SelectionDAGBuilder.cpp revision 92efda7e9183ae16bde7a3ad96b682e779d89cf3
1//===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements routines for translating from LLVM IR into SelectionDAG IR.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "SDNodeDbgValue.h"
16#include "SelectionDAGBuilder.h"
17#include "llvm/ADT/BitVector.h"
18#include "llvm/ADT/PostOrderIterator.h"
19#include "llvm/ADT/SmallSet.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/ConstantFolding.h"
22#include "llvm/Constants.h"
23#include "llvm/CallingConv.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Function.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/InlineAsm.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/IntrinsicInst.h"
31#include "llvm/LLVMContext.h"
32#include "llvm/Module.h"
33#include "llvm/CodeGen/Analysis.h"
34#include "llvm/CodeGen/FastISel.h"
35#include "llvm/CodeGen/FunctionLoweringInfo.h"
36#include "llvm/CodeGen/GCStrategy.h"
37#include "llvm/CodeGen/GCMetadata.h"
38#include "llvm/CodeGen/MachineFunction.h"
39#include "llvm/CodeGen/MachineFrameInfo.h"
40#include "llvm/CodeGen/MachineInstrBuilder.h"
41#include "llvm/CodeGen/MachineJumpTableInfo.h"
42#include "llvm/CodeGen/MachineModuleInfo.h"
43#include "llvm/CodeGen/MachineRegisterInfo.h"
44#include "llvm/CodeGen/PseudoSourceValue.h"
45#include "llvm/CodeGen/SelectionDAG.h"
46#include "llvm/Analysis/DebugInfo.h"
47#include "llvm/Target/TargetData.h"
48#include "llvm/Target/TargetFrameLowering.h"
49#include "llvm/Target/TargetInstrInfo.h"
50#include "llvm/Target/TargetIntrinsicInfo.h"
51#include "llvm/Target/TargetLowering.h"
52#include "llvm/Target/TargetOptions.h"
53#include "llvm/Support/Compiler.h"
54#include "llvm/Support/CommandLine.h"
55#include "llvm/Support/Debug.h"
56#include "llvm/Support/ErrorHandling.h"
57#include "llvm/Support/MathExtras.h"
58#include "llvm/Support/raw_ostream.h"
59#include <algorithm>
60using namespace llvm;
61
62/// LimitFloatPrecision - Generate low-precision inline sequences for
63/// some float libcalls (6, 8 or 12 bits).
64static unsigned LimitFloatPrecision;
65
66static cl::opt<unsigned, true>
67LimitFPPrecision("limit-float-precision",
68                 cl::desc("Generate low-precision inline sequences "
69                          "for some float libcalls"),
70                 cl::location(LimitFloatPrecision),
71                 cl::init(0));
72
73// Limit the width of DAG chains. This is important in general to prevent
74// prevent DAG-based analysis from blowing up. For example, alias analysis and
75// load clustering may not complete in reasonable time. It is difficult to
76// recognize and avoid this situation within each individual analysis, and
77// future analyses are likely to have the same behavior. Limiting DAG width is
78// the safe approach, and will be especially important with global DAGs.
79//
80// MaxParallelChains default is arbitrarily high to avoid affecting
81// optimization, but could be lowered to improve compile time. Any ld-ld-st-st
82// sequence over this should have been converted to llvm.memcpy by the
83// frontend. It easy to induce this behavior with .ll code such as:
84// %buffer = alloca [4096 x i8]
85// %data = load [4096 x i8]* %argPtr
86// store [4096 x i8] %data, [4096 x i8]* %buffer
87static cl::opt<unsigned>
88MaxParallelChains("dag-chain-limit", cl::desc("Max parallel isel dag chains"),
89                  cl::init(64), cl::Hidden);
90
91static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
92                                      const SDValue *Parts, unsigned NumParts,
93                                      EVT PartVT, EVT ValueVT);
94
95/// getCopyFromParts - Create a value that contains the specified legal parts
96/// combined into the value they represent.  If the parts combine to a type
97/// larger then ValueVT then AssertOp can be used to specify whether the extra
98/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
99/// (ISD::AssertSext).
100static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL,
101                                const SDValue *Parts,
102                                unsigned NumParts, EVT PartVT, EVT ValueVT,
103                                ISD::NodeType AssertOp = ISD::DELETED_NODE) {
104  if (ValueVT.isVector())
105    return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT);
106
107  assert(NumParts > 0 && "No parts to assemble!");
108  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
109  SDValue Val = Parts[0];
110
111  if (NumParts > 1) {
112    // Assemble the value from multiple parts.
113    if (ValueVT.isInteger()) {
114      unsigned PartBits = PartVT.getSizeInBits();
115      unsigned ValueBits = ValueVT.getSizeInBits();
116
117      // Assemble the power of 2 part.
118      unsigned RoundParts = NumParts & (NumParts - 1) ?
119        1 << Log2_32(NumParts) : NumParts;
120      unsigned RoundBits = PartBits * RoundParts;
121      EVT RoundVT = RoundBits == ValueBits ?
122        ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
123      SDValue Lo, Hi;
124
125      EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
126
127      if (RoundParts > 2) {
128        Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
129                              PartVT, HalfVT);
130        Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
131                              RoundParts / 2, PartVT, HalfVT);
132      } else {
133        Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
134        Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
135      }
136
137      if (TLI.isBigEndian())
138        std::swap(Lo, Hi);
139
140      Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
141
142      if (RoundParts < NumParts) {
143        // Assemble the trailing non-power-of-2 part.
144        unsigned OddParts = NumParts - RoundParts;
145        EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
146        Hi = getCopyFromParts(DAG, DL,
147                              Parts + RoundParts, OddParts, PartVT, OddVT);
148
149        // Combine the round and odd parts.
150        Lo = Val;
151        if (TLI.isBigEndian())
152          std::swap(Lo, Hi);
153        EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
154        Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
155        Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
156                         DAG.getConstant(Lo.getValueType().getSizeInBits(),
157                                         TLI.getPointerTy()));
158        Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
159        Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
160      }
161    } else if (PartVT.isFloatingPoint()) {
162      // FP split into multiple FP parts (for ppcf128)
163      assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) &&
164             "Unexpected split");
165      SDValue Lo, Hi;
166      Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
167      Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
168      if (TLI.isBigEndian())
169        std::swap(Lo, Hi);
170      Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
171    } else {
172      // FP split into integer parts (soft fp)
173      assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
174             !PartVT.isVector() && "Unexpected split");
175      EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
176      Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT);
177    }
178  }
179
180  // There is now one part, held in Val.  Correct it to match ValueVT.
181  PartVT = Val.getValueType();
182
183  if (PartVT == ValueVT)
184    return Val;
185
186  if (PartVT.isInteger() && ValueVT.isInteger()) {
187    if (ValueVT.bitsLT(PartVT)) {
188      // For a truncate, see if we have any information to
189      // indicate whether the truncated bits will always be
190      // zero or sign-extension.
191      if (AssertOp != ISD::DELETED_NODE)
192        Val = DAG.getNode(AssertOp, DL, PartVT, Val,
193                          DAG.getValueType(ValueVT));
194      return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
195    }
196    return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
197  }
198
199  if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
200    // FP_ROUND's are always exact here.
201    if (ValueVT.bitsLT(Val.getValueType()))
202      return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val,
203                         DAG.getIntPtrConstant(1));
204
205    return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
206  }
207
208  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
209    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
210
211  llvm_unreachable("Unknown mismatch!");
212  return SDValue();
213}
214
215/// getCopyFromParts - Create a value that contains the specified legal parts
216/// combined into the value they represent.  If the parts combine to a type
217/// larger then ValueVT then AssertOp can be used to specify whether the extra
218/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
219/// (ISD::AssertSext).
220static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
221                                      const SDValue *Parts, unsigned NumParts,
222                                      EVT PartVT, EVT ValueVT) {
223  assert(ValueVT.isVector() && "Not a vector value");
224  assert(NumParts > 0 && "No parts to assemble!");
225  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
226  SDValue Val = Parts[0];
227
228  // Handle a multi-element vector.
229  if (NumParts > 1) {
230    EVT IntermediateVT, RegisterVT;
231    unsigned NumIntermediates;
232    unsigned NumRegs =
233    TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
234                               NumIntermediates, RegisterVT);
235    assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
236    NumParts = NumRegs; // Silence a compiler warning.
237    assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
238    assert(RegisterVT == Parts[0].getValueType() &&
239           "Part type doesn't match part!");
240
241    // Assemble the parts into intermediate operands.
242    SmallVector<SDValue, 8> Ops(NumIntermediates);
243    if (NumIntermediates == NumParts) {
244      // If the register was not expanded, truncate or copy the value,
245      // as appropriate.
246      for (unsigned i = 0; i != NumParts; ++i)
247        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
248                                  PartVT, IntermediateVT);
249    } else if (NumParts > 0) {
250      // If the intermediate type was expanded, build the intermediate
251      // operands from the parts.
252      assert(NumParts % NumIntermediates == 0 &&
253             "Must expand into a divisible number of parts!");
254      unsigned Factor = NumParts / NumIntermediates;
255      for (unsigned i = 0; i != NumIntermediates; ++i)
256        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
257                                  PartVT, IntermediateVT);
258    }
259
260    // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
261    // intermediate operands.
262    Val = DAG.getNode(IntermediateVT.isVector() ?
263                      ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL,
264                      ValueVT, &Ops[0], NumIntermediates);
265  }
266
267  // There is now one part, held in Val.  Correct it to match ValueVT.
268  PartVT = Val.getValueType();
269
270  if (PartVT == ValueVT)
271    return Val;
272
273  if (PartVT.isVector()) {
274    // If the element type of the source/dest vectors are the same, but the
275    // parts vector has more elements than the value vector, then we have a
276    // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
277    // elements we want.
278    if (PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
279      assert(PartVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
280             "Cannot narrow, it would be a lossy transformation");
281      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
282                         DAG.getIntPtrConstant(0));
283    }
284
285    // Vector/Vector bitcast.
286    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
287  }
288
289  assert(ValueVT.getVectorElementType() == PartVT &&
290         ValueVT.getVectorNumElements() == 1 &&
291         "Only trivial scalar-to-vector conversions should get here!");
292  return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
293}
294
295
296
297
298static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl,
299                                 SDValue Val, SDValue *Parts, unsigned NumParts,
300                                 EVT PartVT);
301
302/// getCopyToParts - Create a series of nodes that contain the specified value
303/// split into legal parts.  If the parts contain more bits than Val, then, for
304/// integers, ExtendKind can be used to specify how to generate the extra bits.
305static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL,
306                           SDValue Val, SDValue *Parts, unsigned NumParts,
307                           EVT PartVT,
308                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
309  EVT ValueVT = Val.getValueType();
310
311  // Handle the vector case separately.
312  if (ValueVT.isVector())
313    return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT);
314
315  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
316  unsigned PartBits = PartVT.getSizeInBits();
317  unsigned OrigNumParts = NumParts;
318  assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
319
320  if (NumParts == 0)
321    return;
322
323  assert(!ValueVT.isVector() && "Vector case handled elsewhere");
324  if (PartVT == ValueVT) {
325    assert(NumParts == 1 && "No-op copy with multiple parts!");
326    Parts[0] = Val;
327    return;
328  }
329
330  if (NumParts * PartBits > ValueVT.getSizeInBits()) {
331    // If the parts cover more bits than the value has, promote the value.
332    if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
333      assert(NumParts == 1 && "Do not know what to promote to!");
334      Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
335    } else {
336      assert(PartVT.isInteger() && ValueVT.isInteger() &&
337             "Unknown mismatch!");
338      ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
339      Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
340    }
341  } else if (PartBits == ValueVT.getSizeInBits()) {
342    // Different types of the same size.
343    assert(NumParts == 1 && PartVT != ValueVT);
344    Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
345  } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
346    // If the parts cover less bits than value has, truncate the value.
347    assert(PartVT.isInteger() && ValueVT.isInteger() &&
348           "Unknown mismatch!");
349    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
350    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
351  }
352
353  // The value may have changed - recompute ValueVT.
354  ValueVT = Val.getValueType();
355  assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
356         "Failed to tile the value with PartVT!");
357
358  if (NumParts == 1) {
359    assert(PartVT == ValueVT && "Type conversion failed!");
360    Parts[0] = Val;
361    return;
362  }
363
364  // Expand the value into multiple parts.
365  if (NumParts & (NumParts - 1)) {
366    // The number of parts is not a power of 2.  Split off and copy the tail.
367    assert(PartVT.isInteger() && ValueVT.isInteger() &&
368           "Do not know what to expand to!");
369    unsigned RoundParts = 1 << Log2_32(NumParts);
370    unsigned RoundBits = RoundParts * PartBits;
371    unsigned OddParts = NumParts - RoundParts;
372    SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
373                                 DAG.getIntPtrConstant(RoundBits));
374    getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT);
375
376    if (TLI.isBigEndian())
377      // The odd parts were reversed by getCopyToParts - unreverse them.
378      std::reverse(Parts + RoundParts, Parts + NumParts);
379
380    NumParts = RoundParts;
381    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
382    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
383  }
384
385  // The number of parts is a power of 2.  Repeatedly bisect the value using
386  // EXTRACT_ELEMENT.
387  Parts[0] = DAG.getNode(ISD::BITCAST, DL,
388                         EVT::getIntegerVT(*DAG.getContext(),
389                                           ValueVT.getSizeInBits()),
390                         Val);
391
392  for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
393    for (unsigned i = 0; i < NumParts; i += StepSize) {
394      unsigned ThisBits = StepSize * PartBits / 2;
395      EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
396      SDValue &Part0 = Parts[i];
397      SDValue &Part1 = Parts[i+StepSize/2];
398
399      Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
400                          ThisVT, Part0, DAG.getIntPtrConstant(1));
401      Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
402                          ThisVT, Part0, DAG.getIntPtrConstant(0));
403
404      if (ThisBits == PartBits && ThisVT != PartVT) {
405        Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
406        Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
407      }
408    }
409  }
410
411  if (TLI.isBigEndian())
412    std::reverse(Parts, Parts + OrigNumParts);
413}
414
415
416/// getCopyToPartsVector - Create a series of nodes that contain the specified
417/// value split into legal parts.
418static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL,
419                                 SDValue Val, SDValue *Parts, unsigned NumParts,
420                                 EVT PartVT) {
421  EVT ValueVT = Val.getValueType();
422  assert(ValueVT.isVector() && "Not a vector");
423  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
424
425  if (NumParts == 1) {
426    if (PartVT == ValueVT) {
427      // Nothing to do.
428    } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
429      // Bitconvert vector->vector case.
430      Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
431    } else if (PartVT.isVector() &&
432               PartVT.getVectorElementType() == ValueVT.getVectorElementType()&&
433               PartVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
434      EVT ElementVT = PartVT.getVectorElementType();
435      // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
436      // undef elements.
437      SmallVector<SDValue, 16> Ops;
438      for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
439        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
440                                  ElementVT, Val, DAG.getIntPtrConstant(i)));
441
442      for (unsigned i = ValueVT.getVectorNumElements(),
443           e = PartVT.getVectorNumElements(); i != e; ++i)
444        Ops.push_back(DAG.getUNDEF(ElementVT));
445
446      Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size());
447
448      // FIXME: Use CONCAT for 2x -> 4x.
449
450      //SDValue UndefElts = DAG.getUNDEF(VectorTy);
451      //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
452    } else {
453      // Vector -> scalar conversion.
454      assert(ValueVT.getVectorElementType() == PartVT &&
455             ValueVT.getVectorNumElements() == 1 &&
456             "Only trivial vector-to-scalar conversions should get here!");
457      Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
458                        PartVT, Val, DAG.getIntPtrConstant(0));
459    }
460
461    Parts[0] = Val;
462    return;
463  }
464
465  // Handle a multi-element vector.
466  EVT IntermediateVT, RegisterVT;
467  unsigned NumIntermediates;
468  unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
469                                                IntermediateVT,
470                                                NumIntermediates, RegisterVT);
471  unsigned NumElements = ValueVT.getVectorNumElements();
472
473  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
474  NumParts = NumRegs; // Silence a compiler warning.
475  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
476
477  // Split the vector into intermediate operands.
478  SmallVector<SDValue, 8> Ops(NumIntermediates);
479  for (unsigned i = 0; i != NumIntermediates; ++i) {
480    if (IntermediateVT.isVector())
481      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
482                           IntermediateVT, Val,
483                   DAG.getIntPtrConstant(i * (NumElements / NumIntermediates)));
484    else
485      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
486                           IntermediateVT, Val, DAG.getIntPtrConstant(i));
487  }
488
489  // Split the intermediate operands into legal parts.
490  if (NumParts == NumIntermediates) {
491    // If the register was not expanded, promote or copy the value,
492    // as appropriate.
493    for (unsigned i = 0; i != NumParts; ++i)
494      getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT);
495  } else if (NumParts > 0) {
496    // If the intermediate type was expanded, split each the value into
497    // legal parts.
498    assert(NumParts % NumIntermediates == 0 &&
499           "Must expand into a divisible number of parts!");
500    unsigned Factor = NumParts / NumIntermediates;
501    for (unsigned i = 0; i != NumIntermediates; ++i)
502      getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT);
503  }
504}
505
506
507
508
509namespace {
510  /// RegsForValue - This struct represents the registers (physical or virtual)
511  /// that a particular set of values is assigned, and the type information
512  /// about the value. The most common situation is to represent one value at a
513  /// time, but struct or array values are handled element-wise as multiple
514  /// values.  The splitting of aggregates is performed recursively, so that we
515  /// never have aggregate-typed registers. The values at this point do not
516  /// necessarily have legal types, so each value may require one or more
517  /// registers of some legal type.
518  ///
519  struct RegsForValue {
520    /// ValueVTs - The value types of the values, which may not be legal, and
521    /// may need be promoted or synthesized from one or more registers.
522    ///
523    SmallVector<EVT, 4> ValueVTs;
524
525    /// RegVTs - The value types of the registers. This is the same size as
526    /// ValueVTs and it records, for each value, what the type of the assigned
527    /// register or registers are. (Individual values are never synthesized
528    /// from more than one type of register.)
529    ///
530    /// With virtual registers, the contents of RegVTs is redundant with TLI's
531    /// getRegisterType member function, however when with physical registers
532    /// it is necessary to have a separate record of the types.
533    ///
534    SmallVector<EVT, 4> RegVTs;
535
536    /// Regs - This list holds the registers assigned to the values.
537    /// Each legal or promoted value requires one register, and each
538    /// expanded value requires multiple registers.
539    ///
540    SmallVector<unsigned, 4> Regs;
541
542    RegsForValue() {}
543
544    RegsForValue(const SmallVector<unsigned, 4> &regs,
545                 EVT regvt, EVT valuevt)
546      : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
547
548    RegsForValue(LLVMContext &Context, const TargetLowering &tli,
549                 unsigned Reg, const Type *Ty) {
550      ComputeValueVTs(tli, Ty, ValueVTs);
551
552      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
553        EVT ValueVT = ValueVTs[Value];
554        unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
555        EVT RegisterVT = tli.getRegisterType(Context, ValueVT);
556        for (unsigned i = 0; i != NumRegs; ++i)
557          Regs.push_back(Reg + i);
558        RegVTs.push_back(RegisterVT);
559        Reg += NumRegs;
560      }
561    }
562
563    /// areValueTypesLegal - Return true if types of all the values are legal.
564    bool areValueTypesLegal(const TargetLowering &TLI) {
565      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
566        EVT RegisterVT = RegVTs[Value];
567        if (!TLI.isTypeLegal(RegisterVT))
568          return false;
569      }
570      return true;
571    }
572
573    /// append - Add the specified values to this one.
574    void append(const RegsForValue &RHS) {
575      ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
576      RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
577      Regs.append(RHS.Regs.begin(), RHS.Regs.end());
578    }
579
580    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
581    /// this value and returns the result as a ValueVTs value.  This uses
582    /// Chain/Flag as the input and updates them for the output Chain/Flag.
583    /// If the Flag pointer is NULL, no flag is used.
584    SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
585                            DebugLoc dl,
586                            SDValue &Chain, SDValue *Flag) const;
587
588    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
589    /// specified value into the registers specified by this object.  This uses
590    /// Chain/Flag as the input and updates them for the output Chain/Flag.
591    /// If the Flag pointer is NULL, no flag is used.
592    void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
593                       SDValue &Chain, SDValue *Flag) const;
594
595    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
596    /// operand list.  This adds the code marker, matching input operand index
597    /// (if applicable), and includes the number of values added into it.
598    void AddInlineAsmOperands(unsigned Kind,
599                              bool HasMatching, unsigned MatchingIdx,
600                              SelectionDAG &DAG,
601                              std::vector<SDValue> &Ops) const;
602  };
603}
604
605/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
606/// this value and returns the result as a ValueVT value.  This uses
607/// Chain/Flag as the input and updates them for the output Chain/Flag.
608/// If the Flag pointer is NULL, no flag is used.
609SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
610                                      FunctionLoweringInfo &FuncInfo,
611                                      DebugLoc dl,
612                                      SDValue &Chain, SDValue *Flag) const {
613  // A Value with type {} or [0 x %t] needs no registers.
614  if (ValueVTs.empty())
615    return SDValue();
616
617  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
618
619  // Assemble the legal parts into the final values.
620  SmallVector<SDValue, 4> Values(ValueVTs.size());
621  SmallVector<SDValue, 8> Parts;
622  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
623    // Copy the legal parts from the registers.
624    EVT ValueVT = ValueVTs[Value];
625    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
626    EVT RegisterVT = RegVTs[Value];
627
628    Parts.resize(NumRegs);
629    for (unsigned i = 0; i != NumRegs; ++i) {
630      SDValue P;
631      if (Flag == 0) {
632        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
633      } else {
634        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
635        *Flag = P.getValue(2);
636      }
637
638      Chain = P.getValue(1);
639      Parts[i] = P;
640
641      // If the source register was virtual and if we know something about it,
642      // add an assert node.
643      if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
644          !RegisterVT.isInteger() || RegisterVT.isVector() ||
645          !FuncInfo.LiveOutRegInfo.inBounds(Regs[Part+i]))
646        continue;
647
648      if (FuncInfo.PHIDestRegs.count(Regs[Part+i]) && !FuncInfo.AllPredsVisited)
649        continue;
650
651      const FunctionLoweringInfo::LiveOutInfo &LOI =
652        FuncInfo.LiveOutRegInfo[Regs[Part+i]];
653
654      unsigned RegSize = RegisterVT.getSizeInBits();
655      unsigned NumSignBits = LOI.NumSignBits;
656      unsigned NumZeroBits = LOI.KnownZero.countLeadingOnes();
657
658      // FIXME: We capture more information than the dag can represent.  For
659      // now, just use the tightest assertzext/assertsext possible.
660      bool isSExt = true;
661      EVT FromVT(MVT::Other);
662      if (NumSignBits == RegSize)
663        isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
664      else if (NumZeroBits >= RegSize-1)
665        isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
666      else if (NumSignBits > RegSize-8)
667        isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
668      else if (NumZeroBits >= RegSize-8)
669        isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
670      else if (NumSignBits > RegSize-16)
671        isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
672      else if (NumZeroBits >= RegSize-16)
673        isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
674      else if (NumSignBits > RegSize-32)
675        isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
676      else if (NumZeroBits >= RegSize-32)
677        isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
678      else
679        continue;
680
681      // Add an assertion node.
682      assert(FromVT != MVT::Other);
683      Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
684                             RegisterVT, P, DAG.getValueType(FromVT));
685    }
686
687    Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
688                                     NumRegs, RegisterVT, ValueVT);
689    Part += NumRegs;
690    Parts.clear();
691  }
692
693  return DAG.getNode(ISD::MERGE_VALUES, dl,
694                     DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
695                     &Values[0], ValueVTs.size());
696}
697
698/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
699/// specified value into the registers specified by this object.  This uses
700/// Chain/Flag as the input and updates them for the output Chain/Flag.
701/// If the Flag pointer is NULL, no flag is used.
702void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
703                                 SDValue &Chain, SDValue *Flag) const {
704  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
705
706  // Get the list of the values's legal parts.
707  unsigned NumRegs = Regs.size();
708  SmallVector<SDValue, 8> Parts(NumRegs);
709  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
710    EVT ValueVT = ValueVTs[Value];
711    unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
712    EVT RegisterVT = RegVTs[Value];
713
714    getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
715                   &Parts[Part], NumParts, RegisterVT);
716    Part += NumParts;
717  }
718
719  // Copy the parts into the registers.
720  SmallVector<SDValue, 8> Chains(NumRegs);
721  for (unsigned i = 0; i != NumRegs; ++i) {
722    SDValue Part;
723    if (Flag == 0) {
724      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
725    } else {
726      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
727      *Flag = Part.getValue(1);
728    }
729
730    Chains[i] = Part.getValue(0);
731  }
732
733  if (NumRegs == 1 || Flag)
734    // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
735    // flagged to it. That is the CopyToReg nodes and the user are considered
736    // a single scheduling unit. If we create a TokenFactor and return it as
737    // chain, then the TokenFactor is both a predecessor (operand) of the
738    // user as well as a successor (the TF operands are flagged to the user).
739    // c1, f1 = CopyToReg
740    // c2, f2 = CopyToReg
741    // c3     = TokenFactor c1, c2
742    // ...
743    //        = op c3, ..., f2
744    Chain = Chains[NumRegs-1];
745  else
746    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
747}
748
749/// AddInlineAsmOperands - Add this value to the specified inlineasm node
750/// operand list.  This adds the code marker and includes the number of
751/// values added into it.
752void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
753                                        unsigned MatchingIdx,
754                                        SelectionDAG &DAG,
755                                        std::vector<SDValue> &Ops) const {
756  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
757
758  unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
759  if (HasMatching)
760    Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
761  SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
762  Ops.push_back(Res);
763
764  for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
765    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
766    EVT RegisterVT = RegVTs[Value];
767    for (unsigned i = 0; i != NumRegs; ++i) {
768      assert(Reg < Regs.size() && "Mismatch in # registers expected");
769      Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
770    }
771  }
772}
773
774void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) {
775  AA = &aa;
776  GFI = gfi;
777  TD = DAG.getTarget().getTargetData();
778}
779
780/// clear - Clear out the current SelectionDAG and the associated
781/// state and prepare this SelectionDAGBuilder object to be used
782/// for a new block. This doesn't clear out information about
783/// additional blocks that are needed to complete switch lowering
784/// or PHI node updating; that information is cleared out as it is
785/// consumed.
786void SelectionDAGBuilder::clear() {
787  NodeMap.clear();
788  UnusedArgNodeMap.clear();
789  PendingLoads.clear();
790  PendingExports.clear();
791  DanglingDebugInfoMap.clear();
792  CurDebugLoc = DebugLoc();
793  HasTailCall = false;
794}
795
796/// getRoot - Return the current virtual root of the Selection DAG,
797/// flushing any PendingLoad items. This must be done before emitting
798/// a store or any other node that may need to be ordered after any
799/// prior load instructions.
800///
801SDValue SelectionDAGBuilder::getRoot() {
802  if (PendingLoads.empty())
803    return DAG.getRoot();
804
805  if (PendingLoads.size() == 1) {
806    SDValue Root = PendingLoads[0];
807    DAG.setRoot(Root);
808    PendingLoads.clear();
809    return Root;
810  }
811
812  // Otherwise, we have to make a token factor node.
813  SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
814                               &PendingLoads[0], PendingLoads.size());
815  PendingLoads.clear();
816  DAG.setRoot(Root);
817  return Root;
818}
819
820/// getControlRoot - Similar to getRoot, but instead of flushing all the
821/// PendingLoad items, flush all the PendingExports items. It is necessary
822/// to do this before emitting a terminator instruction.
823///
824SDValue SelectionDAGBuilder::getControlRoot() {
825  SDValue Root = DAG.getRoot();
826
827  if (PendingExports.empty())
828    return Root;
829
830  // Turn all of the CopyToReg chains into one factored node.
