SelectionDAGBuilder.cpp revision 8d13de3f0900e674920921bfb2d1b4c1893c0f27
1//===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements routines for translating from LLVM IR into SelectionDAG IR.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "SelectionDAGBuilder.h"
16#include "SDNodeDbgValue.h"
17#include "llvm/ADT/BitVector.h"
18#include "llvm/ADT/Optional.h"
19#include "llvm/ADT/SmallSet.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/BranchProbabilityInfo.h"
22#include "llvm/Analysis/ConstantFolding.h"
23#include "llvm/Analysis/ValueTracking.h"
24#include "llvm/CodeGen/Analysis.h"
25#include "llvm/CodeGen/FastISel.h"
26#include "llvm/CodeGen/FunctionLoweringInfo.h"
27#include "llvm/CodeGen/GCMetadata.h"
28#include "llvm/CodeGen/GCStrategy.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineInstrBuilder.h"
32#include "llvm/CodeGen/MachineJumpTableInfo.h"
33#include "llvm/CodeGen/MachineModuleInfo.h"
34#include "llvm/CodeGen/MachineRegisterInfo.h"
35#include "llvm/CodeGen/SelectionDAG.h"
36#include "llvm/CodeGen/StackMaps.h"
37#include "llvm/DebugInfo.h"
38#include "llvm/IR/CallingConv.h"
39#include "llvm/IR/Constants.h"
40#include "llvm/IR/DataLayout.h"
41#include "llvm/IR/DerivedTypes.h"
42#include "llvm/IR/Function.h"
43#include "llvm/IR/GlobalVariable.h"
44#include "llvm/IR/InlineAsm.h"
45#include "llvm/IR/Instructions.h"
46#include "llvm/IR/IntrinsicInst.h"
47#include "llvm/IR/Intrinsics.h"
48#include "llvm/IR/LLVMContext.h"
49#include "llvm/IR/Module.h"
50#include "llvm/Support/CommandLine.h"
51#include "llvm/Support/Debug.h"
52#include "llvm/Support/ErrorHandling.h"
53#include "llvm/Support/MathExtras.h"
54#include "llvm/Support/raw_ostream.h"
55#include "llvm/Target/TargetFrameLowering.h"
56#include "llvm/Target/TargetInstrInfo.h"
57#include "llvm/Target/TargetIntrinsicInfo.h"
58#include "llvm/Target/TargetLibraryInfo.h"
59#include "llvm/Target/TargetLowering.h"
60#include "llvm/Target/TargetOptions.h"
61#include "llvm/Target/TargetSelectionDAGInfo.h"
62#include <algorithm>
63using namespace llvm;
64
65/// LimitFloatPrecision - Generate low-precision inline sequences for
66/// some float libcalls (6, 8 or 12 bits).
67static unsigned LimitFloatPrecision;
68
69static cl::opt<unsigned, true>
70LimitFPPrecision("limit-float-precision",
71                 cl::desc("Generate low-precision inline sequences "
72                          "for some float libcalls"),
73                 cl::location(LimitFloatPrecision),
74                 cl::init(0));
75
76// Limit the width of DAG chains. This is important in general to prevent
77// prevent DAG-based analysis from blowing up. For example, alias analysis and
78// load clustering may not complete in reasonable time. It is difficult to
79// recognize and avoid this situation within each individual analysis, and
80// future analyses are likely to have the same behavior. Limiting DAG width is
81// the safe approach, and will be especially important with global DAGs.
82//
83// MaxParallelChains default is arbitrarily high to avoid affecting
84// optimization, but could be lowered to improve compile time. Any ld-ld-st-st
85// sequence over this should have been converted to llvm.memcpy by the
86// frontend. It easy to induce this behavior with .ll code such as:
87// %buffer = alloca [4096 x i8]
88// %data = load [4096 x i8]* %argPtr
89// store [4096 x i8] %data, [4096 x i8]* %buffer
90static const unsigned MaxParallelChains = 64;
91
92static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL,
93                                      const SDValue *Parts, unsigned NumParts,
94                                      MVT PartVT, EVT ValueVT, const Value *V);
95
96/// getCopyFromParts - Create a value that contains the specified legal parts
97/// combined into the value they represent.  If the parts combine to a type
98/// larger then ValueVT then AssertOp can be used to specify whether the extra
99/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
100/// (ISD::AssertSext).
101static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL,
102                                const SDValue *Parts,
103                                unsigned NumParts, MVT PartVT, EVT ValueVT,
104                                const Value *V,
105                                ISD::NodeType AssertOp = ISD::DELETED_NODE) {
106  if (ValueVT.isVector())
107    return getCopyFromPartsVector(DAG, DL, Parts, NumParts,
108                                  PartVT, ValueVT, V);
109
110  assert(NumParts > 0 && "No parts to assemble!");
111  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
112  SDValue Val = Parts[0];
113
114  if (NumParts > 1) {
115    // Assemble the value from multiple parts.
116    if (ValueVT.isInteger()) {
117      unsigned PartBits = PartVT.getSizeInBits();
118      unsigned ValueBits = ValueVT.getSizeInBits();
119
120      // Assemble the power of 2 part.
121      unsigned RoundParts = NumParts & (NumParts - 1) ?
122        1 << Log2_32(NumParts) : NumParts;
123      unsigned RoundBits = PartBits * RoundParts;
124      EVT RoundVT = RoundBits == ValueBits ?
125        ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
126      SDValue Lo, Hi;
127
128      EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
129
130      if (RoundParts > 2) {
131        Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
132                              PartVT, HalfVT, V);
133        Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
134                              RoundParts / 2, PartVT, HalfVT, V);
135      } else {
136        Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
137        Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
138      }
139
140      if (TLI.isBigEndian())
141        std::swap(Lo, Hi);
142
143      Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
144
145      if (RoundParts < NumParts) {
146        // Assemble the trailing non-power-of-2 part.
147        unsigned OddParts = NumParts - RoundParts;
148        EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
149        Hi = getCopyFromParts(DAG, DL,
150                              Parts + RoundParts, OddParts, PartVT, OddVT, V);
151
152        // Combine the round and odd parts.
153        Lo = Val;
154        if (TLI.isBigEndian())
155          std::swap(Lo, Hi);
156        EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
157        Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
158        Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
159                         DAG.getConstant(Lo.getValueType().getSizeInBits(),
160                                         TLI.getPointerTy()));
161        Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
162        Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
163      }
164    } else if (PartVT.isFloatingPoint()) {
165      // FP split into multiple FP parts (for ppcf128)
166      assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
167             "Unexpected split");
168      SDValue Lo, Hi;
169      Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
170      Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
171      if (TLI.isBigEndian())
172        std::swap(Lo, Hi);
173      Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
174    } else {
175      // FP split into integer parts (soft fp)
176      assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
177             !PartVT.isVector() && "Unexpected split");
178      EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
179      Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V);
180    }
181  }
182
183  // There is now one part, held in Val.  Correct it to match ValueVT.
184  EVT PartEVT = Val.getValueType();
185
186  if (PartEVT == ValueVT)
187    return Val;
188
189  if (PartEVT.isInteger() && ValueVT.isInteger()) {
190    if (ValueVT.bitsLT(PartEVT)) {
191      // For a truncate, see if we have any information to
192      // indicate whether the truncated bits will always be
193      // zero or sign-extension.
194      if (AssertOp != ISD::DELETED_NODE)
195        Val = DAG.getNode(AssertOp, DL, PartEVT, Val,
196                          DAG.getValueType(ValueVT));
197      return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
198    }
199    return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
200  }
201
202  if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
203    // FP_ROUND's are always exact here.
204    if (ValueVT.bitsLT(Val.getValueType()))
205      return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val,
206                         DAG.getTargetConstant(1, TLI.getPointerTy()));
207
208    return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
209  }
210
211  if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
212    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
213
214  llvm_unreachable("Unknown mismatch!");
215}
216
217/// getCopyFromPartsVector - Create a value that contains the specified legal
218/// parts combined into the value they represent.  If the parts combine to a
219/// type larger then ValueVT then AssertOp can be used to specify whether the
220/// extra bits are known to be zero (ISD::AssertZext) or sign extended from
221/// ValueVT (ISD::AssertSext).
222static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL,
223                                      const SDValue *Parts, unsigned NumParts,
224                                      MVT PartVT, EVT ValueVT, const Value *V) {
225  assert(ValueVT.isVector() && "Not a vector value");
226  assert(NumParts > 0 && "No parts to assemble!");
227  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
228  SDValue Val = Parts[0];
229
230  // Handle a multi-element vector.
231  if (NumParts > 1) {
232    EVT IntermediateVT;
233    MVT RegisterVT;
234    unsigned NumIntermediates;
235    unsigned NumRegs =
236    TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
237                               NumIntermediates, RegisterVT);
238    assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
239    NumParts = NumRegs; // Silence a compiler warning.
240    assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
241    assert(RegisterVT == Parts[0].getSimpleValueType() &&
242           "Part type doesn't match part!");
243
244    // Assemble the parts into intermediate operands.
245    SmallVector<SDValue, 8> Ops(NumIntermediates);
246    if (NumIntermediates == NumParts) {
247      // If the register was not expanded, truncate or copy the value,
248      // as appropriate.
249      for (unsigned i = 0; i != NumParts; ++i)
250        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
251                                  PartVT, IntermediateVT, V);
252    } else if (NumParts > 0) {
253      // If the intermediate type was expanded, build the intermediate
254      // operands from the parts.
255      assert(NumParts % NumIntermediates == 0 &&
256             "Must expand into a divisible number of parts!");
257      unsigned Factor = NumParts / NumIntermediates;
258      for (unsigned i = 0; i != NumIntermediates; ++i)
259        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
260                                  PartVT, IntermediateVT, V);
261    }
262
263    // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
264    // intermediate operands.
265    Val = DAG.getNode(IntermediateVT.isVector() ?
266                      ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL,
267                      ValueVT, &Ops[0], NumIntermediates);
268  }
269
270  // There is now one part, held in Val.  Correct it to match ValueVT.
271  EVT PartEVT = Val.getValueType();
272
273  if (PartEVT == ValueVT)
274    return Val;
275
276  if (PartEVT.isVector()) {
277    // If the element type of the source/dest vectors are the same, but the
278    // parts vector has more elements than the value vector, then we have a
279    // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
280    // elements we want.
281    if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
282      assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
283             "Cannot narrow, it would be a lossy transformation");
284      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
285                         DAG.getConstant(0, TLI.getVectorIdxTy()));
286    }
287
288    // Vector/Vector bitcast.
289    if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
290      return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
291
292    assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
293      "Cannot handle this kind of promotion");
294    // Promoted vector extract
295    bool Smaller = ValueVT.bitsLE(PartEVT);
296    return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
297                       DL, ValueVT, Val);
298
299  }
300
301  // Trivial bitcast if the types are the same size and the destination
302  // vector type is legal.
303  if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
304      TLI.isTypeLegal(ValueVT))
305    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
306
307  // Handle cases such as i8 -> <1 x i1>
308  if (ValueVT.getVectorNumElements() != 1) {
309    LLVMContext &Ctx = *DAG.getContext();
310    Twine ErrMsg("non-trivial scalar-to-vector conversion");
311    if (const Instruction *I = dyn_cast_or_null<Instruction>(V)) {
312      if (const CallInst *CI = dyn_cast<CallInst>(I))
313        if (isa<InlineAsm>(CI->getCalledValue()))
314          ErrMsg = ErrMsg + ", possible invalid constraint for vector type";
315      Ctx.emitError(I, ErrMsg);
316    } else {
317      Ctx.emitError(ErrMsg);
318    }
319    return DAG.getUNDEF(ValueVT);
320  }
321
322  if (ValueVT.getVectorNumElements() == 1 &&
323      ValueVT.getVectorElementType() != PartEVT) {
324    bool Smaller = ValueVT.bitsLE(PartEVT);
325    Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
326                       DL, ValueVT.getScalarType(), Val);
327  }
328
329  return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
330}
331
332static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl,
333                                 SDValue Val, SDValue *Parts, unsigned NumParts,
334                                 MVT PartVT, const Value *V);
335
336/// getCopyToParts - Create a series of nodes that contain the specified value
337/// split into legal parts.  If the parts contain more bits than Val, then, for
338/// integers, ExtendKind can be used to specify how to generate the extra bits.
339static void getCopyToParts(SelectionDAG &DAG, SDLoc DL,
340                           SDValue Val, SDValue *Parts, unsigned NumParts,
341                           MVT PartVT, const Value *V,
342                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
343  EVT ValueVT = Val.getValueType();
344
345  // Handle the vector case separately.
346  if (ValueVT.isVector())
347    return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V);
348
349  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
350  unsigned PartBits = PartVT.getSizeInBits();
351  unsigned OrigNumParts = NumParts;
352  assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
353
354  if (NumParts == 0)
355    return;
356
357  assert(!ValueVT.isVector() && "Vector case handled elsewhere");
358  EVT PartEVT = PartVT;
359  if (PartEVT == ValueVT) {
360    assert(NumParts == 1 && "No-op copy with multiple parts!");
361    Parts[0] = Val;
362    return;
363  }
364
365  if (NumParts * PartBits > ValueVT.getSizeInBits()) {
366    // If the parts cover more bits than the value has, promote the value.
367    if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
368      assert(NumParts == 1 && "Do not know what to promote to!");
369      Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
370    } else {
371      assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
372             ValueVT.isInteger() &&
373             "Unknown mismatch!");
374      ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
375      Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
376      if (PartVT == MVT::x86mmx)
377        Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
378    }
379  } else if (PartBits == ValueVT.getSizeInBits()) {
380    // Different types of the same size.
381    assert(NumParts == 1 && PartEVT != ValueVT);
382    Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
383  } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
384    // If the parts cover less bits than value has, truncate the value.
385    assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
386           ValueVT.isInteger() &&
387           "Unknown mismatch!");
388    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
389    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
390    if (PartVT == MVT::x86mmx)
391      Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
392  }
393
394  // The value may have changed - recompute ValueVT.
395  ValueVT = Val.getValueType();
396  assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
397         "Failed to tile the value with PartVT!");
398
399  if (NumParts == 1) {
400    if (PartEVT != ValueVT) {
401      LLVMContext &Ctx = *DAG.getContext();
402      Twine ErrMsg("scalar-to-vector conversion failed");
403      if (const Instruction *I = dyn_cast_or_null<Instruction>(V)) {
404        if (const CallInst *CI = dyn_cast<CallInst>(I))
405          if (isa<InlineAsm>(CI->getCalledValue()))
406            ErrMsg = ErrMsg + ", possible invalid constraint for vector type";
407        Ctx.emitError(I, ErrMsg);
408      } else {
409        Ctx.emitError(ErrMsg);
410      }
411    }
412
413    Parts[0] = Val;
414    return;
415  }
416
417  // Expand the value into multiple parts.
418  if (NumParts & (NumParts - 1)) {
419    // The number of parts is not a power of 2.  Split off and copy the tail.
420    assert(PartVT.isInteger() && ValueVT.isInteger() &&
421           "Do not know what to expand to!");
422    unsigned RoundParts = 1 << Log2_32(NumParts);
423    unsigned RoundBits = RoundParts * PartBits;
424    unsigned OddParts = NumParts - RoundParts;
425    SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
426                                 DAG.getIntPtrConstant(RoundBits));
427    getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V);
428
429    if (TLI.isBigEndian())
430      // The odd parts were reversed by getCopyToParts - unreverse them.
431      std::reverse(Parts + RoundParts, Parts + NumParts);
432
433    NumParts = RoundParts;
434    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
435    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
436  }
437
438  // The number of parts is a power of 2.  Repeatedly bisect the value using
439  // EXTRACT_ELEMENT.
440  Parts[0] = DAG.getNode(ISD::BITCAST, DL,
441                         EVT::getIntegerVT(*DAG.getContext(),
442                                           ValueVT.getSizeInBits()),
443                         Val);
444
445  for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
446    for (unsigned i = 0; i < NumParts; i += StepSize) {
447      unsigned ThisBits = StepSize * PartBits / 2;
448      EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
449      SDValue &Part0 = Parts[i];
450      SDValue &Part1 = Parts[i+StepSize/2];
451
452      Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
453                          ThisVT, Part0, DAG.getIntPtrConstant(1));
454      Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
455                          ThisVT, Part0, DAG.getIntPtrConstant(0));
456
457      if (ThisBits == PartBits && ThisVT != PartVT) {
458        Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
459        Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
460      }
461    }
462  }
463
464  if (TLI.isBigEndian())
465    std::reverse(Parts, Parts + OrigNumParts);
466}
467
468
469/// getCopyToPartsVector - Create a series of nodes that contain the specified
470/// value split into legal parts.
471static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL,
472                                 SDValue Val, SDValue *Parts, unsigned NumParts,
473                                 MVT PartVT, const Value *V) {
474  EVT ValueVT = Val.getValueType();
475  assert(ValueVT.isVector() && "Not a vector");
476  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
477
478  if (NumParts == 1) {
479    EVT PartEVT = PartVT;
480    if (PartEVT == ValueVT) {
481      // Nothing to do.
482    } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
483      // Bitconvert vector->vector case.
484      Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
485    } else if (PartVT.isVector() &&
486               PartEVT.getVectorElementType() == ValueVT.getVectorElementType() &&
487               PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
488      EVT ElementVT = PartVT.getVectorElementType();
489      // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
490      // undef elements.
491      SmallVector<SDValue, 16> Ops;
492      for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
493        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
494                                  ElementVT, Val, DAG.getConstant(i,
495                                                  TLI.getVectorIdxTy())));
496
497      for (unsigned i = ValueVT.getVectorNumElements(),
498           e = PartVT.getVectorNumElements(); i != e; ++i)
499        Ops.push_back(DAG.getUNDEF(ElementVT));
500
501      Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size());
502
503      // FIXME: Use CONCAT for 2x -> 4x.
504
505      //SDValue UndefElts = DAG.getUNDEF(VectorTy);
506      //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
507    } else if (PartVT.isVector() &&
508               PartEVT.getVectorElementType().bitsGE(
509                 ValueVT.getVectorElementType()) &&
510               PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
511
512      // Promoted vector extract
513      bool Smaller = PartEVT.bitsLE(ValueVT);
514      Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
515                        DL, PartVT, Val);
516    } else{
517      // Vector -> scalar conversion.
518      assert(ValueVT.getVectorNumElements() == 1 &&
519             "Only trivial vector-to-scalar conversions should get here!");
520      Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
521                        PartVT, Val, DAG.getConstant(0, TLI.getVectorIdxTy()));
522
523      bool Smaller = ValueVT.bitsLE(PartVT);
524      Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
525                         DL, PartVT, Val);
526    }
527
528    Parts[0] = Val;
529    return;
530  }
531
532  // Handle a multi-element vector.
533  EVT IntermediateVT;
534  MVT RegisterVT;
535  unsigned NumIntermediates;
536  unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
537                                                IntermediateVT,
538                                                NumIntermediates, RegisterVT);
539  unsigned NumElements = ValueVT.getVectorNumElements();
540
541  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
542  NumParts = NumRegs; // Silence a compiler warning.
543  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
544
545  // Split the vector into intermediate operands.
546  SmallVector<SDValue, 8> Ops(NumIntermediates);
547  for (unsigned i = 0; i != NumIntermediates; ++i) {
548    if (IntermediateVT.isVector())
549      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
550                           IntermediateVT, Val,
551                   DAG.getConstant(i * (NumElements / NumIntermediates),
552                                   TLI.getVectorIdxTy()));
553    else
554      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
555                           IntermediateVT, Val,
556                           DAG.getConstant(i, TLI.getVectorIdxTy()));
557  }
558
559  // Split the intermediate operands into legal parts.
560  if (NumParts == NumIntermediates) {
561    // If the register was not expanded, promote or copy the value,
562    // as appropriate.
563    for (unsigned i = 0; i != NumParts; ++i)
564      getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V);
565  } else if (NumParts > 0) {
566    // If the intermediate type was expanded, split each the value into
567    // legal parts.
568    assert(NumParts % NumIntermediates == 0 &&
569           "Must expand into a divisible number of parts!");
570    unsigned Factor = NumParts / NumIntermediates;
571    for (unsigned i = 0; i != NumIntermediates; ++i)
572      getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V);
573  }
574}
575
576namespace {
577  /// RegsForValue - This struct represents the registers (physical or virtual)
578  /// that a particular set of values is assigned, and the type information
579  /// about the value. The most common situation is to represent one value at a
580  /// time, but struct or array values are handled element-wise as multiple
581  /// values.  The splitting of aggregates is performed recursively, so that we
582  /// never have aggregate-typed registers. The values at this point do not
583  /// necessarily have legal types, so each value may require one or more
584  /// registers of some legal type.
585  ///
586  struct RegsForValue {
587    /// ValueVTs - The value types of the values, which may not be legal, and
588    /// may need be promoted or synthesized from one or more registers.
589    ///
590    SmallVector<EVT, 4> ValueVTs;
591
592    /// RegVTs - The value types of the registers. This is the same size as
593    /// ValueVTs and it records, for each value, what the type of the assigned
594    /// register or registers are. (Individual values are never synthesized
595    /// from more than one type of register.)
596    ///
597    /// With virtual registers, the contents of RegVTs is redundant with TLI's
598    /// getRegisterType member function, however when with physical registers
599    /// it is necessary to have a separate record of the types.
600    ///
601    SmallVector<MVT, 4> RegVTs;
602
603    /// Regs - This list holds the registers assigned to the values.
604    /// Each legal or promoted value requires one register, and each
605    /// expanded value requires multiple registers.
606    ///
607    SmallVector<unsigned, 4> Regs;
608
609    RegsForValue() {}
610
611    RegsForValue(const SmallVector<unsigned, 4> &regs,
612                 MVT regvt, EVT valuevt)
613      : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
614
615    RegsForValue(LLVMContext &Context, const TargetLowering &tli,
616                 unsigned Reg, Type *Ty) {
617      ComputeValueVTs(tli, Ty, ValueVTs);
618
619      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
620        EVT ValueVT = ValueVTs[Value];
621        unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
622        MVT RegisterVT = tli.getRegisterType(Context, ValueVT);
623        for (unsigned i = 0; i != NumRegs; ++i)
624          Regs.push_back(Reg + i);
625        RegVTs.push_back(RegisterVT);
626        Reg += NumRegs;
627      }
628    }
629
630    /// areValueTypesLegal - Return true if types of all the values are legal.
631    bool areValueTypesLegal(const TargetLowering &TLI) {
632      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
633        MVT RegisterVT = RegVTs[Value];
634        if (!TLI.isTypeLegal(RegisterVT))
635          return false;
636      }
637      return true;
638    }
639
640    /// append - Add the specified values to this one.
641    void append(const RegsForValue &RHS) {
642      ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
643      RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
644      Regs.append(RHS.Regs.begin(), RHS.Regs.end());
645    }
646
647    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
648    /// this value and returns the result as a ValueVTs value.  This uses
649    /// Chain/Flag as the input and updates them for the output Chain/Flag.
650    /// If the Flag pointer is NULL, no flag is used.
651    SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
652                            SDLoc dl,
653                            SDValue &Chain, SDValue *Flag,
654                            const Value *V = 0) const;
655
656    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
657    /// specified value into the registers specified by this object.  This uses
658    /// Chain/Flag as the input and updates them for the output Chain/Flag.
659    /// If the Flag pointer is NULL, no flag is used.
660    void getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl,
661                       SDValue &Chain, SDValue *Flag, const Value *V) const;
662
663    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
664    /// operand list.  This adds the code marker, matching input operand index
665    /// (if applicable), and includes the number of values added into it.
666    void AddInlineAsmOperands(unsigned Kind,
667                              bool HasMatching, unsigned MatchingIdx,
668                              SelectionDAG &DAG,
669                              std::vector<SDValue> &Ops) const;
670  };
671}
672
673/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
674/// this value and returns the result as a ValueVT value.  This uses
675/// Chain/Flag as the input and updates them for the output Chain/Flag.
676/// If the Flag pointer is NULL, no flag is used.
677SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
678                                      FunctionLoweringInfo &FuncInfo,
679                                      SDLoc dl,
680                                      SDValue &Chain, SDValue *Flag,
681                                      const Value *V) const {
682  // A Value with type {} or [0 x %t] needs no registers.
683  if (ValueVTs.empty())
684    return SDValue();
685
686  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
687
688  // Assemble the legal parts into the final values.
689  SmallVector<SDValue, 4> Values(ValueVTs.size());
690  SmallVector<SDValue, 8> Parts;
691  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
692    // Copy the legal parts from the registers.
693    EVT ValueVT = ValueVTs[Value];
694    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
695    MVT RegisterVT = RegVTs[Value];
696
697    Parts.resize(NumRegs);
698    for (unsigned i = 0; i != NumRegs; ++i) {
699      SDValue P;
700      if (Flag == 0) {
701        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
702      } else {
703        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
704        *Flag = P.getValue(2);
705      }
706
707      Chain = P.getValue(1);
708      Parts[i] = P;
709
710      // If the source register was virtual and if we know something about it,
711      // add an assert node.
712      if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
713          !RegisterVT.isInteger() || RegisterVT.isVector())
714        continue;
715
716      const FunctionLoweringInfo::LiveOutInfo *LOI =
717        FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
718      if (!LOI)
719        continue;
720
721      unsigned RegSize = RegisterVT.getSizeInBits();
722      unsigned NumSignBits = LOI->NumSignBits;
723      unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
724
725      if (NumZeroBits == RegSize) {
726        // The current value is a zero.
727        // Explicitly express that as it would be easier for
728        // optimizations to kick in.
729        Parts[i] = DAG.getConstant(0, RegisterVT);
730        continue;
731      }
732
733      // FIXME: We capture more information than the dag can represent.  For
734      // now, just use the tightest assertzext/assertsext possible.
735      bool isSExt = true;
736      EVT FromVT(MVT::Other);
737      if (NumSignBits == RegSize)
738        isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
739      else if (NumZeroBits >= RegSize-1)
740        isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
741      else if (NumSignBits > RegSize-8)
742        isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
743      else if (NumZeroBits >= RegSize-8)
744        isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
745      else if (NumSignBits > RegSize-16)
746        isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
747      else if (NumZeroBits >= RegSize-16)
748        isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
749      else if (NumSignBits > RegSize-32)
750        isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
751      else if (NumZeroBits >= RegSize-32)
752        isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
753      else
754        continue;
755
756      // Add an assertion node.
757      assert(FromVT != MVT::Other);
758      Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
759                             RegisterVT, P, DAG.getValueType(FromVT));
760    }
761
762    Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
763                                     NumRegs, RegisterVT, ValueVT, V);
764    Part += NumRegs;
765    Parts.clear();
766  }
767
768  return DAG.getNode(ISD::MERGE_VALUES, dl,
769                     DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
770                     &Values[0], ValueVTs.size());
771}
772
773/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
774/// specified value into the registers specified by this object.  This uses
775/// Chain/Flag as the input and updates them for the output Chain/Flag.
776/// If the Flag pointer is NULL, no flag is used.
777void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl,
778                                 SDValue &Chain, SDValue *Flag,
779                                 const Value *V) const {
780  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
781
782  // Get the list of the values's legal parts.
783  unsigned NumRegs = Regs.size();
784  SmallVector<SDValue, 8> Parts(NumRegs);
785  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
786    EVT ValueVT = ValueVTs[Value];
787    unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
788    MVT RegisterVT = RegVTs[Value];
789    ISD::NodeType ExtendKind =
790      TLI.isZExtFree(Val, RegisterVT)? ISD::ZERO_EXTEND: ISD::ANY_EXTEND;
791
792    getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
793                   &Parts[Part], NumParts, RegisterVT, V, ExtendKind);
794    Part += NumParts;
795  }
796
797  // Copy the parts into the registers.
798  SmallVector<SDValue, 8> Chains(NumRegs);
799  for (unsigned i = 0; i != NumRegs; ++i) {
800    SDValue Part;
801    if (Flag == 0) {
802      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
803    } else {
804      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
805      *Flag = Part.getValue(1);
806    }
807
808    Chains[i] = Part.getValue(0);
809  }
810
811  if (NumRegs == 1 || Flag)
812    // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
813    // flagged to it. That is the CopyToReg nodes and the user are considered
814    // a single scheduling unit. If we create a TokenFactor and return it as
815    // chain, then the TokenFactor is both a predecessor (operand) of the
816    // user as well as a successor (the TF operands are flagged to the user).
817    // c1, f1 = CopyToReg
818    // c2, f2 = CopyToReg
819    // c3     = TokenFactor c1, c2
820    // ...
821    //        = op c3, ..., f2
822    Chain = Chains[NumRegs-1];
823  else
824    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
825}
826
827/// AddInlineAsmOperands - Add this value to the specified inlineasm node
828/// operand list.  This adds the code marker and includes the number of
829/// values added into it.
830void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
831                                        unsigned MatchingIdx,
832                                        SelectionDAG &DAG,
833                                        std::vector<SDValue> &Ops) const {
834  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
835
836  unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
837  if (HasMatching)
838    Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
839  else if (!Regs.empty() &&
840           TargetRegisterInfo::isVirtualRegister(Regs.front())) {
841    // Put the register class of the virtual registers in the flag word.  That
842    // way, later passes can recompute register class constraints for inline
843    // assembly as well as normal instructions.
844    // Don't do this for tied operands that can use the regclass information
845    // from the def.
846    const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
847    const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
848    Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
849  }
850
851  SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
852  Ops.push_back(Res);
853
854  for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
855    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
856    MVT RegisterVT = RegVTs[Value];
857    for (unsigned i = 0; i != NumRegs; ++i) {
858      assert(Reg < Regs.size() && "Mismatch in # registers expected");
859      Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
860    }
861  }
862}
863
864void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa,
865                               const TargetLibraryInfo *li) {
866  AA = &aa;
867  GFI = gfi;
868  LibInfo = li;
869  TD = DAG.getTarget().getDataLayout();
870  Context = DAG.getContext();
871  LPadToCallSiteMap.clear();
872}
873
874/// clear - Clear out the current SelectionDAG and the associated
875/// state and prepare this SelectionDAGBuilder object to be used
876/// for a new block. This doesn't clear out information about
877/// additional blocks that are needed to complete switch lowering
878/// or PHI node updating; that information is cleared out as it is
879/// consumed.
880void SelectionDAGBuilder::clear() {
881  NodeMap.clear();
882  UnusedArgNodeMap.clear();
883  PendingLoads.clear();
884  PendingExports.clear();
885  CurInst = NULL;
886  HasTailCall = false;
887}
888
889/// clearDanglingDebugInfo - Clear the dangling debug information
890/// map. This function is separated from the clear so that debug
891/// information that is dangling in a basic block can be properly
892/// resolved in a different basic block. This allows the
893/// SelectionDAG to resolve dangling debug information attached
894/// to PHI nodes.
895void SelectionDAGBuilder::clearDanglingDebugInfo() {
896  DanglingDebugInfoMap.clear();
897}
898
899/// getRoot - Return the current virtual root of the Selection DAG,
900/// flushing any PendingLoad items. This must be done before emitting
901/// a store or any other node that may need to be ordered after any
902/// prior load instructions.
903///
904SDValue SelectionDAGBuilder::getRoot() {
905  if (PendingLoads.empty())
906    return DAG.getRoot();
907
908  if (PendingLoads.size() == 1) {
909    SDValue Root = PendingLoads[0];
910    DAG.setRoot(Root);
911    PendingLoads.clear();
912    return Root;
913  }
914
915  // Otherwise, we have to make a token factor node.
916  SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
917                               &PendingLoads[0], PendingLoads.size());
918  PendingLoads.clear();
919  DAG.setRoot(Root);
920  return Root;
921}
922
923/// getControlRoot - Similar to getRoot, but instead of flushing all the
924/// PendingLoad items, flush all the PendingExports items. It is necessary
925/// to do this before emitting a terminator instruction.
926///
927SDValue SelectionDAGBuilder::getControlRoot() {
928  SDValue Root = DAG.getRoot();
929
930  if (PendingExports.empty())
931    return Root;
932
933  // Turn all of the CopyToReg chains into one factored node.
934  if (Root.getOpcode() != ISD::EntryToken) {
935    unsigned i = 0, e = PendingExports.size();
936    for (; i != e; ++i) {
937      assert(PendingExports[i].getNode()->getNumOperands() > 1);
938      if (PendingExports[i].getNode()->getOperand(0) == Root)
939        break;  // Don't add the root if we already indirectly depend on it.
940    }
941
942    if (i == e)
943      PendingExports.push_back(Root);
944  }
945
946  Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
947                     &PendingExports[0],
948                     PendingExports.size());
949  PendingExports.clear();
950  DAG.setRoot(Root);
951  return Root;
952}
953
954void SelectionDAGBuilder::visit(const Instruction &I) {
955  // Set up outgoing PHI node register values before emitting the terminator.
