SelectionDAGBuilder.cpp revision 9c0e9217325db888331c23ad7c332c09d64b02d4
1//===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements routines for translating from LLVM IR into SelectionDAG IR.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "SelectionDAGBuilder.h"
16#include "SDNodeDbgValue.h"
17#include "llvm/ADT/BitVector.h"
18#include "llvm/ADT/Optional.h"
19#include "llvm/ADT/SmallSet.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/BranchProbabilityInfo.h"
22#include "llvm/Analysis/ConstantFolding.h"
23#include "llvm/Analysis/ValueTracking.h"
24#include "llvm/CodeGen/Analysis.h"
25#include "llvm/CodeGen/FastISel.h"
26#include "llvm/CodeGen/FunctionLoweringInfo.h"
27#include "llvm/CodeGen/GCMetadata.h"
28#include "llvm/CodeGen/GCStrategy.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineInstrBuilder.h"
32#include "llvm/CodeGen/MachineJumpTableInfo.h"
33#include "llvm/CodeGen/MachineModuleInfo.h"
34#include "llvm/CodeGen/MachineRegisterInfo.h"
35#include "llvm/CodeGen/SelectionDAG.h"
36#include "llvm/DebugInfo.h"
37#include "llvm/IR/CallingConv.h"
38#include "llvm/IR/Constants.h"
39#include "llvm/IR/DataLayout.h"
40#include "llvm/IR/DerivedTypes.h"
41#include "llvm/IR/Function.h"
42#include "llvm/IR/GlobalVariable.h"
43#include "llvm/IR/InlineAsm.h"
44#include "llvm/IR/Instructions.h"
45#include "llvm/IR/IntrinsicInst.h"
46#include "llvm/IR/Intrinsics.h"
47#include "llvm/IR/LLVMContext.h"
48#include "llvm/IR/Module.h"
49#include "llvm/Support/CommandLine.h"
50#include "llvm/Support/Debug.h"
51#include "llvm/Support/ErrorHandling.h"
52#include "llvm/Support/IntegersSubsetMapping.h"
53#include "llvm/Support/MathExtras.h"
54#include "llvm/Support/raw_ostream.h"
55#include "llvm/Target/TargetFrameLowering.h"
56#include "llvm/Target/TargetInstrInfo.h"
57#include "llvm/Target/TargetIntrinsicInfo.h"
58#include "llvm/Target/TargetLibraryInfo.h"
59#include "llvm/Target/TargetLowering.h"
60#include "llvm/Target/TargetOptions.h"
61#include <algorithm>
62using namespace llvm;
63
64/// LimitFloatPrecision - Generate low-precision inline sequences for
65/// some float libcalls (6, 8 or 12 bits).
66static unsigned LimitFloatPrecision;
67
68static cl::opt<unsigned, true>
69LimitFPPrecision("limit-float-precision",
70                 cl::desc("Generate low-precision inline sequences "
71                          "for some float libcalls"),
72                 cl::location(LimitFloatPrecision),
73                 cl::init(0));
74
75// Limit the width of DAG chains. This is important in general to prevent
76// prevent DAG-based analysis from blowing up. For example, alias analysis and
77// load clustering may not complete in reasonable time. It is difficult to
78// recognize and avoid this situation within each individual analysis, and
79// future analyses are likely to have the same behavior. Limiting DAG width is
80// the safe approach, and will be especially important with global DAGs.
81//
82// MaxParallelChains default is arbitrarily high to avoid affecting
83// optimization, but could be lowered to improve compile time. Any ld-ld-st-st
84// sequence over this should have been converted to llvm.memcpy by the
85// frontend. It easy to induce this behavior with .ll code such as:
86// %buffer = alloca [4096 x i8]
87// %data = load [4096 x i8]* %argPtr
88// store [4096 x i8] %data, [4096 x i8]* %buffer
89static const unsigned MaxParallelChains = 64;
90
91static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL,
92                                      const SDValue *Parts, unsigned NumParts,
93                                      MVT PartVT, EVT ValueVT, const Value *V);
94
95/// getCopyFromParts - Create a value that contains the specified legal parts
96/// combined into the value they represent.  If the parts combine to a type
97/// larger then ValueVT then AssertOp can be used to specify whether the extra
98/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
99/// (ISD::AssertSext).
100static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL,
101                                const SDValue *Parts,
102                                unsigned NumParts, MVT PartVT, EVT ValueVT,
103                                const Value *V,
104                                ISD::NodeType AssertOp = ISD::DELETED_NODE) {
105  if (ValueVT.isVector())
106    return getCopyFromPartsVector(DAG, DL, Parts, NumParts,
107                                  PartVT, ValueVT, V);
108
109  assert(NumParts > 0 && "No parts to assemble!");
110  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
111  SDValue Val = Parts[0];
112
113  if (NumParts > 1) {
114    // Assemble the value from multiple parts.
115    if (ValueVT.isInteger()) {
116      unsigned PartBits = PartVT.getSizeInBits();
117      unsigned ValueBits = ValueVT.getSizeInBits();
118
119      // Assemble the power of 2 part.
120      unsigned RoundParts = NumParts & (NumParts - 1) ?
121        1 << Log2_32(NumParts) : NumParts;
122      unsigned RoundBits = PartBits * RoundParts;
123      EVT RoundVT = RoundBits == ValueBits ?
124        ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
125      SDValue Lo, Hi;
126
127      EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
128
129      if (RoundParts > 2) {
130        Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
131                              PartVT, HalfVT, V);
132        Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
133                              RoundParts / 2, PartVT, HalfVT, V);
134      } else {
135        Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
136        Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
137      }
138
139      if (TLI.isBigEndian())
140        std::swap(Lo, Hi);
141
142      Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
143
144      if (RoundParts < NumParts) {
145        // Assemble the trailing non-power-of-2 part.
146        unsigned OddParts = NumParts - RoundParts;
147        EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
148        Hi = getCopyFromParts(DAG, DL,
149                              Parts + RoundParts, OddParts, PartVT, OddVT, V);
150
151        // Combine the round and odd parts.
152        Lo = Val;
153        if (TLI.isBigEndian())
154          std::swap(Lo, Hi);
155        EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
156        Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
157        Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
158                         DAG.getConstant(Lo.getValueType().getSizeInBits(),
159                                         TLI.getPointerTy()));
160        Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
161        Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
162      }
163    } else if (PartVT.isFloatingPoint()) {
164      // FP split into multiple FP parts (for ppcf128)
165      assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
166             "Unexpected split");
167      SDValue Lo, Hi;
168      Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
169      Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
170      if (TLI.isBigEndian())
171        std::swap(Lo, Hi);
172      Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
173    } else {
174      // FP split into integer parts (soft fp)
175      assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
176             !PartVT.isVector() && "Unexpected split");
177      EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
178      Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V);
179    }
180  }
181
182  // There is now one part, held in Val.  Correct it to match ValueVT.
183  EVT PartEVT = Val.getValueType();
184
185  if (PartEVT == ValueVT)
186    return Val;
187
188  if (PartEVT.isInteger() && ValueVT.isInteger()) {
189    if (ValueVT.bitsLT(PartEVT)) {
190      // For a truncate, see if we have any information to
191      // indicate whether the truncated bits will always be
192      // zero or sign-extension.
193      if (AssertOp != ISD::DELETED_NODE)
194        Val = DAG.getNode(AssertOp, DL, PartEVT, Val,
195                          DAG.getValueType(ValueVT));
196      return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
197    }
198    return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
199  }
200
201  if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
202    // FP_ROUND's are always exact here.
203    if (ValueVT.bitsLT(Val.getValueType()))
204      return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val,
205                         DAG.getTargetConstant(1, TLI.getPointerTy()));
206
207    return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
208  }
209
210  if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
211    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
212
213  llvm_unreachable("Unknown mismatch!");
214}
215
216/// getCopyFromPartsVector - Create a value that contains the specified legal
217/// parts combined into the value they represent.  If the parts combine to a
218/// type larger then ValueVT then AssertOp can be used to specify whether the
219/// extra bits are known to be zero (ISD::AssertZext) or sign extended from
220/// ValueVT (ISD::AssertSext).
221static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL,
222                                      const SDValue *Parts, unsigned NumParts,
223                                      MVT PartVT, EVT ValueVT, const Value *V) {
224  assert(ValueVT.isVector() && "Not a vector value");
225  assert(NumParts > 0 && "No parts to assemble!");
226  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
227  SDValue Val = Parts[0];
228
229  // Handle a multi-element vector.
230  if (NumParts > 1) {
231    EVT IntermediateVT;
232    MVT RegisterVT;
233    unsigned NumIntermediates;
234    unsigned NumRegs =
235    TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
236                               NumIntermediates, RegisterVT);
237    assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
238    NumParts = NumRegs; // Silence a compiler warning.
239    assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
240    assert(RegisterVT == Parts[0].getSimpleValueType() &&
241           "Part type doesn't match part!");
242
243    // Assemble the parts into intermediate operands.
244    SmallVector<SDValue, 8> Ops(NumIntermediates);
245    if (NumIntermediates == NumParts) {
246      // If the register was not expanded, truncate or copy the value,
247      // as appropriate.
248      for (unsigned i = 0; i != NumParts; ++i)
249        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
250                                  PartVT, IntermediateVT, V);
251    } else if (NumParts > 0) {
252      // If the intermediate type was expanded, build the intermediate
253      // operands from the parts.
254      assert(NumParts % NumIntermediates == 0 &&
255             "Must expand into a divisible number of parts!");
256      unsigned Factor = NumParts / NumIntermediates;
257      for (unsigned i = 0; i != NumIntermediates; ++i)
258        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
259                                  PartVT, IntermediateVT, V);
260    }
261
262    // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
263    // intermediate operands.
264    Val = DAG.getNode(IntermediateVT.isVector() ?
265                      ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL,
266                      ValueVT, &Ops[0], NumIntermediates);
267  }
268
269  // There is now one part, held in Val.  Correct it to match ValueVT.
270  EVT PartEVT = Val.getValueType();
271
272  if (PartEVT == ValueVT)
273    return Val;
274
275  if (PartEVT.isVector()) {
276    // If the element type of the source/dest vectors are the same, but the
277    // parts vector has more elements than the value vector, then we have a
278    // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
279    // elements we want.
280    if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
281      assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
282             "Cannot narrow, it would be a lossy transformation");
283      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
284                         DAG.getIntPtrConstant(0));
285    }
286
287    // Vector/Vector bitcast.
288    if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
289      return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
290
291    assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
292      "Cannot handle this kind of promotion");
293    // Promoted vector extract
294    bool Smaller = ValueVT.bitsLE(PartEVT);
295    return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
296                       DL, ValueVT, Val);
297
298  }
299
300  // Trivial bitcast if the types are the same size and the destination
301  // vector type is legal.
302  if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
303      TLI.isTypeLegal(ValueVT))
304    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
305
306  // Handle cases such as i8 -> <1 x i1>
307  if (ValueVT.getVectorNumElements() != 1) {
308    LLVMContext &Ctx = *DAG.getContext();
309    Twine ErrMsg("non-trivial scalar-to-vector conversion");
310    if (const Instruction *I = dyn_cast_or_null<Instruction>(V)) {
311      if (const CallInst *CI = dyn_cast<CallInst>(I))
312        if (isa<InlineAsm>(CI->getCalledValue()))
313          ErrMsg = ErrMsg + ", possible invalid constraint for vector type";
314      Ctx.emitError(I, ErrMsg);
315    } else {
316      Ctx.emitError(ErrMsg);
317    }
318    return DAG.getUNDEF(ValueVT);
319  }
320
321  if (ValueVT.getVectorNumElements() == 1 &&
322      ValueVT.getVectorElementType() != PartEVT) {
323    bool Smaller = ValueVT.bitsLE(PartEVT);
324    Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
325                       DL, ValueVT.getScalarType(), Val);
326  }
327
328  return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
329}
330
331static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl,
332                                 SDValue Val, SDValue *Parts, unsigned NumParts,
333                                 MVT PartVT, const Value *V);
334
335/// getCopyToParts - Create a series of nodes that contain the specified value
336/// split into legal parts.  If the parts contain more bits than Val, then, for
337/// integers, ExtendKind can be used to specify how to generate the extra bits.
338static void getCopyToParts(SelectionDAG &DAG, SDLoc DL,
339                           SDValue Val, SDValue *Parts, unsigned NumParts,
340                           MVT PartVT, const Value *V,
341                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
342  EVT ValueVT = Val.getValueType();
343
344  // Handle the vector case separately.
