SelectionDAGBuilder.cpp revision 86a87d9ba1faf153e0e6eaddfd3e95595c83bcb1
1//===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements routines for translating from LLVM IR into SelectionDAG IR.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "SelectionDAGBuilder.h"
16#include "SDNodeDbgValue.h"
17#include "llvm/ADT/BitVector.h"
18#include "llvm/ADT/SmallSet.h"
19#include "llvm/Analysis/AliasAnalysis.h"
20#include "llvm/Analysis/BranchProbabilityInfo.h"
21#include "llvm/Analysis/ConstantFolding.h"
22#include "llvm/Analysis/ValueTracking.h"
23#include "llvm/CodeGen/Analysis.h"
24#include "llvm/CodeGen/FastISel.h"
25#include "llvm/CodeGen/FunctionLoweringInfo.h"
26#include "llvm/CodeGen/GCMetadata.h"
27#include "llvm/CodeGen/GCStrategy.h"
28#include "llvm/CodeGen/MachineFrameInfo.h"
29#include "llvm/CodeGen/MachineFunction.h"
30#include "llvm/CodeGen/MachineInstrBuilder.h"
31#include "llvm/CodeGen/MachineJumpTableInfo.h"
32#include "llvm/CodeGen/MachineModuleInfo.h"
33#include "llvm/CodeGen/MachineRegisterInfo.h"
34#include "llvm/CodeGen/SelectionDAG.h"
35#include "llvm/DebugInfo.h"
36#include "llvm/IR/CallingConv.h"
37#include "llvm/IR/Constants.h"
38#include "llvm/IR/DataLayout.h"
39#include "llvm/IR/DerivedTypes.h"
40#include "llvm/IR/Function.h"
41#include "llvm/IR/GlobalVariable.h"
42#include "llvm/IR/InlineAsm.h"
43#include "llvm/IR/Instructions.h"
44#include "llvm/IR/IntrinsicInst.h"
45#include "llvm/IR/Intrinsics.h"
46#include "llvm/IR/LLVMContext.h"
47#include "llvm/IR/Module.h"
48#include "llvm/Support/CommandLine.h"
49#include "llvm/Support/Debug.h"
50#include "llvm/Support/ErrorHandling.h"
51#include "llvm/Support/IntegersSubsetMapping.h"
52#include "llvm/Support/MathExtras.h"
53#include "llvm/Support/raw_ostream.h"
54#include "llvm/Target/TargetFrameLowering.h"
55#include "llvm/Target/TargetInstrInfo.h"
56#include "llvm/Target/TargetIntrinsicInfo.h"
57#include "llvm/Target/TargetLibraryInfo.h"
58#include "llvm/Target/TargetLowering.h"
59#include "llvm/Target/TargetOptions.h"
60#include <algorithm>
61using namespace llvm;
62
63/// LimitFloatPrecision - Generate low-precision inline sequences for
64/// some float libcalls (6, 8 or 12 bits).
65static unsigned LimitFloatPrecision;
66
67static cl::opt<unsigned, true>
68LimitFPPrecision("limit-float-precision",
69                 cl::desc("Generate low-precision inline sequences "
70                          "for some float libcalls"),
71                 cl::location(LimitFloatPrecision),
72                 cl::init(0));
73
74// Limit the width of DAG chains. This is important in general to prevent
75// prevent DAG-based analysis from blowing up. For example, alias analysis and
76// load clustering may not complete in reasonable time. It is difficult to
77// recognize and avoid this situation within each individual analysis, and
78// future analyses are likely to have the same behavior. Limiting DAG width is
79// the safe approach, and will be especially important with global DAGs.
80//
81// MaxParallelChains default is arbitrarily high to avoid affecting
82// optimization, but could be lowered to improve compile time. Any ld-ld-st-st
83// sequence over this should have been converted to llvm.memcpy by the
84// frontend. It easy to induce this behavior with .ll code such as:
85// %buffer = alloca [4096 x i8]
86// %data = load [4096 x i8]* %argPtr
87// store [4096 x i8] %data, [4096 x i8]* %buffer
88static const unsigned MaxParallelChains = 64;
89
90static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
91                                      const SDValue *Parts, unsigned NumParts,
92                                      MVT PartVT, EVT ValueVT, const Value *V);
93
94/// getCopyFromParts - Create a value that contains the specified legal parts
95/// combined into the value they represent.  If the parts combine to a type
96/// larger then ValueVT then AssertOp can be used to specify whether the extra
97/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
98/// (ISD::AssertSext).
99static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL,
100                                const SDValue *Parts,
101                                unsigned NumParts, MVT PartVT, EVT ValueVT,
102                                const Value *V,
103                                ISD::NodeType AssertOp = ISD::DELETED_NODE) {
104  if (ValueVT.isVector())
105    return getCopyFromPartsVector(DAG, DL, Parts, NumParts,
106                                  PartVT, ValueVT, V);
107
108  assert(NumParts > 0 && "No parts to assemble!");
109  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
110  SDValue Val = Parts[0];
111
112  if (NumParts > 1) {
113    // Assemble the value from multiple parts.
114    if (ValueVT.isInteger()) {
115      unsigned PartBits = PartVT.getSizeInBits();
116      unsigned ValueBits = ValueVT.getSizeInBits();
117
118      // Assemble the power of 2 part.
119      unsigned RoundParts = NumParts & (NumParts - 1) ?
120        1 << Log2_32(NumParts) : NumParts;
121      unsigned RoundBits = PartBits * RoundParts;
122      EVT RoundVT = RoundBits == ValueBits ?
123        ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
124      SDValue Lo, Hi;
125
126      EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
127
128      if (RoundParts > 2) {
129        Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
130                              PartVT, HalfVT, V);
131        Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
132                              RoundParts / 2, PartVT, HalfVT, V);
133      } else {
134        Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
135        Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
136      }
137
138      if (TLI.isBigEndian())
139        std::swap(Lo, Hi);
140
141      Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
142
143      if (RoundParts < NumParts) {
144        // Assemble the trailing non-power-of-2 part.
145        unsigned OddParts = NumParts - RoundParts;
146        EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
147        Hi = getCopyFromParts(DAG, DL,
148                              Parts + RoundParts, OddParts, PartVT, OddVT, V);
149
150        // Combine the round and odd parts.
151        Lo = Val;
152        if (TLI.isBigEndian())
153          std::swap(Lo, Hi);
154        EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
155        Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
156        Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
157                         DAG.getConstant(Lo.getValueType().getSizeInBits(),
158                                         TLI.getPointerTy()));
159        Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
160        Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
161      }
162    } else if (PartVT.isFloatingPoint()) {
163      // FP split into multiple FP parts (for ppcf128)
164      assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
165             "Unexpected split");
166      SDValue Lo, Hi;
167      Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
168      Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
169      if (TLI.isBigEndian())
170        std::swap(Lo, Hi);
171      Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
172    } else {
173      // FP split into integer parts (soft fp)
174      assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
175             !PartVT.isVector() && "Unexpected split");
176      EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
177      Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V);
178    }
179  }
180
181  // There is now one part, held in Val.  Correct it to match ValueVT.
182  EVT PartEVT = Val.getValueType();
183
184  if (PartEVT == ValueVT)
185    return Val;
186
187  if (PartEVT.isInteger() && ValueVT.isInteger()) {
188    if (ValueVT.bitsLT(PartEVT)) {
189      // For a truncate, see if we have any information to
190      // indicate whether the truncated bits will always be
191      // zero or sign-extension.
192      if (AssertOp != ISD::DELETED_NODE)
193        Val = DAG.getNode(AssertOp, DL, PartEVT, Val,
194                          DAG.getValueType(ValueVT));
195      return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
196    }
197    return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
198  }
199
200  if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
201    // FP_ROUND's are always exact here.
202    if (ValueVT.bitsLT(Val.getValueType()))
203      return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val,
204                         DAG.getTargetConstant(1, TLI.getPointerTy()));
205
206    return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
207  }
208
209  if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
210    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
211
212  llvm_unreachable("Unknown mismatch!");
213}
214
215/// getCopyFromPartsVector - Create a value that contains the specified legal
216/// parts combined into the value they represent.  If the parts combine to a
217/// type larger then ValueVT then AssertOp can be used to specify whether the
218/// extra bits are known to be zero (ISD::AssertZext) or sign extended from
219/// ValueVT (ISD::AssertSext).
220static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
221                                      const SDValue *Parts, unsigned NumParts,
222                                      MVT PartVT, EVT ValueVT, const Value *V) {
223  assert(ValueVT.isVector() && "Not a vector value");
224  assert(NumParts > 0 && "No parts to assemble!");
225  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
226  SDValue Val = Parts[0];
227
228  // Handle a multi-element vector.
229  if (NumParts > 1) {
230    EVT IntermediateVT;
231    MVT RegisterVT;
232    unsigned NumIntermediates;
233    unsigned NumRegs =
234    TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
235                               NumIntermediates, RegisterVT);
236    assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
237    NumParts = NumRegs; // Silence a compiler warning.
238    assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
239    assert(RegisterVT == Parts[0].getSimpleValueType() &&
240           "Part type doesn't match part!");
241
242    // Assemble the parts into intermediate operands.
243    SmallVector<SDValue, 8> Ops(NumIntermediates);
244    if (NumIntermediates == NumParts) {
245      // If the register was not expanded, truncate or copy the value,
246      // as appropriate.
247      for (unsigned i = 0; i != NumParts; ++i)
248        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
249                                  PartVT, IntermediateVT, V);
250    } else if (NumParts > 0) {
251      // If the intermediate type was expanded, build the intermediate
252      // operands from the parts.
253      assert(NumParts % NumIntermediates == 0 &&
254             "Must expand into a divisible number of parts!");
255      unsigned Factor = NumParts / NumIntermediates;
256      for (unsigned i = 0; i != NumIntermediates; ++i)
257        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
258                                  PartVT, IntermediateVT, V);
259    }
260
261    // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
262    // intermediate operands.
263    Val = DAG.getNode(IntermediateVT.isVector() ?
264                      ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL,
265                      ValueVT, &Ops[0], NumIntermediates);
266  }
267
268  // There is now one part, held in Val.  Correct it to match ValueVT.
269  EVT PartEVT = Val.getValueType();
270
271  if (PartEVT == ValueVT)
272    return Val;
273
274  if (PartEVT.isVector()) {
275    // If the element type of the source/dest vectors are the same, but the
276    // parts vector has more elements than the value vector, then we have a
277    // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
278    // elements we want.
279    if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
280      assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
281             "Cannot narrow, it would be a lossy transformation");
282      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
283                         DAG.getIntPtrConstant(0));
284    }
285
286    // Vector/Vector bitcast.
287    if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
288      return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
289
290    assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
291      "Cannot handle this kind of promotion");
292    // Promoted vector extract
293    bool Smaller = ValueVT.bitsLE(PartEVT);
294    return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
295                       DL, ValueVT, Val);
296
297  }
298
299  // Trivial bitcast if the types are the same size and the destination
300  // vector type is legal.
301  if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
302      TLI.isTypeLegal(ValueVT))
303    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
304
305  // Handle cases such as i8 -> <1 x i1>
306  if (ValueVT.getVectorNumElements() != 1) {
307    LLVMContext &Ctx = *DAG.getContext();
308    Twine ErrMsg("non-trivial scalar-to-vector conversion");
309    if (const Instruction *I = dyn_cast_or_null<Instruction>(V)) {
310      if (const CallInst *CI = dyn_cast<CallInst>(I))
311        if (isa<InlineAsm>(CI->getCalledValue()))
312          ErrMsg = ErrMsg + ", possible invalid constraint for vector type";
313      Ctx.emitError(I, ErrMsg);
314    } else {
315      Ctx.emitError(ErrMsg);
316    }
317    report_fatal_error("Cannot handle scalar-to-vector conversion!");
318  }
319
320  if (ValueVT.getVectorNumElements() == 1 &&
321      ValueVT.getVectorElementType() != PartEVT) {
322    bool Smaller = ValueVT.bitsLE(PartEVT);
323    Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
324                       DL, ValueVT.getScalarType(), Val);
325  }
326
327  return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
328}
329
330static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl,
331                                 SDValue Val, SDValue *Parts, unsigned NumParts,
332                                 MVT PartVT, const Value *V);
333
334/// getCopyToParts - Create a series of nodes that contain the specified value
335/// split into legal parts.  If the parts contain more bits than Val, then, for
336/// integers, ExtendKind can be used to specify how to generate the extra bits.
337static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL,
338                           SDValue Val, SDValue *Parts, unsigned NumParts,
339                           MVT PartVT, const Value *V,
340                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
341  EVT ValueVT = Val.getValueType();
342
343  // Handle the vector case separately.
344  if (ValueVT.isVector())
345    return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V);
346
347  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
348  unsigned PartBits = PartVT.getSizeInBits();
349  unsigned OrigNumParts = NumParts;
350  assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
351
352  if (NumParts == 0)
353    return;
354
355  assert(!ValueVT.isVector() && "Vector case handled elsewhere");
356  EVT PartEVT = PartVT;
357  if (PartEVT == ValueVT) {
358    assert(NumParts == 1 && "No-op copy with multiple parts!");
359    Parts[0] = Val;
360    return;
361  }
362
363  if (NumParts * PartBits > ValueVT.getSizeInBits()) {
364    // If the parts cover more bits than the value has, promote the value.
365    if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
366      assert(NumParts == 1 && "Do not know what to promote to!");
367      Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
368    } else {
369      assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
370             ValueVT.isInteger() &&
371             "Unknown mismatch!");
372      ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
373      Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
374      if (PartVT == MVT::x86mmx)
375        Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
376    }
377  } else if (PartBits == ValueVT.getSizeInBits()) {
378    // Different types of the same size.
379    assert(NumParts == 1 && PartEVT != ValueVT);
380    Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
381  } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
382    // If the parts cover less bits than value has, truncate the value.
383    assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
384           ValueVT.isInteger() &&
385           "Unknown mismatch!");
386    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
387    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
388    if (PartVT == MVT::x86mmx)
389      Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
390  }
391
392  // The value may have changed - recompute ValueVT.
393  ValueVT = Val.getValueType();
394  assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
395         "Failed to tile the value with PartVT!");
396
397  if (NumParts == 1) {
398    if (PartEVT != ValueVT) {
399      LLVMContext &Ctx = *DAG.getContext();
400      Twine ErrMsg("scalar-to-vector conversion failed");
401      if (const Instruction *I = dyn_cast_or_null<Instruction>(V)) {
402        if (const CallInst *CI = dyn_cast<CallInst>(I))
403          if (isa<InlineAsm>(CI->getCalledValue()))
404            ErrMsg = ErrMsg + ", possible invalid constraint for vector type";
405        Ctx.emitError(I, ErrMsg);
406      } else {
407        Ctx.emitError(ErrMsg);
408      }
409    }
410
411    Parts[0] = Val;
412    return;
413  }
414
415  // Expand the value into multiple parts.
416  if (NumParts & (NumParts - 1)) {
417    // The number of parts is not a power of 2.  Split off and copy the tail.
418    assert(PartVT.isInteger() && ValueVT.isInteger() &&
419           "Do not know what to expand to!");
420    unsigned RoundParts = 1 << Log2_32(NumParts);
421    unsigned RoundBits = RoundParts * PartBits;
422    unsigned OddParts = NumParts - RoundParts;
423    SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
424                                 DAG.getIntPtrConstant(RoundBits));
425    getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V);
426
427    if (TLI.isBigEndian())
428      // The odd parts were reversed by getCopyToParts - unreverse them.
429      std::reverse(Parts + RoundParts, Parts + NumParts);
430
431    NumParts = RoundParts;
432    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
433    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
434  }
435
436  // The number of parts is a power of 2.  Repeatedly bisect the value using
437  // EXTRACT_ELEMENT.
438  Parts[0] = DAG.getNode(ISD::BITCAST, DL,
439                         EVT::getIntegerVT(*DAG.getContext(),
440                                           ValueVT.getSizeInBits()),
441                         Val);
442
443  for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
444    for (unsigned i = 0; i < NumParts; i += StepSize) {
445      unsigned ThisBits = StepSize * PartBits / 2;
446      EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
447      SDValue &Part0 = Parts[i];
448      SDValue &Part1 = Parts[i+StepSize/2];
449
450      Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
451                          ThisVT, Part0, DAG.getIntPtrConstant(1));
452      Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
453                          ThisVT, Part0, DAG.getIntPtrConstant(0));
454
455      if (ThisBits == PartBits && ThisVT != PartVT) {
456        Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
457        Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
458      }
459    }
460  }
461
462  if (TLI.isBigEndian())
463    std::reverse(Parts, Parts + OrigNumParts);
464}
465
466
467/// getCopyToPartsVector - Create a series of nodes that contain the specified
468/// value split into legal parts.
469static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL,
470                                 SDValue Val, SDValue *Parts, unsigned NumParts,
471                                 MVT PartVT, const Value *V) {
472  EVT ValueVT = Val.getValueType();
473  assert(ValueVT.isVector() && "Not a vector");
474  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
475
476  if (NumParts == 1) {
477    EVT PartEVT = PartVT;
478    if (PartEVT == ValueVT) {
479      // Nothing to do.
480    } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
481      // Bitconvert vector->vector case.
482      Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
483    } else if (PartVT.isVector() &&
484               PartEVT.getVectorElementType() == ValueVT.getVectorElementType() &&
485               PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
486      EVT ElementVT = PartVT.getVectorElementType();
487      // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
488      // undef elements.
489      SmallVector<SDValue, 16> Ops;
490      for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
491        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
492                                  ElementVT, Val, DAG.getIntPtrConstant(i)));
493
494      for (unsigned i = ValueVT.getVectorNumElements(),
495           e = PartVT.getVectorNumElements(); i != e; ++i)
496        Ops.push_back(DAG.getUNDEF(ElementVT));
497
498      Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size());
499
500      // FIXME: Use CONCAT for 2x -> 4x.
501
502      //SDValue UndefElts = DAG.getUNDEF(VectorTy);
503      //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
504    } else if (PartVT.isVector() &&
505               PartEVT.getVectorElementType().bitsGE(
506                 ValueVT.getVectorElementType()) &&
507               PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
508
509      // Promoted vector extract
510      bool Smaller = PartEVT.bitsLE(ValueVT);
511      Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
512                        DL, PartVT, Val);
513    } else{
514      // Vector -> scalar conversion.
515      assert(ValueVT.getVectorNumElements() == 1 &&
516             "Only trivial vector-to-scalar conversions should get here!");
517      Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
518                        PartVT, Val, DAG.getIntPtrConstant(0));
519
520      bool Smaller = ValueVT.bitsLE(PartVT);
521      Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
522                         DL, PartVT, Val);
523    }
524
525    Parts[0] = Val;
526    return;
527  }
528
529  // Handle a multi-element vector.
530  EVT IntermediateVT;
531  MVT RegisterVT;
532  unsigned NumIntermediates;
533  unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
534                                                IntermediateVT,
535                                                NumIntermediates, RegisterVT);
536  unsigned NumElements = ValueVT.getVectorNumElements();
537
538  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
539  NumParts = NumRegs; // Silence a compiler warning.
540  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
541
542  // Split the vector into intermediate operands.
543  SmallVector<SDValue, 8> Ops(NumIntermediates);
544  for (unsigned i = 0; i != NumIntermediates; ++i) {
545    if (IntermediateVT.isVector())
546      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
547                           IntermediateVT, Val,
548                   DAG.getIntPtrConstant(i * (NumElements / NumIntermediates)));
549    else
550      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
551                           IntermediateVT, Val, DAG.getIntPtrConstant(i));
552  }
553
554  // Split the intermediate operands into legal parts.
555  if (NumParts == NumIntermediates) {
556    // If the register was not expanded, promote or copy the value,
557    // as appropriate.
558    for (unsigned i = 0; i != NumParts; ++i)
559      getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V);
560  } else if (NumParts > 0) {
561    // If the intermediate type was expanded, split each the value into
562    // legal parts.
563    assert(NumParts % NumIntermediates == 0 &&
564           "Must expand into a divisible number of parts!");
565    unsigned Factor = NumParts / NumIntermediates;
566    for (unsigned i = 0; i != NumIntermediates; ++i)
567      getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V);
568  }
569}
570
571namespace {
572  /// RegsForValue - This struct represents the registers (physical or virtual)
573  /// that a particular set of values is assigned, and the type information
574  /// about the value. The most common situation is to represent one value at a
575  /// time, but struct or array values are handled element-wise as multiple
576  /// values.  The splitting of aggregates is performed recursively, so that we
577  /// never have aggregate-typed registers. The values at this point do not
578  /// necessarily have legal types, so each value may require one or more
579  /// registers of some legal type.
580  ///
581  struct RegsForValue {
582    /// ValueVTs - The value types of the values, which may not be legal, and
583    /// may need be promoted or synthesized from one or more registers.
584    ///
585    SmallVector<EVT, 4> ValueVTs;
586
587    /// RegVTs - The value types of the registers. This is the same size as
588    /// ValueVTs and it records, for each value, what the type of the assigned
589    /// register or registers are. (Individual values are never synthesized
590    /// from more than one type of register.)
591    ///
592    /// With virtual registers, the contents of RegVTs is redundant with TLI's
593    /// getRegisterType member function, however when with physical registers
594    /// it is necessary to have a separate record of the types.
595    ///
596    SmallVector<MVT, 4> RegVTs;
597
598    /// Regs - This list holds the registers assigned to the values.
599    /// Each legal or promoted value requires one register, and each
600    /// expanded value requires multiple registers.
601    ///
602    SmallVector<unsigned, 4> Regs;
603
604    RegsForValue() {}
605
606    RegsForValue(const SmallVector<unsigned, 4> &regs,
607                 MVT regvt, EVT valuevt)
608      : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
609
610    RegsForValue(LLVMContext &Context, const TargetLowering &tli,
611                 unsigned Reg, Type *Ty) {
612      ComputeValueVTs(tli, Ty, ValueVTs);
613
614      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
615        EVT ValueVT = ValueVTs[Value];
616        unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
617        MVT RegisterVT = tli.getRegisterType(Context, ValueVT);
618        for (unsigned i = 0; i != NumRegs; ++i)
619          Regs.push_back(Reg + i);
620        RegVTs.push_back(RegisterVT);
621        Reg += NumRegs;
622      }
623    }
624
625    /// areValueTypesLegal - Return true if types of all the values are legal.
626    bool areValueTypesLegal(const TargetLowering &TLI) {
627      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
628        MVT RegisterVT = RegVTs[Value];
629        if (!TLI.isTypeLegal(RegisterVT))
630          return false;
631      }
632      return true;
633    }
634
635    /// append - Add the specified values to this one.
636    void append(const RegsForValue &RHS) {
637      ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
638      RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
639      Regs.append(RHS.Regs.begin(), RHS.Regs.end());
640    }
641
642    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
643    /// this value and returns the result as a ValueVTs value.  This uses
644    /// Chain/Flag as the input and updates them for the output Chain/Flag.
645    /// If the Flag pointer is NULL, no flag is used.
646    SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
647                            DebugLoc dl,
648                            SDValue &Chain, SDValue *Flag,
649                            const Value *V = 0) const;
650
651    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
652    /// specified value into the registers specified by this object.  This uses
653    /// Chain/Flag as the input and updates them for the output Chain/Flag.
654    /// If the Flag pointer is NULL, no flag is used.
655    void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
656                       SDValue &Chain, SDValue *Flag, const Value *V) const;
657
658    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
659    /// operand list.  This adds the code marker, matching input operand index
660    /// (if applicable), and includes the number of values added into it.
661    void AddInlineAsmOperands(unsigned Kind,
662                              bool HasMatching, unsigned MatchingIdx,
663                              SelectionDAG &DAG,
664                              std::vector<SDValue> &Ops) const;
665  };
666}
667
668/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
669/// this value and returns the result as a ValueVT value.  This uses
670/// Chain/Flag as the input and updates them for the output Chain/Flag.
671/// If the Flag pointer is NULL, no flag is used.
672SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
673                                      FunctionLoweringInfo &FuncInfo,
674                                      DebugLoc dl,
675                                      SDValue &Chain, SDValue *Flag,
676                                      const Value *V) const {
677  // A Value with type {} or [0 x %t] needs no registers.
678  if (ValueVTs.empty())
679    return SDValue();
680
681  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
682
683  // Assemble the legal parts into the final values.
684  SmallVector<SDValue, 4> Values(ValueVTs.size());
685  SmallVector<SDValue, 8> Parts;
686  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
687    // Copy the legal parts from the registers.
688    EVT ValueVT = ValueVTs[Value];
689    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
690    MVT RegisterVT = RegVTs[Value];
691
692    Parts.resize(NumRegs);
693    for (unsigned i = 0; i != NumRegs; ++i) {
694      SDValue P;
695      if (Flag == 0) {
696        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
697      } else {
698        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
699        *Flag = P.getValue(2);
700      }
701
702      Chain = P.getValue(1);
703      Parts[i] = P;
704
705      // If the source register was virtual and if we know something about it,
706      // add an assert node.
707      if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
708          !RegisterVT.isInteger() || RegisterVT.isVector())
709        continue;
710
711      const FunctionLoweringInfo::LiveOutInfo *LOI =
712        FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
713      if (!LOI)
714        continue;
715
716      unsigned RegSize = RegisterVT.getSizeInBits();
717      unsigned NumSignBits = LOI->NumSignBits;
718      unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
719
720      // FIXME: We capture more information than the dag can represent.  For
721      // now, just use the tightest assertzext/assertsext possible.
722      bool isSExt = true;
723      EVT FromVT(MVT::Other);
724      if (NumSignBits == RegSize)
725        isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
726      else if (NumZeroBits >= RegSize-1)
727        isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
728      else if (NumSignBits > RegSize-8)
729        isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
730      else if (NumZeroBits >= RegSize-8)
731        isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
732      else if (NumSignBits > RegSize-16)
733        isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
734      else if (NumZeroBits >= RegSize-16)
735        isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
736      else if (NumSignBits > RegSize-32)
737        isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
738      else if (NumZeroBits >= RegSize-32)
739        isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
740      else
741        continue;
742
743      // Add an assertion node.
744      assert(FromVT != MVT::Other);
745      Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
746                             RegisterVT, P, DAG.getValueType(FromVT));
747    }
748
749    Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
750                                     NumRegs, RegisterVT, ValueVT, V);
751    Part += NumRegs;
752    Parts.clear();
753  }
754
755  return DAG.getNode(ISD::MERGE_VALUES, dl,
756                     DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
757                     &Values[0], ValueVTs.size());
758}
759
760/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
761/// specified value into the registers specified by this object.  This uses
762/// Chain/Flag as the input and updates them for the output Chain/Flag.
763/// If the Flag pointer is NULL, no flag is used.
764void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
765                                 SDValue &Chain, SDValue *Flag,
766                                 const Value *V) const {
767  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
768
769  // Get the list of the values's legal parts.
770  unsigned NumRegs = Regs.size();
771  SmallVector<SDValue, 8> Parts(NumRegs);
772  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
773    EVT ValueVT = ValueVTs[Value];
774    unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
775    MVT RegisterVT = RegVTs[Value];
776    ISD::NodeType ExtendKind =
777      TLI.isZExtFree(Val, RegisterVT)? ISD::ZERO_EXTEND: ISD::ANY_EXTEND;
778
779    getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
780                   &Parts[Part], NumParts, RegisterVT, V, ExtendKind);
781    Part += NumParts;
782  }
783
784  // Copy the parts into the registers.
785  SmallVector<SDValue, 8> Chains(NumRegs);
786  for (unsigned i = 0; i != NumRegs; ++i) {
787    SDValue Part;
788    if (Flag == 0) {
789      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
790    } else {
791      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
792      *Flag = Part.getValue(1);
793    }
794
795    Chains[i] = Part.getValue(0);
796  }
797
798  if (NumRegs == 1 || Flag)
799    // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
800    // flagged to it. That is the CopyToReg nodes and the user are considered
801    // a single scheduling unit. If we create a TokenFactor and return it as
802    // chain, then the TokenFactor is both a predecessor (operand) of the
803    // user as well as a successor (the TF operands are flagged to the user).
804    // c1, f1 = CopyToReg
805    // c2, f2 = CopyToReg
806    // c3     = TokenFactor c1, c2
807    // ...
808    //        = op c3, ..., f2
809    Chain = Chains[NumRegs-1];
810  else
811    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
812}
813
814/// AddInlineAsmOperands - Add this value to the specified inlineasm node
815/// operand list.  This adds the code marker and includes the number of
816/// values added into it.
817void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
818                                        unsigned MatchingIdx,
819                                        SelectionDAG &DAG,
820                                        std::vector<SDValue> &Ops) const {
821  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
822
823  unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
824  if (HasMatching)
825    Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
826  else if (!Regs.empty() &&
827           TargetRegisterInfo::isVirtualRegister(Regs.front())) {
828    // Put the register class of the virtual registers in the flag word.  That
829    // way, later passes can recompute register class constraints for inline
830    // assembly as well as normal instructions.
831    // Don't do this for tied operands that can use the regclass information
832    // from the def.
833    const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
834    const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
835    Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
836  }
837
838  SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
839  Ops.push_back(Res);
840
841  for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
842    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
843    MVT RegisterVT = RegVTs[Value];
844    for (unsigned i = 0; i != NumRegs; ++i) {
845      assert(Reg < Regs.size() && "Mismatch in # registers expected");
846      Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
847    }
848  }
849}
850
851void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa,
852                               const TargetLibraryInfo *li) {
853  AA = &aa;
854  GFI = gfi;
855  LibInfo = li;
856  TD = DAG.getTarget().getDataLayout();
857  Context = DAG.getContext();
858  LPadToCallSiteMap.clear();
859}
860
861/// clear - Clear out the current SelectionDAG and the associated
862/// state and prepare this SelectionDAGBuilder object to be used
863/// for a new block. This doesn't clear out information about
864/// additional blocks that are needed to complete switch lowering
865/// or PHI node updating; that information is cleared out as it is
866/// consumed.
