != e; ++i) {
2437    const BasicBlock *SuccBB = i.getCaseSuccessor();
2438    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB];
2439
2440    TheClusterifier.add(i.getCaseValueEx(), SMBB);
2441  }
2442
2443  TheClusterifier.optimize();
2444
2445  BranchProbabilityInfo *BPI = FuncInfo.BPI;
2446  size_t numCmps = 0;
2447  for (Clusterifier::RangeIterator i = TheClusterifier.begin(),
2448       e = TheClusterifier.end(); i != e; ++i, ++numCmps) {
2449    Clusterifier::Cluster &C = *i;
2450    unsigned W = 0;
2451    if (BPI) {
2452      W = BPI->getEdgeWeight(SI.getParent(), C.second->getBasicBlock());
2453      if (!W)
2454        W = 16;
2455      W *= C.first.Weight;
2456      BPI->setEdgeWeight(SI.getParent(), C.second->getBasicBlock(), W);
2457    }
2458
2459    // FIXME: Currently work with ConstantInt based numbers.
2460    // Changing it to APInt based is a pretty heavy for this commit.
2461    Cases.push_back(Case(C.first.Low.toConstantInt(),
2462                         C.first.High.toConstantInt(), C.second, W));
2463
2464    if (C.first.Low != C.first.High)
2465    // A range counts double, since it requires two compares.
2466    ++numCmps;
2467  }
2468
2469  return numCmps;
2470}
2471
2472void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2473                                           MachineBasicBlock *Last) {
2474  // Update JTCases.
2475  for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2476    if (JTCases[i].first.HeaderBB == First)
2477      JTCases[i].first.HeaderBB = Last;
2478
2479  // Update BitTestCases.
2480  for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2481    if (BitTestCases[i].Parent == First)
2482      BitTestCases[i].Parent = Last;
2483}
2484
2485void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
2486  MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
2487
2488  // Figure out which block is immediately after the current one.
2489  MachineBasicBlock *NextBlock = 0;
2490  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2491
2492  // If there is only the default destination, branch to it if it is not the
2493  // next basic block.  Otherwise, just fall through.
2494  if (!SI.getNumCases()) {
2495    // Update machine-CFG edges.
2496
2497    // If this is not a fall-through branch, emit the branch.
2498    SwitchMBB->addSuccessor(Default);
2499    if (Default != NextBlock)
2500      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
2501                              MVT::Other, getControlRoot(),
2502                              DAG.getBasicBlock(Default)));
2503
2504    return;
2505  }
2506
2507  // If there are any non-default case statements, create a vector of Cases
2508  // representing each one, and sort the vector so that we can efficiently
2509  // create a binary search tree from them.
2510  CaseVector Cases;
2511  size_t numCmps = Clusterify(Cases, SI);
2512  DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2513               << ". Total compares: " << numCmps << '\n');
2514  (void)numCmps;
2515
2516  // Get the Value to be switched on and default basic blocks, which will be
2517  // inserted into CaseBlock records, representing basic blocks in the binary
2518  // search tree.
2519  const Value *SV = SI.getCondition();
2520
2521  // Push the initial CaseRec onto the worklist
2522  CaseRecVector WorkList;
2523  WorkList.push_back(CaseRec(SwitchMBB,0,0,
2524                             CaseRange(Cases.begin(),Cases.end())));
2525
2526  while (!WorkList.empty()) {
2527    // Grab a record representing a case range to process off the worklist
2528    CaseRec CR = WorkList.back();
2529    WorkList.pop_back();
2530
2531    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2532      continue;
2533
2534    // If the range has few cases (two or less) emit a series of specific
2535    // tests.
2536    if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
2537      continue;
2538
2539    // If the switch has more than 5 blocks, and at least 40% dense, and the
2540    // target supports indirect branches, then emit a jump table rather than
2541    // lowering the switch to a binary tree of conditional branches.
2542    if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2543      continue;
2544
2545    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2546    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2547    handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
2548  }
2549}
2550
2551void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2552  MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2553
2554  // Update machine-CFG edges with unique successors.
2555  SmallVector<BasicBlock*, 32> succs;
2556  succs.reserve(I.getNumSuccessors());
2557  for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i)
2558    succs.push_back(I.getSuccessor(i));
2559  array_pod_sort(succs.begin(), succs.end());
2560  succs.erase(std::unique(succs.begin(), succs.end()), succs.end());
2561  for (unsigned i = 0, e = succs.size(); i != e; ++i) {
2562    MachineBasicBlock *Succ = FuncInfo.MBBMap[succs[i]];
2563    addSuccessorWithWeight(IndirectBrMBB, Succ);
2564  }
2565
2566  DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(),
2567                          MVT::Other, getControlRoot(),
2568                          getValue(I.getAddress())));
2569}
2570
2571void SelectionDAGBuilder::visitFSub(const User &I) {
2572  // -0.0 - X --> fneg
2573  Type *Ty = I.getType();
2574  if (isa<Constant>(I.getOperand(0)) &&
2575      I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2576    SDValue Op2 = getValue(I.getOperand(1));
2577    setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2578                             Op2.getValueType(), Op2));
2579    return;
2580  }
2581
2582  visitBinary(I, ISD::FSUB);
2583}
2584
2585void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2586  SDValue Op1 = getValue(I.getOperand(0));
2587  SDValue Op2 = getValue(I.getOperand(1));
2588  setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(),
2589                           Op1.getValueType(), Op1, Op2));
2590}
2591
2592void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2593  SDValue Op1 = getValue(I.getOperand(0));
2594  SDValue Op2 = getValue(I.getOperand(1));
2595
2596  MVT ShiftTy = TLI.getShiftAmountTy(Op2.getValueType());
2597
2598  // Coerce the shift amount to the right type if we can.
2599  if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2600    unsigned ShiftSize = ShiftTy.getSizeInBits();
2601    unsigned Op2Size = Op2.getValueType().getSizeInBits();
2602    DebugLoc DL = getCurDebugLoc();
2603
2604    // If the operand is smaller than the shift count type, promote it.
2605    if (ShiftSize > Op2Size)
2606      Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2607
2608    // If the operand is larger than the shift count type but the shift
2609    // count type has enough bits to represent any shift value, truncate
2610    // it now. This is a common case and it exposes the truncate to
2611    // optimization early.
2612    else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2613      Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2614    // Otherwise we'll need to temporarily settle for some other convenient
2615    // type.  Type legalization will make adjustments once the shiftee is split.
2616    else
2617      Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2618  }
2619
2620  setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(),
2621                           Op1.getValueType(), Op1, Op2));
2622}
2623
2624void SelectionDAGBuilder::visitSDiv(const User &I) {
2625  SDValue Op1 = getValue(I.getOperand(0));
2626  SDValue Op2 = getValue(I.getOperand(1));
2627
2628  // Turn exact SDivs into multiplications.
2629  // FIXME: This should be in DAGCombiner, but it doesn't have access to the
2630  // exact bit.
2631  if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() &&
2632      !isa<ConstantSDNode>(Op1) &&
2633      isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue())
2634    setValue(&I, TLI.BuildExactSDIV(Op1, Op2, getCurDebugLoc(), DAG));
2635  else
2636    setValue(&I, DAG.getNode(ISD::SDIV, getCurDebugLoc(), Op1.getValueType(),
2637                             Op1, Op2));
2638}
2639
2640void SelectionDAGBuilder::visitICmp(const User &I) {
2641  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2642  if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2643    predicate = IC->getPredicate();
2644  else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2645    predicate = ICmpInst::Predicate(IC->getPredicate());
2646  SDValue Op1 = getValue(I.getOperand(0));
2647  SDValue Op2 = getValue(I.getOperand(1));
2648  ISD::CondCode Opcode = getICmpCondCode(predicate);
2649
2650  EVT DestVT = TLI.getValueType(I.getType());
2651  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode));
2652}
2653
2654void SelectionDAGBuilder::visitFCmp(const User &I) {
2655  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2656  if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2657    predicate = FC->getPredicate();
2658  else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2659    predicate = FCmpInst::Predicate(FC->getPredicate());
2660  SDValue Op1 = getValue(I.getOperand(0));
2661  SDValue Op2 = getValue(I.getOperand(1));
2662  ISD::CondCode Condition = getFCmpCondCode(predicate);
2663  if (TM.Options.NoNaNsFPMath)
2664    Condition = getFCmpCodeWithoutNaN(Condition);
2665  EVT DestVT = TLI.getValueType(I.getType());
2666  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition));
2667}
2668
2669void SelectionDAGBuilder::visitSelect(const User &I) {
2670  SmallVector<EVT, 4> ValueVTs;
2671  ComputeValueVTs(TLI, I.getType(), ValueVTs);
2672  unsigned NumValues = ValueVTs.size();
2673  if (NumValues == 0) return;
2674
2675  SmallVector<SDValue, 4> Values(NumValues);
2676  SDValue Cond     = getValue(I.getOperand(0));
2677  SDValue TrueVal  = getValue(I.getOperand(1));
2678  SDValue FalseVal = getValue(I.getOperand(2));
2679  ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2680    ISD::VSELECT : ISD::SELECT;
2681
2682  for (unsigned i = 0; i != NumValues; ++i)
2683    Values[i] = DAG.getNode(OpCode, getCurDebugLoc(),
2684                            TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2685                            Cond,
2686                            SDValue(TrueVal.getNode(),
2687                                    TrueVal.getResNo() + i),
2688                            SDValue(FalseVal.getNode(),
2689                                    FalseVal.getResNo() + i));
2690
2691  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2692                           DAG.getVTList(&ValueVTs[0], NumValues),
2693                           &Values[0], NumValues));
2694}
2695
2696void SelectionDAGBuilder::visitTrunc(const User &I) {
2697  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2698  SDValue N = getValue(I.getOperand(0));
2699  EVT DestVT = TLI.getValueType(I.getType());
2700  setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N));
2701}
2702
2703void SelectionDAGBuilder::visitZExt(const User &I) {
2704  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2705  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2706  SDValue N = getValue(I.getOperand(0));
2707  EVT DestVT = TLI.getValueType(I.getType());
2708  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N));
2709}
2710
2711void SelectionDAGBuilder::visitSExt(const User &I) {
2712  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2713  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2714  SDValue N = getValue(I.getOperand(0));
2715  EVT DestVT = TLI.getValueType(I.getType());
2716  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N));
2717}
2718
2719void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2720  // FPTrunc is never a no-op cast, no need to check
2721  SDValue N = getValue(I.getOperand(0));
2722  EVT DestVT = TLI.getValueType(I.getType());
2723  setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(),
2724                           DestVT, N,
2725                           DAG.getTargetConstant(0, TLI.getPointerTy())));
2726}
2727
2728void SelectionDAGBuilder::visitFPExt(const User &I){
2729  // FPExt is never a no-op cast, no need to check
2730  SDValue N = getValue(I.getOperand(0));
2731  EVT DestVT = TLI.getValueType(I.getType());
2732  setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N));
2733}
2734
2735void SelectionDAGBuilder::visitFPToUI(const User &I) {
2736  // FPToUI is never a no-op cast, no need to check
2737  SDValue N = getValue(I.getOperand(0));
2738  EVT DestVT = TLI.getValueType(I.getType());
2739  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N));
2740}
2741
2742void SelectionDAGBuilder::visitFPToSI(const User &I) {
2743  // FPToSI is never a no-op cast, no need to check
2744  SDValue N = getValue(I.getOperand(0));
2745  EVT DestVT = TLI.getValueType(I.getType());
2746  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N));
2747}
2748
2749void SelectionDAGBuilder::visitUIToFP(const User &I) {
2750  // UIToFP is never a no-op cast, no need to check
2751  SDValue N = getValue(I.getOperand(0));
2752  EVT DestVT = TLI.getValueType(I.getType());
2753  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N));
2754}
2755
2756void SelectionDAGBuilder::visitSIToFP(const User &I){
2757  // SIToFP is never a no-op cast, no need to check
2758  SDValue N = getValue(I.getOperand(0));
2759  EVT DestVT = TLI.getValueType(I.getType());
2760  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N));
2761}
2762
2763void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2764  // What to do depends on the size of the integer and the size of the pointer.
2765  // We can either truncate, zero extend, or no-op, accordingly.
2766  SDValue N = getValue(I.getOperand(0));
2767  EVT DestVT = TLI.getValueType(I.getType());
2768  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2769}
2770
2771void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2772  // What to do depends on the size of the integer and the size of the pointer.
2773  // We can either truncate, zero extend, or no-op, accordingly.
2774  SDValue N = getValue(I.getOperand(0));
2775  EVT DestVT = TLI.getValueType(I.getType());
2776  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2777}
2778
2779void SelectionDAGBuilder::visitBitCast(const User &I) {
2780  SDValue N = getValue(I.getOperand(0));
2781  EVT DestVT = TLI.getValueType(I.getType());
2782
2783  // BitCast assures us that source and destination are the same size so this is
2784  // either a BITCAST or a no-op.
2785  if (DestVT != N.getValueType())
2786    setValue(&I, DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
2787                             DestVT, N)); // convert types.
2788  else
2789    setValue(&I, N);            // noop cast.
2790}
2791
2792void SelectionDAGBuilder::visitInsertElement(const User &I) {
2793  SDValue InVec = getValue(I.getOperand(0));
2794  SDValue InVal = getValue(I.getOperand(1));
2795  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2796                              TLI.getPointerTy(),
2797                              getValue(I.getOperand(2)));
2798  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(),
2799                           TLI.getValueType(I.getType()),
2800                           InVec, InVal, InIdx));
2801}
2802
2803void SelectionDAGBuilder::visitExtractElement(const User &I) {
2804  SDValue InVec = getValue(I.getOperand(0));
2805  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2806                              TLI.getPointerTy(),
2807                              getValue(I.getOperand(1)));
2808  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2809                           TLI.getValueType(I.getType()), InVec, InIdx));
2810}
2811
2812// Utility for visitShuffleVector - Return true if every element in Mask,
2813// begining from position Pos and ending in Pos+Size, falls within the
2814// specified sequential range [L, L+Pos). or is undef.
2815static bool isSequentialInRange(const SmallVectorImpl<int> &Mask,
2816                                unsigned Pos, unsigned Size, int Low) {
2817  for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
2818    if (Mask[i] >= 0 && Mask[i] != Low)
2819      return false;
2820  return true;
2821}
2822
2823void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2824  SDValue Src1 = getValue(I.getOperand(0));
2825  SDValue Src2 = getValue(I.getOperand(1));
2826
2827  SmallVector<int, 8> Mask;
2828  ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
2829  unsigned MaskNumElts = Mask.size();
2830
2831  EVT VT = TLI.getValueType(I.getType());
2832  EVT SrcVT = Src1.getValueType();
2833  unsigned SrcNumElts = SrcVT.getVectorNumElements();
2834
2835  if (SrcNumElts == MaskNumElts) {
2836    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2837                                      &Mask[0]));
2838    return;
2839  }
2840
2841  // Normalize the shuffle vector since mask and vector length don't match.
2842  if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2843    // Mask is longer than the source vectors and is a multiple of the source
2844    // vectors.  We can use concatenate vector to make the mask and vectors
2845    // lengths match.
2846    if (SrcNumElts*2 == MaskNumElts) {
2847      // First check for Src1 in low and Src2 in high
2848      if (isSequentialInRange(Mask, 0, SrcNumElts, 0) &&
2849          isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) {
2850        // The shuffle is concatenating two vectors together.
2851        setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2852                                 VT, Src1, Src2));
2853        return;
2854      }
2855      // Then check for Src2 in low and Src1 in high
2856      if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) &&
2857          isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) {
2858        // The shuffle is concatenating two vectors together.
2859        setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2860                                 VT, Src2, Src1));
2861        return;
2862      }
2863    }
2864
2865    // Pad both vectors with undefs to make them the same length as the mask.
2866    unsigned NumConcat = MaskNumElts / SrcNumElts;
2867    bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2868    bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2869    SDValue UndefVal = DAG.getUNDEF(SrcVT);
2870
2871    SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2872    SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2873    MOps1[0] = Src1;
2874    MOps2[0] = Src2;
2875
2876    Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2877                                                  getCurDebugLoc(), VT,
2878                                                  &MOps1[0], NumConcat);
2879    Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2880                                                  getCurDebugLoc(), VT,
2881                                                  &MOps2[0], NumConcat);
2882
2883    // Readjust mask for new input vector length.
2884    SmallVector<int, 8> MappedOps;
2885    for (unsigned i = 0; i != MaskNumElts; ++i) {
2886      int Idx = Mask[i];
2887      if (Idx >= (int)SrcNumElts)
2888        Idx -= SrcNumElts - MaskNumElts;
2889      MappedOps.push_back(Idx);
2890    }
2891
2892    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2893                                      &MappedOps[0]));
2894    return;
2895  }
2896
2897  if (SrcNumElts > MaskNumElts) {
2898    // Analyze the access pattern of the vector to see if we can extract
2899    // two subvectors and do the shuffle. The analysis is done by calculating
2900    // the range of elements the mask access on both vectors.
2901    int MinRange[2] = { static_cast<int>(SrcNumElts),
2902                        static_cast<int>(SrcNumElts)};
2903    int MaxRange[2] = {-1, -1};
2904
2905    for (unsigned i = 0; i != MaskNumElts; ++i) {
2906      int Idx = Mask[i];
2907      unsigned Input = 0;
2908      if (Idx < 0)
2909        continue;
2910
2911      if (Idx >= (int)SrcNumElts) {
2912        Input = 1;
2913        Idx -= SrcNumElts;
2914      }
2915      if (Idx > MaxRange[Input])
2916        MaxRange[Input] = Idx;
2917      if (Idx < MinRange[Input])
2918        MinRange[Input] = Idx;
2919    }
2920
2921    // Check if the access is smaller than the vector size and can we find
2922    // a reasonable extract index.
2923    int RangeUse[2] = { -1, -1 };  // 0 = Unused, 1 = Extract, -1 = Can not
2924                                   // Extract.
2925    int StartIdx[2];  // StartIdx to extract from
2926    for (unsigned Input = 0; Input < 2; ++Input) {
2927      if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) {
2928        RangeUse[Input] = 0; // Unused
2929        StartIdx[Input] = 0;
2930        continue;
2931      }
2932
2933      // Find a good start index that is a multiple of the mask length. Then
2934      // see if the rest of the elements are in range.
2935      StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2936      if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2937          StartIdx[Input] + MaskNumElts <= SrcNumElts)
2938        RangeUse[Input] = 1; // Extract from a multiple of the mask length.
2939    }
2940
2941    if (RangeUse[0] == 0 && RangeUse[1] == 0) {
2942      setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
2943      return;
2944    }
2945    if (RangeUse[0] >= 0 && RangeUse[1] >= 0) {
2946      // Extract appropriate subvector and generate a vector shuffle
2947      for (unsigned Input = 0; Input < 2; ++Input) {
2948        SDValue &Src = Input == 0 ? Src1 : Src2;
2949        if (RangeUse[Input] == 0)
2950          Src = DAG.getUNDEF(VT);
2951        else
2952          Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT,
2953                            Src, DAG.getIntPtrConstant(StartIdx[Input]));
2954      }
2955
2956      // Calculate new mask.
