SelectionDAGBuilder.cpp revision 77fffa6fdd389ad6d70a42b36c1c36c768c2de41
1//===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements routines for translating from LLVM IR into SelectionDAG IR.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "SDNodeDbgValue.h"
16#include "SelectionDAGBuilder.h"
17#include "llvm/ADT/BitVector.h"
18#include "llvm/ADT/PostOrderIterator.h"
19#include "llvm/ADT/SmallSet.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/ConstantFolding.h"
22#include "llvm/Constants.h"
23#include "llvm/CallingConv.h"
24#include "llvm/DebugInfo.h"
25#include "llvm/DerivedTypes.h"
26#include "llvm/Function.h"
27#include "llvm/GlobalVariable.h"
28#include "llvm/InlineAsm.h"
29#include "llvm/Instructions.h"
30#include "llvm/Intrinsics.h"
31#include "llvm/IntrinsicInst.h"
32#include "llvm/LLVMContext.h"
33#include "llvm/Module.h"
34#include "llvm/CodeGen/Analysis.h"
35#include "llvm/CodeGen/FastISel.h"
36#include "llvm/CodeGen/FunctionLoweringInfo.h"
37#include "llvm/CodeGen/GCStrategy.h"
38#include "llvm/CodeGen/GCMetadata.h"
39#include "llvm/CodeGen/MachineFunction.h"
40#include "llvm/CodeGen/MachineFrameInfo.h"
41#include "llvm/CodeGen/MachineInstrBuilder.h"
42#include "llvm/CodeGen/MachineJumpTableInfo.h"
43#include "llvm/CodeGen/MachineModuleInfo.h"
44#include "llvm/CodeGen/MachineRegisterInfo.h"
45#include "llvm/CodeGen/SelectionDAG.h"
46#include "llvm/Target/TargetData.h"
47#include "llvm/Target/TargetFrameLowering.h"
48#include "llvm/Target/TargetInstrInfo.h"
49#include "llvm/Target/TargetIntrinsicInfo.h"
50#include "llvm/Target/TargetLibraryInfo.h"
51#include "llvm/Target/TargetLowering.h"
52#include "llvm/Target/TargetOptions.h"
53#include "llvm/Support/CommandLine.h"
54#include "llvm/Support/IntegersSubsetMapping.h"
55#include "llvm/Support/Debug.h"
56#include "llvm/Support/ErrorHandling.h"
57#include "llvm/Support/MathExtras.h"
58#include "llvm/Support/raw_ostream.h"
59#include <algorithm>
60using namespace llvm;
61
62/// LimitFloatPrecision - Generate low-precision inline sequences for
63/// some float libcalls (6, 8 or 12 bits).
64static unsigned LimitFloatPrecision;
65
66static cl::opt<unsigned, true>
67LimitFPPrecision("limit-float-precision",
68                 cl::desc("Generate low-precision inline sequences "
69                          "for some float libcalls"),
70                 cl::location(LimitFloatPrecision),
71                 cl::init(0));
72
73// Limit the width of DAG chains. This is important in general to prevent
74// prevent DAG-based analysis from blowing up. For example, alias analysis and
75// load clustering may not complete in reasonable time. It is difficult to
76// recognize and avoid this situation within each individual analysis, and
77// future analyses are likely to have the same behavior. Limiting DAG width is
78// the safe approach, and will be especially important with global DAGs.
79//
80// MaxParallelChains default is arbitrarily high to avoid affecting
81// optimization, but could be lowered to improve compile time. Any ld-ld-st-st
82// sequence over this should have been converted to llvm.memcpy by the
83// frontend. It easy to induce this behavior with .ll code such as:
84// %buffer = alloca [4096 x i8]
85// %data = load [4096 x i8]* %argPtr
86// store [4096 x i8] %data, [4096 x i8]* %buffer
87static const unsigned MaxParallelChains = 64;
88
89static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
90                                      const SDValue *Parts, unsigned NumParts,
91                                      EVT PartVT, EVT ValueVT);
92
93/// getCopyFromParts - Create a value that contains the specified legal parts
94/// combined into the value they represent.  If the parts combine to a type
95/// larger then ValueVT then AssertOp can be used to specify whether the extra
96/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
97/// (ISD::AssertSext).
98static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL,
99                                const SDValue *Parts,
100                                unsigned NumParts, EVT PartVT, EVT ValueVT,
101                                ISD::NodeType AssertOp = ISD::DELETED_NODE) {
102  if (ValueVT.isVector())
103    return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT);
104
105  assert(NumParts > 0 && "No parts to assemble!");
106  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
107  SDValue Val = Parts[0];
108
109  if (NumParts > 1) {
110    // Assemble the value from multiple parts.
111    if (ValueVT.isInteger()) {
112      unsigned PartBits = PartVT.getSizeInBits();
113      unsigned ValueBits = ValueVT.getSizeInBits();
114
115      // Assemble the power of 2 part.
116      unsigned RoundParts = NumParts & (NumParts - 1) ?
117        1 << Log2_32(NumParts) : NumParts;
118      unsigned RoundBits = PartBits * RoundParts;
119      EVT RoundVT = RoundBits == ValueBits ?
120        ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
121      SDValue Lo, Hi;
122
123      EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
124
125      if (RoundParts > 2) {
126        Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
127                              PartVT, HalfVT);
128        Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
129                              RoundParts / 2, PartVT, HalfVT);
130      } else {
131        Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
132        Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
133      }
134
135      if (TLI.isBigEndian())
136        std::swap(Lo, Hi);
137
138      Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
139
140      if (RoundParts < NumParts) {
141        // Assemble the trailing non-power-of-2 part.
142        unsigned OddParts = NumParts - RoundParts;
143        EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
144        Hi = getCopyFromParts(DAG, DL,
145                              Parts + RoundParts, OddParts, PartVT, OddVT);
146
147        // Combine the round and odd parts.
148        Lo = Val;
149        if (TLI.isBigEndian())
150          std::swap(Lo, Hi);
151        EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
152        Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
153        Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
154                         DAG.getConstant(Lo.getValueType().getSizeInBits(),
155                                         TLI.getPointerTy()));
156        Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
157        Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
158      }
159    } else if (PartVT.isFloatingPoint()) {
160      // FP split into multiple FP parts (for ppcf128)
161      assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) &&
162             "Unexpected split");
163      SDValue Lo, Hi;
164      Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
165      Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
166      if (TLI.isBigEndian())
167        std::swap(Lo, Hi);
168      Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
169    } else {
170      // FP split into integer parts (soft fp)
171      assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
172             !PartVT.isVector() && "Unexpected split");
173      EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
174      Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT);
175    }
176  }
177
178  // There is now one part, held in Val.  Correct it to match ValueVT.
179  PartVT = Val.getValueType();
180
181  if (PartVT == ValueVT)
182    return Val;
183
184  if (PartVT.isInteger() && ValueVT.isInteger()) {
185    if (ValueVT.bitsLT(PartVT)) {
186      // For a truncate, see if we have any information to
187      // indicate whether the truncated bits will always be
188      // zero or sign-extension.
189      if (AssertOp != ISD::DELETED_NODE)
190        Val = DAG.getNode(AssertOp, DL, PartVT, Val,
191                          DAG.getValueType(ValueVT));
192      return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
193    }
194    return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
195  }
196
197  if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
198    // FP_ROUND's are always exact here.
199    if (ValueVT.bitsLT(Val.getValueType()))
200      return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val,
201                         DAG.getTargetConstant(1, TLI.getPointerTy()));
202
203    return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
204  }
205
206  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
207    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
208
209  llvm_unreachable("Unknown mismatch!");
210}
211
212/// getCopyFromParts - Create a value that contains the specified legal parts
213/// combined into the value they represent.  If the parts combine to a type
214/// larger then ValueVT then AssertOp can be used to specify whether the extra
215/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
216/// (ISD::AssertSext).
217static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
218                                      const SDValue *Parts, unsigned NumParts,
219                                      EVT PartVT, EVT ValueVT) {
220  assert(ValueVT.isVector() && "Not a vector value");
221  assert(NumParts > 0 && "No parts to assemble!");
222  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
223  SDValue Val = Parts[0];
224
225  // Handle a multi-element vector.
226  if (NumParts > 1) {
227    EVT IntermediateVT, RegisterVT;
228    unsigned NumIntermediates;
229    unsigned NumRegs =
230    TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
231                               NumIntermediates, RegisterVT);
232    assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
233    NumParts = NumRegs; // Silence a compiler warning.
234    assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
235    assert(RegisterVT == Parts[0].getValueType() &&
236           "Part type doesn't match part!");
237
238    // Assemble the parts into intermediate operands.
239    SmallVector<SDValue, 8> Ops(NumIntermediates);
240    if (NumIntermediates == NumParts) {
241      // If the register was not expanded, truncate or copy the value,
242      // as appropriate.
243      for (unsigned i = 0; i != NumParts; ++i)
244        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
245                                  PartVT, IntermediateVT);
246    } else if (NumParts > 0) {
247      // If the intermediate type was expanded, build the intermediate
248      // operands from the parts.
249      assert(NumParts % NumIntermediates == 0 &&
250             "Must expand into a divisible number of parts!");
251      unsigned Factor = NumParts / NumIntermediates;
252      for (unsigned i = 0; i != NumIntermediates; ++i)
253        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
254                                  PartVT, IntermediateVT);
255    }
256
257    // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
258    // intermediate operands.
259    Val = DAG.getNode(IntermediateVT.isVector() ?
260                      ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL,
261                      ValueVT, &Ops[0], NumIntermediates);
262  }
263
264  // There is now one part, held in Val.  Correct it to match ValueVT.
265  PartVT = Val.getValueType();
266
267  if (PartVT == ValueVT)
268    return Val;
269
270  if (PartVT.isVector()) {
271    // If the element type of the source/dest vectors are the same, but the
272    // parts vector has more elements than the value vector, then we have a
273    // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
274    // elements we want.
275    if (PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
276      assert(PartVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
277             "Cannot narrow, it would be a lossy transformation");
278      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
279                         DAG.getIntPtrConstant(0));
280    }
281
282    // Vector/Vector bitcast.
283    if (ValueVT.getSizeInBits() == PartVT.getSizeInBits())
284      return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
285
286    assert(PartVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
287      "Cannot handle this kind of promotion");
288    // Promoted vector extract
289    bool Smaller = ValueVT.bitsLE(PartVT);
290    return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
291                       DL, ValueVT, Val);
292
293  }
294
295  // Trivial bitcast if the types are the same size and the destination
296  // vector type is legal.
297  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits() &&
298      TLI.isTypeLegal(ValueVT))
299    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
300
301  // Handle cases such as i8 -> <1 x i1>
302  assert(ValueVT.getVectorNumElements() == 1 &&
303         "Only trivial scalar-to-vector conversions should get here!");
304
305  if (ValueVT.getVectorNumElements() == 1 &&
306      ValueVT.getVectorElementType() != PartVT) {
307    bool Smaller = ValueVT.bitsLE(PartVT);
308    Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
309                       DL, ValueVT.getScalarType(), Val);
310  }
311
312  return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
313}
314
315
316
317
318static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl,
319                                 SDValue Val, SDValue *Parts, unsigned NumParts,
320                                 EVT PartVT);
321
322/// getCopyToParts - Create a series of nodes that contain the specified value
323/// split into legal parts.  If the parts contain more bits than Val, then, for
324/// integers, ExtendKind can be used to specify how to generate the extra bits.
325static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL,
326                           SDValue Val, SDValue *Parts, unsigned NumParts,
327                           EVT PartVT,
328                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
329  EVT ValueVT = Val.getValueType();
330
331  // Handle the vector case separately.
332  if (ValueVT.isVector())
333    return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT);
334
335  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
336  unsigned PartBits = PartVT.getSizeInBits();
337  unsigned OrigNumParts = NumParts;
338  assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
339
340  if (NumParts == 0)
341    return;
342
343  assert(!ValueVT.isVector() && "Vector case handled elsewhere");
344  if (PartVT == ValueVT) {
345    assert(NumParts == 1 && "No-op copy with multiple parts!");
346    Parts[0] = Val;
347    return;
348  }
349
350  if (NumParts * PartBits > ValueVT.getSizeInBits()) {
351    // If the parts cover more bits than the value has, promote the value.
352    if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
353      assert(NumParts == 1 && "Do not know what to promote to!");
354      Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
355    } else {
356      assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
357             ValueVT.isInteger() &&
358             "Unknown mismatch!");
359      ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
360      Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
361      if (PartVT == MVT::x86mmx)
362        Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
363    }
364  } else if (PartBits == ValueVT.getSizeInBits()) {
365    // Different types of the same size.
366    assert(NumParts == 1 && PartVT != ValueVT);
367    Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
368  } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
369    // If the parts cover less bits than value has, truncate the value.
370    assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
371           ValueVT.isInteger() &&
372           "Unknown mismatch!");
373    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
374    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
375    if (PartVT == MVT::x86mmx)
376      Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
377  }
378
379  // The value may have changed - recompute ValueVT.
380  ValueVT = Val.getValueType();
381  assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
382         "Failed to tile the value with PartVT!");
383
384  if (NumParts == 1) {
385    assert(PartVT == ValueVT && "Type conversion failed!");
386    Parts[0] = Val;
387    return;
388  }
389
390  // Expand the value into multiple parts.
391  if (NumParts & (NumParts - 1)) {
392    // The number of parts is not a power of 2.  Split off and copy the tail.
393    assert(PartVT.isInteger() && ValueVT.isInteger() &&
394           "Do not know what to expand to!");
395    unsigned RoundParts = 1 << Log2_32(NumParts);
396    unsigned RoundBits = RoundParts * PartBits;
397    unsigned OddParts = NumParts - RoundParts;
398    SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
399                                 DAG.getIntPtrConstant(RoundBits));
400    getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT);
401
402    if (TLI.isBigEndian())
403      // The odd parts were reversed by getCopyToParts - unreverse them.
404      std::reverse(Parts + RoundParts, Parts + NumParts);
405
406    NumParts = RoundParts;
407    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
408    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
409  }
410
411  // The number of parts is a power of 2.  Repeatedly bisect the value using
412  // EXTRACT_ELEMENT.
413  Parts[0] = DAG.getNode(ISD::BITCAST, DL,
414                         EVT::getIntegerVT(*DAG.getContext(),
415                                           ValueVT.getSizeInBits()),
416                         Val);
417
418  for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
419    for (unsigned i = 0; i < NumParts; i += StepSize) {
420      unsigned ThisBits = StepSize * PartBits / 2;
421      EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
422      SDValue &Part0 = Parts[i];
423      SDValue &Part1 = Parts[i+StepSize/2];
424
425      Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
426                          ThisVT, Part0, DAG.getIntPtrConstant(1));
427      Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
428                          ThisVT, Part0, DAG.getIntPtrConstant(0));
429
430      if (ThisBits == PartBits && ThisVT != PartVT) {
431        Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
432        Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
433      }
434    }
435  }
436
437  if (TLI.isBigEndian())
438    std::reverse(Parts, Parts + OrigNumParts);
439}
440
441
442/// getCopyToPartsVector - Create a series of nodes that contain the specified
443/// value split into legal parts.
444static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL,
445                                 SDValue Val, SDValue *Parts, unsigned NumParts,
446                                 EVT PartVT) {
447  EVT ValueVT = Val.getValueType();
448  assert(ValueVT.isVector() && "Not a vector");
449  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
450
451  if (NumParts == 1) {
452    if (PartVT == ValueVT) {
453      // Nothing to do.
454    } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
455      // Bitconvert vector->vector case.
456      Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
457    } else if (PartVT.isVector() &&
458               PartVT.getVectorElementType() == ValueVT.getVectorElementType() &&
459               PartVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
460      EVT ElementVT = PartVT.getVectorElementType();
461      // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
462      // undef elements.
463      SmallVector<SDValue, 16> Ops;
464      for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
465        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
466                                  ElementVT, Val, DAG.getIntPtrConstant(i)));
467
468      for (unsigned i = ValueVT.getVectorNumElements(),
469           e = PartVT.getVectorNumElements(); i != e; ++i)
470        Ops.push_back(DAG.getUNDEF(ElementVT));
471
472      Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size());
473
474      // FIXME: Use CONCAT for 2x -> 4x.
475
476      //SDValue UndefElts = DAG.getUNDEF(VectorTy);
477      //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
478    } else if (PartVT.isVector() &&
479               PartVT.getVectorElementType().bitsGE(
480                 ValueVT.getVectorElementType()) &&
481               PartVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
482
483      // Promoted vector extract
484      bool Smaller = PartVT.bitsLE(ValueVT);
485      Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
486                        DL, PartVT, Val);
487    } else{
488      // Vector -> scalar conversion.
489      assert(ValueVT.getVectorNumElements() == 1 &&
490             "Only trivial vector-to-scalar conversions should get here!");
491      Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
492                        PartVT, Val, DAG.getIntPtrConstant(0));
493
494      bool Smaller = ValueVT.bitsLE(PartVT);
495      Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
496                         DL, PartVT, Val);
497    }
498
499    Parts[0] = Val;
500    return;
501  }
502
503  // Handle a multi-element vector.
504  EVT IntermediateVT, RegisterVT;
505  unsigned NumIntermediates;
506  unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
507                                                IntermediateVT,
508                                                NumIntermediates, RegisterVT);
509  unsigned NumElements = ValueVT.getVectorNumElements();
510
511  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
512  NumParts = NumRegs; // Silence a compiler warning.
513  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
514
515  // Split the vector into intermediate operands.
516  SmallVector<SDValue, 8> Ops(NumIntermediates);
517  for (unsigned i = 0; i != NumIntermediates; ++i) {
518    if (IntermediateVT.isVector())
519      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
520                           IntermediateVT, Val,
521                   DAG.getIntPtrConstant(i * (NumElements / NumIntermediates)));
522    else
523      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
524                           IntermediateVT, Val, DAG.getIntPtrConstant(i));
525  }
526
527  // Split the intermediate operands into legal parts.
528  if (NumParts == NumIntermediates) {
529    // If the register was not expanded, promote or copy the value,
530    // as appropriate.
531    for (unsigned i = 0; i != NumParts; ++i)
532      getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT);
533  } else if (NumParts > 0) {
534    // If the intermediate type was expanded, split each the value into
535    // legal parts.
536    assert(NumParts % NumIntermediates == 0 &&
537           "Must expand into a divisible number of parts!");
538    unsigned Factor = NumParts / NumIntermediates;
539    for (unsigned i = 0; i != NumIntermediates; ++i)
540      getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT);
541  }
542}
543
544
545
546
547namespace {
548  /// RegsForValue - This struct represents the registers (physical or virtual)
549  /// that a particular set of values is assigned, and the type information
550  /// about the value. The most common situation is to represent one value at a
551  /// time, but struct or array values are handled element-wise as multiple
552  /// values.  The splitting of aggregates is performed recursively, so that we
553  /// never have aggregate-typed registers. The values at this point do not
554  /// necessarily have legal types, so each value may require one or more
555  /// registers of some legal type.
556  ///
557  struct RegsForValue {
558    /// ValueVTs - The value types of the values, which may not be legal, and
559    /// may need be promoted or synthesized from one or more registers.
560    ///
561    SmallVector<EVT, 4> ValueVTs;
562
563    /// RegVTs - The value types of the registers. This is the same size as
564    /// ValueVTs and it records, for each value, what the type of the assigned
565    /// register or registers are. (Individual values are never synthesized
566    /// from more than one type of register.)
567    ///
568    /// With virtual registers, the contents of RegVTs is redundant with TLI's
569    /// getRegisterType member function, however when with physical registers
570    /// it is necessary to have a separate record of the types.
571    ///
572    SmallVector<EVT, 4> RegVTs;
573
574    /// Regs - This list holds the registers assigned to the values.
575    /// Each legal or promoted value requires one register, and each
576    /// expanded value requires multiple registers.
577    ///
578    SmallVector<unsigned, 4> Regs;
579
580    RegsForValue() {}
581
582    RegsForValue(const SmallVector<unsigned, 4> &regs,
583                 EVT regvt, EVT valuevt)
584      : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
585
586    RegsForValue(LLVMContext &Context, const TargetLowering &tli,
587                 unsigned Reg, Type *Ty) {
588      ComputeValueVTs(tli, Ty, ValueVTs);
589
590      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
591        EVT ValueVT = ValueVTs[Value];
592        unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
593        EVT RegisterVT = tli.getRegisterType(Context, ValueVT);
594        for (unsigned i = 0; i != NumRegs; ++i)
595          Regs.push_back(Reg + i);
596        RegVTs.push_back(RegisterVT);
597        Reg += NumRegs;
598      }
599    }
600
601    /// areValueTypesLegal - Return true if types of all the values are legal.
602    bool areValueTypesLegal(const TargetLowering &TLI) {
603      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
604        EVT RegisterVT = RegVTs[Value];
605        if (!TLI.isTypeLegal(RegisterVT))
606          return false;
607      }
608      return true;
609    }
610
611    /// append - Add the specified values to this one.
612    void append(const RegsForValue &RHS) {
613      ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
614      RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
615      Regs.append(RHS.Regs.begin(), RHS.Regs.end());
616    }
617
618    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
619    /// this value and returns the result as a ValueVTs value.  This uses
620    /// Chain/Flag as the input and updates them for the output Chain/Flag.
621    /// If the Flag pointer is NULL, no flag is used.
622    SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
623                            DebugLoc dl,
624                            SDValue &Chain, SDValue *Flag) const;
625
626    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
627    /// specified value into the registers specified by this object.  This uses
628    /// Chain/Flag as the input and updates them for the output Chain/Flag.
629    /// If the Flag pointer is NULL, no flag is used.
630    void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
631                       SDValue &Chain, SDValue *Flag) const;
632
633    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
634    /// operand list.  This adds the code marker, matching input operand index
635    /// (if applicable), and includes the number of values added into it.
636    void AddInlineAsmOperands(unsigned Kind,
637                              bool HasMatching, unsigned MatchingIdx,
638                              SelectionDAG &DAG,
639                              std::vector<SDValue> &Ops) const;
640  };
641}
642
643/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
644/// this value and returns the result as a ValueVT value.  This uses
645/// Chain/Flag as the input and updates them for the output Chain/Flag.
646/// If the Flag pointer is NULL, no flag is used.
647SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
648                                      FunctionLoweringInfo &FuncInfo,
649                                      DebugLoc dl,
650                                      SDValue &Chain, SDValue *Flag) const {
651  // A Value with type {} or [0 x %t] needs no registers.
652  if (ValueVTs.empty())
653    return SDValue();
654
655  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
656
657  // Assemble the legal parts into the final values.
658  SmallVector<SDValue, 4> Values(ValueVTs.size());
659  SmallVector<SDValue, 8> Parts;
660  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
661    // Copy the legal parts from the registers.
662    EVT ValueVT = ValueVTs[Value];
663    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
664    EVT RegisterVT = RegVTs[Value];
665
666    Parts.resize(NumRegs);
667    for (unsigned i = 0; i != NumRegs; ++i) {
668      SDValue P;
669      if (Flag == 0) {
670        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
671      } else {
672        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
673        *Flag = P.getValue(2);
674      }
675
676      Chain = P.getValue(1);
677      Parts[i] = P;
678
679      // If the source register was virtual and if we know something about it,
680      // add an assert node.
681      if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
682          !RegisterVT.isInteger() || RegisterVT.isVector())
683        continue;
684
685      const FunctionLoweringInfo::LiveOutInfo *LOI =
686        FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
687      if (!LOI)
688        continue;
689
690      unsigned RegSize = RegisterVT.getSizeInBits();
691      unsigned NumSignBits = LOI->NumSignBits;
692      unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
693
694      // FIXME: We capture more information than the dag can represent.  For
695      // now, just use the tightest assertzext/assertsext possible.
696      bool isSExt = true;
697      EVT FromVT(MVT::Other);
698      if (NumSignBits == RegSize)
699        isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
700      else if (NumZeroBits >= RegSize-1)
701        isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
702      else if (NumSignBits > RegSize-8)
703        isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
704      else if (NumZeroBits >= RegSize-8)
705        isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
706      else if (NumSignBits > RegSize-16)
707        isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
708      else if (NumZeroBits >= RegSize-16)
709        isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
710      else if (NumSignBits > RegSize-32)
711        isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
712      else if (NumZeroBits >= RegSize-32)
713        isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
714      else
715        continue;
716
717      // Add an assertion node.
718      assert(FromVT != MVT::Other);
719      Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
720                             RegisterVT, P, DAG.getValueType(FromVT));
721    }
722
723    Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
724                                     NumRegs, RegisterVT, ValueVT);
725    Part += NumRegs;
726    Parts.clear();
727  }
728
729  return DAG.getNode(ISD::MERGE_VALUES, dl,
730                     DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
731                     &Values[0], ValueVTs.size());
732}
733
734/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
735/// specified value into the registers specified by this object.  This uses
736/// Chain/Flag as the input and updates them for the output Chain/Flag.
737/// If the Flag pointer is NULL, no flag is used.
738void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
739                                 SDValue &Chain, SDValue *Flag) const {
740  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
741
742  // Get the list of the values's legal parts.
743  unsigned NumRegs = Regs.size();
744  SmallVector<SDValue, 8> Parts(NumRegs);
745  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
746    EVT ValueVT = ValueVTs[Value];
747    unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
748    EVT RegisterVT = RegVTs[Value];
749
750    getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
751                   &Parts[Part], NumParts, RegisterVT);
752    Part += NumParts;
753  }
754
755  // Copy the parts into the registers.
756  SmallVector<SDValue, 8> Chains(NumRegs);
757  for (unsigned i = 0; i != NumRegs; ++i) {
758    SDValue Part;
759    if (Flag == 0) {
760      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
761    } else {
762      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
763      *Flag = Part.getValue(1);
764    }
765
766    Chains[i] = Part.getValue(0);
767  }
768
769  if (NumRegs == 1 || Flag)
770    // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
771    // flagged to it. That is the CopyToReg nodes and the user are considered
772    // a single scheduling unit. If we create a TokenFactor and return it as
773    // chain, then the TokenFactor is both a predecessor (operand) of the
774    // user as well as a successor (the TF operands are flagged to the user).
775    // c1, f1 = CopyToReg
776    // c2, f2 = CopyToReg
777    // c3     = TokenFactor c1, c2
778    // ...
779    //        = op c3, ..., f2
780    Chain = Chains[NumRegs-1];
781  else
782    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
783}
784
785/// AddInlineAsmOperands - Add this value to the specified inlineasm node
786/// operand list.  This adds the code marker and includes the number of
787/// values added into it.
788void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
789                                        unsigned MatchingIdx,
790                                        SelectionDAG &DAG,
791                                        std::vector<SDValue> &Ops) const {
792  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
793
794  unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
795  if (HasMatching)
796    Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
797  else if (!Regs.empty() &&
798           TargetRegisterInfo::isVirtualRegister(Regs.front())) {
799    // Put the register class of the virtual registers in the flag word.  That
800    // way, later passes can recompute register class constraints for inline
801    // assembly as well as normal instructions.
802    // Don't do this for tied operands that can use the regclass information
803    // from the def.
804    const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
805    const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
806    Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
807  }
808
809  SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
810  Ops.push_back(Res);
811
812  for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
813    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
814    EVT RegisterVT = RegVTs[Value];
815    for (unsigned i = 0; i != NumRegs; ++i) {
816      assert(Reg < Regs.size() && "Mismatch in # registers expected");
817      Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
818    }
819  }
820}
821
822void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa,
823                               const TargetLibraryInfo *li) {
824  AA = &aa;
825  GFI = gfi;
826  LibInfo = li;
827  TD = DAG.getTarget().getTargetData();
828  Context = DAG.getContext();
829  LPadToCallSiteMap.clear();
830}
831
832/// clear - Clear out the current SelectionDAG and the associated
833/// state and prepare this SelectionDAGBuilder object to be used
834/// for a new block. This doesn't clear out information about
835/// additional blocks that are needed to complete switch lowering
836/// or PHI node updating; that information is cleared out as it is
837/// consumed.
838void SelectionDAGBuilder::clear() {
839  NodeMap.clear();
840  UnusedArgNodeMap.clear();
841  PendingLoads.clear();
842  PendingExports.clear();
843  CurDebugLoc = DebugLoc();
844  HasTailCall = false;
845}
846
847/// clearDanglingDebugInfo - Clear the dangling debug information
848/// map. This function is separated from the clear so that debug
849/// information that is dangling in a basic block can be properly
850/// resolved in a different basic block. This allows the
851/// SelectionDAG to resolve dangling debug information attached
852/// to PHI nodes.
853void SelectionDAGBuilder::clearDanglingDebugInfo() {
854  DanglingDebugInfoMap.clear();
855}
856
857/// getRoot - Return the current virtual root of the Selection DAG,
858/// flushing any PendingLoad items. This must be done before emitting
859/// a store or any other node that may need to be ordered after any
860/// prior load instructions.
861///
862SDValue SelectionDAGBuilder::getRoot() {
863  if (PendingLoads.empty())
864    return DAG.getRoot();
865
866  if (PendingLoads.size() == 1) {
867    SDValue Root = PendingLoads[0];
868    DAG.setRoot(Root);
869    PendingLoads.clear();
870    return Root;
871  }
872
873  // Otherwise, we have to make a token factor node.
874  SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
875                               &PendingLoads[0], PendingLoads.size());
876  PendingLoads.clear();
877  DAG.setRoot(Root);
878  return Root;
879}
880
881/// getControlRoot - Similar to getRoot, but instead of flushing all the
882/// PendingLoad items, flush all the PendingExports items. It is necessary
883/// to do this before emitting a terminator instruction.
884///
885SDValue SelectionDAGBuilder::getControlRoot() {
886  SDValue Root = DAG.getRoot();
887
888  if (PendingExports.empty())
889    return Root;
890
891  // Turn all of the CopyToReg chains into one factored node.
