SelectionDAGBuilder.cpp revision 72ea0c9ffaa1700730c8ce36e9b73aef4b914988
1//===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements routines for translating from LLVM IR into SelectionDAG IR.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "SDNodeDbgValue.h"
16#include "SelectionDAGBuilder.h"
17#include "llvm/ADT/BitVector.h"
18#include "llvm/ADT/PostOrderIterator.h"
19#include "llvm/ADT/SmallSet.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/ConstantFolding.h"
22#include "llvm/Constants.h"
23#include "llvm/CallingConv.h"
24#include "llvm/DebugInfo.h"
25#include "llvm/DerivedTypes.h"
26#include "llvm/Function.h"
27#include "llvm/GlobalVariable.h"
28#include "llvm/InlineAsm.h"
29#include "llvm/Instructions.h"
30#include "llvm/Intrinsics.h"
31#include "llvm/IntrinsicInst.h"
32#include "llvm/LLVMContext.h"
33#include "llvm/Module.h"
34#include "llvm/CodeGen/Analysis.h"
35#include "llvm/CodeGen/FastISel.h"
36#include "llvm/CodeGen/FunctionLoweringInfo.h"
37#include "llvm/CodeGen/GCStrategy.h"
38#include "llvm/CodeGen/GCMetadata.h"
39#include "llvm/CodeGen/MachineFunction.h"
40#include "llvm/CodeGen/MachineFrameInfo.h"
41#include "llvm/CodeGen/MachineInstrBuilder.h"
42#include "llvm/CodeGen/MachineJumpTableInfo.h"
43#include "llvm/CodeGen/MachineModuleInfo.h"
44#include "llvm/CodeGen/MachineRegisterInfo.h"
45#include "llvm/CodeGen/SelectionDAG.h"
46#include "llvm/Target/TargetData.h"
47#include "llvm/Target/TargetFrameLowering.h"
48#include "llvm/Target/TargetInstrInfo.h"
49#include "llvm/Target/TargetIntrinsicInfo.h"
50#include "llvm/Target/TargetLibraryInfo.h"
51#include "llvm/Target/TargetLowering.h"
52#include "llvm/Target/TargetOptions.h"
53#include "llvm/Support/CommandLine.h"
54#include "llvm/Support/IntegersSubsetMapping.h"
55#include "llvm/Support/Debug.h"
56#include "llvm/Support/ErrorHandling.h"
57#include "llvm/Support/MathExtras.h"
58#include "llvm/Support/raw_ostream.h"
59#include <algorithm>
60using namespace llvm;
61
62/// LimitFloatPrecision - Generate low-precision inline sequences for
63/// some float libcalls (6, 8 or 12 bits).
64static unsigned LimitFloatPrecision;
65
66static cl::opt<unsigned, true>
67LimitFPPrecision("limit-float-precision",
68                 cl::desc("Generate low-precision inline sequences "
69                          "for some float libcalls"),
70                 cl::location(LimitFloatPrecision),
71                 cl::init(0));
72
73// Limit the width of DAG chains. This is important in general to prevent
74// prevent DAG-based analysis from blowing up. For example, alias analysis and
75// load clustering may not complete in reasonable time. It is difficult to
76// recognize and avoid this situation within each individual analysis, and
77// future analyses are likely to have the same behavior. Limiting DAG width is
78// the safe approach, and will be especially important with global DAGs.
79//
80// MaxParallelChains default is arbitrarily high to avoid affecting
81// optimization, but could be lowered to improve compile time. Any ld-ld-st-st
82// sequence over this should have been converted to llvm.memcpy by the
83// frontend. It easy to induce this behavior with .ll code such as:
84// %buffer = alloca [4096 x i8]
85// %data = load [4096 x i8]* %argPtr
86// store [4096 x i8] %data, [4096 x i8]* %buffer
87static const unsigned MaxParallelChains = 64;
88
89static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
90                                      const SDValue *Parts, unsigned NumParts,
91                                      EVT PartVT, EVT ValueVT);
92
93/// getCopyFromParts - Create a value that contains the specified legal parts
94/// combined into the value they represent.  If the parts combine to a type
95/// larger then ValueVT then AssertOp can be used to specify whether the extra
96/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
97/// (ISD::AssertSext).
98static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL,
99                                const SDValue *Parts,
100                                unsigned NumParts, EVT PartVT, EVT ValueVT,
101                                ISD::NodeType AssertOp = ISD::DELETED_NODE) {
102  if (ValueVT.isVector())
103    return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT);
104
105  assert(NumParts > 0 && "No parts to assemble!");
106  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
107  SDValue Val = Parts[0];
108
109  if (NumParts > 1) {
110    // Assemble the value from multiple parts.
111    if (ValueVT.isInteger()) {
112      unsigned PartBits = PartVT.getSizeInBits();
113      unsigned ValueBits = ValueVT.getSizeInBits();
114
115      // Assemble the power of 2 part.
116      unsigned RoundParts = NumParts & (NumParts - 1) ?
117        1 << Log2_32(NumParts) : NumParts;
118      unsigned RoundBits = PartBits * RoundParts;
119      EVT RoundVT = RoundBits == ValueBits ?
120        ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
121      SDValue Lo, Hi;
122
123      EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
124
125      if (RoundParts > 2) {
126        Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
127                              PartVT, HalfVT);
128        Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
129                              RoundParts / 2, PartVT, HalfVT);
130      } else {
131        Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
132        Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
133      }
134
135      if (TLI.isBigEndian())
136        std::swap(Lo, Hi);
137
138      Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
139
140      if (RoundParts < NumParts) {
141        // Assemble the trailing non-power-of-2 part.
142        unsigned OddParts = NumParts - RoundParts;
143        EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
144        Hi = getCopyFromParts(DAG, DL,
145                              Parts + RoundParts, OddParts, PartVT, OddVT);
146
147        // Combine the round and odd parts.
148        Lo = Val;
149        if (TLI.isBigEndian())
150          std::swap(Lo, Hi);
151        EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
152        Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
153        Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
154                         DAG.getConstant(Lo.getValueType().getSizeInBits(),
155                                         TLI.getPointerTy()));
156        Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
157        Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
158      }
159    } else if (PartVT.isFloatingPoint()) {
160      // FP split into multiple FP parts (for ppcf128)
161      assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) &&
162             "Unexpected split");
163      SDValue Lo, Hi;
164      Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
165      Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
166      if (TLI.isBigEndian())
167        std::swap(Lo, Hi);
168      Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
169    } else {
170      // FP split into integer parts (soft fp)
171      assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
172             !PartVT.isVector() && "Unexpected split");
173      EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
174      Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT);
175    }
176  }
177
178  // There is now one part, held in Val.  Correct it to match ValueVT.
179  PartVT = Val.getValueType();
180
181  if (PartVT == ValueVT)
182    return Val;
183
184  if (PartVT.isInteger() && ValueVT.isInteger()) {
185    if (ValueVT.bitsLT(PartVT)) {
186      // For a truncate, see if we have any information to
187      // indicate whether the truncated bits will always be
188      // zero or sign-extension.
189      if (AssertOp != ISD::DELETED_NODE)
190        Val = DAG.getNode(AssertOp, DL, PartVT, Val,
191                          DAG.getValueType(ValueVT));
192      return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
193    }
194    return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
195  }
196
197  if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
198    // FP_ROUND's are always exact here.
199    if (ValueVT.bitsLT(Val.getValueType()))
200      return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val,
201                         DAG.getTargetConstant(1, TLI.getPointerTy()));
202
203    return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
204  }
205
206  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
207    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
208
209  llvm_unreachable("Unknown mismatch!");
210}
211
212/// getCopyFromParts - Create a value that contains the specified legal parts
213/// combined into the value they represent.  If the parts combine to a type
214/// larger then ValueVT then AssertOp can be used to specify whether the extra
215/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
216/// (ISD::AssertSext).
217static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
218                                      const SDValue *Parts, unsigned NumParts,
219                                      EVT PartVT, EVT ValueVT) {
220  assert(ValueVT.isVector() && "Not a vector value");
221  assert(NumParts > 0 && "No parts to assemble!");
222  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
223  SDValue Val = Parts[0];
224
225  // Handle a multi-element vector.
226  if (NumParts > 1) {
227    EVT IntermediateVT, RegisterVT;
228    unsigned NumIntermediates;
229    unsigned NumRegs =
230    TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
231                               NumIntermediates, RegisterVT);
232    assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
233    NumParts = NumRegs; // Silence a compiler warning.
234    assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
235    assert(RegisterVT == Parts[0].getValueType() &&
236           "Part type doesn't match part!");
237
238    // Assemble the parts into intermediate operands.
239    SmallVector<SDValue, 8> Ops(NumIntermediates);
240    if (NumIntermediates == NumParts) {
241      // If the register was not expanded, truncate or copy the value,
242      // as appropriate.
243      for (unsigned i = 0; i != NumParts; ++i)
244        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
245                                  PartVT, IntermediateVT);
246    } else if (NumParts > 0) {
247      // If the intermediate type was expanded, build the intermediate
248      // operands from the parts.
249      assert(NumParts % NumIntermediates == 0 &&
250             "Must expand into a divisible number of parts!");
251      unsigned Factor = NumParts / NumIntermediates;
252      for (unsigned i = 0; i != NumIntermediates; ++i)
253        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
254                                  PartVT, IntermediateVT);
255    }
256
257    // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
258    // intermediate operands.
259    Val = DAG.getNode(IntermediateVT.isVector() ?
260                      ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL,
261                      ValueVT, &Ops[0], NumIntermediates);
262  }
263
264  // There is now one part, held in Val.  Correct it to match ValueVT.
265  PartVT = Val.getValueType();
266
267  if (PartVT == ValueVT)
268    return Val;
269
270  if (PartVT.isVector()) {
271    // If the element type of the source/dest vectors are the same, but the
272    // parts vector has more elements than the value vector, then we have a
273    // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
274    // elements we want.
275    if (PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
276      assert(PartVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
277             "Cannot narrow, it would be a lossy transformation");
278      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
279                         DAG.getIntPtrConstant(0));
280    }
281
282    // Vector/Vector bitcast.
283    if (ValueVT.getSizeInBits() == PartVT.getSizeInBits())
284      return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
285
286    assert(PartVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
287      "Cannot handle this kind of promotion");
288    // Promoted vector extract
289    bool Smaller = ValueVT.bitsLE(PartVT);
290    return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
291                       DL, ValueVT, Val);
292
293  }
294
295  // Trivial bitcast if the types are the same size and the destination
296  // vector type is legal.
297  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits() &&
298      TLI.isTypeLegal(ValueVT))
299    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
300
301  // Handle cases such as i8 -> <1 x i1>
302  assert(ValueVT.getVectorNumElements() == 1 &&
303         "Only trivial scalar-to-vector conversions should get here!");
304
305  if (ValueVT.getVectorNumElements() == 1 &&
306      ValueVT.getVectorElementType() != PartVT) {
307    bool Smaller = ValueVT.bitsLE(PartVT);
308    Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
309                       DL, ValueVT.getScalarType(), Val);
310  }
311
312  return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
313}
314
315
316
317
318static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl,
319                                 SDValue Val, SDValue *Parts, unsigned NumParts,
320                                 EVT PartVT);
321
322/// getCopyToParts - Create a series of nodes that contain the specified value
323/// split into legal parts.  If the parts contain more bits than Val, then, for
324/// integers, ExtendKind can be used to specify how to generate the extra bits.
325static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL,
326                           SDValue Val, SDValue *Parts, unsigned NumParts,
327                           EVT PartVT,
328                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
329  EVT ValueVT = Val.getValueType();
330
331  // Handle the vector case separately.
332  if (ValueVT.isVector())
333    return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT);
334
335  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
336  unsigned PartBits = PartVT.getSizeInBits();
337  unsigned OrigNumParts = NumParts;
338  assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
339
340  if (NumParts == 0)
341    return;
342
343  assert(!ValueVT.isVector() && "Vector case handled elsewhere");
344  if (PartVT == ValueVT) {
345    assert(NumParts == 1 && "No-op copy with multiple parts!");
346    Parts[0] = Val;
347    return;
348  }
349
350  if (NumParts * PartBits > ValueVT.getSizeInBits()) {
351    // If the parts cover more bits than the value has, promote the value.
352    if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
353      assert(NumParts == 1 && "Do not know what to promote to!");
354      Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
355    } else {
356      assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
357             ValueVT.isInteger() &&
358             "Unknown mismatch!");
359      ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
360      Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
361      if (PartVT == MVT::x86mmx)
362        Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
363    }
364  } else if (PartBits == ValueVT.getSizeInBits()) {
365    // Different types of the same size.
366    assert(NumParts == 1 && PartVT != ValueVT);
367    Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
368  } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
369    // If the parts cover less bits than value has, truncate the value.
370    assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
371           ValueVT.isInteger() &&
372           "Unknown mismatch!");
373    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
374    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
375    if (PartVT == MVT::x86mmx)
376      Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
377  }
378
379  // The value may have changed - recompute ValueVT.
380  ValueVT = Val.getValueType();
381  assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
382         "Failed to tile the value with PartVT!");
383
384  if (NumParts == 1) {
385    assert(PartVT == ValueVT && "Type conversion failed!");
386    Parts[0] = Val;
387    return;
388  }
389
390  // Expand the value into multiple parts.
391  if (NumParts & (NumParts - 1)) {
392    // The number of parts is not a power of 2.  Split off and copy the tail.
393    assert(PartVT.isInteger() && ValueVT.isInteger() &&
394           "Do not know what to expand to!");
395    unsigned RoundParts = 1 << Log2_32(NumParts);
396    unsigned RoundBits = RoundParts * PartBits;
397    unsigned OddParts = NumParts - RoundParts;
398    SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
399                                 DAG.getIntPtrConstant(RoundBits));
400    getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT);
401
402    if (TLI.isBigEndian())
403      // The odd parts were reversed by getCopyToParts - unreverse them.
404      std::reverse(Parts + RoundParts, Parts + NumParts);
405
406    NumParts = RoundParts;
407    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
408    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
409  }
410
411  // The number of parts is a power of 2.  Repeatedly bisect the value using
412  // EXTRACT_ELEMENT.
413  Parts[0] = DAG.getNode(ISD::BITCAST, DL,
414                         EVT::getIntegerVT(*DAG.getContext(),
415                                           ValueVT.getSizeInBits()),
416                         Val);
417
418  for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
419    for (unsigned i = 0; i < NumParts; i += StepSize) {
420      unsigned ThisBits = StepSize * PartBits / 2;
421      EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
422      SDValue &Part0 = Parts[i];
423      SDValue &Part1 = Parts[i+StepSize/2];
424
425      Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
426                          ThisVT, Part0, DAG.getIntPtrConstant(1));
427      Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
428                          ThisVT, Part0, DAG.getIntPtrConstant(0));
429
430      if (ThisBits == PartBits && ThisVT != PartVT) {
431        Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
432        Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
433      }
434    }
435  }
436
437  if (TLI.isBigEndian())
438    std::reverse(Parts, Parts + OrigNumParts);
439}
440
441
442/// getCopyToPartsVector - Create a series of nodes that contain the specified
443/// value split into legal parts.
444static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL,
445                                 SDValue Val, SDValue *Parts, unsigned NumParts,
446                                 EVT PartVT) {
447  EVT ValueVT = Val.getValueType();
448  assert(ValueVT.isVector() && "Not a vector");
449  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
450
451  if (NumParts == 1) {
452    if (PartVT == ValueVT) {
453      // Nothing to do.
454    } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
455      // Bitconvert vector->vector case.
456      Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
457    } else if (PartVT.isVector() &&
458               PartVT.getVectorElementType() == ValueVT.getVectorElementType() &&
459               PartVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
460      EVT ElementVT = PartVT.getVectorElementType();
461      // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
462      // undef elements.
463      SmallVector<SDValue, 16> Ops;
464      for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
465        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
466                                  ElementVT, Val, DAG.getIntPtrConstant(i)));
467
468      for (unsigned i = ValueVT.getVectorNumElements(),
469           e = PartVT.getVectorNumElements(); i != e; ++i)
470        Ops.push_back(DAG.getUNDEF(ElementVT));
471
472      Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size());
473
474      // FIXME: Use CONCAT for 2x -> 4x.
475
476      //SDValue UndefElts = DAG.getUNDEF(VectorTy);
477      //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
478    } else if (PartVT.isVector() &&
479               PartVT.getVectorElementType().bitsGE(
480                 ValueVT.getVectorElementType()) &&
481               PartVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
482
483      // Promoted vector extract
484      bool Smaller = PartVT.bitsLE(ValueVT);
485      Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
486                        DL, PartVT, Val);
487    } else{
488      // Vector -> scalar conversion.
489      assert(ValueVT.getVectorNumElements() == 1 &&
490             "Only trivial vector-to-scalar conversions should get here!");
491      Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
492                        PartVT, Val, DAG.getIntPtrConstant(0));
493
494      bool Smaller = ValueVT.bitsLE(PartVT);
495      Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
496                         DL, PartVT, Val);
497    }
498
499    Parts[0] = Val;
500    return;
501  }
502
503  // Handle a multi-element vector.
504  EVT IntermediateVT, RegisterVT;
505  unsigned NumIntermediates;
506  unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
507                                                IntermediateVT,
508                                                NumIntermediates, RegisterVT);
509  unsigned NumElements = ValueVT.getVectorNumElements();
510
511  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
512  NumParts = NumRegs; // Silence a compiler warning.
513  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
514
515  // Split the vector into intermediate operands.
516  SmallVector<SDValue, 8> Ops(NumIntermediates);
517  for (unsigned i = 0; i != NumIntermediates; ++i) {
518    if (IntermediateVT.isVector())
519      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
520                           IntermediateVT, Val,
521                   DAG.getIntPtrConstant(i * (NumElements / NumIntermediates)));
522    else
523      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
524                           IntermediateVT, Val, DAG.getIntPtrConstant(i));
525  }
526
527  // Split the intermediate operands into legal parts.
528  if (NumParts == NumIntermediates) {
529    // If the register was not expanded, promote or copy the value,
530    // as appropriate.
531    for (unsigned i = 0; i != NumParts; ++i)
532      getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT);
533  } else if (NumParts > 0) {
534    // If the intermediate type was expanded, split each the value into
535    // legal parts.
536    assert(NumParts % NumIntermediates == 0 &&
537           "Must expand into a divisible number of parts!");
538    unsigned Factor = NumParts / NumIntermediates;
539    for (unsigned i = 0; i != NumIntermediates; ++i)
540      getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT);
541  }
542}
543
544
545
546
547namespace {
548  /// RegsForValue - This struct represents the registers (physical or virtual)
549  /// that a particular set of values is assigned, and the type information
550  /// about the value. The most common situation is to represent one value at a
551  /// time, but struct or array values are handled element-wise as multiple
552  /// values.  The splitting of aggregates is performed recursively, so that we
553  /// never have aggregate-typed registers. The values at this point do not
554  /// necessarily have legal types, so each value may require one or more
555  /// registers of some legal type.
556  ///
557  struct RegsForValue {
558    /// ValueVTs - The value types of the values, which may not be legal, and
559    /// may need be promoted or synthesized from one or more registers.
560    ///
561    SmallVector<EVT, 4> ValueVTs;
562
563    /// RegVTs - The value types of the registers. This is the same size as
564    /// ValueVTs and it records, for each value, what the type of the assigned
565    /// register or registers are. (Individual values are never synthesized
566    /// from more than one type of register.)
567    ///
568    /// With virtual registers, the contents of RegVTs is redundant with TLI's
569    /// getRegisterType member function, however when with physical registers
570    /// it is necessary to have a separate record of the types.
571    ///
572    SmallVector<EVT, 4> RegVTs;
573
574    /// Regs - This list holds the registers assigned to the values.
575    /// Each legal or promoted value requires one register, and each
576    /// expanded value requires multiple registers.
577    ///
578    SmallVector<unsigned, 4> Regs;
579
580    RegsForValue() {}
581
582    RegsForValue(const SmallVector<unsigned, 4> &regs,
583                 EVT regvt, EVT valuevt)
584      : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
585
586    RegsForValue(LLVMContext &Context, const TargetLowering &tli,
587                 unsigned Reg, Type *Ty) {
588      ComputeValueVTs(tli, Ty, ValueVTs);
589
590      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
591        EVT ValueVT = ValueVTs[Value];
592        unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
593        EVT RegisterVT = tli.getRegisterType(Context, ValueVT);
594        for (unsigned i = 0; i != NumRegs; ++i)
595          Regs.push_back(Reg + i);
596        RegVTs.push_back(RegisterVT);
597        Reg += NumRegs;
598      }
599    }
600
601    /// areValueTypesLegal - Return true if types of all the values are legal.
602    bool areValueTypesLegal(const TargetLowering &TLI) {
603      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
604        EVT RegisterVT = RegVTs[Value];
605        if (!TLI.isTypeLegal(RegisterVT))
606          return false;
607      }
608      return true;
609    }
610
611    /// append - Add the specified values to this one.
612    void append(const RegsForValue &RHS) {
613      ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
614      RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
615      Regs.append(RHS.Regs.begin(), RHS.Regs.end());
616    }
617
618    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
619    /// this value and returns the result as a ValueVTs value.  This uses
620    /// Chain/Flag as the input and updates them for the output Chain/Flag.
621    /// If the Flag pointer is NULL, no flag is used.
622    SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
623                            DebugLoc dl,
624                            SDValue &Chain, SDValue *Flag) const;
625
626    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
627    /// specified value into the registers specified by this object.  This uses
628    /// Chain/Flag as the input and updates them for the output Chain/Flag.
629    /// If the Flag pointer is NULL, no flag is used.
630    void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
631                       SDValue &Chain, SDValue *Flag) const;
632
633    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
634    /// operand list.  This adds the code marker, matching input operand index
635    /// (if applicable), and includes the number of values added into it.
636    void AddInlineAsmOperands(unsigned Kind,
637                              bool HasMatching, unsigned MatchingIdx,
638                              SelectionDAG &DAG,
639                              std::vector<SDValue> &Ops) const;
640  };
641}
642
643/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
644/// this value and returns the result as a ValueVT value.  This uses
645/// Chain/Flag as the input and updates them for the output Chain/Flag.
646/// If the Flag pointer is NULL, no flag is used.
647SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
648                                      FunctionLoweringInfo &FuncInfo,
649                                      DebugLoc dl,
650                                      SDValue &Chain, SDValue *Flag) const {
651  // A Value with type {} or [0 x %t] needs no registers.
652  if (ValueVTs.empty())
653    return SDValue();
654
655  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
656
657  // Assemble the legal parts into the final values.
658  SmallVector<SDValue, 4> Values(ValueVTs.size());
659  SmallVector<SDValue, 8> Parts;
660  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
661    // Copy the legal parts from the registers.
662    EVT ValueVT = ValueVTs[Value];
663    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
664    EVT RegisterVT = RegVTs[Value];
665
666    Parts.resize(NumRegs);
667    for (unsigned i = 0; i != NumRegs; ++i) {
668      SDValue P;
669      if (Flag == 0) {
670        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
671      } else {
672        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
673        *Flag = P.getValue(2);
674      }
675
676      Chain = P.getValue(1);
677      Parts[i] = P;
678
679      // If the source register was virtual and if we know something about it,
680      // add an assert node.
681      if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
682          !RegisterVT.isInteger() || RegisterVT.isVector())
683        continue;
684
685      const FunctionLoweringInfo::LiveOutInfo *LOI =
686        FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
687      if (!LOI)
688        continue;
689
690      unsigned RegSize = RegisterVT.getSizeInBits();
691      unsigned NumSignBits = LOI->NumSignBits;
692      unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
693
694      // FIXME: We capture more information than the dag can represent.  For
695      // now, just use the tightest assertzext/assertsext possible.
696      bool isSExt = true;
697      EVT FromVT(MVT::Other);
698      if (NumSignBits == RegSize)
699        isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
700      else if (NumZeroBits >= RegSize-1)
701        isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
702      else if (NumSignBits > RegSize-8)
703        isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
704      else if (NumZeroBits >= RegSize-8)
705        isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
706      else if (NumSignBits > RegSize-16)
707        isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
708      else if (NumZeroBits >= RegSize-16)
709        isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
710      else if (NumSignBits > RegSize-32)
711        isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
712      else if (NumZeroBits >= RegSize-32)
713        isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
714      else
715        continue;
716
717      // Add an assertion node.
718      assert(FromVT != MVT::Other);
719      Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
720                             RegisterVT, P, DAG.getValueType(FromVT));
721    }
722
723    Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
724                                     NumRegs, RegisterVT, ValueVT);
725    Part += NumRegs;
726    Parts.clear();
727  }
728
729  return DAG.getNode(ISD::MERGE_VALUES, dl,
730                     DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
731                     &Values[0], ValueVTs.size());
732}
733
734/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
735/// specified value into the registers specified by this object.  This uses
736/// Chain/Flag as the input and updates them for the output Chain/Flag.
737/// If the Flag pointer is NULL, no flag is used.
738void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
739                                 SDValue &Chain, SDValue *Flag) const {
740  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
741
742  // Get the list of the values's legal parts.
743  unsigned NumRegs = Regs.size();
744  SmallVector<SDValue, 8> Parts(NumRegs);
745  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
746    EVT ValueVT = ValueVTs[Value];
747    unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
748    EVT RegisterVT = RegVTs[Value];
749
750    getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
751                   &Parts[Part], NumParts, RegisterVT);
752    Part += NumParts;
753  }
754
755  // Copy the parts into the registers.
756  SmallVector<SDValue, 8> Chains(NumRegs);
757  for (unsigned i = 0; i != NumRegs; ++i) {
758    SDValue Part;
759    if (Flag == 0) {
760      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
761    } else {
762      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
763      *Flag = Part.getValue(1);
764    }
765
766    Chains[i] = Part.getValue(0);
767  }
768
769  if (NumRegs == 1 || Flag)
770    // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
771    // flagged to it. That is the CopyToReg nodes and the user are considered
772    // a single scheduling unit. If we create a TokenFactor and return it as
773    // chain, then the TokenFactor is both a predecessor (operand) of the
774    // user as well as a successor (the TF operands are flagged to the user).
775    // c1, f1 = CopyToReg
776    // c2, f2 = CopyToReg
777    // c3     = TokenFactor c1, c2
778    // ...
779    //        = op c3, ..., f2
780    Chain = Chains[NumRegs-1];
781  else
782    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
783}
784
785/// AddInlineAsmOperands - Add this value to the specified inlineasm node
786/// operand list.  This adds the code marker and includes the number of
787/// values added into it.
788void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
789                                        unsigned MatchingIdx,
790                                        SelectionDAG &DAG,
791                                        std::vector<SDValue> &Ops) const {
792  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
793
794  unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
795  if (HasMatching)
796    Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
797  else if (!Regs.empty() &&
798           TargetRegisterInfo::isVirtualRegister(Regs.front())) {
799    // Put the register class of the virtual registers in the flag word.  That
800    // way, later passes can recompute register class constraints for inline
801    // assembly as well as normal instructions.
802    // Don't do this for tied operands that can use the regclass information
803    // from the def.
804    const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
805    const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
806    Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
807  }
808
809  SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
810  Ops.push_back(Res);
811
812  for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
813    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
814    EVT RegisterVT = RegVTs[Value];
815    for (unsigned i = 0; i != NumRegs; ++i) {
816      assert(Reg < Regs.size() && "Mismatch in # registers expected");
817      Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
818    }
819  }
820}
821
822void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa,
823                               const TargetLibraryInfo *li) {
824  AA = &aa;
825  GFI = gfi;
826  LibInfo = li;
827  TD = DAG.getTarget().getTargetData();
828  LPadToCallSiteMap.clear();
829}
830
831/// clear - Clear out the current SelectionDAG and the associated
832/// state and prepare this SelectionDAGBuilder object to be used
833/// for a new block. This doesn't clear out information about
834/// additional blocks that are needed to complete switch lowering
835/// or PHI node updating; that information is cleared out as it is
836/// consumed.
837void SelectionDAGBuilder::clear() {
838  NodeMap.clear();
839  UnusedArgNodeMap.clear();
840  PendingLoads.clear();
841  PendingExports.clear();
842  CurDebugLoc = DebugLoc();
843  HasTailCall = false;
844}
845
846/// clearDanglingDebugInfo - Clear the dangling debug information
847/// map. This function is separated from the clear so that debug
848/// information that is dangling in a basic block can be properly
849/// resolved in a different basic block. This allows the
850/// SelectionDAG to resolve dangling debug information attached
851/// to PHI nodes.
852void SelectionDAGBuilder::clearDanglingDebugInfo() {
853  DanglingDebugInfoMap.clear();
854}
855
856/// getRoot - Return the current virtual root of the Selection DAG,
857/// flushing any PendingLoad items. This must be done before emitting
858/// a store or any other node that may need to be ordered after any
859/// prior load instructions.
860///
861SDValue SelectionDAGBuilder::getRoot() {
862  if (PendingLoads.empty())
863    return DAG.getRoot();
864
865  if (PendingLoads.size() == 1) {
866    SDValue Root = PendingLoads[0];
867    DAG.setRoot(Root);
868    PendingLoads.clear();
869    return Root;
870  }
871
872  // Otherwise, we have to make a token factor node.
873  SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
874                               &PendingLoads[0], PendingLoads.size());
875  PendingLoads.clear();
876  DAG.setRoot(Root);
877  return Root;
878}
879
880/// getControlRoot - Similar to getRoot, but instead of flushing all the
881/// PendingLoad items, flush all the PendingExports items. It is necessary
882/// to do this before emitting a terminator instruction.
883///
884SDValue SelectionDAGBuilder::getControlRoot() {
885  SDValue Root = DAG.getRoot();
886
887  if (PendingExports.empty())
888    return Root;
889
890  // Turn all of the CopyToReg chains into one factored node.
891  if (Root.getOpcode() != ISD::EntryToken) {
892    unsigned i = 0, e = PendingExports.size();
893    for (; i != e; ++i) {
894      assert(PendingExports[i].getNode()->getNumOperands() > 1);
895      if (PendingExports[i].getNode()->getOperand(0) == Root)
896        break;  // Don't add the root if we already indirectly depend on it.