2957      SmallVector<int, 8> MappedOps;
2958      for (unsigned i = 0; i != MaskNumElts; ++i) {
2959        int Idx = Mask[i];
2960        if (Idx >= 0) {
2961          if (Idx < (int)SrcNumElts)
2962            Idx -= StartIdx[0];
2963          else
2964            Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
2965        }
2966        MappedOps.push_back(Idx);
2967      }
2968
2969      setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2970                                        &MappedOps[0]));
2971      return;
2972    }
2973  }
2974
2975  // We can't use either concat vectors or extract subvectors so fall back to
2976  // replacing the shuffle with extract and build vector.
2977  // to insert and build vector.
2978  EVT EltVT = VT.getVectorElementType();
2979  EVT PtrVT = TLI.getPointerTy();
2980  SmallVector<SDValue,8> Ops;
2981  for (unsigned i = 0; i != MaskNumElts; ++i) {
2982    int Idx = Mask[i];
2983    SDValue Res;
2984
2985    if (Idx < 0) {
2986      Res = DAG.getUNDEF(EltVT);
2987    } else {
2988      SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
2989      if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
2990
2991      Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2992                        EltVT, Src, DAG.getConstant(Idx, PtrVT));
2993    }
2994
2995    Ops.push_back(Res);
2996  }
2997
2998  setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
2999                           VT, &Ops[0], Ops.size()));
3000}
3001
3002void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
3003  const Value *Op0 = I.getOperand(0);
3004  const Value *Op1 = I.getOperand(1);
3005  Type *AggTy = I.getType();
3006  Type *ValTy = Op1->getType();
3007  bool IntoUndef = isa<UndefValue>(Op0);
3008  bool FromUndef = isa<UndefValue>(Op1);
3009
3010  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3011
3012  SmallVector<EVT, 4> AggValueVTs;
3013  ComputeValueVTs(TLI, AggTy, AggValueVTs);
3014  SmallVector<EVT, 4> ValValueVTs;
3015  ComputeValueVTs(TLI, ValTy, ValValueVTs);
3016
3017  unsigned NumAggValues = AggValueVTs.size();
3018  unsigned NumValValues = ValValueVTs.size();
3019  SmallVector<SDValue, 4> Values(NumAggValues);
3020
3021  SDValue Agg = getValue(Op0);
3022  unsigned i = 0;
3023  // Copy the beginning value(s) from the original aggregate.
3024  for (; i != LinearIndex; ++i)
3025    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3026                SDValue(Agg.getNode(), Agg.getResNo() + i);
3027  // Copy values from the inserted value(s).
3028  if (NumValValues) {
3029    SDValue Val = getValue(Op1);
3030    for (; i != LinearIndex + NumValValues; ++i)
3031      Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3032                  SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3033  }
3034  // Copy remaining value(s) from the original aggregate.
3035  for (; i != NumAggValues; ++i)
3036    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3037                SDValue(Agg.getNode(), Agg.getResNo() + i);
3038
3039  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3040                           DAG.getVTList(&AggValueVTs[0], NumAggValues),
3041                           &Values[0], NumAggValues));
3042}
3043
3044void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
3045  const Value *Op0 = I.getOperand(0);
3046  Type *AggTy = Op0->getType();
3047  Type *ValTy = I.getType();
3048  bool OutOfUndef = isa<UndefValue>(Op0);
3049
3050  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3051
3052  SmallVector<EVT, 4> ValValueVTs;
3053  ComputeValueVTs(TLI, ValTy, ValValueVTs);
3054
3055  unsigned NumValValues = ValValueVTs.size();
3056
3057  // Ignore a extractvalue that produces an empty object
3058  if (!NumValValues) {
3059    setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3060    return;
3061  }
3062
3063  SmallVector<SDValue, 4> Values(NumValValues);
3064
3065  SDValue Agg = getValue(Op0);
3066  // Copy out the selected value(s).
3067  for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3068    Values[i - LinearIndex] =
3069      OutOfUndef ?
3070        DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3071        SDValue(Agg.getNode(), Agg.getResNo() + i);
3072
3073  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3074                           DAG.getVTList(&ValValueVTs[0], NumValValues),
3075                           &Values[0], NumValValues));
3076}
3077
3078void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3079  SDValue N = getValue(I.getOperand(0));
3080  // Note that the pointer operand may be a vector of pointers. Take the scalar
3081  // element which holds a pointer.
3082  Type *Ty = I.getOperand(0)->getType()->getScalarType();
3083
3084  for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
3085       OI != E; ++OI) {
3086    const Value *Idx = *OI;
3087    if (StructType *StTy = dyn_cast<StructType>(Ty)) {
3088      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
3089      if (Field) {
3090        // N = N + Offset
3091        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
3092        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
3093                        DAG.getIntPtrConstant(Offset));
3094      }
3095
3096      Ty = StTy->getElementType(Field);
3097    } else {
3098      Ty = cast<SequentialType>(Ty)->getElementType();
3099
3100      // If this is a constant subscript, handle it quickly.
3101      if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
3102        if (CI->isZero()) continue;
3103        uint64_t Offs =
3104            TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
3105        SDValue OffsVal;
3106        EVT PTy = TLI.getPointerTy();
3107        unsigned PtrBits = PTy.getSizeInBits();
3108        if (PtrBits < 64)
3109          OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
3110                                TLI.getPointerTy(),
3111                                DAG.getConstant(Offs, MVT::i64));
3112        else
3113          OffsVal = DAG.getIntPtrConstant(Offs);
3114
3115        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
3116                        OffsVal);
3117        continue;
3118      }
3119
3120      // N = N + Idx * ElementSize;
3121      APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
3122                                TD->getTypeAllocSize(Ty));
3123      SDValue IdxN = getValue(Idx);
3124
3125      // If the index is smaller or larger than intptr_t, truncate or extend
3126      // it.
3127      IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType());
3128
3129      // If this is a multiply by a power of two, turn it into a shl
3130      // immediately.  This is a very common case.
3131      if (ElementSize != 1) {
3132        if (ElementSize.isPowerOf2()) {
3133          unsigned Amt = ElementSize.logBase2();
3134          IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(),
3135                             N.getValueType(), IdxN,
3136                             DAG.getConstant(Amt, IdxN.getValueType()));
3137        } else {
3138          SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy());
3139          IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(),
3140                             N.getValueType(), IdxN, Scale);
3141        }
3142      }
3143
3144      N = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3145                      N.getValueType(), N, IdxN);
3146    }
3147  }
3148
3149  setValue(&I, N);
3150}
3151
3152void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3153  // If this is a fixed sized alloca in the entry block of the function,
3154  // allocate it statically on the stack.
3155  if (FuncInfo.StaticAllocaMap.count(&I))
3156    return;   // getValue will auto-populate this.
3157
3158  Type *Ty = I.getAllocatedType();
3159  uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
3160  unsigned Align =
3161    std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
3162             I.getAlignment());
3163
3164  SDValue AllocSize = getValue(I.getArraySize());
3165
3166  EVT IntPtr = TLI.getPointerTy();
3167  if (AllocSize.getValueType() != IntPtr)
3168    AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr);
3169
3170  AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr,
3171                          AllocSize,
3172                          DAG.getConstant(TySize, IntPtr));
3173
3174  // Handle alignment.  If the requested alignment is less than or equal to
3175  // the stack alignment, ignore it.  If the size is greater than or equal to
3176  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3177  unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
3178  if (Align <= StackAlign)
3179    Align = 0;
3180
3181  // Round the size of the allocation up to the stack alignment size
3182  // by add SA-1 to the size.
3183  AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3184                          AllocSize.getValueType(), AllocSize,
3185                          DAG.getIntPtrConstant(StackAlign-1));
3186
3187  // Mask out the low bits for alignment purposes.
3188  AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(),
3189                          AllocSize.getValueType(), AllocSize,
3190                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
3191
3192  SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
3193  SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3194  SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(),
3195                            VTs, Ops, 3);
3196  setValue(&I, DSA);
3197  DAG.setRoot(DSA.getValue(1));
3198
3199  // Inform the Frame Information that we have just allocated a variable-sized
3200  // object.
3201  FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1);
3202}
3203
3204void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3205  if (I.isAtomic())
3206    return visitAtomicLoad(I);
3207
3208  const Value *SV = I.getOperand(0);
3209  SDValue Ptr = getValue(SV);
3210
3211  Type *Ty = I.getType();
3212
3213  bool isVolatile = I.isVolatile();
3214  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3215  bool isInvariant = I.getMetadata("invariant.load") != 0;
3216  unsigned Alignment = I.getAlignment();
3217  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3218  const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3219
3220  SmallVector<EVT, 4> ValueVTs;
3221  SmallVector<uint64_t, 4> Offsets;
3222  ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
3223  unsigned NumValues = ValueVTs.size();
3224  if (NumValues == 0)
3225    return;
3226
3227  SDValue Root;
3228  bool ConstantMemory = false;
3229  if (I.isVolatile() || NumValues > MaxParallelChains)
3230    // Serialize volatile loads with other side effects.
3231    Root = getRoot();
3232  else if (AA->pointsToConstantMemory(
3233             AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) {
3234    // Do not serialize (non-volatile) loads of constant memory with anything.
3235    Root = DAG.getEntryNode();
3236    ConstantMemory = true;
3237  } else {
3238    // Do not serialize non-volatile loads against each other.
3239    Root = DAG.getRoot();
3240  }
3241
3242  SmallVector<SDValue, 4> Values(NumValues);
3243  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3244                                          NumValues));
3245  EVT PtrVT = Ptr.getValueType();
3246  unsigned ChainI = 0;
3247  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3248    // Serializing loads here may result in excessive register pressure, and
3249    // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3250    // could recover a bit by hoisting nodes upward in the chain by recognizing
3251    // they are side-effect free or do not alias. The optimizer should really
3252    // avoid this case by converting large object/array copies to llvm.memcpy
3253    // (MaxParallelChains should always remain as failsafe).
3254    if (ChainI == MaxParallelChains) {
3255      assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3256      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3257                                  MVT::Other, &Chains[0], ChainI);
3258      Root = Chain;
3259      ChainI = 0;
3260    }
3261    SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3262                            PtrVT, Ptr,
3263                            DAG.getConstant(Offsets[i], PtrVT));
3264    SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root,
3265                            A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
3266                            isNonTemporal, isInvariant, Alignment, TBAAInfo,
3267                            Ranges);
3268
3269    Values[i] = L;
3270    Chains[ChainI] = L.getValue(1);
3271  }
3272
3273  if (!ConstantMemory) {
3274    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3275                                MVT::Other, &Chains[0], ChainI);
3276    if (isVolatile)
3277      DAG.setRoot(Chain);
3278    else
3279      PendingLoads.push_back(Chain);
3280  }
3281
3282  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3283                           DAG.getVTList(&ValueVTs[0], NumValues),
3284                           &Values[0], NumValues));
3285}
3286
3287void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3288  if (I.isAtomic())
3289    return visitAtomicStore(I);
3290
3291  const Value *SrcV = I.getOperand(0);
3292  const Value *PtrV = I.getOperand(1);
3293
3294  SmallVector<EVT, 4> ValueVTs;
3295  SmallVector<uint64_t, 4> Offsets;
3296  ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
3297  unsigned NumValues = ValueVTs.size();
3298  if (NumValues == 0)
3299    return;
3300
3301  // Get the lowered operands. Note that we do this after
3302  // checking if NumResults is zero, because with zero results
3303  // the operands won't have values in the map.
3304  SDValue Src = getValue(SrcV);
3305  SDValue Ptr = getValue(PtrV);
3306
3307  SDValue Root = getRoot();
3308  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3309                                          NumValues));
3310  EVT PtrVT = Ptr.getValueType();
3311  bool isVolatile = I.isVolatile();
3312  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3313  unsigned Alignment = I.getAlignment();
3314  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3315
3316  unsigned ChainI = 0;
3317  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3318    // See visitLoad comments.
3319    if (ChainI == MaxParallelChains) {
3320      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3321                                  MVT::Other, &Chains[0], ChainI);
3322      Root = Chain;
3323      ChainI = 0;
3324    }
3325    SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr,
3326                              DAG.getConstant(Offsets[i], PtrVT));
3327    SDValue St = DAG.getStore(Root, getCurDebugLoc(),
3328                              SDValue(Src.getNode(), Src.getResNo() + i),
3329                              Add, MachinePointerInfo(PtrV, Offsets[i]),
3330                              isVolatile, isNonTemporal, Alignment, TBAAInfo);
3331    Chains[ChainI] = St;
3332  }
3333
3334  SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3335                                  MVT::Other, &Chains[0], ChainI);
3336  ++SDNodeOrder;
3337  AssignOrderingToNode(StoreNode.getNode());
3338  DAG.setRoot(StoreNode);
3339}
3340
3341static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order,
3342                                    SynchronizationScope Scope,
3343                                    bool Before, DebugLoc dl,
3344                                    SelectionDAG &DAG,
3345                                    const TargetLowering &TLI) {
3346  // Fence, if necessary
3347  if (Before) {
3348    if (Order == AcquireRelease || Order == SequentiallyConsistent)
3349      Order = Release;
3350    else if (Order == Acquire || Order == Monotonic)
3351      return Chain;
3352  } else {
3353    if (Order == AcquireRelease)
3354      Order = Acquire;
3355    else if (Order == Release || Order == Monotonic)
3356      return Chain;
3357  }
3358  SDValue Ops[3];
3359  Ops[0] = Chain;
3360  Ops[1] = DAG.getConstant(Order, TLI.getPointerTy());
3361  Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy());
3362  return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3);
3363}
3364
3365void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
3366  DebugLoc dl = getCurDebugLoc();
3367  AtomicOrdering Order = I.getOrdering();
3368  SynchronizationScope Scope = I.getSynchScope();
3369
3370  SDValue InChain = getRoot();
3371
3372  if (TLI.getInsertFencesForAtomic())
3373    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3374                                   DAG, TLI);
3375
3376  SDValue L =
3377    DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl,
3378                  getValue(I.getCompareOperand()).getValueType().getSimpleVT(),
3379                  InChain,
3380                  getValue(I.getPointerOperand()),
3381                  getValue(I.getCompareOperand()),
3382                  getValue(I.getNewValOperand()),
3383                  MachinePointerInfo(I.getPointerOperand()), 0 /* Alignment */,
3384                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3385                  Scope);
3386
3387  SDValue OutChain = L.getValue(1);
3388
3389  if (TLI.getInsertFencesForAtomic())
3390    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3391                                    DAG, TLI);
3392
3393  setValue(&I, L);
3394  DAG.setRoot(OutChain);
3395}
3396
3397void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
3398  DebugLoc dl = getCurDebugLoc();
3399  ISD::NodeType NT;
3400  switch (I.getOperation()) {
3401  default: llvm_unreachable("Unknown atomicrmw operation");
3402  case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
3403  case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
3404  case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
3405  case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
3406  case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
3407  case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
3408  case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
3409  case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
3410  case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
3411  case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
3412  case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
3413  }
3414  AtomicOrdering Order = I.getOrdering();
3415  SynchronizationScope Scope = I.getSynchScope();
3416
3417  SDValue InChain = getRoot();
3418
3419  if (TLI.getInsertFencesForAtomic())
3420    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3421                                   DAG, TLI);
3422
3423  SDValue L =
3424    DAG.getAtomic(NT, dl,
3425                  getValue(I.getValOperand()).getValueType().getSimpleVT(),
3426                  InChain,
3427                  getValue(I.getPointerOperand()),
3428                  getValue(I.getValOperand()),
3429                  I.getPointerOperand(), 0 /* Alignment */,
3430                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3431                  Scope);
3432
3433  SDValue OutChain = L.getValue(1);
3434
3435  if (TLI.getInsertFencesForAtomic())
3436    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3437                                    DAG, TLI);
3438
3439  setValue(&I, L);
3440  DAG.setRoot(OutChain);
3441}
3442
3443void SelectionDAGBuilder::visitFence(const FenceInst &I) {
3444  DebugLoc dl = getCurDebugLoc();
3445  SDValue Ops[3];
3446  Ops[0] = getRoot();
3447  Ops[1] = DAG.getConstant(I.getOrdering(), TLI.getPointerTy());
3448  Ops[2] = DAG.getConstant(I.getSynchScope(), TLI.getPointerTy());
3449  DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3));
3450}
3451
3452void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
3453  DebugLoc dl = getCurDebugLoc();
3454  AtomicOrdering Order = I.getOrdering();
3455  SynchronizationScope Scope = I.getSynchScope();
3456
3457  SDValue InChain = getRoot();
3458
3459  EVT VT = EVT::getEVT(I.getType());
3460
3461  if (I.getAlignment() * 8 < VT.getSizeInBits())
3462    report_fatal_error("Cannot generate unaligned atomic load");
3463
3464  SDValue L =
3465    DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
3466                  getValue(I.getPointerOperand()),
3467                  I.getPointerOperand(), I.getAlignment(),
3468                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3469                  Scope);
3470
3471  SDValue OutChain = L.getValue(1);
3472
3473  if (TLI.getInsertFencesForAtomic())
3474    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3475                                    DAG, TLI);
3476
3477  setValue(&I, L);
3478  DAG.setRoot(OutChain);
3479}
3480
3481void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
3482  DebugLoc dl = getCurDebugLoc();
3483
3484  AtomicOrdering Order = I.getOrdering();
3485  SynchronizationScope Scope = I.getSynchScope();
3486
3487  SDValue InChain = getRoot();
3488
3489  EVT VT = EVT::getEVT(I.getValueOperand()->getType());
3490
3491  if (I.getAlignment() * 8 < VT.getSizeInBits())
3492    report_fatal_error("Cannot generate unaligned atomic store");
3493
3494  if (TLI.getInsertFencesForAtomic())
3495    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3496                                   DAG, TLI);
3497
3498  SDValue OutChain =
3499    DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
3500                  InChain,
3501                  getValue(I.getPointerOperand()),
3502                  getValue(I.getValueOperand()),
3503                  I.getPointerOperand(), I.getAlignment(),
3504                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3505                  Scope);
3506
3507  if (TLI.getInsertFencesForAtomic())
3508    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3509                                    DAG, TLI);
3510
3511  DAG.setRoot(OutChain);
3512}
3513
3514/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3515/// node.
3516void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3517                                               unsigned Intrinsic) {
3518  bool HasChain = !I.doesNotAccessMemory();
3519  bool OnlyLoad = HasChain && I.onlyReadsMemory();
3520
3521  // Build the operand list.
3522  SmallVector<SDValue, 8> Ops;
3523  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
3524    if (OnlyLoad) {
3525      // We don't need to serialize loads against other loads.
3526      Ops.push_back(DAG.getRoot());
3527    } else {
3528      Ops.push_back(getRoot());
3529    }
3530  }
3531
3532  // Info is set by getTgtMemInstrinsic
3533  TargetLowering::IntrinsicInfo Info;
3534  bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
3535
3536  // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3537  if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
3538      Info.opc == ISD::INTRINSIC_W_CHAIN)
3539    Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI.getPointerTy()));
3540
3541  // Add all operands of the call to the operand list.
3542  for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
3543    SDValue Op = getValue(I.getArgOperand(i));
3544    Ops.push_back(Op);
3545  }
3546
3547  SmallVector<EVT, 4> ValueVTs;
3548  ComputeValueVTs(TLI, I.getType(), ValueVTs);
3549
3550  if (HasChain)
3551    ValueVTs.push_back(MVT::Other);
3552
3553  SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
3554
3555  // Create the node.