345  if (ValueVT.isVector())
346    return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V);
347
348  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
349  unsigned PartBits = PartVT.getSizeInBits();
350  unsigned OrigNumParts = NumParts;
351  assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
352
353  if (NumParts == 0)
354    return;
355
356  assert(!ValueVT.isVector() && "Vector case handled elsewhere");
357  EVT PartEVT = PartVT;
358  if (PartEVT == ValueVT) {
359    assert(NumParts == 1 && "No-op copy with multiple parts!");
360    Parts[0] = Val;
361    return;
362  }
363
364  if (NumParts * PartBits > ValueVT.getSizeInBits()) {
365    // If the parts cover more bits than the value has, promote the value.
366    if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
367      assert(NumParts == 1 && "Do not know what to promote to!");
368      Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
369    } else {
370      assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
371             ValueVT.isInteger() &&
372             "Unknown mismatch!");
373      ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
374      Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
375      if (PartVT == MVT::x86mmx)
376        Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
377    }
378  } else if (PartBits == ValueVT.getSizeInBits()) {
379    // Different types of the same size.
380    assert(NumParts == 1 && PartEVT != ValueVT);
381    Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
382  } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
383    // If the parts cover less bits than value has, truncate the value.
384    assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
385           ValueVT.isInteger() &&
386           "Unknown mismatch!");
387    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
388    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
389    if (PartVT == MVT::x86mmx)
390      Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
391  }
392
393  // The value may have changed - recompute ValueVT.
394  ValueVT = Val.getValueType();
395  assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
396         "Failed to tile the value with PartVT!");
397
398  if (NumParts == 1) {
399    if (PartEVT != ValueVT) {
400      LLVMContext &Ctx = *DAG.getContext();
401      Twine ErrMsg("scalar-to-vector conversion failed");
402      if (const Instruction *I = dyn_cast_or_null<Instruction>(V)) {
403        if (const CallInst *CI = dyn_cast<CallInst>(I))
404          if (isa<InlineAsm>(CI->getCalledValue()))
405            ErrMsg = ErrMsg + ", possible invalid constraint for vector type";
406        Ctx.emitError(I, ErrMsg);
407      } else {
408        Ctx.emitError(ErrMsg);
409      }
410    }
411
412    Parts[0] = Val;
413    return;
414  }
415
416  // Expand the value into multiple parts.
417  if (NumParts & (NumParts - 1)) {
418    // The number of parts is not a power of 2.  Split off and copy the tail.
419    assert(PartVT.isInteger() && ValueVT.isInteger() &&
420           "Do not know what to expand to!");
421    unsigned RoundParts = 1 << Log2_32(NumParts);
422    unsigned RoundBits = RoundParts * PartBits;
423    unsigned OddParts = NumParts - RoundParts;
424    SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
425                                 DAG.getIntPtrConstant(RoundBits));
426    getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V);
427
428    if (TLI.isBigEndian())
429      // The odd parts were reversed by getCopyToParts - unreverse them.
430      std::reverse(Parts + RoundParts, Parts + NumParts);
431
432    NumParts = RoundParts;
433    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
434    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
435  }
436
437  // The number of parts is a power of 2.  Repeatedly bisect the value using
438  // EXTRACT_ELEMENT.
439  Parts[0] = DAG.getNode(ISD::BITCAST, DL,
440                         EVT::getIntegerVT(*DAG.getContext(),
441                                           ValueVT.getSizeInBits()),
442                         Val);
443
444  for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
445    for (unsigned i = 0; i < NumParts; i += StepSize) {
446      unsigned ThisBits = StepSize * PartBits / 2;
447      EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
448      SDValue &Part0 = Parts[i];
449      SDValue &Part1 = Parts[i+StepSize/2];
450
451      Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
452                          ThisVT, Part0, DAG.getIntPtrConstant(1));
453      Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
454                          ThisVT, Part0, DAG.getIntPtrConstant(0));
455
456      if (ThisBits == PartBits && ThisVT != PartVT) {
457        Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
458        Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
459      }
460    }
461  }
462
463  if (TLI.isBigEndian())
464    std::reverse(Parts, Parts + OrigNumParts);
465}
466
467
468/// getCopyToPartsVector - Create a series of nodes that contain the specified
469/// value split into legal parts.
470static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL,
471                                 SDValue Val, SDValue *Parts, unsigned NumParts,
472                                 MVT PartVT, const Value *V) {
473  EVT ValueVT = Val.getValueType();
474  assert(ValueVT.isVector() && "Not a vector");
475  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
476
477  if (NumParts == 1) {
478    EVT PartEVT = PartVT;
479    if (PartEVT == ValueVT) {
480      // Nothing to do.
481    } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
482      // Bitconvert vector->vector case.
483      Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
484    } else if (PartVT.isVector() &&
485               PartEVT.getVectorElementType() == ValueVT.getVectorElementType() &&
486               PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
487      EVT ElementVT = PartVT.getVectorElementType();
488      // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
489      // undef elements.
490      SmallVector<SDValue, 16> Ops;
491      for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
492        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
493                                  ElementVT, Val, DAG.getIntPtrConstant(i)));
494
495      for (unsigned i = ValueVT.getVectorNumElements(),
496           e = PartVT.getVectorNumElements(); i != e; ++i)
497        Ops.push_back(DAG.getUNDEF(ElementVT));
498
499      Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size());
500
501      // FIXME: Use CONCAT for 2x -> 4x.
502
503      //SDValue UndefElts = DAG.getUNDEF(VectorTy);
504      //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
505    } else if (PartVT.isVector() &&
506               PartEVT.getVectorElementType().bitsGE(
507                 ValueVT.getVectorElementType()) &&
508               PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
509
510      // Promoted vector extract
511      bool Smaller = PartEVT.bitsLE(ValueVT);
512      Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
513                        DL, PartVT, Val);
514    } else{
515      // Vector -> scalar conversion.
516      assert(ValueVT.getVectorNumElements() == 1 &&
517             "Only trivial vector-to-scalar conversions should get here!");
518      Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
519                        PartVT, Val, DAG.getIntPtrConstant(0));
520
521      bool Smaller = ValueVT.bitsLE(PartVT);
522      Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
523                         DL, PartVT, Val);
524    }
525
526    Parts[0] = Val;
527    return;
528  }
529
530  // Handle a multi-element vector.
531  EVT IntermediateVT;
532  MVT RegisterVT;
533  unsigned NumIntermediates;
534  unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
535                                                IntermediateVT,
536                                                NumIntermediates, RegisterVT);
537  unsigned NumElements = ValueVT.getVectorNumElements();
538
539  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
540  NumParts = NumRegs; // Silence a compiler warning.
541  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
542
543  // Split the vector into intermediate operands.
544  SmallVector<SDValue, 8> Ops(NumIntermediates);
545  for (unsigned i = 0; i != NumIntermediates; ++i) {
546    if (IntermediateVT.isVector())
547      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
548                           IntermediateVT, Val,
549                   DAG.getIntPtrConstant(i * (NumElements / NumIntermediates)));
550    else
551      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
552                           IntermediateVT, Val, DAG.getIntPtrConstant(i));
553  }
554
555  // Split the intermediate operands into legal parts.
556  if (NumParts == NumIntermediates) {
557    // If the register was not expanded, promote or copy the value,
558    // as appropriate.
559    for (unsigned i = 0; i != NumParts; ++i)
560      getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V);
561  } else if (NumParts > 0) {
562    // If the intermediate type was expanded, split each the value into
563    // legal parts.
564    assert(NumParts % NumIntermediates == 0 &&
565           "Must expand into a divisible number of parts!");
566    unsigned Factor = NumParts / NumIntermediates;
567    for (unsigned i = 0; i != NumIntermediates; ++i)
568      getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V);
569  }
570}
571
572namespace {
573  /// RegsForValue - This struct represents the registers (physical or virtual)
574  /// that a particular set of values is assigned, and the type information
575  /// about the value. The most common situation is to represent one value at a
576  /// time, but struct or array values are handled element-wise as multiple
577  /// values.  The splitting of aggregates is performed recursively, so that we
578  /// never have aggregate-typed registers. The values at this point do not
579  /// necessarily have legal types, so each value may require one or more
580  /// registers of some legal type.
581  ///
582  struct RegsForValue {
583    /// ValueVTs - The value types of the values, which may not be legal, and
584    /// may need be promoted or synthesized from one or more registers.
585    ///
586    SmallVector<EVT, 4> ValueVTs;
587
588    /// RegVTs - The value types of the registers. This is the same size as
589    /// ValueVTs and it records, for each value, what the type of the assigned
590    /// register or registers are. (Individual values are never synthesized
591    /// from more than one type of register.)
592    ///
593    /// With virtual registers, the contents of RegVTs is redundant with TLI's
594    /// getRegisterType member function, however when with physical registers
595    /// it is necessary to have a separate record of the types.
596    ///
597    SmallVector<MVT, 4> RegVTs;
598
599    /// Regs - This list holds the registers assigned to the values.
600    /// Each legal or promoted value requires one register, and each
601    /// expanded value requires multiple registers.
602    ///
603    SmallVector<unsigned, 4> Regs;
604
605    RegsForValue() {}
606
607    RegsForValue(const SmallVector<unsigned, 4> &regs,
608                 MVT regvt, EVT valuevt)
609      : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
610
611    RegsForValue(LLVMContext &Context, const TargetLowering &tli,
612                 unsigned Reg, Type *Ty) {
613      ComputeValueVTs(tli, Ty, ValueVTs);
614
615      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
616        EVT ValueVT = ValueVTs[Value];
617        unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
618        MVT RegisterVT = tli.getRegisterType(Context, ValueVT);
619        for (unsigned i = 0; i != NumRegs; ++i)
620          Regs.push_back(Reg + i);
621        RegVTs.push_back(RegisterVT);
622        Reg += NumRegs;
623      }
624    }
625
626    /// areValueTypesLegal - Return true if types of all the values are legal.
627    bool areValueTypesLegal(const TargetLowering &TLI) {
628      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
629        MVT RegisterVT = RegVTs[Value];
630        if (!TLI.isTypeLegal(RegisterVT))
631          return false;
632      }
633      return true;
634    }
635
636    /// append - Add the specified values to this one.
637    void append(const RegsForValue &RHS) {
638      ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
639      RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
640      Regs.append(RHS.Regs.begin(), RHS.Regs.end());
641    }
642
643    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
644    /// this value and returns the result as a ValueVTs value.  This uses
645    /// Chain/Flag as the input and updates them for the output Chain/Flag.
646    /// If the Flag pointer is NULL, no flag is used.
647    SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
648                            SDLoc dl,
649                            SDValue &Chain, SDValue *Flag,
650                            const Value *V = 0) const;
651
652    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
653    /// specified value into the registers specified by this object.  This uses
654    /// Chain/Flag as the input and updates them for the output Chain/Flag.
655    /// If the Flag pointer is NULL, no flag is used.
656    void getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl,
657                       SDValue &Chain, SDValue *Flag, const Value *V) const;
658
659    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
660    /// operand list.  This adds the code marker, matching input operand index
661    /// (if applicable), and includes the number of values added into it.
662    void AddInlineAsmOperands(unsigned Kind,
663                              bool HasMatching, unsigned MatchingIdx,
664                              SelectionDAG &DAG,
665                              std::vector<SDValue> &Ops) const;
666  };
667}
668
669/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
670/// this value and returns the result as a ValueVT value.  This uses
671/// Chain/Flag as the input and updates them for the output Chain/Flag.
672/// If the Flag pointer is NULL, no flag is used.
673SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
674                                      FunctionLoweringInfo &FuncInfo,
675                                      SDLoc dl,
676                                      SDValue &Chain, SDValue *Flag,
677                                      const Value *V) const {
678  // A Value with type {} or [0 x %t] needs no registers.
679  if (ValueVTs.empty())
680    return SDValue();
681
682  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
683
684  // Assemble the legal parts into the final values.
685  SmallVector<SDValue, 4> Values(ValueVTs.size());
686  SmallVector<SDValue, 8> Parts;
687  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
688    // Copy the legal parts from the registers.
689    EVT ValueVT = ValueVTs[Value];
690    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
691    MVT RegisterVT = RegVTs[Value];
692
693    Parts.resize(NumRegs);
694    for (unsigned i = 0; i != NumRegs; ++i) {
695      SDValue P;
696      if (Flag == 0) {
697        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
698      } else {
699        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
700        *Flag = P.getValue(2);
701      }
702
703      Chain = P.getValue(1);
704      Parts[i] = P;
705
706      // If the source register was virtual and if we know something about it,
707      // add an assert node.