831  if (Root.getOpcode() != ISD::EntryToken) {
832    unsigned i = 0, e = PendingExports.size();
833    for (; i != e; ++i) {
834      assert(PendingExports[i].getNode()->getNumOperands() > 1);
835      if (PendingExports[i].getNode()->getOperand(0) == Root)
836        break;  // Don't add the root if we already indirectly depend on it.
837    }
838
839    if (i == e)
840      PendingExports.push_back(Root);
841  }
842
843  Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
844                     &PendingExports[0],
845                     PendingExports.size());
846  PendingExports.clear();
847  DAG.setRoot(Root);
848  return Root;
849}
850
851void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) {
852  if (DAG.GetOrdering(Node) != 0) return; // Already has ordering.
853  DAG.AssignOrdering(Node, SDNodeOrder);
854
855  for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I)
856    AssignOrderingToNode(Node->getOperand(I).getNode());
857}
858
859void SelectionDAGBuilder::visit(const Instruction &I) {
860  // Set up outgoing PHI node register values before emitting the terminator.
861  if (isa<TerminatorInst>(&I))
862    HandlePHINodesInSuccessorBlocks(I.getParent());
863
864  CurDebugLoc = I.getDebugLoc();
865
866  visit(I.getOpcode(), I);
867
868  if (!isa<TerminatorInst>(&I) && !HasTailCall)
869    CopyToExportRegsIfNeeded(&I);
870
871  CurDebugLoc = DebugLoc();
872}
873
874void SelectionDAGBuilder::visitPHI(const PHINode &) {
875  llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
876}
877
878void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
879  // Note: this doesn't use InstVisitor, because it has to work with
880  // ConstantExpr's in addition to instructions.
881  switch (Opcode) {
882  default: llvm_unreachable("Unknown instruction type encountered!");
883    // Build the switch statement using the Instruction.def file.
884#define HANDLE_INST(NUM, OPCODE, CLASS) \
885    case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break;
886#include "llvm/Instruction.def"
887  }
888
889  // Assign the ordering to the freshly created DAG nodes.
890  if (NodeMap.count(&I)) {
891    ++SDNodeOrder;
892    AssignOrderingToNode(getValue(&I).getNode());
893  }
894}
895
896// resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
897// generate the debug data structures now that we've seen its definition.
898void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
899                                                   SDValue Val) {
900  DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
901  if (DDI.getDI()) {
902    const DbgValueInst *DI = DDI.getDI();
903    DebugLoc dl = DDI.getdl();
904    unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
905    MDNode *Variable = DI->getVariable();
906    uint64_t Offset = DI->getOffset();
907    SDDbgValue *SDV;
908    if (Val.getNode()) {
909      if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) {
910        SDV = DAG.getDbgValue(Variable, Val.getNode(),
911                              Val.getResNo(), Offset, dl, DbgSDNodeOrder);
912        DAG.AddDbgValue(SDV, Val.getNode(), false);
913      }
914    } else
915      DEBUG(dbgs() << "Dropping debug info for " << DI);
916    DanglingDebugInfoMap[V] = DanglingDebugInfo();
917  }
918}
919
920// getValue - Return an SDValue for the given Value.
921SDValue SelectionDAGBuilder::getValue(const Value *V) {
922  // If we already have an SDValue for this value, use it. It's important
923  // to do this first, so that we don't create a CopyFromReg if we already
924  // have a regular SDValue.
925  SDValue &N = NodeMap[V];
926  if (N.getNode()) return N;
927
928  // If there's a virtual register allocated and initialized for this
929  // value, use it.
930  DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
931  if (It != FuncInfo.ValueMap.end()) {
932    unsigned InReg = It->second;
933    RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
934    SDValue Chain = DAG.getEntryNode();
935    N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain,NULL);
936    resolveDanglingDebugInfo(V, N);
937    return N;
938  }
939
940  // Otherwise create a new SDValue and remember it.
941  SDValue Val = getValueImpl(V);
942  NodeMap[V] = Val;
943  resolveDanglingDebugInfo(V, Val);
944  return Val;
945}
946
947/// getNonRegisterValue - Return an SDValue for the given Value, but
948/// don't look in FuncInfo.ValueMap for a virtual register.
949SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
950  // If we already have an SDValue for this value, use it.
951  SDValue &N = NodeMap[V];
952  if (N.getNode()) return N;
953
954  // Otherwise create a new SDValue and remember it.
955  SDValue Val = getValueImpl(V);
956  NodeMap[V] = Val;
957  resolveDanglingDebugInfo(V, Val);
958  return Val;
959}
960
961/// getValueImpl - Helper function for getValue and getNonRegisterValue.
962/// Create an SDValue for the given value.
963SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
964  if (const Constant *C = dyn_cast<Constant>(V)) {
965    EVT VT = TLI.getValueType(V->getType(), true);
966
967    if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
968      return DAG.getConstant(*CI, VT);
969
970    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
971      return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT);
972
973    if (isa<ConstantPointerNull>(C))
974      return DAG.getConstant(0, TLI.getPointerTy());
975
976    if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
977      return DAG.getConstantFP(*CFP, VT);
978
979    if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
980      return DAG.getUNDEF(VT);
981
982    if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
983      visit(CE->getOpcode(), *CE);
984      SDValue N1 = NodeMap[V];
985      assert(N1.getNode() && "visit didn't populate the NodeMap!");
986      return N1;
987    }
988
989    if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
990      SmallVector<SDValue, 4> Constants;
991      for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
992           OI != OE; ++OI) {
993        SDNode *Val = getValue(*OI).getNode();
994        // If the operand is an empty aggregate, there are no values.
995        if (!Val) continue;
996        // Add each leaf value from the operand to the Constants list
997        // to form a flattened list of all the values.
998        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
999          Constants.push_back(SDValue(Val, i));
1000      }
1001
1002      return DAG.getMergeValues(&Constants[0], Constants.size(),
1003                                getCurDebugLoc());
1004    }
1005
1006    if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1007      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1008             "Unknown struct or array constant!");
1009
1010      SmallVector<EVT, 4> ValueVTs;
1011      ComputeValueVTs(TLI, C->getType(), ValueVTs);
1012      unsigned NumElts = ValueVTs.size();
1013      if (NumElts == 0)
1014        return SDValue(); // empty struct
1015      SmallVector<SDValue, 4> Constants(NumElts);
1016      for (unsigned i = 0; i != NumElts; ++i) {
1017        EVT EltVT = ValueVTs[i];
1018        if (isa<UndefValue>(C))
1019          Constants[i] = DAG.getUNDEF(EltVT);
1020        else if (EltVT.isFloatingPoint())
1021          Constants[i] = DAG.getConstantFP(0, EltVT);
1022        else
1023          Constants[i] = DAG.getConstant(0, EltVT);
1024      }
1025
1026      return DAG.getMergeValues(&Constants[0], NumElts,
1027                                getCurDebugLoc());
1028    }
1029
1030    if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1031      return DAG.getBlockAddress(BA, VT);
1032
1033    const VectorType *VecTy = cast<VectorType>(V->getType());
1034    unsigned NumElements = VecTy->getNumElements();
1035
1036    // Now that we know the number and type of the elements, get that number of
1037    // elements into the Ops array based on what kind of constant it is.
1038    SmallVector<SDValue, 16> Ops;
1039    if (const ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
1040      for (unsigned i = 0; i != NumElements; ++i)
1041        Ops.push_back(getValue(CP->getOperand(i)));
1042    } else {
1043      assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1044      EVT EltVT = TLI.getValueType(VecTy->getElementType());
1045
1046      SDValue Op;
1047      if (EltVT.isFloatingPoint())
1048        Op = DAG.getConstantFP(0, EltVT);
1049      else
1050        Op = DAG.getConstant(0, EltVT);
1051      Ops.assign(NumElements, Op);
1052    }
1053
1054    // Create a BUILD_VECTOR node.
1055    return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
1056                                    VT, &Ops[0], Ops.size());
1057  }
1058
1059  // If this is a static alloca, generate it as the frameindex instead of
1060  // computation.
1061  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1062    DenseMap<const AllocaInst*, int>::iterator SI =
1063      FuncInfo.StaticAllocaMap.find(AI);
1064    if (SI != FuncInfo.StaticAllocaMap.end())
1065      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
1066  }
1067
1068  // If this is an instruction which fast-isel has deferred, select it now.
1069  if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1070    unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1071    RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType());
1072    SDValue Chain = DAG.getEntryNode();
1073    return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL);
1074  }
1075
1076  llvm_unreachable("Can't get register for value!");
1077  return SDValue();
1078}
1079
1080void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1081  SDValue Chain = getControlRoot();
1082  SmallVector<ISD::OutputArg, 8> Outs;
1083  SmallVector<SDValue, 8> OutVals;
1084
1085  if (!FuncInfo.CanLowerReturn) {
1086    unsigned DemoteReg = FuncInfo.DemoteRegister;
1087    const Function *F = I.getParent()->getParent();
1088
1089    // Emit a store of the return value through the virtual register.
1090    // Leave Outs empty so that LowerReturn won't try to load return
1091    // registers the usual way.
1092    SmallVector<EVT, 1> PtrValueVTs;
1093    ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
1094                    PtrValueVTs);
1095
1096    SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
1097    SDValue RetOp = getValue(I.getOperand(0));
1098
1099    SmallVector<EVT, 4> ValueVTs;
1100    SmallVector<uint64_t, 4> Offsets;
1101    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1102    unsigned NumValues = ValueVTs.size();
1103
1104    SmallVector<SDValue, 4> Chains(NumValues);
1105    for (unsigned i = 0; i != NumValues; ++i) {
1106      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(),
1107                                RetPtr.getValueType(), RetPtr,
1108                                DAG.getIntPtrConstant(Offsets[i]));
1109      Chains[i] =
1110        DAG.getStore(Chain, getCurDebugLoc(),
1111                     SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1112                     // FIXME: better loc info would be nice.
1113                     Add, MachinePointerInfo(), false, false, 0);
1114    }
1115
1116    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
1117                        MVT::Other, &Chains[0], NumValues);
1118  } else if (I.getNumOperands() != 0) {
1119    SmallVector<EVT, 4> ValueVTs;
1120    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
1121    unsigned NumValues = ValueVTs.size();
1122    if (NumValues) {
1123      SDValue RetOp = getValue(I.getOperand(0));
1124      for (unsigned j = 0, f = NumValues; j != f; ++j) {
1125        EVT VT = ValueVTs[j];
1126
1127        ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1128
1129        const Function *F = I.getParent()->getParent();
1130        if (F->paramHasAttr(0, Attribute::SExt))
1131          ExtendKind = ISD::SIGN_EXTEND;
1132        else if (F->paramHasAttr(0, Attribute::ZExt))
1133          ExtendKind = ISD::ZERO_EXTEND;
1134
1135        // FIXME: C calling convention requires the return type to be promoted
1136        // to at least 32-bit. But this is not necessary for non-C calling
1137        // conventions. The frontend should mark functions whose return values
1138        // require promoting with signext or zeroext attributes.
1139        if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
1140          EVT MinVT = TLI.getRegisterType(*DAG.getContext(), MVT::i32);
1141          if (VT.bitsLT(MinVT))
1142            VT = MinVT;
1143        }
1144
1145        unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
1146        EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
1147        SmallVector<SDValue, 4> Parts(NumParts);
1148        getCopyToParts(DAG, getCurDebugLoc(),
1149                       SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1150                       &Parts[0], NumParts, PartVT, ExtendKind);
1151
1152        // 'inreg' on function refers to return value
1153        ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1154        if (F->paramHasAttr(0, Attribute::InReg))
1155          Flags.setInReg();
1156
1157        // Propagate extension type if any
1158        if (F->paramHasAttr(0, Attribute::SExt))
1159          Flags.setSExt();
1160        else if (F->paramHasAttr(0, Attribute::ZExt))
1161          Flags.setZExt();
1162
1163        for (unsigned i = 0; i < NumParts; ++i) {
1164          Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1165                                        /*isfixed=*/true));
1166          OutVals.push_back(Parts[i]);
1167        }
1168      }
1169    }
1170  }
1171
1172  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1173  CallingConv::ID CallConv =
1174    DAG.getMachineFunction().getFunction()->getCallingConv();
1175  Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
1176                          Outs, OutVals, getCurDebugLoc(), DAG);
1177
1178  // Verify that the target's LowerReturn behaved as expected.
1179  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1180         "LowerReturn didn't return a valid chain!");
1181
1182  // Update the DAG with the new chain value resulting from return lowering.
1183  DAG.setRoot(Chain);
1184}
1185
1186/// CopyToExportRegsIfNeeded - If the given value has virtual registers
1187/// created for it, emit nodes to copy the value into the virtual
1188/// registers.
1189void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1190  DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1191  if (VMI != FuncInfo.ValueMap.end()) {
1192    assert(!V->use_empty() && "Unused value assigned virtual registers!");
1193    CopyValueToVirtualRegister(V, VMI->second);
1194  }
1195}
1196
1197/// ExportFromCurrentBlock - If this condition isn't known to be exported from
1198/// the current basic block, add it to ValueMap now so that we'll get a
1199/// CopyTo/FromReg.
1200void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1201  // No need to export constants.
1202  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1203
1204  // Already exported?
1205  if (FuncInfo.isExportedInst(V)) return;
1206
1207  unsigned Reg = FuncInfo.InitializeRegForValue(V);
1208  CopyValueToVirtualRegister(V, Reg);
1209}
1210
1211bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1212                                                     const BasicBlock *FromBB) {
1213  // The operands of the setcc have to be in this block.  We don't know
1214  // how to export them from some other block.
1215  if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1216    // Can export from current BB.
1217    if (VI->getParent() == FromBB)
1218      return true;
1219
1220    // Is already exported, noop.
1221    return FuncInfo.isExportedInst(V);
1222  }
1223
1224  // If this is an argument, we can export it if the BB is the entry block or
1225  // if it is already exported.
1226  if (isa<Argument>(V)) {
1227    if (FromBB == &FromBB->getParent()->getEntryBlock())
1228      return true;
1229
1230    // Otherwise, can only export this if it is already exported.
1231    return FuncInfo.isExportedInst(V);
1232  }
1233
1234  // Otherwise, constants can always be exported.
1235  return true;
1236}
1237
1238static bool InBlock(const Value *V, const BasicBlock *BB) {
1239  if (const Instruction *I = dyn_cast<Instruction>(V))
1240    return I->getParent() == BB;
1241  return true;
1242}
1243
1244/// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1245/// This function emits a branch and is used at the leaves of an OR or an
1246/// AND operator tree.
1247///
1248void
1249SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1250                                                  MachineBasicBlock *TBB,
1251                                                  MachineBasicBlock *FBB,
1252                                                  MachineBasicBlock *CurBB,
1253                                                  MachineBasicBlock *SwitchBB) {
1254  const BasicBlock *BB = CurBB->getBasicBlock();
1255
1256  // If the leaf of the tree is a comparison, merge the condition into
1257  // the caseblock.
1258  if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1259    // The operands of the cmp have to be in this block.  We don't know
1260    // how to export them from some other block.  If this is the first block
1261    // of the sequence, no exporting is needed.
1262    if (CurBB == SwitchBB ||
1263        (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1264         isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1265      ISD::CondCode Condition;
1266      if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1267        Condition = getICmpCondCode(IC->getPredicate());
1268      } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1269        Condition = getFCmpCondCode(FC->getPredicate());
1270      } else {
1271        Condition = ISD::SETEQ; // silence warning.
1272        llvm_unreachable("Unknown compare instruction");
1273      }
1274
1275      CaseBlock CB(Condition, BOp->getOperand(0),
1276                   BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1277      SwitchCases.push_back(CB);
1278      return;
1279    }
1280  }
1281
1282  // Create a CaseBlock record representing this branch.
1283  CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1284               NULL, TBB, FBB, CurBB);
1285  SwitchCases.push_back(CB);
1286}
1287
1288/// FindMergedConditions - If Cond is an expression like
1289void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1290                                               MachineBasicBlock *TBB,
1291                                               MachineBasicBlock *FBB,
1292                                               MachineBasicBlock *CurBB,
1293                                               MachineBasicBlock *SwitchBB,
1294                                               unsigned Opc) {
1295  // If this node is not part of the or/and tree, emit it as a branch.
1296  const Instruction *BOp = dyn_cast<Instruction>(Cond);
1297  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1298      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1299      BOp->getParent() != CurBB->getBasicBlock() ||
1300      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1301      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1302    EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB);
1303    return;
1304  }
1305
1306  //  Create TmpBB after CurBB.
1307  MachineFunction::iterator BBI = CurBB;
1308  MachineFunction &MF = DAG.getMachineFunction();
1309  MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1310  CurBB->getParent()->insert(++BBI, TmpBB);
1311
1312  if (Opc == Instruction::Or) {
1313    // Codegen X | Y as:
1314    //   jmp_if_X TBB
1315    //   jmp TmpBB
1316    // TmpBB:
1317    //   jmp_if_Y TBB
1318    //   jmp FBB
1319    //
1320
1321    // Emit the LHS condition.
1322    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc);
1323
1324    // Emit the RHS condition into TmpBB.
1325    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1326  } else {
1327    assert(Opc == Instruction::And && "Unknown merge op!");
1328    // Codegen X & Y as:
1329    //   jmp_if_X TmpBB
1330    //   jmp FBB
1331    // TmpBB:
1332    //   jmp_if_Y TBB
1333    //   jmp FBB
1334    //
1335    //  This requires creation of TmpBB after CurBB.
1336
1337    // Emit the LHS condition.
1338    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc);
1339
1340    // Emit the RHS condition into TmpBB.
1341    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1342  }
1343}
1344
1345/// If the set of cases should be emitted as a series of branches, return true.
1346/// If we should emit this as a bunch of and/or'd together conditions, return
1347/// false.
1348bool
1349SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
1350  if (Cases.size() != 2) return true;
1351
1352  // If this is two comparisons of the same values or'd or and'd together, they
1353  // will get folded into a single comparison, so don't emit two blocks.
1354  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1355       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1356      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1357       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1358    return false;
1359  }
1360
1361  // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1362  // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1363  if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1364      Cases[0].CC == Cases[1].CC &&
1365      isa<Constant>(Cases[0].CmpRHS) &&
1366      cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1367    if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1368      return false;
1369    if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1370      return false;
1371  }
1372
1373  return true;
1374}
1375
1376void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1377  MachineBasicBlock *BrMBB = FuncInfo.MBB;
1378
1379  // Update machine-CFG edges.
1380  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1381
1382  // Figure out which block is immediately after the current one.
1383  MachineBasicBlock *NextBlock = 0;
1384  MachineFunction::iterator BBI = BrMBB;
1385  if (++BBI != FuncInfo.MF->end())
1386    NextBlock = BBI;
1387
1388  if (I.isUnconditional()) {
1389    // Update machine-CFG edges.
1390    BrMBB->addSuccessor(Succ0MBB);
1391
1392    // If this is not a fall-through branch, emit the branch.
1393    if (Succ0MBB != NextBlock)
1394      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1395                              MVT::Other, getControlRoot(),
1396                              DAG.getBasicBlock(Succ0MBB)));
1397
1398    return;
1399  }
1400
1401  // If this condition is one of the special cases we handle, do special stuff
1402  // now.
1403  const Value *CondVal = I.getCondition();
1404  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1405
1406  // If this is a series of conditions that are or'd or and'd together, emit
1407  // this as a sequence of branches instead of setcc's with and/or operations.
1408  // As long as jumps are not expensive, this should improve performance.
1409  // For example, instead of something like:
1410  //     cmp A, B
1411  //     C = seteq
1412  //     cmp D, E
1413  //     F = setle
1414  //     or C, F
1415  //     jnz foo
1416  // Emit:
1417  //     cmp A, B
1418  //     je foo
1419  //     cmp D, E
1420  //     jle foo
1421  //
1422  if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1423    if (!TLI.isJumpExpensive() &&
1424        BOp->hasOneUse() &&
1425        (BOp->getOpcode() == Instruction::And ||
1426         BOp->getOpcode() == Instruction::Or)) {
1427      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1428                           BOp->getOpcode());
1429      // If the compares in later blocks need to use values not currently
1430      // exported from this block, export them now.  This block should always
1431      // be the first entry.
1432      assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1433
1434      // Allow some cases to be rejected.
1435      if (ShouldEmitAsBranches(SwitchCases)) {
1436        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1437          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1438          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1439        }
1440
1441        // Emit the branch for this block.
1442        visitSwitchCase(SwitchCases[0], BrMBB);
1443        SwitchCases.erase(SwitchCases.begin());
1444        return;
1445      }
1446
1447      // Okay, we decided not to do this, remove any inserted MBB's and clear
1448      // SwitchCases.
1449      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1450        FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1451
1452      SwitchCases.clear();
1453    }
1454  }
1455
1456  // Create a CaseBlock record representing this branch.
1457  CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1458               NULL, Succ0MBB, Succ1MBB, BrMBB);
1459
1460  // Use visitSwitchCase to actually insert the fast branch sequence for this
1461  // cond branch.
1462  visitSwitchCase(CB, BrMBB);
1463}
1464
1465/// visitSwitchCase - Emits the necessary code to represent a single node in
1466/// the binary search tree resulting from lowering a switch instruction.
1467void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1468                                          MachineBasicBlock *SwitchBB) {
1469  SDValue Cond;
1470  SDValue CondLHS = getValue(CB.CmpLHS);
1471  DebugLoc dl = getCurDebugLoc();
1472
1473  // Build the setcc now.
1474  if (CB.CmpMHS == NULL) {
1475    // Fold "(X == true)" to X and "(X == false)" to !X to
1476    // handle common cases produced by branch lowering.
1477    if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1478        CB.CC == ISD::SETEQ)
1479      Cond = CondLHS;
1480    else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1481             CB.CC == ISD::SETEQ) {
1482      SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1483      Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1484    } else
1485      Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1486  } else {
1487    assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1488
1489    const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1490    const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
1491
1492    SDValue CmpOp = getValue(CB.CmpMHS);
1493    EVT VT = CmpOp.getValueType();
1494
1495    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1496      Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1497                          ISD::SETLE);
1498    } else {
1499      SDValue SUB = DAG.getNode(ISD::SUB, dl,
1500                                VT, CmpOp, DAG.getConstant(Low, VT));
1501      Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1502                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1503    }
1504  }
1505
1506  // Update successor info
1507  SwitchBB->addSuccessor(CB.TrueBB);
1508  SwitchBB->addSuccessor(CB.FalseBB);
1509
1510  // Set NextBlock to be the MBB immediately after the current one, if any.
1511  // This is used to avoid emitting unnecessary branches to the next block.
1512  MachineBasicBlock *NextBlock = 0;
1513  MachineFunction::iterator BBI = SwitchBB;
1514  if (++BBI != FuncInfo.MF->end())
1515    NextBlock = BBI;
1516
1517  // If the lhs block is the next block, invert the condition so that we can
1518  // fall through to the lhs instead of the rhs block.
1519  if (CB.TrueBB == NextBlock) {
1520    std::swap(CB.TrueBB, CB.FalseBB);
1521    SDValue True = DAG.getConstant(1, Cond.getValueType());
1522    Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1523  }
1524
1525  SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1526                               MVT::Other, getControlRoot(), Cond,
1527                               DAG.getBasicBlock(CB.TrueBB));
1528
1529  // Insert the false branch. Do this even if it's a fall through branch,
1530  // this makes it easier to do DAG optimizations which require inverting
1531  // the branch condition.
1532  BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1533                       DAG.getBasicBlock(CB.FalseBB));
1534
1535  DAG.setRoot(BrCond);
1536}
1537
1538/// visitJumpTable - Emit JumpTable node in the current MBB
1539void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1540  // Emit the code for the jump table
1541  assert(JT.Reg != -1U && "Should lower JT Header first!");
1542  EVT PTy = TLI.getPointerTy();
1543  SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1544                                     JT.Reg, PTy);
1545  SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1546  SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(),
1547                                    MVT::Other, Index.getValue(1),
1548                                    Table, Index);
1549  DAG.setRoot(BrJumpTable);
1550}
1551
1552/// visitJumpTableHeader - This function emits necessary code to produce index
1553/// in the JumpTable from switch case.
1554void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1555                                               JumpTableHeader &JTH,
1556                                               MachineBasicBlock *SwitchBB) {
1557  // Subtract the lowest switch case value from the value being switched on and
1558  // conditional branch to default mbb if the result is greater than the
1559  // difference between smallest and largest cases.
1560  SDValue SwitchOp = getValue(JTH.SValue);
1561  EVT VT = SwitchOp.getValueType();
1562  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1563                            DAG.getConstant(JTH.First, VT));
1564
1565  // The SDNode we just created, which holds the value being switched on minus
1566  // the smallest case value, needs to be copied to a virtual register so it
1567  // can be used as an index into the jump table in a subsequent basic block.
1568  // This value may be smaller or larger than the target's pointer type, and
1569  // therefore require extension or truncating.
1570  SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy());
1571
1572  unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy());
1573  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1574                                    JumpTableReg, SwitchOp);
1575  JT.Reg = JumpTableReg;
1576
1577  // Emit the range check for the jump table, and branch to the default block
1578  // for the switch statement if the value being switched on exceeds the largest
1579  // case in the switch.
1580  SDValue CMP = DAG.getSetCC(getCurDebugLoc(),
1581                             TLI.getSetCCResultType(Sub.getValueType()), Sub,
1582                             DAG.getConstant(JTH.Last-JTH.First,VT),
1583                             ISD::SETUGT);
1584
1585  // Set NextBlock to be the MBB immediately after the current one, if any.
1586  // This is used to avoid emitting unnecessary branches to the next block.
1587  MachineBasicBlock *NextBlock = 0;
1588  MachineFunction::iterator BBI = SwitchBB;
1589
1590  if (++BBI != FuncInfo.MF->end())
1591    NextBlock = BBI;
1592
1593  SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1594                               MVT::Other, CopyTo, CMP,
1595                               DAG.getBasicBlock(JT.Default));
1596
1597  if (JT.MBB != NextBlock)
1598    BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond,
1599                         DAG.getBasicBlock(JT.MBB));
1600
1601  DAG.setRoot(BrCond);
1602}
1603
1604/// visitBitTestHeader - This function emits necessary code to produce value
1605/// suitable for "bit tests"
1606void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1607                                             MachineBasicBlock *SwitchBB) {
1608  // Subtract the minimum value
1609  SDValue SwitchOp = getValue(B.SValue);
1610  EVT VT = SwitchOp.getValueType();
1611  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1612                            DAG.getConstant(B.First, VT));
1613
1614  // Check range
1615  SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(),
1616                                  TLI.getSetCCResultType(Sub.getValueType()),
1617                                  Sub, DAG.getConstant(B.Range, VT),
1618                                  ISD::SETUGT);
1619
1620  // Determine the type of the test operands.
1621  bool UsePtrType = false;
1622  if (!TLI.isTypeLegal(VT))
1623    UsePtrType = true;
1624  else {
1625    for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
1626      if ((uint64_t)((int64_t)B.Cases[i].Mask >> VT.getSizeInBits()) + 1 >= 2) {
1627        // Switch table case range are encoded into series of masks.
1628        // Just use pointer type, it's guaranteed to fit.
1629        UsePtrType = true;
1630        break;
1631      }
1632  }
1633  if (UsePtrType) {
1634    VT = TLI.getPointerTy();
1635    Sub = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), VT);
1636  }
1637
1638  B.RegVT = VT;
1639  B.Reg = FuncInfo.CreateReg(VT);
1640  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1641                                    B.Reg, Sub);
1642
1643  // Set NextBlock to be the MBB immediately after the current one, if any.
1644  // This is used to avoid emitting unnecessary branches to the next block.