3556  SDValue Result;
3557  if (IsTgtIntrinsic) {
3558    // This is target intrinsic that touches memory
3559    Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(),
3560                                     VTs, &Ops[0], Ops.size(),
3561                                     Info.memVT,
3562                                   MachinePointerInfo(Info.ptrVal, Info.offset),
3563                                     Info.align, Info.vol,
3564                                     Info.readMem, Info.writeMem);
3565  } else if (!HasChain) {
3566    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
3567                         VTs, &Ops[0], Ops.size());
3568  } else if (!I.getType()->isVoidTy()) {
3569    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
3570                         VTs, &Ops[0], Ops.size());
3571  } else {
3572    Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(),
3573                         VTs, &Ops[0], Ops.size());
3574  }
3575
3576  if (HasChain) {
3577    SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3578    if (OnlyLoad)
3579      PendingLoads.push_back(Chain);
3580    else
3581      DAG.setRoot(Chain);
3582  }
3583
3584  if (!I.getType()->isVoidTy()) {
3585    if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3586      EVT VT = TLI.getValueType(PTy);
3587      Result = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), VT, Result);
3588    }
3589
3590    setValue(&I, Result);
3591  } else {
3592    // Assign order to result here. If the intrinsic does not produce a result,
3593    // it won't be mapped to a SDNode and visit() will not assign it an order
3594    // number.
3595    ++SDNodeOrder;
3596    AssignOrderingToNode(Result.getNode());
3597  }
3598}
3599
3600/// GetSignificand - Get the significand and build it into a floating-point
3601/// number with exponent of 1:
3602///
3603///   Op = (Op & 0x007fffff) | 0x3f800000;
3604///
3605/// where Op is the hexidecimal representation of floating point value.
3606static SDValue
3607GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) {
3608  SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3609                           DAG.getConstant(0x007fffff, MVT::i32));
3610  SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3611                           DAG.getConstant(0x3f800000, MVT::i32));
3612  return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
3613}
3614
3615/// GetExponent - Get the exponent:
3616///
3617///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3618///
3619/// where Op is the hexidecimal representation of floating point value.
3620static SDValue
3621GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3622            DebugLoc dl) {
3623  SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3624                           DAG.getConstant(0x7f800000, MVT::i32));
3625  SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3626                           DAG.getConstant(23, TLI.getPointerTy()));
3627  SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3628                           DAG.getConstant(127, MVT::i32));
3629  return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3630}
3631
3632/// getF32Constant - Get 32-bit floating point constant.
3633static SDValue
3634getF32Constant(SelectionDAG &DAG, unsigned Flt) {
3635  return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32);
3636}
3637
3638/// visitExp - Lower an exp intrinsic. Handles the special sequences for
3639/// limited-precision mode.
3640void
3641SelectionDAGBuilder::visitExp(const CallInst &I) {
3642  SDValue result;
3643  DebugLoc dl = getCurDebugLoc();
3644
3645  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3646      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3647    SDValue Op = getValue(I.getArgOperand(0));
3648
3649    // Put the exponent in the right bit position for later addition to the
3650    // final result:
3651    //
3652    //   #define LOG2OFe 1.4426950f
3653    //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3654    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3655                             getF32Constant(DAG, 0x3fb8aa3b));
3656    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3657
3658    //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3659    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3660    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3661
3662    //   IntegerPartOfX <<= 23;
3663    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3664                                 DAG.getConstant(23, TLI.getPointerTy()));
3665
3666    if (LimitFloatPrecision <= 6) {
3667      // For floating-point precision of 6:
3668      //
3669      //   TwoToFractionalPartOfX =
3670      //     0.997535578f +
3671      //       (0.735607626f + 0.252464424f * x) * x;
3672      //
3673      // error 0.0144103317, which is 6 bits
3674      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3675                               getF32Constant(DAG, 0x3e814304));
3676      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3677                               getF32Constant(DAG, 0x3f3c50c8));
3678      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3679      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3680                               getF32Constant(DAG, 0x3f7f5e7e));
3681      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t5);
3682
3683      // Add the exponent into the result in integer domain.
3684      SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3685                               TwoToFracPartOfX, IntegerPartOfX);
3686
3687      result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t6);
3688    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3689      // For floating-point precision of 12:
3690      //
3691      //   TwoToFractionalPartOfX =
3692      //     0.999892986f +
3693      //       (0.696457318f +
3694      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3695      //
3696      // 0.000107046256 error, which is 13 to 14 bits
3697      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3698                               getF32Constant(DAG, 0x3da235e3));
3699      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3700                               getF32Constant(DAG, 0x3e65b8f3));
3701      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3702      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3703                               getF32Constant(DAG, 0x3f324b07));
3704      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3705      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3706                               getF32Constant(DAG, 0x3f7ff8fd));
3707      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t7);
3708
3709      // Add the exponent into the result in integer domain.
3710      SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3711                               TwoToFracPartOfX, IntegerPartOfX);
3712
3713      result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t8);
3714    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3715      // For floating-point precision of 18:
3716      //
3717      //   TwoToFractionalPartOfX =
3718      //     0.999999982f +
3719      //       (0.693148872f +
3720      //         (0.240227044f +
3721      //           (0.554906021e-1f +
3722      //             (0.961591928e-2f +
3723      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3724      //
3725      // error 2.47208000*10^(-7), which is better than 18 bits
3726      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3727                               getF32Constant(DAG, 0x3924b03e));
3728      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3729                               getF32Constant(DAG, 0x3ab24b87));
3730      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3731      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3732                               getF32Constant(DAG, 0x3c1d8c17));
3733      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3734      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3735                               getF32Constant(DAG, 0x3d634a1d));
3736      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3737      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3738                               getF32Constant(DAG, 0x3e75fe14));
3739      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3740      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3741                                getF32Constant(DAG, 0x3f317234));
3742      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3743      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3744                                getF32Constant(DAG, 0x3f800000));
3745      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,
3746                                             MVT::i32, t13);
3747
3748      // Add the exponent into the result in integer domain.
3749      SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3750                                TwoToFracPartOfX, IntegerPartOfX);
3751
3752      result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t14);
3753    }
3754  } else {
3755    // No special expansion.
3756    result = DAG.getNode(ISD::FEXP, dl,
3757                         getValue(I.getArgOperand(0)).getValueType(),
3758                         getValue(I.getArgOperand(0)));
3759  }
3760
3761  setValue(&I, result);
3762}
3763
3764/// visitLog - Lower a log intrinsic. Handles the special sequences for
3765/// limited-precision mode.
3766void
3767SelectionDAGBuilder::visitLog(const CallInst &I) {
3768  SDValue result;
3769  DebugLoc dl = getCurDebugLoc();
3770
3771  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3772      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3773    SDValue Op = getValue(I.getArgOperand(0));
3774    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3775
3776    // Scale the exponent by log(2) [0.69314718f].
3777    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3778    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3779                                        getF32Constant(DAG, 0x3f317218));
3780
3781    // Get the significand and build it into a floating-point number with
3782    // exponent of 1.
3783    SDValue X = GetSignificand(DAG, Op1, dl);
3784
3785    if (LimitFloatPrecision <= 6) {
3786      // For floating-point precision of 6:
3787      //
3788      //   LogofMantissa =
3789      //     -1.1609546f +
3790      //       (1.4034025f - 0.23903021f * x) * x;
3791      //
3792      // error 0.0034276066, which is better than 8 bits
3793      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3794                               getF32Constant(DAG, 0xbe74c456));
3795      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3796                               getF32Constant(DAG, 0x3fb3a2b1));
3797      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3798      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3799                                          getF32Constant(DAG, 0x3f949a29));
3800
3801      result = DAG.getNode(ISD::FADD, dl,
3802                           MVT::f32, LogOfExponent, LogOfMantissa);
3803    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3804      // For floating-point precision of 12:
3805      //
3806      //   LogOfMantissa =
3807      //     -1.7417939f +
3808      //       (2.8212026f +
3809      //         (-1.4699568f +
3810      //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3811      //
3812      // error 0.000061011436, which is 14 bits
3813      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3814                               getF32Constant(DAG, 0xbd67b6d6));
3815      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3816                               getF32Constant(DAG, 0x3ee4f4b8));
3817      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3818      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3819                               getF32Constant(DAG, 0x3fbc278b));
3820      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3821      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3822                               getF32Constant(DAG, 0x40348e95));
3823      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3824      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3825                                          getF32Constant(DAG, 0x3fdef31a));
3826
3827      result = DAG.getNode(ISD::FADD, dl,
3828                           MVT::f32, LogOfExponent, LogOfMantissa);
3829    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3830      // For floating-point precision of 18:
3831      //
3832      //   LogOfMantissa =
3833      //     -2.1072184f +
3834      //       (4.2372794f +
3835      //         (-3.7029485f +
3836      //           (2.2781945f +
3837      //             (-0.87823314f +
3838      //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3839      //
3840      // error 0.0000023660568, which is better than 18 bits
3841      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3842                               getF32Constant(DAG, 0xbc91e5ac));
3843      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3844                               getF32Constant(DAG, 0x3e4350aa));
3845      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3846      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3847                               getF32Constant(DAG, 0x3f60d3e3));
3848      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3849      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3850                               getF32Constant(DAG, 0x4011cdf0));
3851      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3852      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3853                               getF32Constant(DAG, 0x406cfd1c));
3854      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3855      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3856                               getF32Constant(DAG, 0x408797cb));
3857      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3858      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3859                                          getF32Constant(DAG, 0x4006dcab));
3860
3861      result = DAG.getNode(ISD::FADD, dl,
3862                           MVT::f32, LogOfExponent, LogOfMantissa);
3863    }
3864  } else {
3865    // No special expansion.
3866    result = DAG.getNode(ISD::FLOG, dl,
3867                         getValue(I.getArgOperand(0)).getValueType(),
3868                         getValue(I.getArgOperand(0)));
3869  }
3870
3871  setValue(&I, result);
3872}
3873
3874/// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for
3875/// limited-precision mode.
3876void
3877SelectionDAGBuilder::visitLog2(const CallInst &I) {
3878  SDValue result;
3879  DebugLoc dl = getCurDebugLoc();
3880
3881  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3882      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3883    SDValue Op = getValue(I.getArgOperand(0));
3884    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3885
3886    // Get the exponent.
3887    SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3888
3889    // Get the significand and build it into a floating-point number with
3890    // exponent of 1.
3891    SDValue X = GetSignificand(DAG, Op1, dl);
3892
3893    // Different possible minimax approximations of significand in
3894    // floating-point for various degrees of accuracy over [1,2].
3895    if (LimitFloatPrecision <= 6) {
3896      // For floating-point precision of 6:
3897      //
3898      //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3899      //
3900      // error 0.0049451742, which is more than 7 bits
3901      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3902                               getF32Constant(DAG, 0xbeb08fe0));
3903      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3904                               getF32Constant(DAG, 0x40019463));
3905      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3906      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3907                                           getF32Constant(DAG, 0x3fd6633d));
3908
3909      result = DAG.getNode(ISD::FADD, dl,
3910                           MVT::f32, LogOfExponent, Log2ofMantissa);
3911    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3912      // For floating-point precision of 12:
3913      //
3914      //   Log2ofMantissa =
3915      //     -2.51285454f +
3916      //       (4.07009056f +
3917      //         (-2.12067489f +
3918      //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3919      //
3920      // error 0.0000876136000, which is better than 13 bits
3921      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3922                               getF32Constant(DAG, 0xbda7262e));
3923      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3924                               getF32Constant(DAG, 0x3f25280b));
3925      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3926      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3927                               getF32Constant(DAG, 0x4007b923));
3928      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3929      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3930                               getF32Constant(DAG, 0x40823e2f));
3931      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3932      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3933                                           getF32Constant(DAG, 0x4020d29c));
3934
3935      result = DAG.getNode(ISD::FADD, dl,
3936                           MVT::f32, LogOfExponent, Log2ofMantissa);
3937    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3938      // For floating-point precision of 18:
3939      //
3940      //   Log2ofMantissa =
3941      //     -3.0400495f +
3942      //       (6.1129976f +
3943      //         (-5.3420409f +
3944      //           (3.2865683f +
3945      //             (-1.2669343f +
3946      //               (0.27515199f -
3947      //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3948      //
3949      // error 0.0000018516, which is better than 18 bits
3950      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3951                               getF32Constant(DAG, 0xbcd2769e));
3952      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3953                               getF32Constant(DAG, 0x3e8ce0b9));
3954      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3955      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3956                               getF32Constant(DAG, 0x3fa22ae7));
3957      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3958      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3959                               getF32Constant(DAG, 0x40525723));
3960      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3961      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3962                               getF32Constant(DAG, 0x40aaf200));
3963      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3964      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3965                               getF32Constant(DAG, 0x40c39dad));
3966      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3967      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3968                                           getF32Constant(DAG, 0x4042902c));
3969
3970      result = DAG.getNode(ISD::FADD, dl,
3971                           MVT::f32, LogOfExponent, Log2ofMantissa);
3972    }
3973  } else {
3974    // No special expansion.
3975    result = DAG.getNode(ISD::FLOG2, dl,
3976                         getValue(I.getArgOperand(0)).getValueType(),
3977                         getValue(I.getArgOperand(0)));
3978  }
3979
3980  setValue(&I, result);
3981}
3982
3983/// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for
3984/// limited-precision mode.
3985void
3986SelectionDAGBuilder::visitLog10(const CallInst &I) {
3987  SDValue result;
3988  DebugLoc dl = getCurDebugLoc();
3989
3990  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3991      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3992    SDValue Op = getValue(I.getArgOperand(0));
3993    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3994
3995    // Scale the exponent by log10(2) [0.30102999f].
3996    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3997    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3998                                        getF32Constant(DAG, 0x3e9a209a));
3999
4000    // Get the significand and build it into a floating-point number with
4001    // exponent of 1.
4002    SDValue X = GetSignificand(DAG, Op1, dl);
4003
4004    if (LimitFloatPrecision <= 6) {
4005      // For floating-point precision of 6:
4006      //
4007      //   Log10ofMantissa =
4008      //     -0.50419619f +
4009      //       (0.60948995f - 0.10380950f * x) * x;
4010      //
4011      // error 0.0014886165, which is 6 bits
4012      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4013                               getF32Constant(DAG, 0xbdd49a13));
4014      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4015                               getF32Constant(DAG, 0x3f1c0789));
4016      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4017      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4018                                            getF32Constant(DAG, 0x3f011300));
4019
4020      result = DAG.getNode(ISD::FADD, dl,
4021                           MVT::f32, LogOfExponent, Log10ofMantissa);
4022    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
4023      // For floating-point precision of 12:
4024      //
4025      //   Log10ofMantissa =
4026      //     -0.64831180f +
4027      //       (0.91751397f +
4028      //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4029      //
4030      // error 0.00019228036, which is better than 12 bits
4031      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4032                               getF32Constant(DAG, 0x3d431f31));
4033      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4034                               getF32Constant(DAG, 0x3ea21fb2));
4035      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4036      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4037                               getF32Constant(DAG, 0x3f6ae232));
4038      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4039      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4040                                            getF32Constant(DAG, 0x3f25f7c3));
4041
4042      result = DAG.getNode(ISD::FADD, dl,
4043                           MVT::f32, LogOfExponent, Log10ofMantissa);
4044    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
4045      // For floating-point precision of 18:
4046      //
4047      //   Log10ofMantissa =
4048      //     -0.84299375f +
4049      //       (1.5327582f +
4050      //         (-1.0688956f +
4051      //           (0.49102474f +
4052      //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4053      //
4054      // error 0.0000037995730, which is better than 18 bits
4055      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4056                               getF32Constant(DAG, 0x3c5d51ce));
4057      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4058                               getF32Constant(DAG, 0x3e00685a));
4059      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4060      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4061                               getF32Constant(DAG, 0x3efb6798));
4062      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4063      SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4064                               getF32Constant(DAG, 0x3f88d192));
4065      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4066      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4067                               getF32Constant(DAG, 0x3fc4316c));
4068      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4069      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4070                                            getF32Constant(DAG, 0x3f57ce70));
4071
4072      result = DAG.getNode(ISD::FADD, dl,
4073                           MVT::f32, LogOfExponent, Log10ofMantissa);
4074    }
4075  } else {
4076    // No special expansion.
4077    result = DAG.getNode(ISD::FLOG10, dl,
4078                         getValue(I.getArgOperand(0)).getValueType(),
4079                         getValue(I.getArgOperand(0)));
4080  }
4081
4082  setValue(&I, result);
4083}
4084
4085/// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4086/// limited-precision mode.
4087void
4088SelectionDAGBuilder::visitExp2(const CallInst &I) {
4089  SDValue result;
4090  DebugLoc dl = getCurDebugLoc();
4091
4092  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
4093      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4094    SDValue Op = getValue(I.getArgOperand(0));
4095
4096    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
4097
4098    //   FractionalPartOfX = x - (float)IntegerPartOfX;
4099    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4100    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
4101
4102    //   IntegerPartOfX <<= 23;
4103    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4104                                 DAG.getConstant(23, TLI.getPointerTy()));
4105
4106    if (LimitFloatPrecision <= 6) {
4107      // For floating-point precision of 6:
4108      //
4109      //   TwoToFractionalPartOfX =
4110      //     0.997535578f +
4111      //       (0.735607626f + 0.252464424f * x) * x;
4112      //
4113      // error 0.0144103317, which is 6 bits
4114      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4115                               getF32Constant(DAG, 0x3e814304));
4116      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4117                               getF32Constant(DAG, 0x3f3c50c8));
4118      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4119      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4120                               getF32Constant(DAG, 0x3f7f5e7e));
4121      SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
4122      SDValue TwoToFractionalPartOfX =
4123        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
4124
4125      result = DAG.getNode(ISD::BITCAST, dl,
4126                           MVT::f32, TwoToFractionalPartOfX);
4127    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
4128      // For floating-point precision of 12:
4129      //
4130      //   TwoToFractionalPartOfX =
4131      //     0.999892986f +
4132      //       (0.696457318f +
4133      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4134      //
4135      // error 0.000107046256, which is 13 to 14 bits
4136      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4137                               getF32Constant(DAG, 0x3da235e3));
4138      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4139                               getF32Constant(DAG, 0x3e65b8f3));
4140      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4141      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4142                               getF32Constant(DAG, 0x3f324b07));
4143      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4144      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4145                               getF32Constant(DAG, 0x3f7ff8fd));
4146      SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
4147      SDValue TwoToFractionalPartOfX =
4148        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
4149
4150      result = DAG.getNode(ISD::BITCAST, dl,
4151                           MVT::f32, TwoToFractionalPartOfX);
4152    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
4153      // For floating-point precision of 18:
4154      //
4155      //   TwoToFractionalPartOfX =
4156      //     0.999999982f +
4157      //       (0.693148872f +
4158      //         (0.240227044f +
4159      //           (0.554906021e-1f +
4160      //             (0.961591928e-2f +
4161      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4162      // error 2.47208000*10^(-7), which is better than 18 bits
4163      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4164                               getF32Constant(DAG, 0x3924b03e));
4165      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4166                               getF32Constant(DAG, 0x3ab24b87));
4167      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4168      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4169                               getF32Constant(DAG, 0x3c1d8c17));
4170      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4171      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4172                               getF32Constant(DAG, 0x3d634a1d));
4173      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4174      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4175                               getF32Constant(DAG, 0x3e75fe14));
4176      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4177      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4178                                getF32Constant(DAG, 0x3f317234));
4179      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4180      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4181                                getF32Constant(DAG, 0x3f800000));
4182      SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
4183      SDValue TwoToFractionalPartOfX =
4184        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
4185
4186      result = DAG.getNode(ISD::BITCAST, dl,
4187                           MVT::f32, TwoToFractionalPartOfX);
4188    }
4189  } else {
4190    // No special expansion.