897    }
898
899    if (i == e)
900      PendingExports.push_back(Root);
901  }
902
903  Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
904                     &PendingExports[0],
905                     PendingExports.size());
906  PendingExports.clear();
907  DAG.setRoot(Root);
908  return Root;
909}
910
911void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) {
912  if (DAG.GetOrdering(Node) != 0) return; // Already has ordering.
913  DAG.AssignOrdering(Node, SDNodeOrder);
914
915  for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I)
916    AssignOrderingToNode(Node->getOperand(I).getNode());
917}
918
919void SelectionDAGBuilder::visit(const Instruction &I) {
920  // Set up outgoing PHI node register values before emitting the terminator.
921  if (isa<TerminatorInst>(&I))
922    HandlePHINodesInSuccessorBlocks(I.getParent());
923
924  CurDebugLoc = I.getDebugLoc();
925
926  visit(I.getOpcode(), I);
927
928  if (!isa<TerminatorInst>(&I) && !HasTailCall)
929    CopyToExportRegsIfNeeded(&I);
930
931  CurDebugLoc = DebugLoc();
932}
933
934void SelectionDAGBuilder::visitPHI(const PHINode &) {
935  llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
936}
937
938void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
939  // Note: this doesn't use InstVisitor, because it has to work with
940  // ConstantExpr's in addition to instructions.
941  switch (Opcode) {
942  default: llvm_unreachable("Unknown instruction type encountered!");
943    // Build the switch statement using the Instruction.def file.
944#define HANDLE_INST(NUM, OPCODE, CLASS) \
945    case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
946#include "llvm/Instruction.def"
947  }
948
949  // Assign the ordering to the freshly created DAG nodes.
950  if (NodeMap.count(&I)) {
951    ++SDNodeOrder;
952    AssignOrderingToNode(getValue(&I).getNode());
953  }
954}
955
956// resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
957// generate the debug data structures now that we've seen its definition.
958void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
959                                                   SDValue Val) {
960  DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
961  if (DDI.getDI()) {
962    const DbgValueInst *DI = DDI.getDI();
963    DebugLoc dl = DDI.getdl();
964    unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
965    MDNode *Variable = DI->getVariable();
966    uint64_t Offset = DI->getOffset();
967    SDDbgValue *SDV;
968    if (Val.getNode()) {
969      if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) {
970        SDV = DAG.getDbgValue(Variable, Val.getNode(),
971                              Val.getResNo(), Offset, dl, DbgSDNodeOrder);
972        DAG.AddDbgValue(SDV, Val.getNode(), false);
973      }
974    } else
975      DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
976    DanglingDebugInfoMap[V] = DanglingDebugInfo();
977  }
978}
979
980/// getValue - Return an SDValue for the given Value.
981SDValue SelectionDAGBuilder::getValue(const Value *V) {
982  // If we already have an SDValue for this value, use it. It's important
983  // to do this first, so that we don't create a CopyFromReg if we already
984  // have a regular SDValue.
985  SDValue &N = NodeMap[V];
986  if (N.getNode()) return N;
987
988  // If there's a virtual register allocated and initialized for this
989  // value, use it.
990  DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
991  if (It != FuncInfo.ValueMap.end()) {
992    unsigned InReg = It->second;
993    RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
994    SDValue Chain = DAG.getEntryNode();
995    N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL);
996    resolveDanglingDebugInfo(V, N);
997    return N;
998  }
999
1000  // Otherwise create a new SDValue and remember it.
1001  SDValue Val = getValueImpl(V);
1002  NodeMap[V] = Val;
1003  resolveDanglingDebugInfo(V, Val);
1004  return Val;
1005}
1006
1007/// getNonRegisterValue - Return an SDValue for the given Value, but
1008/// don't look in FuncInfo.ValueMap for a virtual register.
1009SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1010  // If we already have an SDValue for this value, use it.
1011  SDValue &N = NodeMap[V];
1012  if (N.getNode()) return N;
1013
1014  // Otherwise create a new SDValue and remember it.
1015  SDValue Val = getValueImpl(V);
1016  NodeMap[V] = Val;
1017  resolveDanglingDebugInfo(V, Val);
1018  return Val;
1019}
1020
1021/// getValueImpl - Helper function for getValue and getNonRegisterValue.
1022/// Create an SDValue for the given value.
1023SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1024  if (const Constant *C = dyn_cast<Constant>(V)) {
1025    EVT VT = TLI.getValueType(V->getType(), true);
1026
1027    if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1028      return DAG.getConstant(*CI, VT);
1029
1030    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1031      return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT);
1032
1033    if (isa<ConstantPointerNull>(C))
1034      return DAG.getConstant(0, TLI.getPointerTy());
1035
1036    if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1037      return DAG.getConstantFP(*CFP, VT);
1038
1039    if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1040      return DAG.getUNDEF(VT);
1041
1042    if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1043      visit(CE->getOpcode(), *CE);
1044      SDValue N1 = NodeMap[V];
1045      assert(N1.getNode() && "visit didn't populate the NodeMap!");
1046      return N1;
1047    }
1048
1049    if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1050      SmallVector<SDValue, 4> Constants;
1051      for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1052           OI != OE; ++OI) {
1053        SDNode *Val = getValue(*OI).getNode();
1054        // If the operand is an empty aggregate, there are no values.
1055        if (!Val) continue;
1056        // Add each leaf value from the operand to the Constants list
1057        // to form a flattened list of all the values.
1058        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1059          Constants.push_back(SDValue(Val, i));
1060      }
1061
1062      return DAG.getMergeValues(&Constants[0], Constants.size(),
1063                                getCurDebugLoc());
1064    }
1065
1066    if (const ConstantDataSequential *CDS =
1067          dyn_cast<ConstantDataSequential>(C)) {
1068      SmallVector<SDValue, 4> Ops;
1069      for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1070        SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1071        // Add each leaf value from the operand to the Constants list
1072        // to form a flattened list of all the values.
1073        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1074          Ops.push_back(SDValue(Val, i));
1075      }
1076
1077      if (isa<ArrayType>(CDS->getType()))
1078        return DAG.getMergeValues(&Ops[0], Ops.size(), getCurDebugLoc());
1079      return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
1080                                      VT, &Ops[0], Ops.size());
1081    }
1082
1083    if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1084      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1085             "Unknown struct or array constant!");
1086
1087      SmallVector<EVT, 4> ValueVTs;
1088      ComputeValueVTs(TLI, C->getType(), ValueVTs);
1089      unsigned NumElts = ValueVTs.size();
1090      if (NumElts == 0)
1091        return SDValue(); // empty struct
1092      SmallVector<SDValue, 4> Constants(NumElts);
1093      for (unsigned i = 0; i != NumElts; ++i) {
1094        EVT EltVT = ValueVTs[i];
1095        if (isa<UndefValue>(C))
1096          Constants[i] = DAG.getUNDEF(EltVT);
1097        else if (EltVT.isFloatingPoint())
1098          Constants[i] = DAG.getConstantFP(0, EltVT);
1099        else
1100          Constants[i] = DAG.getConstant(0, EltVT);
1101      }
1102
1103      return DAG.getMergeValues(&Constants[0], NumElts,
1104                                getCurDebugLoc());
1105    }
1106
1107    if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1108      return DAG.getBlockAddress(BA, VT);
1109
1110    VectorType *VecTy = cast<VectorType>(V->getType());
1111    unsigned NumElements = VecTy->getNumElements();
1112
1113    // Now that we know the number and type of the elements, get that number of
1114    // elements into the Ops array based on what kind of constant it is.
1115    SmallVector<SDValue, 16> Ops;
1116    if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1117      for (unsigned i = 0; i != NumElements; ++i)
1118        Ops.push_back(getValue(CV->getOperand(i)));
1119    } else {
1120      assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1121      EVT EltVT = TLI.getValueType(VecTy->getElementType());
1122
1123      SDValue Op;
1124      if (EltVT.isFloatingPoint())
1125        Op = DAG.getConstantFP(0, EltVT);
1126      else
1127        Op = DAG.getConstant(0, EltVT);
1128      Ops.assign(NumElements, Op);
1129    }
1130
1131    // Create a BUILD_VECTOR node.
1132    return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
1133                                    VT, &Ops[0], Ops.size());
1134  }
1135
1136  // If this is a static alloca, generate it as the frameindex instead of
1137  // computation.
1138  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1139    DenseMap<const AllocaInst*, int>::iterator SI =
1140      FuncInfo.StaticAllocaMap.find(AI);
1141    if (SI != FuncInfo.StaticAllocaMap.end())
1142      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
1143  }
1144
1145  // If this is an instruction which fast-isel has deferred, select it now.
1146  if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1147    unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1148    RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType());
1149    SDValue Chain = DAG.getEntryNode();
1150    return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL);
1151  }
1152
1153  llvm_unreachable("Can't get register for value!");
1154}
1155
1156void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1157  SDValue Chain = getControlRoot();
1158  SmallVector<ISD::OutputArg, 8> Outs;
1159  SmallVector<SDValue, 8> OutVals;
1160
1161  if (!FuncInfo.CanLowerReturn) {
1162    unsigned DemoteReg = FuncInfo.DemoteRegister;
1163    const Function *F = I.getParent()->getParent();
1164
1165    // Emit a store of the return value through the virtual register.
1166    // Leave Outs empty so that LowerReturn won't try to load return
1167    // registers the usual way.
1168    SmallVector<EVT, 1> PtrValueVTs;
1169    ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
1170                    PtrValueVTs);
1171
1172    SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
1173    SDValue RetOp = getValue(I.getOperand(0));
1174
1175    SmallVector<EVT, 4> ValueVTs;
1176    SmallVector<uint64_t, 4> Offsets;
1177    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1178    unsigned NumValues = ValueVTs.size();
1179
1180    SmallVector<SDValue, 4> Chains(NumValues);
1181    for (unsigned i = 0; i != NumValues; ++i) {
1182      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(),
1183                                RetPtr.getValueType(), RetPtr,
1184                                DAG.getIntPtrConstant(Offsets[i]));
1185      Chains[i] =
1186        DAG.getStore(Chain, getCurDebugLoc(),
1187                     SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1188                     // FIXME: better loc info would be nice.
1189                     Add, MachinePointerInfo(), false, false, 0);
1190    }
1191
1192    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
1193                        MVT::Other, &Chains[0], NumValues);
1194  } else if (I.getNumOperands() != 0) {
1195    SmallVector<EVT, 4> ValueVTs;
1196    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
1197    unsigned NumValues = ValueVTs.size();
1198    if (NumValues) {
1199      SDValue RetOp = getValue(I.getOperand(0));
1200      for (unsigned j = 0, f = NumValues; j != f; ++j) {
1201        EVT VT = ValueVTs[j];
1202
1203        ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1204
1205        const Function *F = I.getParent()->getParent();
1206        if (F->paramHasAttr(0, Attribute::SExt))
1207          ExtendKind = ISD::SIGN_EXTEND;
1208        else if (F->paramHasAttr(0, Attribute::ZExt))
1209          ExtendKind = ISD::ZERO_EXTEND;
1210
1211        if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1212          VT = TLI.getTypeForExtArgOrReturn(*DAG.getContext(), VT, ExtendKind);
1213
1214        unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
1215        EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
1216        SmallVector<SDValue, 4> Parts(NumParts);
1217        getCopyToParts(DAG, getCurDebugLoc(),
1218                       SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1219                       &Parts[0], NumParts, PartVT, ExtendKind);
1220
1221        // 'inreg' on function refers to return value
1222        ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1223        if (F->paramHasAttr(0, Attribute::InReg))
1224          Flags.setInReg();
1225
1226        // Propagate extension type if any
1227        if (ExtendKind == ISD::SIGN_EXTEND)
1228          Flags.setSExt();
1229        else if (ExtendKind == ISD::ZERO_EXTEND)
1230          Flags.setZExt();
1231
1232        for (unsigned i = 0; i < NumParts; ++i) {
1233          Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1234                                        /*isfixed=*/true));
1235          OutVals.push_back(Parts[i]);
1236        }
1237      }
1238    }
1239  }
1240
1241  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1242  CallingConv::ID CallConv =
1243    DAG.getMachineFunction().getFunction()->getCallingConv();
1244  Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
1245                          Outs, OutVals, getCurDebugLoc(), DAG);
1246
1247  // Verify that the target's LowerReturn behaved as expected.
1248  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1249         "LowerReturn didn't return a valid chain!");
1250
1251  // Update the DAG with the new chain value resulting from return lowering.
1252  DAG.setRoot(Chain);
1253}
1254
1255/// CopyToExportRegsIfNeeded - If the given value has virtual registers
1256/// created for it, emit nodes to copy the value into the virtual
1257/// registers.
1258void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1259  // Skip empty types
1260  if (V->getType()->isEmptyTy())
1261    return;
1262
1263  DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1264  if (VMI != FuncInfo.ValueMap.end()) {
1265    assert(!V->use_empty() && "Unused value assigned virtual registers!");
1266    CopyValueToVirtualRegister(V, VMI->second);
1267  }
1268}
1269
1270/// ExportFromCurrentBlock - If this condition isn't known to be exported from
1271/// the current basic block, add it to ValueMap now so that we'll get a
1272/// CopyTo/FromReg.
1273void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1274  // No need to export constants.
1275  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1276
1277  // Already exported?
1278  if (FuncInfo.isExportedInst(V)) return;
1279
1280  unsigned Reg = FuncInfo.InitializeRegForValue(V);
1281  CopyValueToVirtualRegister(V, Reg);
1282}
1283
1284bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1285                                                     const BasicBlock *FromBB) {
1286  // The operands of the setcc have to be in this block.  We don't know
1287  // how to export them from some other block.
1288  if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1289    // Can export from current BB.
1290    if (VI->getParent() == FromBB)
1291      return true;
1292
1293    // Is already exported, noop.
1294    return FuncInfo.isExportedInst(V);
1295  }
1296
1297  // If this is an argument, we can export it if the BB is the entry block or
1298  // if it is already exported.
1299  if (isa<Argument>(V)) {
1300    if (FromBB == &FromBB->getParent()->getEntryBlock())
1301      return true;
1302
1303    // Otherwise, can only export this if it is already exported.
1304    return FuncInfo.isExportedInst(V);
1305  }
1306
1307  // Otherwise, constants can always be exported.
1308  return true;
1309}
1310
1311/// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1312uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src,
1313                                            const MachineBasicBlock *Dst) const {
1314  BranchProbabilityInfo *BPI = FuncInfo.BPI;
1315  if (!BPI)
1316    return 0;
1317  const BasicBlock *SrcBB = Src->getBasicBlock();
1318  const BasicBlock *DstBB = Dst->getBasicBlock();
1319  return BPI->getEdgeWeight(SrcBB, DstBB);
1320}
1321
1322void SelectionDAGBuilder::
1323addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst,
1324                       uint32_t Weight /* = 0 */) {
1325  if (!Weight)
1326    Weight = getEdgeWeight(Src, Dst);
1327  Src->addSuccessor(Dst, Weight);
1328}
1329
1330
1331static bool InBlock(const Value *V, const BasicBlock *BB) {
1332  if (const Instruction *I = dyn_cast<Instruction>(V))
1333    return I->getParent() == BB;
1334  return true;
1335}
1336
1337/// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1338/// This function emits a branch and is used at the leaves of an OR or an
1339/// AND operator tree.
1340///
1341void
1342SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1343                                                  MachineBasicBlock *TBB,
1344                                                  MachineBasicBlock *FBB,
1345                                                  MachineBasicBlock *CurBB,
1346                                                  MachineBasicBlock *SwitchBB) {
1347  const BasicBlock *BB = CurBB->getBasicBlock();
1348
1349  // If the leaf of the tree is a comparison, merge the condition into
1350  // the caseblock.
1351  if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1352    // The operands of the cmp have to be in this block.  We don't know
1353    // how to export them from some other block.  If this is the first block
1354    // of the sequence, no exporting is needed.
1355    if (CurBB == SwitchBB ||
1356        (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1357         isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1358      ISD::CondCode Condition;
1359      if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1360        Condition = getICmpCondCode(IC->getPredicate());
1361      } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1362        Condition = getFCmpCondCode(FC->getPredicate());
1363        if (TM.Options.NoNaNsFPMath)
1364          Condition = getFCmpCodeWithoutNaN(Condition);
1365      } else {
1366        Condition = ISD::SETEQ; // silence warning.
1367        llvm_unreachable("Unknown compare instruction");
1368      }
1369
1370      CaseBlock CB(Condition, BOp->getOperand(0),
1371                   BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1372      SwitchCases.push_back(CB);
1373      return;
1374    }
1375  }
1376
1377  // Create a CaseBlock record representing this branch.
1378  CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1379               NULL, TBB, FBB, CurBB);
1380  SwitchCases.push_back(CB);
1381}
1382
1383/// FindMergedConditions - If Cond is an expression like
1384void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1385                                               MachineBasicBlock *TBB,
1386                                               MachineBasicBlock *FBB,
1387                                               MachineBasicBlock *CurBB,
1388                                               MachineBasicBlock *SwitchBB,
1389                                               unsigned Opc) {
1390  // If this node is not part of the or/and tree, emit it as a branch.
1391  const Instruction *BOp = dyn_cast<Instruction>(Cond);
1392  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1393      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1394      BOp->getParent() != CurBB->getBasicBlock() ||
1395      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1396      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1397    EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB);
1398    return;
1399  }
1400
1401  //  Create TmpBB after CurBB.
1402  MachineFunction::iterator BBI = CurBB;
1403  MachineFunction &MF = DAG.getMachineFunction();
1404  MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1405  CurBB->getParent()->insert(++BBI, TmpBB);
1406
1407  if (Opc == Instruction::Or) {
1408    // Codegen X | Y as:
1409    //   jmp_if_X TBB
1410    //   jmp TmpBB
1411    // TmpBB:
1412    //   jmp_if_Y TBB
1413    //   jmp FBB
1414    //
1415
1416    // Emit the LHS condition.
1417    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc);
1418
1419    // Emit the RHS condition into TmpBB.
1420    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1421  } else {
1422    assert(Opc == Instruction::And && "Unknown merge op!");
1423    // Codegen X & Y as:
1424    //   jmp_if_X TmpBB
1425    //   jmp FBB
1426    // TmpBB:
1427    //   jmp_if_Y TBB
1428    //   jmp FBB
1429    //
1430    //  This requires creation of TmpBB after CurBB.
1431
1432    // Emit the LHS condition.
1433    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc);
1434
1435    // Emit the RHS condition into TmpBB.
1436    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1437  }
1438}
1439
1440/// If the set of cases should be emitted as a series of branches, return true.
1441/// If we should emit this as a bunch of and/or'd together conditions, return
1442/// false.
1443bool
1444SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
1445  if (Cases.size() != 2) return true;
1446
1447  // If this is two comparisons of the same values or'd or and'd together, they
1448  // will get folded into a single comparison, so don't emit two blocks.
1449  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1450       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1451      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1452       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1453    return false;
1454  }
1455
1456  // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1457  // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1458  if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1459      Cases[0].CC == Cases[1].CC &&
1460      isa<Constant>(Cases[0].CmpRHS) &&
1461      cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1462    if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1463      return false;
1464    if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1465      return false;
1466  }
1467
1468  return true;
1469}
1470
1471void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1472  MachineBasicBlock *BrMBB = FuncInfo.MBB;
1473
1474  // Update machine-CFG edges.
1475  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1476
1477  // Figure out which block is immediately after the current one.
1478  MachineBasicBlock *NextBlock = 0;
1479  MachineFunction::iterator BBI = BrMBB;
1480  if (++BBI != FuncInfo.MF->end())
1481    NextBlock = BBI;
1482
1483  if (I.isUnconditional()) {
1484    // Update machine-CFG edges.
1485    BrMBB->addSuccessor(Succ0MBB);
1486
1487    // If this is not a fall-through branch, emit the branch.
1488    if (Succ0MBB != NextBlock)
1489      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1490                              MVT::Other, getControlRoot(),
1491                              DAG.getBasicBlock(Succ0MBB)));
1492
1493    return;
1494  }
1495
1496  // If this condition is one of the special cases we handle, do special stuff
1497  // now.
1498  const Value *CondVal = I.getCondition();
1499  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1500
1501  // If this is a series of conditions that are or'd or and'd together, emit
1502  // this as a sequence of branches instead of setcc's with and/or operations.
1503  // As long as jumps are not expensive, this should improve performance.
1504  // For example, instead of something like:
1505  //     cmp A, B
1506  //     C = seteq
1507  //     cmp D, E
1508  //     F = setle
1509  //     or C, F
1510  //     jnz foo
1511  // Emit:
1512  //     cmp A, B
1513  //     je foo
1514  //     cmp D, E
1515  //     jle foo
1516  //
1517  if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1518    if (!TLI.isJumpExpensive() &&
1519        BOp->hasOneUse() &&
1520        (BOp->getOpcode() == Instruction::And ||
1521         BOp->getOpcode() == Instruction::Or)) {
1522      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1523                           BOp->getOpcode());
1524      // If the compares in later blocks need to use values not currently
1525      // exported from this block, export them now.  This block should always
1526      // be the first entry.
1527      assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1528
1529      // Allow some cases to be rejected.
1530      if (ShouldEmitAsBranches(SwitchCases)) {
1531        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1532          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1533          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1534        }
1535
1536        // Emit the branch for this block.
1537        visitSwitchCase(SwitchCases[0], BrMBB);
1538        SwitchCases.erase(SwitchCases.begin());
1539        return;
1540      }
1541
1542      // Okay, we decided not to do this, remove any inserted MBB's and clear
1543      // SwitchCases.
1544      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1545        FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1546
1547      SwitchCases.clear();
1548    }
1549  }
1550
1551  // Create a CaseBlock record representing this branch.
1552  CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1553               NULL, Succ0MBB, Succ1MBB, BrMBB);
1554
1555  // Use visitSwitchCase to actually insert the fast branch sequence for this
1556  // cond branch.
1557  visitSwitchCase(CB, BrMBB);
1558}
1559
1560/// visitSwitchCase - Emits the necessary code to represent a single node in
1561/// the binary search tree resulting from lowering a switch instruction.
1562void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1563                                          MachineBasicBlock *SwitchBB) {
1564  SDValue Cond;
1565  SDValue CondLHS = getValue(CB.CmpLHS);
1566  DebugLoc dl = getCurDebugLoc();
1567
1568  // Build the setcc now.
1569  if (CB.CmpMHS == NULL) {
1570    // Fold "(X == true)" to X and "(X == false)" to !X to
1571    // handle common cases produced by branch lowering.
1572    if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1573        CB.CC == ISD::SETEQ)
1574      Cond = CondLHS;
1575    else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1576             CB.CC == ISD::SETEQ) {
1577      SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1578      Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1579    } else
1580      Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1581  } else {
1582    assert(CB.CC == ISD::SETCC_INVALID &&
1583           "Condition is undefined for to-the-range belonging check.");
1584
1585    const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1586    const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
1587
1588    SDValue CmpOp = getValue(CB.CmpMHS);
1589    EVT VT = CmpOp.getValueType();
1590
1591    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(false)) {
1592      Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1593                          ISD::SETULE);
1594    } else {
1595      SDValue SUB = DAG.getNode(ISD::SUB, dl,
1596                                VT, CmpOp, DAG.getConstant(Low, VT));
1597      Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1598                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1599    }
1600  }
1601
1602  // Update successor info
1603  addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight);
1604  addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight);
1605
1606  // Set NextBlock to be the MBB immediately after the current one, if any.
1607  // This is used to avoid emitting unnecessary branches to the next block.
1608  MachineBasicBlock *NextBlock = 0;
1609  MachineFunction::iterator BBI = SwitchBB;
1610  if (++BBI != FuncInfo.MF->end())
1611    NextBlock = BBI;
1612
1613  // If the lhs block is the next block, invert the condition so that we can
1614  // fall through to the lhs instead of the rhs block.
1615  if (CB.TrueBB == NextBlock) {
1616    std::swap(CB.TrueBB, CB.FalseBB);
1617    SDValue True = DAG.getConstant(1, Cond.getValueType());
1618    Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1619  }
1620
1621  SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1622                               MVT::Other, getControlRoot(), Cond,
1623                               DAG.getBasicBlock(CB.TrueBB));
1624
1625  // Insert the false branch. Do this even if it's a fall through branch,
1626  // this makes it easier to do DAG optimizations which require inverting
1627  // the branch condition.
1628  BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1629                       DAG.getBasicBlock(CB.FalseBB));
1630
1631  DAG.setRoot(BrCond);
1632}
1633
1634/// visitJumpTable - Emit JumpTable node in the current MBB
1635void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1636  // Emit the code for the jump table
1637  assert(JT.Reg != -1U && "Should lower JT Header first!");
1638  EVT PTy = TLI.getPointerTy();
1639  SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1640                                     JT.Reg, PTy);
1641  SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1642  SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(),
1643                                    MVT::Other, Index.getValue(1),
1644                                    Table, Index);
1645  DAG.setRoot(BrJumpTable);
1646}
1647
1648/// visitJumpTableHeader - This function emits necessary code to produce index
1649/// in the JumpTable from switch case.
1650void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1651                                               JumpTableHeader &JTH,
1652                                               MachineBasicBlock *SwitchBB) {
1653  // Subtract the lowest switch case value from the value being switched on and
1654  // conditional branch to default mbb if the result is greater than the
1655  // difference between smallest and largest cases.
1656  SDValue SwitchOp = getValue(JTH.SValue);
1657  EVT VT = SwitchOp.getValueType();
1658  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1659                            DAG.getConstant(JTH.First, VT));
1660
1661  // The SDNode we just created, which holds the value being switched on minus
1662  // the smallest case value, needs to be copied to a virtual register so it
1663  // can be used as an index into the jump table in a subsequent basic block.
1664  // This value may be smaller or larger than the target's pointer type, and
1665  // therefore require extension or truncating.
1666  SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy());
1667
1668  unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy());
1669  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1670                                    JumpTableReg, SwitchOp);
1671  JT.Reg = JumpTableReg;
1672
1673  // Emit the range check for the jump table, and branch to the default block
1674  // for the switch statement if the value being switched on exceeds the largest
1675  // case in the switch.
1676  SDValue CMP = DAG.getSetCC(getCurDebugLoc(),
1677                             TLI.getSetCCResultType(Sub.getValueType()), Sub,
1678                             DAG.getConstant(JTH.Last-JTH.First,VT),
1679                             ISD::SETUGT);
1680
1681  // Set NextBlock to be the MBB immediately after the current one, if any.
1682  // This is used to avoid emitting unnecessary branches to the next block.
1683  MachineBasicBlock *NextBlock = 0;
1684  MachineFunction::iterator BBI = SwitchBB;
1685
1686  if (++BBI != FuncInfo.MF->end())
1687    NextBlock = BBI;
1688
1689  SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1690                               MVT::Other, CopyTo, CMP,
1691                               DAG.getBasicBlock(JT.Default));
1692
1693  if (JT.MBB != NextBlock)
1694    BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond,
1695                         DAG.getBasicBlock(JT.MBB));
1696
1697  DAG.setRoot(BrCond);
1698}
1699
1700/// visitBitTestHeader - This function emits necessary code to produce value
1701/// suitable for "bit tests"
1702void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1703                                             MachineBasicBlock *SwitchBB) {
1704  // Subtract the minimum value
1705  SDValue SwitchOp = getValue(B.SValue);
1706  EVT VT = SwitchOp.getValueType();
1707  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1708                            DAG.getConstant(B.First, VT));
1709
1710  // Check range
1711  SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(),
1712                                  TLI.getSetCCResultType(Sub.getValueType()),
1713                                  Sub, DAG.getConstant(B.Range, VT),
1714                                  ISD::SETUGT);
1715
1716  // Determine the type of the test operands.
1717  bool UsePtrType = false;
1718  if (!TLI.isTypeLegal(VT))
1719    UsePtrType = true;
1720  else {
1721    for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
1722      if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
1723        // Switch table case range are encoded into series of masks.
1724        // Just use pointer type, it's guaranteed to fit.
1725        UsePtrType = true;
1726        break;
1727      }
1728  }
1729  if (UsePtrType) {
1730    VT = TLI.getPointerTy();
1731    Sub = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), VT);
1732  }
1733
1734  B.RegVT = VT;
1735  B.Reg = FuncInfo.CreateReg(VT);
1736  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1737                                    B.Reg, Sub);
1738
1739  // Set NextBlock to be the MBB immediately after the current one, if any.
1740  // This is used to avoid emitting unnecessary branches to the next block.
1741  MachineBasicBlock *NextBlock = 0;
1742  MachineFunction::iterator BBI = SwitchBB;
1743  if (++BBI != FuncInfo.MF->end())
1744    NextBlock = BBI;
1745
1746  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1747
1748  addSuccessorWithWeight(SwitchBB, B.Default);
1749  addSuccessorWithWeight(SwitchBB, MBB);
1750
1751  SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1752                                MVT::Other, CopyTo, RangeCmp,
1753                                DAG.getBasicBlock(B.Default));
1754
1755  if (MBB != NextBlock)
1756    BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo,
1757                          DAG.getBasicBlock(MBB));
1758
1759  DAG.setRoot(BrRange);
1760}
1761
1762/// visitBitTestCase - this function produces one "bit test"
1763void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
1764                                           MachineBasicBlock* NextMBB,
1765                                           unsigned Reg,
1766                                           BitTestCase &B,
1767                                           MachineBasicBlock *SwitchBB) {
1768  EVT VT = BB.RegVT;
1769  SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1770                                       Reg, VT);
1771  SDValue Cmp;
1772  unsigned PopCount = CountPopulation_64(B.Mask);
1773  if (PopCount == 1) {
1774    // Testing for a single bit; just compare the shift count with what it
1775    // would need to be to shift a 1 bit in that position.
1776    Cmp = DAG.getSetCC(getCurDebugLoc(),
1777                       TLI.getSetCCResultType(VT),
1778                       ShiftOp,
1779                       DAG.getConstant(CountTrailingZeros_64(B.Mask), VT),
1780                       ISD::SETEQ);
1781  } else if (PopCount == BB.Range) {
1782    // There is only one zero bit in the range, test for it directly.