892  if (Root.getOpcode() != ISD::EntryToken) {
893    unsigned i = 0, e = PendingExports.size();
894    for (; i != e; ++i) {
895      assert(PendingExports[i].getNode()->getNumOperands() > 1);
896      if (PendingExports[i].getNode()->getOperand(0) == Root)
897        break;  // Don't add the root if we already indirectly depend on it.
898    }
899
900    if (i == e)
901      PendingExports.push_back(Root);
902  }
903
904  Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
905                     &PendingExports[0],
906                     PendingExports.size());
907  PendingExports.clear();
908  DAG.setRoot(Root);
909  return Root;
910}
911
912void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) {
913  if (DAG.GetOrdering(Node) != 0) return; // Already has ordering.
914  DAG.AssignOrdering(Node, SDNodeOrder);
915
916  for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I)
917    AssignOrderingToNode(Node->getOperand(I).getNode());
918}
919
920void SelectionDAGBuilder::visit(const Instruction &I) {
921  // Set up outgoing PHI node register values before emitting the terminator.
922  if (isa<TerminatorInst>(&I))
923    HandlePHINodesInSuccessorBlocks(I.getParent());
924
925  CurDebugLoc = I.getDebugLoc();
926
927  visit(I.getOpcode(), I);
928
929  if (!isa<TerminatorInst>(&I) && !HasTailCall)
930    CopyToExportRegsIfNeeded(&I);
931
932  CurDebugLoc = DebugLoc();
933}
934
935void SelectionDAGBuilder::visitPHI(const PHINode &) {
936  llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
937}
938
939void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
940  // Note: this doesn't use InstVisitor, because it has to work with
941  // ConstantExpr's in addition to instructions.
942  switch (Opcode) {
943  default: llvm_unreachable("Unknown instruction type encountered!");
944    // Build the switch statement using the Instruction.def file.
945#define HANDLE_INST(NUM, OPCODE, CLASS) \
946    case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
947#include "llvm/Instruction.def"
948  }
949
950  // Assign the ordering to the freshly created DAG nodes.
951  if (NodeMap.count(&I)) {
952    ++SDNodeOrder;
953    AssignOrderingToNode(getValue(&I).getNode());
954  }
955}
956
957// resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
958// generate the debug data structures now that we've seen its definition.
959void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
960                                                   SDValue Val) {
961  DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
962  if (DDI.getDI()) {
963    const DbgValueInst *DI = DDI.getDI();
964    DebugLoc dl = DDI.getdl();
965    unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
966    MDNode *Variable = DI->getVariable();
967    uint64_t Offset = DI->getOffset();
968    SDDbgValue *SDV;
969    if (Val.getNode()) {
970      if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) {
971        SDV = DAG.getDbgValue(Variable, Val.getNode(),
972                              Val.getResNo(), Offset, dl, DbgSDNodeOrder);
973        DAG.AddDbgValue(SDV, Val.getNode(), false);
974      }
975    } else
976      DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
977    DanglingDebugInfoMap[V] = DanglingDebugInfo();
978  }
979}
980
981/// getValue - Return an SDValue for the given Value.
982SDValue SelectionDAGBuilder::getValue(const Value *V) {
983  // If we already have an SDValue for this value, use it. It's important
984  // to do this first, so that we don't create a CopyFromReg if we already
985  // have a regular SDValue.
986  SDValue &N = NodeMap[V];
987  if (N.getNode()) return N;
988
989  // If there's a virtual register allocated and initialized for this
990  // value, use it.
991  DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
992  if (It != FuncInfo.ValueMap.end()) {
993    unsigned InReg = It->second;
994    RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
995    SDValue Chain = DAG.getEntryNode();
996    N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL);
997    resolveDanglingDebugInfo(V, N);
998    return N;
999  }
1000
1001  // Otherwise create a new SDValue and remember it.
1002  SDValue Val = getValueImpl(V);
1003  NodeMap[V] = Val;
1004  resolveDanglingDebugInfo(V, Val);
1005  return Val;
1006}
1007
1008/// getNonRegisterValue - Return an SDValue for the given Value, but
1009/// don't look in FuncInfo.ValueMap for a virtual register.
1010SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1011  // If we already have an SDValue for this value, use it.
1012  SDValue &N = NodeMap[V];
1013  if (N.getNode()) return N;
1014
1015  // Otherwise create a new SDValue and remember it.
1016  SDValue Val = getValueImpl(V);
1017  NodeMap[V] = Val;
1018  resolveDanglingDebugInfo(V, Val);
1019  return Val;
1020}
1021
1022/// getValueImpl - Helper function for getValue and getNonRegisterValue.
1023/// Create an SDValue for the given value.
1024SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1025  if (const Constant *C = dyn_cast<Constant>(V)) {
1026    EVT VT = TLI.getValueType(V->getType(), true);
1027
1028    if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1029      return DAG.getConstant(*CI, VT);
1030
1031    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1032      return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT);
1033
1034    if (isa<ConstantPointerNull>(C))
1035      return DAG.getConstant(0, TLI.getPointerTy());
1036
1037    if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1038      return DAG.getConstantFP(*CFP, VT);
1039
1040    if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1041      return DAG.getUNDEF(VT);
1042
1043    if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1044      visit(CE->getOpcode(), *CE);
1045      SDValue N1 = NodeMap[V];
1046      assert(N1.getNode() && "visit didn't populate the NodeMap!");
1047      return N1;
1048    }
1049
1050    if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1051      SmallVector<SDValue, 4> Constants;
1052      for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1053           OI != OE; ++OI) {
1054        SDNode *Val = getValue(*OI).getNode();
1055        // If the operand is an empty aggregate, there are no values.
1056        if (!Val) continue;
1057        // Add each leaf value from the operand to the Constants list
1058        // to form a flattened list of all the values.
1059        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1060          Constants.push_back(SDValue(Val, i));
1061      }
1062
1063      return DAG.getMergeValues(&Constants[0], Constants.size(),
1064                                getCurDebugLoc());
1065    }
1066
1067    if (const ConstantDataSequential *CDS =
1068          dyn_cast<ConstantDataSequential>(C)) {
1069      SmallVector<SDValue, 4> Ops;
1070      for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1071        SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1072        // Add each leaf value from the operand to the Constants list
1073        // to form a flattened list of all the values.
1074        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1075          Ops.push_back(SDValue(Val, i));
1076      }
1077
1078      if (isa<ArrayType>(CDS->getType()))
1079        return DAG.getMergeValues(&Ops[0], Ops.size(), getCurDebugLoc());
1080      return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
1081                                      VT, &Ops[0], Ops.size());
1082    }
1083
1084    if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1085      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1086             "Unknown struct or array constant!");
1087
1088      SmallVector<EVT, 4> ValueVTs;
1089      ComputeValueVTs(TLI, C->getType(), ValueVTs);
1090      unsigned NumElts = ValueVTs.size();
1091      if (NumElts == 0)
1092        return SDValue(); // empty struct
1093      SmallVector<SDValue, 4> Constants(NumElts);
1094      for (unsigned i = 0; i != NumElts; ++i) {
1095        EVT EltVT = ValueVTs[i];
1096        if (isa<UndefValue>(C))
1097          Constants[i] = DAG.getUNDEF(EltVT);
1098        else if (EltVT.isFloatingPoint())
1099          Constants[i] = DAG.getConstantFP(0, EltVT);
1100        else
1101          Constants[i] = DAG.getConstant(0, EltVT);
1102      }
1103
1104      return DAG.getMergeValues(&Constants[0], NumElts,
1105                                getCurDebugLoc());
1106    }
1107
1108    if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1109      return DAG.getBlockAddress(BA, VT);
1110
1111    VectorType *VecTy = cast<VectorType>(V->getType());
1112    unsigned NumElements = VecTy->getNumElements();
1113
1114    // Now that we know the number and type of the elements, get that number of
1115    // elements into the Ops array based on what kind of constant it is.
1116    SmallVector<SDValue, 16> Ops;
1117    if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1118      for (unsigned i = 0; i != NumElements; ++i)
1119        Ops.push_back(getValue(CV->getOperand(i)));
1120    } else {
1121      assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1122      EVT EltVT = TLI.getValueType(VecTy->getElementType());
1123
1124      SDValue Op;
1125      if (EltVT.isFloatingPoint())
1126        Op = DAG.getConstantFP(0, EltVT);
1127      else
1128        Op = DAG.getConstant(0, EltVT);
1129      Ops.assign(NumElements, Op);
1130    }
1131
1132    // Create a BUILD_VECTOR node.
1133    return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
1134                                    VT, &Ops[0], Ops.size());
1135  }
1136
1137  // If this is a static alloca, generate it as the frameindex instead of
1138  // computation.
1139  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1140    DenseMap<const AllocaInst*, int>::iterator SI =
1141      FuncInfo.StaticAllocaMap.find(AI);
1142    if (SI != FuncInfo.StaticAllocaMap.end())
1143      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
1144  }
1145
1146  // If this is an instruction which fast-isel has deferred, select it now.
1147  if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1148    unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1149    RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType());
1150    SDValue Chain = DAG.getEntryNode();
1151    return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL);
1152  }
1153
1154  llvm_unreachable("Can't get register for value!");
1155}
1156
1157void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1158  SDValue Chain = getControlRoot();
1159  SmallVector<ISD::OutputArg, 8> Outs;
1160  SmallVector<SDValue, 8> OutVals;
1161
1162  if (!FuncInfo.CanLowerReturn) {
1163    unsigned DemoteReg = FuncInfo.DemoteRegister;
1164    const Function *F = I.getParent()->getParent();
1165
1166    // Emit a store of the return value through the virtual register.
1167    // Leave Outs empty so that LowerReturn won't try to load return
1168    // registers the usual way.
1169    SmallVector<EVT, 1> PtrValueVTs;
1170    ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
1171                    PtrValueVTs);
1172
1173    SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
1174    SDValue RetOp = getValue(I.getOperand(0));
1175
1176    SmallVector<EVT, 4> ValueVTs;
1177    SmallVector<uint64_t, 4> Offsets;
1178    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1179    unsigned NumValues = ValueVTs.size();
1180
1181    SmallVector<SDValue, 4> Chains(NumValues);
1182    for (unsigned i = 0; i != NumValues; ++i) {
1183      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(),
1184                                RetPtr.getValueType(), RetPtr,
1185                                DAG.getIntPtrConstant(Offsets[i]));
1186      Chains[i] =
1187        DAG.getStore(Chain, getCurDebugLoc(),
1188                     SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1189                     // FIXME: better loc info would be nice.
1190                     Add, MachinePointerInfo(), false, false, 0);
1191    }
1192
1193    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
1194                        MVT::Other, &Chains[0], NumValues);
1195  } else if (I.getNumOperands() != 0) {
1196    SmallVector<EVT, 4> ValueVTs;
1197    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
1198    unsigned NumValues = ValueVTs.size();
1199    if (NumValues) {
1200      SDValue RetOp = getValue(I.getOperand(0));
1201      for (unsigned j = 0, f = NumValues; j != f; ++j) {
1202        EVT VT = ValueVTs[j];
1203
1204        ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1205
1206        const Function *F = I.getParent()->getParent();
1207        if (F->paramHasAttr(0, Attribute::SExt))
1208          ExtendKind = ISD::SIGN_EXTEND;
1209        else if (F->paramHasAttr(0, Attribute::ZExt))
1210          ExtendKind = ISD::ZERO_EXTEND;
1211
1212        if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1213          VT = TLI.getTypeForExtArgOrReturn(*DAG.getContext(), VT, ExtendKind);
1214
1215        unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
1216        EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
1217        SmallVector<SDValue, 4> Parts(NumParts);
1218        getCopyToParts(DAG, getCurDebugLoc(),
1219                       SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1220                       &Parts[0], NumParts, PartVT, ExtendKind);
1221
1222        // 'inreg' on function refers to return value
1223        ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1224        if (F->paramHasAttr(0, Attribute::InReg))
1225          Flags.setInReg();
1226
1227        // Propagate extension type if any
1228        if (ExtendKind == ISD::SIGN_EXTEND)
1229          Flags.setSExt();
1230        else if (ExtendKind == ISD::ZERO_EXTEND)
1231          Flags.setZExt();
1232
1233        for (unsigned i = 0; i < NumParts; ++i) {
1234          Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1235                                        /*isfixed=*/true));
1236          OutVals.push_back(Parts[i]);
1237        }
1238      }
1239    }
1240  }
1241
1242  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1243  CallingConv::ID CallConv =
1244    DAG.getMachineFunction().getFunction()->getCallingConv();
1245  Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
1246                          Outs, OutVals, getCurDebugLoc(), DAG);
1247
1248  // Verify that the target's LowerReturn behaved as expected.
1249  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1250         "LowerReturn didn't return a valid chain!");
1251
1252  // Update the DAG with the new chain value resulting from return lowering.
1253  DAG.setRoot(Chain);
1254}
1255
1256/// CopyToExportRegsIfNeeded - If the given value has virtual registers
1257/// created for it, emit nodes to copy the value into the virtual
1258/// registers.
1259void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1260  // Skip empty types
1261  if (V->getType()->isEmptyTy())
1262    return;
1263
1264  DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1265  if (VMI != FuncInfo.ValueMap.end()) {
1266    assert(!V->use_empty() && "Unused value assigned virtual registers!");
1267    CopyValueToVirtualRegister(V, VMI->second);
1268  }
1269}
1270
1271/// ExportFromCurrentBlock - If this condition isn't known to be exported from
1272/// the current basic block, add it to ValueMap now so that we'll get a
1273/// CopyTo/FromReg.
1274void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1275  // No need to export constants.
1276  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1277
1278  // Already exported?
1279  if (FuncInfo.isExportedInst(V)) return;
1280
1281  unsigned Reg = FuncInfo.InitializeRegForValue(V);
1282  CopyValueToVirtualRegister(V, Reg);
1283}
1284
1285bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1286                                                     const BasicBlock *FromBB) {
1287  // The operands of the setcc have to be in this block.  We don't know
1288  // how to export them from some other block.
1289  if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1290    // Can export from current BB.
1291    if (VI->getParent() == FromBB)
1292      return true;
1293
1294    // Is already exported, noop.
1295    return FuncInfo.isExportedInst(V);
1296  }
1297
1298  // If this is an argument, we can export it if the BB is the entry block or
1299  // if it is already exported.
1300  if (isa<Argument>(V)) {
1301    if (FromBB == &FromBB->getParent()->getEntryBlock())
1302      return true;
1303
1304    // Otherwise, can only export this if it is already exported.
1305    return FuncInfo.isExportedInst(V);
1306  }
1307
1308  // Otherwise, constants can always be exported.
1309  return true;
1310}
1311
1312/// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1313uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src,
1314                                            const MachineBasicBlock *Dst) const {
1315  BranchProbabilityInfo *BPI = FuncInfo.BPI;
1316  if (!BPI)
1317    return 0;
1318  const BasicBlock *SrcBB = Src->getBasicBlock();
1319  const BasicBlock *DstBB = Dst->getBasicBlock();
1320  return BPI->getEdgeWeight(SrcBB, DstBB);
1321}
1322
1323void SelectionDAGBuilder::
1324addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst,
1325                       uint32_t Weight /* = 0 */) {
1326  if (!Weight)
1327    Weight = getEdgeWeight(Src, Dst);
1328  Src->addSuccessor(Dst, Weight);
1329}
1330
1331
1332static bool InBlock(const Value *V, const BasicBlock *BB) {
1333  if (const Instruction *I = dyn_cast<Instruction>(V))
1334    return I->getParent() == BB;
1335  return true;
1336}
1337
1338/// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1339/// This function emits a branch and is used at the leaves of an OR or an
1340/// AND operator tree.
1341///
1342void
1343SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1344                                                  MachineBasicBlock *TBB,
1345                                                  MachineBasicBlock *FBB,
1346                                                  MachineBasicBlock *CurBB,
1347                                                  MachineBasicBlock *SwitchBB) {
1348  const BasicBlock *BB = CurBB->getBasicBlock();
1349
1350  // If the leaf of the tree is a comparison, merge the condition into
1351  // the caseblock.
1352  if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1353    // The operands of the cmp have to be in this block.  We don't know
1354    // how to export them from some other block.  If this is the first block
1355    // of the sequence, no exporting is needed.
1356    if (CurBB == SwitchBB ||
1357        (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1358         isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1359      ISD::CondCode Condition;
1360      if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1361        Condition = getICmpCondCode(IC->getPredicate());
1362      } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1363        Condition = getFCmpCondCode(FC->getPredicate());
1364        if (TM.Options.NoNaNsFPMath)
1365          Condition = getFCmpCodeWithoutNaN(Condition);
1366      } else {
1367        Condition = ISD::SETEQ; // silence warning.
1368        llvm_unreachable("Unknown compare instruction");
1369      }
1370
1371      CaseBlock CB(Condition, BOp->getOperand(0),
1372                   BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1373      SwitchCases.push_back(CB);
1374      return;
1375    }
1376  }
1377
1378  // Create a CaseBlock record representing this branch.
1379  CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1380               NULL, TBB, FBB, CurBB);
1381  SwitchCases.push_back(CB);
1382}
1383
1384/// FindMergedConditions - If Cond is an expression like
1385void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1386                                               MachineBasicBlock *TBB,
1387                                               MachineBasicBlock *FBB,
1388                                               MachineBasicBlock *CurBB,
1389                                               MachineBasicBlock *SwitchBB,
1390                                               unsigned Opc) {
1391  // If this node is not part of the or/and tree, emit it as a branch.
1392  const Instruction *BOp = dyn_cast<Instruction>(Cond);
1393  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1394      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1395      BOp->getParent() != CurBB->getBasicBlock() ||
1396      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1397      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1398    EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB);
1399    return;
1400  }
1401
1402  //  Create TmpBB after CurBB.
1403  MachineFunction::iterator BBI = CurBB;
1404  MachineFunction &MF = DAG.getMachineFunction();
1405  MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1406  CurBB->getParent()->insert(++BBI, TmpBB);
1407
1408  if (Opc == Instruction::Or) {
1409    // Codegen X | Y as:
1410    //   jmp_if_X TBB
1411    //   jmp TmpBB
1412    // TmpBB:
1413    //   jmp_if_Y TBB
1414    //   jmp FBB
1415    //
1416
1417    // Emit the LHS condition.
1418    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc);
1419
1420    // Emit the RHS condition into TmpBB.
1421    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1422  } else {
1423    assert(Opc == Instruction::And && "Unknown merge op!");
1424    // Codegen X & Y as:
1425    //   jmp_if_X TmpBB
1426    //   jmp FBB
1427    // TmpBB:
1428    //   jmp_if_Y TBB
1429    //   jmp FBB
1430    //
1431    //  This requires creation of TmpBB after CurBB.
1432
1433    // Emit the LHS condition.
1434    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc);
1435
1436    // Emit the RHS condition into TmpBB.
1437    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1438  }
1439}
1440
1441/// If the set of cases should be emitted as a series of branches, return true.
1442/// If we should emit this as a bunch of and/or'd together conditions, return
1443/// false.
1444bool
1445SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
1446  if (Cases.size() != 2) return true;
1447
1448  // If this is two comparisons of the same values or'd or and'd together, they
1449  // will get folded into a single comparison, so don't emit two blocks.
1450  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1451       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1452      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1453       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1454    return false;
1455  }
1456
1457  // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1458  // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1459  if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1460      Cases[0].CC == Cases[1].CC &&
1461      isa<Constant>(Cases[0].CmpRHS) &&
1462      cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1463    if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1464      return false;
1465    if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1466      return false;
1467  }
1468
1469  return true;
1470}
1471
1472void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1473  MachineBasicBlock *BrMBB = FuncInfo.MBB;
1474
1475  // Update machine-CFG edges.
1476  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1477
1478  // Figure out which block is immediately after the current one.
1479  MachineBasicBlock *NextBlock = 0;
1480  MachineFunction::iterator BBI = BrMBB;
1481  if (++BBI != FuncInfo.MF->end())
1482    NextBlock = BBI;
1483
1484  if (I.isUnconditional()) {
1485    // Update machine-CFG edges.
1486    BrMBB->addSuccessor(Succ0MBB);
1487
1488    // If this is not a fall-through branch, emit the branch.
1489    if (Succ0MBB != NextBlock)
1490      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1491                              MVT::Other, getControlRoot(),
1492                              DAG.getBasicBlock(Succ0MBB)));
1493
1494    return;
1495  }
1496
1497  // If this condition is one of the special cases we handle, do special stuff
1498  // now.
1499  const Value *CondVal = I.getCondition();
1500  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1501
1502  // If this is a series of conditions that are or'd or and'd together, emit
1503  // this as a sequence of branches instead of setcc's with and/or operations.
1504  // As long as jumps are not expensive, this should improve performance.
1505  // For example, instead of something like:
1506  //     cmp A, B
1507  //     C = seteq
1508  //     cmp D, E
1509  //     F = setle
1510  //     or C, F
1511  //     jnz foo
1512  // Emit:
1513  //     cmp A, B
1514  //     je foo
1515  //     cmp D, E
1516  //     jle foo
1517  //
1518  if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1519    if (!TLI.isJumpExpensive() &&
1520        BOp->hasOneUse() &&
1521        (BOp->getOpcode() == Instruction::And ||
1522         BOp->getOpcode() == Instruction::Or)) {
1523      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1524                           BOp->getOpcode());
1525      // If the compares in later blocks need to use values not currently
1526      // exported from this block, export them now.  This block should always
1527      // be the first entry.
1528      assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1529
1530      // Allow some cases to be rejected.
1531      if (ShouldEmitAsBranches(SwitchCases)) {
1532        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1533          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1534          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1535        }
1536
1537        // Emit the branch for this block.
1538        visitSwitchCase(SwitchCases[0], BrMBB);
1539        SwitchCases.erase(SwitchCases.begin());
1540        return;
1541      }
1542
1543      // Okay, we decided not to do this, remove any inserted MBB's and clear
1544      // SwitchCases.
1545      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1546        FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1547
1548      SwitchCases.clear();
1549    }
1550  }
1551
1552  // Create a CaseBlock record representing this branch.
1553  CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1554               NULL, Succ0MBB, Succ1MBB, BrMBB);
1555
1556  // Use visitSwitchCase to actually insert the fast branch sequence for this
1557  // cond branch.
1558  visitSwitchCase(CB, BrMBB);
1559}
1560
1561/// visitSwitchCase - Emits the necessary code to represent a single node in
1562/// the binary search tree resulting from lowering a switch instruction.
1563void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1564                                          MachineBasicBlock *SwitchBB) {
1565  SDValue Cond;
1566  SDValue CondLHS = getValue(CB.CmpLHS);
1567  DebugLoc dl = getCurDebugLoc();
1568
1569  // Build the setcc now.
1570  if (CB.CmpMHS == NULL) {
1571    // Fold "(X == true)" to X and "(X == false)" to !X to
1572    // handle common cases produced by branch lowering.
1573    if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1574        CB.CC == ISD::SETEQ)
1575      Cond = CondLHS;
1576    else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1577             CB.CC == ISD::SETEQ) {
1578      SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1579      Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1580    } else
1581      Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1582  } else {
1583    assert(CB.CC == ISD::SETCC_INVALID &&
1584           "Condition is undefined for to-the-range belonging check.");
1585
1586    const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1587    const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
1588
1589    SDValue CmpOp = getValue(CB.CmpMHS);
1590    EVT VT = CmpOp.getValueType();
1591
1592    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(false)) {
1593      Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1594                          ISD::SETULE);
1595    } else {
1596      SDValue SUB = DAG.getNode(ISD::SUB, dl,
1597                                VT, CmpOp, DAG.getConstant(Low, VT));
1598      Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1599                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1600    }
1601  }
1602
1603  // Update successor info
1604  addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight);
1605  // TrueBB and FalseBB are always different unless the incoming IR is
1606  // degenerate. This only happens when running llc on weird IR.
1607  if (CB.TrueBB != CB.FalseBB)
1608    addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight);
1609
1610  // Set NextBlock to be the MBB immediately after the current one, if any.
1611  // This is used to avoid emitting unnecessary branches to the next block.
1612  MachineBasicBlock *NextBlock = 0;
1613  MachineFunction::iterator BBI = SwitchBB;
1614  if (++BBI != FuncInfo.MF->end())
1615    NextBlock = BBI;
1616
1617  // If the lhs block is the next block, invert the condition so that we can
1618  // fall through to the lhs instead of the rhs block.
1619  if (CB.TrueBB == NextBlock) {
1620    std::swap(CB.TrueBB, CB.FalseBB);
1621    SDValue True = DAG.getConstant(1, Cond.getValueType());
1622    Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1623  }
1624
1625  SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1626                               MVT::Other, getControlRoot(), Cond,
1627                               DAG.getBasicBlock(CB.TrueBB));
1628
1629  // Insert the false branch. Do this even if it's a fall through branch,
1630  // this makes it easier to do DAG optimizations which require inverting
1631  // the branch condition.
1632  BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1633                       DAG.getBasicBlock(CB.FalseBB));
1634
1635  DAG.setRoot(BrCond);
1636}
1637
1638/// visitJumpTable - Emit JumpTable node in the current MBB
1639void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1640  // Emit the code for the jump table
1641  assert(JT.Reg != -1U && "Should lower JT Header first!");
1642  EVT PTy = TLI.getPointerTy();
1643  SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1644                                     JT.Reg, PTy);
1645  SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1646  SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(),
1647                                    MVT::Other, Index.getValue(1),
1648                                    Table, Index);
1649  DAG.setRoot(BrJumpTable);
1650}
1651
1652/// visitJumpTableHeader - This function emits necessary code to produce index
1653/// in the JumpTable from switch case.
1654void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1655                                               JumpTableHeader &JTH,
1656                                               MachineBasicBlock *SwitchBB) {
1657  // Subtract the lowest switch case value from the value being switched on and
1658  // conditional branch to default mbb if the result is greater than the
1659  // difference between smallest and largest cases.
1660  SDValue SwitchOp = getValue(JTH.SValue);
1661  EVT VT = SwitchOp.getValueType();
1662  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1663                            DAG.getConstant(JTH.First, VT));
1664
1665  // The SDNode we just created, which holds the value being switched on minus
1666  // the smallest case value, needs to be copied to a virtual register so it
1667  // can be used as an index into the jump table in a subsequent basic block.
1668  // This value may be smaller or larger than the target's pointer type, and
1669  // therefore require extension or truncating.
1670  SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy());
1671
1672  unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy());
1673  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1674                                    JumpTableReg, SwitchOp);
1675  JT.Reg = JumpTableReg;
1676
1677  // Emit the range check for the jump table, and branch to the default block
1678  // for the switch statement if the value being switched on exceeds the largest
1679  // case in the switch.
1680  SDValue CMP = DAG.getSetCC(getCurDebugLoc(),
1681                             TLI.getSetCCResultType(Sub.getValueType()), Sub,
1682                             DAG.getConstant(JTH.Last-JTH.First,VT),
1683                             ISD::SETUGT);
1684
1685  // Set NextBlock to be the MBB immediately after the current one, if any.
1686  // This is used to avoid emitting unnecessary branches to the next block.
1687  MachineBasicBlock *NextBlock = 0;
1688  MachineFunction::iterator BBI = SwitchBB;
1689
1690  if (++BBI != FuncInfo.MF->end())
1691    NextBlock = BBI;
1692
1693  SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1694                               MVT::Other, CopyTo, CMP,
1695                               DAG.getBasicBlock(JT.Default));
1696
1697  if (JT.MBB != NextBlock)
1698    BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond,
1699                         DAG.getBasicBlock(JT.MBB));
1700
1701  DAG.setRoot(BrCond);
1702}
1703
1704/// visitBitTestHeader - This function emits necessary code to produce value
1705/// suitable for "bit tests"
1706void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1707                                             MachineBasicBlock *SwitchBB) {
1708  // Subtract the minimum value
1709  SDValue SwitchOp = getValue(B.SValue);
1710  EVT VT = SwitchOp.getValueType();
1711  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1712                            DAG.getConstant(B.First, VT));
1713
1714  // Check range
1715  SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(),
1716                                  TLI.getSetCCResultType(Sub.getValueType()),
1717                                  Sub, DAG.getConstant(B.Range, VT),
1718                                  ISD::SETUGT);
1719
1720  // Determine the type of the test operands.
1721  bool UsePtrType = false;
1722  if (!TLI.isTypeLegal(VT))
1723    UsePtrType = true;
1724  else {
1725    for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
1726      if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
1727        // Switch table case range are encoded into series of masks.
1728        // Just use pointer type, it's guaranteed to fit.
1729        UsePtrType = true;
1730        break;
1731      }
1732  }
1733  if (UsePtrType) {
1734    VT = TLI.getPointerTy();
1735    Sub = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), VT);
1736  }
1737
1738  B.RegVT = VT;
1739  B.Reg = FuncInfo.CreateReg(VT);
1740  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1741                                    B.Reg, Sub);
1742
1743  // Set NextBlock to be the MBB immediately after the current one, if any.
1744  // This is used to avoid emitting unnecessary branches to the next block.
1745  MachineBasicBlock *NextBlock = 0;
1746  MachineFunction::iterator BBI = SwitchBB;
1747  if (++BBI != FuncInfo.MF->end())
1748    NextBlock = BBI;
1749
1750  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1751
1752  addSuccessorWithWeight(SwitchBB, B.Default);
1753  addSuccessorWithWeight(SwitchBB, MBB);
1754
1755  SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1756                                MVT::Other, CopyTo, RangeCmp,
1757                                DAG.getBasicBlock(B.Default));
1758
1759  if (MBB != NextBlock)
1760    BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo,
1761                          DAG.getBasicBlock(MBB));
1762
1763  DAG.setRoot(BrRange);
1764}
1765
1766/// visitBitTestCase - this function produces one "bit test"
1767void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
1768                                           MachineBasicBlock* NextMBB,
1769                                           uint32_t BranchWeightToNext,
1770                                           unsigned Reg,
1771                                           BitTestCase &B,
1772                                           MachineBasicBlock *SwitchBB) {
1773  EVT VT = BB.RegVT;
1774  SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1775                                       Reg, VT);
1776  SDValue Cmp;
1777  unsigned PopCount = CountPopulation_64(B.Mask);
1778  if (PopCount == 1) {
1779    // Testing for a single bit; just compare the shift count with what it
1780    // would need to be to shift a 1 bit in that position.