1645  MachineBasicBlock *NextBlock = 0;
1646  MachineFunction::iterator BBI = SwitchBB;
1647  if (++BBI != FuncInfo.MF->end())
1648    NextBlock = BBI;
1649
1650  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1651
1652  SwitchBB->addSuccessor(B.Default);
1653  SwitchBB->addSuccessor(MBB);
1654
1655  SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1656                                MVT::Other, CopyTo, RangeCmp,
1657                                DAG.getBasicBlock(B.Default));
1658
1659  if (MBB != NextBlock)
1660    BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo,
1661                          DAG.getBasicBlock(MBB));
1662
1663  DAG.setRoot(BrRange);
1664}
1665
1666/// visitBitTestCase - this function produces one "bit test"
1667void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
1668                                           MachineBasicBlock* NextMBB,
1669                                           unsigned Reg,
1670                                           BitTestCase &B,
1671                                           MachineBasicBlock *SwitchBB) {
1672  EVT VT = BB.RegVT;
1673  SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1674                                       Reg, VT);
1675  SDValue Cmp;
1676  if (CountPopulation_64(B.Mask) == 1) {
1677    // Testing for a single bit; just compare the shift count with what it
1678    // would need to be to shift a 1 bit in that position.
1679    Cmp = DAG.getSetCC(getCurDebugLoc(),
1680                       TLI.getSetCCResultType(VT),
1681                       ShiftOp,
1682                       DAG.getConstant(CountTrailingZeros_64(B.Mask), VT),
1683                       ISD::SETEQ);
1684  } else {
1685    // Make desired shift
1686    SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), VT,
1687                                    DAG.getConstant(1, VT), ShiftOp);
1688
1689    // Emit bit tests and jumps
1690    SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(),
1691                                VT, SwitchVal, DAG.getConstant(B.Mask, VT));
1692    Cmp = DAG.getSetCC(getCurDebugLoc(),
1693                       TLI.getSetCCResultType(VT),
1694                       AndOp, DAG.getConstant(0, VT),
1695                       ISD::SETNE);
1696  }
1697
1698  SwitchBB->addSuccessor(B.TargetBB);
1699  SwitchBB->addSuccessor(NextMBB);
1700
1701  SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1702                              MVT::Other, getControlRoot(),
1703                              Cmp, DAG.getBasicBlock(B.TargetBB));
1704
1705  // Set NextBlock to be the MBB immediately after the current one, if any.
1706  // This is used to avoid emitting unnecessary branches to the next block.
1707  MachineBasicBlock *NextBlock = 0;
1708  MachineFunction::iterator BBI = SwitchBB;
1709  if (++BBI != FuncInfo.MF->end())
1710    NextBlock = BBI;
1711
1712  if (NextMBB != NextBlock)
1713    BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd,
1714                        DAG.getBasicBlock(NextMBB));
1715
1716  DAG.setRoot(BrAnd);
1717}
1718
1719void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1720  MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
1721
1722  // Retrieve successors.
1723  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1724  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1725
1726  const Value *Callee(I.getCalledValue());
1727  if (isa<InlineAsm>(Callee))
1728    visitInlineAsm(&I);
1729  else
1730    LowerCallTo(&I, getValue(Callee), false, LandingPad);
1731
1732  // If the value of the invoke is used outside of its defining block, make it
1733  // available as a virtual register.
1734  CopyToExportRegsIfNeeded(&I);
1735
1736  // Update successor info
1737  InvokeMBB->addSuccessor(Return);
1738  InvokeMBB->addSuccessor(LandingPad);
1739
1740  // Drop into normal successor.
1741  DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1742                          MVT::Other, getControlRoot(),
1743                          DAG.getBasicBlock(Return)));
1744}
1745
1746void SelectionDAGBuilder::visitUnwind(const UnwindInst &I) {
1747}
1748
1749/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1750/// small case ranges).
1751bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
1752                                                 CaseRecVector& WorkList,
1753                                                 const Value* SV,
1754                                                 MachineBasicBlock *Default,
1755                                                 MachineBasicBlock *SwitchBB) {
1756  Case& BackCase  = *(CR.Range.second-1);
1757
1758  // Size is the number of Cases represented by this range.
1759  size_t Size = CR.Range.second - CR.Range.first;
1760  if (Size > 3)
1761    return false;
1762
1763  // Get the MachineFunction which holds the current MBB.  This is used when
1764  // inserting any additional MBBs necessary to represent the switch.
1765  MachineFunction *CurMF = FuncInfo.MF;
1766
1767  // Figure out which block is immediately after the current one.
1768  MachineBasicBlock *NextBlock = 0;
1769  MachineFunction::iterator BBI = CR.CaseBB;
1770
1771  if (++BBI != FuncInfo.MF->end())
1772    NextBlock = BBI;
1773
1774  // If any two of the cases has the same destination, and if one value
1775  // is the same as the other, but has one bit unset that the other has set,
1776  // use bit manipulation to do two compares at once.  For example:
1777  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1778  // TODO: This could be extended to merge any 2 cases in switches with 3 cases.
1779  // TODO: Handle cases where CR.CaseBB != SwitchBB.
1780  if (Size == 2 && CR.CaseBB == SwitchBB) {
1781    Case &Small = *CR.Range.first;
1782    Case &Big = *(CR.Range.second-1);
1783
1784    if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) {
1785      const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue();
1786      const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue();
1787
1788      // Check that there is only one bit different.
1789      if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 &&
1790          (SmallValue | BigValue) == BigValue) {
1791        // Isolate the common bit.
1792        APInt CommonBit = BigValue & ~SmallValue;
1793        assert((SmallValue | CommonBit) == BigValue &&
1794               CommonBit.countPopulation() == 1 && "Not a common bit?");
1795
1796        SDValue CondLHS = getValue(SV);
1797        EVT VT = CondLHS.getValueType();
1798        DebugLoc DL = getCurDebugLoc();
1799
1800        SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
1801                                 DAG.getConstant(CommonBit, VT));
1802        SDValue Cond = DAG.getSetCC(DL, MVT::i1,
1803                                    Or, DAG.getConstant(BigValue, VT),
1804                                    ISD::SETEQ);
1805
1806        // Update successor info.
1807        SwitchBB->addSuccessor(Small.BB);
1808        SwitchBB->addSuccessor(Default);
1809
1810        // Insert the true branch.
1811        SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other,
1812                                     getControlRoot(), Cond,
1813                                     DAG.getBasicBlock(Small.BB));
1814
1815        // Insert the false branch.
1816        BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
1817                             DAG.getBasicBlock(Default));
1818
1819        DAG.setRoot(BrCond);
1820        return true;
1821      }
1822    }
1823  }
1824
1825  // Rearrange the case blocks so that the last one falls through if possible.
1826  if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1827    // The last case block won't fall through into 'NextBlock' if we emit the
1828    // branches in this order.  See if rearranging a case value would help.
1829    for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1830      if (I->BB == NextBlock) {
1831        std::swap(*I, BackCase);
1832        break;
1833      }
1834    }
1835  }
1836
1837  // Create a CaseBlock record representing a conditional branch to
1838  // the Case's target mbb if the value being switched on SV is equal
1839  // to C.
1840  MachineBasicBlock *CurBlock = CR.CaseBB;
1841  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1842    MachineBasicBlock *FallThrough;
1843    if (I != E-1) {
1844      FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
1845      CurMF->insert(BBI, FallThrough);
1846
1847      // Put SV in a virtual register to make it available from the new blocks.
1848      ExportFromCurrentBlock(SV);
1849    } else {
1850      // If the last case doesn't match, go to the default block.
1851      FallThrough = Default;
1852    }
1853
1854    const Value *RHS, *LHS, *MHS;
1855    ISD::CondCode CC;
1856    if (I->High == I->Low) {
1857      // This is just small small case range :) containing exactly 1 case
1858      CC = ISD::SETEQ;
1859      LHS = SV; RHS = I->High; MHS = NULL;
1860    } else {
1861      CC = ISD::SETLE;
1862      LHS = I->Low; MHS = SV; RHS = I->High;
1863    }
1864    CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock);
1865
1866    // If emitting the first comparison, just call visitSwitchCase to emit the
1867    // code into the current block.  Otherwise, push the CaseBlock onto the
1868    // vector to be later processed by SDISel, and insert the node's MBB
1869    // before the next MBB.
1870    if (CurBlock == SwitchBB)
1871      visitSwitchCase(CB, SwitchBB);
1872    else
1873      SwitchCases.push_back(CB);
1874
1875    CurBlock = FallThrough;
1876  }
1877
1878  return true;
1879}
1880
1881static inline bool areJTsAllowed(const TargetLowering &TLI) {
1882  return !DisableJumpTables &&
1883          (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
1884           TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
1885}
1886
1887static APInt ComputeRange(const APInt &First, const APInt &Last) {
1888  uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
1889  APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth);
1890  return (LastExt - FirstExt + 1ULL);
1891}
1892
1893/// handleJTSwitchCase - Emit jumptable for current switch case range
1894bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec& CR,
1895                                             CaseRecVector& WorkList,
1896                                             const Value* SV,
1897                                             MachineBasicBlock* Default,
1898                                             MachineBasicBlock *SwitchBB) {
1899  Case& FrontCase = *CR.Range.first;
1900  Case& BackCase  = *(CR.Range.second-1);
1901
1902  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
1903  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
1904
1905  APInt TSize(First.getBitWidth(), 0);
1906  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1907       I!=E; ++I)
1908    TSize += I->size();
1909
1910  if (!areJTsAllowed(TLI) || TSize.ult(4))
1911    return false;
1912
1913  APInt Range = ComputeRange(First, Last);
1914  double Density = TSize.roundToDouble() / Range.roundToDouble();
1915  if (Density < 0.4)
1916    return false;
1917
1918  DEBUG(dbgs() << "Lowering jump table\n"
1919               << "First entry: " << First << ". Last entry: " << Last << '\n'
1920               << "Range: " << Range
1921               << "Size: " << TSize << ". Density: " << Density << "\n\n");
1922
1923  // Get the MachineFunction which holds the current MBB.  This is used when
1924  // inserting any additional MBBs necessary to represent the switch.
1925  MachineFunction *CurMF = FuncInfo.MF;
1926
1927  // Figure out which block is immediately after the current one.
1928  MachineFunction::iterator BBI = CR.CaseBB;
1929  ++BBI;
1930
1931  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1932
1933  // Create a new basic block to hold the code for loading the address
1934  // of the jump table, and jumping to it.  Update successor information;
1935  // we will either branch to the default case for the switch, or the jump
1936  // table.
1937  MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1938  CurMF->insert(BBI, JumpTableBB);
1939  CR.CaseBB->addSuccessor(Default);
1940  CR.CaseBB->addSuccessor(JumpTableBB);
1941
1942  // Build a vector of destination BBs, corresponding to each target
1943  // of the jump table. If the value of the jump table slot corresponds to
1944  // a case statement, push the case's BB onto the vector, otherwise, push
1945  // the default BB.
1946  std::vector<MachineBasicBlock*> DestBBs;
1947  APInt TEI = First;
1948  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
1949    const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
1950    const APInt &High = cast<ConstantInt>(I->High)->getValue();
1951
1952    if (Low.sle(TEI) && TEI.sle(High)) {
1953      DestBBs.push_back(I->BB);
1954      if (TEI==High)
1955        ++I;
1956    } else {
1957      DestBBs.push_back(Default);
1958    }
1959  }
1960
1961  // Update successor info. Add one edge to each unique successor.
1962  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
1963  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
1964         E = DestBBs.end(); I != E; ++I) {
1965    if (!SuccsHandled[(*I)->getNumber()]) {
1966      SuccsHandled[(*I)->getNumber()] = true;
1967      JumpTableBB->addSuccessor(*I);
1968    }
1969  }
1970
1971  // Create a jump table index for this jump table.
1972  unsigned JTEncoding = TLI.getJumpTableEncoding();
1973  unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
1974                       ->createJumpTableIndex(DestBBs);
1975
1976  // Set the jump table information so that we can codegen it as a second
1977  // MachineBasicBlock
1978  JumpTable JT(-1U, JTI, JumpTableBB, Default);
1979  JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
1980  if (CR.CaseBB == SwitchBB)
1981    visitJumpTableHeader(JT, JTH, SwitchBB);
1982
1983  JTCases.push_back(JumpTableBlock(JTH, JT));
1984
1985  return true;
1986}
1987
1988/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
1989/// 2 subtrees.
1990bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
1991                                                  CaseRecVector& WorkList,
1992                                                  const Value* SV,
1993                                                  MachineBasicBlock *Default,
1994                                                  MachineBasicBlock *SwitchBB) {
1995  // Get the MachineFunction which holds the current MBB.  This is used when
1996  // inserting any additional MBBs necessary to represent the switch.
1997  MachineFunction *CurMF = FuncInfo.MF;
1998
1999  // Figure out which block is immediately after the current one.
2000  MachineFunction::iterator BBI = CR.CaseBB;
2001  ++BBI;
2002
2003  Case& FrontCase = *CR.Range.first;
2004  Case& BackCase  = *(CR.Range.second-1);
2005  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2006
2007  // Size is the number of Cases represented by this range.
2008  unsigned Size = CR.Range.second - CR.Range.first;
2009
2010  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2011  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2012  double FMetric = 0;
2013  CaseItr Pivot = CR.Range.first + Size/2;
2014
2015  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
2016  // (heuristically) allow us to emit JumpTable's later.
2017  APInt TSize(First.getBitWidth(), 0);
2018  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2019       I!=E; ++I)
2020    TSize += I->size();
2021
2022  APInt LSize = FrontCase.size();
2023  APInt RSize = TSize-LSize;
2024  DEBUG(dbgs() << "Selecting best pivot: \n"
2025               << "First: " << First << ", Last: " << Last <<'\n'
2026               << "LSize: " << LSize << ", RSize: " << RSize << '\n');
2027  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
2028       J!=E; ++I, ++J) {
2029    const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
2030    const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
2031    APInt Range = ComputeRange(LEnd, RBegin);
2032    assert((Range - 2ULL).isNonNegative() &&
2033           "Invalid case distance");
2034    double LDensity = (double)LSize.roundToDouble() /
2035                           (LEnd - First + 1ULL).roundToDouble();
2036    double RDensity = (double)RSize.roundToDouble() /
2037                           (Last - RBegin + 1ULL).roundToDouble();
2038    double Metric = Range.logBase2()*(LDensity+RDensity);
2039    // Should always split in some non-trivial place
2040    DEBUG(dbgs() <<"=>Step\n"
2041                 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
2042                 << "LDensity: " << LDensity
2043                 << ", RDensity: " << RDensity << '\n'
2044                 << "Metric: " << Metric << '\n');
2045    if (FMetric < Metric) {
2046      Pivot = J;
2047      FMetric = Metric;
2048      DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
2049    }
2050
2051    LSize += J->size();
2052    RSize -= J->size();
2053  }
2054  if (areJTsAllowed(TLI)) {
2055    // If our case is dense we *really* should handle it earlier!
2056    assert((FMetric > 0) && "Should handle dense range earlier!");
2057  } else {
2058    Pivot = CR.Range.first + Size/2;
2059  }
2060
2061  CaseRange LHSR(CR.Range.first, Pivot);
2062  CaseRange RHSR(Pivot, CR.Range.second);
2063  Constant *C = Pivot->Low;
2064  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
2065
2066  // We know that we branch to the LHS if the Value being switched on is
2067  // less than the Pivot value, C.  We use this to optimize our binary
2068  // tree a bit, by recognizing that if SV is greater than or equal to the
2069  // LHS's Case Value, and that Case Value is exactly one less than the
2070  // Pivot's Value, then we can branch directly to the LHS's Target,
2071  // rather than creating a leaf node for it.
2072  if ((LHSR.second - LHSR.first) == 1 &&
2073      LHSR.first->High == CR.GE &&
2074      cast<ConstantInt>(C)->getValue() ==
2075      (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
2076    TrueBB = LHSR.first->BB;
2077  } else {
2078    TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2079    CurMF->insert(BBI, TrueBB);
2080    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
2081
2082    // Put SV in a virtual register to make it available from the new blocks.
2083    ExportFromCurrentBlock(SV);
2084  }
2085
2086  // Similar to the optimization above, if the Value being switched on is
2087  // known to be less than the Constant CR.LT, and the current Case Value
2088  // is CR.LT - 1, then we can branch directly to the target block for
2089  // the current Case Value, rather than emitting a RHS leaf node for it.
2090  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
2091      cast<ConstantInt>(RHSR.first->Low)->getValue() ==
2092      (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
2093    FalseBB = RHSR.first->BB;
2094  } else {
2095    FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2096    CurMF->insert(BBI, FalseBB);
2097    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
2098
2099    // Put SV in a virtual register to make it available from the new blocks.
2100    ExportFromCurrentBlock(SV);
2101  }
2102
2103  // Create a CaseBlock record representing a conditional branch to
2104  // the LHS node if the value being switched on SV is less than C.
2105  // Otherwise, branch to LHS.
2106  CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
2107
2108  if (CR.CaseBB == SwitchBB)
2109    visitSwitchCase(CB, SwitchBB);
2110  else
2111    SwitchCases.push_back(CB);
2112
2113  return true;
2114}
2115
2116/// handleBitTestsSwitchCase - if current case range has few destination and
2117/// range span less, than machine word bitwidth, encode case range into series
2118/// of masks and emit bit tests with these masks.
2119bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
2120                                                   CaseRecVector& WorkList,
2121                                                   const Value* SV,
2122                                                   MachineBasicBlock* Default,
2123                                                   MachineBasicBlock *SwitchBB){
2124  EVT PTy = TLI.getPointerTy();
2125  unsigned IntPtrBits = PTy.getSizeInBits();
2126
2127  Case& FrontCase = *CR.Range.first;
2128  Case& BackCase  = *(CR.Range.second-1);
2129
2130  // Get the MachineFunction which holds the current MBB.  This is used when
2131  // inserting any additional MBBs necessary to represent the switch.
2132  MachineFunction *CurMF = FuncInfo.MF;
2133
2134  // If target does not have legal shift left, do not emit bit tests at all.
2135  if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
2136    return false;
2137
2138  size_t numCmps = 0;
2139  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2140       I!=E; ++I) {
2141    // Single case counts one, case range - two.
2142    numCmps += (I->Low == I->High ? 1 : 2);
2143  }
2144
2145  // Count unique destinations
2146  SmallSet<MachineBasicBlock*, 4> Dests;
2147  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2148    Dests.insert(I->BB);
2149    if (Dests.size() > 3)
2150      // Don't bother the code below, if there are too much unique destinations
2151      return false;
2152  }
2153  DEBUG(dbgs() << "Total number of unique destinations: "
2154        << Dests.size() << '\n'
2155        << "Total number of comparisons: " << numCmps << '\n');
2156
2157  // Compute span of values.
2158  const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
2159  const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
2160  APInt cmpRange = maxValue - minValue;
2161
2162  DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
2163               << "Low bound: " << minValue << '\n'
2164               << "High bound: " << maxValue << '\n');
2165
2166  if (cmpRange.uge(IntPtrBits) ||
2167      (!(Dests.size() == 1 && numCmps >= 3) &&
2168       !(Dests.size() == 2 && numCmps >= 5) &&
2169       !(Dests.size() >= 3 && numCmps >= 6)))
2170    return false;
2171
2172  DEBUG(dbgs() << "Emitting bit tests\n");
2173  APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
2174
2175  // Optimize the case where all the case values fit in a
2176  // word without having to subtract minValue. In this case,
2177  // we can optimize away the subtraction.
2178  if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) {
2179    cmpRange = maxValue;
2180  } else {
2181    lowBound = minValue;
2182  }
2183
2184  CaseBitsVector CasesBits;
2185  unsigned i, count = 0;
2186
2187  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2188    MachineBasicBlock* Dest = I->BB;
2189    for (i = 0; i < count; ++i)
2190      if (Dest == CasesBits[i].BB)
2191        break;
2192
2193    if (i == count) {
2194      assert((count < 3) && "Too much destinations to test!");
2195      CasesBits.push_back(CaseBits(0, Dest, 0));
2196      count++;
2197    }
2198
2199    const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
2200    const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
2201
2202    uint64_t lo = (lowValue - lowBound).getZExtValue();
2203    uint64_t hi = (highValue - lowBound).getZExtValue();
2204
2205    for (uint64_t j = lo; j <= hi; j++) {
2206      CasesBits[i].Mask |=  1ULL << j;
2207      CasesBits[i].Bits++;
2208    }
2209
2210  }
2211  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2212
2213  BitTestInfo BTC;
2214
2215  // Figure out which block is immediately after the current one.
2216  MachineFunction::iterator BBI = CR.CaseBB;
2217  ++BBI;
2218
2219  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2220
2221  DEBUG(dbgs() << "Cases:\n");
2222  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2223    DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
2224                 << ", Bits: " << CasesBits[i].Bits
2225                 << ", BB: " << CasesBits[i].BB << '\n');
2226
2227    MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2228    CurMF->insert(BBI, CaseBB);
2229    BTC.push_back(BitTestCase(CasesBits[i].Mask,
2230                              CaseBB,
2231                              CasesBits[i].BB));
2232
2233    // Put SV in a virtual register to make it available from the new blocks.
2234    ExportFromCurrentBlock(SV);
2235  }
2236
2237  BitTestBlock BTB(lowBound, cmpRange, SV,
2238                   -1U, MVT::Other, (CR.CaseBB == SwitchBB),
2239                   CR.CaseBB, Default, BTC);
2240
2241  if (CR.CaseBB == SwitchBB)
2242    visitBitTestHeader(BTB, SwitchBB);
2243
2244  BitTestCases.push_back(BTB);
2245
2246  return true;
2247}
2248
2249/// Clusterify - Transform simple list of Cases into list of CaseRange's
2250size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
2251                                       const SwitchInst& SI) {
2252  size_t numCmps = 0;
2253
2254  // Start with "simple" cases
2255  for (size_t i = 1; i < SI.getNumSuccessors(); ++i) {
2256    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
2257    Cases.push_back(Case(SI.getSuccessorValue(i),
2258                         SI.getSuccessorValue(i),
2259                         SMBB));
2260  }
2261  std::sort(Cases.begin(), Cases.end(), CaseCmp());
2262
2263  // Merge case into clusters
2264  if (Cases.size() >= 2)
2265    // Must recompute end() each iteration because it may be
2266    // invalidated by erase if we hold on to it
2267    for (CaseItr I = Cases.begin(), J = llvm::next(Cases.begin());
2268         J != Cases.end(); ) {
2269      const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
2270      const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
2271      MachineBasicBlock* nextBB = J->BB;
2272      MachineBasicBlock* currentBB = I->BB;
2273
2274      // If the two neighboring cases go to the same destination, merge them
2275      // into a single case.
2276      if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
2277        I->High = J->High;
2278        J = Cases.erase(J);
2279      } else {
2280        I = J++;
2281      }
2282    }
2283
2284  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
2285    if (I->Low != I->High)
2286      // A range counts double, since it requires two compares.
2287      ++numCmps;
2288  }
2289
2290  return numCmps;
2291}
2292
2293void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2294                                           MachineBasicBlock *Last) {
2295  // Update JTCases.
2296  for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2297    if (JTCases[i].first.HeaderBB == First)
2298      JTCases[i].first.HeaderBB = Last;
2299
2300  // Update BitTestCases.
2301  for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2302    if (BitTestCases[i].Parent == First)
2303      BitTestCases[i].Parent = Last;
2304}
2305
2306void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
2307  MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
2308
2309  // Figure out which block is immediately after the current one.
2310  MachineBasicBlock *NextBlock = 0;
2311  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2312
2313  // If there is only the default destination, branch to it if it is not the
2314  // next basic block.  Otherwise, just fall through.
2315  if (SI.getNumOperands() == 2) {
2316    // Update machine-CFG edges.
2317
2318    // If this is not a fall-through branch, emit the branch.
2319    SwitchMBB->addSuccessor(Default);
2320    if (Default != NextBlock)
2321      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
2322                              MVT::Other, getControlRoot(),
2323                              DAG.getBasicBlock(Default)));
2324
2325    return;
2326  }
2327
2328  // If there are any non-default case statements, create a vector of Cases
2329  // representing each one, and sort the vector so that we can efficiently
2330  // create a binary search tree from them.
2331  CaseVector Cases;
2332  size_t numCmps = Clusterify(Cases, SI);
2333  DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2334               << ". Total compares: " << numCmps << '\n');
2335  numCmps = 0;
2336
2337  // Get the Value to be switched on and default basic blocks, which will be
2338  // inserted into CaseBlock records, representing basic blocks in the binary
2339  // search tree.
2340  const Value *SV = SI.getOperand(0);
2341
2342  // Push the initial CaseRec onto the worklist
2343  CaseRecVector WorkList;
2344  WorkList.push_back(CaseRec(SwitchMBB,0,0,
2345                             CaseRange(Cases.begin(),Cases.end())));
2346
2347  while (!WorkList.empty()) {
2348    // Grab a record representing a case range to process off the worklist
2349    CaseRec CR = WorkList.back();
2350    WorkList.pop_back();
2351
2352    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2353      continue;
2354
2355    // If the range has few cases (two or less) emit a series of specific
2356    // tests.
2357    if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
2358      continue;
2359
2360    // If the switch has more than 5 blocks, and at least 40% dense, and the
2361    // target supports indirect branches, then emit a jump table rather than
2362    // lowering the switch to a binary tree of conditional branches.
2363    if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2364      continue;
2365
2366    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2367    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2368    handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
2369  }
2370}
2371
2372void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2373  MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2374
2375  // Update machine-CFG edges with unique successors.
2376  SmallVector<BasicBlock*, 32> succs;
2377  succs.reserve(I.getNumSuccessors());
2378  for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i)
2379    succs.push_back(I.getSuccessor(i));
2380  array_pod_sort(succs.begin(), succs.end());
2381  succs.erase(std::unique(succs.begin(), succs.end()), succs.end());
2382  for (unsigned i = 0, e = succs.size(); i != e; ++i)
2383    IndirectBrMBB->addSuccessor(FuncInfo.MBBMap[succs[i]]);
2384
2385  DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(),
2386                          MVT::Other, getControlRoot(),
2387                          getValue(I.getAddress())));
2388}
2389
2390void SelectionDAGBuilder::visitFSub(const User &I) {
2391  // -0.0 - X --> fneg
2392  const Type *Ty = I.getType();
2393  if (isa<Constant>(I.getOperand(0)) &&
2394      I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2395    SDValue Op2 = getValue(I.getOperand(1));
2396    setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2397                             Op2.getValueType(), Op2));
2398    return;
2399  }
2400
2401  visitBinary(I, ISD::FSUB);
2402}
2403
2404void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2405  SDValue Op1 = getValue(I.getOperand(0));
2406  SDValue Op2 = getValue(I.getOperand(1));
2407  setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(),
2408                           Op1.getValueType(), Op1, Op2));
2409}
2410
2411void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2412  SDValue Op1 = getValue(I.getOperand(0));
2413  SDValue Op2 = getValue(I.getOperand(1));
2414
2415  MVT ShiftTy = TLI.getShiftAmountTy();
2416
2417  // Coerce the shift amount to the right type if we can.
2418  if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2419    unsigned ShiftSize = ShiftTy.getSizeInBits();
2420    unsigned Op2Size = Op2.getValueType().getSizeInBits();
2421    DebugLoc DL = getCurDebugLoc();
2422
2423    // If the operand is smaller than the shift count type, promote it.
2424    if (ShiftSize > Op2Size)
2425      Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2426
2427    // If the operand is larger than the shift count type but the shift
2428    // count type has enough bits to represent any shift value, truncate
2429    // it now. This is a common case and it exposes the truncate to
2430    // optimization early.
2431    else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2432      Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2433    // Otherwise we'll need to temporarily settle for some other convenient
2434    // type.  Type legalization will make adjustments once the shiftee is split.