1783    Cmp = DAG.getSetCC(getCurDebugLoc(),
1784                       TLI.getSetCCResultType(VT),
1785                       ShiftOp,
1786                       DAG.getConstant(CountTrailingOnes_64(B.Mask), VT),
1787                       ISD::SETNE);
1788  } else {
1789    // Make desired shift
1790    SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), VT,
1791                                    DAG.getConstant(1, VT), ShiftOp);
1792
1793    // Emit bit tests and jumps
1794    SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(),
1795                                VT, SwitchVal, DAG.getConstant(B.Mask, VT));
1796    Cmp = DAG.getSetCC(getCurDebugLoc(),
1797                       TLI.getSetCCResultType(VT),
1798                       AndOp, DAG.getConstant(0, VT),
1799                       ISD::SETNE);
1800  }
1801
1802  addSuccessorWithWeight(SwitchBB, B.TargetBB);
1803  addSuccessorWithWeight(SwitchBB, NextMBB);
1804
1805  SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1806                              MVT::Other, getControlRoot(),
1807                              Cmp, DAG.getBasicBlock(B.TargetBB));
1808
1809  // Set NextBlock to be the MBB immediately after the current one, if any.
1810  // This is used to avoid emitting unnecessary branches to the next block.
1811  MachineBasicBlock *NextBlock = 0;
1812  MachineFunction::iterator BBI = SwitchBB;
1813  if (++BBI != FuncInfo.MF->end())
1814    NextBlock = BBI;
1815
1816  if (NextMBB != NextBlock)
1817    BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd,
1818                        DAG.getBasicBlock(NextMBB));
1819
1820  DAG.setRoot(BrAnd);
1821}
1822
1823void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1824  MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
1825
1826  // Retrieve successors.
1827  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1828  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1829
1830  const Value *Callee(I.getCalledValue());
1831  const Function *Fn = dyn_cast<Function>(Callee);
1832  if (isa<InlineAsm>(Callee))
1833    visitInlineAsm(&I);
1834  else if (Fn && Fn->isIntrinsic()) {
1835    assert(Fn->getIntrinsicID() == Intrinsic::donothing);
1836    // Ignore invokes to @llvm.donothing: jump directly to the next BB.
1837  } else
1838    LowerCallTo(&I, getValue(Callee), false, LandingPad);
1839
1840  // If the value of the invoke is used outside of its defining block, make it
1841  // available as a virtual register.
1842  CopyToExportRegsIfNeeded(&I);
1843
1844  // Update successor info
1845  addSuccessorWithWeight(InvokeMBB, Return);
1846  addSuccessorWithWeight(InvokeMBB, LandingPad);
1847
1848  // Drop into normal successor.
1849  DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1850                          MVT::Other, getControlRoot(),
1851                          DAG.getBasicBlock(Return)));
1852}
1853
1854void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
1855  llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
1856}
1857
1858void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
1859  assert(FuncInfo.MBB->isLandingPad() &&
1860         "Call to landingpad not in landing pad!");
1861
1862  MachineBasicBlock *MBB = FuncInfo.MBB;
1863  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
1864  AddLandingPadInfo(LP, MMI, MBB);
1865
1866  // If there aren't registers to copy the values into (e.g., during SjLj
1867  // exceptions), then don't bother to create these DAG nodes.
1868  if (TLI.getExceptionPointerRegister() == 0 &&
1869      TLI.getExceptionSelectorRegister() == 0)
1870    return;
1871
1872  SmallVector<EVT, 2> ValueVTs;
1873  ComputeValueVTs(TLI, LP.getType(), ValueVTs);
1874
1875  // Insert the EXCEPTIONADDR instruction.
1876  assert(FuncInfo.MBB->isLandingPad() &&
1877         "Call to eh.exception not in landing pad!");
1878  SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
1879  SDValue Ops[2];
1880  Ops[0] = DAG.getRoot();
1881  SDValue Op1 = DAG.getNode(ISD::EXCEPTIONADDR, getCurDebugLoc(), VTs, Ops, 1);
1882  SDValue Chain = Op1.getValue(1);
1883
1884  // Insert the EHSELECTION instruction.
1885  VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
1886  Ops[0] = Op1;
1887  Ops[1] = Chain;
1888  SDValue Op2 = DAG.getNode(ISD::EHSELECTION, getCurDebugLoc(), VTs, Ops, 2);
1889  Chain = Op2.getValue(1);
1890  Op2 = DAG.getSExtOrTrunc(Op2, getCurDebugLoc(), MVT::i32);
1891
1892  Ops[0] = Op1;
1893  Ops[1] = Op2;
1894  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
1895                            DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
1896                            &Ops[0], 2);
1897
1898  std::pair<SDValue, SDValue> RetPair = std::make_pair(Res, Chain);
1899  setValue(&LP, RetPair.first);
1900  DAG.setRoot(RetPair.second);
1901}
1902
1903/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1904/// small case ranges).
1905bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
1906                                                 CaseRecVector& WorkList,
1907                                                 const Value* SV,
1908                                                 MachineBasicBlock *Default,
1909                                                 MachineBasicBlock *SwitchBB) {
1910  // Size is the number of Cases represented by this range.
1911  size_t Size = CR.Range.second - CR.Range.first;
1912  if (Size > 3)
1913    return false;
1914
1915  // Get the MachineFunction which holds the current MBB.  This is used when
1916  // inserting any additional MBBs necessary to represent the switch.
1917  MachineFunction *CurMF = FuncInfo.MF;
1918
1919  // Figure out which block is immediately after the current one.
1920  MachineBasicBlock *NextBlock = 0;
1921  MachineFunction::iterator BBI = CR.CaseBB;
1922
1923  if (++BBI != FuncInfo.MF->end())
1924    NextBlock = BBI;
1925
1926  // If any two of the cases has the same destination, and if one value
1927  // is the same as the other, but has one bit unset that the other has set,
1928  // use bit manipulation to do two compares at once.  For example:
1929  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1930  // TODO: This could be extended to merge any 2 cases in switches with 3 cases.
1931  // TODO: Handle cases where CR.CaseBB != SwitchBB.
1932  if (Size == 2 && CR.CaseBB == SwitchBB) {
1933    Case &Small = *CR.Range.first;
1934    Case &Big = *(CR.Range.second-1);
1935
1936    if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) {
1937      const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue();
1938      const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue();
1939
1940      // Check that there is only one bit different.
1941      if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 &&
1942          (SmallValue | BigValue) == BigValue) {
1943        // Isolate the common bit.
1944        APInt CommonBit = BigValue & ~SmallValue;
1945        assert((SmallValue | CommonBit) == BigValue &&
1946               CommonBit.countPopulation() == 1 && "Not a common bit?");
1947
1948        SDValue CondLHS = getValue(SV);
1949        EVT VT = CondLHS.getValueType();
1950        DebugLoc DL = getCurDebugLoc();
1951
1952        SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
1953                                 DAG.getConstant(CommonBit, VT));
1954        SDValue Cond = DAG.getSetCC(DL, MVT::i1,
1955                                    Or, DAG.getConstant(BigValue, VT),
1956                                    ISD::SETEQ);
1957
1958        // Update successor info.
1959        addSuccessorWithWeight(SwitchBB, Small.BB);
1960        addSuccessorWithWeight(SwitchBB, Default);
1961
1962        // Insert the true branch.
1963        SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other,
1964                                     getControlRoot(), Cond,
1965                                     DAG.getBasicBlock(Small.BB));
1966
1967        // Insert the false branch.
1968        BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
1969                             DAG.getBasicBlock(Default));
1970
1971        DAG.setRoot(BrCond);
1972        return true;
1973      }
1974    }
1975  }
1976
1977  // Order cases by weight so the most likely case will be checked first.
1978  BranchProbabilityInfo *BPI = FuncInfo.BPI;
1979  if (BPI) {
1980    for (CaseItr I = CR.Range.first, IE = CR.Range.second; I != IE; ++I) {
1981      uint32_t IWeight = BPI->getEdgeWeight(SwitchBB->getBasicBlock(),
1982                                            I->BB->getBasicBlock());
1983      for (CaseItr J = CR.Range.first; J < I; ++J) {
1984        uint32_t JWeight = BPI->getEdgeWeight(SwitchBB->getBasicBlock(),
1985                                              J->BB->getBasicBlock());
1986        if (IWeight > JWeight)
1987          std::swap(*I, *J);
1988      }
1989    }
1990  }
1991  // Rearrange the case blocks so that the last one falls through if possible.
1992  Case &BackCase = *(CR.Range.second-1);
1993  if (Size > 1 &&
1994      NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1995    // The last case block won't fall through into 'NextBlock' if we emit the
1996    // branches in this order.  See if rearranging a case value would help.
1997    // We start at the bottom as it's the case with the least weight.
1998    for (Case *I = &*(CR.Range.second-2), *E = &*CR.Range.first-1; I != E; --I){
1999      if (I->BB == NextBlock) {
2000        std::swap(*I, BackCase);
2001        break;
2002      }
2003    }
2004  }
2005
2006  // Create a CaseBlock record representing a conditional branch to
2007  // the Case's target mbb if the value being switched on SV is equal
2008  // to C.
2009  MachineBasicBlock *CurBlock = CR.CaseBB;
2010  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
2011    MachineBasicBlock *FallThrough;
2012    if (I != E-1) {
2013      FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
2014      CurMF->insert(BBI, FallThrough);
2015
2016      // Put SV in a virtual register to make it available from the new blocks.
2017      ExportFromCurrentBlock(SV);
2018    } else {
2019      // If the last case doesn't match, go to the default block.
2020      FallThrough = Default;
2021    }
2022
2023    const Value *RHS, *LHS, *MHS;
2024    ISD::CondCode CC;
2025    if (I->High == I->Low) {
2026      // This is just small small case range :) containing exactly 1 case
2027      CC = ISD::SETEQ;
2028      LHS = SV; RHS = I->High; MHS = NULL;
2029    } else {
2030      CC = ISD::SETCC_INVALID;
2031      LHS = I->Low; MHS = SV; RHS = I->High;
2032    }
2033
2034    uint32_t ExtraWeight = I->ExtraWeight;
2035    CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough,
2036                 /* me */ CurBlock,
2037                 /* trueweight */ ExtraWeight / 2, /* falseweight */ ExtraWeight / 2);
2038
2039    // If emitting the first comparison, just call visitSwitchCase to emit the
2040    // code into the current block.  Otherwise, push the CaseBlock onto the
2041    // vector to be later processed by SDISel, and insert the node's MBB
2042    // before the next MBB.
2043    if (CurBlock == SwitchBB)
2044      visitSwitchCase(CB, SwitchBB);
2045    else
2046      SwitchCases.push_back(CB);
2047
2048    CurBlock = FallThrough;
2049  }
2050
2051  return true;
2052}
2053
2054static inline bool areJTsAllowed(const TargetLowering &TLI) {
2055  return TLI.supportJumpTables() &&
2056          (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
2057           TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
2058}
2059
2060static APInt ComputeRange(const APInt &First, const APInt &Last) {
2061  uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
2062  APInt LastExt = Last.zext(BitWidth), FirstExt = First.zext(BitWidth);
2063  return (LastExt - FirstExt + 1ULL);
2064}
2065
2066/// handleJTSwitchCase - Emit jumptable for current switch case range
2067bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR,
2068                                             CaseRecVector &WorkList,
2069                                             const Value *SV,
2070                                             MachineBasicBlock *Default,
2071                                             MachineBasicBlock *SwitchBB) {
2072  Case& FrontCase = *CR.Range.first;
2073  Case& BackCase  = *(CR.Range.second-1);
2074
2075  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2076  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2077
2078  APInt TSize(First.getBitWidth(), 0);
2079  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I)
2080    TSize += I->size();
2081
2082  if (!areJTsAllowed(TLI) || TSize.ult(4))
2083    return false;
2084
2085  APInt Range = ComputeRange(First, Last);
2086  // The density is TSize / Range. Require at least 40%.
2087  // It should not be possible for IntTSize to saturate for sane code, but make
2088  // sure we handle Range saturation correctly.
2089  uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10);
2090  uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10);
2091  if (IntTSize * 10 < IntRange * 4)
2092    return false;
2093
2094  DEBUG(dbgs() << "Lowering jump table\n"
2095               << "First entry: " << First << ". Last entry: " << Last << '\n'
2096               << "Range: " << Range << ". Size: " << TSize << ".\n\n");
2097
2098  // Get the MachineFunction which holds the current MBB.  This is used when
2099  // inserting any additional MBBs necessary to represent the switch.
2100  MachineFunction *CurMF = FuncInfo.MF;
2101
2102  // Figure out which block is immediately after the current one.
2103  MachineFunction::iterator BBI = CR.CaseBB;
2104  ++BBI;
2105
2106  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2107
2108  // Create a new basic block to hold the code for loading the address
2109  // of the jump table, and jumping to it.  Update successor information;
2110  // we will either branch to the default case for the switch, or the jump
2111  // table.
2112  MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2113  CurMF->insert(BBI, JumpTableBB);
2114
2115  addSuccessorWithWeight(CR.CaseBB, Default);
2116  addSuccessorWithWeight(CR.CaseBB, JumpTableBB);
2117
2118  // Build a vector of destination BBs, corresponding to each target
2119  // of the jump table. If the value of the jump table slot corresponds to
2120  // a case statement, push the case's BB onto the vector, otherwise, push
2121  // the default BB.
2122  std::vector<MachineBasicBlock*> DestBBs;
2123  APInt TEI = First;
2124  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
2125    const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
2126    const APInt &High = cast<ConstantInt>(I->High)->getValue();
2127
2128    if (Low.ule(TEI) && TEI.ule(High)) {
2129      DestBBs.push_back(I->BB);
2130      if (TEI==High)
2131        ++I;
2132    } else {
2133      DestBBs.push_back(Default);
2134    }
2135  }
2136
2137  // Update successor info. Add one edge to each unique successor.
2138  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
2139  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
2140         E = DestBBs.end(); I != E; ++I) {
2141    if (!SuccsHandled[(*I)->getNumber()]) {
2142      SuccsHandled[(*I)->getNumber()] = true;
2143      addSuccessorWithWeight(JumpTableBB, *I);
2144    }
2145  }
2146
2147  // Create a jump table index for this jump table.
2148  unsigned JTEncoding = TLI.getJumpTableEncoding();
2149  unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
2150                       ->createJumpTableIndex(DestBBs);
2151
2152  // Set the jump table information so that we can codegen it as a second
2153  // MachineBasicBlock
2154  JumpTable JT(-1U, JTI, JumpTableBB, Default);
2155  JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
2156  if (CR.CaseBB == SwitchBB)
2157    visitJumpTableHeader(JT, JTH, SwitchBB);
2158
2159  JTCases.push_back(JumpTableBlock(JTH, JT));
2160  return true;
2161}
2162
2163/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
2164/// 2 subtrees.
2165bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
2166                                                  CaseRecVector& WorkList,
2167                                                  const Value* SV,
2168                                                  MachineBasicBlock *Default,
2169                                                  MachineBasicBlock *SwitchBB) {
2170  // Get the MachineFunction which holds the current MBB.  This is used when
2171  // inserting any additional MBBs necessary to represent the switch.
2172  MachineFunction *CurMF = FuncInfo.MF;
2173
2174  // Figure out which block is immediately after the current one.
2175  MachineFunction::iterator BBI = CR.CaseBB;
2176  ++BBI;
2177
2178  Case& FrontCase = *CR.Range.first;
2179  Case& BackCase  = *(CR.Range.second-1);
2180  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2181
2182  // Size is the number of Cases represented by this range.
2183  unsigned Size = CR.Range.second - CR.Range.first;
2184
2185  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2186  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2187  double FMetric = 0;
2188  CaseItr Pivot = CR.Range.first + Size/2;
2189
2190  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
2191  // (heuristically) allow us to emit JumpTable's later.
2192  APInt TSize(First.getBitWidth(), 0);
2193  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2194       I!=E; ++I)
2195    TSize += I->size();
2196
2197  APInt LSize = FrontCase.size();
2198  APInt RSize = TSize-LSize;
2199  DEBUG(dbgs() << "Selecting best pivot: \n"
2200               << "First: " << First << ", Last: " << Last <<'\n'
2201               << "LSize: " << LSize << ", RSize: " << RSize << '\n');
2202  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
2203       J!=E; ++I, ++J) {
2204    const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
2205    const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
2206    APInt Range = ComputeRange(LEnd, RBegin);
2207    assert((Range - 2ULL).isNonNegative() &&
2208           "Invalid case distance");
2209    // Use volatile double here to avoid excess precision issues on some hosts,
2210    // e.g. that use 80-bit X87 registers.
2211    volatile double LDensity =
2212       (double)LSize.roundToDouble() /
2213                           (LEnd - First + 1ULL).roundToDouble();
2214    volatile double RDensity =
2215      (double)RSize.roundToDouble() /
2216                           (Last - RBegin + 1ULL).roundToDouble();
2217    double Metric = Range.logBase2()*(LDensity+RDensity);
2218    // Should always split in some non-trivial place
2219    DEBUG(dbgs() <<"=>Step\n"
2220                 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
2221                 << "LDensity: " << LDensity
2222                 << ", RDensity: " << RDensity << '\n'
2223                 << "Metric: " << Metric << '\n');
2224    if (FMetric < Metric) {
2225      Pivot = J;
2226      FMetric = Metric;
2227      DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
2228    }
2229
2230    LSize += J->size();
2231    RSize -= J->size();
2232  }
2233  if (areJTsAllowed(TLI)) {
2234    // If our case is dense we *really* should handle it earlier!
2235    assert((FMetric > 0) && "Should handle dense range earlier!");
2236  } else {
2237    Pivot = CR.Range.first + Size/2;
2238  }
2239
2240  CaseRange LHSR(CR.Range.first, Pivot);
2241  CaseRange RHSR(Pivot, CR.Range.second);
2242  const Constant *C = Pivot->Low;
2243  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
2244
2245  // We know that we branch to the LHS if the Value being switched on is
2246  // less than the Pivot value, C.  We use this to optimize our binary
2247  // tree a bit, by recognizing that if SV is greater than or equal to the
2248  // LHS's Case Value, and that Case Value is exactly one less than the
2249  // Pivot's Value, then we can branch directly to the LHS's Target,
2250  // rather than creating a leaf node for it.
2251  if ((LHSR.second - LHSR.first) == 1 &&
2252      LHSR.first->High == CR.GE &&
2253      cast<ConstantInt>(C)->getValue() ==
2254      (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
2255    TrueBB = LHSR.first->BB;
2256  } else {
2257    TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2258    CurMF->insert(BBI, TrueBB);
2259    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
2260
2261    // Put SV in a virtual register to make it available from the new blocks.
2262    ExportFromCurrentBlock(SV);
2263  }
2264
2265  // Similar to the optimization above, if the Value being switched on is
2266  // known to be less than the Constant CR.LT, and the current Case Value
2267  // is CR.LT - 1, then we can branch directly to the target block for
2268  // the current Case Value, rather than emitting a RHS leaf node for it.
2269  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
2270      cast<ConstantInt>(RHSR.first->Low)->getValue() ==
2271      (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
2272    FalseBB = RHSR.first->BB;
2273  } else {
2274    FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2275    CurMF->insert(BBI, FalseBB);
2276    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
2277
2278    // Put SV in a virtual register to make it available from the new blocks.
2279    ExportFromCurrentBlock(SV);
2280  }
2281
2282  // Create a CaseBlock record representing a conditional branch to
2283  // the LHS node if the value being switched on SV is less than C.
2284  // Otherwise, branch to LHS.
2285  CaseBlock CB(ISD::SETULT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
2286
2287  if (CR.CaseBB == SwitchBB)
2288    visitSwitchCase(CB, SwitchBB);
2289  else
2290    SwitchCases.push_back(CB);
2291
2292  return true;
2293}
2294
2295/// handleBitTestsSwitchCase - if current case range has few destination and
2296/// range span less, than machine word bitwidth, encode case range into series
2297/// of masks and emit bit tests with these masks.
2298bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
2299                                                   CaseRecVector& WorkList,
2300                                                   const Value* SV,
2301                                                   MachineBasicBlock* Default,
2302                                                   MachineBasicBlock *SwitchBB){
2303  EVT PTy = TLI.getPointerTy();
2304  unsigned IntPtrBits = PTy.getSizeInBits();
2305
2306  Case& FrontCase = *CR.Range.first;
2307  Case& BackCase  = *(CR.Range.second-1);
2308
2309  // Get the MachineFunction which holds the current MBB.  This is used when
2310  // inserting any additional MBBs necessary to represent the switch.
2311  MachineFunction *CurMF = FuncInfo.MF;
2312
2313  // If target does not have legal shift left, do not emit bit tests at all.
2314  if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
2315    return false;
2316
2317  size_t numCmps = 0;
2318  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2319       I!=E; ++I) {
2320    // Single case counts one, case range - two.
2321    numCmps += (I->Low == I->High ? 1 : 2);
2322  }
2323
2324  // Count unique destinations
2325  SmallSet<MachineBasicBlock*, 4> Dests;
2326  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2327    Dests.insert(I->BB);
2328    if (Dests.size() > 3)
2329      // Don't bother the code below, if there are too much unique destinations
2330      return false;
2331  }
2332  DEBUG(dbgs() << "Total number of unique destinations: "
2333        << Dests.size() << '\n'
2334        << "Total number of comparisons: " << numCmps << '\n');
2335
2336  // Compute span of values.
2337  const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
2338  const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
2339  APInt cmpRange = maxValue - minValue;
2340
2341  DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
2342               << "Low bound: " << minValue << '\n'
2343               << "High bound: " << maxValue << '\n');
2344
2345  if (cmpRange.uge(IntPtrBits) ||
2346      (!(Dests.size() == 1 && numCmps >= 3) &&
2347       !(Dests.size() == 2 && numCmps >= 5) &&
2348       !(Dests.size() >= 3 && numCmps >= 6)))
2349    return false;
2350
2351  DEBUG(dbgs() << "Emitting bit tests\n");
2352  APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
2353
2354  // Optimize the case where all the case values fit in a
2355  // word without having to subtract minValue. In this case,
2356  // we can optimize away the subtraction.
2357  if (maxValue.ult(IntPtrBits)) {
2358    cmpRange = maxValue;
2359  } else {
2360    lowBound = minValue;
2361  }
2362
2363  CaseBitsVector CasesBits;
2364  unsigned i, count = 0;
2365
2366  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2367    MachineBasicBlock* Dest = I->BB;
2368    for (i = 0; i < count; ++i)
2369      if (Dest == CasesBits[i].BB)
2370        break;
2371
2372    if (i == count) {
2373      assert((count < 3) && "Too much destinations to test!");
2374      CasesBits.push_back(CaseBits(0, Dest, 0));
2375      count++;
2376    }
2377
2378    const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
2379    const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
2380
2381    uint64_t lo = (lowValue - lowBound).getZExtValue();
2382    uint64_t hi = (highValue - lowBound).getZExtValue();
2383
2384    for (uint64_t j = lo; j <= hi; j++) {
2385      CasesBits[i].Mask |=  1ULL << j;
2386      CasesBits[i].Bits++;
2387    }
2388
2389  }
2390  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2391
2392  BitTestInfo BTC;
2393
2394  // Figure out which block is immediately after the current one.
2395  MachineFunction::iterator BBI = CR.CaseBB;
2396  ++BBI;
2397
2398  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2399
2400  DEBUG(dbgs() << "Cases:\n");
2401  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2402    DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
2403                 << ", Bits: " << CasesBits[i].Bits
2404                 << ", BB: " << CasesBits[i].BB << '\n');
2405
2406    MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2407    CurMF->insert(BBI, CaseBB);
2408    BTC.push_back(BitTestCase(CasesBits[i].Mask,
2409                              CaseBB,
2410                              CasesBits[i].BB));
2411
2412    // Put SV in a virtual register to make it available from the new blocks.
2413    ExportFromCurrentBlock(SV);
2414  }
2415
2416  BitTestBlock BTB(lowBound, cmpRange, SV,
2417                   -1U, MVT::Other, (CR.CaseBB == SwitchBB),
2418                   CR.CaseBB, Default, BTC);
2419
2420  if (CR.CaseBB == SwitchBB)
2421    visitBitTestHeader(BTB, SwitchBB);
2422
2423  BitTestCases.push_back(BTB);
2424
2425  return true;
2426}
2427
2428/// Clusterify - Transform simple list of Cases into list of CaseRange's
2429size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
2430                                       const SwitchInst& SI) {
2431
2432  /// Use a shorter form of declaration, and also
2433  /// show the we want to use CRSBuilder as Clusterifier.
2434  typedef IntegersSubsetMapping<MachineBasicBlock> Clusterifier;
2435
2436  Clusterifier TheClusterifier;
2437
2438  // Start with "simple" cases
2439  for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
2440       i != e; ++i) {
2441    const BasicBlock *SuccBB = i.getCaseSuccessor();
2442    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB];
2443
2444    TheClusterifier.add(i.getCaseValueEx(), SMBB);
2445  }
2446
2447  TheClusterifier.optimize();
2448
2449  BranchProbabilityInfo *BPI = FuncInfo.BPI;
2450  size_t numCmps = 0;
2451  for (Clusterifier::RangeIterator i = TheClusterifier.begin(),
2452       e = TheClusterifier.end(); i != e; ++i, ++numCmps) {
2453    Clusterifier::Cluster &C = *i;
2454    unsigned W = 0;
2455    if (BPI) {
2456      W = BPI->getEdgeWeight(SI.getParent(), C.second->getBasicBlock());
2457      if (!W)
2458        W = 16;
2459      W *= C.first.Weight;
2460      BPI->setEdgeWeight(SI.getParent(), C.second->getBasicBlock(), W);
2461    }
2462
2463    // FIXME: Currently work with ConstantInt based numbers.
2464    // Changing it to APInt based is a pretty heavy for this commit.
2465    Cases.push_back(Case(C.first.getLow().toConstantInt(),
2466                         C.first.getHigh().toConstantInt(), C.second, W));
2467
2468    if (C.first.getLow() != C.first.getHigh())
2469    // A range counts double, since it requires two compares.
2470    ++numCmps;
2471  }
2472
2473  return numCmps;
2474}
2475
2476void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2477                                           MachineBasicBlock *Last) {
2478  // Update JTCases.
2479  for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2480    if (JTCases[i].first.HeaderBB == First)
2481      JTCases[i].first.HeaderBB = Last;
2482
2483  // Update BitTestCases.
2484  for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2485    if (BitTestCases[i].Parent == First)
2486      BitTestCases[i].Parent = Last;
2487}
2488
2489void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
2490  MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
2491
2492  // Figure out which block is immediately after the current one.
2493  MachineBasicBlock *NextBlock = 0;
2494  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2495
2496  // If there is only the default destination, branch to it if it is not the
2497  // next basic block.  Otherwise, just fall through.
2498  if (!SI.getNumCases()) {
2499    // Update machine-CFG edges.
2500
2501    // If this is not a fall-through branch, emit the branch.
2502    SwitchMBB->addSuccessor(Default);
2503    if (Default != NextBlock)
2504      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
2505                              MVT::Other, getControlRoot(),
2506                              DAG.getBasicBlock(Default)));
2507
2508    return;
2509  }
2510
2511  // If there are any non-default case statements, create a vector of Cases
2512  // representing each one, and sort the vector so that we can efficiently
2513  // create a binary search tree from them.
2514  CaseVector Cases;
2515  size_t numCmps = Clusterify(Cases, SI);
2516  DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2517               << ". Total compares: " << numCmps << '\n');
2518  (void)numCmps;
2519
2520  // Get the Value to be switched on and default basic blocks, which will be
2521  // inserted into CaseBlock records, representing basic blocks in the binary
2522  // search tree.
2523  const Value *SV = SI.getCondition();
2524
2525  // Push the initial CaseRec onto the worklist
2526  CaseRecVector WorkList;
2527  WorkList.push_back(CaseRec(SwitchMBB,0,0,
2528                             CaseRange(Cases.begin(),Cases.end())));
2529
2530  while (!WorkList.empty()) {
2531    // Grab a record representing a case range to process off the worklist
2532    CaseRec CR = WorkList.back();
2533    WorkList.pop_back();
2534
2535    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2536      continue;
2537
2538    // If the range has few cases (two or less) emit a series of specific
2539    // tests.
2540    if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
2541      continue;
2542
2543    // If the switch has more than 5 blocks, and at least 40% dense, and the
2544    // target supports indirect branches, then emit a jump table rather than
2545    // lowering the switch to a binary tree of conditional branches.
2546    if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2547      continue;
2548
2549    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2550    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2551    handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
2552  }
2553}
2554
2555void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2556  MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2557
2558  // Update machine-CFG edges with unique successors.
2559  SmallVector<BasicBlock*, 32> succs;
2560  succs.reserve(I.getNumSuccessors());
2561  for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i)
2562    succs.push_back(I.getSuccessor(i));
2563  array_pod_sort(succs.begin(), succs.end());
2564  succs.erase(std::unique(succs.begin(), succs.end()), succs.end());
2565  for (unsigned i = 0, e = succs.size(); i != e; ++i) {
2566    MachineBasicBlock *Succ = FuncInfo.MBBMap[succs[i]];
2567    addSuccessorWithWeight(IndirectBrMBB, Succ);
2568  }
2569
2570  DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(),
2571                          MVT::Other, getControlRoot(),
2572                          getValue(I.getAddress())));
2573}
2574
2575void SelectionDAGBuilder::visitFSub(const User &I) {
2576  // -0.0 - X --> fneg
2577  Type *Ty = I.getType();
2578  if (isa<Constant>(I.getOperand(0)) &&
2579      I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2580    SDValue Op2 = getValue(I.getOperand(1));
2581    setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2582                             Op2.getValueType(), Op2));
2583    return;
2584  }
2585
2586  visitBinary(I, ISD::FSUB);
2587}
2588
2589void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2590  SDValue Op1 = getValue(I.getOperand(0));
2591  SDValue Op2 = getValue(I.getOperand(1));
2592  setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(),
2593                           Op1.getValueType(), Op1, Op2));
2594}
2595
2596void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2597  SDValue Op1 = getValue(I.getOperand(0));
2598  SDValue Op2 = getValue(I.getOperand(1));
2599
2600  MVT ShiftTy = TLI.getShiftAmountTy(Op2.getValueType());
2601
2602  // Coerce the shift amount to the right type if we can.