867void SelectionDAGBuilder::clear() {
868  NodeMap.clear();
869  UnusedArgNodeMap.clear();
870  PendingLoads.clear();
871  PendingExports.clear();
872  CurDebugLoc = DebugLoc();
873  HasTailCall = false;
874}
875
876/// clearDanglingDebugInfo - Clear the dangling debug information
877/// map. This function is separated from the clear so that debug
878/// information that is dangling in a basic block can be properly
879/// resolved in a different basic block. This allows the
880/// SelectionDAG to resolve dangling debug information attached
881/// to PHI nodes.
882void SelectionDAGBuilder::clearDanglingDebugInfo() {
883  DanglingDebugInfoMap.clear();
884}
885
886/// getRoot - Return the current virtual root of the Selection DAG,
887/// flushing any PendingLoad items. This must be done before emitting
888/// a store or any other node that may need to be ordered after any
889/// prior load instructions.
890///
891SDValue SelectionDAGBuilder::getRoot() {
892  if (PendingLoads.empty())
893    return DAG.getRoot();
894
895  if (PendingLoads.size() == 1) {
896    SDValue Root = PendingLoads[0];
897    DAG.setRoot(Root);
898    PendingLoads.clear();
899    return Root;
900  }
901
902  // Otherwise, we have to make a token factor node.
903  SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
904                               &PendingLoads[0], PendingLoads.size());
905  PendingLoads.clear();
906  DAG.setRoot(Root);
907  return Root;
908}
909
910/// getControlRoot - Similar to getRoot, but instead of flushing all the
911/// PendingLoad items, flush all the PendingExports items. It is necessary
912/// to do this before emitting a terminator instruction.
913///
914SDValue SelectionDAGBuilder::getControlRoot() {
915  SDValue Root = DAG.getRoot();
916
917  if (PendingExports.empty())
918    return Root;
919
920  // Turn all of the CopyToReg chains into one factored node.
921  if (Root.getOpcode() != ISD::EntryToken) {
922    unsigned i = 0, e = PendingExports.size();
923    for (; i != e; ++i) {
924      assert(PendingExports[i].getNode()->getNumOperands() > 1);
925      if (PendingExports[i].getNode()->getOperand(0) == Root)
926        break;  // Don't add the root if we already indirectly depend on it.
927    }
928
929    if (i == e)
930      PendingExports.push_back(Root);
931  }
932
933  Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
934                     &PendingExports[0],
935                     PendingExports.size());
936  PendingExports.clear();
937  DAG.setRoot(Root);
938  return Root;
939}
940
941void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) {
942  if (DAG.GetOrdering(Node) != 0) return; // Already has ordering.
943  DAG.AssignOrdering(Node, SDNodeOrder);
944
945  for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I)
946    AssignOrderingToNode(Node->getOperand(I).getNode());
947}
948
949void SelectionDAGBuilder::visit(const Instruction &I) {
950  // Set up outgoing PHI node register values before emitting the terminator.
951  if (isa<TerminatorInst>(&I))
952    HandlePHINodesInSuccessorBlocks(I.getParent());
953
954  CurDebugLoc = I.getDebugLoc();
955
956  visit(I.getOpcode(), I);
957
958  if (!isa<TerminatorInst>(&I) && !HasTailCall)
959    CopyToExportRegsIfNeeded(&I);
960
961  CurDebugLoc = DebugLoc();
962}
963
964void SelectionDAGBuilder::visitPHI(const PHINode &) {
965  llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
966}
967
968void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
969  // Note: this doesn't use InstVisitor, because it has to work with
970  // ConstantExpr's in addition to instructions.
971  switch (Opcode) {
972  default: llvm_unreachable("Unknown instruction type encountered!");
973    // Build the switch statement using the Instruction.def file.
974#define HANDLE_INST(NUM, OPCODE, CLASS) \
975    case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
976#include "llvm/IR/Instruction.def"
977  }
978
979  // Assign the ordering to the freshly created DAG nodes.
980  if (NodeMap.count(&I)) {
981    ++SDNodeOrder;
982    AssignOrderingToNode(getValue(&I).getNode());
983  }
984}
985
986// resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
987// generate the debug data structures now that we've seen its definition.
988void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
989                                                   SDValue Val) {
990  DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
991  if (DDI.getDI()) {
992    const DbgValueInst *DI = DDI.getDI();
993    DebugLoc dl = DDI.getdl();
994    unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
995    MDNode *Variable = DI->getVariable();
996    uint64_t Offset = DI->getOffset();
997    SDDbgValue *SDV;
998    if (Val.getNode()) {
999      if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) {
1000        SDV = DAG.getDbgValue(Variable, Val.getNode(),
1001                              Val.getResNo(), Offset, dl, DbgSDNodeOrder);
1002        DAG.AddDbgValue(SDV, Val.getNode(), false);
1003      }
1004    } else
1005      DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
1006    DanglingDebugInfoMap[V] = DanglingDebugInfo();
1007  }
1008}
1009
1010/// getValue - Return an SDValue for the given Value.
1011SDValue SelectionDAGBuilder::getValue(const Value *V) {
1012  // If we already have an SDValue for this value, use it. It's important
1013  // to do this first, so that we don't create a CopyFromReg if we already
1014  // have a regular SDValue.
1015  SDValue &N = NodeMap[V];
1016  if (N.getNode()) return N;
1017
1018  // If there's a virtual register allocated and initialized for this
1019  // value, use it.
1020  DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
1021  if (It != FuncInfo.ValueMap.end()) {
1022    unsigned InReg = It->second;
1023    RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
1024    SDValue Chain = DAG.getEntryNode();
1025    N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL, V);
1026    resolveDanglingDebugInfo(V, N);
1027    return N;
1028  }
1029
1030  // Otherwise create a new SDValue and remember it.
1031  SDValue Val = getValueImpl(V);
1032  NodeMap[V] = Val;
1033  resolveDanglingDebugInfo(V, Val);
1034  return Val;
1035}
1036
1037/// getNonRegisterValue - Return an SDValue for the given Value, but
1038/// don't look in FuncInfo.ValueMap for a virtual register.
1039SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1040  // If we already have an SDValue for this value, use it.
1041  SDValue &N = NodeMap[V];
1042  if (N.getNode()) return N;
1043
1044  // Otherwise create a new SDValue and remember it.
1045  SDValue Val = getValueImpl(V);
1046  NodeMap[V] = Val;
1047  resolveDanglingDebugInfo(V, Val);
1048  return Val;
1049}
1050
1051/// getValueImpl - Helper function for getValue and getNonRegisterValue.
1052/// Create an SDValue for the given value.
1053SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1054  if (const Constant *C = dyn_cast<Constant>(V)) {
1055    EVT VT = TLI.getValueType(V->getType(), true);
1056
1057    if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1058      return DAG.getConstant(*CI, VT);
1059
1060    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1061      return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT);
1062
1063    if (isa<ConstantPointerNull>(C))
1064      return DAG.getConstant(0, TLI.getPointerTy());
1065
1066    if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1067      return DAG.getConstantFP(*CFP, VT);
1068
1069    if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1070      return DAG.getUNDEF(VT);
1071
1072    if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1073      visit(CE->getOpcode(), *CE);
1074      SDValue N1 = NodeMap[V];
1075      assert(N1.getNode() && "visit didn't populate the NodeMap!");
1076      return N1;
1077    }
1078
1079    if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1080      SmallVector<SDValue, 4> Constants;
1081      for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1082           OI != OE; ++OI) {
1083        SDNode *Val = getValue(*OI).getNode();
1084        // If the operand is an empty aggregate, there are no values.
1085        if (!Val) continue;
1086        // Add each leaf value from the operand to the Constants list
1087        // to form a flattened list of all the values.
1088        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1089          Constants.push_back(SDValue(Val, i));
1090      }
1091
1092      return DAG.getMergeValues(&Constants[0], Constants.size(),
1093                                getCurDebugLoc());
1094    }
1095
1096    if (const ConstantDataSequential *CDS =
1097          dyn_cast<ConstantDataSequential>(C)) {
1098      SmallVector<SDValue, 4> Ops;
1099      for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1100        SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1101        // Add each leaf value from the operand to the Constants list
1102        // to form a flattened list of all the values.
1103        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1104          Ops.push_back(SDValue(Val, i));
1105      }
1106
1107      if (isa<ArrayType>(CDS->getType()))
1108        return DAG.getMergeValues(&Ops[0], Ops.size(), getCurDebugLoc());
1109      return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
1110                                      VT, &Ops[0], Ops.size());
1111    }
1112
1113    if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1114      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1115             "Unknown struct or array constant!");
1116
1117      SmallVector<EVT, 4> ValueVTs;
1118      ComputeValueVTs(TLI, C->getType(), ValueVTs);
1119      unsigned NumElts = ValueVTs.size();
1120      if (NumElts == 0)
1121        return SDValue(); // empty struct
1122      SmallVector<SDValue, 4> Constants(NumElts);
1123      for (unsigned i = 0; i != NumElts; ++i) {
1124        EVT EltVT = ValueVTs[i];
1125        if (isa<UndefValue>(C))
1126          Constants[i] = DAG.getUNDEF(EltVT);
1127        else if (EltVT.isFloatingPoint())
1128          Constants[i] = DAG.getConstantFP(0, EltVT);
1129        else
1130          Constants[i] = DAG.getConstant(0, EltVT);
1131      }
1132
1133      return DAG.getMergeValues(&Constants[0], NumElts,
1134                                getCurDebugLoc());
1135    }
1136
1137    if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1138      return DAG.getBlockAddress(BA, VT);
1139
1140    VectorType *VecTy = cast<VectorType>(V->getType());
1141    unsigned NumElements = VecTy->getNumElements();
1142
1143    // Now that we know the number and type of the elements, get that number of
1144    // elements into the Ops array based on what kind of constant it is.
1145    SmallVector<SDValue, 16> Ops;
1146    if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1147      for (unsigned i = 0; i != NumElements; ++i)
1148        Ops.push_back(getValue(CV->getOperand(i)));
1149    } else {
1150      assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1151      EVT EltVT = TLI.getValueType(VecTy->getElementType());
1152
1153      SDValue Op;
1154      if (EltVT.isFloatingPoint())
1155        Op = DAG.getConstantFP(0, EltVT);
1156      else
1157        Op = DAG.getConstant(0, EltVT);
1158      Ops.assign(NumElements, Op);
1159    }
1160
1161    // Create a BUILD_VECTOR node.
1162    return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
1163                                    VT, &Ops[0], Ops.size());
1164  }
1165
1166  // If this is a static alloca, generate it as the frameindex instead of
1167  // computation.
1168  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1169    DenseMap<const AllocaInst*, int>::iterator SI =
1170      FuncInfo.StaticAllocaMap.find(AI);
1171    if (SI != FuncInfo.StaticAllocaMap.end())
1172      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
1173  }
1174
1175  // If this is an instruction which fast-isel has deferred, select it now.
1176  if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1177    unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1178    RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType());
1179    SDValue Chain = DAG.getEntryNode();
1180    return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL, V);
1181  }
1182
1183  llvm_unreachable("Can't get register for value!");
1184}
1185
1186void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1187  SDValue Chain = getControlRoot();
1188  SmallVector<ISD::OutputArg, 8> Outs;
1189  SmallVector<SDValue, 8> OutVals;
1190
1191  if (!FuncInfo.CanLowerReturn) {
1192    unsigned DemoteReg = FuncInfo.DemoteRegister;
1193    const Function *F = I.getParent()->getParent();
1194
1195    // Emit a store of the return value through the virtual register.
1196    // Leave Outs empty so that LowerReturn won't try to load return
1197    // registers the usual way.
1198    SmallVector<EVT, 1> PtrValueVTs;
1199    ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
1200                    PtrValueVTs);
1201
1202    SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
1203    SDValue RetOp = getValue(I.getOperand(0));
1204
1205    SmallVector<EVT, 4> ValueVTs;
1206    SmallVector<uint64_t, 4> Offsets;
1207    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1208    unsigned NumValues = ValueVTs.size();
1209
1210    SmallVector<SDValue, 4> Chains(NumValues);
1211    for (unsigned i = 0; i != NumValues; ++i) {
1212      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(),
1213                                RetPtr.getValueType(), RetPtr,
1214                                DAG.getIntPtrConstant(Offsets[i]));
1215      Chains[i] =
1216        DAG.getStore(Chain, getCurDebugLoc(),
1217                     SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1218                     // FIXME: better loc info would be nice.
1219                     Add, MachinePointerInfo(), false, false, 0);
1220    }
1221
1222    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
1223                        MVT::Other, &Chains[0], NumValues);
1224  } else if (I.getNumOperands() != 0) {
1225    SmallVector<EVT, 4> ValueVTs;
1226    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
1227    unsigned NumValues = ValueVTs.size();
1228    if (NumValues) {
1229      SDValue RetOp = getValue(I.getOperand(0));
1230      for (unsigned j = 0, f = NumValues; j != f; ++j) {
1231        EVT VT = ValueVTs[j];
1232
1233        ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1234
1235        const Function *F = I.getParent()->getParent();
1236        if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1237                                            Attribute::SExt))
1238          ExtendKind = ISD::SIGN_EXTEND;
1239        else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1240                                                 Attribute::ZExt))
1241          ExtendKind = ISD::ZERO_EXTEND;
1242
1243        if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1244          VT = TLI.getTypeForExtArgOrReturn(VT.getSimpleVT(), ExtendKind);
1245
1246        unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
1247        MVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
1248        SmallVector<SDValue, 4> Parts(NumParts);
1249        getCopyToParts(DAG, getCurDebugLoc(),
1250                       SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1251                       &Parts[0], NumParts, PartVT, &I, ExtendKind);
1252
1253        // 'inreg' on function refers to return value
1254        ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1255        if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1256                                            Attribute::InReg))
1257          Flags.setInReg();
1258
1259        // Propagate extension type if any
1260        if (ExtendKind == ISD::SIGN_EXTEND)
1261          Flags.setSExt();
1262        else if (ExtendKind == ISD::ZERO_EXTEND)
1263          Flags.setZExt();
1264
1265        for (unsigned i = 0; i < NumParts; ++i) {
1266          Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1267                                        /*isfixed=*/true, 0, 0));
1268          OutVals.push_back(Parts[i]);
1269        }
1270      }
1271    }
1272  }
1273
1274  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1275  CallingConv::ID CallConv =
1276    DAG.getMachineFunction().getFunction()->getCallingConv();
1277  Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
1278                          Outs, OutVals, getCurDebugLoc(), DAG);
1279
1280  // Verify that the target's LowerReturn behaved as expected.
1281  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1282         "LowerReturn didn't return a valid chain!");
1283
1284  // Update the DAG with the new chain value resulting from return lowering.
1285  DAG.setRoot(Chain);
1286}
1287
1288/// CopyToExportRegsIfNeeded - If the given value has virtual registers
1289/// created for it, emit nodes to copy the value into the virtual
1290/// registers.
1291void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1292  // Skip empty types
1293  if (V->getType()->isEmptyTy())
1294    return;
1295
1296  DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1297  if (VMI != FuncInfo.ValueMap.end()) {
1298    assert(!V->use_empty() && "Unused value assigned virtual registers!");
1299    CopyValueToVirtualRegister(V, VMI->second);
1300  }
1301}
1302
1303/// ExportFromCurrentBlock - If this condition isn't known to be exported from
1304/// the current basic block, add it to ValueMap now so that we'll get a
1305/// CopyTo/FromReg.
1306void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1307  // No need to export constants.
1308  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1309
1310  // Already exported?
1311  if (FuncInfo.isExportedInst(V)) return;
1312
1313  unsigned Reg = FuncInfo.InitializeRegForValue(V);
1314  CopyValueToVirtualRegister(V, Reg);
1315}
1316
1317bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1318                                                     const BasicBlock *FromBB) {
1319  // The operands of the setcc have to be in this block.  We don't know
1320  // how to export them from some other block.
1321  if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1322    // Can export from current BB.
1323    if (VI->getParent() == FromBB)
1324      return true;
1325
1326    // Is already exported, noop.
1327    return FuncInfo.isExportedInst(V);
1328  }
1329
1330  // If this is an argument, we can export it if the BB is the entry block or
1331  // if it is already exported.
1332  if (isa<Argument>(V)) {
1333    if (FromBB == &FromBB->getParent()->getEntryBlock())
1334      return true;
1335
1336    // Otherwise, can only export this if it is already exported.
1337    return FuncInfo.isExportedInst(V);
1338  }
1339
1340  // Otherwise, constants can always be exported.
1341  return true;
1342}
1343
1344/// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1345uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src,
1346                                            const MachineBasicBlock *Dst) const {
1347  BranchProbabilityInfo *BPI = FuncInfo.BPI;
1348  if (!BPI)
1349    return 0;
1350  const BasicBlock *SrcBB = Src->getBasicBlock();
1351  const BasicBlock *DstBB = Dst->getBasicBlock();
1352  return BPI->getEdgeWeight(SrcBB, DstBB);
1353}
1354
1355void SelectionDAGBuilder::
1356addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst,
1357                       uint32_t Weight /* = 0 */) {
1358  if (!Weight)
1359    Weight = getEdgeWeight(Src, Dst);
1360  Src->addSuccessor(Dst, Weight);
1361}
1362
1363
1364static bool InBlock(const Value *V, const BasicBlock *BB) {
1365  if (const Instruction *I = dyn_cast<Instruction>(V))
1366    return I->getParent() == BB;
1367  return true;
1368}
1369
1370/// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1371/// This function emits a branch and is used at the leaves of an OR or an
1372/// AND operator tree.
1373///
1374void
1375SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1376                                                  MachineBasicBlock *TBB,
1377                                                  MachineBasicBlock *FBB,
1378                                                  MachineBasicBlock *CurBB,
1379                                                  MachineBasicBlock *SwitchBB) {
1380  const BasicBlock *BB = CurBB->getBasicBlock();
1381
1382  // If the leaf of the tree is a comparison, merge the condition into
1383  // the caseblock.
1384  if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1385    // The operands of the cmp have to be in this block.  We don't know
1386    // how to export them from some other block.  If this is the first block
1387    // of the sequence, no exporting is needed.
1388    if (CurBB == SwitchBB ||
1389        (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1390         isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1391      ISD::CondCode Condition;
1392      if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1393        Condition = getICmpCondCode(IC->getPredicate());
1394      } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1395        Condition = getFCmpCondCode(FC->getPredicate());
1396        if (TM.Options.NoNaNsFPMath)
1397          Condition = getFCmpCodeWithoutNaN(Condition);
1398      } else {
1399        Condition = ISD::SETEQ; // silence warning.
1400        llvm_unreachable("Unknown compare instruction");
1401      }
1402
1403      CaseBlock CB(Condition, BOp->getOperand(0),
1404                   BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1405      SwitchCases.push_back(CB);
1406      return;
1407    }
1408  }
1409
1410  // Create a CaseBlock record representing this branch.
1411  CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1412               NULL, TBB, FBB, CurBB);
1413  SwitchCases.push_back(CB);
1414}
1415
1416/// FindMergedConditions - If Cond is an expression like
1417void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1418                                               MachineBasicBlock *TBB,
1419                                               MachineBasicBlock *FBB,
1420                                               MachineBasicBlock *CurBB,
1421                                               MachineBasicBlock *SwitchBB,
1422                                               unsigned Opc) {
1423  // If this node is not part of the or/and tree, emit it as a branch.
1424  const Instruction *BOp = dyn_cast<Instruction>(Cond);
1425  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1426      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1427      BOp->getParent() != CurBB->getBasicBlock() ||
1428      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1429      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1430    EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB);
1431    return;
1432  }
1433
1434  //  Create TmpBB after CurBB.
1435  MachineFunction::iterator BBI = CurBB;
1436  MachineFunction &MF = DAG.getMachineFunction();
1437  MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1438  CurBB->getParent()->insert(++BBI, TmpBB);
1439
1440  if (Opc == Instruction::Or) {
1441    // Codegen X | Y as:
1442    //   jmp_if_X TBB
1443    //   jmp TmpBB
1444    // TmpBB:
1445    //   jmp_if_Y TBB
1446    //   jmp FBB
1447    //
1448
1449    // Emit the LHS condition.
1450    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc);
1451
1452    // Emit the RHS condition into TmpBB.
1453    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1454  } else {
1455    assert(Opc == Instruction::And && "Unknown merge op!");
1456    // Codegen X & Y as:
1457    //   jmp_if_X TmpBB
1458    //   jmp FBB
1459    // TmpBB:
1460    //   jmp_if_Y TBB
1461    //   jmp FBB
1462    //
1463    //  This requires creation of TmpBB after CurBB.
1464
1465    // Emit the LHS condition.
1466    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc);
1467
1468    // Emit the RHS condition into TmpBB.
1469    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1470  }
1471}
1472
1473/// If the set of cases should be emitted as a series of branches, return true.
1474/// If we should emit this as a bunch of and/or'd together conditions, return
1475/// false.
1476bool
1477SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
1478  if (Cases.size() != 2) return true;
1479
1480  // If this is two comparisons of the same values or'd or and'd together, they
1481  // will get folded into a single comparison, so don't emit two blocks.
1482  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1483       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1484      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1485       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1486    return false;
1487  }
1488
1489  // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1490  // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1491  if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1492      Cases[0].CC == Cases[1].CC &&
1493      isa<Constant>(Cases[0].CmpRHS) &&
1494      cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1495    if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1496      return false;
1497    if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1498      return false;
1499  }
1500
1501  return true;
1502}
1503
1504void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1505  MachineBasicBlock *BrMBB = FuncInfo.MBB;
1506
1507  // Update machine-CFG edges.
1508  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1509
1510  // Figure out which block is immediately after the current one.
1511  MachineBasicBlock *NextBlock = 0;
1512  MachineFunction::iterator BBI = BrMBB;
1513  if (++BBI != FuncInfo.MF->end())
1514    NextBlock = BBI;
1515
1516  if (I.isUnconditional()) {
1517    // Update machine-CFG edges.
1518    BrMBB->addSuccessor(Succ0MBB);
1519
1520    // If this is not a fall-through branch, emit the branch.
1521    if (Succ0MBB != NextBlock)
1522      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1523                              MVT::Other, getControlRoot(),
1524                              DAG.getBasicBlock(Succ0MBB)));
1525
1526    return;
1527  }
1528
1529  // If this condition is one of the special cases we handle, do special stuff
1530  // now.
1531  const Value *CondVal = I.getCondition();
1532  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1533
1534  // If this is a series of conditions that are or'd or and'd together, emit
1535  // this as a sequence of branches instead of setcc's with and/or operations.
1536  // As long as jumps are not expensive, this should improve performance.
1537  // For example, instead of something like:
1538  //     cmp A, B
1539  //     C = seteq
1540  //     cmp D, E
1541  //     F = setle
1542  //     or C, F
1543  //     jnz foo
1544  // Emit:
1545  //     cmp A, B
1546  //     je foo
1547  //     cmp D, E
1548  //     jle foo
1549  //
1550  if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1551    if (!TLI.isJumpExpensive() &&
1552        BOp->hasOneUse() &&
1553        (BOp->getOpcode() == Instruction::And ||
1554         BOp->getOpcode() == Instruction::Or)) {
1555      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1556                           BOp->getOpcode());
1557      // If the compares in later blocks need to use values not currently
1558      // exported from this block, export them now.  This block should always
1559      // be the first entry.
1560      assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1561
1562      // Allow some cases to be rejected.
1563      if (ShouldEmitAsBranches(SwitchCases)) {
1564        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1565          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1566          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1567        }
1568
1569        // Emit the branch for this block.
1570        visitSwitchCase(SwitchCases[0], BrMBB);
1571        SwitchCases.erase(SwitchCases.begin());
1572        return;
1573      }
1574
1575      // Okay, we decided not to do this, remove any inserted MBB's and clear
1576      // SwitchCases.
1577      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1578        FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1579
1580      SwitchCases.clear();
1581    }
1582  }
1583
1584  // Create a CaseBlock record representing this branch.
1585  CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1586               NULL, Succ0MBB, Succ1MBB, BrMBB);
1587
1588  // Use visitSwitchCase to actually insert the fast branch sequence for this
1589  // cond branch.
1590  visitSwitchCase(CB, BrMBB);
1591}
1592
1593/// visitSwitchCase - Emits the necessary code to represent a single node in
1594/// the binary search tree resulting from lowering a switch instruction.
1595void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1596                                          MachineBasicBlock *SwitchBB) {
1597  SDValue Cond;
1598  SDValue CondLHS = getValue(CB.CmpLHS);
1599  DebugLoc dl = getCurDebugLoc();
1600
1601  // Build the setcc now.
1602  if (CB.CmpMHS == NULL) {
1603    // Fold "(X == true)" to X and "(X == false)" to !X to
1604    // handle common cases produced by branch lowering.
1605    if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1606        CB.CC == ISD::SETEQ)
1607      Cond = CondLHS;
1608    else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1609             CB.CC == ISD::SETEQ) {
1610      SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1611      Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1612    } else
1613      Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1614  } else {
1615    assert(CB.CC == ISD::SETCC_INVALID &&
1616           "Condition is undefined for to-the-range belonging check.");
1617
1618    const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1619    const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
1620
1621    SDValue CmpOp = getValue(CB.CmpMHS);
1622    EVT VT = CmpOp.getValueType();
1623
1624    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(false)) {
1625      Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1626                          ISD::SETULE);
1627    } else {
1628      SDValue SUB = DAG.getNode(ISD::SUB, dl,
1629                                VT, CmpOp, DAG.getConstant(Low, VT));
1630      Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1631                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1632    }
1633  }
1634
1635  // Update successor info
1636  addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight);
1637  // TrueBB and FalseBB are always different unless the incoming IR is
1638  // degenerate. This only happens when running llc on weird IR.
1639  if (CB.TrueBB != CB.FalseBB)
1640    addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight);
1641
1642  // Set NextBlock to be the MBB immediately after the current one, if any.
1643  // This is used to avoid emitting unnecessary branches to the next block.
1644  MachineBasicBlock *NextBlock = 0;
1645  MachineFunction::iterator BBI = SwitchBB;
1646  if (++BBI != FuncInfo.MF->end())
1647    NextBlock = BBI;
1648
1649  // If the lhs block is the next block, invert the condition so that we can
1650  // fall through to the lhs instead of the rhs block.
1651  if (CB.TrueBB == NextBlock) {
1652    std::swap(CB.TrueBB, CB.FalseBB);
1653    SDValue True = DAG.getConstant(1, Cond.getValueType());
1654    Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1655  }
1656
1657  SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1658                               MVT::Other, getControlRoot(), Cond,
1659                               DAG.getBasicBlock(CB.TrueBB));
1660
1661  // Insert the false branch. Do this even if it's a fall through branch,
1662  // this makes it easier to do DAG optimizations which require inverting
1663  // the branch condition.
1664  BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1665                       DAG.getBasicBlock(CB.FalseBB));
1666
1667  DAG.setRoot(BrCond);
1668}
1669
1670/// visitJumpTable - Emit JumpTable node in the current MBB
1671void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1672  // Emit the code for the jump table
1673  assert(JT.Reg != -1U && "Should lower JT Header first!");
1674  EVT PTy = TLI.getPointerTy();
1675  SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1676                                     JT.Reg, PTy);
1677  SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1678  SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(),
1679                                    MVT::Other, Index.getValue(1),
1680                                    Table, Index);
1681  DAG.setRoot(BrJumpTable);
1682}
1683
1684/// visitJumpTableHeader - This function emits necessary code to produce index
1685/// in the JumpTable from switch case.
1686void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1687                                               JumpTableHeader &JTH,
1688                                               MachineBasicBlock *SwitchBB) {
1689  // Subtract the lowest switch case value from the value being switched on and
1690  // conditional branch to default mbb if the result is greater than the
1691  // difference between smallest and largest cases.
1692  SDValue SwitchOp = getValue(JTH.SValue);
1693  EVT VT = SwitchOp.getValueType();
1694  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1695                            DAG.getConstant(JTH.First, VT));
1696
1697  // The SDNode we just created, which holds the value being switched on minus
1698  // the smallest case value, needs to be copied to a virtual register so it
1699  // can be used as an index into the jump table in a subsequent basic block.
1700  // This value may be smaller or larger than the target's pointer type, and
1701  // therefore require extension or truncating.
1702  SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy());
1703
1704  unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy());
1705  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1706                                    JumpTableReg, SwitchOp);
1707  JT.Reg = JumpTableReg;
1708
1709  // Emit the range check for the jump table, and branch to the default block
1710  // for the switch statement if the value being switched on exceeds the largest
1711  // case in the switch.
1712  SDValue CMP = DAG.getSetCC(getCurDebugLoc(),
1713                             TLI.getSetCCResultType(Sub.getValueType()), Sub,
1714                             DAG.getConstant(JTH.Last-JTH.First,VT),
1715                             ISD::SETUGT);
1716
1717  // Set NextBlock to be the MBB immediately after the current one, if any.
1718  // This is used to avoid emitting unnecessary branches to the next block.
1719  MachineBasicBlock *NextBlock = 0;
1720  MachineFunction::iterator BBI = SwitchBB;
1721
1722  if (++BBI != FuncInfo.MF->end())
1723    NextBlock = BBI;
1724
1725  SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1726                               MVT::Other, CopyTo, CMP,
1727                               DAG.getBasicBlock(JT.Default));
1728
1729  if (JT.MBB != NextBlock)
1730    BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond,
1731                         DAG.getBasicBlock(JT.MBB));
1732
1733  DAG.setRoot(BrCond);
1734}
1735
1736/// visitBitTestHeader - This function emits necessary code to produce value
1737/// suitable for "bit tests"
1738void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1739                                             MachineBasicBlock *SwitchBB) {
1740  // Subtract the minimum value
1741  SDValue SwitchOp = getValue(B.SValue);
1742  EVT VT = SwitchOp.getValueType();
1743  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1744                            DAG.getConstant(B.First, VT));
1745
1746  // Check range
1747  SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(),
1748                                  TLI.getSetCCResultType(Sub.getValueType()),
1749                                  Sub, DAG.getConstant(B.Range, VT),
1750                                  ISD::SETUGT);
1751
1752  // Determine the type of the test operands.