708      if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
709          !RegisterVT.isInteger() || RegisterVT.isVector())
710        continue;
711
712      const FunctionLoweringInfo::LiveOutInfo *LOI =
713        FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
714      if (!LOI)
715        continue;
716
717      unsigned RegSize = RegisterVT.getSizeInBits();
718      unsigned NumSignBits = LOI->NumSignBits;
719      unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
720
721      if (NumZeroBits == RegSize) {
722        // The current value is a zero.
723        // Explicitly express that as it would be easier for
724        // optimizations to kick in.
725        Parts[i] = DAG.getConstant(0, RegisterVT);
726        continue;
727      }
728
729      // FIXME: We capture more information than the dag can represent.  For
730      // now, just use the tightest assertzext/assertsext possible.
731      bool isSExt = true;
732      EVT FromVT(MVT::Other);
733      if (NumSignBits == RegSize)
734        isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
735      else if (NumZeroBits >= RegSize-1)
736        isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
737      else if (NumSignBits > RegSize-8)
738        isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
739      else if (NumZeroBits >= RegSize-8)
740        isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
741      else if (NumSignBits > RegSize-16)
742        isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
743      else if (NumZeroBits >= RegSize-16)
744        isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
745      else if (NumSignBits > RegSize-32)
746        isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
747      else if (NumZeroBits >= RegSize-32)
748        isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
749      else
750        continue;
751
752      // Add an assertion node.
753      assert(FromVT != MVT::Other);
754      Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
755                             RegisterVT, P, DAG.getValueType(FromVT));
756    }
757
758    Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
759                                     NumRegs, RegisterVT, ValueVT, V);
760    Part += NumRegs;
761    Parts.clear();
762  }
763
764  return DAG.getNode(ISD::MERGE_VALUES, dl,
765                     DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
766                     &Values[0], ValueVTs.size());
767}
768
769/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
770/// specified value into the registers specified by this object.  This uses
771/// Chain/Flag as the input and updates them for the output Chain/Flag.
772/// If the Flag pointer is NULL, no flag is used.
773void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl,
774                                 SDValue &Chain, SDValue *Flag,
775                                 const Value *V) const {
776  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
777
778  // Get the list of the values's legal parts.
779  unsigned NumRegs = Regs.size();
780  SmallVector<SDValue, 8> Parts(NumRegs);
781  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
782    EVT ValueVT = ValueVTs[Value];
783    unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
784    MVT RegisterVT = RegVTs[Value];
785    ISD::NodeType ExtendKind =
786      TLI.isZExtFree(Val, RegisterVT)? ISD::ZERO_EXTEND: ISD::ANY_EXTEND;
787
788    getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
789                   &Parts[Part], NumParts, RegisterVT, V, ExtendKind);
790    Part += NumParts;
791  }
792
793  // Copy the parts into the registers.
794  SmallVector<SDValue, 8> Chains(NumRegs);
795  for (unsigned i = 0; i != NumRegs; ++i) {
796    SDValue Part;
797    if (Flag == 0) {
798      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
799    } else {
800      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
801      *Flag = Part.getValue(1);
802    }
803
804    Chains[i] = Part.getValue(0);
805  }
806
807  if (NumRegs == 1 || Flag)
808    // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
809    // flagged to it. That is the CopyToReg nodes and the user are considered
810    // a single scheduling unit. If we create a TokenFactor and return it as
811    // chain, then the TokenFactor is both a predecessor (operand) of the
812    // user as well as a successor (the TF operands are flagged to the user).
813    // c1, f1 = CopyToReg
814    // c2, f2 = CopyToReg
815    // c3     = TokenFactor c1, c2
816    // ...
817    //        = op c3, ..., f2
818    Chain = Chains[NumRegs-1];
819  else
820    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
821}
822
823/// AddInlineAsmOperands - Add this value to the specified inlineasm node
824/// operand list.  This adds the code marker and includes the number of
825/// values added into it.
826void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
827                                        unsigned MatchingIdx,
828                                        SelectionDAG &DAG,
829                                        std::vector<SDValue> &Ops) const {
830  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
831
832  unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
833  if (HasMatching)
834    Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
835  else if (!Regs.empty() &&
836           TargetRegisterInfo::isVirtualRegister(Regs.front())) {
837    // Put the register class of the virtual registers in the flag word.  That
838    // way, later passes can recompute register class constraints for inline
839    // assembly as well as normal instructions.
840    // Don't do this for tied operands that can use the regclass information
841    // from the def.
842    const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
843    const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
844    Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
845  }
846
847  SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
848  Ops.push_back(Res);
849
850  for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
851    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
852    MVT RegisterVT = RegVTs[Value];
853    for (unsigned i = 0; i != NumRegs; ++i) {
854      assert(Reg < Regs.size() && "Mismatch in # registers expected");
855      Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
856    }
857  }
858}
859
860void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa,
861                               const TargetLibraryInfo *li) {
862  AA = &aa;
863  GFI = gfi;
864  LibInfo = li;
865  TD = DAG.getTarget().getDataLayout();
866  Context = DAG.getContext();
867  LPadToCallSiteMap.clear();
868}
869
870/// clear - Clear out the current SelectionDAG and the associated
871/// state and prepare this SelectionDAGBuilder object to be used
872/// for a new block. This doesn't clear out information about
873/// additional blocks that are needed to complete switch lowering
874/// or PHI node updating; that information is cleared out as it is
875/// consumed.
876void SelectionDAGBuilder::clear() {
877  NodeMap.clear();
878  UnusedArgNodeMap.clear();
879  PendingLoads.clear();
880  PendingExports.clear();
881  CurInst = NULL;
882  HasTailCall = false;
883}
884
885/// clearDanglingDebugInfo - Clear the dangling debug information
886/// map. This function is separated from the clear so that debug
887/// information that is dangling in a basic block can be properly
888/// resolved in a different basic block. This allows the
889/// SelectionDAG to resolve dangling debug information attached
890/// to PHI nodes.
891void SelectionDAGBuilder::clearDanglingDebugInfo() {
892  DanglingDebugInfoMap.clear();
893}
894
895/// getRoot - Return the current virtual root of the Selection DAG,
896/// flushing any PendingLoad items. This must be done before emitting
897/// a store or any other node that may need to be ordered after any
898/// prior load instructions.
899///
900SDValue SelectionDAGBuilder::getRoot() {
901  if (PendingLoads.empty())
902    return DAG.getRoot();
903
904  if (PendingLoads.size() == 1) {
905    SDValue Root = PendingLoads[0];
906    DAG.setRoot(Root);
907    PendingLoads.clear();
908    return Root;
909  }
910
911  // Otherwise, we have to make a token factor node.
912  SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
913                               &PendingLoads[0], PendingLoads.size());
914  PendingLoads.clear();
915  DAG.setRoot(Root);
916  return Root;
917}
918
919/// getControlRoot - Similar to getRoot, but instead of flushing all the
920/// PendingLoad items, flush all the PendingExports items. It is necessary
921/// to do this before emitting a terminator instruction.
922///
923SDValue SelectionDAGBuilder::getControlRoot() {
924  SDValue Root = DAG.getRoot();
925
926  if (PendingExports.empty())
927    return Root;
928
929  // Turn all of the CopyToReg chains into one factored node.
930  if (Root.getOpcode() != ISD::EntryToken) {
931    unsigned i = 0, e = PendingExports.size();
932    for (; i != e; ++i) {
933      assert(PendingExports[i].getNode()->getNumOperands() > 1);
934      if (PendingExports[i].getNode()->getOperand(0) == Root)
935        break;  // Don't add the root if we already indirectly depend on it.
936    }
937
938    if (i == e)
939      PendingExports.push_back(Root);
940  }
941
942  Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
943                     &PendingExports[0],
944                     PendingExports.size());
945  PendingExports.clear();
946  DAG.setRoot(Root);
947  return Root;
948}
949
950void SelectionDAGBuilder::visit(const Instruction &I) {
951  // Set up outgoing PHI node register values before emitting the terminator.
952  if (isa<TerminatorInst>(&I))
953    HandlePHINodesInSuccessorBlocks(I.getParent());
954
955  ++SDNodeOrder;
956
957  CurInst = &I;
958
959  visit(I.getOpcode(), I);
960
961  if (!isa<TerminatorInst>(&I) && !HasTailCall)
962    CopyToExportRegsIfNeeded(&I);
963
964  CurInst = NULL;
965}
966
967void SelectionDAGBuilder::visitPHI(const PHINode &) {
968  llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
969}
970
971void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
972  // Note: this doesn't use InstVisitor, because it has to work with
973  // ConstantExpr's in addition to instructions.
974  switch (Opcode) {
975  default: llvm_unreachable("Unknown instruction type encountered!");
976    // Build the switch statement using the Instruction.def file.
977#define HANDLE_INST(NUM, OPCODE, CLASS) \
978    case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
979#include "llvm/IR/Instruction.def"
980  }
981}
982
983// resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
984// generate the debug data structures now that we've seen its definition.
985void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
986                                                   SDValue Val) {
987  DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
988  if (DDI.getDI()) {
989    const DbgValueInst *DI = DDI.getDI();
990    DebugLoc dl = DDI.getdl();
991    unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
992    MDNode *Variable = DI->getVariable();
993    uint64_t Offset = DI->getOffset();
994    SDDbgValue *SDV;
995    if (Val.getNode()) {
996      if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) {
997        SDV = DAG.getDbgValue(Variable, Val.getNode(),
998                              Val.getResNo(), Offset, dl, DbgSDNodeOrder);
999        DAG.AddDbgValue(SDV, Val.getNode(), false);
1000      }
1001    } else
1002      DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1003    DanglingDebugInfoMap[V] = DanglingDebugInfo();
1004  }
1005}
1006
1007/// getValue - Return an SDValue for the given Value.
1008SDValue SelectionDAGBuilder::getValue(const Value *V) {
1009  // If we already have an SDValue for this value, use it. It's important
1010  // to do this first, so that we don't create a CopyFromReg if we already
1011  // have a regular SDValue.
1012  SDValue &N = NodeMap[V];
1013  if (N.getNode()) return N;
1014
1015  // If there's a virtual register allocated and initialized for this
1016  // value, use it.
1017  DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
1018  if (It != FuncInfo.ValueMap.end()) {
1019    unsigned InReg = It->second;
1020    RegsForValue RFV(*DAG.getContext(), *TM.getTargetLowering(),
1021                     InReg, V->getType());
1022    SDValue Chain = DAG.getEntryNode();
1023    N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, NULL, V);
1024    resolveDanglingDebugInfo(V, N);
1025    return N;
1026  }
1027
1028  // Otherwise create a new SDValue and remember it.
1029  SDValue Val = getValueImpl(V);
1030  NodeMap[V] = Val;
1031  resolveDanglingDebugInfo(V, Val);
1032  return Val;
1033}
1034
1035/// getNonRegisterValue - Return an SDValue for the given Value, but
1036/// don't look in FuncInfo.ValueMap for a virtual register.
1037SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1038  // If we already have an SDValue for this value, use it.
1039  SDValue &N = NodeMap[V];
1040  if (N.getNode()) return N;
1041
1042  // Otherwise create a new SDValue and remember it.
1043  SDValue Val = getValueImpl(V);
1044  NodeMap[V] = Val;
1045  resolveDanglingDebugInfo(V, Val);
1046  return Val;
1047}
1048
1049/// getValueImpl - Helper function for getValue and getNonRegisterValue.
1050/// Create an SDValue for the given value.
1051SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1052  const TargetLowering *TLI = TM.getTargetLowering();
1053
1054  if (const Constant *C = dyn_cast<Constant>(V)) {
1055    EVT VT = TLI->getValueType(V->getType(), true);
1056
1057    if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1058      return DAG.getConstant(*CI, VT);
1059
1060    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1061      return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1062
1063    if (isa<ConstantPointerNull>(C))
1064      return DAG.getConstant(0, TLI->getPointerTy());
1065
1066    if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1067      return DAG.getConstantFP(*CFP, VT);
1068
1069    if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1070      return DAG.getUNDEF(VT);
1071
1072    if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1073      visit(CE->getOpcode(), *CE);
1074      SDValue N1 = NodeMap[V];
1075      assert(N1.getNode() && "visit didn't populate the NodeMap!");
1076      return N1;
1077    }
1078
1079    if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1080      SmallVector<SDValue, 4> Constants;
1081      for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1082           OI != OE; ++OI) {
1083        SDNode *Val = getValue(*OI).getNode();
1084        // If the operand is an empty aggregate, there are no values.
1085        if (!Val) continue;
1086        // Add each leaf value from the operand to the Constants list
1087        // to form a flattened list of all the values.