2603  if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2604    unsigned ShiftSize = ShiftTy.getSizeInBits();
2605    unsigned Op2Size = Op2.getValueType().getSizeInBits();
2606    DebugLoc DL = getCurDebugLoc();
2607
2608    // If the operand is smaller than the shift count type, promote it.
2609    if (ShiftSize > Op2Size)
2610      Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2611
2612    // If the operand is larger than the shift count type but the shift
2613    // count type has enough bits to represent any shift value, truncate
2614    // it now. This is a common case and it exposes the truncate to
2615    // optimization early.
2616    else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2617      Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2618    // Otherwise we'll need to temporarily settle for some other convenient
2619    // type.  Type legalization will make adjustments once the shiftee is split.
2620    else
2621      Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2622  }
2623
2624  setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(),
2625                           Op1.getValueType(), Op1, Op2));
2626}
2627
2628void SelectionDAGBuilder::visitSDiv(const User &I) {
2629  SDValue Op1 = getValue(I.getOperand(0));
2630  SDValue Op2 = getValue(I.getOperand(1));
2631
2632  // Turn exact SDivs into multiplications.
2633  // FIXME: This should be in DAGCombiner, but it doesn't have access to the
2634  // exact bit.
2635  if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() &&
2636      !isa<ConstantSDNode>(Op1) &&
2637      isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue())
2638    setValue(&I, TLI.BuildExactSDIV(Op1, Op2, getCurDebugLoc(), DAG));
2639  else
2640    setValue(&I, DAG.getNode(ISD::SDIV, getCurDebugLoc(), Op1.getValueType(),
2641                             Op1, Op2));
2642}
2643
2644void SelectionDAGBuilder::visitICmp(const User &I) {
2645  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2646  if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2647    predicate = IC->getPredicate();
2648  else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2649    predicate = ICmpInst::Predicate(IC->getPredicate());
2650  SDValue Op1 = getValue(I.getOperand(0));
2651  SDValue Op2 = getValue(I.getOperand(1));
2652  ISD::CondCode Opcode = getICmpCondCode(predicate);
2653
2654  EVT DestVT = TLI.getValueType(I.getType());
2655  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode));
2656}
2657
2658void SelectionDAGBuilder::visitFCmp(const User &I) {
2659  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2660  if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2661    predicate = FC->getPredicate();
2662  else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2663    predicate = FCmpInst::Predicate(FC->getPredicate());
2664  SDValue Op1 = getValue(I.getOperand(0));
2665  SDValue Op2 = getValue(I.getOperand(1));
2666  ISD::CondCode Condition = getFCmpCondCode(predicate);
2667  if (TM.Options.NoNaNsFPMath)
2668    Condition = getFCmpCodeWithoutNaN(Condition);
2669  EVT DestVT = TLI.getValueType(I.getType());
2670  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition));
2671}
2672
2673void SelectionDAGBuilder::visitSelect(const User &I) {
2674  SmallVector<EVT, 4> ValueVTs;
2675  ComputeValueVTs(TLI, I.getType(), ValueVTs);
2676  unsigned NumValues = ValueVTs.size();
2677  if (NumValues == 0) return;
2678
2679  SmallVector<SDValue, 4> Values(NumValues);
2680  SDValue Cond     = getValue(I.getOperand(0));
2681  SDValue TrueVal  = getValue(I.getOperand(1));
2682  SDValue FalseVal = getValue(I.getOperand(2));
2683  ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2684    ISD::VSELECT : ISD::SELECT;
2685
2686  for (unsigned i = 0; i != NumValues; ++i)
2687    Values[i] = DAG.getNode(OpCode, getCurDebugLoc(),
2688                            TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2689                            Cond,
2690                            SDValue(TrueVal.getNode(),
2691                                    TrueVal.getResNo() + i),
2692                            SDValue(FalseVal.getNode(),
2693                                    FalseVal.getResNo() + i));
2694
2695  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2696                           DAG.getVTList(&ValueVTs[0], NumValues),
2697                           &Values[0], NumValues));
2698}
2699
2700void SelectionDAGBuilder::visitTrunc(const User &I) {
2701  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2702  SDValue N = getValue(I.getOperand(0));
2703  EVT DestVT = TLI.getValueType(I.getType());
2704  setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N));
2705}
2706
2707void SelectionDAGBuilder::visitZExt(const User &I) {
2708  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2709  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2710  SDValue N = getValue(I.getOperand(0));
2711  EVT DestVT = TLI.getValueType(I.getType());
2712  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N));
2713}
2714
2715void SelectionDAGBuilder::visitSExt(const User &I) {
2716  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2717  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2718  SDValue N = getValue(I.getOperand(0));
2719  EVT DestVT = TLI.getValueType(I.getType());
2720  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N));
2721}
2722
2723void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2724  // FPTrunc is never a no-op cast, no need to check
2725  SDValue N = getValue(I.getOperand(0));
2726  EVT DestVT = TLI.getValueType(I.getType());
2727  setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(),
2728                           DestVT, N,
2729                           DAG.getTargetConstant(0, TLI.getPointerTy())));
2730}
2731
2732void SelectionDAGBuilder::visitFPExt(const User &I){
2733  // FPExt is never a no-op cast, no need to check
2734  SDValue N = getValue(I.getOperand(0));
2735  EVT DestVT = TLI.getValueType(I.getType());
2736  setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N));
2737}
2738
2739void SelectionDAGBuilder::visitFPToUI(const User &I) {
2740  // FPToUI is never a no-op cast, no need to check
2741  SDValue N = getValue(I.getOperand(0));
2742  EVT DestVT = TLI.getValueType(I.getType());
2743  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N));
2744}
2745
2746void SelectionDAGBuilder::visitFPToSI(const User &I) {
2747  // FPToSI is never a no-op cast, no need to check
2748  SDValue N = getValue(I.getOperand(0));
2749  EVT DestVT = TLI.getValueType(I.getType());
2750  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N));
2751}
2752
2753void SelectionDAGBuilder::visitUIToFP(const User &I) {
2754  // UIToFP is never a no-op cast, no need to check
2755  SDValue N = getValue(I.getOperand(0));
2756  EVT DestVT = TLI.getValueType(I.getType());
2757  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N));
2758}
2759
2760void SelectionDAGBuilder::visitSIToFP(const User &I){
2761  // SIToFP is never a no-op cast, no need to check
2762  SDValue N = getValue(I.getOperand(0));
2763  EVT DestVT = TLI.getValueType(I.getType());
2764  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N));
2765}
2766
2767void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2768  // What to do depends on the size of the integer and the size of the pointer.
2769  // We can either truncate, zero extend, or no-op, accordingly.
2770  SDValue N = getValue(I.getOperand(0));
2771  EVT DestVT = TLI.getValueType(I.getType());
2772  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2773}
2774
2775void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2776  // What to do depends on the size of the integer and the size of the pointer.
2777  // We can either truncate, zero extend, or no-op, accordingly.
2778  SDValue N = getValue(I.getOperand(0));
2779  EVT DestVT = TLI.getValueType(I.getType());
2780  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2781}
2782
2783void SelectionDAGBuilder::visitBitCast(const User &I) {
2784  SDValue N = getValue(I.getOperand(0));
2785  EVT DestVT = TLI.getValueType(I.getType());
2786
2787  // BitCast assures us that source and destination are the same size so this is
2788  // either a BITCAST or a no-op.
2789  if (DestVT != N.getValueType())
2790    setValue(&I, DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
2791                             DestVT, N)); // convert types.
2792  else
2793    setValue(&I, N);            // noop cast.
2794}
2795
2796void SelectionDAGBuilder::visitInsertElement(const User &I) {
2797  SDValue InVec = getValue(I.getOperand(0));
2798  SDValue InVal = getValue(I.getOperand(1));
2799  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2800                              TLI.getPointerTy(),
2801                              getValue(I.getOperand(2)));
2802  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(),
2803                           TLI.getValueType(I.getType()),
2804                           InVec, InVal, InIdx));
2805}
2806
2807void SelectionDAGBuilder::visitExtractElement(const User &I) {
2808  SDValue InVec = getValue(I.getOperand(0));
2809  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2810                              TLI.getPointerTy(),
2811                              getValue(I.getOperand(1)));
2812  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2813                           TLI.getValueType(I.getType()), InVec, InIdx));
2814}
2815
2816// Utility for visitShuffleVector - Return true if every element in Mask,
2817// beginning from position Pos and ending in Pos+Size, falls within the
2818// specified sequential range [L, L+Pos). or is undef.
2819static bool isSequentialInRange(const SmallVectorImpl<int> &Mask,
2820                                unsigned Pos, unsigned Size, int Low) {
2821  for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
2822    if (Mask[i] >= 0 && Mask[i] != Low)
2823      return false;
2824  return true;
2825}
2826
2827void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2828  SDValue Src1 = getValue(I.getOperand(0));
2829  SDValue Src2 = getValue(I.getOperand(1));
2830
2831  SmallVector<int, 8> Mask;
2832  ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
2833  unsigned MaskNumElts = Mask.size();
2834
2835  EVT VT = TLI.getValueType(I.getType());
2836  EVT SrcVT = Src1.getValueType();
2837  unsigned SrcNumElts = SrcVT.getVectorNumElements();
2838
2839  if (SrcNumElts == MaskNumElts) {
2840    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2841                                      &Mask[0]));
2842    return;
2843  }
2844
2845  // Normalize the shuffle vector since mask and vector length don't match.
2846  if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2847    // Mask is longer than the source vectors and is a multiple of the source
2848    // vectors.  We can use concatenate vector to make the mask and vectors
2849    // lengths match.
2850    if (SrcNumElts*2 == MaskNumElts) {
2851      // First check for Src1 in low and Src2 in high
2852      if (isSequentialInRange(Mask, 0, SrcNumElts, 0) &&
2853          isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) {
2854        // The shuffle is concatenating two vectors together.
2855        setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2856                                 VT, Src1, Src2));
2857        return;
2858      }
2859      // Then check for Src2 in low and Src1 in high
2860      if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) &&
2861          isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) {
2862        // The shuffle is concatenating two vectors together.
2863        setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2864                                 VT, Src2, Src1));
2865        return;
2866      }
2867    }
2868
2869    // Pad both vectors with undefs to make them the same length as the mask.
2870    unsigned NumConcat = MaskNumElts / SrcNumElts;
2871    bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2872    bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2873    SDValue UndefVal = DAG.getUNDEF(SrcVT);
2874
2875    SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2876    SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2877    MOps1[0] = Src1;
2878    MOps2[0] = Src2;
2879
2880    Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2881                                                  getCurDebugLoc(), VT,
2882                                                  &MOps1[0], NumConcat);
2883    Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2884                                                  getCurDebugLoc(), VT,
2885                                                  &MOps2[0], NumConcat);
2886
2887    // Readjust mask for new input vector length.
2888    SmallVector<int, 8> MappedOps;
2889    for (unsigned i = 0; i != MaskNumElts; ++i) {
2890      int Idx = Mask[i];
2891      if (Idx >= (int)SrcNumElts)
2892        Idx -= SrcNumElts - MaskNumElts;
2893      MappedOps.push_back(Idx);
2894    }
2895
2896    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2897                                      &MappedOps[0]));
2898    return;
2899  }
2900
2901  if (SrcNumElts > MaskNumElts) {
2902    // Analyze the access pattern of the vector to see if we can extract
2903    // two subvectors and do the shuffle. The analysis is done by calculating
2904    // the range of elements the mask access on both vectors.
2905    int MinRange[2] = { static_cast<int>(SrcNumElts),
2906                        static_cast<int>(SrcNumElts)};
2907    int MaxRange[2] = {-1, -1};
2908
2909    for (unsigned i = 0; i != MaskNumElts; ++i) {
2910      int Idx = Mask[i];
2911      unsigned Input = 0;
2912      if (Idx < 0)
2913        continue;
2914
2915      if (Idx >= (int)SrcNumElts) {
2916        Input = 1;
2917        Idx -= SrcNumElts;
2918      }
2919      if (Idx > MaxRange[Input])
2920        MaxRange[Input] = Idx;
2921      if (Idx < MinRange[Input])
2922        MinRange[Input] = Idx;
2923    }
2924
2925    // Check if the access is smaller than the vector size and can we find
2926    // a reasonable extract index.
2927    int RangeUse[2] = { -1, -1 };  // 0 = Unused, 1 = Extract, -1 = Can not
2928                                   // Extract.
2929    int StartIdx[2];  // StartIdx to extract from
2930    for (unsigned Input = 0; Input < 2; ++Input) {
2931      if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) {
2932        RangeUse[Input] = 0; // Unused
2933        StartIdx[Input] = 0;
2934        continue;
2935      }
2936
2937      // Find a good start index that is a multiple of the mask length. Then
2938      // see if the rest of the elements are in range.
2939      StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2940      if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2941          StartIdx[Input] + MaskNumElts <= SrcNumElts)
2942        RangeUse[Input] = 1; // Extract from a multiple of the mask length.
2943    }
2944
2945    if (RangeUse[0] == 0 && RangeUse[1] == 0) {
2946      setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
2947      return;
2948    }
2949    if (RangeUse[0] >= 0 && RangeUse[1] >= 0) {
2950      // Extract appropriate subvector and generate a vector shuffle
2951      for (unsigned Input = 0; Input < 2; ++Input) {
2952        SDValue &Src = Input == 0 ? Src1 : Src2;
2953        if (RangeUse[Input] == 0)
2954          Src = DAG.getUNDEF(VT);
2955        else
2956          Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT,
2957                            Src, DAG.getIntPtrConstant(StartIdx[Input]));
2958      }
2959
2960      // Calculate new mask.
2961      SmallVector<int, 8> MappedOps;
2962      for (unsigned i = 0; i != MaskNumElts; ++i) {
2963        int Idx = Mask[i];
2964        if (Idx >= 0) {
2965          if (Idx < (int)SrcNumElts)
2966            Idx -= StartIdx[0];
2967          else
2968            Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
2969        }
2970        MappedOps.push_back(Idx);
2971      }
2972
2973      setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2974                                        &MappedOps[0]));
2975      return;
2976    }
2977  }
2978
2979  // We can't use either concat vectors or extract subvectors so fall back to
2980  // replacing the shuffle with extract and build vector.
2981  // to insert and build vector.
2982  EVT EltVT = VT.getVectorElementType();
2983  EVT PtrVT = TLI.getPointerTy();
2984  SmallVector<SDValue,8> Ops;
2985  for (unsigned i = 0; i != MaskNumElts; ++i) {
2986    int Idx = Mask[i];
2987    SDValue Res;
2988
2989    if (Idx < 0) {
2990      Res = DAG.getUNDEF(EltVT);
2991    } else {
2992      SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
2993      if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
2994
2995      Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2996                        EltVT, Src, DAG.getConstant(Idx, PtrVT));
2997    }
2998
2999    Ops.push_back(Res);
3000  }
3001
3002  setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
3003                           VT, &Ops[0], Ops.size()));
3004}
3005
3006void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
3007  const Value *Op0 = I.getOperand(0);
3008  const Value *Op1 = I.getOperand(1);
3009  Type *AggTy = I.getType();
3010  Type *ValTy = Op1->getType();
3011  bool IntoUndef = isa<UndefValue>(Op0);
3012  bool FromUndef = isa<UndefValue>(Op1);
3013
3014  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3015
3016  SmallVector<EVT, 4> AggValueVTs;
3017  ComputeValueVTs(TLI, AggTy, AggValueVTs);
3018  SmallVector<EVT, 4> ValValueVTs;
3019  ComputeValueVTs(TLI, ValTy, ValValueVTs);
3020
3021  unsigned NumAggValues = AggValueVTs.size();
3022  unsigned NumValValues = ValValueVTs.size();
3023  SmallVector<SDValue, 4> Values(NumAggValues);
3024
3025  SDValue Agg = getValue(Op0);
3026  unsigned i = 0;
3027  // Copy the beginning value(s) from the original aggregate.
3028  for (; i != LinearIndex; ++i)
3029    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3030                SDValue(Agg.getNode(), Agg.getResNo() + i);
3031  // Copy values from the inserted value(s).
3032  if (NumValValues) {
3033    SDValue Val = getValue(Op1);
3034    for (; i != LinearIndex + NumValValues; ++i)
3035      Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3036                  SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3037  }
3038  // Copy remaining value(s) from the original aggregate.
3039  for (; i != NumAggValues; ++i)
3040    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3041                SDValue(Agg.getNode(), Agg.getResNo() + i);
3042
3043  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3044                           DAG.getVTList(&AggValueVTs[0], NumAggValues),
3045                           &Values[0], NumAggValues));
3046}
3047
3048void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
3049  const Value *Op0 = I.getOperand(0);
3050  Type *AggTy = Op0->getType();
3051  Type *ValTy = I.getType();
3052  bool OutOfUndef = isa<UndefValue>(Op0);
3053
3054  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3055
3056  SmallVector<EVT, 4> ValValueVTs;
3057  ComputeValueVTs(TLI, ValTy, ValValueVTs);
3058
3059  unsigned NumValValues = ValValueVTs.size();
3060
3061  // Ignore a extractvalue that produces an empty object
3062  if (!NumValValues) {
3063    setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3064    return;
3065  }
3066
3067  SmallVector<SDValue, 4> Values(NumValValues);
3068
3069  SDValue Agg = getValue(Op0);
3070  // Copy out the selected value(s).
3071  for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3072    Values[i - LinearIndex] =
3073      OutOfUndef ?
3074        DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3075        SDValue(Agg.getNode(), Agg.getResNo() + i);
3076
3077  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3078                           DAG.getVTList(&ValValueVTs[0], NumValValues),
3079                           &Values[0], NumValValues));
3080}
3081
3082void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3083  SDValue N = getValue(I.getOperand(0));
3084  // Note that the pointer operand may be a vector of pointers. Take the scalar
3085  // element which holds a pointer.
3086  Type *Ty = I.getOperand(0)->getType()->getScalarType();
3087
3088  for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
3089       OI != E; ++OI) {
3090    const Value *Idx = *OI;
3091    if (StructType *StTy = dyn_cast<StructType>(Ty)) {
3092      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
3093      if (Field) {
3094        // N = N + Offset
3095        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
3096        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
3097                        DAG.getIntPtrConstant(Offset));
3098      }
3099
3100      Ty = StTy->getElementType(Field);
3101    } else {
3102      Ty = cast<SequentialType>(Ty)->getElementType();
3103
3104      // If this is a constant subscript, handle it quickly.
3105      if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
3106        if (CI->isZero()) continue;
3107        uint64_t Offs =
3108            TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
3109        SDValue OffsVal;
3110        EVT PTy = TLI.getPointerTy();
3111        unsigned PtrBits = PTy.getSizeInBits();
3112        if (PtrBits < 64)
3113          OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
3114                                TLI.getPointerTy(),
3115                                DAG.getConstant(Offs, MVT::i64));
3116        else
3117          OffsVal = DAG.getIntPtrConstant(Offs);
3118
3119        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
3120                        OffsVal);
3121        continue;
3122      }
3123
3124      // N = N + Idx * ElementSize;
3125      APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
3126                                TD->getTypeAllocSize(Ty));
3127      SDValue IdxN = getValue(Idx);
3128
3129      // If the index is smaller or larger than intptr_t, truncate or extend
3130      // it.
3131      IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType());
3132
3133      // If this is a multiply by a power of two, turn it into a shl
3134      // immediately.  This is a very common case.
3135      if (ElementSize != 1) {
3136        if (ElementSize.isPowerOf2()) {
3137          unsigned Amt = ElementSize.logBase2();
3138          IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(),
3139                             N.getValueType(), IdxN,
3140                             DAG.getConstant(Amt, IdxN.getValueType()));
3141        } else {
3142          SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy());
3143          IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(),
3144                             N.getValueType(), IdxN, Scale);
3145        }
3146      }
3147
3148      N = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3149                      N.getValueType(), N, IdxN);
3150    }
3151  }
3152
3153  setValue(&I, N);
3154}
3155
3156void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3157  // If this is a fixed sized alloca in the entry block of the function,
3158  // allocate it statically on the stack.
3159  if (FuncInfo.StaticAllocaMap.count(&I))
3160    return;   // getValue will auto-populate this.
3161
3162  Type *Ty = I.getAllocatedType();
3163  uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
3164  unsigned Align =
3165    std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
3166             I.getAlignment());
3167
3168  SDValue AllocSize = getValue(I.getArraySize());
3169
3170  EVT IntPtr = TLI.getPointerTy();
3171  if (AllocSize.getValueType() != IntPtr)
3172    AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr);
3173
3174  AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr,
3175                          AllocSize,
3176                          DAG.getConstant(TySize, IntPtr));
3177
3178  // Handle alignment.  If the requested alignment is less than or equal to
3179  // the stack alignment, ignore it.  If the size is greater than or equal to
3180  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3181  unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
3182  if (Align <= StackAlign)
3183    Align = 0;
3184
3185  // Round the size of the allocation up to the stack alignment size
3186  // by add SA-1 to the size.
3187  AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3188                          AllocSize.getValueType(), AllocSize,
3189                          DAG.getIntPtrConstant(StackAlign-1));
3190
3191  // Mask out the low bits for alignment purposes.
3192  AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(),
3193                          AllocSize.getValueType(), AllocSize,
3194                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
3195
3196  SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
3197  SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3198  SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(),
3199                            VTs, Ops, 3);
3200  setValue(&I, DSA);
3201  DAG.setRoot(DSA.getValue(1));
3202
3203  // Inform the Frame Information that we have just allocated a variable-sized
3204  // object.
3205  FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1);
3206}
3207
3208void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3209  if (I.isAtomic())
3210    return visitAtomicLoad(I);
3211
3212  const Value *SV = I.getOperand(0);
3213  SDValue Ptr = getValue(SV);
3214
3215  Type *Ty = I.getType();
3216
3217  bool isVolatile = I.isVolatile();
3218  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3219  bool isInvariant = I.getMetadata("invariant.load") != 0;
3220  unsigned Alignment = I.getAlignment();
3221  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3222  const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3223
3224  SmallVector<EVT, 4> ValueVTs;
3225  SmallVector<uint64_t, 4> Offsets;
3226  ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
3227  unsigned NumValues = ValueVTs.size();
3228  if (NumValues == 0)
3229    return;
3230
3231  SDValue Root;
3232  bool ConstantMemory = false;
3233  if (I.isVolatile() || NumValues > MaxParallelChains)
3234    // Serialize volatile loads with other side effects.
3235    Root = getRoot();
3236  else if (AA->pointsToConstantMemory(
3237             AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) {
3238    // Do not serialize (non-volatile) loads of constant memory with anything.
3239    Root = DAG.getEntryNode();
3240    ConstantMemory = true;
3241  } else {
3242    // Do not serialize non-volatile loads against each other.
3243    Root = DAG.getRoot();
3244  }
3245
3246  SmallVector<SDValue, 4> Values(NumValues);
3247  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3248                                          NumValues));
3249  EVT PtrVT = Ptr.getValueType();
3250  unsigned ChainI = 0;
3251  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3252    // Serializing loads here may result in excessive register pressure, and
3253    // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3254    // could recover a bit by hoisting nodes upward in the chain by recognizing
3255    // they are side-effect free or do not alias. The optimizer should really
3256    // avoid this case by converting large object/array copies to llvm.memcpy
3257    // (MaxParallelChains should always remain as failsafe).
3258    if (ChainI == MaxParallelChains) {
3259      assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3260      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3261                                  MVT::Other, &Chains[0], ChainI);
3262      Root = Chain;
3263      ChainI = 0;
3264    }
3265    SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3266                            PtrVT, Ptr,
3267                            DAG.getConstant(Offsets[i], PtrVT));
3268    SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root,
3269                            A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
3270                            isNonTemporal, isInvariant, Alignment, TBAAInfo,
3271                            Ranges);
3272
3273    Values[i] = L;
3274    Chains[ChainI] = L.getValue(1);
3275  }
3276
3277  if (!ConstantMemory) {
3278    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3279                                MVT::Other, &Chains[0], ChainI);
3280    if (isVolatile)
3281      DAG.setRoot(Chain);
3282    else
3283      PendingLoads.push_back(Chain);
3284  }
3285
3286  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3287                           DAG.getVTList(&ValueVTs[0], NumValues),
3288                           &Values[0], NumValues));
3289}
3290
3291void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3292  if (I.isAtomic())
3293    return visitAtomicStore(I);
3294
3295  const Value *SrcV = I.getOperand(0);
3296  const Value *PtrV = I.getOperand(1);
3297
3298  SmallVector<EVT, 4> ValueVTs;
3299  SmallVector<uint64_t, 4> Offsets;
3300  ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
3301  unsigned NumValues = ValueVTs.size();
3302  if (NumValues == 0)
3303    return;
3304
3305  // Get the lowered operands. Note that we do this after
3306  // checking if NumResults is zero, because with zero results
3307  // the operands won't have values in the map.
3308  SDValue Src = getValue(SrcV);
3309  SDValue Ptr = getValue(PtrV);
3310
3311  SDValue Root = getRoot();
3312  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3313                                          NumValues));
3314  EVT PtrVT = Ptr.getValueType();
3315  bool isVolatile = I.isVolatile();
3316  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3317  unsigned Alignment = I.getAlignment();
3318  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3319
3320  unsigned ChainI = 0;
3321  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3322    // See visitLoad comments.
3323    if (ChainI == MaxParallelChains) {
3324      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3325                                  MVT::Other, &Chains[0], ChainI);
3326      Root = Chain;
3327      ChainI = 0;
3328    }
3329    SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr,
3330                              DAG.getConstant(Offsets[i], PtrVT));
3331    SDValue St = DAG.getStore(Root, getCurDebugLoc(),
3332                              SDValue(Src.getNode(), Src.getResNo() + i),
3333                              Add, MachinePointerInfo(PtrV, Offsets[i]),
3334                              isVolatile, isNonTemporal, Alignment, TBAAInfo);
3335    Chains[ChainI] = St;
3336  }
3337
3338  SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3339                                  MVT::Other, &Chains[0], ChainI);
3340  ++SDNodeOrder;
3341  AssignOrderingToNode(StoreNode.getNode());
3342  DAG.setRoot(StoreNode);
3343}
3344
3345static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order,
3346                                    SynchronizationScope Scope,
3347                                    bool Before, DebugLoc dl,
3348                                    SelectionDAG &DAG,
3349                                    const TargetLowering &TLI) {
3350  // Fence, if necessary
3351  if (Before) {
3352    if (Order == AcquireRelease || Order == SequentiallyConsistent)
3353      Order = Release;
3354    else if (Order == Acquire || Order == Monotonic)
3355      return Chain;
3356  } else {
3357    if (Order == AcquireRelease)
3358      Order = Acquire;
3359    else if (Order == Release || Order == Monotonic)
3360      return Chain;
3361  }
3362  SDValue Ops[3];
3363  Ops[0] = Chain;
3364  Ops[1] = DAG.getConstant(Order, TLI.getPointerTy());
3365  Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy());
3366  return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3);
3367}
3368
3369void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
3370  DebugLoc dl = getCurDebugLoc();
3371  AtomicOrdering Order = I.getOrdering();
3372  SynchronizationScope Scope = I.getSynchScope();
3373
3374  SDValue InChain = getRoot();
3375
3376  if (TLI.getInsertFencesForAtomic())
3377    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3378                                   DAG, TLI);
3379
3380  SDValue L =
3381    DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl,
3382                  getValue(I.getCompareOperand()).getValueType().getSimpleVT(),
3383                  InChain,
3384                  getValue(I.getPointerOperand()),
3385                  getValue(I.getCompareOperand()),
3386                  getValue(I.getNewValOperand()),
3387                  MachinePointerInfo(I.getPointerOperand()), 0 /* Alignment */,
3388                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3389                  Scope);
3390
3391  SDValue OutChain = L.getValue(1);
3392
3393  if (TLI.getInsertFencesForAtomic())
3394    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3395                                    DAG, TLI);
3396
3397  setValue(&I, L);
3398  DAG.setRoot(OutChain);
3399}
3400
3401void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
3402  DebugLoc dl = getCurDebugLoc();
3403  ISD::NodeType NT;
3404  switch (I.getOperation()) {
3405  default: llvm_unreachable("Unknown atomicrmw operation");
3406  case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
3407  case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
3408  case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
3409  case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
3410  case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
3411  case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
3412  case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
3413  case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
3414  case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
3415  case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
3416  case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
3417  }
3418  AtomicOrdering Order = I.getOrdering();
3419  SynchronizationScope Scope = I.getSynchScope();
3420
3421  SDValue InChain = getRoot();
3422
3423  if (TLI.getInsertFencesForAtomic())
3424    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3425                                   DAG, TLI);
3426
3427  SDValue L =
3428    DAG.getAtomic(NT, dl,
3429                  getValue(I.getValOperand()).getValueType().getSimpleVT(),
3430                  InChain,
3431                  getValue(I.getPointerOperand()),
3432                  getValue(I.getValOperand()),
3433                  I.getPointerOperand(), 0 /* Alignment */,
3434                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3435                  Scope);
3436
3437  SDValue OutChain = L.getValue(1);
3438
3439  if (TLI.getInsertFencesForAtomic())
3440    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3441                                    DAG, TLI);
3442
3443  setValue(&I, L);
3444  DAG.setRoot(OutChain);
3445}
3446
3447void SelectionDAGBuilder::visitFence(const FenceInst &I) {
3448  DebugLoc dl = getCurDebugLoc();
3449  SDValue Ops[3];
3450  Ops[0] = getRoot();
3451  Ops[1] = DAG.getConstant(I.getOrdering(), TLI.getPointerTy());
3452  Ops[2] = DAG.getConstant(I.getSynchScope(), TLI.getPointerTy());
3453  DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3));
3454}
3455
3456void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
3457  DebugLoc dl = getCurDebugLoc();
3458  AtomicOrdering Order = I.getOrdering();
3459  SynchronizationScope Scope = I.getSynchScope();
3460
3461  SDValue InChain = getRoot();
3462
3463  EVT VT = EVT::getEVT(I.getType());
3464
3465  if (I.getAlignment() * 8 < VT.getSizeInBits())
3466    report_fatal_error("Cannot generate unaligned atomic load");
3467
3468  SDValue L =
3469    DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
3470                  getValue(I.getPointerOperand()),
3471                  I.getPointerOperand(), I.getAlignment(),
3472                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3473                  Scope);
3474
3475  SDValue OutChain = L.getValue(1);
3476
3477  if (TLI.getInsertFencesForAtomic())
3478    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3479                                    DAG, TLI);
3480
3481  setValue(&I, L);
3482  DAG.setRoot(OutChain);
3483}
3484
3485void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
3486  DebugLoc dl = getCurDebugLoc();
3487
3488  AtomicOrdering Order = I.getOrdering();
3489  SynchronizationScope Scope = I.getSynchScope();
3490
3491  SDValue InChain = getRoot();
3492
3493  EVT VT = EVT::getEVT(I.getValueOperand()->getType());
3494
3495  if (I.getAlignment() * 8 < VT.getSizeInBits())
3496    report_fatal_error("Cannot generate unaligned atomic store");
3497
3498  if (TLI.getInsertFencesForAtomic())
3499    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3500                                   DAG, TLI);
3501
3502  SDValue OutChain =
3503    DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
3504                  InChain,
3505                  getValue(I.getPointerOperand()),
3506                  getValue(I.getValueOperand()),
3507                  I.getPointerOperand(), I.getAlignment(),
3508                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3509                  Scope);
3510
3511  if (TLI.getInsertFencesForAtomic())
3512    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3513                                    DAG, TLI);
3514
3515  DAG.setRoot(OutChain);
3516}
3517
3518/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3519/// node.