1753  bool UsePtrType = false;
1754  if (!TLI.isTypeLegal(VT))
1755    UsePtrType = true;
1756  else {
1757    for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
1758      if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
1759        // Switch table case range are encoded into series of masks.
1760        // Just use pointer type, it's guaranteed to fit.
1761        UsePtrType = true;
1762        break;
1763      }
1764  }
1765  if (UsePtrType) {
1766    VT = TLI.getPointerTy();
1767    Sub = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), VT);
1768  }
1769
1770  B.RegVT = VT.getSimpleVT();
1771  B.Reg = FuncInfo.CreateReg(B.RegVT);
1772  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1773                                    B.Reg, Sub);
1774
1775  // Set NextBlock to be the MBB immediately after the current one, if any.
1776  // This is used to avoid emitting unnecessary branches to the next block.
1777  MachineBasicBlock *NextBlock = 0;
1778  MachineFunction::iterator BBI = SwitchBB;
1779  if (++BBI != FuncInfo.MF->end())
1780    NextBlock = BBI;
1781
1782  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1783
1784  addSuccessorWithWeight(SwitchBB, B.Default);
1785  addSuccessorWithWeight(SwitchBB, MBB);
1786
1787  SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1788                                MVT::Other, CopyTo, RangeCmp,
1789                                DAG.getBasicBlock(B.Default));
1790
1791  if (MBB != NextBlock)
1792    BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo,
1793                          DAG.getBasicBlock(MBB));
1794
1795  DAG.setRoot(BrRange);
1796}
1797
1798/// visitBitTestCase - this function produces one "bit test"
1799void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
1800                                           MachineBasicBlock* NextMBB,
1801                                           uint32_t BranchWeightToNext,
1802                                           unsigned Reg,
1803                                           BitTestCase &B,
1804                                           MachineBasicBlock *SwitchBB) {
1805  MVT VT = BB.RegVT;
1806  SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1807                                       Reg, VT);
1808  SDValue Cmp;
1809  unsigned PopCount = CountPopulation_64(B.Mask);
1810  if (PopCount == 1) {
1811    // Testing for a single bit; just compare the shift count with what it
1812    // would need to be to shift a 1 bit in that position.
1813    Cmp = DAG.getSetCC(getCurDebugLoc(),
1814                       TLI.getSetCCResultType(VT),
1815                       ShiftOp,
1816                       DAG.getConstant(CountTrailingZeros_64(B.Mask), VT),
1817                       ISD::SETEQ);
1818  } else if (PopCount == BB.Range) {
1819    // There is only one zero bit in the range, test for it directly.
1820    Cmp = DAG.getSetCC(getCurDebugLoc(),
1821                       TLI.getSetCCResultType(VT),
1822                       ShiftOp,
1823                       DAG.getConstant(CountTrailingOnes_64(B.Mask), VT),
1824                       ISD::SETNE);
1825  } else {
1826    // Make desired shift
1827    SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), VT,
1828                                    DAG.getConstant(1, VT), ShiftOp);
1829
1830    // Emit bit tests and jumps
1831    SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(),
1832                                VT, SwitchVal, DAG.getConstant(B.Mask, VT));
1833    Cmp = DAG.getSetCC(getCurDebugLoc(),
1834                       TLI.getSetCCResultType(VT),
1835                       AndOp, DAG.getConstant(0, VT),
1836                       ISD::SETNE);
1837  }
1838
1839  // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight.
1840  addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight);
1841  // The branch weight from SwitchBB to NextMBB is BranchWeightToNext.
1842  addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext);
1843
1844  SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1845                              MVT::Other, getControlRoot(),
1846                              Cmp, DAG.getBasicBlock(B.TargetBB));
1847
1848  // Set NextBlock to be the MBB immediately after the current one, if any.
1849  // This is used to avoid emitting unnecessary branches to the next block.
1850  MachineBasicBlock *NextBlock = 0;
1851  MachineFunction::iterator BBI = SwitchBB;
1852  if (++BBI != FuncInfo.MF->end())
1853    NextBlock = BBI;
1854
1855  if (NextMBB != NextBlock)
1856    BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd,
1857                        DAG.getBasicBlock(NextMBB));
1858
1859  DAG.setRoot(BrAnd);
1860}
1861
1862void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1863  MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
1864
1865  // Retrieve successors.
1866  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1867  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1868
1869  const Value *Callee(I.getCalledValue());
1870  const Function *Fn = dyn_cast<Function>(Callee);
1871  if (isa<InlineAsm>(Callee))
1872    visitInlineAsm(&I);
1873  else if (Fn && Fn->isIntrinsic()) {
1874    assert(Fn->getIntrinsicID() == Intrinsic::donothing);
1875    // Ignore invokes to @llvm.donothing: jump directly to the next BB.
1876  } else
1877    LowerCallTo(&I, getValue(Callee), false, LandingPad);
1878
1879  // If the value of the invoke is used outside of its defining block, make it
1880  // available as a virtual register.
1881  CopyToExportRegsIfNeeded(&I);
1882
1883  // Update successor info
1884  addSuccessorWithWeight(InvokeMBB, Return);
1885  addSuccessorWithWeight(InvokeMBB, LandingPad);
1886
1887  // Drop into normal successor.
1888  DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1889                          MVT::Other, getControlRoot(),
1890                          DAG.getBasicBlock(Return)));
1891}
1892
1893void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
1894  llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
1895}
1896
1897void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
1898  assert(FuncInfo.MBB->isLandingPad() &&
1899         "Call to landingpad not in landing pad!");
1900
1901  MachineBasicBlock *MBB = FuncInfo.MBB;
1902  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
1903  AddLandingPadInfo(LP, MMI, MBB);
1904
1905  // If there aren't registers to copy the values into (e.g., during SjLj
1906  // exceptions), then don't bother to create these DAG nodes.
1907  if (TLI.getExceptionPointerRegister() == 0 &&
1908      TLI.getExceptionSelectorRegister() == 0)
1909    return;
1910
1911  SmallVector<EVT, 2> ValueVTs;
1912  ComputeValueVTs(TLI, LP.getType(), ValueVTs);
1913
1914  // Insert the EXCEPTIONADDR instruction.
1915  assert(FuncInfo.MBB->isLandingPad() &&
1916         "Call to eh.exception not in landing pad!");
1917  SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
1918  SDValue Ops[2];
1919  Ops[0] = DAG.getRoot();
1920  SDValue Op1 = DAG.getNode(ISD::EXCEPTIONADDR, getCurDebugLoc(), VTs, Ops, 1);
1921  SDValue Chain = Op1.getValue(1);
1922
1923  // Insert the EHSELECTION instruction.
1924  VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
1925  Ops[0] = Op1;
1926  Ops[1] = Chain;
1927  SDValue Op2 = DAG.getNode(ISD::EHSELECTION, getCurDebugLoc(), VTs, Ops, 2);
1928  Chain = Op2.getValue(1);
1929  Op2 = DAG.getSExtOrTrunc(Op2, getCurDebugLoc(), MVT::i32);
1930
1931  Ops[0] = Op1;
1932  Ops[1] = Op2;
1933  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
1934                            DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
1935                            &Ops[0], 2);
1936
1937  std::pair<SDValue, SDValue> RetPair = std::make_pair(Res, Chain);
1938  setValue(&LP, RetPair.first);
1939  DAG.setRoot(RetPair.second);
1940}
1941
1942/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1943/// small case ranges).
1944bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
1945                                                 CaseRecVector& WorkList,
1946                                                 const Value* SV,
1947                                                 MachineBasicBlock *Default,
1948                                                 MachineBasicBlock *SwitchBB) {
1949  // Size is the number of Cases represented by this range.
1950  size_t Size = CR.Range.second - CR.Range.first;
1951  if (Size > 3)
1952    return false;
1953
1954  // Get the MachineFunction which holds the current MBB.  This is used when
1955  // inserting any additional MBBs necessary to represent the switch.
1956  MachineFunction *CurMF = FuncInfo.MF;
1957
1958  // Figure out which block is immediately after the current one.
1959  MachineBasicBlock *NextBlock = 0;
1960  MachineFunction::iterator BBI = CR.CaseBB;
1961
1962  if (++BBI != FuncInfo.MF->end())
1963    NextBlock = BBI;
1964
1965  BranchProbabilityInfo *BPI = FuncInfo.BPI;
1966  // If any two of the cases has the same destination, and if one value
1967  // is the same as the other, but has one bit unset that the other has set,
1968  // use bit manipulation to do two compares at once.  For example:
1969  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1970  // TODO: This could be extended to merge any 2 cases in switches with 3 cases.
1971  // TODO: Handle cases where CR.CaseBB != SwitchBB.
1972  if (Size == 2 && CR.CaseBB == SwitchBB) {
1973    Case &Small = *CR.Range.first;
1974    Case &Big = *(CR.Range.second-1);
1975
1976    if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) {
1977      const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue();
1978      const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue();
1979
1980      // Check that there is only one bit different.
1981      if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 &&
1982          (SmallValue | BigValue) == BigValue) {
1983        // Isolate the common bit.
1984        APInt CommonBit = BigValue & ~SmallValue;
1985        assert((SmallValue | CommonBit) == BigValue &&
1986               CommonBit.countPopulation() == 1 && "Not a common bit?");
1987
1988        SDValue CondLHS = getValue(SV);
1989        EVT VT = CondLHS.getValueType();
1990        DebugLoc DL = getCurDebugLoc();
1991
1992        SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
1993                                 DAG.getConstant(CommonBit, VT));
1994        SDValue Cond = DAG.getSetCC(DL, MVT::i1,
1995                                    Or, DAG.getConstant(BigValue, VT),
1996                                    ISD::SETEQ);
1997
1998        // Update successor info.
1999        // Both Small and Big will jump to Small.BB, so we sum up the weights.
2000        addSuccessorWithWeight(SwitchBB, Small.BB,
2001                               Small.ExtraWeight + Big.ExtraWeight);
2002        addSuccessorWithWeight(SwitchBB, Default,
2003          // The default destination is the first successor in IR.
2004          BPI ? BPI->getEdgeWeight(SwitchBB->getBasicBlock(), (unsigned)0) : 0);
2005
2006        // Insert the true branch.
2007        SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other,
2008                                     getControlRoot(), Cond,
2009                                     DAG.getBasicBlock(Small.BB));
2010
2011        // Insert the false branch.
2012        BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
2013                             DAG.getBasicBlock(Default));
2014
2015        DAG.setRoot(BrCond);
2016        return true;
2017      }
2018    }
2019  }
2020
2021  // Order cases by weight so the most likely case will be checked first.
2022  uint32_t UnhandledWeights = 0;
2023  if (BPI) {
2024    for (CaseItr I = CR.Range.first, IE = CR.Range.second; I != IE; ++I) {
2025      uint32_t IWeight = I->ExtraWeight;
2026      UnhandledWeights += IWeight;
2027      for (CaseItr J = CR.Range.first; J < I; ++J) {
2028        uint32_t JWeight = J->ExtraWeight;
2029        if (IWeight > JWeight)
2030          std::swap(*I, *J);
2031      }
2032    }
2033  }
2034  // Rearrange the case blocks so that the last one falls through if possible.
2035  Case &BackCase = *(CR.Range.second-1);
2036  if (Size > 1 &&
2037      NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
2038    // The last case block won't fall through into 'NextBlock' if we emit the
2039    // branches in this order.  See if rearranging a case value would help.
2040    // We start at the bottom as it's the case with the least weight.
2041    for (Case *I = &*(CR.Range.second-2), *E = &*CR.Range.first-1; I != E; --I){
2042      if (I->BB == NextBlock) {
2043        std::swap(*I, BackCase);
2044        break;
2045      }
2046    }
2047  }
2048
2049  // Create a CaseBlock record representing a conditional branch to
2050  // the Case's target mbb if the value being switched on SV is equal
2051  // to C.
2052  MachineBasicBlock *CurBlock = CR.CaseBB;
2053  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
2054    MachineBasicBlock *FallThrough;
2055    if (I != E-1) {
2056      FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
2057      CurMF->insert(BBI, FallThrough);
2058
2059      // Put SV in a virtual register to make it available from the new blocks.
2060      ExportFromCurrentBlock(SV);
2061    } else {
2062      // If the last case doesn't match, go to the default block.
2063      FallThrough = Default;
2064    }
2065
2066    const Value *RHS, *LHS, *MHS;
2067    ISD::CondCode CC;
2068    if (I->High == I->Low) {
2069      // This is just small small case range :) containing exactly 1 case
2070      CC = ISD::SETEQ;
2071      LHS = SV; RHS = I->High; MHS = NULL;
2072    } else {
2073      CC = ISD::SETCC_INVALID;
2074      LHS = I->Low; MHS = SV; RHS = I->High;
2075    }
2076
2077    // The false weight should be sum of all un-handled cases.
2078    UnhandledWeights -= I->ExtraWeight;
2079    CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough,
2080                 /* me */ CurBlock,
2081                 /* trueweight */ I->ExtraWeight,
2082                 /* falseweight */ UnhandledWeights);
2083
2084    // If emitting the first comparison, just call visitSwitchCase to emit the
2085    // code into the current block.  Otherwise, push the CaseBlock onto the
2086    // vector to be later processed by SDISel, and insert the node's MBB
2087    // before the next MBB.
2088    if (CurBlock == SwitchBB)
2089      visitSwitchCase(CB, SwitchBB);
2090    else
2091      SwitchCases.push_back(CB);
2092
2093    CurBlock = FallThrough;
2094  }
2095
2096  return true;
2097}
2098
2099static inline bool areJTsAllowed(const TargetLowering &TLI) {
2100  return TLI.supportJumpTables() &&
2101          (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
2102           TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
2103}
2104
2105static APInt ComputeRange(const APInt &First, const APInt &Last) {
2106  uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
2107  APInt LastExt = Last.zext(BitWidth), FirstExt = First.zext(BitWidth);
2108  return (LastExt - FirstExt + 1ULL);
2109}
2110
2111/// handleJTSwitchCase - Emit jumptable for current switch case range
2112bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR,
2113                                             CaseRecVector &WorkList,
2114                                             const Value *SV,
2115                                             MachineBasicBlock *Default,
2116                                             MachineBasicBlock *SwitchBB) {
2117  Case& FrontCase = *CR.Range.first;
2118  Case& BackCase  = *(CR.Range.second-1);
2119
2120  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2121  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2122
2123  APInt TSize(First.getBitWidth(), 0);
2124  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I)
2125    TSize += I->size();
2126
2127  if (!areJTsAllowed(TLI) || TSize.ult(TLI.getMinimumJumpTableEntries()))
2128    return false;
2129
2130  APInt Range = ComputeRange(First, Last);
2131  // The density is TSize / Range. Require at least 40%.
2132  // It should not be possible for IntTSize to saturate for sane code, but make
2133  // sure we handle Range saturation correctly.
2134  uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10);
2135  uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10);
2136  if (IntTSize * 10 < IntRange * 4)
2137    return false;
2138
2139  DEBUG(dbgs() << "Lowering jump table\n"
2140               << "First entry: " << First << ". Last entry: " << Last << '\n'
2141               << "Range: " << Range << ". Size: " << TSize << ".\n\n");
2142
2143  // Get the MachineFunction which holds the current MBB.  This is used when
2144  // inserting any additional MBBs necessary to represent the switch.
2145  MachineFunction *CurMF = FuncInfo.MF;
2146
2147  // Figure out which block is immediately after the current one.
2148  MachineFunction::iterator BBI = CR.CaseBB;
2149  ++BBI;
2150
2151  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2152
2153  // Create a new basic block to hold the code for loading the address
2154  // of the jump table, and jumping to it.  Update successor information;
2155  // we will either branch to the default case for the switch, or the jump
2156  // table.
2157  MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2158  CurMF->insert(BBI, JumpTableBB);
2159
2160  addSuccessorWithWeight(CR.CaseBB, Default);
2161  addSuccessorWithWeight(CR.CaseBB, JumpTableBB);
2162
2163  // Build a vector of destination BBs, corresponding to each target
2164  // of the jump table. If the value of the jump table slot corresponds to
2165  // a case statement, push the case's BB onto the vector, otherwise, push
2166  // the default BB.
2167  std::vector<MachineBasicBlock*> DestBBs;
2168  APInt TEI = First;
2169  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
2170    const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
2171    const APInt &High = cast<ConstantInt>(I->High)->getValue();
2172
2173    if (Low.ule(TEI) && TEI.ule(High)) {
2174      DestBBs.push_back(I->BB);
2175      if (TEI==High)
2176        ++I;
2177    } else {
2178      DestBBs.push_back(Default);
2179    }
2180  }
2181
2182  // Calculate weight for each unique destination in CR.
2183  DenseMap<MachineBasicBlock*, uint32_t> DestWeights;
2184  if (FuncInfo.BPI)
2185    for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
2186      DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr =
2187          DestWeights.find(I->BB);
2188      if (Itr != DestWeights.end())
2189        Itr->second += I->ExtraWeight;
2190      else
2191        DestWeights[I->BB] = I->ExtraWeight;
2192    }
2193
2194  // Update successor info. Add one edge to each unique successor.
2195  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
2196  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
2197         E = DestBBs.end(); I != E; ++I) {
2198    if (!SuccsHandled[(*I)->getNumber()]) {
2199      SuccsHandled[(*I)->getNumber()] = true;
2200      DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr =
2201          DestWeights.find(*I);
2202      addSuccessorWithWeight(JumpTableBB, *I,
2203                             Itr != DestWeights.end() ? Itr->second : 0);
2204    }
2205  }
2206
2207  // Create a jump table index for this jump table.
2208  unsigned JTEncoding = TLI.getJumpTableEncoding();
2209  unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
2210                       ->createJumpTableIndex(DestBBs);
2211
2212  // Set the jump table information so that we can codegen it as a second
2213  // MachineBasicBlock
2214  JumpTable JT(-1U, JTI, JumpTableBB, Default);
2215  JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
2216  if (CR.CaseBB == SwitchBB)
2217    visitJumpTableHeader(JT, JTH, SwitchBB);
2218
2219  JTCases.push_back(JumpTableBlock(JTH, JT));
2220  return true;
2221}
2222
2223/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
2224/// 2 subtrees.
2225bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
2226                                                  CaseRecVector& WorkList,
2227                                                  const Value* SV,
2228                                                  MachineBasicBlock *Default,
2229                                                  MachineBasicBlock *SwitchBB) {
2230  // Get the MachineFunction which holds the current MBB.  This is used when
2231  // inserting any additional MBBs necessary to represent the switch.
2232  MachineFunction *CurMF = FuncInfo.MF;
2233
2234  // Figure out which block is immediately after the current one.
2235  MachineFunction::iterator BBI = CR.CaseBB;
2236  ++BBI;
2237
2238  Case& FrontCase = *CR.Range.first;
2239  Case& BackCase  = *(CR.Range.second-1);
2240  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2241
2242  // Size is the number of Cases represented by this range.
2243  unsigned Size = CR.Range.second - CR.Range.first;
2244
2245  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2246  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2247  double FMetric = 0;
2248  CaseItr Pivot = CR.Range.first + Size/2;
2249
2250  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
2251  // (heuristically) allow us to emit JumpTable's later.
2252  APInt TSize(First.getBitWidth(), 0);
2253  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2254       I!=E; ++I)
2255    TSize += I->size();
2256
2257  APInt LSize = FrontCase.size();
2258  APInt RSize = TSize-LSize;
2259  DEBUG(dbgs() << "Selecting best pivot: \n"
2260               << "First: " << First << ", Last: " << Last <<'\n'
2261               << "LSize: " << LSize << ", RSize: " << RSize << '\n');
2262  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
2263       J!=E; ++I, ++J) {
2264    const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
2265    const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
2266    APInt Range = ComputeRange(LEnd, RBegin);
2267    assert((Range - 2ULL).isNonNegative() &&
2268           "Invalid case distance");
2269    // Use volatile double here to avoid excess precision issues on some hosts,
2270    // e.g. that use 80-bit X87 registers.
2271    volatile double LDensity =
2272       (double)LSize.roundToDouble() /
2273                           (LEnd - First + 1ULL).roundToDouble();
2274    volatile double RDensity =
2275      (double)RSize.roundToDouble() /
2276                           (Last - RBegin + 1ULL).roundToDouble();
2277    double Metric = Range.logBase2()*(LDensity+RDensity);
2278    // Should always split in some non-trivial place
2279    DEBUG(dbgs() <<"=>Step\n"
2280                 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
2281                 << "LDensity: " << LDensity
2282                 << ", RDensity: " << RDensity << '\n'
2283                 << "Metric: " << Metric << '\n');
2284    if (FMetric < Metric) {
2285      Pivot = J;
2286      FMetric = Metric;
2287      DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
2288    }
2289
2290    LSize += J->size();
2291    RSize -= J->size();
2292  }
2293  if (areJTsAllowed(TLI)) {
2294    // If our case is dense we *really* should handle it earlier!
2295    assert((FMetric > 0) && "Should handle dense range earlier!");
2296  } else {
2297    Pivot = CR.Range.first + Size/2;
2298  }
2299
2300  CaseRange LHSR(CR.Range.first, Pivot);
2301  CaseRange RHSR(Pivot, CR.Range.second);
2302  const Constant *C = Pivot->Low;
2303  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
2304
2305  // We know that we branch to the LHS if the Value being switched on is
2306  // less than the Pivot value, C.  We use this to optimize our binary
2307  // tree a bit, by recognizing that if SV is greater than or equal to the
2308  // LHS's Case Value, and that Case Value is exactly one less than the
2309  // Pivot's Value, then we can branch directly to the LHS's Target,
2310  // rather than creating a leaf node for it.
2311  if ((LHSR.second - LHSR.first) == 1 &&
2312      LHSR.first->High == CR.GE &&
2313      cast<ConstantInt>(C)->getValue() ==
2314      (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
2315    TrueBB = LHSR.first->BB;
2316  } else {
2317    TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2318    CurMF->insert(BBI, TrueBB);
2319    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
2320
2321    // Put SV in a virtual register to make it available from the new blocks.
2322    ExportFromCurrentBlock(SV);
2323  }
2324
2325  // Similar to the optimization above, if the Value being switched on is
2326  // known to be less than the Constant CR.LT, and the current Case Value
2327  // is CR.LT - 1, then we can branch directly to the target block for
2328  // the current Case Value, rather than emitting a RHS leaf node for it.
2329  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
2330      cast<ConstantInt>(RHSR.first->Low)->getValue() ==
2331      (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
2332    FalseBB = RHSR.first->BB;
2333  } else {
2334    FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2335    CurMF->insert(BBI, FalseBB);
2336    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
2337
2338    // Put SV in a virtual register to make it available from the new blocks.
2339    ExportFromCurrentBlock(SV);
2340  }
2341
2342  // Create a CaseBlock record representing a conditional branch to
2343  // the LHS node if the value being switched on SV is less than C.
2344  // Otherwise, branch to LHS.
2345  CaseBlock CB(ISD::SETULT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
2346
2347  if (CR.CaseBB == SwitchBB)
2348    visitSwitchCase(CB, SwitchBB);
2349  else
2350    SwitchCases.push_back(CB);
2351
2352  return true;
2353}
2354
2355/// handleBitTestsSwitchCase - if current case range has few destination and
2356/// range span less, than machine word bitwidth, encode case range into series
2357/// of masks and emit bit tests with these masks.
2358bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
2359                                                   CaseRecVector& WorkList,
2360                                                   const Value* SV,
2361                                                   MachineBasicBlock* Default,
2362                                                   MachineBasicBlock *SwitchBB){
2363  EVT PTy = TLI.getPointerTy();
2364  unsigned IntPtrBits = PTy.getSizeInBits();
2365
2366  Case& FrontCase = *CR.Range.first;
2367  Case& BackCase  = *(CR.Range.second-1);
2368
2369  // Get the MachineFunction which holds the current MBB.  This is used when
2370  // inserting any additional MBBs necessary to represent the switch.
2371  MachineFunction *CurMF = FuncInfo.MF;
2372
2373  // If target does not have legal shift left, do not emit bit tests at all.
2374  if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
2375    return false;
2376
2377  size_t numCmps = 0;
2378  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2379       I!=E; ++I) {
2380    // Single case counts one, case range - two.
2381    numCmps += (I->Low == I->High ? 1 : 2);
2382  }
2383
2384  // Count unique destinations
2385  SmallSet<MachineBasicBlock*, 4> Dests;
2386  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2387    Dests.insert(I->BB);
2388    if (Dests.size() > 3)
2389      // Don't bother the code below, if there are too much unique destinations
2390      return false;
2391  }
2392  DEBUG(dbgs() << "Total number of unique destinations: "
2393        << Dests.size() << '\n'
2394        << "Total number of comparisons: " << numCmps << '\n');
2395
2396  // Compute span of values.
2397  const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
2398  const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
2399  APInt cmpRange = maxValue - minValue;
2400
2401  DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
2402               << "Low bound: " << minValue << '\n'
2403               << "High bound: " << maxValue << '\n');
2404
2405  if (cmpRange.uge(IntPtrBits) ||
2406      (!(Dests.size() == 1 && numCmps >= 3) &&
2407       !(Dests.size() == 2 && numCmps >= 5) &&
2408       !(Dests.size() >= 3 && numCmps >= 6)))
2409    return false;
2410
2411  DEBUG(dbgs() << "Emitting bit tests\n");
2412  APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
2413
2414  // Optimize the case where all the case values fit in a
2415  // word without having to subtract minValue. In this case,
2416  // we can optimize away the subtraction.
2417  if (maxValue.ult(IntPtrBits)) {
2418    cmpRange = maxValue;
2419  } else {
2420    lowBound = minValue;
2421  }
2422
2423  CaseBitsVector CasesBits;
2424  unsigned i, count = 0;
2425
2426  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2427    MachineBasicBlock* Dest = I->BB;
2428    for (i = 0; i < count; ++i)
2429      if (Dest == CasesBits[i].BB)
2430        break;
2431
2432    if (i == count) {
2433      assert((count < 3) && "Too much destinations to test!");
2434      CasesBits.push_back(CaseBits(0, Dest, 0, 0/*Weight*/));
2435      count++;
2436    }
2437
2438    const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
2439    const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
2440
2441    uint64_t lo = (lowValue - lowBound).getZExtValue();
2442    uint64_t hi = (highValue - lowBound).getZExtValue();
2443    CasesBits[i].ExtraWeight += I->ExtraWeight;
2444
2445    for (uint64_t j = lo; j <= hi; j++) {
2446      CasesBits[i].Mask |=  1ULL << j;
2447      CasesBits[i].Bits++;
2448    }
2449
2450  }
2451  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2452
2453  BitTestInfo BTC;
2454
2455  // Figure out which block is immediately after the current one.
2456  MachineFunction::iterator BBI = CR.CaseBB;
2457  ++BBI;
2458
2459  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2460
2461  DEBUG(dbgs() << "Cases:\n");
2462  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2463    DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
2464                 << ", Bits: " << CasesBits[i].Bits
2465                 << ", BB: " << CasesBits[i].BB << '\n');
2466
2467    MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2468    CurMF->insert(BBI, CaseBB);
2469    BTC.push_back(BitTestCase(CasesBits[i].Mask,
2470                              CaseBB,
2471                              CasesBits[i].BB, CasesBits[i].ExtraWeight));
2472
2473    // Put SV in a virtual register to make it available from the new blocks.
2474    ExportFromCurrentBlock(SV);
2475  }
2476
2477  BitTestBlock BTB(lowBound, cmpRange, SV,
2478                   -1U, MVT::Other, (CR.CaseBB == SwitchBB),
2479                   CR.CaseBB, Default, BTC);
2480
2481  if (CR.CaseBB == SwitchBB)
2482    visitBitTestHeader(BTB, SwitchBB);
2483
2484  BitTestCases.push_back(BTB);
2485
2486  return true;
2487}
2488
2489/// Clusterify - Transform simple list of Cases into list of CaseRange's
2490size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
2491                                       const SwitchInst& SI) {
2492
2493  /// Use a shorter form of declaration, and also
2494  /// show the we want to use CRSBuilder as Clusterifier.
2495  typedef IntegersSubsetMapping<MachineBasicBlock> Clusterifier;
2496
2497  Clusterifier TheClusterifier;
2498
2499  BranchProbabilityInfo *BPI = FuncInfo.BPI;
2500  // Start with "simple" cases
2501  for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
2502       i != e; ++i) {
2503    const BasicBlock *SuccBB = i.getCaseSuccessor();
2504    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB];
2505
2506    TheClusterifier.add(i.getCaseValueEx(), SMBB,
2507        BPI ? BPI->getEdgeWeight(SI.getParent(), i.getSuccessorIndex()) : 0);
2508  }
2509
2510  TheClusterifier.optimize();
2511
2512  size_t numCmps = 0;
2513  for (Clusterifier::RangeIterator i = TheClusterifier.begin(),
2514       e = TheClusterifier.end(); i != e; ++i, ++numCmps) {
2515    Clusterifier::Cluster &C = *i;
2516    // Update edge weight for the cluster.
2517    unsigned W = C.first.Weight;
2518
2519    // FIXME: Currently work with ConstantInt based numbers.
2520    // Changing it to APInt based is a pretty heavy for this commit.
2521    Cases.push_back(Case(C.first.getLow().toConstantInt(),
2522                         C.first.getHigh().toConstantInt(), C.second, W));
2523
2524    if (C.first.getLow() != C.first.getHigh())
2525    // A range counts double, since it requires two compares.
2526    ++numCmps;
2527  }
2528
2529  return numCmps;
2530}
2531
2532void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2533                                           MachineBasicBlock *Last) {
2534  // Update JTCases.
2535  for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2536    if (JTCases[i].first.HeaderBB == First)
2537      JTCases[i].first.HeaderBB = Last;
2538
2539  // Update BitTestCases.
2540  for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2541    if (BitTestCases[i].Parent == First)
2542      BitTestCases[i].Parent = Last;
2543}
2544
2545void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
2546  MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
2547
2548  // Figure out which block is immediately after the current one.