956  if (isa<TerminatorInst>(&I))
957    HandlePHINodesInSuccessorBlocks(I.getParent());
958
959  ++SDNodeOrder;
960
961  CurInst = &I;
962
963  visit(I.getOpcode(), I);
964
965  if (!isa<TerminatorInst>(&I) && !HasTailCall)
966    CopyToExportRegsIfNeeded(&I);
967
968  CurInst = NULL;
969}
970
971void SelectionDAGBuilder::visitPHI(const PHINode &) {
972  llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
973}
974
975void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
976  // Note: this doesn't use InstVisitor, because it has to work with
977  // ConstantExpr's in addition to instructions.
978  switch (Opcode) {
979  default: llvm_unreachable("Unknown instruction type encountered!");
980    // Build the switch statement using the Instruction.def file.
981#define HANDLE_INST(NUM, OPCODE, CLASS) \
982    case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
983#include "llvm/IR/Instruction.def"
984  }
985}
986
987// resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
988// generate the debug data structures now that we've seen its definition.
989void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
990                                                   SDValue Val) {
991  DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
992  if (DDI.getDI()) {
993    const DbgValueInst *DI = DDI.getDI();
994    DebugLoc dl = DDI.getdl();
995    unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
996    MDNode *Variable = DI->getVariable();
997    uint64_t Offset = DI->getOffset();
998    SDDbgValue *SDV;
999    if (Val.getNode()) {
1000      if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) {
1001        SDV = DAG.getDbgValue(Variable, Val.getNode(),
1002                              Val.getResNo(), Offset, dl, DbgSDNodeOrder);
1003        DAG.AddDbgValue(SDV, Val.getNode(), false);
1004      }
1005    } else
1006      DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1007    DanglingDebugInfoMap[V] = DanglingDebugInfo();
1008  }
1009}
1010
1011/// getValue - Return an SDValue for the given Value.
1012SDValue SelectionDAGBuilder::getValue(const Value *V) {
1013  // If we already have an SDValue for this value, use it. It's important
1014  // to do this first, so that we don't create a CopyFromReg if we already
1015  // have a regular SDValue.
1016  SDValue &N = NodeMap[V];
1017  if (N.getNode()) return N;
1018
1019  // If there's a virtual register allocated and initialized for this
1020  // value, use it.
1021  DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
1022  if (It != FuncInfo.ValueMap.end()) {
1023    unsigned InReg = It->second;
1024    RegsForValue RFV(*DAG.getContext(), *TM.getTargetLowering(),
1025                     InReg, V->getType());
1026    SDValue Chain = DAG.getEntryNode();
1027    N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, NULL, V);
1028    resolveDanglingDebugInfo(V, N);
1029    return N;
1030  }
1031
1032  // Otherwise create a new SDValue and remember it.
1033  SDValue Val = getValueImpl(V);
1034  NodeMap[V] = Val;
1035  resolveDanglingDebugInfo(V, Val);
1036  return Val;
1037}
1038
1039/// getNonRegisterValue - Return an SDValue for the given Value, but
1040/// don't look in FuncInfo.ValueMap for a virtual register.
1041SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1042  // If we already have an SDValue for this value, use it.
1043  SDValue &N = NodeMap[V];
1044  if (N.getNode()) return N;
1045
1046  // Otherwise create a new SDValue and remember it.
1047  SDValue Val = getValueImpl(V);
1048  NodeMap[V] = Val;
1049  resolveDanglingDebugInfo(V, Val);
1050  return Val;
1051}
1052
1053/// getValueImpl - Helper function for getValue and getNonRegisterValue.
1054/// Create an SDValue for the given value.
1055SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1056  const TargetLowering *TLI = TM.getTargetLowering();
1057
1058  if (const Constant *C = dyn_cast<Constant>(V)) {
1059    EVT VT = TLI->getValueType(V->getType(), true);
1060
1061    if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1062      return DAG.getConstant(*CI, VT);
1063
1064    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1065      return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1066
1067    if (isa<ConstantPointerNull>(C))
1068      return DAG.getConstant(0, TLI->getPointerTy());
1069
1070    if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1071      return DAG.getConstantFP(*CFP, VT);
1072
1073    if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1074      return DAG.getUNDEF(VT);
1075
1076    if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1077      visit(CE->getOpcode(), *CE);
1078      SDValue N1 = NodeMap[V];
1079      assert(N1.getNode() && "visit didn't populate the NodeMap!");
1080      return N1;
1081    }
1082
1083    if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1084      SmallVector<SDValue, 4> Constants;
1085      for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1086           OI != OE; ++OI) {
1087        SDNode *Val = getValue(*OI).getNode();
1088        // If the operand is an empty aggregate, there are no values.
1089        if (!Val) continue;
1090        // Add each leaf value from the operand to the Constants list
1091        // to form a flattened list of all the values.
1092        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1093          Constants.push_back(SDValue(Val, i));
1094      }
1095
1096      return DAG.getMergeValues(&Constants[0], Constants.size(),
1097                                getCurSDLoc());
1098    }
1099
1100    if (const ConstantDataSequential *CDS =
1101          dyn_cast<ConstantDataSequential>(C)) {
1102      SmallVector<SDValue, 4> Ops;
1103      for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1104        SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1105        // Add each leaf value from the operand to the Constants list
1106        // to form a flattened list of all the values.
1107        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1108          Ops.push_back(SDValue(Val, i));
1109      }
1110
1111      if (isa<ArrayType>(CDS->getType()))
1112        return DAG.getMergeValues(&Ops[0], Ops.size(), getCurSDLoc());
1113      return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(),
1114                                      VT, &Ops[0], Ops.size());
1115    }
1116
1117    if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1118      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1119             "Unknown struct or array constant!");
1120
1121      SmallVector<EVT, 4> ValueVTs;
1122      ComputeValueVTs(*TLI, C->getType(), ValueVTs);
1123      unsigned NumElts = ValueVTs.size();
1124      if (NumElts == 0)
1125        return SDValue(); // empty struct
1126      SmallVector<SDValue, 4> Constants(NumElts);
1127      for (unsigned i = 0; i != NumElts; ++i) {
1128        EVT EltVT = ValueVTs[i];
1129        if (isa<UndefValue>(C))
1130          Constants[i] = DAG.getUNDEF(EltVT);
1131        else if (EltVT.isFloatingPoint())
1132          Constants[i] = DAG.getConstantFP(0, EltVT);
1133        else
1134          Constants[i] = DAG.getConstant(0, EltVT);
1135      }
1136
1137      return DAG.getMergeValues(&Constants[0], NumElts,
1138                                getCurSDLoc());
1139    }
1140
1141    if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1142      return DAG.getBlockAddress(BA, VT);
1143
1144    VectorType *VecTy = cast<VectorType>(V->getType());
1145    unsigned NumElements = VecTy->getNumElements();
1146
1147    // Now that we know the number and type of the elements, get that number of
1148    // elements into the Ops array based on what kind of constant it is.
1149    SmallVector<SDValue, 16> Ops;
1150    if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1151      for (unsigned i = 0; i != NumElements; ++i)
1152        Ops.push_back(getValue(CV->getOperand(i)));
1153    } else {
1154      assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1155      EVT EltVT = TLI->getValueType(VecTy->getElementType());
1156
1157      SDValue Op;
1158      if (EltVT.isFloatingPoint())
1159        Op = DAG.getConstantFP(0, EltVT);
1160      else
1161        Op = DAG.getConstant(0, EltVT);
1162      Ops.assign(NumElements, Op);
1163    }
1164
1165    // Create a BUILD_VECTOR node.
1166    return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(),
1167                                    VT, &Ops[0], Ops.size());
1168  }
1169
1170  // If this is a static alloca, generate it as the frameindex instead of
1171  // computation.
1172  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1173    DenseMap<const AllocaInst*, int>::iterator SI =
1174      FuncInfo.StaticAllocaMap.find(AI);
1175    if (SI != FuncInfo.StaticAllocaMap.end())
1176      return DAG.getFrameIndex(SI->second, TLI->getPointerTy());
1177  }
1178
1179  // If this is an instruction which fast-isel has deferred, select it now.
1180  if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1181    unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1182    RegsForValue RFV(*DAG.getContext(), *TLI, InReg, Inst->getType());
1183    SDValue Chain = DAG.getEntryNode();
1184    return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, NULL, V);
1185  }
1186
1187  llvm_unreachable("Can't get register for value!");
1188}
1189
1190void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1191  const TargetLowering *TLI = TM.getTargetLowering();
1192  SDValue Chain = getControlRoot();
1193  SmallVector<ISD::OutputArg, 8> Outs;
1194  SmallVector<SDValue, 8> OutVals;
1195
1196  if (!FuncInfo.CanLowerReturn) {
1197    unsigned DemoteReg = FuncInfo.DemoteRegister;
1198    const Function *F = I.getParent()->getParent();
1199
1200    // Emit a store of the return value through the virtual register.
1201    // Leave Outs empty so that LowerReturn won't try to load return
1202    // registers the usual way.
1203    SmallVector<EVT, 1> PtrValueVTs;
1204    ComputeValueVTs(*TLI, PointerType::getUnqual(F->getReturnType()),
1205                    PtrValueVTs);
1206
1207    SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
1208    SDValue RetOp = getValue(I.getOperand(0));
1209
1210    SmallVector<EVT, 4> ValueVTs;
1211    SmallVector<uint64_t, 4> Offsets;
1212    ComputeValueVTs(*TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1213    unsigned NumValues = ValueVTs.size();
1214
1215    SmallVector<SDValue, 4> Chains(NumValues);
1216    for (unsigned i = 0; i != NumValues; ++i) {
1217      SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(),
1218                                RetPtr.getValueType(), RetPtr,
1219                                DAG.getIntPtrConstant(Offsets[i]));
1220      Chains[i] =
1221        DAG.getStore(Chain, getCurSDLoc(),
1222                     SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1223                     // FIXME: better loc info would be nice.
1224                     Add, MachinePointerInfo(), false, false, 0);
1225    }
1226
1227    Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1228                        MVT::Other, &Chains[0], NumValues);
1229  } else if (I.getNumOperands() != 0) {
1230    SmallVector<EVT, 4> ValueVTs;
1231    ComputeValueVTs(*TLI, I.getOperand(0)->getType(), ValueVTs);
1232    unsigned NumValues = ValueVTs.size();
1233    if (NumValues) {
1234      SDValue RetOp = getValue(I.getOperand(0));
1235      for (unsigned j = 0, f = NumValues; j != f; ++j) {
1236        EVT VT = ValueVTs[j];
1237
1238        ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1239
1240        const Function *F = I.getParent()->getParent();
1241        if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1242                                            Attribute::SExt))
1243          ExtendKind = ISD::SIGN_EXTEND;
1244        else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1245                                                 Attribute::ZExt))
1246          ExtendKind = ISD::ZERO_EXTEND;
1247
1248        if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1249          VT = TLI->getTypeForExtArgOrReturn(VT.getSimpleVT(), ExtendKind);
1250
1251        unsigned NumParts = TLI->getNumRegisters(*DAG.getContext(), VT);
1252        MVT PartVT = TLI->getRegisterType(*DAG.getContext(), VT);
1253        SmallVector<SDValue, 4> Parts(NumParts);
1254        getCopyToParts(DAG, getCurSDLoc(),
1255                       SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1256                       &Parts[0], NumParts, PartVT, &I, ExtendKind);
1257
1258        // 'inreg' on function refers to return value
1259        ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1260        if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1261                                            Attribute::InReg))
1262          Flags.setInReg();
1263
1264        // Propagate extension type if any
1265        if (ExtendKind == ISD::SIGN_EXTEND)
1266          Flags.setSExt();
1267        else if (ExtendKind == ISD::ZERO_EXTEND)
1268          Flags.setZExt();
1269
1270        for (unsigned i = 0; i < NumParts; ++i) {
1271          Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1272                                        VT, /*isfixed=*/true, 0, 0));
1273          OutVals.push_back(Parts[i]);
1274        }
1275      }
1276    }
1277  }
1278
1279  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1280  CallingConv::ID CallConv =
1281    DAG.getMachineFunction().getFunction()->getCallingConv();
1282  Chain = TM.getTargetLowering()->LowerReturn(Chain, CallConv, isVarArg,
1283                                              Outs, OutVals, getCurSDLoc(),
1284                                              DAG);
1285
1286  // Verify that the target's LowerReturn behaved as expected.
1287  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1288         "LowerReturn didn't return a valid chain!");
1289
1290  // Update the DAG with the new chain value resulting from return lowering.
1291  DAG.setRoot(Chain);
1292}
1293
1294/// CopyToExportRegsIfNeeded - If the given value has virtual registers
1295/// created for it, emit nodes to copy the value into the virtual
1296/// registers.
1297void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1298  // Skip empty types
1299  if (V->getType()->isEmptyTy())
1300    return;
1301
1302  DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1303  if (VMI != FuncInfo.ValueMap.end()) {
1304    assert(!V->use_empty() && "Unused value assigned virtual registers!");
1305    CopyValueToVirtualRegister(V, VMI->second);
1306  }
1307}
1308
1309/// ExportFromCurrentBlock - If this condition isn't known to be exported from
1310/// the current basic block, add it to ValueMap now so that we'll get a
1311/// CopyTo/FromReg.
1312void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1313  // No need to export constants.
1314  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1315
1316  // Already exported?
1317  if (FuncInfo.isExportedInst(V)) return;
1318
1319  unsigned Reg = FuncInfo.InitializeRegForValue(V);
1320  CopyValueToVirtualRegister(V, Reg);
1321}
1322
1323bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1324                                                     const BasicBlock *FromBB) {
1325  // The operands of the setcc have to be in this block.  We don't know
1326  // how to export them from some other block.
1327  if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1328    // Can export from current BB.
1329    if (VI->getParent() == FromBB)
1330      return true;
1331
1332    // Is already exported, noop.
1333    return FuncInfo.isExportedInst(V);
1334  }
1335
1336  // If this is an argument, we can export it if the BB is the entry block or
1337  // if it is already exported.
1338  if (isa<Argument>(V)) {
1339    if (FromBB == &FromBB->getParent()->getEntryBlock())
1340      return true;
1341
1342    // Otherwise, can only export this if it is already exported.
1343    return FuncInfo.isExportedInst(V);
1344  }
1345
1346  // Otherwise, constants can always be exported.
1347  return true;
1348}
1349
1350/// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1351uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src,
1352                                            const MachineBasicBlock *Dst) const {
1353  BranchProbabilityInfo *BPI = FuncInfo.BPI;
1354  if (!BPI)
1355    return 0;
1356  const BasicBlock *SrcBB = Src->getBasicBlock();
1357  const BasicBlock *DstBB = Dst->getBasicBlock();
1358  return BPI->getEdgeWeight(SrcBB, DstBB);
1359}
1360
1361void SelectionDAGBuilder::
1362addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst,
1363                       uint32_t Weight /* = 0 */) {
1364  if (!Weight)
1365    Weight = getEdgeWeight(Src, Dst);
1366  Src->addSuccessor(Dst, Weight);
1367}
1368
1369
1370static bool InBlock(const Value *V, const BasicBlock *BB) {
1371  if (const Instruction *I = dyn_cast<Instruction>(V))
1372    return I->getParent() == BB;
1373  return true;
1374}
1375
1376/// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1377/// This function emits a branch and is used at the leaves of an OR or an
1378/// AND operator tree.
1379///
1380void
1381SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1382                                                  MachineBasicBlock *TBB,
1383                                                  MachineBasicBlock *FBB,
1384                                                  MachineBasicBlock *CurBB,
1385                                                  MachineBasicBlock *SwitchBB) {
1386  const BasicBlock *BB = CurBB->getBasicBlock();
1387
1388  // If the leaf of the tree is a comparison, merge the condition into
1389  // the caseblock.
1390  if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1391    // The operands of the cmp have to be in this block.  We don't know
1392    // how to export them from some other block.  If this is the first block
1393    // of the sequence, no exporting is needed.
1394    if (CurBB == SwitchBB ||
1395        (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1396         isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1397      ISD::CondCode Condition;
1398      if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1399        Condition = getICmpCondCode(IC->getPredicate());
1400      } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1401        Condition = getFCmpCondCode(FC->getPredicate());
1402        if (TM.Options.NoNaNsFPMath)
1403          Condition = getFCmpCodeWithoutNaN(Condition);
1404      } else {
1405        Condition = ISD::SETEQ; // silence warning.
1406        llvm_unreachable("Unknown compare instruction");
1407      }
1408
1409      CaseBlock CB(Condition, BOp->getOperand(0),
1410                   BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1411      SwitchCases.push_back(CB);
1412      return;
1413    }
1414  }
1415
1416  // Create a CaseBlock record representing this branch.
1417  CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1418               NULL, TBB, FBB, CurBB);
1419  SwitchCases.push_back(CB);
1420}
1421
1422/// FindMergedConditions - If Cond is an expression like
1423void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1424                                               MachineBasicBlock *TBB,
1425                                               MachineBasicBlock *FBB,
1426                                               MachineBasicBlock *CurBB,
1427                                               MachineBasicBlock *SwitchBB,
1428                                               unsigned Opc) {
1429  // If this node is not part of the or/and tree, emit it as a branch.
1430  const Instruction *BOp = dyn_cast<Instruction>(Cond);
1431  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1432      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1433      BOp->getParent() != CurBB->getBasicBlock() ||
1434      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1435      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1436    EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB);
1437    return;
1438  }
1439
1440  //  Create TmpBB after CurBB.
1441  MachineFunction::iterator BBI = CurBB;
1442  MachineFunction &MF = DAG.getMachineFunction();
1443  MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1444  CurBB->getParent()->insert(++BBI, TmpBB);
1445
1446  if (Opc == Instruction::Or) {
1447    // Codegen X | Y as:
1448    //   jmp_if_X TBB
1449    //   jmp TmpBB
1450    // TmpBB:
1451    //   jmp_if_Y TBB
1452    //   jmp FBB
1453    //
1454
1455    // Emit the LHS condition.
1456    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc);
1457
1458    // Emit the RHS condition into TmpBB.
1459    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1460  } else {
1461    assert(Opc == Instruction::And && "Unknown merge op!");
1462    // Codegen X & Y as:
1463    //   jmp_if_X TmpBB
1464    //   jmp FBB
1465    // TmpBB:
1466    //   jmp_if_Y TBB
1467    //   jmp FBB
1468    //
1469    //  This requires creation of TmpBB after CurBB.
1470
1471    // Emit the LHS condition.
1472    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc);
1473
1474    // Emit the RHS condition into TmpBB.
1475    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1476  }
1477}
1478
1479/// If the set of cases should be emitted as a series of branches, return true.
1480/// If we should emit this as a bunch of and/or'd together conditions, return
1481/// false.
1482bool
1483SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
1484  if (Cases.size() != 2) return true;
1485
1486  // If this is two comparisons of the same values or'd or and'd together, they
1487  // will get folded into a single comparison, so don't emit two blocks.
1488  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1489       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1490      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1491       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1492    return false;
1493  }
1494
1495  // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1496  // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1497  if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1498      Cases[0].CC == Cases[1].CC &&
1499      isa<Constant>(Cases[0].CmpRHS) &&
1500      cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1501    if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1502      return false;
1503    if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1504      return false;
1505  }
1506
1507  return true;
1508}
1509
1510void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1511  MachineBasicBlock *BrMBB = FuncInfo.MBB;
1512
1513  // Update machine-CFG edges.
1514  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1515
1516  // Figure out which block is immediately after the current one.
1517  MachineBasicBlock *NextBlock = 0;
1518  MachineFunction::iterator BBI = BrMBB;
1519  if (++BBI != FuncInfo.MF->end())
1520    NextBlock = BBI;
1521
1522  if (I.isUnconditional()) {
1523    // Update machine-CFG edges.
1524    BrMBB->addSuccessor(Succ0MBB);
1525
1526    // If this is not a fall-through branch, emit the branch.
1527    if (Succ0MBB != NextBlock)
1528      DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
1529                              MVT::Other, getControlRoot(),
1530                              DAG.getBasicBlock(Succ0MBB)));
1531
1532    return;
1533  }
1534
1535  // If this condition is one of the special cases we handle, do special stuff
1536  // now.
1537  const Value *CondVal = I.getCondition();
1538  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1539
1540  // If this is a series of conditions that are or'd or and'd together, emit
1541  // this as a sequence of branches instead of setcc's with and/or operations.
1542  // As long as jumps are not expensive, this should improve performance.
1543  // For example, instead of something like:
1544  //     cmp A, B
1545  //     C = seteq
1546  //     cmp D, E
1547  //     F = setle
1548  //     or C, F
1549  //     jnz foo
1550  // Emit:
1551  //     cmp A, B
1552  //     je foo
1553  //     cmp D, E
1554  //     jle foo
1555  //
1556  if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1557    if (!TM.getTargetLowering()->isJumpExpensive() &&
1558        BOp->hasOneUse() &&
1559        (BOp->getOpcode() == Instruction::And ||
1560         BOp->getOpcode() == Instruction::Or)) {
1561      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1562                           BOp->getOpcode());
1563      // If the compares in later blocks need to use values not currently
1564      // exported from this block, export them now.  This block should always
1565      // be the first entry.
1566      assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1567
1568      // Allow some cases to be rejected.
1569      if (ShouldEmitAsBranches(SwitchCases)) {
1570        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1571          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1572          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1573        }
1574
1575        // Emit the branch for this block.
1576        visitSwitchCase(SwitchCases[0], BrMBB);
1577        SwitchCases.erase(SwitchCases.begin());
1578        return;
1579      }
1580
1581      // Okay, we decided not to do this, remove any inserted MBB's and clear
1582      // SwitchCases.
1583      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1584        FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1585
1586      SwitchCases.clear();
1587    }
1588  }
1589
1590  // Create a CaseBlock record representing this branch.
1591  CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1592               NULL, Succ0MBB, Succ1MBB, BrMBB);
1593
1594  // Use visitSwitchCase to actually insert the fast branch sequence for this
1595  // cond branch.
1596  visitSwitchCase(CB, BrMBB);
1597}
1598
1599/// visitSwitchCase - Emits the necessary code to represent a single node in
1600/// the binary search tree resulting from lowering a switch instruction.
1601void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1602                                          MachineBasicBlock *SwitchBB) {
1603  SDValue Cond;
1604  SDValue CondLHS = getValue(CB.CmpLHS);
1605  SDLoc dl = getCurSDLoc();
1606
1607  // Build the setcc now.
1608  if (CB.CmpMHS == NULL) {
1609    // Fold "(X == true)" to X and "(X == false)" to !X to
1610    // handle common cases produced by branch lowering.
1611    if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1612        CB.CC == ISD::SETEQ)
1613      Cond = CondLHS;
1614    else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1615             CB.CC == ISD::SETEQ) {
1616      SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1617      Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1618    } else
1619      Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1620  } else {
1621    assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1622
1623    const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1624    const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
1625
1626    SDValue CmpOp = getValue(CB.CmpMHS);
1627    EVT VT = CmpOp.getValueType();
1628
1629    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1630      Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1631                          ISD::SETLE);
1632    } else {
1633      SDValue SUB = DAG.getNode(ISD::SUB, dl,
1634                                VT, CmpOp, DAG.getConstant(Low, VT));
1635      Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1636                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1637    }
1638  }
1639
1640  // Update successor info
1641  addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight);
1642  // TrueBB and FalseBB are always different unless the incoming IR is
1643  // degenerate. This only happens when running llc on weird IR.
1644  if (CB.TrueBB != CB.FalseBB)
1645    addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight);
1646
1647  // Set NextBlock to be the MBB immediately after the current one, if any.
1648  // This is used to avoid emitting unnecessary branches to the next block.
1649  MachineBasicBlock *NextBlock = 0;
1650  MachineFunction::iterator BBI = SwitchBB;
1651  if (++BBI != FuncInfo.MF->end())
1652    NextBlock = BBI;
1653
1654  // If the lhs block is the next block, invert the condition so that we can
1655  // fall through to the lhs instead of the rhs block.
1656  if (CB.TrueBB == NextBlock) {
1657    std::swap(CB.TrueBB, CB.FalseBB);
1658    SDValue True = DAG.getConstant(1, Cond.getValueType());
1659    Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1660  }
1661
1662  SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1663                               MVT::Other, getControlRoot(), Cond,
1664                               DAG.getBasicBlock(CB.TrueBB));
1665
1666  // Insert the false branch. Do this even if it's a fall through branch,
1667  // this makes it easier to do DAG optimizations which require inverting
1668  // the branch condition.
1669  BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1670                       DAG.getBasicBlock(CB.FalseBB));
1671
1672  DAG.setRoot(BrCond);
1673}
1674
1675/// visitJumpTable - Emit JumpTable node in the current MBB
1676void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1677  // Emit the code for the jump table
1678  assert(JT.Reg != -1U && "Should lower JT Header first!");
1679  EVT PTy = TM.getTargetLowering()->getPointerTy();
1680  SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
1681                                     JT.Reg, PTy);
1682  SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1683  SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
1684                                    MVT::Other, Index.getValue(1),
1685                                    Table, Index);
1686  DAG.setRoot(BrJumpTable);
1687}
1688
1689/// visitJumpTableHeader - This function emits necessary code to produce index
1690/// in the JumpTable from switch case.
1691void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1692                                               JumpTableHeader &JTH,
1693                                               MachineBasicBlock *SwitchBB) {
1694  // Subtract the lowest switch case value from the value being switched on and
1695  // conditional branch to default mbb if the result is greater than the
1696  // difference between smallest and largest cases.
1697  SDValue SwitchOp = getValue(JTH.SValue);
1698  EVT VT = SwitchOp.getValueType();
1699  SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp,
1700                            DAG.getConstant(JTH.First, VT));
1701
1702  // The SDNode we just created, which holds the value being switched on minus
1703  // the smallest case value, needs to be copied to a virtual register so it
1704  // can be used as an index into the jump table in a subsequent basic block.
1705  // This value may be smaller or larger than the target's pointer type, and
1706  // therefore require extension or truncating.
1707  const TargetLowering *TLI = TM.getTargetLowering();
1708  SwitchOp = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), TLI->getPointerTy());
1709
1710  unsigned JumpTableReg = FuncInfo.CreateReg(TLI->getPointerTy());
1711  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(),
1712                                    JumpTableReg, SwitchOp);
1713  JT.Reg = JumpTableReg;
1714
1715  // Emit the range check for the jump table, and branch to the default block
1716  // for the switch statement if the value being switched on exceeds the largest
1717  // case in the switch.
1718  SDValue CMP = DAG.getSetCC(getCurSDLoc(),
1719                             TLI->getSetCCResultType(*DAG.getContext(),
1720                                                     Sub.getValueType()),
1721                             Sub,
1722                             DAG.getConstant(JTH.Last - JTH.First,VT),
1723                             ISD::SETUGT);
1724
1725  // Set NextBlock to be the MBB immediately after the current one, if any.
1726  // This is used to avoid emitting unnecessary branches to the next block.
1727  MachineBasicBlock *NextBlock = 0;
1728  MachineFunction::iterator BBI = SwitchBB;
1729
1730  if (++BBI != FuncInfo.MF->end())
1731    NextBlock = BBI;
1732
1733  SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
1734                               MVT::Other, CopyTo, CMP,
1735                               DAG.getBasicBlock(JT.Default));
1736
1737  if (JT.MBB != NextBlock)
1738    BrCond = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrCond,
1739                         DAG.getBasicBlock(JT.MBB));
1740
1741  DAG.setRoot(BrCond);
1742}
1743
1744/// Codegen a new tail for a stack protector check ParentMBB which has had its
1745/// tail spliced into a stack protector check success bb.
1746///
1747/// For a high level explanation of how this fits into the stack protector
1748/// generation see the comment on the declaration of class
1749/// StackProtectorDescriptor.
1750void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
1751                                                  MachineBasicBlock *ParentBB) {
1752
1753  // First create the loads to the guard/stack slot for the comparison.
1754  const TargetLowering *TLI = TM.getTargetLowering();
1755  EVT PtrTy = TLI->getPointerTy();
1756
1757  MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo();
1758  int FI = MFI->getStackProtectorIndex();
1759
1760  const Value *IRGuard = SPD.getGuard();
1761  SDValue GuardPtr = getValue(IRGuard);
1762  SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
1763
1764  unsigned Align =
1765    TLI->getDataLayout()->getPrefTypeAlignment(IRGuard->getType());
1766  SDValue Guard = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(),
1767                              GuardPtr, MachinePointerInfo(IRGuard, 0),
1768                              true, false, false, Align);
1769
1770  SDValue StackSlot = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(),
1771                                  StackSlotPtr,
1772                                  MachinePointerInfo::getFixedStack(FI),
1773                                  true, false, false, Align);
1774
1775  // Perform the comparison via a subtract/getsetcc.
1776  EVT VT = Guard.getValueType();
1777  SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, Guard, StackSlot);
1778
1779  SDValue Cmp = DAG.getSetCC(getCurSDLoc(),
1780                             TLI->getSetCCResultType(*DAG.getContext(),
1781                                                     Sub.getValueType()),
1782                             Sub, DAG.getConstant(0, VT),
1783                             ISD::SETNE);
1784
1785  // If the sub is not 0, then we know the guard/stackslot do not equal, so
1786  // branch to failure MBB.
1787  SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
1788                               MVT::Other, StackSlot.getOperand(0),
1789                               Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
1790  // Otherwise branch to success MBB.
1791  SDValue Br = DAG.getNode(ISD::BR, getCurSDLoc(),
1792                           MVT::Other, BrCond,
1793                           DAG.getBasicBlock(SPD.getSuccessMBB()));
1794
1795  DAG.setRoot(Br);
1796}
1797
1798/// Codegen the failure basic block for a stack protector check.
1799///
1800/// A failure stack protector machine basic block consists simply of a call to
1801/// __stack_chk_fail().
1802///
1803/// For a high level explanation of how this fits into the stack protector
1804/// generation see the comment on the declaration of class
1805/// StackProtectorDescriptor.
1806void
1807SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
1808  const TargetLowering *TLI = TM.getTargetLowering();
1809  SDValue Chain = TLI->makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL,
1810                                   MVT::isVoid, 0, 0, false, getCurSDLoc(),
1811                                   false, false).second;
1812  DAG.setRoot(Chain);
1813}
1814
1815/// visitBitTestHeader - This function emits necessary code to produce value
1816/// suitable for "bit tests"
1817void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1818                                             MachineBasicBlock *SwitchBB) {
1819  // Subtract the minimum value
1820  SDValue SwitchOp = getValue(B.SValue);
1821  EVT VT = SwitchOp.getValueType();
1822  SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp,
1823                            DAG.getConstant(B.First, VT));
1824
1825  // Check range
1826  const TargetLowering *TLI = TM.getTargetLowering();
1827  SDValue RangeCmp = DAG.getSetCC(getCurSDLoc(),
1828                                  TLI->getSetCCResultType(*DAG.getContext(),
1829                                                         Sub.getValueType()),
1830                                  Sub, DAG.getConstant(B.Range, VT),
1831                                  ISD::SETUGT);
1832
1833  // Determine the type of the test operands.
1834  bool UsePtrType = false;
1835  if (!TLI->isTypeLegal(VT))
1836    UsePtrType = true;
1837  else {
1838    for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
1839      if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
1840        // Switch table case range are encoded into series of masks.
1841        // Just use pointer type, it's guaranteed to fit.
1842        UsePtrType = true;
1843        break;
1844      }
1845  }
1846  if (UsePtrType) {
1847    VT = TLI->getPointerTy();
1848    Sub = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), VT);
1849  }
1850
1851  B.RegVT = VT.getSimpleVT();
1852  B.Reg = FuncInfo.CreateReg(B.RegVT);
1853  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(),
1854                                    B.Reg, Sub);
1855
1856  // Set NextBlock to be the MBB immediately after the current one, if any.
1857  // This is used to avoid emitting unnecessary branches to the next block.
1858  MachineBasicBlock *NextBlock = 0;
1859  MachineFunction::iterator BBI = SwitchBB;
1860  if (++BBI != FuncInfo.MF->end())
1861    NextBlock = BBI;
1862
1863  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1864
1865  addSuccessorWithWeight(SwitchBB, B.Default);
1866  addSuccessorWithWeight(SwitchBB, MBB);
1867
1868  SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
1869                                MVT::Other, CopyTo, RangeCmp,
1870                                DAG.getBasicBlock(B.Default));
1871
1872  if (MBB != NextBlock)
1873    BrRange = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, CopyTo,
1874                          DAG.getBasicBlock(MBB));
1875
1876  DAG.setRoot(BrRange);
1877}
1878
1879/// visitBitTestCase - this function produces one "bit test"
1880void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
1881                                           MachineBasicBlock* NextMBB,
1882                                           uint32_t BranchWeightToNext,
1883                                           unsigned Reg,
1884                                           BitTestCase &B,
1885                                           MachineBasicBlock *SwitchBB) {
1886  MVT VT = BB.RegVT;
1887  SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
1888                                       Reg, VT);
1889  SDValue Cmp;
1890  unsigned PopCount = CountPopulation_64(B.Mask);
1891  const TargetLowering *TLI = TM.getTargetLowering();
1892  if (PopCount == 1) {
1893    // Testing for a single bit; just compare the shift count with what it
1894    // would need to be to shift a 1 bit in that position.