4191    result = DAG.getNode(ISD::FEXP2, dl,
4192                         getValue(I.getArgOperand(0)).getValueType(),
4193                         getValue(I.getArgOperand(0)));
4194  }
4195
4196  setValue(&I, result);
4197}
4198
4199/// visitPow - Lower a pow intrinsic. Handles the special sequences for
4200/// limited-precision mode with x == 10.0f.
4201void
4202SelectionDAGBuilder::visitPow(const CallInst &I) {
4203  SDValue result;
4204  const Value *Val = I.getArgOperand(0);
4205  DebugLoc dl = getCurDebugLoc();
4206  bool IsExp10 = false;
4207
4208  if (getValue(Val).getValueType() == MVT::f32 &&
4209      getValue(I.getArgOperand(1)).getValueType() == MVT::f32 &&
4210      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4211    if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) {
4212      if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
4213        APFloat Ten(10.0f);
4214        IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten);
4215      }
4216    }
4217  }
4218
4219  if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4220    SDValue Op = getValue(I.getArgOperand(1));
4221
4222    // Put the exponent in the right bit position for later addition to the
4223    // final result:
4224    //
4225    //   #define LOG2OF10 3.3219281f
4226    //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
4227    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4228                             getF32Constant(DAG, 0x40549a78));
4229    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4230
4231    //   FractionalPartOfX = x - (float)IntegerPartOfX;
4232    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4233    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4234
4235    //   IntegerPartOfX <<= 23;
4236    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4237                                 DAG.getConstant(23, TLI.getPointerTy()));
4238
4239    if (LimitFloatPrecision <= 6) {
4240      // For floating-point precision of 6:
4241      //
4242      //   twoToFractionalPartOfX =
4243      //     0.997535578f +
4244      //       (0.735607626f + 0.252464424f * x) * x;
4245      //
4246      // error 0.0144103317, which is 6 bits
4247      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4248                               getF32Constant(DAG, 0x3e814304));
4249      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4250                               getF32Constant(DAG, 0x3f3c50c8));
4251      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4252      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4253                               getF32Constant(DAG, 0x3f7f5e7e));
4254      SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
4255      SDValue TwoToFractionalPartOfX =
4256        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
4257
4258      result = DAG.getNode(ISD::BITCAST, dl,
4259                           MVT::f32, TwoToFractionalPartOfX);
4260    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
4261      // For floating-point precision of 12:
4262      //
4263      //   TwoToFractionalPartOfX =
4264      //     0.999892986f +
4265      //       (0.696457318f +
4266      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4267      //
4268      // error 0.000107046256, which is 13 to 14 bits
4269      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4270                               getF32Constant(DAG, 0x3da235e3));
4271      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4272                               getF32Constant(DAG, 0x3e65b8f3));
4273      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4274      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4275                               getF32Constant(DAG, 0x3f324b07));
4276      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4277      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4278                               getF32Constant(DAG, 0x3f7ff8fd));
4279      SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
4280      SDValue TwoToFractionalPartOfX =
4281        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
4282
4283      result = DAG.getNode(ISD::BITCAST, dl,
4284                           MVT::f32, TwoToFractionalPartOfX);
4285    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
4286      // For floating-point precision of 18:
4287      //
4288      //   TwoToFractionalPartOfX =
4289      //     0.999999982f +
4290      //       (0.693148872f +
4291      //         (0.240227044f +
4292      //           (0.554906021e-1f +
4293      //             (0.961591928e-2f +
4294      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4295      // error 2.47208000*10^(-7), which is better than 18 bits
4296      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4297                               getF32Constant(DAG, 0x3924b03e));
4298      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4299                               getF32Constant(DAG, 0x3ab24b87));
4300      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4301      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4302                               getF32Constant(DAG, 0x3c1d8c17));
4303      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4304      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4305                               getF32Constant(DAG, 0x3d634a1d));
4306      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4307      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4308                               getF32Constant(DAG, 0x3e75fe14));
4309      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4310      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4311                                getF32Constant(DAG, 0x3f317234));
4312      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4313      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4314                                getF32Constant(DAG, 0x3f800000));
4315      SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
4316      SDValue TwoToFractionalPartOfX =
4317        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
4318
4319      result = DAG.getNode(ISD::BITCAST, dl,
4320                           MVT::f32, TwoToFractionalPartOfX);
4321    }
4322  } else {
4323    // No special expansion.
4324    result = DAG.getNode(ISD::FPOW, dl,
4325                         getValue(I.getArgOperand(0)).getValueType(),
4326                         getValue(I.getArgOperand(0)),
4327                         getValue(I.getArgOperand(1)));
4328  }
4329
4330  setValue(&I, result);
4331}
4332
4333
4334/// ExpandPowI - Expand a llvm.powi intrinsic.
4335static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS,
4336                          SelectionDAG &DAG) {
4337  // If RHS is a constant, we can expand this out to a multiplication tree,
4338  // otherwise we end up lowering to a call to __powidf2 (for example).  When
4339  // optimizing for size, we only want to do this if the expansion would produce
4340  // a small number of multiplies, otherwise we do the full expansion.
4341  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4342    // Get the exponent as a positive value.
4343    unsigned Val = RHSC->getSExtValue();
4344    if ((int)Val < 0) Val = -Val;
4345
4346    // powi(x, 0) -> 1.0
4347    if (Val == 0)
4348      return DAG.getConstantFP(1.0, LHS.getValueType());
4349
4350    const Function *F = DAG.getMachineFunction().getFunction();
4351    if (!F->hasFnAttr(Attribute::OptimizeForSize) ||
4352        // If optimizing for size, don't insert too many multiplies.  This
4353        // inserts up to 5 multiplies.
4354        CountPopulation_32(Val)+Log2_32(Val) < 7) {
4355      // We use the simple binary decomposition method to generate the multiply
4356      // sequence.  There are more optimal ways to do this (for example,
4357      // powi(x,15) generates one more multiply than it should), but this has
4358      // the benefit of being both really simple and much better than a libcall.
4359      SDValue Res;  // Logically starts equal to 1.0
4360      SDValue CurSquare = LHS;
4361      while (Val) {
4362        if (Val & 1) {
4363          if (Res.getNode())
4364            Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4365          else
4366            Res = CurSquare;  // 1.0*CurSquare.
4367        }
4368
4369        CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4370                                CurSquare, CurSquare);
4371        Val >>= 1;
4372      }
4373
4374      // If the original was negative, invert the result, producing 1/(x*x*x).
4375      if (RHSC->getSExtValue() < 0)
4376        Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4377                          DAG.getConstantFP(1.0, LHS.getValueType()), Res);
4378      return Res;
4379    }
4380  }
4381
4382  // Otherwise, expand to a libcall.
4383  return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4384}
4385
4386// getTruncatedArgReg - Find underlying register used for an truncated
4387// argument.
4388static unsigned getTruncatedArgReg(const SDValue &N) {
4389  if (N.getOpcode() != ISD::TRUNCATE)
4390    return 0;
4391
4392  const SDValue &Ext = N.getOperand(0);
4393  if (Ext.getOpcode() == ISD::AssertZext || Ext.getOpcode() == ISD::AssertSext){
4394    const SDValue &CFR = Ext.getOperand(0);
4395    if (CFR.getOpcode() == ISD::CopyFromReg)
4396      return cast<RegisterSDNode>(CFR.getOperand(1))->getReg();
4397    if (CFR.getOpcode() == ISD::TRUNCATE)
4398      return getTruncatedArgReg(CFR);
4399  }
4400  return 0;
4401}
4402
4403/// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4404/// argument, create the corresponding DBG_VALUE machine instruction for it now.
4405/// At the end of instruction selection, they will be inserted to the entry BB.
4406bool
4407SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
4408                                              int64_t Offset,
4409                                              const SDValue &N) {
4410  const Argument *Arg = dyn_cast<Argument>(V);
4411  if (!Arg)
4412    return false;
4413
4414  MachineFunction &MF = DAG.getMachineFunction();
4415  const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
4416  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
4417
4418  // Ignore inlined function arguments here.
4419  DIVariable DV(Variable);
4420  if (DV.isInlinedFnArgument(MF.getFunction()))
4421    return false;
4422
4423  unsigned Reg = 0;
4424  // Some arguments' frame index is recorded during argument lowering.
4425  Offset = FuncInfo.getArgumentFrameIndex(Arg);
4426  if (Offset)
4427    Reg = TRI->getFrameRegister(MF);
4428
4429  if (!Reg && N.getNode()) {
4430    if (N.getOpcode() == ISD::CopyFromReg)
4431      Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
4432    else
4433      Reg = getTruncatedArgReg(N);
4434    if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4435      MachineRegisterInfo &RegInfo = MF.getRegInfo();
4436      unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4437      if (PR)
4438        Reg = PR;
4439    }
4440  }
4441
4442  if (!Reg) {
4443    // Check if ValueMap has reg number.
4444    DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4445    if (VMI != FuncInfo.ValueMap.end())
4446      Reg = VMI->second;
4447  }
4448
4449  if (!Reg && N.getNode()) {
4450    // Check if frame index is available.
4451    if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4452      if (FrameIndexSDNode *FINode =
4453          dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) {
4454        Reg = TRI->getFrameRegister(MF);
4455        Offset = FINode->getIndex();
4456      }
4457  }
4458
4459  if (!Reg)
4460    return false;
4461
4462  MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(),
4463                                    TII->get(TargetOpcode::DBG_VALUE))
4464    .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable);
4465  FuncInfo.ArgDbgValues.push_back(&*MIB);
4466  return true;
4467}
4468
4469// VisualStudio defines setjmp as _setjmp
4470#if defined(_MSC_VER) && defined(setjmp) && \
4471                         !defined(setjmp_undefined_for_msvc)
4472#  pragma push_macro("setjmp")
4473#  undef setjmp
4474#  define setjmp_undefined_for_msvc
4475#endif
4476
4477/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4478/// we want to emit this as a call to a named external function, return the name
4479/// otherwise lower it and return null.
4480const char *
4481SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4482  DebugLoc dl = getCurDebugLoc();
4483  SDValue Res;
4484
4485  switch (Intrinsic) {
4486  default:
4487    // By default, turn this into a target intrinsic node.
4488    visitTargetIntrinsic(I, Intrinsic);
4489    return 0;
4490  case Intrinsic::vastart:  visitVAStart(I); return 0;
4491  case Intrinsic::vaend:    visitVAEnd(I); return 0;
4492  case Intrinsic::vacopy:   visitVACopy(I); return 0;
4493  case Intrinsic::returnaddress:
4494    setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(),
4495                             getValue(I.getArgOperand(0))));
4496    return 0;
4497  case Intrinsic::frameaddress:
4498    setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(),
4499                             getValue(I.getArgOperand(0))));
4500    return 0;
4501  case Intrinsic::setjmp:
4502    return &"_setjmp"[!TLI.usesUnderscoreSetJmp()];
4503  case Intrinsic::longjmp:
4504    return &"_longjmp"[!TLI.usesUnderscoreLongJmp()];
4505  case Intrinsic::memcpy: {
4506    // Assert for address < 256 since we support only user defined address
4507    // spaces.
4508    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4509           < 256 &&
4510           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4511           < 256 &&
4512           "Unknown address space");
4513    SDValue Op1 = getValue(I.getArgOperand(0));
4514    SDValue Op2 = getValue(I.getArgOperand(1));
4515    SDValue Op3 = getValue(I.getArgOperand(2));
4516    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4517    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4518    DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false,
4519                              MachinePointerInfo(I.getArgOperand(0)),
4520                              MachinePointerInfo(I.getArgOperand(1))));
4521    return 0;
4522  }
4523  case Intrinsic::memset: {
4524    // Assert for address < 256 since we support only user defined address
4525    // spaces.
4526    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4527           < 256 &&
4528           "Unknown address space");
4529    SDValue Op1 = getValue(I.getArgOperand(0));
4530    SDValue Op2 = getValue(I.getArgOperand(1));
4531    SDValue Op3 = getValue(I.getArgOperand(2));
4532    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4533    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4534    DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4535                              MachinePointerInfo(I.getArgOperand(0))));
4536    return 0;
4537  }
4538  case Intrinsic::memmove: {
4539    // Assert for address < 256 since we support only user defined address
4540    // spaces.
4541    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4542           < 256 &&
4543           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4544           < 256 &&
4545           "Unknown address space");
4546    SDValue Op1 = getValue(I.getArgOperand(0));
4547    SDValue Op2 = getValue(I.getArgOperand(1));
4548    SDValue Op3 = getValue(I.getArgOperand(2));
4549    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4550    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4551    DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4552                               MachinePointerInfo(I.getArgOperand(0)),
4553                               MachinePointerInfo(I.getArgOperand(1))));
4554    return 0;
4555  }
4556  case Intrinsic::dbg_declare: {
4557    const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4558    MDNode *Variable = DI.getVariable();
4559    const Value *Address = DI.getAddress();
4560    if (!Address || !DIVariable(Variable).Verify()) {
4561      DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4562      return 0;
4563    }
4564
4565    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4566    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4567    // absolute, but not relative, values are different depending on whether
4568    // debug info exists.
4569    ++SDNodeOrder;
4570
4571    // Check if address has undef value.
4572    if (isa<UndefValue>(Address) ||
4573        (Address->use_empty() && !isa<Argument>(Address))) {
4574      DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4575      return 0;
4576    }
4577
4578    SDValue &N = NodeMap[Address];
4579    if (!N.getNode() && isa<Argument>(Address))
4580      // Check unused arguments map.
4581      N = UnusedArgNodeMap[Address];
4582    SDDbgValue *SDV;
4583    if (N.getNode()) {
4584      if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4585        Address = BCI->getOperand(0);
4586      // Parameters are handled specially.
4587      bool isParameter =
4588        (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable ||
4589         isa<Argument>(Address));
4590
4591      const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
4592
4593      if (isParameter && !AI) {
4594        FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4595        if (FINode)
4596          // Byval parameter.  We have a frame index at this point.
4597          SDV = DAG.getDbgValue(Variable, FINode->getIndex(),
4598                                0, dl, SDNodeOrder);
4599        else {
4600          // Address is an argument, so try to emit its dbg value using
4601          // virtual register info from the FuncInfo.ValueMap.
4602          EmitFuncArgumentDbgValue(Address, Variable, 0, N);
4603          return 0;
4604        }
4605      } else if (AI)
4606        SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
4607                              0, dl, SDNodeOrder);
4608      else {
4609        // Can't do anything with other non-AI cases yet.
4610        DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4611        DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t");
4612        DEBUG(Address->dump());
4613        return 0;
4614      }
4615      DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4616    } else {
4617      // If Address is an argument then try to emit its dbg value using
4618      // virtual register info from the FuncInfo.ValueMap.
4619      if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) {
4620        // If variable is pinned by a alloca in dominating bb then
4621        // use StaticAllocaMap.
4622        if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4623          if (AI->getParent() != DI.getParent()) {
4624            DenseMap<const AllocaInst*, int>::iterator SI =
4625              FuncInfo.StaticAllocaMap.find(AI);
4626            if (SI != FuncInfo.StaticAllocaMap.end()) {
4627              SDV = DAG.getDbgValue(Variable, SI->second,
4628                                    0, dl, SDNodeOrder);
4629              DAG.AddDbgValue(SDV, 0, false);
4630              return 0;
4631            }
4632          }
4633        }
4634        DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4635      }
4636    }
4637    return 0;
4638  }
4639  case Intrinsic::dbg_value: {
4640    const DbgValueInst &DI = cast<DbgValueInst>(I);
4641    if (!DIVariable(DI.getVariable()).Verify())
4642      return 0;
4643
4644    MDNode *Variable = DI.getVariable();
4645    uint64_t Offset = DI.getOffset();
4646    const Value *V = DI.getValue();
4647    if (!V)
4648      return 0;
4649
4650    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4651    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4652    // absolute, but not relative, values are different depending on whether
4653    // debug info exists.
4654    ++SDNodeOrder;
4655    SDDbgValue *SDV;
4656    if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
4657      SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder);
4658      DAG.AddDbgValue(SDV, 0, false);
4659    } else {
4660      // Do not use getValue() in here; we don't want to generate code at
4661      // this point if it hasn't been done yet.
4662      SDValue N = NodeMap[V];
4663      if (!N.getNode() && isa<Argument>(V))
4664        // Check unused arguments map.
4665        N = UnusedArgNodeMap[V];
4666      if (N.getNode()) {
4667        if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) {
4668          SDV = DAG.getDbgValue(Variable, N.getNode(),
4669                                N.getResNo(), Offset, dl, SDNodeOrder);
4670          DAG.AddDbgValue(SDV, N.getNode(), false);
4671        }
4672      } else if (!V->use_empty() ) {
4673        // Do not call getValue(V) yet, as we don't want to generate code.
4674        // Remember it for later.
4675        DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4676        DanglingDebugInfoMap[V] = DDI;
4677      } else {
4678        // We may expand this to cover more cases.  One case where we have no
4679        // data available is an unreferenced parameter.
4680        DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4681      }
4682    }
4683
4684    // Build a debug info table entry.
4685    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4686      V = BCI->getOperand(0);
4687    const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4688    // Don't handle byval struct arguments or VLAs, for example.
4689    if (!AI) {
4690      DEBUG(dbgs() << "Dropping debug location info for:\n  " << DI << "\n");
4691      DEBUG(dbgs() << "  Last seen at:\n    " << *V << "\n");
4692      return 0;
4693    }
4694    DenseMap<const AllocaInst*, int>::iterator SI =
4695      FuncInfo.StaticAllocaMap.find(AI);
4696    if (SI == FuncInfo.StaticAllocaMap.end())
4697      return 0; // VLAs.
4698    int FI = SI->second;
4699
4700    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4701    if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
4702      MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
4703    return 0;
4704  }
4705
4706  case Intrinsic::eh_typeid_for: {
4707    // Find the type id for the given typeinfo.
4708    GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0));
4709    unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4710    Res = DAG.getConstant(TypeID, MVT::i32);
4711    setValue(&I, Res);
4712    return 0;
4713  }
4714
4715  case Intrinsic::eh_return_i32:
4716  case Intrinsic::eh_return_i64:
4717    DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4718    DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl,
4719                            MVT::Other,
4720                            getControlRoot(),
4721                            getValue(I.getArgOperand(0)),
4722                            getValue(I.getArgOperand(1))));
4723    return 0;
4724  case Intrinsic::eh_unwind_init:
4725    DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4726    return 0;
4727  case Intrinsic::eh_dwarf_cfa: {
4728    SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl,
4729                                        TLI.getPointerTy());
4730    SDValue Offset = DAG.getNode(ISD::ADD, dl,
4731                                 TLI.getPointerTy(),
4732                                 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
4733                                             TLI.getPointerTy()),
4734                                 CfaArg);
4735    SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl,
4736                             TLI.getPointerTy(),
4737                             DAG.getConstant(0, TLI.getPointerTy()));
4738    setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
4739                             FA, Offset));
4740    return 0;
4741  }
4742  case Intrinsic::eh_sjlj_callsite: {
4743    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4744    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4745    assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4746    assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4747
4748    MMI.setCurrentCallSite(CI->getZExtValue());
4749    return 0;
4750  }
4751  case Intrinsic::eh_sjlj_functioncontext: {
4752    // Get and store the index of the function context.