2549  MachineBasicBlock *NextBlock = 0;
2550  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2551
2552  // If there is only the default destination, branch to it if it is not the
2553  // next basic block.  Otherwise, just fall through.
2554  if (!SI.getNumCases()) {
2555    // Update machine-CFG edges.
2556
2557    // If this is not a fall-through branch, emit the branch.
2558    SwitchMBB->addSuccessor(Default);
2559    if (Default != NextBlock)
2560      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
2561                              MVT::Other, getControlRoot(),
2562                              DAG.getBasicBlock(Default)));
2563
2564    return;
2565  }
2566
2567  // If there are any non-default case statements, create a vector of Cases
2568  // representing each one, and sort the vector so that we can efficiently
2569  // create a binary search tree from them.
2570  CaseVector Cases;
2571  size_t numCmps = Clusterify(Cases, SI);
2572  DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2573               << ". Total compares: " << numCmps << '\n');
2574  (void)numCmps;
2575
2576  // Get the Value to be switched on and default basic blocks, which will be
2577  // inserted into CaseBlock records, representing basic blocks in the binary
2578  // search tree.
2579  const Value *SV = SI.getCondition();
2580
2581  // Push the initial CaseRec onto the worklist
2582  CaseRecVector WorkList;
2583  WorkList.push_back(CaseRec(SwitchMBB,0,0,
2584                             CaseRange(Cases.begin(),Cases.end())));
2585
2586  while (!WorkList.empty()) {
2587    // Grab a record representing a case range to process off the worklist
2588    CaseRec CR = WorkList.back();
2589    WorkList.pop_back();
2590
2591    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2592      continue;
2593
2594    // If the range has few cases (two or less) emit a series of specific
2595    // tests.
2596    if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
2597      continue;
2598
2599    // If the switch has more than N blocks, and is at least 40% dense, and the
2600    // target supports indirect branches, then emit a jump table rather than
2601    // lowering the switch to a binary tree of conditional branches.
2602    // N defaults to 4 and is controlled via TLS.getMinimumJumpTableEntries().
2603    if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2604      continue;
2605
2606    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2607    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2608    handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
2609  }
2610}
2611
2612void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2613  MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2614
2615  // Update machine-CFG edges with unique successors.
2616  SmallSet<BasicBlock*, 32> Done;
2617  for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2618    BasicBlock *BB = I.getSuccessor(i);
2619    bool Inserted = Done.insert(BB);
2620    if (!Inserted)
2621        continue;
2622
2623    MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2624    addSuccessorWithWeight(IndirectBrMBB, Succ);
2625  }
2626
2627  DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(),
2628                          MVT::Other, getControlRoot(),
2629                          getValue(I.getAddress())));
2630}
2631
2632void SelectionDAGBuilder::visitFSub(const User &I) {
2633  // -0.0 - X --> fneg
2634  Type *Ty = I.getType();
2635  if (isa<Constant>(I.getOperand(0)) &&
2636      I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2637    SDValue Op2 = getValue(I.getOperand(1));
2638    setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2639                             Op2.getValueType(), Op2));
2640    return;
2641  }
2642
2643  visitBinary(I, ISD::FSUB);
2644}
2645
2646void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2647  SDValue Op1 = getValue(I.getOperand(0));
2648  SDValue Op2 = getValue(I.getOperand(1));
2649  setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(),
2650                           Op1.getValueType(), Op1, Op2));
2651}
2652
2653void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2654  SDValue Op1 = getValue(I.getOperand(0));
2655  SDValue Op2 = getValue(I.getOperand(1));
2656
2657  EVT ShiftTy = TLI.getShiftAmountTy(Op2.getValueType());
2658
2659  // Coerce the shift amount to the right type if we can.
2660  if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2661    unsigned ShiftSize = ShiftTy.getSizeInBits();
2662    unsigned Op2Size = Op2.getValueType().getSizeInBits();
2663    DebugLoc DL = getCurDebugLoc();
2664
2665    // If the operand is smaller than the shift count type, promote it.
2666    if (ShiftSize > Op2Size)
2667      Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2668
2669    // If the operand is larger than the shift count type but the shift
2670    // count type has enough bits to represent any shift value, truncate
2671    // it now. This is a common case and it exposes the truncate to
2672    // optimization early.
2673    else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2674      Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2675    // Otherwise we'll need to temporarily settle for some other convenient
2676    // type.  Type legalization will make adjustments once the shiftee is split.
2677    else
2678      Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2679  }
2680
2681  setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(),
2682                           Op1.getValueType(), Op1, Op2));
2683}
2684
2685void SelectionDAGBuilder::visitSDiv(const User &I) {
2686  SDValue Op1 = getValue(I.getOperand(0));
2687  SDValue Op2 = getValue(I.getOperand(1));
2688
2689  // Turn exact SDivs into multiplications.
2690  // FIXME: This should be in DAGCombiner, but it doesn't have access to the
2691  // exact bit.
2692  if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() &&
2693      !isa<ConstantSDNode>(Op1) &&
2694      isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue())
2695    setValue(&I, TLI.BuildExactSDIV(Op1, Op2, getCurDebugLoc(), DAG));
2696  else
2697    setValue(&I, DAG.getNode(ISD::SDIV, getCurDebugLoc(), Op1.getValueType(),
2698                             Op1, Op2));
2699}
2700
2701void SelectionDAGBuilder::visitICmp(const User &I) {
2702  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2703  if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2704    predicate = IC->getPredicate();
2705  else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2706    predicate = ICmpInst::Predicate(IC->getPredicate());
2707  SDValue Op1 = getValue(I.getOperand(0));
2708  SDValue Op2 = getValue(I.getOperand(1));
2709  ISD::CondCode Opcode = getICmpCondCode(predicate);
2710
2711  EVT DestVT = TLI.getValueType(I.getType());
2712  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode));
2713}
2714
2715void SelectionDAGBuilder::visitFCmp(const User &I) {
2716  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2717  if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2718    predicate = FC->getPredicate();
2719  else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2720    predicate = FCmpInst::Predicate(FC->getPredicate());
2721  SDValue Op1 = getValue(I.getOperand(0));
2722  SDValue Op2 = getValue(I.getOperand(1));
2723  ISD::CondCode Condition = getFCmpCondCode(predicate);
2724  if (TM.Options.NoNaNsFPMath)
2725    Condition = getFCmpCodeWithoutNaN(Condition);
2726  EVT DestVT = TLI.getValueType(I.getType());
2727  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition));
2728}
2729
2730void SelectionDAGBuilder::visitSelect(const User &I) {
2731  SmallVector<EVT, 4> ValueVTs;
2732  ComputeValueVTs(TLI, I.getType(), ValueVTs);
2733  unsigned NumValues = ValueVTs.size();
2734  if (NumValues == 0) return;
2735
2736  SmallVector<SDValue, 4> Values(NumValues);
2737  SDValue Cond     = getValue(I.getOperand(0));
2738  SDValue TrueVal  = getValue(I.getOperand(1));
2739  SDValue FalseVal = getValue(I.getOperand(2));
2740  ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2741    ISD::VSELECT : ISD::SELECT;
2742
2743  for (unsigned i = 0; i != NumValues; ++i)
2744    Values[i] = DAG.getNode(OpCode, getCurDebugLoc(),
2745                            TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2746                            Cond,
2747                            SDValue(TrueVal.getNode(),
2748                                    TrueVal.getResNo() + i),
2749                            SDValue(FalseVal.getNode(),
2750                                    FalseVal.getResNo() + i));
2751
2752  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2753                           DAG.getVTList(&ValueVTs[0], NumValues),
2754                           &Values[0], NumValues));
2755}
2756
2757void SelectionDAGBuilder::visitTrunc(const User &I) {
2758  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2759  SDValue N = getValue(I.getOperand(0));
2760  EVT DestVT = TLI.getValueType(I.getType());
2761  setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N));
2762}
2763
2764void SelectionDAGBuilder::visitZExt(const User &I) {
2765  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2766  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2767  SDValue N = getValue(I.getOperand(0));
2768  EVT DestVT = TLI.getValueType(I.getType());
2769  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N));
2770}
2771
2772void SelectionDAGBuilder::visitSExt(const User &I) {
2773  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2774  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2775  SDValue N = getValue(I.getOperand(0));
2776  EVT DestVT = TLI.getValueType(I.getType());
2777  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N));
2778}
2779
2780void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2781  // FPTrunc is never a no-op cast, no need to check
2782  SDValue N = getValue(I.getOperand(0));
2783  EVT DestVT = TLI.getValueType(I.getType());
2784  setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(),
2785                           DestVT, N,
2786                           DAG.getTargetConstant(0, TLI.getPointerTy())));
2787}
2788
2789void SelectionDAGBuilder::visitFPExt(const User &I){
2790  // FPExt is never a no-op cast, no need to check
2791  SDValue N = getValue(I.getOperand(0));
2792  EVT DestVT = TLI.getValueType(I.getType());
2793  setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N));
2794}
2795
2796void SelectionDAGBuilder::visitFPToUI(const User &I) {
2797  // FPToUI is never a no-op cast, no need to check
2798  SDValue N = getValue(I.getOperand(0));
2799  EVT DestVT = TLI.getValueType(I.getType());
2800  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N));
2801}
2802
2803void SelectionDAGBuilder::visitFPToSI(const User &I) {
2804  // FPToSI is never a no-op cast, no need to check
2805  SDValue N = getValue(I.getOperand(0));
2806  EVT DestVT = TLI.getValueType(I.getType());
2807  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N));
2808}
2809
2810void SelectionDAGBuilder::visitUIToFP(const User &I) {
2811  // UIToFP is never a no-op cast, no need to check
2812  SDValue N = getValue(I.getOperand(0));
2813  EVT DestVT = TLI.getValueType(I.getType());
2814  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N));
2815}
2816
2817void SelectionDAGBuilder::visitSIToFP(const User &I){
2818  // SIToFP is never a no-op cast, no need to check
2819  SDValue N = getValue(I.getOperand(0));
2820  EVT DestVT = TLI.getValueType(I.getType());
2821  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N));
2822}
2823
2824void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2825  // What to do depends on the size of the integer and the size of the pointer.
2826  // We can either truncate, zero extend, or no-op, accordingly.
2827  SDValue N = getValue(I.getOperand(0));
2828  EVT DestVT = TLI.getValueType(I.getType());
2829  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2830}
2831
2832void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2833  // What to do depends on the size of the integer and the size of the pointer.
2834  // We can either truncate, zero extend, or no-op, accordingly.
2835  SDValue N = getValue(I.getOperand(0));
2836  EVT DestVT = TLI.getValueType(I.getType());
2837  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2838}
2839
2840void SelectionDAGBuilder::visitBitCast(const User &I) {
2841  SDValue N = getValue(I.getOperand(0));
2842  EVT DestVT = TLI.getValueType(I.getType());
2843
2844  // BitCast assures us that source and destination are the same size so this is
2845  // either a BITCAST or a no-op.
2846  if (DestVT != N.getValueType())
2847    setValue(&I, DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
2848                             DestVT, N)); // convert types.
2849  else
2850    setValue(&I, N);            // noop cast.
2851}
2852
2853void SelectionDAGBuilder::visitInsertElement(const User &I) {
2854  SDValue InVec = getValue(I.getOperand(0));
2855  SDValue InVal = getValue(I.getOperand(1));
2856  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2857                              TLI.getPointerTy(),
2858                              getValue(I.getOperand(2)));
2859  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(),
2860                           TLI.getValueType(I.getType()),
2861                           InVec, InVal, InIdx));
2862}
2863
2864void SelectionDAGBuilder::visitExtractElement(const User &I) {
2865  SDValue InVec = getValue(I.getOperand(0));
2866  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2867                              TLI.getPointerTy(),
2868                              getValue(I.getOperand(1)));
2869  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2870                           TLI.getValueType(I.getType()), InVec, InIdx));
2871}
2872
2873// Utility for visitShuffleVector - Return true if every element in Mask,
2874// beginning from position Pos and ending in Pos+Size, falls within the
2875// specified sequential range [L, L+Pos). or is undef.
2876static bool isSequentialInRange(const SmallVectorImpl<int> &Mask,
2877                                unsigned Pos, unsigned Size, int Low) {
2878  for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
2879    if (Mask[i] >= 0 && Mask[i] != Low)
2880      return false;
2881  return true;
2882}
2883
2884void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2885  SDValue Src1 = getValue(I.getOperand(0));
2886  SDValue Src2 = getValue(I.getOperand(1));
2887
2888  SmallVector<int, 8> Mask;
2889  ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
2890  unsigned MaskNumElts = Mask.size();
2891
2892  EVT VT = TLI.getValueType(I.getType());
2893  EVT SrcVT = Src1.getValueType();
2894  unsigned SrcNumElts = SrcVT.getVectorNumElements();
2895
2896  if (SrcNumElts == MaskNumElts) {
2897    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2898                                      &Mask[0]));
2899    return;
2900  }
2901
2902  // Normalize the shuffle vector since mask and vector length don't match.
2903  if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2904    // Mask is longer than the source vectors and is a multiple of the source
2905    // vectors.  We can use concatenate vector to make the mask and vectors
2906    // lengths match.
2907    if (SrcNumElts*2 == MaskNumElts) {
2908      // First check for Src1 in low and Src2 in high
2909      if (isSequentialInRange(Mask, 0, SrcNumElts, 0) &&
2910          isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) {
2911        // The shuffle is concatenating two vectors together.
2912        setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2913                                 VT, Src1, Src2));
2914        return;
2915      }
2916      // Then check for Src2 in low and Src1 in high
2917      if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) &&
2918          isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) {
2919        // The shuffle is concatenating two vectors together.
2920        setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2921                                 VT, Src2, Src1));
2922        return;
2923      }
2924    }
2925
2926    // Pad both vectors with undefs to make them the same length as the mask.
2927    unsigned NumConcat = MaskNumElts / SrcNumElts;
2928    bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2929    bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2930    SDValue UndefVal = DAG.getUNDEF(SrcVT);
2931
2932    SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2933    SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2934    MOps1[0] = Src1;
2935    MOps2[0] = Src2;
2936
2937    Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2938                                                  getCurDebugLoc(), VT,
2939                                                  &MOps1[0], NumConcat);
2940    Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2941                                                  getCurDebugLoc(), VT,
2942                                                  &MOps2[0], NumConcat);
2943
2944    // Readjust mask for new input vector length.
2945    SmallVector<int, 8> MappedOps;
2946    for (unsigned i = 0; i != MaskNumElts; ++i) {
2947      int Idx = Mask[i];
2948      if (Idx >= (int)SrcNumElts)
2949        Idx -= SrcNumElts - MaskNumElts;
2950      MappedOps.push_back(Idx);
2951    }
2952
2953    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2954                                      &MappedOps[0]));
2955    return;
2956  }
2957
2958  if (SrcNumElts > MaskNumElts) {
2959    // Analyze the access pattern of the vector to see if we can extract
2960    // two subvectors and do the shuffle. The analysis is done by calculating
2961    // the range of elements the mask access on both vectors.
2962    int MinRange[2] = { static_cast<int>(SrcNumElts),
2963                        static_cast<int>(SrcNumElts)};
2964    int MaxRange[2] = {-1, -1};
2965
2966    for (unsigned i = 0; i != MaskNumElts; ++i) {
2967      int Idx = Mask[i];
2968      unsigned Input = 0;
2969      if (Idx < 0)
2970        continue;
2971
2972      if (Idx >= (int)SrcNumElts) {
2973        Input = 1;
2974        Idx -= SrcNumElts;
2975      }
2976      if (Idx > MaxRange[Input])
2977        MaxRange[Input] = Idx;
2978      if (Idx < MinRange[Input])
2979        MinRange[Input] = Idx;
2980    }
2981
2982    // Check if the access is smaller than the vector size and can we find
2983    // a reasonable extract index.
2984    int RangeUse[2] = { -1, -1 };  // 0 = Unused, 1 = Extract, -1 = Can not
2985                                   // Extract.
2986    int StartIdx[2];  // StartIdx to extract from
2987    for (unsigned Input = 0; Input < 2; ++Input) {
2988      if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) {
2989        RangeUse[Input] = 0; // Unused
2990        StartIdx[Input] = 0;
2991        continue;
2992      }
2993
2994      // Find a good start index that is a multiple of the mask length. Then
2995      // see if the rest of the elements are in range.
2996      StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2997      if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2998          StartIdx[Input] + MaskNumElts <= SrcNumElts)
2999        RangeUse[Input] = 1; // Extract from a multiple of the mask length.
3000    }
3001
3002    if (RangeUse[0] == 0 && RangeUse[1] == 0) {
3003      setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3004      return;
3005    }
3006    if (RangeUse[0] >= 0 && RangeUse[1] >= 0) {
3007      // Extract appropriate subvector and generate a vector shuffle
3008      for (unsigned Input = 0; Input < 2; ++Input) {
3009        SDValue &Src = Input == 0 ? Src1 : Src2;
3010        if (RangeUse[Input] == 0)
3011          Src = DAG.getUNDEF(VT);
3012        else
3013          Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT,
3014                            Src, DAG.getIntPtrConstant(StartIdx[Input]));
3015      }
3016
3017      // Calculate new mask.
3018      SmallVector<int, 8> MappedOps;
3019      for (unsigned i = 0; i != MaskNumElts; ++i) {
3020        int Idx = Mask[i];
3021        if (Idx >= 0) {
3022          if (Idx < (int)SrcNumElts)
3023            Idx -= StartIdx[0];
3024          else
3025            Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3026        }
3027        MappedOps.push_back(Idx);
3028      }
3029
3030      setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
3031                                        &MappedOps[0]));
3032      return;
3033    }
3034  }
3035
3036  // We can't use either concat vectors or extract subvectors so fall back to
3037  // replacing the shuffle with extract and build vector.
3038  // to insert and build vector.
3039  EVT EltVT = VT.getVectorElementType();
3040  EVT PtrVT = TLI.getPointerTy();
3041  SmallVector<SDValue,8> Ops;
3042  for (unsigned i = 0; i != MaskNumElts; ++i) {
3043    int Idx = Mask[i];
3044    SDValue Res;
3045
3046    if (Idx < 0) {
3047      Res = DAG.getUNDEF(EltVT);
3048    } else {
3049      SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3050      if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3051
3052      Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
3053                        EltVT, Src, DAG.getConstant(Idx, PtrVT));
3054    }
3055
3056    Ops.push_back(Res);
3057  }
3058
3059  setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
3060                           VT, &Ops[0], Ops.size()));
3061}
3062
3063void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
3064  const Value *Op0 = I.getOperand(0);
3065  const Value *Op1 = I.getOperand(1);
3066  Type *AggTy = I.getType();
3067  Type *ValTy = Op1->getType();
3068  bool IntoUndef = isa<UndefValue>(Op0);
3069  bool FromUndef = isa<UndefValue>(Op1);
3070
3071  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3072
3073  SmallVector<EVT, 4> AggValueVTs;
3074  ComputeValueVTs(TLI, AggTy, AggValueVTs);
3075  SmallVector<EVT, 4> ValValueVTs;
3076  ComputeValueVTs(TLI, ValTy, ValValueVTs);
3077
3078  unsigned NumAggValues = AggValueVTs.size();
3079  unsigned NumValValues = ValValueVTs.size();
3080  SmallVector<SDValue, 4> Values(NumAggValues);
3081
3082  SDValue Agg = getValue(Op0);
3083  unsigned i = 0;
3084  // Copy the beginning value(s) from the original aggregate.
3085  for (; i != LinearIndex; ++i)
3086    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3087                SDValue(Agg.getNode(), Agg.getResNo() + i);
3088  // Copy values from the inserted value(s).
3089  if (NumValValues) {
3090    SDValue Val = getValue(Op1);
3091    for (; i != LinearIndex + NumValValues; ++i)
3092      Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3093                  SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3094  }
3095  // Copy remaining value(s) from the original aggregate.
3096  for (; i != NumAggValues; ++i)
3097    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3098                SDValue(Agg.getNode(), Agg.getResNo() + i);
3099
3100  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3101                           DAG.getVTList(&AggValueVTs[0], NumAggValues),
3102                           &Values[0], NumAggValues));
3103}
3104
3105void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
3106  const Value *Op0 = I.getOperand(0);
3107  Type *AggTy = Op0->getType();
3108  Type *ValTy = I.getType();
3109  bool OutOfUndef = isa<UndefValue>(Op0);
3110
3111  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3112
3113  SmallVector<EVT, 4> ValValueVTs;
3114  ComputeValueVTs(TLI, ValTy, ValValueVTs);
3115
3116  unsigned NumValValues = ValValueVTs.size();
3117
3118  // Ignore a extractvalue that produces an empty object
3119  if (!NumValValues) {
3120    setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3121    return;
3122  }
3123
3124  SmallVector<SDValue, 4> Values(NumValValues);
3125
3126  SDValue Agg = getValue(Op0);
3127  // Copy out the selected value(s).
3128  for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3129    Values[i - LinearIndex] =
3130      OutOfUndef ?
3131        DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3132        SDValue(Agg.getNode(), Agg.getResNo() + i);
3133
3134  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3135                           DAG.getVTList(&ValValueVTs[0], NumValValues),
3136                           &Values[0], NumValValues));
3137}
3138
3139void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3140  SDValue N = getValue(I.getOperand(0));
3141  // Note that the pointer operand may be a vector of pointers. Take the scalar
3142  // element which holds a pointer.
3143  Type *Ty = I.getOperand(0)->getType()->getScalarType();
3144
3145  for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
3146       OI != E; ++OI) {
3147    const Value *Idx = *OI;
3148    if (StructType *StTy = dyn_cast<StructType>(Ty)) {
3149      unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3150      if (Field) {
3151        // N = N + Offset
3152        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
3153        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
3154                        DAG.getConstant(Offset, N.getValueType()));
3155      }
3156
3157      Ty = StTy->getElementType(Field);
3158    } else {
3159      Ty = cast<SequentialType>(Ty)->getElementType();
3160
3161      // If this is a constant subscript, handle it quickly.
3162      if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
3163        if (CI->isZero()) continue;
3164        uint64_t Offs =
3165            TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
3166        SDValue OffsVal;
3167        EVT PTy = TLI.getPointerTy();
3168        unsigned PtrBits = PTy.getSizeInBits();
3169        if (PtrBits < 64)
3170          OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
3171                                TLI.getPointerTy(),
3172                                DAG.getConstant(Offs, MVT::i64));
3173        else
3174          OffsVal = DAG.getIntPtrConstant(Offs);
3175
3176        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
3177                        OffsVal);
3178        continue;
3179      }
3180
3181      // N = N + Idx * ElementSize;
3182      APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
3183                                TD->getTypeAllocSize(Ty));
3184      SDValue IdxN = getValue(Idx);
3185
3186      // If the index is smaller or larger than intptr_t, truncate or extend
3187      // it.
3188      IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType());
3189
3190      // If this is a multiply by a power of two, turn it into a shl
3191      // immediately.  This is a very common case.
3192      if (ElementSize != 1) {
3193        if (ElementSize.isPowerOf2()) {
3194          unsigned Amt = ElementSize.logBase2();
3195          IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(),
3196                             N.getValueType(), IdxN,
3197                             DAG.getConstant(Amt, IdxN.getValueType()));
3198        } else {
3199          SDValue Scale = DAG.getConstant(ElementSize, IdxN.getValueType());
3200          IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(),
3201                             N.getValueType(), IdxN, Scale);
3202        }
3203      }
3204
3205      N = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3206                      N.getValueType(), N, IdxN);
3207    }
3208  }
3209
3210  setValue(&I, N);
3211}
3212
3213void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3214  // If this is a fixed sized alloca in the entry block of the function,
3215  // allocate it statically on the stack.
3216  if (FuncInfo.StaticAllocaMap.count(&I))
3217    return;   // getValue will auto-populate this.
3218
3219  Type *Ty = I.getAllocatedType();
3220  uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty);
3221  unsigned Align =
3222    std::max((unsigned)TLI.getDataLayout()->getPrefTypeAlignment(Ty),
3223             I.getAlignment());
3224
3225  SDValue AllocSize = getValue(I.getArraySize());
3226
3227  EVT IntPtr = TLI.getPointerTy();
3228  if (AllocSize.getValueType() != IntPtr)
3229    AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr);
3230
3231  AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr,
3232                          AllocSize,
3233                          DAG.getConstant(TySize, IntPtr));
3234
3235  // Handle alignment.  If the requested alignment is less than or equal to
3236  // the stack alignment, ignore it.  If the size is greater than or equal to
3237  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3238  unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
3239  if (Align <= StackAlign)
3240    Align = 0;
3241
3242  // Round the size of the allocation up to the stack alignment size
3243  // by add SA-1 to the size.
3244  AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3245                          AllocSize.getValueType(), AllocSize,
3246                          DAG.getIntPtrConstant(StackAlign-1));
3247
3248  // Mask out the low bits for alignment purposes.
3249  AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(),
3250                          AllocSize.getValueType(), AllocSize,
3251                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
3252
3253  SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
3254  SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3255  SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(),
3256                            VTs, Ops, 3);
3257  setValue(&I, DSA);
3258  DAG.setRoot(DSA.getValue(1));
3259
3260  // Inform the Frame Information that we have just allocated a variable-sized
3261  // object.
3262  FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1);
3263}
3264
3265void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3266  if (I.isAtomic())
3267    return visitAtomicLoad(I);
3268
3269  const Value *SV = I.getOperand(0);
3270  SDValue Ptr = getValue(SV);
3271
3272  Type *Ty = I.getType();
3273
3274  bool isVolatile = I.isVolatile();
3275  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3276  bool isInvariant = I.getMetadata("invariant.load") != 0;
3277  unsigned Alignment = I.getAlignment();
3278  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3279  const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3280
3281  SmallVector<EVT, 4> ValueVTs;
3282  SmallVector<uint64_t, 4> Offsets;
3283  ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
3284  unsigned NumValues = ValueVTs.size();
3285  if (NumValues == 0)
3286    return;
3287
3288  SDValue Root;
3289  bool ConstantMemory = false;
3290  if (I.isVolatile() || NumValues > MaxParallelChains)
3291    // Serialize volatile loads with other side effects.
3292    Root = getRoot();
3293  else if (AA->pointsToConstantMemory(
3294             AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) {
3295    // Do not serialize (non-volatile) loads of constant memory with anything.
3296    Root = DAG.getEntryNode();
3297    ConstantMemory = true;
3298  } else {
3299    // Do not serialize non-volatile loads against each other.
3300    Root = DAG.getRoot();
3301  }
3302
3303  SmallVector<SDValue, 4> Values(NumValues);
3304  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3305                                          NumValues));
3306  EVT PtrVT = Ptr.getValueType();
3307  unsigned ChainI = 0;
3308  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3309    // Serializing loads here may result in excessive register pressure, and
3310    // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3311    // could recover a bit by hoisting nodes upward in the chain by recognizing
3312    // they are side-effect free or do not alias. The optimizer should really
3313    // avoid this case by converting large object/array copies to llvm.memcpy
3314    // (MaxParallelChains should always remain as failsafe).
3315    if (ChainI == MaxParallelChains) {
3316      assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3317      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3318                                  MVT::Other, &Chains[0], ChainI);
3319      Root = Chain;
3320      ChainI = 0;
3321    }
3322    SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3323                            PtrVT, Ptr,
3324                            DAG.getConstant(Offsets[i], PtrVT));
3325    SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root,
3326                            A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
3327                            isNonTemporal, isInvariant, Alignment, TBAAInfo,
3328                            Ranges);
3329
3330    Values[i] = L;
3331    Chains[ChainI] = L.getValue(1);
3332  }
3333
3334  if (!ConstantMemory) {
3335    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3336                                MVT::Other, &Chains[0], ChainI);
3337    if (isVolatile)
3338      DAG.setRoot(Chain);
3339    else
3340      PendingLoads.push_back(Chain);
3341  }
3342
3343  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3344                           DAG.getVTList(&ValueVTs[0], NumValues),
3345                           &Values[0], NumValues));
3346}
3347
3348void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3349  if (I.isAtomic())
3350    return visitAtomicStore(I);
3351
3352  const Value *SrcV = I.getOperand(0);
3353  const Value *PtrV = I.getOperand(1);
3354
3355  SmallVector<EVT, 4> ValueVTs;
3356  SmallVector<uint64_t, 4> Offsets;
3357  ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
3358  unsigned NumValues = ValueVTs.size();
3359  if (NumValues == 0)
3360    return;
3361
3362  // Get the lowered operands. Note that we do this after
3363  // checking if NumResults is zero, because with zero results
3364  // the operands won't have values in the map.
3365  SDValue Src = getValue(SrcV);
3366  SDValue Ptr = getValue(PtrV);
3367
3368  SDValue Root = getRoot();
3369  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3370                                          NumValues));
3371  EVT PtrVT = Ptr.getValueType();
3372  bool isVolatile = I.isVolatile();
3373  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3374  unsigned Alignment = I.getAlignment();
3375  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3376
3377  unsigned ChainI = 0;
3378  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3379    // See visitLoad comments.