1895    Cmp = DAG.getSetCC(getCurSDLoc(),
1896                       TLI->getSetCCResultType(*DAG.getContext(), VT),
1897                       ShiftOp,
1898                       DAG.getConstant(countTrailingZeros(B.Mask), VT),
1899                       ISD::SETEQ);
1900  } else if (PopCount == BB.Range) {
1901    // There is only one zero bit in the range, test for it directly.
1902    Cmp = DAG.getSetCC(getCurSDLoc(),
1903                       TLI->getSetCCResultType(*DAG.getContext(), VT),
1904                       ShiftOp,
1905                       DAG.getConstant(CountTrailingOnes_64(B.Mask), VT),
1906                       ISD::SETNE);
1907  } else {
1908    // Make desired shift
1909    SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurSDLoc(), VT,
1910                                    DAG.getConstant(1, VT), ShiftOp);
1911
1912    // Emit bit tests and jumps
1913    SDValue AndOp = DAG.getNode(ISD::AND, getCurSDLoc(),
1914                                VT, SwitchVal, DAG.getConstant(B.Mask, VT));
1915    Cmp = DAG.getSetCC(getCurSDLoc(),
1916                       TLI->getSetCCResultType(*DAG.getContext(), VT),
1917                       AndOp, DAG.getConstant(0, VT),
1918                       ISD::SETNE);
1919  }
1920
1921  // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight.
1922  addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight);
1923  // The branch weight from SwitchBB to NextMBB is BranchWeightToNext.
1924  addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext);
1925
1926  SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
1927                              MVT::Other, getControlRoot(),
1928                              Cmp, DAG.getBasicBlock(B.TargetBB));
1929
1930  // Set NextBlock to be the MBB immediately after the current one, if any.
1931  // This is used to avoid emitting unnecessary branches to the next block.
1932  MachineBasicBlock *NextBlock = 0;
1933  MachineFunction::iterator BBI = SwitchBB;
1934  if (++BBI != FuncInfo.MF->end())
1935    NextBlock = BBI;
1936
1937  if (NextMBB != NextBlock)
1938    BrAnd = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrAnd,
1939                        DAG.getBasicBlock(NextMBB));
1940
1941  DAG.setRoot(BrAnd);
1942}
1943
1944void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1945  MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
1946
1947  // Retrieve successors.
1948  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1949  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1950
1951  const Value *Callee(I.getCalledValue());
1952  const Function *Fn = dyn_cast<Function>(Callee);
1953  if (isa<InlineAsm>(Callee))
1954    visitInlineAsm(&I);
1955  else if (Fn && Fn->isIntrinsic()) {
1956    assert(Fn->getIntrinsicID() == Intrinsic::donothing);
1957    // Ignore invokes to @llvm.donothing: jump directly to the next BB.
1958  } else
1959    LowerCallTo(&I, getValue(Callee), false, LandingPad);
1960
1961  // If the value of the invoke is used outside of its defining block, make it
1962  // available as a virtual register.
1963  CopyToExportRegsIfNeeded(&I);
1964
1965  // Update successor info
1966  addSuccessorWithWeight(InvokeMBB, Return);
1967  addSuccessorWithWeight(InvokeMBB, LandingPad);
1968
1969  // Drop into normal successor.
1970  DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
1971                          MVT::Other, getControlRoot(),
1972                          DAG.getBasicBlock(Return)));
1973}
1974
1975void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
1976  llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
1977}
1978
1979void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
1980  assert(FuncInfo.MBB->isLandingPad() &&
1981         "Call to landingpad not in landing pad!");
1982
1983  MachineBasicBlock *MBB = FuncInfo.MBB;
1984  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
1985  AddLandingPadInfo(LP, MMI, MBB);
1986
1987  // If there aren't registers to copy the values into (e.g., during SjLj
1988  // exceptions), then don't bother to create these DAG nodes.
1989  const TargetLowering *TLI = TM.getTargetLowering();
1990  if (TLI->getExceptionPointerRegister() == 0 &&
1991      TLI->getExceptionSelectorRegister() == 0)
1992    return;
1993
1994  SmallVector<EVT, 2> ValueVTs;
1995  ComputeValueVTs(*TLI, LP.getType(), ValueVTs);
1996  assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
1997
1998  // Get the two live-in registers as SDValues. The physregs have already been
1999  // copied into virtual registers.
2000  SDValue Ops[2];
2001  Ops[0] = DAG.getZExtOrTrunc(
2002    DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
2003                       FuncInfo.ExceptionPointerVirtReg, TLI->getPointerTy()),
2004    getCurSDLoc(), ValueVTs[0]);
2005  Ops[1] = DAG.getZExtOrTrunc(
2006    DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
2007                       FuncInfo.ExceptionSelectorVirtReg, TLI->getPointerTy()),
2008    getCurSDLoc(), ValueVTs[1]);
2009
2010  // Merge into one.
2011  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
2012                            DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
2013                            &Ops[0], 2);
2014  setValue(&LP, Res);
2015}
2016
2017/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
2018/// small case ranges).
2019bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
2020                                                 CaseRecVector& WorkList,
2021                                                 const Value* SV,
2022                                                 MachineBasicBlock *Default,
2023                                                 MachineBasicBlock *SwitchBB) {
2024  // Size is the number of Cases represented by this range.
2025  size_t Size = CR.Range.second - CR.Range.first;
2026  if (Size > 3)
2027    return false;
2028
2029  // Get the MachineFunction which holds the current MBB.  This is used when
2030  // inserting any additional MBBs necessary to represent the switch.
2031  MachineFunction *CurMF = FuncInfo.MF;
2032
2033  // Figure out which block is immediately after the current one.
2034  MachineBasicBlock *NextBlock = 0;
2035  MachineFunction::iterator BBI = CR.CaseBB;
2036
2037  if (++BBI != FuncInfo.MF->end())
2038    NextBlock = BBI;
2039
2040  BranchProbabilityInfo *BPI = FuncInfo.BPI;
2041  // If any two of the cases has the same destination, and if one value
2042  // is the same as the other, but has one bit unset that the other has set,
2043  // use bit manipulation to do two compares at once.  For example:
2044  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
2045  // TODO: This could be extended to merge any 2 cases in switches with 3 cases.
2046  // TODO: Handle cases where CR.CaseBB != SwitchBB.
2047  if (Size == 2 && CR.CaseBB == SwitchBB) {
2048    Case &Small = *CR.Range.first;
2049    Case &Big = *(CR.Range.second-1);
2050
2051    if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) {
2052      const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue();
2053      const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue();
2054
2055      // Check that there is only one bit different.
2056      if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 &&
2057          (SmallValue | BigValue) == BigValue) {
2058        // Isolate the common bit.
2059        APInt CommonBit = BigValue & ~SmallValue;
2060        assert((SmallValue | CommonBit) == BigValue &&
2061               CommonBit.countPopulation() == 1 && "Not a common bit?");
2062
2063        SDValue CondLHS = getValue(SV);
2064        EVT VT = CondLHS.getValueType();
2065        SDLoc DL = getCurSDLoc();
2066
2067        SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
2068                                 DAG.getConstant(CommonBit, VT));
2069        SDValue Cond = DAG.getSetCC(DL, MVT::i1,
2070                                    Or, DAG.getConstant(BigValue, VT),
2071                                    ISD::SETEQ);
2072
2073        // Update successor info.
2074        // Both Small and Big will jump to Small.BB, so we sum up the weights.
2075        addSuccessorWithWeight(SwitchBB, Small.BB,
2076                               Small.ExtraWeight + Big.ExtraWeight);
2077        addSuccessorWithWeight(SwitchBB, Default,
2078          // The default destination is the first successor in IR.
2079          BPI ? BPI->getEdgeWeight(SwitchBB->getBasicBlock(), (unsigned)0) : 0);
2080
2081        // Insert the true branch.
2082        SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other,
2083                                     getControlRoot(), Cond,
2084                                     DAG.getBasicBlock(Small.BB));
2085
2086        // Insert the false branch.
2087        BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
2088                             DAG.getBasicBlock(Default));
2089
2090        DAG.setRoot(BrCond);
2091        return true;
2092      }
2093    }
2094  }
2095
2096  // Order cases by weight so the most likely case will be checked first.
2097  uint32_t UnhandledWeights = 0;
2098  if (BPI) {
2099    for (CaseItr I = CR.Range.first, IE = CR.Range.second; I != IE; ++I) {
2100      uint32_t IWeight = I->ExtraWeight;
2101      UnhandledWeights += IWeight;
2102      for (CaseItr J = CR.Range.first; J < I; ++J) {
2103        uint32_t JWeight = J->ExtraWeight;
2104        if (IWeight > JWeight)
2105          std::swap(*I, *J);
2106      }
2107    }
2108  }
2109  // Rearrange the case blocks so that the last one falls through if possible.
2110  Case &BackCase = *(CR.Range.second-1);
2111  if (Size > 1 &&
2112      NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
2113    // The last case block won't fall through into 'NextBlock' if we emit the
2114    // branches in this order.  See if rearranging a case value would help.
2115    // We start at the bottom as it's the case with the least weight.
2116    for (Case *I = &*(CR.Range.second-2), *E = &*CR.Range.first-1; I != E; --I)
2117      if (I->BB == NextBlock) {
2118        std::swap(*I, BackCase);
2119        break;
2120      }
2121  }
2122
2123  // Create a CaseBlock record representing a conditional branch to
2124  // the Case's target mbb if the value being switched on SV is equal
2125  // to C.
2126  MachineBasicBlock *CurBlock = CR.CaseBB;
2127  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
2128    MachineBasicBlock *FallThrough;
2129    if (I != E-1) {
2130      FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
2131      CurMF->insert(BBI, FallThrough);
2132
2133      // Put SV in a virtual register to make it available from the new blocks.
2134      ExportFromCurrentBlock(SV);
2135    } else {
2136      // If the last case doesn't match, go to the default block.
2137      FallThrough = Default;
2138    }
2139
2140    const Value *RHS, *LHS, *MHS;
2141    ISD::CondCode CC;
2142    if (I->High == I->Low) {
2143      // This is just small small case range :) containing exactly 1 case
2144      CC = ISD::SETEQ;
2145      LHS = SV; RHS = I->High; MHS = NULL;
2146    } else {
2147      CC = ISD::SETLE;
2148      LHS = I->Low; MHS = SV; RHS = I->High;
2149    }
2150
2151    // The false weight should be sum of all un-handled cases.
2152    UnhandledWeights -= I->ExtraWeight;
2153    CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough,
2154                 /* me */ CurBlock,
2155                 /* trueweight */ I->ExtraWeight,
2156                 /* falseweight */ UnhandledWeights);
2157
2158    // If emitting the first comparison, just call visitSwitchCase to emit the
2159    // code into the current block.  Otherwise, push the CaseBlock onto the
2160    // vector to be later processed by SDISel, and insert the node's MBB
2161    // before the next MBB.
2162    if (CurBlock == SwitchBB)
2163      visitSwitchCase(CB, SwitchBB);
2164    else
2165      SwitchCases.push_back(CB);
2166
2167    CurBlock = FallThrough;
2168  }
2169
2170  return true;
2171}
2172
2173static inline bool areJTsAllowed(const TargetLowering &TLI) {
2174  return TLI.supportJumpTables() &&
2175          (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
2176           TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
2177}
2178
2179static APInt ComputeRange(const APInt &First, const APInt &Last) {
2180  uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
2181  APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth);
2182  return (LastExt - FirstExt + 1ULL);
2183}
2184
2185/// handleJTSwitchCase - Emit jumptable for current switch case range
2186bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR,
2187                                             CaseRecVector &WorkList,
2188                                             const Value *SV,
2189                                             MachineBasicBlock *Default,
2190                                             MachineBasicBlock *SwitchBB) {
2191  Case& FrontCase = *CR.Range.first;
2192  Case& BackCase  = *(CR.Range.second-1);
2193
2194  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2195  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2196
2197  APInt TSize(First.getBitWidth(), 0);
2198  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I)
2199    TSize += I->size();
2200
2201  const TargetLowering *TLI = TM.getTargetLowering();
2202  if (!areJTsAllowed(*TLI) || TSize.ult(TLI->getMinimumJumpTableEntries()))
2203    return false;
2204
2205  APInt Range = ComputeRange(First, Last);
2206  // The density is TSize / Range. Require at least 40%.
2207  // It should not be possible for IntTSize to saturate for sane code, but make
2208  // sure we handle Range saturation correctly.
2209  uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10);
2210  uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10);
2211  if (IntTSize * 10 < IntRange * 4)
2212    return false;
2213
2214  DEBUG(dbgs() << "Lowering jump table\n"
2215               << "First entry: " << First << ". Last entry: " << Last << '\n'
2216               << "Range: " << Range << ". Size: " << TSize << ".\n\n");
2217
2218  // Get the MachineFunction which holds the current MBB.  This is used when
2219  // inserting any additional MBBs necessary to represent the switch.
2220  MachineFunction *CurMF = FuncInfo.MF;
2221
2222  // Figure out which block is immediately after the current one.
2223  MachineFunction::iterator BBI = CR.CaseBB;
2224  ++BBI;
2225
2226  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2227
2228  // Create a new basic block to hold the code for loading the address
2229  // of the jump table, and jumping to it.  Update successor information;
2230  // we will either branch to the default case for the switch, or the jump
2231  // table.
2232  MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2233  CurMF->insert(BBI, JumpTableBB);
2234
2235  addSuccessorWithWeight(CR.CaseBB, Default);
2236  addSuccessorWithWeight(CR.CaseBB, JumpTableBB);
2237
2238  // Build a vector of destination BBs, corresponding to each target
2239  // of the jump table. If the value of the jump table slot corresponds to
2240  // a case statement, push the case's BB onto the vector, otherwise, push
2241  // the default BB.
2242  std::vector<MachineBasicBlock*> DestBBs;
2243  APInt TEI = First;
2244  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
2245    const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
2246    const APInt &High = cast<ConstantInt>(I->High)->getValue();
2247
2248    if (Low.sle(TEI) && TEI.sle(High)) {
2249      DestBBs.push_back(I->BB);
2250      if (TEI==High)
2251        ++I;
2252    } else {
2253      DestBBs.push_back(Default);
2254    }
2255  }
2256
2257  // Calculate weight for each unique destination in CR.
2258  DenseMap<MachineBasicBlock*, uint32_t> DestWeights;
2259  if (FuncInfo.BPI)
2260    for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
2261      DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr =
2262          DestWeights.find(I->BB);
2263      if (Itr != DestWeights.end())
2264        Itr->second += I->ExtraWeight;
2265      else
2266        DestWeights[I->BB] = I->ExtraWeight;
2267    }
2268
2269  // Update successor info. Add one edge to each unique successor.
2270  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
2271  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
2272         E = DestBBs.end(); I != E; ++I) {
2273    if (!SuccsHandled[(*I)->getNumber()]) {
2274      SuccsHandled[(*I)->getNumber()] = true;
2275      DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr =
2276          DestWeights.find(*I);
2277      addSuccessorWithWeight(JumpTableBB, *I,
2278                             Itr != DestWeights.end() ? Itr->second : 0);
2279    }
2280  }
2281
2282  // Create a jump table index for this jump table.
2283  unsigned JTEncoding = TLI->getJumpTableEncoding();
2284  unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
2285                       ->createJumpTableIndex(DestBBs);
2286
2287  // Set the jump table information so that we can codegen it as a second
2288  // MachineBasicBlock
2289  JumpTable JT(-1U, JTI, JumpTableBB, Default);
2290  JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
2291  if (CR.CaseBB == SwitchBB)
2292    visitJumpTableHeader(JT, JTH, SwitchBB);
2293
2294  JTCases.push_back(JumpTableBlock(JTH, JT));
2295  return true;
2296}
2297
2298/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
2299/// 2 subtrees.
2300bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
2301                                                  CaseRecVector& WorkList,
2302                                                  const Value* SV,
2303                                                  MachineBasicBlock* Default,
2304                                                  MachineBasicBlock* SwitchBB) {
2305  // Get the MachineFunction which holds the current MBB.  This is used when
2306  // inserting any additional MBBs necessary to represent the switch.
2307  MachineFunction *CurMF = FuncInfo.MF;
2308
2309  // Figure out which block is immediately after the current one.
2310  MachineFunction::iterator BBI = CR.CaseBB;
2311  ++BBI;
2312
2313  Case& FrontCase = *CR.Range.first;
2314  Case& BackCase  = *(CR.Range.second-1);
2315  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2316
2317  // Size is the number of Cases represented by this range.
2318  unsigned Size = CR.Range.second - CR.Range.first;
2319
2320  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2321  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2322  double FMetric = 0;
2323  CaseItr Pivot = CR.Range.first + Size/2;
2324
2325  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
2326  // (heuristically) allow us to emit JumpTable's later.
2327  APInt TSize(First.getBitWidth(), 0);
2328  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2329       I!=E; ++I)
2330    TSize += I->size();
2331
2332  APInt LSize = FrontCase.size();
2333  APInt RSize = TSize-LSize;
2334  DEBUG(dbgs() << "Selecting best pivot: \n"
2335               << "First: " << First << ", Last: " << Last <<'\n'
2336               << "LSize: " << LSize << ", RSize: " << RSize << '\n');
2337  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
2338       J!=E; ++I, ++J) {
2339    const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
2340    const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
2341    APInt Range = ComputeRange(LEnd, RBegin);
2342    assert((Range - 2ULL).isNonNegative() &&
2343           "Invalid case distance");
2344    // Use volatile double here to avoid excess precision issues on some hosts,
2345    // e.g. that use 80-bit X87 registers.
2346    volatile double LDensity =
2347       (double)LSize.roundToDouble() /
2348                           (LEnd - First + 1ULL).roundToDouble();
2349    volatile double RDensity =
2350      (double)RSize.roundToDouble() /
2351                           (Last - RBegin + 1ULL).roundToDouble();
2352    double Metric = Range.logBase2()*(LDensity+RDensity);
2353    // Should always split in some non-trivial place
2354    DEBUG(dbgs() <<"=>Step\n"
2355                 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
2356                 << "LDensity: " << LDensity
2357                 << ", RDensity: " << RDensity << '\n'
2358                 << "Metric: " << Metric << '\n');
2359    if (FMetric < Metric) {
2360      Pivot = J;
2361      FMetric = Metric;
2362      DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
2363    }
2364
2365    LSize += J->size();
2366    RSize -= J->size();
2367  }
2368
2369  const TargetLowering *TLI = TM.getTargetLowering();
2370  if (areJTsAllowed(*TLI)) {
2371    // If our case is dense we *really* should handle it earlier!
2372    assert((FMetric > 0) && "Should handle dense range earlier!");
2373  } else {
2374    Pivot = CR.Range.first + Size/2;
2375  }
2376
2377  CaseRange LHSR(CR.Range.first, Pivot);
2378  CaseRange RHSR(Pivot, CR.Range.second);
2379  const Constant *C = Pivot->Low;
2380  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
2381
2382  // We know that we branch to the LHS if the Value being switched on is
2383  // less than the Pivot value, C.  We use this to optimize our binary
2384  // tree a bit, by recognizing that if SV is greater than or equal to the
2385  // LHS's Case Value, and that Case Value is exactly one less than the
2386  // Pivot's Value, then we can branch directly to the LHS's Target,
2387  // rather than creating a leaf node for it.
2388  if ((LHSR.second - LHSR.first) == 1 &&
2389      LHSR.first->High == CR.GE &&
2390      cast<ConstantInt>(C)->getValue() ==
2391      (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
2392    TrueBB = LHSR.first->BB;
2393  } else {
2394    TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2395    CurMF->insert(BBI, TrueBB);
2396    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
2397
2398    // Put SV in a virtual register to make it available from the new blocks.
2399    ExportFromCurrentBlock(SV);
2400  }
2401
2402  // Similar to the optimization above, if the Value being switched on is
2403  // known to be less than the Constant CR.LT, and the current Case Value
2404  // is CR.LT - 1, then we can branch directly to the target block for
2405  // the current Case Value, rather than emitting a RHS leaf node for it.
2406  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
2407      cast<ConstantInt>(RHSR.first->Low)->getValue() ==
2408      (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
2409    FalseBB = RHSR.first->BB;
2410  } else {
2411    FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2412    CurMF->insert(BBI, FalseBB);
2413    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
2414
2415    // Put SV in a virtual register to make it available from the new blocks.
2416    ExportFromCurrentBlock(SV);
2417  }
2418
2419  // Create a CaseBlock record representing a conditional branch to
2420  // the LHS node if the value being switched on SV is less than C.
2421  // Otherwise, branch to LHS.
2422  CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
2423
2424  if (CR.CaseBB == SwitchBB)
2425    visitSwitchCase(CB, SwitchBB);
2426  else
2427    SwitchCases.push_back(CB);
2428
2429  return true;
2430}
2431
2432/// handleBitTestsSwitchCase - if current case range has few destination and
2433/// range span less, than machine word bitwidth, encode case range into series
2434/// of masks and emit bit tests with these masks.
2435bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
2436                                                   CaseRecVector& WorkList,
2437                                                   const Value* SV,
2438                                                   MachineBasicBlock* Default,
2439                                                   MachineBasicBlock* SwitchBB) {
2440  const TargetLowering *TLI = TM.getTargetLowering();
2441  EVT PTy = TLI->getPointerTy();
2442  unsigned IntPtrBits = PTy.getSizeInBits();
2443
2444  Case& FrontCase = *CR.Range.first;
2445  Case& BackCase  = *(CR.Range.second-1);
2446
2447  // Get the MachineFunction which holds the current MBB.  This is used when
2448  // inserting any additional MBBs necessary to represent the switch.
2449  MachineFunction *CurMF = FuncInfo.MF;
2450
2451  // If target does not have legal shift left, do not emit bit tests at all.
2452  if (!TLI->isOperationLegal(ISD::SHL, PTy))
2453    return false;
2454
2455  size_t numCmps = 0;
2456  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2457       I!=E; ++I) {
2458    // Single case counts one, case range - two.
2459    numCmps += (I->Low == I->High ? 1 : 2);
2460  }
2461
2462  // Count unique destinations
2463  SmallSet<MachineBasicBlock*, 4> Dests;
2464  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2465    Dests.insert(I->BB);
2466    if (Dests.size() > 3)
2467      // Don't bother the code below, if there are too much unique destinations
2468      return false;
2469  }
2470  DEBUG(dbgs() << "Total number of unique destinations: "
2471        << Dests.size() << '\n'
2472        << "Total number of comparisons: " << numCmps << '\n');
2473
2474  // Compute span of values.
2475  const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
2476  const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
2477  APInt cmpRange = maxValue - minValue;
2478
2479  DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
2480               << "Low bound: " << minValue << '\n'
2481               << "High bound: " << maxValue << '\n');
2482
2483  if (cmpRange.uge(IntPtrBits) ||
2484      (!(Dests.size() == 1 && numCmps >= 3) &&
2485       !(Dests.size() == 2 && numCmps >= 5) &&
2486       !(Dests.size() >= 3 && numCmps >= 6)))
2487    return false;
2488
2489  DEBUG(dbgs() << "Emitting bit tests\n");
2490  APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
2491
2492  // Optimize the case where all the case values fit in a
2493  // word without having to subtract minValue. In this case,
2494  // we can optimize away the subtraction.
2495  if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) {
2496    cmpRange = maxValue;
2497  } else {
2498    lowBound = minValue;
2499  }
2500
2501  CaseBitsVector CasesBits;
2502  unsigned i, count = 0;
2503
2504  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2505    MachineBasicBlock* Dest = I->BB;
2506    for (i = 0; i < count; ++i)
2507      if (Dest == CasesBits[i].BB)
2508        break;
2509
2510    if (i == count) {
2511      assert((count < 3) && "Too much destinations to test!");
2512      CasesBits.push_back(CaseBits(0, Dest, 0, 0/*Weight*/));
2513      count++;
2514    }
2515
2516    const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
2517    const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
2518
2519    uint64_t lo = (lowValue - lowBound).getZExtValue();
2520    uint64_t hi = (highValue - lowBound).getZExtValue();
2521    CasesBits[i].ExtraWeight += I->ExtraWeight;
2522
2523    for (uint64_t j = lo; j <= hi; j++) {
2524      CasesBits[i].Mask |=  1ULL << j;
2525      CasesBits[i].Bits++;
2526    }
2527
2528  }
2529  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2530
2531  BitTestInfo BTC;
2532
2533  // Figure out which block is immediately after the current one.
2534  MachineFunction::iterator BBI = CR.CaseBB;
2535  ++BBI;
2536
2537  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2538
2539  DEBUG(dbgs() << "Cases:\n");
2540  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2541    DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
2542                 << ", Bits: " << CasesBits[i].Bits
2543                 << ", BB: " << CasesBits[i].BB << '\n');
2544
2545    MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2546    CurMF->insert(BBI, CaseBB);
2547    BTC.push_back(BitTestCase(CasesBits[i].Mask,
2548                              CaseBB,
2549                              CasesBits[i].BB, CasesBits[i].ExtraWeight));
2550
2551    // Put SV in a virtual register to make it available from the new blocks.
2552    ExportFromCurrentBlock(SV);
2553  }
2554
2555  BitTestBlock BTB(lowBound, cmpRange, SV,
2556                   -1U, MVT::Other, (CR.CaseBB == SwitchBB),
2557                   CR.CaseBB, Default, BTC);
2558
2559  if (CR.CaseBB == SwitchBB)
2560    visitBitTestHeader(BTB, SwitchBB);
2561
2562  BitTestCases.push_back(BTB);
2563
2564  return true;
2565}
2566
2567/// Clusterify - Transform simple list of Cases into list of CaseRange's
2568size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
2569                                       const SwitchInst& SI) {
2570  size_t numCmps = 0;
2571
2572  BranchProbabilityInfo *BPI = FuncInfo.BPI;
2573  // Start with "simple" cases
2574  for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
2575       i != e; ++i) {
2576    const BasicBlock *SuccBB = i.getCaseSuccessor();
2577    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB];
2578
2579    uint32_t ExtraWeight =
2580      BPI ? BPI->getEdgeWeight(SI.getParent(), i.getSuccessorIndex()) : 0;
2581
2582    Cases.push_back(Case(i.getCaseValue(), i.getCaseValue(),
2583                         SMBB, ExtraWeight));
2584  }
2585  std::sort(Cases.begin(), Cases.end(), CaseCmp());
2586
2587  // Merge case into clusters
2588  if (Cases.size() >= 2)
2589    // Must recompute end() each iteration because it may be
2590    // invalidated by erase if we hold on to it
2591    for (CaseItr I = Cases.begin(), J = llvm::next(Cases.begin());
2592         J != Cases.end(); ) {
2593      const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
2594      const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
2595      MachineBasicBlock* nextBB = J->BB;
2596      MachineBasicBlock* currentBB = I->BB;
2597
2598      // If the two neighboring cases go to the same destination, merge them
2599      // into a single case.
2600      if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
2601        I->High = J->High;
2602        I->ExtraWeight += J->ExtraWeight;
2603        J = Cases.erase(J);
2604      } else {
2605        I = J++;
2606      }
2607    }
2608
2609  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
2610    if (I->Low != I->High)
2611      // A range counts double, since it requires two compares.
2612      ++numCmps;
2613  }
2614
2615  return numCmps;
2616}
2617
2618void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2619                                           MachineBasicBlock *Last) {
2620  // Update JTCases.
2621  for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2622    if (JTCases[i].first.HeaderBB == First)
2623      JTCases[i].first.HeaderBB = Last;
2624
2625  // Update BitTestCases.
2626  for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2627    if (BitTestCases[i].Parent == First)
2628      BitTestCases[i].Parent = Last;
2629}
2630
2631void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
2632  MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
2633
2634  // Figure out which block is immediately after the current one.
2635  MachineBasicBlock *NextBlock = 0;
2636  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2637
2638  // If there is only the default destination, branch to it if it is not the
2639  // next basic block.  Otherwise, just fall through.
2640  if (!SI.getNumCases()) {
2641    // Update machine-CFG edges.
2642
2643    // If this is not a fall-through branch, emit the branch.
2644    SwitchMBB->addSuccessor(Default);
2645    if (Default != NextBlock)
2646      DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2647                              MVT::Other, getControlRoot(),
2648                              DAG.getBasicBlock(Default)));
2649
2650    return;
2651  }
2652
2653  // If there are any non-default case statements, create a vector of Cases
2654  // representing each one, and sort the vector so that we can efficiently
2655  // create a binary search tree from them.
2656  CaseVector Cases;
2657  size_t numCmps = Clusterify(Cases, SI);
2658  DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2659               << ". Total compares: " << numCmps << '\n');
2660  (void)numCmps;
2661
2662  // Get the Value to be switched on and default basic blocks, which will be
2663  // inserted into CaseBlock records, representing basic blocks in the binary
2664  // search tree.
2665  const Value *SV = SI.getCondition();
2666
2667  // Push the initial CaseRec onto the worklist
2668  CaseRecVector WorkList;
2669  WorkList.push_back(CaseRec(SwitchMBB,0,0,
2670                             CaseRange(Cases.begin(),Cases.end())));
2671
2672  while (!WorkList.empty()) {
2673    // Grab a record representing a case range to process off the worklist
2674    CaseRec CR = WorkList.back();
2675    WorkList.pop_back();
2676
2677    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2678      continue;
2679
2680    // If the range has few cases (two or less) emit a series of specific
2681    // tests.
2682    if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
2683      continue;
2684
2685    // If the switch has more than N blocks, and is at least 40% dense, and the
2686    // target supports indirect branches, then emit a jump table rather than
2687    // lowering the switch to a binary tree of conditional branches.
2688    // N defaults to 4 and is controlled via TLS.getMinimumJumpTableEntries().
2689    if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2690      continue;
2691
2692    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2693    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2694    handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
2695  }
2696}
2697
2698void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2699  MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2700
2701  // Update machine-CFG edges with unique successors.
2702  SmallSet<BasicBlock*, 32> Done;
2703  for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2704    BasicBlock *BB = I.getSuccessor(i);
2705    bool Inserted = Done.insert(BB);
2706    if (!Inserted)
2707        continue;
2708
2709    MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2710    addSuccessorWithWeight(IndirectBrMBB, Succ);
2711  }
2712
2713  DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2714                          MVT::Other, getControlRoot(),
2715                          getValue(I.getAddress())));
2716}
2717
2718void SelectionDAGBuilder::visitFSub(const User &I) {
2719  // -0.0 - X --> fneg
2720  Type *Ty = I.getType();
2721  if (isa<Constant>(I.getOperand(0)) &&
2722      I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2723    SDValue Op2 = getValue(I.getOperand(1));
2724    setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2725                             Op2.getValueType(), Op2));
2726    return;
2727  }
2728
2729  visitBinary(I, ISD::FSUB);
2730}
2731
2732void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2733  SDValue Op1 = getValue(I.getOperand(0));
2734  SDValue Op2 = getValue(I.getOperand(1));
2735  setValue(&I, DAG.getNode(OpCode, getCurSDLoc(),
2736                           Op1.getValueType(), Op1, Op2));
2737}
2738
2739void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2740  SDValue Op1 = getValue(I.getOperand(0));
2741  SDValue Op2 = getValue(I.getOperand(1));
2742
2743  EVT ShiftTy = TM.getTargetLowering()->getShiftAmountTy(Op2.getValueType());
2744
2745  // Coerce the shift amount to the right type if we can.
2746  if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2747    unsigned ShiftSize = ShiftTy.getSizeInBits();
2748    unsigned Op2Size = Op2.getValueType().getSizeInBits();
2749    SDLoc DL = getCurSDLoc();
2750
2751    // If the operand is smaller than the shift count type, promote it.
2752    if (ShiftSize > Op2Size)
2753      Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2754
2755    // If the operand is larger than the shift count type but the shift
2756    // count type has enough bits to represent any shift value, truncate
2757    // it now. This is a common case and it exposes the truncate to
2758    // optimization early.
2759    else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2760      Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2761    // Otherwise we'll need to temporarily settle for some other convenient
2762    // type.  Type legalization will make adjustments once the shiftee is split.
2763    else
2764      Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2765  }
2766
2767  setValue(&I, DAG.getNode(Opcode, getCurSDLoc(),
2768                           Op1.getValueType(), Op1, Op2));
2769}
2770
2771void SelectionDAGBuilder::visitSDiv(const User &I) {
2772  SDValue Op1 = getValue(I.getOperand(0));
2773  SDValue Op2 = getValue(I.getOperand(1));
2774
2775  // Turn exact SDivs into multiplications.
2776  // FIXME: This should be in DAGCombiner, but it doesn't have access to the
2777  // exact bit.