4753    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4754    AllocaInst *FnCtx =
4755      cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
4756    int FI = FuncInfo.StaticAllocaMap[FnCtx];
4757    MFI->setFunctionContextIndex(FI);
4758    return 0;
4759  }
4760  case Intrinsic::eh_sjlj_setjmp: {
4761    SDValue Ops[2];
4762    Ops[0] = getRoot();
4763    Ops[1] = getValue(I.getArgOperand(0));
4764    SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, dl,
4765                             DAG.getVTList(MVT::i32, MVT::Other),
4766                             Ops, 2);
4767    setValue(&I, Op.getValue(0));
4768    DAG.setRoot(Op.getValue(1));
4769    return 0;
4770  }
4771  case Intrinsic::eh_sjlj_longjmp: {
4772    DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other,
4773                            getRoot(), getValue(I.getArgOperand(0))));
4774    return 0;
4775  }
4776
4777  case Intrinsic::x86_mmx_pslli_w:
4778  case Intrinsic::x86_mmx_pslli_d:
4779  case Intrinsic::x86_mmx_pslli_q:
4780  case Intrinsic::x86_mmx_psrli_w:
4781  case Intrinsic::x86_mmx_psrli_d:
4782  case Intrinsic::x86_mmx_psrli_q:
4783  case Intrinsic::x86_mmx_psrai_w:
4784  case Intrinsic::x86_mmx_psrai_d: {
4785    SDValue ShAmt = getValue(I.getArgOperand(1));
4786    if (isa<ConstantSDNode>(ShAmt)) {
4787      visitTargetIntrinsic(I, Intrinsic);
4788      return 0;
4789    }
4790    unsigned NewIntrinsic = 0;
4791    EVT ShAmtVT = MVT::v2i32;
4792    switch (Intrinsic) {
4793    case Intrinsic::x86_mmx_pslli_w:
4794      NewIntrinsic = Intrinsic::x86_mmx_psll_w;
4795      break;
4796    case Intrinsic::x86_mmx_pslli_d:
4797      NewIntrinsic = Intrinsic::x86_mmx_psll_d;
4798      break;
4799    case Intrinsic::x86_mmx_pslli_q:
4800      NewIntrinsic = Intrinsic::x86_mmx_psll_q;
4801      break;
4802    case Intrinsic::x86_mmx_psrli_w:
4803      NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
4804      break;
4805    case Intrinsic::x86_mmx_psrli_d:
4806      NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
4807      break;
4808    case Intrinsic::x86_mmx_psrli_q:
4809      NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
4810      break;
4811    case Intrinsic::x86_mmx_psrai_w:
4812      NewIntrinsic = Intrinsic::x86_mmx_psra_w;
4813      break;
4814    case Intrinsic::x86_mmx_psrai_d:
4815      NewIntrinsic = Intrinsic::x86_mmx_psra_d;
4816      break;
4817    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4818    }
4819
4820    // The vector shift intrinsics with scalars uses 32b shift amounts but
4821    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
4822    // to be zero.
4823    // We must do this early because v2i32 is not a legal type.
4824    DebugLoc dl = getCurDebugLoc();
4825    SDValue ShOps[2];
4826    ShOps[0] = ShAmt;
4827    ShOps[1] = DAG.getConstant(0, MVT::i32);
4828    ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
4829    EVT DestVT = TLI.getValueType(I.getType());
4830    ShAmt = DAG.getNode(ISD::BITCAST, dl, DestVT, ShAmt);
4831    Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
4832                       DAG.getConstant(NewIntrinsic, MVT::i32),
4833                       getValue(I.getArgOperand(0)), ShAmt);
4834    setValue(&I, Res);
4835    return 0;
4836  }
4837  case Intrinsic::x86_avx_vinsertf128_pd_256:
4838  case Intrinsic::x86_avx_vinsertf128_ps_256:
4839  case Intrinsic::x86_avx_vinsertf128_si_256:
4840  case Intrinsic::x86_avx2_vinserti128: {
4841    DebugLoc dl = getCurDebugLoc();
4842    EVT DestVT = TLI.getValueType(I.getType());
4843    EVT ElVT = TLI.getValueType(I.getArgOperand(1)->getType());
4844    uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue() & 1) *
4845                   ElVT.getVectorNumElements();
4846    Res = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, DestVT,
4847                      getValue(I.getArgOperand(0)),
4848                      getValue(I.getArgOperand(1)),
4849                      DAG.getConstant(Idx, MVT::i32));
4850    setValue(&I, Res);
4851    return 0;
4852  }
4853  case Intrinsic::convertff:
4854  case Intrinsic::convertfsi:
4855  case Intrinsic::convertfui:
4856  case Intrinsic::convertsif:
4857  case Intrinsic::convertuif:
4858  case Intrinsic::convertss:
4859  case Intrinsic::convertsu:
4860  case Intrinsic::convertus:
4861  case Intrinsic::convertuu: {
4862    ISD::CvtCode Code = ISD::CVT_INVALID;
4863    switch (Intrinsic) {
4864    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4865    case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
4866    case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4867    case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4868    case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4869    case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4870    case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
4871    case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
4872    case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4873    case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4874    }
4875    EVT DestVT = TLI.getValueType(I.getType());
4876    const Value *Op1 = I.getArgOperand(0);
4877    Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1),
4878                               DAG.getValueType(DestVT),
4879                               DAG.getValueType(getValue(Op1).getValueType()),
4880                               getValue(I.getArgOperand(1)),
4881                               getValue(I.getArgOperand(2)),
4882                               Code);
4883    setValue(&I, Res);
4884    return 0;
4885  }
4886  case Intrinsic::sqrt:
4887    setValue(&I, DAG.getNode(ISD::FSQRT, dl,
4888                             getValue(I.getArgOperand(0)).getValueType(),
4889                             getValue(I.getArgOperand(0))));
4890    return 0;
4891  case Intrinsic::powi:
4892    setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)),
4893                            getValue(I.getArgOperand(1)), DAG));
4894    return 0;
4895  case Intrinsic::sin:
4896    setValue(&I, DAG.getNode(ISD::FSIN, dl,
4897                             getValue(I.getArgOperand(0)).getValueType(),
4898                             getValue(I.getArgOperand(0))));
4899    return 0;
4900  case Intrinsic::cos:
4901    setValue(&I, DAG.getNode(ISD::FCOS, dl,
4902                             getValue(I.getArgOperand(0)).getValueType(),
4903                             getValue(I.getArgOperand(0))));
4904    return 0;
4905  case Intrinsic::log:
4906    visitLog(I);
4907    return 0;
4908  case Intrinsic::log2:
4909    visitLog2(I);
4910    return 0;
4911  case Intrinsic::log10:
4912    visitLog10(I);
4913    return 0;
4914  case Intrinsic::exp:
4915    visitExp(I);
4916    return 0;
4917  case Intrinsic::exp2:
4918    visitExp2(I);
4919    return 0;
4920  case Intrinsic::pow:
4921    visitPow(I);
4922    return 0;
4923  case Intrinsic::fabs:
4924    setValue(&I, DAG.getNode(ISD::FABS, dl,
4925                             getValue(I.getArgOperand(0)).getValueType(),
4926                             getValue(I.getArgOperand(0))));
4927    return 0;
4928  case Intrinsic::fma:
4929    setValue(&I, DAG.getNode(ISD::FMA, dl,
4930                             getValue(I.getArgOperand(0)).getValueType(),
4931                             getValue(I.getArgOperand(0)),
4932                             getValue(I.getArgOperand(1)),
4933                             getValue(I.getArgOperand(2))));
4934    return 0;
4935  case Intrinsic::convert_to_fp16:
4936    setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl,
4937                             MVT::i16, getValue(I.getArgOperand(0))));
4938    return 0;
4939  case Intrinsic::convert_from_fp16:
4940    setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl,
4941                             MVT::f32, getValue(I.getArgOperand(0))));
4942    return 0;
4943  case Intrinsic::pcmarker: {
4944    SDValue Tmp = getValue(I.getArgOperand(0));
4945    DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp));
4946    return 0;
4947  }
4948  case Intrinsic::readcyclecounter: {
4949    SDValue Op = getRoot();
4950    Res = DAG.getNode(ISD::READCYCLECOUNTER, dl,
4951                      DAG.getVTList(MVT::i64, MVT::Other),
4952                      &Op, 1);
4953    setValue(&I, Res);
4954    DAG.setRoot(Res.getValue(1));
4955    return 0;
4956  }
4957  case Intrinsic::bswap:
4958    setValue(&I, DAG.getNode(ISD::BSWAP, dl,
4959                             getValue(I.getArgOperand(0)).getValueType(),
4960                             getValue(I.getArgOperand(0))));
4961    return 0;
4962  case Intrinsic::cttz: {
4963    SDValue Arg = getValue(I.getArgOperand(0));
4964    ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
4965    EVT Ty = Arg.getValueType();
4966    setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
4967                             dl, Ty, Arg));
4968    return 0;
4969  }
4970  case Intrinsic::ctlz: {
4971    SDValue Arg = getValue(I.getArgOperand(0));
4972    ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
4973    EVT Ty = Arg.getValueType();
4974    setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
4975                             dl, Ty, Arg));
4976    return 0;
4977  }
4978  case Intrinsic::ctpop: {
4979    SDValue Arg = getValue(I.getArgOperand(0));
4980    EVT Ty = Arg.getValueType();
4981    setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg));
4982    return 0;
4983  }
4984  case Intrinsic::stacksave: {
4985    SDValue Op = getRoot();
4986    Res = DAG.getNode(ISD::STACKSAVE, dl,
4987                      DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
4988    setValue(&I, Res);
4989    DAG.setRoot(Res.getValue(1));
4990    return 0;
4991  }
4992  case Intrinsic::stackrestore: {
4993    Res = getValue(I.getArgOperand(0));
4994    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res));
4995    return 0;
4996  }
4997  case Intrinsic::stackprotector: {
4998    // Emit code into the DAG to store the stack guard onto the stack.
4999    MachineFunction &MF = DAG.getMachineFunction();
5000    MachineFrameInfo *MFI = MF.getFrameInfo();
5001    EVT PtrTy = TLI.getPointerTy();
5002
5003    SDValue Src = getValue(I.getArgOperand(0));   // The guard's value.
5004    AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
5005
5006    int FI = FuncInfo.StaticAllocaMap[Slot];
5007    MFI->setStackProtectorIndex(FI);
5008
5009    SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
5010
5011    // Store the stack protector onto the stack.
5012    Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN,
5013                       MachinePointerInfo::getFixedStack(FI),
5014                       true, false, 0);
5015    setValue(&I, Res);
5016    DAG.setRoot(Res);
5017    return 0;
5018  }
5019  case Intrinsic::objectsize: {
5020    // If we don't know by now, we're never going to know.
5021    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
5022
5023    assert(CI && "Non-constant type in __builtin_object_size?");
5024
5025    SDValue Arg = getValue(I.getCalledValue());
5026    EVT Ty = Arg.getValueType();
5027
5028    if (CI->isZero())
5029      Res = DAG.getConstant(-1ULL, Ty);
5030    else
5031      Res = DAG.getConstant(0, Ty);
5032
5033    setValue(&I, Res);
5034    return 0;
5035  }
5036  case Intrinsic::var_annotation:
5037    // Discard annotate attributes
5038    return 0;
5039
5040  case Intrinsic::init_trampoline: {
5041    const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5042
5043    SDValue Ops[6];
5044    Ops[0] = getRoot();
5045    Ops[1] = getValue(I.getArgOperand(0));
5046    Ops[2] = getValue(I.getArgOperand(1));
5047    Ops[3] = getValue(I.getArgOperand(2));
5048    Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5049    Ops[5] = DAG.getSrcValue(F);
5050
5051    Res = DAG.getNode(ISD::INIT_TRAMPOLINE, dl, MVT::Other, Ops, 6);
5052
5053    DAG.setRoot(Res);
5054    return 0;
5055  }
5056  case Intrinsic::adjust_trampoline: {
5057    setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, dl,
5058                             TLI.getPointerTy(),
5059                             getValue(I.getArgOperand(0))));
5060    return 0;
5061  }
5062  case Intrinsic::gcroot:
5063    if (GFI) {
5064      const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
5065      const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
5066
5067      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
5068      GFI->addStackRoot(FI->getIndex(), TypeMap);
5069    }
5070    return 0;
5071  case Intrinsic::gcread:
5072  case Intrinsic::gcwrite:
5073    llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
5074  case Intrinsic::flt_rounds:
5075    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32));
5076    return 0;
5077
5078  case Intrinsic::expect: {
5079    // Just replace __builtin_expect(exp, c) with EXP.
5080    setValue(&I, getValue(I.getArgOperand(0)));
5081    return 0;
5082  }
5083
5084  case Intrinsic::trap: {
5085    StringRef TrapFuncName = TM.Options.getTrapFunctionName();
5086    if (TrapFuncName.empty()) {
5087      DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot()));
5088      return 0;
5089    }
5090    TargetLowering::ArgListTy Args;
5091    TargetLowering::
5092    CallLoweringInfo CLI(getRoot(), I.getType(),
5093                 false, false, false, false, 0, CallingConv::C,
5094                 /*isTailCall=*/false,
5095                 /*doesNotRet=*/false, /*isReturnValueUsed=*/true,
5096                 DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()),
5097                 Args, DAG, getCurDebugLoc());
5098    std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
5099    DAG.setRoot(Result.second);
5100    return 0;
5101  }
5102  case Intrinsic::debugtrap: {
5103    DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, dl,MVT::Other, getRoot()));
5104    return 0;
5105  }
5106  case Intrinsic::uadd_with_overflow:
5107  case Intrinsic::sadd_with_overflow:
5108  case Intrinsic::usub_with_overflow:
5109  case Intrinsic::ssub_with_overflow:
5110  case Intrinsic::umul_with_overflow:
5111  case Intrinsic::smul_with_overflow: {
5112    ISD::NodeType Op;
5113    switch (Intrinsic) {
5114    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5115    case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
5116    case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
5117    case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
5118    case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
5119    case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
5120    case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
5121    }
5122    SDValue Op1 = getValue(I.getArgOperand(0));
5123    SDValue Op2 = getValue(I.getArgOperand(1));
5124
5125    SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
5126    setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2));
5127    return 0;
5128  }
5129  case Intrinsic::prefetch: {
5130    SDValue Ops[5];
5131    unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
5132    Ops[0] = getRoot();
5133    Ops[1] = getValue(I.getArgOperand(0));
5134    Ops[2] = getValue(I.getArgOperand(1));
5135    Ops[3] = getValue(I.getArgOperand(2));
5136    Ops[4] = getValue(I.getArgOperand(3));
5137    DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, dl,
5138                                        DAG.getVTList(MVT::Other),
5139                                        &Ops[0], 5,
5140                                        EVT::getIntegerVT(*Context, 8),
5141                                        MachinePointerInfo(I.getArgOperand(0)),
5142                                        0, /* align */
5143                                        false, /* volatile */
5144                                        rw==0, /* read */
5145                                        rw==1)); /* write */
5146    return 0;
5147  }
5148
5149  case Intrinsic::invariant_start:
5150  case Intrinsic::lifetime_start:
5151    // Discard region information.
5152    setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
5153    return 0;
5154  case Intrinsic::invariant_end:
5155  case Intrinsic::lifetime_end:
5156    // Discard region information.
5157    return 0;
5158  }
5159}
5160
5161void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
5162                                      bool isTailCall,
5163                                      MachineBasicBlock *LandingPad) {
5164  PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
5165  FunctionType *FTy = cast<FunctionType>(PT->getElementType());
5166  Type *RetTy = FTy->getReturnType();
5167  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5168  MCSymbol *BeginLabel = 0;
5169
5170  TargetLowering::ArgListTy Args;
5171  TargetLowering::ArgListEntry Entry;
5172  Args.reserve(CS.arg_size());
5173
5174  // Check whether the function can return without sret-demotion.
5175  SmallVector<ISD::OutputArg, 4> Outs;
5176  GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(),
5177                Outs, TLI);
5178
5179  bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
5180					   DAG.getMachineFunction(),
5181					   FTy->isVarArg(), Outs,
5182					   FTy->getContext());
5183
5184  SDValue DemoteStackSlot;
5185  int DemoteStackIdx = -100;
5186
5187  if (!CanLowerReturn) {
5188    uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(
5189                      FTy->getReturnType());
5190    unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(
5191                      FTy->getReturnType());
5192    MachineFunction &MF = DAG.getMachineFunction();
5193    DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5194    Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
5195
5196    DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI.getPointerTy());
5197    Entry.Node = DemoteStackSlot;
5198    Entry.Ty = StackSlotPtrType;
5199    Entry.isSExt = false;
5200    Entry.isZExt = false;
5201    Entry.isInReg = false;
5202    Entry.isSRet = true;
5203    Entry.isNest = false;
5204    Entry.isByVal = false;
5205    Entry.Alignment = Align;
5206    Args.push_back(Entry);
5207    RetTy = Type::getVoidTy(FTy->getContext());
5208  }
5209
5210  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
5211       i != e; ++i) {
5212    const Value *V = *i;
5213
5214    // Skip empty types
5215    if (V->getType()->isEmptyTy())
5216      continue;
5217
5218    SDValue ArgNode = getValue(V);
5219    Entry.Node = ArgNode; Entry.Ty = V->getType();
5220
5221    unsigned attrInd = i - CS.arg_begin() + 1;
5222    Entry.isSExt  = CS.paramHasAttr(attrInd, Attribute::SExt);
5223    Entry.isZExt  = CS.paramHasAttr(attrInd, Attribute::ZExt);
5224    Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg);
5225    Entry.isSRet  = CS.paramHasAttr(attrInd, Attribute::StructRet);
5226    Entry.isNest  = CS.paramHasAttr(attrInd, Attribute::Nest);
5227    Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal);
5228    Entry.Alignment = CS.getParamAlignment(attrInd);
5229    Args.push_back(Entry);
5230  }
5231
5232  if (LandingPad) {
5233    // Insert a label before the invoke call to mark the try range.  This can be
5234    // used to detect deletion of the invoke via the MachineModuleInfo.
5235    BeginLabel = MMI.getContext().CreateTempSymbol();
5236
5237    // For SjLj, keep track of which landing pads go with which invokes
5238    // so as to maintain the ordering of pads in the LSDA.
5239    unsigned CallSiteIndex = MMI.getCurrentCallSite();
5240    if (CallSiteIndex) {
5241      MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
5242      LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex);
5243
5244      // Now that the call site is handled, stop tracking it.
5245      MMI.setCurrentCallSite(0);
5246    }
5247
5248    // Both PendingLoads and PendingExports must be flushed here;
5249    // this call might not return.
5250    (void)getRoot();
5251    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel));
5252  }
5253
5254  // Check if target-independent constraints permit a tail call here.