3380    if (ChainI == MaxParallelChains) {
3381      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3382                                  MVT::Other, &Chains[0], ChainI);
3383      Root = Chain;
3384      ChainI = 0;
3385    }
3386    SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr,
3387                              DAG.getConstant(Offsets[i], PtrVT));
3388    SDValue St = DAG.getStore(Root, getCurDebugLoc(),
3389                              SDValue(Src.getNode(), Src.getResNo() + i),
3390                              Add, MachinePointerInfo(PtrV, Offsets[i]),
3391                              isVolatile, isNonTemporal, Alignment, TBAAInfo);
3392    Chains[ChainI] = St;
3393  }
3394
3395  SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3396                                  MVT::Other, &Chains[0], ChainI);
3397  ++SDNodeOrder;
3398  AssignOrderingToNode(StoreNode.getNode());
3399  DAG.setRoot(StoreNode);
3400}
3401
3402static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order,
3403                                    SynchronizationScope Scope,
3404                                    bool Before, DebugLoc dl,
3405                                    SelectionDAG &DAG,
3406                                    const TargetLowering &TLI) {
3407  // Fence, if necessary
3408  if (Before) {
3409    if (Order == AcquireRelease || Order == SequentiallyConsistent)
3410      Order = Release;
3411    else if (Order == Acquire || Order == Monotonic)
3412      return Chain;
3413  } else {
3414    if (Order == AcquireRelease)
3415      Order = Acquire;
3416    else if (Order == Release || Order == Monotonic)
3417      return Chain;
3418  }
3419  SDValue Ops[3];
3420  Ops[0] = Chain;
3421  Ops[1] = DAG.getConstant(Order, TLI.getPointerTy());
3422  Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy());
3423  return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3);
3424}
3425
3426void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
3427  DebugLoc dl = getCurDebugLoc();
3428  AtomicOrdering Order = I.getOrdering();
3429  SynchronizationScope Scope = I.getSynchScope();
3430
3431  SDValue InChain = getRoot();
3432
3433  if (TLI.getInsertFencesForAtomic())
3434    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3435                                   DAG, TLI);
3436
3437  SDValue L =
3438    DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl,
3439                  getValue(I.getCompareOperand()).getValueType().getSimpleVT(),
3440                  InChain,
3441                  getValue(I.getPointerOperand()),
3442                  getValue(I.getCompareOperand()),
3443                  getValue(I.getNewValOperand()),
3444                  MachinePointerInfo(I.getPointerOperand()), 0 /* Alignment */,
3445                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3446                  Scope);
3447
3448  SDValue OutChain = L.getValue(1);
3449
3450  if (TLI.getInsertFencesForAtomic())
3451    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3452                                    DAG, TLI);
3453
3454  setValue(&I, L);
3455  DAG.setRoot(OutChain);
3456}
3457
3458void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
3459  DebugLoc dl = getCurDebugLoc();
3460  ISD::NodeType NT;
3461  switch (I.getOperation()) {
3462  default: llvm_unreachable("Unknown atomicrmw operation");
3463  case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
3464  case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
3465  case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
3466  case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
3467  case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
3468  case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
3469  case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
3470  case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
3471  case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
3472  case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
3473  case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
3474  }
3475  AtomicOrdering Order = I.getOrdering();
3476  SynchronizationScope Scope = I.getSynchScope();
3477
3478  SDValue InChain = getRoot();
3479
3480  if (TLI.getInsertFencesForAtomic())
3481    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3482                                   DAG, TLI);
3483
3484  SDValue L =
3485    DAG.getAtomic(NT, dl,
3486                  getValue(I.getValOperand()).getValueType().getSimpleVT(),
3487                  InChain,
3488                  getValue(I.getPointerOperand()),
3489                  getValue(I.getValOperand()),
3490                  I.getPointerOperand(), 0 /* Alignment */,
3491                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3492                  Scope);
3493
3494  SDValue OutChain = L.getValue(1);
3495
3496  if (TLI.getInsertFencesForAtomic())
3497    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3498                                    DAG, TLI);
3499
3500  setValue(&I, L);
3501  DAG.setRoot(OutChain);
3502}
3503
3504void SelectionDAGBuilder::visitFence(const FenceInst &I) {
3505  DebugLoc dl = getCurDebugLoc();
3506  SDValue Ops[3];
3507  Ops[0] = getRoot();
3508  Ops[1] = DAG.getConstant(I.getOrdering(), TLI.getPointerTy());
3509  Ops[2] = DAG.getConstant(I.getSynchScope(), TLI.getPointerTy());
3510  DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3));
3511}
3512
3513void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
3514  DebugLoc dl = getCurDebugLoc();
3515  AtomicOrdering Order = I.getOrdering();
3516  SynchronizationScope Scope = I.getSynchScope();
3517
3518  SDValue InChain = getRoot();
3519
3520  EVT VT = TLI.getValueType(I.getType());
3521
3522  if (I.getAlignment() < VT.getSizeInBits() / 8)
3523    report_fatal_error("Cannot generate unaligned atomic load");
3524
3525  SDValue L =
3526    DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
3527                  getValue(I.getPointerOperand()),
3528                  I.getPointerOperand(), I.getAlignment(),
3529                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3530                  Scope);
3531
3532  SDValue OutChain = L.getValue(1);
3533
3534  if (TLI.getInsertFencesForAtomic())
3535    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3536                                    DAG, TLI);
3537
3538  setValue(&I, L);
3539  DAG.setRoot(OutChain);
3540}
3541
3542void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
3543  DebugLoc dl = getCurDebugLoc();
3544
3545  AtomicOrdering Order = I.getOrdering();
3546  SynchronizationScope Scope = I.getSynchScope();
3547
3548  SDValue InChain = getRoot();
3549
3550  EVT VT = TLI.getValueType(I.getValueOperand()->getType());
3551
3552  if (I.getAlignment() < VT.getSizeInBits() / 8)
3553    report_fatal_error("Cannot generate unaligned atomic store");
3554
3555  if (TLI.getInsertFencesForAtomic())
3556    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3557                                   DAG, TLI);
3558
3559  SDValue OutChain =
3560    DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
3561                  InChain,
3562                  getValue(I.getPointerOperand()),
3563                  getValue(I.getValueOperand()),
3564                  I.getPointerOperand(), I.getAlignment(),
3565                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3566                  Scope);
3567
3568  if (TLI.getInsertFencesForAtomic())
3569    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3570                                    DAG, TLI);
3571
3572  DAG.setRoot(OutChain);
3573}
3574
3575/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3576/// node.
3577void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3578                                               unsigned Intrinsic) {
3579  bool HasChain = !I.doesNotAccessMemory();
3580  bool OnlyLoad = HasChain && I.onlyReadsMemory();
3581
3582  // Build the operand list.
3583  SmallVector<SDValue, 8> Ops;
3584  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
3585    if (OnlyLoad) {
3586      // We don't need to serialize loads against other loads.
3587      Ops.push_back(DAG.getRoot());
3588    } else {
3589      Ops.push_back(getRoot());
3590    }
3591  }
3592
3593  // Info is set by getTgtMemInstrinsic
3594  TargetLowering::IntrinsicInfo Info;
3595  bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
3596
3597  // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3598  if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
3599      Info.opc == ISD::INTRINSIC_W_CHAIN)
3600    Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI.getPointerTy()));
3601
3602  // Add all operands of the call to the operand list.
3603  for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
3604    SDValue Op = getValue(I.getArgOperand(i));
3605    Ops.push_back(Op);
3606  }
3607
3608  SmallVector<EVT, 4> ValueVTs;
3609  ComputeValueVTs(TLI, I.getType(), ValueVTs);
3610
3611  if (HasChain)
3612    ValueVTs.push_back(MVT::Other);
3613
3614  SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
3615
3616  // Create the node.
3617  SDValue Result;
3618  if (IsTgtIntrinsic) {
3619    // This is target intrinsic that touches memory
3620    Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(),
3621                                     VTs, &Ops[0], Ops.size(),
3622                                     Info.memVT,
3623                                   MachinePointerInfo(Info.ptrVal, Info.offset),
3624                                     Info.align, Info.vol,
3625                                     Info.readMem, Info.writeMem);
3626  } else if (!HasChain) {
3627    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
3628                         VTs, &Ops[0], Ops.size());
3629  } else if (!I.getType()->isVoidTy()) {
3630    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
3631                         VTs, &Ops[0], Ops.size());
3632  } else {
3633    Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(),
3634                         VTs, &Ops[0], Ops.size());
3635  }
3636
3637  if (HasChain) {
3638    SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3639    if (OnlyLoad)
3640      PendingLoads.push_back(Chain);
3641    else
3642      DAG.setRoot(Chain);
3643  }
3644
3645  if (!I.getType()->isVoidTy()) {
3646    if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3647      EVT VT = TLI.getValueType(PTy);
3648      Result = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), VT, Result);
3649    }
3650
3651    setValue(&I, Result);
3652  } else {
3653    // Assign order to result here. If the intrinsic does not produce a result,
3654    // it won't be mapped to a SDNode and visit() will not assign it an order
3655    // number.
3656    ++SDNodeOrder;
3657    AssignOrderingToNode(Result.getNode());
3658  }
3659}
3660
3661/// GetSignificand - Get the significand and build it into a floating-point
3662/// number with exponent of 1:
3663///
3664///   Op = (Op & 0x007fffff) | 0x3f800000;
3665///
3666/// where Op is the hexadecimal representation of floating point value.
3667static SDValue
3668GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) {
3669  SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3670                           DAG.getConstant(0x007fffff, MVT::i32));
3671  SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3672                           DAG.getConstant(0x3f800000, MVT::i32));
3673  return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
3674}
3675
3676/// GetExponent - Get the exponent:
3677///
3678///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3679///
3680/// where Op is the hexadecimal representation of floating point value.
3681static SDValue
3682GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3683            DebugLoc dl) {
3684  SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3685                           DAG.getConstant(0x7f800000, MVT::i32));
3686  SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3687                           DAG.getConstant(23, TLI.getPointerTy()));
3688  SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3689                           DAG.getConstant(127, MVT::i32));
3690  return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3691}
3692
3693/// getF32Constant - Get 32-bit floating point constant.
3694static SDValue
3695getF32Constant(SelectionDAG &DAG, unsigned Flt) {
3696  return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)),
3697                           MVT::f32);
3698}
3699
3700/// expandExp - Lower an exp intrinsic. Handles the special sequences for
3701/// limited-precision mode.
3702static SDValue expandExp(DebugLoc dl, SDValue Op, SelectionDAG &DAG,
3703                         const TargetLowering &TLI) {
3704  if (Op.getValueType() == MVT::f32 &&
3705      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3706
3707    // Put the exponent in the right bit position for later addition to the
3708    // final result:
3709    //
3710    //   #define LOG2OFe 1.4426950f
3711    //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3712    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3713                             getF32Constant(DAG, 0x3fb8aa3b));
3714    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3715
3716    //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3717    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3718    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3719
3720    //   IntegerPartOfX <<= 23;
3721    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3722                                 DAG.getConstant(23, TLI.getPointerTy()));
3723
3724    SDValue TwoToFracPartOfX;
3725    if (LimitFloatPrecision <= 6) {
3726      // For floating-point precision of 6:
3727      //
3728      //   TwoToFractionalPartOfX =
3729      //     0.997535578f +
3730      //       (0.735607626f + 0.252464424f * x) * x;
3731      //
3732      // error 0.0144103317, which is 6 bits
3733      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3734                               getF32Constant(DAG, 0x3e814304));
3735      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3736                               getF32Constant(DAG, 0x3f3c50c8));
3737      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3738      TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3739                                     getF32Constant(DAG, 0x3f7f5e7e));
3740    } else if (LimitFloatPrecision <= 12) {
3741      // For floating-point precision of 12:
3742      //
3743      //   TwoToFractionalPartOfX =
3744      //     0.999892986f +
3745      //       (0.696457318f +
3746      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3747      //
3748      // 0.000107046256 error, which is 13 to 14 bits
3749      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3750                               getF32Constant(DAG, 0x3da235e3));
3751      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3752                               getF32Constant(DAG, 0x3e65b8f3));
3753      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3754      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3755                               getF32Constant(DAG, 0x3f324b07));
3756      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3757      TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3758                                     getF32Constant(DAG, 0x3f7ff8fd));
3759    } else { // LimitFloatPrecision <= 18
3760      // For floating-point precision of 18:
3761      //
3762      //   TwoToFractionalPartOfX =
3763      //     0.999999982f +
3764      //       (0.693148872f +
3765      //         (0.240227044f +
3766      //           (0.554906021e-1f +
3767      //             (0.961591928e-2f +
3768      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3769      //
3770      // error 2.47208000*10^(-7), which is better than 18 bits
3771      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3772                               getF32Constant(DAG, 0x3924b03e));
3773      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3774                               getF32Constant(DAG, 0x3ab24b87));
3775      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3776      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3777                               getF32Constant(DAG, 0x3c1d8c17));
3778      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3779      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3780                               getF32Constant(DAG, 0x3d634a1d));
3781      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3782      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3783                               getF32Constant(DAG, 0x3e75fe14));
3784      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3785      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3786                                getF32Constant(DAG, 0x3f317234));
3787      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3788      TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3789                                     getF32Constant(DAG, 0x3f800000));
3790    }
3791
3792    // Add the exponent into the result in integer domain.
3793    SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFracPartOfX);
3794    return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
3795                       DAG.getNode(ISD::ADD, dl, MVT::i32,
3796                                   t13, IntegerPartOfX));
3797  }
3798
3799  // No special expansion.
3800  return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
3801}
3802
3803/// expandLog - Lower a log intrinsic. Handles the special sequences for
3804/// limited-precision mode.
3805static SDValue expandLog(DebugLoc dl, SDValue Op, SelectionDAG &DAG,
3806                         const TargetLowering &TLI) {
3807  if (Op.getValueType() == MVT::f32 &&
3808      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3809    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3810
3811    // Scale the exponent by log(2) [0.69314718f].
3812    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3813    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3814                                        getF32Constant(DAG, 0x3f317218));
3815
3816    // Get the significand and build it into a floating-point number with
3817    // exponent of 1.
3818    SDValue X = GetSignificand(DAG, Op1, dl);
3819
3820    SDValue LogOfMantissa;
3821    if (LimitFloatPrecision <= 6) {
3822      // For floating-point precision of 6:
3823      //
3824      //   LogofMantissa =
3825      //     -1.1609546f +
3826      //       (1.4034025f - 0.23903021f * x) * x;
3827      //
3828      // error 0.0034276066, which is better than 8 bits
3829      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3830                               getF32Constant(DAG, 0xbe74c456));
3831      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3832                               getF32Constant(DAG, 0x3fb3a2b1));
3833      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3834      LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3835                                  getF32Constant(DAG, 0x3f949a29));
3836    } else if (LimitFloatPrecision <= 12) {
3837      // For floating-point precision of 12:
3838      //
3839      //   LogOfMantissa =
3840      //     -1.7417939f +
3841      //       (2.8212026f +
3842      //         (-1.4699568f +
3843      //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3844      //
3845      // error 0.000061011436, which is 14 bits
3846      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3847                               getF32Constant(DAG, 0xbd67b6d6));
3848      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3849                               getF32Constant(DAG, 0x3ee4f4b8));
3850      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3851      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3852                               getF32Constant(DAG, 0x3fbc278b));
3853      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3854      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3855                               getF32Constant(DAG, 0x40348e95));
3856      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3857      LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3858                                  getF32Constant(DAG, 0x3fdef31a));
3859    } else { // LimitFloatPrecision <= 18
3860      // For floating-point precision of 18:
3861      //
3862      //   LogOfMantissa =
3863      //     -2.1072184f +
3864      //       (4.2372794f +
3865      //         (-3.7029485f +
3866      //           (2.2781945f +
3867      //             (-0.87823314f +
3868      //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3869      //
3870      // error 0.0000023660568, which is better than 18 bits
3871      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3872                               getF32Constant(DAG, 0xbc91e5ac));
3873      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3874                               getF32Constant(DAG, 0x3e4350aa));
3875      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3876      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3877                               getF32Constant(DAG, 0x3f60d3e3));
3878      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3879      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3880                               getF32Constant(DAG, 0x4011cdf0));
3881      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3882      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3883                               getF32Constant(DAG, 0x406cfd1c));
3884      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3885      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3886                               getF32Constant(DAG, 0x408797cb));
3887      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3888      LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3889                                  getF32Constant(DAG, 0x4006dcab));
3890    }
3891
3892    return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
3893  }
3894
3895  // No special expansion.
3896  return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
3897}
3898
3899/// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
3900/// limited-precision mode.
3901static SDValue expandLog2(DebugLoc dl, SDValue Op, SelectionDAG &DAG,
3902                          const TargetLowering &TLI) {
3903  if (Op.getValueType() == MVT::f32 &&
3904      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3905    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3906
3907    // Get the exponent.
3908    SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3909
3910    // Get the significand and build it into a floating-point number with
3911    // exponent of 1.
3912    SDValue X = GetSignificand(DAG, Op1, dl);
3913
3914    // Different possible minimax approximations of significand in
3915    // floating-point for various degrees of accuracy over [1,2].
3916    SDValue Log2ofMantissa;
3917    if (LimitFloatPrecision <= 6) {
3918      // For floating-point precision of 6:
3919      //
3920      //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3921      //
3922      // error 0.0049451742, which is more than 7 bits
3923      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3924                               getF32Constant(DAG, 0xbeb08fe0));
3925      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3926                               getF32Constant(DAG, 0x40019463));
3927      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3928      Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3929                                   getF32Constant(DAG, 0x3fd6633d));
3930    } else if (LimitFloatPrecision <= 12) {
3931      // For floating-point precision of 12:
3932      //
3933      //   Log2ofMantissa =
3934      //     -2.51285454f +
3935      //       (4.07009056f +
3936      //         (-2.12067489f +
3937      //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3938      //
3939      // error 0.0000876136000, which is better than 13 bits
3940      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3941                               getF32Constant(DAG, 0xbda7262e));
3942      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3943                               getF32Constant(DAG, 0x3f25280b));
3944      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3945      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3946                               getF32Constant(DAG, 0x4007b923));
3947      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3948      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3949                               getF32Constant(DAG, 0x40823e2f));
3950      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3951      Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3952                                   getF32Constant(DAG, 0x4020d29c));
3953    } else { // LimitFloatPrecision <= 18
3954      // For floating-point precision of 18:
3955      //
3956      //   Log2ofMantissa =
3957      //     -3.0400495f +
3958      //       (6.1129976f +
3959      //         (-5.3420409f +
3960      //           (3.2865683f +
3961      //             (-1.2669343f +
3962      //               (0.27515199f -
3963      //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3964      //
3965      // error 0.0000018516, which is better than 18 bits
3966      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3967                               getF32Constant(DAG, 0xbcd2769e));
3968      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3969                               getF32Constant(DAG, 0x3e8ce0b9));
3970      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3971      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3972                               getF32Constant(DAG, 0x3fa22ae7));
3973      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3974      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3975                               getF32Constant(DAG, 0x40525723));
3976      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3977      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3978                               getF32Constant(DAG, 0x40aaf200));
3979      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3980      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3981                               getF32Constant(DAG, 0x40c39dad));
3982      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3983      Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3984                                   getF32Constant(DAG, 0x4042902c));
3985    }
3986
3987    return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
3988  }
3989
3990  // No special expansion.
3991  return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
3992}
3993
3994/// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
3995/// limited-precision mode.
3996static SDValue expandLog10(DebugLoc dl, SDValue Op, SelectionDAG &DAG,
3997                           const TargetLowering &TLI) {
3998  if (Op.getValueType() == MVT::f32 &&
3999      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4000    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4001
4002    // Scale the exponent by log10(2) [0.30102999f].
4003    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4004    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4005                                        getF32Constant(DAG, 0x3e9a209a));
4006
4007    // Get the significand and build it into a floating-point number with
4008    // exponent of 1.
4009    SDValue X = GetSignificand(DAG, Op1, dl);
4010
4011    SDValue Log10ofMantissa;
4012    if (LimitFloatPrecision <= 6) {
4013      // For floating-point precision of 6:
4014      //
4015      //   Log10ofMantissa =
4016      //     -0.50419619f +
4017      //       (0.60948995f - 0.10380950f * x) * x;
4018      //
4019      // error 0.0014886165, which is 6 bits
4020      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4021                               getF32Constant(DAG, 0xbdd49a13));
4022      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4023                               getF32Constant(DAG, 0x3f1c0789));
4024      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4025      Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4026                                    getF32Constant(DAG, 0x3f011300));
4027    } else if (LimitFloatPrecision <= 12) {
4028      // For floating-point precision of 12:
4029      //
4030      //   Log10ofMantissa =
4031      //     -0.64831180f +
4032      //       (0.91751397f +
4033      //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4034      //
4035      // error 0.00019228036, which is better than 12 bits
4036      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4037                               getF32Constant(DAG, 0x3d431f31));
4038      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4039                               getF32Constant(DAG, 0x3ea21fb2));
4040      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4041      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4042                               getF32Constant(DAG, 0x3f6ae232));
4043      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4044      Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4045                                    getF32Constant(DAG, 0x3f25f7c3));
4046    } else { // LimitFloatPrecision <= 18
4047      // For floating-point precision of 18:
4048      //
4049      //   Log10ofMantissa =
4050      //     -0.84299375f +
4051      //       (1.5327582f +
4052      //         (-1.0688956f +
4053      //           (0.49102474f +
4054      //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4055      //
4056      // error 0.0000037995730, which is better than 18 bits
4057      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4058                               getF32Constant(DAG, 0x3c5d51ce));
4059      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4060                               getF32Constant(DAG, 0x3e00685a));
4061      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4062      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4063                               getF32Constant(DAG, 0x3efb6798));
4064      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4065      SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4066                               getF32Constant(DAG, 0x3f88d192));
4067      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4068      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4069                               getF32Constant(DAG, 0x3fc4316c));
4070      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4071      Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4072                                    getF32Constant(DAG, 0x3f57ce70));
4073    }
4074
4075    return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
4076  }
4077
4078  // No special expansion.
4079  return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
4080}
4081
4082/// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4083/// limited-precision mode.
4084static SDValue expandExp2(DebugLoc dl, SDValue Op, SelectionDAG &DAG,
4085                          const TargetLowering &TLI) {
4086  if (Op.getValueType() == MVT::f32 &&
4087      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4088    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
4089
4090    //   FractionalPartOfX = x - (float)IntegerPartOfX;
4091    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4092    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
4093
4094    //   IntegerPartOfX <<= 23;
4095    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4096                                 DAG.getConstant(23, TLI.getPointerTy()));
4097
4098    SDValue TwoToFractionalPartOfX;
4099    if (LimitFloatPrecision <= 6) {
4100      // For floating-point precision of 6:
4101      //
4102      //   TwoToFractionalPartOfX =
4103      //     0.997535578f +
4104      //       (0.735607626f + 0.252464424f * x) * x;
4105      //
4106      // error 0.0144103317, which is 6 bits
4107      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4108                               getF32Constant(DAG, 0x3e814304));
4109      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4110                               getF32Constant(DAG, 0x3f3c50c8));
4111      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4112      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4113                                           getF32Constant(DAG, 0x3f7f5e7e));
4114    } else if (LimitFloatPrecision <= 12) {
4115      // For floating-point precision of 12:
4116      //
4117      //   TwoToFractionalPartOfX =
4118      //     0.999892986f +
4119      //       (0.696457318f +
4120      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4121      //
4122      // error 0.000107046256, which is 13 to 14 bits
4123      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4124                               getF32Constant(DAG, 0x3da235e3));
4125      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4126                               getF32Constant(DAG, 0x3e65b8f3));
4127      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4128      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4129                               getF32Constant(DAG, 0x3f324b07));
4130      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4131      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4132                                           getF32Constant(DAG, 0x3f7ff8fd));
4133    } else { // LimitFloatPrecision <= 18
4134      // For floating-point precision of 18:
4135      //
4136      //   TwoToFractionalPartOfX =
4137      //     0.999999982f +
4138      //       (0.693148872f +
4139      //         (0.240227044f +
4140      //           (0.554906021e-1f +
4141      //             (0.961591928e-2f +
4142      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4143      // error 2.47208000*10^(-7), which is better than 18 bits
4144      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4145                               getF32Constant(DAG, 0x3924b03e));
4146      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4147                               getF32Constant(DAG, 0x3ab24b87));
4148      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4149      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4150                               getF32Constant(DAG, 0x3c1d8c17));
4151      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4152      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4153                               getF32Constant(DAG, 0x3d634a1d));
4154      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4155      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4156                               getF32Constant(DAG, 0x3e75fe14));
4157      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4158      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4159                                getF32Constant(DAG, 0x3f317234));
4160      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4161      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4162                                           getF32Constant(DAG, 0x3f800000));
4163    }
4164
4165    // Add the exponent into the result in integer domain.
4166    SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32,
4167                              TwoToFractionalPartOfX);
4168    return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4169                       DAG.getNode(ISD::ADD, dl, MVT::i32,
4170                                   t13, IntegerPartOfX));
4171  }
4172
4173  // No special expansion.
4174  return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
4175}
4176
4177/// visitPow - Lower a pow intrinsic. Handles the special sequences for
4178/// limited-precision mode with x == 10.0f.
4179static SDValue expandPow(DebugLoc dl, SDValue LHS, SDValue RHS,
4180                         SelectionDAG &DAG, const TargetLowering &TLI) {
4181  bool IsExp10 = false;
4182  if (LHS.getValueType() == MVT::f32 && LHS.getValueType() == MVT::f32 &&
4183      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4184    if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
4185      APFloat Ten(10.0f);
4186      IsExp10 = LHSC->isExactlyValue(Ten);
4187    }
4188  }
4189
4190  if (IsExp10) {
4191    // Put the exponent in the right bit position for later addition to the
4192    // final result:
4193    //
4194    //   #define LOG2OF10 3.3219281f
4195    //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
4196    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
4197                             getF32Constant(DAG, 0x40549a78));
4198    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4199
4200    //   FractionalPartOfX = x - (float)IntegerPartOfX;
4201    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4202    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4203
4204    //   IntegerPartOfX <<= 23;
4205    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4206                                 DAG.getConstant(23, TLI.getPointerTy()));
4207
4208    SDValue TwoToFractionalPartOfX;
4209    if (LimitFloatPrecision <= 6) {
4210      // For floating-point precision of 6:
4211      //
4212      //   twoToFractionalPartOfX =
4213      //     0.997535578f +
4214      //       (0.735607626f + 0.252464424f * x) * x;
4215      //
4216      // error 0.0144103317, which is 6 bits
4217      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4218                               getF32Constant(DAG, 0x3e814304));
4219      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4220                               getF32Constant(DAG, 0x3f3c50c8));
4221      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4222      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4223                                           getF32Constant(DAG, 0x3f7f5e7e));
4224    } else if (LimitFloatPrecision <= 12) {
4225      // For floating-point precision of 12:
4226      //
4227      //   TwoToFractionalPartOfX =
4228      //     0.999892986f +
4229      //       (0.696457318f +
4230      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4231      //
4232      // error 0.000107046256, which is 13 to 14 bits
4233      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4234                               getF32Constant(DAG, 0x3da235e3));
4235      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4236                               getF32Constant(DAG, 0x3e65b8f3));
4237      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4238      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4239                               getF32Constant(DAG, 0x3f324b07));
4240      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4241      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4242                                           getF32Constant(DAG, 0x3f7ff8fd));
4243    } else { // LimitFloatPrecision <= 18
4244      // For floating-point precision of 18:
4245      //
4246      //   TwoToFractionalPartOfX =
4247      //     0.999999982f +
4248      //       (0.693148872f +
4249      //         (0.240227044f +
4250      //           (0.554906021e-1f +
4251      //             (0.961591928e-2f +
4252      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4253      // error 2.47208000*10^(-7), which is better than 18 bits
4254      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4255                               getF32Constant(DAG, 0x3924b03e));
4256      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4257                               getF32Constant(DAG, 0x3ab24b87));
4258      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4259      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4260                               getF32Constant(DAG, 0x3c1d8c17));
4261      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4262      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4263                               getF32Constant(DAG, 0x3d634a1d));
4264      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4265      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4266                               getF32Constant(DAG, 0x3e75fe14));
4267      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4268      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4269                                getF32Constant(DAG, 0x3f317234));
4270      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4271      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4272                                           getF32Constant(DAG, 0x3f800000));
4273    }
4274
4275    SDValue t13 = DAG.getNode(ISD::BITCAST, dl,MVT::i32,TwoToFractionalPartOfX);
4276    return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4277                       DAG.getNode(ISD::ADD, dl, MVT::i32,
4278                                   t13, IntegerPartOfX));
4279  }
4280
4281  // No special expansion.
4282  return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
4283}
4284
4285
4286/// ExpandPowI - Expand a llvm.powi intrinsic.
4287static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS,
4288                          SelectionDAG &DAG) {
4289  // If RHS is a constant, we can expand this out to a multiplication tree,
4290  // otherwise we end up lowering to a call to __powidf2 (for example).  When
4291  // optimizing for size, we only want to do this if the expansion would produce
4292  // a small number of multiplies, otherwise we do the full expansion.
4293  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4294    // Get the exponent as a positive value.
4295    unsigned Val = RHSC->getSExtValue();
4296    if ((int)Val < 0) Val = -Val;
4297
4298    // powi(x, 0) -> 1.0
4299    if (Val == 0)
4300      return DAG.getConstantFP(1.0, LHS.getValueType());
4301
4302    const Function *F = DAG.getMachineFunction().getFunction();
4303    if (!F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
4304                                         Attribute::OptimizeForSize) ||
4305        // If optimizing for size, don't insert too many multiplies.  This
4306        // inserts up to 5 multiplies.
4307        CountPopulation_32(Val)+Log2_32(Val) < 7) {
4308      // We use the simple binary decomposition method to generate the multiply
4309      // sequence.  There are more optimal ways to do this (for example,
4310      // powi(x,15) generates one more multiply than it should), but this has
4311      // the benefit of being both really simple and much better than a libcall.
4312      SDValue Res;  // Logically starts equal to 1.0
4313      SDValue CurSquare = LHS;
4314      while (Val) {
4315        if (Val & 1) {
4316          if (Res.getNode())
4317            Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4318          else
4319            Res = CurSquare;  // 1.0*CurSquare.
4320        }
4321
4322        CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4323                                CurSquare, CurSquare);
4324        Val >>= 1;
4325      }
4326
4327      // If the original was negative, invert the result, producing 1/(x*x*x).
4328      if (RHSC->getSExtValue() < 0)
4329        Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4330                          DAG.getConstantFP(1.0, LHS.getValueType()), Res);
4331      return Res;
4332    }
4333  }
4334
4335  // Otherwise, expand to a libcall.
4336  return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4337}
4338
4339// getTruncatedArgReg - Find underlying register used for an truncated
4340// argument.