2435    else
2436      Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2437  }
2438
2439  setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(),
2440                           Op1.getValueType(), Op1, Op2));
2441}
2442
2443void SelectionDAGBuilder::visitICmp(const User &I) {
2444  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2445  if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2446    predicate = IC->getPredicate();
2447  else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2448    predicate = ICmpInst::Predicate(IC->getPredicate());
2449  SDValue Op1 = getValue(I.getOperand(0));
2450  SDValue Op2 = getValue(I.getOperand(1));
2451  ISD::CondCode Opcode = getICmpCondCode(predicate);
2452
2453  EVT DestVT = TLI.getValueType(I.getType());
2454  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode));
2455}
2456
2457void SelectionDAGBuilder::visitFCmp(const User &I) {
2458  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2459  if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2460    predicate = FC->getPredicate();
2461  else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2462    predicate = FCmpInst::Predicate(FC->getPredicate());
2463  SDValue Op1 = getValue(I.getOperand(0));
2464  SDValue Op2 = getValue(I.getOperand(1));
2465  ISD::CondCode Condition = getFCmpCondCode(predicate);
2466  EVT DestVT = TLI.getValueType(I.getType());
2467  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition));
2468}
2469
2470void SelectionDAGBuilder::visitSelect(const User &I) {
2471  SmallVector<EVT, 4> ValueVTs;
2472  ComputeValueVTs(TLI, I.getType(), ValueVTs);
2473  unsigned NumValues = ValueVTs.size();
2474  if (NumValues == 0) return;
2475
2476  SmallVector<SDValue, 4> Values(NumValues);
2477  SDValue Cond     = getValue(I.getOperand(0));
2478  SDValue TrueVal  = getValue(I.getOperand(1));
2479  SDValue FalseVal = getValue(I.getOperand(2));
2480
2481  for (unsigned i = 0; i != NumValues; ++i)
2482    Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(),
2483                          TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2484                            Cond,
2485                            SDValue(TrueVal.getNode(),
2486                                    TrueVal.getResNo() + i),
2487                            SDValue(FalseVal.getNode(),
2488                                    FalseVal.getResNo() + i));
2489
2490  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2491                           DAG.getVTList(&ValueVTs[0], NumValues),
2492                           &Values[0], NumValues));
2493}
2494
2495void SelectionDAGBuilder::visitTrunc(const User &I) {
2496  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2497  SDValue N = getValue(I.getOperand(0));
2498  EVT DestVT = TLI.getValueType(I.getType());
2499  setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N));
2500}
2501
2502void SelectionDAGBuilder::visitZExt(const User &I) {
2503  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2504  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2505  SDValue N = getValue(I.getOperand(0));
2506  EVT DestVT = TLI.getValueType(I.getType());
2507  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N));
2508}
2509
2510void SelectionDAGBuilder::visitSExt(const User &I) {
2511  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2512  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2513  SDValue N = getValue(I.getOperand(0));
2514  EVT DestVT = TLI.getValueType(I.getType());
2515  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N));
2516}
2517
2518void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2519  // FPTrunc is never a no-op cast, no need to check
2520  SDValue N = getValue(I.getOperand(0));
2521  EVT DestVT = TLI.getValueType(I.getType());
2522  setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(),
2523                           DestVT, N, DAG.getIntPtrConstant(0)));
2524}
2525
2526void SelectionDAGBuilder::visitFPExt(const User &I){
2527  // FPTrunc is never a no-op cast, no need to check
2528  SDValue N = getValue(I.getOperand(0));
2529  EVT DestVT = TLI.getValueType(I.getType());
2530  setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N));
2531}
2532
2533void SelectionDAGBuilder::visitFPToUI(const User &I) {
2534  // FPToUI is never a no-op cast, no need to check
2535  SDValue N = getValue(I.getOperand(0));
2536  EVT DestVT = TLI.getValueType(I.getType());
2537  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N));
2538}
2539
2540void SelectionDAGBuilder::visitFPToSI(const User &I) {
2541  // FPToSI is never a no-op cast, no need to check
2542  SDValue N = getValue(I.getOperand(0));
2543  EVT DestVT = TLI.getValueType(I.getType());
2544  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N));
2545}
2546
2547void SelectionDAGBuilder::visitUIToFP(const User &I) {
2548  // UIToFP is never a no-op cast, no need to check
2549  SDValue N = getValue(I.getOperand(0));
2550  EVT DestVT = TLI.getValueType(I.getType());
2551  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N));
2552}
2553
2554void SelectionDAGBuilder::visitSIToFP(const User &I){
2555  // SIToFP is never a no-op cast, no need to check
2556  SDValue N = getValue(I.getOperand(0));
2557  EVT DestVT = TLI.getValueType(I.getType());
2558  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N));
2559}
2560
2561void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2562  // What to do depends on the size of the integer and the size of the pointer.
2563  // We can either truncate, zero extend, or no-op, accordingly.
2564  SDValue N = getValue(I.getOperand(0));
2565  EVT DestVT = TLI.getValueType(I.getType());
2566  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2567}
2568
2569void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2570  // What to do depends on the size of the integer and the size of the pointer.
2571  // We can either truncate, zero extend, or no-op, accordingly.
2572  SDValue N = getValue(I.getOperand(0));
2573  EVT DestVT = TLI.getValueType(I.getType());
2574  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2575}
2576
2577void SelectionDAGBuilder::visitBitCast(const User &I) {
2578  SDValue N = getValue(I.getOperand(0));
2579  EVT DestVT = TLI.getValueType(I.getType());
2580
2581  // BitCast assures us that source and destination are the same size so this is
2582  // either a BITCAST or a no-op.
2583  if (DestVT != N.getValueType())
2584    setValue(&I, DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
2585                             DestVT, N)); // convert types.
2586  else
2587    setValue(&I, N);            // noop cast.
2588}
2589
2590void SelectionDAGBuilder::visitInsertElement(const User &I) {
2591  SDValue InVec = getValue(I.getOperand(0));
2592  SDValue InVal = getValue(I.getOperand(1));
2593  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2594                              TLI.getPointerTy(),
2595                              getValue(I.getOperand(2)));
2596  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(),
2597                           TLI.getValueType(I.getType()),
2598                           InVec, InVal, InIdx));
2599}
2600
2601void SelectionDAGBuilder::visitExtractElement(const User &I) {
2602  SDValue InVec = getValue(I.getOperand(0));
2603  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2604                              TLI.getPointerTy(),
2605                              getValue(I.getOperand(1)));
2606  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2607                           TLI.getValueType(I.getType()), InVec, InIdx));
2608}
2609
2610// Utility for visitShuffleVector - Returns true if the mask is mask starting
2611// from SIndx and increasing to the element length (undefs are allowed).
2612static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) {
2613  unsigned MaskNumElts = Mask.size();
2614  for (unsigned i = 0; i != MaskNumElts; ++i)
2615    if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx)))
2616      return false;
2617  return true;
2618}
2619
2620void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2621  SmallVector<int, 8> Mask;
2622  SDValue Src1 = getValue(I.getOperand(0));
2623  SDValue Src2 = getValue(I.getOperand(1));
2624
2625  // Convert the ConstantVector mask operand into an array of ints, with -1
2626  // representing undef values.
2627  SmallVector<Constant*, 8> MaskElts;
2628  cast<Constant>(I.getOperand(2))->getVectorElements(MaskElts);
2629  unsigned MaskNumElts = MaskElts.size();
2630  for (unsigned i = 0; i != MaskNumElts; ++i) {
2631    if (isa<UndefValue>(MaskElts[i]))
2632      Mask.push_back(-1);
2633    else
2634      Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue());
2635  }
2636
2637  EVT VT = TLI.getValueType(I.getType());
2638  EVT SrcVT = Src1.getValueType();
2639  unsigned SrcNumElts = SrcVT.getVectorNumElements();
2640
2641  if (SrcNumElts == MaskNumElts) {
2642    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2643                                      &Mask[0]));
2644    return;
2645  }
2646
2647  // Normalize the shuffle vector since mask and vector length don't match.
2648  if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2649    // Mask is longer than the source vectors and is a multiple of the source
2650    // vectors.  We can use concatenate vector to make the mask and vectors
2651    // lengths match.
2652    if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) {
2653      // The shuffle is concatenating two vectors together.
2654      setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2655                               VT, Src1, Src2));
2656      return;
2657    }
2658
2659    // Pad both vectors with undefs to make them the same length as the mask.
2660    unsigned NumConcat = MaskNumElts / SrcNumElts;
2661    bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2662    bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2663    SDValue UndefVal = DAG.getUNDEF(SrcVT);
2664
2665    SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2666    SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2667    MOps1[0] = Src1;
2668    MOps2[0] = Src2;
2669
2670    Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2671                                                  getCurDebugLoc(), VT,
2672                                                  &MOps1[0], NumConcat);
2673    Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2674                                                  getCurDebugLoc(), VT,
2675                                                  &MOps2[0], NumConcat);
2676
2677    // Readjust mask for new input vector length.
2678    SmallVector<int, 8> MappedOps;
2679    for (unsigned i = 0; i != MaskNumElts; ++i) {
2680      int Idx = Mask[i];
2681      if (Idx < (int)SrcNumElts)
2682        MappedOps.push_back(Idx);
2683      else
2684        MappedOps.push_back(Idx + MaskNumElts - SrcNumElts);
2685    }
2686
2687    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2688                                      &MappedOps[0]));
2689    return;
2690  }
2691
2692  if (SrcNumElts > MaskNumElts) {
2693    // Analyze the access pattern of the vector to see if we can extract
2694    // two subvectors and do the shuffle. The analysis is done by calculating
2695    // the range of elements the mask access on both vectors.
2696    int MinRange[2] = { SrcNumElts+1, SrcNumElts+1};
2697    int MaxRange[2] = {-1, -1};
2698
2699    for (unsigned i = 0; i != MaskNumElts; ++i) {
2700      int Idx = Mask[i];
2701      int Input = 0;
2702      if (Idx < 0)
2703        continue;
2704
2705      if (Idx >= (int)SrcNumElts) {
2706        Input = 1;
2707        Idx -= SrcNumElts;
2708      }
2709      if (Idx > MaxRange[Input])
2710        MaxRange[Input] = Idx;
2711      if (Idx < MinRange[Input])
2712        MinRange[Input] = Idx;
2713    }
2714
2715    // Check if the access is smaller than the vector size and can we find
2716    // a reasonable extract index.
2717    int RangeUse[2] = { 2, 2 };  // 0 = Unused, 1 = Extract, 2 = Can not
2718                                 // Extract.
2719    int StartIdx[2];  // StartIdx to extract from
2720    for (int Input=0; Input < 2; ++Input) {
2721      if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) {
2722        RangeUse[Input] = 0; // Unused
2723        StartIdx[Input] = 0;
2724      } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) {
2725        // Fits within range but we should see if we can find a good
2726        // start index that is a multiple of the mask length.
2727        if (MaxRange[Input] < (int)MaskNumElts) {
2728          RangeUse[Input] = 1; // Extract from beginning of the vector
2729          StartIdx[Input] = 0;
2730        } else {
2731          StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2732          if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2733              StartIdx[Input] + MaskNumElts <= SrcNumElts)
2734            RangeUse[Input] = 1; // Extract from a multiple of the mask length.
2735        }
2736      }
2737    }
2738
2739    if (RangeUse[0] == 0 && RangeUse[1] == 0) {
2740      setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
2741      return;
2742    }
2743    else if (RangeUse[0] < 2 && RangeUse[1] < 2) {
2744      // Extract appropriate subvector and generate a vector shuffle
2745      for (int Input=0; Input < 2; ++Input) {
2746        SDValue &Src = Input == 0 ? Src1 : Src2;
2747        if (RangeUse[Input] == 0)
2748          Src = DAG.getUNDEF(VT);
2749        else
2750          Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT,
2751                            Src, DAG.getIntPtrConstant(StartIdx[Input]));
2752      }
2753
2754      // Calculate new mask.
2755      SmallVector<int, 8> MappedOps;
2756      for (unsigned i = 0; i != MaskNumElts; ++i) {
2757        int Idx = Mask[i];
2758        if (Idx < 0)
2759          MappedOps.push_back(Idx);
2760        else if (Idx < (int)SrcNumElts)
2761          MappedOps.push_back(Idx - StartIdx[0]);
2762        else
2763          MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts);
2764      }
2765
2766      setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2767                                        &MappedOps[0]));
2768      return;
2769    }
2770  }
2771
2772  // We can't use either concat vectors or extract subvectors so fall back to
2773  // replacing the shuffle with extract and build vector.
2774  // to insert and build vector.
2775  EVT EltVT = VT.getVectorElementType();
2776  EVT PtrVT = TLI.getPointerTy();
2777  SmallVector<SDValue,8> Ops;
2778  for (unsigned i = 0; i != MaskNumElts; ++i) {
2779    if (Mask[i] < 0) {
2780      Ops.push_back(DAG.getUNDEF(EltVT));
2781    } else {
2782      int Idx = Mask[i];
2783      SDValue Res;
2784
2785      if (Idx < (int)SrcNumElts)
2786        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2787                          EltVT, Src1, DAG.getConstant(Idx, PtrVT));
2788      else
2789        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2790                          EltVT, Src2,
2791                          DAG.getConstant(Idx - SrcNumElts, PtrVT));
2792
2793      Ops.push_back(Res);
2794    }
2795  }
2796
2797  setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
2798                           VT, &Ops[0], Ops.size()));
2799}
2800
2801void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
2802  const Value *Op0 = I.getOperand(0);
2803  const Value *Op1 = I.getOperand(1);
2804  const Type *AggTy = I.getType();
2805  const Type *ValTy = Op1->getType();
2806  bool IntoUndef = isa<UndefValue>(Op0);
2807  bool FromUndef = isa<UndefValue>(Op1);
2808
2809  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.idx_begin(), I.idx_end());
2810
2811  SmallVector<EVT, 4> AggValueVTs;
2812  ComputeValueVTs(TLI, AggTy, AggValueVTs);
2813  SmallVector<EVT, 4> ValValueVTs;
2814  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2815
2816  unsigned NumAggValues = AggValueVTs.size();
2817  unsigned NumValValues = ValValueVTs.size();
2818  SmallVector<SDValue, 4> Values(NumAggValues);
2819
2820  SDValue Agg = getValue(Op0);
2821  SDValue Val = getValue(Op1);
2822  unsigned i = 0;
2823  // Copy the beginning value(s) from the original aggregate.
2824  for (; i != LinearIndex; ++i)
2825    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2826                SDValue(Agg.getNode(), Agg.getResNo() + i);
2827  // Copy values from the inserted value(s).
2828  for (; i != LinearIndex + NumValValues; ++i)
2829    Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2830                SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
2831  // Copy remaining value(s) from the original aggregate.
2832  for (; i != NumAggValues; ++i)
2833    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2834                SDValue(Agg.getNode(), Agg.getResNo() + i);
2835
2836  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2837                           DAG.getVTList(&AggValueVTs[0], NumAggValues),
2838                           &Values[0], NumAggValues));
2839}
2840
2841void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
2842  const Value *Op0 = I.getOperand(0);
2843  const Type *AggTy = Op0->getType();
2844  const Type *ValTy = I.getType();
2845  bool OutOfUndef = isa<UndefValue>(Op0);
2846
2847  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.idx_begin(), I.idx_end());
2848
2849  SmallVector<EVT, 4> ValValueVTs;
2850  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2851
2852  unsigned NumValValues = ValValueVTs.size();
2853  SmallVector<SDValue, 4> Values(NumValValues);
2854
2855  SDValue Agg = getValue(Op0);
2856  // Copy out the selected value(s).
2857  for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
2858    Values[i - LinearIndex] =
2859      OutOfUndef ?
2860        DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
2861        SDValue(Agg.getNode(), Agg.getResNo() + i);
2862
2863  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2864                           DAG.getVTList(&ValValueVTs[0], NumValValues),
2865                           &Values[0], NumValValues));
2866}
2867
2868void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
2869  SDValue N = getValue(I.getOperand(0));
2870  const Type *Ty = I.getOperand(0)->getType();
2871
2872  for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
2873       OI != E; ++OI) {
2874    const Value *Idx = *OI;
2875    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2876      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2877      if (Field) {
2878        // N = N + Offset
2879        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
2880        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2881                        DAG.getIntPtrConstant(Offset));
2882      }
2883
2884      Ty = StTy->getElementType(Field);
2885    } else {
2886      Ty = cast<SequentialType>(Ty)->getElementType();
2887
2888      // If this is a constant subscript, handle it quickly.
2889      if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2890        if (CI->isZero()) continue;
2891        uint64_t Offs =
2892            TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
2893        SDValue OffsVal;
2894        EVT PTy = TLI.getPointerTy();
2895        unsigned PtrBits = PTy.getSizeInBits();
2896        if (PtrBits < 64)
2897          OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2898                                TLI.getPointerTy(),
2899                                DAG.getConstant(Offs, MVT::i64));
2900        else
2901          OffsVal = DAG.getIntPtrConstant(Offs);
2902
2903        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2904                        OffsVal);
2905        continue;
2906      }
2907
2908      // N = N + Idx * ElementSize;
2909      APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
2910                                TD->getTypeAllocSize(Ty));
2911      SDValue IdxN = getValue(Idx);
2912
2913      // If the index is smaller or larger than intptr_t, truncate or extend
2914      // it.
2915      IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType());
2916
2917      // If this is a multiply by a power of two, turn it into a shl
2918      // immediately.  This is a very common case.
2919      if (ElementSize != 1) {
2920        if (ElementSize.isPowerOf2()) {
2921          unsigned Amt = ElementSize.logBase2();
2922          IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(),
2923                             N.getValueType(), IdxN,
2924                             DAG.getConstant(Amt, TLI.getPointerTy()));
2925        } else {
2926          SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy());
2927          IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(),
2928                             N.getValueType(), IdxN, Scale);
2929        }
2930      }
2931
2932      N = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2933                      N.getValueType(), N, IdxN);
2934    }
2935  }
2936
2937  setValue(&I, N);
2938}
2939
2940void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
2941  // If this is a fixed sized alloca in the entry block of the function,
2942  // allocate it statically on the stack.
2943  if (FuncInfo.StaticAllocaMap.count(&I))
2944    return;   // getValue will auto-populate this.
2945
2946  const Type *Ty = I.getAllocatedType();
2947  uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
2948  unsigned Align =
2949    std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
2950             I.getAlignment());
2951
2952  SDValue AllocSize = getValue(I.getArraySize());
2953
2954  EVT IntPtr = TLI.getPointerTy();
2955  if (AllocSize.getValueType() != IntPtr)
2956    AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr);
2957
2958  AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr,
2959                          AllocSize,
2960                          DAG.getConstant(TySize, IntPtr));
2961
2962  // Handle alignment.  If the requested alignment is less than or equal to
2963  // the stack alignment, ignore it.  If the size is greater than or equal to
2964  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
2965  unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
2966  if (Align <= StackAlign)
2967    Align = 0;
2968
2969  // Round the size of the allocation up to the stack alignment size
2970  // by add SA-1 to the size.
2971  AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2972                          AllocSize.getValueType(), AllocSize,
2973                          DAG.getIntPtrConstant(StackAlign-1));
2974
2975  // Mask out the low bits for alignment purposes.
2976  AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(),
2977                          AllocSize.getValueType(), AllocSize,
2978                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
2979
2980  SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
2981  SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
2982  SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(),
2983                            VTs, Ops, 3);
2984  setValue(&I, DSA);
2985  DAG.setRoot(DSA.getValue(1));
2986
2987  // Inform the Frame Information that we have just allocated a variable-sized
2988  // object.
2989  FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1);
2990}
2991
2992void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
2993  const Value *SV = I.getOperand(0);
2994  SDValue Ptr = getValue(SV);
2995
2996  const Type *Ty = I.getType();
2997
2998  bool isVolatile = I.isVolatile();
2999  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3000  unsigned Alignment = I.getAlignment();
3001  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3002
3003  SmallVector<EVT, 4> ValueVTs;
3004  SmallVector<uint64_t, 4> Offsets;
3005  ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
3006  unsigned NumValues = ValueVTs.size();
3007  if (NumValues == 0)
3008    return;
3009
3010  SDValue Root;
3011  bool ConstantMemory = false;
3012  if (I.isVolatile() || NumValues > MaxParallelChains)
3013    // Serialize volatile loads with other side effects.
3014    Root = getRoot();
3015  else if (AA->pointsToConstantMemory(
3016             AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) {
3017    // Do not serialize (non-volatile) loads of constant memory with anything.
3018    Root = DAG.getEntryNode();
3019    ConstantMemory = true;
3020  } else {
3021    // Do not serialize non-volatile loads against each other.
3022    Root = DAG.getRoot();
3023  }
3024
3025  SmallVector<SDValue, 4> Values(NumValues);
3026  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3027                                          NumValues));
3028  EVT PtrVT = Ptr.getValueType();
3029  unsigned ChainI = 0;
3030  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3031    // Serializing loads here may result in excessive register pressure, and
3032    // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3033    // could recover a bit by hoisting nodes upward in the chain by recognizing
3034    // they are side-effect free or do not alias. The optimizer should really
3035    // avoid this case by converting large object/array copies to llvm.memcpy
3036    // (MaxParallelChains should always remain as failsafe).
3037    if (ChainI == MaxParallelChains) {
3038      assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3039      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3040                                  MVT::Other, &Chains[0], ChainI);
3041      Root = Chain;
3042      ChainI = 0;
3043    }
3044    SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3045                            PtrVT, Ptr,
3046                            DAG.getConstant(Offsets[i], PtrVT));
3047    SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root,
3048                            A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
3049                            isNonTemporal, Alignment, TBAAInfo);
3050
3051    Values[i] = L;
3052    Chains[ChainI] = L.getValue(1);
3053  }
3054
3055  if (!ConstantMemory) {
3056    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3057                                MVT::Other, &Chains[0], ChainI);
3058    if (isVolatile)
3059      DAG.setRoot(Chain);
3060    else
3061      PendingLoads.push_back(Chain);
3062  }
3063
3064  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3065                           DAG.getVTList(&ValueVTs[0], NumValues),
3066                           &Values[0], NumValues));
3067}
3068
3069void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3070  const Value *SrcV = I.getOperand(0);
3071  const Value *PtrV = I.getOperand(1);
3072
3073  SmallVector<EVT, 4> ValueVTs;
3074  SmallVector<uint64_t, 4> Offsets;
3075  ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
3076  unsigned NumValues = ValueVTs.size();
3077  if (NumValues == 0)
3078    return;
3079
3080  // Get the lowered operands. Note that we do this after
3081  // checking if NumResults is zero, because with zero results
3082  // the operands won't have values in the map.
3083  SDValue Src = getValue(SrcV);
3084  SDValue Ptr = getValue(PtrV);
3085
3086  SDValue Root = getRoot();
3087  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3088                                          NumValues));
3089  EVT PtrVT = Ptr.getValueType();
3090  bool isVolatile = I.isVolatile();
3091  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3092  unsigned Alignment = I.getAlignment();
3093  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3094
3095  unsigned ChainI = 0;
3096  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3097    // See visitLoad comments.
3098    if (ChainI == MaxParallelChains) {
3099      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3100                                  MVT::Other, &Chains[0], ChainI);
3101      Root = Chain;
3102      ChainI = 0;
3103    }
3104    SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr,
3105                              DAG.getConstant(Offsets[i], PtrVT));
3106    SDValue St = DAG.getStore(Root, getCurDebugLoc(),
3107                              SDValue(Src.getNode(), Src.getResNo() + i),
3108                              Add, MachinePointerInfo(PtrV, Offsets[i]),
3109                              isVolatile, isNonTemporal, Alignment, TBAAInfo);
3110    Chains[ChainI] = St;
3111  }
3112
3113  SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3114                                  MVT::Other, &Chains[0], ChainI);
3115  ++SDNodeOrder;
3116  AssignOrderingToNode(StoreNode.getNode());
3117  DAG.setRoot(StoreNode);
3118}
3119
3120/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3121/// node.
3122void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3123                                               unsigned Intrinsic) {
3124  bool HasChain = !I.doesNotAccessMemory();
3125  bool OnlyLoad = HasChain && I.onlyReadsMemory();
3126
3127  // Build the operand list.
3128  SmallVector<SDValue, 8> Ops;
3129  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
3130    if (OnlyLoad) {
3131      // We don't need to serialize loads against other loads.
3132      Ops.push_back(DAG.getRoot());
3133    } else {
3134      Ops.push_back(getRoot());
3135    }
3136  }
3137
3138  // Info is set by getTgtMemInstrinsic
3139  TargetLowering::IntrinsicInfo Info;
3140  bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
3141
3142  // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3143  if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
3144      Info.opc == ISD::INTRINSIC_W_CHAIN)
3145    Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
3146
3147  // Add all operands of the call to the operand list.
3148  for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
3149    SDValue Op = getValue(I.getArgOperand(i));
3150    assert(TLI.isTypeLegal(Op.getValueType()) &&
3151           "Intrinsic uses a non-legal type?");
3152    Ops.push_back(Op);
3153  }
3154
3155  SmallVector<EVT, 4> ValueVTs;
3156  ComputeValueVTs(TLI, I.getType(), ValueVTs);
3157#ifndef NDEBUG
3158  for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) {
3159    assert(TLI.isTypeLegal(ValueVTs[Val]) &&
3160           "Intrinsic uses a non-legal type?");
3161  }
3162#endif // NDEBUG
3163
3164  if (HasChain)
3165    ValueVTs.push_back(MVT::Other);
3166
3167  SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
3168
3169  // Create the node.
3170  SDValue Result;
3171  if (IsTgtIntrinsic) {
3172    // This is target intrinsic that touches memory
3173    Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(),
3174                                     VTs, &Ops[0], Ops.size(),
3175                                     Info.memVT,
3176                                   MachinePointerInfo(Info.ptrVal, Info.offset),
3177                                     Info.align, Info.vol,
3178                                     Info.readMem, Info.writeMem);
3179  } else if (!HasChain) {
3180    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
3181                         VTs, &Ops[0], Ops.size());
3182  } else if (!I.getType()->isVoidTy()) {
3183    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
3184                         VTs, &Ops[0], Ops.size());
3185  } else {
3186    Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(),
3187                         VTs, &Ops[0], Ops.size());
3188  }
3189
3190  if (HasChain) {
3191    SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3192    if (OnlyLoad)
3193      PendingLoads.push_back(Chain);
3194    else
3195      DAG.setRoot(Chain);
3196  }
3197
3198  if (!I.getType()->isVoidTy()) {
3199    if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3200      EVT VT = TLI.getValueType(PTy);
3201      Result = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), VT, Result);
3202    }
3203
3204    setValue(&I, Result);
3205  }
3206}
3207
3208/// GetSignificand - Get the significand and build it into a floating-point
3209/// number with exponent of 1:
3210///
3211///   Op = (Op & 0x007fffff) | 0x3f800000;
3212///
3213/// where Op is the hexidecimal representation of floating point value.
3214static SDValue
3215GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) {
3216  SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3217                           DAG.getConstant(0x007fffff, MVT::i32));
3218  SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3219                           DAG.getConstant(0x3f800000, MVT::i32));
3220  return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
3221}
3222
3223/// GetExponent - Get the exponent:
3224///
3225///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3226///
3227/// where Op is the hexidecimal representation of floating point value.
3228static SDValue
3229GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3230            DebugLoc dl) {
3231  SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3232                           DAG.getConstant(0x7f800000, MVT::i32));
3233  SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3234                           DAG.getConstant(23, TLI.getPointerTy()));
3235  SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3236                           DAG.getConstant(127, MVT::i32));
3237  return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3238}
3239
3240/// getF32Constant - Get 32-bit floating point constant.
3241static SDValue
3242getF32Constant(SelectionDAG &DAG, unsigned Flt) {
3243  return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32);
3244}
3245
3246/// Inlined utility function to implement binary input atomic intrinsics for
3247/// visitIntrinsicCall: I is a call instruction
3248///                     Op is the associated NodeType for I
3249const char *
3250SelectionDAGBuilder::implVisitBinaryAtomic(const CallInst& I,
3251                                           ISD::NodeType Op) {
3252  SDValue Root = getRoot();
3253  SDValue L =
3254    DAG.getAtomic(Op, getCurDebugLoc(),
3255                  getValue(I.getArgOperand(1)).getValueType().getSimpleVT(),
3256                  Root,
3257                  getValue(I.getArgOperand(0)),
3258                  getValue(I.getArgOperand(1)),
3259                  I.getArgOperand(0));
3260  setValue(&I, L);
3261  DAG.setRoot(L.getValue(1));
3262  return 0;
3263}
3264
3265// implVisitAluOverflow - Lower arithmetic overflow instrinsics.