5255  // Target-dependent constraints are checked within TLI.LowerCallTo.
5256  if (isTailCall &&
5257      !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI))
5258    isTailCall = false;
5259
5260  // If there's a possibility that fast-isel has already selected some amount
5261  // of the current basic block, don't emit a tail call.
5262  if (isTailCall && TM.Options.EnableFastISel)
5263    isTailCall = false;
5264
5265  TargetLowering::
5266  CallLoweringInfo CLI(getRoot(), RetTy, FTy, isTailCall, Callee, Args, DAG,
5267                       getCurDebugLoc(), CS);
5268  std::pair<SDValue,SDValue> Result = TLI.LowerCallTo(CLI);
5269  assert((isTailCall || Result.second.getNode()) &&
5270         "Non-null chain expected with non-tail call!");
5271  assert((Result.second.getNode() || !Result.first.getNode()) &&
5272         "Null value expected with tail call!");
5273  if (Result.first.getNode()) {
5274    setValue(CS.getInstruction(), Result.first);
5275  } else if (!CanLowerReturn && Result.second.getNode()) {
5276    // The instruction result is the result of loading from the
5277    // hidden sret parameter.
5278    SmallVector<EVT, 1> PVTs;
5279    Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
5280
5281    ComputeValueVTs(TLI, PtrRetTy, PVTs);
5282    assert(PVTs.size() == 1 && "Pointers should fit in one register");
5283    EVT PtrVT = PVTs[0];
5284
5285    SmallVector<EVT, 4> RetTys;
5286    SmallVector<uint64_t, 4> Offsets;
5287    RetTy = FTy->getReturnType();
5288    ComputeValueVTs(TLI, RetTy, RetTys, &Offsets);
5289
5290    unsigned NumValues = RetTys.size();
5291    SmallVector<SDValue, 4> Values(NumValues);
5292    SmallVector<SDValue, 4> Chains(NumValues);
5293
5294    for (unsigned i = 0; i < NumValues; ++i) {
5295      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT,
5296                                DemoteStackSlot,
5297                                DAG.getConstant(Offsets[i], PtrVT));
5298      SDValue L = DAG.getLoad(RetTys[i], getCurDebugLoc(), Result.second, Add,
5299                  MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]),
5300                              false, false, false, 1);
5301      Values[i] = L;
5302      Chains[i] = L.getValue(1);
5303    }
5304
5305    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
5306                                MVT::Other, &Chains[0], NumValues);
5307    PendingLoads.push_back(Chain);
5308
5309    setValue(CS.getInstruction(),
5310             DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
5311                         DAG.getVTList(&RetTys[0], RetTys.size()),
5312                         &Values[0], Values.size()));
5313  }
5314
5315  // Assign order to nodes here. If the call does not produce a result, it won't
5316  // be mapped to a SDNode and visit() will not assign it an order number.
5317  if (!Result.second.getNode()) {
5318    // As a special case, a null chain means that a tail call has been emitted and
5319    // the DAG root is already updated.
5320    HasTailCall = true;
5321    ++SDNodeOrder;
5322    AssignOrderingToNode(DAG.getRoot().getNode());
5323  } else {
5324    DAG.setRoot(Result.second);
5325    ++SDNodeOrder;
5326    AssignOrderingToNode(Result.second.getNode());
5327  }
5328
5329  if (LandingPad) {
5330    // Insert a label at the end of the invoke call to mark the try range.  This
5331    // can be used to detect deletion of the invoke via the MachineModuleInfo.
5332    MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
5333    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel));
5334
5335    // Inform MachineModuleInfo of range.
5336    MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
5337  }
5338}
5339
5340/// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
5341/// value is equal or not-equal to zero.
5342static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
5343  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
5344       UI != E; ++UI) {
5345    if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
5346      if (IC->isEquality())
5347        if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
5348          if (C->isNullValue())
5349            continue;
5350    // Unknown instruction.
5351    return false;
5352  }
5353  return true;
5354}
5355
5356static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
5357                             Type *LoadTy,
5358                             SelectionDAGBuilder &Builder) {
5359
5360  // Check to see if this load can be trivially constant folded, e.g. if the
5361  // input is from a string literal.
5362  if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5363    // Cast pointer to the type we really want to load.
5364    LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5365                                         PointerType::getUnqual(LoadTy));
5366
5367    if (const Constant *LoadCst =
5368          ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
5369                                       Builder.TD))
5370      return Builder.getValue(LoadCst);
5371  }
5372
5373  // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
5374  // still constant memory, the input chain can be the entry node.
5375  SDValue Root;
5376  bool ConstantMemory = false;
5377
5378  // Do not serialize (non-volatile) loads of constant memory with anything.
5379  if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5380    Root = Builder.DAG.getEntryNode();
5381    ConstantMemory = true;
5382  } else {
5383    // Do not serialize non-volatile loads against each other.
5384    Root = Builder.DAG.getRoot();
5385  }
5386
5387  SDValue Ptr = Builder.getValue(PtrVal);
5388  SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root,
5389                                        Ptr, MachinePointerInfo(PtrVal),
5390                                        false /*volatile*/,
5391                                        false /*nontemporal*/,
5392                                        false /*isinvariant*/, 1 /* align=1 */);
5393
5394  if (!ConstantMemory)
5395    Builder.PendingLoads.push_back(LoadVal.getValue(1));
5396  return LoadVal;
5397}
5398
5399
5400/// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5401/// If so, return true and lower it, otherwise return false and it will be
5402/// lowered like a normal call.
5403bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5404  // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
5405  if (I.getNumArgOperands() != 3)
5406    return false;
5407
5408  const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5409  if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5410      !I.getArgOperand(2)->getType()->isIntegerTy() ||
5411      !I.getType()->isIntegerTy())
5412    return false;
5413
5414  const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2));
5415
5416  // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
5417  // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
5418  if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) {
5419    bool ActuallyDoIt = true;
5420    MVT LoadVT;
5421    Type *LoadTy;
5422    switch (Size->getZExtValue()) {
5423    default:
5424      LoadVT = MVT::Other;
5425      LoadTy = 0;
5426      ActuallyDoIt = false;
5427      break;
5428    case 2:
5429      LoadVT = MVT::i16;
5430      LoadTy = Type::getInt16Ty(Size->getContext());
5431      break;
5432    case 4:
5433      LoadVT = MVT::i32;
5434      LoadTy = Type::getInt32Ty(Size->getContext());
5435      break;
5436    case 8:
5437      LoadVT = MVT::i64;
5438      LoadTy = Type::getInt64Ty(Size->getContext());
5439      break;
5440        /*
5441    case 16:
5442      LoadVT = MVT::v4i32;
5443      LoadTy = Type::getInt32Ty(Size->getContext());
5444      LoadTy = VectorType::get(LoadTy, 4);
5445      break;
5446         */
5447    }
5448
5449    // This turns into unaligned loads.  We only do this if the target natively
5450    // supports the MVT we'll be loading or if it is small enough (<= 4) that
5451    // we'll only produce a small number of byte loads.
5452
5453    // Require that we can find a legal MVT, and only do this if the target
5454    // supports unaligned loads of that type.  Expanding into byte loads would
5455    // bloat the code.
5456    if (ActuallyDoIt && Size->getZExtValue() > 4) {
5457      // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5458      // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5459      if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT))
5460        ActuallyDoIt = false;
5461    }
5462
5463    if (ActuallyDoIt) {
5464      SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5465      SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5466
5467      SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal,
5468                                 ISD::SETNE);
5469      EVT CallVT = TLI.getValueType(I.getType(), true);
5470      setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT));
5471      return true;
5472    }
5473  }
5474
5475
5476  return false;
5477}
5478
5479
5480void SelectionDAGBuilder::visitCall(const CallInst &I) {
5481  // Handle inline assembly differently.
5482  if (isa<InlineAsm>(I.getCalledValue())) {
5483    visitInlineAsm(&I);
5484    return;
5485  }
5486
5487  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5488  ComputeUsesVAFloatArgument(I, &MMI);
5489
5490  const char *RenameFn = 0;
5491  if (Function *F = I.getCalledFunction()) {
5492    if (F->isDeclaration()) {
5493      if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
5494        if (unsigned IID = II->getIntrinsicID(F)) {
5495          RenameFn = visitIntrinsicCall(I, IID);
5496          if (!RenameFn)
5497            return;
5498        }
5499      }
5500      if (unsigned IID = F->getIntrinsicID()) {
5501        RenameFn = visitIntrinsicCall(I, IID);
5502        if (!RenameFn)
5503          return;
5504      }
5505    }
5506
5507    // Check for well-known libc/libm calls.  If the function is internal, it
5508    // can't be a library call.
5509    if (!F->hasLocalLinkage() && F->hasName()) {
5510      StringRef Name = F->getName();
5511      if ((LibInfo->has(LibFunc::copysign) && Name == "copysign") ||
5512          (LibInfo->has(LibFunc::copysignf) && Name == "copysignf") ||
5513          (LibInfo->has(LibFunc::copysignl) && Name == "copysignl")) {
5514        if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
5515            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5516            I.getType() == I.getArgOperand(0)->getType() &&
5517            I.getType() == I.getArgOperand(1)->getType()) {
5518          SDValue LHS = getValue(I.getArgOperand(0));
5519          SDValue RHS = getValue(I.getArgOperand(1));
5520          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(),
5521                                   LHS.getValueType(), LHS, RHS));
5522          return;
5523        }
5524      } else if ((LibInfo->has(LibFunc::fabs) && Name == "fabs") ||
5525                 (LibInfo->has(LibFunc::fabsf) && Name == "fabsf") ||
5526                 (LibInfo->has(LibFunc::fabsl) && Name == "fabsl")) {
5527        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5528            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5529            I.getType() == I.getArgOperand(0)->getType()) {
5530          SDValue Tmp = getValue(I.getArgOperand(0));
5531          setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(),
5532                                   Tmp.getValueType(), Tmp));
5533          return;
5534        }
5535      } else if ((LibInfo->has(LibFunc::sin) && Name == "sin") ||
5536                 (LibInfo->has(LibFunc::sinf) && Name == "sinf") ||
5537                 (LibInfo->has(LibFunc::sinl) && Name == "sinl")) {
5538        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5539            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5540            I.getType() == I.getArgOperand(0)->getType() &&
5541            I.onlyReadsMemory()) {
5542          SDValue Tmp = getValue(I.getArgOperand(0));
5543          setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(),
5544                                   Tmp.getValueType(), Tmp));
5545          return;
5546        }
5547      } else if ((LibInfo->has(LibFunc::cos) && Name == "cos") ||
5548                 (LibInfo->has(LibFunc::cosf) && Name == "cosf") ||
5549                 (LibInfo->has(LibFunc::cosl) && Name == "cosl")) {
5550        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5551            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5552            I.getType() == I.getArgOperand(0)->getType() &&
5553            I.onlyReadsMemory()) {
5554          SDValue Tmp = getValue(I.getArgOperand(0));
5555          setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(),
5556                                   Tmp.getValueType(), Tmp));
5557          return;
5558        }
5559      } else if ((LibInfo->has(LibFunc::sqrt) && Name == "sqrt") ||
5560                 (LibInfo->has(LibFunc::sqrtf) && Name == "sqrtf") ||
5561                 (LibInfo->has(LibFunc::sqrtl) && Name == "sqrtl")) {
5562        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5563            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5564            I.getType() == I.getArgOperand(0)->getType() &&
5565            I.onlyReadsMemory()) {
5566          SDValue Tmp = getValue(I.getArgOperand(0));
5567          setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(),
5568                                   Tmp.getValueType(), Tmp));
5569          return;
5570        }
5571      } else if ((LibInfo->has(LibFunc::floor) && Name == "floor") ||
5572                 (LibInfo->has(LibFunc::floorf) && Name == "floorf") ||
5573                 (LibInfo->has(LibFunc::floorl) && Name == "floorl")) {
5574        if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5575            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5576            I.getType() == I.getArgOperand(0)->getType()) {
5577          SDValue Tmp = getValue(I.getArgOperand(0));
5578          setValue(&I, DAG.getNode(ISD::FFLOOR, getCurDebugLoc(),
5579                                   Tmp.getValueType(), Tmp));
5580          return;
5581        }
5582      } else if ((LibInfo->has(LibFunc::nearbyint) && Name == "nearbyint") ||
5583                 (LibInfo->has(LibFunc::nearbyintf) && Name == "nearbyintf") ||
5584                 (LibInfo->has(LibFunc::nearbyintl) && Name == "nearbyintl")) {
5585        if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5586            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5587            I.getType() == I.getArgOperand(0)->getType()) {
5588          SDValue Tmp = getValue(I.getArgOperand(0));
5589          setValue(&I, DAG.getNode(ISD::FNEARBYINT, getCurDebugLoc(),
5590                                   Tmp.getValueType(), Tmp));
5591          return;
5592        }
5593      } else if ((LibInfo->has(LibFunc::ceil) && Name == "ceil") ||
5594                 (LibInfo->has(LibFunc::ceilf) && Name == "ceilf") ||
5595                 (LibInfo->has(LibFunc::ceill) && Name == "ceill")) {
5596        if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5597            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5598            I.getType() == I.getArgOperand(0)->getType()) {
5599          SDValue Tmp = getValue(I.getArgOperand(0));
5600          setValue(&I, DAG.getNode(ISD::FCEIL, getCurDebugLoc(),
5601                                   Tmp.getValueType(), Tmp));
5602          return;
5603        }
5604      } else if ((LibInfo->has(LibFunc::rint) && Name == "rint") ||
5605                 (LibInfo->has(LibFunc::rintf) && Name == "rintf") ||
5606                 (LibInfo->has(LibFunc::rintl) && Name == "rintl")) {
5607        if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5608            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5609            I.getType() == I.getArgOperand(0)->getType()) {
5610          SDValue Tmp = getValue(I.getArgOperand(0));
5611          setValue(&I, DAG.getNode(ISD::FRINT, getCurDebugLoc(),
5612                                   Tmp.getValueType(), Tmp));
5613          return;
5614        }
5615      } else if ((LibInfo->has(LibFunc::trunc) && Name == "trunc") ||
5616                 (LibInfo->has(LibFunc::truncf) && Name == "truncf") ||
5617                 (LibInfo->has(LibFunc::truncl) && Name == "truncl")) {
5618        if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5619            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5620            I.getType() == I.getArgOperand(0)->getType()) {
5621          SDValue Tmp = getValue(I.getArgOperand(0));
5622          setValue(&I, DAG.getNode(ISD::FTRUNC, getCurDebugLoc(),
5623                                   Tmp.getValueType(), Tmp));
5624          return;
5625        }
5626      } else if ((LibInfo->has(LibFunc::log2) && Name == "log2") ||
5627                 (LibInfo->has(LibFunc::log2f) && Name == "log2f") ||
5628                 (LibInfo->has(LibFunc::log2l) && Name == "log2l")) {
5629        if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5630            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5631            I.getType() == I.getArgOperand(0)->getType() &&
5632            I.onlyReadsMemory()) {
5633          SDValue Tmp = getValue(I.getArgOperand(0));
5634          setValue(&I, DAG.getNode(ISD::FLOG2, getCurDebugLoc(),
5635                                   Tmp.getValueType(), Tmp));
5636          return;
5637        }
5638      } else if ((LibInfo->has(LibFunc::exp2) && Name == "exp2") ||
5639                 (LibInfo->has(LibFunc::exp2f) && Name == "exp2f") ||
5640                 (LibInfo->has(LibFunc::exp2l) && Name == "exp2l")) {
5641        if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5642            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5643            I.getType() == I.getArgOperand(0)->getType() &&
5644            I.onlyReadsMemory()) {
5645          SDValue Tmp = getValue(I.getArgOperand(0));
5646          setValue(&I, DAG.getNode(ISD::FEXP2, getCurDebugLoc(),
5647                                   Tmp.getValueType(), Tmp));
5648          return;
5649        }
5650      } else if (Name == "memcmp") {
5651        if (visitMemCmpCall(I))
5652          return;
5653      }
5654    }
5655  }
5656
5657  SDValue Callee;
5658  if (!RenameFn)
5659    Callee = getValue(I.getCalledValue());
5660  else
5661    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
5662
5663  // Check if we can potentially perform a tail call. More detailed checking is
5664  // be done within LowerCallTo, after more information about the call is known.
5665  LowerCallTo(&I, Callee, I.isTailCall());
5666}
5667
5668namespace {
5669
5670/// AsmOperandInfo - This contains information for each constraint that we are
5671/// lowering.
5672class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
5673public:
5674  /// CallOperand - If this is the result output operand or a clobber
5675  /// this is null, otherwise it is the incoming operand to the CallInst.
5676  /// This gets modified as the asm is processed.
5677  SDValue CallOperand;
5678
5679  /// AssignedRegs - If this is a register or register class operand, this
5680  /// contains the set of register corresponding to the operand.
5681  RegsForValue AssignedRegs;
5682
5683  explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
5684    : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
5685  }
5686
5687  /// getCallOperandValEVT - Return the EVT of the Value* that this operand
5688  /// corresponds to.  If there is no Value* for this operand, it returns
5689  /// MVT::Other.
5690  EVT getCallOperandValEVT(LLVMContext &Context,
5691                           const TargetLowering &TLI,
5692                           const TargetData *TD) const {
5693    if (CallOperandVal == 0) return MVT::Other;
5694
5695    if (isa<BasicBlock>(CallOperandVal))
5696      return TLI.getPointerTy();
5697
5698    llvm::Type *OpTy = CallOperandVal->getType();
5699
5700    // FIXME: code duplicated from TargetLowering::ParseConstraints().
5701    // If this is an indirect operand, the operand is a pointer to the
5702    // accessed type.
5703    if (isIndirect) {
5704      llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
5705      if (!PtrTy)
5706        report_fatal_error("Indirect operand for inline asm not a pointer!");
5707      OpTy = PtrTy->getElementType();
5708    }
5709
5710    // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
5711    if (StructType *STy = dyn_cast<StructType>(OpTy))
5712      if (STy->getNumElements() == 1)
5713        OpTy = STy->getElementType(0);
5714
5715    // If OpTy is not a single value, it may be a struct/union that we
5716    // can tile with integers.
5717    if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5718      unsigned BitSize = TD->getTypeSizeInBits(OpTy);
5719      switch (BitSize) {
5720      default: break;
5721      case 1:
5722      case 8:
5723      case 16:
5724      case 32:
5725      case 64:
5726      case 128:
5727        OpTy = IntegerType::get(Context, BitSize);
5728        break;
5729      }
5730    }
5731
5732    return TLI.getValueType(OpTy, true);
5733  }
5734};
5735
5736typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
5737
5738} // end anonymous namespace
5739
5740/// GetRegistersForValue - Assign registers (virtual or physical) for the
5741/// specified operand.  We prefer to assign virtual registers, to allow the
5742/// register allocator to handle the assignment process.  However, if the asm
5743/// uses features that we can't model on machineinstrs, we have SDISel do the
5744/// allocation.  This produces generally horrible, but correct, code.
5745///
5746///   OpInfo describes the operand.
5747///
5748static void GetRegistersForValue(SelectionDAG &DAG,
5749                                 const TargetLowering &TLI,
5750                                 DebugLoc DL,
5751                                 SDISelAsmOperandInfo &OpInfo) {
5752  LLVMContext &Context = *DAG.getContext();
5753
5754  MachineFunction &MF = DAG.getMachineFunction();
5755  SmallVector<unsigned, 4> Regs;
5756
5757  // If this is a constraint for a single physreg, or a constraint for a
5758  // register class, find it.