4341static unsigned getTruncatedArgReg(const SDValue &N) {
4342  if (N.getOpcode() != ISD::TRUNCATE)
4343    return 0;
4344
4345  const SDValue &Ext = N.getOperand(0);
4346  if (Ext.getOpcode() == ISD::AssertZext || Ext.getOpcode() == ISD::AssertSext){
4347    const SDValue &CFR = Ext.getOperand(0);
4348    if (CFR.getOpcode() == ISD::CopyFromReg)
4349      return cast<RegisterSDNode>(CFR.getOperand(1))->getReg();
4350    if (CFR.getOpcode() == ISD::TRUNCATE)
4351      return getTruncatedArgReg(CFR);
4352  }
4353  return 0;
4354}
4355
4356/// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4357/// argument, create the corresponding DBG_VALUE machine instruction for it now.
4358/// At the end of instruction selection, they will be inserted to the entry BB.
4359bool
4360SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
4361                                              int64_t Offset,
4362                                              const SDValue &N) {
4363  const Argument *Arg = dyn_cast<Argument>(V);
4364  if (!Arg)
4365    return false;
4366
4367  MachineFunction &MF = DAG.getMachineFunction();
4368  const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
4369  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
4370
4371  // Ignore inlined function arguments here.
4372  DIVariable DV(Variable);
4373  if (DV.isInlinedFnArgument(MF.getFunction()))
4374    return false;
4375
4376  unsigned Reg = 0;
4377  // Some arguments' frame index is recorded during argument lowering.
4378  Offset = FuncInfo.getArgumentFrameIndex(Arg);
4379  if (Offset)
4380    Reg = TRI->getFrameRegister(MF);
4381
4382  if (!Reg && N.getNode()) {
4383    if (N.getOpcode() == ISD::CopyFromReg)
4384      Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
4385    else
4386      Reg = getTruncatedArgReg(N);
4387    if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4388      MachineRegisterInfo &RegInfo = MF.getRegInfo();
4389      unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4390      if (PR)
4391        Reg = PR;
4392    }
4393  }
4394
4395  if (!Reg) {
4396    // Check if ValueMap has reg number.
4397    DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4398    if (VMI != FuncInfo.ValueMap.end())
4399      Reg = VMI->second;
4400  }
4401
4402  if (!Reg && N.getNode()) {
4403    // Check if frame index is available.
4404    if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4405      if (FrameIndexSDNode *FINode =
4406          dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) {
4407        Reg = TRI->getFrameRegister(MF);
4408        Offset = FINode->getIndex();
4409      }
4410  }
4411
4412  if (!Reg)
4413    return false;
4414
4415  MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(),
4416                                    TII->get(TargetOpcode::DBG_VALUE))
4417    .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable);
4418  FuncInfo.ArgDbgValues.push_back(&*MIB);
4419  return true;
4420}
4421
4422// VisualStudio defines setjmp as _setjmp
4423#if defined(_MSC_VER) && defined(setjmp) && \
4424                         !defined(setjmp_undefined_for_msvc)
4425#  pragma push_macro("setjmp")
4426#  undef setjmp
4427#  define setjmp_undefined_for_msvc
4428#endif
4429
4430/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4431/// we want to emit this as a call to a named external function, return the name
4432/// otherwise lower it and return null.
4433const char *
4434SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4435  DebugLoc dl = getCurDebugLoc();
4436  SDValue Res;
4437
4438  switch (Intrinsic) {
4439  default:
4440    // By default, turn this into a target intrinsic node.
4441    visitTargetIntrinsic(I, Intrinsic);
4442    return 0;
4443  case Intrinsic::vastart:  visitVAStart(I); return 0;
4444  case Intrinsic::vaend:    visitVAEnd(I); return 0;
4445  case Intrinsic::vacopy:   visitVACopy(I); return 0;
4446  case Intrinsic::returnaddress:
4447    setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(),
4448                             getValue(I.getArgOperand(0))));
4449    return 0;
4450  case Intrinsic::frameaddress:
4451    setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(),
4452                             getValue(I.getArgOperand(0))));
4453    return 0;
4454  case Intrinsic::setjmp:
4455    return &"_setjmp"[!TLI.usesUnderscoreSetJmp()];
4456  case Intrinsic::longjmp:
4457    return &"_longjmp"[!TLI.usesUnderscoreLongJmp()];
4458  case Intrinsic::memcpy: {
4459    // Assert for address < 256 since we support only user defined address
4460    // spaces.
4461    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4462           < 256 &&
4463           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4464           < 256 &&
4465           "Unknown address space");
4466    SDValue Op1 = getValue(I.getArgOperand(0));
4467    SDValue Op2 = getValue(I.getArgOperand(1));
4468    SDValue Op3 = getValue(I.getArgOperand(2));
4469    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4470    if (!Align)
4471      Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment.
4472    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4473    DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false,
4474                              MachinePointerInfo(I.getArgOperand(0)),
4475                              MachinePointerInfo(I.getArgOperand(1))));
4476    return 0;
4477  }
4478  case Intrinsic::memset: {
4479    // Assert for address < 256 since we support only user defined address
4480    // spaces.
4481    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4482           < 256 &&
4483           "Unknown address space");
4484    SDValue Op1 = getValue(I.getArgOperand(0));
4485    SDValue Op2 = getValue(I.getArgOperand(1));
4486    SDValue Op3 = getValue(I.getArgOperand(2));
4487    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4488    if (!Align)
4489      Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment.
4490    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4491    DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4492                              MachinePointerInfo(I.getArgOperand(0))));
4493    return 0;
4494  }
4495  case Intrinsic::memmove: {
4496    // Assert for address < 256 since we support only user defined address
4497    // spaces.
4498    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4499           < 256 &&
4500           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4501           < 256 &&
4502           "Unknown address space");
4503    SDValue Op1 = getValue(I.getArgOperand(0));
4504    SDValue Op2 = getValue(I.getArgOperand(1));
4505    SDValue Op3 = getValue(I.getArgOperand(2));
4506    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4507    if (!Align)
4508      Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment.
4509    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4510    DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4511                               MachinePointerInfo(I.getArgOperand(0)),
4512                               MachinePointerInfo(I.getArgOperand(1))));
4513    return 0;
4514  }
4515  case Intrinsic::dbg_declare: {
4516    const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4517    MDNode *Variable = DI.getVariable();
4518    const Value *Address = DI.getAddress();
4519    if (!Address || !DIVariable(Variable).Verify()) {
4520      DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4521      return 0;
4522    }
4523
4524    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4525    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4526    // absolute, but not relative, values are different depending on whether
4527    // debug info exists.
4528    ++SDNodeOrder;
4529
4530    // Check if address has undef value.
4531    if (isa<UndefValue>(Address) ||
4532        (Address->use_empty() && !isa<Argument>(Address))) {
4533      DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4534      return 0;
4535    }
4536
4537    SDValue &N = NodeMap[Address];
4538    if (!N.getNode() && isa<Argument>(Address))
4539      // Check unused arguments map.
4540      N = UnusedArgNodeMap[Address];
4541    SDDbgValue *SDV;
4542    if (N.getNode()) {
4543      if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4544        Address = BCI->getOperand(0);
4545      // Parameters are handled specially.
4546      bool isParameter =
4547        (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable ||
4548         isa<Argument>(Address));
4549
4550      const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
4551
4552      if (isParameter && !AI) {
4553        FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4554        if (FINode)
4555          // Byval parameter.  We have a frame index at this point.
4556          SDV = DAG.getDbgValue(Variable, FINode->getIndex(),
4557                                0, dl, SDNodeOrder);
4558        else {
4559          // Address is an argument, so try to emit its dbg value using
4560          // virtual register info from the FuncInfo.ValueMap.
4561          EmitFuncArgumentDbgValue(Address, Variable, 0, N);
4562          return 0;
4563        }
4564      } else if (AI)
4565        SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
4566                              0, dl, SDNodeOrder);
4567      else {
4568        // Can't do anything with other non-AI cases yet.
4569        DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4570        DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t");
4571        DEBUG(Address->dump());
4572        return 0;
4573      }
4574      DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4575    } else {
4576      // If Address is an argument then try to emit its dbg value using
4577      // virtual register info from the FuncInfo.ValueMap.
4578      if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) {
4579        // If variable is pinned by a alloca in dominating bb then
4580        // use StaticAllocaMap.
4581        if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4582          if (AI->getParent() != DI.getParent()) {
4583            DenseMap<const AllocaInst*, int>::iterator SI =
4584              FuncInfo.StaticAllocaMap.find(AI);
4585            if (SI != FuncInfo.StaticAllocaMap.end()) {
4586              SDV = DAG.getDbgValue(Variable, SI->second,
4587                                    0, dl, SDNodeOrder);
4588              DAG.AddDbgValue(SDV, 0, false);
4589              return 0;
4590            }
4591          }
4592        }
4593        DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4594      }
4595    }
4596    return 0;
4597  }
4598  case Intrinsic::dbg_value: {
4599    const DbgValueInst &DI = cast<DbgValueInst>(I);
4600    if (!DIVariable(DI.getVariable()).Verify())
4601      return 0;
4602
4603    MDNode *Variable = DI.getVariable();
4604    uint64_t Offset = DI.getOffset();
4605    const Value *V = DI.getValue();
4606    if (!V)
4607      return 0;
4608
4609    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4610    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4611    // absolute, but not relative, values are different depending on whether
4612    // debug info exists.
4613    ++SDNodeOrder;
4614    SDDbgValue *SDV;
4615    if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
4616      SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder);
4617      DAG.AddDbgValue(SDV, 0, false);
4618    } else {
4619      // Do not use getValue() in here; we don't want to generate code at
4620      // this point if it hasn't been done yet.
4621      SDValue N = NodeMap[V];
4622      if (!N.getNode() && isa<Argument>(V))
4623        // Check unused arguments map.
4624        N = UnusedArgNodeMap[V];
4625      if (N.getNode()) {
4626        if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) {
4627          SDV = DAG.getDbgValue(Variable, N.getNode(),
4628                                N.getResNo(), Offset, dl, SDNodeOrder);
4629          DAG.AddDbgValue(SDV, N.getNode(), false);
4630        }
4631      } else if (!V->use_empty() ) {
4632        // Do not call getValue(V) yet, as we don't want to generate code.
4633        // Remember it for later.
4634        DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4635        DanglingDebugInfoMap[V] = DDI;
4636      } else {
4637        // We may expand this to cover more cases.  One case where we have no
4638        // data available is an unreferenced parameter.
4639        DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4640      }
4641    }
4642
4643    // Build a debug info table entry.
4644    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4645      V = BCI->getOperand(0);
4646    const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4647    // Don't handle byval struct arguments or VLAs, for example.
4648    if (!AI) {
4649      DEBUG(dbgs() << "Dropping debug location info for:\n  " << DI << "\n");
4650      DEBUG(dbgs() << "  Last seen at:\n    " << *V << "\n");
4651      return 0;
4652    }
4653    DenseMap<const AllocaInst*, int>::iterator SI =
4654      FuncInfo.StaticAllocaMap.find(AI);
4655    if (SI == FuncInfo.StaticAllocaMap.end())
4656      return 0; // VLAs.
4657    int FI = SI->second;
4658
4659    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4660    if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
4661      MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
4662    return 0;
4663  }
4664
4665  case Intrinsic::eh_typeid_for: {
4666    // Find the type id for the given typeinfo.
4667    GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0));
4668    unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4669    Res = DAG.getConstant(TypeID, MVT::i32);
4670    setValue(&I, Res);
4671    return 0;
4672  }
4673
4674  case Intrinsic::eh_return_i32:
4675  case Intrinsic::eh_return_i64:
4676    DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4677    DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl,
4678                            MVT::Other,
4679                            getControlRoot(),
4680                            getValue(I.getArgOperand(0)),
4681                            getValue(I.getArgOperand(1))));
4682    return 0;
4683  case Intrinsic::eh_unwind_init:
4684    DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4685    return 0;
4686  case Intrinsic::eh_dwarf_cfa: {
4687    SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl,
4688                                        TLI.getPointerTy());
4689    SDValue Offset = DAG.getNode(ISD::ADD, dl,
4690                                 TLI.getPointerTy(),
4691                                 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
4692                                             TLI.getPointerTy()),
4693                                 CfaArg);
4694    SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl,
4695                             TLI.getPointerTy(),
4696                             DAG.getConstant(0, TLI.getPointerTy()));
4697    setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
4698                             FA, Offset));
4699    return 0;
4700  }
4701  case Intrinsic::eh_sjlj_callsite: {
4702    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4703    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4704    assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4705    assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4706
4707    MMI.setCurrentCallSite(CI->getZExtValue());
4708    return 0;
4709  }
4710  case Intrinsic::eh_sjlj_functioncontext: {
4711    // Get and store the index of the function context.
4712    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4713    AllocaInst *FnCtx =
4714      cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
4715    int FI = FuncInfo.StaticAllocaMap[FnCtx];
4716    MFI->setFunctionContextIndex(FI);
4717    return 0;
4718  }
4719  case Intrinsic::eh_sjlj_setjmp: {
4720    SDValue Ops[2];
4721    Ops[0] = getRoot();
4722    Ops[1] = getValue(I.getArgOperand(0));
4723    SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, dl,
4724                             DAG.getVTList(MVT::i32, MVT::Other),
4725                             Ops, 2);
4726    setValue(&I, Op.getValue(0));
4727    DAG.setRoot(Op.getValue(1));
4728    return 0;
4729  }
4730  case Intrinsic::eh_sjlj_longjmp: {
4731    DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other,
4732                            getRoot(), getValue(I.getArgOperand(0))));
4733    return 0;
4734  }
4735
4736  case Intrinsic::x86_mmx_pslli_w:
4737  case Intrinsic::x86_mmx_pslli_d:
4738  case Intrinsic::x86_mmx_pslli_q:
4739  case Intrinsic::x86_mmx_psrli_w:
4740  case Intrinsic::x86_mmx_psrli_d:
4741  case Intrinsic::x86_mmx_psrli_q:
4742  case Intrinsic::x86_mmx_psrai_w:
4743  case Intrinsic::x86_mmx_psrai_d: {
4744    SDValue ShAmt = getValue(I.getArgOperand(1));
4745    if (isa<ConstantSDNode>(ShAmt)) {
4746      visitTargetIntrinsic(I, Intrinsic);
4747      return 0;
4748    }
4749    unsigned NewIntrinsic = 0;
4750    EVT ShAmtVT = MVT::v2i32;
4751    switch (Intrinsic) {
4752    case Intrinsic::x86_mmx_pslli_w:
4753      NewIntrinsic = Intrinsic::x86_mmx_psll_w;
4754      break;
4755    case Intrinsic::x86_mmx_pslli_d:
4756      NewIntrinsic = Intrinsic::x86_mmx_psll_d;
4757      break;
4758    case Intrinsic::x86_mmx_pslli_q:
4759      NewIntrinsic = Intrinsic::x86_mmx_psll_q;
4760      break;
4761    case Intrinsic::x86_mmx_psrli_w:
4762      NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
4763      break;
4764    case Intrinsic::x86_mmx_psrli_d:
4765      NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
4766      break;
4767    case Intrinsic::x86_mmx_psrli_q:
4768      NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
4769      break;
4770    case Intrinsic::x86_mmx_psrai_w:
4771      NewIntrinsic = Intrinsic::x86_mmx_psra_w;
4772      break;
4773    case Intrinsic::x86_mmx_psrai_d:
4774      NewIntrinsic = Intrinsic::x86_mmx_psra_d;
4775      break;
4776    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4777    }
4778
4779    // The vector shift intrinsics with scalars uses 32b shift amounts but
4780    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
4781    // to be zero.
4782    // We must do this early because v2i32 is not a legal type.
4783    SDValue ShOps[2];
4784    ShOps[0] = ShAmt;
4785    ShOps[1] = DAG.getConstant(0, MVT::i32);
4786    ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
4787    EVT DestVT = TLI.getValueType(I.getType());
4788    ShAmt = DAG.getNode(ISD::BITCAST, dl, DestVT, ShAmt);
4789    Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
4790                       DAG.getConstant(NewIntrinsic, MVT::i32),
4791                       getValue(I.getArgOperand(0)), ShAmt);
4792    setValue(&I, Res);
4793    return 0;
4794  }
4795  case Intrinsic::x86_avx_vinsertf128_pd_256:
4796  case Intrinsic::x86_avx_vinsertf128_ps_256:
4797  case Intrinsic::x86_avx_vinsertf128_si_256:
4798  case Intrinsic::x86_avx2_vinserti128: {
4799    EVT DestVT = TLI.getValueType(I.getType());
4800    EVT ElVT = TLI.getValueType(I.getArgOperand(1)->getType());
4801    uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue() & 1) *
4802                   ElVT.getVectorNumElements();
4803    Res = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, DestVT,
4804                      getValue(I.getArgOperand(0)),
4805                      getValue(I.getArgOperand(1)),
4806                      DAG.getIntPtrConstant(Idx));
4807    setValue(&I, Res);
4808    return 0;
4809  }
4810  case Intrinsic::x86_avx_vextractf128_pd_256:
4811  case Intrinsic::x86_avx_vextractf128_ps_256:
4812  case Intrinsic::x86_avx_vextractf128_si_256:
4813  case Intrinsic::x86_avx2_vextracti128: {
4814    EVT DestVT = TLI.getValueType(I.getType());
4815    uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(1))->getZExtValue() & 1) *
4816                   DestVT.getVectorNumElements();
4817    Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT,
4818                      getValue(I.getArgOperand(0)),
4819                      DAG.getIntPtrConstant(Idx));
4820    setValue(&I, Res);
4821    return 0;
4822  }
4823  case Intrinsic::convertff:
4824  case Intrinsic::convertfsi:
4825  case Intrinsic::convertfui:
4826  case Intrinsic::convertsif:
4827  case Intrinsic::convertuif:
4828  case Intrinsic::convertss:
4829  case Intrinsic::convertsu:
4830  case Intrinsic::convertus:
4831  case Intrinsic::convertuu: {
4832    ISD::CvtCode Code = ISD::CVT_INVALID;
4833    switch (Intrinsic) {
4834    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4835    case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
4836    case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4837    case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4838    case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4839    case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4840    case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
4841    case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
4842    case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4843    case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4844    }
4845    EVT DestVT = TLI.getValueType(I.getType());
4846    const Value *Op1 = I.getArgOperand(0);
4847    Res = DAG.getConvertRndSat(DestVT, dl, getValue(Op1),
4848                               DAG.getValueType(DestVT),
4849                               DAG.getValueType(getValue(Op1).getValueType()),
4850                               getValue(I.getArgOperand(1)),
4851                               getValue(I.getArgOperand(2)),
4852                               Code);
4853    setValue(&I, Res);
4854    return 0;
4855  }
4856  case Intrinsic::powi:
4857    setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)),
4858                            getValue(I.getArgOperand(1)), DAG));
4859    return 0;
4860  case Intrinsic::log:
4861    setValue(&I, expandLog(dl, getValue(I.getArgOperand(0)), DAG, TLI));
4862    return 0;
4863  case Intrinsic::log2:
4864    setValue(&I, expandLog2(dl, getValue(I.getArgOperand(0)), DAG, TLI));
4865    return 0;
4866  case Intrinsic::log10:
4867    setValue(&I, expandLog10(dl, getValue(I.getArgOperand(0)), DAG, TLI));
4868    return 0;
4869  case Intrinsic::exp:
4870    setValue(&I, expandExp(dl, getValue(I.getArgOperand(0)), DAG, TLI));
4871    return 0;
4872  case Intrinsic::exp2:
4873    setValue(&I, expandExp2(dl, getValue(I.getArgOperand(0)), DAG, TLI));
4874    return 0;
4875  case Intrinsic::pow:
4876    setValue(&I, expandPow(dl, getValue(I.getArgOperand(0)),
4877                           getValue(I.getArgOperand(1)), DAG, TLI));
4878    return 0;
4879  case Intrinsic::sqrt:
4880  case Intrinsic::fabs:
4881  case Intrinsic::sin:
4882  case Intrinsic::cos:
4883  case Intrinsic::floor:
4884  case Intrinsic::ceil:
4885  case Intrinsic::trunc:
4886  case Intrinsic::rint:
4887  case Intrinsic::nearbyint: {
4888    unsigned Opcode;
4889    switch (Intrinsic) {
4890    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4891    case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
4892    case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
4893    case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
4894    case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
4895    case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
4896    case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
4897    case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
4898    case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
4899    case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
4900    }
4901
4902    setValue(&I, DAG.getNode(Opcode, dl,
4903                             getValue(I.getArgOperand(0)).getValueType(),
4904                             getValue(I.getArgOperand(0))));
4905    return 0;
4906  }
4907  case Intrinsic::fma:
4908    setValue(&I, DAG.getNode(ISD::FMA, dl,
4909                             getValue(I.getArgOperand(0)).getValueType(),
4910                             getValue(I.getArgOperand(0)),
4911                             getValue(I.getArgOperand(1)),
4912                             getValue(I.getArgOperand(2))));
4913    return 0;
4914  case Intrinsic::fmuladd: {
4915    EVT VT = TLI.getValueType(I.getType());
4916    if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
4917        TLI.isFMAFasterThanMulAndAdd(VT)){
4918      setValue(&I, DAG.getNode(ISD::FMA, dl,
4919                               getValue(I.getArgOperand(0)).getValueType(),
4920                               getValue(I.getArgOperand(0)),
4921                               getValue(I.getArgOperand(1)),
4922                               getValue(I.getArgOperand(2))));
4923    } else {
4924      SDValue Mul = DAG.getNode(ISD::FMUL, dl,
4925                                getValue(I.getArgOperand(0)).getValueType(),
4926                                getValue(I.getArgOperand(0)),
4927                                getValue(I.getArgOperand(1)));
4928      SDValue Add = DAG.getNode(ISD::FADD, dl,
4929                                getValue(I.getArgOperand(0)).getValueType(),
4930                                Mul,
4931                                getValue(I.getArgOperand(2)));
4932      setValue(&I, Add);
4933    }
4934    return 0;
4935  }
4936  case Intrinsic::convert_to_fp16:
4937    setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl,
4938                             MVT::i16, getValue(I.getArgOperand(0))));
4939    return 0;
4940  case Intrinsic::convert_from_fp16:
4941    setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl,
4942                             MVT::f32, getValue(I.getArgOperand(0))));
4943    return 0;
4944  case Intrinsic::pcmarker: {
4945    SDValue Tmp = getValue(I.getArgOperand(0));
4946    DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp));
4947    return 0;
4948  }
4949  case Intrinsic::readcyclecounter: {
4950    SDValue Op = getRoot();
4951    Res = DAG.getNode(ISD::READCYCLECOUNTER, dl,
4952                      DAG.getVTList(MVT::i64, MVT::Other),
4953                      &Op, 1);
4954    setValue(&I, Res);
4955    DAG.setRoot(Res.getValue(1));
4956    return 0;
4957  }
4958  case Intrinsic::bswap:
4959    setValue(&I, DAG.getNode(ISD::BSWAP, dl,
4960                             getValue(I.getArgOperand(0)).getValueType(),
4961                             getValue(I.getArgOperand(0))));
4962    return 0;
4963  case Intrinsic::cttz: {
4964    SDValue Arg = getValue(I.getArgOperand(0));
4965    ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
4966    EVT Ty = Arg.getValueType();
4967    setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
4968                             dl, Ty, Arg));
4969    return 0;
4970  }
4971  case Intrinsic::ctlz: {
4972    SDValue Arg = getValue(I.getArgOperand(0));
4973    ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
4974    EVT Ty = Arg.getValueType();
4975    setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
4976                             dl, Ty, Arg));
4977    return 0;
4978  }
4979  case Intrinsic::ctpop: {
4980    SDValue Arg = getValue(I.getArgOperand(0));
4981    EVT Ty = Arg.getValueType();
4982    setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg));
4983    return 0;
4984  }
4985  case Intrinsic::stacksave: {
4986    SDValue Op = getRoot();
4987    Res = DAG.getNode(ISD::STACKSAVE, dl,
4988                      DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
4989    setValue(&I, Res);
4990    DAG.setRoot(Res.getValue(1));
4991    return 0;
4992  }
4993  case Intrinsic::stackrestore: {
4994    Res = getValue(I.getArgOperand(0));
4995    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res));
4996    return 0;
4997  }
4998  case Intrinsic::stackprotector: {
4999    // Emit code into the DAG to store the stack guard onto the stack.
5000    MachineFunction &MF = DAG.getMachineFunction();
5001    MachineFrameInfo *MFI = MF.getFrameInfo();
5002    EVT PtrTy = TLI.getPointerTy();
5003
5004    SDValue Src = getValue(I.getArgOperand(0));   // The guard's value.
5005    AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
5006
5007    int FI = FuncInfo.StaticAllocaMap[Slot];
5008    MFI->setStackProtectorIndex(FI);
5009
5010    SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
5011
5012    // Store the stack protector onto the stack.
5013    Res = DAG.getStore(getRoot(), dl, Src, FIN,
5014                       MachinePointerInfo::getFixedStack(FI),
5015                       true, false, 0);
5016    setValue(&I, Res);
5017    DAG.setRoot(Res);
5018    return 0;
5019  }
5020  case Intrinsic::objectsize: {
5021    // If we don't know by now, we're never going to know.
5022    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
5023
5024    assert(CI && "Non-constant type in __builtin_object_size?");
5025
5026    SDValue Arg = getValue(I.getCalledValue());
5027    EVT Ty = Arg.getValueType();
5028
5029    if (CI->isZero())
5030      Res = DAG.getConstant(-1ULL, Ty);
5031    else
5032      Res = DAG.getConstant(0, Ty);
5033
5034    setValue(&I, Res);
5035    return 0;
5036  }
5037  case Intrinsic::var_annotation:
5038    // Discard annotate attributes
5039    return 0;
5040
5041  case Intrinsic::init_trampoline: {
5042    const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5043
5044    SDValue Ops[6];
5045    Ops[0] = getRoot();
5046    Ops[1] = getValue(I.getArgOperand(0));
5047    Ops[2] = getValue(I.getArgOperand(1));
5048    Ops[3] = getValue(I.getArgOperand(2));
5049    Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5050    Ops[5] = DAG.getSrcValue(F);
5051
5052    Res = DAG.getNode(ISD::INIT_TRAMPOLINE, dl, MVT::Other, Ops, 6);
5053
5054    DAG.setRoot(Res);
5055    return 0;
5056  }
5057  case Intrinsic::adjust_trampoline: {
5058    setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, dl,
5059                             TLI.getPointerTy(),
5060                             getValue(I.getArgOperand(0))));
5061    return 0;
5062  }
5063  case Intrinsic::gcroot:
5064    if (GFI) {
5065      const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
5066      const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
5067
5068      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
5069      GFI->addStackRoot(FI->getIndex(), TypeMap);
5070    }
5071    return 0;
5072  case Intrinsic::gcread:
5073  case Intrinsic::gcwrite:
5074    llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
5075  case Intrinsic::flt_rounds:
5076    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32));
5077    return 0;
5078
5079  case Intrinsic::expect: {
5080    // Just replace __builtin_expect(exp, c) with EXP.
5081    setValue(&I, getValue(I.getArgOperand(0)));
5082    return 0;
5083  }
5084
5085  case Intrinsic::debugtrap:
5086  case Intrinsic::trap: {
5087    StringRef TrapFuncName = TM.Options.getTrapFunctionName();
5088    if (TrapFuncName.empty()) {
5089      ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
5090        ISD::TRAP : ISD::DEBUGTRAP;
5091      DAG.setRoot(DAG.getNode(Op, dl,MVT::Other, getRoot()));
5092      return 0;
5093    }
5094    TargetLowering::ArgListTy Args;
5095    TargetLowering::
5096    CallLoweringInfo CLI(getRoot(), I.getType(),
5097                 false, false, false, false, 0, CallingConv::C,
5098                 /*isTailCall=*/false,
5099                 /*doesNotRet=*/false, /*isReturnValueUsed=*/true,
5100                 DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()),
5101                 Args, DAG, dl);
5102    std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
5103    DAG.setRoot(Result.second);
5104    return 0;
5105  }
5106
5107  case Intrinsic::uadd_with_overflow:
5108  case Intrinsic::sadd_with_overflow:
5109  case Intrinsic::usub_with_overflow:
5110  case Intrinsic::ssub_with_overflow:
5111  case Intrinsic::umul_with_overflow:
5112  case Intrinsic::smul_with_overflow: {
5113    ISD::NodeType Op;
5114    switch (Intrinsic) {
5115    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5116    case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
5117    case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
5118    case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
5119    case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
5120    case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
5121    case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
5122    }
5123    SDValue Op1 = getValue(I.getArgOperand(0));
5124    SDValue Op2 = getValue(I.getArgOperand(1));
5125
5126    SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
5127    setValue(&I, DAG.getNode(Op, dl, VTs, Op1, Op2));
5128    return 0;
5129  }
5130  case Intrinsic::prefetch: {
5131    SDValue Ops[5];
5132    unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
5133    Ops[0] = getRoot();
5134    Ops[1] = getValue(I.getArgOperand(0));
5135    Ops[2] = getValue(I.getArgOperand(1));
5136    Ops[3] = getValue(I.getArgOperand(2));
5137    Ops[4] = getValue(I.getArgOperand(3));
5138    DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, dl,
5139                                        DAG.getVTList(MVT::Other),
5140                                        &Ops[0], 5,
5141                                        EVT::getIntegerVT(*Context, 8),
5142                                        MachinePointerInfo(I.getArgOperand(0)),
5143                                        0, /* align */
5144                                        false, /* volatile */
5145                                        rw==0, /* read */
5146                                        rw==1)); /* write */
5147    return 0;
5148  }
5149  case Intrinsic::lifetime_start:
5150  case Intrinsic::lifetime_end: {
5151    bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
5152    // Stack coloring is not enabled in O0, discard region information.
5153    if (TM.getOptLevel() == CodeGenOpt::None)
5154      return 0;
5155
5156    SmallVector<Value *, 4> Allocas;
5157    GetUnderlyingObjects(I.getArgOperand(1), Allocas, TD);
5158
5159    for (SmallVector<Value*, 4>::iterator Object = Allocas.begin(),
5160         E = Allocas.end(); Object != E; ++Object) {
5161      AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
5162
5163      // Could not find an Alloca.