1781    Cmp = DAG.getSetCC(getCurDebugLoc(),
1782                       TLI.getSetCCResultType(VT),
1783                       ShiftOp,
1784                       DAG.getConstant(CountTrailingZeros_64(B.Mask), VT),
1785                       ISD::SETEQ);
1786  } else if (PopCount == BB.Range) {
1787    // There is only one zero bit in the range, test for it directly.
1788    Cmp = DAG.getSetCC(getCurDebugLoc(),
1789                       TLI.getSetCCResultType(VT),
1790                       ShiftOp,
1791                       DAG.getConstant(CountTrailingOnes_64(B.Mask), VT),
1792                       ISD::SETNE);
1793  } else {
1794    // Make desired shift
1795    SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), VT,
1796                                    DAG.getConstant(1, VT), ShiftOp);
1797
1798    // Emit bit tests and jumps
1799    SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(),
1800                                VT, SwitchVal, DAG.getConstant(B.Mask, VT));
1801    Cmp = DAG.getSetCC(getCurDebugLoc(),
1802                       TLI.getSetCCResultType(VT),
1803                       AndOp, DAG.getConstant(0, VT),
1804                       ISD::SETNE);
1805  }
1806
1807  // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight.
1808  addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight);
1809  // The branch weight from SwitchBB to NextMBB is BranchWeightToNext.
1810  addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext);
1811
1812  SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1813                              MVT::Other, getControlRoot(),
1814                              Cmp, DAG.getBasicBlock(B.TargetBB));
1815
1816  // Set NextBlock to be the MBB immediately after the current one, if any.
1817  // This is used to avoid emitting unnecessary branches to the next block.
1818  MachineBasicBlock *NextBlock = 0;
1819  MachineFunction::iterator BBI = SwitchBB;
1820  if (++BBI != FuncInfo.MF->end())
1821    NextBlock = BBI;
1822
1823  if (NextMBB != NextBlock)
1824    BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd,
1825                        DAG.getBasicBlock(NextMBB));
1826
1827  DAG.setRoot(BrAnd);
1828}
1829
1830void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1831  MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
1832
1833  // Retrieve successors.
1834  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1835  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1836
1837  const Value *Callee(I.getCalledValue());
1838  const Function *Fn = dyn_cast<Function>(Callee);
1839  if (isa<InlineAsm>(Callee))
1840    visitInlineAsm(&I);
1841  else if (Fn && Fn->isIntrinsic()) {
1842    assert(Fn->getIntrinsicID() == Intrinsic::donothing);
1843    // Ignore invokes to @llvm.donothing: jump directly to the next BB.
1844  } else
1845    LowerCallTo(&I, getValue(Callee), false, LandingPad);
1846
1847  // If the value of the invoke is used outside of its defining block, make it
1848  // available as a virtual register.
1849  CopyToExportRegsIfNeeded(&I);
1850
1851  // Update successor info
1852  addSuccessorWithWeight(InvokeMBB, Return);
1853  addSuccessorWithWeight(InvokeMBB, LandingPad);
1854
1855  // Drop into normal successor.
1856  DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1857                          MVT::Other, getControlRoot(),
1858                          DAG.getBasicBlock(Return)));
1859}
1860
1861void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
1862  llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
1863}
1864
1865void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
1866  assert(FuncInfo.MBB->isLandingPad() &&
1867         "Call to landingpad not in landing pad!");
1868
1869  MachineBasicBlock *MBB = FuncInfo.MBB;
1870  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
1871  AddLandingPadInfo(LP, MMI, MBB);
1872
1873  // If there aren't registers to copy the values into (e.g., during SjLj
1874  // exceptions), then don't bother to create these DAG nodes.
1875  if (TLI.getExceptionPointerRegister() == 0 &&
1876      TLI.getExceptionSelectorRegister() == 0)
1877    return;
1878
1879  SmallVector<EVT, 2> ValueVTs;
1880  ComputeValueVTs(TLI, LP.getType(), ValueVTs);
1881
1882  // Insert the EXCEPTIONADDR instruction.
1883  assert(FuncInfo.MBB->isLandingPad() &&
1884         "Call to eh.exception not in landing pad!");
1885  SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
1886  SDValue Ops[2];
1887  Ops[0] = DAG.getRoot();
1888  SDValue Op1 = DAG.getNode(ISD::EXCEPTIONADDR, getCurDebugLoc(), VTs, Ops, 1);
1889  SDValue Chain = Op1.getValue(1);
1890
1891  // Insert the EHSELECTION instruction.
1892  VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
1893  Ops[0] = Op1;
1894  Ops[1] = Chain;
1895  SDValue Op2 = DAG.getNode(ISD::EHSELECTION, getCurDebugLoc(), VTs, Ops, 2);
1896  Chain = Op2.getValue(1);
1897  Op2 = DAG.getSExtOrTrunc(Op2, getCurDebugLoc(), MVT::i32);
1898
1899  Ops[0] = Op1;
1900  Ops[1] = Op2;
1901  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
1902                            DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
1903                            &Ops[0], 2);
1904
1905  std::pair<SDValue, SDValue> RetPair = std::make_pair(Res, Chain);
1906  setValue(&LP, RetPair.first);
1907  DAG.setRoot(RetPair.second);
1908}
1909
1910/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1911/// small case ranges).
1912bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
1913                                                 CaseRecVector& WorkList,
1914                                                 const Value* SV,
1915                                                 MachineBasicBlock *Default,
1916                                                 MachineBasicBlock *SwitchBB) {
1917  // Size is the number of Cases represented by this range.
1918  size_t Size = CR.Range.second - CR.Range.first;
1919  if (Size > 3)
1920    return false;
1921
1922  // Get the MachineFunction which holds the current MBB.  This is used when
1923  // inserting any additional MBBs necessary to represent the switch.
1924  MachineFunction *CurMF = FuncInfo.MF;
1925
1926  // Figure out which block is immediately after the current one.
1927  MachineBasicBlock *NextBlock = 0;
1928  MachineFunction::iterator BBI = CR.CaseBB;
1929
1930  if (++BBI != FuncInfo.MF->end())
1931    NextBlock = BBI;
1932
1933  BranchProbabilityInfo *BPI = FuncInfo.BPI;
1934  // If any two of the cases has the same destination, and if one value
1935  // is the same as the other, but has one bit unset that the other has set,
1936  // use bit manipulation to do two compares at once.  For example:
1937  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1938  // TODO: This could be extended to merge any 2 cases in switches with 3 cases.
1939  // TODO: Handle cases where CR.CaseBB != SwitchBB.
1940  if (Size == 2 && CR.CaseBB == SwitchBB) {
1941    Case &Small = *CR.Range.first;
1942    Case &Big = *(CR.Range.second-1);
1943
1944    if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) {
1945      const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue();
1946      const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue();
1947
1948      // Check that there is only one bit different.
1949      if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 &&
1950          (SmallValue | BigValue) == BigValue) {
1951        // Isolate the common bit.
1952        APInt CommonBit = BigValue & ~SmallValue;
1953        assert((SmallValue | CommonBit) == BigValue &&
1954               CommonBit.countPopulation() == 1 && "Not a common bit?");
1955
1956        SDValue CondLHS = getValue(SV);
1957        EVT VT = CondLHS.getValueType();
1958        DebugLoc DL = getCurDebugLoc();
1959
1960        SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
1961                                 DAG.getConstant(CommonBit, VT));
1962        SDValue Cond = DAG.getSetCC(DL, MVT::i1,
1963                                    Or, DAG.getConstant(BigValue, VT),
1964                                    ISD::SETEQ);
1965
1966        // Update successor info.
1967        // Both Small and Big will jump to Small.BB, so we sum up the weights.
1968        addSuccessorWithWeight(SwitchBB, Small.BB,
1969                               Small.ExtraWeight + Big.ExtraWeight);
1970        addSuccessorWithWeight(SwitchBB, Default,
1971          // The default destination is the first successor in IR.
1972          BPI ? BPI->getEdgeWeight(SwitchBB->getBasicBlock(), (unsigned)0) : 0);
1973
1974        // Insert the true branch.
1975        SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other,
1976                                     getControlRoot(), Cond,
1977                                     DAG.getBasicBlock(Small.BB));
1978
1979        // Insert the false branch.
1980        BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
1981                             DAG.getBasicBlock(Default));
1982
1983        DAG.setRoot(BrCond);
1984        return true;
1985      }
1986    }
1987  }
1988
1989  // Order cases by weight so the most likely case will be checked first.
1990  uint32_t UnhandledWeights = 0;
1991  if (BPI) {
1992    for (CaseItr I = CR.Range.first, IE = CR.Range.second; I != IE; ++I) {
1993      uint32_t IWeight = I->ExtraWeight;
1994      UnhandledWeights += IWeight;
1995      for (CaseItr J = CR.Range.first; J < I; ++J) {
1996        uint32_t JWeight = J->ExtraWeight;
1997        if (IWeight > JWeight)
1998          std::swap(*I, *J);
1999      }
2000    }
2001  }
2002  // Rearrange the case blocks so that the last one falls through if possible.
2003  Case &BackCase = *(CR.Range.second-1);
2004  if (Size > 1 &&
2005      NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
2006    // The last case block won't fall through into 'NextBlock' if we emit the
2007    // branches in this order.  See if rearranging a case value would help.
2008    // We start at the bottom as it's the case with the least weight.
2009    for (Case *I = &*(CR.Range.second-2), *E = &*CR.Range.first-1; I != E; --I){
2010      if (I->BB == NextBlock) {
2011        std::swap(*I, BackCase);
2012        break;
2013      }
2014    }
2015  }
2016
2017  // Create a CaseBlock record representing a conditional branch to
2018  // the Case's target mbb if the value being switched on SV is equal
2019  // to C.
2020  MachineBasicBlock *CurBlock = CR.CaseBB;
2021  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
2022    MachineBasicBlock *FallThrough;
2023    if (I != E-1) {
2024      FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
2025      CurMF->insert(BBI, FallThrough);
2026
2027      // Put SV in a virtual register to make it available from the new blocks.
2028      ExportFromCurrentBlock(SV);
2029    } else {
2030      // If the last case doesn't match, go to the default block.
2031      FallThrough = Default;
2032    }
2033
2034    const Value *RHS, *LHS, *MHS;
2035    ISD::CondCode CC;
2036    if (I->High == I->Low) {
2037      // This is just small small case range :) containing exactly 1 case
2038      CC = ISD::SETEQ;
2039      LHS = SV; RHS = I->High; MHS = NULL;
2040    } else {
2041      CC = ISD::SETCC_INVALID;
2042      LHS = I->Low; MHS = SV; RHS = I->High;
2043    }
2044
2045    // The false weight should be sum of all un-handled cases.
2046    UnhandledWeights -= I->ExtraWeight;
2047    CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough,
2048                 /* me */ CurBlock,
2049                 /* trueweight */ I->ExtraWeight,
2050                 /* falseweight */ UnhandledWeights);
2051
2052    // If emitting the first comparison, just call visitSwitchCase to emit the
2053    // code into the current block.  Otherwise, push the CaseBlock onto the
2054    // vector to be later processed by SDISel, and insert the node's MBB
2055    // before the next MBB.
2056    if (CurBlock == SwitchBB)
2057      visitSwitchCase(CB, SwitchBB);
2058    else
2059      SwitchCases.push_back(CB);
2060
2061    CurBlock = FallThrough;
2062  }
2063
2064  return true;
2065}
2066
2067static inline bool areJTsAllowed(const TargetLowering &TLI) {
2068  return TLI.supportJumpTables() &&
2069          (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
2070           TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
2071}
2072
2073static APInt ComputeRange(const APInt &First, const APInt &Last) {
2074  uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
2075  APInt LastExt = Last.zext(BitWidth), FirstExt = First.zext(BitWidth);
2076  return (LastExt - FirstExt + 1ULL);
2077}
2078
2079/// handleJTSwitchCase - Emit jumptable for current switch case range
2080bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR,
2081                                             CaseRecVector &WorkList,
2082                                             const Value *SV,
2083                                             MachineBasicBlock *Default,
2084                                             MachineBasicBlock *SwitchBB) {
2085  Case& FrontCase = *CR.Range.first;
2086  Case& BackCase  = *(CR.Range.second-1);
2087
2088  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2089  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2090
2091  APInt TSize(First.getBitWidth(), 0);
2092  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I)
2093    TSize += I->size();
2094
2095  if (!areJTsAllowed(TLI) || TSize.ult(4))
2096    return false;
2097
2098  APInt Range = ComputeRange(First, Last);
2099  // The density is TSize / Range. Require at least 40%.
2100  // It should not be possible for IntTSize to saturate for sane code, but make
2101  // sure we handle Range saturation correctly.
2102  uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10);
2103  uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10);
2104  if (IntTSize * 10 < IntRange * 4)
2105    return false;
2106
2107  DEBUG(dbgs() << "Lowering jump table\n"
2108               << "First entry: " << First << ". Last entry: " << Last << '\n'
2109               << "Range: " << Range << ". Size: " << TSize << ".\n\n");
2110
2111  // Get the MachineFunction which holds the current MBB.  This is used when
2112  // inserting any additional MBBs necessary to represent the switch.
2113  MachineFunction *CurMF = FuncInfo.MF;
2114
2115  // Figure out which block is immediately after the current one.
2116  MachineFunction::iterator BBI = CR.CaseBB;
2117  ++BBI;
2118
2119  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2120
2121  // Create a new basic block to hold the code for loading the address
2122  // of the jump table, and jumping to it.  Update successor information;
2123  // we will either branch to the default case for the switch, or the jump
2124  // table.
2125  MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2126  CurMF->insert(BBI, JumpTableBB);
2127
2128  addSuccessorWithWeight(CR.CaseBB, Default);
2129  addSuccessorWithWeight(CR.CaseBB, JumpTableBB);
2130
2131  // Build a vector of destination BBs, corresponding to each target
2132  // of the jump table. If the value of the jump table slot corresponds to
2133  // a case statement, push the case's BB onto the vector, otherwise, push
2134  // the default BB.
2135  std::vector<MachineBasicBlock*> DestBBs;
2136  APInt TEI = First;
2137  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
2138    const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
2139    const APInt &High = cast<ConstantInt>(I->High)->getValue();
2140
2141    if (Low.ule(TEI) && TEI.ule(High)) {
2142      DestBBs.push_back(I->BB);
2143      if (TEI==High)
2144        ++I;
2145    } else {
2146      DestBBs.push_back(Default);
2147    }
2148  }
2149
2150  // Calculate weight for each unique destination in CR.
2151  DenseMap<MachineBasicBlock*, uint32_t> DestWeights;
2152  if (FuncInfo.BPI)
2153    for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
2154      DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr =
2155          DestWeights.find(I->BB);
2156      if (Itr != DestWeights.end())
2157        Itr->second += I->ExtraWeight;
2158      else
2159        DestWeights[I->BB] = I->ExtraWeight;
2160    }
2161
2162  // Update successor info. Add one edge to each unique successor.
2163  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
2164  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
2165         E = DestBBs.end(); I != E; ++I) {
2166    if (!SuccsHandled[(*I)->getNumber()]) {
2167      SuccsHandled[(*I)->getNumber()] = true;
2168      DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr =
2169          DestWeights.find(*I);
2170      addSuccessorWithWeight(JumpTableBB, *I,
2171                             Itr != DestWeights.end() ? Itr->second : 0);
2172    }
2173  }
2174
2175  // Create a jump table index for this jump table.
2176  unsigned JTEncoding = TLI.getJumpTableEncoding();
2177  unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
2178                       ->createJumpTableIndex(DestBBs);
2179
2180  // Set the jump table information so that we can codegen it as a second
2181  // MachineBasicBlock
2182  JumpTable JT(-1U, JTI, JumpTableBB, Default);
2183  JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
2184  if (CR.CaseBB == SwitchBB)
2185    visitJumpTableHeader(JT, JTH, SwitchBB);
2186
2187  JTCases.push_back(JumpTableBlock(JTH, JT));
2188  return true;
2189}
2190
2191/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
2192/// 2 subtrees.
2193bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
2194                                                  CaseRecVector& WorkList,
2195                                                  const Value* SV,
2196                                                  MachineBasicBlock *Default,
2197                                                  MachineBasicBlock *SwitchBB) {
2198  // Get the MachineFunction which holds the current MBB.  This is used when
2199  // inserting any additional MBBs necessary to represent the switch.
2200  MachineFunction *CurMF = FuncInfo.MF;
2201
2202  // Figure out which block is immediately after the current one.
2203  MachineFunction::iterator BBI = CR.CaseBB;
2204  ++BBI;
2205
2206  Case& FrontCase = *CR.Range.first;
2207  Case& BackCase  = *(CR.Range.second-1);
2208  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2209
2210  // Size is the number of Cases represented by this range.
2211  unsigned Size = CR.Range.second - CR.Range.first;
2212
2213  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2214  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2215  double FMetric = 0;
2216  CaseItr Pivot = CR.Range.first + Size/2;
2217
2218  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
2219  // (heuristically) allow us to emit JumpTable's later.
2220  APInt TSize(First.getBitWidth(), 0);
2221  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2222       I!=E; ++I)
2223    TSize += I->size();
2224
2225  APInt LSize = FrontCase.size();
2226  APInt RSize = TSize-LSize;
2227  DEBUG(dbgs() << "Selecting best pivot: \n"
2228               << "First: " << First << ", Last: " << Last <<'\n'
2229               << "LSize: " << LSize << ", RSize: " << RSize << '\n');
2230  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
2231       J!=E; ++I, ++J) {
2232    const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
2233    const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
2234    APInt Range = ComputeRange(LEnd, RBegin);
2235    assert((Range - 2ULL).isNonNegative() &&
2236           "Invalid case distance");
2237    // Use volatile double here to avoid excess precision issues on some hosts,
2238    // e.g. that use 80-bit X87 registers.
2239    volatile double LDensity =
2240       (double)LSize.roundToDouble() /
2241                           (LEnd - First + 1ULL).roundToDouble();
2242    volatile double RDensity =
2243      (double)RSize.roundToDouble() /
2244                           (Last - RBegin + 1ULL).roundToDouble();
2245    double Metric = Range.logBase2()*(LDensity+RDensity);
2246    // Should always split in some non-trivial place
2247    DEBUG(dbgs() <<"=>Step\n"
2248                 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
2249                 << "LDensity: " << LDensity
2250                 << ", RDensity: " << RDensity << '\n'
2251                 << "Metric: " << Metric << '\n');
2252    if (FMetric < Metric) {
2253      Pivot = J;
2254      FMetric = Metric;
2255      DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
2256    }
2257
2258    LSize += J->size();
2259    RSize -= J->size();
2260  }
2261  if (areJTsAllowed(TLI)) {
2262    // If our case is dense we *really* should handle it earlier!
2263    assert((FMetric > 0) && "Should handle dense range earlier!");
2264  } else {
2265    Pivot = CR.Range.first + Size/2;
2266  }
2267
2268  CaseRange LHSR(CR.Range.first, Pivot);
2269  CaseRange RHSR(Pivot, CR.Range.second);
2270  const Constant *C = Pivot->Low;
2271  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
2272
2273  // We know that we branch to the LHS if the Value being switched on is
2274  // less than the Pivot value, C.  We use this to optimize our binary
2275  // tree a bit, by recognizing that if SV is greater than or equal to the
2276  // LHS's Case Value, and that Case Value is exactly one less than the
2277  // Pivot's Value, then we can branch directly to the LHS's Target,
2278  // rather than creating a leaf node for it.
2279  if ((LHSR.second - LHSR.first) == 1 &&
2280      LHSR.first->High == CR.GE &&
2281      cast<ConstantInt>(C)->getValue() ==
2282      (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
2283    TrueBB = LHSR.first->BB;
2284  } else {
2285    TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2286    CurMF->insert(BBI, TrueBB);
2287    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
2288
2289    // Put SV in a virtual register to make it available from the new blocks.
2290    ExportFromCurrentBlock(SV);
2291  }
2292
2293  // Similar to the optimization above, if the Value being switched on is
2294  // known to be less than the Constant CR.LT, and the current Case Value
2295  // is CR.LT - 1, then we can branch directly to the target block for
2296  // the current Case Value, rather than emitting a RHS leaf node for it.
2297  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
2298      cast<ConstantInt>(RHSR.first->Low)->getValue() ==
2299      (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
2300    FalseBB = RHSR.first->BB;
2301  } else {
2302    FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2303    CurMF->insert(BBI, FalseBB);
2304    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
2305
2306    // Put SV in a virtual register to make it available from the new blocks.
2307    ExportFromCurrentBlock(SV);
2308  }
2309
2310  // Create a CaseBlock record representing a conditional branch to
2311  // the LHS node if the value being switched on SV is less than C.
2312  // Otherwise, branch to LHS.
2313  CaseBlock CB(ISD::SETULT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
2314
2315  if (CR.CaseBB == SwitchBB)
2316    visitSwitchCase(CB, SwitchBB);
2317  else
2318    SwitchCases.push_back(CB);
2319
2320  return true;
2321}
2322
2323/// handleBitTestsSwitchCase - if current case range has few destination and
2324/// range span less, than machine word bitwidth, encode case range into series
2325/// of masks and emit bit tests with these masks.
2326bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
2327                                                   CaseRecVector& WorkList,
2328                                                   const Value* SV,
2329                                                   MachineBasicBlock* Default,
2330                                                   MachineBasicBlock *SwitchBB){
2331  EVT PTy = TLI.getPointerTy();
2332  unsigned IntPtrBits = PTy.getSizeInBits();
2333
2334  Case& FrontCase = *CR.Range.first;
2335  Case& BackCase  = *(CR.Range.second-1);
2336
2337  // Get the MachineFunction which holds the current MBB.  This is used when
2338  // inserting any additional MBBs necessary to represent the switch.
2339  MachineFunction *CurMF = FuncInfo.MF;
2340
2341  // If target does not have legal shift left, do not emit bit tests at all.
2342  if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
2343    return false;
2344
2345  size_t numCmps = 0;
2346  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2347       I!=E; ++I) {
2348    // Single case counts one, case range - two.
2349    numCmps += (I->Low == I->High ? 1 : 2);
2350  }
2351
2352  // Count unique destinations
2353  SmallSet<MachineBasicBlock*, 4> Dests;
2354  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2355    Dests.insert(I->BB);
2356    if (Dests.size() > 3)
2357      // Don't bother the code below, if there are too much unique destinations
2358      return false;
2359  }
2360  DEBUG(dbgs() << "Total number of unique destinations: "
2361        << Dests.size() << '\n'
2362        << "Total number of comparisons: " << numCmps << '\n');
2363
2364  // Compute span of values.
2365  const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
2366  const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
2367  APInt cmpRange = maxValue - minValue;
2368
2369  DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
2370               << "Low bound: " << minValue << '\n'
2371               << "High bound: " << maxValue << '\n');
2372
2373  if (cmpRange.uge(IntPtrBits) ||
2374      (!(Dests.size() == 1 && numCmps >= 3) &&
2375       !(Dests.size() == 2 && numCmps >= 5) &&
2376       !(Dests.size() >= 3 && numCmps >= 6)))
2377    return false;
2378
2379  DEBUG(dbgs() << "Emitting bit tests\n");
2380  APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
2381
2382  // Optimize the case where all the case values fit in a
2383  // word without having to subtract minValue. In this case,
2384  // we can optimize away the subtraction.
2385  if (maxValue.ult(IntPtrBits)) {
2386    cmpRange = maxValue;
2387  } else {
2388    lowBound = minValue;
2389  }
2390
2391  CaseBitsVector CasesBits;
2392  unsigned i, count = 0;
2393
2394  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2395    MachineBasicBlock* Dest = I->BB;
2396    for (i = 0; i < count; ++i)
2397      if (Dest == CasesBits[i].BB)
2398        break;
2399
2400    if (i == count) {
2401      assert((count < 3) && "Too much destinations to test!");
2402      CasesBits.push_back(CaseBits(0, Dest, 0, 0/*Weight*/));
2403      count++;
2404    }
2405
2406    const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
2407    const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
2408
2409    uint64_t lo = (lowValue - lowBound).getZExtValue();
2410    uint64_t hi = (highValue - lowBound).getZExtValue();
2411    CasesBits[i].ExtraWeight += I->ExtraWeight;
2412
2413    for (uint64_t j = lo; j <= hi; j++) {
2414      CasesBits[i].Mask |=  1ULL << j;
2415      CasesBits[i].Bits++;
2416    }
2417
2418  }
2419  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2420
2421  BitTestInfo BTC;
2422
2423  // Figure out which block is immediately after the current one.
2424  MachineFunction::iterator BBI = CR.CaseBB;
2425  ++BBI;
2426
2427  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2428
2429  DEBUG(dbgs() << "Cases:\n");
2430  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2431    DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
2432                 << ", Bits: " << CasesBits[i].Bits
2433                 << ", BB: " << CasesBits[i].BB << '\n');
2434
2435    MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2436    CurMF->insert(BBI, CaseBB);
2437    BTC.push_back(BitTestCase(CasesBits[i].Mask,
2438                              CaseBB,
2439                              CasesBits[i].BB, CasesBits[i].ExtraWeight));
2440
2441    // Put SV in a virtual register to make it available from the new blocks.
2442    ExportFromCurrentBlock(SV);
2443  }
2444
2445  BitTestBlock BTB(lowBound, cmpRange, SV,
2446                   -1U, MVT::Other, (CR.CaseBB == SwitchBB),
2447                   CR.CaseBB, Default, BTC);
2448
2449  if (CR.CaseBB == SwitchBB)
2450    visitBitTestHeader(BTB, SwitchBB);
2451
2452  BitTestCases.push_back(BTB);
2453
2454  return true;
2455}
2456
2457/// Clusterify - Transform simple list of Cases into list of CaseRange's
2458size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
2459                                       const SwitchInst& SI) {
2460
2461  /// Use a shorter form of declaration, and also
2462  /// show the we want to use CRSBuilder as Clusterifier.
2463  typedef IntegersSubsetMapping<MachineBasicBlock> Clusterifier;
2464
2465  Clusterifier TheClusterifier;
2466
2467  BranchProbabilityInfo *BPI = FuncInfo.BPI;
2468  // Start with "simple" cases
2469  for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
2470       i != e; ++i) {
2471    const BasicBlock *SuccBB = i.getCaseSuccessor();
2472    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB];
2473
2474    TheClusterifier.add(i.getCaseValueEx(), SMBB,
2475        BPI ? BPI->getEdgeWeight(SI.getParent(), i.getSuccessorIndex()) : 0);
2476  }
2477
2478  TheClusterifier.optimize();
2479
2480  size_t numCmps = 0;
2481  for (Clusterifier::RangeIterator i = TheClusterifier.begin(),
2482       e = TheClusterifier.end(); i != e; ++i, ++numCmps) {
2483    Clusterifier::Cluster &C = *i;
2484    // Update edge weight for the cluster.
2485    unsigned W = C.first.Weight;
2486
2487    // FIXME: Currently work with ConstantInt based numbers.
2488    // Changing it to APInt based is a pretty heavy for this commit.
2489    Cases.push_back(Case(C.first.getLow().toConstantInt(),
2490                         C.first.getHigh().toConstantInt(), C.second, W));
2491
2492    if (C.first.getLow() != C.first.getHigh())
2493    // A range counts double, since it requires two compares.
2494    ++numCmps;
2495  }
2496
2497  return numCmps;
2498}
2499
2500void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2501                                           MachineBasicBlock *Last) {
2502  // Update JTCases.
2503  for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2504    if (JTCases[i].first.HeaderBB == First)
2505      JTCases[i].first.HeaderBB = Last;
2506
2507  // Update BitTestCases.
2508  for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2509    if (BitTestCases[i].Parent == First)
2510      BitTestCases[i].Parent = Last;
2511}
2512
2513void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
2514  MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
2515
2516  // Figure out which block is immediately after the current one.
2517  MachineBasicBlock *NextBlock = 0;
2518  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2519
2520  // If there is only the default destination, branch to it if it is not the
2521  // next basic block.  Otherwise, just fall through.
2522  if (!SI.getNumCases()) {
2523    // Update machine-CFG edges.
2524
2525    // If this is not a fall-through branch, emit the branch.
2526    SwitchMBB->addSuccessor(Default);
2527    if (Default != NextBlock)
2528      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
2529                              MVT::Other, getControlRoot(),
2530                              DAG.getBasicBlock(Default)));
2531
2532    return;
2533  }
2534
2535  // If there are any non-default case statements, create a vector of Cases
2536  // representing each one, and sort the vector so that we can efficiently
2537  // create a binary search tree from them.
2538  CaseVector Cases;
2539  size_t numCmps = Clusterify(Cases, SI);
2540  DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2541               << ". Total compares: " << numCmps << '\n');
2542  (void)numCmps;
2543
2544  // Get the Value to be switched on and default basic blocks, which will be
2545  // inserted into CaseBlock records, representing basic blocks in the binary
2546  // search tree.
2547  const Value *SV = SI.getCondition();
2548
2549  // Push the initial CaseRec onto the worklist
2550  CaseRecVector WorkList;
2551  WorkList.push_back(CaseRec(SwitchMBB,0,0,
2552                             CaseRange(Cases.begin(),Cases.end())));
2553
2554  while (!WorkList.empty()) {
2555    // Grab a record representing a case range to process off the worklist
2556    CaseRec CR = WorkList.back();
2557    WorkList.pop_back();
2558
2559    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2560      continue;
2561
2562    // If the range has few cases (two or less) emit a series of specific
2563    // tests.