2778  if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() &&
2779      !isa<ConstantSDNode>(Op1) &&
2780      isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue())
2781    setValue(&I, TM.getTargetLowering()->BuildExactSDIV(Op1, Op2,
2782                                                        getCurSDLoc(), DAG));
2783  else
2784    setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(),
2785                             Op1, Op2));
2786}
2787
2788void SelectionDAGBuilder::visitICmp(const User &I) {
2789  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2790  if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2791    predicate = IC->getPredicate();
2792  else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2793    predicate = ICmpInst::Predicate(IC->getPredicate());
2794  SDValue Op1 = getValue(I.getOperand(0));
2795  SDValue Op2 = getValue(I.getOperand(1));
2796  ISD::CondCode Opcode = getICmpCondCode(predicate);
2797
2798  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2799  setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
2800}
2801
2802void SelectionDAGBuilder::visitFCmp(const User &I) {
2803  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2804  if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2805    predicate = FC->getPredicate();
2806  else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2807    predicate = FCmpInst::Predicate(FC->getPredicate());
2808  SDValue Op1 = getValue(I.getOperand(0));
2809  SDValue Op2 = getValue(I.getOperand(1));
2810  ISD::CondCode Condition = getFCmpCondCode(predicate);
2811  if (TM.Options.NoNaNsFPMath)
2812    Condition = getFCmpCodeWithoutNaN(Condition);
2813  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2814  setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
2815}
2816
2817void SelectionDAGBuilder::visitSelect(const User &I) {
2818  SmallVector<EVT, 4> ValueVTs;
2819  ComputeValueVTs(*TM.getTargetLowering(), I.getType(), ValueVTs);
2820  unsigned NumValues = ValueVTs.size();
2821  if (NumValues == 0) return;
2822
2823  SmallVector<SDValue, 4> Values(NumValues);
2824  SDValue Cond     = getValue(I.getOperand(0));
2825  SDValue TrueVal  = getValue(I.getOperand(1));
2826  SDValue FalseVal = getValue(I.getOperand(2));
2827  ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2828    ISD::VSELECT : ISD::SELECT;
2829
2830  for (unsigned i = 0; i != NumValues; ++i)
2831    Values[i] = DAG.getNode(OpCode, getCurSDLoc(),
2832                            TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2833                            Cond,
2834                            SDValue(TrueVal.getNode(),
2835                                    TrueVal.getResNo() + i),
2836                            SDValue(FalseVal.getNode(),
2837                                    FalseVal.getResNo() + i));
2838
2839  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
2840                           DAG.getVTList(&ValueVTs[0], NumValues),
2841                           &Values[0], NumValues));
2842}
2843
2844void SelectionDAGBuilder::visitTrunc(const User &I) {
2845  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2846  SDValue N = getValue(I.getOperand(0));
2847  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2848  setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
2849}
2850
2851void SelectionDAGBuilder::visitZExt(const User &I) {
2852  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2853  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2854  SDValue N = getValue(I.getOperand(0));
2855  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2856  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
2857}
2858
2859void SelectionDAGBuilder::visitSExt(const User &I) {
2860  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2861  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2862  SDValue N = getValue(I.getOperand(0));
2863  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2864  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
2865}
2866
2867void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2868  // FPTrunc is never a no-op cast, no need to check
2869  SDValue N = getValue(I.getOperand(0));
2870  const TargetLowering *TLI = TM.getTargetLowering();
2871  EVT DestVT = TLI->getValueType(I.getType());
2872  setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurSDLoc(),
2873                           DestVT, N,
2874                           DAG.getTargetConstant(0, TLI->getPointerTy())));
2875}
2876
2877void SelectionDAGBuilder::visitFPExt(const User &I) {
2878  // FPExt is never a no-op cast, no need to check
2879  SDValue N = getValue(I.getOperand(0));
2880  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2881  setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
2882}
2883
2884void SelectionDAGBuilder::visitFPToUI(const User &I) {
2885  // FPToUI is never a no-op cast, no need to check
2886  SDValue N = getValue(I.getOperand(0));
2887  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2888  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
2889}
2890
2891void SelectionDAGBuilder::visitFPToSI(const User &I) {
2892  // FPToSI is never a no-op cast, no need to check
2893  SDValue N = getValue(I.getOperand(0));
2894  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2895  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
2896}
2897
2898void SelectionDAGBuilder::visitUIToFP(const User &I) {
2899  // UIToFP is never a no-op cast, no need to check
2900  SDValue N = getValue(I.getOperand(0));
2901  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2902  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
2903}
2904
2905void SelectionDAGBuilder::visitSIToFP(const User &I) {
2906  // SIToFP is never a no-op cast, no need to check
2907  SDValue N = getValue(I.getOperand(0));
2908  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2909  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
2910}
2911
2912void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2913  // What to do depends on the size of the integer and the size of the pointer.
2914  // We can either truncate, zero extend, or no-op, accordingly.
2915  SDValue N = getValue(I.getOperand(0));
2916  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2917  setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
2918}
2919
2920void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2921  // What to do depends on the size of the integer and the size of the pointer.
2922  // We can either truncate, zero extend, or no-op, accordingly.
2923  SDValue N = getValue(I.getOperand(0));
2924  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2925  setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
2926}
2927
2928void SelectionDAGBuilder::visitBitCast(const User &I) {
2929  SDValue N = getValue(I.getOperand(0));
2930  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2931
2932  // BitCast assures us that source and destination are the same size so this is
2933  // either a BITCAST or a no-op.
2934  if (DestVT != N.getValueType())
2935    setValue(&I, DAG.getNode(ISD::BITCAST, getCurSDLoc(),
2936                             DestVT, N)); // convert types.
2937  else
2938    setValue(&I, N);            // noop cast.
2939}
2940
2941void SelectionDAGBuilder::visitInsertElement(const User &I) {
2942  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2943  SDValue InVec = getValue(I.getOperand(0));
2944  SDValue InVal = getValue(I.getOperand(1));
2945  SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)),
2946                                     getCurSDLoc(), TLI.getVectorIdxTy());
2947  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
2948                           TM.getTargetLowering()->getValueType(I.getType()),
2949                           InVec, InVal, InIdx));
2950}
2951
2952void SelectionDAGBuilder::visitExtractElement(const User &I) {
2953  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2954  SDValue InVec = getValue(I.getOperand(0));
2955  SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)),
2956                                     getCurSDLoc(), TLI.getVectorIdxTy());
2957  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
2958                           TM.getTargetLowering()->getValueType(I.getType()),
2959                           InVec, InIdx));
2960}
2961
2962// Utility for visitShuffleVector - Return true if every element in Mask,
2963// beginning from position Pos and ending in Pos+Size, falls within the
2964// specified sequential range [L, L+Pos). or is undef.
2965static bool isSequentialInRange(const SmallVectorImpl<int> &Mask,
2966                                unsigned Pos, unsigned Size, int Low) {
2967  for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
2968    if (Mask[i] >= 0 && Mask[i] != Low)
2969      return false;
2970  return true;
2971}
2972
2973void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2974  SDValue Src1 = getValue(I.getOperand(0));
2975  SDValue Src2 = getValue(I.getOperand(1));
2976
2977  SmallVector<int, 8> Mask;
2978  ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
2979  unsigned MaskNumElts = Mask.size();
2980
2981  const TargetLowering *TLI = TM.getTargetLowering();
2982  EVT VT = TLI->getValueType(I.getType());
2983  EVT SrcVT = Src1.getValueType();
2984  unsigned SrcNumElts = SrcVT.getVectorNumElements();
2985
2986  if (SrcNumElts == MaskNumElts) {
2987    setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
2988                                      &Mask[0]));
2989    return;
2990  }
2991
2992  // Normalize the shuffle vector since mask and vector length don't match.
2993  if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2994    // Mask is longer than the source vectors and is a multiple of the source
2995    // vectors.  We can use concatenate vector to make the mask and vectors
2996    // lengths match.
2997    if (SrcNumElts*2 == MaskNumElts) {
2998      // First check for Src1 in low and Src2 in high
2999      if (isSequentialInRange(Mask, 0, SrcNumElts, 0) &&
3000          isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) {
3001        // The shuffle is concatenating two vectors together.
3002        setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(),
3003                                 VT, Src1, Src2));
3004        return;
3005      }
3006      // Then check for Src2 in low and Src1 in high
3007      if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) &&
3008          isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) {
3009        // The shuffle is concatenating two vectors together.
3010        setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(),
3011                                 VT, Src2, Src1));
3012        return;
3013      }
3014    }
3015
3016    // Pad both vectors with undefs to make them the same length as the mask.
3017    unsigned NumConcat = MaskNumElts / SrcNumElts;
3018    bool Src1U = Src1.getOpcode() == ISD::UNDEF;
3019    bool Src2U = Src2.getOpcode() == ISD::UNDEF;
3020    SDValue UndefVal = DAG.getUNDEF(SrcVT);
3021
3022    SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3023    SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3024    MOps1[0] = Src1;
3025    MOps2[0] = Src2;
3026
3027    Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
3028                                                  getCurSDLoc(), VT,
3029                                                  &MOps1[0], NumConcat);
3030    Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
3031                                                  getCurSDLoc(), VT,
3032                                                  &MOps2[0], NumConcat);
3033
3034    // Readjust mask for new input vector length.
3035    SmallVector<int, 8> MappedOps;
3036    for (unsigned i = 0; i != MaskNumElts; ++i) {
3037      int Idx = Mask[i];
3038      if (Idx >= (int)SrcNumElts)
3039        Idx -= SrcNumElts - MaskNumElts;
3040      MappedOps.push_back(Idx);
3041    }
3042
3043    setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
3044                                      &MappedOps[0]));
3045    return;
3046  }
3047
3048  if (SrcNumElts > MaskNumElts) {
3049    // Analyze the access pattern of the vector to see if we can extract
3050    // two subvectors and do the shuffle. The analysis is done by calculating
3051    // the range of elements the mask access on both vectors.
3052    int MinRange[2] = { static_cast<int>(SrcNumElts),
3053                        static_cast<int>(SrcNumElts)};
3054    int MaxRange[2] = {-1, -1};
3055
3056    for (unsigned i = 0; i != MaskNumElts; ++i) {
3057      int Idx = Mask[i];
3058      unsigned Input = 0;
3059      if (Idx < 0)
3060        continue;
3061
3062      if (Idx >= (int)SrcNumElts) {
3063        Input = 1;
3064        Idx -= SrcNumElts;
3065      }
3066      if (Idx > MaxRange[Input])
3067        MaxRange[Input] = Idx;
3068      if (Idx < MinRange[Input])
3069        MinRange[Input] = Idx;
3070    }
3071
3072    // Check if the access is smaller than the vector size and can we find
3073    // a reasonable extract index.
3074    int RangeUse[2] = { -1, -1 };  // 0 = Unused, 1 = Extract, -1 = Can not
3075                                   // Extract.
3076    int StartIdx[2];  // StartIdx to extract from
3077    for (unsigned Input = 0; Input < 2; ++Input) {
3078      if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) {
3079        RangeUse[Input] = 0; // Unused
3080        StartIdx[Input] = 0;
3081        continue;
3082      }
3083
3084      // Find a good start index that is a multiple of the mask length. Then
3085      // see if the rest of the elements are in range.
3086      StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
3087      if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
3088          StartIdx[Input] + MaskNumElts <= SrcNumElts)
3089        RangeUse[Input] = 1; // Extract from a multiple of the mask length.
3090    }
3091
3092    if (RangeUse[0] == 0 && RangeUse[1] == 0) {
3093      setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3094      return;
3095    }
3096    if (RangeUse[0] >= 0 && RangeUse[1] >= 0) {
3097      // Extract appropriate subvector and generate a vector shuffle
3098      for (unsigned Input = 0; Input < 2; ++Input) {
3099        SDValue &Src = Input == 0 ? Src1 : Src2;
3100        if (RangeUse[Input] == 0)
3101          Src = DAG.getUNDEF(VT);
3102        else
3103          Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurSDLoc(), VT,
3104                            Src, DAG.getConstant(StartIdx[Input],
3105                                                 TLI->getVectorIdxTy()));
3106      }
3107
3108      // Calculate new mask.
3109      SmallVector<int, 8> MappedOps;
3110      for (unsigned i = 0; i != MaskNumElts; ++i) {
3111        int Idx = Mask[i];
3112        if (Idx >= 0) {
3113          if (Idx < (int)SrcNumElts)
3114            Idx -= StartIdx[0];
3115          else
3116            Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3117        }
3118        MappedOps.push_back(Idx);
3119      }
3120
3121      setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
3122                                        &MappedOps[0]));
3123      return;
3124    }
3125  }
3126
3127  // We can't use either concat vectors or extract subvectors so fall back to
3128  // replacing the shuffle with extract and build vector.
3129  // to insert and build vector.
3130  EVT EltVT = VT.getVectorElementType();
3131  EVT IdxVT = TLI->getVectorIdxTy();
3132  SmallVector<SDValue,8> Ops;
3133  for (unsigned i = 0; i != MaskNumElts; ++i) {
3134    int Idx = Mask[i];
3135    SDValue Res;
3136
3137    if (Idx < 0) {
3138      Res = DAG.getUNDEF(EltVT);
3139    } else {
3140      SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3141      if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3142
3143      Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3144                        EltVT, Src, DAG.getConstant(Idx, IdxVT));
3145    }
3146
3147    Ops.push_back(Res);
3148  }
3149
3150  setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(),
3151                           VT, &Ops[0], Ops.size()));
3152}
3153
3154void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
3155  const Value *Op0 = I.getOperand(0);
3156  const Value *Op1 = I.getOperand(1);
3157  Type *AggTy = I.getType();
3158  Type *ValTy = Op1->getType();
3159  bool IntoUndef = isa<UndefValue>(Op0);
3160  bool FromUndef = isa<UndefValue>(Op1);
3161
3162  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3163
3164  const TargetLowering *TLI = TM.getTargetLowering();
3165  SmallVector<EVT, 4> AggValueVTs;
3166  ComputeValueVTs(*TLI, AggTy, AggValueVTs);
3167  SmallVector<EVT, 4> ValValueVTs;
3168  ComputeValueVTs(*TLI, ValTy, ValValueVTs);
3169
3170  unsigned NumAggValues = AggValueVTs.size();
3171  unsigned NumValValues = ValValueVTs.size();
3172  SmallVector<SDValue, 4> Values(NumAggValues);
3173
3174  SDValue Agg = getValue(Op0);
3175  unsigned i = 0;
3176  // Copy the beginning value(s) from the original aggregate.
3177  for (; i != LinearIndex; ++i)
3178    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3179                SDValue(Agg.getNode(), Agg.getResNo() + i);
3180  // Copy values from the inserted value(s).
3181  if (NumValValues) {
3182    SDValue Val = getValue(Op1);
3183    for (; i != LinearIndex + NumValValues; ++i)
3184      Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3185                  SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3186  }
3187  // Copy remaining value(s) from the original aggregate.
3188  for (; i != NumAggValues; ++i)
3189    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3190                SDValue(Agg.getNode(), Agg.getResNo() + i);
3191
3192  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3193                           DAG.getVTList(&AggValueVTs[0], NumAggValues),
3194                           &Values[0], NumAggValues));
3195}
3196
3197void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
3198  const Value *Op0 = I.getOperand(0);
3199  Type *AggTy = Op0->getType();
3200  Type *ValTy = I.getType();
3201  bool OutOfUndef = isa<UndefValue>(Op0);
3202
3203  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3204
3205  const TargetLowering *TLI = TM.getTargetLowering();
3206  SmallVector<EVT, 4> ValValueVTs;
3207  ComputeValueVTs(*TLI, ValTy, ValValueVTs);
3208
3209  unsigned NumValValues = ValValueVTs.size();
3210
3211  // Ignore a extractvalue that produces an empty object
3212  if (!NumValValues) {
3213    setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3214    return;
3215  }
3216
3217  SmallVector<SDValue, 4> Values(NumValValues);
3218
3219  SDValue Agg = getValue(Op0);
3220  // Copy out the selected value(s).
3221  for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3222    Values[i - LinearIndex] =
3223      OutOfUndef ?
3224        DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3225        SDValue(Agg.getNode(), Agg.getResNo() + i);
3226
3227  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3228                           DAG.getVTList(&ValValueVTs[0], NumValValues),
3229                           &Values[0], NumValValues));
3230}
3231
3232void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3233  Value *Op0 = I.getOperand(0);
3234  // Note that the pointer operand may be a vector of pointers. Take the scalar
3235  // element which holds a pointer.
3236  Type *Ty = Op0->getType()->getScalarType();
3237  unsigned AS = Ty->getPointerAddressSpace();
3238  SDValue N = getValue(Op0);
3239
3240  for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
3241       OI != E; ++OI) {
3242    const Value *Idx = *OI;
3243    if (StructType *StTy = dyn_cast<StructType>(Ty)) {
3244      unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3245      if (Field) {
3246        // N = N + Offset
3247        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
3248        N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N,
3249                        DAG.getConstant(Offset, N.getValueType()));
3250      }
3251
3252      Ty = StTy->getElementType(Field);
3253    } else {
3254      Ty = cast<SequentialType>(Ty)->getElementType();
3255
3256      // If this is a constant subscript, handle it quickly.
3257      const TargetLowering *TLI = TM.getTargetLowering();
3258      if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
3259        if (CI->isZero()) continue;
3260        uint64_t Offs =
3261            TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
3262        SDValue OffsVal;
3263        EVT PTy = TLI->getPointerTy(AS);
3264        unsigned PtrBits = PTy.getSizeInBits();
3265        if (PtrBits < 64)
3266          OffsVal = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), PTy,
3267                                DAG.getConstant(Offs, MVT::i64));
3268        else
3269          OffsVal = DAG.getConstant(Offs, PTy);
3270
3271        N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N,
3272                        OffsVal);
3273        continue;
3274      }
3275
3276      // N = N + Idx * ElementSize;
3277      APInt ElementSize = APInt(TLI->getPointerSizeInBits(AS),
3278                                TD->getTypeAllocSize(Ty));
3279      SDValue IdxN = getValue(Idx);
3280
3281      // If the index is smaller or larger than intptr_t, truncate or extend
3282      // it.
3283      IdxN = DAG.getSExtOrTrunc(IdxN, getCurSDLoc(), N.getValueType());
3284
3285      // If this is a multiply by a power of two, turn it into a shl
3286      // immediately.  This is a very common case.
3287      if (ElementSize != 1) {
3288        if (ElementSize.isPowerOf2()) {
3289          unsigned Amt = ElementSize.logBase2();
3290          IdxN = DAG.getNode(ISD::SHL, getCurSDLoc(),
3291                             N.getValueType(), IdxN,
3292                             DAG.getConstant(Amt, IdxN.getValueType()));
3293        } else {
3294          SDValue Scale = DAG.getConstant(ElementSize, IdxN.getValueType());
3295          IdxN = DAG.getNode(ISD::MUL, getCurSDLoc(),
3296                             N.getValueType(), IdxN, Scale);
3297        }
3298      }
3299
3300      N = DAG.getNode(ISD::ADD, getCurSDLoc(),
3301                      N.getValueType(), N, IdxN);
3302    }
3303  }
3304
3305  setValue(&I, N);
3306}
3307
3308void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3309  // If this is a fixed sized alloca in the entry block of the function,
3310  // allocate it statically on the stack.
3311  if (FuncInfo.StaticAllocaMap.count(&I))
3312    return;   // getValue will auto-populate this.
3313
3314  Type *Ty = I.getAllocatedType();
3315  const TargetLowering *TLI = TM.getTargetLowering();
3316  uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty);
3317  unsigned Align =
3318    std::max((unsigned)TLI->getDataLayout()->getPrefTypeAlignment(Ty),
3319             I.getAlignment());
3320
3321  SDValue AllocSize = getValue(I.getArraySize());
3322
3323  EVT IntPtr = TLI->getPointerTy();
3324  if (AllocSize.getValueType() != IntPtr)
3325    AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurSDLoc(), IntPtr);
3326
3327  AllocSize = DAG.getNode(ISD::MUL, getCurSDLoc(), IntPtr,
3328                          AllocSize,
3329                          DAG.getConstant(TySize, IntPtr));
3330
3331  // Handle alignment.  If the requested alignment is less than or equal to
3332  // the stack alignment, ignore it.  If the size is greater than or equal to
3333  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3334  unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
3335  if (Align <= StackAlign)
3336    Align = 0;
3337
3338  // Round the size of the allocation up to the stack alignment size
3339  // by add SA-1 to the size.
3340  AllocSize = DAG.getNode(ISD::ADD, getCurSDLoc(),
3341                          AllocSize.getValueType(), AllocSize,
3342                          DAG.getIntPtrConstant(StackAlign-1));
3343
3344  // Mask out the low bits for alignment purposes.
3345  AllocSize = DAG.getNode(ISD::AND, getCurSDLoc(),
3346                          AllocSize.getValueType(), AllocSize,
3347                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
3348
3349  SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
3350  SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3351  SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurSDLoc(),
3352                            VTs, Ops, 3);
3353  setValue(&I, DSA);
3354  DAG.setRoot(DSA.getValue(1));
3355
3356  // Inform the Frame Information that we have just allocated a variable-sized
3357  // object.
3358  FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1);
3359}
3360
3361void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3362  if (I.isAtomic())
3363    return visitAtomicLoad(I);
3364
3365  const Value *SV = I.getOperand(0);
3366  SDValue Ptr = getValue(SV);
3367
3368  Type *Ty = I.getType();
3369
3370  bool isVolatile = I.isVolatile();
3371  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3372  bool isInvariant = I.getMetadata("invariant.load") != 0;
3373  unsigned Alignment = I.getAlignment();
3374  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3375  const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3376
3377  SmallVector<EVT, 4> ValueVTs;
3378  SmallVector<uint64_t, 4> Offsets;
3379  ComputeValueVTs(*TM.getTargetLowering(), Ty, ValueVTs, &Offsets);
3380  unsigned NumValues = ValueVTs.size();
3381  if (NumValues == 0)
3382    return;
3383
3384  SDValue Root;
3385  bool ConstantMemory = false;
3386  if (I.isVolatile() || NumValues > MaxParallelChains)
3387    // Serialize volatile loads with other side effects.
3388    Root = getRoot();
3389  else if (AA->pointsToConstantMemory(
3390             AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) {
3391    // Do not serialize (non-volatile) loads of constant memory with anything.
3392    Root = DAG.getEntryNode();
3393    ConstantMemory = true;
3394  } else {
3395    // Do not serialize non-volatile loads against each other.
3396    Root = DAG.getRoot();
3397  }
3398
3399  SmallVector<SDValue, 4> Values(NumValues);
3400  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3401                                          NumValues));
3402  EVT PtrVT = Ptr.getValueType();
3403  unsigned ChainI = 0;
3404  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3405    // Serializing loads here may result in excessive register pressure, and
3406    // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3407    // could recover a bit by hoisting nodes upward in the chain by recognizing
3408    // they are side-effect free or do not alias. The optimizer should really
3409    // avoid this case by converting large object/array copies to llvm.memcpy
3410    // (MaxParallelChains should always remain as failsafe).
3411    if (ChainI == MaxParallelChains) {
3412      assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3413      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
3414                                  MVT::Other, &Chains[0], ChainI);
3415      Root = Chain;
3416      ChainI = 0;
3417    }
3418    SDValue A = DAG.getNode(ISD::ADD, getCurSDLoc(),
3419                            PtrVT, Ptr,
3420                            DAG.getConstant(Offsets[i], PtrVT));
3421    SDValue L = DAG.getLoad(ValueVTs[i], getCurSDLoc(), Root,
3422                            A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
3423                            isNonTemporal, isInvariant, Alignment, TBAAInfo,
3424                            Ranges);
3425
3426    Values[i] = L;
3427    Chains[ChainI] = L.getValue(1);
3428  }
3429
3430  if (!ConstantMemory) {
3431    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
3432                                MVT::Other, &Chains[0], ChainI);
3433    if (isVolatile)
3434      DAG.setRoot(Chain);
3435    else
3436      PendingLoads.push_back(Chain);
3437  }
3438
3439  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3440                           DAG.getVTList(&ValueVTs[0], NumValues),
3441                           &Values[0], NumValues));
3442}
3443
3444void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3445  if (I.isAtomic())
3446    return visitAtomicStore(I);
3447
3448  const Value *SrcV = I.getOperand(0);
3449  const Value *PtrV = I.getOperand(1);
3450
3451  SmallVector<EVT, 4> ValueVTs;
3452  SmallVector<uint64_t, 4> Offsets;
3453  ComputeValueVTs(*TM.getTargetLowering(), SrcV->getType(), ValueVTs, &Offsets);
3454  unsigned NumValues = ValueVTs.size();
3455  if (NumValues == 0)
3456    return;
3457
3458  // Get the lowered operands. Note that we do this after
3459  // checking if NumResults is zero, because with zero results
3460  // the operands won't have values in the map.
3461  SDValue Src = getValue(SrcV);
3462  SDValue Ptr = getValue(PtrV);
3463
3464  SDValue Root = getRoot();
3465  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3466                                          NumValues));
3467  EVT PtrVT = Ptr.getValueType();
3468  bool isVolatile = I.isVolatile();
3469  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3470  unsigned Alignment = I.getAlignment();
3471  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3472
3473  unsigned ChainI = 0;
3474  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3475    // See visitLoad comments.
3476    if (ChainI == MaxParallelChains) {
3477      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
3478                                  MVT::Other, &Chains[0], ChainI);
3479      Root = Chain;
3480      ChainI = 0;
3481    }
3482    SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT, Ptr,
3483                              DAG.getConstant(Offsets[i], PtrVT));
3484    SDValue St = DAG.getStore(Root, getCurSDLoc(),
3485                              SDValue(Src.getNode(), Src.getResNo() + i),
3486                              Add, MachinePointerInfo(PtrV, Offsets[i]),
3487                              isVolatile, isNonTemporal, Alignment, TBAAInfo);
3488    Chains[ChainI] = St;
3489  }
3490
3491  SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
3492                                  MVT::Other, &Chains[0], ChainI);
3493  DAG.setRoot(StoreNode);
3494}
3495
3496static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order,
3497                                    SynchronizationScope Scope,
3498                                    bool Before, SDLoc dl,
3499                                    SelectionDAG &DAG,
3500                                    const TargetLowering &TLI) {
3501  // Fence, if necessary
3502  if (Before) {
3503    if (Order == AcquireRelease || Order == SequentiallyConsistent)
3504      Order = Release;
3505    else if (Order == Acquire || Order == Monotonic)
3506      return Chain;
3507  } else {
3508    if (Order == AcquireRelease)
3509      Order = Acquire;
3510    else if (Order == Release || Order == Monotonic)
3511      return Chain;
3512  }
3513  SDValue Ops[3];
3514  Ops[0] = Chain;
3515  Ops[1] = DAG.getConstant(Order, TLI.getPointerTy());
3516  Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy());
3517  return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3);
3518}
3519
3520void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
3521  SDLoc dl = getCurSDLoc();
3522  AtomicOrdering Order = I.getOrdering();
3523  SynchronizationScope Scope = I.getSynchScope();
3524
3525  SDValue InChain = getRoot();
3526
3527  const TargetLowering *TLI = TM.getTargetLowering();
3528  if (TLI->getInsertFencesForAtomic())
3529    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3530                                   DAG, *TLI);
3531
3532  SDValue L =
3533    DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl,
3534                  getValue(I.getCompareOperand()).getSimpleValueType(),
3535                  InChain,
3536                  getValue(I.getPointerOperand()),
3537                  getValue(I.getCompareOperand()),
3538                  getValue(I.getNewValOperand()),
3539                  MachinePointerInfo(I.getPointerOperand()), 0 /* Alignment */,
3540                  TLI->getInsertFencesForAtomic() ? Monotonic : Order,
3541                  Scope);
3542
3543  SDValue OutChain = L.getValue(1);
3544
3545  if (TLI->getInsertFencesForAtomic())
3546    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3547                                    DAG, *TLI);
3548
3549  setValue(&I, L);
3550  DAG.setRoot(OutChain);
3551}
3552
3553void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
3554  SDLoc dl = getCurSDLoc();
3555  ISD::NodeType NT;
3556  switch (I.getOperation()) {
3557  default: llvm_unreachable("Unknown atomicrmw operation");
3558  case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
3559  case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
3560  case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
3561  case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
3562  case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
3563  case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
3564  case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
3565  case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
3566  case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
3567  case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
3568  case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
3569  }
3570  AtomicOrdering Order = I.getOrdering();
3571  SynchronizationScope Scope = I.getSynchScope();
3572
3573  SDValue InChain = getRoot();
3574
3575  const TargetLowering *TLI = TM.getTargetLowering();
3576  if (TLI->getInsertFencesForAtomic())
3577    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3578                                   DAG, *TLI);
3579
3580  SDValue L =
3581    DAG.getAtomic(NT, dl,
3582                  getValue(I.getValOperand()).getSimpleValueType(),
3583                  InChain,
3584                  getValue(I.getPointerOperand()),
3585                  getValue(I.getValOperand()),
3586                  I.getPointerOperand(), 0 /* Alignment */,
3587                  TLI->getInsertFencesForAtomic() ? Monotonic : Order,
3588                  Scope);
3589
3590  SDValue OutChain = L.getValue(1);
3591
3592  if (TLI->getInsertFencesForAtomic())
3593    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3594                                    DAG, *TLI);
3595
3596  setValue(&I, L);
3597  DAG.setRoot(OutChain);
3598}
3599
3600void SelectionDAGBuilder::visitFence(const FenceInst &I) {
3601  SDLoc dl = getCurSDLoc();
3602  const TargetLowering *TLI = TM.getTargetLowering();
3603  SDValue Ops[3];
3604  Ops[0] = getRoot();
3605  Ops[1] = DAG.getConstant(I.getOrdering(), TLI->getPointerTy());
3606  Ops[2] = DAG.getConstant(I.getSynchScope(), TLI->getPointerTy());
3607  DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3));
3608}
3609
3610void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
3611  SDLoc dl = getCurSDLoc();
3612  AtomicOrdering Order = I.getOrdering();
3613  SynchronizationScope Scope = I.getSynchScope();
3614
3615  SDValue InChain = getRoot();
3616
3617  const TargetLowering *TLI = TM.getTargetLowering();
3618  EVT VT = TLI->getValueType(I.getType());
3619
3620  if (I.getAlignment() < VT.getSizeInBits() / 8)
3621    report_fatal_error("Cannot generate unaligned atomic load");
3622
3623  SDValue L =
3624    DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
3625                  getValue(I.getPointerOperand()),
3626                  I.getPointerOperand(), I.getAlignment(),
3627                  TLI->getInsertFencesForAtomic() ? Monotonic : Order,
3628                  Scope);
3629
3630  SDValue OutChain = L.getValue(1);
3631
3632  if (TLI->getInsertFencesForAtomic())
3633    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3634                                    DAG, *TLI);
3635
3636  setValue(&I, L);
3637  DAG.setRoot(OutChain);
3638}
3639
3640void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
3641  SDLoc dl = getCurSDLoc();
3642
3643  AtomicOrdering Order = I.getOrdering();
3644  SynchronizationScope Scope = I.getSynchScope();
3645
3646  SDValue InChain = getRoot();
3647
3648  const TargetLowering *TLI = TM.getTargetLowering();
3649  EVT VT = TLI->getValueType(I.getValueOperand()->getType());
3650
3651  if (I.getAlignment() < VT.getSizeInBits() / 8)
3652    report_fatal_error("Cannot generate unaligned atomic store");
3653
3654  if (TLI->getInsertFencesForAtomic())
3655    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3656                                   DAG, *TLI);
3657
3658  SDValue OutChain =
3659    DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
3660                  InChain,
3661                  getValue(I.getPointerOperand()),
3662                  getValue(I.getValueOperand()),
3663                  I.getPointerOperand(), I.getAlignment(),
3664                  TLI->getInsertFencesForAtomic() ? Monotonic : Order,
3665                  Scope);
3666
3667  if (TLI->getInsertFencesForAtomic())
3668    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3669                                    DAG, *TLI);
3670
3671  DAG.setRoot(OutChain);
3672}
3673
3674/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3675/// node.
3676void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3677                                               unsigned Intrinsic) {
3678  bool HasChain = !I.doesNotAccessMemory();
3679  bool OnlyLoad = HasChain && I.onlyReadsMemory();
3680
3681  // Build the operand list.
3682  SmallVector<SDValue, 8> Ops;
3683  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
3684    if (OnlyLoad) {
3685      // We don't need to serialize loads against other loads.
3686      Ops.push_back(DAG.getRoot());
3687    } else {
3688      Ops.push_back(getRoot());
3689    }
3690  }
3691
3692  // Info is set by getTgtMemInstrinsic
3693  TargetLowering::IntrinsicInfo Info;
3694  const TargetLowering *TLI = TM.getTargetLowering();
3695  bool IsTgtIntrinsic = TLI->getTgtMemIntrinsic(Info, I, Intrinsic);
3696
3697  // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3698  if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
3699      Info.opc == ISD::INTRINSIC_W_CHAIN)
3700    Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI->getPointerTy()));
3701
3702  // Add all operands of the call to the operand list.
3703  for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
3704    SDValue Op = getValue(I.getArgOperand(i));
3705    Ops.push_back(Op);
3706  }
3707
3708  SmallVector<EVT, 4> ValueVTs;
3709  ComputeValueVTs(*TLI, I.getType(), ValueVTs);
3710
3711  if (HasChain)
3712    ValueVTs.push_back(MVT::Other);
3713
3714  SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
3715
3716  // Create the node.