3266const char *
3267SelectionDAGBuilder::implVisitAluOverflow(const CallInst &I, ISD::NodeType Op) {
3268  SDValue Op1 = getValue(I.getArgOperand(0));
3269  SDValue Op2 = getValue(I.getArgOperand(1));
3270
3271  SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
3272  setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2));
3273  return 0;
3274}
3275
3276/// visitExp - Lower an exp intrinsic. Handles the special sequences for
3277/// limited-precision mode.
3278void
3279SelectionDAGBuilder::visitExp(const CallInst &I) {
3280  SDValue result;
3281  DebugLoc dl = getCurDebugLoc();
3282
3283  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3284      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3285    SDValue Op = getValue(I.getArgOperand(0));
3286
3287    // Put the exponent in the right bit position for later addition to the
3288    // final result:
3289    //
3290    //   #define LOG2OFe 1.4426950f
3291    //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3292    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3293                             getF32Constant(DAG, 0x3fb8aa3b));
3294    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3295
3296    //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3297    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3298    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3299
3300    //   IntegerPartOfX <<= 23;
3301    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3302                                 DAG.getConstant(23, TLI.getPointerTy()));
3303
3304    if (LimitFloatPrecision <= 6) {
3305      // For floating-point precision of 6:
3306      //
3307      //   TwoToFractionalPartOfX =
3308      //     0.997535578f +
3309      //       (0.735607626f + 0.252464424f * x) * x;
3310      //
3311      // error 0.0144103317, which is 6 bits
3312      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3313                               getF32Constant(DAG, 0x3e814304));
3314      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3315                               getF32Constant(DAG, 0x3f3c50c8));
3316      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3317      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3318                               getF32Constant(DAG, 0x3f7f5e7e));
3319      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t5);
3320
3321      // Add the exponent into the result in integer domain.
3322      SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3323                               TwoToFracPartOfX, IntegerPartOfX);
3324
3325      result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t6);
3326    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3327      // For floating-point precision of 12:
3328      //
3329      //   TwoToFractionalPartOfX =
3330      //     0.999892986f +
3331      //       (0.696457318f +
3332      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3333      //
3334      // 0.000107046256 error, which is 13 to 14 bits
3335      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3336                               getF32Constant(DAG, 0x3da235e3));
3337      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3338                               getF32Constant(DAG, 0x3e65b8f3));
3339      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3340      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3341                               getF32Constant(DAG, 0x3f324b07));
3342      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3343      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3344                               getF32Constant(DAG, 0x3f7ff8fd));
3345      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t7);
3346
3347      // Add the exponent into the result in integer domain.
3348      SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3349                               TwoToFracPartOfX, IntegerPartOfX);
3350
3351      result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t8);
3352    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3353      // For floating-point precision of 18:
3354      //
3355      //   TwoToFractionalPartOfX =
3356      //     0.999999982f +
3357      //       (0.693148872f +
3358      //         (0.240227044f +
3359      //           (0.554906021e-1f +
3360      //             (0.961591928e-2f +
3361      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3362      //
3363      // error 2.47208000*10^(-7), which is better than 18 bits
3364      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3365                               getF32Constant(DAG, 0x3924b03e));
3366      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3367                               getF32Constant(DAG, 0x3ab24b87));
3368      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3369      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3370                               getF32Constant(DAG, 0x3c1d8c17));
3371      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3372      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3373                               getF32Constant(DAG, 0x3d634a1d));
3374      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3375      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3376                               getF32Constant(DAG, 0x3e75fe14));
3377      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3378      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3379                                getF32Constant(DAG, 0x3f317234));
3380      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3381      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3382                                getF32Constant(DAG, 0x3f800000));
3383      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,
3384                                             MVT::i32, t13);
3385
3386      // Add the exponent into the result in integer domain.
3387      SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3388                                TwoToFracPartOfX, IntegerPartOfX);
3389
3390      result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t14);
3391    }
3392  } else {
3393    // No special expansion.
3394    result = DAG.getNode(ISD::FEXP, dl,
3395                         getValue(I.getArgOperand(0)).getValueType(),
3396                         getValue(I.getArgOperand(0)));
3397  }
3398
3399  setValue(&I, result);
3400}
3401
3402/// visitLog - Lower a log intrinsic. Handles the special sequences for
3403/// limited-precision mode.
3404void
3405SelectionDAGBuilder::visitLog(const CallInst &I) {
3406  SDValue result;
3407  DebugLoc dl = getCurDebugLoc();
3408
3409  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3410      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3411    SDValue Op = getValue(I.getArgOperand(0));
3412    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3413
3414    // Scale the exponent by log(2) [0.69314718f].
3415    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3416    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3417                                        getF32Constant(DAG, 0x3f317218));
3418
3419    // Get the significand and build it into a floating-point number with
3420    // exponent of 1.
3421    SDValue X = GetSignificand(DAG, Op1, dl);
3422
3423    if (LimitFloatPrecision <= 6) {
3424      // For floating-point precision of 6:
3425      //
3426      //   LogofMantissa =
3427      //     -1.1609546f +
3428      //       (1.4034025f - 0.23903021f * x) * x;
3429      //
3430      // error 0.0034276066, which is better than 8 bits
3431      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3432                               getF32Constant(DAG, 0xbe74c456));
3433      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3434                               getF32Constant(DAG, 0x3fb3a2b1));
3435      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3436      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3437                                          getF32Constant(DAG, 0x3f949a29));
3438
3439      result = DAG.getNode(ISD::FADD, dl,
3440                           MVT::f32, LogOfExponent, LogOfMantissa);
3441    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3442      // For floating-point precision of 12:
3443      //
3444      //   LogOfMantissa =
3445      //     -1.7417939f +
3446      //       (2.8212026f +
3447      //         (-1.4699568f +
3448      //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3449      //
3450      // error 0.000061011436, which is 14 bits
3451      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3452                               getF32Constant(DAG, 0xbd67b6d6));
3453      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3454                               getF32Constant(DAG, 0x3ee4f4b8));
3455      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3456      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3457                               getF32Constant(DAG, 0x3fbc278b));
3458      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3459      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3460                               getF32Constant(DAG, 0x40348e95));
3461      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3462      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3463                                          getF32Constant(DAG, 0x3fdef31a));
3464
3465      result = DAG.getNode(ISD::FADD, dl,
3466                           MVT::f32, LogOfExponent, LogOfMantissa);
3467    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3468      // For floating-point precision of 18:
3469      //
3470      //   LogOfMantissa =
3471      //     -2.1072184f +
3472      //       (4.2372794f +
3473      //         (-3.7029485f +
3474      //           (2.2781945f +
3475      //             (-0.87823314f +
3476      //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3477      //
3478      // error 0.0000023660568, which is better than 18 bits
3479      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3480                               getF32Constant(DAG, 0xbc91e5ac));
3481      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3482                               getF32Constant(DAG, 0x3e4350aa));
3483      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3484      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3485                               getF32Constant(DAG, 0x3f60d3e3));
3486      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3487      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3488                               getF32Constant(DAG, 0x4011cdf0));
3489      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3490      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3491                               getF32Constant(DAG, 0x406cfd1c));
3492      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3493      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3494                               getF32Constant(DAG, 0x408797cb));
3495      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3496      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3497                                          getF32Constant(DAG, 0x4006dcab));
3498
3499      result = DAG.getNode(ISD::FADD, dl,
3500                           MVT::f32, LogOfExponent, LogOfMantissa);
3501    }
3502  } else {
3503    // No special expansion.
3504    result = DAG.getNode(ISD::FLOG, dl,
3505                         getValue(I.getArgOperand(0)).getValueType(),
3506                         getValue(I.getArgOperand(0)));
3507  }
3508
3509  setValue(&I, result);
3510}
3511
3512/// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for
3513/// limited-precision mode.
3514void
3515SelectionDAGBuilder::visitLog2(const CallInst &I) {
3516  SDValue result;
3517  DebugLoc dl = getCurDebugLoc();
3518
3519  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3520      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3521    SDValue Op = getValue(I.getArgOperand(0));
3522    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3523
3524    // Get the exponent.
3525    SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3526
3527    // Get the significand and build it into a floating-point number with
3528    // exponent of 1.
3529    SDValue X = GetSignificand(DAG, Op1, dl);
3530
3531    // Different possible minimax approximations of significand in
3532    // floating-point for various degrees of accuracy over [1,2].
3533    if (LimitFloatPrecision <= 6) {
3534      // For floating-point precision of 6:
3535      //
3536      //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3537      //
3538      // error 0.0049451742, which is more than 7 bits
3539      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3540                               getF32Constant(DAG, 0xbeb08fe0));
3541      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3542                               getF32Constant(DAG, 0x40019463));
3543      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3544      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3545                                           getF32Constant(DAG, 0x3fd6633d));
3546
3547      result = DAG.getNode(ISD::FADD, dl,
3548                           MVT::f32, LogOfExponent, Log2ofMantissa);
3549    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3550      // For floating-point precision of 12:
3551      //
3552      //   Log2ofMantissa =
3553      //     -2.51285454f +
3554      //       (4.07009056f +
3555      //         (-2.12067489f +
3556      //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3557      //
3558      // error 0.0000876136000, which is better than 13 bits
3559      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3560                               getF32Constant(DAG, 0xbda7262e));
3561      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3562                               getF32Constant(DAG, 0x3f25280b));
3563      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3564      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3565                               getF32Constant(DAG, 0x4007b923));
3566      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3567      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3568                               getF32Constant(DAG, 0x40823e2f));
3569      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3570      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3571                                           getF32Constant(DAG, 0x4020d29c));
3572
3573      result = DAG.getNode(ISD::FADD, dl,
3574                           MVT::f32, LogOfExponent, Log2ofMantissa);
3575    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3576      // For floating-point precision of 18:
3577      //
3578      //   Log2ofMantissa =
3579      //     -3.0400495f +
3580      //       (6.1129976f +
3581      //         (-5.3420409f +
3582      //           (3.2865683f +
3583      //             (-1.2669343f +
3584      //               (0.27515199f -
3585      //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3586      //
3587      // error 0.0000018516, which is better than 18 bits
3588      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3589                               getF32Constant(DAG, 0xbcd2769e));
3590      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3591                               getF32Constant(DAG, 0x3e8ce0b9));
3592      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3593      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3594                               getF32Constant(DAG, 0x3fa22ae7));
3595      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3596      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3597                               getF32Constant(DAG, 0x40525723));
3598      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3599      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3600                               getF32Constant(DAG, 0x40aaf200));
3601      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3602      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3603                               getF32Constant(DAG, 0x40c39dad));
3604      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3605      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3606                                           getF32Constant(DAG, 0x4042902c));
3607
3608      result = DAG.getNode(ISD::FADD, dl,
3609                           MVT::f32, LogOfExponent, Log2ofMantissa);
3610    }
3611  } else {
3612    // No special expansion.
3613    result = DAG.getNode(ISD::FLOG2, dl,
3614                         getValue(I.getArgOperand(0)).getValueType(),
3615                         getValue(I.getArgOperand(0)));
3616  }
3617
3618  setValue(&I, result);
3619}
3620
3621/// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for
3622/// limited-precision mode.
3623void
3624SelectionDAGBuilder::visitLog10(const CallInst &I) {
3625  SDValue result;
3626  DebugLoc dl = getCurDebugLoc();
3627
3628  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3629      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3630    SDValue Op = getValue(I.getArgOperand(0));
3631    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3632
3633    // Scale the exponent by log10(2) [0.30102999f].
3634    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3635    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3636                                        getF32Constant(DAG, 0x3e9a209a));
3637
3638    // Get the significand and build it into a floating-point number with
3639    // exponent of 1.
3640    SDValue X = GetSignificand(DAG, Op1, dl);
3641
3642    if (LimitFloatPrecision <= 6) {
3643      // For floating-point precision of 6:
3644      //
3645      //   Log10ofMantissa =
3646      //     -0.50419619f +
3647      //       (0.60948995f - 0.10380950f * x) * x;
3648      //
3649      // error 0.0014886165, which is 6 bits
3650      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3651                               getF32Constant(DAG, 0xbdd49a13));
3652      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3653                               getF32Constant(DAG, 0x3f1c0789));
3654      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3655      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3656                                            getF32Constant(DAG, 0x3f011300));
3657
3658      result = DAG.getNode(ISD::FADD, dl,
3659                           MVT::f32, LogOfExponent, Log10ofMantissa);
3660    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3661      // For floating-point precision of 12:
3662      //
3663      //   Log10ofMantissa =
3664      //     -0.64831180f +
3665      //       (0.91751397f +
3666      //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
3667      //
3668      // error 0.00019228036, which is better than 12 bits
3669      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3670                               getF32Constant(DAG, 0x3d431f31));
3671      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3672                               getF32Constant(DAG, 0x3ea21fb2));
3673      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3674      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3675                               getF32Constant(DAG, 0x3f6ae232));
3676      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3677      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3678                                            getF32Constant(DAG, 0x3f25f7c3));
3679
3680      result = DAG.getNode(ISD::FADD, dl,
3681                           MVT::f32, LogOfExponent, Log10ofMantissa);
3682    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3683      // For floating-point precision of 18:
3684      //
3685      //   Log10ofMantissa =
3686      //     -0.84299375f +
3687      //       (1.5327582f +
3688      //         (-1.0688956f +
3689      //           (0.49102474f +
3690      //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
3691      //
3692      // error 0.0000037995730, which is better than 18 bits
3693      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3694                               getF32Constant(DAG, 0x3c5d51ce));
3695      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3696                               getF32Constant(DAG, 0x3e00685a));
3697      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3698      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3699                               getF32Constant(DAG, 0x3efb6798));
3700      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3701      SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3702                               getF32Constant(DAG, 0x3f88d192));
3703      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3704      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3705                               getF32Constant(DAG, 0x3fc4316c));
3706      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3707      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
3708                                            getF32Constant(DAG, 0x3f57ce70));
3709
3710      result = DAG.getNode(ISD::FADD, dl,
3711                           MVT::f32, LogOfExponent, Log10ofMantissa);
3712    }
3713  } else {
3714    // No special expansion.
3715    result = DAG.getNode(ISD::FLOG10, dl,
3716                         getValue(I.getArgOperand(0)).getValueType(),
3717                         getValue(I.getArgOperand(0)));
3718  }
3719
3720  setValue(&I, result);
3721}
3722
3723/// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for
3724/// limited-precision mode.
3725void
3726SelectionDAGBuilder::visitExp2(const CallInst &I) {
3727  SDValue result;
3728  DebugLoc dl = getCurDebugLoc();
3729
3730  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3731      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3732    SDValue Op = getValue(I.getArgOperand(0));
3733
3734    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
3735
3736    //   FractionalPartOfX = x - (float)IntegerPartOfX;
3737    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3738    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
3739
3740    //   IntegerPartOfX <<= 23;
3741    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3742                                 DAG.getConstant(23, TLI.getPointerTy()));
3743
3744    if (LimitFloatPrecision <= 6) {
3745      // For floating-point precision of 6:
3746      //
3747      //   TwoToFractionalPartOfX =
3748      //     0.997535578f +
3749      //       (0.735607626f + 0.252464424f * x) * x;
3750      //
3751      // error 0.0144103317, which is 6 bits
3752      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3753                               getF32Constant(DAG, 0x3e814304));
3754      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3755                               getF32Constant(DAG, 0x3f3c50c8));
3756      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3757      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3758                               getF32Constant(DAG, 0x3f7f5e7e));
3759      SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
3760      SDValue TwoToFractionalPartOfX =
3761        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3762
3763      result = DAG.getNode(ISD::BITCAST, dl,
3764                           MVT::f32, TwoToFractionalPartOfX);
3765    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3766      // For floating-point precision of 12:
3767      //
3768      //   TwoToFractionalPartOfX =
3769      //     0.999892986f +
3770      //       (0.696457318f +
3771      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3772      //
3773      // error 0.000107046256, which is 13 to 14 bits
3774      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3775                               getF32Constant(DAG, 0x3da235e3));
3776      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3777                               getF32Constant(DAG, 0x3e65b8f3));
3778      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3779      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3780                               getF32Constant(DAG, 0x3f324b07));
3781      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3782      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3783                               getF32Constant(DAG, 0x3f7ff8fd));
3784      SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
3785      SDValue TwoToFractionalPartOfX =
3786        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
3787
3788      result = DAG.getNode(ISD::BITCAST, dl,
3789                           MVT::f32, TwoToFractionalPartOfX);
3790    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3791      // For floating-point precision of 18:
3792      //
3793      //   TwoToFractionalPartOfX =
3794      //     0.999999982f +
3795      //       (0.693148872f +
3796      //         (0.240227044f +
3797      //           (0.554906021e-1f +
3798      //             (0.961591928e-2f +
3799      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3800      // error 2.47208000*10^(-7), which is better than 18 bits
3801      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3802                               getF32Constant(DAG, 0x3924b03e));
3803      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3804                               getF32Constant(DAG, 0x3ab24b87));
3805      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3806      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3807                               getF32Constant(DAG, 0x3c1d8c17));
3808      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3809      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3810                               getF32Constant(DAG, 0x3d634a1d));
3811      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3812      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3813                               getF32Constant(DAG, 0x3e75fe14));
3814      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3815      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3816                                getF32Constant(DAG, 0x3f317234));
3817      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3818      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3819                                getF32Constant(DAG, 0x3f800000));
3820      SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
3821      SDValue TwoToFractionalPartOfX =
3822        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
3823
3824      result = DAG.getNode(ISD::BITCAST, dl,
3825                           MVT::f32, TwoToFractionalPartOfX);
3826    }
3827  } else {
3828    // No special expansion.
3829    result = DAG.getNode(ISD::FEXP2, dl,
3830                         getValue(I.getArgOperand(0)).getValueType(),
3831                         getValue(I.getArgOperand(0)));
3832  }
3833
3834  setValue(&I, result);
3835}
3836
3837/// visitPow - Lower a pow intrinsic. Handles the special sequences for
3838/// limited-precision mode with x == 10.0f.
3839void
3840SelectionDAGBuilder::visitPow(const CallInst &I) {
3841  SDValue result;
3842  const Value *Val = I.getArgOperand(0);
3843  DebugLoc dl = getCurDebugLoc();
3844  bool IsExp10 = false;
3845
3846  if (getValue(Val).getValueType() == MVT::f32 &&
3847      getValue(I.getArgOperand(1)).getValueType() == MVT::f32 &&
3848      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3849    if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) {
3850      if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
3851        APFloat Ten(10.0f);
3852        IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten);
3853      }
3854    }
3855  }
3856
3857  if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3858    SDValue Op = getValue(I.getArgOperand(1));
3859
3860    // Put the exponent in the right bit position for later addition to the
3861    // final result:
3862    //
3863    //   #define LOG2OF10 3.3219281f
3864    //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
3865    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3866                             getF32Constant(DAG, 0x40549a78));
3867    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3868
3869    //   FractionalPartOfX = x - (float)IntegerPartOfX;
3870    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3871    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3872
3873    //   IntegerPartOfX <<= 23;
3874    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3875                                 DAG.getConstant(23, TLI.getPointerTy()));
3876
3877    if (LimitFloatPrecision <= 6) {
3878      // For floating-point precision of 6:
3879      //
3880      //   twoToFractionalPartOfX =
3881      //     0.997535578f +
3882      //       (0.735607626f + 0.252464424f * x) * x;
3883      //
3884      // error 0.0144103317, which is 6 bits
3885      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3886                               getF32Constant(DAG, 0x3e814304));
3887      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3888                               getF32Constant(DAG, 0x3f3c50c8));
3889      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3890      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3891                               getF32Constant(DAG, 0x3f7f5e7e));
3892      SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
3893      SDValue TwoToFractionalPartOfX =
3894        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3895
3896      result = DAG.getNode(ISD::BITCAST, dl,
3897                           MVT::f32, TwoToFractionalPartOfX);
3898    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3899      // For floating-point precision of 12:
3900      //
3901      //   TwoToFractionalPartOfX =
3902      //     0.999892986f +
3903      //       (0.696457318f +
3904      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3905      //
3906      // error 0.000107046256, which is 13 to 14 bits
3907      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3908                               getF32Constant(DAG, 0x3da235e3));
3909      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3910                               getF32Constant(DAG, 0x3e65b8f3));
3911      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3912      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3913                               getF32Constant(DAG, 0x3f324b07));
3914      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3915      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3916                               getF32Constant(DAG, 0x3f7ff8fd));
3917      SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
3918      SDValue TwoToFractionalPartOfX =
3919        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
3920
3921      result = DAG.getNode(ISD::BITCAST, dl,
3922                           MVT::f32, TwoToFractionalPartOfX);
3923    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3924      // For floating-point precision of 18:
3925      //
3926      //   TwoToFractionalPartOfX =
3927      //     0.999999982f +
3928      //       (0.693148872f +
3929      //         (0.240227044f +
3930      //           (0.554906021e-1f +
3931      //             (0.961591928e-2f +
3932      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3933      // error 2.47208000*10^(-7), which is better than 18 bits
3934      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3935                               getF32Constant(DAG, 0x3924b03e));
3936      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3937                               getF32Constant(DAG, 0x3ab24b87));
3938      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3939      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3940                               getF32Constant(DAG, 0x3c1d8c17));
3941      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3942      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3943                               getF32Constant(DAG, 0x3d634a1d));
3944      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3945      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3946                               getF32Constant(DAG, 0x3e75fe14));
3947      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3948      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3949                                getF32Constant(DAG, 0x3f317234));
3950      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3951      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3952                                getF32Constant(DAG, 0x3f800000));
3953      SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
3954      SDValue TwoToFractionalPartOfX =
3955        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
3956
3957      result = DAG.getNode(ISD::BITCAST, dl,
3958                           MVT::f32, TwoToFractionalPartOfX);
3959    }
3960  } else {
3961    // No special expansion.
3962    result = DAG.getNode(ISD::FPOW, dl,
3963                         getValue(I.getArgOperand(0)).getValueType(),
3964                         getValue(I.getArgOperand(0)),
3965                         getValue(I.getArgOperand(1)));
3966  }
3967
3968  setValue(&I, result);
3969}
3970
3971
3972/// ExpandPowI - Expand a llvm.powi intrinsic.
3973static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS,
3974                          SelectionDAG &DAG) {
3975  // If RHS is a constant, we can expand this out to a multiplication tree,
3976  // otherwise we end up lowering to a call to __powidf2 (for example).  When
3977  // optimizing for size, we only want to do this if the expansion would produce
3978  // a small number of multiplies, otherwise we do the full expansion.
3979  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3980    // Get the exponent as a positive value.
3981    unsigned Val = RHSC->getSExtValue();
3982    if ((int)Val < 0) Val = -Val;
3983
3984    // powi(x, 0) -> 1.0
3985    if (Val == 0)
3986      return DAG.getConstantFP(1.0, LHS.getValueType());
3987
3988    const Function *F = DAG.getMachineFunction().getFunction();
3989    if (!F->hasFnAttr(Attribute::OptimizeForSize) ||
3990        // If optimizing for size, don't insert too many multiplies.  This
3991        // inserts up to 5 multiplies.
3992        CountPopulation_32(Val)+Log2_32(Val) < 7) {
3993      // We use the simple binary decomposition method to generate the multiply
3994      // sequence.  There are more optimal ways to do this (for example,
3995      // powi(x,15) generates one more multiply than it should), but this has
3996      // the benefit of being both really simple and much better than a libcall.
3997      SDValue Res;  // Logically starts equal to 1.0
3998      SDValue CurSquare = LHS;
3999      while (Val) {
4000        if (Val & 1) {
4001          if (Res.getNode())
4002            Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4003          else
4004            Res = CurSquare;  // 1.0*CurSquare.
4005        }
4006
4007        CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4008                                CurSquare, CurSquare);
4009        Val >>= 1;
4010      }
4011
4012      // If the original was negative, invert the result, producing 1/(x*x*x).
4013      if (RHSC->getSExtValue() < 0)
4014        Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4015                          DAG.getConstantFP(1.0, LHS.getValueType()), Res);
4016      return Res;
4017    }
4018  }
4019
4020  // Otherwise, expand to a libcall.
4021  return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4022}
4023
4024/// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4025/// argument, create the corresponding DBG_VALUE machine instruction for it now.
4026/// At the end of instruction selection, they will be inserted to the entry BB.
4027bool
4028SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
4029                                              int64_t Offset,
4030                                              const SDValue &N) {
4031  const Argument *Arg = dyn_cast<Argument>(V);
4032  if (!Arg)
4033    return false;
4034
4035  MachineFunction &MF = DAG.getMachineFunction();
4036  const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
4037  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
4038
4039  // Ignore inlined function arguments here.
4040  DIVariable DV(Variable);
4041  if (DV.isInlinedFnArgument(MF.getFunction()))
4042    return false;
4043
4044  MachineBasicBlock *MBB = FuncInfo.MBB;
4045  if (MBB != &MF.front())
4046    return false;
4047
4048  unsigned Reg = 0;
4049  if (Arg->hasByValAttr()) {
4050    // Byval arguments' frame index is recorded during argument lowering.
4051    // Use this info directly.
4052    Reg = TRI->getFrameRegister(MF);
4053    Offset = FuncInfo.getByValArgumentFrameIndex(Arg);
4054    // If byval argument ofset is not recorded then ignore this.
4055    if (!Offset)
4056      Reg = 0;
4057  }
4058
4059  if (N.getNode() && N.getOpcode() == ISD::CopyFromReg) {
4060    Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
4061    if (TargetRegisterInfo::isVirtualRegister(Reg)) {
4062      MachineRegisterInfo &RegInfo = MF.getRegInfo();
4063      unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4064      if (PR)
4065        Reg = PR;
4066    }
4067  }
4068
4069  if (!Reg) {
4070    // Check if ValueMap has reg number.
4071    DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4072    if (VMI != FuncInfo.ValueMap.end())
4073      Reg = VMI->second;
4074  }
4075
4076  if (!Reg && N.getNode()) {
4077    // Check if frame index is available.
4078    if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4079      if (FrameIndexSDNode *FINode =
4080          dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) {
4081        Reg = TRI->getFrameRegister(MF);
4082        Offset = FINode->getIndex();
4083      }
4084  }
4085
4086  if (!Reg)
4087    return false;
4088
4089  MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(),
4090                                    TII->get(TargetOpcode::DBG_VALUE))
4091    .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable);
4092  FuncInfo.ArgDbgValues.push_back(&*MIB);
4093  return true;
4094}
4095
4096// VisualStudio defines setjmp as _setjmp
4097#if defined(_MSC_VER) && defined(setjmp) && \
4098                         !defined(setjmp_undefined_for_msvc)
4099#  pragma push_macro("setjmp")
4100#  undef setjmp
4101#  define setjmp_undefined_for_msvc
4102#endif
4103
4104/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4105/// we want to emit this as a call to a named external function, return the name
4106/// otherwise lower it and return null.
4107const char *
4108SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4109  DebugLoc dl = getCurDebugLoc();
4110  SDValue Res;
4111
4112  switch (Intrinsic) {
4113  default:
4114    // By default, turn this into a target intrinsic node.
4115    visitTargetIntrinsic(I, Intrinsic);
4116    return 0;
4117  case Intrinsic::vastart:  visitVAStart(I); return 0;
4118  case Intrinsic::vaend:    visitVAEnd(I); return 0;
4119  case Intrinsic::vacopy:   visitVACopy(I); return 0;
4120  case Intrinsic::returnaddress:
4121    setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(),
4122                             getValue(I.getArgOperand(0))));
4123    return 0;
4124  case Intrinsic::frameaddress:
4125    setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(),
4126                             getValue(I.getArgOperand(0))));
4127    return 0;
4128  case Intrinsic::setjmp:
4129    return "_setjmp"+!TLI.usesUnderscoreSetJmp();
4130  case Intrinsic::longjmp:
4131    return "_longjmp"+!TLI.usesUnderscoreLongJmp();
4132  case Intrinsic::memcpy: {
4133    // Assert for address < 256 since we support only user defined address
4134    // spaces.