2564    if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
2565      continue;
2566
2567    // If the switch has more than 5 blocks, and at least 40% dense, and the
2568    // target supports indirect branches, then emit a jump table rather than
2569    // lowering the switch to a binary tree of conditional branches.
2570    if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2571      continue;
2572
2573    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2574    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2575    handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
2576  }
2577}
2578
2579void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2580  MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2581
2582  // Update machine-CFG edges with unique successors.
2583  SmallVector<BasicBlock*, 32> succs;
2584  succs.reserve(I.getNumSuccessors());
2585  for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i)
2586    succs.push_back(I.getSuccessor(i));
2587  array_pod_sort(succs.begin(), succs.end());
2588  succs.erase(std::unique(succs.begin(), succs.end()), succs.end());
2589  for (unsigned i = 0, e = succs.size(); i != e; ++i) {
2590    MachineBasicBlock *Succ = FuncInfo.MBBMap[succs[i]];
2591    addSuccessorWithWeight(IndirectBrMBB, Succ);
2592  }
2593
2594  DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(),
2595                          MVT::Other, getControlRoot(),
2596                          getValue(I.getAddress())));
2597}
2598
2599void SelectionDAGBuilder::visitFSub(const User &I) {
2600  // -0.0 - X --> fneg
2601  Type *Ty = I.getType();
2602  if (isa<Constant>(I.getOperand(0)) &&
2603      I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2604    SDValue Op2 = getValue(I.getOperand(1));
2605    setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2606                             Op2.getValueType(), Op2));
2607    return;
2608  }
2609
2610  visitBinary(I, ISD::FSUB);
2611}
2612
2613void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2614  SDValue Op1 = getValue(I.getOperand(0));
2615  SDValue Op2 = getValue(I.getOperand(1));
2616  setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(),
2617                           Op1.getValueType(), Op1, Op2));
2618}
2619
2620void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2621  SDValue Op1 = getValue(I.getOperand(0));
2622  SDValue Op2 = getValue(I.getOperand(1));
2623
2624  MVT ShiftTy = TLI.getShiftAmountTy(Op2.getValueType());
2625
2626  // Coerce the shift amount to the right type if we can.
2627  if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2628    unsigned ShiftSize = ShiftTy.getSizeInBits();
2629    unsigned Op2Size = Op2.getValueType().getSizeInBits();
2630    DebugLoc DL = getCurDebugLoc();
2631
2632    // If the operand is smaller than the shift count type, promote it.
2633    if (ShiftSize > Op2Size)
2634      Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2635
2636    // If the operand is larger than the shift count type but the shift
2637    // count type has enough bits to represent any shift value, truncate
2638    // it now. This is a common case and it exposes the truncate to
2639    // optimization early.
2640    else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2641      Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2642    // Otherwise we'll need to temporarily settle for some other convenient
2643    // type.  Type legalization will make adjustments once the shiftee is split.
2644    else
2645      Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2646  }
2647
2648  setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(),
2649                           Op1.getValueType(), Op1, Op2));
2650}
2651
2652void SelectionDAGBuilder::visitSDiv(const User &I) {
2653  SDValue Op1 = getValue(I.getOperand(0));
2654  SDValue Op2 = getValue(I.getOperand(1));
2655
2656  // Turn exact SDivs into multiplications.
2657  // FIXME: This should be in DAGCombiner, but it doesn't have access to the
2658  // exact bit.
2659  if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() &&
2660      !isa<ConstantSDNode>(Op1) &&
2661      isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue())
2662    setValue(&I, TLI.BuildExactSDIV(Op1, Op2, getCurDebugLoc(), DAG));
2663  else
2664    setValue(&I, DAG.getNode(ISD::SDIV, getCurDebugLoc(), Op1.getValueType(),
2665                             Op1, Op2));
2666}
2667
2668void SelectionDAGBuilder::visitICmp(const User &I) {
2669  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2670  if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2671    predicate = IC->getPredicate();
2672  else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2673    predicate = ICmpInst::Predicate(IC->getPredicate());
2674  SDValue Op1 = getValue(I.getOperand(0));
2675  SDValue Op2 = getValue(I.getOperand(1));
2676  ISD::CondCode Opcode = getICmpCondCode(predicate);
2677
2678  EVT DestVT = TLI.getValueType(I.getType());
2679  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode));
2680}
2681
2682void SelectionDAGBuilder::visitFCmp(const User &I) {
2683  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2684  if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2685    predicate = FC->getPredicate();
2686  else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2687    predicate = FCmpInst::Predicate(FC->getPredicate());
2688  SDValue Op1 = getValue(I.getOperand(0));
2689  SDValue Op2 = getValue(I.getOperand(1));
2690  ISD::CondCode Condition = getFCmpCondCode(predicate);
2691  if (TM.Options.NoNaNsFPMath)
2692    Condition = getFCmpCodeWithoutNaN(Condition);
2693  EVT DestVT = TLI.getValueType(I.getType());
2694  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition));
2695}
2696
2697void SelectionDAGBuilder::visitSelect(const User &I) {
2698  SmallVector<EVT, 4> ValueVTs;
2699  ComputeValueVTs(TLI, I.getType(), ValueVTs);
2700  unsigned NumValues = ValueVTs.size();
2701  if (NumValues == 0) return;
2702
2703  SmallVector<SDValue, 4> Values(NumValues);
2704  SDValue Cond     = getValue(I.getOperand(0));
2705  SDValue TrueVal  = getValue(I.getOperand(1));
2706  SDValue FalseVal = getValue(I.getOperand(2));
2707  ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2708    ISD::VSELECT : ISD::SELECT;
2709
2710  for (unsigned i = 0; i != NumValues; ++i)
2711    Values[i] = DAG.getNode(OpCode, getCurDebugLoc(),
2712                            TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2713                            Cond,
2714                            SDValue(TrueVal.getNode(),
2715                                    TrueVal.getResNo() + i),
2716                            SDValue(FalseVal.getNode(),
2717                                    FalseVal.getResNo() + i));
2718
2719  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2720                           DAG.getVTList(&ValueVTs[0], NumValues),
2721                           &Values[0], NumValues));
2722}
2723
2724void SelectionDAGBuilder::visitTrunc(const User &I) {
2725  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2726  SDValue N = getValue(I.getOperand(0));
2727  EVT DestVT = TLI.getValueType(I.getType());
2728  setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N));
2729}
2730
2731void SelectionDAGBuilder::visitZExt(const User &I) {
2732  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2733  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2734  SDValue N = getValue(I.getOperand(0));
2735  EVT DestVT = TLI.getValueType(I.getType());
2736  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N));
2737}
2738
2739void SelectionDAGBuilder::visitSExt(const User &I) {
2740  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2741  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2742  SDValue N = getValue(I.getOperand(0));
2743  EVT DestVT = TLI.getValueType(I.getType());
2744  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N));
2745}
2746
2747void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2748  // FPTrunc is never a no-op cast, no need to check
2749  SDValue N = getValue(I.getOperand(0));
2750  EVT DestVT = TLI.getValueType(I.getType());
2751  setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(),
2752                           DestVT, N,
2753                           DAG.getTargetConstant(0, TLI.getPointerTy())));
2754}
2755
2756void SelectionDAGBuilder::visitFPExt(const User &I){
2757  // FPExt is never a no-op cast, no need to check
2758  SDValue N = getValue(I.getOperand(0));
2759  EVT DestVT = TLI.getValueType(I.getType());
2760  setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N));
2761}
2762
2763void SelectionDAGBuilder::visitFPToUI(const User &I) {
2764  // FPToUI is never a no-op cast, no need to check
2765  SDValue N = getValue(I.getOperand(0));
2766  EVT DestVT = TLI.getValueType(I.getType());
2767  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N));
2768}
2769
2770void SelectionDAGBuilder::visitFPToSI(const User &I) {
2771  // FPToSI is never a no-op cast, no need to check
2772  SDValue N = getValue(I.getOperand(0));
2773  EVT DestVT = TLI.getValueType(I.getType());
2774  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N));
2775}
2776
2777void SelectionDAGBuilder::visitUIToFP(const User &I) {
2778  // UIToFP is never a no-op cast, no need to check
2779  SDValue N = getValue(I.getOperand(0));
2780  EVT DestVT = TLI.getValueType(I.getType());
2781  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N));
2782}
2783
2784void SelectionDAGBuilder::visitSIToFP(const User &I){
2785  // SIToFP is never a no-op cast, no need to check
2786  SDValue N = getValue(I.getOperand(0));
2787  EVT DestVT = TLI.getValueType(I.getType());
2788  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N));
2789}
2790
2791void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2792  // What to do depends on the size of the integer and the size of the pointer.
2793  // We can either truncate, zero extend, or no-op, accordingly.
2794  SDValue N = getValue(I.getOperand(0));
2795  EVT DestVT = TLI.getValueType(I.getType());
2796  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2797}
2798
2799void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2800  // What to do depends on the size of the integer and the size of the pointer.
2801  // We can either truncate, zero extend, or no-op, accordingly.
2802  SDValue N = getValue(I.getOperand(0));
2803  EVT DestVT = TLI.getValueType(I.getType());
2804  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2805}
2806
2807void SelectionDAGBuilder::visitBitCast(const User &I) {
2808  SDValue N = getValue(I.getOperand(0));
2809  EVT DestVT = TLI.getValueType(I.getType());
2810
2811  // BitCast assures us that source and destination are the same size so this is
2812  // either a BITCAST or a no-op.
2813  if (DestVT != N.getValueType())
2814    setValue(&I, DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
2815                             DestVT, N)); // convert types.
2816  else
2817    setValue(&I, N);            // noop cast.
2818}
2819
2820void SelectionDAGBuilder::visitInsertElement(const User &I) {
2821  SDValue InVec = getValue(I.getOperand(0));
2822  SDValue InVal = getValue(I.getOperand(1));
2823  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2824                              TLI.getPointerTy(),
2825                              getValue(I.getOperand(2)));
2826  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(),
2827                           TLI.getValueType(I.getType()),
2828                           InVec, InVal, InIdx));
2829}
2830
2831void SelectionDAGBuilder::visitExtractElement(const User &I) {
2832  SDValue InVec = getValue(I.getOperand(0));
2833  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2834                              TLI.getPointerTy(),
2835                              getValue(I.getOperand(1)));
2836  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2837                           TLI.getValueType(I.getType()), InVec, InIdx));
2838}
2839
2840// Utility for visitShuffleVector - Return true if every element in Mask,
2841// beginning from position Pos and ending in Pos+Size, falls within the
2842// specified sequential range [L, L+Pos). or is undef.
2843static bool isSequentialInRange(const SmallVectorImpl<int> &Mask,
2844                                unsigned Pos, unsigned Size, int Low) {
2845  for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
2846    if (Mask[i] >= 0 && Mask[i] != Low)
2847      return false;
2848  return true;
2849}
2850
2851void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2852  SDValue Src1 = getValue(I.getOperand(0));
2853  SDValue Src2 = getValue(I.getOperand(1));
2854
2855  SmallVector<int, 8> Mask;
2856  ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
2857  unsigned MaskNumElts = Mask.size();
2858
2859  EVT VT = TLI.getValueType(I.getType());
2860  EVT SrcVT = Src1.getValueType();
2861  unsigned SrcNumElts = SrcVT.getVectorNumElements();
2862
2863  if (SrcNumElts == MaskNumElts) {
2864    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2865                                      &Mask[0]));
2866    return;
2867  }
2868
2869  // Normalize the shuffle vector since mask and vector length don't match.
2870  if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2871    // Mask is longer than the source vectors and is a multiple of the source
2872    // vectors.  We can use concatenate vector to make the mask and vectors
2873    // lengths match.
2874    if (SrcNumElts*2 == MaskNumElts) {
2875      // First check for Src1 in low and Src2 in high
2876      if (isSequentialInRange(Mask, 0, SrcNumElts, 0) &&
2877          isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) {
2878        // The shuffle is concatenating two vectors together.
2879        setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2880                                 VT, Src1, Src2));
2881        return;
2882      }
2883      // Then check for Src2 in low and Src1 in high
2884      if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) &&
2885          isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) {
2886        // The shuffle is concatenating two vectors together.
2887        setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2888                                 VT, Src2, Src1));
2889        return;
2890      }
2891    }
2892
2893    // Pad both vectors with undefs to make them the same length as the mask.
2894    unsigned NumConcat = MaskNumElts / SrcNumElts;
2895    bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2896    bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2897    SDValue UndefVal = DAG.getUNDEF(SrcVT);
2898
2899    SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2900    SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2901    MOps1[0] = Src1;
2902    MOps2[0] = Src2;
2903
2904    Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2905                                                  getCurDebugLoc(), VT,
2906                                                  &MOps1[0], NumConcat);
2907    Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2908                                                  getCurDebugLoc(), VT,
2909                                                  &MOps2[0], NumConcat);
2910
2911    // Readjust mask for new input vector length.
2912    SmallVector<int, 8> MappedOps;
2913    for (unsigned i = 0; i != MaskNumElts; ++i) {
2914      int Idx = Mask[i];
2915      if (Idx >= (int)SrcNumElts)
2916        Idx -= SrcNumElts - MaskNumElts;
2917      MappedOps.push_back(Idx);
2918    }
2919
2920    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2921                                      &MappedOps[0]));
2922    return;
2923  }
2924
2925  if (SrcNumElts > MaskNumElts) {
2926    // Analyze the access pattern of the vector to see if we can extract
2927    // two subvectors and do the shuffle. The analysis is done by calculating
2928    // the range of elements the mask access on both vectors.
2929    int MinRange[2] = { static_cast<int>(SrcNumElts),
2930                        static_cast<int>(SrcNumElts)};
2931    int MaxRange[2] = {-1, -1};
2932
2933    for (unsigned i = 0; i != MaskNumElts; ++i) {
2934      int Idx = Mask[i];
2935      unsigned Input = 0;
2936      if (Idx < 0)
2937        continue;
2938
2939      if (Idx >= (int)SrcNumElts) {
2940        Input = 1;
2941        Idx -= SrcNumElts;
2942      }
2943      if (Idx > MaxRange[Input])
2944        MaxRange[Input] = Idx;
2945      if (Idx < MinRange[Input])
2946        MinRange[Input] = Idx;
2947    }
2948
2949    // Check if the access is smaller than the vector size and can we find
2950    // a reasonable extract index.
2951    int RangeUse[2] = { -1, -1 };  // 0 = Unused, 1 = Extract, -1 = Can not
2952                                   // Extract.
2953    int StartIdx[2];  // StartIdx to extract from
2954    for (unsigned Input = 0; Input < 2; ++Input) {
2955      if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) {
2956        RangeUse[Input] = 0; // Unused
2957        StartIdx[Input] = 0;
2958        continue;
2959      }
2960
2961      // Find a good start index that is a multiple of the mask length. Then
2962      // see if the rest of the elements are in range.
2963      StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2964      if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2965          StartIdx[Input] + MaskNumElts <= SrcNumElts)
2966        RangeUse[Input] = 1; // Extract from a multiple of the mask length.
2967    }
2968
2969    if (RangeUse[0] == 0 && RangeUse[1] == 0) {
2970      setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
2971      return;
2972    }
2973    if (RangeUse[0] >= 0 && RangeUse[1] >= 0) {
2974      // Extract appropriate subvector and generate a vector shuffle
2975      for (unsigned Input = 0; Input < 2; ++Input) {
2976        SDValue &Src = Input == 0 ? Src1 : Src2;
2977        if (RangeUse[Input] == 0)
2978          Src = DAG.getUNDEF(VT);
2979        else
2980          Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT,
2981                            Src, DAG.getIntPtrConstant(StartIdx[Input]));
2982      }
2983
2984      // Calculate new mask.
2985      SmallVector<int, 8> MappedOps;
2986      for (unsigned i = 0; i != MaskNumElts; ++i) {
2987        int Idx = Mask[i];
2988        if (Idx >= 0) {
2989          if (Idx < (int)SrcNumElts)
2990            Idx -= StartIdx[0];
2991          else
2992            Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
2993        }
2994        MappedOps.push_back(Idx);
2995      }
2996
2997      setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2998                                        &MappedOps[0]));
2999      return;
3000    }
3001  }
3002
3003  // We can't use either concat vectors or extract subvectors so fall back to
3004  // replacing the shuffle with extract and build vector.
3005  // to insert and build vector.
3006  EVT EltVT = VT.getVectorElementType();
3007  EVT PtrVT = TLI.getPointerTy();
3008  SmallVector<SDValue,8> Ops;
3009  for (unsigned i = 0; i != MaskNumElts; ++i) {
3010    int Idx = Mask[i];
3011    SDValue Res;
3012
3013    if (Idx < 0) {
3014      Res = DAG.getUNDEF(EltVT);
3015    } else {
3016      SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3017      if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3018
3019      Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
3020                        EltVT, Src, DAG.getConstant(Idx, PtrVT));
3021    }
3022
3023    Ops.push_back(Res);
3024  }
3025
3026  setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
3027                           VT, &Ops[0], Ops.size()));
3028}
3029
3030void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
3031  const Value *Op0 = I.getOperand(0);
3032  const Value *Op1 = I.getOperand(1);
3033  Type *AggTy = I.getType();
3034  Type *ValTy = Op1->getType();
3035  bool IntoUndef = isa<UndefValue>(Op0);
3036  bool FromUndef = isa<UndefValue>(Op1);
3037
3038  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3039
3040  SmallVector<EVT, 4> AggValueVTs;
3041  ComputeValueVTs(TLI, AggTy, AggValueVTs);
3042  SmallVector<EVT, 4> ValValueVTs;
3043  ComputeValueVTs(TLI, ValTy, ValValueVTs);
3044
3045  unsigned NumAggValues = AggValueVTs.size();
3046  unsigned NumValValues = ValValueVTs.size();
3047  SmallVector<SDValue, 4> Values(NumAggValues);
3048
3049  SDValue Agg = getValue(Op0);
3050  unsigned i = 0;
3051  // Copy the beginning value(s) from the original aggregate.
3052  for (; i != LinearIndex; ++i)
3053    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3054                SDValue(Agg.getNode(), Agg.getResNo() + i);
3055  // Copy values from the inserted value(s).
3056  if (NumValValues) {
3057    SDValue Val = getValue(Op1);
3058    for (; i != LinearIndex + NumValValues; ++i)
3059      Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3060                  SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3061  }
3062  // Copy remaining value(s) from the original aggregate.
3063  for (; i != NumAggValues; ++i)
3064    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3065                SDValue(Agg.getNode(), Agg.getResNo() + i);
3066
3067  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3068                           DAG.getVTList(&AggValueVTs[0], NumAggValues),
3069                           &Values[0], NumAggValues));
3070}
3071
3072void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
3073  const Value *Op0 = I.getOperand(0);
3074  Type *AggTy = Op0->getType();
3075  Type *ValTy = I.getType();
3076  bool OutOfUndef = isa<UndefValue>(Op0);
3077
3078  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3079
3080  SmallVector<EVT, 4> ValValueVTs;
3081  ComputeValueVTs(TLI, ValTy, ValValueVTs);
3082
3083  unsigned NumValValues = ValValueVTs.size();
3084
3085  // Ignore a extractvalue that produces an empty object
3086  if (!NumValValues) {
3087    setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3088    return;
3089  }
3090
3091  SmallVector<SDValue, 4> Values(NumValValues);
3092
3093  SDValue Agg = getValue(Op0);
3094  // Copy out the selected value(s).
3095  for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3096    Values[i - LinearIndex] =
3097      OutOfUndef ?
3098        DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3099        SDValue(Agg.getNode(), Agg.getResNo() + i);
3100
3101  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3102                           DAG.getVTList(&ValValueVTs[0], NumValValues),
3103                           &Values[0], NumValValues));
3104}
3105
3106void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3107  SDValue N = getValue(I.getOperand(0));
3108  // Note that the pointer operand may be a vector of pointers. Take the scalar
3109  // element which holds a pointer.
3110  Type *Ty = I.getOperand(0)->getType()->getScalarType();
3111
3112  for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
3113       OI != E; ++OI) {
3114    const Value *Idx = *OI;
3115    if (StructType *StTy = dyn_cast<StructType>(Ty)) {
3116      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
3117      if (Field) {
3118        // N = N + Offset
3119        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
3120        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
3121                        DAG.getIntPtrConstant(Offset));
3122      }
3123
3124      Ty = StTy->getElementType(Field);
3125    } else {
3126      Ty = cast<SequentialType>(Ty)->getElementType();
3127
3128      // If this is a constant subscript, handle it quickly.
3129      if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
3130        if (CI->isZero()) continue;
3131        uint64_t Offs =
3132            TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
3133        SDValue OffsVal;
3134        EVT PTy = TLI.getPointerTy();
3135        unsigned PtrBits = PTy.getSizeInBits();
3136        if (PtrBits < 64)
3137          OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
3138                                TLI.getPointerTy(),
3139                                DAG.getConstant(Offs, MVT::i64));
3140        else
3141          OffsVal = DAG.getIntPtrConstant(Offs);
3142
3143        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
3144                        OffsVal);
3145        continue;
3146      }
3147
3148      // N = N + Idx * ElementSize;
3149      APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
3150                                TD->getTypeAllocSize(Ty));
3151      SDValue IdxN = getValue(Idx);
3152
3153      // If the index is smaller or larger than intptr_t, truncate or extend
3154      // it.
3155      IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType());
3156
3157      // If this is a multiply by a power of two, turn it into a shl
3158      // immediately.  This is a very common case.
3159      if (ElementSize != 1) {
3160        if (ElementSize.isPowerOf2()) {
3161          unsigned Amt = ElementSize.logBase2();
3162          IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(),
3163                             N.getValueType(), IdxN,
3164                             DAG.getConstant(Amt, IdxN.getValueType()));
3165        } else {
3166          SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy());
3167          IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(),
3168                             N.getValueType(), IdxN, Scale);
3169        }
3170      }
3171
3172      N = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3173                      N.getValueType(), N, IdxN);
3174    }
3175  }
3176
3177  setValue(&I, N);
3178}
3179
3180void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3181  // If this is a fixed sized alloca in the entry block of the function,
3182  // allocate it statically on the stack.
3183  if (FuncInfo.StaticAllocaMap.count(&I))
3184    return;   // getValue will auto-populate this.
3185
3186  Type *Ty = I.getAllocatedType();
3187  uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
3188  unsigned Align =
3189    std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
3190             I.getAlignment());
3191
3192  SDValue AllocSize = getValue(I.getArraySize());
3193
3194  EVT IntPtr = TLI.getPointerTy();
3195  if (AllocSize.getValueType() != IntPtr)
3196    AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr);
3197
3198  AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr,
3199                          AllocSize,
3200                          DAG.getConstant(TySize, IntPtr));
3201
3202  // Handle alignment.  If the requested alignment is less than or equal to
3203  // the stack alignment, ignore it.  If the size is greater than or equal to
3204  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3205  unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
3206  if (Align <= StackAlign)
3207    Align = 0;
3208
3209  // Round the size of the allocation up to the stack alignment size
3210  // by add SA-1 to the size.
3211  AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3212                          AllocSize.getValueType(), AllocSize,
3213                          DAG.getIntPtrConstant(StackAlign-1));
3214
3215  // Mask out the low bits for alignment purposes.
3216  AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(),
3217                          AllocSize.getValueType(), AllocSize,
3218                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
3219
3220  SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
3221  SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3222  SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(),
3223                            VTs, Ops, 3);
3224  setValue(&I, DSA);
3225  DAG.setRoot(DSA.getValue(1));
3226
3227  // Inform the Frame Information that we have just allocated a variable-sized
3228  // object.
3229  FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1);
3230}
3231
3232void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3233  if (I.isAtomic())
3234    return visitAtomicLoad(I);
3235
3236  const Value *SV = I.getOperand(0);
3237  SDValue Ptr = getValue(SV);
3238
3239  Type *Ty = I.getType();
3240
3241  bool isVolatile = I.isVolatile();
3242  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3243  bool isInvariant = I.getMetadata("invariant.load") != 0;
3244  unsigned Alignment = I.getAlignment();
3245  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3246  const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3247
3248  SmallVector<EVT, 4> ValueVTs;
3249  SmallVector<uint64_t, 4> Offsets;
3250  ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
3251  unsigned NumValues = ValueVTs.size();
3252  if (NumValues == 0)
3253    return;
3254
3255  SDValue Root;
3256  bool ConstantMemory = false;
3257  if (I.isVolatile() || NumValues > MaxParallelChains)
3258    // Serialize volatile loads with other side effects.
3259    Root = getRoot();
3260  else if (AA->pointsToConstantMemory(
3261             AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) {
3262    // Do not serialize (non-volatile) loads of constant memory with anything.
3263    Root = DAG.getEntryNode();
3264    ConstantMemory = true;
3265  } else {
3266    // Do not serialize non-volatile loads against each other.
3267    Root = DAG.getRoot();
3268  }
3269
3270  SmallVector<SDValue, 4> Values(NumValues);
3271  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3272                                          NumValues));
3273  EVT PtrVT = Ptr.getValueType();
3274  unsigned ChainI = 0;
3275  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3276    // Serializing loads here may result in excessive register pressure, and
3277    // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3278    // could recover a bit by hoisting nodes upward in the chain by recognizing
3279    // they are side-effect free or do not alias. The optimizer should really
3280    // avoid this case by converting large object/array copies to llvm.memcpy
3281    // (MaxParallelChains should always remain as failsafe).
3282    if (ChainI == MaxParallelChains) {
3283      assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3284      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3285                                  MVT::Other, &Chains[0], ChainI);
3286      Root = Chain;
3287      ChainI = 0;
3288    }
3289    SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3290                            PtrVT, Ptr,
3291                            DAG.getConstant(Offsets[i], PtrVT));
3292    SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root,
3293                            A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
3294                            isNonTemporal, isInvariant, Alignment, TBAAInfo,
3295                            Ranges);
3296
3297    Values[i] = L;
3298    Chains[ChainI] = L.getValue(1);
3299  }
3300
3301  if (!ConstantMemory) {
3302    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3303                                MVT::Other, &Chains[0], ChainI);
3304    if (isVolatile)
3305      DAG.setRoot(Chain);
3306    else
3307      PendingLoads.push_back(Chain);
3308  }
3309
3310  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3311                           DAG.getVTList(&ValueVTs[0], NumValues),
3312                           &Values[0], NumValues));
3313}
3314
3315void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3316  if (I.isAtomic())
3317    return visitAtomicStore(I);
3318
3319  const Value *SrcV = I.getOperand(0);
3320  const Value *PtrV = I.getOperand(1);
3321
3322  SmallVector<EVT, 4> ValueVTs;
3323  SmallVector<uint64_t, 4> Offsets;
3324  ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
3325  unsigned NumValues = ValueVTs.size();
3326  if (NumValues == 0)
3327    return;
3328
3329  // Get the lowered operands. Note that we do this after
3330  // checking if NumResults is zero, because with zero results
3331  // the operands won't have values in the map.
3332  SDValue Src = getValue(SrcV);
3333  SDValue Ptr = getValue(PtrV);
3334
3335  SDValue Root = getRoot();
3336  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3337                                          NumValues));
3338  EVT PtrVT = Ptr.getValueType();
3339  bool isVolatile = I.isVolatile();
3340  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3341  unsigned Alignment = I.getAlignment();
3342  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3343
3344  unsigned ChainI = 0;
3345  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3346    // See visitLoad comments.