5759  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
5760    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5761                                     OpInfo.ConstraintVT);
5762
5763  unsigned NumRegs = 1;
5764  if (OpInfo.ConstraintVT != MVT::Other) {
5765    // If this is a FP input in an integer register (or visa versa) insert a bit
5766    // cast of the input value.  More generally, handle any case where the input
5767    // value disagrees with the register class we plan to stick this in.
5768    if (OpInfo.Type == InlineAsm::isInput &&
5769        PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
5770      // Try to convert to the first EVT that the reg class contains.  If the
5771      // types are identical size, use a bitcast to convert (e.g. two differing
5772      // vector types).
5773      EVT RegVT = *PhysReg.second->vt_begin();
5774      if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
5775        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5776                                         RegVT, OpInfo.CallOperand);
5777        OpInfo.ConstraintVT = RegVT;
5778      } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
5779        // If the input is a FP value and we want it in FP registers, do a
5780        // bitcast to the corresponding integer type.  This turns an f64 value
5781        // into i64, which can be passed with two i32 values on a 32-bit
5782        // machine.
5783        RegVT = EVT::getIntegerVT(Context,
5784                                  OpInfo.ConstraintVT.getSizeInBits());
5785        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5786                                         RegVT, OpInfo.CallOperand);
5787        OpInfo.ConstraintVT = RegVT;
5788      }
5789    }
5790
5791    NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
5792  }
5793
5794  EVT RegVT;
5795  EVT ValueVT = OpInfo.ConstraintVT;
5796
5797  // If this is a constraint for a specific physical register, like {r17},
5798  // assign it now.
5799  if (unsigned AssignedReg = PhysReg.first) {
5800    const TargetRegisterClass *RC = PhysReg.second;
5801    if (OpInfo.ConstraintVT == MVT::Other)
5802      ValueVT = *RC->vt_begin();
5803
5804    // Get the actual register value type.  This is important, because the user
5805    // may have asked for (e.g.) the AX register in i32 type.  We need to
5806    // remember that AX is actually i16 to get the right extension.
5807    RegVT = *RC->vt_begin();
5808
5809    // This is a explicit reference to a physical register.
5810    Regs.push_back(AssignedReg);
5811
5812    // If this is an expanded reference, add the rest of the regs to Regs.
5813    if (NumRegs != 1) {
5814      TargetRegisterClass::iterator I = RC->begin();
5815      for (; *I != AssignedReg; ++I)
5816        assert(I != RC->end() && "Didn't find reg!");
5817
5818      // Already added the first reg.
5819      --NumRegs; ++I;
5820      for (; NumRegs; --NumRegs, ++I) {
5821        assert(I != RC->end() && "Ran out of registers to allocate!");
5822        Regs.push_back(*I);
5823      }
5824    }
5825
5826    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5827    return;
5828  }
5829
5830  // Otherwise, if this was a reference to an LLVM register class, create vregs
5831  // for this reference.
5832  if (const TargetRegisterClass *RC = PhysReg.second) {
5833    RegVT = *RC->vt_begin();
5834    if (OpInfo.ConstraintVT == MVT::Other)
5835      ValueVT = RegVT;
5836
5837    // Create the appropriate number of virtual registers.
5838    MachineRegisterInfo &RegInfo = MF.getRegInfo();
5839    for (; NumRegs; --NumRegs)
5840      Regs.push_back(RegInfo.createVirtualRegister(RC));
5841
5842    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5843    return;
5844  }
5845
5846  // Otherwise, we couldn't allocate enough registers for this.
5847}
5848
5849/// visitInlineAsm - Handle a call to an InlineAsm object.
5850///
5851void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
5852  const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
5853
5854  /// ConstraintOperands - Information about all of the constraints.
5855  SDISelAsmOperandInfoVector ConstraintOperands;
5856
5857  TargetLowering::AsmOperandInfoVector
5858    TargetConstraints = TLI.ParseConstraints(CS);
5859
5860  bool hasMemory = false;
5861
5862  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
5863  unsigned ResNo = 0;   // ResNo - The result number of the next output.
5864  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
5865    ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
5866    SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
5867
5868    EVT OpVT = MVT::Other;
5869
5870    // Compute the value type for each operand.
5871    switch (OpInfo.Type) {
5872    case InlineAsm::isOutput:
5873      // Indirect outputs just consume an argument.
5874      if (OpInfo.isIndirect) {
5875        OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5876        break;
5877      }
5878
5879      // The return value of the call is this value.  As such, there is no
5880      // corresponding argument.
5881      assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
5882      if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
5883        OpVT = TLI.getValueType(STy->getElementType(ResNo));
5884      } else {
5885        assert(ResNo == 0 && "Asm only has one result!");
5886        OpVT = TLI.getValueType(CS.getType());
5887      }
5888      ++ResNo;
5889      break;
5890    case InlineAsm::isInput:
5891      OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5892      break;
5893    case InlineAsm::isClobber:
5894      // Nothing to do.
5895      break;
5896    }
5897
5898    // If this is an input or an indirect output, process the call argument.
5899    // BasicBlocks are labels, currently appearing only in asm's.
5900    if (OpInfo.CallOperandVal) {
5901      if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
5902        OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
5903      } else {
5904        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
5905      }
5906
5907      OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD);
5908    }
5909
5910    OpInfo.ConstraintVT = OpVT;
5911
5912    // Indirect operand accesses access memory.
5913    if (OpInfo.isIndirect)
5914      hasMemory = true;
5915    else {
5916      for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
5917        TargetLowering::ConstraintType
5918          CType = TLI.getConstraintType(OpInfo.Codes[j]);
5919        if (CType == TargetLowering::C_Memory) {
5920          hasMemory = true;
5921          break;
5922        }
5923      }
5924    }
5925  }
5926
5927  SDValue Chain, Flag;
5928
5929  // We won't need to flush pending loads if this asm doesn't touch
5930  // memory and is nonvolatile.
5931  if (hasMemory || IA->hasSideEffects())
5932    Chain = getRoot();
5933  else
5934    Chain = DAG.getRoot();
5935
5936  // Second pass over the constraints: compute which constraint option to use
5937  // and assign registers to constraints that want a specific physreg.
5938  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5939    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5940
5941    // If this is an output operand with a matching input operand, look up the
5942    // matching input. If their types mismatch, e.g. one is an integer, the
5943    // other is floating point, or their sizes are different, flag it as an
5944    // error.
5945    if (OpInfo.hasMatchingInput()) {
5946      SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5947
5948      if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5949	std::pair<unsigned, const TargetRegisterClass*> MatchRC =
5950	  TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5951                                           OpInfo.ConstraintVT);
5952	std::pair<unsigned, const TargetRegisterClass*> InputRC =
5953	  TLI.getRegForInlineAsmConstraint(Input.ConstraintCode,
5954                                           Input.ConstraintVT);
5955        if ((OpInfo.ConstraintVT.isInteger() !=
5956             Input.ConstraintVT.isInteger()) ||
5957            (MatchRC.second != InputRC.second)) {
5958          report_fatal_error("Unsupported asm: input constraint"
5959                             " with a matching output constraint of"
5960                             " incompatible type!");
5961        }
5962        Input.ConstraintVT = OpInfo.ConstraintVT;
5963      }
5964    }
5965
5966    // Compute the constraint code and ConstraintType to use.
5967    TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
5968
5969    // If this is a memory input, and if the operand is not indirect, do what we
5970    // need to to provide an address for the memory input.
5971    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5972        !OpInfo.isIndirect) {
5973      assert((OpInfo.isMultipleAlternative ||
5974              (OpInfo.Type == InlineAsm::isInput)) &&
5975             "Can only indirectify direct input operands!");
5976
5977      // Memory operands really want the address of the value.  If we don't have
5978      // an indirect input, put it in the constpool if we can, otherwise spill
5979      // it to a stack slot.
5980      // TODO: This isn't quite right. We need to handle these according to
5981      // the addressing mode that the constraint wants. Also, this may take
5982      // an additional register for the computation and we don't want that
5983      // either.
5984
5985      // If the operand is a float, integer, or vector constant, spill to a
5986      // constant pool entry to get its address.
5987      const Value *OpVal = OpInfo.CallOperandVal;
5988      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
5989          isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
5990        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
5991                                                 TLI.getPointerTy());
5992      } else {
5993        // Otherwise, create a stack slot and emit a store to it before the
5994        // asm.
5995        Type *Ty = OpVal->getType();
5996        uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
5997        unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
5998        MachineFunction &MF = DAG.getMachineFunction();
5999        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
6000        SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
6001        Chain = DAG.getStore(Chain, getCurDebugLoc(),
6002                             OpInfo.CallOperand, StackSlot,
6003                             MachinePointerInfo::getFixedStack(SSFI),
6004                             false, false, 0);
6005        OpInfo.CallOperand = StackSlot;
6006      }
6007
6008      // There is no longer a Value* corresponding to this operand.
6009      OpInfo.CallOperandVal = 0;
6010
6011      // It is now an indirect operand.
6012      OpInfo.isIndirect = true;
6013    }
6014
6015    // If this constraint is for a specific register, allocate it before
6016    // anything else.
6017    if (OpInfo.ConstraintType == TargetLowering::C_Register)
6018      GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo);
6019  }
6020
6021  // Second pass - Loop over all of the operands, assigning virtual or physregs
6022  // to register class operands.
6023  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6024    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6025
6026    // C_Register operands have already been allocated, Other/Memory don't need
6027    // to be.
6028    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
6029      GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo);
6030  }
6031
6032  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
6033  std::vector<SDValue> AsmNodeOperands;
6034  AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
6035  AsmNodeOperands.push_back(
6036          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
6037                                      TLI.getPointerTy()));
6038
6039  // If we have a !srcloc metadata node associated with it, we want to attach
6040  // this to the ultimately generated inline asm machineinstr.  To do this, we
6041  // pass in the third operand as this (potentially null) inline asm MDNode.
6042  const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
6043  AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
6044
6045  // Remember the HasSideEffect and AlignStack bits as operand 3.
6046  unsigned ExtraInfo = 0;
6047  if (IA->hasSideEffects())
6048    ExtraInfo |= InlineAsm::Extra_HasSideEffects;
6049  if (IA->isAlignStack())
6050    ExtraInfo |= InlineAsm::Extra_IsAlignStack;
6051  AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo,
6052                                                  TLI.getPointerTy()));
6053
6054  // Loop over all of the inputs, copying the operand values into the
6055  // appropriate registers and processing the output regs.
6056  RegsForValue RetValRegs;
6057
6058  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
6059  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
6060
6061  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6062    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6063
6064    switch (OpInfo.Type) {
6065    case InlineAsm::isOutput: {
6066      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
6067          OpInfo.ConstraintType != TargetLowering::C_Register) {
6068        // Memory output, or 'other' output (e.g. 'X' constraint).
6069        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
6070
6071        // Add information to the INLINEASM node to know about this output.
6072        unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6073        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
6074                                                        TLI.getPointerTy()));
6075        AsmNodeOperands.push_back(OpInfo.CallOperand);
6076        break;
6077      }
6078
6079      // Otherwise, this is a register or register class output.
6080
6081      // Copy the output from the appropriate register.  Find a register that
6082      // we can use.
6083      if (OpInfo.AssignedRegs.Regs.empty()) {
6084        LLVMContext &Ctx = *DAG.getContext();
6085        Ctx.emitError(CS.getInstruction(),
6086                      "couldn't allocate output register for constraint '" +
6087                           Twine(OpInfo.ConstraintCode) + "'");
6088        break;
6089      }
6090
6091      // If this is an indirect operand, store through the pointer after the
6092      // asm.
6093      if (OpInfo.isIndirect) {
6094        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
6095                                                      OpInfo.CallOperandVal));
6096      } else {
6097        // This is the result value of the call.
6098        assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6099        // Concatenate this output onto the outputs list.
6100        RetValRegs.append(OpInfo.AssignedRegs);
6101      }
6102
6103      // Add information to the INLINEASM node to know that this register is
6104      // set.
6105      OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
6106                                           InlineAsm::Kind_RegDefEarlyClobber :
6107                                               InlineAsm::Kind_RegDef,
6108                                               false,
6109                                               0,
6110                                               DAG,
6111                                               AsmNodeOperands);
6112      break;
6113    }
6114    case InlineAsm::isInput: {
6115      SDValue InOperandVal = OpInfo.CallOperand;
6116
6117      if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
6118        // If this is required to match an output register we have already set,
6119        // just use its register.
6120        unsigned OperandNo = OpInfo.getMatchedOperand();
6121
6122        // Scan until we find the definition we already emitted of this operand.
6123        // When we find it, create a RegsForValue operand.
6124        unsigned CurOp = InlineAsm::Op_FirstOperand;
6125        for (; OperandNo; --OperandNo) {
6126          // Advance to the next operand.
6127          unsigned OpFlag =
6128            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6129          assert((InlineAsm::isRegDefKind(OpFlag) ||
6130                  InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
6131                  InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
6132          CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
6133        }
6134
6135        unsigned OpFlag =
6136          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6137        if (InlineAsm::isRegDefKind(OpFlag) ||
6138            InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
6139          // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
6140          if (OpInfo.isIndirect) {
6141            // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
6142            LLVMContext &Ctx = *DAG.getContext();
6143            Ctx.emitError(CS.getInstruction(),  "inline asm not supported yet:"
6144                          " don't know how to handle tied "
6145                          "indirect register inputs");
6146          }
6147
6148          RegsForValue MatchedRegs;
6149          MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
6150          EVT RegVT = AsmNodeOperands[CurOp+1].getValueType();
6151          MatchedRegs.RegVTs.push_back(RegVT);
6152          MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
6153          for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
6154               i != e; ++i)
6155            MatchedRegs.Regs.push_back
6156              (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)));
6157
6158          // Use the produced MatchedRegs object to
6159          MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
6160                                    Chain, &Flag);
6161          MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
6162                                           true, OpInfo.getMatchedOperand(),
6163                                           DAG, AsmNodeOperands);
6164          break;
6165        }
6166
6167        assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
6168        assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
6169               "Unexpected number of operands");
6170        // Add information to the INLINEASM node to know about this input.
6171        // See InlineAsm.h isUseOperandTiedToDef.
6172        OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
6173                                                    OpInfo.getMatchedOperand());
6174        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
6175                                                        TLI.getPointerTy()));
6176        AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
6177        break;
6178      }
6179
6180      // Treat indirect 'X' constraint as memory.
6181      if (OpInfo.ConstraintType == TargetLowering::C_Other &&
6182          OpInfo.isIndirect)
6183        OpInfo.ConstraintType = TargetLowering::C_Memory;
6184
6185      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
6186        std::vector<SDValue> Ops;
6187        TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
6188                                         Ops, DAG);
6189        if (Ops.empty()) {
6190          LLVMContext &Ctx = *DAG.getContext();
6191          Ctx.emitError(CS.getInstruction(),
6192                        "invalid operand for inline asm constraint '" +
6193                        Twine(OpInfo.ConstraintCode) + "'");
6194          break;
6195        }
6196
6197        // Add information to the INLINEASM node to know about this input.
6198        unsigned ResOpType =
6199          InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
6200        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6201                                                        TLI.getPointerTy()));
6202        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
6203        break;
6204      }
6205
6206      if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
6207        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
6208        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
6209               "Memory operands expect pointer values");
6210
6211        // Add information to the INLINEASM node to know about this input.
6212        unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6213        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6214                                                        TLI.getPointerTy()));
6215        AsmNodeOperands.push_back(InOperandVal);
6216        break;
6217      }
6218
6219      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
6220              OpInfo.ConstraintType == TargetLowering::C_Register) &&
6221             "Unknown constraint type!");
6222      assert(!OpInfo.isIndirect &&
6223             "Don't know how to handle indirect register inputs yet!");
6224
6225      // Copy the input into the appropriate registers.
6226      if (OpInfo.AssignedRegs.Regs.empty()) {
6227        LLVMContext &Ctx = *DAG.getContext();
6228        Ctx.emitError(CS.getInstruction(),
6229                      "couldn't allocate input reg for constraint '" +
6230                           Twine(OpInfo.ConstraintCode) + "'");
6231        break;
6232      }
6233
6234      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
6235                                        Chain, &Flag);
6236
6237      OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
6238                                               DAG, AsmNodeOperands);
6239      break;
6240    }
6241    case InlineAsm::isClobber: {
6242      // Add the clobbered value to the operand list, so that the register
6243      // allocator is aware that the physreg got clobbered.
6244      if (!OpInfo.AssignedRegs.Regs.empty())
6245        OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
6246                                                 false, 0, DAG,
6247                                                 AsmNodeOperands);
6248      break;
6249    }
6250    }
6251  }
6252
6253  // Finish up input operands.  Set the input chain and add the flag last.
6254  AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
6255  if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
6256
6257  Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(),
6258                      DAG.getVTList(MVT::Other, MVT::Glue),
6259                      &AsmNodeOperands[0], AsmNodeOperands.size());
6260  Flag = Chain.getValue(1);
6261
6262  // If this asm returns a register value, copy the result from that register
6263  // and set it as the value of the call.
6264  if (!RetValRegs.Regs.empty()) {
6265    SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
6266                                             Chain, &Flag);
6267
6268    // FIXME: Why don't we do this for inline asms with MRVs?
6269    if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
6270      EVT ResultType = TLI.getValueType(CS.getType());
6271
6272      // If any of the results of the inline asm is a vector, it may have the
6273      // wrong width/num elts.  This can happen for register classes that can
6274      // contain multiple different value types.  The preg or vreg allocated may
6275      // not have the same VT as was expected.  Convert it to the right type
6276      // with bit_convert.
6277      if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
6278        Val = DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
6279                          ResultType, Val);
6280
6281      } else if (ResultType != Val.getValueType() &&
6282                 ResultType.isInteger() && Val.getValueType().isInteger()) {
6283        // If a result value was tied to an input value, the computed result may
6284        // have a wider width than the expected result.  Extract the relevant
6285        // portion.
6286        Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val);
6287      }
6288
6289      assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
6290    }
6291
6292    setValue(CS.getInstruction(), Val);
6293    // Don't need to use this as a chain in this case.
6294    if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
6295      return;
6296  }
6297
6298  std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
6299
6300  // Process indirect outputs, first output all of the flagged copies out of
6301  // physregs.
6302  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
6303    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
6304    const Value *Ptr = IndirectStoresToEmit[i].second;
6305    SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
6306                                             Chain, &Flag);
6307    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
6308  }
6309
6310  // Emit the non-flagged stores from the physregs.