1088        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1089          Constants.push_back(SDValue(Val, i));
1090      }
1091
1092      return DAG.getMergeValues(&Constants[0], Constants.size(),
1093                                getCurSDLoc());
1094    }
1095
1096    if (const ConstantDataSequential *CDS =
1097          dyn_cast<ConstantDataSequential>(C)) {
1098      SmallVector<SDValue, 4> Ops;
1099      for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1100        SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1101        // Add each leaf value from the operand to the Constants list
1102        // to form a flattened list of all the values.
1103        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1104          Ops.push_back(SDValue(Val, i));
1105      }
1106
1107      if (isa<ArrayType>(CDS->getType()))
1108        return DAG.getMergeValues(&Ops[0], Ops.size(), getCurSDLoc());
1109      return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(),
1110                                      VT, &Ops[0], Ops.size());
1111    }
1112
1113    if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1114      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1115             "Unknown struct or array constant!");
1116
1117      SmallVector<EVT, 4> ValueVTs;
1118      ComputeValueVTs(*TLI, C->getType(), ValueVTs);
1119      unsigned NumElts = ValueVTs.size();
1120      if (NumElts == 0)
1121        return SDValue(); // empty struct
1122      SmallVector<SDValue, 4> Constants(NumElts);
1123      for (unsigned i = 0; i != NumElts; ++i) {
1124        EVT EltVT = ValueVTs[i];
1125        if (isa<UndefValue>(C))
1126          Constants[i] = DAG.getUNDEF(EltVT);
1127        else if (EltVT.isFloatingPoint())
1128          Constants[i] = DAG.getConstantFP(0, EltVT);
1129        else
1130          Constants[i] = DAG.getConstant(0, EltVT);
1131      }
1132
1133      return DAG.getMergeValues(&Constants[0], NumElts,
1134                                getCurSDLoc());
1135    }
1136
1137    if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1138      return DAG.getBlockAddress(BA, VT);
1139
1140    VectorType *VecTy = cast<VectorType>(V->getType());
1141    unsigned NumElements = VecTy->getNumElements();
1142
1143    // Now that we know the number and type of the elements, get that number of
1144    // elements into the Ops array based on what kind of constant it is.
1145    SmallVector<SDValue, 16> Ops;
1146    if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1147      for (unsigned i = 0; i != NumElements; ++i)
1148        Ops.push_back(getValue(CV->getOperand(i)));
1149    } else {
1150      assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1151      EVT EltVT = TLI->getValueType(VecTy->getElementType());
1152
1153      SDValue Op;
1154      if (EltVT.isFloatingPoint())
1155        Op = DAG.getConstantFP(0, EltVT);
1156      else
1157        Op = DAG.getConstant(0, EltVT);
1158      Ops.assign(NumElements, Op);
1159    }
1160
1161    // Create a BUILD_VECTOR node.
1162    return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(),
1163                                    VT, &Ops[0], Ops.size());
1164  }
1165
1166  // If this is a static alloca, generate it as the frameindex instead of
1167  // computation.
1168  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1169    DenseMap<const AllocaInst*, int>::iterator SI =
1170      FuncInfo.StaticAllocaMap.find(AI);
1171    if (SI != FuncInfo.StaticAllocaMap.end())
1172      return DAG.getFrameIndex(SI->second, TLI->getPointerTy());
1173  }
1174
1175  // If this is an instruction which fast-isel has deferred, select it now.
1176  if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1177    unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1178    RegsForValue RFV(*DAG.getContext(), *TLI, InReg, Inst->getType());
1179    SDValue Chain = DAG.getEntryNode();
1180    return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, NULL, V);
1181  }
1182
1183  llvm_unreachable("Can't get register for value!");
1184}
1185
1186void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1187  const TargetLowering *TLI = TM.getTargetLowering();
1188  SDValue Chain = getControlRoot();
1189  SmallVector<ISD::OutputArg, 8> Outs;
1190  SmallVector<SDValue, 8> OutVals;
1191
1192  if (!FuncInfo.CanLowerReturn) {
1193    unsigned DemoteReg = FuncInfo.DemoteRegister;
1194    const Function *F = I.getParent()->getParent();
1195
1196    // Emit a store of the return value through the virtual register.
1197    // Leave Outs empty so that LowerReturn won't try to load return
1198    // registers the usual way.
1199    SmallVector<EVT, 1> PtrValueVTs;
1200    ComputeValueVTs(*TLI, PointerType::getUnqual(F->getReturnType()),
1201                    PtrValueVTs);
1202
1203    SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
1204    SDValue RetOp = getValue(I.getOperand(0));
1205
1206    SmallVector<EVT, 4> ValueVTs;
1207    SmallVector<uint64_t, 4> Offsets;
1208    ComputeValueVTs(*TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1209    unsigned NumValues = ValueVTs.size();
1210
1211    SmallVector<SDValue, 4> Chains(NumValues);
1212    for (unsigned i = 0; i != NumValues; ++i) {
1213      SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(),
1214                                RetPtr.getValueType(), RetPtr,
1215                                DAG.getIntPtrConstant(Offsets[i]));
1216      Chains[i] =
1217        DAG.getStore(Chain, getCurSDLoc(),
1218                     SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1219                     // FIXME: better loc info would be nice.
1220                     Add, MachinePointerInfo(), false, false, 0);
1221    }
1222
1223    Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1224                        MVT::Other, &Chains[0], NumValues);
1225  } else if (I.getNumOperands() != 0) {
1226    SmallVector<EVT, 4> ValueVTs;
1227    ComputeValueVTs(*TLI, I.getOperand(0)->getType(), ValueVTs);
1228    unsigned NumValues = ValueVTs.size();
1229    if (NumValues) {
1230      SDValue RetOp = getValue(I.getOperand(0));
1231      for (unsigned j = 0, f = NumValues; j != f; ++j) {
1232        EVT VT = ValueVTs[j];
1233
1234        ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1235
1236        const Function *F = I.getParent()->getParent();
1237        if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1238                                            Attribute::SExt))
1239          ExtendKind = ISD::SIGN_EXTEND;
1240        else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1241                                                 Attribute::ZExt))
1242          ExtendKind = ISD::ZERO_EXTEND;
1243
1244        if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1245          VT = TLI->getTypeForExtArgOrReturn(VT.getSimpleVT(), ExtendKind);
1246
1247        unsigned NumParts = TLI->getNumRegisters(*DAG.getContext(), VT);
1248        MVT PartVT = TLI->getRegisterType(*DAG.getContext(), VT);
1249        SmallVector<SDValue, 4> Parts(NumParts);
1250        getCopyToParts(DAG, getCurSDLoc(),
1251                       SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1252                       &Parts[0], NumParts, PartVT, &I, ExtendKind);
1253
1254        // 'inreg' on function refers to return value
1255        ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1256        if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1257                                            Attribute::InReg))
1258          Flags.setInReg();
1259
1260        // Propagate extension type if any
1261        if (ExtendKind == ISD::SIGN_EXTEND)
1262          Flags.setSExt();
1263        else if (ExtendKind == ISD::ZERO_EXTEND)
1264          Flags.setZExt();
1265
1266        for (unsigned i = 0; i < NumParts; ++i) {
1267          Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1268                                        /*isfixed=*/true, 0, 0));
1269          OutVals.push_back(Parts[i]);
1270        }
1271      }
1272    }
1273  }
1274
1275  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1276  CallingConv::ID CallConv =
1277    DAG.getMachineFunction().getFunction()->getCallingConv();
1278  Chain = TM.getTargetLowering()->LowerReturn(Chain, CallConv, isVarArg,
1279                                              Outs, OutVals, getCurSDLoc(),
1280                                              DAG);
1281
1282  // Verify that the target's LowerReturn behaved as expected.
1283  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1284         "LowerReturn didn't return a valid chain!");
1285
1286  // Update the DAG with the new chain value resulting from return lowering.
1287  DAG.setRoot(Chain);
1288}
1289
1290/// CopyToExportRegsIfNeeded - If the given value has virtual registers
1291/// created for it, emit nodes to copy the value into the virtual
1292/// registers.
1293void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1294  // Skip empty types
1295  if (V->getType()->isEmptyTy())
1296    return;
1297
1298  DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1299  if (VMI != FuncInfo.ValueMap.end()) {
1300    assert(!V->use_empty() && "Unused value assigned virtual registers!");
1301    CopyValueToVirtualRegister(V, VMI->second);
1302  }
1303}
1304
1305/// ExportFromCurrentBlock - If this condition isn't known to be exported from
1306/// the current basic block, add it to ValueMap now so that we'll get a
1307/// CopyTo/FromReg.
1308void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1309  // No need to export constants.
1310  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1311
1312  // Already exported?
1313  if (FuncInfo.isExportedInst(V)) return;
1314
1315  unsigned Reg = FuncInfo.InitializeRegForValue(V);
1316  CopyValueToVirtualRegister(V, Reg);
1317}
1318
1319bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1320                                                     const BasicBlock *FromBB) {
1321  // The operands of the setcc have to be in this block.  We don't know
1322  // how to export them from some other block.
1323  if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1324    // Can export from current BB.
1325    if (VI->getParent() == FromBB)
1326      return true;
1327
1328    // Is already exported, noop.
1329    return FuncInfo.isExportedInst(V);
1330  }
1331
1332  // If this is an argument, we can export it if the BB is the entry block or
1333  // if it is already exported.
1334  if (isa<Argument>(V)) {
1335    if (FromBB == &FromBB->getParent()->getEntryBlock())
1336      return true;
1337
1338    // Otherwise, can only export this if it is already exported.
1339    return FuncInfo.isExportedInst(V);
1340  }
1341
1342  // Otherwise, constants can always be exported.
1343  return true;
1344}
1345
1346/// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1347uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src,
1348                                            const MachineBasicBlock *Dst) const {
1349  BranchProbabilityInfo *BPI = FuncInfo.BPI;
1350  if (!BPI)
1351    return 0;
1352  const BasicBlock *SrcBB = Src->getBasicBlock();
1353  const BasicBlock *DstBB = Dst->getBasicBlock();
1354  return BPI->getEdgeWeight(SrcBB, DstBB);
1355}
1356
1357void SelectionDAGBuilder::
1358addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst,
1359                       uint32_t Weight /* = 0 */) {
1360  if (!Weight)
1361    Weight = getEdgeWeight(Src, Dst);
1362  Src->addSuccessor(Dst, Weight);
1363}
1364
1365
1366static bool InBlock(const Value *V, const BasicBlock *BB) {
1367  if (const Instruction *I = dyn_cast<Instruction>(V))
1368    return I->getParent() == BB;
1369  return true;
1370}
1371
1372/// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1373/// This function emits a branch and is used at the leaves of an OR or an
1374/// AND operator tree.
1375///
1376void
1377SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1378                                                  MachineBasicBlock *TBB,
1379                                                  MachineBasicBlock *FBB,
1380                                                  MachineBasicBlock *CurBB,
1381                                                  MachineBasicBlock *SwitchBB) {
1382  const BasicBlock *BB = CurBB->getBasicBlock();
1383
1384  // If the leaf of the tree is a comparison, merge the condition into
1385  // the caseblock.
1386  if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1387    // The operands of the cmp have to be in this block.  We don't know
1388    // how to export them from some other block.  If this is the first block
1389    // of the sequence, no exporting is needed.
1390    if (CurBB == SwitchBB ||
1391        (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1392         isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1393      ISD::CondCode Condition;
1394      if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1395        Condition = getICmpCondCode(IC->getPredicate());
1396      } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1397        Condition = getFCmpCondCode(FC->getPredicate());
1398        if (TM.Options.NoNaNsFPMath)
1399          Condition = getFCmpCodeWithoutNaN(Condition);
1400      } else {
1401        Condition = ISD::SETEQ; // silence warning.
1402        llvm_unreachable("Unknown compare instruction");
1403      }
1404
1405      CaseBlock CB(Condition, BOp->getOperand(0),
1406                   BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1407      SwitchCases.push_back(CB);
1408      return;
1409    }
1410  }
1411
1412  // Create a CaseBlock record representing this branch.
1413  CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1414               NULL, TBB, FBB, CurBB);
1415  SwitchCases.push_back(CB);
1416}
1417
1418/// FindMergedConditions - If Cond is an expression like
1419void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1420                                               MachineBasicBlock *TBB,
1421                                               MachineBasicBlock *FBB,
1422                                               MachineBasicBlock *CurBB,
1423                                               MachineBasicBlock *SwitchBB,
1424                                               unsigned Opc) {
1425  // If this node is not part of the or/and tree, emit it as a branch.
1426  const Instruction *BOp = dyn_cast<Instruction>(Cond);
1427  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1428      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1429      BOp->getParent() != CurBB->getBasicBlock() ||
1430      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1431      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1432    EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB);
1433    return;
1434  }
1435
1436  //  Create TmpBB after CurBB.