3717  SDValue Result;
3718  if (IsTgtIntrinsic) {
3719    // This is target intrinsic that touches memory
3720    Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(),
3721                                     VTs, &Ops[0], Ops.size(),
3722                                     Info.memVT,
3723                                   MachinePointerInfo(Info.ptrVal, Info.offset),
3724                                     Info.align, Info.vol,
3725                                     Info.readMem, Info.writeMem);
3726  } else if (!HasChain) {
3727    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(),
3728                         VTs, &Ops[0], Ops.size());
3729  } else if (!I.getType()->isVoidTy()) {
3730    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(),
3731                         VTs, &Ops[0], Ops.size());
3732  } else {
3733    Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(),
3734                         VTs, &Ops[0], Ops.size());
3735  }
3736
3737  if (HasChain) {
3738    SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3739    if (OnlyLoad)
3740      PendingLoads.push_back(Chain);
3741    else
3742      DAG.setRoot(Chain);
3743  }
3744
3745  if (!I.getType()->isVoidTy()) {
3746    if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3747      EVT VT = TLI->getValueType(PTy);
3748      Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
3749    }
3750
3751    setValue(&I, Result);
3752  }
3753}
3754
3755/// GetSignificand - Get the significand and build it into a floating-point
3756/// number with exponent of 1:
3757///
3758///   Op = (Op & 0x007fffff) | 0x3f800000;
3759///
3760/// where Op is the hexadecimal representation of floating point value.
3761static SDValue
3762GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) {
3763  SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3764                           DAG.getConstant(0x007fffff, MVT::i32));
3765  SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3766                           DAG.getConstant(0x3f800000, MVT::i32));
3767  return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
3768}
3769
3770/// GetExponent - Get the exponent:
3771///
3772///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3773///
3774/// where Op is the hexadecimal representation of floating point value.
3775static SDValue
3776GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3777            SDLoc dl) {
3778  SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3779                           DAG.getConstant(0x7f800000, MVT::i32));
3780  SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3781                           DAG.getConstant(23, TLI.getPointerTy()));
3782  SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3783                           DAG.getConstant(127, MVT::i32));
3784  return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3785}
3786
3787/// getF32Constant - Get 32-bit floating point constant.
3788static SDValue
3789getF32Constant(SelectionDAG &DAG, unsigned Flt) {
3790  return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)),
3791                           MVT::f32);
3792}
3793
3794/// expandExp - Lower an exp intrinsic. Handles the special sequences for
3795/// limited-precision mode.
3796static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG,
3797                         const TargetLowering &TLI) {
3798  if (Op.getValueType() == MVT::f32 &&
3799      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3800
3801    // Put the exponent in the right bit position for later addition to the
3802    // final result:
3803    //
3804    //   #define LOG2OFe 1.4426950f
3805    //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3806    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3807                             getF32Constant(DAG, 0x3fb8aa3b));
3808    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3809
3810    //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3811    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3812    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3813
3814    //   IntegerPartOfX <<= 23;
3815    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3816                                 DAG.getConstant(23, TLI.getPointerTy()));
3817
3818    SDValue TwoToFracPartOfX;
3819    if (LimitFloatPrecision <= 6) {
3820      // For floating-point precision of 6:
3821      //
3822      //   TwoToFractionalPartOfX =
3823      //     0.997535578f +
3824      //       (0.735607626f + 0.252464424f * x) * x;
3825      //
3826      // error 0.0144103317, which is 6 bits
3827      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3828                               getF32Constant(DAG, 0x3e814304));
3829      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3830                               getF32Constant(DAG, 0x3f3c50c8));
3831      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3832      TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3833                                     getF32Constant(DAG, 0x3f7f5e7e));
3834    } else if (LimitFloatPrecision <= 12) {
3835      // For floating-point precision of 12:
3836      //
3837      //   TwoToFractionalPartOfX =
3838      //     0.999892986f +
3839      //       (0.696457318f +
3840      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3841      //
3842      // 0.000107046256 error, which is 13 to 14 bits
3843      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3844                               getF32Constant(DAG, 0x3da235e3));
3845      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3846                               getF32Constant(DAG, 0x3e65b8f3));
3847      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3848      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3849                               getF32Constant(DAG, 0x3f324b07));
3850      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3851      TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3852                                     getF32Constant(DAG, 0x3f7ff8fd));
3853    } else { // LimitFloatPrecision <= 18
3854      // For floating-point precision of 18:
3855      //
3856      //   TwoToFractionalPartOfX =
3857      //     0.999999982f +
3858      //       (0.693148872f +
3859      //         (0.240227044f +
3860      //           (0.554906021e-1f +
3861      //             (0.961591928e-2f +
3862      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3863      //
3864      // error 2.47208000*10^(-7), which is better than 18 bits
3865      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3866                               getF32Constant(DAG, 0x3924b03e));
3867      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3868                               getF32Constant(DAG, 0x3ab24b87));
3869      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3870      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3871                               getF32Constant(DAG, 0x3c1d8c17));
3872      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3873      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3874                               getF32Constant(DAG, 0x3d634a1d));
3875      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3876      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3877                               getF32Constant(DAG, 0x3e75fe14));
3878      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3879      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3880                                getF32Constant(DAG, 0x3f317234));
3881      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3882      TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3883                                     getF32Constant(DAG, 0x3f800000));
3884    }
3885
3886    // Add the exponent into the result in integer domain.
3887    SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFracPartOfX);
3888    return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
3889                       DAG.getNode(ISD::ADD, dl, MVT::i32,
3890                                   t13, IntegerPartOfX));
3891  }
3892
3893  // No special expansion.
3894  return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
3895}
3896
3897/// expandLog - Lower a log intrinsic. Handles the special sequences for
3898/// limited-precision mode.
3899static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG,
3900                         const TargetLowering &TLI) {
3901  if (Op.getValueType() == MVT::f32 &&
3902      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3903    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3904
3905    // Scale the exponent by log(2) [0.69314718f].
3906    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3907    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3908                                        getF32Constant(DAG, 0x3f317218));
3909
3910    // Get the significand and build it into a floating-point number with
3911    // exponent of 1.
3912    SDValue X = GetSignificand(DAG, Op1, dl);
3913
3914    SDValue LogOfMantissa;
3915    if (LimitFloatPrecision <= 6) {
3916      // For floating-point precision of 6:
3917      //
3918      //   LogofMantissa =
3919      //     -1.1609546f +
3920      //       (1.4034025f - 0.23903021f * x) * x;
3921      //
3922      // error 0.0034276066, which is better than 8 bits
3923      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3924                               getF32Constant(DAG, 0xbe74c456));
3925      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3926                               getF32Constant(DAG, 0x3fb3a2b1));
3927      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3928      LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3929                                  getF32Constant(DAG, 0x3f949a29));
3930    } else if (LimitFloatPrecision <= 12) {
3931      // For floating-point precision of 12:
3932      //
3933      //   LogOfMantissa =
3934      //     -1.7417939f +
3935      //       (2.8212026f +
3936      //         (-1.4699568f +
3937      //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3938      //
3939      // error 0.000061011436, which is 14 bits
3940      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3941                               getF32Constant(DAG, 0xbd67b6d6));
3942      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3943                               getF32Constant(DAG, 0x3ee4f4b8));
3944      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3945      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3946                               getF32Constant(DAG, 0x3fbc278b));
3947      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3948      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3949                               getF32Constant(DAG, 0x40348e95));
3950      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3951      LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3952                                  getF32Constant(DAG, 0x3fdef31a));
3953    } else { // LimitFloatPrecision <= 18
3954      // For floating-point precision of 18:
3955      //
3956      //   LogOfMantissa =
3957      //     -2.1072184f +
3958      //       (4.2372794f +
3959      //         (-3.7029485f +
3960      //           (2.2781945f +
3961      //             (-0.87823314f +
3962      //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3963      //
3964      // error 0.0000023660568, which is better than 18 bits
3965      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3966                               getF32Constant(DAG, 0xbc91e5ac));
3967      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3968                               getF32Constant(DAG, 0x3e4350aa));
3969      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3970      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3971                               getF32Constant(DAG, 0x3f60d3e3));
3972      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3973      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3974                               getF32Constant(DAG, 0x4011cdf0));
3975      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3976      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3977                               getF32Constant(DAG, 0x406cfd1c));
3978      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3979      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3980                               getF32Constant(DAG, 0x408797cb));
3981      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3982      LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3983                                  getF32Constant(DAG, 0x4006dcab));
3984    }
3985
3986    return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
3987  }
3988
3989  // No special expansion.
3990  return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
3991}
3992
3993/// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
3994/// limited-precision mode.
3995static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG,
3996                          const TargetLowering &TLI) {
3997  if (Op.getValueType() == MVT::f32 &&
3998      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3999    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4000
4001    // Get the exponent.
4002    SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
4003
4004    // Get the significand and build it into a floating-point number with
4005    // exponent of 1.
4006    SDValue X = GetSignificand(DAG, Op1, dl);
4007
4008    // Different possible minimax approximations of significand in
4009    // floating-point for various degrees of accuracy over [1,2].
4010    SDValue Log2ofMantissa;
4011    if (LimitFloatPrecision <= 6) {
4012      // For floating-point precision of 6:
4013      //
4014      //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
4015      //
4016      // error 0.0049451742, which is more than 7 bits
4017      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4018                               getF32Constant(DAG, 0xbeb08fe0));
4019      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4020                               getF32Constant(DAG, 0x40019463));
4021      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4022      Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4023                                   getF32Constant(DAG, 0x3fd6633d));
4024    } else if (LimitFloatPrecision <= 12) {
4025      // For floating-point precision of 12:
4026      //
4027      //   Log2ofMantissa =
4028      //     -2.51285454f +
4029      //       (4.07009056f +
4030      //         (-2.12067489f +
4031      //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
4032      //
4033      // error 0.0000876136000, which is better than 13 bits
4034      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4035                               getF32Constant(DAG, 0xbda7262e));
4036      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4037                               getF32Constant(DAG, 0x3f25280b));
4038      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4039      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4040                               getF32Constant(DAG, 0x4007b923));
4041      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4042      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4043                               getF32Constant(DAG, 0x40823e2f));
4044      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4045      Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4046                                   getF32Constant(DAG, 0x4020d29c));
4047    } else { // LimitFloatPrecision <= 18
4048      // For floating-point precision of 18:
4049      //
4050      //   Log2ofMantissa =
4051      //     -3.0400495f +
4052      //       (6.1129976f +
4053      //         (-5.3420409f +
4054      //           (3.2865683f +
4055      //             (-1.2669343f +
4056      //               (0.27515199f -
4057      //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
4058      //
4059      // error 0.0000018516, which is better than 18 bits
4060      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4061                               getF32Constant(DAG, 0xbcd2769e));
4062      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4063                               getF32Constant(DAG, 0x3e8ce0b9));
4064      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4065      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4066                               getF32Constant(DAG, 0x3fa22ae7));
4067      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4068      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4069                               getF32Constant(DAG, 0x40525723));
4070      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4071      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4072                               getF32Constant(DAG, 0x40aaf200));
4073      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4074      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4075                               getF32Constant(DAG, 0x40c39dad));
4076      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4077      Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4078                                   getF32Constant(DAG, 0x4042902c));
4079    }
4080
4081    return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
4082  }
4083
4084  // No special expansion.
4085  return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
4086}
4087
4088/// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
4089/// limited-precision mode.
4090static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4091                           const TargetLowering &TLI) {
4092  if (Op.getValueType() == MVT::f32 &&
4093      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4094    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4095
4096    // Scale the exponent by log10(2) [0.30102999f].
4097    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4098    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4099                                        getF32Constant(DAG, 0x3e9a209a));
4100
4101    // Get the significand and build it into a floating-point number with
4102    // exponent of 1.
4103    SDValue X = GetSignificand(DAG, Op1, dl);
4104
4105    SDValue Log10ofMantissa;
4106    if (LimitFloatPrecision <= 6) {
4107      // For floating-point precision of 6:
4108      //
4109      //   Log10ofMantissa =
4110      //     -0.50419619f +
4111      //       (0.60948995f - 0.10380950f * x) * x;
4112      //
4113      // error 0.0014886165, which is 6 bits
4114      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4115                               getF32Constant(DAG, 0xbdd49a13));
4116      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4117                               getF32Constant(DAG, 0x3f1c0789));
4118      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4119      Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4120                                    getF32Constant(DAG, 0x3f011300));
4121    } else if (LimitFloatPrecision <= 12) {
4122      // For floating-point precision of 12:
4123      //
4124      //   Log10ofMantissa =
4125      //     -0.64831180f +
4126      //       (0.91751397f +
4127      //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4128      //
4129      // error 0.00019228036, which is better than 12 bits
4130      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4131                               getF32Constant(DAG, 0x3d431f31));
4132      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4133                               getF32Constant(DAG, 0x3ea21fb2));
4134      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4135      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4136                               getF32Constant(DAG, 0x3f6ae232));
4137      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4138      Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4139                                    getF32Constant(DAG, 0x3f25f7c3));
4140    } else { // LimitFloatPrecision <= 18
4141      // For floating-point precision of 18:
4142      //
4143      //   Log10ofMantissa =
4144      //     -0.84299375f +
4145      //       (1.5327582f +
4146      //         (-1.0688956f +
4147      //           (0.49102474f +
4148      //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4149      //
4150      // error 0.0000037995730, which is better than 18 bits
4151      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4152                               getF32Constant(DAG, 0x3c5d51ce));
4153      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4154                               getF32Constant(DAG, 0x3e00685a));
4155      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4156      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4157                               getF32Constant(DAG, 0x3efb6798));
4158      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4159      SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4160                               getF32Constant(DAG, 0x3f88d192));
4161      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4162      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4163                               getF32Constant(DAG, 0x3fc4316c));
4164      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4165      Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4166                                    getF32Constant(DAG, 0x3f57ce70));
4167    }
4168
4169    return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
4170  }
4171
4172  // No special expansion.
4173  return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
4174}
4175
4176/// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4177/// limited-precision mode.
4178static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4179                          const TargetLowering &TLI) {
4180  if (Op.getValueType() == MVT::f32 &&
4181      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4182    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
4183
4184    //   FractionalPartOfX = x - (float)IntegerPartOfX;
4185    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4186    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
4187
4188    //   IntegerPartOfX <<= 23;
4189    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4190                                 DAG.getConstant(23, TLI.getPointerTy()));
4191
4192    SDValue TwoToFractionalPartOfX;
4193    if (LimitFloatPrecision <= 6) {
4194      // For floating-point precision of 6:
4195      //
4196      //   TwoToFractionalPartOfX =
4197      //     0.997535578f +
4198      //       (0.735607626f + 0.252464424f * x) * x;
4199      //
4200      // error 0.0144103317, which is 6 bits
4201      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4202                               getF32Constant(DAG, 0x3e814304));
4203      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4204                               getF32Constant(DAG, 0x3f3c50c8));
4205      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4206      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4207                                           getF32Constant(DAG, 0x3f7f5e7e));
4208    } else if (LimitFloatPrecision <= 12) {
4209      // For floating-point precision of 12:
4210      //
4211      //   TwoToFractionalPartOfX =
4212      //     0.999892986f +
4213      //       (0.696457318f +
4214      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4215      //
4216      // error 0.000107046256, which is 13 to 14 bits
4217      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4218                               getF32Constant(DAG, 0x3da235e3));
4219      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4220                               getF32Constant(DAG, 0x3e65b8f3));
4221      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4222      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4223                               getF32Constant(DAG, 0x3f324b07));
4224      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4225      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4226                                           getF32Constant(DAG, 0x3f7ff8fd));
4227    } else { // LimitFloatPrecision <= 18
4228      // For floating-point precision of 18:
4229      //
4230      //   TwoToFractionalPartOfX =
4231      //     0.999999982f +
4232      //       (0.693148872f +
4233      //         (0.240227044f +
4234      //           (0.554906021e-1f +
4235      //             (0.961591928e-2f +
4236      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4237      // error 2.47208000*10^(-7), which is better than 18 bits
4238      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4239                               getF32Constant(DAG, 0x3924b03e));
4240      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4241                               getF32Constant(DAG, 0x3ab24b87));
4242      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4243      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4244                               getF32Constant(DAG, 0x3c1d8c17));
4245      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4246      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4247                               getF32Constant(DAG, 0x3d634a1d));
4248      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4249      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4250                               getF32Constant(DAG, 0x3e75fe14));
4251      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4252      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4253                                getF32Constant(DAG, 0x3f317234));
4254      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4255      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4256                                           getF32Constant(DAG, 0x3f800000));
4257    }
4258
4259    // Add the exponent into the result in integer domain.
4260    SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32,
4261                              TwoToFractionalPartOfX);
4262    return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4263                       DAG.getNode(ISD::ADD, dl, MVT::i32,
4264                                   t13, IntegerPartOfX));
4265  }
4266
4267  // No special expansion.
4268  return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
4269}
4270
4271/// visitPow - Lower a pow intrinsic. Handles the special sequences for
4272/// limited-precision mode with x == 10.0f.
4273static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS,
4274                         SelectionDAG &DAG, const TargetLowering &TLI) {
4275  bool IsExp10 = false;
4276  if (LHS.getValueType() == MVT::f32 && LHS.getValueType() == MVT::f32 &&
4277      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4278    if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
4279      APFloat Ten(10.0f);
4280      IsExp10 = LHSC->isExactlyValue(Ten);
4281    }
4282  }
4283
4284  if (IsExp10) {
4285    // Put the exponent in the right bit position for later addition to the
4286    // final result:
4287    //
4288    //   #define LOG2OF10 3.3219281f
4289    //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
4290    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
4291                             getF32Constant(DAG, 0x40549a78));
4292    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4293
4294    //   FractionalPartOfX = x - (float)IntegerPartOfX;
4295    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4296    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4297
4298    //   IntegerPartOfX <<= 23;
4299    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4300                                 DAG.getConstant(23, TLI.getPointerTy()));
4301
4302    SDValue TwoToFractionalPartOfX;
4303    if (LimitFloatPrecision <= 6) {
4304      // For floating-point precision of 6:
4305      //
4306      //   twoToFractionalPartOfX =
4307      //     0.997535578f +
4308      //       (0.735607626f + 0.252464424f * x) * x;
4309      //
4310      // error 0.0144103317, which is 6 bits
4311      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4312                               getF32Constant(DAG, 0x3e814304));
4313      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4314                               getF32Constant(DAG, 0x3f3c50c8));
4315      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4316      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4317                                           getF32Constant(DAG, 0x3f7f5e7e));
4318    } else if (LimitFloatPrecision <= 12) {
4319      // For floating-point precision of 12:
4320      //
4321      //   TwoToFractionalPartOfX =
4322      //     0.999892986f +
4323      //       (0.696457318f +
4324      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4325      //
4326      // error 0.000107046256, which is 13 to 14 bits
4327      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4328                               getF32Constant(DAG, 0x3da235e3));
4329      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4330                               getF32Constant(DAG, 0x3e65b8f3));
4331      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4332      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4333                               getF32Constant(DAG, 0x3f324b07));
4334      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4335      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4336                                           getF32Constant(DAG, 0x3f7ff8fd));
4337    } else { // LimitFloatPrecision <= 18
4338      // For floating-point precision of 18:
4339      //
4340      //   TwoToFractionalPartOfX =
4341      //     0.999999982f +
4342      //       (0.693148872f +
4343      //         (0.240227044f +
4344      //           (0.554906021e-1f +
4345      //             (0.961591928e-2f +
4346      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4347      // error 2.47208000*10^(-7), which is better than 18 bits
4348      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4349                               getF32Constant(DAG, 0x3924b03e));
4350      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4351                               getF32Constant(DAG, 0x3ab24b87));
4352      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4353      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4354                               getF32Constant(DAG, 0x3c1d8c17));
4355      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4356      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4357                               getF32Constant(DAG, 0x3d634a1d));
4358      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4359      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4360                               getF32Constant(DAG, 0x3e75fe14));
4361      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4362      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4363                                getF32Constant(DAG, 0x3f317234));
4364      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4365      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4366                                           getF32Constant(DAG, 0x3f800000));
4367    }
4368
4369    SDValue t13 = DAG.getNode(ISD::BITCAST, dl,MVT::i32,TwoToFractionalPartOfX);
4370    return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4371                       DAG.getNode(ISD::ADD, dl, MVT::i32,
4372                                   t13, IntegerPartOfX));
4373  }
4374
4375  // No special expansion.
4376  return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
4377}
4378
4379
4380/// ExpandPowI - Expand a llvm.powi intrinsic.
4381static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS,
4382                          SelectionDAG &DAG) {
4383  // If RHS is a constant, we can expand this out to a multiplication tree,
4384  // otherwise we end up lowering to a call to __powidf2 (for example).  When
4385  // optimizing for size, we only want to do this if the expansion would produce
4386  // a small number of multiplies, otherwise we do the full expansion.
4387  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4388    // Get the exponent as a positive value.
4389    unsigned Val = RHSC->getSExtValue();
4390    if ((int)Val < 0) Val = -Val;
4391
4392    // powi(x, 0) -> 1.0
4393    if (Val == 0)
4394      return DAG.getConstantFP(1.0, LHS.getValueType());
4395
4396    const Function *F = DAG.getMachineFunction().getFunction();
4397    if (!F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
4398                                         Attribute::OptimizeForSize) ||
4399        // If optimizing for size, don't insert too many multiplies.  This
4400        // inserts up to 5 multiplies.
4401        CountPopulation_32(Val)+Log2_32(Val) < 7) {
4402      // We use the simple binary decomposition method to generate the multiply
4403      // sequence.  There are more optimal ways to do this (for example,
4404      // powi(x,15) generates one more multiply than it should), but this has
4405      // the benefit of being both really simple and much better than a libcall.
4406      SDValue Res;  // Logically starts equal to 1.0
4407      SDValue CurSquare = LHS;
4408      while (Val) {
4409        if (Val & 1) {
4410          if (Res.getNode())
4411            Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4412          else
4413            Res = CurSquare;  // 1.0*CurSquare.
4414        }
4415
4416        CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4417                                CurSquare, CurSquare);
4418        Val >>= 1;
4419      }
4420
4421      // If the original was negative, invert the result, producing 1/(x*x*x).
4422      if (RHSC->getSExtValue() < 0)
4423        Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4424                          DAG.getConstantFP(1.0, LHS.getValueType()), Res);
4425      return Res;
4426    }
4427  }
4428
4429  // Otherwise, expand to a libcall.
4430  return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4431}
4432
4433// getTruncatedArgReg - Find underlying register used for an truncated
4434// argument.
4435static unsigned getTruncatedArgReg(const SDValue &N) {
4436  if (N.getOpcode() != ISD::TRUNCATE)
4437    return 0;
4438
4439  const SDValue &Ext = N.getOperand(0);
4440  if (Ext.getOpcode() == ISD::AssertZext ||
4441      Ext.getOpcode() == ISD::AssertSext) {
4442    const SDValue &CFR = Ext.getOperand(0);
4443    if (CFR.getOpcode() == ISD::CopyFromReg)
4444      return cast<RegisterSDNode>(CFR.getOperand(1))->getReg();
4445    if (CFR.getOpcode() == ISD::TRUNCATE)
4446      return getTruncatedArgReg(CFR);
4447  }
4448  return 0;
4449}
4450
4451/// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4452/// argument, create the corresponding DBG_VALUE machine instruction for it now.
4453/// At the end of instruction selection, they will be inserted to the entry BB.
4454bool
4455SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
4456                                              int64_t Offset,
4457                                              const SDValue &N) {
4458  const Argument *Arg = dyn_cast<Argument>(V);
4459  if (!Arg)
4460    return false;
4461
4462  MachineFunction &MF = DAG.getMachineFunction();
4463  const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
4464
4465  // Ignore inlined function arguments here.
4466  DIVariable DV(Variable);
4467  if (DV.isInlinedFnArgument(MF.getFunction()))
4468    return false;
4469
4470  Optional<MachineOperand> Op;
4471  // Some arguments' frame index is recorded during argument lowering.
4472  if (int FI = FuncInfo.getArgumentFrameIndex(Arg))
4473    Op = MachineOperand::CreateFI(FI);
4474
4475  if (!Op && N.getNode()) {
4476    unsigned Reg;
4477    if (N.getOpcode() == ISD::CopyFromReg)
4478      Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
4479    else
4480      Reg = getTruncatedArgReg(N);
4481    if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4482      MachineRegisterInfo &RegInfo = MF.getRegInfo();
4483      unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4484      if (PR)
4485        Reg = PR;
4486    }
4487    if (Reg)
4488      Op = MachineOperand::CreateReg(Reg, false);
4489  }
4490
4491  if (!Op) {
4492    // Check if ValueMap has reg number.
4493    DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4494    if (VMI != FuncInfo.ValueMap.end())
4495      Op = MachineOperand::CreateReg(VMI->second, false);
4496  }
4497
4498  if (!Op && N.getNode())
4499    // Check if frame index is available.
4500    if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4501      if (FrameIndexSDNode *FINode =
4502          dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
4503        Op = MachineOperand::CreateFI(FINode->getIndex());
4504
4505  if (!Op)
4506    return false;
4507
4508  // FIXME: This does not handle register-indirect values at offset 0.
4509  bool IsIndirect = Offset != 0;
4510  if (Op->isReg())
4511    FuncInfo.ArgDbgValues.push_back(BuildMI(MF, getCurDebugLoc(),
4512                                            TII->get(TargetOpcode::DBG_VALUE),
4513                                            IsIndirect,
4514                                            Op->getReg(), Offset, Variable));
4515  else
4516    FuncInfo.ArgDbgValues.push_back(
4517      BuildMI(MF, getCurDebugLoc(), TII->get(TargetOpcode::DBG_VALUE))
4518          .addOperand(*Op).addImm(Offset).addMetadata(Variable));
4519
4520  return true;
4521}
4522
4523// VisualStudio defines setjmp as _setjmp
4524#if defined(_MSC_VER) && defined(setjmp) && \
4525                         !defined(setjmp_undefined_for_msvc)
4526#  pragma push_macro("setjmp")
4527#  undef setjmp
4528#  define setjmp_undefined_for_msvc
4529#endif
4530
4531/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4532/// we want to emit this as a call to a named external function, return the name
4533/// otherwise lower it and return null.
4534const char *
4535SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4536  const TargetLowering *TLI = TM.getTargetLowering();
4537  SDLoc sdl = getCurSDLoc();
4538  DebugLoc dl = getCurDebugLoc();
4539  SDValue Res;
4540
4541  switch (Intrinsic) {
4542  default:
4543    // By default, turn this into a target intrinsic node.
4544    visitTargetIntrinsic(I, Intrinsic);
4545    return 0;
4546  case Intrinsic::vastart:  visitVAStart(I); return 0;
4547  case Intrinsic::vaend:    visitVAEnd(I); return 0;
4548  case Intrinsic::vacopy:   visitVACopy(I); return 0;
4549  case Intrinsic::returnaddress:
4550    setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, TLI->getPointerTy(),
4551                             getValue(I.getArgOperand(0))));
4552    return 0;
4553  case Intrinsic::frameaddress:
4554    setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, TLI->getPointerTy(),
4555                             getValue(I.getArgOperand(0))));
4556    return 0;
4557  case Intrinsic::setjmp:
4558    return &"_setjmp"[!TLI->usesUnderscoreSetJmp()];
4559  case Intrinsic::longjmp:
4560    return &"_longjmp"[!TLI->usesUnderscoreLongJmp()];
4561  case Intrinsic::memcpy: {
4562    // Assert for address < 256 since we support only user defined address
4563    // spaces.
4564    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4565           < 256 &&
4566           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4567           < 256 &&
4568           "Unknown address space");
4569    SDValue Op1 = getValue(I.getArgOperand(0));
4570    SDValue Op2 = getValue(I.getArgOperand(1));
4571    SDValue Op3 = getValue(I.getArgOperand(2));
4572    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4573    if (!Align)
4574      Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment.
4575    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4576    DAG.setRoot(DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, false,
4577                              MachinePointerInfo(I.getArgOperand(0)),
4578                              MachinePointerInfo(I.getArgOperand(1))));
4579    return 0;
4580  }
4581  case Intrinsic::memset: {
4582    // Assert for address < 256 since we support only user defined address
4583    // spaces.
4584    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4585           < 256 &&
4586           "Unknown address space");
4587    SDValue Op1 = getValue(I.getArgOperand(0));
4588    SDValue Op2 = getValue(I.getArgOperand(1));
4589    SDValue Op3 = getValue(I.getArgOperand(2));
4590    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4591    if (!Align)
4592      Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment.
4593    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4594    DAG.setRoot(DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4595                              MachinePointerInfo(I.getArgOperand(0))));
4596    return 0;
4597  }
4598  case Intrinsic::memmove: {
4599    // Assert for address < 256 since we support only user defined address
4600    // spaces.
4601    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4602           < 256 &&
4603           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4604           < 256 &&
4605           "Unknown address space");
4606    SDValue Op1 = getValue(I.getArgOperand(0));
4607    SDValue Op2 = getValue(I.getArgOperand(1));
4608    SDValue Op3 = getValue(I.getArgOperand(2));
4609    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4610    if (!Align)
4611      Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment.
4612    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4613    DAG.setRoot(DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4614                               MachinePointerInfo(I.getArgOperand(0)),
4615                               MachinePointerInfo(I.getArgOperand(1))));
4616    return 0;
4617  }
4618  case Intrinsic::dbg_declare: {
4619    const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4620    MDNode *Variable = DI.getVariable();
4621    const Value *Address = DI.getAddress();
4622    DIVariable DIVar(Variable);
4623    assert((!DIVar || DIVar.isVariable()) &&
4624      "Variable in DbgDeclareInst should be either null or a DIVariable.");
4625    if (!Address || !DIVar) {
4626      DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4627      return 0;
4628    }
4629
4630    // Check if address has undef value.
4631    if (isa<UndefValue>(Address) ||
4632        (Address->use_empty() && !isa<Argument>(Address))) {
4633      DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4634      return 0;
4635    }
4636
4637    SDValue &N = NodeMap[Address];
4638    if (!N.getNode() && isa<Argument>(Address))
4639      // Check unused arguments map.
4640      N = UnusedArgNodeMap[Address];
4641    SDDbgValue *SDV;
4642    if (N.getNode()) {
4643      if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4644        Address = BCI->getOperand(0);
4645      // Parameters are handled specially.
4646      bool isParameter =
4647        (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable ||
4648         isa<Argument>(Address));
4649
4650      const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
4651
4652      if (isParameter && !AI) {
4653        FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4654        if (FINode)
4655          // Byval parameter.  We have a frame index at this point.
4656          SDV = DAG.getDbgValue(Variable, FINode->getIndex(),
4657                                0, dl, SDNodeOrder);
4658        else {
4659          // Address is an argument, so try to emit its dbg value using
4660          // virtual register info from the FuncInfo.ValueMap.
4661          EmitFuncArgumentDbgValue(Address, Variable, 0, N);
4662          return 0;
4663        }
4664      } else if (AI)
4665        SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
4666                              0, dl, SDNodeOrder);
4667      else {
4668        // Can't do anything with other non-AI cases yet.
4669        DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4670        DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t");
4671        DEBUG(Address->dump());
4672        return 0;
4673      }
4674      DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4675    } else {
4676      // If Address is an argument then try to emit its dbg value using
4677      // virtual register info from the FuncInfo.ValueMap.
4678      if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) {
4679        // If variable is pinned by a alloca in dominating bb then
4680        // use StaticAllocaMap.
4681        if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4682          if (AI->getParent() != DI.getParent()) {
4683            DenseMap<const AllocaInst*, int>::iterator SI =
4684              FuncInfo.StaticAllocaMap.find(AI);
4685            if (SI != FuncInfo.StaticAllocaMap.end()) {
4686              SDV = DAG.getDbgValue(Variable, SI->second,
4687                                    0, dl, SDNodeOrder);
4688              DAG.AddDbgValue(SDV, 0, false);
4689              return 0;
4690            }
4691          }
4692        }
4693        DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4694      }
4695    }
4696    return 0;
4697  }
4698  case Intrinsic::dbg_value: {
4699    const DbgValueInst &DI = cast<DbgValueInst>(I);
4700    DIVariable DIVar(DI.getVariable());
4701    assert((!DIVar || DIVar.isVariable()) &&
4702      "Variable in DbgValueInst should be either null or a DIVariable.");
4703    if (!DIVar)
4704      return 0;
4705
4706    MDNode *Variable = DI.getVariable();
4707    uint64_t Offset = DI.getOffset();
4708    const Value *V = DI.getValue();
4709    if (!V)
4710      return 0;
4711
4712    SDDbgValue *SDV;
4713    if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
4714      SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder);
4715      DAG.AddDbgValue(SDV, 0, false);
4716    } else {
4717      // Do not use getValue() in here; we don't want to generate code at
4718      // this point if it hasn't been done yet.
4719      SDValue N = NodeMap[V];
4720      if (!N.getNode() && isa<Argument>(V))
4721        // Check unused arguments map.