3520void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3521                                               unsigned Intrinsic) {
3522  bool HasChain = !I.doesNotAccessMemory();
3523  bool OnlyLoad = HasChain && I.onlyReadsMemory();
3524
3525  // Build the operand list.
3526  SmallVector<SDValue, 8> Ops;
3527  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
3528    if (OnlyLoad) {
3529      // We don't need to serialize loads against other loads.
3530      Ops.push_back(DAG.getRoot());
3531    } else {
3532      Ops.push_back(getRoot());
3533    }
3534  }
3535
3536  // Info is set by getTgtMemInstrinsic
3537  TargetLowering::IntrinsicInfo Info;
3538  bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
3539
3540  // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3541  if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
3542      Info.opc == ISD::INTRINSIC_W_CHAIN)
3543    Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI.getPointerTy()));
3544
3545  // Add all operands of the call to the operand list.
3546  for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
3547    SDValue Op = getValue(I.getArgOperand(i));
3548    Ops.push_back(Op);
3549  }
3550
3551  SmallVector<EVT, 4> ValueVTs;
3552  ComputeValueVTs(TLI, I.getType(), ValueVTs);
3553
3554  if (HasChain)
3555    ValueVTs.push_back(MVT::Other);
3556
3557  SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
3558
3559  // Create the node.
3560  SDValue Result;
3561  if (IsTgtIntrinsic) {
3562    // This is target intrinsic that touches memory
3563    Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(),
3564                                     VTs, &Ops[0], Ops.size(),
3565                                     Info.memVT,
3566                                   MachinePointerInfo(Info.ptrVal, Info.offset),
3567                                     Info.align, Info.vol,
3568                                     Info.readMem, Info.writeMem);
3569  } else if (!HasChain) {
3570    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
3571                         VTs, &Ops[0], Ops.size());
3572  } else if (!I.getType()->isVoidTy()) {
3573    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
3574                         VTs, &Ops[0], Ops.size());
3575  } else {
3576    Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(),
3577                         VTs, &Ops[0], Ops.size());
3578  }
3579
3580  if (HasChain) {
3581    SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3582    if (OnlyLoad)
3583      PendingLoads.push_back(Chain);
3584    else
3585      DAG.setRoot(Chain);
3586  }
3587
3588  if (!I.getType()->isVoidTy()) {
3589    if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3590      EVT VT = TLI.getValueType(PTy);
3591      Result = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), VT, Result);
3592    }
3593
3594    setValue(&I, Result);
3595  } else {
3596    // Assign order to result here. If the intrinsic does not produce a result,
3597    // it won't be mapped to a SDNode and visit() will not assign it an order
3598    // number.
3599    ++SDNodeOrder;
3600    AssignOrderingToNode(Result.getNode());
3601  }
3602}
3603
3604/// GetSignificand - Get the significand and build it into a floating-point
3605/// number with exponent of 1:
3606///
3607///   Op = (Op & 0x007fffff) | 0x3f800000;
3608///
3609/// where Op is the hexidecimal representation of floating point value.
3610static SDValue
3611GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) {
3612  SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3613                           DAG.getConstant(0x007fffff, MVT::i32));
3614  SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3615                           DAG.getConstant(0x3f800000, MVT::i32));
3616  return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
3617}
3618
3619/// GetExponent - Get the exponent:
3620///
3621///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3622///
3623/// where Op is the hexidecimal representation of floating point value.
3624static SDValue
3625GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3626            DebugLoc dl) {
3627  SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3628                           DAG.getConstant(0x7f800000, MVT::i32));
3629  SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3630                           DAG.getConstant(23, TLI.getPointerTy()));
3631  SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3632                           DAG.getConstant(127, MVT::i32));
3633  return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3634}
3635
3636/// getF32Constant - Get 32-bit floating point constant.
3637static SDValue
3638getF32Constant(SelectionDAG &DAG, unsigned Flt) {
3639  return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32);
3640}
3641
3642/// visitExp - Lower an exp intrinsic. Handles the special sequences for
3643/// limited-precision mode.
3644void
3645SelectionDAGBuilder::visitExp(const CallInst &I) {
3646  SDValue result;
3647  DebugLoc dl = getCurDebugLoc();
3648
3649  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3650      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3651    SDValue Op = getValue(I.getArgOperand(0));
3652
3653    // Put the exponent in the right bit position for later addition to the
3654    // final result:
3655    //
3656    //   #define LOG2OFe 1.4426950f
3657    //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3658    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3659                             getF32Constant(DAG, 0x3fb8aa3b));
3660    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3661
3662    //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3663    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3664    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3665
3666    //   IntegerPartOfX <<= 23;
3667    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3668                                 DAG.getConstant(23, TLI.getPointerTy()));
3669
3670    if (LimitFloatPrecision <= 6) {
3671      // For floating-point precision of 6:
3672      //
3673      //   TwoToFractionalPartOfX =
3674      //     0.997535578f +
3675      //       (0.735607626f + 0.252464424f * x) * x;
3676      //
3677      // error 0.0144103317, which is 6 bits
3678      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3679                               getF32Constant(DAG, 0x3e814304));
3680      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3681                               getF32Constant(DAG, 0x3f3c50c8));
3682      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3683      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3684                               getF32Constant(DAG, 0x3f7f5e7e));
3685      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t5);
3686
3687      // Add the exponent into the result in integer domain.
3688      SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3689                               TwoToFracPartOfX, IntegerPartOfX);
3690
3691      result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t6);
3692    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3693      // For floating-point precision of 12:
3694      //
3695      //   TwoToFractionalPartOfX =
3696      //     0.999892986f +
3697      //       (0.696457318f +
3698      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3699      //
3700      // 0.000107046256 error, which is 13 to 14 bits
3701      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3702                               getF32Constant(DAG, 0x3da235e3));
3703      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3704                               getF32Constant(DAG, 0x3e65b8f3));
3705      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3706      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3707                               getF32Constant(DAG, 0x3f324b07));
3708      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3709      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3710                               getF32Constant(DAG, 0x3f7ff8fd));
3711      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t7);
3712
3713      // Add the exponent into the result in integer domain.
3714      SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3715                               TwoToFracPartOfX, IntegerPartOfX);
3716
3717      result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t8);
3718    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3719      // For floating-point precision of 18:
3720      //
3721      //   TwoToFractionalPartOfX =
3722      //     0.999999982f +
3723      //       (0.693148872f +
3724      //         (0.240227044f +
3725      //           (0.554906021e-1f +
3726      //             (0.961591928e-2f +
3727      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3728      //
3729      // error 2.47208000*10^(-7), which is better than 18 bits
3730      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3731                               getF32Constant(DAG, 0x3924b03e));
3732      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3733                               getF32Constant(DAG, 0x3ab24b87));
3734      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3735      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3736                               getF32Constant(DAG, 0x3c1d8c17));
3737      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3738      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3739                               getF32Constant(DAG, 0x3d634a1d));
3740      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3741      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3742                               getF32Constant(DAG, 0x3e75fe14));
3743      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3744      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3745                                getF32Constant(DAG, 0x3f317234));
3746      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3747      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3748                                getF32Constant(DAG, 0x3f800000));
3749      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,
3750                                             MVT::i32, t13);
3751
3752      // Add the exponent into the result in integer domain.
3753      SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3754                                TwoToFracPartOfX, IntegerPartOfX);
3755
3756      result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t14);
3757    }
3758  } else {
3759    // No special expansion.
3760    result = DAG.getNode(ISD::FEXP, dl,
3761                         getValue(I.getArgOperand(0)).getValueType(),
3762                         getValue(I.getArgOperand(0)));
3763  }
3764
3765  setValue(&I, result);
3766}
3767
3768/// visitLog - Lower a log intrinsic. Handles the special sequences for
3769/// limited-precision mode.
3770void
3771SelectionDAGBuilder::visitLog(const CallInst &I) {
3772  SDValue result;
3773  DebugLoc dl = getCurDebugLoc();
3774
3775  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3776      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3777    SDValue Op = getValue(I.getArgOperand(0));
3778    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3779
3780    // Scale the exponent by log(2) [0.69314718f].
3781    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3782    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3783                                        getF32Constant(DAG, 0x3f317218));
3784
3785    // Get the significand and build it into a floating-point number with
3786    // exponent of 1.
3787    SDValue X = GetSignificand(DAG, Op1, dl);
3788
3789    if (LimitFloatPrecision <= 6) {
3790      // For floating-point precision of 6:
3791      //
3792      //   LogofMantissa =
3793      //     -1.1609546f +
3794      //       (1.4034025f - 0.23903021f * x) * x;
3795      //
3796      // error 0.0034276066, which is better than 8 bits
3797      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3798                               getF32Constant(DAG, 0xbe74c456));
3799      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3800                               getF32Constant(DAG, 0x3fb3a2b1));
3801      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3802      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3803                                          getF32Constant(DAG, 0x3f949a29));
3804
3805      result = DAG.getNode(ISD::FADD, dl,
3806                           MVT::f32, LogOfExponent, LogOfMantissa);
3807    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3808      // For floating-point precision of 12:
3809      //
3810      //   LogOfMantissa =
3811      //     -1.7417939f +
3812      //       (2.8212026f +
3813      //         (-1.4699568f +
3814      //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3815      //
3816      // error 0.000061011436, which is 14 bits
3817      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3818                               getF32Constant(DAG, 0xbd67b6d6));
3819      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3820                               getF32Constant(DAG, 0x3ee4f4b8));
3821      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3822      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3823                               getF32Constant(DAG, 0x3fbc278b));
3824      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3825      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3826                               getF32Constant(DAG, 0x40348e95));
3827      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3828      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3829                                          getF32Constant(DAG, 0x3fdef31a));
3830
3831      result = DAG.getNode(ISD::FADD, dl,
3832                           MVT::f32, LogOfExponent, LogOfMantissa);
3833    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3834      // For floating-point precision of 18:
3835      //
3836      //   LogOfMantissa =
3837      //     -2.1072184f +
3838      //       (4.2372794f +
3839      //         (-3.7029485f +
3840      //           (2.2781945f +
3841      //             (-0.87823314f +
3842      //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3843      //
3844      // error 0.0000023660568, which is better than 18 bits
3845      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3846                               getF32Constant(DAG, 0xbc91e5ac));
3847      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3848                               getF32Constant(DAG, 0x3e4350aa));
3849      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3850      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3851                               getF32Constant(DAG, 0x3f60d3e3));
3852      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3853      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3854                               getF32Constant(DAG, 0x4011cdf0));
3855      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3856      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3857                               getF32Constant(DAG, 0x406cfd1c));
3858      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3859      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3860                               getF32Constant(DAG, 0x408797cb));
3861      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3862      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3863                                          getF32Constant(DAG, 0x4006dcab));
3864
3865      result = DAG.getNode(ISD::FADD, dl,
3866                           MVT::f32, LogOfExponent, LogOfMantissa);
3867    }
3868  } else {
3869    // No special expansion.
3870    result = DAG.getNode(ISD::FLOG, dl,
3871                         getValue(I.getArgOperand(0)).getValueType(),
3872                         getValue(I.getArgOperand(0)));
3873  }
3874
3875  setValue(&I, result);
3876}
3877
3878/// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for
3879/// limited-precision mode.
3880void
3881SelectionDAGBuilder::visitLog2(const CallInst &I) {
3882  SDValue result;
3883  DebugLoc dl = getCurDebugLoc();
3884
3885  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3886      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3887    SDValue Op = getValue(I.getArgOperand(0));
3888    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3889
3890    // Get the exponent.
3891    SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3892
3893    // Get the significand and build it into a floating-point number with
3894    // exponent of 1.
3895    SDValue X = GetSignificand(DAG, Op1, dl);
3896
3897    // Different possible minimax approximations of significand in
3898    // floating-point for various degrees of accuracy over [1,2].
3899    if (LimitFloatPrecision <= 6) {
3900      // For floating-point precision of 6:
3901      //
3902      //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3903      //
3904      // error 0.0049451742, which is more than 7 bits
3905      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3906                               getF32Constant(DAG, 0xbeb08fe0));
3907      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3908                               getF32Constant(DAG, 0x40019463));
3909      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3910      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3911                                           getF32Constant(DAG, 0x3fd6633d));
3912
3913      result = DAG.getNode(ISD::FADD, dl,
3914                           MVT::f32, LogOfExponent, Log2ofMantissa);
3915    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3916      // For floating-point precision of 12:
3917      //
3918      //   Log2ofMantissa =
3919      //     -2.51285454f +
3920      //       (4.07009056f +
3921      //         (-2.12067489f +
3922      //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3923      //
3924      // error 0.0000876136000, which is better than 13 bits
3925      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3926                               getF32Constant(DAG, 0xbda7262e));
3927      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3928                               getF32Constant(DAG, 0x3f25280b));
3929      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3930      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3931                               getF32Constant(DAG, 0x4007b923));
3932      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3933      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3934                               getF32Constant(DAG, 0x40823e2f));
3935      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3936      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3937                                           getF32Constant(DAG, 0x4020d29c));
3938
3939      result = DAG.getNode(ISD::FADD, dl,
3940                           MVT::f32, LogOfExponent, Log2ofMantissa);
3941    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3942      // For floating-point precision of 18:
3943      //
3944      //   Log2ofMantissa =
3945      //     -3.0400495f +
3946      //       (6.1129976f +
3947      //         (-5.3420409f +
3948      //           (3.2865683f +
3949      //             (-1.2669343f +
3950      //               (0.27515199f -
3951      //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3952      //
3953      // error 0.0000018516, which is better than 18 bits
3954      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3955                               getF32Constant(DAG, 0xbcd2769e));
3956      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3957                               getF32Constant(DAG, 0x3e8ce0b9));
3958      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3959      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3960                               getF32Constant(DAG, 0x3fa22ae7));
3961      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3962      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3963                               getF32Constant(DAG, 0x40525723));
3964      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3965      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3966                               getF32Constant(DAG, 0x40aaf200));
3967      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3968      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3969                               getF32Constant(DAG, 0x40c39dad));
3970      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3971      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3972                                           getF32Constant(DAG, 0x4042902c));
3973
3974      result = DAG.getNode(ISD::FADD, dl,
3975                           MVT::f32, LogOfExponent, Log2ofMantissa);
3976    }
3977  } else {
3978    // No special expansion.
3979    result = DAG.getNode(ISD::FLOG2, dl,
3980                         getValue(I.getArgOperand(0)).getValueType(),
3981                         getValue(I.getArgOperand(0)));
3982  }
3983
3984  setValue(&I, result);
3985}
3986
3987/// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for
3988/// limited-precision mode.
3989void
3990SelectionDAGBuilder::visitLog10(const CallInst &I) {
3991  SDValue result;
3992  DebugLoc dl = getCurDebugLoc();
3993
3994  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3995      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3996    SDValue Op = getValue(I.getArgOperand(0));
3997    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3998
3999    // Scale the exponent by log10(2) [0.30102999f].
4000    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4001    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4002                                        getF32Constant(DAG, 0x3e9a209a));
4003
4004    // Get the significand and build it into a floating-point number with
4005    // exponent of 1.
4006    SDValue X = GetSignificand(DAG, Op1, dl);
4007
4008    if (LimitFloatPrecision <= 6) {
4009      // For floating-point precision of 6:
4010      //
4011      //   Log10ofMantissa =
4012      //     -0.50419619f +
4013      //       (0.60948995f - 0.10380950f * x) * x;
4014      //
4015      // error 0.0014886165, which is 6 bits
4016      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4017                               getF32Constant(DAG, 0xbdd49a13));
4018      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4019                               getF32Constant(DAG, 0x3f1c0789));
4020      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4021      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4022                                            getF32Constant(DAG, 0x3f011300));
4023
4024      result = DAG.getNode(ISD::FADD, dl,
4025                           MVT::f32, LogOfExponent, Log10ofMantissa);
4026    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
4027      // For floating-point precision of 12:
4028      //
4029      //   Log10ofMantissa =
4030      //     -0.64831180f +
4031      //       (0.91751397f +
4032      //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4033      //
4034      // error 0.00019228036, which is better than 12 bits
4035      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4036                               getF32Constant(DAG, 0x3d431f31));
4037      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4038                               getF32Constant(DAG, 0x3ea21fb2));
4039      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4040      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4041                               getF32Constant(DAG, 0x3f6ae232));
4042      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4043      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4044                                            getF32Constant(DAG, 0x3f25f7c3));
4045
4046      result = DAG.getNode(ISD::FADD, dl,
4047                           MVT::f32, LogOfExponent, Log10ofMantissa);
4048    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
4049      // For floating-point precision of 18:
4050      //
4051      //   Log10ofMantissa =
4052      //     -0.84299375f +
4053      //       (1.5327582f +
4054      //         (-1.0688956f +
4055      //           (0.49102474f +
4056      //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4057      //
4058      // error 0.0000037995730, which is better than 18 bits
4059      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4060                               getF32Constant(DAG, 0x3c5d51ce));
4061      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4062                               getF32Constant(DAG, 0x3e00685a));
4063      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4064      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4065                               getF32Constant(DAG, 0x3efb6798));
4066      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4067      SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4068                               getF32Constant(DAG, 0x3f88d192));
4069      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4070      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4071                               getF32Constant(DAG, 0x3fc4316c));
4072      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4073      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4074                                            getF32Constant(DAG, 0x3f57ce70));
4075
4076      result = DAG.getNode(ISD::FADD, dl,
4077                           MVT::f32, LogOfExponent, Log10ofMantissa);
4078    }
4079  } else {
4080    // No special expansion.
4081    result = DAG.getNode(ISD::FLOG10, dl,
4082                         getValue(I.getArgOperand(0)).getValueType(),
4083                         getValue(I.getArgOperand(0)));
4084  }
4085
4086  setValue(&I, result);
4087}
4088
4089/// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4090/// limited-precision mode.
4091void
4092SelectionDAGBuilder::visitExp2(const CallInst &I) {
4093  SDValue result;
4094  DebugLoc dl = getCurDebugLoc();
4095
4096  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
4097      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4098    SDValue Op = getValue(I.getArgOperand(0));
4099
4100    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
4101
4102    //   FractionalPartOfX = x - (float)IntegerPartOfX;
4103    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4104    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
4105
4106    //   IntegerPartOfX <<= 23;
4107    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4108                                 DAG.getConstant(23, TLI.getPointerTy()));
4109
4110    if (LimitFloatPrecision <= 6) {
4111      // For floating-point precision of 6:
4112      //
4113      //   TwoToFractionalPartOfX =
4114      //     0.997535578f +
4115      //       (0.735607626f + 0.252464424f * x) * x;
4116      //
4117      // error 0.0144103317, which is 6 bits
4118      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4119                               getF32Constant(DAG, 0x3e814304));
4120      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4121                               getF32Constant(DAG, 0x3f3c50c8));
4122      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4123      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4124                               getF32Constant(DAG, 0x3f7f5e7e));
4125      SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
4126      SDValue TwoToFractionalPartOfX =
4127        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
4128
4129      result = DAG.getNode(ISD::BITCAST, dl,
4130                           MVT::f32, TwoToFractionalPartOfX);
4131    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
4132      // For floating-point precision of 12:
4133      //
4134      //   TwoToFractionalPartOfX =
4135      //     0.999892986f +
4136      //       (0.696457318f +
4137      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4138      //
4139      // error 0.000107046256, which is 13 to 14 bits
4140      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4141                               getF32Constant(DAG, 0x3da235e3));
4142      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4143                               getF32Constant(DAG, 0x3e65b8f3));
4144      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4145      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4146                               getF32Constant(DAG, 0x3f324b07));
4147      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4148      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4149                               getF32Constant(DAG, 0x3f7ff8fd));
4150      SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
4151      SDValue TwoToFractionalPartOfX =
4152        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
4153
4154      result = DAG.getNode(ISD::BITCAST, dl,
4155                           MVT::f32, TwoToFractionalPartOfX);
4156    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
4157      // For floating-point precision of 18:
4158      //
4159      //   TwoToFractionalPartOfX =
4160      //     0.999999982f +
4161      //       (0.693148872f +
4162      //         (0.240227044f +
4163      //           (0.554906021e-1f +
4164      //             (0.961591928e-2f +
4165      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4166      // error 2.47208000*10^(-7), which is better than 18 bits
4167      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4168                               getF32Constant(DAG, 0x3924b03e));
4169      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4170                               getF32Constant(DAG, 0x3ab24b87));
4171      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4172      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4173                               getF32Constant(DAG, 0x3c1d8c17));
4174      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4175      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4176                               getF32Constant(DAG, 0x3d634a1d));
4177      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4178      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4179                               getF32Constant(DAG, 0x3e75fe14));
4180      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4181      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4182                                getF32Constant(DAG, 0x3f317234));
4183      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4184      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4185                                getF32Constant(DAG, 0x3f800000));
4186      SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
4187      SDValue TwoToFractionalPartOfX =
4188        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
4189
4190      result = DAG.getNode(ISD::BITCAST, dl,
4191                           MVT::f32, TwoToFractionalPartOfX);
4192    }
4193  } else {
4194    // No special expansion.
4195    result = DAG.getNode(ISD::FEXP2, dl,
4196                         getValue(I.getArgOperand(0)).getValueType(),
4197                         getValue(I.getArgOperand(0)));
4198  }
4199
4200  setValue(&I, result);
4201}
4202
4203/// visitPow - Lower a pow intrinsic. Handles the special sequences for
4204/// limited-precision mode with x == 10.0f.
4205void
4206SelectionDAGBuilder::visitPow(const CallInst &I) {
4207  SDValue result;
4208  const Value *Val = I.getArgOperand(0);
4209  DebugLoc dl = getCurDebugLoc();
4210  bool IsExp10 = false;
4211
4212  if (getValue(Val).getValueType() == MVT::f32 &&
4213      getValue(I.getArgOperand(1)).getValueType() == MVT::f32 &&
4214      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4215    if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) {
4216      if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
4217        APFloat Ten(10.0f);
4218        IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten);
4219      }
4220    }
4221  }
4222
4223  if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4224    SDValue Op = getValue(I.getArgOperand(1));
4225
4226    // Put the exponent in the right bit position for later addition to the
4227    // final result:
4228    //
4229    //   #define LOG2OF10 3.3219281f
4230    //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
4231    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4232                             getF32Constant(DAG, 0x40549a78));
4233    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4234
4235    //   FractionalPartOfX = x - (float)IntegerPartOfX;
4236    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4237    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4238
4239    //   IntegerPartOfX <<= 23;
4240    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4241                                 DAG.getConstant(23, TLI.getPointerTy()));
4242
4243    if (LimitFloatPrecision <= 6) {
4244      // For floating-point precision of 6:
4245      //
4246      //   twoToFractionalPartOfX =
4247      //     0.997535578f +
4248      //       (0.735607626f + 0.252464424f * x) * x;
4249      //
4250      // error 0.0144103317, which is 6 bits
4251      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4252                               getF32Constant(DAG, 0x3e814304));
4253      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4254                               getF32Constant(DAG, 0x3f3c50c8));
4255      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4256      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4257                               getF32Constant(DAG, 0x3f7f5e7e));
4258      SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
4259      SDValue TwoToFractionalPartOfX =
4260        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
4261
4262      result = DAG.getNode(ISD::BITCAST, dl,
4263                           MVT::f32, TwoToFractionalPartOfX);
4264    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
4265      // For floating-point precision of 12:
4266      //
4267      //   TwoToFractionalPartOfX =
4268      //     0.999892986f +
4269      //       (0.696457318f +
4270      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4271      //
4272      // error 0.000107046256, which is 13 to 14 bits
4273      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4274                               getF32Constant(DAG, 0x3da235e3));
4275      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4276                               getF32Constant(DAG, 0x3e65b8f3));
4277      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4278      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4279                               getF32Constant(DAG, 0x3f324b07));
4280      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4281      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4282                               getF32Constant(DAG, 0x3f7ff8fd));
4283      SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
4284      SDValue TwoToFractionalPartOfX =
4285        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
4286
4287      result = DAG.getNode(ISD::BITCAST, dl,
4288                           MVT::f32, TwoToFractionalPartOfX);
4289    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
4290      // For floating-point precision of 18:
4291      //
4292      //   TwoToFractionalPartOfX =
4293      //     0.999999982f +
4294      //       (0.693148872f +
4295      //         (0.240227044f +
4296      //           (0.554906021e-1f +
4297      //             (0.961591928e-2f +
4298      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4299      // error 2.47208000*10^(-7), which is better than 18 bits
4300      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4301                               getF32Constant(DAG, 0x3924b03e));
4302      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4303                               getF32Constant(DAG, 0x3ab24b87));
4304      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4305      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4306                               getF32Constant(DAG, 0x3c1d8c17));
4307      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4308      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4309                               getF32Constant(DAG, 0x3d634a1d));
4310      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4311      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4312                               getF32Constant(DAG, 0x3e75fe14));
4313      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4314      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4315                                getF32Constant(DAG, 0x3f317234));
4316      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4317      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4318                                getF32Constant(DAG, 0x3f800000));
4319      SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
4320      SDValue TwoToFractionalPartOfX =
4321        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
4322
4323      result = DAG.getNode(ISD::BITCAST, dl,
4324                           MVT::f32, TwoToFractionalPartOfX);
4325    }
4326  } else {
4327    // No special expansion.
4328    result = DAG.getNode(ISD::FPOW, dl,
4329                         getValue(I.getArgOperand(0)).getValueType(),
4330                         getValue(I.getArgOperand(0)),
4331                         getValue(I.getArgOperand(1)));
4332  }
4333
4334  setValue(&I, result);
4335}
4336
4337
4338/// ExpandPowI - Expand a llvm.powi intrinsic.
4339static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS,
4340                          SelectionDAG &DAG) {
4341  // If RHS is a constant, we can expand this out to a multiplication tree,
4342  // otherwise we end up lowering to a call to __powidf2 (for example).  When
4343  // optimizing for size, we only want to do this if the expansion would produce
4344  // a small number of multiplies, otherwise we do the full expansion.
4345  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4346    // Get the exponent as a positive value.
4347    unsigned Val = RHSC->getSExtValue();
4348    if ((int)Val < 0) Val = -Val;
4349
4350    // powi(x, 0) -> 1.0
4351    if (Val == 0)
4352      return DAG.getConstantFP(1.0, LHS.getValueType());
4353
4354    const Function *F = DAG.getMachineFunction().getFunction();
4355    if (!F->hasFnAttr(Attribute::OptimizeForSize) ||
4356        // If optimizing for size, don't insert too many multiplies.  This
4357        // inserts up to 5 multiplies.
4358        CountPopulation_32(Val)+Log2_32(Val) < 7) {
4359      // We use the simple binary decomposition method to generate the multiply
4360      // sequence.  There are more optimal ways to do this (for example,
4361      // powi(x,15) generates one more multiply than it should), but this has
4362      // the benefit of being both really simple and much better than a libcall.
4363      SDValue Res;  // Logically starts equal to 1.0
4364      SDValue CurSquare = LHS;
4365      while (Val) {
4366        if (Val & 1) {
4367          if (Res.getNode())
4368            Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4369          else
4370            Res = CurSquare;  // 1.0*CurSquare.
4371        }
4372
4373        CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4374                                CurSquare, CurSquare);
4375        Val >>= 1;
4376      }
4377
4378      // If the original was negative, invert the result, producing 1/(x*x*x).
4379      if (RHSC->getSExtValue() < 0)
4380        Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4381                          DAG.getConstantFP(1.0, LHS.getValueType()), Res);
4382      return Res;
4383    }
4384  }
4385
4386  // Otherwise, expand to a libcall.
4387  return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4388}
4389
4390// getTruncatedArgReg - Find underlying register used for an truncated
4391// argument.