3347    if (ChainI == MaxParallelChains) {
3348      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3349                                  MVT::Other, &Chains[0], ChainI);
3350      Root = Chain;
3351      ChainI = 0;
3352    }
3353    SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr,
3354                              DAG.getConstant(Offsets[i], PtrVT));
3355    SDValue St = DAG.getStore(Root, getCurDebugLoc(),
3356                              SDValue(Src.getNode(), Src.getResNo() + i),
3357                              Add, MachinePointerInfo(PtrV, Offsets[i]),
3358                              isVolatile, isNonTemporal, Alignment, TBAAInfo);
3359    Chains[ChainI] = St;
3360  }
3361
3362  SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3363                                  MVT::Other, &Chains[0], ChainI);
3364  ++SDNodeOrder;
3365  AssignOrderingToNode(StoreNode.getNode());
3366  DAG.setRoot(StoreNode);
3367}
3368
3369static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order,
3370                                    SynchronizationScope Scope,
3371                                    bool Before, DebugLoc dl,
3372                                    SelectionDAG &DAG,
3373                                    const TargetLowering &TLI) {
3374  // Fence, if necessary
3375  if (Before) {
3376    if (Order == AcquireRelease || Order == SequentiallyConsistent)
3377      Order = Release;
3378    else if (Order == Acquire || Order == Monotonic)
3379      return Chain;
3380  } else {
3381    if (Order == AcquireRelease)
3382      Order = Acquire;
3383    else if (Order == Release || Order == Monotonic)
3384      return Chain;
3385  }
3386  SDValue Ops[3];
3387  Ops[0] = Chain;
3388  Ops[1] = DAG.getConstant(Order, TLI.getPointerTy());
3389  Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy());
3390  return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3);
3391}
3392
3393void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
3394  DebugLoc dl = getCurDebugLoc();
3395  AtomicOrdering Order = I.getOrdering();
3396  SynchronizationScope Scope = I.getSynchScope();
3397
3398  SDValue InChain = getRoot();
3399
3400  if (TLI.getInsertFencesForAtomic())
3401    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3402                                   DAG, TLI);
3403
3404  SDValue L =
3405    DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl,
3406                  getValue(I.getCompareOperand()).getValueType().getSimpleVT(),
3407                  InChain,
3408                  getValue(I.getPointerOperand()),
3409                  getValue(I.getCompareOperand()),
3410                  getValue(I.getNewValOperand()),
3411                  MachinePointerInfo(I.getPointerOperand()), 0 /* Alignment */,
3412                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3413                  Scope);
3414
3415  SDValue OutChain = L.getValue(1);
3416
3417  if (TLI.getInsertFencesForAtomic())
3418    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3419                                    DAG, TLI);
3420
3421  setValue(&I, L);
3422  DAG.setRoot(OutChain);
3423}
3424
3425void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
3426  DebugLoc dl = getCurDebugLoc();
3427  ISD::NodeType NT;
3428  switch (I.getOperation()) {
3429  default: llvm_unreachable("Unknown atomicrmw operation");
3430  case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
3431  case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
3432  case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
3433  case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
3434  case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
3435  case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
3436  case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
3437  case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
3438  case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
3439  case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
3440  case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
3441  }
3442  AtomicOrdering Order = I.getOrdering();
3443  SynchronizationScope Scope = I.getSynchScope();
3444
3445  SDValue InChain = getRoot();
3446
3447  if (TLI.getInsertFencesForAtomic())
3448    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3449                                   DAG, TLI);
3450
3451  SDValue L =
3452    DAG.getAtomic(NT, dl,
3453                  getValue(I.getValOperand()).getValueType().getSimpleVT(),
3454                  InChain,
3455                  getValue(I.getPointerOperand()),
3456                  getValue(I.getValOperand()),
3457                  I.getPointerOperand(), 0 /* Alignment */,
3458                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3459                  Scope);
3460
3461  SDValue OutChain = L.getValue(1);
3462
3463  if (TLI.getInsertFencesForAtomic())
3464    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3465                                    DAG, TLI);
3466
3467  setValue(&I, L);
3468  DAG.setRoot(OutChain);
3469}
3470
3471void SelectionDAGBuilder::visitFence(const FenceInst &I) {
3472  DebugLoc dl = getCurDebugLoc();
3473  SDValue Ops[3];
3474  Ops[0] = getRoot();
3475  Ops[1] = DAG.getConstant(I.getOrdering(), TLI.getPointerTy());
3476  Ops[2] = DAG.getConstant(I.getSynchScope(), TLI.getPointerTy());
3477  DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3));
3478}
3479
3480void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
3481  DebugLoc dl = getCurDebugLoc();
3482  AtomicOrdering Order = I.getOrdering();
3483  SynchronizationScope Scope = I.getSynchScope();
3484
3485  SDValue InChain = getRoot();
3486
3487  EVT VT = TLI.getValueType(I.getType());
3488
3489  if (I.getAlignment() * 8 < VT.getSizeInBits())
3490    report_fatal_error("Cannot generate unaligned atomic load");
3491
3492  SDValue L =
3493    DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
3494                  getValue(I.getPointerOperand()),
3495                  I.getPointerOperand(), I.getAlignment(),
3496                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3497                  Scope);
3498
3499  SDValue OutChain = L.getValue(1);
3500
3501  if (TLI.getInsertFencesForAtomic())
3502    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3503                                    DAG, TLI);
3504
3505  setValue(&I, L);
3506  DAG.setRoot(OutChain);
3507}
3508
3509void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
3510  DebugLoc dl = getCurDebugLoc();
3511
3512  AtomicOrdering Order = I.getOrdering();
3513  SynchronizationScope Scope = I.getSynchScope();
3514
3515  SDValue InChain = getRoot();
3516
3517  EVT VT = TLI.getValueType(I.getValueOperand()->getType());
3518
3519  if (I.getAlignment() * 8 < VT.getSizeInBits())
3520    report_fatal_error("Cannot generate unaligned atomic store");
3521
3522  if (TLI.getInsertFencesForAtomic())
3523    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3524                                   DAG, TLI);
3525
3526  SDValue OutChain =
3527    DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
3528                  InChain,
3529                  getValue(I.getPointerOperand()),
3530                  getValue(I.getValueOperand()),
3531                  I.getPointerOperand(), I.getAlignment(),
3532                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3533                  Scope);
3534
3535  if (TLI.getInsertFencesForAtomic())
3536    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3537                                    DAG, TLI);
3538
3539  DAG.setRoot(OutChain);
3540}
3541
3542/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3543/// node.
3544void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3545                                               unsigned Intrinsic) {
3546  bool HasChain = !I.doesNotAccessMemory();
3547  bool OnlyLoad = HasChain && I.onlyReadsMemory();
3548
3549  // Build the operand list.
3550  SmallVector<SDValue, 8> Ops;
3551  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
3552    if (OnlyLoad) {
3553      // We don't need to serialize loads against other loads.
3554      Ops.push_back(DAG.getRoot());
3555    } else {
3556      Ops.push_back(getRoot());
3557    }
3558  }
3559
3560  // Info is set by getTgtMemInstrinsic
3561  TargetLowering::IntrinsicInfo Info;
3562  bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
3563
3564  // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3565  if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
3566      Info.opc == ISD::INTRINSIC_W_CHAIN)
3567    Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI.getPointerTy()));
3568
3569  // Add all operands of the call to the operand list.
3570  for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
3571    SDValue Op = getValue(I.getArgOperand(i));
3572    Ops.push_back(Op);
3573  }
3574
3575  SmallVector<EVT, 4> ValueVTs;
3576  ComputeValueVTs(TLI, I.getType(), ValueVTs);
3577
3578  if (HasChain)
3579    ValueVTs.push_back(MVT::Other);
3580
3581  SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
3582
3583  // Create the node.
3584  SDValue Result;
3585  if (IsTgtIntrinsic) {
3586    // This is target intrinsic that touches memory
3587    Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(),
3588                                     VTs, &Ops[0], Ops.size(),
3589                                     Info.memVT,
3590                                   MachinePointerInfo(Info.ptrVal, Info.offset),
3591                                     Info.align, Info.vol,
3592                                     Info.readMem, Info.writeMem);
3593  } else if (!HasChain) {
3594    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
3595                         VTs, &Ops[0], Ops.size());
3596  } else if (!I.getType()->isVoidTy()) {
3597    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
3598                         VTs, &Ops[0], Ops.size());
3599  } else {
3600    Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(),
3601                         VTs, &Ops[0], Ops.size());
3602  }
3603
3604  if (HasChain) {
3605    SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3606    if (OnlyLoad)
3607      PendingLoads.push_back(Chain);
3608    else
3609      DAG.setRoot(Chain);
3610  }
3611
3612  if (!I.getType()->isVoidTy()) {
3613    if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3614      EVT VT = TLI.getValueType(PTy);
3615      Result = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), VT, Result);
3616    }
3617
3618    setValue(&I, Result);
3619  } else {
3620    // Assign order to result here. If the intrinsic does not produce a result,
3621    // it won't be mapped to a SDNode and visit() will not assign it an order
3622    // number.
3623    ++SDNodeOrder;
3624    AssignOrderingToNode(Result.getNode());
3625  }
3626}
3627
3628/// GetSignificand - Get the significand and build it into a floating-point
3629/// number with exponent of 1:
3630///
3631///   Op = (Op & 0x007fffff) | 0x3f800000;
3632///
3633/// where Op is the hexidecimal representation of floating point value.
3634static SDValue
3635GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) {
3636  SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3637                           DAG.getConstant(0x007fffff, MVT::i32));
3638  SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3639                           DAG.getConstant(0x3f800000, MVT::i32));
3640  return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
3641}
3642
3643/// GetExponent - Get the exponent:
3644///
3645///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3646///
3647/// where Op is the hexidecimal representation of floating point value.
3648static SDValue
3649GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3650            DebugLoc dl) {
3651  SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3652                           DAG.getConstant(0x7f800000, MVT::i32));
3653  SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3654                           DAG.getConstant(23, TLI.getPointerTy()));
3655  SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3656                           DAG.getConstant(127, MVT::i32));
3657  return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3658}
3659
3660/// getF32Constant - Get 32-bit floating point constant.
3661static SDValue
3662getF32Constant(SelectionDAG &DAG, unsigned Flt) {
3663  return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32);
3664}
3665
3666/// visitExp - Lower an exp intrinsic. Handles the special sequences for
3667/// limited-precision mode.
3668void
3669SelectionDAGBuilder::visitExp(const CallInst &I) {
3670  SDValue result;
3671  DebugLoc dl = getCurDebugLoc();
3672
3673  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3674      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3675    SDValue Op = getValue(I.getArgOperand(0));
3676
3677    // Put the exponent in the right bit position for later addition to the
3678    // final result:
3679    //
3680    //   #define LOG2OFe 1.4426950f
3681    //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3682    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3683                             getF32Constant(DAG, 0x3fb8aa3b));
3684    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3685
3686    //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3687    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3688    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3689
3690    //   IntegerPartOfX <<= 23;
3691    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3692                                 DAG.getConstant(23, TLI.getPointerTy()));
3693
3694    if (LimitFloatPrecision <= 6) {
3695      // For floating-point precision of 6:
3696      //
3697      //   TwoToFractionalPartOfX =
3698      //     0.997535578f +
3699      //       (0.735607626f + 0.252464424f * x) * x;
3700      //
3701      // error 0.0144103317, which is 6 bits
3702      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3703                               getF32Constant(DAG, 0x3e814304));
3704      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3705                               getF32Constant(DAG, 0x3f3c50c8));
3706      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3707      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3708                               getF32Constant(DAG, 0x3f7f5e7e));
3709      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t5);
3710
3711      // Add the exponent into the result in integer domain.
3712      SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3713                               TwoToFracPartOfX, IntegerPartOfX);
3714
3715      result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t6);
3716    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3717      // For floating-point precision of 12:
3718      //
3719      //   TwoToFractionalPartOfX =
3720      //     0.999892986f +
3721      //       (0.696457318f +
3722      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3723      //
3724      // 0.000107046256 error, which is 13 to 14 bits
3725      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3726                               getF32Constant(DAG, 0x3da235e3));
3727      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3728                               getF32Constant(DAG, 0x3e65b8f3));
3729      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3730      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3731                               getF32Constant(DAG, 0x3f324b07));
3732      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3733      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3734                               getF32Constant(DAG, 0x3f7ff8fd));
3735      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t7);
3736
3737      // Add the exponent into the result in integer domain.
3738      SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3739                               TwoToFracPartOfX, IntegerPartOfX);
3740
3741      result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t8);
3742    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3743      // For floating-point precision of 18:
3744      //
3745      //   TwoToFractionalPartOfX =
3746      //     0.999999982f +
3747      //       (0.693148872f +
3748      //         (0.240227044f +
3749      //           (0.554906021e-1f +
3750      //             (0.961591928e-2f +
3751      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3752      //
3753      // error 2.47208000*10^(-7), which is better than 18 bits
3754      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3755                               getF32Constant(DAG, 0x3924b03e));
3756      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3757                               getF32Constant(DAG, 0x3ab24b87));
3758      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3759      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3760                               getF32Constant(DAG, 0x3c1d8c17));
3761      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3762      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3763                               getF32Constant(DAG, 0x3d634a1d));
3764      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3765      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3766                               getF32Constant(DAG, 0x3e75fe14));
3767      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3768      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3769                                getF32Constant(DAG, 0x3f317234));
3770      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3771      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3772                                getF32Constant(DAG, 0x3f800000));
3773      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,
3774                                             MVT::i32, t13);
3775
3776      // Add the exponent into the result in integer domain.
3777      SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3778                                TwoToFracPartOfX, IntegerPartOfX);
3779
3780      result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t14);
3781    }
3782  } else {
3783    // No special expansion.
3784    result = DAG.getNode(ISD::FEXP, dl,
3785                         getValue(I.getArgOperand(0)).getValueType(),
3786                         getValue(I.getArgOperand(0)));
3787  }
3788
3789  setValue(&I, result);
3790}
3791
3792/// visitLog - Lower a log intrinsic. Handles the special sequences for
3793/// limited-precision mode.
3794void
3795SelectionDAGBuilder::visitLog(const CallInst &I) {
3796  SDValue result;
3797  DebugLoc dl = getCurDebugLoc();
3798
3799  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3800      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3801    SDValue Op = getValue(I.getArgOperand(0));
3802    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3803
3804    // Scale the exponent by log(2) [0.69314718f].
3805    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3806    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3807                                        getF32Constant(DAG, 0x3f317218));
3808
3809    // Get the significand and build it into a floating-point number with
3810    // exponent of 1.
3811    SDValue X = GetSignificand(DAG, Op1, dl);
3812
3813    if (LimitFloatPrecision <= 6) {
3814      // For floating-point precision of 6:
3815      //
3816      //   LogofMantissa =
3817      //     -1.1609546f +
3818      //       (1.4034025f - 0.23903021f * x) * x;
3819      //
3820      // error 0.0034276066, which is better than 8 bits
3821      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3822                               getF32Constant(DAG, 0xbe74c456));
3823      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3824                               getF32Constant(DAG, 0x3fb3a2b1));
3825      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3826      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3827                                          getF32Constant(DAG, 0x3f949a29));
3828
3829      result = DAG.getNode(ISD::FADD, dl,
3830                           MVT::f32, LogOfExponent, LogOfMantissa);
3831    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3832      // For floating-point precision of 12:
3833      //
3834      //   LogOfMantissa =
3835      //     -1.7417939f +
3836      //       (2.8212026f +
3837      //         (-1.4699568f +
3838      //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3839      //
3840      // error 0.000061011436, which is 14 bits
3841      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3842                               getF32Constant(DAG, 0xbd67b6d6));
3843      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3844                               getF32Constant(DAG, 0x3ee4f4b8));
3845      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3846      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3847                               getF32Constant(DAG, 0x3fbc278b));
3848      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3849      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3850                               getF32Constant(DAG, 0x40348e95));
3851      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3852      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3853                                          getF32Constant(DAG, 0x3fdef31a));
3854
3855      result = DAG.getNode(ISD::FADD, dl,
3856                           MVT::f32, LogOfExponent, LogOfMantissa);
3857    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3858      // For floating-point precision of 18:
3859      //
3860      //   LogOfMantissa =
3861      //     -2.1072184f +
3862      //       (4.2372794f +
3863      //         (-3.7029485f +
3864      //           (2.2781945f +
3865      //             (-0.87823314f +
3866      //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3867      //
3868      // error 0.0000023660568, which is better than 18 bits
3869      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3870                               getF32Constant(DAG, 0xbc91e5ac));
3871      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3872                               getF32Constant(DAG, 0x3e4350aa));
3873      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3874      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3875                               getF32Constant(DAG, 0x3f60d3e3));
3876      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3877      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3878                               getF32Constant(DAG, 0x4011cdf0));
3879      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3880      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3881                               getF32Constant(DAG, 0x406cfd1c));
3882      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3883      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3884                               getF32Constant(DAG, 0x408797cb));
3885      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3886      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3887                                          getF32Constant(DAG, 0x4006dcab));
3888
3889      result = DAG.getNode(ISD::FADD, dl,
3890                           MVT::f32, LogOfExponent, LogOfMantissa);
3891    }
3892  } else {
3893    // No special expansion.
3894    result = DAG.getNode(ISD::FLOG, dl,
3895                         getValue(I.getArgOperand(0)).getValueType(),
3896                         getValue(I.getArgOperand(0)));
3897  }
3898
3899  setValue(&I, result);
3900}
3901
3902/// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for
3903/// limited-precision mode.
3904void
3905SelectionDAGBuilder::visitLog2(const CallInst &I) {
3906  SDValue result;
3907  DebugLoc dl = getCurDebugLoc();
3908
3909  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3910      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3911    SDValue Op = getValue(I.getArgOperand(0));
3912    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3913
3914    // Get the exponent.
3915    SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3916
3917    // Get the significand and build it into a floating-point number with
3918    // exponent of 1.
3919    SDValue X = GetSignificand(DAG, Op1, dl);
3920
3921    // Different possible minimax approximations of significand in
3922    // floating-point for various degrees of accuracy over [1,2].
3923    if (LimitFloatPrecision <= 6) {
3924      // For floating-point precision of 6:
3925      //
3926      //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3927      //
3928      // error 0.0049451742, which is more than 7 bits
3929      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3930                               getF32Constant(DAG, 0xbeb08fe0));
3931      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3932                               getF32Constant(DAG, 0x40019463));
3933      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3934      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3935                                           getF32Constant(DAG, 0x3fd6633d));
3936
3937      result = DAG.getNode(ISD::FADD, dl,
3938                           MVT::f32, LogOfExponent, Log2ofMantissa);
3939    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3940      // For floating-point precision of 12:
3941      //
3942      //   Log2ofMantissa =
3943      //     -2.51285454f +
3944      //       (4.07009056f +
3945      //         (-2.12067489f +
3946      //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3947      //
3948      // error 0.0000876136000, which is better than 13 bits
3949      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3950                               getF32Constant(DAG, 0xbda7262e));
3951      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3952                               getF32Constant(DAG, 0x3f25280b));
3953      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3954      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3955                               getF32Constant(DAG, 0x4007b923));
3956      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3957      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3958                               getF32Constant(DAG, 0x40823e2f));
3959      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3960      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3961                                           getF32Constant(DAG, 0x4020d29c));
3962
3963      result = DAG.getNode(ISD::FADD, dl,
3964                           MVT::f32, LogOfExponent, Log2ofMantissa);
3965    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3966      // For floating-point precision of 18:
3967      //
3968      //   Log2ofMantissa =
3969      //     -3.0400495f +
3970      //       (6.1129976f +
3971      //         (-5.3420409f +
3972      //           (3.2865683f +
3973      //             (-1.2669343f +
3974      //               (0.27515199f -
3975      //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3976      //
3977      // error 0.0000018516, which is better than 18 bits
3978      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3979                               getF32Constant(DAG, 0xbcd2769e));
3980      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3981                               getF32Constant(DAG, 0x3e8ce0b9));
3982      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3983      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3984                               getF32Constant(DAG, 0x3fa22ae7));
3985      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3986      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3987                               getF32Constant(DAG, 0x40525723));
3988      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3989      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3990                               getF32Constant(DAG, 0x40aaf200));
3991      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3992      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3993                               getF32Constant(DAG, 0x40c39dad));
3994      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3995      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3996                                           getF32Constant(DAG, 0x4042902c));
3997
3998      result = DAG.getNode(ISD::FADD, dl,
3999                           MVT::f32, LogOfExponent, Log2ofMantissa);
4000    }
4001  } else {
4002    // No special expansion.
4003    result = DAG.getNode(ISD::FLOG2, dl,
4004                         getValue(I.getArgOperand(0)).getValueType(),
4005                         getValue(I.getArgOperand(0)));
4006  }
4007
4008  setValue(&I, result);
4009}
4010
4011/// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for
4012/// limited-precision mode.
4013void
4014SelectionDAGBuilder::visitLog10(const CallInst &I) {
4015  SDValue result;
4016  DebugLoc dl = getCurDebugLoc();
4017
4018  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
4019      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4020    SDValue Op = getValue(I.getArgOperand(0));
4021    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4022
4023    // Scale the exponent by log10(2) [0.30102999f].
4024    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4025    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4026                                        getF32Constant(DAG, 0x3e9a209a));
4027
4028    // Get the significand and build it into a floating-point number with
4029    // exponent of 1.
4030    SDValue X = GetSignificand(DAG, Op1, dl);
4031
4032    if (LimitFloatPrecision <= 6) {
4033      // For floating-point precision of 6:
4034      //
4035      //   Log10ofMantissa =
4036      //     -0.50419619f +
4037      //       (0.60948995f - 0.10380950f * x) * x;
4038      //
4039      // error 0.0014886165, which is 6 bits
4040      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4041                               getF32Constant(DAG, 0xbdd49a13));
4042      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4043                               getF32Constant(DAG, 0x3f1c0789));
4044      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4045      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4046                                            getF32Constant(DAG, 0x3f011300));
4047
4048      result = DAG.getNode(ISD::FADD, dl,
4049                           MVT::f32, LogOfExponent, Log10ofMantissa);
4050    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
4051      // For floating-point precision of 12:
4052      //
4053      //   Log10ofMantissa =
4054      //     -0.64831180f +
4055      //       (0.91751397f +
4056      //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4057      //
4058      // error 0.00019228036, which is better than 12 bits
4059      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4060                               getF32Constant(DAG, 0x3d431f31));
4061      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4062                               getF32Constant(DAG, 0x3ea21fb2));
4063      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4064      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4065                               getF32Constant(DAG, 0x3f6ae232));
4066      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4067      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4068                                            getF32Constant(DAG, 0x3f25f7c3));
4069
4070      result = DAG.getNode(ISD::FADD, dl,
4071                           MVT::f32, LogOfExponent, Log10ofMantissa);
4072    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
4073      // For floating-point precision of 18:
4074      //
4075      //   Log10ofMantissa =
4076      //     -0.84299375f +
4077      //       (1.5327582f +
4078      //         (-1.0688956f +
4079      //           (0.49102474f +
4080      //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4081      //
4082      // error 0.0000037995730, which is better than 18 bits
4083      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4084                               getF32Constant(DAG, 0x3c5d51ce));
4085      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4086                               getF32Constant(DAG, 0x3e00685a));
4087      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4088      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4089                               getF32Constant(DAG, 0x3efb6798));
4090      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4091      SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4092                               getF32Constant(DAG, 0x3f88d192));
4093      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4094      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4095                               getF32Constant(DAG, 0x3fc4316c));
4096      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4097      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4098                                            getF32Constant(DAG, 0x3f57ce70));
4099
4100      result = DAG.getNode(ISD::FADD, dl,
4101                           MVT::f32, LogOfExponent, Log10ofMantissa);
4102    }
4103  } else {
4104    // No special expansion.
4105    result = DAG.getNode(ISD::FLOG10, dl,
4106                         getValue(I.getArgOperand(0)).getValueType(),
4107                         getValue(I.getArgOperand(0)));
4108  }
4109
4110  setValue(&I, result);
4111}
4112
4113/// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4114/// limited-precision mode.
4115void
4116SelectionDAGBuilder::visitExp2(const CallInst &I) {
4117  SDValue result;
4118  DebugLoc dl = getCurDebugLoc();
4119
4120  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
4121      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4122    SDValue Op = getValue(I.getArgOperand(0));
4123
4124    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
4125
4126    //   FractionalPartOfX = x - (float)IntegerPartOfX;
4127    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4128    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
4129
4130    //   IntegerPartOfX <<= 23;
4131    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4132                                 DAG.getConstant(23, TLI.getPointerTy()));
4133
4134    if (LimitFloatPrecision <= 6) {
4135      // For floating-point precision of 6:
4136      //
4137      //   TwoToFractionalPartOfX =
4138      //     0.997535578f +
4139      //       (0.735607626f + 0.252464424f * x) * x;
4140      //
4141      // error 0.0144103317, which is 6 bits
4142      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4143                               getF32Constant(DAG, 0x3e814304));
4144      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4145                               getF32Constant(DAG, 0x3f3c50c8));
4146      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4147      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4148                               getF32Constant(DAG, 0x3f7f5e7e));
4149      SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
4150      SDValue TwoToFractionalPartOfX =
4151        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
4152
4153      result = DAG.getNode(ISD::BITCAST, dl,
4154                           MVT::f32, TwoToFractionalPartOfX);
4155    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
4156      // For floating-point precision of 12:
4157      //
4158      //   TwoToFractionalPartOfX =
4159      //     0.999892986f +
4160      //       (0.696457318f +
4161      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4162      //
4163      // error 0.000107046256, which is 13 to 14 bits
4164      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4165                               getF32Constant(DAG, 0x3da235e3));
4166      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4167                               getF32Constant(DAG, 0x3e65b8f3));
4168      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4169      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4170                               getF32Constant(DAG, 0x3f324b07));
4171      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4172      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4173                               getF32Constant(DAG, 0x3f7ff8fd));
4174      SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
4175      SDValue TwoToFractionalPartOfX =
4176        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
4177
4178      result = DAG.getNode(ISD::BITCAST, dl,
4179                           MVT::f32, TwoToFractionalPartOfX);
4180    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
4181      // For floating-point precision of 18:
4182      //
4183      //   TwoToFractionalPartOfX =
4184      //     0.999999982f +
4185      //       (0.693148872f +
4186      //         (0.240227044f +
4187      //           (0.554906021e-1f +
4188      //             (0.961591928e-2f +
4189      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4190      // error 2.47208000*10^(-7), which is better than 18 bits
4191      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4192                               getF32Constant(DAG, 0x3924b03e));
4193      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4194                               getF32Constant(DAG, 0x3ab24b87));
4195      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4196      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4197                               getF32Constant(DAG, 0x3c1d8c17));
4198      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4199      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4200                               getF32Constant(DAG, 0x3d634a1d));
4201      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4202      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4203                               getF32Constant(DAG, 0x3e75fe14));
4204      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4205      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4206                                getF32Constant(DAG, 0x3f317234));
4207      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4208      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4209                                getF32Constant(DAG, 0x3f800000));
4210      SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
4211      SDValue TwoToFractionalPartOfX =
4212        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
4213
4214      result = DAG.getNode(ISD::BITCAST, dl,
4215                           MVT::f32, TwoToFractionalPartOfX);
4216    }
4217  } else {
4218    // No special expansion.
4219    result = DAG.getNode(ISD::FEXP2, dl,
4220                         getValue(I.getArgOperand(0)).getValueType(),
4221                         getValue(I.getArgOperand(0)));
4222  }
4223
4224  setValue(&I, result);
4225}
4226
4227/// visitPow - Lower a pow intrinsic. Handles the special sequences for
4228/// limited-precision mode with x == 10.0f.
4229void
4230SelectionDAGBuilder::visitPow(const CallInst &I) {
4231  SDValue result;
4232  const Value *Val = I.getArgOperand(0);
4233  DebugLoc dl = getCurDebugLoc();
4234  bool IsExp10 = false;
4235
4236  if (getValue(Val).getValueType() == MVT::f32 &&
4237      getValue(I.getArgOperand(1)).getValueType() == MVT::f32 &&
4238      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4239    if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) {
4240      if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
4241        APFloat Ten(10.0f);
4242        IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten);
4243      }
4244    }
4245  }
4246
4247  if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4248    SDValue Op = getValue(I.getArgOperand(1));
4249
4250    // Put the exponent in the right bit position for later addition to the
4251    // final result:
4252    //
4253    //   #define LOG2OF10 3.3219281f
4254    //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
4255    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4256                             getF32Constant(DAG, 0x40549a78));
4257    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4258
4259    //   FractionalPartOfX = x - (float)IntegerPartOfX;
4260    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4261    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4262
4263    //   IntegerPartOfX <<= 23;
4264    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4265                                 DAG.getConstant(23, TLI.getPointerTy()));
4266
4267    if (LimitFloatPrecision <= 6) {
4268      // For floating-point precision of 6:
4269      //
4270      //   twoToFractionalPartOfX =
4271      //     0.997535578f +
4272      //       (0.735607626f + 0.252464424f * x) * x;
4273      //
4274      // error 0.0144103317, which is 6 bits
4275      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4276                               getF32Constant(DAG, 0x3e814304));
4277      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4278                               getF32Constant(DAG, 0x3f3c50c8));
4279      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4280      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4281                               getF32Constant(DAG, 0x3f7f5e7e));
4282      SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
4283      SDValue TwoToFractionalPartOfX =
4284        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
4285
4286      result = DAG.getNode(ISD::BITCAST, dl,
4287                           MVT::f32, TwoToFractionalPartOfX);
4288    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
4289      // For floating-point precision of 12:
4290      //
4291      //   TwoToFractionalPartOfX =
4292      //     0.999892986f +
4293      //       (0.696457318f +
4294      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4295      //
4296      // error 0.000107046256, which is 13 to 14 bits
4297      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4298                               getF32Constant(DAG, 0x3da235e3));
4299      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4300                               getF32Constant(DAG, 0x3e65b8f3));
4301      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4302      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4303                               getF32Constant(DAG, 0x3f324b07));
4304      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4305      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4306                               getF32Constant(DAG, 0x3f7ff8fd));
4307      SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
4308      SDValue TwoToFractionalPartOfX =
4309        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
4310
4311      result = DAG.getNode(ISD::BITCAST, dl,
4312                           MVT::f32, TwoToFractionalPartOfX);
4313    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
4314      // For floating-point precision of 18:
4315      //
4316      //   TwoToFractionalPartOfX =
4317      //     0.999999982f +
4318      //       (0.693148872f +
4319      //         (0.240227044f +
4320      //           (0.554906021e-1f +
4321      //             (0.961591928e-2f +
4322      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4323      // error 2.47208000*10^(-7), which is better than 18 bits
4324      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4325                               getF32Constant(DAG, 0x3924b03e));
4326      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4327                               getF32Constant(DAG, 0x3ab24b87));
4328      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4329      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4330                               getF32Constant(DAG, 0x3c1d8c17));
4331      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4332      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4333                               getF32Constant(DAG, 0x3d634a1d));
4334      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4335      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4336                               getF32Constant(DAG, 0x3e75fe14));
4337      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4338      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4339                                getF32Constant(DAG, 0x3f317234));
4340      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4341      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4342                                getF32Constant(DAG, 0x3f800000));
4343      SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
4344      SDValue TwoToFractionalPartOfX =
4345        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
4346
4347      result = DAG.getNode(ISD::BITCAST, dl,
4348                           MVT::f32, TwoToFractionalPartOfX);
4349    }
4350  } else {
4351    // No special expansion.
4352    result = DAG.getNode(ISD::FPOW, dl,
4353                         getValue(I.getArgOperand(0)).getValueType(),
4354                         getValue(I.getArgOperand(0)),
4355                         getValue(I.getArgOperand(1)));
4356  }
4357
4358  setValue(&I, result);
4359}
4360
4361
4362/// ExpandPowI - Expand a llvm.powi intrinsic.
4363static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS,
4364                          SelectionDAG &DAG) {
4365  // If RHS is a constant, we can expand this out to a multiplication tree,
4366  // otherwise we end up lowering to a call to __powidf2 (for example).  When
4367  // optimizing for size, we only want to do this if the expansion would produce
4368  // a small number of multiplies, otherwise we do the full expansion.