4722        N = UnusedArgNodeMap[V];
4723      if (N.getNode()) {
4724        if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) {
4725          SDV = DAG.getDbgValue(Variable, N.getNode(),
4726                                N.getResNo(), Offset, dl, SDNodeOrder);
4727          DAG.AddDbgValue(SDV, N.getNode(), false);
4728        }
4729      } else if (!V->use_empty() ) {
4730        // Do not call getValue(V) yet, as we don't want to generate code.
4731        // Remember it for later.
4732        DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4733        DanglingDebugInfoMap[V] = DDI;
4734      } else {
4735        // We may expand this to cover more cases.  One case where we have no
4736        // data available is an unreferenced parameter.
4737        DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4738      }
4739    }
4740
4741    // Build a debug info table entry.
4742    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4743      V = BCI->getOperand(0);
4744    const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4745    // Don't handle byval struct arguments or VLAs, for example.
4746    if (!AI) {
4747      DEBUG(dbgs() << "Dropping debug location info for:\n  " << DI << "\n");
4748      DEBUG(dbgs() << "  Last seen at:\n    " << *V << "\n");
4749      return 0;
4750    }
4751    DenseMap<const AllocaInst*, int>::iterator SI =
4752      FuncInfo.StaticAllocaMap.find(AI);
4753    if (SI == FuncInfo.StaticAllocaMap.end())
4754      return 0; // VLAs.
4755    int FI = SI->second;
4756
4757    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4758    if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
4759      MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
4760    return 0;
4761  }
4762
4763  case Intrinsic::eh_typeid_for: {
4764    // Find the type id for the given typeinfo.
4765    GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0));
4766    unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4767    Res = DAG.getConstant(TypeID, MVT::i32);
4768    setValue(&I, Res);
4769    return 0;
4770  }
4771
4772  case Intrinsic::eh_return_i32:
4773  case Intrinsic::eh_return_i64:
4774    DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4775    DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
4776                            MVT::Other,
4777                            getControlRoot(),
4778                            getValue(I.getArgOperand(0)),
4779                            getValue(I.getArgOperand(1))));
4780    return 0;
4781  case Intrinsic::eh_unwind_init:
4782    DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4783    return 0;
4784  case Intrinsic::eh_dwarf_cfa: {
4785    SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl,
4786                                        TLI->getPointerTy());
4787    SDValue Offset = DAG.getNode(ISD::ADD, sdl,
4788                                 CfaArg.getValueType(),
4789                                 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl,
4790                                             CfaArg.getValueType()),
4791                                 CfaArg);
4792    SDValue FA = DAG.getNode(ISD::FRAMEADDR, sdl,
4793                             TLI->getPointerTy(),
4794                             DAG.getConstant(0, TLI->getPointerTy()));
4795    setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(),
4796                             FA, Offset));
4797    return 0;
4798  }
4799  case Intrinsic::eh_sjlj_callsite: {
4800    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4801    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4802    assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4803    assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4804
4805    MMI.setCurrentCallSite(CI->getZExtValue());
4806    return 0;
4807  }
4808  case Intrinsic::eh_sjlj_functioncontext: {
4809    // Get and store the index of the function context.
4810    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4811    AllocaInst *FnCtx =
4812      cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
4813    int FI = FuncInfo.StaticAllocaMap[FnCtx];
4814    MFI->setFunctionContextIndex(FI);
4815    return 0;
4816  }
4817  case Intrinsic::eh_sjlj_setjmp: {
4818    SDValue Ops[2];
4819    Ops[0] = getRoot();
4820    Ops[1] = getValue(I.getArgOperand(0));
4821    SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
4822                             DAG.getVTList(MVT::i32, MVT::Other),
4823                             Ops, 2);
4824    setValue(&I, Op.getValue(0));
4825    DAG.setRoot(Op.getValue(1));
4826    return 0;
4827  }
4828  case Intrinsic::eh_sjlj_longjmp: {
4829    DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
4830                            getRoot(), getValue(I.getArgOperand(0))));
4831    return 0;
4832  }
4833
4834  case Intrinsic::x86_mmx_pslli_w:
4835  case Intrinsic::x86_mmx_pslli_d:
4836  case Intrinsic::x86_mmx_pslli_q:
4837  case Intrinsic::x86_mmx_psrli_w:
4838  case Intrinsic::x86_mmx_psrli_d:
4839  case Intrinsic::x86_mmx_psrli_q:
4840  case Intrinsic::x86_mmx_psrai_w:
4841  case Intrinsic::x86_mmx_psrai_d: {
4842    SDValue ShAmt = getValue(I.getArgOperand(1));
4843    if (isa<ConstantSDNode>(ShAmt)) {
4844      visitTargetIntrinsic(I, Intrinsic);
4845      return 0;
4846    }
4847    unsigned NewIntrinsic = 0;
4848    EVT ShAmtVT = MVT::v2i32;
4849    switch (Intrinsic) {
4850    case Intrinsic::x86_mmx_pslli_w:
4851      NewIntrinsic = Intrinsic::x86_mmx_psll_w;
4852      break;
4853    case Intrinsic::x86_mmx_pslli_d:
4854      NewIntrinsic = Intrinsic::x86_mmx_psll_d;
4855      break;
4856    case Intrinsic::x86_mmx_pslli_q:
4857      NewIntrinsic = Intrinsic::x86_mmx_psll_q;
4858      break;
4859    case Intrinsic::x86_mmx_psrli_w:
4860      NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
4861      break;
4862    case Intrinsic::x86_mmx_psrli_d:
4863      NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
4864      break;
4865    case Intrinsic::x86_mmx_psrli_q:
4866      NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
4867      break;
4868    case Intrinsic::x86_mmx_psrai_w:
4869      NewIntrinsic = Intrinsic::x86_mmx_psra_w;
4870      break;
4871    case Intrinsic::x86_mmx_psrai_d:
4872      NewIntrinsic = Intrinsic::x86_mmx_psra_d;
4873      break;
4874    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4875    }
4876
4877    // The vector shift intrinsics with scalars uses 32b shift amounts but
4878    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
4879    // to be zero.
4880    // We must do this early because v2i32 is not a legal type.
4881    SDValue ShOps[2];
4882    ShOps[0] = ShAmt;
4883    ShOps[1] = DAG.getConstant(0, MVT::i32);
4884    ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, &ShOps[0], 2);
4885    EVT DestVT = TLI->getValueType(I.getType());
4886    ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt);
4887    Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT,
4888                       DAG.getConstant(NewIntrinsic, MVT::i32),
4889                       getValue(I.getArgOperand(0)), ShAmt);
4890    setValue(&I, Res);
4891    return 0;
4892  }
4893  case Intrinsic::x86_avx_vinsertf128_pd_256:
4894  case Intrinsic::x86_avx_vinsertf128_ps_256:
4895  case Intrinsic::x86_avx_vinsertf128_si_256:
4896  case Intrinsic::x86_avx2_vinserti128: {
4897    EVT DestVT = TLI->getValueType(I.getType());
4898    EVT ElVT = TLI->getValueType(I.getArgOperand(1)->getType());
4899    uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue() & 1) *
4900                   ElVT.getVectorNumElements();
4901    Res = DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, DestVT,
4902                      getValue(I.getArgOperand(0)),
4903                      getValue(I.getArgOperand(1)),
4904                      DAG.getConstant(Idx, TLI->getVectorIdxTy()));
4905    setValue(&I, Res);
4906    return 0;
4907  }
4908  case Intrinsic::x86_avx_vextractf128_pd_256:
4909  case Intrinsic::x86_avx_vextractf128_ps_256:
4910  case Intrinsic::x86_avx_vextractf128_si_256:
4911  case Intrinsic::x86_avx2_vextracti128: {
4912    EVT DestVT = TLI->getValueType(I.getType());
4913    uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(1))->getZExtValue() & 1) *
4914                   DestVT.getVectorNumElements();
4915    Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, DestVT,
4916                      getValue(I.getArgOperand(0)),
4917                      DAG.getConstant(Idx, TLI->getVectorIdxTy()));
4918    setValue(&I, Res);
4919    return 0;
4920  }
4921  case Intrinsic::convertff:
4922  case Intrinsic::convertfsi:
4923  case Intrinsic::convertfui:
4924  case Intrinsic::convertsif:
4925  case Intrinsic::convertuif:
4926  case Intrinsic::convertss:
4927  case Intrinsic::convertsu:
4928  case Intrinsic::convertus:
4929  case Intrinsic::convertuu: {
4930    ISD::CvtCode Code = ISD::CVT_INVALID;
4931    switch (Intrinsic) {
4932    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4933    case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
4934    case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4935    case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4936    case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4937    case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4938    case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
4939    case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
4940    case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4941    case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4942    }
4943    EVT DestVT = TLI->getValueType(I.getType());
4944    const Value *Op1 = I.getArgOperand(0);
4945    Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1),
4946                               DAG.getValueType(DestVT),
4947                               DAG.getValueType(getValue(Op1).getValueType()),
4948                               getValue(I.getArgOperand(1)),
4949                               getValue(I.getArgOperand(2)),
4950                               Code);
4951    setValue(&I, Res);
4952    return 0;
4953  }
4954  case Intrinsic::powi:
4955    setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
4956                            getValue(I.getArgOperand(1)), DAG));
4957    return 0;
4958  case Intrinsic::log:
4959    setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, *TLI));
4960    return 0;
4961  case Intrinsic::log2:
4962    setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, *TLI));
4963    return 0;
4964  case Intrinsic::log10:
4965    setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, *TLI));
4966    return 0;
4967  case Intrinsic::exp:
4968    setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, *TLI));
4969    return 0;
4970  case Intrinsic::exp2:
4971    setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, *TLI));
4972    return 0;
4973  case Intrinsic::pow:
4974    setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
4975                           getValue(I.getArgOperand(1)), DAG, *TLI));
4976    return 0;
4977  case Intrinsic::sqrt:
4978  case Intrinsic::fabs:
4979  case Intrinsic::sin:
4980  case Intrinsic::cos:
4981  case Intrinsic::floor:
4982  case Intrinsic::ceil:
4983  case Intrinsic::trunc:
4984  case Intrinsic::rint:
4985  case Intrinsic::nearbyint:
4986  case Intrinsic::round: {
4987    unsigned Opcode;
4988    switch (Intrinsic) {
4989    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4990    case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
4991    case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
4992    case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
4993    case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
4994    case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
4995    case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
4996    case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
4997    case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
4998    case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
4999    case Intrinsic::round:     Opcode = ISD::FROUND;     break;
5000    }
5001
5002    setValue(&I, DAG.getNode(Opcode, sdl,
5003                             getValue(I.getArgOperand(0)).getValueType(),
5004                             getValue(I.getArgOperand(0))));
5005    return 0;
5006  }
5007  case Intrinsic::copysign:
5008    setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
5009                             getValue(I.getArgOperand(0)).getValueType(),
5010                             getValue(I.getArgOperand(0)),
5011                             getValue(I.getArgOperand(1))));
5012    return 0;
5013  case Intrinsic::fma:
5014    setValue(&I, DAG.getNode(ISD::FMA, sdl,
5015                             getValue(I.getArgOperand(0)).getValueType(),
5016                             getValue(I.getArgOperand(0)),
5017                             getValue(I.getArgOperand(1)),
5018                             getValue(I.getArgOperand(2))));
5019    return 0;
5020  case Intrinsic::fmuladd: {
5021    EVT VT = TLI->getValueType(I.getType());
5022    if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
5023        TLI->isFMAFasterThanFMulAndFAdd(VT)) {
5024      setValue(&I, DAG.getNode(ISD::FMA, sdl,
5025                               getValue(I.getArgOperand(0)).getValueType(),
5026                               getValue(I.getArgOperand(0)),
5027                               getValue(I.getArgOperand(1)),
5028                               getValue(I.getArgOperand(2))));
5029    } else {
5030      SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
5031                                getValue(I.getArgOperand(0)).getValueType(),
5032                                getValue(I.getArgOperand(0)),
5033                                getValue(I.getArgOperand(1)));
5034      SDValue Add = DAG.getNode(ISD::FADD, sdl,
5035                                getValue(I.getArgOperand(0)).getValueType(),
5036                                Mul,
5037                                getValue(I.getArgOperand(2)));
5038      setValue(&I, Add);
5039    }
5040    return 0;
5041  }
5042  case Intrinsic::convert_to_fp16:
5043    setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, sdl,
5044                             MVT::i16, getValue(I.getArgOperand(0))));
5045    return 0;
5046  case Intrinsic::convert_from_fp16:
5047    setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, sdl,
5048                             MVT::f32, getValue(I.getArgOperand(0))));
5049    return 0;
5050  case Intrinsic::pcmarker: {
5051    SDValue Tmp = getValue(I.getArgOperand(0));
5052    DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
5053    return 0;
5054  }
5055  case Intrinsic::readcyclecounter: {
5056    SDValue Op = getRoot();
5057    Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
5058                      DAG.getVTList(MVT::i64, MVT::Other),
5059                      &Op, 1);
5060    setValue(&I, Res);
5061    DAG.setRoot(Res.getValue(1));
5062    return 0;
5063  }
5064  case Intrinsic::bswap:
5065    setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
5066                             getValue(I.getArgOperand(0)).getValueType(),
5067                             getValue(I.getArgOperand(0))));
5068    return 0;
5069  case Intrinsic::cttz: {
5070    SDValue Arg = getValue(I.getArgOperand(0));
5071    ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5072    EVT Ty = Arg.getValueType();
5073    setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
5074                             sdl, Ty, Arg));
5075    return 0;
5076  }
5077  case Intrinsic::ctlz: {
5078    SDValue Arg = getValue(I.getArgOperand(0));
5079    ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5080    EVT Ty = Arg.getValueType();
5081    setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
5082                             sdl, Ty, Arg));
5083    return 0;
5084  }
5085  case Intrinsic::ctpop: {
5086    SDValue Arg = getValue(I.getArgOperand(0));
5087    EVT Ty = Arg.getValueType();
5088    setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
5089    return 0;
5090  }
5091  case Intrinsic::stacksave: {
5092    SDValue Op = getRoot();
5093    Res = DAG.getNode(ISD::STACKSAVE, sdl,
5094                      DAG.getVTList(TLI->getPointerTy(), MVT::Other), &Op, 1);
5095    setValue(&I, Res);
5096    DAG.setRoot(Res.getValue(1));
5097    return 0;
5098  }
5099  case Intrinsic::stackrestore: {
5100    Res = getValue(I.getArgOperand(0));
5101    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
5102    return 0;
5103  }
5104  case Intrinsic::stackprotector: {
5105    // Emit code into the DAG to store the stack guard onto the stack.
5106    MachineFunction &MF = DAG.getMachineFunction();
5107    MachineFrameInfo *MFI = MF.getFrameInfo();
5108    EVT PtrTy = TLI->getPointerTy();
5109
5110    SDValue Src = getValue(I.getArgOperand(0));   // The guard's value.
5111    AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
5112
5113    int FI = FuncInfo.StaticAllocaMap[Slot];
5114    MFI->setStackProtectorIndex(FI);
5115
5116    SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
5117
5118    // Store the stack protector onto the stack.
5119    Res = DAG.getStore(getRoot(), sdl, Src, FIN,
5120                       MachinePointerInfo::getFixedStack(FI),
5121                       true, false, 0);
5122    setValue(&I, Res);
5123    DAG.setRoot(Res);
5124    return 0;
5125  }
5126  case Intrinsic::objectsize: {
5127    // If we don't know by now, we're never going to know.
5128    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
5129
5130    assert(CI && "Non-constant type in __builtin_object_size?");
5131
5132    SDValue Arg = getValue(I.getCalledValue());
5133    EVT Ty = Arg.getValueType();
5134
5135    if (CI->isZero())
5136      Res = DAG.getConstant(-1ULL, Ty);
5137    else
5138      Res = DAG.getConstant(0, Ty);
5139
5140    setValue(&I, Res);
5141    return 0;
5142  }
5143  case Intrinsic::annotation:
5144  case Intrinsic::ptr_annotation:
5145    // Drop the intrinsic, but forward the value
5146    setValue(&I, getValue(I.getOperand(0)));
5147    return 0;
5148  case Intrinsic::var_annotation:
5149    // Discard annotate attributes
5150    return 0;
5151
5152  case Intrinsic::init_trampoline: {
5153    const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5154
5155    SDValue Ops[6];
5156    Ops[0] = getRoot();
5157    Ops[1] = getValue(I.getArgOperand(0));
5158    Ops[2] = getValue(I.getArgOperand(1));
5159    Ops[3] = getValue(I.getArgOperand(2));
5160    Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5161    Ops[5] = DAG.getSrcValue(F);
5162
5163    Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops, 6);
5164
5165    DAG.setRoot(Res);
5166    return 0;
5167  }
5168  case Intrinsic::adjust_trampoline: {
5169    setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
5170                             TLI->getPointerTy(),
5171                             getValue(I.getArgOperand(0))));
5172    return 0;
5173  }
5174  case Intrinsic::gcroot:
5175    if (GFI) {
5176      const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
5177      const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
5178
5179      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
5180      GFI->addStackRoot(FI->getIndex(), TypeMap);
5181    }
5182    return 0;
5183  case Intrinsic::gcread:
5184  case Intrinsic::gcwrite:
5185    llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
5186  case Intrinsic::flt_rounds:
5187    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
5188    return 0;
5189
5190  case Intrinsic::expect: {
5191    // Just replace __builtin_expect(exp, c) with EXP.
5192    setValue(&I, getValue(I.getArgOperand(0)));
5193    return 0;
5194  }
5195
5196  case Intrinsic::debugtrap:
5197  case Intrinsic::trap: {
5198    StringRef TrapFuncName = TM.Options.getTrapFunctionName();
5199    if (TrapFuncName.empty()) {
5200      ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
5201        ISD::TRAP : ISD::DEBUGTRAP;
5202      DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
5203      return 0;
5204    }
5205    TargetLowering::ArgListTy Args;
5206    TargetLowering::
5207    CallLoweringInfo CLI(getRoot(), I.getType(),
5208                 false, false, false, false, 0, CallingConv::C,
5209                 /*isTailCall=*/false,
5210                 /*doesNotRet=*/false, /*isReturnValueUsed=*/true,
5211                 DAG.getExternalSymbol(TrapFuncName.data(),
5212                                       TLI->getPointerTy()),
5213                 Args, DAG, sdl);
5214    std::pair<SDValue, SDValue> Result = TLI->LowerCallTo(CLI);
5215    DAG.setRoot(Result.second);
5216    return 0;
5217  }
5218
5219  case Intrinsic::uadd_with_overflow:
5220  case Intrinsic::sadd_with_overflow:
5221  case Intrinsic::usub_with_overflow:
5222  case Intrinsic::ssub_with_overflow:
5223  case Intrinsic::umul_with_overflow:
5224  case Intrinsic::smul_with_overflow: {
5225    ISD::NodeType Op;
5226    switch (Intrinsic) {
5227    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5228    case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
5229    case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
5230    case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
5231    case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
5232    case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
5233    case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
5234    }
5235    SDValue Op1 = getValue(I.getArgOperand(0));
5236    SDValue Op2 = getValue(I.getArgOperand(1));
5237
5238    SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
5239    setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
5240    return 0;
5241  }
5242  case Intrinsic::prefetch: {
5243    SDValue Ops[5];
5244    unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
5245    Ops[0] = getRoot();
5246    Ops[1] = getValue(I.getArgOperand(0));
5247    Ops[2] = getValue(I.getArgOperand(1));
5248    Ops[3] = getValue(I.getArgOperand(2));
5249    Ops[4] = getValue(I.getArgOperand(3));
5250    DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
5251                                        DAG.getVTList(MVT::Other),
5252                                        &Ops[0], 5,
5253                                        EVT::getIntegerVT(*Context, 8),
5254                                        MachinePointerInfo(I.getArgOperand(0)),
5255                                        0, /* align */
5256                                        false, /* volatile */
5257                                        rw==0, /* read */
5258                                        rw==1)); /* write */
5259    return 0;
5260  }
5261  case Intrinsic::lifetime_start:
5262  case Intrinsic::lifetime_end: {
5263    bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
5264    // Stack coloring is not enabled in O0, discard region information.
5265    if (TM.getOptLevel() == CodeGenOpt::None)
5266      return 0;
5267
5268    SmallVector<Value *, 4> Allocas;
5269    GetUnderlyingObjects(I.getArgOperand(1), Allocas, TD);
5270
5271    for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(),
5272           E = Allocas.end(); Object != E; ++Object) {
5273      AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
5274
5275      // Could not find an Alloca.
5276      if (!LifetimeObject)
5277        continue;
5278
5279      int FI = FuncInfo.StaticAllocaMap[LifetimeObject];
5280
5281      SDValue Ops[2];
5282      Ops[0] = getRoot();
5283      Ops[1] = DAG.getFrameIndex(FI, TLI->getPointerTy(), true);
5284      unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END);
5285
5286      Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops, 2);
5287      DAG.setRoot(Res);
5288    }
5289    return 0;
5290  }
5291  case Intrinsic::invariant_start:
5292    // Discard region information.
5293    setValue(&I, DAG.getUNDEF(TLI->getPointerTy()));
5294    return 0;
5295  case Intrinsic::invariant_end:
5296    // Discard region information.
5297    return 0;
5298  case Intrinsic::stackprotectorcheck: {
5299    // Do not actually emit anything for this basic block. Instead we initialize
5300    // the stack protector descriptor and export the guard variable so we can
5301    // access it in FinishBasicBlock.
5302    const BasicBlock *BB = I.getParent();
5303    SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I);
5304    ExportFromCurrentBlock(SPDescriptor.getGuard());
5305
5306    // Flush our exports since we are going to process a terminator.
5307    (void)getControlRoot();
5308    return 0;
5309  }
5310  case Intrinsic::donothing:
5311    // ignore
5312    return 0;
5313  case Intrinsic::experimental_stackmap: {
5314    visitStackmap(I);
5315    return 0;
5316  }
5317  case Intrinsic::experimental_patchpoint_void:
5318  case Intrinsic::experimental_patchpoint_i64: {
5319    visitPatchpoint(I);
5320    return 0;
5321  }
5322  }
5323}
5324
5325void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
5326                                      bool isTailCall,
5327                                      MachineBasicBlock *LandingPad) {
5328  PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
5329  FunctionType *FTy = cast<FunctionType>(PT->getElementType());
5330  Type *RetTy = FTy->getReturnType();
5331  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5332  MCSymbol *BeginLabel = 0;
5333
5334  TargetLowering::ArgListTy Args;
5335  TargetLowering::ArgListEntry Entry;
5336  Args.reserve(CS.arg_size());
5337
5338  // Check whether the function can return without sret-demotion.
5339  SmallVector<ISD::OutputArg, 4> Outs;
5340  const TargetLowering *TLI = TM.getTargetLowering();
5341  GetReturnInfo(RetTy, CS.getAttributes(), Outs, *TLI);
5342
5343  bool CanLowerReturn = TLI->CanLowerReturn(CS.getCallingConv(),
5344                                            DAG.getMachineFunction(),
5345                                            FTy->isVarArg(), Outs,
5346                                            FTy->getContext());
5347
5348  SDValue DemoteStackSlot;
5349  int DemoteStackIdx = -100;
5350
5351  if (!CanLowerReturn) {
5352    uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(
5353                      FTy->getReturnType());
5354    unsigned Align  = TLI->getDataLayout()->getPrefTypeAlignment(
5355                      FTy->getReturnType());
5356    MachineFunction &MF = DAG.getMachineFunction();
5357    DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5358    Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
5359
5360    DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI->getPointerTy());
5361    Entry.Node = DemoteStackSlot;
5362    Entry.Ty = StackSlotPtrType;
5363    Entry.isSExt = false;
5364    Entry.isZExt = false;
5365    Entry.isInReg = false;
5366    Entry.isSRet = true;
5367    Entry.isNest = false;
5368    Entry.isByVal = false;
5369    Entry.isReturned = false;
5370    Entry.Alignment = Align;
5371    Args.push_back(Entry);
5372    RetTy = Type::getVoidTy(FTy->getContext());
5373  }
5374
5375  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
5376       i != e; ++i) {
5377    const Value *V = *i;
5378
5379    // Skip empty types
5380    if (V->getType()->isEmptyTy())
5381      continue;
5382
5383    SDValue ArgNode = getValue(V);
5384    Entry.Node = ArgNode; Entry.Ty = V->getType();
5385
5386    // Skip the first return-type Attribute to get to params.
5387    Entry.setAttributes(&CS, i - CS.arg_begin() + 1);
5388    Args.push_back(Entry);
5389  }
5390
5391  if (LandingPad) {
5392    // Insert a label before the invoke call to mark the try range.  This can be
5393    // used to detect deletion of the invoke via the MachineModuleInfo.
5394    BeginLabel = MMI.getContext().CreateTempSymbol();
5395
5396    // For SjLj, keep track of which landing pads go with which invokes
5397    // so as to maintain the ordering of pads in the LSDA.
5398    unsigned CallSiteIndex = MMI.getCurrentCallSite();
5399    if (CallSiteIndex) {
5400      MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
5401      LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex);
5402
5403      // Now that the call site is handled, stop tracking it.
5404      MMI.setCurrentCallSite(0);
5405    }
5406
5407    // Both PendingLoads and PendingExports must be flushed here;
5408    // this call might not return.
5409    (void)getRoot();
5410    DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
5411  }
5412
5413  // Check if target-independent constraints permit a tail call here.
5414  // Target-dependent constraints are checked within TLI->LowerCallTo.
5415  if (isTailCall && !isInTailCallPosition(CS, *TLI))
5416    isTailCall = false;
5417
5418  TargetLowering::
5419  CallLoweringInfo CLI(getRoot(), RetTy, FTy, isTailCall, Callee, Args, DAG,
5420                       getCurSDLoc(), CS);
5421  std::pair<SDValue,SDValue> Result = TLI->LowerCallTo(CLI);
5422  assert((isTailCall || Result.second.getNode()) &&
5423         "Non-null chain expected with non-tail call!");
5424  assert((Result.second.getNode() || !Result.first.getNode()) &&
5425         "Null value expected with tail call!");
5426  if (Result.first.getNode()) {
5427    setValue(CS.getInstruction(), Result.first);
5428  } else if (!CanLowerReturn && Result.second.getNode()) {
5429    // The instruction result is the result of loading from the
5430    // hidden sret parameter.
5431    SmallVector<EVT, 1> PVTs;
5432    Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
5433
5434    ComputeValueVTs(*TLI, PtrRetTy, PVTs);
5435    assert(PVTs.size() == 1 && "Pointers should fit in one register");
5436    EVT PtrVT = PVTs[0];
5437
5438    SmallVector<EVT, 4> RetTys;
5439    SmallVector<uint64_t, 4> Offsets;
5440    RetTy = FTy->getReturnType();
5441    ComputeValueVTs(*TLI, RetTy, RetTys, &Offsets);
5442
5443    unsigned NumValues = RetTys.size();
5444    SmallVector<SDValue, 4> Values(NumValues);
5445    SmallVector<SDValue, 4> Chains(NumValues);
5446
5447    for (unsigned i = 0; i < NumValues; ++i) {
5448      SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT,
5449                                DemoteStackSlot,
5450                                DAG.getConstant(Offsets[i], PtrVT));
5451      SDValue L = DAG.getLoad(RetTys[i], getCurSDLoc(), Result.second, Add,
5452                  MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]),
5453                              false, false, false, 1);
5454      Values[i] = L;
5455      Chains[i] = L.getValue(1);
5456    }
5457
5458    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
5459                                MVT::Other, &Chains[0], NumValues);
5460    PendingLoads.push_back(Chain);
5461
5462    setValue(CS.getInstruction(),
5463             DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
5464                         DAG.getVTList(&RetTys[0], RetTys.size()),
5465                         &Values[0], Values.size()));
5466  }
5467
5468  if (!Result.second.getNode()) {
5469    // As a special case, a null chain means that a tail call has been emitted
5470    // and the DAG root is already updated.
5471    HasTailCall = true;
5472
5473    // Since there's no actual continuation from this block, nothing can be
5474    // relying on us setting vregs for them.
5475    PendingExports.clear();
5476  } else {
5477    DAG.setRoot(Result.second);
5478  }
5479
5480  if (LandingPad) {
5481    // Insert a label at the end of the invoke call to mark the try range.  This
5482    // can be used to detect deletion of the invoke via the MachineModuleInfo.
5483    MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
5484    DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
5485
5486    // Inform MachineModuleInfo of range.
5487    MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
5488  }
5489}
5490
5491/// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
5492/// value is equal or not-equal to zero.
5493static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
5494  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
5495       UI != E; ++UI) {
5496    if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
5497      if (IC->isEquality())
5498        if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
5499          if (C->isNullValue())
5500            continue;
5501    // Unknown instruction.
5502    return false;
5503  }
5504  return true;
5505}
5506
5507static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
5508                             Type *LoadTy,
5509                             SelectionDAGBuilder &Builder) {
5510
5511  // Check to see if this load can be trivially constant folded, e.g. if the
5512  // input is from a string literal.
5513  if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5514    // Cast pointer to the type we really want to load.
5515    LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5516                                         PointerType::getUnqual(LoadTy));
5517
5518    if (const Constant *LoadCst =
5519          ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
5520                                       Builder.TD))
5521      return Builder.getValue(LoadCst);
5522  }
5523
5524  // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
5525  // still constant memory, the input chain can be the entry node.
5526  SDValue Root;
5527  bool ConstantMemory = false;
5528
5529  // Do not serialize (non-volatile) loads of constant memory with anything.
5530  if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5531    Root = Builder.DAG.getEntryNode();
5532    ConstantMemory = true;
5533  } else {
5534    // Do not serialize non-volatile loads against each other.
5535    Root = Builder.DAG.getRoot();
5536  }
5537
5538  SDValue Ptr = Builder.getValue(PtrVal);
5539  SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
5540                                        Ptr, MachinePointerInfo(PtrVal),
5541                                        false /*volatile*/,
5542                                        false /*nontemporal*/,
5543                                        false /*isinvariant*/, 1 /* align=1 */);
5544
5545  if (!ConstantMemory)
5546    Builder.PendingLoads.push_back(LoadVal.getValue(1));
5547  return LoadVal;
5548}
5549
5550/// processIntegerCallValue - Record the value for an instruction that
5551/// produces an integer result, converting the type where necessary.
5552void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
5553                                                  SDValue Value,
5554                                                  bool IsSigned) {
5555  EVT VT = TM.getTargetLowering()->getValueType(I.getType(), true);
5556  if (IsSigned)
5557    Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
5558  else
5559    Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
5560  setValue(&I, Value);
5561}
5562
5563/// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5564/// If so, return true and lower it, otherwise return false and it will be
5565/// lowered like a normal call.
5566bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5567  // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
5568  if (I.getNumArgOperands() != 3)
5569    return false;
5570
5571  const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5572  if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5573      !I.getArgOperand(2)->getType()->isIntegerTy() ||
5574      !I.getType()->isIntegerTy())
5575    return false;
5576
5577  const Value *Size = I.getArgOperand(2);
5578  const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
5579  if (CSize && CSize->getZExtValue() == 0) {
5580    EVT CallVT = TM.getTargetLowering()->getValueType(I.getType(), true);
5581    setValue(&I, DAG.getConstant(0, CallVT));
5582    return true;
5583  }
5584
5585  const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5586  std::pair<SDValue, SDValue> Res =
5587    TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(),
5588                                getValue(LHS), getValue(RHS), getValue(Size),
5589                                MachinePointerInfo(LHS),
5590                                MachinePointerInfo(RHS));
5591  if (Res.first.getNode()) {
5592    processIntegerCallValue(I, Res.first, true);
5593    PendingLoads.push_back(Res.second);
5594    return true;
5595  }
5596
5597  // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
5598  // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
5599  if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) {
5600    bool ActuallyDoIt = true;
5601    MVT LoadVT;
5602    Type *LoadTy;
5603    switch (CSize->getZExtValue()) {
5604    default:
5605      LoadVT = MVT::Other;
5606      LoadTy = 0;
5607      ActuallyDoIt = false;
5608      break;
5609    case 2:
5610      LoadVT = MVT::i16;
5611      LoadTy = Type::getInt16Ty(CSize->getContext());
5612      break;
5613    case 4:
5614      LoadVT = MVT::i32;
5615      LoadTy = Type::getInt32Ty(CSize->getContext());
5616      break;
5617    case 8:
5618      LoadVT = MVT::i64;
5619      LoadTy = Type::getInt64Ty(CSize->getContext());
5620      break;
5621        /*
5622    case 16:
5623      LoadVT = MVT::v4i32;
5624      LoadTy = Type::getInt32Ty(CSize->getContext());
5625      LoadTy = VectorType::get(LoadTy, 4);
5626      break;
5627         */
5628    }
5629
5630    // This turns into unaligned loads.  We only do this if the target natively
5631    // supports the MVT we'll be loading or if it is small enough (<= 4) that
5632    // we'll only produce a small number of byte loads.