4392static unsigned getTruncatedArgReg(const SDValue &N) {
4393  if (N.getOpcode() != ISD::TRUNCATE)
4394    return 0;
4395
4396  const SDValue &Ext = N.getOperand(0);
4397  if (Ext.getOpcode() == ISD::AssertZext || Ext.getOpcode() == ISD::AssertSext){
4398    const SDValue &CFR = Ext.getOperand(0);
4399    if (CFR.getOpcode() == ISD::CopyFromReg)
4400      return cast<RegisterSDNode>(CFR.getOperand(1))->getReg();
4401    if (CFR.getOpcode() == ISD::TRUNCATE)
4402      return getTruncatedArgReg(CFR);
4403  }
4404  return 0;
4405}
4406
4407/// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4408/// argument, create the corresponding DBG_VALUE machine instruction for it now.
4409/// At the end of instruction selection, they will be inserted to the entry BB.
4410bool
4411SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
4412                                              int64_t Offset,
4413                                              const SDValue &N) {
4414  const Argument *Arg = dyn_cast<Argument>(V);
4415  if (!Arg)
4416    return false;
4417
4418  MachineFunction &MF = DAG.getMachineFunction();
4419  const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
4420  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
4421
4422  // Ignore inlined function arguments here.
4423  DIVariable DV(Variable);
4424  if (DV.isInlinedFnArgument(MF.getFunction()))
4425    return false;
4426
4427  unsigned Reg = 0;
4428  // Some arguments' frame index is recorded during argument lowering.
4429  Offset = FuncInfo.getArgumentFrameIndex(Arg);
4430  if (Offset)
4431    Reg = TRI->getFrameRegister(MF);
4432
4433  if (!Reg && N.getNode()) {
4434    if (N.getOpcode() == ISD::CopyFromReg)
4435      Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
4436    else
4437      Reg = getTruncatedArgReg(N);
4438    if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4439      MachineRegisterInfo &RegInfo = MF.getRegInfo();
4440      unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4441      if (PR)
4442        Reg = PR;
4443    }
4444  }
4445
4446  if (!Reg) {
4447    // Check if ValueMap has reg number.
4448    DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4449    if (VMI != FuncInfo.ValueMap.end())
4450      Reg = VMI->second;
4451  }
4452
4453  if (!Reg && N.getNode()) {
4454    // Check if frame index is available.
4455    if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4456      if (FrameIndexSDNode *FINode =
4457          dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) {
4458        Reg = TRI->getFrameRegister(MF);
4459        Offset = FINode->getIndex();
4460      }
4461  }
4462
4463  if (!Reg)
4464    return false;
4465
4466  MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(),
4467                                    TII->get(TargetOpcode::DBG_VALUE))
4468    .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable);
4469  FuncInfo.ArgDbgValues.push_back(&*MIB);
4470  return true;
4471}
4472
4473// VisualStudio defines setjmp as _setjmp
4474#if defined(_MSC_VER) && defined(setjmp) && \
4475                         !defined(setjmp_undefined_for_msvc)
4476#  pragma push_macro("setjmp")
4477#  undef setjmp
4478#  define setjmp_undefined_for_msvc
4479#endif
4480
4481/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4482/// we want to emit this as a call to a named external function, return the name
4483/// otherwise lower it and return null.
4484const char *
4485SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4486  DebugLoc dl = getCurDebugLoc();
4487  SDValue Res;
4488
4489  switch (Intrinsic) {
4490  default:
4491    // By default, turn this into a target intrinsic node.
4492    visitTargetIntrinsic(I, Intrinsic);
4493    return 0;
4494  case Intrinsic::vastart:  visitVAStart(I); return 0;
4495  case Intrinsic::vaend:    visitVAEnd(I); return 0;
4496  case Intrinsic::vacopy:   visitVACopy(I); return 0;
4497  case Intrinsic::returnaddress:
4498    setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(),
4499                             getValue(I.getArgOperand(0))));
4500    return 0;
4501  case Intrinsic::frameaddress:
4502    setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(),
4503                             getValue(I.getArgOperand(0))));
4504    return 0;
4505  case Intrinsic::setjmp:
4506    return &"_setjmp"[!TLI.usesUnderscoreSetJmp()];
4507  case Intrinsic::longjmp:
4508    return &"_longjmp"[!TLI.usesUnderscoreLongJmp()];
4509  case Intrinsic::memcpy: {
4510    // Assert for address < 256 since we support only user defined address
4511    // spaces.
4512    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4513           < 256 &&
4514           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4515           < 256 &&
4516           "Unknown address space");
4517    SDValue Op1 = getValue(I.getArgOperand(0));
4518    SDValue Op2 = getValue(I.getArgOperand(1));
4519    SDValue Op3 = getValue(I.getArgOperand(2));
4520    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4521    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4522    DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false,
4523                              MachinePointerInfo(I.getArgOperand(0)),
4524                              MachinePointerInfo(I.getArgOperand(1))));
4525    return 0;
4526  }
4527  case Intrinsic::memset: {
4528    // Assert for address < 256 since we support only user defined address
4529    // spaces.
4530    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4531           < 256 &&
4532           "Unknown address space");
4533    SDValue Op1 = getValue(I.getArgOperand(0));
4534    SDValue Op2 = getValue(I.getArgOperand(1));
4535    SDValue Op3 = getValue(I.getArgOperand(2));
4536    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4537    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4538    DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4539                              MachinePointerInfo(I.getArgOperand(0))));
4540    return 0;
4541  }
4542  case Intrinsic::memmove: {
4543    // Assert for address < 256 since we support only user defined address
4544    // spaces.
4545    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4546           < 256 &&
4547           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4548           < 256 &&
4549           "Unknown address space");
4550    SDValue Op1 = getValue(I.getArgOperand(0));
4551    SDValue Op2 = getValue(I.getArgOperand(1));
4552    SDValue Op3 = getValue(I.getArgOperand(2));
4553    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4554    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4555    DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4556                               MachinePointerInfo(I.getArgOperand(0)),
4557                               MachinePointerInfo(I.getArgOperand(1))));
4558    return 0;
4559  }
4560  case Intrinsic::dbg_declare: {
4561    const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4562    MDNode *Variable = DI.getVariable();
4563    const Value *Address = DI.getAddress();
4564    if (!Address || !DIVariable(Variable).Verify()) {
4565      DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4566      return 0;
4567    }
4568
4569    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4570    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4571    // absolute, but not relative, values are different depending on whether
4572    // debug info exists.
4573    ++SDNodeOrder;
4574
4575    // Check if address has undef value.
4576    if (isa<UndefValue>(Address) ||
4577        (Address->use_empty() && !isa<Argument>(Address))) {
4578      DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4579      return 0;
4580    }
4581
4582    SDValue &N = NodeMap[Address];
4583    if (!N.getNode() && isa<Argument>(Address))
4584      // Check unused arguments map.
4585      N = UnusedArgNodeMap[Address];
4586    SDDbgValue *SDV;
4587    if (N.getNode()) {
4588      if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4589        Address = BCI->getOperand(0);
4590      // Parameters are handled specially.
4591      bool isParameter =
4592        (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable ||
4593         isa<Argument>(Address));
4594
4595      const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
4596
4597      if (isParameter && !AI) {
4598        FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4599        if (FINode)
4600          // Byval parameter.  We have a frame index at this point.
4601          SDV = DAG.getDbgValue(Variable, FINode->getIndex(),
4602                                0, dl, SDNodeOrder);
4603        else {
4604          // Address is an argument, so try to emit its dbg value using
4605          // virtual register info from the FuncInfo.ValueMap.
4606          EmitFuncArgumentDbgValue(Address, Variable, 0, N);
4607          return 0;
4608        }
4609      } else if (AI)
4610        SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
4611                              0, dl, SDNodeOrder);
4612      else {
4613        // Can't do anything with other non-AI cases yet.
4614        DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4615        DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t");
4616        DEBUG(Address->dump());
4617        return 0;
4618      }
4619      DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4620    } else {
4621      // If Address is an argument then try to emit its dbg value using
4622      // virtual register info from the FuncInfo.ValueMap.
4623      if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) {
4624        // If variable is pinned by a alloca in dominating bb then
4625        // use StaticAllocaMap.
4626        if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4627          if (AI->getParent() != DI.getParent()) {
4628            DenseMap<const AllocaInst*, int>::iterator SI =
4629              FuncInfo.StaticAllocaMap.find(AI);
4630            if (SI != FuncInfo.StaticAllocaMap.end()) {
4631              SDV = DAG.getDbgValue(Variable, SI->second,
4632                                    0, dl, SDNodeOrder);
4633              DAG.AddDbgValue(SDV, 0, false);
4634              return 0;
4635            }
4636          }
4637        }
4638        DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4639      }
4640    }
4641    return 0;
4642  }
4643  case Intrinsic::dbg_value: {
4644    const DbgValueInst &DI = cast<DbgValueInst>(I);
4645    if (!DIVariable(DI.getVariable()).Verify())
4646      return 0;
4647
4648    MDNode *Variable = DI.getVariable();
4649    uint64_t Offset = DI.getOffset();
4650    const Value *V = DI.getValue();
4651    if (!V)
4652      return 0;
4653
4654    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4655    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4656    // absolute, but not relative, values are different depending on whether
4657    // debug info exists.
4658    ++SDNodeOrder;
4659    SDDbgValue *SDV;
4660    if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
4661      SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder);
4662      DAG.AddDbgValue(SDV, 0, false);
4663    } else {
4664      // Do not use getValue() in here; we don't want to generate code at
4665      // this point if it hasn't been done yet.
4666      SDValue N = NodeMap[V];
4667      if (!N.getNode() && isa<Argument>(V))
4668        // Check unused arguments map.
4669        N = UnusedArgNodeMap[V];
4670      if (N.getNode()) {
4671        if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) {
4672          SDV = DAG.getDbgValue(Variable, N.getNode(),
4673                                N.getResNo(), Offset, dl, SDNodeOrder);
4674          DAG.AddDbgValue(SDV, N.getNode(), false);
4675        }
4676      } else if (!V->use_empty() ) {
4677        // Do not call getValue(V) yet, as we don't want to generate code.
4678        // Remember it for later.
4679        DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4680        DanglingDebugInfoMap[V] = DDI;
4681      } else {
4682        // We may expand this to cover more cases.  One case where we have no
4683        // data available is an unreferenced parameter.
4684        DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4685      }
4686    }
4687
4688    // Build a debug info table entry.
4689    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4690      V = BCI->getOperand(0);
4691    const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4692    // Don't handle byval struct arguments or VLAs, for example.
4693    if (!AI) {
4694      DEBUG(dbgs() << "Dropping debug location info for:\n  " << DI << "\n");
4695      DEBUG(dbgs() << "  Last seen at:\n    " << *V << "\n");
4696      return 0;
4697    }
4698    DenseMap<const AllocaInst*, int>::iterator SI =
4699      FuncInfo.StaticAllocaMap.find(AI);
4700    if (SI == FuncInfo.StaticAllocaMap.end())
4701      return 0; // VLAs.
4702    int FI = SI->second;
4703
4704    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4705    if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
4706      MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
4707    return 0;
4708  }
4709
4710  case Intrinsic::eh_typeid_for: {
4711    // Find the type id for the given typeinfo.
4712    GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0));
4713    unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4714    Res = DAG.getConstant(TypeID, MVT::i32);
4715    setValue(&I, Res);
4716    return 0;
4717  }
4718
4719  case Intrinsic::eh_return_i32:
4720  case Intrinsic::eh_return_i64:
4721    DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4722    DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl,
4723                            MVT::Other,
4724                            getControlRoot(),
4725                            getValue(I.getArgOperand(0)),
4726                            getValue(I.getArgOperand(1))));
4727    return 0;
4728  case Intrinsic::eh_unwind_init:
4729    DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4730    return 0;
4731  case Intrinsic::eh_dwarf_cfa: {
4732    SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl,
4733                                        TLI.getPointerTy());
4734    SDValue Offset = DAG.getNode(ISD::ADD, dl,
4735                                 TLI.getPointerTy(),
4736                                 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
4737                                             TLI.getPointerTy()),
4738                                 CfaArg);
4739    SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl,
4740                             TLI.getPointerTy(),
4741                             DAG.getConstant(0, TLI.getPointerTy()));
4742    setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
4743                             FA, Offset));
4744    return 0;
4745  }
4746  case Intrinsic::eh_sjlj_callsite: {
4747    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4748    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4749    assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4750    assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4751
4752    MMI.setCurrentCallSite(CI->getZExtValue());
4753    return 0;
4754  }
4755  case Intrinsic::eh_sjlj_functioncontext: {
4756    // Get and store the index of the function context.
4757    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4758    AllocaInst *FnCtx =
4759      cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
4760    int FI = FuncInfo.StaticAllocaMap[FnCtx];
4761    MFI->setFunctionContextIndex(FI);
4762    return 0;
4763  }
4764  case Intrinsic::eh_sjlj_setjmp: {
4765    SDValue Ops[2];
4766    Ops[0] = getRoot();
4767    Ops[1] = getValue(I.getArgOperand(0));
4768    SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, dl,
4769                             DAG.getVTList(MVT::i32, MVT::Other),
4770                             Ops, 2);
4771    setValue(&I, Op.getValue(0));
4772    DAG.setRoot(Op.getValue(1));
4773    return 0;
4774  }
4775  case Intrinsic::eh_sjlj_longjmp: {
4776    DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other,
4777                            getRoot(), getValue(I.getArgOperand(0))));
4778    return 0;
4779  }
4780
4781  case Intrinsic::x86_mmx_pslli_w:
4782  case Intrinsic::x86_mmx_pslli_d:
4783  case Intrinsic::x86_mmx_pslli_q:
4784  case Intrinsic::x86_mmx_psrli_w:
4785  case Intrinsic::x86_mmx_psrli_d:
4786  case Intrinsic::x86_mmx_psrli_q:
4787  case Intrinsic::x86_mmx_psrai_w:
4788  case Intrinsic::x86_mmx_psrai_d: {
4789    SDValue ShAmt = getValue(I.getArgOperand(1));
4790    if (isa<ConstantSDNode>(ShAmt)) {
4791      visitTargetIntrinsic(I, Intrinsic);
4792      return 0;
4793    }
4794    unsigned NewIntrinsic = 0;
4795    EVT ShAmtVT = MVT::v2i32;
4796    switch (Intrinsic) {
4797    case Intrinsic::x86_mmx_pslli_w:
4798      NewIntrinsic = Intrinsic::x86_mmx_psll_w;
4799      break;
4800    case Intrinsic::x86_mmx_pslli_d:
4801      NewIntrinsic = Intrinsic::x86_mmx_psll_d;
4802      break;
4803    case Intrinsic::x86_mmx_pslli_q:
4804      NewIntrinsic = Intrinsic::x86_mmx_psll_q;
4805      break;
4806    case Intrinsic::x86_mmx_psrli_w:
4807      NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
4808      break;
4809    case Intrinsic::x86_mmx_psrli_d:
4810      NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
4811      break;
4812    case Intrinsic::x86_mmx_psrli_q:
4813      NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
4814      break;
4815    case Intrinsic::x86_mmx_psrai_w:
4816      NewIntrinsic = Intrinsic::x86_mmx_psra_w;
4817      break;
4818    case Intrinsic::x86_mmx_psrai_d:
4819      NewIntrinsic = Intrinsic::x86_mmx_psra_d;
4820      break;
4821    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4822    }
4823
4824    // The vector shift intrinsics with scalars uses 32b shift amounts but
4825    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
4826    // to be zero.
4827    // We must do this early because v2i32 is not a legal type.
4828    DebugLoc dl = getCurDebugLoc();
4829    SDValue ShOps[2];
4830    ShOps[0] = ShAmt;
4831    ShOps[1] = DAG.getConstant(0, MVT::i32);
4832    ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
4833    EVT DestVT = TLI.getValueType(I.getType());
4834    ShAmt = DAG.getNode(ISD::BITCAST, dl, DestVT, ShAmt);
4835    Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
4836                       DAG.getConstant(NewIntrinsic, MVT::i32),
4837                       getValue(I.getArgOperand(0)), ShAmt);
4838    setValue(&I, Res);
4839    return 0;
4840  }
4841  case Intrinsic::x86_avx_vinsertf128_pd_256:
4842  case Intrinsic::x86_avx_vinsertf128_ps_256:
4843  case Intrinsic::x86_avx_vinsertf128_si_256:
4844  case Intrinsic::x86_avx2_vinserti128: {
4845    DebugLoc dl = getCurDebugLoc();
4846    EVT DestVT = TLI.getValueType(I.getType());
4847    EVT ElVT = TLI.getValueType(I.getArgOperand(1)->getType());
4848    uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue() & 1) *
4849                   ElVT.getVectorNumElements();
4850    Res = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, DestVT,
4851                      getValue(I.getArgOperand(0)),
4852                      getValue(I.getArgOperand(1)),
4853                      DAG.getConstant(Idx, MVT::i32));
4854    setValue(&I, Res);
4855    return 0;
4856  }
4857  case Intrinsic::convertff:
4858  case Intrinsic::convertfsi:
4859  case Intrinsic::convertfui:
4860  case Intrinsic::convertsif:
4861  case Intrinsic::convertuif:
4862  case Intrinsic::convertss:
4863  case Intrinsic::convertsu:
4864  case Intrinsic::convertus:
4865  case Intrinsic::convertuu: {
4866    ISD::CvtCode Code = ISD::CVT_INVALID;
4867    switch (Intrinsic) {
4868    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4869    case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
4870    case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4871    case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4872    case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4873    case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4874    case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
4875    case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
4876    case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4877    case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4878    }
4879    EVT DestVT = TLI.getValueType(I.getType());
4880    const Value *Op1 = I.getArgOperand(0);
4881    Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1),
4882                               DAG.getValueType(DestVT),
4883                               DAG.getValueType(getValue(Op1).getValueType()),
4884                               getValue(I.getArgOperand(1)),
4885                               getValue(I.getArgOperand(2)),
4886                               Code);
4887    setValue(&I, Res);
4888    return 0;
4889  }
4890  case Intrinsic::sqrt:
4891    setValue(&I, DAG.getNode(ISD::FSQRT, dl,
4892                             getValue(I.getArgOperand(0)).getValueType(),
4893                             getValue(I.getArgOperand(0))));
4894    return 0;
4895  case Intrinsic::powi:
4896    setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)),
4897                            getValue(I.getArgOperand(1)), DAG));
4898    return 0;
4899  case Intrinsic::sin:
4900    setValue(&I, DAG.getNode(ISD::FSIN, dl,
4901                             getValue(I.getArgOperand(0)).getValueType(),
4902                             getValue(I.getArgOperand(0))));
4903    return 0;
4904  case Intrinsic::cos:
4905    setValue(&I, DAG.getNode(ISD::FCOS, dl,
4906                             getValue(I.getArgOperand(0)).getValueType(),
4907                             getValue(I.getArgOperand(0))));
4908    return 0;
4909  case Intrinsic::log:
4910    visitLog(I);
4911    return 0;
4912  case Intrinsic::log2:
4913    visitLog2(I);
4914    return 0;
4915  case Intrinsic::log10:
4916    visitLog10(I);
4917    return 0;
4918  case Intrinsic::exp:
4919    visitExp(I);
4920    return 0;
4921  case Intrinsic::exp2:
4922    visitExp2(I);
4923    return 0;
4924  case Intrinsic::pow:
4925    visitPow(I);
4926    return 0;
4927  case Intrinsic::fabs:
4928    setValue(&I, DAG.getNode(ISD::FABS, dl,
4929                             getValue(I.getArgOperand(0)).getValueType(),
4930                             getValue(I.getArgOperand(0))));
4931    return 0;
4932  case Intrinsic::fma:
4933    setValue(&I, DAG.getNode(ISD::FMA, dl,
4934                             getValue(I.getArgOperand(0)).getValueType(),
4935                             getValue(I.getArgOperand(0)),
4936                             getValue(I.getArgOperand(1)),
4937                             getValue(I.getArgOperand(2))));
4938    return 0;
4939  case Intrinsic::fmuladd: {
4940    EVT VT = TLI.getValueType(I.getType());
4941    if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
4942        TLI.isOperationLegal(ISD::FMA, VT) &&
4943        TLI.isFMAFasterThanMulAndAdd(VT)){
4944      setValue(&I, DAG.getNode(ISD::FMA, dl,
4945                               getValue(I.getArgOperand(0)).getValueType(),
4946                               getValue(I.getArgOperand(0)),
4947                               getValue(I.getArgOperand(1)),
4948                               getValue(I.getArgOperand(2))));
4949    } else {
4950      SDValue Mul = DAG.getNode(ISD::FMUL, dl,
4951                                getValue(I.getArgOperand(0)).getValueType(),
4952                                getValue(I.getArgOperand(0)),
4953                                getValue(I.getArgOperand(1)));
4954      SDValue Add = DAG.getNode(ISD::FADD, dl,
4955                                getValue(I.getArgOperand(0)).getValueType(),
4956                                Mul,
4957                                getValue(I.getArgOperand(2)));
4958      setValue(&I, Add);
4959    }
4960    return 0;
4961  }
4962  case Intrinsic::convert_to_fp16:
4963    setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl,
4964                             MVT::i16, getValue(I.getArgOperand(0))));
4965    return 0;
4966  case Intrinsic::convert_from_fp16:
4967    setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl,
4968                             MVT::f32, getValue(I.getArgOperand(0))));
4969    return 0;
4970  case Intrinsic::pcmarker: {
4971    SDValue Tmp = getValue(I.getArgOperand(0));
4972    DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp));
4973    return 0;
4974  }
4975  case Intrinsic::readcyclecounter: {
4976    SDValue Op = getRoot();
4977    Res = DAG.getNode(ISD::READCYCLECOUNTER, dl,
4978                      DAG.getVTList(MVT::i64, MVT::Other),
4979                      &Op, 1);
4980    setValue(&I, Res);
4981    DAG.setRoot(Res.getValue(1));
4982    return 0;
4983  }
4984  case Intrinsic::bswap:
4985    setValue(&I, DAG.getNode(ISD::BSWAP, dl,
4986                             getValue(I.getArgOperand(0)).getValueType(),
4987                             getValue(I.getArgOperand(0))));
4988    return 0;
4989  case Intrinsic::cttz: {
4990    SDValue Arg = getValue(I.getArgOperand(0));
4991    ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
4992    EVT Ty = Arg.getValueType();
4993    setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
4994                             dl, Ty, Arg));
4995    return 0;
4996  }
4997  case Intrinsic::ctlz: {
4998    SDValue Arg = getValue(I.getArgOperand(0));
4999    ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5000    EVT Ty = Arg.getValueType();
5001    setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
5002                             dl, Ty, Arg));
5003    return 0;
5004  }
5005  case Intrinsic::ctpop: {
5006    SDValue Arg = getValue(I.getArgOperand(0));
5007    EVT Ty = Arg.getValueType();
5008    setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg));
5009    return 0;
5010  }
5011  case Intrinsic::stacksave: {
5012    SDValue Op = getRoot();
5013    Res = DAG.getNode(ISD::STACKSAVE, dl,
5014                      DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
5015    setValue(&I, Res);
5016    DAG.setRoot(Res.getValue(1));
5017    return 0;
5018  }
5019  case Intrinsic::stackrestore: {
5020    Res = getValue(I.getArgOperand(0));
5021    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res));
5022    return 0;
5023  }
5024  case Intrinsic::stackprotector: {
5025    // Emit code into the DAG to store the stack guard onto the stack.
5026    MachineFunction &MF = DAG.getMachineFunction();
5027    MachineFrameInfo *MFI = MF.getFrameInfo();
5028    EVT PtrTy = TLI.getPointerTy();
5029
5030    SDValue Src = getValue(I.getArgOperand(0));   // The guard's value.
5031    AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
5032
5033    int FI = FuncInfo.StaticAllocaMap[Slot];
5034    MFI->setStackProtectorIndex(FI);
5035
5036    SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
5037
5038    // Store the stack protector onto the stack.
5039    Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN,
5040                       MachinePointerInfo::getFixedStack(FI),
5041                       true, false, 0);
5042    setValue(&I, Res);
5043    DAG.setRoot(Res);
5044    return 0;
5045  }
5046  case Intrinsic::objectsize: {
5047    // If we don't know by now, we're never going to know.
5048    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
5049
5050    assert(CI && "Non-constant type in __builtin_object_size?");
5051
5052    SDValue Arg = getValue(I.getCalledValue());
5053    EVT Ty = Arg.getValueType();
5054
5055    if (CI->isZero())
5056      Res = DAG.getConstant(-1ULL, Ty);
5057    else
5058      Res = DAG.getConstant(0, Ty);
5059
5060    setValue(&I, Res);
5061    return 0;
5062  }
5063  case Intrinsic::var_annotation:
5064    // Discard annotate attributes
5065    return 0;
5066
5067  case Intrinsic::init_trampoline: {
5068    const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5069
5070    SDValue Ops[6];
5071    Ops[0] = getRoot();
5072    Ops[1] = getValue(I.getArgOperand(0));
5073    Ops[2] = getValue(I.getArgOperand(1));
5074    Ops[3] = getValue(I.getArgOperand(2));
5075    Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5076    Ops[5] = DAG.getSrcValue(F);
5077
5078    Res = DAG.getNode(ISD::INIT_TRAMPOLINE, dl, MVT::Other, Ops, 6);
5079
5080    DAG.setRoot(Res);
5081    return 0;
5082  }
5083  case Intrinsic::adjust_trampoline: {
5084    setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, dl,
5085                             TLI.getPointerTy(),
5086                             getValue(I.getArgOperand(0))));
5087    return 0;
5088  }
5089  case Intrinsic::gcroot:
5090    if (GFI) {
5091      const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
5092      const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
5093
5094      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
5095      GFI->addStackRoot(FI->getIndex(), TypeMap);
5096    }
5097    return 0;
5098  case Intrinsic::gcread:
5099  case Intrinsic::gcwrite:
5100    llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
5101  case Intrinsic::flt_rounds:
5102    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32));
5103    return 0;
5104
5105  case Intrinsic::expect: {
5106    // Just replace __builtin_expect(exp, c) with EXP.
5107    setValue(&I, getValue(I.getArgOperand(0)));
5108    return 0;
5109  }
5110
5111  case Intrinsic::trap: {
5112    StringRef TrapFuncName = TM.Options.getTrapFunctionName();
5113    if (TrapFuncName.empty()) {
5114      DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot()));
5115      return 0;
5116    }
5117    TargetLowering::ArgListTy Args;
5118    TargetLowering::
5119    CallLoweringInfo CLI(getRoot(), I.getType(),
5120                 false, false, false, false, 0, CallingConv::C,
5121                 /*isTailCall=*/false,
5122                 /*doesNotRet=*/false, /*isReturnValueUsed=*/true,
5123                 DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()),
5124                 Args, DAG, getCurDebugLoc());
5125    std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
5126    DAG.setRoot(Result.second);
5127    return 0;
5128  }
5129  case Intrinsic::debugtrap: {
5130    DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, dl,MVT::Other, getRoot()));
5131    return 0;
5132  }
5133  case Intrinsic::uadd_with_overflow:
5134  case Intrinsic::sadd_with_overflow:
5135  case Intrinsic::usub_with_overflow:
5136  case Intrinsic::ssub_with_overflow:
5137  case Intrinsic::umul_with_overflow:
5138  case Intrinsic::smul_with_overflow: {
5139    ISD::NodeType Op;
5140    switch (Intrinsic) {
5141    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5142    case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
5143    case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
5144    case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
5145    case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
5146    case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
5147    case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
5148    }
5149    SDValue Op1 = getValue(I.getArgOperand(0));
5150    SDValue Op2 = getValue(I.getArgOperand(1));
5151
5152    SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
5153    setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2));
5154    return 0;
5155  }
5156  case Intrinsic::prefetch: {
5157    SDValue Ops[5];
5158    unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
5159    Ops[0] = getRoot();
5160    Ops[1] = getValue(I.getArgOperand(0));
5161    Ops[2] = getValue(I.getArgOperand(1));
5162    Ops[3] = getValue(I.getArgOperand(2));
5163    Ops[4] = getValue(I.getArgOperand(3));
5164    DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, dl,
5165                                        DAG.getVTList(MVT::Other),
5166                                        &Ops[0], 5,
5167                                        EVT::getIntegerVT(*Context, 8),
5168                                        MachinePointerInfo(I.getArgOperand(0)),
5169                                        0, /* align */
5170                                        false, /* volatile */
5171                                        rw==0, /* read */
5172                                        rw==1)); /* write */
5173    return 0;
5174  }
5175
5176  case Intrinsic::invariant_start:
5177  case Intrinsic::lifetime_start:
5178    // Discard region information.
5179    setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
5180    return 0;
5181  case Intrinsic::invariant_end:
5182  case Intrinsic::lifetime_end:
5183    // Discard region information.
5184    return 0;
5185  case Intrinsic::donothing:
5186    // ignore
5187    return 0;
5188  }
5189}
5190
5191void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
5192                                      bool isTailCall,
5193                                      MachineBasicBlock *LandingPad) {
5194  PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
5195  FunctionType *FTy = cast<FunctionType>(PT->getElementType());
5196  Type *RetTy = FTy->getReturnType();
5197  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5198  MCSymbol *BeginLabel = 0;
5199
5200  TargetLowering::ArgListTy Args;
5201  TargetLowering::ArgListEntry Entry;
5202  Args.reserve(CS.arg_size());
5203
5204  // Check whether the function can return without sret-demotion.