1437  MachineFunction::iterator BBI = CurBB;
1438  MachineFunction &MF = DAG.getMachineFunction();
1439  MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1440  CurBB->getParent()->insert(++BBI, TmpBB);
1441
1442  if (Opc == Instruction::Or) {
1443    // Codegen X | Y as:
1444    //   jmp_if_X TBB
1445    //   jmp TmpBB
1446    // TmpBB:
1447    //   jmp_if_Y TBB
1448    //   jmp FBB
1449    //
1450
1451    // Emit the LHS condition.
1452    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc);
1453
1454    // Emit the RHS condition into TmpBB.
1455    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1456  } else {
1457    assert(Opc == Instruction::And && "Unknown merge op!");
1458    // Codegen X & Y as:
1459    //   jmp_if_X TmpBB
1460    //   jmp FBB
1461    // TmpBB:
1462    //   jmp_if_Y TBB
1463    //   jmp FBB
1464    //
1465    //  This requires creation of TmpBB after CurBB.
1466
1467    // Emit the LHS condition.
1468    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc);
1469
1470    // Emit the RHS condition into TmpBB.
1471    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1472  }
1473}
1474
1475/// If the set of cases should be emitted as a series of branches, return true.
1476/// If we should emit this as a bunch of and/or'd together conditions, return
1477/// false.
1478bool
1479SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
1480  if (Cases.size() != 2) return true;
1481
1482  // If this is two comparisons of the same values or'd or and'd together, they
1483  // will get folded into a single comparison, so don't emit two blocks.
1484  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1485       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1486      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1487       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1488    return false;
1489  }
1490
1491  // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1492  // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1493  if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1494      Cases[0].CC == Cases[1].CC &&
1495      isa<Constant>(Cases[0].CmpRHS) &&
1496      cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1497    if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1498      return false;
1499    if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1500      return false;
1501  }
1502
1503  return true;
1504}
1505
1506void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1507  MachineBasicBlock *BrMBB = FuncInfo.MBB;
1508
1509  // Update machine-CFG edges.
1510  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1511
1512  // Figure out which block is immediately after the current one.
1513  MachineBasicBlock *NextBlock = 0;
1514  MachineFunction::iterator BBI = BrMBB;
1515  if (++BBI != FuncInfo.MF->end())
1516    NextBlock = BBI;
1517
1518  if (I.isUnconditional()) {
1519    // Update machine-CFG edges.
1520    BrMBB->addSuccessor(Succ0MBB);
1521
1522    // If this is not a fall-through branch, emit the branch.
1523    if (Succ0MBB != NextBlock)
1524      DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
1525                              MVT::Other, getControlRoot(),
1526                              DAG.getBasicBlock(Succ0MBB)));
1527
1528    return;
1529  }
1530
1531  // If this condition is one of the special cases we handle, do special stuff
1532  // now.
1533  const Value *CondVal = I.getCondition();
1534  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1535
1536  // If this is a series of conditions that are or'd or and'd together, emit
1537  // this as a sequence of branches instead of setcc's with and/or operations.
1538  // As long as jumps are not expensive, this should improve performance.
1539  // For example, instead of something like:
1540  //     cmp A, B
1541  //     C = seteq
1542  //     cmp D, E
1543  //     F = setle
1544  //     or C, F
1545  //     jnz foo
1546  // Emit:
1547  //     cmp A, B
1548  //     je foo
1549  //     cmp D, E
1550  //     jle foo
1551  //
1552  if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1553    if (!TM.getTargetLowering()->isJumpExpensive() &&
1554        BOp->hasOneUse() &&
1555        (BOp->getOpcode() == Instruction::And ||
1556         BOp->getOpcode() == Instruction::Or)) {
1557      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1558                           BOp->getOpcode());
1559      // If the compares in later blocks need to use values not currently
1560      // exported from this block, export them now.  This block should always
1561      // be the first entry.
1562      assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1563
1564      // Allow some cases to be rejected.
1565      if (ShouldEmitAsBranches(SwitchCases)) {
1566        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1567          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1568          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1569        }
1570
1571        // Emit the branch for this block.
1572        visitSwitchCase(SwitchCases[0], BrMBB);
1573        SwitchCases.erase(SwitchCases.begin());
1574        return;
1575      }
1576
1577      // Okay, we decided not to do this, remove any inserted MBB's and clear
1578      // SwitchCases.
1579      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1580        FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1581
1582      SwitchCases.clear();
1583    }
1584  }
1585
1586  // Create a CaseBlock record representing this branch.
1587  CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1588               NULL, Succ0MBB, Succ1MBB, BrMBB);
1589
1590  // Use visitSwitchCase to actually insert the fast branch sequence for this
1591  // cond branch.
1592  visitSwitchCase(CB, BrMBB);
1593}
1594
1595/// visitSwitchCase - Emits the necessary code to represent a single node in
1596/// the binary search tree resulting from lowering a switch instruction.
1597void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1598                                          MachineBasicBlock *SwitchBB) {
1599  SDValue Cond;
1600  SDValue CondLHS = getValue(CB.CmpLHS);
1601  SDLoc dl = getCurSDLoc();
1602
1603  // Build the setcc now.
1604  if (CB.CmpMHS == NULL) {
1605    // Fold "(X == true)" to X and "(X == false)" to !X to
1606    // handle common cases produced by branch lowering.
1607    if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1608        CB.CC == ISD::SETEQ)
1609      Cond = CondLHS;
1610    else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1611             CB.CC == ISD::SETEQ) {
1612      SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1613      Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1614    } else
1615      Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1616  } else {
1617    assert(CB.CC == ISD::SETCC_INVALID &&
1618           "Condition is undefined for to-the-range belonging check.");
1619
1620    const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1621    const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
1622
1623    SDValue CmpOp = getValue(CB.CmpMHS);
1624    EVT VT = CmpOp.getValueType();
1625
1626    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(false)) {
1627      Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1628                          ISD::SETULE);
1629    } else {
1630      SDValue SUB = DAG.getNode(ISD::SUB, dl,
1631                                VT, CmpOp, DAG.getConstant(Low, VT));
1632      Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1633                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1634    }
1635  }
1636
1637  // Update successor info
1638  addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight);
1639  // TrueBB and FalseBB are always different unless the incoming IR is
1640  // degenerate. This only happens when running llc on weird IR.
1641  if (CB.TrueBB != CB.FalseBB)
1642    addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight);
1643
1644  // Set NextBlock to be the MBB immediately after the current one, if any.
1645  // This is used to avoid emitting unnecessary branches to the next block.
1646  MachineBasicBlock *NextBlock = 0;
1647  MachineFunction::iterator BBI = SwitchBB;
1648  if (++BBI != FuncInfo.MF->end())
1649    NextBlock = BBI;
1650
1651  // If the lhs block is the next block, invert the condition so that we can
1652  // fall through to the lhs instead of the rhs block.
1653  if (CB.TrueBB == NextBlock) {
1654    std::swap(CB.TrueBB, CB.FalseBB);
1655    SDValue True = DAG.getConstant(1, Cond.getValueType());
1656    Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1657  }
1658
1659  SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1660                               MVT::Other, getControlRoot(), Cond,
1661                               DAG.getBasicBlock(CB.TrueBB));
1662
1663  // Insert the false branch. Do this even if it's a fall through branch,
1664  // this makes it easier to do DAG optimizations which require inverting
1665  // the branch condition.
1666  BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1667                       DAG.getBasicBlock(CB.FalseBB));
1668
1669  DAG.setRoot(BrCond);
1670}
1671
1672/// visitJumpTable - Emit JumpTable node in the current MBB
1673void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1674  // Emit the code for the jump table
1675  assert(JT.Reg != -1U && "Should lower JT Header first!");
1676  EVT PTy = TM.getTargetLowering()->getPointerTy();
1677  SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
1678                                     JT.Reg, PTy);
1679  SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1680  SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
1681                                    MVT::Other, Index.getValue(1),
1682                                    Table, Index);
1683  DAG.setRoot(BrJumpTable);
1684}
1685
1686/// visitJumpTableHeader - This function emits necessary code to produce index
1687/// in the JumpTable from switch case.
1688void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1689                                               JumpTableHeader &JTH,
1690                                               MachineBasicBlock *SwitchBB) {
1691  // Subtract the lowest switch case value from the value being switched on and
1692  // conditional branch to default mbb if the result is greater than the
1693  // difference between smallest and largest cases.
1694  SDValue SwitchOp = getValue(JTH.SValue);
1695  EVT VT = SwitchOp.getValueType();
1696  SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp,
1697                            DAG.getConstant(JTH.First, VT));
1698
1699  // The SDNode we just created, which holds the value being switched on minus
1700  // the smallest case value, needs to be copied to a virtual register so it
1701  // can be used as an index into the jump table in a subsequent basic block.
1702  // This value may be smaller or larger than the target's pointer type, and
1703  // therefore require extension or truncating.
1704  const TargetLowering *TLI = TM.getTargetLowering();
1705  SwitchOp = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), TLI->getPointerTy());
1706
1707  unsigned JumpTableReg = FuncInfo.CreateReg(TLI->getPointerTy());
1708  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(),
1709                                    JumpTableReg, SwitchOp);
1710  JT.Reg = JumpTableReg;
1711
1712  // Emit the range check for the jump table, and branch to the default block
1713  // for the switch statement if the value being switched on exceeds the largest
1714  // case in the switch.
1715  SDValue CMP = DAG.getSetCC(getCurSDLoc(),
1716                             TLI->getSetCCResultType(*DAG.getContext(),
1717                                                     Sub.getValueType()),
1718                             Sub,
1719                             DAG.getConstant(JTH.Last - JTH.First,VT),
1720                             ISD::SETUGT);
1721
1722  // Set NextBlock to be the MBB immediately after the current one, if any.
1723  // This is used to avoid emitting unnecessary branches to the next block.
1724  MachineBasicBlock *NextBlock = 0;
1725  MachineFunction::iterator BBI = SwitchBB;
1726
1727  if (++BBI != FuncInfo.MF->end())
1728    NextBlock = BBI;
1729
1730  SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
1731                               MVT::Other, CopyTo, CMP,
1732                               DAG.getBasicBlock(JT.Default));
1733
1734  if (JT.MBB != NextBlock)
1735    BrCond = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrCond,
1736                         DAG.getBasicBlock(JT.MBB));
1737
1738  DAG.setRoot(BrCond);
1739}
1740
1741/// visitBitTestHeader - This function emits necessary code to produce value
1742/// suitable for "bit tests"
1743void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1744                                             MachineBasicBlock *SwitchBB) {
1745  // Subtract the minimum value
1746  SDValue SwitchOp = getValue(B.SValue);
1747  EVT VT = SwitchOp.getValueType();
1748  SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp,
1749                            DAG.getConstant(B.First, VT));
1750
1751  // Check range
1752  const TargetLowering *TLI = TM.getTargetLowering();
1753  SDValue RangeCmp = DAG.getSetCC(getCurSDLoc(),
1754                                  TLI->getSetCCResultType(*DAG.getContext(),
1755                                                         Sub.getValueType()),
1756                                  Sub, DAG.getConstant(B.Range, VT),
1757                                  ISD::SETUGT);
1758
1759  // Determine the type of the test operands.
1760  bool UsePtrType = false;
1761  if (!TLI->isTypeLegal(VT))
1762    UsePtrType = true;
1763  else {
1764    for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
1765      if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
1766        // Switch table case range are encoded into series of masks.
1767        // Just use pointer type, it's guaranteed to fit.
1768        UsePtrType = true;
1769        break;
1770      }
1771  }
1772  if (UsePtrType) {
1773    VT = TLI->getPointerTy();
1774    Sub = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), VT);
1775  }
1776
1777  B.RegVT = VT.getSimpleVT();
1778  B.Reg = FuncInfo.CreateReg(B.RegVT);
1779  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(),
1780                                    B.Reg, Sub);
1781
1782  // Set NextBlock to be the MBB immediately after the current one, if any.
1783  // This is used to avoid emitting unnecessary branches to the next block.