5633
5634    // Require that we can find a legal MVT, and only do this if the target
5635    // supports unaligned loads of that type.  Expanding into byte loads would
5636    // bloat the code.
5637    const TargetLowering *TLI = TM.getTargetLowering();
5638    if (ActuallyDoIt && CSize->getZExtValue() > 4) {
5639      // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5640      // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5641      if (!TLI->isTypeLegal(LoadVT) ||!TLI->allowsUnalignedMemoryAccesses(LoadVT))
5642        ActuallyDoIt = false;
5643    }
5644
5645    if (ActuallyDoIt) {
5646      SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5647      SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5648
5649      SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal,
5650                                 ISD::SETNE);
5651      processIntegerCallValue(I, Res, false);
5652      return true;
5653    }
5654  }
5655
5656
5657  return false;
5658}
5659
5660/// visitMemChrCall -- See if we can lower a memchr call into an optimized
5661/// form.  If so, return true and lower it, otherwise return false and it
5662/// will be lowered like a normal call.
5663bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
5664  // Verify that the prototype makes sense.  void *memchr(void *, int, size_t)
5665  if (I.getNumArgOperands() != 3)
5666    return false;
5667
5668  const Value *Src = I.getArgOperand(0);
5669  const Value *Char = I.getArgOperand(1);
5670  const Value *Length = I.getArgOperand(2);
5671  if (!Src->getType()->isPointerTy() ||
5672      !Char->getType()->isIntegerTy() ||
5673      !Length->getType()->isIntegerTy() ||
5674      !I.getType()->isPointerTy())
5675    return false;
5676
5677  const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5678  std::pair<SDValue, SDValue> Res =
5679    TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
5680                                getValue(Src), getValue(Char), getValue(Length),
5681                                MachinePointerInfo(Src));
5682  if (Res.first.getNode()) {
5683    setValue(&I, Res.first);
5684    PendingLoads.push_back(Res.second);
5685    return true;
5686  }
5687
5688  return false;
5689}
5690
5691/// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an
5692/// optimized form.  If so, return true and lower it, otherwise return false
5693/// and it will be lowered like a normal call.
5694bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
5695  // Verify that the prototype makes sense.  char *strcpy(char *, char *)
5696  if (I.getNumArgOperands() != 2)
5697    return false;
5698
5699  const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
5700  if (!Arg0->getType()->isPointerTy() ||
5701      !Arg1->getType()->isPointerTy() ||
5702      !I.getType()->isPointerTy())
5703    return false;
5704
5705  const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5706  std::pair<SDValue, SDValue> Res =
5707    TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
5708                                getValue(Arg0), getValue(Arg1),
5709                                MachinePointerInfo(Arg0),
5710                                MachinePointerInfo(Arg1), isStpcpy);
5711  if (Res.first.getNode()) {
5712    setValue(&I, Res.first);
5713    DAG.setRoot(Res.second);
5714    return true;
5715  }
5716
5717  return false;
5718}
5719
5720/// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form.
5721/// If so, return true and lower it, otherwise return false and it will be
5722/// lowered like a normal call.
5723bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
5724  // Verify that the prototype makes sense.  int strcmp(void*,void*)
5725  if (I.getNumArgOperands() != 2)
5726    return false;
5727
5728  const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
5729  if (!Arg0->getType()->isPointerTy() ||
5730      !Arg1->getType()->isPointerTy() ||
5731      !I.getType()->isIntegerTy())
5732    return false;
5733
5734  const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5735  std::pair<SDValue, SDValue> Res =
5736    TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
5737                                getValue(Arg0), getValue(Arg1),
5738                                MachinePointerInfo(Arg0),
5739                                MachinePointerInfo(Arg1));
5740  if (Res.first.getNode()) {
5741    processIntegerCallValue(I, Res.first, true);
5742    PendingLoads.push_back(Res.second);
5743    return true;
5744  }
5745
5746  return false;
5747}
5748
5749/// visitStrLenCall -- See if we can lower a strlen call into an optimized
5750/// form.  If so, return true and lower it, otherwise return false and it
5751/// will be lowered like a normal call.
5752bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
5753  // Verify that the prototype makes sense.  size_t strlen(char *)
5754  if (I.getNumArgOperands() != 1)
5755    return false;
5756
5757  const Value *Arg0 = I.getArgOperand(0);
5758  if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy())
5759    return false;
5760
5761  const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5762  std::pair<SDValue, SDValue> Res =
5763    TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
5764                                getValue(Arg0), MachinePointerInfo(Arg0));
5765  if (Res.first.getNode()) {
5766    processIntegerCallValue(I, Res.first, false);
5767    PendingLoads.push_back(Res.second);
5768    return true;
5769  }
5770
5771  return false;
5772}
5773
5774/// visitStrNLenCall -- See if we can lower a strnlen call into an optimized
5775/// form.  If so, return true and lower it, otherwise return false and it
5776/// will be lowered like a normal call.
5777bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
5778  // Verify that the prototype makes sense.  size_t strnlen(char *, size_t)
5779  if (I.getNumArgOperands() != 2)
5780    return false;
5781
5782  const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
5783  if (!Arg0->getType()->isPointerTy() ||
5784      !Arg1->getType()->isIntegerTy() ||
5785      !I.getType()->isIntegerTy())
5786    return false;
5787
5788  const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5789  std::pair<SDValue, SDValue> Res =
5790    TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
5791                                 getValue(Arg0), getValue(Arg1),
5792                                 MachinePointerInfo(Arg0));
5793  if (Res.first.getNode()) {
5794    processIntegerCallValue(I, Res.first, false);
5795    PendingLoads.push_back(Res.second);
5796    return true;
5797  }
5798
5799  return false;
5800}
5801
5802/// visitUnaryFloatCall - If a call instruction is a unary floating-point
5803/// operation (as expected), translate it to an SDNode with the specified opcode
5804/// and return true.
5805bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
5806                                              unsigned Opcode) {
5807  // Sanity check that it really is a unary floating-point call.
5808  if (I.getNumArgOperands() != 1 ||
5809      !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
5810      I.getType() != I.getArgOperand(0)->getType() ||
5811      !I.onlyReadsMemory())
5812    return false;
5813
5814  SDValue Tmp = getValue(I.getArgOperand(0));
5815  setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
5816  return true;
5817}
5818
5819void SelectionDAGBuilder::visitCall(const CallInst &I) {
5820  // Handle inline assembly differently.
5821  if (isa<InlineAsm>(I.getCalledValue())) {
5822    visitInlineAsm(&I);
5823    return;
5824  }
5825
5826  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5827  ComputeUsesVAFloatArgument(I, &MMI);
5828
5829  const char *RenameFn = 0;
5830  if (Function *F = I.getCalledFunction()) {
5831    if (F->isDeclaration()) {
5832      if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
5833        if (unsigned IID = II->getIntrinsicID(F)) {
5834          RenameFn = visitIntrinsicCall(I, IID);
5835          if (!RenameFn)
5836            return;
5837        }
5838      }
5839      if (unsigned IID = F->getIntrinsicID()) {
5840        RenameFn = visitIntrinsicCall(I, IID);
5841        if (!RenameFn)
5842          return;
5843      }
5844    }
5845
5846    // Check for well-known libc/libm calls.  If the function is internal, it
5847    // can't be a library call.
5848    LibFunc::Func Func;
5849    if (!F->hasLocalLinkage() && F->hasName() &&
5850        LibInfo->getLibFunc(F->getName(), Func) &&
5851        LibInfo->hasOptimizedCodeGen(Func)) {
5852      switch (Func) {
5853      default: break;
5854      case LibFunc::copysign:
5855      case LibFunc::copysignf:
5856      case LibFunc::copysignl:
5857        if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
5858            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5859            I.getType() == I.getArgOperand(0)->getType() &&
5860            I.getType() == I.getArgOperand(1)->getType() &&
5861            I.onlyReadsMemory()) {
5862          SDValue LHS = getValue(I.getArgOperand(0));
5863          SDValue RHS = getValue(I.getArgOperand(1));
5864          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
5865                                   LHS.getValueType(), LHS, RHS));
5866          return;
5867        }
5868        break;
5869      case LibFunc::fabs:
5870      case LibFunc::fabsf:
5871      case LibFunc::fabsl:
5872        if (visitUnaryFloatCall(I, ISD::FABS))
5873          return;
5874        break;
5875      case LibFunc::sin:
5876      case LibFunc::sinf:
5877      case LibFunc::sinl:
5878        if (visitUnaryFloatCall(I, ISD::FSIN))
5879          return;
5880        break;
5881      case LibFunc::cos:
5882      case LibFunc::cosf:
5883      case LibFunc::cosl:
5884        if (visitUnaryFloatCall(I, ISD::FCOS))
5885          return;
5886        break;
5887      case LibFunc::sqrt:
5888      case LibFunc::sqrtf:
5889      case LibFunc::sqrtl:
5890      case LibFunc::sqrt_finite:
5891      case LibFunc::sqrtf_finite:
5892      case LibFunc::sqrtl_finite:
5893        if (visitUnaryFloatCall(I, ISD::FSQRT))
5894          return;
5895        break;
5896      case LibFunc::floor:
5897      case LibFunc::floorf:
5898      case LibFunc::floorl:
5899        if (visitUnaryFloatCall(I, ISD::FFLOOR))
5900          return;
5901        break;
5902      case LibFunc::nearbyint:
5903      case LibFunc::nearbyintf:
5904      case LibFunc::nearbyintl:
5905        if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
5906          return;
5907        break;
5908      case LibFunc::ceil:
5909      case LibFunc::ceilf:
5910      case LibFunc::ceill:
5911        if (visitUnaryFloatCall(I, ISD::FCEIL))
5912          return;
5913        break;
5914      case LibFunc::rint:
5915      case LibFunc::rintf:
5916      case LibFunc::rintl:
5917        if (visitUnaryFloatCall(I, ISD::FRINT))
5918          return;
5919        break;
5920      case LibFunc::round:
5921      case LibFunc::roundf:
5922      case LibFunc::roundl:
5923        if (visitUnaryFloatCall(I, ISD::FROUND))
5924          return;
5925        break;
5926      case LibFunc::trunc:
5927      case LibFunc::truncf:
5928      case LibFunc::truncl:
5929        if (visitUnaryFloatCall(I, ISD::FTRUNC))
5930          return;
5931        break;
5932      case LibFunc::log2:
5933      case LibFunc::log2f:
5934      case LibFunc::log2l:
5935        if (visitUnaryFloatCall(I, ISD::FLOG2))
5936          return;
5937        break;
5938      case LibFunc::exp2:
5939      case LibFunc::exp2f:
5940      case LibFunc::exp2l:
5941        if (visitUnaryFloatCall(I, ISD::FEXP2))
5942          return;
5943        break;
5944      case LibFunc::memcmp:
5945        if (visitMemCmpCall(I))
5946          return;
5947        break;
5948      case LibFunc::memchr:
5949        if (visitMemChrCall(I))
5950          return;
5951        break;
5952      case LibFunc::strcpy:
5953        if (visitStrCpyCall(I, false))
5954          return;
5955        break;
5956      case LibFunc::stpcpy:
5957        if (visitStrCpyCall(I, true))
5958          return;
5959        break;
5960      case LibFunc::strcmp:
5961        if (visitStrCmpCall(I))
5962          return;
5963        break;
5964      case LibFunc::strlen:
5965        if (visitStrLenCall(I))
5966          return;
5967        break;
5968      case LibFunc::strnlen:
5969        if (visitStrNLenCall(I))
5970          return;
5971        break;
5972      }
5973    }
5974  }
5975
5976  SDValue Callee;
5977  if (!RenameFn)
5978    Callee = getValue(I.getCalledValue());
5979  else
5980    Callee = DAG.getExternalSymbol(RenameFn,
5981                                   TM.getTargetLowering()->getPointerTy());
5982
5983  // Check if we can potentially perform a tail call. More detailed checking is
5984  // be done within LowerCallTo, after more information about the call is known.
5985  LowerCallTo(&I, Callee, I.isTailCall());
5986}
5987
5988namespace {
5989
5990/// AsmOperandInfo - This contains information for each constraint that we are
5991/// lowering.
5992class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
5993public:
5994  /// CallOperand - If this is the result output operand or a clobber
5995  /// this is null, otherwise it is the incoming operand to the CallInst.
5996  /// This gets modified as the asm is processed.
5997  SDValue CallOperand;
5998
5999  /// AssignedRegs - If this is a register or register class operand, this
6000  /// contains the set of register corresponding to the operand.
6001  RegsForValue AssignedRegs;
6002
6003  explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
6004    : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
6005  }
6006
6007  /// getCallOperandValEVT - Return the EVT of the Value* that this operand
6008  /// corresponds to.  If there is no Value* for this operand, it returns
6009  /// MVT::Other.
6010  EVT getCallOperandValEVT(LLVMContext &Context,
6011                           const TargetLowering &TLI,
6012                           const DataLayout *TD) const {
6013    if (CallOperandVal == 0) return MVT::Other;
6014
6015    if (isa<BasicBlock>(CallOperandVal))
6016      return TLI.getPointerTy();
6017
6018    llvm::Type *OpTy = CallOperandVal->getType();
6019
6020    // FIXME: code duplicated from TargetLowering::ParseConstraints().
6021    // If this is an indirect operand, the operand is a pointer to the
6022    // accessed type.
6023    if (isIndirect) {
6024      llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
6025      if (!PtrTy)
6026        report_fatal_error("Indirect operand for inline asm not a pointer!");
6027      OpTy = PtrTy->getElementType();
6028    }
6029
6030    // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
6031    if (StructType *STy = dyn_cast<StructType>(OpTy))
6032      if (STy->getNumElements() == 1)
6033        OpTy = STy->getElementType(0);
6034
6035    // If OpTy is not a single value, it may be a struct/union that we
6036    // can tile with integers.
6037    if (!OpTy->isSingleValueType() && OpTy->isSized()) {
6038      unsigned BitSize = TD->getTypeSizeInBits(OpTy);
6039      switch (BitSize) {
6040      default: break;
6041      case 1:
6042      case 8:
6043      case 16:
6044      case 32:
6045      case 64:
6046      case 128:
6047        OpTy = IntegerType::get(Context, BitSize);
6048        break;
6049      }
6050    }
6051
6052    return TLI.getValueType(OpTy, true);
6053  }
6054};
6055
6056typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
6057
6058} // end anonymous namespace
6059
6060/// GetRegistersForValue - Assign registers (virtual or physical) for the
6061/// specified operand.  We prefer to assign virtual registers, to allow the
6062/// register allocator to handle the assignment process.  However, if the asm
6063/// uses features that we can't model on machineinstrs, we have SDISel do the
6064/// allocation.  This produces generally horrible, but correct, code.
6065///
6066///   OpInfo describes the operand.
6067///
6068static void GetRegistersForValue(SelectionDAG &DAG,
6069                                 const TargetLowering &TLI,
6070                                 SDLoc DL,
6071                                 SDISelAsmOperandInfo &OpInfo) {
6072  LLVMContext &Context = *DAG.getContext();
6073
6074  MachineFunction &MF = DAG.getMachineFunction();
6075  SmallVector<unsigned, 4> Regs;
6076
6077  // If this is a constraint for a single physreg, or a constraint for a
6078  // register class, find it.
6079  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
6080    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
6081                                     OpInfo.ConstraintVT);
6082
6083  unsigned NumRegs = 1;
6084  if (OpInfo.ConstraintVT != MVT::Other) {
6085    // If this is a FP input in an integer register (or visa versa) insert a bit
6086    // cast of the input value.  More generally, handle any case where the input
6087    // value disagrees with the register class we plan to stick this in.
6088    if (OpInfo.Type == InlineAsm::isInput &&
6089        PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
6090      // Try to convert to the first EVT that the reg class contains.  If the
6091      // types are identical size, use a bitcast to convert (e.g. two differing
6092      // vector types).
6093      MVT RegVT = *PhysReg.second->vt_begin();
6094      if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
6095        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
6096                                         RegVT, OpInfo.CallOperand);
6097        OpInfo.ConstraintVT = RegVT;
6098      } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
6099        // If the input is a FP value and we want it in FP registers, do a
6100        // bitcast to the corresponding integer type.  This turns an f64 value
6101        // into i64, which can be passed with two i32 values on a 32-bit
6102        // machine.
6103        RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
6104        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
6105                                         RegVT, OpInfo.CallOperand);
6106        OpInfo.ConstraintVT = RegVT;
6107      }
6108    }
6109
6110    NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
6111  }
6112
6113  MVT RegVT;
6114  EVT ValueVT = OpInfo.ConstraintVT;
6115
6116  // If this is a constraint for a specific physical register, like {r17},
6117  // assign it now.
6118  if (unsigned AssignedReg = PhysReg.first) {
6119    const TargetRegisterClass *RC = PhysReg.second;
6120    if (OpInfo.ConstraintVT == MVT::Other)
6121      ValueVT = *RC->vt_begin();
6122
6123    // Get the actual register value type.  This is important, because the user
6124    // may have asked for (e.g.) the AX register in i32 type.  We need to
6125    // remember that AX is actually i16 to get the right extension.
6126    RegVT = *RC->vt_begin();
6127
6128    // This is a explicit reference to a physical register.
6129    Regs.push_back(AssignedReg);
6130
6131    // If this is an expanded reference, add the rest of the regs to Regs.
6132    if (NumRegs != 1) {
6133      TargetRegisterClass::iterator I = RC->begin();
6134      for (; *I != AssignedReg; ++I)
6135        assert(I != RC->end() && "Didn't find reg!");
6136
6137      // Already added the first reg.
6138      --NumRegs; ++I;
6139      for (; NumRegs; --NumRegs, ++I) {
6140        assert(I != RC->end() && "Ran out of registers to allocate!");
6141        Regs.push_back(*I);
6142      }
6143    }
6144
6145    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
6146    return;
6147  }
6148
6149  // Otherwise, if this was a reference to an LLVM register class, create vregs
6150  // for this reference.
6151  if (const TargetRegisterClass *RC = PhysReg.second) {
6152    RegVT = *RC->vt_begin();
6153    if (OpInfo.ConstraintVT == MVT::Other)
6154      ValueVT = RegVT;
6155
6156    // Create the appropriate number of virtual registers.
6157    MachineRegisterInfo &RegInfo = MF.getRegInfo();
6158    for (; NumRegs; --NumRegs)
6159      Regs.push_back(RegInfo.createVirtualRegister(RC));
6160
6161    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
6162    return;
6163  }
6164
6165  // Otherwise, we couldn't allocate enough registers for this.
6166}
6167
6168/// visitInlineAsm - Handle a call to an InlineAsm object.
6169///
6170void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
6171  const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
6172
6173  /// ConstraintOperands - Information about all of the constraints.
6174  SDISelAsmOperandInfoVector ConstraintOperands;
6175
6176  const TargetLowering *TLI = TM.getTargetLowering();
6177  TargetLowering::AsmOperandInfoVector
6178    TargetConstraints = TLI->ParseConstraints(CS);
6179
6180  bool hasMemory = false;
6181
6182  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
6183  unsigned ResNo = 0;   // ResNo - The result number of the next output.
6184  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
6185    ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
6186    SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
6187
6188    MVT OpVT = MVT::Other;
6189
6190    // Compute the value type for each operand.
6191    switch (OpInfo.Type) {
6192    case InlineAsm::isOutput:
6193      // Indirect outputs just consume an argument.
6194      if (OpInfo.isIndirect) {
6195        OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
6196        break;
6197      }
6198
6199      // The return value of the call is this value.  As such, there is no
6200      // corresponding argument.
6201      assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6202      if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
6203        OpVT = TLI->getSimpleValueType(STy->getElementType(ResNo));
6204      } else {
6205        assert(ResNo == 0 && "Asm only has one result!");
6206        OpVT = TLI->getSimpleValueType(CS.getType());
6207      }
6208      ++ResNo;
6209      break;
6210    case InlineAsm::isInput:
6211      OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
6212      break;
6213    case InlineAsm::isClobber:
6214      // Nothing to do.
6215      break;
6216    }
6217
6218    // If this is an input or an indirect output, process the call argument.
6219    // BasicBlocks are labels, currently appearing only in asm's.
6220    if (OpInfo.CallOperandVal) {
6221      if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
6222        OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
6223      } else {
6224        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
6225      }
6226
6227      OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), *TLI, TD).
6228        getSimpleVT();
6229    }
6230
6231    OpInfo.ConstraintVT = OpVT;
6232
6233    // Indirect operand accesses access memory.
6234    if (OpInfo.isIndirect)
6235      hasMemory = true;
6236    else {
6237      for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
6238        TargetLowering::ConstraintType
6239          CType = TLI->getConstraintType(OpInfo.Codes[j]);
6240        if (CType == TargetLowering::C_Memory) {
6241          hasMemory = true;
6242          break;
6243        }
6244      }
6245    }
6246  }
6247
6248  SDValue Chain, Flag;
6249
6250  // We won't need to flush pending loads if this asm doesn't touch
6251  // memory and is nonvolatile.
6252  if (hasMemory || IA->hasSideEffects())
6253    Chain = getRoot();
6254  else
6255    Chain = DAG.getRoot();
6256
6257  // Second pass over the constraints: compute which constraint option to use
6258  // and assign registers to constraints that want a specific physreg.
6259  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6260    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6261
6262    // If this is an output operand with a matching input operand, look up the
6263    // matching input. If their types mismatch, e.g. one is an integer, the
6264    // other is floating point, or their sizes are different, flag it as an
6265    // error.
6266    if (OpInfo.hasMatchingInput()) {
6267      SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
6268
6269      if (OpInfo.ConstraintVT != Input.ConstraintVT) {
6270        std::pair<unsigned, const TargetRegisterClass*> MatchRC =
6271          TLI->getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
6272                                            OpInfo.ConstraintVT);
6273        std::pair<unsigned, const TargetRegisterClass*> InputRC =
6274          TLI->getRegForInlineAsmConstraint(Input.ConstraintCode,
6275                                            Input.ConstraintVT);
6276        if ((OpInfo.ConstraintVT.isInteger() !=
6277             Input.ConstraintVT.isInteger()) ||
6278            (MatchRC.second != InputRC.second)) {
6279          report_fatal_error("Unsupported asm: input constraint"
6280                             " with a matching output constraint of"
6281                             " incompatible type!");
6282        }
6283        Input.ConstraintVT = OpInfo.ConstraintVT;
6284      }
6285    }
6286
6287    // Compute the constraint code and ConstraintType to use.
6288    TLI->ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
6289
6290    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
6291        OpInfo.Type == InlineAsm::isClobber)
6292      continue;
6293
6294    // If this is a memory input, and if the operand is not indirect, do what we
6295    // need to to provide an address for the memory input.
6296    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
6297        !OpInfo.isIndirect) {
6298      assert((OpInfo.isMultipleAlternative ||
6299              (OpInfo.Type == InlineAsm::isInput)) &&
6300             "Can only indirectify direct input operands!");
6301
6302      // Memory operands really want the address of the value.  If we don't have
6303      // an indirect input, put it in the constpool if we can, otherwise spill
6304      // it to a stack slot.
6305      // TODO: This isn't quite right. We need to handle these according to
6306      // the addressing mode that the constraint wants. Also, this may take
6307      // an additional register for the computation and we don't want that
6308      // either.
6309
6310      // If the operand is a float, integer, or vector constant, spill to a
6311      // constant pool entry to get its address.
6312      const Value *OpVal = OpInfo.CallOperandVal;
6313      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
6314          isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
6315        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
6316                                                 TLI->getPointerTy());
6317      } else {
6318        // Otherwise, create a stack slot and emit a store to it before the
6319        // asm.
6320        Type *Ty = OpVal->getType();
6321        uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty);
6322        unsigned Align  = TLI->getDataLayout()->getPrefTypeAlignment(Ty);
6323        MachineFunction &MF = DAG.getMachineFunction();
6324        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
6325        SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI->getPointerTy());
6326        Chain = DAG.getStore(Chain, getCurSDLoc(),
6327                             OpInfo.CallOperand, StackSlot,
6328                             MachinePointerInfo::getFixedStack(SSFI),
6329                             false, false, 0);
6330        OpInfo.CallOperand = StackSlot;
6331      }
6332
6333      // There is no longer a Value* corresponding to this operand.
6334      OpInfo.CallOperandVal = 0;
6335
6336      // It is now an indirect operand.
6337      OpInfo.isIndirect = true;
6338    }
6339
6340    // If this constraint is for a specific register, allocate it before
6341    // anything else.
6342    if (OpInfo.ConstraintType == TargetLowering::C_Register)
6343      GetRegistersForValue(DAG, *TLI, getCurSDLoc(), OpInfo);
6344  }
6345
6346  // Second pass - Loop over all of the operands, assigning virtual or physregs
6347  // to register class operands.
6348  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6349    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6350
6351    // C_Register operands have already been allocated, Other/Memory don't need
6352    // to be.
6353    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
6354      GetRegistersForValue(DAG, *TLI, getCurSDLoc(), OpInfo);
6355  }
6356
6357  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
6358  std::vector<SDValue> AsmNodeOperands;
6359  AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
6360  AsmNodeOperands.push_back(
6361          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
6362                                      TLI->getPointerTy()));
6363
6364  // If we have a !srcloc metadata node associated with it, we want to attach
6365  // this to the ultimately generated inline asm machineinstr.  To do this, we
6366  // pass in the third operand as this (potentially null) inline asm MDNode.
6367  const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
6368  AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
6369
6370  // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
6371  // bits as operand 3.
6372  unsigned ExtraInfo = 0;
6373  if (IA->hasSideEffects())
6374    ExtraInfo |= InlineAsm::Extra_HasSideEffects;
6375  if (IA->isAlignStack())
6376    ExtraInfo |= InlineAsm::Extra_IsAlignStack;
6377  // Set the asm dialect.
6378  ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
6379
6380  // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
6381  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
6382    TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
6383
6384    // Compute the constraint code and ConstraintType to use.
6385    TLI->ComputeConstraintToUse(OpInfo, SDValue());
6386
6387    // Ideally, we would only check against memory constraints.  However, the
6388    // meaning of an other constraint can be target-specific and we can't easily
6389    // reason about it.  Therefore, be conservative and set MayLoad/MayStore
6390    // for other constriants as well.
6391    if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
6392        OpInfo.ConstraintType == TargetLowering::C_Other) {
6393      if (OpInfo.Type == InlineAsm::isInput)
6394        ExtraInfo |= InlineAsm::Extra_MayLoad;
6395      else if (OpInfo.Type == InlineAsm::isOutput)
6396        ExtraInfo |= InlineAsm::Extra_MayStore;
6397      else if (OpInfo.Type == InlineAsm::isClobber)
6398        ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
6399    }
6400  }
6401
6402  AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo,
6403                                                  TLI->getPointerTy()));
6404
6405  // Loop over all of the inputs, copying the operand values into the
6406  // appropriate registers and processing the output regs.
6407  RegsForValue RetValRegs;
6408
6409  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
6410  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
6411
6412  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6413    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6414
6415    switch (OpInfo.Type) {
6416    case InlineAsm::isOutput: {
6417      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
6418          OpInfo.ConstraintType != TargetLowering::C_Register) {
6419        // Memory output, or 'other' output (e.g. 'X' constraint).
6420        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
6421
6422        // Add information to the INLINEASM node to know about this output.
6423        unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6424        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
6425                                                        TLI->getPointerTy()));
6426        AsmNodeOperands.push_back(OpInfo.CallOperand);
6427        break;
6428      }
6429
6430      // Otherwise, this is a register or register class output.
6431
6432      // Copy the output from the appropriate register.  Find a register that
6433      // we can use.
6434      if (OpInfo.AssignedRegs.Regs.empty()) {
6435        LLVMContext &Ctx = *DAG.getContext();
6436        Ctx.emitError(CS.getInstruction(),
6437                      "couldn't allocate output register for constraint '" +
6438                          Twine(OpInfo.ConstraintCode) + "'");
6439        return;
6440      }
6441
6442      // If this is an indirect operand, store through the pointer after the
6443      // asm.
6444      if (OpInfo.isIndirect) {
6445        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
6446                                                      OpInfo.CallOperandVal));
6447      } else {
6448        // This is the result value of the call.
6449        assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6450        // Concatenate this output onto the outputs list.
6451        RetValRegs.append(OpInfo.AssignedRegs);
6452      }
6453
6454      // Add information to the INLINEASM node to know that this register is
6455      // set.
6456      OpInfo.AssignedRegs
6457          .AddInlineAsmOperands(OpInfo.isEarlyClobber
6458                                    ? InlineAsm::Kind_RegDefEarlyClobber
6459                                    : InlineAsm::Kind_RegDef,
6460                                false, 0, DAG, AsmNodeOperands);
6461      break;
6462    }
6463    case InlineAsm::isInput: {
6464      SDValue InOperandVal = OpInfo.CallOperand;
6465
6466      if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
6467        // If this is required to match an output register we have already set,
6468        // just use its register.
6469        unsigned OperandNo = OpInfo.getMatchedOperand();
6470
6471        // Scan until we find the definition we already emitted of this operand.
6472        // When we find it, create a RegsForValue operand.
6473        unsigned CurOp = InlineAsm::Op_FirstOperand;
6474        for (; OperandNo; --OperandNo) {
6475          // Advance to the next operand.
6476          unsigned OpFlag =
6477            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6478          assert((InlineAsm::isRegDefKind(OpFlag) ||
6479                  InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
6480                  InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
6481          CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
6482        }
6483
6484        unsigned OpFlag =
6485          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6486        if (InlineAsm::isRegDefKind(OpFlag) ||
6487            InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
6488          // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
6489          if (OpInfo.isIndirect) {
6490            // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
6491            LLVMContext &Ctx = *DAG.getContext();
6492            Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:"
6493                                               " don't know how to handle tied "
6494                                               "indirect register inputs");
6495            return;
6496          }
6497
6498          RegsForValue MatchedRegs;
6499          MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
6500          MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
6501          MatchedRegs.RegVTs.push_back(RegVT);
6502          MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
6503          for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
6504               i != e; ++i) {
6505            if (const TargetRegisterClass *RC = TLI->getRegClassFor(RegVT))
6506              MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC));
6507            else {
6508              LLVMContext &Ctx = *DAG.getContext();
6509              Ctx.emitError(CS.getInstruction(),
6510                            "inline asm error: This value"
6511                            " type register class is not natively supported!");
6512              return;
6513            }
6514          }
6515          // Use the produced MatchedRegs object to
6516          MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(),
6517                                    Chain, &Flag, CS.getInstruction());
6518          MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
6519                                           true, OpInfo.getMatchedOperand(),
6520                                           DAG, AsmNodeOperands);
6521          break;
6522        }
6523
6524        assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
6525        assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
6526               "Unexpected number of operands");
6527        // Add information to the INLINEASM node to know about this input.
6528        // See InlineAsm.h isUseOperandTiedToDef.
6529        OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
6530                                                    OpInfo.getMatchedOperand());
6531        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
6532                                                        TLI->getPointerTy()));
6533        AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
6534        break;
6535      }
6536
6537      // Treat indirect 'X' constraint as memory.
6538      if (OpInfo.ConstraintType == TargetLowering::C_Other &&
6539          OpInfo.isIndirect)
6540        OpInfo.ConstraintType = TargetLowering::C_Memory;
6541
6542      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
6543        std::vector<SDValue> Ops;
6544        TLI->LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
6545                                          Ops, DAG);
6546        if (Ops.empty()) {
6547          LLVMContext &Ctx = *DAG.getContext();
6548          Ctx.emitError(CS.getInstruction(),
6549                        "invalid operand for inline asm constraint '" +
6550                            Twine(OpInfo.ConstraintCode) + "'");
6551          return;
6552        }
6553
6554        // Add information to the INLINEASM node to know about this input.
6555        unsigned ResOpType =
6556          InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
6557        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6558                                                        TLI->getPointerTy()));
6559        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
6560        break;
6561      }
6562
6563      if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
6564        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
6565        assert(InOperandVal.getValueType() == TLI->getPointerTy() &&
6566               "Memory operands expect pointer values");
6567
6568        // Add information to the INLINEASM node to know about this input.
6569        unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6570        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6571                                                        TLI->getPointerTy()));
6572        AsmNodeOperands.push_back(InOperandVal);
6573        break;
6574      }
6575
6576      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
6577              OpInfo.ConstraintType == TargetLowering::C_Register) &&
6578             "Unknown constraint type!");
6579
6580      // TODO: Support this.
6581      if (OpInfo.isIndirect) {
6582        LLVMContext &Ctx = *DAG.getContext();
6583        Ctx.emitError(CS.getInstruction(),
6584                      "Don't know how to handle indirect register inputs yet "
6585                      "for constraint '" +
6586                          Twine(OpInfo.ConstraintCode) + "'");
6587        return;
6588      }
6589
6590      // Copy the input into the appropriate registers.