4369  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4370    // Get the exponent as a positive value.
4371    unsigned Val = RHSC->getSExtValue();
4372    if ((int)Val < 0) Val = -Val;
4373
4374    // powi(x, 0) -> 1.0
4375    if (Val == 0)
4376      return DAG.getConstantFP(1.0, LHS.getValueType());
4377
4378    const Function *F = DAG.getMachineFunction().getFunction();
4379    if (!F->hasFnAttr(Attribute::OptimizeForSize) ||
4380        // If optimizing for size, don't insert too many multiplies.  This
4381        // inserts up to 5 multiplies.
4382        CountPopulation_32(Val)+Log2_32(Val) < 7) {
4383      // We use the simple binary decomposition method to generate the multiply
4384      // sequence.  There are more optimal ways to do this (for example,
4385      // powi(x,15) generates one more multiply than it should), but this has
4386      // the benefit of being both really simple and much better than a libcall.
4387      SDValue Res;  // Logically starts equal to 1.0
4388      SDValue CurSquare = LHS;
4389      while (Val) {
4390        if (Val & 1) {
4391          if (Res.getNode())
4392            Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4393          else
4394            Res = CurSquare;  // 1.0*CurSquare.
4395        }
4396
4397        CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4398                                CurSquare, CurSquare);
4399        Val >>= 1;
4400      }
4401
4402      // If the original was negative, invert the result, producing 1/(x*x*x).
4403      if (RHSC->getSExtValue() < 0)
4404        Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4405                          DAG.getConstantFP(1.0, LHS.getValueType()), Res);
4406      return Res;
4407    }
4408  }
4409
4410  // Otherwise, expand to a libcall.
4411  return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4412}
4413
4414// getTruncatedArgReg - Find underlying register used for an truncated
4415// argument.
4416static unsigned getTruncatedArgReg(const SDValue &N) {
4417  if (N.getOpcode() != ISD::TRUNCATE)
4418    return 0;
4419
4420  const SDValue &Ext = N.getOperand(0);
4421  if (Ext.getOpcode() == ISD::AssertZext || Ext.getOpcode() == ISD::AssertSext){
4422    const SDValue &CFR = Ext.getOperand(0);
4423    if (CFR.getOpcode() == ISD::CopyFromReg)
4424      return cast<RegisterSDNode>(CFR.getOperand(1))->getReg();
4425    if (CFR.getOpcode() == ISD::TRUNCATE)
4426      return getTruncatedArgReg(CFR);
4427  }
4428  return 0;
4429}
4430
4431/// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4432/// argument, create the corresponding DBG_VALUE machine instruction for it now.
4433/// At the end of instruction selection, they will be inserted to the entry BB.
4434bool
4435SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
4436                                              int64_t Offset,
4437                                              const SDValue &N) {
4438  const Argument *Arg = dyn_cast<Argument>(V);
4439  if (!Arg)
4440    return false;
4441
4442  MachineFunction &MF = DAG.getMachineFunction();
4443  const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
4444  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
4445
4446  // Ignore inlined function arguments here.
4447  DIVariable DV(Variable);
4448  if (DV.isInlinedFnArgument(MF.getFunction()))
4449    return false;
4450
4451  unsigned Reg = 0;
4452  // Some arguments' frame index is recorded during argument lowering.
4453  Offset = FuncInfo.getArgumentFrameIndex(Arg);
4454  if (Offset)
4455    Reg = TRI->getFrameRegister(MF);
4456
4457  if (!Reg && N.getNode()) {
4458    if (N.getOpcode() == ISD::CopyFromReg)
4459      Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
4460    else
4461      Reg = getTruncatedArgReg(N);
4462    if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4463      MachineRegisterInfo &RegInfo = MF.getRegInfo();
4464      unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4465      if (PR)
4466        Reg = PR;
4467    }
4468  }
4469
4470  if (!Reg) {
4471    // Check if ValueMap has reg number.
4472    DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4473    if (VMI != FuncInfo.ValueMap.end())
4474      Reg = VMI->second;
4475  }
4476
4477  if (!Reg && N.getNode()) {
4478    // Check if frame index is available.
4479    if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4480      if (FrameIndexSDNode *FINode =
4481          dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) {
4482        Reg = TRI->getFrameRegister(MF);
4483        Offset = FINode->getIndex();
4484      }
4485  }
4486
4487  if (!Reg)
4488    return false;
4489
4490  MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(),
4491                                    TII->get(TargetOpcode::DBG_VALUE))
4492    .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable);
4493  FuncInfo.ArgDbgValues.push_back(&*MIB);
4494  return true;
4495}
4496
4497// VisualStudio defines setjmp as _setjmp
4498#if defined(_MSC_VER) && defined(setjmp) && \
4499                         !defined(setjmp_undefined_for_msvc)
4500#  pragma push_macro("setjmp")
4501#  undef setjmp
4502#  define setjmp_undefined_for_msvc
4503#endif
4504
4505/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4506/// we want to emit this as a call to a named external function, return the name
4507/// otherwise lower it and return null.
4508const char *
4509SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4510  DebugLoc dl = getCurDebugLoc();
4511  SDValue Res;
4512
4513  switch (Intrinsic) {
4514  default:
4515    // By default, turn this into a target intrinsic node.
4516    visitTargetIntrinsic(I, Intrinsic);
4517    return 0;
4518  case Intrinsic::vastart:  visitVAStart(I); return 0;
4519  case Intrinsic::vaend:    visitVAEnd(I); return 0;
4520  case Intrinsic::vacopy:   visitVACopy(I); return 0;
4521  case Intrinsic::returnaddress:
4522    setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(),
4523                             getValue(I.getArgOperand(0))));
4524    return 0;
4525  case Intrinsic::frameaddress:
4526    setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(),
4527                             getValue(I.getArgOperand(0))));
4528    return 0;
4529  case Intrinsic::setjmp:
4530    return &"_setjmp"[!TLI.usesUnderscoreSetJmp()];
4531  case Intrinsic::longjmp:
4532    return &"_longjmp"[!TLI.usesUnderscoreLongJmp()];
4533  case Intrinsic::memcpy: {
4534    // Assert for address < 256 since we support only user defined address
4535    // spaces.
4536    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4537           < 256 &&
4538           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4539           < 256 &&
4540           "Unknown address space");
4541    SDValue Op1 = getValue(I.getArgOperand(0));
4542    SDValue Op2 = getValue(I.getArgOperand(1));
4543    SDValue Op3 = getValue(I.getArgOperand(2));
4544    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4545    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4546    DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false,
4547                              MachinePointerInfo(I.getArgOperand(0)),
4548                              MachinePointerInfo(I.getArgOperand(1))));
4549    return 0;
4550  }
4551  case Intrinsic::memset: {
4552    // Assert for address < 256 since we support only user defined address
4553    // spaces.
4554    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4555           < 256 &&
4556           "Unknown address space");
4557    SDValue Op1 = getValue(I.getArgOperand(0));
4558    SDValue Op2 = getValue(I.getArgOperand(1));
4559    SDValue Op3 = getValue(I.getArgOperand(2));
4560    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4561    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4562    DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4563                              MachinePointerInfo(I.getArgOperand(0))));
4564    return 0;
4565  }
4566  case Intrinsic::memmove: {
4567    // Assert for address < 256 since we support only user defined address
4568    // spaces.
4569    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4570           < 256 &&
4571           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4572           < 256 &&
4573           "Unknown address space");
4574    SDValue Op1 = getValue(I.getArgOperand(0));
4575    SDValue Op2 = getValue(I.getArgOperand(1));
4576    SDValue Op3 = getValue(I.getArgOperand(2));
4577    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4578    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4579    DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4580                               MachinePointerInfo(I.getArgOperand(0)),
4581                               MachinePointerInfo(I.getArgOperand(1))));
4582    return 0;
4583  }
4584  case Intrinsic::dbg_declare: {
4585    const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4586    MDNode *Variable = DI.getVariable();
4587    const Value *Address = DI.getAddress();
4588    if (!Address || !DIVariable(Variable).Verify()) {
4589      DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4590      return 0;
4591    }
4592
4593    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4594    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4595    // absolute, but not relative, values are different depending on whether
4596    // debug info exists.
4597    ++SDNodeOrder;
4598
4599    // Check if address has undef value.
4600    if (isa<UndefValue>(Address) ||
4601        (Address->use_empty() && !isa<Argument>(Address))) {
4602      DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4603      return 0;
4604    }
4605
4606    SDValue &N = NodeMap[Address];
4607    if (!N.getNode() && isa<Argument>(Address))
4608      // Check unused arguments map.
4609      N = UnusedArgNodeMap[Address];
4610    SDDbgValue *SDV;
4611    if (N.getNode()) {
4612      if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4613        Address = BCI->getOperand(0);
4614      // Parameters are handled specially.
4615      bool isParameter =
4616        (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable ||
4617         isa<Argument>(Address));
4618
4619      const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
4620
4621      if (isParameter && !AI) {
4622        FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4623        if (FINode)
4624          // Byval parameter.  We have a frame index at this point.
4625          SDV = DAG.getDbgValue(Variable, FINode->getIndex(),
4626                                0, dl, SDNodeOrder);
4627        else {
4628          // Address is an argument, so try to emit its dbg value using
4629          // virtual register info from the FuncInfo.ValueMap.
4630          EmitFuncArgumentDbgValue(Address, Variable, 0, N);
4631          return 0;
4632        }
4633      } else if (AI)
4634        SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
4635                              0, dl, SDNodeOrder);
4636      else {
4637        // Can't do anything with other non-AI cases yet.
4638        DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4639        DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t");
4640        DEBUG(Address->dump());
4641        return 0;
4642      }
4643      DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4644    } else {
4645      // If Address is an argument then try to emit its dbg value using
4646      // virtual register info from the FuncInfo.ValueMap.
4647      if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) {
4648        // If variable is pinned by a alloca in dominating bb then
4649        // use StaticAllocaMap.
4650        if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4651          if (AI->getParent() != DI.getParent()) {
4652            DenseMap<const AllocaInst*, int>::iterator SI =
4653              FuncInfo.StaticAllocaMap.find(AI);
4654            if (SI != FuncInfo.StaticAllocaMap.end()) {
4655              SDV = DAG.getDbgValue(Variable, SI->second,
4656                                    0, dl, SDNodeOrder);
4657              DAG.AddDbgValue(SDV, 0, false);
4658              return 0;
4659            }
4660          }
4661        }
4662        DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4663      }
4664    }
4665    return 0;
4666  }
4667  case Intrinsic::dbg_value: {
4668    const DbgValueInst &DI = cast<DbgValueInst>(I);
4669    if (!DIVariable(DI.getVariable()).Verify())
4670      return 0;
4671
4672    MDNode *Variable = DI.getVariable();
4673    uint64_t Offset = DI.getOffset();
4674    const Value *V = DI.getValue();
4675    if (!V)
4676      return 0;
4677
4678    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4679    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4680    // absolute, but not relative, values are different depending on whether
4681    // debug info exists.
4682    ++SDNodeOrder;
4683    SDDbgValue *SDV;
4684    if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
4685      SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder);
4686      DAG.AddDbgValue(SDV, 0, false);
4687    } else {
4688      // Do not use getValue() in here; we don't want to generate code at
4689      // this point if it hasn't been done yet.
4690      SDValue N = NodeMap[V];
4691      if (!N.getNode() && isa<Argument>(V))
4692        // Check unused arguments map.
4693        N = UnusedArgNodeMap[V];
4694      if (N.getNode()) {
4695        if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) {
4696          SDV = DAG.getDbgValue(Variable, N.getNode(),
4697                                N.getResNo(), Offset, dl, SDNodeOrder);
4698          DAG.AddDbgValue(SDV, N.getNode(), false);
4699        }
4700      } else if (!V->use_empty() ) {
4701        // Do not call getValue(V) yet, as we don't want to generate code.
4702        // Remember it for later.
4703        DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4704        DanglingDebugInfoMap[V] = DDI;
4705      } else {
4706        // We may expand this to cover more cases.  One case where we have no
4707        // data available is an unreferenced parameter.
4708        DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4709      }
4710    }
4711
4712    // Build a debug info table entry.
4713    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4714      V = BCI->getOperand(0);
4715    const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4716    // Don't handle byval struct arguments or VLAs, for example.
4717    if (!AI) {
4718      DEBUG(dbgs() << "Dropping debug location info for:\n  " << DI << "\n");
4719      DEBUG(dbgs() << "  Last seen at:\n    " << *V << "\n");
4720      return 0;
4721    }
4722    DenseMap<const AllocaInst*, int>::iterator SI =
4723      FuncInfo.StaticAllocaMap.find(AI);
4724    if (SI == FuncInfo.StaticAllocaMap.end())
4725      return 0; // VLAs.
4726    int FI = SI->second;
4727
4728    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4729    if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
4730      MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
4731    return 0;
4732  }
4733
4734  case Intrinsic::eh_typeid_for: {
4735    // Find the type id for the given typeinfo.
4736    GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0));
4737    unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4738    Res = DAG.getConstant(TypeID, MVT::i32);
4739    setValue(&I, Res);
4740    return 0;
4741  }
4742
4743  case Intrinsic::eh_return_i32:
4744  case Intrinsic::eh_return_i64:
4745    DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4746    DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl,
4747                            MVT::Other,
4748                            getControlRoot(),
4749                            getValue(I.getArgOperand(0)),
4750                            getValue(I.getArgOperand(1))));
4751    return 0;
4752  case Intrinsic::eh_unwind_init:
4753    DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4754    return 0;
4755  case Intrinsic::eh_dwarf_cfa: {
4756    SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl,
4757                                        TLI.getPointerTy());
4758    SDValue Offset = DAG.getNode(ISD::ADD, dl,
4759                                 TLI.getPointerTy(),
4760                                 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
4761                                             TLI.getPointerTy()),
4762                                 CfaArg);
4763    SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl,
4764                             TLI.getPointerTy(),
4765                             DAG.getConstant(0, TLI.getPointerTy()));
4766    setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
4767                             FA, Offset));
4768    return 0;
4769  }
4770  case Intrinsic::eh_sjlj_callsite: {
4771    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4772    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4773    assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4774    assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4775
4776    MMI.setCurrentCallSite(CI->getZExtValue());
4777    return 0;
4778  }
4779  case Intrinsic::eh_sjlj_functioncontext: {
4780    // Get and store the index of the function context.
4781    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4782    AllocaInst *FnCtx =
4783      cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
4784    int FI = FuncInfo.StaticAllocaMap[FnCtx];
4785    MFI->setFunctionContextIndex(FI);
4786    return 0;
4787  }
4788  case Intrinsic::eh_sjlj_setjmp: {
4789    SDValue Ops[2];
4790    Ops[0] = getRoot();
4791    Ops[1] = getValue(I.getArgOperand(0));
4792    SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, dl,
4793                             DAG.getVTList(MVT::i32, MVT::Other),
4794                             Ops, 2);
4795    setValue(&I, Op.getValue(0));
4796    DAG.setRoot(Op.getValue(1));
4797    return 0;
4798  }
4799  case Intrinsic::eh_sjlj_longjmp: {
4800    DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other,
4801                            getRoot(), getValue(I.getArgOperand(0))));
4802    return 0;
4803  }
4804
4805  case Intrinsic::x86_mmx_pslli_w:
4806  case Intrinsic::x86_mmx_pslli_d:
4807  case Intrinsic::x86_mmx_pslli_q:
4808  case Intrinsic::x86_mmx_psrli_w:
4809  case Intrinsic::x86_mmx_psrli_d:
4810  case Intrinsic::x86_mmx_psrli_q:
4811  case Intrinsic::x86_mmx_psrai_w:
4812  case Intrinsic::x86_mmx_psrai_d: {
4813    SDValue ShAmt = getValue(I.getArgOperand(1));
4814    if (isa<ConstantSDNode>(ShAmt)) {
4815      visitTargetIntrinsic(I, Intrinsic);
4816      return 0;
4817    }
4818    unsigned NewIntrinsic = 0;
4819    EVT ShAmtVT = MVT::v2i32;
4820    switch (Intrinsic) {
4821    case Intrinsic::x86_mmx_pslli_w:
4822      NewIntrinsic = Intrinsic::x86_mmx_psll_w;
4823      break;
4824    case Intrinsic::x86_mmx_pslli_d:
4825      NewIntrinsic = Intrinsic::x86_mmx_psll_d;
4826      break;
4827    case Intrinsic::x86_mmx_pslli_q:
4828      NewIntrinsic = Intrinsic::x86_mmx_psll_q;
4829      break;
4830    case Intrinsic::x86_mmx_psrli_w:
4831      NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
4832      break;
4833    case Intrinsic::x86_mmx_psrli_d:
4834      NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
4835      break;
4836    case Intrinsic::x86_mmx_psrli_q:
4837      NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
4838      break;
4839    case Intrinsic::x86_mmx_psrai_w:
4840      NewIntrinsic = Intrinsic::x86_mmx_psra_w;
4841      break;
4842    case Intrinsic::x86_mmx_psrai_d:
4843      NewIntrinsic = Intrinsic::x86_mmx_psra_d;
4844      break;
4845    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4846    }
4847
4848    // The vector shift intrinsics with scalars uses 32b shift amounts but
4849    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
4850    // to be zero.
4851    // We must do this early because v2i32 is not a legal type.
4852    DebugLoc dl = getCurDebugLoc();
4853    SDValue ShOps[2];
4854    ShOps[0] = ShAmt;
4855    ShOps[1] = DAG.getConstant(0, MVT::i32);
4856    ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
4857    EVT DestVT = TLI.getValueType(I.getType());
4858    ShAmt = DAG.getNode(ISD::BITCAST, dl, DestVT, ShAmt);
4859    Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
4860                       DAG.getConstant(NewIntrinsic, MVT::i32),
4861                       getValue(I.getArgOperand(0)), ShAmt);
4862    setValue(&I, Res);
4863    return 0;
4864  }
4865  case Intrinsic::x86_avx_vinsertf128_pd_256:
4866  case Intrinsic::x86_avx_vinsertf128_ps_256:
4867  case Intrinsic::x86_avx_vinsertf128_si_256:
4868  case Intrinsic::x86_avx2_vinserti128: {
4869    DebugLoc dl = getCurDebugLoc();
4870    EVT DestVT = TLI.getValueType(I.getType());
4871    EVT ElVT = TLI.getValueType(I.getArgOperand(1)->getType());
4872    uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue() & 1) *
4873                   ElVT.getVectorNumElements();
4874    Res = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, DestVT,
4875                      getValue(I.getArgOperand(0)),
4876                      getValue(I.getArgOperand(1)),
4877                      DAG.getIntPtrConstant(Idx));
4878    setValue(&I, Res);
4879    return 0;
4880  }
4881  case Intrinsic::x86_avx_vextractf128_pd_256:
4882  case Intrinsic::x86_avx_vextractf128_ps_256:
4883  case Intrinsic::x86_avx_vextractf128_si_256:
4884  case Intrinsic::x86_avx2_vextracti128: {
4885    DebugLoc dl = getCurDebugLoc();
4886    EVT DestVT = TLI.getValueType(I.getType());
4887    uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(1))->getZExtValue() & 1) *
4888                   DestVT.getVectorNumElements();
4889    Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT,
4890                      getValue(I.getArgOperand(0)),
4891                      DAG.getIntPtrConstant(Idx));
4892    setValue(&I, Res);
4893    return 0;
4894  }
4895  case Intrinsic::convertff:
4896  case Intrinsic::convertfsi:
4897  case Intrinsic::convertfui:
4898  case Intrinsic::convertsif:
4899  case Intrinsic::convertuif:
4900  case Intrinsic::convertss:
4901  case Intrinsic::convertsu:
4902  case Intrinsic::convertus:
4903  case Intrinsic::convertuu: {
4904    ISD::CvtCode Code = ISD::CVT_INVALID;
4905    switch (Intrinsic) {
4906    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4907    case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
4908    case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4909    case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4910    case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4911    case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4912    case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
4913    case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
4914    case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4915    case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4916    }
4917    EVT DestVT = TLI.getValueType(I.getType());
4918    const Value *Op1 = I.getArgOperand(0);
4919    Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1),
4920                               DAG.getValueType(DestVT),
4921                               DAG.getValueType(getValue(Op1).getValueType()),
4922                               getValue(I.getArgOperand(1)),
4923                               getValue(I.getArgOperand(2)),
4924                               Code);
4925    setValue(&I, Res);
4926    return 0;
4927  }
4928  case Intrinsic::sqrt:
4929    setValue(&I, DAG.getNode(ISD::FSQRT, dl,
4930                             getValue(I.getArgOperand(0)).getValueType(),
4931                             getValue(I.getArgOperand(0))));
4932    return 0;
4933  case Intrinsic::powi:
4934    setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)),
4935                            getValue(I.getArgOperand(1)), DAG));
4936    return 0;
4937  case Intrinsic::sin:
4938    setValue(&I, DAG.getNode(ISD::FSIN, dl,
4939                             getValue(I.getArgOperand(0)).getValueType(),
4940                             getValue(I.getArgOperand(0))));
4941    return 0;
4942  case Intrinsic::cos:
4943    setValue(&I, DAG.getNode(ISD::FCOS, dl,
4944                             getValue(I.getArgOperand(0)).getValueType(),
4945                             getValue(I.getArgOperand(0))));
4946    return 0;
4947  case Intrinsic::log:
4948    visitLog(I);
4949    return 0;
4950  case Intrinsic::log2:
4951    visitLog2(I);
4952    return 0;
4953  case Intrinsic::log10:
4954    visitLog10(I);
4955    return 0;
4956  case Intrinsic::exp:
4957    visitExp(I);
4958    return 0;
4959  case Intrinsic::exp2:
4960    visitExp2(I);
4961    return 0;
4962  case Intrinsic::pow:
4963    visitPow(I);
4964    return 0;
4965  case Intrinsic::fabs:
4966    setValue(&I, DAG.getNode(ISD::FABS, dl,
4967                             getValue(I.getArgOperand(0)).getValueType(),
4968                             getValue(I.getArgOperand(0))));
4969    return 0;
4970  case Intrinsic::floor:
4971    setValue(&I, DAG.getNode(ISD::FFLOOR, dl,
4972                             getValue(I.getArgOperand(0)).getValueType(),
4973                             getValue(I.getArgOperand(0))));
4974    return 0;
4975  case Intrinsic::fma:
4976    setValue(&I, DAG.getNode(ISD::FMA, dl,
4977                             getValue(I.getArgOperand(0)).getValueType(),
4978                             getValue(I.getArgOperand(0)),
4979                             getValue(I.getArgOperand(1)),
4980                             getValue(I.getArgOperand(2))));
4981    return 0;
4982  case Intrinsic::fmuladd: {
4983    EVT VT = TLI.getValueType(I.getType());
4984    if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
4985        TLI.isOperationLegal(ISD::FMA, VT) &&
4986        TLI.isFMAFasterThanMulAndAdd(VT)){
4987      setValue(&I, DAG.getNode(ISD::FMA, dl,
4988                               getValue(I.getArgOperand(0)).getValueType(),
4989                               getValue(I.getArgOperand(0)),
4990                               getValue(I.getArgOperand(1)),
4991                               getValue(I.getArgOperand(2))));
4992    } else {
4993      SDValue Mul = DAG.getNode(ISD::FMUL, dl,
4994                                getValue(I.getArgOperand(0)).getValueType(),
4995                                getValue(I.getArgOperand(0)),
4996                                getValue(I.getArgOperand(1)));
4997      SDValue Add = DAG.getNode(ISD::FADD, dl,
4998                                getValue(I.getArgOperand(0)).getValueType(),
4999                                Mul,
5000                                getValue(I.getArgOperand(2)));
5001      setValue(&I, Add);
5002    }
5003    return 0;
5004  }
5005  case Intrinsic::convert_to_fp16:
5006    setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl,
5007                             MVT::i16, getValue(I.getArgOperand(0))));
5008    return 0;
5009  case Intrinsic::convert_from_fp16:
5010    setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl,
5011                             MVT::f32, getValue(I.getArgOperand(0))));
5012    return 0;
5013  case Intrinsic::pcmarker: {
5014    SDValue Tmp = getValue(I.getArgOperand(0));
5015    DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp));
5016    return 0;
5017  }
5018  case Intrinsic::readcyclecounter: {
5019    SDValue Op = getRoot();
5020    Res = DAG.getNode(ISD::READCYCLECOUNTER, dl,
5021                      DAG.getVTList(MVT::i64, MVT::Other),
5022                      &Op, 1);
5023    setValue(&I, Res);
5024    DAG.setRoot(Res.getValue(1));
5025    return 0;
5026  }
5027  case Intrinsic::bswap:
5028    setValue(&I, DAG.getNode(ISD::BSWAP, dl,
5029                             getValue(I.getArgOperand(0)).getValueType(),
5030                             getValue(I.getArgOperand(0))));
5031    return 0;
5032  case Intrinsic::cttz: {
5033    SDValue Arg = getValue(I.getArgOperand(0));
5034    ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5035    EVT Ty = Arg.getValueType();
5036    setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
5037                             dl, Ty, Arg));
5038    return 0;
5039  }
5040  case Intrinsic::ctlz: {
5041    SDValue Arg = getValue(I.getArgOperand(0));
5042    ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5043    EVT Ty = Arg.getValueType();
5044    setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
5045                             dl, Ty, Arg));
5046    return 0;
5047  }
5048  case Intrinsic::ctpop: {
5049    SDValue Arg = getValue(I.getArgOperand(0));
5050    EVT Ty = Arg.getValueType();
5051    setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg));
5052    return 0;
5053  }
5054  case Intrinsic::stacksave: {
5055    SDValue Op = getRoot();
5056    Res = DAG.getNode(ISD::STACKSAVE, dl,
5057                      DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
5058    setValue(&I, Res);
5059    DAG.setRoot(Res.getValue(1));
5060    return 0;
5061  }
5062  case Intrinsic::stackrestore: {
5063    Res = getValue(I.getArgOperand(0));
5064    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res));
5065    return 0;
5066  }
5067  case Intrinsic::stackprotector: {
5068    // Emit code into the DAG to store the stack guard onto the stack.
5069    MachineFunction &MF = DAG.getMachineFunction();
5070    MachineFrameInfo *MFI = MF.getFrameInfo();
5071    EVT PtrTy = TLI.getPointerTy();
5072
5073    SDValue Src = getValue(I.getArgOperand(0));   // The guard's value.
5074    AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
5075
5076    int FI = FuncInfo.StaticAllocaMap[Slot];
5077    MFI->setStackProtectorIndex(FI);
5078
5079    SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
5080
5081    // Store the stack protector onto the stack.
5082    Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN,
5083                       MachinePointerInfo::getFixedStack(FI),
5084                       true, false, 0);
5085    setValue(&I, Res);
5086    DAG.setRoot(Res);
5087    return 0;
5088  }
5089  case Intrinsic::objectsize: {
5090    // If we don't know by now, we're never going to know.
5091    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
5092
5093    assert(CI && "Non-constant type in __builtin_object_size?");
5094
5095    SDValue Arg = getValue(I.getCalledValue());
5096    EVT Ty = Arg.getValueType();
5097
5098    if (CI->isZero())
5099      Res = DAG.getConstant(-1ULL, Ty);
5100    else
5101      Res = DAG.getConstant(0, Ty);
5102
5103    setValue(&I, Res);
5104    return 0;
5105  }
5106  case Intrinsic::var_annotation:
5107    // Discard annotate attributes
5108    return 0;
5109
5110  case Intrinsic::init_trampoline: {
5111    const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5112
5113    SDValue Ops[6];
5114    Ops[0] = getRoot();
5115    Ops[1] = getValue(I.getArgOperand(0));
5116    Ops[2] = getValue(I.getArgOperand(1));
5117    Ops[3] = getValue(I.getArgOperand(2));
5118    Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5119    Ops[5] = DAG.getSrcValue(F);
5120
5121    Res = DAG.getNode(ISD::INIT_TRAMPOLINE, dl, MVT::Other, Ops, 6);
5122
5123    DAG.setRoot(Res);
5124    return 0;
5125  }
5126  case Intrinsic::adjust_trampoline: {
5127    setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, dl,
5128                             TLI.getPointerTy(),
5129                             getValue(I.getArgOperand(0))));
5130    return 0;
5131  }
5132  case Intrinsic::gcroot:
5133    if (GFI) {
5134      const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
5135      const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
5136
5137      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
5138      GFI->addStackRoot(FI->getIndex(), TypeMap);
5139    }
5140    return 0;
5141  case Intrinsic::gcread:
5142  case Intrinsic::gcwrite:
5143    llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
5144  case Intrinsic::flt_rounds:
5145    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32));
5146    return 0;
5147
5148  case Intrinsic::expect: {
5149    // Just replace __builtin_expect(exp, c) with EXP.