1784  MachineBasicBlock *NextBlock = 0;
1785  MachineFunction::iterator BBI = SwitchBB;
1786  if (++BBI != FuncInfo.MF->end())
1787    NextBlock = BBI;
1788
1789  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1790
1791  addSuccessorWithWeight(SwitchBB, B.Default);
1792  addSuccessorWithWeight(SwitchBB, MBB);
1793
1794  SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
1795                                MVT::Other, CopyTo, RangeCmp,
1796                                DAG.getBasicBlock(B.Default));
1797
1798  if (MBB != NextBlock)
1799    BrRange = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, CopyTo,
1800                          DAG.getBasicBlock(MBB));
1801
1802  DAG.setRoot(BrRange);
1803}
1804
1805/// visitBitTestCase - this function produces one "bit test"
1806void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
1807                                           MachineBasicBlock* NextMBB,
1808                                           uint32_t BranchWeightToNext,
1809                                           unsigned Reg,
1810                                           BitTestCase &B,
1811                                           MachineBasicBlock *SwitchBB) {
1812  MVT VT = BB.RegVT;
1813  SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
1814                                       Reg, VT);
1815  SDValue Cmp;
1816  unsigned PopCount = CountPopulation_64(B.Mask);
1817  const TargetLowering *TLI = TM.getTargetLowering();
1818  if (PopCount == 1) {
1819    // Testing for a single bit; just compare the shift count with what it
1820    // would need to be to shift a 1 bit in that position.
1821    Cmp = DAG.getSetCC(getCurSDLoc(),
1822                       TLI->getSetCCResultType(*DAG.getContext(), VT),
1823                       ShiftOp,
1824                       DAG.getConstant(countTrailingZeros(B.Mask), VT),
1825                       ISD::SETEQ);
1826  } else if (PopCount == BB.Range) {
1827    // There is only one zero bit in the range, test for it directly.
1828    Cmp = DAG.getSetCC(getCurSDLoc(),
1829                       TLI->getSetCCResultType(*DAG.getContext(), VT),
1830                       ShiftOp,
1831                       DAG.getConstant(CountTrailingOnes_64(B.Mask), VT),
1832                       ISD::SETNE);
1833  } else {
1834    // Make desired shift
1835    SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurSDLoc(), VT,
1836                                    DAG.getConstant(1, VT), ShiftOp);
1837
1838    // Emit bit tests and jumps
1839    SDValue AndOp = DAG.getNode(ISD::AND, getCurSDLoc(),
1840                                VT, SwitchVal, DAG.getConstant(B.Mask, VT));
1841    Cmp = DAG.getSetCC(getCurSDLoc(),
1842                       TLI->getSetCCResultType(*DAG.getContext(), VT),
1843                       AndOp, DAG.getConstant(0, VT),
1844                       ISD::SETNE);
1845  }
1846
1847  // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight.
1848  addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight);
1849  // The branch weight from SwitchBB to NextMBB is BranchWeightToNext.
1850  addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext);
1851
1852  SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
1853                              MVT::Other, getControlRoot(),
1854                              Cmp, DAG.getBasicBlock(B.TargetBB));
1855
1856  // Set NextBlock to be the MBB immediately after the current one, if any.
1857  // This is used to avoid emitting unnecessary branches to the next block.
1858  MachineBasicBlock *NextBlock = 0;
1859  MachineFunction::iterator BBI = SwitchBB;
1860  if (++BBI != FuncInfo.MF->end())
1861    NextBlock = BBI;
1862
1863  if (NextMBB != NextBlock)
1864    BrAnd = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrAnd,
1865                        DAG.getBasicBlock(NextMBB));
1866
1867  DAG.setRoot(BrAnd);
1868}
1869
1870void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1871  MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
1872
1873  // Retrieve successors.
1874  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1875  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1876
1877  const Value *Callee(I.getCalledValue());
1878  const Function *Fn = dyn_cast<Function>(Callee);
1879  if (isa<InlineAsm>(Callee))
1880    visitInlineAsm(&I);
1881  else if (Fn && Fn->isIntrinsic()) {
1882    assert(Fn->getIntrinsicID() == Intrinsic::donothing);
1883    // Ignore invokes to @llvm.donothing: jump directly to the next BB.
1884  } else
1885    LowerCallTo(&I, getValue(Callee), false, LandingPad);
1886
1887  // If the value of the invoke is used outside of its defining block, make it
1888  // available as a virtual register.
1889  CopyToExportRegsIfNeeded(&I);
1890
1891  // Update successor info
1892  addSuccessorWithWeight(InvokeMBB, Return);
1893  addSuccessorWithWeight(InvokeMBB, LandingPad);
1894
1895  // Drop into normal successor.
1896  DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
1897                          MVT::Other, getControlRoot(),
1898                          DAG.getBasicBlock(Return)));
1899}
1900
1901void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
1902  llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
1903}
1904
1905void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
1906  assert(FuncInfo.MBB->isLandingPad() &&
1907         "Call to landingpad not in landing pad!");
1908
1909  MachineBasicBlock *MBB = FuncInfo.MBB;
1910  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
1911  AddLandingPadInfo(LP, MMI, MBB);
1912
1913  // If there aren't registers to copy the values into (e.g., during SjLj
1914  // exceptions), then don't bother to create these DAG nodes.
1915  const TargetLowering *TLI = TM.getTargetLowering();
1916  if (TLI->getExceptionPointerRegister() == 0 &&
1917      TLI->getExceptionSelectorRegister() == 0)
1918    return;
1919
1920  SmallVector<EVT, 2> ValueVTs;
1921  ComputeValueVTs(*TLI, LP.getType(), ValueVTs);
1922  assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
1923
1924  // Get the two live-in registers as SDValues. The physregs have already been
1925  // copied into virtual registers.
1926  SDValue Ops[2];
1927  Ops[0] = DAG.getZExtOrTrunc(
1928    DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1929                       FuncInfo.ExceptionPointerVirtReg, TLI->getPointerTy()),
1930    getCurSDLoc(), ValueVTs[0]);
1931  Ops[1] = DAG.getZExtOrTrunc(
1932    DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1933                       FuncInfo.ExceptionSelectorVirtReg, TLI->getPointerTy()),
1934    getCurSDLoc(), ValueVTs[1]);
1935
1936  // Merge into one.
1937  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
1938                            DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
1939                            &Ops[0], 2);
1940  setValue(&LP, Res);
1941}
1942
1943/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1944/// small case ranges).
1945bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
1946                                                 CaseRecVector& WorkList,
1947                                                 const Value* SV,
1948                                                 MachineBasicBlock *Default,
1949                                                 MachineBasicBlock *SwitchBB) {
1950  // Size is the number of Cases represented by this range.
1951  size_t Size = CR.Range.second - CR.Range.first;
1952  if (Size > 3)
1953    return false;
1954
1955  // Get the MachineFunction which holds the current MBB.  This is used when
1956  // inserting any additional MBBs necessary to represent the switch.
1957  MachineFunction *CurMF = FuncInfo.MF;
1958
1959  // Figure out which block is immediately after the current one.
1960  MachineBasicBlock *NextBlock = 0;
1961  MachineFunction::iterator BBI = CR.CaseBB;
1962
1963  if (++BBI != FuncInfo.MF->end())
1964    NextBlock = BBI;
1965
1966  BranchProbabilityInfo *BPI = FuncInfo.BPI;
1967  // If any two of the cases has the same destination, and if one value
1968  // is the same as the other, but has one bit unset that the other has set,
1969  // use bit manipulation to do two compares at once.  For example:
1970  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1971  // TODO: This could be extended to merge any 2 cases in switches with 3 cases.
1972  // TODO: Handle cases where CR.CaseBB != SwitchBB.
1973  if (Size == 2 && CR.CaseBB == SwitchBB) {
1974    Case &Small = *CR.Range.first;
1975    Case &Big = *(CR.Range.second-1);
1976
1977    if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) {
1978      const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue();
1979      const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue();
1980
1981      // Check that there is only one bit different.
1982      if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 &&
1983          (SmallValue | BigValue) == BigValue) {
1984        // Isolate the common bit.
1985        APInt CommonBit = BigValue & ~SmallValue;
1986        assert((SmallValue | CommonBit) == BigValue &&
1987               CommonBit.countPopulation() == 1 && "Not a common bit?");
1988
1989        SDValue CondLHS = getValue(SV);
1990        EVT VT = CondLHS.getValueType();
1991        SDLoc DL = getCurSDLoc();
1992
1993        SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
1994                                 DAG.getConstant(CommonBit, VT));
1995        SDValue Cond = DAG.getSetCC(DL, MVT::i1,
1996                                    Or, DAG.getConstant(BigValue, VT),
1997                                    ISD::SETEQ);
1998
1999        // Update successor info.
2000        // Both Small and Big will jump to Small.BB, so we sum up the weights.
2001        addSuccessorWithWeight(SwitchBB, Small.BB,
2002                               Small.ExtraWeight + Big.ExtraWeight);
2003        addSuccessorWithWeight(SwitchBB, Default,
2004          // The default destination is the first successor in IR.
2005          BPI ? BPI->getEdgeWeight(SwitchBB->getBasicBlock(), (unsigned)0) : 0);
2006
2007        // Insert the true branch.
2008        SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other,
2009                                     getControlRoot(), Cond,
2010                                     DAG.getBasicBlock(Small.BB));
2011
2012        // Insert the false branch.
2013        BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
2014                             DAG.getBasicBlock(Default));
2015
2016        DAG.setRoot(BrCond);
2017        return true;
2018      }
2019    }
2020  }
2021
2022  // Order cases by weight so the most likely case will be checked first.
2023  uint32_t UnhandledWeights = 0;
2024  if (BPI) {
2025    for (CaseItr I = CR.Range.first, IE = CR.Range.second; I != IE; ++I) {
2026      uint32_t IWeight = I->ExtraWeight;
2027      UnhandledWeights += IWeight;
2028      for (CaseItr J = CR.Range.first; J < I; ++J) {
2029        uint32_t JWeight = J->ExtraWeight;
2030        if (IWeight > JWeight)
2031          std::swap(*I, *J);
2032      }
2033    }
2034  }
2035  // Rearrange the case blocks so that the last one falls through if possible.
2036  Case &BackCase = *(CR.Range.second-1);
2037  if (Size > 1 &&
2038      NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
2039    // The last case block won't fall through into 'NextBlock' if we emit the
2040    // branches in this order.  See if rearranging a case value would help.
2041    // We start at the bottom as it's the case with the least weight.
2042    for (Case *I = &*(CR.Range.second-2), *E = &*CR.Range.first-1; I != E; --I){
2043      if (I->BB == NextBlock) {
2044        std::swap(*I, BackCase);
2045        break;
2046      }
2047    }
2048  }
2049
2050  // Create a CaseBlock record representing a conditional branch to
2051  // the Case's target mbb if the value being switched on SV is equal
2052  // to C.
2053  MachineBasicBlock *CurBlock = CR.CaseBB;
2054  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
2055    MachineBasicBlock *FallThrough;
2056    if (I != E-1) {
2057      FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
2058      CurMF->insert(BBI, FallThrough);
2059
2060      // Put SV in a virtual register to make it available from the new blocks.
2061      ExportFromCurrentBlock(SV);
2062    } else {
2063      // If the last case doesn't match, go to the default block.
2064      FallThrough = Default;
2065    }
2066
2067    const Value *RHS, *LHS, *MHS;
2068    ISD::CondCode CC;
2069    if (I->High == I->Low) {
2070      // This is just small small case range :) containing exactly 1 case
2071      CC = ISD::SETEQ;
2072      LHS = SV; RHS = I->High; MHS = NULL;
2073    } else {
2074      CC = ISD::SETCC_INVALID;
2075      LHS = I->Low; MHS = SV; RHS = I->High;
2076    }
2077
2078    // The false weight should be sum of all un-handled cases.
2079    UnhandledWeights -= I->ExtraWeight;
2080    CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough,
2081                 /* me */ CurBlock,
2082                 /* trueweight */ I->ExtraWeight,
2083                 /* falseweight */ UnhandledWeights);
2084
2085    // If emitting the first comparison, just call visitSwitchCase to emit the
2086    // code into the current block.  Otherwise, push the CaseBlock onto the
2087    // vector to be later processed by SDISel, and insert the node's MBB
2088    // before the next MBB.