5205  SmallVector<ISD::OutputArg, 4> Outs;
5206  GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(),
5207                Outs, TLI);
5208
5209  bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
5210                                           DAG.getMachineFunction(),
5211                                           FTy->isVarArg(), Outs,
5212                                           FTy->getContext());
5213
5214  SDValue DemoteStackSlot;
5215  int DemoteStackIdx = -100;
5216
5217  if (!CanLowerReturn) {
5218    uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(
5219                      FTy->getReturnType());
5220    unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(
5221                      FTy->getReturnType());
5222    MachineFunction &MF = DAG.getMachineFunction();
5223    DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5224    Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
5225
5226    DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI.getPointerTy());
5227    Entry.Node = DemoteStackSlot;
5228    Entry.Ty = StackSlotPtrType;
5229    Entry.isSExt = false;
5230    Entry.isZExt = false;
5231    Entry.isInReg = false;
5232    Entry.isSRet = true;
5233    Entry.isNest = false;
5234    Entry.isByVal = false;
5235    Entry.Alignment = Align;
5236    Args.push_back(Entry);
5237    RetTy = Type::getVoidTy(FTy->getContext());
5238  }
5239
5240  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
5241       i != e; ++i) {
5242    const Value *V = *i;
5243
5244    // Skip empty types
5245    if (V->getType()->isEmptyTy())
5246      continue;
5247
5248    SDValue ArgNode = getValue(V);
5249    Entry.Node = ArgNode; Entry.Ty = V->getType();
5250
5251    unsigned attrInd = i - CS.arg_begin() + 1;
5252    Entry.isSExt  = CS.paramHasAttr(attrInd, Attribute::SExt);
5253    Entry.isZExt  = CS.paramHasAttr(attrInd, Attribute::ZExt);
5254    Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg);
5255    Entry.isSRet  = CS.paramHasAttr(attrInd, Attribute::StructRet);
5256    Entry.isNest  = CS.paramHasAttr(attrInd, Attribute::Nest);
5257    Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal);
5258    Entry.Alignment = CS.getParamAlignment(attrInd);
5259    Args.push_back(Entry);
5260  }
5261
5262  if (LandingPad) {
5263    // Insert a label before the invoke call to mark the try range.  This can be
5264    // used to detect deletion of the invoke via the MachineModuleInfo.
5265    BeginLabel = MMI.getContext().CreateTempSymbol();
5266
5267    // For SjLj, keep track of which landing pads go with which invokes
5268    // so as to maintain the ordering of pads in the LSDA.
5269    unsigned CallSiteIndex = MMI.getCurrentCallSite();
5270    if (CallSiteIndex) {
5271      MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
5272      LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex);
5273
5274      // Now that the call site is handled, stop tracking it.
5275      MMI.setCurrentCallSite(0);
5276    }
5277
5278    // Both PendingLoads and PendingExports must be flushed here;
5279    // this call might not return.
5280    (void)getRoot();
5281    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel));
5282  }
5283
5284  // Check if target-independent constraints permit a tail call here.
5285  // Target-dependent constraints are checked within TLI.LowerCallTo.
5286  if (isTailCall &&
5287      !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI))
5288    isTailCall = false;
5289
5290  // If there's a possibility that fast-isel has already selected some amount
5291  // of the current basic block, don't emit a tail call.
5292  if (isTailCall && TM.Options.EnableFastISel)
5293    isTailCall = false;
5294
5295  TargetLowering::
5296  CallLoweringInfo CLI(getRoot(), RetTy, FTy, isTailCall, Callee, Args, DAG,
5297                       getCurDebugLoc(), CS);
5298  std::pair<SDValue,SDValue> Result = TLI.LowerCallTo(CLI);
5299  assert((isTailCall || Result.second.getNode()) &&
5300         "Non-null chain expected with non-tail call!");
5301  assert((Result.second.getNode() || !Result.first.getNode()) &&
5302         "Null value expected with tail call!");
5303  if (Result.first.getNode()) {
5304    setValue(CS.getInstruction(), Result.first);
5305  } else if (!CanLowerReturn && Result.second.getNode()) {
5306    // The instruction result is the result of loading from the
5307    // hidden sret parameter.
5308    SmallVector<EVT, 1> PVTs;
5309    Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
5310
5311    ComputeValueVTs(TLI, PtrRetTy, PVTs);
5312    assert(PVTs.size() == 1 && "Pointers should fit in one register");
5313    EVT PtrVT = PVTs[0];
5314
5315    SmallVector<EVT, 4> RetTys;
5316    SmallVector<uint64_t, 4> Offsets;
5317    RetTy = FTy->getReturnType();
5318    ComputeValueVTs(TLI, RetTy, RetTys, &Offsets);
5319
5320    unsigned NumValues = RetTys.size();
5321    SmallVector<SDValue, 4> Values(NumValues);
5322    SmallVector<SDValue, 4> Chains(NumValues);
5323
5324    for (unsigned i = 0; i < NumValues; ++i) {
5325      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT,
5326                                DemoteStackSlot,
5327                                DAG.getConstant(Offsets[i], PtrVT));
5328      SDValue L = DAG.getLoad(RetTys[i], getCurDebugLoc(), Result.second, Add,
5329                  MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]),
5330                              false, false, false, 1);
5331      Values[i] = L;
5332      Chains[i] = L.getValue(1);
5333    }
5334
5335    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
5336                                MVT::Other, &Chains[0], NumValues);
5337    PendingLoads.push_back(Chain);
5338
5339    setValue(CS.getInstruction(),
5340             DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
5341                         DAG.getVTList(&RetTys[0], RetTys.size()),
5342                         &Values[0], Values.size()));
5343  }
5344
5345  // Assign order to nodes here. If the call does not produce a result, it won't
5346  // be mapped to a SDNode and visit() will not assign it an order number.
5347  if (!Result.second.getNode()) {
5348    // As a special case, a null chain means that a tail call has been emitted and
5349    // the DAG root is already updated.
5350    HasTailCall = true;
5351    ++SDNodeOrder;
5352    AssignOrderingToNode(DAG.getRoot().getNode());
5353  } else {
5354    DAG.setRoot(Result.second);
5355    ++SDNodeOrder;
5356    AssignOrderingToNode(Result.second.getNode());
5357  }
5358
5359  if (LandingPad) {
5360    // Insert a label at the end of the invoke call to mark the try range.  This
5361    // can be used to detect deletion of the invoke via the MachineModuleInfo.
5362    MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
5363    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel));
5364
5365    // Inform MachineModuleInfo of range.
5366    MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
5367  }
5368}
5369
5370/// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
5371/// value is equal or not-equal to zero.
5372static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
5373  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
5374       UI != E; ++UI) {
5375    if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
5376      if (IC->isEquality())
5377        if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
5378          if (C->isNullValue())
5379            continue;
5380    // Unknown instruction.
5381    return false;
5382  }
5383  return true;
5384}
5385
5386static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
5387                             Type *LoadTy,
5388                             SelectionDAGBuilder &Builder) {
5389
5390  // Check to see if this load can be trivially constant folded, e.g. if the
5391  // input is from a string literal.
5392  if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5393    // Cast pointer to the type we really want to load.
5394    LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5395                                         PointerType::getUnqual(LoadTy));
5396
5397    if (const Constant *LoadCst =
5398          ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
5399                                       Builder.TD))
5400      return Builder.getValue(LoadCst);
5401  }
5402
5403  // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
5404  // still constant memory, the input chain can be the entry node.
5405  SDValue Root;
5406  bool ConstantMemory = false;
5407
5408  // Do not serialize (non-volatile) loads of constant memory with anything.
5409  if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5410    Root = Builder.DAG.getEntryNode();
5411    ConstantMemory = true;
5412  } else {
5413    // Do not serialize non-volatile loads against each other.
5414    Root = Builder.DAG.getRoot();
5415  }
5416
5417  SDValue Ptr = Builder.getValue(PtrVal);
5418  SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root,
5419                                        Ptr, MachinePointerInfo(PtrVal),
5420                                        false /*volatile*/,
5421                                        false /*nontemporal*/,
5422                                        false /*isinvariant*/, 1 /* align=1 */);
5423
5424  if (!ConstantMemory)
5425    Builder.PendingLoads.push_back(LoadVal.getValue(1));
5426  return LoadVal;
5427}
5428
5429
5430/// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5431/// If so, return true and lower it, otherwise return false and it will be
5432/// lowered like a normal call.
5433bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5434  // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
5435  if (I.getNumArgOperands() != 3)
5436    return false;
5437
5438  const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5439  if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5440      !I.getArgOperand(2)->getType()->isIntegerTy() ||
5441      !I.getType()->isIntegerTy())
5442    return false;
5443
5444  const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2));
5445
5446  // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
5447  // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
5448  if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) {
5449    bool ActuallyDoIt = true;
5450    MVT LoadVT;
5451    Type *LoadTy;
5452    switch (Size->getZExtValue()) {
5453    default:
5454      LoadVT = MVT::Other;
5455      LoadTy = 0;
5456      ActuallyDoIt = false;
5457      break;
5458    case 2:
5459      LoadVT = MVT::i16;
5460      LoadTy = Type::getInt16Ty(Size->getContext());
5461      break;
5462    case 4:
5463      LoadVT = MVT::i32;
5464      LoadTy = Type::getInt32Ty(Size->getContext());
5465      break;
5466    case 8:
5467      LoadVT = MVT::i64;
5468      LoadTy = Type::getInt64Ty(Size->getContext());
5469      break;
5470        /*
5471    case 16:
5472      LoadVT = MVT::v4i32;
5473      LoadTy = Type::getInt32Ty(Size->getContext());
5474      LoadTy = VectorType::get(LoadTy, 4);
5475      break;
5476         */
5477    }
5478
5479    // This turns into unaligned loads.  We only do this if the target natively
5480    // supports the MVT we'll be loading or if it is small enough (<= 4) that
5481    // we'll only produce a small number of byte loads.
5482
5483    // Require that we can find a legal MVT, and only do this if the target
5484    // supports unaligned loads of that type.  Expanding into byte loads would
5485    // bloat the code.
5486    if (ActuallyDoIt && Size->getZExtValue() > 4) {
5487      // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5488      // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5489      if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT))
5490        ActuallyDoIt = false;
5491    }
5492
5493    if (ActuallyDoIt) {
5494      SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5495      SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5496
5497      SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal,
5498                                 ISD::SETNE);
5499      EVT CallVT = TLI.getValueType(I.getType(), true);
5500      setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT));
5501      return true;
5502    }
5503  }
5504
5505
5506  return false;
5507}
5508
5509
5510void SelectionDAGBuilder::visitCall(const CallInst &I) {
5511  // Handle inline assembly differently.
5512  if (isa<InlineAsm>(I.getCalledValue())) {
5513    visitInlineAsm(&I);
5514    return;
5515  }
5516
5517  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5518  ComputeUsesVAFloatArgument(I, &MMI);
5519
5520  const char *RenameFn = 0;
5521  if (Function *F = I.getCalledFunction()) {
5522    if (F->isDeclaration()) {
5523      if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
5524        if (unsigned IID = II->getIntrinsicID(F)) {
5525          RenameFn = visitIntrinsicCall(I, IID);
5526          if (!RenameFn)
5527            return;
5528        }
5529      }
5530      if (unsigned IID = F->getIntrinsicID()) {
5531        RenameFn = visitIntrinsicCall(I, IID);
5532        if (!RenameFn)
5533          return;
5534      }
5535    }
5536
5537    // Check for well-known libc/libm calls.  If the function is internal, it
5538    // can't be a library call.
5539    if (!F->hasLocalLinkage() && F->hasName()) {
5540      StringRef Name = F->getName();
5541      if ((LibInfo->has(LibFunc::copysign) && Name == "copysign") ||
5542          (LibInfo->has(LibFunc::copysignf) && Name == "copysignf") ||
5543          (LibInfo->has(LibFunc::copysignl) && Name == "copysignl")) {
5544        if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
5545            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5546            I.getType() == I.getArgOperand(0)->getType() &&
5547            I.getType() == I.getArgOperand(1)->getType()) {
5548          SDValue LHS = getValue(I.getArgOperand(0));
5549          SDValue RHS = getValue(I.getArgOperand(1));
5550          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(),
5551                                   LHS.getValueType(), LHS, RHS));
5552          return;
5553        }
5554      } else if ((LibInfo->has(LibFunc::fabs) && Name == "fabs") ||
5555                 (LibInfo->has(LibFunc::fabsf) && Name == "fabsf") ||
5556                 (LibInfo->has(LibFunc::fabsl) && Name == "fabsl")) {
5557        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5558            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5559            I.getType() == I.getArgOperand(0)->getType()) {
5560          SDValue Tmp = getValue(I.getArgOperand(0));
5561          setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(),
5562                                   Tmp.getValueType(), Tmp));
5563          return;
5564        }
5565      } else if ((LibInfo->has(LibFunc::sin) && Name == "sin") ||
5566                 (LibInfo->has(LibFunc::sinf) && Name == "sinf") ||
5567                 (LibInfo->has(LibFunc::sinl) && Name == "sinl")) {
5568        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5569            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5570            I.getType() == I.getArgOperand(0)->getType() &&
5571            I.onlyReadsMemory()) {
5572          SDValue Tmp = getValue(I.getArgOperand(0));
5573          setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(),
5574                                   Tmp.getValueType(), Tmp));
5575          return;
5576        }
5577      } else if ((LibInfo->has(LibFunc::cos) && Name == "cos") ||
5578                 (LibInfo->has(LibFunc::cosf) && Name == "cosf") ||
5579                 (LibInfo->has(LibFunc::cosl) && Name == "cosl")) {
5580        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5581            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5582            I.getType() == I.getArgOperand(0)->getType() &&
5583            I.onlyReadsMemory()) {
5584          SDValue Tmp = getValue(I.getArgOperand(0));
5585          setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(),
5586                                   Tmp.getValueType(), Tmp));
5587          return;
5588        }
5589      } else if ((LibInfo->has(LibFunc::sqrt) && Name == "sqrt") ||
5590                 (LibInfo->has(LibFunc::sqrtf) && Name == "sqrtf") ||
5591                 (LibInfo->has(LibFunc::sqrtl) && Name == "sqrtl")) {
5592        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5593            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5594            I.getType() == I.getArgOperand(0)->getType() &&
5595            I.onlyReadsMemory()) {
5596          SDValue Tmp = getValue(I.getArgOperand(0));
5597          setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(),
5598                                   Tmp.getValueType(), Tmp));
5599          return;
5600        }
5601      } else if ((LibInfo->has(LibFunc::floor) && Name == "floor") ||
5602                 (LibInfo->has(LibFunc::floorf) && Name == "floorf") ||
5603                 (LibInfo->has(LibFunc::floorl) && Name == "floorl")) {
5604        if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5605            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5606            I.getType() == I.getArgOperand(0)->getType()) {
5607          SDValue Tmp = getValue(I.getArgOperand(0));
5608          setValue(&I, DAG.getNode(ISD::FFLOOR, getCurDebugLoc(),
5609                                   Tmp.getValueType(), Tmp));
5610          return;
5611        }
5612      } else if ((LibInfo->has(LibFunc::nearbyint) && Name == "nearbyint") ||
5613                 (LibInfo->has(LibFunc::nearbyintf) && Name == "nearbyintf") ||
5614                 (LibInfo->has(LibFunc::nearbyintl) && Name == "nearbyintl")) {
5615        if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5616            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5617            I.getType() == I.getArgOperand(0)->getType()) {
5618          SDValue Tmp = getValue(I.getArgOperand(0));
5619          setValue(&I, DAG.getNode(ISD::FNEARBYINT, getCurDebugLoc(),
5620                                   Tmp.getValueType(), Tmp));
5621          return;
5622        }
5623      } else if ((LibInfo->has(LibFunc::ceil) && Name == "ceil") ||
5624                 (LibInfo->has(LibFunc::ceilf) && Name == "ceilf") ||
5625                 (LibInfo->has(LibFunc::ceill) && Name == "ceill")) {
5626        if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5627            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5628            I.getType() == I.getArgOperand(0)->getType()) {
5629          SDValue Tmp = getValue(I.getArgOperand(0));
5630          setValue(&I, DAG.getNode(ISD::FCEIL, getCurDebugLoc(),
5631                                   Tmp.getValueType(), Tmp));
5632          return;
5633        }
5634      } else if ((LibInfo->has(LibFunc::rint) && Name == "rint") ||
5635                 (LibInfo->has(LibFunc::rintf) && Name == "rintf") ||
5636                 (LibInfo->has(LibFunc::rintl) && Name == "rintl")) {
5637        if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5638            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5639            I.getType() == I.getArgOperand(0)->getType()) {
5640          SDValue Tmp = getValue(I.getArgOperand(0));
5641          setValue(&I, DAG.getNode(ISD::FRINT, getCurDebugLoc(),
5642                                   Tmp.getValueType(), Tmp));
5643          return;
5644        }
5645      } else if ((LibInfo->has(LibFunc::trunc) && Name == "trunc") ||
5646                 (LibInfo->has(LibFunc::truncf) && Name == "truncf") ||
5647                 (LibInfo->has(LibFunc::truncl) && Name == "truncl")) {
5648        if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5649            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5650            I.getType() == I.getArgOperand(0)->getType()) {
5651          SDValue Tmp = getValue(I.getArgOperand(0));
5652          setValue(&I, DAG.getNode(ISD::FTRUNC, getCurDebugLoc(),
5653                                   Tmp.getValueType(), Tmp));
5654          return;
5655        }
5656      } else if ((LibInfo->has(LibFunc::log2) && Name == "log2") ||
5657                 (LibInfo->has(LibFunc::log2f) && Name == "log2f") ||
5658                 (LibInfo->has(LibFunc::log2l) && Name == "log2l")) {
5659        if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5660            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5661            I.getType() == I.getArgOperand(0)->getType() &&
5662            I.onlyReadsMemory()) {
5663          SDValue Tmp = getValue(I.getArgOperand(0));
5664          setValue(&I, DAG.getNode(ISD::FLOG2, getCurDebugLoc(),
5665                                   Tmp.getValueType(), Tmp));
5666          return;
5667        }
5668      } else if ((LibInfo->has(LibFunc::exp2) && Name == "exp2") ||
5669                 (LibInfo->has(LibFunc::exp2f) && Name == "exp2f") ||
5670                 (LibInfo->has(LibFunc::exp2l) && Name == "exp2l")) {
5671        if (I.getNumArgOperands() == 1 && // Basic sanity checks.
5672            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5673            I.getType() == I.getArgOperand(0)->getType() &&
5674            I.onlyReadsMemory()) {
5675          SDValue Tmp = getValue(I.getArgOperand(0));
5676          setValue(&I, DAG.getNode(ISD::FEXP2, getCurDebugLoc(),
5677                                   Tmp.getValueType(), Tmp));
5678          return;
5679        }
5680      } else if (Name == "memcmp") {
5681        if (visitMemCmpCall(I))
5682          return;
5683      }
5684    }
5685  }
5686
5687  SDValue Callee;
5688  if (!RenameFn)
5689    Callee = getValue(I.getCalledValue());
5690  else
5691    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
5692
5693  // Check if we can potentially perform a tail call. More detailed checking is
5694  // be done within LowerCallTo, after more information about the call is known.
5695  LowerCallTo(&I, Callee, I.isTailCall());
5696}
5697
5698namespace {
5699
5700/// AsmOperandInfo - This contains information for each constraint that we are
5701/// lowering.
5702class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
5703public:
5704  /// CallOperand - If this is the result output operand or a clobber
5705  /// this is null, otherwise it is the incoming operand to the CallInst.
5706  /// This gets modified as the asm is processed.
5707  SDValue CallOperand;
5708
5709  /// AssignedRegs - If this is a register or register class operand, this
5710  /// contains the set of register corresponding to the operand.
5711  RegsForValue AssignedRegs;
5712
5713  explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
5714    : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
5715  }
5716
5717  /// getCallOperandValEVT - Return the EVT of the Value* that this operand
5718  /// corresponds to.  If there is no Value* for this operand, it returns
5719  /// MVT::Other.
5720  EVT getCallOperandValEVT(LLVMContext &Context,
5721                           const TargetLowering &TLI,
5722                           const TargetData *TD) const {
5723    if (CallOperandVal == 0) return MVT::Other;
5724
5725    if (isa<BasicBlock>(CallOperandVal))
5726      return TLI.getPointerTy();
5727
5728    llvm::Type *OpTy = CallOperandVal->getType();
5729
5730    // FIXME: code duplicated from TargetLowering::ParseConstraints().
5731    // If this is an indirect operand, the operand is a pointer to the
5732    // accessed type.
5733    if (isIndirect) {
5734      llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
5735      if (!PtrTy)
5736        report_fatal_error("Indirect operand for inline asm not a pointer!");
5737      OpTy = PtrTy->getElementType();
5738    }
5739
5740    // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
5741    if (StructType *STy = dyn_cast<StructType>(OpTy))
5742      if (STy->getNumElements() == 1)
5743        OpTy = STy->getElementType(0);
5744
5745    // If OpTy is not a single value, it may be a struct/union that we
5746    // can tile with integers.
5747    if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5748      unsigned BitSize = TD->getTypeSizeInBits(OpTy);
5749      switch (BitSize) {
5750      default: break;
5751      case 1:
5752      case 8:
5753      case 16:
5754      case 32:
5755      case 64:
5756      case 128:
5757        OpTy = IntegerType::get(Context, BitSize);
5758        break;
5759      }
5760    }
5761
5762    return TLI.getValueType(OpTy, true);
5763  }
5764};
5765
5766typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
5767
5768} // end anonymous namespace
5769
5770/// GetRegistersForValue - Assign registers (virtual or physical) for the
5771/// specified operand.  We prefer to assign virtual registers, to allow the
5772/// register allocator to handle the assignment process.  However, if the asm
5773/// uses features that we can't model on machineinstrs, we have SDISel do the
5774/// allocation.  This produces generally horrible, but correct, code.
5775///
5776///   OpInfo describes the operand.
5777///
5778static void GetRegistersForValue(SelectionDAG &DAG,
5779                                 const TargetLowering &TLI,
5780                                 DebugLoc DL,
5781                                 SDISelAsmOperandInfo &OpInfo) {
5782  LLVMContext &Context = *DAG.getContext();
5783
5784  MachineFunction &MF = DAG.getMachineFunction();
5785  SmallVector<unsigned, 4> Regs;
5786
5787  // If this is a constraint for a single physreg, or a constraint for a
5788  // register class, find it.
5789  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
5790    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5791                                     OpInfo.ConstraintVT);
5792
5793  unsigned NumRegs = 1;
5794  if (OpInfo.ConstraintVT != MVT::Other) {
5795    // If this is a FP input in an integer register (or visa versa) insert a bit
5796    // cast of the input value.  More generally, handle any case where the input
5797    // value disagrees with the register class we plan to stick this in.
5798    if (OpInfo.Type == InlineAsm::isInput &&
5799        PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
5800      // Try to convert to the first EVT that the reg class contains.  If the
5801      // types are identical size, use a bitcast to convert (e.g. two differing
5802      // vector types).
5803      EVT RegVT = *PhysReg.second->vt_begin();
5804      if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
5805        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5806                                         RegVT, OpInfo.CallOperand);
5807        OpInfo.ConstraintVT = RegVT;
5808      } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
5809        // If the input is a FP value and we want it in FP registers, do a
5810        // bitcast to the corresponding integer type.  This turns an f64 value
5811        // into i64, which can be passed with two i32 values on a 32-bit
5812        // machine.
5813        RegVT = EVT::getIntegerVT(Context,
5814                                  OpInfo.ConstraintVT.getSizeInBits());
5815        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5816                                         RegVT, OpInfo.CallOperand);
5817        OpInfo.ConstraintVT = RegVT;
5818      }
5819    }
5820
5821    NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
5822  }
5823
5824  EVT RegVT;
5825  EVT ValueVT = OpInfo.ConstraintVT;
5826
5827  // If this is a constraint for a specific physical register, like {r17},
5828  // assign it now.
5829  if (unsigned AssignedReg = PhysReg.first) {
5830    const TargetRegisterClass *RC = PhysReg.second;
5831    if (OpInfo.ConstraintVT == MVT::Other)
5832      ValueVT = *RC->vt_begin();
5833
5834    // Get the actual register value type.  This is important, because the user
5835    // may have asked for (e.g.) the AX register in i32 type.  We need to
5836    // remember that AX is actually i16 to get the right extension.
5837    RegVT = *RC->vt_begin();
5838
5839    // This is a explicit reference to a physical register.
5840    Regs.push_back(AssignedReg);
5841
5842    // If this is an expanded reference, add the rest of the regs to Regs.
5843    if (NumRegs != 1) {
5844      TargetRegisterClass::iterator I = RC->begin();
5845      for (; *I != AssignedReg; ++I)
5846        assert(I != RC->end() && "Didn't find reg!");
5847
5848      // Already added the first reg.
5849      --NumRegs; ++I;
5850      for (; NumRegs; --NumRegs, ++I) {
5851        assert(I != RC->end() && "Ran out of registers to allocate!");
5852        Regs.push_back(*I);
5853      }
5854    }
5855
5856    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5857    return;
5858  }
5859
5860  // Otherwise, if this was a reference to an LLVM register class, create vregs
5861  // for this reference.
5862  if (const TargetRegisterClass *RC = PhysReg.second) {
5863    RegVT = *RC->vt_begin();
5864    if (OpInfo.ConstraintVT == MVT::Other)
5865      ValueVT = RegVT;
5866
5867    // Create the appropriate number of virtual registers.
5868    MachineRegisterInfo &RegInfo = MF.getRegInfo();
5869    for (; NumRegs; --NumRegs)
5870      Regs.push_back(RegInfo.createVirtualRegister(RC));
5871
5872    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5873    return;
5874  }
5875
5876  // Otherwise, we couldn't allocate enough registers for this.
5877}
5878
5879/// visitInlineAsm - Handle a call to an InlineAsm object.
5880///
5881void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
5882  const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
5883
5884  /// ConstraintOperands - Information about all of the constraints.
5885  SDISelAsmOperandInfoVector ConstraintOperands;
5886
5887  TargetLowering::AsmOperandInfoVector
5888    TargetConstraints = TLI.ParseConstraints(CS);
5889
5890  bool hasMemory = false;
5891
5892  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
5893  unsigned ResNo = 0;   // ResNo - The result number of the next output.
5894  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
5895    ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
5896    SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
5897
5898    EVT OpVT = MVT::Other;
5899
5900    // Compute the value type for each operand.
5901    switch (OpInfo.Type) {
5902    case InlineAsm::isOutput:
5903      // Indirect outputs just consume an argument.
5904      if (OpInfo.isIndirect) {
5905        OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5906        break;
5907      }
5908
5909      // The return value of the call is this value.  As such, there is no
5910      // corresponding argument.
5911      assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
5912      if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
5913        OpVT = TLI.getValueType(STy->getElementType(ResNo));
5914      } else {
5915        assert(ResNo == 0 && "Asm only has one result!");
5916        OpVT = TLI.getValueType(CS.getType());
5917      }
5918      ++ResNo;
5919      break;
5920    case InlineAsm::isInput:
5921      OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5922      break;
5923    case InlineAsm::isClobber:
5924      // Nothing to do.
5925      break;
5926    }
5927
5928    // If this is an input or an indirect output, process the call argument.
5929    // BasicBlocks are labels, currently appearing only in asm's.
5930    if (OpInfo.CallOperandVal) {
5931      if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
5932        OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
5933      } else {
5934        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
5935      }
5936
5937      OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD);
5938    }
5939
5940    OpInfo.ConstraintVT = OpVT;
5941
5942    // Indirect operand accesses access memory.
5943    if (OpInfo.isIndirect)
5944      hasMemory = true;
5945    else {
5946      for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
5947        TargetLowering::ConstraintType
5948          CType = TLI.getConstraintType(OpInfo.Codes[j]);
5949        if (CType == TargetLowering::C_Memory) {
5950          hasMemory = true;
5951          break;
5952        }
5953      }
5954    }
5955  }
5956
5957  SDValue Chain, Flag;
5958
5959  // We won't need to flush pending loads if this asm doesn't touch
5960  // memory and is nonvolatile.
5961  if (hasMemory || IA->hasSideEffects())
5962    Chain = getRoot();
5963  else
5964    Chain = DAG.getRoot();
5965
5966  // Second pass over the constraints: compute which constraint option to use
5967  // and assign registers to constraints that want a specific physreg.
5968  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5969    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5970
5971    // If this is an output operand with a matching input operand, look up the
5972    // matching input. If their types mismatch, e.g. one is an integer, the
5973    // other is floating point, or their sizes are different, flag it as an
5974    // error.
5975    if (OpInfo.hasMatchingInput()) {
5976      SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5977
5978      if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5979        std::pair<unsigned, const TargetRegisterClass*> MatchRC =
5980          TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5981                                           OpInfo.ConstraintVT);
5982        std::pair<unsigned, const TargetRegisterClass*> InputRC =
5983          TLI.getRegForInlineAsmConstraint(Input.ConstraintCode,
5984                                           Input.ConstraintVT);
5985        if ((OpInfo.ConstraintVT.isInteger() !=
5986             Input.ConstraintVT.isInteger()) ||
5987            (MatchRC.second != InputRC.second)) {
5988          report_fatal_error("Unsupported asm: input constraint"
5989                             " with a matching output constraint of"
5990                             " incompatible type!");
5991        }
5992        Input.ConstraintVT = OpInfo.ConstraintVT;
5993      }
5994    }
5995
5996    // Compute the constraint code and ConstraintType to use.
5997    TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
5998
5999    // If this is a memory input, and if the operand is not indirect, do what we
6000    // need to to provide an address for the memory input.
6001    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
6002        !OpInfo.isIndirect) {
6003      assert((OpInfo.isMultipleAlternative ||
6004              (OpInfo.Type == InlineAsm::isInput)) &&
6005             "Can only indirectify direct input operands!");
6006
6007      // Memory operands really want the address of the value.  If we don't have
6008      // an indirect input, put it in the constpool if we can, otherwise spill
6009      // it to a stack slot.
6010      // TODO: This isn't quite right. We need to handle these according to
6011      // the addressing mode that the constraint wants. Also, this may take
6012      // an additional register for the computation and we don't want that
6013      // either.
6014
6015      // If the operand is a float, integer, or vector constant, spill to a
6016      // constant pool entry to get its address.
6017      const Value *OpVal = OpInfo.CallOperandVal;
6018      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
6019          isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
6020        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
6021                                                 TLI.getPointerTy());
6022      } else {
6023        // Otherwise, create a stack slot and emit a store to it before the
6024        // asm.