5150    setValue(&I, getValue(I.getArgOperand(0)));
5151    return 0;
5152  }
5153
5154  case Intrinsic::trap: {
5155    StringRef TrapFuncName = TM.Options.getTrapFunctionName();
5156    if (TrapFuncName.empty()) {
5157      DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot()));
5158      return 0;
5159    }
5160    TargetLowering::ArgListTy Args;
5161    TargetLowering::
5162    CallLoweringInfo CLI(getRoot(), I.getType(),
5163                 false, false, false, false, 0, CallingConv::C,
5164                 /*isTailCall=*/false,
5165                 /*doesNotRet=*/false, /*isReturnValueUsed=*/true,
5166                 DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()),
5167                 Args, DAG, getCurDebugLoc());
5168    std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
5169    DAG.setRoot(Result.second);
5170    return 0;
5171  }
5172  case Intrinsic::debugtrap: {
5173    DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, dl,MVT::Other, getRoot()));
5174    return 0;
5175  }
5176  case Intrinsic::uadd_with_overflow:
5177  case Intrinsic::sadd_with_overflow:
5178  case Intrinsic::usub_with_overflow:
5179  case Intrinsic::ssub_with_overflow:
5180  case Intrinsic::umul_with_overflow:
5181  case Intrinsic::smul_with_overflow: {
5182    ISD::NodeType Op;
5183    switch (Intrinsic) {
5184    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5185    case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
5186    case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
5187    case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
5188    case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
5189    case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
5190    case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
5191    }
5192    SDValue Op1 = getValue(I.getArgOperand(0));
5193    SDValue Op2 = getValue(I.getArgOperand(1));
5194
5195    SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
5196    setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2));
5197    return 0;
5198  }
5199  case Intrinsic::prefetch: {
5200    SDValue Ops[5];
5201    unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
5202    Ops[0] = getRoot();
5203    Ops[1] = getValue(I.getArgOperand(0));
5204    Ops[2] = getValue(I.getArgOperand(1));
5205    Ops[3] = getValue(I.getArgOperand(2));
5206    Ops[4] = getValue(I.getArgOperand(3));
5207    DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, dl,
5208                                        DAG.getVTList(MVT::Other),
5209                                        &Ops[0], 5,
5210                                        EVT::getIntegerVT(*Context, 8),
5211                                        MachinePointerInfo(I.getArgOperand(0)),
5212                                        0, /* align */
5213                                        false, /* volatile */
5214                                        rw==0, /* read */
5215                                        rw==1)); /* write */
5216    return 0;
5217  }
5218
5219  case Intrinsic::invariant_start:
5220  case Intrinsic::lifetime_start:
5221    // Discard region information.
5222    setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
5223    return 0;
5224  case Intrinsic::invariant_end:
5225  case Intrinsic::lifetime_end:
5226    // Discard region information.
5227    return 0;
5228  case Intrinsic::donothing:
5229    // ignore
5230    return 0;
5231  }
5232}
5233
5234void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
5235                                      bool isTailCall,
5236                                      MachineBasicBlock *LandingPad) {
5237  PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
5238  FunctionType *FTy = cast<FunctionType>(PT->getElementType());
5239  Type *RetTy = FTy->getReturnType();
5240  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5241  MCSymbol *BeginLabel = 0;
5242
5243  TargetLowering::ArgListTy Args;
5244  TargetLowering::ArgListEntry Entry;
5245  Args.reserve(CS.arg_size());
5246
5247  // Check whether the function can return without sret-demotion.
5248  SmallVector<ISD::OutputArg, 4> Outs;
5249  GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(),
5250                Outs, TLI);
5251
5252  bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
5253                                           DAG.getMachineFunction(),
5254                                           FTy->isVarArg(), Outs,
5255                                           FTy->getContext());
5256
5257  SDValue DemoteStackSlot;
5258  int DemoteStackIdx = -100;
5259
5260  if (!CanLowerReturn) {
5261    uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(
5262                      FTy->getReturnType());
5263    unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(
5264                      FTy->getReturnType());
5265    MachineFunction &MF = DAG.getMachineFunction();
5266    DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5267    Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
5268
5269    DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI.getPointerTy());
5270    Entry.Node = DemoteStackSlot;
5271    Entry.Ty = StackSlotPtrType;
5272    Entry.isSExt = false;
5273    Entry.isZExt = false;
5274    Entry.isInReg = false;
5275    Entry.isSRet = true;
5276    Entry.isNest = false;
5277    Entry.isByVal = false;
5278    Entry.Alignment = Align;
5279    Args.push_back(Entry);
5280    RetTy = Type::getVoidTy(FTy->getContext());
5281  }
5282
5283  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
5284       i != e; ++i) {
5285    const Value *V = *i;
5286
5287    // Skip empty types
5288    if (V->getType()->isEmptyTy())
5289      continue;
5290
5291    SDValue ArgNode = getValue(V);
5292    Entry.Node = ArgNode; Entry.Ty = V->getType();
5293
5294    unsigned attrInd = i - CS.arg_begin() + 1;
5295    Entry.isSExt  = CS.paramHasAttr(attrInd, Attribute::SExt);
5296    Entry.isZExt  = CS.paramHasAttr(attrInd, Attribute::ZExt);
5297    Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg);
5298    Entry.isSRet  = CS.paramHasAttr(attrInd, Attribute::StructRet);
5299    Entry.isNest  = CS.paramHasAttr(attrInd, Attribute::Nest);
5300    Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal);
5301    Entry.Alignment = CS.getParamAlignment(attrInd);
5302    Args.push_back(Entry);
5303  }
5304
5305  if (LandingPad) {
5306    // Insert a label before the invoke call to mark the try range.  This can be
5307    // used to detect deletion of the invoke via the MachineModuleInfo.
5308    BeginLabel = MMI.getContext().CreateTempSymbol();
5309
5310    // For SjLj, keep track of which landing pads go with which invokes
5311    // so as to maintain the ordering of pads in the LSDA.
5312    unsigned CallSiteIndex = MMI.getCurrentCallSite();
5313    if (CallSiteIndex) {
5314      MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
5315      LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex);
5316
5317      // Now that the call site is handled, stop tracking it.
5318      MMI.setCurrentCallSite(0);
5319    }
5320
5321    // Both PendingLoads and PendingExports must be flushed here;
5322    // this call might not return.
5323    (void)getRoot();
5324    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel));
5325  }
5326
5327  // Check if target-independent constraints permit a tail call here.
5328  // Target-dependent constraints are checked within TLI.LowerCallTo.
5329  if (isTailCall &&
5330      !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI))
5331    isTailCall = false;
5332
5333  // If there's a possibility that fast-isel has already selected some amount
5334  // of the current basic block, don't emit a tail call.
5335  if (isTailCall && TM.Options.EnableFastISel)
5336    isTailCall = false;
5337
5338  TargetLowering::
5339  CallLoweringInfo CLI(getRoot(), RetTy, FTy, isTailCall, Callee, Args, DAG,
5340                       getCurDebugLoc(), CS);
5341  std::pair<SDValue,SDValue> Result = TLI.LowerCallTo(CLI);
5342  assert((isTailCall || Result.second.getNode()) &&
5343         "Non-null chain expected with non-tail call!");
5344  assert((Result.second.getNode() || !Result.first.getNode()) &&
5345         "Null value expected with tail call!");
5346  if (Result.first.getNode()) {
5347    setValue(CS.getInstruction(), Result.first);
5348  } else if (!CanLowerReturn && Result.second.getNode()) {
5349    // The instruction result is the result of loading from the
5350    // hidden sret parameter.
5351    SmallVector<EVT, 1> PVTs;
5352    Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
5353
5354    ComputeValueVTs(TLI, PtrRetTy, PVTs);
5355    assert(PVTs.size() == 1 && "Pointers should fit in one register");
5356    EVT PtrVT = PVTs[0];
5357
5358    SmallVector<EVT, 4> RetTys;
5359    SmallVector<uint64_t, 4> Offsets;
5360    RetTy = FTy->getReturnType();
5361    ComputeValueVTs(TLI, RetTy, RetTys, &Offsets);
5362
5363    unsigned NumValues = RetTys.size();
5364    SmallVector<SDValue, 4> Values(NumValues);
5365    SmallVector<SDValue, 4> Chains(NumValues);
5366
5367    for (unsigned i = 0; i < NumValues; ++i) {
5368      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT,
5369                                DemoteStackSlot,
5370                                DAG.getConstant(Offsets[i], PtrVT));
5371      SDValue L = DAG.getLoad(RetTys[i], getCurDebugLoc(), Result.second, Add,
5372                  MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]),
5373                              false, false, false, 1);
5374      Values[i] = L;
5375      Chains[i] = L.getValue(1);
5376    }
5377
5378    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
5379                                MVT::Other, &Chains[0], NumValues);
5380    PendingLoads.push_back(Chain);
5381
5382    setValue(CS.getInstruction(),
5383             DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
5384                         DAG.getVTList(&RetTys[0], RetTys.size()),
5385                         &Values[0], Values.size()));
5386  }
5387
5388  // Assign order to nodes here. If the call does not produce a result, it won't
5389  // be mapped to a SDNode and visit() will not assign it an order number.
5390  if (!Result.second.getNode()) {
5391    // As a special case, a null chain means that a tail call has been emitted and
5392    // the DAG root is already updated.
5393    HasTailCall = true;
5394    ++SDNodeOrder;
5395    AssignOrderingToNode(DAG.getRoot().getNode());
5396  } else {
5397    DAG.setRoot(Result.second);
5398    ++SDNodeOrder;
5399    AssignOrderingToNode(Result.second.getNode());
5400  }
5401
5402  if (LandingPad) {
5403    // Insert a label at the end of the invoke call to mark the try range.  This
5404    // can be used to detect deletion of the invoke via the MachineModuleInfo.
5405    MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
5406    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel));
5407
5408    // Inform MachineModuleInfo of range.
5409    MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
5410  }
5411}
5412
5413/// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
5414/// value is equal or not-equal to zero.
5415static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
5416  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
5417       UI != E; ++UI) {
5418    if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
5419      if (IC->isEquality())
5420        if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
5421          if (C->isNullValue())
5422            continue;
5423    // Unknown instruction.
5424    return false;
5425  }
5426  return true;
5427}
5428
5429static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
5430                             Type *LoadTy,
5431                             SelectionDAGBuilder &Builder) {
5432
5433  // Check to see if this load can be trivially constant folded, e.g. if the
5434  // input is from a string literal.
5435  if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5436    // Cast pointer to the type we really want to load.
5437    LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5438                                         PointerType::getUnqual(LoadTy));
5439
5440    if (const Constant *LoadCst =
5441          ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
5442                                       Builder.TD))
5443      return Builder.getValue(LoadCst);
5444  }
5445
5446  // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
5447  // still constant memory, the input chain can be the entry node.
5448  SDValue Root;
5449  bool ConstantMemory = false;
5450
5451  // Do not serialize (non-volatile) loads of constant memory with anything.
5452  if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5453    Root = Builder.DAG.getEntryNode();
5454    ConstantMemory = true;
5455  } else {
5456    // Do not serialize non-volatile loads against each other.
5457    Root = Builder.DAG.getRoot();
5458  }
5459
5460  SDValue Ptr = Builder.getValue(PtrVal);
5461  SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root,
5462                                        Ptr, MachinePointerInfo(PtrVal),
5463                                        false /*volatile*/,
5464                                        false /*nontemporal*/,
5465                                        false /*isinvariant*/, 1 /* align=1 */);
5466
5467  if (!ConstantMemory)
5468    Builder.PendingLoads.push_back(LoadVal.getValue(1));
5469  return LoadVal;
5470}
5471
5472
5473/// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5474/// If so, return true and lower it, otherwise return false and it will be
5475/// lowered like a normal call.
5476bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5477  // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
5478  if (I.getNumArgOperands() != 3)
5479    return false;
5480
5481  const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5482  if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5483      !I.getArgOperand(2)->getType()->isIntegerTy() ||
5484      !I.getType()->isIntegerTy())
5485    return false;
5486
5487  const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2));
5488
5489  // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
5490  // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
5491  if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) {
5492    bool ActuallyDoIt = true;
5493    MVT LoadVT;
5494    Type *LoadTy;
5495    switch (Size->getZExtValue()) {
5496    default:
5497      LoadVT = MVT::Other;
5498      LoadTy = 0;
5499      ActuallyDoIt = false;
5500      break;
5501    case 2:
5502      LoadVT = MVT::i16;
5503      LoadTy = Type::getInt16Ty(Size->getContext());
5504      break;
5505    case 4:
5506      LoadVT = MVT::i32;
5507      LoadTy = Type::getInt32Ty(Size->getContext());
5508      break;
5509    case 8:
5510      LoadVT = MVT::i64;
5511      LoadTy = Type::getInt64Ty(Size->getContext());
5512      break;
5513        /*
5514    case 16:
5515      LoadVT = MVT::v4i32;
5516      LoadTy = Type::getInt32Ty(Size->getContext());
5517      LoadTy = VectorType::get(LoadTy, 4);
5518      break;
5519         */
5520    }
5521
5522    // This turns into unaligned loads.  We only do this if the target natively
5523    // supports the MVT we'll be loading or if it is small enough (<= 4) that
5524    // we'll only produce a small number of byte loads.
5525
5526    // Require that we can find a legal MVT, and only do this if the target
5527    // supports unaligned loads of that type.  Expanding into byte loads would
5528    // bloat the code.
5529    if (ActuallyDoIt && Size->getZExtValue() > 4) {
5530      // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5531      // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5532      if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT))
5533        ActuallyDoIt = false;
5534    }
5535
5536    if (ActuallyDoIt) {
5537      SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5538      SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5539
5540      SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal,
5541                                 ISD::SETNE);
5542      EVT CallVT = TLI.getValueType(I.getType(), true);
5543      setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT));
5544      return true;
5545    }
5546  }
5547
5548
5549  return false;
5550}
5551
5552/// visitUnaryFloatCall - If a call instruction is a unary floating-point
5553/// operation (as expected), translate it to an SDNode with the specified opcode
5554/// and return true.
5555bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
5556                                              unsigned Opcode) {
5557  // Sanity check that it really is a unary floating-point call.
5558  if (I.getNumArgOperands() != 1 ||
5559      !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
5560      I.getType() != I.getArgOperand(0)->getType() ||
5561      !I.onlyReadsMemory())
5562    return false;
5563
5564  SDValue Tmp = getValue(I.getArgOperand(0));
5565  setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(), Tmp.getValueType(), Tmp));
5566  return true;
5567}
5568
5569void SelectionDAGBuilder::visitCall(const CallInst &I) {
5570  // Handle inline assembly differently.
5571  if (isa<InlineAsm>(I.getCalledValue())) {
5572    visitInlineAsm(&I);
5573    return;
5574  }
5575
5576  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5577  ComputeUsesVAFloatArgument(I, &MMI);
5578
5579  const char *RenameFn = 0;
5580  if (Function *F = I.getCalledFunction()) {
5581    if (F->isDeclaration()) {
5582      if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
5583        if (unsigned IID = II->getIntrinsicID(F)) {
5584          RenameFn = visitIntrinsicCall(I, IID);
5585          if (!RenameFn)
5586            return;
5587        }
5588      }
5589      if (unsigned IID = F->getIntrinsicID()) {
5590        RenameFn = visitIntrinsicCall(I, IID);
5591        if (!RenameFn)
5592          return;
5593      }
5594    }
5595
5596    // Check for well-known libc/libm calls.  If the function is internal, it
5597    // can't be a library call.
5598    LibFunc::Func Func;
5599    if (!F->hasLocalLinkage() && F->hasName() &&
5600        LibInfo->getLibFunc(F->getName(), Func) &&
5601        LibInfo->hasOptimizedCodeGen(Func)) {
5602      switch (Func) {
5603      default: break;
5604      case LibFunc::copysign:
5605      case LibFunc::copysignf:
5606      case LibFunc::copysignl:
5607        if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
5608            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5609            I.getType() == I.getArgOperand(0)->getType() &&
5610            I.getType() == I.getArgOperand(1)->getType() &&
5611            I.onlyReadsMemory()) {
5612          SDValue LHS = getValue(I.getArgOperand(0));
5613          SDValue RHS = getValue(I.getArgOperand(1));
5614          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(),
5615                                   LHS.getValueType(), LHS, RHS));
5616          return;
5617        }
5618        break;
5619      case LibFunc::fabs:
5620      case LibFunc::fabsf:
5621      case LibFunc::fabsl:
5622        if (visitUnaryFloatCall(I, ISD::FABS))
5623          return;
5624        break;
5625      case LibFunc::sin:
5626      case LibFunc::sinf:
5627      case LibFunc::sinl:
5628        if (visitUnaryFloatCall(I, ISD::FSIN))
5629          return;
5630        break;
5631      case LibFunc::cos:
5632      case LibFunc::cosf:
5633      case LibFunc::cosl:
5634        if (visitUnaryFloatCall(I, ISD::FCOS))
5635          return;
5636        break;
5637      case LibFunc::sqrt:
5638      case LibFunc::sqrtf:
5639      case LibFunc::sqrtl:
5640        if (visitUnaryFloatCall(I, ISD::FSQRT))
5641          return;
5642        break;
5643      case LibFunc::floor:
5644      case LibFunc::floorf:
5645      case LibFunc::floorl:
5646        if (visitUnaryFloatCall(I, ISD::FFLOOR))
5647          return;
5648        break;
5649      case LibFunc::nearbyint:
5650      case LibFunc::nearbyintf:
5651      case LibFunc::nearbyintl:
5652        if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
5653          return;
5654        break;
5655      case LibFunc::ceil:
5656      case LibFunc::ceilf:
5657      case LibFunc::ceill:
5658        if (visitUnaryFloatCall(I, ISD::FCEIL))
5659          return;
5660        break;
5661      case LibFunc::rint:
5662      case LibFunc::rintf:
5663      case LibFunc::rintl:
5664        if (visitUnaryFloatCall(I, ISD::FRINT))
5665          return;
5666        break;
5667      case LibFunc::trunc:
5668      case LibFunc::truncf:
5669      case LibFunc::truncl:
5670        if (visitUnaryFloatCall(I, ISD::FTRUNC))
5671          return;
5672        break;
5673      case LibFunc::log2:
5674      case LibFunc::log2f:
5675      case LibFunc::log2l:
5676        if (visitUnaryFloatCall(I, ISD::FLOG2))
5677          return;
5678        break;
5679      case LibFunc::exp2:
5680      case LibFunc::exp2f:
5681      case LibFunc::exp2l:
5682        if (visitUnaryFloatCall(I, ISD::FEXP2))
5683          return;
5684        break;
5685      case LibFunc::memcmp:
5686        if (visitMemCmpCall(I))
5687          return;
5688        break;
5689      }
5690    }
5691  }
5692
5693  SDValue Callee;
5694  if (!RenameFn)
5695    Callee = getValue(I.getCalledValue());
5696  else
5697    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
5698
5699  // Check if we can potentially perform a tail call. More detailed checking is
5700  // be done within LowerCallTo, after more information about the call is known.
5701  LowerCallTo(&I, Callee, I.isTailCall());
5702}
5703
5704namespace {
5705
5706/// AsmOperandInfo - This contains information for each constraint that we are
5707/// lowering.
5708class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
5709public:
5710  /// CallOperand - If this is the result output operand or a clobber
5711  /// this is null, otherwise it is the incoming operand to the CallInst.
5712  /// This gets modified as the asm is processed.
5713  SDValue CallOperand;
5714
5715  /// AssignedRegs - If this is a register or register class operand, this
5716  /// contains the set of register corresponding to the operand.
5717  RegsForValue AssignedRegs;
5718
5719  explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
5720    : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
5721  }
5722
5723  /// getCallOperandValEVT - Return the EVT of the Value* that this operand
5724  /// corresponds to.  If there is no Value* for this operand, it returns
5725  /// MVT::Other.
5726  EVT getCallOperandValEVT(LLVMContext &Context,
5727                           const TargetLowering &TLI,
5728                           const TargetData *TD) const {
5729    if (CallOperandVal == 0) return MVT::Other;
5730
5731    if (isa<BasicBlock>(CallOperandVal))
5732      return TLI.getPointerTy();
5733
5734    llvm::Type *OpTy = CallOperandVal->getType();
5735
5736    // FIXME: code duplicated from TargetLowering::ParseConstraints().
5737    // If this is an indirect operand, the operand is a pointer to the
5738    // accessed type.
5739    if (isIndirect) {
5740      llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
5741      if (!PtrTy)
5742        report_fatal_error("Indirect operand for inline asm not a pointer!");
5743      OpTy = PtrTy->getElementType();
5744    }
5745
5746    // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
5747    if (StructType *STy = dyn_cast<StructType>(OpTy))
5748      if (STy->getNumElements() == 1)
5749        OpTy = STy->getElementType(0);
5750
5751    // If OpTy is not a single value, it may be a struct/union that we
5752    // can tile with integers.
5753    if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5754      unsigned BitSize = TD->getTypeSizeInBits(OpTy);
5755      switch (BitSize) {
5756      default: break;
5757      case 1:
5758      case 8:
5759      case 16:
5760      case 32:
5761      case 64:
5762      case 128:
5763        OpTy = IntegerType::get(Context, BitSize);
5764        break;
5765      }
5766    }
5767
5768    return TLI.getValueType(OpTy, true);
5769  }
5770};
5771
5772typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
5773
5774} // end anonymous namespace
5775
5776/// GetRegistersForValue - Assign registers (virtual or physical) for the
5777/// specified operand.  We prefer to assign virtual registers, to allow the
5778/// register allocator to handle the assignment process.  However, if the asm
5779/// uses features that we can't model on machineinstrs, we have SDISel do the
5780/// allocation.  This produces generally horrible, but correct, code.
5781///
5782///   OpInfo describes the operand.
5783///
5784static void GetRegistersForValue(SelectionDAG &DAG,
5785                                 const TargetLowering &TLI,
5786                                 DebugLoc DL,
5787                                 SDISelAsmOperandInfo &OpInfo) {
5788  LLVMContext &Context = *DAG.getContext();
5789
5790  MachineFunction &MF = DAG.getMachineFunction();
5791  SmallVector<unsigned, 4> Regs;
5792
5793  // If this is a constraint for a single physreg, or a constraint for a
5794  // register class, find it.
5795  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
5796    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5797                                     OpInfo.ConstraintVT);
5798
5799  unsigned NumRegs = 1;
5800  if (OpInfo.ConstraintVT != MVT::Other) {
5801    // If this is a FP input in an integer register (or visa versa) insert a bit
5802    // cast of the input value.  More generally, handle any case where the input
5803    // value disagrees with the register class we plan to stick this in.
5804    if (OpInfo.Type == InlineAsm::isInput &&
5805        PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
5806      // Try to convert to the first EVT that the reg class contains.  If the
5807      // types are identical size, use a bitcast to convert (e.g. two differing
5808      // vector types).
5809      EVT RegVT = *PhysReg.second->vt_begin();
5810      if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
5811        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5812                                         RegVT, OpInfo.CallOperand);
5813        OpInfo.ConstraintVT = RegVT;
5814      } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
5815        // If the input is a FP value and we want it in FP registers, do a
5816        // bitcast to the corresponding integer type.  This turns an f64 value
5817        // into i64, which can be passed with two i32 values on a 32-bit
5818        // machine.
5819        RegVT = EVT::getIntegerVT(Context,
5820                                  OpInfo.ConstraintVT.getSizeInBits());
5821        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5822                                         RegVT, OpInfo.CallOperand);
5823        OpInfo.ConstraintVT = RegVT;
5824      }
5825    }
5826
5827    NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
5828  }
5829
5830  EVT RegVT;
5831  EVT ValueVT = OpInfo.ConstraintVT;
5832
5833  // If this is a constraint for a specific physical register, like {r17},
5834  // assign it now.
5835  if (unsigned AssignedReg = PhysReg.first) {
5836    const TargetRegisterClass *RC = PhysReg.second;
5837    if (OpInfo.ConstraintVT == MVT::Other)
5838      ValueVT = *RC->vt_begin();
5839
5840    // Get the actual register value type.  This is important, because the user
5841    // may have asked for (e.g.) the AX register in i32 type.  We need to
5842    // remember that AX is actually i16 to get the right extension.
5843    RegVT = *RC->vt_begin();
5844
5845    // This is a explicit reference to a physical register.
5846    Regs.push_back(AssignedReg);
5847
5848    // If this is an expanded reference, add the rest of the regs to Regs.
5849    if (NumRegs != 1) {
5850      TargetRegisterClass::iterator I = RC->begin();
5851      for (; *I != AssignedReg; ++I)
5852        assert(I != RC->end() && "Didn't find reg!");
5853
5854      // Already added the first reg.
5855      --NumRegs; ++I;
5856      for (; NumRegs; --NumRegs, ++I) {
5857        assert(I != RC->end() && "Ran out of registers to allocate!");
5858        Regs.push_back(*I);
5859      }
5860    }
5861
5862    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5863    return;
5864  }
5865
5866  // Otherwise, if this was a reference to an LLVM register class, create vregs
5867  // for this reference.
5868  if (const TargetRegisterClass *RC = PhysReg.second) {
5869    RegVT = *RC->vt_begin();
5870    if (OpInfo.ConstraintVT == MVT::Other)
5871      ValueVT = RegVT;
5872
5873    // Create the appropriate number of virtual registers.
5874    MachineRegisterInfo &RegInfo = MF.getRegInfo();
5875    for (; NumRegs; --NumRegs)
5876      Regs.push_back(RegInfo.createVirtualRegister(RC));
5877
5878    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5879    return;
5880  }
5881
5882  // Otherwise, we couldn't allocate enough registers for this.
5883}
5884
5885/// visitInlineAsm - Handle a call to an InlineAsm object.
5886///
5887void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
5888  const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
5889
5890  /// ConstraintOperands - Information about all of the constraints.
5891  SDISelAsmOperandInfoVector ConstraintOperands;
5892
5893  TargetLowering::AsmOperandInfoVector
5894    TargetConstraints = TLI.ParseConstraints(CS);
5895
5896  bool hasMemory = false;
5897
5898  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
5899  unsigned ResNo = 0;   // ResNo - The result number of the next output.
5900  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
5901    ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
5902    SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
5903
5904    EVT OpVT = MVT::Other;
5905
5906    // Compute the value type for each operand.
5907    switch (OpInfo.Type) {
5908    case InlineAsm::isOutput:
5909      // Indirect outputs just consume an argument.
5910      if (OpInfo.isIndirect) {
5911        OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5912        break;
5913      }
5914
5915      // The return value of the call is this value.  As such, there is no
5916      // corresponding argument.
5917      assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
5918      if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
5919        OpVT = TLI.getValueType(STy->getElementType(ResNo));
5920      } else {
5921        assert(ResNo == 0 && "Asm only has one result!");
5922        OpVT = TLI.getValueType(CS.getType());
5923      }
5924      ++ResNo;
5925      break;
5926    case InlineAsm::isInput:
5927      OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5928      break;
5929    case InlineAsm::isClobber:
5930      // Nothing to do.
5931      break;
5932    }
5933
5934    // If this is an input or an indirect output, process the call argument.
5935    // BasicBlocks are labels, currently appearing only in asm's.
5936    if (OpInfo.CallOperandVal) {
5937      if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
5938        OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
5939      } else {
5940        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
5941      }
5942
5943      OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD);
5944    }
5945
5946    OpInfo.ConstraintVT = OpVT;
5947
5948    // Indirect operand accesses access memory.
5949    if (OpInfo.isIndirect)
5950      hasMemory = true;
5951    else {
5952      for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
5953        TargetLowering::ConstraintType
5954          CType = TLI.getConstraintType(OpInfo.Codes[j]);
5955        if (CType == TargetLowering::C_Memory) {
5956          hasMemory = true;
5957          break;
5958        }
5959      }
5960    }
5961  }
5962
5963  SDValue Chain, Flag;
5964
5965  // We won't need to flush pending loads if this asm doesn't touch
5966  // memory and is nonvolatile.
5967  if (hasMemory || IA->hasSideEffects())
5968    Chain = getRoot();
5969  else
5970    Chain = DAG.getRoot();
5971
5972  // Second pass over the constraints: compute which constraint option to use
5973  // and assign registers to constraints that want a specific physreg.
5974  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5975    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5976
5977    // If this is an output operand with a matching input operand, look up the
5978    // matching input. If their types mismatch, e.g. one is an integer, the
5979    // other is floating point, or their sizes are different, flag it as an
5980    // error.
5981    if (OpInfo.hasMatchingInput()) {
5982      SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5983
5984      if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5985        std::pair<unsigned, const TargetRegisterClass*> MatchRC =
5986          TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5987                                           OpInfo.ConstraintVT);
5988        std::pair<unsigned, const TargetRegisterClass*> InputRC =
5989          TLI.getRegForInlineAsmConstraint(Input.ConstraintCode,
5990                                           Input.ConstraintVT);
5991        if ((OpInfo.ConstraintVT.isInteger() !=
5992             Input.ConstraintVT.isInteger()) ||
5993            (MatchRC.second != InputRC.second)) {
5994          report_fatal_error("Unsupported asm: input constraint"
5995                             " with a matching output constraint of"
5996                             " incompatible type!");
5997        }
5998        Input.ConstraintVT = OpInfo.ConstraintVT;
5999      }
6000    }
6001
6002    // Compute the constraint code and ConstraintType to use.
6003    TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
6004
6005    // If this is a memory input, and if the operand is not indirect, do what we
6006    // need to to provide an address for the memory input.
6007    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
6008        !OpInfo.isIndirect) {
6009      assert((OpInfo.isMultipleAlternative ||
6010              (OpInfo.Type == InlineAsm::isInput)) &&
6011             "Can only indirectify direct input operands!");
6012
6013      // Memory operands really want the address of the value.  If we don't have
6014      // an indirect input, put it in the constpool if we can, otherwise spill
6015      // it to a stack slot.
6016      // TODO: This isn't quite right. We need to handle these according to
6017      // the addressing mode that the constraint wants. Also, this may take
6018      // an additional register for the computation and we don't want that
6019      // either.
6020
6021      // If the operand is a float, integer, or vector constant, spill to a
6022      // constant pool entry to get its address.
6023      const Value *OpVal = OpInfo.CallOperandVal;
6024      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
6025          isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
6026        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
6027                                                 TLI.getPointerTy());
6028      } else {
6029        // Otherwise, create a stack slot and emit a store to it before the
6030        // asm.
6031        Type *Ty = OpVal->getType();
6032        uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
6033        unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
6034        MachineFunction &MF = DAG.getMachineFunction();
6035        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
6036        SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
6037        Chain = DAG.getStore(Chain, getCurDebugLoc(),
6038                             OpInfo.CallOperand, StackSlot,
6039                             MachinePointerInfo::getFixedStack(SSFI),
6040                             false, false, 0);
6041        OpInfo.CallOperand = StackSlot;
6042      }
6043
6044      // There is no longer a Value* corresponding to this operand.