4135    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4136           < 256 &&
4137           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4138           < 256 &&
4139           "Unknown address space");
4140    SDValue Op1 = getValue(I.getArgOperand(0));
4141    SDValue Op2 = getValue(I.getArgOperand(1));
4142    SDValue Op3 = getValue(I.getArgOperand(2));
4143    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4144    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4145    DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false,
4146                              MachinePointerInfo(I.getArgOperand(0)),
4147                              MachinePointerInfo(I.getArgOperand(1))));
4148    return 0;
4149  }
4150  case Intrinsic::memset: {
4151    // Assert for address < 256 since we support only user defined address
4152    // spaces.
4153    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4154           < 256 &&
4155           "Unknown address space");
4156    SDValue Op1 = getValue(I.getArgOperand(0));
4157    SDValue Op2 = getValue(I.getArgOperand(1));
4158    SDValue Op3 = getValue(I.getArgOperand(2));
4159    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4160    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4161    DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4162                              MachinePointerInfo(I.getArgOperand(0))));
4163    return 0;
4164  }
4165  case Intrinsic::memmove: {
4166    // Assert for address < 256 since we support only user defined address
4167    // spaces.
4168    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4169           < 256 &&
4170           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4171           < 256 &&
4172           "Unknown address space");
4173    SDValue Op1 = getValue(I.getArgOperand(0));
4174    SDValue Op2 = getValue(I.getArgOperand(1));
4175    SDValue Op3 = getValue(I.getArgOperand(2));
4176    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4177    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4178    DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4179                               MachinePointerInfo(I.getArgOperand(0)),
4180                               MachinePointerInfo(I.getArgOperand(1))));
4181    return 0;
4182  }
4183  case Intrinsic::dbg_declare: {
4184    const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4185    MDNode *Variable = DI.getVariable();
4186    const Value *Address = DI.getAddress();
4187    if (!Address || !DIVariable(DI.getVariable()).Verify())
4188      return 0;
4189
4190    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4191    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4192    // absolute, but not relative, values are different depending on whether
4193    // debug info exists.
4194    ++SDNodeOrder;
4195
4196    // Check if address has undef value.
4197    if (isa<UndefValue>(Address) ||
4198        (Address->use_empty() && !isa<Argument>(Address))) {
4199      DEBUG(dbgs() << "Dropping debug info for " << DI);
4200      return 0;
4201    }
4202
4203    SDValue &N = NodeMap[Address];
4204    if (!N.getNode() && isa<Argument>(Address))
4205      // Check unused arguments map.
4206      N = UnusedArgNodeMap[Address];
4207    SDDbgValue *SDV;
4208    if (N.getNode()) {
4209      // Parameters are handled specially.
4210      bool isParameter =
4211        DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable;
4212      if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4213        Address = BCI->getOperand(0);
4214      const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
4215
4216      if (isParameter && !AI) {
4217        FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4218        if (FINode)
4219          // Byval parameter.  We have a frame index at this point.
4220          SDV = DAG.getDbgValue(Variable, FINode->getIndex(),
4221                                0, dl, SDNodeOrder);
4222        else {
4223          // Can't do anything with other non-AI cases yet.  This might be a
4224          // parameter of a callee function that got inlined, for example.
4225          DEBUG(dbgs() << "Dropping debug info for " << DI);
4226          return 0;
4227        }
4228      } else if (AI)
4229        SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
4230                              0, dl, SDNodeOrder);
4231      else {
4232        // Can't do anything with other non-AI cases yet.
4233        DEBUG(dbgs() << "Dropping debug info for " << DI);
4234        return 0;
4235      }
4236      DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4237    } else {
4238      // If Address is an argument then try to emit its dbg value using
4239      // virtual register info from the FuncInfo.ValueMap.
4240      if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) {
4241        // If variable is pinned by a alloca in dominating bb then
4242        // use StaticAllocaMap.
4243        if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4244          if (AI->getParent() != DI.getParent()) {
4245            DenseMap<const AllocaInst*, int>::iterator SI =
4246              FuncInfo.StaticAllocaMap.find(AI);
4247            if (SI != FuncInfo.StaticAllocaMap.end()) {
4248              SDV = DAG.getDbgValue(Variable, SI->second,
4249                                    0, dl, SDNodeOrder);
4250              DAG.AddDbgValue(SDV, 0, false);
4251              return 0;
4252            }
4253          }
4254        }
4255        DEBUG(dbgs() << "Dropping debug info for " << DI);
4256      }
4257    }
4258    return 0;
4259  }
4260  case Intrinsic::dbg_value: {
4261    const DbgValueInst &DI = cast<DbgValueInst>(I);
4262    if (!DIVariable(DI.getVariable()).Verify())
4263      return 0;
4264
4265    MDNode *Variable = DI.getVariable();
4266    uint64_t Offset = DI.getOffset();
4267    const Value *V = DI.getValue();
4268    if (!V)
4269      return 0;
4270
4271    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4272    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4273    // absolute, but not relative, values are different depending on whether
4274    // debug info exists.
4275    ++SDNodeOrder;
4276    SDDbgValue *SDV;
4277    if (isa<ConstantInt>(V) || isa<ConstantFP>(V)) {
4278      SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder);
4279      DAG.AddDbgValue(SDV, 0, false);
4280    } else {
4281      // Do not use getValue() in here; we don't want to generate code at
4282      // this point if it hasn't been done yet.
4283      SDValue N = NodeMap[V];
4284      if (!N.getNode() && isa<Argument>(V))
4285        // Check unused arguments map.
4286        N = UnusedArgNodeMap[V];
4287      if (N.getNode()) {
4288        if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) {
4289          SDV = DAG.getDbgValue(Variable, N.getNode(),
4290                                N.getResNo(), Offset, dl, SDNodeOrder);
4291          DAG.AddDbgValue(SDV, N.getNode(), false);
4292        }
4293      } else if (!V->use_empty() ) {
4294        // Do not call getValue(V) yet, as we don't want to generate code.
4295        // Remember it for later.
4296        DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4297        DanglingDebugInfoMap[V] = DDI;
4298      } else {
4299        // We may expand this to cover more cases.  One case where we have no
4300        // data available is an unreferenced parameter.
4301        DEBUG(dbgs() << "Dropping debug info for " << DI);
4302      }
4303    }
4304
4305    // Build a debug info table entry.
4306    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4307      V = BCI->getOperand(0);
4308    const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4309    // Don't handle byval struct arguments or VLAs, for example.
4310    if (!AI)
4311      return 0;
4312    DenseMap<const AllocaInst*, int>::iterator SI =
4313      FuncInfo.StaticAllocaMap.find(AI);
4314    if (SI == FuncInfo.StaticAllocaMap.end())
4315      return 0; // VLAs.
4316    int FI = SI->second;
4317
4318    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4319    if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
4320      MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
4321    return 0;
4322  }
4323  case Intrinsic::eh_exception: {
4324    // Insert the EXCEPTIONADDR instruction.
4325    assert(FuncInfo.MBB->isLandingPad() &&
4326           "Call to eh.exception not in landing pad!");
4327    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4328    SDValue Ops[1];
4329    Ops[0] = DAG.getRoot();
4330    SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1);
4331    setValue(&I, Op);
4332    DAG.setRoot(Op.getValue(1));
4333    return 0;
4334  }
4335
4336  case Intrinsic::eh_selector: {
4337    MachineBasicBlock *CallMBB = FuncInfo.MBB;
4338    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4339    if (CallMBB->isLandingPad())
4340      AddCatchInfo(I, &MMI, CallMBB);
4341    else {
4342#ifndef NDEBUG
4343      FuncInfo.CatchInfoLost.insert(&I);
4344#endif
4345      // FIXME: Mark exception selector register as live in.  Hack for PR1508.
4346      unsigned Reg = TLI.getExceptionSelectorRegister();
4347      if (Reg) FuncInfo.MBB->addLiveIn(Reg);
4348    }
4349
4350    // Insert the EHSELECTION instruction.
4351    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4352    SDValue Ops[2];
4353    Ops[0] = getValue(I.getArgOperand(0));
4354    Ops[1] = getRoot();
4355    SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2);
4356    DAG.setRoot(Op.getValue(1));
4357    setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32));
4358    return 0;
4359  }
4360
4361  case Intrinsic::eh_typeid_for: {
4362    // Find the type id for the given typeinfo.
4363    GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0));
4364    unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4365    Res = DAG.getConstant(TypeID, MVT::i32);
4366    setValue(&I, Res);
4367    return 0;
4368  }
4369
4370  case Intrinsic::eh_return_i32:
4371  case Intrinsic::eh_return_i64:
4372    DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4373    DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl,
4374                            MVT::Other,
4375                            getControlRoot(),
4376                            getValue(I.getArgOperand(0)),
4377                            getValue(I.getArgOperand(1))));
4378    return 0;
4379  case Intrinsic::eh_unwind_init:
4380    DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4381    return 0;
4382  case Intrinsic::eh_dwarf_cfa: {
4383    SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl,
4384                                        TLI.getPointerTy());
4385    SDValue Offset = DAG.getNode(ISD::ADD, dl,
4386                                 TLI.getPointerTy(),
4387                                 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
4388                                             TLI.getPointerTy()),
4389                                 CfaArg);
4390    SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl,
4391                             TLI.getPointerTy(),
4392                             DAG.getConstant(0, TLI.getPointerTy()));
4393    setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
4394                             FA, Offset));
4395    return 0;
4396  }
4397  case Intrinsic::eh_sjlj_callsite: {
4398    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4399    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4400    assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4401    assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4402
4403    MMI.setCurrentCallSite(CI->getZExtValue());
4404    return 0;
4405  }
4406  case Intrinsic::eh_sjlj_setjmp: {
4407    setValue(&I, DAG.getNode(ISD::EH_SJLJ_SETJMP, dl, MVT::i32, getRoot(),
4408                             getValue(I.getArgOperand(0))));
4409    return 0;
4410  }
4411  case Intrinsic::eh_sjlj_longjmp: {
4412    DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other,
4413                            getRoot(), getValue(I.getArgOperand(0))));
4414    return 0;
4415  }
4416  case Intrinsic::eh_sjlj_dispatch_setup: {
4417    DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_DISPATCHSETUP, dl, MVT::Other,
4418                            getRoot(), getValue(I.getArgOperand(0))));
4419    return 0;
4420  }
4421
4422  case Intrinsic::x86_mmx_pslli_w:
4423  case Intrinsic::x86_mmx_pslli_d:
4424  case Intrinsic::x86_mmx_pslli_q:
4425  case Intrinsic::x86_mmx_psrli_w:
4426  case Intrinsic::x86_mmx_psrli_d:
4427  case Intrinsic::x86_mmx_psrli_q:
4428  case Intrinsic::x86_mmx_psrai_w:
4429  case Intrinsic::x86_mmx_psrai_d: {
4430    SDValue ShAmt = getValue(I.getArgOperand(1));
4431    if (isa<ConstantSDNode>(ShAmt)) {
4432      visitTargetIntrinsic(I, Intrinsic);
4433      return 0;
4434    }
4435    unsigned NewIntrinsic = 0;
4436    EVT ShAmtVT = MVT::v2i32;
4437    switch (Intrinsic) {
4438    case Intrinsic::x86_mmx_pslli_w:
4439      NewIntrinsic = Intrinsic::x86_mmx_psll_w;
4440      break;
4441    case Intrinsic::x86_mmx_pslli_d:
4442      NewIntrinsic = Intrinsic::x86_mmx_psll_d;
4443      break;
4444    case Intrinsic::x86_mmx_pslli_q:
4445      NewIntrinsic = Intrinsic::x86_mmx_psll_q;
4446      break;
4447    case Intrinsic::x86_mmx_psrli_w:
4448      NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
4449      break;
4450    case Intrinsic::x86_mmx_psrli_d:
4451      NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
4452      break;
4453    case Intrinsic::x86_mmx_psrli_q:
4454      NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
4455      break;
4456    case Intrinsic::x86_mmx_psrai_w:
4457      NewIntrinsic = Intrinsic::x86_mmx_psra_w;
4458      break;
4459    case Intrinsic::x86_mmx_psrai_d:
4460      NewIntrinsic = Intrinsic::x86_mmx_psra_d;
4461      break;
4462    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4463    }
4464
4465    // The vector shift intrinsics with scalars uses 32b shift amounts but
4466    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
4467    // to be zero.
4468    // We must do this early because v2i32 is not a legal type.
4469    DebugLoc dl = getCurDebugLoc();
4470    SDValue ShOps[2];
4471    ShOps[0] = ShAmt;
4472    ShOps[1] = DAG.getConstant(0, MVT::i32);
4473    ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
4474    EVT DestVT = TLI.getValueType(I.getType());
4475    ShAmt = DAG.getNode(ISD::BITCAST, dl, DestVT, ShAmt);
4476    Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
4477                       DAG.getConstant(NewIntrinsic, MVT::i32),
4478                       getValue(I.getArgOperand(0)), ShAmt);
4479    setValue(&I, Res);
4480    return 0;
4481  }
4482  case Intrinsic::convertff:
4483  case Intrinsic::convertfsi:
4484  case Intrinsic::convertfui:
4485  case Intrinsic::convertsif:
4486  case Intrinsic::convertuif:
4487  case Intrinsic::convertss:
4488  case Intrinsic::convertsu:
4489  case Intrinsic::convertus:
4490  case Intrinsic::convertuu: {
4491    ISD::CvtCode Code = ISD::CVT_INVALID;
4492    switch (Intrinsic) {
4493    case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
4494    case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4495    case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4496    case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4497    case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4498    case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
4499    case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
4500    case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4501    case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4502    }
4503    EVT DestVT = TLI.getValueType(I.getType());
4504    const Value *Op1 = I.getArgOperand(0);
4505    Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1),
4506                               DAG.getValueType(DestVT),
4507                               DAG.getValueType(getValue(Op1).getValueType()),
4508                               getValue(I.getArgOperand(1)),
4509                               getValue(I.getArgOperand(2)),
4510                               Code);
4511    setValue(&I, Res);
4512    return 0;
4513  }
4514  case Intrinsic::sqrt:
4515    setValue(&I, DAG.getNode(ISD::FSQRT, dl,
4516                             getValue(I.getArgOperand(0)).getValueType(),
4517                             getValue(I.getArgOperand(0))));
4518    return 0;
4519  case Intrinsic::powi:
4520    setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)),
4521                            getValue(I.getArgOperand(1)), DAG));
4522    return 0;
4523  case Intrinsic::sin:
4524    setValue(&I, DAG.getNode(ISD::FSIN, dl,
4525                             getValue(I.getArgOperand(0)).getValueType(),
4526                             getValue(I.getArgOperand(0))));
4527    return 0;
4528  case Intrinsic::cos:
4529    setValue(&I, DAG.getNode(ISD::FCOS, dl,
4530                             getValue(I.getArgOperand(0)).getValueType(),
4531                             getValue(I.getArgOperand(0))));
4532    return 0;
4533  case Intrinsic::log:
4534    visitLog(I);
4535    return 0;
4536  case Intrinsic::log2:
4537    visitLog2(I);
4538    return 0;
4539  case Intrinsic::log10:
4540    visitLog10(I);
4541    return 0;
4542  case Intrinsic::exp:
4543    visitExp(I);
4544    return 0;
4545  case Intrinsic::exp2:
4546    visitExp2(I);
4547    return 0;
4548  case Intrinsic::pow:
4549    visitPow(I);
4550    return 0;
4551  case Intrinsic::convert_to_fp16:
4552    setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl,
4553                             MVT::i16, getValue(I.getArgOperand(0))));
4554    return 0;
4555  case Intrinsic::convert_from_fp16:
4556    setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl,
4557                             MVT::f32, getValue(I.getArgOperand(0))));
4558    return 0;
4559  case Intrinsic::pcmarker: {
4560    SDValue Tmp = getValue(I.getArgOperand(0));
4561    DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp));
4562    return 0;
4563  }
4564  case Intrinsic::readcyclecounter: {
4565    SDValue Op = getRoot();
4566    Res = DAG.getNode(ISD::READCYCLECOUNTER, dl,
4567                      DAG.getVTList(MVT::i64, MVT::Other),
4568                      &Op, 1);
4569    setValue(&I, Res);
4570    DAG.setRoot(Res.getValue(1));
4571    return 0;
4572  }
4573  case Intrinsic::bswap:
4574    setValue(&I, DAG.getNode(ISD::BSWAP, dl,
4575                             getValue(I.getArgOperand(0)).getValueType(),
4576                             getValue(I.getArgOperand(0))));
4577    return 0;
4578  case Intrinsic::cttz: {
4579    SDValue Arg = getValue(I.getArgOperand(0));
4580    EVT Ty = Arg.getValueType();
4581    setValue(&I, DAG.getNode(ISD::CTTZ, dl, Ty, Arg));
4582    return 0;
4583  }
4584  case Intrinsic::ctlz: {
4585    SDValue Arg = getValue(I.getArgOperand(0));
4586    EVT Ty = Arg.getValueType();
4587    setValue(&I, DAG.getNode(ISD::CTLZ, dl, Ty, Arg));
4588    return 0;
4589  }
4590  case Intrinsic::ctpop: {
4591    SDValue Arg = getValue(I.getArgOperand(0));
4592    EVT Ty = Arg.getValueType();
4593    setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg));
4594    return 0;
4595  }
4596  case Intrinsic::stacksave: {
4597    SDValue Op = getRoot();
4598    Res = DAG.getNode(ISD::STACKSAVE, dl,
4599                      DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
4600    setValue(&I, Res);
4601    DAG.setRoot(Res.getValue(1));
4602    return 0;
4603  }
4604  case Intrinsic::stackrestore: {
4605    Res = getValue(I.getArgOperand(0));
4606    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res));
4607    return 0;
4608  }
4609  case Intrinsic::stackprotector: {
4610    // Emit code into the DAG to store the stack guard onto the stack.
4611    MachineFunction &MF = DAG.getMachineFunction();
4612    MachineFrameInfo *MFI = MF.getFrameInfo();
4613    EVT PtrTy = TLI.getPointerTy();
4614
4615    SDValue Src = getValue(I.getArgOperand(0));   // The guard's value.
4616    AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
4617
4618    int FI = FuncInfo.StaticAllocaMap[Slot];
4619    MFI->setStackProtectorIndex(FI);
4620
4621    SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
4622
4623    // Store the stack protector onto the stack.
4624    Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN,
4625                       MachinePointerInfo::getFixedStack(FI),
4626                       true, false, 0);
4627    setValue(&I, Res);
4628    DAG.setRoot(Res);
4629    return 0;
4630  }
4631  case Intrinsic::objectsize: {
4632    // If we don't know by now, we're never going to know.
4633    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
4634
4635    assert(CI && "Non-constant type in __builtin_object_size?");
4636
4637    SDValue Arg = getValue(I.getCalledValue());
4638    EVT Ty = Arg.getValueType();
4639
4640    if (CI->isZero())
4641      Res = DAG.getConstant(-1ULL, Ty);
4642    else
4643      Res = DAG.getConstant(0, Ty);
4644
4645    setValue(&I, Res);
4646    return 0;
4647  }
4648  case Intrinsic::var_annotation:
4649    // Discard annotate attributes
4650    return 0;
4651
4652  case Intrinsic::init_trampoline: {
4653    const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
4654
4655    SDValue Ops[6];
4656    Ops[0] = getRoot();
4657    Ops[1] = getValue(I.getArgOperand(0));
4658    Ops[2] = getValue(I.getArgOperand(1));
4659    Ops[3] = getValue(I.getArgOperand(2));
4660    Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
4661    Ops[5] = DAG.getSrcValue(F);
4662
4663    Res = DAG.getNode(ISD::TRAMPOLINE, dl,
4664                      DAG.getVTList(TLI.getPointerTy(), MVT::Other),
4665                      Ops, 6);
4666
4667    setValue(&I, Res);
4668    DAG.setRoot(Res.getValue(1));
4669    return 0;
4670  }
4671  case Intrinsic::gcroot:
4672    if (GFI) {
4673      const Value *Alloca = I.getArgOperand(0);
4674      const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
4675
4676      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
4677      GFI->addStackRoot(FI->getIndex(), TypeMap);
4678    }
4679    return 0;
4680  case Intrinsic::gcread:
4681  case Intrinsic::gcwrite:
4682    llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
4683    return 0;
4684  case Intrinsic::flt_rounds:
4685    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32));
4686    return 0;
4687  case Intrinsic::trap:
4688    DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot()));
4689    return 0;
4690  case Intrinsic::uadd_with_overflow:
4691    return implVisitAluOverflow(I, ISD::UADDO);
4692  case Intrinsic::sadd_with_overflow:
4693    return implVisitAluOverflow(I, ISD::SADDO);
4694  case Intrinsic::usub_with_overflow:
4695    return implVisitAluOverflow(I, ISD::USUBO);
4696  case Intrinsic::ssub_with_overflow:
4697    return implVisitAluOverflow(I, ISD::SSUBO);
4698  case Intrinsic::umul_with_overflow:
4699    return implVisitAluOverflow(I, ISD::UMULO);
4700  case Intrinsic::smul_with_overflow:
4701    return implVisitAluOverflow(I, ISD::SMULO);
4702
4703  case Intrinsic::prefetch: {
4704    SDValue Ops[4];
4705    unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
4706    Ops[0] = getRoot();
4707    Ops[1] = getValue(I.getArgOperand(0));
4708    Ops[2] = getValue(I.getArgOperand(1));
4709    Ops[3] = getValue(I.getArgOperand(2));
4710    DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, dl,
4711                                        DAG.getVTList(MVT::Other),
4712                                        &Ops[0], 4,
4713                                        EVT::getIntegerVT(*Context, 8),
4714                                        MachinePointerInfo(I.getArgOperand(0)),
4715                                        0, /* align */
4716                                        false, /* volatile */
4717                                        rw==0, /* read */
4718                                        rw==1)); /* write */
4719    return 0;
4720  }
4721  case Intrinsic::memory_barrier: {
4722    SDValue Ops[6];
4723    Ops[0] = getRoot();
4724    for (int x = 1; x < 6; ++x)
4725      Ops[x] = getValue(I.getArgOperand(x - 1));
4726
4727    DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6));
4728    return 0;
4729  }
4730  case Intrinsic::atomic_cmp_swap: {
4731    SDValue Root = getRoot();
4732    SDValue L =
4733      DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(),
4734                    getValue(I.getArgOperand(1)).getValueType().getSimpleVT(),
4735                    Root,
4736                    getValue(I.getArgOperand(0)),
4737                    getValue(I.getArgOperand(1)),
4738                    getValue(I.getArgOperand(2)),
4739                    MachinePointerInfo(I.getArgOperand(0)));
4740    setValue(&I, L);
4741    DAG.setRoot(L.getValue(1));
4742    return 0;
4743  }
4744  case Intrinsic::atomic_load_add:
4745    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD);
4746  case Intrinsic::atomic_load_sub:
4747    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB);
4748  case Intrinsic::atomic_load_or:
4749    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR);
4750  case Intrinsic::atomic_load_xor:
4751    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR);
4752  case Intrinsic::atomic_load_and:
4753    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND);
4754  case Intrinsic::atomic_load_nand:
4755    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND);
4756  case Intrinsic::atomic_load_max:
4757    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX);
4758  case Intrinsic::atomic_load_min:
4759    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN);
4760  case Intrinsic::atomic_load_umin:
4761    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN);
4762  case Intrinsic::atomic_load_umax:
4763    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX);
4764  case Intrinsic::atomic_swap:
4765    return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP);
4766
4767  case Intrinsic::invariant_start:
4768  case Intrinsic::lifetime_start:
4769    // Discard region information.
4770    setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
4771    return 0;
4772  case Intrinsic::invariant_end:
4773  case Intrinsic::lifetime_end:
4774    // Discard region information.
4775    return 0;
4776  }
4777}
4778
4779void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
4780                                      bool isTailCall,
4781                                      MachineBasicBlock *LandingPad) {
4782  const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
4783  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
4784  const Type *RetTy = FTy->getReturnType();
4785  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4786  MCSymbol *BeginLabel = 0;
4787
4788  TargetLowering::ArgListTy Args;
4789  TargetLowering::ArgListEntry Entry;
4790  Args.reserve(CS.arg_size());
4791
4792  // Check whether the function can return without sret-demotion.
4793  SmallVector<ISD::OutputArg, 4> Outs;
4794  SmallVector<uint64_t, 4> Offsets;
4795  GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(),
4796                Outs, TLI, &Offsets);
4797
4798  bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
4799                        FTy->isVarArg(), Outs, FTy->getContext());
4800
4801  SDValue DemoteStackSlot;
4802  int DemoteStackIdx = -100;
4803
4804  if (!CanLowerReturn) {
4805    uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(
4806                      FTy->getReturnType());
4807    unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(
4808                      FTy->getReturnType());
4809    MachineFunction &MF = DAG.getMachineFunction();
4810    DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
4811    const Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
4812
4813    DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI.getPointerTy());
4814    Entry.Node = DemoteStackSlot;
4815    Entry.Ty = StackSlotPtrType;
4816    Entry.isSExt = false;
4817    Entry.isZExt = false;
4818    Entry.isInReg = false;
4819    Entry.isSRet = true;
4820    Entry.isNest = false;
4821    Entry.isByVal = false;
4822    Entry.Alignment = Align;
4823    Args.push_back(Entry);
4824    RetTy = Type::getVoidTy(FTy->getContext());
4825  }
4826
4827  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
4828       i != e; ++i) {
4829    SDValue ArgNode = getValue(*i);
4830    Entry.Node = ArgNode; Entry.Ty = (*i)->getType();
4831
4832    unsigned attrInd = i - CS.arg_begin() + 1;
4833    Entry.isSExt  = CS.paramHasAttr(attrInd, Attribute::SExt);
4834    Entry.isZExt  = CS.paramHasAttr(attrInd, Attribute::ZExt);
4835    Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg);
4836    Entry.isSRet  = CS.paramHasAttr(attrInd, Attribute::StructRet);
4837    Entry.isNest  = CS.paramHasAttr(attrInd, Attribute::Nest);
4838    Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal);
4839    Entry.Alignment = CS.getParamAlignment(attrInd);
4840    Args.push_back(Entry);
4841  }
4842
4843  if (LandingPad) {
4844    // Insert a label before the invoke call to mark the try range.  This can be
4845    // used to detect deletion of the invoke via the MachineModuleInfo.
4846    BeginLabel = MMI.getContext().CreateTempSymbol();
4847
4848    // For SjLj, keep track of which landing pads go with which invokes
4849    // so as to maintain the ordering of pads in the LSDA.
4850    unsigned CallSiteIndex = MMI.getCurrentCallSite();
4851    if (CallSiteIndex) {
4852      MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
4853      // Now that the call site is handled, stop tracking it.
4854      MMI.setCurrentCallSite(0);
4855    }
4856
4857    // Both PendingLoads and PendingExports must be flushed here;
4858    // this call might not return.
4859    (void)getRoot();
4860    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel));
4861  }
4862
4863  // Check if target-independent constraints permit a tail call here.
4864  // Target-dependent constraints are checked within TLI.LowerCallTo.
4865  if (isTailCall &&
4866      !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI))
4867    isTailCall = false;
4868
4869  // If there's a possibility that fast-isel has already selected some amount
4870  // of the current basic block, don't emit a tail call.
4871  if (isTailCall && EnableFastISel)
4872    isTailCall = false;
4873
4874  std::pair<SDValue,SDValue> Result =
4875    TLI.LowerCallTo(getRoot(), RetTy,
4876                    CS.paramHasAttr(0, Attribute::SExt),
4877                    CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(),
4878                    CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(),
4879                    CS.getCallingConv(),
4880                    isTailCall,
4881                    !CS.getInstruction()->use_empty(),
4882                    Callee, Args, DAG, getCurDebugLoc());
4883  assert((isTailCall || Result.second.getNode()) &&
4884         "Non-null chain expected with non-tail call!");
4885  assert((Result.second.getNode() || !Result.first.getNode()) &&
4886         "Null value expected with tail call!");
4887  if (Result.first.getNode()) {
4888    setValue(CS.getInstruction(), Result.first);
4889  } else if (!CanLowerReturn && Result.second.getNode()) {
4890    // The instruction result is the result of loading from the
4891    // hidden sret parameter.