6591      if (OpInfo.AssignedRegs.Regs.empty()) {
6592        LLVMContext &Ctx = *DAG.getContext();
6593        Ctx.emitError(CS.getInstruction(),
6594                      "couldn't allocate input reg for constraint '" +
6595                          Twine(OpInfo.ConstraintCode) + "'");
6596        return;
6597      }
6598
6599      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(),
6600                                        Chain, &Flag, CS.getInstruction());
6601
6602      OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
6603                                               DAG, AsmNodeOperands);
6604      break;
6605    }
6606    case InlineAsm::isClobber: {
6607      // Add the clobbered value to the operand list, so that the register
6608      // allocator is aware that the physreg got clobbered.
6609      if (!OpInfo.AssignedRegs.Regs.empty())
6610        OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
6611                                                 false, 0, DAG,
6612                                                 AsmNodeOperands);
6613      break;
6614    }
6615    }
6616  }
6617
6618  // Finish up input operands.  Set the input chain and add the flag last.
6619  AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
6620  if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
6621
6622  Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(),
6623                      DAG.getVTList(MVT::Other, MVT::Glue),
6624                      &AsmNodeOperands[0], AsmNodeOperands.size());
6625  Flag = Chain.getValue(1);
6626
6627  // If this asm returns a register value, copy the result from that register
6628  // and set it as the value of the call.
6629  if (!RetValRegs.Regs.empty()) {
6630    SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
6631                                             Chain, &Flag, CS.getInstruction());
6632
6633    // FIXME: Why don't we do this for inline asms with MRVs?
6634    if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
6635      EVT ResultType = TLI->getValueType(CS.getType());
6636
6637      // If any of the results of the inline asm is a vector, it may have the
6638      // wrong width/num elts.  This can happen for register classes that can
6639      // contain multiple different value types.  The preg or vreg allocated may
6640      // not have the same VT as was expected.  Convert it to the right type
6641      // with bit_convert.
6642      if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
6643        Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(),
6644                          ResultType, Val);
6645
6646      } else if (ResultType != Val.getValueType() &&
6647                 ResultType.isInteger() && Val.getValueType().isInteger()) {
6648        // If a result value was tied to an input value, the computed result may
6649        // have a wider width than the expected result.  Extract the relevant
6650        // portion.
6651        Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val);
6652      }
6653
6654      assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
6655    }
6656
6657    setValue(CS.getInstruction(), Val);
6658    // Don't need to use this as a chain in this case.
6659    if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
6660      return;
6661  }
6662
6663  std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
6664
6665  // Process indirect outputs, first output all of the flagged copies out of
6666  // physregs.
6667  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
6668    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
6669    const Value *Ptr = IndirectStoresToEmit[i].second;
6670    SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
6671                                             Chain, &Flag, IA);
6672    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
6673  }
6674
6675  // Emit the non-flagged stores from the physregs.
6676  SmallVector<SDValue, 8> OutChains;
6677  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
6678    SDValue Val = DAG.getStore(Chain, getCurSDLoc(),
6679                               StoresToEmit[i].first,
6680                               getValue(StoresToEmit[i].second),
6681                               MachinePointerInfo(StoresToEmit[i].second),
6682                               false, false, 0);
6683    OutChains.push_back(Val);
6684  }
6685
6686  if (!OutChains.empty())
6687    Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
6688                        &OutChains[0], OutChains.size());
6689
6690  DAG.setRoot(Chain);
6691}
6692
6693void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
6694  DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
6695                          MVT::Other, getRoot(),
6696                          getValue(I.getArgOperand(0)),
6697                          DAG.getSrcValue(I.getArgOperand(0))));
6698}
6699
6700void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
6701  const TargetLowering *TLI = TM.getTargetLowering();
6702  const DataLayout &TD = *TLI->getDataLayout();
6703  SDValue V = DAG.getVAArg(TLI->getValueType(I.getType()), getCurSDLoc(),
6704                           getRoot(), getValue(I.getOperand(0)),
6705                           DAG.getSrcValue(I.getOperand(0)),
6706                           TD.getABITypeAlignment(I.getType()));
6707  setValue(&I, V);
6708  DAG.setRoot(V.getValue(1));
6709}
6710
6711void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
6712  DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
6713                          MVT::Other, getRoot(),
6714                          getValue(I.getArgOperand(0)),
6715                          DAG.getSrcValue(I.getArgOperand(0))));
6716}
6717
6718void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
6719  DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
6720                          MVT::Other, getRoot(),
6721                          getValue(I.getArgOperand(0)),
6722                          getValue(I.getArgOperand(1)),
6723                          DAG.getSrcValue(I.getArgOperand(0)),
6724                          DAG.getSrcValue(I.getArgOperand(1))));
6725}
6726
6727/// \brief Lower an argument list according to the target calling convention.
6728///
6729/// \return A tuple of <return-value, token-chain>
6730///
6731/// This is a helper for lowering intrinsics that follow a target calling
6732/// convention or require stack pointer adjustment. Only a subset of the
6733/// intrinsic's operands need to participate in the calling convention.
6734std::pair<SDValue, SDValue>
6735SelectionDAGBuilder::LowerCallOperands(const CallInst &CI, unsigned ArgIdx,
6736                                       unsigned NumArgs, SDValue Callee) {
6737  TargetLowering::ArgListTy Args;
6738  Args.reserve(NumArgs);
6739
6740  // Populate the argument list.
6741  // Attributes for args start at offset 1, after the return attribute.
6742  ImmutableCallSite CS(&CI);
6743  for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1;
6744       ArgI != ArgE; ++ArgI) {
6745    const Value *V = CI.getOperand(ArgI);
6746
6747    assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
6748
6749    TargetLowering::ArgListEntry Entry;
6750    Entry.Node = getValue(V);
6751    Entry.Ty = V->getType();
6752    Entry.setAttributes(&CS, AttrI);
6753    Args.push_back(Entry);
6754  }
6755
6756  TargetLowering::CallLoweringInfo CLI(getRoot(), CI.getType(),
6757    /*retSExt*/ false, /*retZExt*/ false, /*isVarArg*/ false, /*isInReg*/ false,
6758    NumArgs, CI.getCallingConv(), /*isTailCall*/ false, /*doesNotReturn*/ false,
6759    /*isReturnValueUsed*/ CI.use_empty(), Callee, Args, DAG, getCurSDLoc());
6760
6761  const TargetLowering *TLI = TM.getTargetLowering();
6762  return TLI->LowerCallTo(CLI);
6763}
6764
6765/// \brief Lower llvm.experimental.stackmap directly to its target opcode.
6766void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
6767  // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
6768  //                                  [live variables...])
6769
6770  assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
6771
6772  SDValue Callee = getValue(CI.getCalledValue());
6773
6774  // Lower into a call sequence with no args and no return value.
6775  std::pair<SDValue, SDValue> Result = LowerCallOperands(CI, 0, 0, Callee);
6776  // Set the root to the target-lowered call chain.
6777  SDValue Chain = Result.second;
6778  DAG.setRoot(Chain);
6779
6780  /// Get a call instruction from the call sequence chain.
6781  /// Tail calls are not allowed.
6782  SDNode *CallEnd = Chain.getNode();
6783  assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
6784         "Expected a callseq node.");
6785  SDNode *Call = CallEnd->getOperand(0).getNode();
6786  bool hasGlue = Call->getGluedNode();
6787
6788  assert(Call->getNumOperands() == (hasGlue ? 2 : 1) &&
6789         "Unexpected extra stackmap call arguments.");
6790
6791  // Replace the target specific call node with the stackmap intrinsic.
6792  SmallVector<SDValue, 8> Ops;
6793
6794  // Add the <id> and <numShadowBytes> constants.
6795  for (unsigned i = 0; i < 2; ++i) {
6796    SDValue tmp = getValue(CI.getOperand(i));
6797    Ops.push_back(DAG.getTargetConstant(
6798        cast<ConstantSDNode>(tmp)->getZExtValue(), MVT::i32));
6799  }
6800  // Push live variables for the stack map.
6801  for (unsigned i = 2, e = CI.getNumArgOperands(); i != e; ++i)
6802    Ops.push_back(getValue(CI.getArgOperand(i)));
6803
6804  // Push the chain (this is originally the first operand of the call, but
6805  // becomes now the last or second to last operand).
6806  Ops.push_back(*(Call->op_begin()));
6807
6808    // Push the glue flag (last operand).
6809  if (hasGlue)
6810    Ops.push_back(*(Call->op_end()-1));
6811
6812  // Replace the target specific call node with STACKMAP in-place. This way we
6813  // don't have to call ReplaceAllUsesWith and STACKMAP will take the call's
6814  // place in the chain.
6815  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6816  DAG.SelectNodeTo(Call, TargetOpcode::STACKMAP, NodeTys, &Ops[0], Ops.size());
6817}
6818
6819/// \brief Lower llvm.experimental.patchpoint directly to its target opcode.
6820void SelectionDAGBuilder::visitPatchpoint(const CallInst &CI) {
6821  // void|i64 @llvm.experimental.patchpoint.void|i64(i32 <id>,
6822  //                                           i32 <numNopBytes>,
6823  //                                           i8* <target>, i32 <numArgs>,
6824  //                                           [Args...], [live variables...])
6825
6826  SDValue Callee = getValue(CI.getOperand(2)); // <target>
6827
6828  // Get the real number of arguments participating in the call <numArgs>
6829  unsigned NumArgs =
6830      cast<ConstantSDNode>(getValue(CI.getArgOperand(3)))->getZExtValue();
6831
6832  // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
6833  assert(CI.getNumArgOperands() >= NumArgs + 4 &&
6834         "Not enough arguments provided to the patchpoint intrinsic");
6835
6836  std::pair<SDValue, SDValue> Result =
6837    LowerCallOperands(CI, 4, NumArgs, Callee);
6838  // Set the root to the target-lowered call chain.
6839  SDValue Chain = Result.second;
6840  DAG.setRoot(Chain);
6841
6842  SDNode *CallEnd = Chain.getNode();
6843  if (!CI.getType()->isVoidTy()) {
6844    setValue(&CI, Result.first);
6845    if (CallEnd->getOpcode() == ISD::CopyFromReg)
6846      CallEnd = CallEnd->getOperand(0).getNode();
6847  }
6848  /// Get a call instruction from the call sequence chain.
6849  /// Tail calls are not allowed.
6850  assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
6851         "Expected a callseq node.");
6852  SDNode *Call = CallEnd->getOperand(0).getNode();
6853  bool hasGlue = Call->getGluedNode();
6854
6855  // Replace the target specific call node with the patchable intrinsic.
6856  SmallVector<SDValue, 8> Ops;
6857
6858  // Add the <id> and <numNopBytes> constants.
6859  for (unsigned i = 0; i < 2; ++i) {
6860    SDValue tmp = getValue(CI.getOperand(i));
6861    Ops.push_back(DAG.getTargetConstant(
6862        cast<ConstantSDNode>(tmp)->getZExtValue(), MVT::i32));
6863  }
6864  // Assume that the Callee is a constant address.
6865  Ops.push_back(
6866    DAG.getIntPtrConstant(cast<ConstantSDNode>(Callee)->getZExtValue()));
6867
6868  // Adjust <numArgs> to account for any stack arguments.
6869  // Call Node: Chain, Target, {Args}, RegMask, [Glue]
6870  unsigned NumCallArgs = Call->getNumOperands() - (hasGlue ? 4 : 3);
6871  Ops.push_back(DAG.getTargetConstant(NumCallArgs, MVT::i32));
6872
6873  // Push the arguments from the call instruction.
6874  SDNode::op_iterator e = hasGlue ? Call->op_end()-2 : Call->op_end()-1;
6875  for (SDNode::op_iterator i = Call->op_begin()+2; i != e; ++i)
6876    Ops.push_back(*i);
6877
6878  // Push live variables for the stack map.
6879  for (unsigned i = NumArgs + 4, e = CI.getNumArgOperands(); i != e; ++i) {
6880    SDValue OpVal = getValue(CI.getArgOperand(i));
6881    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
6882      Ops.push_back(
6883        DAG.getTargetConstant(StackMaps::ConstantOp, MVT::i64));
6884      Ops.push_back(
6885        DAG.getTargetConstant(C->getSExtValue(), MVT::i64));
6886    } else
6887      Ops.push_back(OpVal);
6888  }
6889
6890  // Push the register mask info.
6891  if (hasGlue)
6892    Ops.push_back(*(Call->op_end()-2));
6893  else
6894    Ops.push_back(*(Call->op_end()-1));
6895
6896  // Push the chain (this is originally the first operand of the call, but
6897  // becomes now the last or second to last operand).
6898  Ops.push_back(*(Call->op_begin()));
6899
6900  // Push the glue flag (last operand).
6901  if (hasGlue)
6902    Ops.push_back(*(Call->op_end()-1));
6903
6904  // Replace the target specific call node with PATCHPOINT in-place. This
6905  // way we don't have to call ReplaceAllUsesWith and PATCHPOINT will
6906  // take the call's place in the chain.
6907  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6908  DAG.SelectNodeTo(Call, TargetOpcode::PATCHPOINT, NodeTys, &Ops[0],
6909                   Ops.size());
6910}
6911
6912/// TargetLowering::LowerCallTo - This is the default LowerCallTo
6913/// implementation, which just calls LowerCall.
6914/// FIXME: When all targets are
6915/// migrated to using LowerCall, this hook should be integrated into SDISel.
6916std::pair<SDValue, SDValue>
6917TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
6918  // Handle the incoming return values from the call.
6919  CLI.Ins.clear();
6920  SmallVector<EVT, 4> RetTys;
6921  ComputeValueVTs(*this, CLI.RetTy, RetTys);
6922  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6923    EVT VT = RetTys[I];
6924    MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
6925    unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
6926    for (unsigned i = 0; i != NumRegs; ++i) {
6927      ISD::InputArg MyFlags;
6928      MyFlags.VT = RegisterVT;
6929      MyFlags.ArgVT = VT;
6930      MyFlags.Used = CLI.IsReturnValueUsed;
6931      if (CLI.RetSExt)
6932        MyFlags.Flags.setSExt();
6933      if (CLI.RetZExt)
6934        MyFlags.Flags.setZExt();
6935      if (CLI.IsInReg)
6936        MyFlags.Flags.setInReg();
6937      CLI.Ins.push_back(MyFlags);
6938    }
6939  }
6940
6941  // Handle all of the outgoing arguments.
6942  CLI.Outs.clear();
6943  CLI.OutVals.clear();
6944  ArgListTy &Args = CLI.Args;
6945  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
6946    SmallVector<EVT, 4> ValueVTs;
6947    ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
6948    for (unsigned Value = 0, NumValues = ValueVTs.size();
6949         Value != NumValues; ++Value) {
6950      EVT VT = ValueVTs[Value];
6951      Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
6952      SDValue Op = SDValue(Args[i].Node.getNode(),
6953                           Args[i].Node.getResNo() + Value);
6954      ISD::ArgFlagsTy Flags;
6955      unsigned OriginalAlignment =
6956        getDataLayout()->getABITypeAlignment(ArgTy);
6957
6958      if (Args[i].isZExt)
6959        Flags.setZExt();
6960      if (Args[i].isSExt)
6961        Flags.setSExt();
6962      if (Args[i].isInReg)
6963        Flags.setInReg();
6964      if (Args[i].isSRet)
6965        Flags.setSRet();
6966      if (Args[i].isByVal) {
6967        Flags.setByVal();
6968        PointerType *Ty = cast<PointerType>(Args[i].Ty);
6969        Type *ElementTy = Ty->getElementType();
6970        Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy));
6971        // For ByVal, alignment should come from FE.  BE will guess if this
6972        // info is not there but there are cases it cannot get right.
6973        unsigned FrameAlign;
6974        if (Args[i].Alignment)
6975          FrameAlign = Args[i].Alignment;
6976        else
6977          FrameAlign = getByValTypeAlignment(ElementTy);
6978        Flags.setByValAlign(FrameAlign);
6979      }
6980      if (Args[i].isNest)
6981        Flags.setNest();
6982      Flags.setOrigAlign(OriginalAlignment);
6983
6984      MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT);
6985      unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT);
6986      SmallVector<SDValue, 4> Parts(NumParts);
6987      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
6988
6989      if (Args[i].isSExt)
6990        ExtendKind = ISD::SIGN_EXTEND;
6991      else if (Args[i].isZExt)
6992        ExtendKind = ISD::ZERO_EXTEND;
6993
6994      // Conservatively only handle 'returned' on non-vectors for now
6995      if (Args[i].isReturned && !Op.getValueType().isVector()) {
6996        assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues &&
6997               "unexpected use of 'returned'");
6998        // Before passing 'returned' to the target lowering code, ensure that
6999        // either the register MVT and the actual EVT are the same size or that
7000        // the return value and argument are extended in the same way; in these
7001        // cases it's safe to pass the argument register value unchanged as the
7002        // return register value (although it's at the target's option whether
7003        // to do so)
7004        // TODO: allow code generation to take advantage of partially preserved
7005        // registers rather than clobbering the entire register when the
7006        // parameter extension method is not compatible with the return
7007        // extension method
7008        if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
7009            (ExtendKind != ISD::ANY_EXTEND &&
7010             CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt))
7011        Flags.setReturned();
7012      }
7013
7014      getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts,
7015                     PartVT, CLI.CS ? CLI.CS->getInstruction() : 0, ExtendKind);
7016
7017      for (unsigned j = 0; j != NumParts; ++j) {
7018        // if it isn't first piece, alignment must be 1
7019        ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
7020                               i < CLI.NumFixedArgs,
7021                               i, j*Parts[j].getValueType().getStoreSize());
7022        if (NumParts > 1 && j == 0)
7023          MyFlags.Flags.setSplit();
7024        else if (j != 0)
7025          MyFlags.Flags.setOrigAlign(1);
7026
7027        CLI.Outs.push_back(MyFlags);
7028        CLI.OutVals.push_back(Parts[j]);
7029      }
7030    }
7031  }
7032
7033  SmallVector<SDValue, 4> InVals;
7034  CLI.Chain = LowerCall(CLI, InVals);
7035
7036  // Verify that the target's LowerCall behaved as expected.
7037  assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
7038         "LowerCall didn't return a valid chain!");
7039  assert((!CLI.IsTailCall || InVals.empty()) &&
7040         "LowerCall emitted a return value for a tail call!");
7041  assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
7042         "LowerCall didn't emit the correct number of values!");
7043
7044  // For a tail call, the return value is merely live-out and there aren't
7045  // any nodes in the DAG representing it. Return a special value to
7046  // indicate that a tail call has been emitted and no more Instructions
7047  // should be processed in the current block.
7048  if (CLI.IsTailCall) {
7049    CLI.DAG.setRoot(CLI.Chain);
7050    return std::make_pair(SDValue(), SDValue());
7051  }
7052
7053  DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
7054          assert(InVals[i].getNode() &&
7055                 "LowerCall emitted a null value!");
7056          assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
7057                 "LowerCall emitted a value with the wrong type!");
7058        });
7059
7060  // Collect the legal value parts into potentially illegal values
7061  // that correspond to the original function's return values.
7062  ISD::NodeType AssertOp = ISD::DELETED_NODE;
7063  if (CLI.RetSExt)
7064    AssertOp = ISD::AssertSext;
7065  else if (CLI.RetZExt)
7066    AssertOp = ISD::AssertZext;
7067  SmallVector<SDValue, 4> ReturnValues;
7068  unsigned CurReg = 0;
7069  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
7070    EVT VT = RetTys[I];
7071    MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
7072    unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
7073
7074    ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
7075                                            NumRegs, RegisterVT, VT, NULL,
7076                                            AssertOp));
7077    CurReg += NumRegs;
7078  }
7079
7080  // For a function returning void, there is no return value. We can't create
7081  // such a node, so we just return a null return value in that case. In
7082  // that case, nothing will actually look at the value.
7083  if (ReturnValues.empty())
7084    return std::make_pair(SDValue(), CLI.Chain);
7085
7086  SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
7087                                CLI.DAG.getVTList(&RetTys[0], RetTys.size()),
7088                            &ReturnValues[0], ReturnValues.size());
7089  return std::make_pair(Res, CLI.Chain);
7090}
7091
7092void TargetLowering::LowerOperationWrapper(SDNode *N,
7093                                           SmallVectorImpl<SDValue> &Results,
7094                                           SelectionDAG &DAG) const {
7095  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
7096  if (Res.getNode())
7097    Results.push_back(Res);
7098}
7099
7100SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
7101  llvm_unreachable("LowerOperation not implemented for this target!");
7102}
7103
7104void
7105SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
7106  SDValue Op = getNonRegisterValue(V);
7107  assert((Op.getOpcode() != ISD::CopyFromReg ||
7108          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
7109         "Copy from a reg to the same reg!");
7110  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
7111
7112  const TargetLowering *TLI = TM.getTargetLowering();
7113  RegsForValue RFV(V->getContext(), *TLI, Reg, V->getType());
7114  SDValue Chain = DAG.getEntryNode();
7115  RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, 0, V);
7116  PendingExports.push_back(Chain);
7117}
7118
7119#include "llvm/CodeGen/SelectionDAGISel.h"
7120
7121/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
7122/// entry block, return true.  This includes arguments used by switches, since
7123/// the switch may expand into multiple basic blocks.
7124static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
7125  // With FastISel active, we may be splitting blocks, so force creation
7126  // of virtual registers for all non-dead arguments.
7127  if (FastISel)
7128    return A->use_empty();
7129
7130  const BasicBlock *Entry = A->getParent()->begin();
7131  for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end();
7132       UI != E; ++UI) {
7133    const User *U = *UI;
7134    if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U))
7135      return false;  // Use not in entry block.
7136  }
7137  return true;
7138}
7139
7140void SelectionDAGISel::LowerArguments(const Function &F) {
7141  SelectionDAG &DAG = SDB->DAG;
7142  SDLoc dl = SDB->getCurSDLoc();
7143  const TargetLowering *TLI = getTargetLowering();
7144  const DataLayout *TD = TLI->getDataLayout();
7145  SmallVector<ISD::InputArg, 16> Ins;
7146
7147  if (!FuncInfo->CanLowerReturn) {
7148    // Put in an sret pointer parameter before all the other parameters.
7149    SmallVector<EVT, 1> ValueVTs;
7150    ComputeValueVTs(*getTargetLowering(),
7151                    PointerType::getUnqual(F.getReturnType()), ValueVTs);
7152
7153    // NOTE: Assuming that a pointer will never break down to more than one VT
7154    // or one register.
7155    ISD::ArgFlagsTy Flags;
7156    Flags.setSRet();
7157    MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
7158    ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 0, 0);
7159    Ins.push_back(RetArg);
7160  }
7161
7162  // Set up the incoming argument description vector.
7163  unsigned Idx = 1;
7164  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
7165       I != E; ++I, ++Idx) {
7166    SmallVector<EVT, 4> ValueVTs;
7167    ComputeValueVTs(*TLI, I->getType(), ValueVTs);
7168    bool isArgValueUsed = !I->use_empty();
7169    unsigned PartBase = 0;
7170    for (unsigned Value = 0, NumValues = ValueVTs.size();
7171         Value != NumValues; ++Value) {
7172      EVT VT = ValueVTs[Value];
7173      Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
7174      ISD::ArgFlagsTy Flags;
7175      unsigned OriginalAlignment =
7176        TD->getABITypeAlignment(ArgTy);
7177
7178      if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
7179        Flags.setZExt();
7180      if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
7181        Flags.setSExt();
7182      if (F.getAttributes().hasAttribute(Idx, Attribute::InReg))
7183        Flags.setInReg();
7184      if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet))
7185        Flags.setSRet();
7186      if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) {
7187        Flags.setByVal();
7188        PointerType *Ty = cast<PointerType>(I->getType());
7189        Type *ElementTy = Ty->getElementType();
7190        Flags.setByValSize(TD->getTypeAllocSize(ElementTy));
7191        // For ByVal, alignment should be passed from FE.  BE will guess if
7192        // this info is not there but there are cases it cannot get right.
7193        unsigned FrameAlign;
7194        if (F.getParamAlignment(Idx))
7195          FrameAlign = F.getParamAlignment(Idx);
7196        else
7197          FrameAlign = TLI->getByValTypeAlignment(ElementTy);
7198        Flags.setByValAlign(FrameAlign);
7199      }
7200      if (F.getAttributes().hasAttribute(Idx, Attribute::Nest))
7201        Flags.setNest();
7202      Flags.setOrigAlign(OriginalAlignment);
7203
7204      MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
7205      unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT);
7206      for (unsigned i = 0; i != NumRegs; ++i) {
7207        ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
7208                              Idx-1, PartBase+i*RegisterVT.getStoreSize());
7209        if (NumRegs > 1 && i == 0)
7210          MyFlags.Flags.setSplit();
7211        // if it isn't first piece, alignment must be 1
7212        else if (i > 0)
7213          MyFlags.Flags.setOrigAlign(1);
7214        Ins.push_back(MyFlags);
7215      }
7216      PartBase += VT.getStoreSize();
7217    }
7218  }
7219
7220  // Call the target to set up the argument values.
7221  SmallVector<SDValue, 8> InVals;
7222  SDValue NewRoot = TLI->LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
7223                                              F.isVarArg(), Ins,
7224                                              dl, DAG, InVals);
7225
7226  // Verify that the target's LowerFormalArguments behaved as expected.
7227  assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
7228         "LowerFormalArguments didn't return a valid chain!");
7229  assert(InVals.size() == Ins.size() &&
7230         "LowerFormalArguments didn't emit the correct number of values!");
7231  DEBUG({
7232      for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
7233        assert(InVals[i].getNode() &&
7234               "LowerFormalArguments emitted a null value!");
7235        assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
7236               "LowerFormalArguments emitted a value with the wrong type!");
7237      }
7238    });
7239
7240  // Update the DAG with the new chain value resulting from argument lowering.
7241  DAG.setRoot(NewRoot);
7242
7243  // Set up the argument values.
7244  unsigned i = 0;
7245  Idx = 1;
7246  if (!FuncInfo->CanLowerReturn) {
7247    // Create a virtual register for the sret pointer, and put in a copy
7248    // from the sret argument into it.
7249    SmallVector<EVT, 1> ValueVTs;
7250    ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
7251    MVT VT = ValueVTs[0].getSimpleVT();
7252    MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
7253    ISD::NodeType AssertOp = ISD::DELETED_NODE;
7254    SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
7255                                        RegVT, VT, NULL, AssertOp);
7256
7257    MachineFunction& MF = SDB->DAG.getMachineFunction();
7258    MachineRegisterInfo& RegInfo = MF.getRegInfo();
7259    unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
7260    FuncInfo->DemoteRegister = SRetReg;
7261    NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(),
7262                                    SRetReg, ArgValue);
7263    DAG.setRoot(NewRoot);
7264
7265    // i indexes lowered arguments.  Bump it past the hidden sret argument.
7266    // Idx indexes LLVM arguments.  Don't touch it.
7267    ++i;
7268  }
7269
7270  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
7271      ++I, ++Idx) {
7272    SmallVector<SDValue, 4> ArgValues;
7273    SmallVector<EVT, 4> ValueVTs;
7274    ComputeValueVTs(*TLI, I->getType(), ValueVTs);
7275    unsigned NumValues = ValueVTs.size();
7276
7277    // If this argument is unused then remember its value. It is used to generate
7278    // debugging information.
7279    if (I->use_empty() && NumValues) {
7280      SDB->setUnusedArgValue(I, InVals[i]);
7281
7282      // Also remember any frame index for use in FastISel.
7283      if (FrameIndexSDNode *FI =
7284          dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
7285        FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
7286    }
7287
7288    for (unsigned Val = 0; Val != NumValues; ++Val) {
7289      EVT VT = ValueVTs[Val];
7290      MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
7291      unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT);
7292
7293      if (!I->use_empty()) {
7294        ISD::NodeType AssertOp = ISD::DELETED_NODE;
7295        if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
7296          AssertOp = ISD::AssertSext;
7297        else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
7298          AssertOp = ISD::AssertZext;
7299
7300        ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
7301                                             NumParts, PartVT, VT,
7302                                             NULL, AssertOp));
7303      }
7304
7305      i += NumParts;
7306    }
7307
7308    // We don't need to do anything else for unused arguments.
7309    if (ArgValues.empty())
7310      continue;
7311
7312    // Note down frame index.
7313    if (FrameIndexSDNode *FI =
7314        dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
7315      FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
7316
7317    SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues,
7318                                     SDB->getCurSDLoc());
7319
7320    SDB->setValue(I, Res);
7321    if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
7322      if (LoadSDNode *LNode =
7323          dyn_cast<LoadSDNode>(Res.getOperand(0).getNode()))
7324        if (FrameIndexSDNode *FI =
7325            dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
7326        FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
7327    }
7328
7329    // If this argument is live outside of the entry block, insert a copy from
7330    // wherever we got it to the vreg that other BB's will reference it as.
7331    if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
7332      // If we can, though, try to skip creating an unnecessary vreg.
7333      // FIXME: This isn't very clean... it would be nice to make this more
7334      // general.  It's also subtly incompatible with the hacks FastISel
7335      // uses with vregs.
7336      unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
7337      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
7338        FuncInfo->ValueMap[I] = Reg;
7339        continue;
7340      }
7341    }
7342    if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) {
7343      FuncInfo->InitializeRegForValue(I);
7344      SDB->CopyToExportRegsIfNeeded(I);
7345    }
7346  }
7347
7348  assert(i == InVals.size() && "Argument register count mismatch!");
7349
7350  // Finally, if the target has anything special to do, allow it to do so.
7351  // FIXME: this should insert code into the DAG!
7352  EmitFunctionEntryCode();
7353}
7354
7355/// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
7356/// ensure constants are generated when needed.  Remember the virtual registers
7357/// that need to be added to the Machine PHI nodes as input.  We cannot just
7358/// directly add them, because expansion might result in multiple MBB's for one
7359/// BB.  As such, the start of the BB might correspond to a different MBB than
7360/// the end.
7361///
7362void
7363SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
7364  const TerminatorInst *TI = LLVMBB->getTerminator();
7365
7366  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
7367
7368  // Check successor nodes' PHI nodes that expect a constant to be available
7369  // from this block.
7370  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
7371    const BasicBlock *SuccBB = TI->getSuccessor(succ);
7372    if (!isa<PHINode>(SuccBB->begin())) continue;
7373    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
7374
7375    // If this terminator has multiple identical successors (common for
7376    // switches), only handle each succ once.
7377    if (!SuccsHandled.insert(SuccMBB)) continue;
7378
7379    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
7380
7381    // At this point we know that there is a 1-1 correspondence between LLVM PHI
7382    // nodes and Machine PHI nodes, but the incoming operands have not been
7383    // emitted yet.
7384    for (BasicBlock::const_iterator I = SuccBB->begin();
7385         const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
7386      // Ignore dead phi's.
7387      if (PN->use_empty()) continue;
7388
7389      // Skip empty types
7390      if (PN->getType()->isEmptyTy())
7391        continue;
7392
7393      unsigned Reg;
7394      const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
7395
7396      if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
7397        unsigned &RegOut = ConstantsOut[C];
7398        if (RegOut == 0) {
7399          RegOut = FuncInfo.CreateRegs(C->getType());
7400          CopyValueToVirtualRegister(C, RegOut);
7401        }
7402        Reg = RegOut;
7403      } else {
7404        DenseMap<const Value *, unsigned>::iterator I =
7405          FuncInfo.ValueMap.find(PHIOp);
7406        if (I != FuncInfo.ValueMap.end())
7407          Reg = I->second;
7408        else {
7409          assert(isa<AllocaInst>(PHIOp) &&
7410                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
7411                 "Didn't codegen value into a register!??");
7412          Reg = FuncInfo.CreateRegs(PHIOp->getType());
7413          CopyValueToVirtualRegister(PHIOp, Reg);
7414        }
7415      }
7416
7417      // Remember that this register needs to added to the machine PHI node as
7418      // the input for this MBB.
7419      SmallVector<EVT, 4> ValueVTs;
7420      const TargetLowering *TLI = TM.getTargetLowering();
7421      ComputeValueVTs(*TLI, PN->getType(), ValueVTs);
7422      for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
7423        EVT VT = ValueVTs[vti];
7424        unsigned NumRegisters = TLI->getNumRegisters(*DAG.getContext(), VT);
7425        for (unsigned i = 0, e = NumRegisters; i != e; ++i)
7426          FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
7427        Reg += NumRegisters;
7428      }
7429    }
7430  }
7431
7432  ConstantsOut.clear();
7433}
7434
7435/// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
7436/// is 0.
7437MachineBasicBlock *
7438SelectionDAGBuilder::StackProtectorDescriptor::
7439AddSuccessorMBB(const BasicBlock *BB,
7440                MachineBasicBlock *ParentMBB,
7441                MachineBasicBlock *SuccMBB) {
7442  // If SuccBB has not been created yet, create it.
7443  if (!SuccMBB) {
7444    MachineFunction *MF = ParentMBB->getParent();
7445    MachineFunction::iterator BBI = ParentMBB;
7446    SuccMBB = MF->CreateMachineBasicBlock(BB);
7447    MF->insert(++BBI, SuccMBB);
7448  }
7449  // Add it as a successor of ParentMBB.
7450  ParentMBB->addSuccessor(SuccMBB);
7451  return SuccMBB;
7452}
7453