5164      if (!LifetimeObject)
5165        continue;
5166
5167      int FI = FuncInfo.StaticAllocaMap[LifetimeObject];
5168
5169      SDValue Ops[2];
5170      Ops[0] = getRoot();
5171      Ops[1] = DAG.getFrameIndex(FI, TLI.getPointerTy(), true);
5172      unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END);
5173
5174      Res = DAG.getNode(Opcode, dl, MVT::Other, Ops, 2);
5175      DAG.setRoot(Res);
5176    }
5177    return 0;
5178  }
5179  case Intrinsic::invariant_start:
5180    // Discard region information.
5181    setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
5182    return 0;
5183  case Intrinsic::invariant_end:
5184    // Discard region information.
5185    return 0;
5186  case Intrinsic::donothing:
5187    // ignore
5188    return 0;
5189  }
5190}
5191
5192void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
5193                                      bool isTailCall,
5194                                      MachineBasicBlock *LandingPad) {
5195  PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
5196  FunctionType *FTy = cast<FunctionType>(PT->getElementType());
5197  Type *RetTy = FTy->getReturnType();
5198  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5199  MCSymbol *BeginLabel = 0;
5200
5201  TargetLowering::ArgListTy Args;
5202  TargetLowering::ArgListEntry Entry;
5203  Args.reserve(CS.arg_size());
5204
5205  // Check whether the function can return without sret-demotion.
5206  SmallVector<ISD::OutputArg, 4> Outs;
5207  GetReturnInfo(RetTy, CS.getAttributes(), Outs, TLI);
5208
5209  bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
5210                                           DAG.getMachineFunction(),
5211                                           FTy->isVarArg(), Outs,
5212                                           FTy->getContext());
5213
5214  SDValue DemoteStackSlot;
5215  int DemoteStackIdx = -100;
5216
5217  if (!CanLowerReturn) {
5218    uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(
5219                      FTy->getReturnType());
5220    unsigned Align  = TLI.getDataLayout()->getPrefTypeAlignment(
5221                      FTy->getReturnType());
5222    MachineFunction &MF = DAG.getMachineFunction();
5223    DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5224    Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
5225
5226    DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI.getPointerTy());
5227    Entry.Node = DemoteStackSlot;
5228    Entry.Ty = StackSlotPtrType;
5229    Entry.isSExt = false;
5230    Entry.isZExt = false;
5231    Entry.isInReg = false;
5232    Entry.isSRet = true;
5233    Entry.isNest = false;
5234    Entry.isByVal = false;
5235    Entry.isReturned = false;
5236    Entry.Alignment = Align;
5237    Args.push_back(Entry);
5238    RetTy = Type::getVoidTy(FTy->getContext());
5239  }
5240
5241  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
5242       i != e; ++i) {
5243    const Value *V = *i;
5244
5245    // Skip empty types
5246    if (V->getType()->isEmptyTy())
5247      continue;
5248
5249    SDValue ArgNode = getValue(V);
5250    Entry.Node = ArgNode; Entry.Ty = V->getType();
5251
5252    unsigned attrInd = i - CS.arg_begin() + 1;
5253    Entry.isSExt     = CS.paramHasAttr(attrInd, Attribute::SExt);
5254    Entry.isZExt     = CS.paramHasAttr(attrInd, Attribute::ZExt);
5255    Entry.isInReg    = CS.paramHasAttr(attrInd, Attribute::InReg);
5256    Entry.isSRet     = CS.paramHasAttr(attrInd, Attribute::StructRet);
5257    Entry.isNest     = CS.paramHasAttr(attrInd, Attribute::Nest);
5258    Entry.isByVal    = CS.paramHasAttr(attrInd, Attribute::ByVal);
5259    Entry.isReturned = CS.paramHasAttr(attrInd, Attribute::Returned);
5260    Entry.Alignment  = CS.getParamAlignment(attrInd);
5261    Args.push_back(Entry);
5262  }
5263
5264  if (LandingPad) {
5265    // Insert a label before the invoke call to mark the try range.  This can be
5266    // used to detect deletion of the invoke via the MachineModuleInfo.
5267    BeginLabel = MMI.getContext().CreateTempSymbol();
5268
5269    // For SjLj, keep track of which landing pads go with which invokes
5270    // so as to maintain the ordering of pads in the LSDA.
5271    unsigned CallSiteIndex = MMI.getCurrentCallSite();
5272    if (CallSiteIndex) {
5273      MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
5274      LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex);
5275
5276      // Now that the call site is handled, stop tracking it.
5277      MMI.setCurrentCallSite(0);
5278    }
5279
5280    // Both PendingLoads and PendingExports must be flushed here;
5281    // this call might not return.
5282    (void)getRoot();
5283    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel));
5284  }
5285
5286  // Check if target-independent constraints permit a tail call here.
5287  // Target-dependent constraints are checked within TLI.LowerCallTo.
5288  if (isTailCall && !isInTailCallPosition(CS, TLI))
5289    isTailCall = false;
5290
5291  TargetLowering::
5292  CallLoweringInfo CLI(getRoot(), RetTy, FTy, isTailCall, Callee, Args, DAG,
5293                       getCurDebugLoc(), CS);
5294  std::pair<SDValue,SDValue> Result = TLI.LowerCallTo(CLI);
5295  assert((isTailCall || Result.second.getNode()) &&
5296         "Non-null chain expected with non-tail call!");
5297  assert((Result.second.getNode() || !Result.first.getNode()) &&
5298         "Null value expected with tail call!");
5299  if (Result.first.getNode()) {
5300    setValue(CS.getInstruction(), Result.first);
5301  } else if (!CanLowerReturn && Result.second.getNode()) {
5302    // The instruction result is the result of loading from the
5303    // hidden sret parameter.
5304    SmallVector<EVT, 1> PVTs;
5305    Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
5306
5307    ComputeValueVTs(TLI, PtrRetTy, PVTs);
5308    assert(PVTs.size() == 1 && "Pointers should fit in one register");
5309    EVT PtrVT = PVTs[0];
5310
5311    SmallVector<EVT, 4> RetTys;
5312    SmallVector<uint64_t, 4> Offsets;
5313    RetTy = FTy->getReturnType();
5314    ComputeValueVTs(TLI, RetTy, RetTys, &Offsets);
5315
5316    unsigned NumValues = RetTys.size();
5317    SmallVector<SDValue, 4> Values(NumValues);
5318    SmallVector<SDValue, 4> Chains(NumValues);
5319
5320    for (unsigned i = 0; i < NumValues; ++i) {
5321      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT,
5322                                DemoteStackSlot,
5323                                DAG.getConstant(Offsets[i], PtrVT));
5324      SDValue L = DAG.getLoad(RetTys[i], getCurDebugLoc(), Result.second, Add,
5325                  MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]),
5326                              false, false, false, 1);
5327      Values[i] = L;
5328      Chains[i] = L.getValue(1);
5329    }
5330
5331    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
5332                                MVT::Other, &Chains[0], NumValues);
5333    PendingLoads.push_back(Chain);
5334
5335    setValue(CS.getInstruction(),
5336             DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
5337                         DAG.getVTList(&RetTys[0], RetTys.size()),
5338                         &Values[0], Values.size()));
5339  }
5340
5341  // Assign order to nodes here. If the call does not produce a result, it won't
5342  // be mapped to a SDNode and visit() will not assign it an order number.
5343  if (!Result.second.getNode()) {
5344    // As a special case, a null chain means that a tail call has been emitted and
5345    // the DAG root is already updated.
5346    HasTailCall = true;
5347    ++SDNodeOrder;
5348    AssignOrderingToNode(DAG.getRoot().getNode());
5349  } else {
5350    DAG.setRoot(Result.second);
5351    ++SDNodeOrder;
5352    AssignOrderingToNode(Result.second.getNode());
5353  }
5354
5355  if (LandingPad) {
5356    // Insert a label at the end of the invoke call to mark the try range.  This
5357    // can be used to detect deletion of the invoke via the MachineModuleInfo.
5358    MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
5359    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel));
5360
5361    // Inform MachineModuleInfo of range.
5362    MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
5363  }
5364}
5365
5366/// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
5367/// value is equal or not-equal to zero.
5368static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
5369  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
5370       UI != E; ++UI) {
5371    if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
5372      if (IC->isEquality())
5373        if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
5374          if (C->isNullValue())
5375            continue;
5376    // Unknown instruction.
5377    return false;
5378  }
5379  return true;
5380}
5381
5382static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
5383                             Type *LoadTy,
5384                             SelectionDAGBuilder &Builder) {
5385
5386  // Check to see if this load can be trivially constant folded, e.g. if the
5387  // input is from a string literal.
5388  if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5389    // Cast pointer to the type we really want to load.
5390    LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5391                                         PointerType::getUnqual(LoadTy));
5392
5393    if (const Constant *LoadCst =
5394          ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
5395                                       Builder.TD))
5396      return Builder.getValue(LoadCst);
5397  }
5398
5399  // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
5400  // still constant memory, the input chain can be the entry node.
5401  SDValue Root;
5402  bool ConstantMemory = false;
5403
5404  // Do not serialize (non-volatile) loads of constant memory with anything.
5405  if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5406    Root = Builder.DAG.getEntryNode();
5407    ConstantMemory = true;
5408  } else {
5409    // Do not serialize non-volatile loads against each other.
5410    Root = Builder.DAG.getRoot();
5411  }
5412
5413  SDValue Ptr = Builder.getValue(PtrVal);
5414  SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root,
5415                                        Ptr, MachinePointerInfo(PtrVal),
5416                                        false /*volatile*/,
5417                                        false /*nontemporal*/,
5418                                        false /*isinvariant*/, 1 /* align=1 */);
5419
5420  if (!ConstantMemory)
5421    Builder.PendingLoads.push_back(LoadVal.getValue(1));
5422  return LoadVal;
5423}
5424
5425
5426/// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5427/// If so, return true and lower it, otherwise return false and it will be
5428/// lowered like a normal call.
5429bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5430  // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
5431  if (I.getNumArgOperands() != 3)
5432    return false;
5433
5434  const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5435  if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5436      !I.getArgOperand(2)->getType()->isIntegerTy() ||
5437      !I.getType()->isIntegerTy())
5438    return false;
5439
5440  const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2));
5441
5442  // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
5443  // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
5444  if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) {
5445    bool ActuallyDoIt = true;
5446    MVT LoadVT;
5447    Type *LoadTy;
5448    switch (Size->getZExtValue()) {
5449    default:
5450      LoadVT = MVT::Other;
5451      LoadTy = 0;
5452      ActuallyDoIt = false;
5453      break;
5454    case 2:
5455      LoadVT = MVT::i16;
5456      LoadTy = Type::getInt16Ty(Size->getContext());
5457      break;
5458    case 4:
5459      LoadVT = MVT::i32;
5460      LoadTy = Type::getInt32Ty(Size->getContext());
5461      break;
5462    case 8:
5463      LoadVT = MVT::i64;
5464      LoadTy = Type::getInt64Ty(Size->getContext());
5465      break;
5466        /*
5467    case 16:
5468      LoadVT = MVT::v4i32;
5469      LoadTy = Type::getInt32Ty(Size->getContext());
5470      LoadTy = VectorType::get(LoadTy, 4);
5471      break;
5472         */
5473    }
5474
5475    // This turns into unaligned loads.  We only do this if the target natively
5476    // supports the MVT we'll be loading or if it is small enough (<= 4) that
5477    // we'll only produce a small number of byte loads.
5478
5479    // Require that we can find a legal MVT, and only do this if the target
5480    // supports unaligned loads of that type.  Expanding into byte loads would
5481    // bloat the code.
5482    if (ActuallyDoIt && Size->getZExtValue() > 4) {
5483      // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5484      // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5485      if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT))
5486        ActuallyDoIt = false;
5487    }
5488
5489    if (ActuallyDoIt) {
5490      SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5491      SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5492
5493      SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal,
5494                                 ISD::SETNE);
5495      EVT CallVT = TLI.getValueType(I.getType(), true);
5496      setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT));
5497      return true;
5498    }
5499  }
5500
5501
5502  return false;
5503}
5504
5505/// visitUnaryFloatCall - If a call instruction is a unary floating-point
5506/// operation (as expected), translate it to an SDNode with the specified opcode
5507/// and return true.
5508bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
5509                                              unsigned Opcode) {
5510  // Sanity check that it really is a unary floating-point call.
5511  if (I.getNumArgOperands() != 1 ||
5512      !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
5513      I.getType() != I.getArgOperand(0)->getType() ||
5514      !I.onlyReadsMemory())
5515    return false;
5516
5517  SDValue Tmp = getValue(I.getArgOperand(0));
5518  setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(), Tmp.getValueType(), Tmp));
5519  return true;
5520}
5521
5522void SelectionDAGBuilder::visitCall(const CallInst &I) {
5523  // Handle inline assembly differently.
5524  if (isa<InlineAsm>(I.getCalledValue())) {
5525    visitInlineAsm(&I);
5526    return;
5527  }
5528
5529  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5530  ComputeUsesVAFloatArgument(I, &MMI);
5531
5532  const char *RenameFn = 0;
5533  if (Function *F = I.getCalledFunction()) {
5534    if (F->isDeclaration()) {
5535      if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
5536        if (unsigned IID = II->getIntrinsicID(F)) {
5537          RenameFn = visitIntrinsicCall(I, IID);
5538          if (!RenameFn)
5539            return;
5540        }
5541      }
5542      if (unsigned IID = F->getIntrinsicID()) {
5543        RenameFn = visitIntrinsicCall(I, IID);
5544        if (!RenameFn)
5545          return;
5546      }
5547    }
5548
5549    // Check for well-known libc/libm calls.  If the function is internal, it
5550    // can't be a library call.
5551    LibFunc::Func Func;
5552    if (!F->hasLocalLinkage() && F->hasName() &&
5553        LibInfo->getLibFunc(F->getName(), Func) &&
5554        LibInfo->hasOptimizedCodeGen(Func)) {
5555      switch (Func) {
5556      default: break;
5557      case LibFunc::copysign:
5558      case LibFunc::copysignf:
5559      case LibFunc::copysignl:
5560        if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
5561            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5562            I.getType() == I.getArgOperand(0)->getType() &&
5563            I.getType() == I.getArgOperand(1)->getType() &&
5564            I.onlyReadsMemory()) {
5565          SDValue LHS = getValue(I.getArgOperand(0));
5566          SDValue RHS = getValue(I.getArgOperand(1));
5567          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(),
5568                                   LHS.getValueType(), LHS, RHS));
5569          return;
5570        }
5571        break;
5572      case LibFunc::fabs:
5573      case LibFunc::fabsf:
5574      case LibFunc::fabsl:
5575        if (visitUnaryFloatCall(I, ISD::FABS))
5576          return;
5577        break;
5578      case LibFunc::sin:
5579      case LibFunc::sinf:
5580      case LibFunc::sinl:
5581        if (visitUnaryFloatCall(I, ISD::FSIN))
5582          return;
5583        break;
5584      case LibFunc::cos:
5585      case LibFunc::cosf:
5586      case LibFunc::cosl:
5587        if (visitUnaryFloatCall(I, ISD::FCOS))
5588          return;
5589        break;
5590      case LibFunc::sqrt:
5591      case LibFunc::sqrtf:
5592      case LibFunc::sqrtl:
5593        if (visitUnaryFloatCall(I, ISD::FSQRT))
5594          return;
5595        break;
5596      case LibFunc::floor:
5597      case LibFunc::floorf:
5598      case LibFunc::floorl:
5599        if (visitUnaryFloatCall(I, ISD::FFLOOR))
5600          return;
5601        break;
5602      case LibFunc::nearbyint:
5603      case LibFunc::nearbyintf:
5604      case LibFunc::nearbyintl:
5605        if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
5606          return;
5607        break;
5608      case LibFunc::ceil:
5609      case LibFunc::ceilf:
5610      case LibFunc::ceill:
5611        if (visitUnaryFloatCall(I, ISD::FCEIL))
5612          return;
5613        break;
5614      case LibFunc::rint:
5615      case LibFunc::rintf:
5616      case LibFunc::rintl:
5617        if (visitUnaryFloatCall(I, ISD::FRINT))
5618          return;
5619        break;
5620      case LibFunc::trunc:
5621      case LibFunc::truncf:
5622      case LibFunc::truncl:
5623        if (visitUnaryFloatCall(I, ISD::FTRUNC))
5624          return;
5625        break;
5626      case LibFunc::log2:
5627      case LibFunc::log2f:
5628      case LibFunc::log2l:
5629        if (visitUnaryFloatCall(I, ISD::FLOG2))
5630          return;
5631        break;
5632      case LibFunc::exp2:
5633      case LibFunc::exp2f:
5634      case LibFunc::exp2l:
5635        if (visitUnaryFloatCall(I, ISD::FEXP2))
5636          return;
5637        break;
5638      case LibFunc::memcmp:
5639        if (visitMemCmpCall(I))
5640          return;
5641        break;
5642      }
5643    }
5644  }
5645
5646  SDValue Callee;
5647  if (!RenameFn)
5648    Callee = getValue(I.getCalledValue());
5649  else
5650    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
5651
5652  // Check if we can potentially perform a tail call. More detailed checking is
5653  // be done within LowerCallTo, after more information about the call is known.
5654  LowerCallTo(&I, Callee, I.isTailCall());
5655}
5656
5657namespace {
5658
5659/// AsmOperandInfo - This contains information for each constraint that we are
5660/// lowering.
5661class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
5662public:
5663  /// CallOperand - If this is the result output operand or a clobber
5664  /// this is null, otherwise it is the incoming operand to the CallInst.
5665  /// This gets modified as the asm is processed.
5666  SDValue CallOperand;
5667
5668  /// AssignedRegs - If this is a register or register class operand, this
5669  /// contains the set of register corresponding to the operand.
5670  RegsForValue AssignedRegs;
5671
5672  explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
5673    : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
5674  }
5675
5676  /// getCallOperandValEVT - Return the EVT of the Value* that this operand
5677  /// corresponds to.  If there is no Value* for this operand, it returns
5678  /// MVT::Other.
5679  EVT getCallOperandValEVT(LLVMContext &Context,
5680                           const TargetLowering &TLI,
5681                           const DataLayout *TD) const {
5682    if (CallOperandVal == 0) return MVT::Other;
5683
5684    if (isa<BasicBlock>(CallOperandVal))
5685      return TLI.getPointerTy();
5686
5687    llvm::Type *OpTy = CallOperandVal->getType();
5688
5689    // FIXME: code duplicated from TargetLowering::ParseConstraints().
5690    // If this is an indirect operand, the operand is a pointer to the
5691    // accessed type.
5692    if (isIndirect) {
5693      llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
5694      if (!PtrTy)
5695        report_fatal_error("Indirect operand for inline asm not a pointer!");
5696      OpTy = PtrTy->getElementType();
5697    }
5698
5699    // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
5700    if (StructType *STy = dyn_cast<StructType>(OpTy))
5701      if (STy->getNumElements() == 1)
5702        OpTy = STy->getElementType(0);
5703
5704    // If OpTy is not a single value, it may be a struct/union that we
5705    // can tile with integers.
5706    if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5707      unsigned BitSize = TD->getTypeSizeInBits(OpTy);
5708      switch (BitSize) {
5709      default: break;
5710      case 1:
5711      case 8:
5712      case 16:
5713      case 32:
5714      case 64:
5715      case 128:
5716        OpTy = IntegerType::get(Context, BitSize);
5717        break;
5718      }
5719    }
5720
5721    return TLI.getValueType(OpTy, true);
5722  }
5723};
5724
5725typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
5726
5727} // end anonymous namespace
5728
5729/// GetRegistersForValue - Assign registers (virtual or physical) for the
5730/// specified operand.  We prefer to assign virtual registers, to allow the
5731/// register allocator to handle the assignment process.  However, if the asm
5732/// uses features that we can't model on machineinstrs, we have SDISel do the
5733/// allocation.  This produces generally horrible, but correct, code.
5734///
5735///   OpInfo describes the operand.
5736///
5737static void GetRegistersForValue(SelectionDAG &DAG,
5738                                 const TargetLowering &TLI,
5739                                 DebugLoc DL,
5740                                 SDISelAsmOperandInfo &OpInfo) {
5741  LLVMContext &Context = *DAG.getContext();
5742
5743  MachineFunction &MF = DAG.getMachineFunction();
5744  SmallVector<unsigned, 4> Regs;
5745
5746  // If this is a constraint for a single physreg, or a constraint for a
5747  // register class, find it.
5748  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
5749    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5750                                     OpInfo.ConstraintVT);
5751
5752  unsigned NumRegs = 1;
5753  if (OpInfo.ConstraintVT != MVT::Other) {
5754    // If this is a FP input in an integer register (or visa versa) insert a bit
5755    // cast of the input value.  More generally, handle any case where the input
5756    // value disagrees with the register class we plan to stick this in.
5757    if (OpInfo.Type == InlineAsm::isInput &&
5758        PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
5759      // Try to convert to the first EVT that the reg class contains.  If the
5760      // types are identical size, use a bitcast to convert (e.g. two differing
5761      // vector types).
5762      MVT RegVT = *PhysReg.second->vt_begin();
5763      if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
5764        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5765                                         RegVT, OpInfo.CallOperand);
5766        OpInfo.ConstraintVT = RegVT;
5767      } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
5768        // If the input is a FP value and we want it in FP registers, do a
5769        // bitcast to the corresponding integer type.  This turns an f64 value
5770        // into i64, which can be passed with two i32 values on a 32-bit
5771        // machine.
5772        RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
5773        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5774                                         RegVT, OpInfo.CallOperand);
5775        OpInfo.ConstraintVT = RegVT;
5776      }
5777    }
5778
5779    NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
5780  }
5781
5782  MVT RegVT;
5783  EVT ValueVT = OpInfo.ConstraintVT;
5784
5785  // If this is a constraint for a specific physical register, like {r17},
5786  // assign it now.
5787  if (unsigned AssignedReg = PhysReg.first) {
5788    const TargetRegisterClass *RC = PhysReg.second;
5789    if (OpInfo.ConstraintVT == MVT::Other)
5790      ValueVT = *RC->vt_begin();
5791
5792    // Get the actual register value type.  This is important, because the user
5793    // may have asked for (e.g.) the AX register in i32 type.  We need to
5794    // remember that AX is actually i16 to get the right extension.
5795    RegVT = *RC->vt_begin();
5796
5797    // This is a explicit reference to a physical register.
5798    Regs.push_back(AssignedReg);
5799
5800    // If this is an expanded reference, add the rest of the regs to Regs.
5801    if (NumRegs != 1) {
5802      TargetRegisterClass::iterator I = RC->begin();
5803      for (; *I != AssignedReg; ++I)
5804        assert(I != RC->end() && "Didn't find reg!");
5805
5806      // Already added the first reg.
5807      --NumRegs; ++I;
5808      for (; NumRegs; --NumRegs, ++I) {
5809        assert(I != RC->end() && "Ran out of registers to allocate!");
5810        Regs.push_back(*I);
5811      }
5812    }
5813
5814    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5815    return;
5816  }
5817
5818  // Otherwise, if this was a reference to an LLVM register class, create vregs
5819  // for this reference.
5820  if (const TargetRegisterClass *RC = PhysReg.second) {
5821    RegVT = *RC->vt_begin();
5822    if (OpInfo.ConstraintVT == MVT::Other)
5823      ValueVT = RegVT;
5824
5825    // Create the appropriate number of virtual registers.
5826    MachineRegisterInfo &RegInfo = MF.getRegInfo();
5827    for (; NumRegs; --NumRegs)
5828      Regs.push_back(RegInfo.createVirtualRegister(RC));
5829
5830    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5831    return;
5832  }
5833
5834  // Otherwise, we couldn't allocate enough registers for this.
5835}
5836
5837/// visitInlineAsm - Handle a call to an InlineAsm object.
5838///
5839void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
5840  const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
5841
5842  /// ConstraintOperands - Information about all of the constraints.
5843  SDISelAsmOperandInfoVector ConstraintOperands;
5844
5845  TargetLowering::AsmOperandInfoVector
5846    TargetConstraints = TLI.ParseConstraints(CS);
5847
5848  bool hasMemory = false;
5849
5850  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
5851  unsigned ResNo = 0;   // ResNo - The result number of the next output.
5852  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
5853    ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
5854    SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
5855
5856    MVT OpVT = MVT::Other;
5857
5858    // Compute the value type for each operand.
5859    switch (OpInfo.Type) {
5860    case InlineAsm::isOutput:
5861      // Indirect outputs just consume an argument.
5862      if (OpInfo.isIndirect) {
5863        OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5864        break;
5865      }
5866
5867      // The return value of the call is this value.  As such, there is no
5868      // corresponding argument.
5869      assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
5870      if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
5871        OpVT = TLI.getSimpleValueType(STy->getElementType(ResNo));
5872      } else {
5873        assert(ResNo == 0 && "Asm only has one result!");
5874        OpVT = TLI.getSimpleValueType(CS.getType());
5875      }
5876      ++ResNo;
5877      break;
5878    case InlineAsm::isInput:
5879      OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5880      break;
5881    case InlineAsm::isClobber:
5882      // Nothing to do.
5883      break;
5884    }
5885
5886    // If this is an input or an indirect output, process the call argument.
5887    // BasicBlocks are labels, currently appearing only in asm's.
5888    if (OpInfo.CallOperandVal) {
5889      if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
5890        OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
5891      } else {
5892        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
5893      }
5894
5895      OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD).
5896        getSimpleVT();
5897    }
5898
5899    OpInfo.ConstraintVT = OpVT;
5900
5901    // Indirect operand accesses access memory.
5902    if (OpInfo.isIndirect)
5903      hasMemory = true;
5904    else {
5905      for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
5906        TargetLowering::ConstraintType
5907          CType = TLI.getConstraintType(OpInfo.Codes[j]);
5908        if (CType == TargetLowering::C_Memory) {
5909          hasMemory = true;
5910          break;
5911        }
5912      }
5913    }
5914  }
5915
5916  SDValue Chain, Flag;
5917
5918  // We won't need to flush pending loads if this asm doesn't touch
5919  // memory and is nonvolatile.
5920  if (hasMemory || IA->hasSideEffects())
5921    Chain = getRoot();
5922  else
5923    Chain = DAG.getRoot();
5924
5925  // Second pass over the constraints: compute which constraint option to use
5926  // and assign registers to constraints that want a specific physreg.
5927  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5928    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5929
5930    // If this is an output operand with a matching input operand, look up the
5931    // matching input. If their types mismatch, e.g. one is an integer, the
5932    // other is floating point, or their sizes are different, flag it as an
5933    // error.
5934    if (OpInfo.hasMatchingInput()) {
5935      SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5936
5937      if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5938        std::pair<unsigned, const TargetRegisterClass*> MatchRC =
5939          TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5940                                           OpInfo.ConstraintVT);
5941        std::pair<unsigned, const TargetRegisterClass*> InputRC =
5942          TLI.getRegForInlineAsmConstraint(Input.ConstraintCode,
5943                                           Input.ConstraintVT);
5944        if ((OpInfo.ConstraintVT.isInteger() !=
5945             Input.ConstraintVT.isInteger()) ||
5946            (MatchRC.second != InputRC.second)) {
5947          report_fatal_error("Unsupported asm: input constraint"
5948                             " with a matching output constraint of"
5949                             " incompatible type!");
5950        }
5951        Input.ConstraintVT = OpInfo.ConstraintVT;
5952      }
5953    }
5954
5955    // Compute the constraint code and ConstraintType to use.
5956    TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
5957
5958    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5959        OpInfo.Type == InlineAsm::isClobber)
5960      continue;
5961
5962    // If this is a memory input, and if the operand is not indirect, do what we
5963    // need to to provide an address for the memory input.
5964    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5965        !OpInfo.isIndirect) {
5966      assert((OpInfo.isMultipleAlternative ||
5967              (OpInfo.Type == InlineAsm::isInput)) &&
5968             "Can only indirectify direct input operands!");
5969
5970      // Memory operands really want the address of the value.  If we don't have
5971      // an indirect input, put it in the constpool if we can, otherwise spill
5972      // it to a stack slot.
5973      // TODO: This isn't quite right. We need to handle these according to
5974      // the addressing mode that the constraint wants. Also, this may take
5975      // an additional register for the computation and we don't want that
5976      // either.
5977
5978      // If the operand is a float, integer, or vector constant, spill to a
5979      // constant pool entry to get its address.
5980      const Value *OpVal = OpInfo.CallOperandVal;
5981      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
5982          isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
5983        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
5984                                                 TLI.getPointerTy());
5985      } else {
5986        // Otherwise, create a stack slot and emit a store to it before the
5987        // asm.
5988        Type *Ty = OpVal->getType();
5989        uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty);
5990        unsigned Align  = TLI.getDataLayout()->getPrefTypeAlignment(Ty);
5991        MachineFunction &MF = DAG.getMachineFunction();
5992        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5993        SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
5994        Chain = DAG.getStore(Chain, getCurDebugLoc(),
5995                             OpInfo.CallOperand, StackSlot,
5996                             MachinePointerInfo::getFixedStack(SSFI),
5997                             false, false, 0);
5998        OpInfo.CallOperand = StackSlot;
5999      }
6000
6001      // There is no longer a Value* corresponding to this operand.
6002      OpInfo.CallOperandVal = 0;
6003
6004      // It is now an indirect operand.
6005      OpInfo.isIndirect = true;
6006    }
6007
6008    // If this constraint is for a specific register, allocate it before
6009    // anything else.
6010    if (OpInfo.ConstraintType == TargetLowering::C_Register)
6011      GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo);
6012  }
6013
6014  // Second pass - Loop over all of the operands, assigning virtual or physregs
6015  // to register class operands.
6016  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6017    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6018
6019    // C_Register operands have already been allocated, Other/Memory don't need
6020    // to be.