6045      OpInfo.CallOperandVal = 0;
6046
6047      // It is now an indirect operand.
6048      OpInfo.isIndirect = true;
6049    }
6050
6051    // If this constraint is for a specific register, allocate it before
6052    // anything else.
6053    if (OpInfo.ConstraintType == TargetLowering::C_Register)
6054      GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo);
6055  }
6056
6057  // Second pass - Loop over all of the operands, assigning virtual or physregs
6058  // to register class operands.
6059  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6060    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6061
6062    // C_Register operands have already been allocated, Other/Memory don't need
6063    // to be.
6064    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
6065      GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo);
6066  }
6067
6068  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
6069  std::vector<SDValue> AsmNodeOperands;
6070  AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
6071  AsmNodeOperands.push_back(
6072          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
6073                                      TLI.getPointerTy()));
6074
6075  // If we have a !srcloc metadata node associated with it, we want to attach
6076  // this to the ultimately generated inline asm machineinstr.  To do this, we
6077  // pass in the third operand as this (potentially null) inline asm MDNode.
6078  const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
6079  AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
6080
6081  // Remember the HasSideEffect, AlignStack and AsmDialect bits as operand 3.
6082  unsigned ExtraInfo = 0;
6083  if (IA->hasSideEffects())
6084    ExtraInfo |= InlineAsm::Extra_HasSideEffects;
6085  if (IA->isAlignStack())
6086    ExtraInfo |= InlineAsm::Extra_IsAlignStack;
6087  // Set the asm dialect.
6088  ExtraInfo |= IA->getDialect() << 2;
6089  AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo,
6090                                                  TLI.getPointerTy()));
6091
6092  // Loop over all of the inputs, copying the operand values into the
6093  // appropriate registers and processing the output regs.
6094  RegsForValue RetValRegs;
6095
6096  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
6097  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
6098
6099  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6100    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6101
6102    switch (OpInfo.Type) {
6103    case InlineAsm::isOutput: {
6104      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
6105          OpInfo.ConstraintType != TargetLowering::C_Register) {
6106        // Memory output, or 'other' output (e.g. 'X' constraint).
6107        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
6108
6109        // Add information to the INLINEASM node to know about this output.
6110        unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6111        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
6112                                                        TLI.getPointerTy()));
6113        AsmNodeOperands.push_back(OpInfo.CallOperand);
6114        break;
6115      }
6116
6117      // Otherwise, this is a register or register class output.
6118
6119      // Copy the output from the appropriate register.  Find a register that
6120      // we can use.
6121      if (OpInfo.AssignedRegs.Regs.empty()) {
6122        LLVMContext &Ctx = *DAG.getContext();
6123        Ctx.emitError(CS.getInstruction(),
6124                      "couldn't allocate output register for constraint '" +
6125                           Twine(OpInfo.ConstraintCode) + "'");
6126        break;
6127      }
6128
6129      // If this is an indirect operand, store through the pointer after the
6130      // asm.
6131      if (OpInfo.isIndirect) {
6132        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
6133                                                      OpInfo.CallOperandVal));
6134      } else {
6135        // This is the result value of the call.
6136        assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6137        // Concatenate this output onto the outputs list.
6138        RetValRegs.append(OpInfo.AssignedRegs);
6139      }
6140
6141      // Add information to the INLINEASM node to know that this register is
6142      // set.
6143      OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
6144                                           InlineAsm::Kind_RegDefEarlyClobber :
6145                                               InlineAsm::Kind_RegDef,
6146                                               false,
6147                                               0,
6148                                               DAG,
6149                                               AsmNodeOperands);
6150      break;
6151    }
6152    case InlineAsm::isInput: {
6153      SDValue InOperandVal = OpInfo.CallOperand;
6154
6155      if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
6156        // If this is required to match an output register we have already set,
6157        // just use its register.
6158        unsigned OperandNo = OpInfo.getMatchedOperand();
6159
6160        // Scan until we find the definition we already emitted of this operand.
6161        // When we find it, create a RegsForValue operand.
6162        unsigned CurOp = InlineAsm::Op_FirstOperand;
6163        for (; OperandNo; --OperandNo) {
6164          // Advance to the next operand.
6165          unsigned OpFlag =
6166            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6167          assert((InlineAsm::isRegDefKind(OpFlag) ||
6168                  InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
6169                  InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
6170          CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
6171        }
6172
6173        unsigned OpFlag =
6174          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6175        if (InlineAsm::isRegDefKind(OpFlag) ||
6176            InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
6177          // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
6178          if (OpInfo.isIndirect) {
6179            // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
6180            LLVMContext &Ctx = *DAG.getContext();
6181            Ctx.emitError(CS.getInstruction(),  "inline asm not supported yet:"
6182                          " don't know how to handle tied "
6183                          "indirect register inputs");
6184          }
6185
6186          RegsForValue MatchedRegs;
6187          MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
6188          EVT RegVT = AsmNodeOperands[CurOp+1].getValueType();
6189          MatchedRegs.RegVTs.push_back(RegVT);
6190          MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
6191          for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
6192               i != e; ++i)
6193            MatchedRegs.Regs.push_back
6194              (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)));
6195
6196          // Use the produced MatchedRegs object to
6197          MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
6198                                    Chain, &Flag);
6199          MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
6200                                           true, OpInfo.getMatchedOperand(),
6201                                           DAG, AsmNodeOperands);
6202          break;
6203        }
6204
6205        assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
6206        assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
6207               "Unexpected number of operands");
6208        // Add information to the INLINEASM node to know about this input.
6209        // See InlineAsm.h isUseOperandTiedToDef.
6210        OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
6211                                                    OpInfo.getMatchedOperand());
6212        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
6213                                                        TLI.getPointerTy()));
6214        AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
6215        break;
6216      }
6217
6218      // Treat indirect 'X' constraint as memory.
6219      if (OpInfo.ConstraintType == TargetLowering::C_Other &&
6220          OpInfo.isIndirect)
6221        OpInfo.ConstraintType = TargetLowering::C_Memory;
6222
6223      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
6224        std::vector<SDValue> Ops;
6225        TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
6226                                         Ops, DAG);
6227        if (Ops.empty()) {
6228          LLVMContext &Ctx = *DAG.getContext();
6229          Ctx.emitError(CS.getInstruction(),
6230                        "invalid operand for inline asm constraint '" +
6231                        Twine(OpInfo.ConstraintCode) + "'");
6232          break;
6233        }
6234
6235        // Add information to the INLINEASM node to know about this input.
6236        unsigned ResOpType =
6237          InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
6238        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6239                                                        TLI.getPointerTy()));
6240        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
6241        break;
6242      }
6243
6244      if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
6245        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
6246        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
6247               "Memory operands expect pointer values");
6248
6249        // Add information to the INLINEASM node to know about this input.
6250        unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6251        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6252                                                        TLI.getPointerTy()));
6253        AsmNodeOperands.push_back(InOperandVal);
6254        break;
6255      }
6256
6257      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
6258              OpInfo.ConstraintType == TargetLowering::C_Register) &&
6259             "Unknown constraint type!");
6260
6261      // TODO: Support this.
6262      if (OpInfo.isIndirect) {
6263        LLVMContext &Ctx = *DAG.getContext();
6264        Ctx.emitError(CS.getInstruction(),
6265                      "Don't know how to handle indirect register inputs yet "
6266                      "for constraint '" + Twine(OpInfo.ConstraintCode) + "'");
6267        break;
6268      }
6269
6270      // Copy the input into the appropriate registers.
6271      if (OpInfo.AssignedRegs.Regs.empty()) {
6272        LLVMContext &Ctx = *DAG.getContext();
6273        Ctx.emitError(CS.getInstruction(),
6274                      "couldn't allocate input reg for constraint '" +
6275                           Twine(OpInfo.ConstraintCode) + "'");
6276        break;
6277      }
6278
6279      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
6280                                        Chain, &Flag);
6281
6282      OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
6283                                               DAG, AsmNodeOperands);
6284      break;
6285    }
6286    case InlineAsm::isClobber: {
6287      // Add the clobbered value to the operand list, so that the register
6288      // allocator is aware that the physreg got clobbered.
6289      if (!OpInfo.AssignedRegs.Regs.empty())
6290        OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
6291                                                 false, 0, DAG,
6292                                                 AsmNodeOperands);
6293      break;
6294    }
6295    }
6296  }
6297
6298  // Finish up input operands.  Set the input chain and add the flag last.
6299  AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
6300  if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
6301
6302  Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(),
6303                      DAG.getVTList(MVT::Other, MVT::Glue),
6304                      &AsmNodeOperands[0], AsmNodeOperands.size());
6305  Flag = Chain.getValue(1);
6306
6307  // If this asm returns a register value, copy the result from that register
6308  // and set it as the value of the call.
6309  if (!RetValRegs.Regs.empty()) {
6310    SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
6311                                             Chain, &Flag);
6312
6313    // FIXME: Why don't we do this for inline asms with MRVs?
6314    if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
6315      EVT ResultType = TLI.getValueType(CS.getType());
6316
6317      // If any of the results of the inline asm is a vector, it may have the
6318      // wrong width/num elts.  This can happen for register classes that can
6319      // contain multiple different value types.  The preg or vreg allocated may
6320      // not have the same VT as was expected.  Convert it to the right type
6321      // with bit_convert.
6322      if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
6323        Val = DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
6324                          ResultType, Val);
6325
6326      } else if (ResultType != Val.getValueType() &&
6327                 ResultType.isInteger() && Val.getValueType().isInteger()) {
6328        // If a result value was tied to an input value, the computed result may
6329        // have a wider width than the expected result.  Extract the relevant
6330        // portion.
6331        Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val);
6332      }
6333
6334      assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
6335    }
6336
6337    setValue(CS.getInstruction(), Val);
6338    // Don't need to use this as a chain in this case.
6339    if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
6340      return;
6341  }
6342
6343  std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
6344
6345  // Process indirect outputs, first output all of the flagged copies out of
6346  // physregs.
6347  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
6348    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
6349    const Value *Ptr = IndirectStoresToEmit[i].second;
6350    SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
6351                                             Chain, &Flag);
6352    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
6353  }
6354
6355  // Emit the non-flagged stores from the physregs.
6356  SmallVector<SDValue, 8> OutChains;
6357  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
6358    SDValue Val = DAG.getStore(Chain, getCurDebugLoc(),
6359                               StoresToEmit[i].first,
6360                               getValue(StoresToEmit[i].second),
6361                               MachinePointerInfo(StoresToEmit[i].second),
6362                               false, false, 0);
6363    OutChains.push_back(Val);
6364  }
6365
6366  if (!OutChains.empty())
6367    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
6368                        &OutChains[0], OutChains.size());
6369
6370  DAG.setRoot(Chain);
6371}
6372
6373void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
6374  DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(),
6375                          MVT::Other, getRoot(),
6376                          getValue(I.getArgOperand(0)),
6377                          DAG.getSrcValue(I.getArgOperand(0))));
6378}
6379
6380void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
6381  const TargetData &TD = *TLI.getTargetData();
6382  SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(),
6383                           getRoot(), getValue(I.getOperand(0)),
6384                           DAG.getSrcValue(I.getOperand(0)),
6385                           TD.getABITypeAlignment(I.getType()));
6386  setValue(&I, V);
6387  DAG.setRoot(V.getValue(1));
6388}
6389
6390void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
6391  DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(),
6392                          MVT::Other, getRoot(),
6393                          getValue(I.getArgOperand(0)),
6394                          DAG.getSrcValue(I.getArgOperand(0))));
6395}
6396
6397void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
6398  DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(),
6399                          MVT::Other, getRoot(),
6400                          getValue(I.getArgOperand(0)),
6401                          getValue(I.getArgOperand(1)),
6402                          DAG.getSrcValue(I.getArgOperand(0)),
6403                          DAG.getSrcValue(I.getArgOperand(1))));
6404}
6405
6406/// TargetLowering::LowerCallTo - This is the default LowerCallTo
6407/// implementation, which just calls LowerCall.
6408/// FIXME: When all targets are
6409/// migrated to using LowerCall, this hook should be integrated into SDISel.
6410std::pair<SDValue, SDValue>
6411TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
6412  // Handle all of the outgoing arguments.
6413  CLI.Outs.clear();
6414  CLI.OutVals.clear();
6415  ArgListTy &Args = CLI.Args;
6416  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
6417    SmallVector<EVT, 4> ValueVTs;
6418    ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
6419    for (unsigned Value = 0, NumValues = ValueVTs.size();
6420         Value != NumValues; ++Value) {
6421      EVT VT = ValueVTs[Value];
6422      Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
6423      SDValue Op = SDValue(Args[i].Node.getNode(),
6424                           Args[i].Node.getResNo() + Value);
6425      ISD::ArgFlagsTy Flags;
6426      unsigned OriginalAlignment =
6427        getTargetData()->getABITypeAlignment(ArgTy);
6428
6429      if (Args[i].isZExt)
6430        Flags.setZExt();
6431      if (Args[i].isSExt)
6432        Flags.setSExt();
6433      if (Args[i].isInReg)
6434        Flags.setInReg();
6435      if (Args[i].isSRet)
6436        Flags.setSRet();
6437      if (Args[i].isByVal) {
6438        Flags.setByVal();
6439        PointerType *Ty = cast<PointerType>(Args[i].Ty);
6440        Type *ElementTy = Ty->getElementType();
6441        Flags.setByValSize(getTargetData()->getTypeAllocSize(ElementTy));
6442        // For ByVal, alignment should come from FE.  BE will guess if this
6443        // info is not there but there are cases it cannot get right.
6444        unsigned FrameAlign;
6445        if (Args[i].Alignment)
6446          FrameAlign = Args[i].Alignment;
6447        else
6448          FrameAlign = getByValTypeAlignment(ElementTy);
6449        Flags.setByValAlign(FrameAlign);
6450      }
6451      if (Args[i].isNest)
6452        Flags.setNest();
6453      Flags.setOrigAlign(OriginalAlignment);
6454
6455      EVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT);
6456      unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT);
6457      SmallVector<SDValue, 4> Parts(NumParts);
6458      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
6459
6460      if (Args[i].isSExt)
6461        ExtendKind = ISD::SIGN_EXTEND;
6462      else if (Args[i].isZExt)
6463        ExtendKind = ISD::ZERO_EXTEND;
6464
6465      getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts,
6466                     PartVT, ExtendKind);
6467
6468      for (unsigned j = 0; j != NumParts; ++j) {
6469        // if it isn't first piece, alignment must be 1
6470        ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(),
6471                               i < CLI.NumFixedArgs);
6472        if (NumParts > 1 && j == 0)
6473          MyFlags.Flags.setSplit();
6474        else if (j != 0)
6475          MyFlags.Flags.setOrigAlign(1);
6476
6477        CLI.Outs.push_back(MyFlags);
6478        CLI.OutVals.push_back(Parts[j]);
6479      }
6480    }
6481  }
6482
6483  // Handle the incoming return values from the call.
6484  CLI.Ins.clear();
6485  SmallVector<EVT, 4> RetTys;
6486  ComputeValueVTs(*this, CLI.RetTy, RetTys);
6487  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6488    EVT VT = RetTys[I];
6489    EVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
6490    unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
6491    for (unsigned i = 0; i != NumRegs; ++i) {
6492      ISD::InputArg MyFlags;
6493      MyFlags.VT = RegisterVT.getSimpleVT();
6494      MyFlags.Used = CLI.IsReturnValueUsed;
6495      if (CLI.RetSExt)
6496        MyFlags.Flags.setSExt();
6497      if (CLI.RetZExt)
6498        MyFlags.Flags.setZExt();
6499      if (CLI.IsInReg)
6500        MyFlags.Flags.setInReg();
6501      CLI.Ins.push_back(MyFlags);
6502    }
6503  }
6504
6505  SmallVector<SDValue, 4> InVals;
6506  CLI.Chain = LowerCall(CLI, InVals);
6507
6508  // Verify that the target's LowerCall behaved as expected.
6509  assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
6510         "LowerCall didn't return a valid chain!");
6511  assert((!CLI.IsTailCall || InVals.empty()) &&
6512         "LowerCall emitted a return value for a tail call!");
6513  assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
6514         "LowerCall didn't emit the correct number of values!");
6515
6516  // For a tail call, the return value is merely live-out and there aren't
6517  // any nodes in the DAG representing it. Return a special value to
6518  // indicate that a tail call has been emitted and no more Instructions
6519  // should be processed in the current block.
6520  if (CLI.IsTailCall) {
6521    CLI.DAG.setRoot(CLI.Chain);
6522    return std::make_pair(SDValue(), SDValue());
6523  }
6524
6525  DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
6526          assert(InVals[i].getNode() &&
6527                 "LowerCall emitted a null value!");
6528          assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
6529                 "LowerCall emitted a value with the wrong type!");
6530        });
6531
6532  // Collect the legal value parts into potentially illegal values
6533  // that correspond to the original function's return values.
6534  ISD::NodeType AssertOp = ISD::DELETED_NODE;
6535  if (CLI.RetSExt)
6536    AssertOp = ISD::AssertSext;
6537  else if (CLI.RetZExt)
6538    AssertOp = ISD::AssertZext;
6539  SmallVector<SDValue, 4> ReturnValues;
6540  unsigned CurReg = 0;
6541  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6542    EVT VT = RetTys[I];
6543    EVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
6544    unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
6545
6546    ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
6547                                            NumRegs, RegisterVT, VT,
6548                                            AssertOp));
6549    CurReg += NumRegs;
6550  }
6551
6552  // For a function returning void, there is no return value. We can't create
6553  // such a node, so we just return a null return value in that case. In
6554  // that case, nothing will actually look at the value.
6555  if (ReturnValues.empty())
6556    return std::make_pair(SDValue(), CLI.Chain);
6557
6558  SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
6559                                CLI.DAG.getVTList(&RetTys[0], RetTys.size()),
6560                            &ReturnValues[0], ReturnValues.size());
6561  return std::make_pair(Res, CLI.Chain);
6562}
6563
6564void TargetLowering::LowerOperationWrapper(SDNode *N,
6565                                           SmallVectorImpl<SDValue> &Results,
6566                                           SelectionDAG &DAG) const {
6567  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
6568  if (Res.getNode())
6569    Results.push_back(Res);
6570}
6571
6572SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
6573  llvm_unreachable("LowerOperation not implemented for this target!");
6574}
6575
6576void
6577SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
6578  SDValue Op = getNonRegisterValue(V);
6579  assert((Op.getOpcode() != ISD::CopyFromReg ||
6580          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
6581         "Copy from a reg to the same reg!");
6582  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
6583
6584  RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
6585  SDValue Chain = DAG.getEntryNode();
6586  RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0);
6587  PendingExports.push_back(Chain);
6588}
6589
6590#include "llvm/CodeGen/SelectionDAGISel.h"
6591
6592/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
6593/// entry block, return true.  This includes arguments used by switches, since
6594/// the switch may expand into multiple basic blocks.
6595static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
6596  // With FastISel active, we may be splitting blocks, so force creation
6597  // of virtual registers for all non-dead arguments.
6598  if (FastISel)
6599    return A->use_empty();
6600
6601  const BasicBlock *Entry = A->getParent()->begin();
6602  for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end();
6603       UI != E; ++UI) {
6604    const User *U = *UI;
6605    if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U))
6606      return false;  // Use not in entry block.
6607  }
6608  return true;
6609}
6610
6611void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) {
6612  // If this is the entry block, emit arguments.
6613  const Function &F = *LLVMBB->getParent();
6614  SelectionDAG &DAG = SDB->DAG;
6615  DebugLoc dl = SDB->getCurDebugLoc();
6616  const TargetData *TD = TLI.getTargetData();
6617  SmallVector<ISD::InputArg, 16> Ins;
6618
6619  // Check whether the function can return without sret-demotion.
6620  SmallVector<ISD::OutputArg, 4> Outs;
6621  GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
6622                Outs, TLI);
6623
6624  if (!FuncInfo->CanLowerReturn) {
6625    // Put in an sret pointer parameter before all the other parameters.
6626    SmallVector<EVT, 1> ValueVTs;
6627    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6628
6629    // NOTE: Assuming that a pointer will never break down to more than one VT
6630    // or one register.
6631    ISD::ArgFlagsTy Flags;
6632    Flags.setSRet();
6633    EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]);
6634    ISD::InputArg RetArg(Flags, RegisterVT, true);
6635    Ins.push_back(RetArg);
6636  }
6637
6638  // Set up the incoming argument description vector.
6639  unsigned Idx = 1;
6640  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
6641       I != E; ++I, ++Idx) {
6642    SmallVector<EVT, 4> ValueVTs;
6643    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6644    bool isArgValueUsed = !I->use_empty();
6645    for (unsigned Value = 0, NumValues = ValueVTs.size();
6646         Value != NumValues; ++Value) {
6647      EVT VT = ValueVTs[Value];
6648      Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
6649      ISD::ArgFlagsTy Flags;
6650      unsigned OriginalAlignment =
6651        TD->getABITypeAlignment(ArgTy);
6652
6653      if (F.paramHasAttr(Idx, Attribute::ZExt))
6654        Flags.setZExt();
6655      if (F.paramHasAttr(Idx, Attribute::SExt))
6656        Flags.setSExt();
6657      if (F.paramHasAttr(Idx, Attribute::InReg))
6658        Flags.setInReg();
6659      if (F.paramHasAttr(Idx, Attribute::StructRet))
6660        Flags.setSRet();
6661      if (F.paramHasAttr(Idx, Attribute::ByVal)) {
6662        Flags.setByVal();
6663        PointerType *Ty = cast<PointerType>(I->getType());
6664        Type *ElementTy = Ty->getElementType();
6665        Flags.setByValSize(TD->getTypeAllocSize(ElementTy));
6666        // For ByVal, alignment should be passed from FE.  BE will guess if
6667        // this info is not there but there are cases it cannot get right.
6668        unsigned FrameAlign;
6669        if (F.getParamAlignment(Idx))
6670          FrameAlign = F.getParamAlignment(Idx);
6671        else
6672          FrameAlign = TLI.getByValTypeAlignment(ElementTy);
6673        Flags.setByValAlign(FrameAlign);
6674      }
6675      if (F.paramHasAttr(Idx, Attribute::Nest))
6676        Flags.setNest();
6677      Flags.setOrigAlign(OriginalAlignment);
6678
6679      EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6680      unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6681      for (unsigned i = 0; i != NumRegs; ++i) {
6682        ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed);
6683        if (NumRegs > 1 && i == 0)
6684          MyFlags.Flags.setSplit();
6685        // if it isn't first piece, alignment must be 1
6686        else if (i > 0)
6687          MyFlags.Flags.setOrigAlign(1);
6688        Ins.push_back(MyFlags);
6689      }
6690    }
6691  }
6692
6693  // Call the target to set up the argument values.
6694  SmallVector<SDValue, 8> InVals;
6695  SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
6696                                             F.isVarArg(), Ins,
6697                                             dl, DAG, InVals);
6698
6699  // Verify that the target's LowerFormalArguments behaved as expected.
6700  assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
6701         "LowerFormalArguments didn't return a valid chain!");
6702  assert(InVals.size() == Ins.size() &&
6703         "LowerFormalArguments didn't emit the correct number of values!");
6704  DEBUG({
6705      for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6706        assert(InVals[i].getNode() &&
6707               "LowerFormalArguments emitted a null value!");
6708        assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6709               "LowerFormalArguments emitted a value with the wrong type!");
6710      }
6711    });
6712
6713  // Update the DAG with the new chain value resulting from argument lowering.
6714  DAG.setRoot(NewRoot);
6715
6716  // Set up the argument values.
6717  unsigned i = 0;
6718  Idx = 1;
6719  if (!FuncInfo->CanLowerReturn) {
6720    // Create a virtual register for the sret pointer, and put in a copy
6721    // from the sret argument into it.
6722    SmallVector<EVT, 1> ValueVTs;
6723    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6724    EVT VT = ValueVTs[0];
6725    EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6726    ISD::NodeType AssertOp = ISD::DELETED_NODE;
6727    SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
6728                                        RegVT, VT, AssertOp);
6729
6730    MachineFunction& MF = SDB->DAG.getMachineFunction();
6731    MachineRegisterInfo& RegInfo = MF.getRegInfo();
6732    unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT));
6733    FuncInfo->DemoteRegister = SRetReg;
6734    NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(),
6735                                    SRetReg, ArgValue);
6736    DAG.setRoot(NewRoot);
6737
6738    // i indexes lowered arguments.  Bump it past the hidden sret argument.
6739    // Idx indexes LLVM arguments.  Don't touch it.
6740    ++i;
6741  }
6742
6743  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
6744      ++I, ++Idx) {
6745    SmallVector<SDValue, 4> ArgValues;
6746    SmallVector<EVT, 4> ValueVTs;
6747    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6748    unsigned NumValues = ValueVTs.size();
6749
6750    // If this argument is unused then remember its value. It is used to generate
6751    // debugging information.
6752    if (I->use_empty() && NumValues)
6753      SDB->setUnusedArgValue(I, InVals[i]);
6754
6755    for (unsigned Val = 0; Val != NumValues; ++Val) {
6756      EVT VT = ValueVTs[Val];
6757      EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6758      unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6759
6760      if (!I->use_empty()) {
6761        ISD::NodeType AssertOp = ISD::DELETED_NODE;
6762        if (F.paramHasAttr(Idx, Attribute::SExt))
6763          AssertOp = ISD::AssertSext;
6764        else if (F.paramHasAttr(Idx, Attribute::ZExt))
6765          AssertOp = ISD::AssertZext;
6766
6767        ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
6768                                             NumParts, PartVT, VT,
6769                                             AssertOp));
6770      }
6771
6772      i += NumParts;
6773    }
6774
6775    // We don't need to do anything else for unused arguments.
6776    if (ArgValues.empty())
6777      continue;
6778
6779    // Note down frame index.
6780    if (FrameIndexSDNode *FI =
6781        dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
6782      FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
6783
6784    SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues,
6785                                     SDB->getCurDebugLoc());
6786
6787    SDB->setValue(I, Res);
6788    if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
6789      if (LoadSDNode *LNode =
6790          dyn_cast<LoadSDNode>(Res.getOperand(0).getNode()))
6791        if (FrameIndexSDNode *FI =
6792            dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
6793        FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
6794    }
6795
6796    // If this argument is live outside of the entry block, insert a copy from
6797    // wherever we got it to the vreg that other BB's will reference it as.
6798    if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
6799      // If we can, though, try to skip creating an unnecessary vreg.
6800      // FIXME: This isn't very clean... it would be nice to make this more
6801      // general.  It's also subtly incompatible with the hacks FastISel
6802      // uses with vregs.
6803      unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
6804      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
6805        FuncInfo->ValueMap[I] = Reg;
6806        continue;
6807      }
6808    }
6809    if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) {
6810      FuncInfo->InitializeRegForValue(I);
6811      SDB->CopyToExportRegsIfNeeded(I);
6812    }
6813  }
6814
6815  assert(i == InVals.size() && "Argument register count mismatch!");
6816
6817  // Finally, if the target has anything special to do, allow it to do so.
6818  // FIXME: this should insert code into the DAG!
6819  EmitFunctionEntryCode();
6820}
6821
6822/// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
6823/// ensure constants are generated when needed.  Remember the virtual registers
6824/// that need to be added to the Machine PHI nodes as input.  We cannot just
6825/// directly add them, because expansion might result in multiple MBB's for one
6826/// BB.  As such, the start of the BB might correspond to a different MBB than
6827/// the end.
6828///
6829void
6830SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
6831  const TerminatorInst *TI = LLVMBB->getTerminator();
6832
6833  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6834
6835  // Check successor nodes' PHI nodes that expect a constant to be available
6836  // from this block.
6837  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6838    const BasicBlock *SuccBB = TI->getSuccessor(succ);
6839    if (!isa<PHINode>(SuccBB->begin())) continue;
6840    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
6841
6842    // If this terminator has multiple identical successors (common for
6843    // switches), only handle each succ once.
6844    if (!SuccsHandled.insert(SuccMBB)) continue;
6845
6846    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6847
6848    // At this point we know that there is a 1-1 correspondence between LLVM PHI
6849    // nodes and Machine PHI nodes, but the incoming operands have not been
6850    // emitted yet.
6851    for (BasicBlock::const_iterator I = SuccBB->begin();
6852         const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
6853      // Ignore dead phi's.
6854      if (PN->use_empty()) continue;
6855
6856      // Skip empty types
6857      if (PN->getType()->isEmptyTy())
6858        continue;
6859
6860      unsigned Reg;
6861      const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6862
6863      if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
6864        unsigned &RegOut = ConstantsOut[C];
6865        if (RegOut == 0) {
6866          RegOut = FuncInfo.CreateRegs(C->getType());
6867          CopyValueToVirtualRegister(C, RegOut);
6868        }
6869        Reg = RegOut;
6870      } else {
6871        DenseMap<const Value *, unsigned>::iterator I =
6872          FuncInfo.ValueMap.find(PHIOp);
6873        if (I != FuncInfo.ValueMap.end())
6874          Reg = I->second;
6875        else {
6876          assert(isa<AllocaInst>(PHIOp) &&
6877                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
6878                 "Didn't codegen value into a register!??");
6879          Reg = FuncInfo.CreateRegs(PHIOp->getType());
6880          CopyValueToVirtualRegister(PHIOp, Reg);
6881        }
6882      }
6883
6884      // Remember that this register needs to added to the machine PHI node as
6885      // the input for this MBB.
6886      SmallVector<EVT, 4> ValueVTs;
6887      ComputeValueVTs(TLI, PN->getType(), ValueVTs);
6888      for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
6889        EVT VT = ValueVTs[vti];
6890        unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
6891        for (unsigned i = 0, e = NumRegisters; i != e; ++i)
6892          FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
6893        Reg += NumRegisters;
6894      }
6895    }
6896  }
6897  ConstantsOut.clear();
6898}
6899