2089    if (CurBlock == SwitchBB)
2090      visitSwitchCase(CB, SwitchBB);
2091    else
2092      SwitchCases.push_back(CB);
2093
2094    CurBlock = FallThrough;
2095  }
2096
2097  return true;
2098}
2099
2100static inline bool areJTsAllowed(const TargetLowering &TLI) {
2101  return TLI.supportJumpTables() &&
2102          (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
2103           TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
2104}
2105
2106static APInt ComputeRange(const APInt &First, const APInt &Last) {
2107  uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
2108  APInt LastExt = Last.zext(BitWidth), FirstExt = First.zext(BitWidth);
2109  return (LastExt - FirstExt + 1ULL);
2110}
2111
2112/// handleJTSwitchCase - Emit jumptable for current switch case range
2113bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR,
2114                                             CaseRecVector &WorkList,
2115                                             const Value *SV,
2116                                             MachineBasicBlock *Default,
2117                                             MachineBasicBlock *SwitchBB) {
2118  Case& FrontCase = *CR.Range.first;
2119  Case& BackCase  = *(CR.Range.second-1);
2120
2121  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2122  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2123
2124  APInt TSize(First.getBitWidth(), 0);
2125  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I)
2126    TSize += I->size();
2127
2128  const TargetLowering *TLI = TM.getTargetLowering();
2129  if (!areJTsAllowed(*TLI) || TSize.ult(TLI->getMinimumJumpTableEntries()))
2130    return false;
2131
2132  APInt Range = ComputeRange(First, Last);
2133  // The density is TSize / Range. Require at least 40%.
2134  // It should not be possible for IntTSize to saturate for sane code, but make
2135  // sure we handle Range saturation correctly.
2136  uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10);
2137  uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10);
2138  if (IntTSize * 10 < IntRange * 4)
2139    return false;
2140
2141  DEBUG(dbgs() << "Lowering jump table\n"
2142               << "First entry: " << First << ". Last entry: " << Last << '\n'
2143               << "Range: " << Range << ". Size: " << TSize << ".\n\n");
2144
2145  // Get the MachineFunction which holds the current MBB.  This is used when
2146  // inserting any additional MBBs necessary to represent the switch.
2147  MachineFunction *CurMF = FuncInfo.MF;
2148
2149  // Figure out which block is immediately after the current one.
2150  MachineFunction::iterator BBI = CR.CaseBB;
2151  ++BBI;
2152
2153  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2154
2155  // Create a new basic block to hold the code for loading the address
2156  // of the jump table, and jumping to it.  Update successor information;
2157  // we will either branch to the default case for the switch, or the jump
2158  // table.
2159  MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2160  CurMF->insert(BBI, JumpTableBB);
2161
2162  addSuccessorWithWeight(CR.CaseBB, Default);
2163  addSuccessorWithWeight(CR.CaseBB, JumpTableBB);
2164
2165  // Build a vector of destination BBs, corresponding to each target
2166  // of the jump table. If the value of the jump table slot corresponds to
2167  // a case statement, push the case's BB onto the vector, otherwise, push
2168  // the default BB.
2169  std::vector<MachineBasicBlock*> DestBBs;
2170  APInt TEI = First;
2171  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
2172    const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
2173    const APInt &High = cast<ConstantInt>(I->High)->getValue();
2174
2175    if (Low.ule(TEI) && TEI.ule(High)) {
2176      DestBBs.push_back(I->BB);
2177      if (TEI==High)
2178        ++I;
2179    } else {
2180      DestBBs.push_back(Default);
2181    }
2182  }
2183
2184  // Calculate weight for each unique destination in CR.
2185  DenseMap<MachineBasicBlock*, uint32_t> DestWeights;
2186  if (FuncInfo.BPI)
2187    for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
2188      DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr =
2189          DestWeights.find(I->BB);
2190      if (Itr != DestWeights.end())
2191        Itr->second += I->ExtraWeight;
2192      else
2193        DestWeights[I->BB] = I->ExtraWeight;
2194    }
2195
2196  // Update successor info. Add one edge to each unique successor.
2197  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
2198  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
2199         E = DestBBs.end(); I != E; ++I) {
2200    if (!SuccsHandled[(*I)->getNumber()]) {
2201      SuccsHandled[(*I)->getNumber()] = true;
2202      DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr =
2203          DestWeights.find(*I);
2204      addSuccessorWithWeight(JumpTableBB, *I,
2205                             Itr != DestWeights.end() ? Itr->second : 0);
2206    }
2207  }
2208
2209  // Create a jump table index for this jump table.
2210  unsigned JTEncoding = TLI->getJumpTableEncoding();
2211  unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
2212                       ->createJumpTableIndex(DestBBs);
2213
2214  // Set the jump table information so that we can codegen it as a second
2215  // MachineBasicBlock
2216  JumpTable JT(-1U, JTI, JumpTableBB, Default);
2217  JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
2218  if (CR.CaseBB == SwitchBB)
2219    visitJumpTableHeader(JT, JTH, SwitchBB);
2220
2221  JTCases.push_back(JumpTableBlock(JTH, JT));
2222  return true;
2223}
2224
2225/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
2226/// 2 subtrees.
2227bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
2228                                                  CaseRecVector& WorkList,
2229                                                  const Value* SV,
2230                                                  MachineBasicBlock *Default,
2231                                                  MachineBasicBlock *SwitchBB) {
2232  // Get the MachineFunction which holds the current MBB.  This is used when
2233  // inserting any additional MBBs necessary to represent the switch.
2234  MachineFunction *CurMF = FuncInfo.MF;
2235
2236  // Figure out which block is immediately after the current one.
2237  MachineFunction::iterator BBI = CR.CaseBB;
2238  ++BBI;
2239
2240  Case& FrontCase = *CR.Range.first;
2241  Case& BackCase  = *(CR.Range.second-1);
2242  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2243
2244  // Size is the number of Cases represented by this range.
2245  unsigned Size = CR.Range.second - CR.Range.first;
2246
2247  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2248  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2249  double FMetric = 0;
2250  CaseItr Pivot = CR.Range.first + Size/2;
2251
2252  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
2253  // (heuristically) allow us to emit JumpTable's later.
2254  APInt TSize(First.getBitWidth(), 0);
2255  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2256       I!=E; ++I)
2257    TSize += I->size();
2258
2259  APInt LSize = FrontCase.size();
2260  APInt RSize = TSize-LSize;
2261  DEBUG(dbgs() << "Selecting best pivot: \n"
2262               << "First: " << First << ", Last: " << Last <<'\n'
2263               << "LSize: " << LSize << ", RSize: " << RSize << '\n');
2264  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
2265       J!=E; ++I, ++J) {
2266    const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
2267    const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
2268    APInt Range = ComputeRange(LEnd, RBegin);
2269    assert((Range - 2ULL).isNonNegative() &&
2270           "Invalid case distance");
2271    // Use volatile double here to avoid excess precision issues on some hosts,
2272    // e.g. that use 80-bit X87 registers.
2273    volatile double LDensity =
2274       (double)LSize.roundToDouble() /
2275                           (LEnd - First + 1ULL).roundToDouble();
2276    volatile double RDensity =
2277      (double)RSize.roundToDouble() /
2278                           (Last - RBegin + 1ULL).roundToDouble();
2279    double Metric = Range.logBase2()*(LDensity+RDensity);
2280    // Should always split in some non-trivial place
2281    DEBUG(dbgs() <<"=>Step\n"
2282                 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
2283                 << "LDensity: " << LDensity
2284                 << ", RDensity: " << RDensity << '\n'
2285                 << "Metric: " << Metric << '\n');
2286    if (FMetric < Metric) {
2287      Pivot = J;
2288      FMetric = Metric;
2289      DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
2290    }
2291
2292    LSize += J->size();
2293    RSize -= J->size();
2294  }
2295
2296  const TargetLowering *TLI = TM.getTargetLowering();
2297  if (areJTsAllowed(*TLI)) {
2298    // If our case is dense we *really* should handle it earlier!
2299    assert((FMetric > 0) && "Should handle dense range earlier!");
2300  } else {
2301    Pivot = CR.Range.first + Size/2;
2302  }
2303
2304  CaseRange LHSR(CR.Range.first, Pivot);
2305  CaseRange RHSR(Pivot, CR.Range.second);
2306  const Constant *C = Pivot->Low;
2307  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
2308
2309  // We know that we branch to the LHS if the Value being switched on is
2310  // less than the Pivot value, C.  We use this to optimize our binary
2311  // tree a bit, by recognizing that if SV is greater than or equal to the
2312  // LHS's Case Value, and that Case Value is exactly one less than the
2313  // Pivot's Value, then we can branch directly to the LHS's Target,
2314  // rather than creating a leaf node for it.
2315  if ((LHSR.second - LHSR.first) == 1 &&
2316      LHSR.first->High == CR.GE &&
2317      cast<ConstantInt>(C)->getValue() ==
2318      (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
2319    TrueBB = LHSR.first->BB;
2320  } else {
2321    TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2322    CurMF->insert(BBI, TrueBB);
2323    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
2324
2325    // Put SV in a virtual register to make it available from the new blocks.
2326    ExportFromCurrentBlock(SV);
2327  }
2328
2329  // Similar to the optimization above, if the Value being switched on is
2330  // known to be less than the Constant CR.LT, and the current Case Value
2331  // is CR.LT - 1, then we can branch directly to the target block for
2332  // the current Case Value, rather than emitting a RHS leaf node for it.
2333  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
2334      cast<ConstantInt>(RHSR.first->Low)->getValue() ==
2335      (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
2336    FalseBB = RHSR.first->BB;
2337  } else {
2338    FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2339    CurMF->insert(BBI, FalseBB);
2340    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
2341
2342    // Put SV in a virtual register to make it available from the new blocks.
2343    ExportFromCurrentBlock(SV);
2344  }
2345
2346  // Create a CaseBlock record representing a conditional branch to
2347  // the LHS node if the value being switched on SV is less than C.
2348  // Otherwise, branch to LHS.
2349  CaseBlock CB(ISD::SETULT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
2350
2351  if (CR.CaseBB == SwitchBB)
2352    visitSwitchCase(CB, SwitchBB);
2353  else
2354    SwitchCases.push_back(CB);
2355
2356  return true;
2357}
2358
2359/// handleBitTestsSwitchCase - if current case range has few destination and
2360/// range span less, than machine word bitwidth, encode case range into series
2361/// of masks and emit bit tests with these masks.
2362bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
2363                                                   CaseRecVector& WorkList,
2364                                                   const Value* SV,
2365                                                   MachineBasicBlock* Default,
2366                                                   MachineBasicBlock *SwitchBB){
2367  const TargetLowering *TLI = TM.getTargetLowering();
2368  EVT PTy = TLI->getPointerTy();
2369  unsigned IntPtrBits = PTy.getSizeInBits();
2370
2371  Case& FrontCase = *CR.Range.first;
2372  Case& BackCase  = *(CR.Range.second-1);
2373
2374  // Get the MachineFunction which holds the current MBB.  This is used when
2375  // inserting any additional MBBs necessary to represent the switch.
2376  MachineFunction *CurMF = FuncInfo.MF;
2377
2378  // If target does not have legal shift left, do not emit bit tests at all.
2379  if (!TLI->isOperationLegal(ISD::SHL, TLI->getPointerTy()))
2380    return false;
2381
2382  size_t numCmps = 0;
2383  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2384       I!=E; ++I) {
2385    // Single case counts one, case range - two.
2386    numCmps += (I->Low == I->High ? 1 : 2);
2387  }
2388
2389  // Count unique destinations
2390  SmallSet<MachineBasicBlock*, 4> Dests;
2391  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2392    Dests.insert(I->BB);
2393    if (Dests.size() > 3)
2394      // Don't bother the code below, if there are too much unique destinations
2395      return false;
2396  }
2397  DEBUG(dbgs() << "Total number of unique destinations: "
2398        << Dests.size() << '\n'
2399        << "Total number of comparisons: " << numCmps << '\n');
2400
2401  // Compute span of values.
2402  const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
2403  const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
2404  APInt cmpRange = maxValue - minValue;
2405
2406  DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
2407               << "Low bound: " << minValue << '\n'
2408               << "High bound: " << maxValue << '\n');
2409
2410  if (cmpRange.uge(IntPtrBits) ||
2411      (!(Dests.size() == 1 && numCmps >= 3) &&
2412       !(Dests.size() == 2 && numCmps >= 5) &&
2413       !(Dests.size() >= 3 && numCmps >= 6)))
2414    return false;
2415
2416  DEBUG(dbgs() << "Emitting bit tests\n");
2417  APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
2418
2419  // Optimize the case where all the case values fit in a
2420  // word without having to subtract minValue. In this case,
2421  // we can optimize away the subtraction.