4892    SmallVector<EVT, 1> PVTs;
4893    const Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
4894
4895    ComputeValueVTs(TLI, PtrRetTy, PVTs);
4896    assert(PVTs.size() == 1 && "Pointers should fit in one register");
4897    EVT PtrVT = PVTs[0];
4898    unsigned NumValues = Outs.size();
4899    SmallVector<SDValue, 4> Values(NumValues);
4900    SmallVector<SDValue, 4> Chains(NumValues);
4901
4902    for (unsigned i = 0; i < NumValues; ++i) {
4903      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT,
4904                                DemoteStackSlot,
4905                                DAG.getConstant(Offsets[i], PtrVT));
4906      SDValue L = DAG.getLoad(Outs[i].VT, getCurDebugLoc(), Result.second,
4907                              Add,
4908                  MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]),
4909                              false, false, 1);
4910      Values[i] = L;
4911      Chains[i] = L.getValue(1);
4912    }
4913
4914    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
4915                                MVT::Other, &Chains[0], NumValues);
4916    PendingLoads.push_back(Chain);
4917
4918    // Collect the legal value parts into potentially illegal values
4919    // that correspond to the original function's return values.
4920    SmallVector<EVT, 4> RetTys;
4921    RetTy = FTy->getReturnType();
4922    ComputeValueVTs(TLI, RetTy, RetTys);
4923    ISD::NodeType AssertOp = ISD::DELETED_NODE;
4924    SmallVector<SDValue, 4> ReturnValues;
4925    unsigned CurReg = 0;
4926    for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
4927      EVT VT = RetTys[I];
4928      EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT);
4929      unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT);
4930
4931      SDValue ReturnValue =
4932        getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs,
4933                         RegisterVT, VT, AssertOp);
4934      ReturnValues.push_back(ReturnValue);
4935      CurReg += NumRegs;
4936    }
4937
4938    setValue(CS.getInstruction(),
4939             DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
4940                         DAG.getVTList(&RetTys[0], RetTys.size()),
4941                         &ReturnValues[0], ReturnValues.size()));
4942
4943  }
4944
4945  // As a special case, a null chain means that a tail call has been emitted and
4946  // the DAG root is already updated.
4947  if (Result.second.getNode())
4948    DAG.setRoot(Result.second);
4949  else
4950    HasTailCall = true;
4951
4952  if (LandingPad) {
4953    // Insert a label at the end of the invoke call to mark the try range.  This
4954    // can be used to detect deletion of the invoke via the MachineModuleInfo.
4955    MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
4956    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel));
4957
4958    // Inform MachineModuleInfo of range.
4959    MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
4960  }
4961}
4962
4963/// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
4964/// value is equal or not-equal to zero.
4965static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
4966  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
4967       UI != E; ++UI) {
4968    if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
4969      if (IC->isEquality())
4970        if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
4971          if (C->isNullValue())
4972            continue;
4973    // Unknown instruction.
4974    return false;
4975  }
4976  return true;
4977}
4978
4979static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
4980                             const Type *LoadTy,
4981                             SelectionDAGBuilder &Builder) {
4982
4983  // Check to see if this load can be trivially constant folded, e.g. if the
4984  // input is from a string literal.
4985  if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
4986    // Cast pointer to the type we really want to load.
4987    LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
4988                                         PointerType::getUnqual(LoadTy));
4989
4990    if (const Constant *LoadCst =
4991          ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
4992                                       Builder.TD))
4993      return Builder.getValue(LoadCst);
4994  }
4995
4996  // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
4997  // still constant memory, the input chain can be the entry node.
4998  SDValue Root;
4999  bool ConstantMemory = false;
5000
5001  // Do not serialize (non-volatile) loads of constant memory with anything.
5002  if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5003    Root = Builder.DAG.getEntryNode();
5004    ConstantMemory = true;
5005  } else {
5006    // Do not serialize non-volatile loads against each other.
5007    Root = Builder.DAG.getRoot();
5008  }
5009
5010  SDValue Ptr = Builder.getValue(PtrVal);
5011  SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root,
5012                                        Ptr, MachinePointerInfo(PtrVal),
5013                                        false /*volatile*/,
5014                                        false /*nontemporal*/, 1 /* align=1 */);
5015
5016  if (!ConstantMemory)
5017    Builder.PendingLoads.push_back(LoadVal.getValue(1));
5018  return LoadVal;
5019}
5020
5021
5022/// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5023/// If so, return true and lower it, otherwise return false and it will be
5024/// lowered like a normal call.
5025bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5026  // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
5027  if (I.getNumArgOperands() != 3)
5028    return false;
5029
5030  const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5031  if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5032      !I.getArgOperand(2)->getType()->isIntegerTy() ||
5033      !I.getType()->isIntegerTy())
5034    return false;
5035
5036  const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2));
5037
5038  // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
5039  // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
5040  if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) {
5041    bool ActuallyDoIt = true;
5042    MVT LoadVT;
5043    const Type *LoadTy;
5044    switch (Size->getZExtValue()) {
5045    default:
5046      LoadVT = MVT::Other;
5047      LoadTy = 0;
5048      ActuallyDoIt = false;
5049      break;
5050    case 2:
5051      LoadVT = MVT::i16;
5052      LoadTy = Type::getInt16Ty(Size->getContext());
5053      break;
5054    case 4:
5055      LoadVT = MVT::i32;
5056      LoadTy = Type::getInt32Ty(Size->getContext());
5057      break;
5058    case 8:
5059      LoadVT = MVT::i64;
5060      LoadTy = Type::getInt64Ty(Size->getContext());
5061      break;
5062        /*
5063    case 16:
5064      LoadVT = MVT::v4i32;
5065      LoadTy = Type::getInt32Ty(Size->getContext());
5066      LoadTy = VectorType::get(LoadTy, 4);
5067      break;
5068         */
5069    }
5070
5071    // This turns into unaligned loads.  We only do this if the target natively
5072    // supports the MVT we'll be loading or if it is small enough (<= 4) that
5073    // we'll only produce a small number of byte loads.
5074
5075    // Require that we can find a legal MVT, and only do this if the target
5076    // supports unaligned loads of that type.  Expanding into byte loads would
5077    // bloat the code.
5078    if (ActuallyDoIt && Size->getZExtValue() > 4) {
5079      // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5080      // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5081      if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT))
5082        ActuallyDoIt = false;
5083    }
5084
5085    if (ActuallyDoIt) {
5086      SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5087      SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5088
5089      SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal,
5090                                 ISD::SETNE);
5091      EVT CallVT = TLI.getValueType(I.getType(), true);
5092      setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT));
5093      return true;
5094    }
5095  }
5096
5097
5098  return false;
5099}
5100
5101
5102void SelectionDAGBuilder::visitCall(const CallInst &I) {
5103  // Handle inline assembly differently.
5104  if (isa<InlineAsm>(I.getCalledValue())) {
5105    visitInlineAsm(&I);
5106    return;
5107  }
5108
5109  // See if any floating point values are being passed to this function. This is
5110  // used to emit an undefined reference to fltused on Windows.
5111  const FunctionType *FT =
5112    cast<FunctionType>(I.getCalledValue()->getType()->getContainedType(0));
5113  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5114  if (FT->isVarArg() &&
5115      !MMI.callsExternalVAFunctionWithFloatingPointArguments()) {
5116    for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
5117      const Type* T = I.getArgOperand(i)->getType();
5118      for (po_iterator<const Type*> i = po_begin(T), e = po_end(T);
5119           i != e; ++i) {
5120        if (!i->isFloatingPointTy()) continue;
5121        MMI.setCallsExternalVAFunctionWithFloatingPointArguments(true);
5122        break;
5123      }
5124    }
5125  }
5126
5127  const char *RenameFn = 0;
5128  if (Function *F = I.getCalledFunction()) {
5129    if (F->isDeclaration()) {
5130      if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
5131        if (unsigned IID = II->getIntrinsicID(F)) {
5132          RenameFn = visitIntrinsicCall(I, IID);
5133          if (!RenameFn)
5134            return;
5135        }
5136      }
5137      if (unsigned IID = F->getIntrinsicID()) {
5138        RenameFn = visitIntrinsicCall(I, IID);
5139        if (!RenameFn)
5140          return;
5141      }
5142    }
5143
5144    // Check for well-known libc/libm calls.  If the function is internal, it
5145    // can't be a library call.
5146    if (!F->hasLocalLinkage() && F->hasName()) {
5147      StringRef Name = F->getName();
5148      if (Name == "copysign" || Name == "copysignf" || Name == "copysignl") {
5149        if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
5150            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5151            I.getType() == I.getArgOperand(0)->getType() &&
5152            I.getType() == I.getArgOperand(1)->getType()) {
5153          SDValue LHS = getValue(I.getArgOperand(0));
5154          SDValue RHS = getValue(I.getArgOperand(1));
5155          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(),
5156                                   LHS.getValueType(), LHS, RHS));
5157          return;
5158        }
5159      } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") {
5160        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5161            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5162            I.getType() == I.getArgOperand(0)->getType()) {
5163          SDValue Tmp = getValue(I.getArgOperand(0));
5164          setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(),
5165                                   Tmp.getValueType(), Tmp));
5166          return;
5167        }
5168      } else if (Name == "sin" || Name == "sinf" || Name == "sinl") {
5169        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5170            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5171            I.getType() == I.getArgOperand(0)->getType() &&
5172            I.onlyReadsMemory()) {
5173          SDValue Tmp = getValue(I.getArgOperand(0));
5174          setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(),
5175                                   Tmp.getValueType(), Tmp));
5176          return;
5177        }
5178      } else if (Name == "cos" || Name == "cosf" || Name == "cosl") {
5179        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5180            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5181            I.getType() == I.getArgOperand(0)->getType() &&
5182            I.onlyReadsMemory()) {
5183          SDValue Tmp = getValue(I.getArgOperand(0));
5184          setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(),
5185                                   Tmp.getValueType(), Tmp));
5186          return;
5187        }
5188      } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") {
5189        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5190            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5191            I.getType() == I.getArgOperand(0)->getType() &&
5192            I.onlyReadsMemory()) {
5193          SDValue Tmp = getValue(I.getArgOperand(0));
5194          setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(),
5195                                   Tmp.getValueType(), Tmp));
5196          return;
5197        }
5198      } else if (Name == "memcmp") {
5199        if (visitMemCmpCall(I))
5200          return;
5201      }
5202    }
5203  }
5204
5205  SDValue Callee;
5206  if (!RenameFn)
5207    Callee = getValue(I.getCalledValue());
5208  else
5209    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
5210
5211  // Check if we can potentially perform a tail call. More detailed checking is
5212  // be done within LowerCallTo, after more information about the call is known.
5213  LowerCallTo(&I, Callee, I.isTailCall());
5214}
5215
5216namespace llvm {
5217
5218/// AsmOperandInfo - This contains information for each constraint that we are
5219/// lowering.
5220class LLVM_LIBRARY_VISIBILITY SDISelAsmOperandInfo :
5221    public TargetLowering::AsmOperandInfo {
5222public:
5223  /// CallOperand - If this is the result output operand or a clobber
5224  /// this is null, otherwise it is the incoming operand to the CallInst.
5225  /// This gets modified as the asm is processed.
5226  SDValue CallOperand;
5227
5228  /// AssignedRegs - If this is a register or register class operand, this
5229  /// contains the set of register corresponding to the operand.
5230  RegsForValue AssignedRegs;
5231
5232  explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
5233    : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
5234  }
5235
5236  /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
5237  /// busy in OutputRegs/InputRegs.
5238  void MarkAllocatedRegs(bool isOutReg, bool isInReg,
5239                         std::set<unsigned> &OutputRegs,
5240                         std::set<unsigned> &InputRegs,
5241                         const TargetRegisterInfo &TRI) const {
5242    if (isOutReg) {
5243      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
5244        MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
5245    }
5246    if (isInReg) {
5247      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
5248        MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
5249    }
5250  }
5251
5252  /// getCallOperandValEVT - Return the EVT of the Value* that this operand
5253  /// corresponds to.  If there is no Value* for this operand, it returns
5254  /// MVT::Other.
5255  EVT getCallOperandValEVT(LLVMContext &Context,
5256                           const TargetLowering &TLI,
5257                           const TargetData *TD) const {
5258    if (CallOperandVal == 0) return MVT::Other;
5259
5260    if (isa<BasicBlock>(CallOperandVal))
5261      return TLI.getPointerTy();
5262
5263    const llvm::Type *OpTy = CallOperandVal->getType();
5264
5265    // If this is an indirect operand, the operand is a pointer to the
5266    // accessed type.
5267    if (isIndirect) {
5268      const llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
5269      if (!PtrTy)
5270        report_fatal_error("Indirect operand for inline asm not a pointer!");
5271      OpTy = PtrTy->getElementType();
5272    }
5273
5274    // If OpTy is not a single value, it may be a struct/union that we
5275    // can tile with integers.
5276    if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5277      unsigned BitSize = TD->getTypeSizeInBits(OpTy);
5278      switch (BitSize) {
5279      default: break;
5280      case 1:
5281      case 8:
5282      case 16:
5283      case 32:
5284      case 64:
5285      case 128:
5286        OpTy = IntegerType::get(Context, BitSize);
5287        break;
5288      }
5289    }
5290
5291    return TLI.getValueType(OpTy, true);
5292  }
5293
5294private:
5295  /// MarkRegAndAliases - Mark the specified register and all aliases in the
5296  /// specified set.
5297  static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
5298                                const TargetRegisterInfo &TRI) {
5299    assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
5300    Regs.insert(Reg);
5301    if (const unsigned *Aliases = TRI.getAliasSet(Reg))
5302      for (; *Aliases; ++Aliases)
5303        Regs.insert(*Aliases);
5304  }
5305};
5306
5307typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
5308
5309} // end llvm namespace.
5310
5311/// isAllocatableRegister - If the specified register is safe to allocate,
5312/// i.e. it isn't a stack pointer or some other special register, return the
5313/// register class for the register.  Otherwise, return null.
5314static const TargetRegisterClass *
5315isAllocatableRegister(unsigned Reg, MachineFunction &MF,
5316                      const TargetLowering &TLI,
5317                      const TargetRegisterInfo *TRI) {
5318  EVT FoundVT = MVT::Other;
5319  const TargetRegisterClass *FoundRC = 0;
5320  for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(),
5321       E = TRI->regclass_end(); RCI != E; ++RCI) {
5322    EVT ThisVT = MVT::Other;
5323
5324    const TargetRegisterClass *RC = *RCI;
5325    // If none of the value types for this register class are valid, we
5326    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
5327    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
5328         I != E; ++I) {
5329      if (TLI.isTypeLegal(*I)) {
5330        // If we have already found this register in a different register class,
5331        // choose the one with the largest VT specified.  For example, on
5332        // PowerPC, we favor f64 register classes over f32.
5333        if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) {
5334          ThisVT = *I;
5335          break;
5336        }
5337      }
5338    }
5339
5340    if (ThisVT == MVT::Other) continue;
5341
5342    // NOTE: This isn't ideal.  In particular, this might allocate the
5343    // frame pointer in functions that need it (due to them not being taken
5344    // out of allocation, because a variable sized allocation hasn't been seen
5345    // yet).  This is a slight code pessimization, but should still work.
5346    for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
5347         E = RC->allocation_order_end(MF); I != E; ++I)
5348      if (*I == Reg) {
5349        // We found a matching register class.  Keep looking at others in case
5350        // we find one with larger registers that this physreg is also in.
5351        FoundRC = RC;
5352        FoundVT = ThisVT;
5353        break;
5354      }
5355  }
5356  return FoundRC;
5357}
5358
5359/// GetRegistersForValue - Assign registers (virtual or physical) for the
5360/// specified operand.  We prefer to assign virtual registers, to allow the
5361/// register allocator to handle the assignment process.  However, if the asm
5362/// uses features that we can't model on machineinstrs, we have SDISel do the
5363/// allocation.  This produces generally horrible, but correct, code.
5364///
5365///   OpInfo describes the operand.
5366///   Input and OutputRegs are the set of already allocated physical registers.
5367///
5368void SelectionDAGBuilder::
5369GetRegistersForValue(SDISelAsmOperandInfo &OpInfo,
5370                     std::set<unsigned> &OutputRegs,
5371                     std::set<unsigned> &InputRegs) {
5372  LLVMContext &Context = FuncInfo.Fn->getContext();
5373
5374  // Compute whether this value requires an input register, an output register,
5375  // or both.
5376  bool isOutReg = false;
5377  bool isInReg = false;
5378  switch (OpInfo.Type) {
5379  case InlineAsm::isOutput:
5380    isOutReg = true;
5381
5382    // If there is an input constraint that matches this, we need to reserve
5383    // the input register so no other inputs allocate to it.
5384    isInReg = OpInfo.hasMatchingInput();
5385    break;
5386  case InlineAsm::isInput:
5387    isInReg = true;
5388    isOutReg = false;
5389    break;
5390  case InlineAsm::isClobber:
5391    isOutReg = true;
5392    isInReg = true;
5393    break;
5394  }
5395
5396
5397  MachineFunction &MF = DAG.getMachineFunction();
5398  SmallVector<unsigned, 4> Regs;
5399
5400  // If this is a constraint for a single physreg, or a constraint for a
5401  // register class, find it.
5402  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
5403    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5404                                     OpInfo.ConstraintVT);
5405
5406  unsigned NumRegs = 1;
5407  if (OpInfo.ConstraintVT != MVT::Other) {
5408    // If this is a FP input in an integer register (or visa versa) insert a bit
5409    // cast of the input value.  More generally, handle any case where the input
5410    // value disagrees with the register class we plan to stick this in.
5411    if (OpInfo.Type == InlineAsm::isInput &&
5412        PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
5413      // Try to convert to the first EVT that the reg class contains.  If the
5414      // types are identical size, use a bitcast to convert (e.g. two differing
5415      // vector types).
5416      EVT RegVT = *PhysReg.second->vt_begin();
5417      if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
5418        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
5419                                         RegVT, OpInfo.CallOperand);
5420        OpInfo.ConstraintVT = RegVT;
5421      } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
5422        // If the input is a FP value and we want it in FP registers, do a
5423        // bitcast to the corresponding integer type.  This turns an f64 value
5424        // into i64, which can be passed with two i32 values on a 32-bit
5425        // machine.
5426        RegVT = EVT::getIntegerVT(Context,
5427                                  OpInfo.ConstraintVT.getSizeInBits());
5428        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
5429                                         RegVT, OpInfo.CallOperand);
5430        OpInfo.ConstraintVT = RegVT;
5431      }
5432    }
5433
5434    NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
5435  }
5436
5437  EVT RegVT;
5438  EVT ValueVT = OpInfo.ConstraintVT;
5439
5440  // If this is a constraint for a specific physical register, like {r17},
5441  // assign it now.
5442  if (unsigned AssignedReg = PhysReg.first) {
5443    const TargetRegisterClass *RC = PhysReg.second;
5444    if (OpInfo.ConstraintVT == MVT::Other)
5445      ValueVT = *RC->vt_begin();
5446
5447    // Get the actual register value type.  This is important, because the user
5448    // may have asked for (e.g.) the AX register in i32 type.  We need to
5449    // remember that AX is actually i16 to get the right extension.
5450    RegVT = *RC->vt_begin();
5451
5452    // This is a explicit reference to a physical register.
5453    Regs.push_back(AssignedReg);
5454
5455    // If this is an expanded reference, add the rest of the regs to Regs.
5456    if (NumRegs != 1) {
5457      TargetRegisterClass::iterator I = RC->begin();
5458      for (; *I != AssignedReg; ++I)
5459        assert(I != RC->end() && "Didn't find reg!");
5460
5461      // Already added the first reg.
5462      --NumRegs; ++I;
5463      for (; NumRegs; --NumRegs, ++I) {
5464        assert(I != RC->end() && "Ran out of registers to allocate!");
5465        Regs.push_back(*I);
5466      }
5467    }
5468
5469    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5470    const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5471    OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5472    return;
5473  }
5474
5475  // Otherwise, if this was a reference to an LLVM register class, create vregs
5476  // for this reference.
5477  if (const TargetRegisterClass *RC = PhysReg.second) {
5478    RegVT = *RC->vt_begin();
5479    if (OpInfo.ConstraintVT == MVT::Other)
5480      ValueVT = RegVT;
5481
5482    // Create the appropriate number of virtual registers.
5483    MachineRegisterInfo &RegInfo = MF.getRegInfo();
5484    for (; NumRegs; --NumRegs)
5485      Regs.push_back(RegInfo.createVirtualRegister(RC));
5486
5487    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5488    return;
5489  }
5490
5491  // This is a reference to a register class that doesn't directly correspond
5492  // to an LLVM register class.  Allocate NumRegs consecutive, available,
5493  // registers from the class.
5494  std::vector<unsigned> RegClassRegs
5495    = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
5496                                            OpInfo.ConstraintVT);
5497
5498  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5499  unsigned NumAllocated = 0;
5500  for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
5501    unsigned Reg = RegClassRegs[i];
5502    // See if this register is available.
5503    if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
5504        (isInReg  && InputRegs.count(Reg))) {    // Already used.
5505      // Make sure we find consecutive registers.
5506      NumAllocated = 0;
5507      continue;
5508    }
5509
5510    // Check to see if this register is allocatable (i.e. don't give out the
5511    // stack pointer).
5512    const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, TRI);
5513    if (!RC) {        // Couldn't allocate this register.
5514      // Reset NumAllocated to make sure we return consecutive registers.
5515      NumAllocated = 0;
5516      continue;
5517    }
5518
5519    // Okay, this register is good, we can use it.
5520    ++NumAllocated;
5521
5522    // If we allocated enough consecutive registers, succeed.
5523    if (NumAllocated == NumRegs) {
5524      unsigned RegStart = (i-NumAllocated)+1;
5525      unsigned RegEnd   = i+1;
5526      // Mark all of the allocated registers used.
5527      for (unsigned i = RegStart; i != RegEnd; ++i)
5528        Regs.push_back(RegClassRegs[i]);
5529
5530      OpInfo.AssignedRegs = RegsForValue(Regs, *RC->vt_begin(),
5531                                         OpInfo.ConstraintVT);
5532      OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5533      return;
5534    }
5535  }
5536
5537  // Otherwise, we couldn't allocate enough registers for this.
5538}
5539
5540/// visitInlineAsm - Handle a call to an InlineAsm object.
5541///
5542void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
5543  const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
5544
5545  /// ConstraintOperands - Information about all of the constraints.
5546  SDISelAsmOperandInfoVector ConstraintOperands;
5547
5548  std::set<unsigned> OutputRegs, InputRegs;
5549
5550  TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(CS);
5551  bool hasMemory = false;
5552
5553  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
5554  unsigned ResNo = 0;   // ResNo - The result number of the next output.
5555  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
5556    ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
5557    SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
5558
5559    EVT OpVT = MVT::Other;
5560
5561    // Compute the value type for each operand.
5562    switch (OpInfo.Type) {
5563    case InlineAsm::isOutput:
5564      // Indirect outputs just consume an argument.
5565      if (OpInfo.isIndirect) {
5566        OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5567        break;
5568      }
5569
5570      // The return value of the call is this value.  As such, there is no
5571      // corresponding argument.
5572      assert(!CS.getType()->isVoidTy() &&
5573             "Bad inline asm!");
5574      if (const StructType *STy = dyn_cast<StructType>(CS.getType())) {
5575        OpVT = TLI.getValueType(STy->getElementType(ResNo));
5576      } else {
5577        assert(ResNo == 0 && "Asm only has one result!");
5578        OpVT = TLI.getValueType(CS.getType());
5579      }
5580      ++ResNo;
5581      break;
5582    case InlineAsm::isInput:
5583      OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5584      break;
5585    case InlineAsm::isClobber:
5586      // Nothing to do.
5587      break;
5588    }
5589
5590    // If this is an input or an indirect output, process the call argument.
5591    // BasicBlocks are labels, currently appearing only in asm's.
5592    if (OpInfo.CallOperandVal) {
5593      if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
5594        OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
5595      } else {
5596        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
5597      }
5598
5599      OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD);
5600    }
5601
5602    OpInfo.ConstraintVT = OpVT;
5603
5604    // Indirect operand accesses access memory.
5605    if (OpInfo.isIndirect)
5606      hasMemory = true;
5607    else {
5608      for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
5609        TargetLowering::ConstraintType CType = TLI.getConstraintType(OpInfo.Codes[j]);
5610        if (CType == TargetLowering::C_Memory) {
5611          hasMemory = true;
5612          break;
5613        }
5614      }
5615    }
5616  }
5617
5618  SDValue Chain, Flag;
5619
5620  // We won't need to flush pending loads if this asm doesn't touch
5621  // memory and is nonvolatile.
5622  if (hasMemory || IA->hasSideEffects())
5623    Chain = getRoot();
5624  else
5625    Chain = DAG.getRoot();
5626
5627  // Second pass over the constraints: compute which constraint option to use
5628  // and assign registers to constraints that want a specific physreg.
5629  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5630    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5631
5632    // If this is an output operand with a matching input operand, look up the
5633    // matching input. If their types mismatch, e.g. one is an integer, the
5634    // other is floating point, or their sizes are different, flag it as an
5635    // error.
5636    if (OpInfo.hasMatchingInput()) {
5637      SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5638
5639      if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5640        if ((OpInfo.ConstraintVT.isInteger() !=
5641             Input.ConstraintVT.isInteger()) ||
5642            (OpInfo.ConstraintVT.getSizeInBits() !=
5643             Input.ConstraintVT.getSizeInBits())) {
5644          report_fatal_error("Unsupported asm: input constraint"
5645                             " with a matching output constraint of"
5646                             " incompatible type!");
5647        }
5648        Input.ConstraintVT = OpInfo.ConstraintVT;
5649      }
5650    }
5651
5652    // Compute the constraint code and ConstraintType to use.
5653    TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
5654
5655    // If this is a memory input, and if the operand is not indirect, do what we
5656    // need to to provide an address for the memory input.
5657    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5658        !OpInfo.isIndirect) {
5659      assert((OpInfo.isMultipleAlternative || (OpInfo.Type == InlineAsm::isInput)) &&
5660             "Can only indirectify direct input operands!");
5661
5662      // Memory operands really want the address of the value.  If we don't have
5663      // an indirect input, put it in the constpool if we can, otherwise spill
5664      // it to a stack slot.
5665
5666      // If the operand is a float, integer, or vector constant, spill to a
5667      // constant pool entry to get its address.
5668      const Value *OpVal = OpInfo.CallOperandVal;
5669      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
5670          isa<ConstantVector>(OpVal)) {
5671        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
5672                                                 TLI.getPointerTy());
5673      } else {
5674        // Otherwise, create a stack slot and emit a store to it before the
5675        // asm.
5676        const Type *Ty = OpVal->getType();
5677        uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
5678        unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
5679        MachineFunction &MF = DAG.getMachineFunction();
5680        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5681        SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
5682        Chain = DAG.getStore(Chain, getCurDebugLoc(),
5683                             OpInfo.CallOperand, StackSlot,
5684                             MachinePointerInfo::getFixedStack(SSFI),
5685                             false, false, 0);
5686        OpInfo.CallOperand = StackSlot;
5687      }
5688
5689      // There is no longer a Value* corresponding to this operand.
5690      OpInfo.CallOperandVal = 0;
5691
5692      // It is now an indirect operand.
5693      OpInfo.isIndirect = true;
5694    }
5695
5696    // If this constraint is for a specific register, allocate it before
5697    // anything else.
5698    if (OpInfo.ConstraintType == TargetLowering::C_Register)
5699      GetRegistersForValue(OpInfo, OutputRegs, InputRegs);
5700  }
5701
5702  // Second pass - Loop over all of the operands, assigning virtual or physregs
5703  // to register class operands.
5704  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5705    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5706
5707    // C_Register operands have already been allocated, Other/Memory don't need
5708    // to be.
5709    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
5710      GetRegistersForValue(OpInfo, OutputRegs, InputRegs);
5711  }
5712
5713  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
5714  std::vector<SDValue> AsmNodeOperands;
5715  AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
5716  AsmNodeOperands.push_back(
5717          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
5718                                      TLI.getPointerTy()));
5719
5720  // If we have a !srcloc metadata node associated with it, we want to attach
5721  // this to the ultimately generated inline asm machineinstr.  To do this, we
5722  // pass in the third operand as this (potentially null) inline asm MDNode.