6311  SmallVector<SDValue, 8> OutChains;
6312  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
6313    SDValue Val = DAG.getStore(Chain, getCurDebugLoc(),
6314                               StoresToEmit[i].first,
6315                               getValue(StoresToEmit[i].second),
6316                               MachinePointerInfo(StoresToEmit[i].second),
6317                               false, false, 0);
6318    OutChains.push_back(Val);
6319  }
6320
6321  if (!OutChains.empty())
6322    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
6323                        &OutChains[0], OutChains.size());
6324
6325  DAG.setRoot(Chain);
6326}
6327
6328void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
6329  DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(),
6330                          MVT::Other, getRoot(),
6331                          getValue(I.getArgOperand(0)),
6332                          DAG.getSrcValue(I.getArgOperand(0))));
6333}
6334
6335void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
6336  const TargetData &TD = *TLI.getTargetData();
6337  SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(),
6338                           getRoot(), getValue(I.getOperand(0)),
6339                           DAG.getSrcValue(I.getOperand(0)),
6340                           TD.getABITypeAlignment(I.getType()));
6341  setValue(&I, V);
6342  DAG.setRoot(V.getValue(1));
6343}
6344
6345void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
6346  DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(),
6347                          MVT::Other, getRoot(),
6348                          getValue(I.getArgOperand(0)),
6349                          DAG.getSrcValue(I.getArgOperand(0))));
6350}
6351
6352void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
6353  DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(),
6354                          MVT::Other, getRoot(),
6355                          getValue(I.getArgOperand(0)),
6356                          getValue(I.getArgOperand(1)),
6357                          DAG.getSrcValue(I.getArgOperand(0)),
6358                          DAG.getSrcValue(I.getArgOperand(1))));
6359}
6360
6361/// TargetLowering::LowerCallTo - This is the default LowerCallTo
6362/// implementation, which just calls LowerCall.
6363/// FIXME: When all targets are
6364/// migrated to using LowerCall, this hook should be integrated into SDISel.
6365std::pair<SDValue, SDValue>
6366TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
6367  // Handle all of the outgoing arguments.
6368  CLI.Outs.clear();
6369  CLI.OutVals.clear();
6370  ArgListTy &Args = CLI.Args;
6371  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
6372    SmallVector<EVT, 4> ValueVTs;
6373    ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
6374    for (unsigned Value = 0, NumValues = ValueVTs.size();
6375         Value != NumValues; ++Value) {
6376      EVT VT = ValueVTs[Value];
6377      Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
6378      SDValue Op = SDValue(Args[i].Node.getNode(),
6379                           Args[i].Node.getResNo() + Value);
6380      ISD::ArgFlagsTy Flags;
6381      unsigned OriginalAlignment =
6382        getTargetData()->getABITypeAlignment(ArgTy);
6383
6384      if (Args[i].isZExt)
6385        Flags.setZExt();
6386      if (Args[i].isSExt)
6387        Flags.setSExt();
6388      if (Args[i].isInReg)
6389        Flags.setInReg();
6390      if (Args[i].isSRet)
6391        Flags.setSRet();
6392      if (Args[i].isByVal) {
6393        Flags.setByVal();
6394        PointerType *Ty = cast<PointerType>(Args[i].Ty);
6395        Type *ElementTy = Ty->getElementType();
6396        Flags.setByValSize(getTargetData()->getTypeAllocSize(ElementTy));
6397        // For ByVal, alignment should come from FE.  BE will guess if this
6398        // info is not there but there are cases it cannot get right.
6399        unsigned FrameAlign;
6400        if (Args[i].Alignment)
6401          FrameAlign = Args[i].Alignment;
6402        else
6403          FrameAlign = getByValTypeAlignment(ElementTy);
6404        Flags.setByValAlign(FrameAlign);
6405      }
6406      if (Args[i].isNest)
6407        Flags.setNest();
6408      Flags.setOrigAlign(OriginalAlignment);
6409
6410      EVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT);
6411      unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT);
6412      SmallVector<SDValue, 4> Parts(NumParts);
6413      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
6414
6415      if (Args[i].isSExt)
6416        ExtendKind = ISD::SIGN_EXTEND;
6417      else if (Args[i].isZExt)
6418        ExtendKind = ISD::ZERO_EXTEND;
6419
6420      getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts,
6421                     PartVT, ExtendKind);
6422
6423      for (unsigned j = 0; j != NumParts; ++j) {
6424        // if it isn't first piece, alignment must be 1
6425        ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(),
6426                               i < CLI.NumFixedArgs);
6427        if (NumParts > 1 && j == 0)
6428          MyFlags.Flags.setSplit();
6429        else if (j != 0)
6430          MyFlags.Flags.setOrigAlign(1);
6431
6432        CLI.Outs.push_back(MyFlags);
6433        CLI.OutVals.push_back(Parts[j]);
6434      }
6435    }
6436  }
6437
6438  // Handle the incoming return values from the call.
6439  CLI.Ins.clear();
6440  SmallVector<EVT, 4> RetTys;
6441  ComputeValueVTs(*this, CLI.RetTy, RetTys);
6442  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6443    EVT VT = RetTys[I];
6444    EVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
6445    unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
6446    for (unsigned i = 0; i != NumRegs; ++i) {
6447      ISD::InputArg MyFlags;
6448      MyFlags.VT = RegisterVT.getSimpleVT();
6449      MyFlags.Used = CLI.IsReturnValueUsed;
6450      if (CLI.RetSExt)
6451        MyFlags.Flags.setSExt();
6452      if (CLI.RetZExt)
6453        MyFlags.Flags.setZExt();
6454      if (CLI.IsInReg)
6455        MyFlags.Flags.setInReg();
6456      CLI.Ins.push_back(MyFlags);
6457    }
6458  }
6459
6460  SmallVector<SDValue, 4> InVals;
6461  CLI.Chain = LowerCall(CLI, InVals);
6462
6463  // Verify that the target's LowerCall behaved as expected.
6464  assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
6465         "LowerCall didn't return a valid chain!");
6466  assert((!CLI.IsTailCall || InVals.empty()) &&
6467         "LowerCall emitted a return value for a tail call!");
6468  assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
6469         "LowerCall didn't emit the correct number of values!");
6470
6471  // For a tail call, the return value is merely live-out and there aren't
6472  // any nodes in the DAG representing it. Return a special value to
6473  // indicate that a tail call has been emitted and no more Instructions
6474  // should be processed in the current block.
6475  if (CLI.IsTailCall) {
6476    CLI.DAG.setRoot(CLI.Chain);
6477    return std::make_pair(SDValue(), SDValue());
6478  }
6479
6480  DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
6481          assert(InVals[i].getNode() &&
6482                 "LowerCall emitted a null value!");
6483          assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
6484                 "LowerCall emitted a value with the wrong type!");
6485        });
6486
6487  // Collect the legal value parts into potentially illegal values
6488  // that correspond to the original function's return values.
6489  ISD::NodeType AssertOp = ISD::DELETED_NODE;
6490  if (CLI.RetSExt)
6491    AssertOp = ISD::AssertSext;
6492  else if (CLI.RetZExt)
6493    AssertOp = ISD::AssertZext;
6494  SmallVector<SDValue, 4> ReturnValues;
6495  unsigned CurReg = 0;
6496  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6497    EVT VT = RetTys[I];
6498    EVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
6499    unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
6500
6501    ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
6502                                            NumRegs, RegisterVT, VT,
6503                                            AssertOp));
6504    CurReg += NumRegs;
6505  }
6506
6507  // For a function returning void, there is no return value. We can't create
6508  // such a node, so we just return a null return value in that case. In
6509  // that case, nothing will actually look at the value.
6510  if (ReturnValues.empty())
6511    return std::make_pair(SDValue(), CLI.Chain);
6512
6513  SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
6514                                CLI.DAG.getVTList(&RetTys[0], RetTys.size()),
6515                            &ReturnValues[0], ReturnValues.size());
6516  return std::make_pair(Res, CLI.Chain);
6517}
6518
6519void TargetLowering::LowerOperationWrapper(SDNode *N,
6520                                           SmallVectorImpl<SDValue> &Results,
6521                                           SelectionDAG &DAG) const {
6522  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
6523  if (Res.getNode())
6524    Results.push_back(Res);
6525}
6526
6527SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
6528  llvm_unreachable("LowerOperation not implemented for this target!");
6529}
6530
6531void
6532SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
6533  SDValue Op = getNonRegisterValue(V);
6534  assert((Op.getOpcode() != ISD::CopyFromReg ||
6535          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
6536         "Copy from a reg to the same reg!");
6537  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
6538
6539  RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
6540  SDValue Chain = DAG.getEntryNode();
6541  RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0);
6542  PendingExports.push_back(Chain);
6543}
6544
6545#include "llvm/CodeGen/SelectionDAGISel.h"
6546
6547/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
6548/// entry block, return true.  This includes arguments used by switches, since
6549/// the switch may expand into multiple basic blocks.
6550static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
6551  // With FastISel active, we may be splitting blocks, so force creation
6552  // of virtual registers for all non-dead arguments.
6553  if (FastISel)
6554    return A->use_empty();
6555
6556  const BasicBlock *Entry = A->getParent()->begin();
6557  for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end();
6558       UI != E; ++UI) {
6559    const User *U = *UI;
6560    if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U))
6561      return false;  // Use not in entry block.
6562  }
6563  return true;
6564}
6565
6566void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) {
6567  // If this is the entry block, emit arguments.
6568  const Function &F = *LLVMBB->getParent();
6569  SelectionDAG &DAG = SDB->DAG;
6570  DebugLoc dl = SDB->getCurDebugLoc();
6571  const TargetData *TD = TLI.getTargetData();
6572  SmallVector<ISD::InputArg, 16> Ins;
6573
6574  // Check whether the function can return without sret-demotion.
6575  SmallVector<ISD::OutputArg, 4> Outs;
6576  GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
6577                Outs, TLI);
6578
6579  if (!FuncInfo->CanLowerReturn) {
6580    // Put in an sret pointer parameter before all the other parameters.
6581    SmallVector<EVT, 1> ValueVTs;
6582    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6583
6584    // NOTE: Assuming that a pointer will never break down to more than one VT
6585    // or one register.
6586    ISD::ArgFlagsTy Flags;
6587    Flags.setSRet();
6588    EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]);
6589    ISD::InputArg RetArg(Flags, RegisterVT, true);
6590    Ins.push_back(RetArg);
6591  }
6592
6593  // Set up the incoming argument description vector.
6594  unsigned Idx = 1;
6595  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
6596       I != E; ++I, ++Idx) {
6597    SmallVector<EVT, 4> ValueVTs;
6598    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6599    bool isArgValueUsed = !I->use_empty();
6600    for (unsigned Value = 0, NumValues = ValueVTs.size();
6601         Value != NumValues; ++Value) {
6602      EVT VT = ValueVTs[Value];
6603      Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
6604      ISD::ArgFlagsTy Flags;
6605      unsigned OriginalAlignment =
6606        TD->getABITypeAlignment(ArgTy);
6607
6608      if (F.paramHasAttr(Idx, Attribute::ZExt))
6609        Flags.setZExt();
6610      if (F.paramHasAttr(Idx, Attribute::SExt))
6611        Flags.setSExt();
6612      if (F.paramHasAttr(Idx, Attribute::InReg))
6613        Flags.setInReg();
6614      if (F.paramHasAttr(Idx, Attribute::StructRet))
6615        Flags.setSRet();
6616      if (F.paramHasAttr(Idx, Attribute::ByVal)) {
6617        Flags.setByVal();
6618        PointerType *Ty = cast<PointerType>(I->getType());
6619        Type *ElementTy = Ty->getElementType();
6620        Flags.setByValSize(TD->getTypeAllocSize(ElementTy));
6621        // For ByVal, alignment should be passed from FE.  BE will guess if
6622        // this info is not there but there are cases it cannot get right.
6623        unsigned FrameAlign;
6624        if (F.getParamAlignment(Idx))
6625          FrameAlign = F.getParamAlignment(Idx);
6626        else
6627          FrameAlign = TLI.getByValTypeAlignment(ElementTy);
6628        Flags.setByValAlign(FrameAlign);
6629      }
6630      if (F.paramHasAttr(Idx, Attribute::Nest))
6631        Flags.setNest();
6632      Flags.setOrigAlign(OriginalAlignment);
6633
6634      EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6635      unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6636      for (unsigned i = 0; i != NumRegs; ++i) {
6637        ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed);
6638        if (NumRegs > 1 && i == 0)
6639          MyFlags.Flags.setSplit();
6640        // if it isn't first piece, alignment must be 1
6641        else if (i > 0)
6642          MyFlags.Flags.setOrigAlign(1);
6643        Ins.push_back(MyFlags);
6644      }
6645    }
6646  }
6647
6648  // Call the target to set up the argument values.
6649  SmallVector<SDValue, 8> InVals;
6650  SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
6651                                             F.isVarArg(), Ins,
6652                                             dl, DAG, InVals);
6653
6654  // Verify that the target's LowerFormalArguments behaved as expected.
6655  assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
6656         "LowerFormalArguments didn't return a valid chain!");
6657  assert(InVals.size() == Ins.size() &&
6658         "LowerFormalArguments didn't emit the correct number of values!");
6659  DEBUG({
6660      for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6661        assert(InVals[i].getNode() &&
6662               "LowerFormalArguments emitted a null value!");
6663        assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6664               "LowerFormalArguments emitted a value with the wrong type!");
6665      }
6666    });
6667
6668  // Update the DAG with the new chain value resulting from argument lowering.
6669  DAG.setRoot(NewRoot);
6670
6671  // Set up the argument values.
6672  unsigned i = 0;
6673  Idx = 1;
6674  if (!FuncInfo->CanLowerReturn) {
6675    // Create a virtual register for the sret pointer, and put in a copy
6676    // from the sret argument into it.
6677    SmallVector<EVT, 1> ValueVTs;
6678    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6679    EVT VT = ValueVTs[0];
6680    EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6681    ISD::NodeType AssertOp = ISD::DELETED_NODE;
6682    SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
6683                                        RegVT, VT, AssertOp);
6684
6685    MachineFunction& MF = SDB->DAG.getMachineFunction();
6686    MachineRegisterInfo& RegInfo = MF.getRegInfo();
6687    unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT));
6688    FuncInfo->DemoteRegister = SRetReg;
6689    NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(),
6690                                    SRetReg, ArgValue);
6691    DAG.setRoot(NewRoot);
6692
6693    // i indexes lowered arguments.  Bump it past the hidden sret argument.
6694    // Idx indexes LLVM arguments.  Don't touch it.
6695    ++i;
6696  }
6697
6698  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
6699      ++I, ++Idx) {
6700    SmallVector<SDValue, 4> ArgValues;
6701    SmallVector<EVT, 4> ValueVTs;
6702    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6703    unsigned NumValues = ValueVTs.size();
6704
6705    // If this argument is unused then remember its value. It is used to generate
6706    // debugging information.
6707    if (I->use_empty() && NumValues)
6708      SDB->setUnusedArgValue(I, InVals[i]);
6709
6710    for (unsigned Val = 0; Val != NumValues; ++Val) {
6711      EVT VT = ValueVTs[Val];
6712      EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6713      unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6714
6715      if (!I->use_empty()) {
6716        ISD::NodeType AssertOp = ISD::DELETED_NODE;
6717        if (F.paramHasAttr(Idx, Attribute::SExt))
6718          AssertOp = ISD::AssertSext;
6719        else if (F.paramHasAttr(Idx, Attribute::ZExt))
6720          AssertOp = ISD::AssertZext;
6721
6722        ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
6723                                             NumParts, PartVT, VT,
6724                                             AssertOp));
6725      }
6726
6727      i += NumParts;
6728    }
6729
6730    // We don't need to do anything else for unused arguments.
6731    if (ArgValues.empty())
6732      continue;
6733
6734    // Note down frame index.
6735    if (FrameIndexSDNode *FI =
6736	dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
6737      FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
6738
6739    SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues,
6740                                     SDB->getCurDebugLoc());
6741
6742    SDB->setValue(I, Res);
6743    if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
6744      if (LoadSDNode *LNode =
6745          dyn_cast<LoadSDNode>(Res.getOperand(0).getNode()))
6746        if (FrameIndexSDNode *FI =
6747            dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
6748        FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
6749    }
6750
6751    // If this argument is live outside of the entry block, insert a copy from
6752    // wherever we got it to the vreg that other BB's will reference it as.
6753    if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
6754      // If we can, though, try to skip creating an unnecessary vreg.
6755      // FIXME: This isn't very clean... it would be nice to make this more
6756      // general.  It's also subtly incompatible with the hacks FastISel
6757      // uses with vregs.
6758      unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
6759      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
6760        FuncInfo->ValueMap[I] = Reg;
6761        continue;
6762      }
6763    }
6764    if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) {
6765      FuncInfo->InitializeRegForValue(I);
6766      SDB->CopyToExportRegsIfNeeded(I);
6767    }
6768  }
6769
6770  assert(i == InVals.size() && "Argument register count mismatch!");
6771
6772  // Finally, if the target has anything special to do, allow it to do so.
6773  // FIXME: this should insert code into the DAG!
6774  EmitFunctionEntryCode();
6775}
6776
6777/// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
6778/// ensure constants are generated when needed.  Remember the virtual registers
6779/// that need to be added to the Machine PHI nodes as input.  We cannot just
6780/// directly add them, because expansion might result in multiple MBB's for one
6781/// BB.  As such, the start of the BB might correspond to a different MBB than
6782/// the end.
6783///
6784void
6785SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
6786  const TerminatorInst *TI = LLVMBB->getTerminator();
6787
6788  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6789
6790  // Check successor nodes' PHI nodes that expect a constant to be available
6791  // from this block.
6792  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6793    const BasicBlock *SuccBB = TI->getSuccessor(succ);
6794    if (!isa<PHINode>(SuccBB->begin())) continue;
6795    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
6796
6797    // If this terminator has multiple identical successors (common for
6798    // switches), only handle each succ once.
6799    if (!SuccsHandled.insert(SuccMBB)) continue;
6800
6801    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6802
6803    // At this point we know that there is a 1-1 correspondence between LLVM PHI
6804    // nodes and Machine PHI nodes, but the incoming operands have not been
6805    // emitted yet.
6806    for (BasicBlock::const_iterator I = SuccBB->begin();
6807         const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
6808      // Ignore dead phi's.
6809      if (PN->use_empty()) continue;
6810
6811      // Skip empty types
6812      if (PN->getType()->isEmptyTy())
6813        continue;
6814
6815      unsigned Reg;
6816      const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6817
6818      if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
6819        unsigned &RegOut = ConstantsOut[C];
6820        if (RegOut == 0) {
6821          RegOut = FuncInfo.CreateRegs(C->getType());
6822          CopyValueToVirtualRegister(C, RegOut);
6823        }
6824        Reg = RegOut;
6825      } else {
6826        DenseMap<const Value *, unsigned>::iterator I =
6827          FuncInfo.ValueMap.find(PHIOp);
6828        if (I != FuncInfo.ValueMap.end())
6829          Reg = I->second;
6830        else {
6831          assert(isa<AllocaInst>(PHIOp) &&
6832                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
6833                 "Didn't codegen value into a register!??");
6834          Reg = FuncInfo.CreateRegs(PHIOp->getType());
6835          CopyValueToVirtualRegister(PHIOp, Reg);
6836        }
6837      }
6838
6839      // Remember that this register needs to added to the machine PHI node as
6840      // the input for this MBB.
6841      SmallVector<EVT, 4> ValueVTs;
6842      ComputeValueVTs(TLI, PN->getType(), ValueVTs);
6843      for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
6844        EVT VT = ValueVTs[vti];
6845        unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
6846        for (unsigned i = 0, e = NumRegisters; i != e; ++i)
6847          FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
6848        Reg += NumRegisters;
6849      }
6850    }
6851  }
6852  ConstantsOut.clear();
6853}
6854