6021    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
6022      GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo);
6023  }
6024
6025  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
6026  std::vector<SDValue> AsmNodeOperands;
6027  AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
6028  AsmNodeOperands.push_back(
6029          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
6030                                      TLI.getPointerTy()));
6031
6032  // If we have a !srcloc metadata node associated with it, we want to attach
6033  // this to the ultimately generated inline asm machineinstr.  To do this, we
6034  // pass in the third operand as this (potentially null) inline asm MDNode.
6035  const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
6036  AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
6037
6038  // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
6039  // bits as operand 3.
6040  unsigned ExtraInfo = 0;
6041  if (IA->hasSideEffects())
6042    ExtraInfo |= InlineAsm::Extra_HasSideEffects;
6043  if (IA->isAlignStack())
6044    ExtraInfo |= InlineAsm::Extra_IsAlignStack;
6045  // Set the asm dialect.
6046  ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
6047
6048  // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
6049  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
6050    TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
6051
6052    // Compute the constraint code and ConstraintType to use.
6053    TLI.ComputeConstraintToUse(OpInfo, SDValue());
6054
6055    // Ideally, we would only check against memory constraints.  However, the
6056    // meaning of an other constraint can be target-specific and we can't easily
6057    // reason about it.  Therefore, be conservative and set MayLoad/MayStore
6058    // for other constriants as well.
6059    if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
6060        OpInfo.ConstraintType == TargetLowering::C_Other) {
6061      if (OpInfo.Type == InlineAsm::isInput)
6062        ExtraInfo |= InlineAsm::Extra_MayLoad;
6063      else if (OpInfo.Type == InlineAsm::isOutput)
6064        ExtraInfo |= InlineAsm::Extra_MayStore;
6065      else if (OpInfo.Type == InlineAsm::isClobber)
6066        ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
6067    }
6068  }
6069
6070  AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo,
6071                                                  TLI.getPointerTy()));
6072
6073  // Loop over all of the inputs, copying the operand values into the
6074  // appropriate registers and processing the output regs.
6075  RegsForValue RetValRegs;
6076
6077  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
6078  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
6079
6080  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6081    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6082
6083    switch (OpInfo.Type) {
6084    case InlineAsm::isOutput: {
6085      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
6086          OpInfo.ConstraintType != TargetLowering::C_Register) {
6087        // Memory output, or 'other' output (e.g. 'X' constraint).
6088        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
6089
6090        // Add information to the INLINEASM node to know about this output.
6091        unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6092        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
6093                                                        TLI.getPointerTy()));
6094        AsmNodeOperands.push_back(OpInfo.CallOperand);
6095        break;
6096      }
6097
6098      // Otherwise, this is a register or register class output.
6099
6100      // Copy the output from the appropriate register.  Find a register that
6101      // we can use.
6102      if (OpInfo.AssignedRegs.Regs.empty()) {
6103        LLVMContext &Ctx = *DAG.getContext();
6104        Ctx.emitError(CS.getInstruction(),
6105                      "couldn't allocate output register for constraint '" +
6106                           Twine(OpInfo.ConstraintCode) + "'");
6107        break;
6108      }
6109
6110      // If this is an indirect operand, store through the pointer after the
6111      // asm.
6112      if (OpInfo.isIndirect) {
6113        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
6114                                                      OpInfo.CallOperandVal));
6115      } else {
6116        // This is the result value of the call.
6117        assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6118        // Concatenate this output onto the outputs list.
6119        RetValRegs.append(OpInfo.AssignedRegs);
6120      }
6121
6122      // Add information to the INLINEASM node to know that this register is
6123      // set.
6124      OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
6125                                           InlineAsm::Kind_RegDefEarlyClobber :
6126                                               InlineAsm::Kind_RegDef,
6127                                               false,
6128                                               0,
6129                                               DAG,
6130                                               AsmNodeOperands);
6131      break;
6132    }
6133    case InlineAsm::isInput: {
6134      SDValue InOperandVal = OpInfo.CallOperand;
6135
6136      if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
6137        // If this is required to match an output register we have already set,
6138        // just use its register.
6139        unsigned OperandNo = OpInfo.getMatchedOperand();
6140
6141        // Scan until we find the definition we already emitted of this operand.
6142        // When we find it, create a RegsForValue operand.
6143        unsigned CurOp = InlineAsm::Op_FirstOperand;
6144        for (; OperandNo; --OperandNo) {
6145          // Advance to the next operand.
6146          unsigned OpFlag =
6147            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6148          assert((InlineAsm::isRegDefKind(OpFlag) ||
6149                  InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
6150                  InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
6151          CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
6152        }
6153
6154        unsigned OpFlag =
6155          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6156        if (InlineAsm::isRegDefKind(OpFlag) ||
6157            InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
6158          // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
6159          if (OpInfo.isIndirect) {
6160            // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
6161            LLVMContext &Ctx = *DAG.getContext();
6162            Ctx.emitError(CS.getInstruction(),  "inline asm not supported yet:"
6163                          " don't know how to handle tied "
6164                          "indirect register inputs");
6165            report_fatal_error("Cannot handle indirect register inputs!");
6166          }
6167
6168          RegsForValue MatchedRegs;
6169          MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
6170          MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
6171          MatchedRegs.RegVTs.push_back(RegVT);
6172          MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
6173          for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
6174               i != e; ++i) {
6175            if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT))
6176              MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC));
6177            else {
6178              LLVMContext &Ctx = *DAG.getContext();
6179              Ctx.emitError(CS.getInstruction(), "inline asm error: This value"
6180                            " type register class is not natively supported!");
6181              report_fatal_error("inline asm error: This value type register "
6182                                 "class is not natively supported!");
6183            }
6184          }
6185          // Use the produced MatchedRegs object to
6186          MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
6187                                    Chain, &Flag, CS.getInstruction());
6188          MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
6189                                           true, OpInfo.getMatchedOperand(),
6190                                           DAG, AsmNodeOperands);
6191          break;
6192        }
6193
6194        assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
6195        assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
6196               "Unexpected number of operands");
6197        // Add information to the INLINEASM node to know about this input.
6198        // See InlineAsm.h isUseOperandTiedToDef.
6199        OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
6200                                                    OpInfo.getMatchedOperand());
6201        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
6202                                                        TLI.getPointerTy()));
6203        AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
6204        break;
6205      }
6206
6207      // Treat indirect 'X' constraint as memory.
6208      if (OpInfo.ConstraintType == TargetLowering::C_Other &&
6209          OpInfo.isIndirect)
6210        OpInfo.ConstraintType = TargetLowering::C_Memory;
6211
6212      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
6213        std::vector<SDValue> Ops;
6214        TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
6215                                         Ops, DAG);
6216        if (Ops.empty()) {
6217          LLVMContext &Ctx = *DAG.getContext();
6218          Ctx.emitError(CS.getInstruction(),
6219                        "invalid operand for inline asm constraint '" +
6220                        Twine(OpInfo.ConstraintCode) + "'");
6221          break;
6222        }
6223
6224        // Add information to the INLINEASM node to know about this input.
6225        unsigned ResOpType =
6226          InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
6227        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6228                                                        TLI.getPointerTy()));
6229        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
6230        break;
6231      }
6232
6233      if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
6234        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
6235        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
6236               "Memory operands expect pointer values");
6237
6238        // Add information to the INLINEASM node to know about this input.
6239        unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6240        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6241                                                        TLI.getPointerTy()));
6242        AsmNodeOperands.push_back(InOperandVal);
6243        break;
6244      }
6245
6246      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
6247              OpInfo.ConstraintType == TargetLowering::C_Register) &&
6248             "Unknown constraint type!");
6249
6250      // TODO: Support this.
6251      if (OpInfo.isIndirect) {
6252        LLVMContext &Ctx = *DAG.getContext();
6253        Ctx.emitError(CS.getInstruction(),
6254                      "Don't know how to handle indirect register inputs yet "
6255                      "for constraint '" + Twine(OpInfo.ConstraintCode) + "'");
6256        break;
6257      }
6258
6259      // Copy the input into the appropriate registers.
6260      if (OpInfo.AssignedRegs.Regs.empty()) {
6261        LLVMContext &Ctx = *DAG.getContext();
6262        Ctx.emitError(CS.getInstruction(),
6263                      "couldn't allocate input reg for constraint '" +
6264                           Twine(OpInfo.ConstraintCode) + "'");
6265        break;
6266      }
6267
6268      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
6269                                        Chain, &Flag, CS.getInstruction());
6270
6271      OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
6272                                               DAG, AsmNodeOperands);
6273      break;
6274    }
6275    case InlineAsm::isClobber: {
6276      // Add the clobbered value to the operand list, so that the register
6277      // allocator is aware that the physreg got clobbered.
6278      if (!OpInfo.AssignedRegs.Regs.empty())
6279        OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
6280                                                 false, 0, DAG,
6281                                                 AsmNodeOperands);
6282      break;
6283    }
6284    }
6285  }
6286
6287  // Finish up input operands.  Set the input chain and add the flag last.
6288  AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
6289  if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
6290
6291  Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(),
6292                      DAG.getVTList(MVT::Other, MVT::Glue),
6293                      &AsmNodeOperands[0], AsmNodeOperands.size());
6294  Flag = Chain.getValue(1);
6295
6296  // If this asm returns a register value, copy the result from that register
6297  // and set it as the value of the call.
6298  if (!RetValRegs.Regs.empty()) {
6299    SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
6300                                             Chain, &Flag, CS.getInstruction());
6301
6302    // FIXME: Why don't we do this for inline asms with MRVs?
6303    if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
6304      EVT ResultType = TLI.getValueType(CS.getType());
6305
6306      // If any of the results of the inline asm is a vector, it may have the
6307      // wrong width/num elts.  This can happen for register classes that can
6308      // contain multiple different value types.  The preg or vreg allocated may
6309      // not have the same VT as was expected.  Convert it to the right type
6310      // with bit_convert.
6311      if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
6312        Val = DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
6313                          ResultType, Val);
6314
6315      } else if (ResultType != Val.getValueType() &&
6316                 ResultType.isInteger() && Val.getValueType().isInteger()) {
6317        // If a result value was tied to an input value, the computed result may
6318        // have a wider width than the expected result.  Extract the relevant
6319        // portion.
6320        Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val);
6321      }
6322
6323      assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
6324    }
6325
6326    setValue(CS.getInstruction(), Val);
6327    // Don't need to use this as a chain in this case.
6328    if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
6329      return;
6330  }
6331
6332  std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
6333
6334  // Process indirect outputs, first output all of the flagged copies out of
6335  // physregs.
6336  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
6337    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
6338    const Value *Ptr = IndirectStoresToEmit[i].second;
6339    SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
6340                                             Chain, &Flag, IA);
6341    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
6342  }
6343
6344  // Emit the non-flagged stores from the physregs.
6345  SmallVector<SDValue, 8> OutChains;
6346  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
6347    SDValue Val = DAG.getStore(Chain, getCurDebugLoc(),
6348                               StoresToEmit[i].first,
6349                               getValue(StoresToEmit[i].second),
6350                               MachinePointerInfo(StoresToEmit[i].second),
6351                               false, false, 0);
6352    OutChains.push_back(Val);
6353  }
6354
6355  if (!OutChains.empty())
6356    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
6357                        &OutChains[0], OutChains.size());
6358
6359  DAG.setRoot(Chain);
6360}
6361
6362void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
6363  DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(),
6364                          MVT::Other, getRoot(),
6365                          getValue(I.getArgOperand(0)),
6366                          DAG.getSrcValue(I.getArgOperand(0))));
6367}
6368
6369void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
6370  const DataLayout &TD = *TLI.getDataLayout();
6371  SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(),
6372                           getRoot(), getValue(I.getOperand(0)),
6373                           DAG.getSrcValue(I.getOperand(0)),
6374                           TD.getABITypeAlignment(I.getType()));
6375  setValue(&I, V);
6376  DAG.setRoot(V.getValue(1));
6377}
6378
6379void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
6380  DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(),
6381                          MVT::Other, getRoot(),
6382                          getValue(I.getArgOperand(0)),
6383                          DAG.getSrcValue(I.getArgOperand(0))));
6384}
6385
6386void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
6387  DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(),
6388                          MVT::Other, getRoot(),
6389                          getValue(I.getArgOperand(0)),
6390                          getValue(I.getArgOperand(1)),
6391                          DAG.getSrcValue(I.getArgOperand(0)),
6392                          DAG.getSrcValue(I.getArgOperand(1))));
6393}
6394
6395/// TargetLowering::LowerCallTo - This is the default LowerCallTo
6396/// implementation, which just calls LowerCall.
6397/// FIXME: When all targets are
6398/// migrated to using LowerCall, this hook should be integrated into SDISel.
6399std::pair<SDValue, SDValue>
6400TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
6401  // Handle all of the outgoing arguments.
6402  CLI.Outs.clear();
6403  CLI.OutVals.clear();
6404  ArgListTy &Args = CLI.Args;
6405  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
6406    SmallVector<EVT, 4> ValueVTs;
6407    ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
6408    for (unsigned Value = 0, NumValues = ValueVTs.size();
6409         Value != NumValues; ++Value) {
6410      EVT VT = ValueVTs[Value];
6411      Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
6412      SDValue Op = SDValue(Args[i].Node.getNode(),
6413                           Args[i].Node.getResNo() + Value);
6414      ISD::ArgFlagsTy Flags;
6415      unsigned OriginalAlignment =
6416        getDataLayout()->getABITypeAlignment(ArgTy);
6417
6418      if (Args[i].isZExt)
6419        Flags.setZExt();
6420      if (Args[i].isSExt)
6421        Flags.setSExt();
6422      if (Args[i].isInReg)
6423        Flags.setInReg();
6424      if (Args[i].isSRet)
6425        Flags.setSRet();
6426      if (Args[i].isByVal) {
6427        Flags.setByVal();
6428        PointerType *Ty = cast<PointerType>(Args[i].Ty);
6429        Type *ElementTy = Ty->getElementType();
6430        Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy));
6431        // For ByVal, alignment should come from FE.  BE will guess if this
6432        // info is not there but there are cases it cannot get right.
6433        unsigned FrameAlign;
6434        if (Args[i].Alignment)
6435          FrameAlign = Args[i].Alignment;
6436        else
6437          FrameAlign = getByValTypeAlignment(ElementTy);
6438        Flags.setByValAlign(FrameAlign);
6439      }
6440      if (Args[i].isNest)
6441        Flags.setNest();
6442      if (Args[i].isReturned)
6443        Flags.setReturned();
6444      Flags.setOrigAlign(OriginalAlignment);
6445
6446      MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT);
6447      unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT);
6448      SmallVector<SDValue, 4> Parts(NumParts);
6449      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
6450
6451      if (Args[i].isSExt)
6452        ExtendKind = ISD::SIGN_EXTEND;
6453      else if (Args[i].isZExt)
6454        ExtendKind = ISD::ZERO_EXTEND;
6455
6456      getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts,
6457                     PartVT, CLI.CS ? CLI.CS->getInstruction() : 0, ExtendKind);
6458
6459      for (unsigned j = 0; j != NumParts; ++j) {
6460        // if it isn't first piece, alignment must be 1
6461        ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(),
6462                               i < CLI.NumFixedArgs,
6463                               i, j*Parts[j].getValueType().getStoreSize());
6464        if (NumParts > 1 && j == 0)
6465          MyFlags.Flags.setSplit();
6466        else if (j != 0)
6467          MyFlags.Flags.setOrigAlign(1);
6468
6469        CLI.Outs.push_back(MyFlags);
6470        CLI.OutVals.push_back(Parts[j]);
6471      }
6472    }
6473  }
6474
6475  // Handle the incoming return values from the call.
6476  CLI.Ins.clear();
6477  SmallVector<EVT, 4> RetTys;
6478  ComputeValueVTs(*this, CLI.RetTy, RetTys);
6479  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6480    EVT VT = RetTys[I];
6481    MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
6482    unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
6483    for (unsigned i = 0; i != NumRegs; ++i) {
6484      ISD::InputArg MyFlags;
6485      MyFlags.VT = RegisterVT;
6486      MyFlags.Used = CLI.IsReturnValueUsed;
6487      if (CLI.RetSExt)
6488        MyFlags.Flags.setSExt();
6489      if (CLI.RetZExt)
6490        MyFlags.Flags.setZExt();
6491      if (CLI.IsInReg)
6492        MyFlags.Flags.setInReg();
6493      CLI.Ins.push_back(MyFlags);
6494    }
6495  }
6496
6497  SmallVector<SDValue, 4> InVals;
6498  CLI.Chain = LowerCall(CLI, InVals);
6499
6500  // Verify that the target's LowerCall behaved as expected.
6501  assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
6502         "LowerCall didn't return a valid chain!");
6503  assert((!CLI.IsTailCall || InVals.empty()) &&
6504         "LowerCall emitted a return value for a tail call!");
6505  assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
6506         "LowerCall didn't emit the correct number of values!");
6507
6508  // For a tail call, the return value is merely live-out and there aren't
6509  // any nodes in the DAG representing it. Return a special value to
6510  // indicate that a tail call has been emitted and no more Instructions
6511  // should be processed in the current block.
6512  if (CLI.IsTailCall) {
6513    CLI.DAG.setRoot(CLI.Chain);
6514    return std::make_pair(SDValue(), SDValue());
6515  }
6516
6517  DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
6518          assert(InVals[i].getNode() &&
6519                 "LowerCall emitted a null value!");
6520          assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
6521                 "LowerCall emitted a value with the wrong type!");
6522        });
6523
6524  // Collect the legal value parts into potentially illegal values
6525  // that correspond to the original function's return values.
6526  ISD::NodeType AssertOp = ISD::DELETED_NODE;
6527  if (CLI.RetSExt)
6528    AssertOp = ISD::AssertSext;
6529  else if (CLI.RetZExt)
6530    AssertOp = ISD::AssertZext;
6531  SmallVector<SDValue, 4> ReturnValues;
6532  unsigned CurReg = 0;
6533  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6534    EVT VT = RetTys[I];
6535    MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
6536    unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
6537
6538    ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
6539                                            NumRegs, RegisterVT, VT, NULL,
6540                                            AssertOp));
6541    CurReg += NumRegs;
6542  }
6543
6544  // For a function returning void, there is no return value. We can't create
6545  // such a node, so we just return a null return value in that case. In
6546  // that case, nothing will actually look at the value.
6547  if (ReturnValues.empty())
6548    return std::make_pair(SDValue(), CLI.Chain);
6549
6550  SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
6551                                CLI.DAG.getVTList(&RetTys[0], RetTys.size()),
6552                            &ReturnValues[0], ReturnValues.size());
6553  return std::make_pair(Res, CLI.Chain);
6554}
6555
6556void TargetLowering::LowerOperationWrapper(SDNode *N,
6557                                           SmallVectorImpl<SDValue> &Results,
6558                                           SelectionDAG &DAG) const {
6559  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
6560  if (Res.getNode())
6561    Results.push_back(Res);
6562}
6563
6564SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
6565  llvm_unreachable("LowerOperation not implemented for this target!");
6566}
6567
6568void
6569SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
6570  SDValue Op = getNonRegisterValue(V);
6571  assert((Op.getOpcode() != ISD::CopyFromReg ||
6572          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
6573         "Copy from a reg to the same reg!");
6574  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
6575
6576  RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
6577  SDValue Chain = DAG.getEntryNode();
6578  RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0, V);
6579  PendingExports.push_back(Chain);
6580}
6581
6582#include "llvm/CodeGen/SelectionDAGISel.h"
6583
6584/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
6585/// entry block, return true.  This includes arguments used by switches, since
6586/// the switch may expand into multiple basic blocks.
6587static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
6588  // With FastISel active, we may be splitting blocks, so force creation
6589  // of virtual registers for all non-dead arguments.
6590  if (FastISel)
6591    return A->use_empty();
6592
6593  const BasicBlock *Entry = A->getParent()->begin();
6594  for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end();
6595       UI != E; ++UI) {
6596    const User *U = *UI;
6597    if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U))
6598      return false;  // Use not in entry block.
6599  }
6600  return true;
6601}
6602
6603void SelectionDAGISel::LowerArguments(const Function &F) {
6604  SelectionDAG &DAG = SDB->DAG;
6605  DebugLoc dl = SDB->getCurDebugLoc();
6606  const DataLayout *TD = TLI.getDataLayout();
6607  SmallVector<ISD::InputArg, 16> Ins;
6608
6609  if (!FuncInfo->CanLowerReturn) {
6610    // Put in an sret pointer parameter before all the other parameters.
6611    SmallVector<EVT, 1> ValueVTs;
6612    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6613
6614    // NOTE: Assuming that a pointer will never break down to more than one VT
6615    // or one register.
6616    ISD::ArgFlagsTy Flags;
6617    Flags.setSRet();
6618    MVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]);
6619    ISD::InputArg RetArg(Flags, RegisterVT, true, 0, 0);
6620    Ins.push_back(RetArg);
6621  }
6622
6623  // Set up the incoming argument description vector.
6624  unsigned Idx = 1;
6625  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
6626       I != E; ++I, ++Idx) {
6627    SmallVector<EVT, 4> ValueVTs;
6628    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6629    bool isArgValueUsed = !I->use_empty();
6630    for (unsigned Value = 0, NumValues = ValueVTs.size();
6631         Value != NumValues; ++Value) {
6632      EVT VT = ValueVTs[Value];
6633      Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
6634      ISD::ArgFlagsTy Flags;
6635      unsigned OriginalAlignment =
6636        TD->getABITypeAlignment(ArgTy);
6637
6638      if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
6639        Flags.setZExt();
6640      if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
6641        Flags.setSExt();
6642      if (F.getAttributes().hasAttribute(Idx, Attribute::InReg))
6643        Flags.setInReg();
6644      if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet))
6645        Flags.setSRet();
6646      if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) {
6647        Flags.setByVal();
6648        PointerType *Ty = cast<PointerType>(I->getType());
6649        Type *ElementTy = Ty->getElementType();
6650        Flags.setByValSize(TD->getTypeAllocSize(ElementTy));
6651        // For ByVal, alignment should be passed from FE.  BE will guess if
6652        // this info is not there but there are cases it cannot get right.
6653        unsigned FrameAlign;
6654        if (F.getParamAlignment(Idx))
6655          FrameAlign = F.getParamAlignment(Idx);
6656        else
6657          FrameAlign = TLI.getByValTypeAlignment(ElementTy);
6658        Flags.setByValAlign(FrameAlign);
6659      }
6660      if (F.getAttributes().hasAttribute(Idx, Attribute::Nest))
6661        Flags.setNest();
6662      Flags.setOrigAlign(OriginalAlignment);
6663
6664      MVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6665      unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6666      for (unsigned i = 0; i != NumRegs; ++i) {
6667        ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed,
6668                              Idx-1, i*RegisterVT.getStoreSize());
6669        if (NumRegs > 1 && i == 0)
6670          MyFlags.Flags.setSplit();
6671        // if it isn't first piece, alignment must be 1
6672        else if (i > 0)
6673          MyFlags.Flags.setOrigAlign(1);
6674        Ins.push_back(MyFlags);
6675      }
6676    }
6677  }
6678
6679  // Call the target to set up the argument values.
6680  SmallVector<SDValue, 8> InVals;
6681  SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
6682                                             F.isVarArg(), Ins,
6683                                             dl, DAG, InVals);
6684
6685  // Verify that the target's LowerFormalArguments behaved as expected.
6686  assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
6687         "LowerFormalArguments didn't return a valid chain!");
6688  assert(InVals.size() == Ins.size() &&
6689         "LowerFormalArguments didn't emit the correct number of values!");
6690  DEBUG({
6691      for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6692        assert(InVals[i].getNode() &&
6693               "LowerFormalArguments emitted a null value!");
6694        assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6695               "LowerFormalArguments emitted a value with the wrong type!");
6696      }
6697    });
6698
6699  // Update the DAG with the new chain value resulting from argument lowering.
6700  DAG.setRoot(NewRoot);
6701
6702  // Set up the argument values.
6703  unsigned i = 0;
6704  Idx = 1;
6705  if (!FuncInfo->CanLowerReturn) {
6706    // Create a virtual register for the sret pointer, and put in a copy
6707    // from the sret argument into it.
6708    SmallVector<EVT, 1> ValueVTs;
6709    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6710    MVT VT = ValueVTs[0].getSimpleVT();
6711    MVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6712    ISD::NodeType AssertOp = ISD::DELETED_NODE;
6713    SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
6714                                        RegVT, VT, NULL, AssertOp);
6715
6716    MachineFunction& MF = SDB->DAG.getMachineFunction();
6717    MachineRegisterInfo& RegInfo = MF.getRegInfo();
6718    unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT));
6719    FuncInfo->DemoteRegister = SRetReg;
6720    NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(),
6721                                    SRetReg, ArgValue);
6722    DAG.setRoot(NewRoot);
6723
6724    // i indexes lowered arguments.  Bump it past the hidden sret argument.
6725    // Idx indexes LLVM arguments.  Don't touch it.
6726    ++i;
6727  }
6728
6729  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
6730      ++I, ++Idx) {
6731    SmallVector<SDValue, 4> ArgValues;
6732    SmallVector<EVT, 4> ValueVTs;
6733    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6734    unsigned NumValues = ValueVTs.size();
6735
6736    // If this argument is unused then remember its value. It is used to generate
6737    // debugging information.
6738    if (I->use_empty() && NumValues)
6739      SDB->setUnusedArgValue(I, InVals[i]);
6740
6741    for (unsigned Val = 0; Val != NumValues; ++Val) {
6742      EVT VT = ValueVTs[Val];
6743      MVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6744      unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6745
6746      if (!I->use_empty()) {
6747        ISD::NodeType AssertOp = ISD::DELETED_NODE;
6748        if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
6749          AssertOp = ISD::AssertSext;
6750        else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
6751          AssertOp = ISD::AssertZext;
6752
6753        ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
6754                                             NumParts, PartVT, VT,
6755                                             NULL, AssertOp));
6756      }
6757
6758      i += NumParts;
6759    }
6760
6761    // We don't need to do anything else for unused arguments.
6762    if (ArgValues.empty())
6763      continue;
6764
6765    // Note down frame index.
6766    if (FrameIndexSDNode *FI =
6767        dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
6768      FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
6769
6770    SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues,
6771                                     SDB->getCurDebugLoc());
6772
6773    SDB->setValue(I, Res);
6774    if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
6775      if (LoadSDNode *LNode =
6776          dyn_cast<LoadSDNode>(Res.getOperand(0).getNode()))
6777        if (FrameIndexSDNode *FI =
6778            dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
6779        FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
6780    }
6781
6782    // If this argument is live outside of the entry block, insert a copy from
6783    // wherever we got it to the vreg that other BB's will reference it as.
6784    if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
6785      // If we can, though, try to skip creating an unnecessary vreg.
6786      // FIXME: This isn't very clean... it would be nice to make this more
6787      // general.  It's also subtly incompatible with the hacks FastISel
6788      // uses with vregs.
6789      unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
6790      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
6791        FuncInfo->ValueMap[I] = Reg;
6792        continue;
6793      }
6794    }
6795    if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) {
6796      FuncInfo->InitializeRegForValue(I);
6797      SDB->CopyToExportRegsIfNeeded(I);
6798    }
6799  }
6800
6801  assert(i == InVals.size() && "Argument register count mismatch!");
6802
6803  // Finally, if the target has anything special to do, allow it to do so.
6804  // FIXME: this should insert code into the DAG!
6805  EmitFunctionEntryCode();
6806}
6807
6808/// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
6809/// ensure constants are generated when needed.  Remember the virtual registers
6810/// that need to be added to the Machine PHI nodes as input.  We cannot just
6811/// directly add them, because expansion might result in multiple MBB's for one
6812/// BB.  As such, the start of the BB might correspond to a different MBB than
6813/// the end.
6814///
6815void
6816SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
6817  const TerminatorInst *TI = LLVMBB->getTerminator();
6818
6819  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6820
6821  // Check successor nodes' PHI nodes that expect a constant to be available
6822  // from this block.
6823  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6824    const BasicBlock *SuccBB = TI->getSuccessor(succ);
6825    if (!isa<PHINode>(SuccBB->begin())) continue;
6826    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
6827
6828    // If this terminator has multiple identical successors (common for
6829    // switches), only handle each succ once.
6830    if (!SuccsHandled.insert(SuccMBB)) continue;
6831
6832    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6833
6834    // At this point we know that there is a 1-1 correspondence between LLVM PHI
6835    // nodes and Machine PHI nodes, but the incoming operands have not been
6836    // emitted yet.
6837    for (BasicBlock::const_iterator I = SuccBB->begin();
6838         const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
6839      // Ignore dead phi's.
6840      if (PN->use_empty()) continue;
6841
6842      // Skip empty types
6843      if (PN->getType()->isEmptyTy())
6844        continue;
6845
6846      unsigned Reg;
6847      const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6848
6849      if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
6850        unsigned &RegOut = ConstantsOut[C];
6851        if (RegOut == 0) {
6852          RegOut = FuncInfo.CreateRegs(C->getType());
6853          CopyValueToVirtualRegister(C, RegOut);
6854        }
6855        Reg = RegOut;
6856      } else {
6857        DenseMap<const Value *, unsigned>::iterator I =
6858          FuncInfo.ValueMap.find(PHIOp);
6859        if (I != FuncInfo.ValueMap.end())
6860          Reg = I->second;
6861        else {
6862          assert(isa<AllocaInst>(PHIOp) &&
6863                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
6864                 "Didn't codegen value into a register!??");
6865          Reg = FuncInfo.CreateRegs(PHIOp->getType());
6866          CopyValueToVirtualRegister(PHIOp, Reg);
6867        }
6868      }
6869
6870      // Remember that this register needs to added to the machine PHI node as
6871      // the input for this MBB.
6872      SmallVector<EVT, 4> ValueVTs;
6873      ComputeValueVTs(TLI, PN->getType(), ValueVTs);
6874      for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
6875        EVT VT = ValueVTs[vti];
6876        unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
6877        for (unsigned i = 0, e = NumRegisters; i != e; ++i)
6878          FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
6879        Reg += NumRegisters;
6880      }
6881    }
6882  }
6883  ConstantsOut.clear();
6884}
6885