5723  const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
5724  AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
5725
5726  // Remember the HasSideEffect and AlignStack bits as operand 3.
5727  unsigned ExtraInfo = 0;
5728  if (IA->hasSideEffects())
5729    ExtraInfo |= InlineAsm::Extra_HasSideEffects;
5730  if (IA->isAlignStack())
5731    ExtraInfo |= InlineAsm::Extra_IsAlignStack;
5732  AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo,
5733                                                  TLI.getPointerTy()));
5734
5735  // Loop over all of the inputs, copying the operand values into the
5736  // appropriate registers and processing the output regs.
5737  RegsForValue RetValRegs;
5738
5739  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
5740  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
5741
5742  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5743    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5744
5745    switch (OpInfo.Type) {
5746    case InlineAsm::isOutput: {
5747      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
5748          OpInfo.ConstraintType != TargetLowering::C_Register) {
5749        // Memory output, or 'other' output (e.g. 'X' constraint).
5750        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
5751
5752        // Add information to the INLINEASM node to know about this output.
5753        unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
5754        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
5755                                                        TLI.getPointerTy()));
5756        AsmNodeOperands.push_back(OpInfo.CallOperand);
5757        break;
5758      }
5759
5760      // Otherwise, this is a register or register class output.
5761
5762      // Copy the output from the appropriate register.  Find a register that
5763      // we can use.
5764      if (OpInfo.AssignedRegs.Regs.empty())
5765        report_fatal_error("Couldn't allocate output reg for constraint '" +
5766                           Twine(OpInfo.ConstraintCode) + "'!");
5767
5768      // If this is an indirect operand, store through the pointer after the
5769      // asm.
5770      if (OpInfo.isIndirect) {
5771        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
5772                                                      OpInfo.CallOperandVal));
5773      } else {
5774        // This is the result value of the call.
5775        assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
5776        // Concatenate this output onto the outputs list.
5777        RetValRegs.append(OpInfo.AssignedRegs);
5778      }
5779
5780      // Add information to the INLINEASM node to know that this register is
5781      // set.
5782      OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
5783                                           InlineAsm::Kind_RegDefEarlyClobber :
5784                                               InlineAsm::Kind_RegDef,
5785                                               false,
5786                                               0,
5787                                               DAG,
5788                                               AsmNodeOperands);
5789      break;
5790    }
5791    case InlineAsm::isInput: {
5792      SDValue InOperandVal = OpInfo.CallOperand;
5793
5794      if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
5795        // If this is required to match an output register we have already set,
5796        // just use its register.
5797        unsigned OperandNo = OpInfo.getMatchedOperand();
5798
5799        // Scan until we find the definition we already emitted of this operand.
5800        // When we find it, create a RegsForValue operand.
5801        unsigned CurOp = InlineAsm::Op_FirstOperand;
5802        for (; OperandNo; --OperandNo) {
5803          // Advance to the next operand.
5804          unsigned OpFlag =
5805            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5806          assert((InlineAsm::isRegDefKind(OpFlag) ||
5807                  InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
5808                  InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
5809          CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
5810        }
5811
5812        unsigned OpFlag =
5813          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5814        if (InlineAsm::isRegDefKind(OpFlag) ||
5815            InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
5816          // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
5817          if (OpInfo.isIndirect) {
5818            // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
5819            LLVMContext &Ctx = *DAG.getContext();
5820            Ctx.emitError(CS.getInstruction(),  "inline asm not supported yet:"
5821                          " don't know how to handle tied "
5822                          "indirect register inputs");
5823          }
5824
5825          RegsForValue MatchedRegs;
5826          MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
5827          EVT RegVT = AsmNodeOperands[CurOp+1].getValueType();
5828          MatchedRegs.RegVTs.push_back(RegVT);
5829          MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
5830          for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
5831               i != e; ++i)
5832            MatchedRegs.Regs.push_back
5833              (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)));
5834
5835          // Use the produced MatchedRegs object to
5836          MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
5837                                    Chain, &Flag);
5838          MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
5839                                           true, OpInfo.getMatchedOperand(),
5840                                           DAG, AsmNodeOperands);
5841          break;
5842        }
5843
5844        assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
5845        assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
5846               "Unexpected number of operands");
5847        // Add information to the INLINEASM node to know about this input.
5848        // See InlineAsm.h isUseOperandTiedToDef.
5849        OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
5850                                                    OpInfo.getMatchedOperand());
5851        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
5852                                                        TLI.getPointerTy()));
5853        AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
5854        break;
5855      }
5856
5857      // Treat indirect 'X' constraint as memory.
5858      if (OpInfo.ConstraintType == TargetLowering::C_Other &&
5859          OpInfo.isIndirect)
5860        OpInfo.ConstraintType = TargetLowering::C_Memory;
5861
5862      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
5863        std::vector<SDValue> Ops;
5864        TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0],
5865                                         Ops, DAG);
5866        if (Ops.empty())
5867          report_fatal_error("Invalid operand for inline asm constraint '" +
5868                             Twine(OpInfo.ConstraintCode) + "'!");
5869
5870        // Add information to the INLINEASM node to know about this input.
5871        unsigned ResOpType =
5872          InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
5873        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5874                                                        TLI.getPointerTy()));
5875        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
5876        break;
5877      }
5878
5879      if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
5880        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
5881        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
5882               "Memory operands expect pointer values");
5883
5884        // Add information to the INLINEASM node to know about this input.
5885        unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
5886        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5887                                                        TLI.getPointerTy()));
5888        AsmNodeOperands.push_back(InOperandVal);
5889        break;
5890      }
5891
5892      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
5893              OpInfo.ConstraintType == TargetLowering::C_Register) &&
5894             "Unknown constraint type!");
5895      assert(!OpInfo.isIndirect &&
5896             "Don't know how to handle indirect register inputs yet!");
5897
5898      // Copy the input into the appropriate registers.
5899      if (OpInfo.AssignedRegs.Regs.empty() ||
5900          !OpInfo.AssignedRegs.areValueTypesLegal(TLI))
5901        report_fatal_error("Couldn't allocate input reg for constraint '" +
5902                           Twine(OpInfo.ConstraintCode) + "'!");
5903
5904      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
5905                                        Chain, &Flag);
5906
5907      OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
5908                                               DAG, AsmNodeOperands);
5909      break;
5910    }
5911    case InlineAsm::isClobber: {
5912      // Add the clobbered value to the operand list, so that the register
5913      // allocator is aware that the physreg got clobbered.
5914      if (!OpInfo.AssignedRegs.Regs.empty())
5915        OpInfo.AssignedRegs.AddInlineAsmOperands(
5916                                            InlineAsm::Kind_RegDefEarlyClobber,
5917                                                 false, 0, DAG,
5918                                                 AsmNodeOperands);
5919      break;
5920    }
5921    }
5922  }
5923
5924  // Finish up input operands.  Set the input chain and add the flag last.
5925  AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
5926  if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
5927
5928  Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(),
5929                      DAG.getVTList(MVT::Other, MVT::Glue),
5930                      &AsmNodeOperands[0], AsmNodeOperands.size());
5931  Flag = Chain.getValue(1);
5932
5933  // If this asm returns a register value, copy the result from that register
5934  // and set it as the value of the call.
5935  if (!RetValRegs.Regs.empty()) {
5936    SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
5937                                             Chain, &Flag);
5938
5939    // FIXME: Why don't we do this for inline asms with MRVs?
5940    if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
5941      EVT ResultType = TLI.getValueType(CS.getType());
5942
5943      // If any of the results of the inline asm is a vector, it may have the
5944      // wrong width/num elts.  This can happen for register classes that can
5945      // contain multiple different value types.  The preg or vreg allocated may
5946      // not have the same VT as was expected.  Convert it to the right type
5947      // with bit_convert.
5948      if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
5949        Val = DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
5950                          ResultType, Val);
5951
5952      } else if (ResultType != Val.getValueType() &&
5953                 ResultType.isInteger() && Val.getValueType().isInteger()) {
5954        // If a result value was tied to an input value, the computed result may
5955        // have a wider width than the expected result.  Extract the relevant
5956        // portion.
5957        Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val);
5958      }
5959
5960      assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
5961    }
5962
5963    setValue(CS.getInstruction(), Val);
5964    // Don't need to use this as a chain in this case.
5965    if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
5966      return;
5967  }
5968
5969  std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
5970
5971  // Process indirect outputs, first output all of the flagged copies out of
5972  // physregs.
5973  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
5974    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
5975    const Value *Ptr = IndirectStoresToEmit[i].second;
5976    SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
5977                                             Chain, &Flag);
5978    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
5979  }
5980
5981  // Emit the non-flagged stores from the physregs.
5982  SmallVector<SDValue, 8> OutChains;
5983  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
5984    SDValue Val = DAG.getStore(Chain, getCurDebugLoc(),
5985                               StoresToEmit[i].first,
5986                               getValue(StoresToEmit[i].second),
5987                               MachinePointerInfo(StoresToEmit[i].second),
5988                               false, false, 0);
5989    OutChains.push_back(Val);
5990  }
5991
5992  if (!OutChains.empty())
5993    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
5994                        &OutChains[0], OutChains.size());
5995
5996  DAG.setRoot(Chain);
5997}
5998
5999void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
6000  DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(),
6001                          MVT::Other, getRoot(),
6002                          getValue(I.getArgOperand(0)),
6003                          DAG.getSrcValue(I.getArgOperand(0))));
6004}
6005
6006void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
6007  const TargetData &TD = *TLI.getTargetData();
6008  SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(),
6009                           getRoot(), getValue(I.getOperand(0)),
6010                           DAG.getSrcValue(I.getOperand(0)),
6011                           TD.getABITypeAlignment(I.getType()));
6012  setValue(&I, V);
6013  DAG.setRoot(V.getValue(1));
6014}
6015
6016void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
6017  DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(),
6018                          MVT::Other, getRoot(),
6019                          getValue(I.getArgOperand(0)),
6020                          DAG.getSrcValue(I.getArgOperand(0))));
6021}
6022
6023void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
6024  DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(),
6025                          MVT::Other, getRoot(),
6026                          getValue(I.getArgOperand(0)),
6027                          getValue(I.getArgOperand(1)),
6028                          DAG.getSrcValue(I.getArgOperand(0)),
6029                          DAG.getSrcValue(I.getArgOperand(1))));
6030}
6031
6032/// TargetLowering::LowerCallTo - This is the default LowerCallTo
6033/// implementation, which just calls LowerCall.
6034/// FIXME: When all targets are
6035/// migrated to using LowerCall, this hook should be integrated into SDISel.
6036std::pair<SDValue, SDValue>
6037TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy,
6038                            bool RetSExt, bool RetZExt, bool isVarArg,
6039                            bool isInreg, unsigned NumFixedArgs,
6040                            CallingConv::ID CallConv, bool isTailCall,
6041                            bool isReturnValueUsed,
6042                            SDValue Callee,
6043                            ArgListTy &Args, SelectionDAG &DAG,
6044                            DebugLoc dl) const {
6045  // Handle all of the outgoing arguments.
6046  SmallVector<ISD::OutputArg, 32> Outs;
6047  SmallVector<SDValue, 32> OutVals;
6048  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
6049    SmallVector<EVT, 4> ValueVTs;
6050    ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
6051    for (unsigned Value = 0, NumValues = ValueVTs.size();
6052         Value != NumValues; ++Value) {
6053      EVT VT = ValueVTs[Value];
6054      const Type *ArgTy = VT.getTypeForEVT(RetTy->getContext());
6055      SDValue Op = SDValue(Args[i].Node.getNode(),
6056                           Args[i].Node.getResNo() + Value);
6057      ISD::ArgFlagsTy Flags;
6058      unsigned OriginalAlignment =
6059        getTargetData()->getABITypeAlignment(ArgTy);
6060
6061      if (Args[i].isZExt)
6062        Flags.setZExt();
6063      if (Args[i].isSExt)
6064        Flags.setSExt();
6065      if (Args[i].isInReg)
6066        Flags.setInReg();
6067      if (Args[i].isSRet)
6068        Flags.setSRet();
6069      if (Args[i].isByVal) {
6070        Flags.setByVal();
6071        const PointerType *Ty = cast<PointerType>(Args[i].Ty);
6072        const Type *ElementTy = Ty->getElementType();
6073        unsigned FrameAlign = getByValTypeAlignment(ElementTy);
6074        unsigned FrameSize  = getTargetData()->getTypeAllocSize(ElementTy);
6075        // For ByVal, alignment should come from FE.  BE will guess if this
6076        // info is not there but there are cases it cannot get right.
6077        if (Args[i].Alignment)
6078          FrameAlign = Args[i].Alignment;
6079        Flags.setByValAlign(FrameAlign);
6080        Flags.setByValSize(FrameSize);
6081      }
6082      if (Args[i].isNest)
6083        Flags.setNest();
6084      Flags.setOrigAlign(OriginalAlignment);
6085
6086      EVT PartVT = getRegisterType(RetTy->getContext(), VT);
6087      unsigned NumParts = getNumRegisters(RetTy->getContext(), VT);
6088      SmallVector<SDValue, 4> Parts(NumParts);
6089      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
6090
6091      if (Args[i].isSExt)
6092        ExtendKind = ISD::SIGN_EXTEND;
6093      else if (Args[i].isZExt)
6094        ExtendKind = ISD::ZERO_EXTEND;
6095
6096      getCopyToParts(DAG, dl, Op, &Parts[0], NumParts,
6097                     PartVT, ExtendKind);
6098
6099      for (unsigned j = 0; j != NumParts; ++j) {
6100        // if it isn't first piece, alignment must be 1
6101        ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(),
6102                               i < NumFixedArgs);
6103        if (NumParts > 1 && j == 0)
6104          MyFlags.Flags.setSplit();
6105        else if (j != 0)
6106          MyFlags.Flags.setOrigAlign(1);
6107
6108        Outs.push_back(MyFlags);
6109        OutVals.push_back(Parts[j]);
6110      }
6111    }
6112  }
6113
6114  // Handle the incoming return values from the call.
6115  SmallVector<ISD::InputArg, 32> Ins;
6116  SmallVector<EVT, 4> RetTys;
6117  ComputeValueVTs(*this, RetTy, RetTys);
6118  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6119    EVT VT = RetTys[I];
6120    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
6121    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
6122    for (unsigned i = 0; i != NumRegs; ++i) {
6123      ISD::InputArg MyFlags;
6124      MyFlags.VT = RegisterVT.getSimpleVT();
6125      MyFlags.Used = isReturnValueUsed;
6126      if (RetSExt)
6127        MyFlags.Flags.setSExt();
6128      if (RetZExt)
6129        MyFlags.Flags.setZExt();
6130      if (isInreg)
6131        MyFlags.Flags.setInReg();
6132      Ins.push_back(MyFlags);
6133    }
6134  }
6135
6136  SmallVector<SDValue, 4> InVals;
6137  Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall,
6138                    Outs, OutVals, Ins, dl, DAG, InVals);
6139
6140  // Verify that the target's LowerCall behaved as expected.
6141  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
6142         "LowerCall didn't return a valid chain!");
6143  assert((!isTailCall || InVals.empty()) &&
6144         "LowerCall emitted a return value for a tail call!");
6145  assert((isTailCall || InVals.size() == Ins.size()) &&
6146         "LowerCall didn't emit the correct number of values!");
6147
6148  // For a tail call, the return value is merely live-out and there aren't
6149  // any nodes in the DAG representing it. Return a special value to
6150  // indicate that a tail call has been emitted and no more Instructions
6151  // should be processed in the current block.
6152  if (isTailCall) {
6153    DAG.setRoot(Chain);
6154    return std::make_pair(SDValue(), SDValue());
6155  }
6156
6157  DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6158          assert(InVals[i].getNode() &&
6159                 "LowerCall emitted a null value!");
6160          assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6161                 "LowerCall emitted a value with the wrong type!");
6162        });
6163
6164  // Collect the legal value parts into potentially illegal values
6165  // that correspond to the original function's return values.
6166  ISD::NodeType AssertOp = ISD::DELETED_NODE;
6167  if (RetSExt)
6168    AssertOp = ISD::AssertSext;
6169  else if (RetZExt)
6170    AssertOp = ISD::AssertZext;
6171  SmallVector<SDValue, 4> ReturnValues;
6172  unsigned CurReg = 0;
6173  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6174    EVT VT = RetTys[I];
6175    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
6176    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
6177
6178    ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg],
6179                                            NumRegs, RegisterVT, VT,
6180                                            AssertOp));
6181    CurReg += NumRegs;
6182  }
6183
6184  // For a function returning void, there is no return value. We can't create
6185  // such a node, so we just return a null return value in that case. In
6186  // that case, nothing will actualy look at the value.
6187  if (ReturnValues.empty())
6188    return std::make_pair(SDValue(), Chain);
6189
6190  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
6191                            DAG.getVTList(&RetTys[0], RetTys.size()),
6192                            &ReturnValues[0], ReturnValues.size());
6193  return std::make_pair(Res, Chain);
6194}
6195
6196void TargetLowering::LowerOperationWrapper(SDNode *N,
6197                                           SmallVectorImpl<SDValue> &Results,
6198                                           SelectionDAG &DAG) const {
6199  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
6200  if (Res.getNode())
6201    Results.push_back(Res);
6202}
6203
6204SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
6205  llvm_unreachable("LowerOperation not implemented for this target!");
6206  return SDValue();
6207}
6208
6209void
6210SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
6211  SDValue Op = getNonRegisterValue(V);
6212  assert((Op.getOpcode() != ISD::CopyFromReg ||
6213          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
6214         "Copy from a reg to the same reg!");
6215  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
6216
6217  RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
6218  SDValue Chain = DAG.getEntryNode();
6219  RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0);
6220  PendingExports.push_back(Chain);
6221}
6222
6223#include "llvm/CodeGen/SelectionDAGISel.h"
6224
6225void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) {
6226  // If this is the entry block, emit arguments.
6227  const Function &F = *LLVMBB->getParent();
6228  SelectionDAG &DAG = SDB->DAG;
6229  DebugLoc dl = SDB->getCurDebugLoc();
6230  const TargetData *TD = TLI.getTargetData();
6231  SmallVector<ISD::InputArg, 16> Ins;
6232
6233  // Check whether the function can return without sret-demotion.
6234  SmallVector<ISD::OutputArg, 4> Outs;
6235  GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
6236                Outs, TLI);
6237
6238  if (!FuncInfo->CanLowerReturn) {
6239    // Put in an sret pointer parameter before all the other parameters.
6240    SmallVector<EVT, 1> ValueVTs;
6241    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6242
6243    // NOTE: Assuming that a pointer will never break down to more than one VT
6244    // or one register.
6245    ISD::ArgFlagsTy Flags;
6246    Flags.setSRet();
6247    EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]);
6248    ISD::InputArg RetArg(Flags, RegisterVT, true);
6249    Ins.push_back(RetArg);
6250  }
6251
6252  // Set up the incoming argument description vector.
6253  unsigned Idx = 1;
6254  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
6255       I != E; ++I, ++Idx) {
6256    SmallVector<EVT, 4> ValueVTs;
6257    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6258    bool isArgValueUsed = !I->use_empty();
6259    for (unsigned Value = 0, NumValues = ValueVTs.size();
6260         Value != NumValues; ++Value) {
6261      EVT VT = ValueVTs[Value];
6262      const Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
6263      ISD::ArgFlagsTy Flags;
6264      unsigned OriginalAlignment =
6265        TD->getABITypeAlignment(ArgTy);
6266
6267      if (F.paramHasAttr(Idx, Attribute::ZExt))
6268        Flags.setZExt();
6269      if (F.paramHasAttr(Idx, Attribute::SExt))
6270        Flags.setSExt();
6271      if (F.paramHasAttr(Idx, Attribute::InReg))
6272        Flags.setInReg();
6273      if (F.paramHasAttr(Idx, Attribute::StructRet))
6274        Flags.setSRet();
6275      if (F.paramHasAttr(Idx, Attribute::ByVal)) {
6276        Flags.setByVal();
6277        const PointerType *Ty = cast<PointerType>(I->getType());
6278        const Type *ElementTy = Ty->getElementType();
6279        unsigned FrameAlign = TLI.getByValTypeAlignment(ElementTy);
6280        unsigned FrameSize  = TD->getTypeAllocSize(ElementTy);
6281        // For ByVal, alignment should be passed from FE.  BE will guess if
6282        // this info is not there but there are cases it cannot get right.
6283        if (F.getParamAlignment(Idx))
6284          FrameAlign = F.getParamAlignment(Idx);
6285        Flags.setByValAlign(FrameAlign);
6286        Flags.setByValSize(FrameSize);
6287      }
6288      if (F.paramHasAttr(Idx, Attribute::Nest))
6289        Flags.setNest();
6290      Flags.setOrigAlign(OriginalAlignment);
6291
6292      EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6293      unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6294      for (unsigned i = 0; i != NumRegs; ++i) {
6295        ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed);
6296        if (NumRegs > 1 && i == 0)
6297          MyFlags.Flags.setSplit();
6298        // if it isn't first piece, alignment must be 1
6299        else if (i > 0)
6300          MyFlags.Flags.setOrigAlign(1);
6301        Ins.push_back(MyFlags);
6302      }
6303    }
6304  }
6305
6306  // Call the target to set up the argument values.
6307  SmallVector<SDValue, 8> InVals;
6308  SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
6309                                             F.isVarArg(), Ins,
6310                                             dl, DAG, InVals);
6311
6312  // Verify that the target's LowerFormalArguments behaved as expected.
6313  assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
6314         "LowerFormalArguments didn't return a valid chain!");
6315  assert(InVals.size() == Ins.size() &&
6316         "LowerFormalArguments didn't emit the correct number of values!");
6317  DEBUG({
6318      for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6319        assert(InVals[i].getNode() &&
6320               "LowerFormalArguments emitted a null value!");
6321        assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6322               "LowerFormalArguments emitted a value with the wrong type!");
6323      }
6324    });
6325
6326  // Update the DAG with the new chain value resulting from argument lowering.
6327  DAG.setRoot(NewRoot);
6328
6329  // Set up the argument values.
6330  unsigned i = 0;
6331  Idx = 1;
6332  if (!FuncInfo->CanLowerReturn) {
6333    // Create a virtual register for the sret pointer, and put in a copy
6334    // from the sret argument into it.
6335    SmallVector<EVT, 1> ValueVTs;
6336    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6337    EVT VT = ValueVTs[0];
6338    EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6339    ISD::NodeType AssertOp = ISD::DELETED_NODE;
6340    SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
6341                                        RegVT, VT, AssertOp);
6342
6343    MachineFunction& MF = SDB->DAG.getMachineFunction();
6344    MachineRegisterInfo& RegInfo = MF.getRegInfo();
6345    unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT));
6346    FuncInfo->DemoteRegister = SRetReg;
6347    NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(),
6348                                    SRetReg, ArgValue);
6349    DAG.setRoot(NewRoot);
6350
6351    // i indexes lowered arguments.  Bump it past the hidden sret argument.
6352    // Idx indexes LLVM arguments.  Don't touch it.
6353    ++i;
6354  }
6355
6356  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
6357      ++I, ++Idx) {
6358    SmallVector<SDValue, 4> ArgValues;
6359    SmallVector<EVT, 4> ValueVTs;
6360    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6361    unsigned NumValues = ValueVTs.size();
6362
6363    // If this argument is unused then remember its value. It is used to generate
6364    // debugging information.
6365    if (I->use_empty() && NumValues)
6366      SDB->setUnusedArgValue(I, InVals[i]);
6367
6368    for (unsigned Value = 0; Value != NumValues; ++Value) {
6369      EVT VT = ValueVTs[Value];
6370      EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6371      unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6372
6373      if (!I->use_empty()) {
6374        ISD::NodeType AssertOp = ISD::DELETED_NODE;
6375        if (F.paramHasAttr(Idx, Attribute::SExt))
6376          AssertOp = ISD::AssertSext;
6377        else if (F.paramHasAttr(Idx, Attribute::ZExt))
6378          AssertOp = ISD::AssertZext;
6379
6380        ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
6381                                             NumParts, PartVT, VT,
6382                                             AssertOp));
6383      }
6384
6385      i += NumParts;
6386    }
6387
6388    // Note down frame index for byval arguments.
6389    if (I->hasByValAttr() && !ArgValues.empty())
6390      if (FrameIndexSDNode *FI =
6391          dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
6392        FuncInfo->setByValArgumentFrameIndex(I, FI->getIndex());
6393
6394    if (!I->use_empty()) {
6395      SDValue Res;
6396      if (!ArgValues.empty())
6397        Res = DAG.getMergeValues(&ArgValues[0], NumValues,
6398                                 SDB->getCurDebugLoc());
6399      SDB->setValue(I, Res);
6400
6401      // If this argument is live outside of the entry block, insert a copy from
6402      // whereever we got it to the vreg that other BB's will reference it as.
6403      SDB->CopyToExportRegsIfNeeded(I);
6404    }
6405  }
6406
6407  assert(i == InVals.size() && "Argument register count mismatch!");
6408
6409  // Finally, if the target has anything special to do, allow it to do so.
6410  // FIXME: this should insert code into the DAG!
6411  EmitFunctionEntryCode();
6412}
6413
6414/// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
6415/// ensure constants are generated when needed.  Remember the virtual registers
6416/// that need to be added to the Machine PHI nodes as input.  We cannot just
6417/// directly add them, because expansion might result in multiple MBB's for one
6418/// BB.  As such, the start of the BB might correspond to a different MBB than
6419/// the end.
6420///
6421void
6422SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
6423  const TerminatorInst *TI = LLVMBB->getTerminator();
6424
6425  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6426
6427  // Check successor nodes' PHI nodes that expect a constant to be available
6428  // from this block.
6429  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6430    const BasicBlock *SuccBB = TI->getSuccessor(succ);
6431    if (!isa<PHINode>(SuccBB->begin())) continue;
6432    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
6433
6434    // If this terminator has multiple identical successors (common for
6435    // switches), only handle each succ once.
6436    if (!SuccsHandled.insert(SuccMBB)) continue;
6437
6438    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6439
6440    // At this point we know that there is a 1-1 correspondence between LLVM PHI
6441    // nodes and Machine PHI nodes, but the incoming operands have not been
6442    // emitted yet.
6443    for (BasicBlock::const_iterator I = SuccBB->begin();
6444         const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
6445      // Ignore dead phi's.
6446      if (PN->use_empty()) continue;
6447
6448      unsigned Reg;
6449      const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6450
6451      if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
6452        unsigned &RegOut = ConstantsOut[C];
6453        if (RegOut == 0) {
6454          RegOut = FuncInfo.CreateRegs(C->getType());
6455          CopyValueToVirtualRegister(C, RegOut);
6456        }
6457        Reg = RegOut;
6458      } else {
6459        DenseMap<const Value *, unsigned>::iterator I =
6460          FuncInfo.ValueMap.find(PHIOp);
6461        if (I != FuncInfo.ValueMap.end())
6462          Reg = I->second;
6463        else {
6464          assert(isa<AllocaInst>(PHIOp) &&
6465                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
6466                 "Didn't codegen value into a register!??");
6467          Reg = FuncInfo.CreateRegs(PHIOp->getType());
6468          CopyValueToVirtualRegister(PHIOp, Reg);
6469        }
6470      }
6471
6472      if (!EnableFastISel)
6473        FuncInfo.PHISrcToDestMap[Reg] = FuncInfo.ValueMap[PN];
6474
6475      // Remember that this register needs to added to the machine PHI node as
6476      // the input for this MBB.
6477      SmallVector<EVT, 4> ValueVTs;
6478      ComputeValueVTs(TLI, PN->getType(), ValueVTs);
6479      for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
6480        EVT VT = ValueVTs[vti];
6481        unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
6482        for (unsigned i = 0, e = NumRegisters; i != e; ++i)
6483          FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
6484        Reg += NumRegisters;
6485      }
6486    }
6487  }
6488  ConstantsOut.clear();
6489}
6490