6025        Type *Ty = OpVal->getType();
6026        uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
6027        unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
6028        MachineFunction &MF = DAG.getMachineFunction();
6029        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
6030        SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
6031        Chain = DAG.getStore(Chain, getCurDebugLoc(),
6032                             OpInfo.CallOperand, StackSlot,
6033                             MachinePointerInfo::getFixedStack(SSFI),
6034                             false, false, 0);
6035        OpInfo.CallOperand = StackSlot;
6036      }
6037
6038      // There is no longer a Value* corresponding to this operand.
6039      OpInfo.CallOperandVal = 0;
6040
6041      // It is now an indirect operand.
6042      OpInfo.isIndirect = true;
6043    }
6044
6045    // If this constraint is for a specific register, allocate it before
6046    // anything else.
6047    if (OpInfo.ConstraintType == TargetLowering::C_Register)
6048      GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo);
6049  }
6050
6051  // Second pass - Loop over all of the operands, assigning virtual or physregs
6052  // to register class operands.
6053  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6054    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6055
6056    // C_Register operands have already been allocated, Other/Memory don't need
6057    // to be.
6058    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
6059      GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo);
6060  }
6061
6062  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
6063  std::vector<SDValue> AsmNodeOperands;
6064  AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
6065  AsmNodeOperands.push_back(
6066          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
6067                                      TLI.getPointerTy()));
6068
6069  // If we have a !srcloc metadata node associated with it, we want to attach
6070  // this to the ultimately generated inline asm machineinstr.  To do this, we
6071  // pass in the third operand as this (potentially null) inline asm MDNode.
6072  const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
6073  AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
6074
6075  // Remember the HasSideEffect and AlignStack bits as operand 3.
6076  unsigned ExtraInfo = 0;
6077  if (IA->hasSideEffects())
6078    ExtraInfo |= InlineAsm::Extra_HasSideEffects;
6079  if (IA->isAlignStack())
6080    ExtraInfo |= InlineAsm::Extra_IsAlignStack;
6081  AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo,
6082                                                  TLI.getPointerTy()));
6083
6084  // Loop over all of the inputs, copying the operand values into the
6085  // appropriate registers and processing the output regs.
6086  RegsForValue RetValRegs;
6087
6088  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
6089  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
6090
6091  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6092    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6093
6094    switch (OpInfo.Type) {
6095    case InlineAsm::isOutput: {
6096      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
6097          OpInfo.ConstraintType != TargetLowering::C_Register) {
6098        // Memory output, or 'other' output (e.g. 'X' constraint).
6099        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
6100
6101        // Add information to the INLINEASM node to know about this output.
6102        unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6103        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
6104                                                        TLI.getPointerTy()));
6105        AsmNodeOperands.push_back(OpInfo.CallOperand);
6106        break;
6107      }
6108
6109      // Otherwise, this is a register or register class output.
6110
6111      // Copy the output from the appropriate register.  Find a register that
6112      // we can use.
6113      if (OpInfo.AssignedRegs.Regs.empty()) {
6114        LLVMContext &Ctx = *DAG.getContext();
6115        Ctx.emitError(CS.getInstruction(),
6116                      "couldn't allocate output register for constraint '" +
6117                           Twine(OpInfo.ConstraintCode) + "'");
6118        break;
6119      }
6120
6121      // If this is an indirect operand, store through the pointer after the
6122      // asm.
6123      if (OpInfo.isIndirect) {
6124        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
6125                                                      OpInfo.CallOperandVal));
6126      } else {
6127        // This is the result value of the call.
6128        assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6129        // Concatenate this output onto the outputs list.
6130        RetValRegs.append(OpInfo.AssignedRegs);
6131      }
6132
6133      // Add information to the INLINEASM node to know that this register is
6134      // set.
6135      OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
6136                                           InlineAsm::Kind_RegDefEarlyClobber :
6137                                               InlineAsm::Kind_RegDef,
6138                                               false,
6139                                               0,
6140                                               DAG,
6141                                               AsmNodeOperands);
6142      break;
6143    }
6144    case InlineAsm::isInput: {
6145      SDValue InOperandVal = OpInfo.CallOperand;
6146
6147      if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
6148        // If this is required to match an output register we have already set,
6149        // just use its register.
6150        unsigned OperandNo = OpInfo.getMatchedOperand();
6151
6152        // Scan until we find the definition we already emitted of this operand.
6153        // When we find it, create a RegsForValue operand.
6154        unsigned CurOp = InlineAsm::Op_FirstOperand;
6155        for (; OperandNo; --OperandNo) {
6156          // Advance to the next operand.
6157          unsigned OpFlag =
6158            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6159          assert((InlineAsm::isRegDefKind(OpFlag) ||
6160                  InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
6161                  InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
6162          CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
6163        }
6164
6165        unsigned OpFlag =
6166          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6167        if (InlineAsm::isRegDefKind(OpFlag) ||
6168            InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
6169          // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
6170          if (OpInfo.isIndirect) {
6171            // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
6172            LLVMContext &Ctx = *DAG.getContext();
6173            Ctx.emitError(CS.getInstruction(),  "inline asm not supported yet:"
6174                          " don't know how to handle tied "
6175                          "indirect register inputs");
6176          }
6177
6178          RegsForValue MatchedRegs;
6179          MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
6180          EVT RegVT = AsmNodeOperands[CurOp+1].getValueType();
6181          MatchedRegs.RegVTs.push_back(RegVT);
6182          MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
6183          for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
6184               i != e; ++i)
6185            MatchedRegs.Regs.push_back
6186              (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)));
6187
6188          // Use the produced MatchedRegs object to
6189          MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
6190                                    Chain, &Flag);
6191          MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
6192                                           true, OpInfo.getMatchedOperand(),
6193                                           DAG, AsmNodeOperands);
6194          break;
6195        }
6196
6197        assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
6198        assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
6199               "Unexpected number of operands");
6200        // Add information to the INLINEASM node to know about this input.
6201        // See InlineAsm.h isUseOperandTiedToDef.
6202        OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
6203                                                    OpInfo.getMatchedOperand());
6204        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
6205                                                        TLI.getPointerTy()));
6206        AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
6207        break;
6208      }
6209
6210      // Treat indirect 'X' constraint as memory.
6211      if (OpInfo.ConstraintType == TargetLowering::C_Other &&
6212          OpInfo.isIndirect)
6213        OpInfo.ConstraintType = TargetLowering::C_Memory;
6214
6215      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
6216        std::vector<SDValue> Ops;
6217        TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
6218                                         Ops, DAG);
6219        if (Ops.empty()) {
6220          LLVMContext &Ctx = *DAG.getContext();
6221          Ctx.emitError(CS.getInstruction(),
6222                        "invalid operand for inline asm constraint '" +
6223                        Twine(OpInfo.ConstraintCode) + "'");
6224          break;
6225        }
6226
6227        // Add information to the INLINEASM node to know about this input.
6228        unsigned ResOpType =
6229          InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
6230        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6231                                                        TLI.getPointerTy()));
6232        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
6233        break;
6234      }
6235
6236      if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
6237        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
6238        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
6239               "Memory operands expect pointer values");
6240
6241        // Add information to the INLINEASM node to know about this input.
6242        unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6243        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6244                                                        TLI.getPointerTy()));
6245        AsmNodeOperands.push_back(InOperandVal);
6246        break;
6247      }
6248
6249      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
6250              OpInfo.ConstraintType == TargetLowering::C_Register) &&
6251             "Unknown constraint type!");
6252
6253      // TODO: Support this.
6254      if (OpInfo.isIndirect) {
6255        LLVMContext &Ctx = *DAG.getContext();
6256        Ctx.emitError(CS.getInstruction(),
6257                      "Don't know how to handle indirect register inputs yet "
6258                      "for constraint '" + Twine(OpInfo.ConstraintCode) + "'");
6259        break;
6260      }
6261
6262      // Copy the input into the appropriate registers.
6263      if (OpInfo.AssignedRegs.Regs.empty()) {
6264        LLVMContext &Ctx = *DAG.getContext();
6265        Ctx.emitError(CS.getInstruction(),
6266                      "couldn't allocate input reg for constraint '" +
6267                           Twine(OpInfo.ConstraintCode) + "'");
6268        break;
6269      }
6270
6271      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
6272                                        Chain, &Flag);
6273
6274      OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
6275                                               DAG, AsmNodeOperands);
6276      break;
6277    }
6278    case InlineAsm::isClobber: {
6279      // Add the clobbered value to the operand list, so that the register
6280      // allocator is aware that the physreg got clobbered.
6281      if (!OpInfo.AssignedRegs.Regs.empty())
6282        OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
6283                                                 false, 0, DAG,
6284                                                 AsmNodeOperands);
6285      break;
6286    }
6287    }
6288  }
6289
6290  // Finish up input operands.  Set the input chain and add the flag last.
6291  AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
6292  if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
6293
6294  Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(),
6295                      DAG.getVTList(MVT::Other, MVT::Glue),
6296                      &AsmNodeOperands[0], AsmNodeOperands.size());
6297  Flag = Chain.getValue(1);
6298
6299  // If this asm returns a register value, copy the result from that register
6300  // and set it as the value of the call.
6301  if (!RetValRegs.Regs.empty()) {
6302    SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
6303                                             Chain, &Flag);
6304
6305    // FIXME: Why don't we do this for inline asms with MRVs?
6306    if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
6307      EVT ResultType = TLI.getValueType(CS.getType());
6308
6309      // If any of the results of the inline asm is a vector, it may have the
6310      // wrong width/num elts.  This can happen for register classes that can
6311      // contain multiple different value types.  The preg or vreg allocated may
6312      // not have the same VT as was expected.  Convert it to the right type
6313      // with bit_convert.
6314      if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
6315        Val = DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
6316                          ResultType, Val);
6317
6318      } else if (ResultType != Val.getValueType() &&
6319                 ResultType.isInteger() && Val.getValueType().isInteger()) {
6320        // If a result value was tied to an input value, the computed result may
6321        // have a wider width than the expected result.  Extract the relevant
6322        // portion.
6323        Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val);
6324      }
6325
6326      assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
6327    }
6328
6329    setValue(CS.getInstruction(), Val);
6330    // Don't need to use this as a chain in this case.
6331    if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
6332      return;
6333  }
6334
6335  std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
6336
6337  // Process indirect outputs, first output all of the flagged copies out of
6338  // physregs.
6339  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
6340    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
6341    const Value *Ptr = IndirectStoresToEmit[i].second;
6342    SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
6343                                             Chain, &Flag);
6344    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
6345  }
6346
6347  // Emit the non-flagged stores from the physregs.
6348  SmallVector<SDValue, 8> OutChains;
6349  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
6350    SDValue Val = DAG.getStore(Chain, getCurDebugLoc(),
6351                               StoresToEmit[i].first,
6352                               getValue(StoresToEmit[i].second),
6353                               MachinePointerInfo(StoresToEmit[i].second),
6354                               false, false, 0);
6355    OutChains.push_back(Val);
6356  }
6357
6358  if (!OutChains.empty())
6359    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
6360                        &OutChains[0], OutChains.size());
6361
6362  DAG.setRoot(Chain);
6363}
6364
6365void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
6366  DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(),
6367                          MVT::Other, getRoot(),
6368                          getValue(I.getArgOperand(0)),
6369                          DAG.getSrcValue(I.getArgOperand(0))));
6370}
6371
6372void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
6373  const TargetData &TD = *TLI.getTargetData();
6374  SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(),
6375                           getRoot(), getValue(I.getOperand(0)),
6376                           DAG.getSrcValue(I.getOperand(0)),
6377                           TD.getABITypeAlignment(I.getType()));
6378  setValue(&I, V);
6379  DAG.setRoot(V.getValue(1));
6380}
6381
6382void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
6383  DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(),
6384                          MVT::Other, getRoot(),
6385                          getValue(I.getArgOperand(0)),
6386                          DAG.getSrcValue(I.getArgOperand(0))));
6387}
6388
6389void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
6390  DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(),
6391                          MVT::Other, getRoot(),
6392                          getValue(I.getArgOperand(0)),
6393                          getValue(I.getArgOperand(1)),
6394                          DAG.getSrcValue(I.getArgOperand(0)),
6395                          DAG.getSrcValue(I.getArgOperand(1))));
6396}
6397
6398/// TargetLowering::LowerCallTo - This is the default LowerCallTo
6399/// implementation, which just calls LowerCall.
6400/// FIXME: When all targets are
6401/// migrated to using LowerCall, this hook should be integrated into SDISel.
6402std::pair<SDValue, SDValue>
6403TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
6404  // Handle all of the outgoing arguments.
6405  CLI.Outs.clear();
6406  CLI.OutVals.clear();
6407  ArgListTy &Args = CLI.Args;
6408  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
6409    SmallVector<EVT, 4> ValueVTs;
6410    ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
6411    for (unsigned Value = 0, NumValues = ValueVTs.size();
6412         Value != NumValues; ++Value) {
6413      EVT VT = ValueVTs[Value];
6414      Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
6415      SDValue Op = SDValue(Args[i].Node.getNode(),
6416                           Args[i].Node.getResNo() + Value);
6417      ISD::ArgFlagsTy Flags;
6418      unsigned OriginalAlignment =
6419        getTargetData()->getABITypeAlignment(ArgTy);
6420
6421      if (Args[i].isZExt)
6422        Flags.setZExt();
6423      if (Args[i].isSExt)
6424        Flags.setSExt();
6425      if (Args[i].isInReg)
6426        Flags.setInReg();
6427      if (Args[i].isSRet)
6428        Flags.setSRet();
6429      if (Args[i].isByVal) {
6430        Flags.setByVal();
6431        PointerType *Ty = cast<PointerType>(Args[i].Ty);
6432        Type *ElementTy = Ty->getElementType();
6433        Flags.setByValSize(getTargetData()->getTypeAllocSize(ElementTy));
6434        // For ByVal, alignment should come from FE.  BE will guess if this
6435        // info is not there but there are cases it cannot get right.
6436        unsigned FrameAlign;
6437        if (Args[i].Alignment)
6438          FrameAlign = Args[i].Alignment;
6439        else
6440          FrameAlign = getByValTypeAlignment(ElementTy);
6441        Flags.setByValAlign(FrameAlign);
6442      }
6443      if (Args[i].isNest)
6444        Flags.setNest();
6445      Flags.setOrigAlign(OriginalAlignment);
6446
6447      EVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT);
6448      unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT);
6449      SmallVector<SDValue, 4> Parts(NumParts);
6450      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
6451
6452      if (Args[i].isSExt)
6453        ExtendKind = ISD::SIGN_EXTEND;
6454      else if (Args[i].isZExt)
6455        ExtendKind = ISD::ZERO_EXTEND;
6456
6457      getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts,
6458                     PartVT, ExtendKind);
6459
6460      for (unsigned j = 0; j != NumParts; ++j) {
6461        // if it isn't first piece, alignment must be 1
6462        ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(),
6463                               i < CLI.NumFixedArgs);
6464        if (NumParts > 1 && j == 0)
6465          MyFlags.Flags.setSplit();
6466        else if (j != 0)
6467          MyFlags.Flags.setOrigAlign(1);
6468
6469        CLI.Outs.push_back(MyFlags);
6470        CLI.OutVals.push_back(Parts[j]);
6471      }
6472    }
6473  }
6474
6475  // Handle the incoming return values from the call.
6476  CLI.Ins.clear();
6477  SmallVector<EVT, 4> RetTys;
6478  ComputeValueVTs(*this, CLI.RetTy, RetTys);
6479  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6480    EVT VT = RetTys[I];
6481    EVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
6482    unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
6483    for (unsigned i = 0; i != NumRegs; ++i) {
6484      ISD::InputArg MyFlags;
6485      MyFlags.VT = RegisterVT.getSimpleVT();
6486      MyFlags.Used = CLI.IsReturnValueUsed;
6487      if (CLI.RetSExt)
6488        MyFlags.Flags.setSExt();
6489      if (CLI.RetZExt)
6490        MyFlags.Flags.setZExt();
6491      if (CLI.IsInReg)
6492        MyFlags.Flags.setInReg();
6493      CLI.Ins.push_back(MyFlags);
6494    }
6495  }
6496
6497  SmallVector<SDValue, 4> InVals;
6498  CLI.Chain = LowerCall(CLI, InVals);
6499
6500  // Verify that the target's LowerCall behaved as expected.
6501  assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
6502         "LowerCall didn't return a valid chain!");
6503  assert((!CLI.IsTailCall || InVals.empty()) &&
6504         "LowerCall emitted a return value for a tail call!");
6505  assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
6506         "LowerCall didn't emit the correct number of values!");
6507
6508  // For a tail call, the return value is merely live-out and there aren't
6509  // any nodes in the DAG representing it. Return a special value to
6510  // indicate that a tail call has been emitted and no more Instructions
6511  // should be processed in the current block.
6512  if (CLI.IsTailCall) {
6513    CLI.DAG.setRoot(CLI.Chain);
6514    return std::make_pair(SDValue(), SDValue());
6515  }
6516
6517  DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
6518          assert(InVals[i].getNode() &&
6519                 "LowerCall emitted a null value!");
6520          assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
6521                 "LowerCall emitted a value with the wrong type!");
6522        });
6523
6524  // Collect the legal value parts into potentially illegal values
6525  // that correspond to the original function's return values.
6526  ISD::NodeType AssertOp = ISD::DELETED_NODE;
6527  if (CLI.RetSExt)
6528    AssertOp = ISD::AssertSext;
6529  else if (CLI.RetZExt)
6530    AssertOp = ISD::AssertZext;
6531  SmallVector<SDValue, 4> ReturnValues;
6532  unsigned CurReg = 0;
6533  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6534    EVT VT = RetTys[I];
6535    EVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
6536    unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
6537
6538    ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
6539                                            NumRegs, RegisterVT, VT,
6540                                            AssertOp));
6541    CurReg += NumRegs;
6542  }
6543
6544  // For a function returning void, there is no return value. We can't create
6545  // such a node, so we just return a null return value in that case. In
6546  // that case, nothing will actually look at the value.
6547  if (ReturnValues.empty())
6548    return std::make_pair(SDValue(), CLI.Chain);
6549
6550  SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
6551                                CLI.DAG.getVTList(&RetTys[0], RetTys.size()),
6552                            &ReturnValues[0], ReturnValues.size());
6553  return std::make_pair(Res, CLI.Chain);
6554}
6555
6556void TargetLowering::LowerOperationWrapper(SDNode *N,
6557                                           SmallVectorImpl<SDValue> &Results,
6558                                           SelectionDAG &DAG) const {
6559  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
6560  if (Res.getNode())
6561    Results.push_back(Res);
6562}
6563
6564SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
6565  llvm_unreachable("LowerOperation not implemented for this target!");
6566}
6567
6568void
6569SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
6570  SDValue Op = getNonRegisterValue(V);
6571  assert((Op.getOpcode() != ISD::CopyFromReg ||
6572          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
6573         "Copy from a reg to the same reg!");
6574  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
6575
6576  RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
6577  SDValue Chain = DAG.getEntryNode();
6578  RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0);
6579  PendingExports.push_back(Chain);
6580}
6581
6582#include "llvm/CodeGen/SelectionDAGISel.h"
6583
6584/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
6585/// entry block, return true.  This includes arguments used by switches, since
6586/// the switch may expand into multiple basic blocks.
6587static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
6588  // With FastISel active, we may be splitting blocks, so force creation
6589  // of virtual registers for all non-dead arguments.
6590  if (FastISel)
6591    return A->use_empty();
6592
6593  const BasicBlock *Entry = A->getParent()->begin();
6594  for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end();
6595       UI != E; ++UI) {
6596    const User *U = *UI;
6597    if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U))
6598      return false;  // Use not in entry block.
6599  }
6600  return true;
6601}
6602
6603void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) {
6604  // If this is the entry block, emit arguments.
6605  const Function &F = *LLVMBB->getParent();
6606  SelectionDAG &DAG = SDB->DAG;
6607  DebugLoc dl = SDB->getCurDebugLoc();
6608  const TargetData *TD = TLI.getTargetData();
6609  SmallVector<ISD::InputArg, 16> Ins;
6610
6611  // Check whether the function can return without sret-demotion.
6612  SmallVector<ISD::OutputArg, 4> Outs;
6613  GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
6614                Outs, TLI);
6615
6616  if (!FuncInfo->CanLowerReturn) {
6617    // Put in an sret pointer parameter before all the other parameters.
6618    SmallVector<EVT, 1> ValueVTs;
6619    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6620
6621    // NOTE: Assuming that a pointer will never break down to more than one VT
6622    // or one register.
6623    ISD::ArgFlagsTy Flags;
6624    Flags.setSRet();
6625    EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]);
6626    ISD::InputArg RetArg(Flags, RegisterVT, true);
6627    Ins.push_back(RetArg);
6628  }
6629
6630  // Set up the incoming argument description vector.
6631  unsigned Idx = 1;
6632  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
6633       I != E; ++I, ++Idx) {
6634    SmallVector<EVT, 4> ValueVTs;
6635    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6636    bool isArgValueUsed = !I->use_empty();
6637    for (unsigned Value = 0, NumValues = ValueVTs.size();
6638         Value != NumValues; ++Value) {
6639      EVT VT = ValueVTs[Value];
6640      Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
6641      ISD::ArgFlagsTy Flags;
6642      unsigned OriginalAlignment =
6643        TD->getABITypeAlignment(ArgTy);
6644
6645      if (F.paramHasAttr(Idx, Attribute::ZExt))
6646        Flags.setZExt();
6647      if (F.paramHasAttr(Idx, Attribute::SExt))
6648        Flags.setSExt();
6649      if (F.paramHasAttr(Idx, Attribute::InReg))
6650        Flags.setInReg();
6651      if (F.paramHasAttr(Idx, Attribute::StructRet))
6652        Flags.setSRet();
6653      if (F.paramHasAttr(Idx, Attribute::ByVal)) {
6654        Flags.setByVal();
6655        PointerType *Ty = cast<PointerType>(I->getType());
6656        Type *ElementTy = Ty->getElementType();
6657        Flags.setByValSize(TD->getTypeAllocSize(ElementTy));
6658        // For ByVal, alignment should be passed from FE.  BE will guess if
6659        // this info is not there but there are cases it cannot get right.
6660        unsigned FrameAlign;
6661        if (F.getParamAlignment(Idx))
6662          FrameAlign = F.getParamAlignment(Idx);
6663        else
6664          FrameAlign = TLI.getByValTypeAlignment(ElementTy);
6665        Flags.setByValAlign(FrameAlign);
6666      }
6667      if (F.paramHasAttr(Idx, Attribute::Nest))
6668        Flags.setNest();
6669      Flags.setOrigAlign(OriginalAlignment);
6670
6671      EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6672      unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6673      for (unsigned i = 0; i != NumRegs; ++i) {
6674        ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed);
6675        if (NumRegs > 1 && i == 0)
6676          MyFlags.Flags.setSplit();
6677        // if it isn't first piece, alignment must be 1
6678        else if (i > 0)
6679          MyFlags.Flags.setOrigAlign(1);
6680        Ins.push_back(MyFlags);
6681      }
6682    }
6683  }
6684
6685  // Call the target to set up the argument values.
6686  SmallVector<SDValue, 8> InVals;
6687  SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
6688                                             F.isVarArg(), Ins,
6689                                             dl, DAG, InVals);
6690
6691  // Verify that the target's LowerFormalArguments behaved as expected.
6692  assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
6693         "LowerFormalArguments didn't return a valid chain!");
6694  assert(InVals.size() == Ins.size() &&
6695         "LowerFormalArguments didn't emit the correct number of values!");
6696  DEBUG({
6697      for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6698        assert(InVals[i].getNode() &&
6699               "LowerFormalArguments emitted a null value!");
6700        assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6701               "LowerFormalArguments emitted a value with the wrong type!");
6702      }
6703    });
6704
6705  // Update the DAG with the new chain value resulting from argument lowering.
6706  DAG.setRoot(NewRoot);
6707
6708  // Set up the argument values.
6709  unsigned i = 0;
6710  Idx = 1;
6711  if (!FuncInfo->CanLowerReturn) {
6712    // Create a virtual register for the sret pointer, and put in a copy
6713    // from the sret argument into it.
6714    SmallVector<EVT, 1> ValueVTs;
6715    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6716    EVT VT = ValueVTs[0];
6717    EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6718    ISD::NodeType AssertOp = ISD::DELETED_NODE;
6719    SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
6720                                        RegVT, VT, AssertOp);
6721
6722    MachineFunction& MF = SDB->DAG.getMachineFunction();
6723    MachineRegisterInfo& RegInfo = MF.getRegInfo();
6724    unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT));
6725    FuncInfo->DemoteRegister = SRetReg;
6726    NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(),
6727                                    SRetReg, ArgValue);
6728    DAG.setRoot(NewRoot);
6729
6730    // i indexes lowered arguments.  Bump it past the hidden sret argument.
6731    // Idx indexes LLVM arguments.  Don't touch it.
6732    ++i;
6733  }
6734
6735  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
6736      ++I, ++Idx) {
6737    SmallVector<SDValue, 4> ArgValues;
6738    SmallVector<EVT, 4> ValueVTs;
6739    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6740    unsigned NumValues = ValueVTs.size();
6741
6742    // If this argument is unused then remember its value. It is used to generate
6743    // debugging information.
6744    if (I->use_empty() && NumValues)
6745      SDB->setUnusedArgValue(I, InVals[i]);
6746
6747    for (unsigned Val = 0; Val != NumValues; ++Val) {
6748      EVT VT = ValueVTs[Val];
6749      EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6750      unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6751
6752      if (!I->use_empty()) {
6753        ISD::NodeType AssertOp = ISD::DELETED_NODE;
6754        if (F.paramHasAttr(Idx, Attribute::SExt))
6755          AssertOp = ISD::AssertSext;
6756        else if (F.paramHasAttr(Idx, Attribute::ZExt))
6757          AssertOp = ISD::AssertZext;
6758
6759        ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
6760                                             NumParts, PartVT, VT,
6761                                             AssertOp));
6762      }
6763
6764      i += NumParts;
6765    }
6766
6767    // We don't need to do anything else for unused arguments.
6768    if (ArgValues.empty())
6769      continue;
6770
6771    // Note down frame index.
6772    if (FrameIndexSDNode *FI =
6773        dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
6774      FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
6775
6776    SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues,
6777                                     SDB->getCurDebugLoc());
6778
6779    SDB->setValue(I, Res);
6780    if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
6781      if (LoadSDNode *LNode =
6782          dyn_cast<LoadSDNode>(Res.getOperand(0).getNode()))
6783        if (FrameIndexSDNode *FI =
6784            dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
6785        FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
6786    }
6787
6788    // If this argument is live outside of the entry block, insert a copy from
6789    // wherever we got it to the vreg that other BB's will reference it as.
6790    if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
6791      // If we can, though, try to skip creating an unnecessary vreg.
6792      // FIXME: This isn't very clean... it would be nice to make this more
6793      // general.  It's also subtly incompatible with the hacks FastISel
6794      // uses with vregs.
6795      unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
6796      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
6797        FuncInfo->ValueMap[I] = Reg;
6798        continue;
6799      }
6800    }
6801    if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) {
6802      FuncInfo->InitializeRegForValue(I);
6803      SDB->CopyToExportRegsIfNeeded(I);
6804    }
6805  }
6806
6807  assert(i == InVals.size() && "Argument register count mismatch!");
6808
6809  // Finally, if the target has anything special to do, allow it to do so.
6810  // FIXME: this should insert code into the DAG!
6811  EmitFunctionEntryCode();
6812}
6813
6814/// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
6815/// ensure constants are generated when needed.  Remember the virtual registers
6816/// that need to be added to the Machine PHI nodes as input.  We cannot just
6817/// directly add them, because expansion might result in multiple MBB's for one
6818/// BB.  As such, the start of the BB might correspond to a different MBB than
6819/// the end.
6820///
6821void
6822SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
6823  const TerminatorInst *TI = LLVMBB->getTerminator();
6824
6825  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6826
6827  // Check successor nodes' PHI nodes that expect a constant to be available
6828  // from this block.
6829  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6830    const BasicBlock *SuccBB = TI->getSuccessor(succ);
6831    if (!isa<PHINode>(SuccBB->begin())) continue;
6832    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
6833
6834    // If this terminator has multiple identical successors (common for
6835    // switches), only handle each succ once.
6836    if (!SuccsHandled.insert(SuccMBB)) continue;
6837
6838    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6839
6840    // At this point we know that there is a 1-1 correspondence between LLVM PHI
6841    // nodes and Machine PHI nodes, but the incoming operands have not been
6842    // emitted yet.
6843    for (BasicBlock::const_iterator I = SuccBB->begin();
6844         const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
6845      // Ignore dead phi's.
6846      if (PN->use_empty()) continue;
6847
6848      // Skip empty types
6849      if (PN->getType()->isEmptyTy())
6850        continue;
6851
6852      unsigned Reg;
6853      const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6854
6855      if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
6856        unsigned &RegOut = ConstantsOut[C];
6857        if (RegOut == 0) {
6858          RegOut = FuncInfo.CreateRegs(C->getType());
6859          CopyValueToVirtualRegister(C, RegOut);
6860        }
6861        Reg = RegOut;
6862      } else {
6863        DenseMap<const Value *, unsigned>::iterator I =
6864          FuncInfo.ValueMap.find(PHIOp);
6865        if (I != FuncInfo.ValueMap.end())
6866          Reg = I->second;
6867        else {
6868          assert(isa<AllocaInst>(PHIOp) &&
6869                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
6870                 "Didn't codegen value into a register!??");
6871          Reg = FuncInfo.CreateRegs(PHIOp->getType());
6872          CopyValueToVirtualRegister(PHIOp, Reg);
6873        }
6874      }
6875
6876      // Remember that this register needs to added to the machine PHI node as
6877      // the input for this MBB.
6878      SmallVector<EVT, 4> ValueVTs;
6879      ComputeValueVTs(TLI, PN->getType(), ValueVTs);
6880      for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
6881        EVT VT = ValueVTs[vti];
6882        unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
6883        for (unsigned i = 0, e = NumRegisters; i != e; ++i)
6884          FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
6885        Reg += NumRegisters;
6886      }
6887    }
6888  }
6889  ConstantsOut.clear();
6890}
6891