2422  if (maxValue.ult(IntPtrBits)) {
2423    cmpRange = maxValue;
2424  } else {
2425    lowBound = minValue;
2426  }
2427
2428  CaseBitsVector CasesBits;
2429  unsigned i, count = 0;
2430
2431  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2432    MachineBasicBlock* Dest = I->BB;
2433    for (i = 0; i < count; ++i)
2434      if (Dest == CasesBits[i].BB)
2435        break;
2436
2437    if (i == count) {
2438      assert((count < 3) && "Too much destinations to test!");
2439      CasesBits.push_back(CaseBits(0, Dest, 0, 0/*Weight*/));
2440      count++;
2441    }
2442
2443    const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
2444    const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
2445
2446    uint64_t lo = (lowValue - lowBound).getZExtValue();
2447    uint64_t hi = (highValue - lowBound).getZExtValue();
2448    CasesBits[i].ExtraWeight += I->ExtraWeight;
2449
2450    for (uint64_t j = lo; j <= hi; j++) {
2451      CasesBits[i].Mask |=  1ULL << j;
2452      CasesBits[i].Bits++;
2453    }
2454
2455  }
2456  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2457
2458  BitTestInfo BTC;
2459
2460  // Figure out which block is immediately after the current one.
2461  MachineFunction::iterator BBI = CR.CaseBB;
2462  ++BBI;
2463
2464  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2465
2466  DEBUG(dbgs() << "Cases:\n");
2467  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2468    DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
2469                 << ", Bits: " << CasesBits[i].Bits
2470                 << ", BB: " << CasesBits[i].BB << '\n');
2471
2472    MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2473    CurMF->insert(BBI, CaseBB);
2474    BTC.push_back(BitTestCase(CasesBits[i].Mask,
2475                              CaseBB,
2476                              CasesBits[i].BB, CasesBits[i].ExtraWeight));
2477
2478    // Put SV in a virtual register to make it available from the new blocks.
2479    ExportFromCurrentBlock(SV);
2480  }
2481
2482  BitTestBlock BTB(lowBound, cmpRange, SV,
2483                   -1U, MVT::Other, (CR.CaseBB == SwitchBB),
2484                   CR.CaseBB, Default, BTC);
2485
2486  if (CR.CaseBB == SwitchBB)
2487    visitBitTestHeader(BTB, SwitchBB);
2488
2489  BitTestCases.push_back(BTB);
2490
2491  return true;
2492}
2493
2494/// Clusterify - Transform simple list of Cases into list of CaseRange's
2495size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
2496                                       const SwitchInst& SI) {
2497
2498  /// Use a shorter form of declaration, and also
2499  /// show the we want to use CRSBuilder as Clusterifier.
2500  typedef IntegersSubsetMapping<MachineBasicBlock> Clusterifier;
2501
2502  Clusterifier TheClusterifier;
2503
2504  BranchProbabilityInfo *BPI = FuncInfo.BPI;
2505  // Start with "simple" cases
2506  for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
2507       i != e; ++i) {
2508    const BasicBlock *SuccBB = i.getCaseSuccessor();
2509    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB];
2510
2511    TheClusterifier.add(i.getCaseValueEx(), SMBB,
2512        BPI ? BPI->getEdgeWeight(SI.getParent(), i.getSuccessorIndex()) : 0);
2513  }
2514
2515  TheClusterifier.optimize();
2516
2517  size_t numCmps = 0;
2518  for (Clusterifier::RangeIterator i = TheClusterifier.begin(),
2519       e = TheClusterifier.end(); i != e; ++i, ++numCmps) {
2520    Clusterifier::Cluster &C = *i;
2521    // Update edge weight for the cluster.
2522    unsigned W = C.first.Weight;
2523
2524    // FIXME: Currently work with ConstantInt based numbers.
2525    // Changing it to APInt based is a pretty heavy for this commit.
2526    Cases.push_back(Case(C.first.getLow().toConstantInt(),
2527                         C.first.getHigh().toConstantInt(), C.second, W));
2528
2529    if (C.first.getLow() != C.first.getHigh())
2530    // A range counts double, since it requires two compares.
2531    ++numCmps;
2532  }
2533
2534  return numCmps;
2535}
2536
2537void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2538                                           MachineBasicBlock *Last) {
2539  // Update JTCases.
2540  for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2541    if (JTCases[i].first.HeaderBB == First)
2542      JTCases[i].first.HeaderBB = Last;
2543
2544  // Update BitTestCases.
2545  for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2546    if (BitTestCases[i].Parent == First)
2547      BitTestCases[i].Parent = Last;
2548}
2549
2550void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
2551  MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
2552
2553  // Figure out which block is immediately after the current one.
2554  MachineBasicBlock *NextBlock = 0;
2555  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2556
2557  // If there is only the default destination, branch to it if it is not the
2558  // next basic block.  Otherwise, just fall through.
2559  if (!SI.getNumCases()) {
2560    // Update machine-CFG edges.
2561
2562    // If this is not a fall-through branch, emit the branch.
2563    SwitchMBB->addSuccessor(Default);
2564    if (Default != NextBlock)
2565      DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2566                              MVT::Other, getControlRoot(),
2567                              DAG.getBasicBlock(Default)));
2568
2569    return;
2570  }
2571
2572  // If there are any non-default case statements, create a vector of Cases
2573  // representing each one, and sort the vector so that we can efficiently
2574  // create a binary search tree from them.
2575  CaseVector Cases;
2576  size_t numCmps = Clusterify(Cases, SI);
2577  DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2578               << ". Total compares: " << numCmps << '\n');
2579  (void)numCmps;
2580
2581  // Get the Value to be switched on and default basic blocks, which will be
2582  // inserted into CaseBlock records, representing basic blocks in the binary
2583  // search tree.
2584  const Value *SV = SI.getCondition();
2585
2586  // Push the initial CaseRec onto the worklist
2587  CaseRecVector WorkList;
2588  WorkList.push_back(CaseRec(SwitchMBB,0,0,
2589                             CaseRange(Cases.begin(),Cases.end())));
2590
2591  while (!WorkList.empty()) {
2592    // Grab a record representing a case range to process off the worklist
2593    CaseRec CR = WorkList.back();
2594    WorkList.pop_back();
2595
2596    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2597      continue;
2598
2599    // If the range has few cases (two or less) emit a series of specific
2600    // tests.
2601    if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
2602      continue;
2603
2604    // If the switch has more than N blocks, and is at least 40% dense, and the
2605    // target supports indirect branches, then emit a jump table rather than
2606    // lowering the switch to a binary tree of conditional branches.
2607    // N defaults to 4 and is controlled via TLS.getMinimumJumpTableEntries().
2608    if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2609      continue;
2610
2611    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2612    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2613    handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
2614  }
2615}
2616
2617void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2618  MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2619
2620  // Update machine-CFG edges with unique successors.
2621  SmallSet<BasicBlock*, 32> Done;
2622  for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2623    BasicBlock *BB = I.getSuccessor(i);
2624    bool Inserted = Done.insert(BB);
2625    if (!Inserted)
2626        continue;
2627
2628    MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2629    addSuccessorWithWeight(IndirectBrMBB, Succ);
2630  }
2631
2632  DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2633                          MVT::Other, getControlRoot(),
2634                          getValue(I.getAddress())));
2635}
2636
2637void SelectionDAGBuilder::visitFSub(const User &I) {
2638  // -0.0 - X --> fneg
2639  Type *Ty = I.getType();
2640  if (isa<Constant>(I.getOperand(0)) &&
2641      I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2642    SDValue Op2 = getValue(I.getOperand(1));
2643    setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2644                             Op2.getValueType(), Op2));
2645    return;
2646  }
2647
2648  visitBinary(I, ISD::FSUB);
2649}
2650
2651void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2652  SDValue Op1 = getValue(I.getOperand(0));
2653  SDValue Op2 = getValue(I.getOperand(1));
2654  setValue(&I, DAG.getNode(OpCode, getCurSDLoc(),
2655                           Op1.getValueType(), Op1, Op2));
2656}
2657
2658void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2659  SDValue Op1 = getValue(I.getOperand(0));
2660  SDValue Op2 = getValue(I.getOperand(1));
2661
2662  EVT ShiftTy = TM.getTargetLowering()->getShiftAmountTy(Op2.getValueType());
2663
2664  // Coerce the shift amount to the right type if we can.
2665  if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2666    unsigned ShiftSize = ShiftTy.getSizeInBits();
2667    unsigned Op2Size = Op2.getValueType().getSizeInBits();
2668    SDLoc DL = getCurSDLoc();
2669
2670    // If the operand is smaller than the shift count type, promote it.
2671    if (ShiftSize > Op2Size)
2672      Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2673
2674    // If the operand is larger than the shift count type but the shift
2675    // count type has enough bits to represent any shift value, truncate
2676    // it now. This is a common case and it exposes the truncate to
2677    // optimization early.
2678    else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2679      Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2680    // Otherwise we'll need to temporarily settle for some other convenient
2681    // type.  Type legalization will make adjustments once the shiftee is split.
2682    else
2683      Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2684  }
2685
2686  setValue(&I, DAG.getNode(Opcode, getCurSDLoc(),
2687                           Op1.getValueType(), Op1, Op2));
2688}
2689
2690void SelectionDAGBuilder::visitSDiv(const User &I) {
2691  SDValue Op1 = getValue(I.getOperand(0));
2692  SDValue Op2 = getValue(I.getOperand(1));
2693
2694  // Turn exact SDivs into multiplications.
2695  // FIXME: This should be in DAGCombiner, but it doesn't have access to the
2696  // exact bit.
2697  if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() &&
2698      !isa<ConstantSDNode>(Op1) &&
2699      isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue())
2700    setValue(&I, TM.getTargetLowering()->BuildExactSDIV(Op1, Op2,
2701                                                        getCurSDLoc(), DAG));
2702  else
2703    setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(),
2704                             Op1, Op2));
2705}
2706
2707void SelectionDAGBuilder::visitICmp(const User &I) {
2708  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2709  if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2710    predicate = IC->getPredicate();
2711  else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2712    predicate = ICmpInst::Predicate(IC->getPredicate());
2713  SDValue Op1 = getValue(I.getOperand(0));
2714  SDValue Op2 = getValue(I.getOperand(1));
2715  ISD::CondCode Opcode = getICmpCondCode(predicate);
2716
2717  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2718  setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
2719}
2720
2721void SelectionDAGBuilder::visitFCmp(const User &I) {
2722  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2723  if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2724    predicate = FC->getPredicate();
2725  else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2726    predicate = FCmpInst::Predicate(FC->getPredicate());
2727  SDValue Op1 = getValue(I.getOperand(0));
2728  SDValue Op2 = getValue(I.getOperand(1));
2729  ISD::CondCode Condition = getFCmpCondCode(predicate);
2730  if (TM.Options.NoNaNsFPMath)
2731    Condition = getFCmpCodeWithoutNaN(Condition);
2732  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2733  setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
2734}
2735
2736void SelectionDAGBuilder::visitSelect(const User &I) {
2737  SmallVector<EVT, 4> ValueVTs;
2738  ComputeValueVTs(*TM.getTargetLowering(), I.getType(), ValueVTs);
2739  unsigned NumValues = ValueVTs.size();
2740  if (NumValues == 0) return;
2741
2742  SmallVector<SDValue, 4> Values(NumValues);
2743  SDValue Cond     = getValue(I.getOperand(0));
2744  SDValue TrueVal  = getValue(I.getOperand(1));
2745  SDValue FalseVal = getValue(I.getOperand(2));
2746  ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2747    ISD::VSELECT : ISD::SELECT;
2748
2749  for (unsigned i = 0; i != NumValues; ++i)
2750    Values[i] = DAG.getNode(OpCode, getCurSDLoc(),
2751                            TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2752                            Cond,
2753                            SDValue(TrueVal.getNode(),
2754                                    TrueVal.getResNo() + i),
2755                            SDValue(FalseVal.getNode(),
2756                                    FalseVal.getResNo() + i));
2757
2758  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
2759                           DAG.getVTList(&ValueVTs[0], NumValues),
2760                           &Values[0], NumValues));
2761}
2762
2763void SelectionDAGBuilder::visitTrunc(const User &I) {
2764  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2765  SDValue N = getValue(I.getOperand(0));
2766  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2767  setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
2768}
2769
2770void SelectionDAGBuilder::visitZExt(const User &I) {
2771  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2772  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2773  SDValue N = getValue(I.getOperand(0));
2774  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2775  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
2776}
2777
2778void SelectionDAGBuilder::visitSExt(const User &I) {
2779  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2780  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2781  SDValue N = getValue(I.getOperand(0));
2782  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2783  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
2784}
2785
2786void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2787  // FPTrunc is never a no-op cast, no need to check
2788  SDValue N = getValue(I.getOperand(0));
2789  const TargetLowering *TLI = TM.getTargetLowering();
2790  EVT DestVT = TLI->getValueType(I.getType());
2791  setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurSDLoc(),
2792                           DestVT, N,
2793                           DAG.getTargetConstant(0, TLI->getPointerTy())));
2794}
2795
2796void SelectionDAGBuilder::visitFPExt(const User &I){
2797  // FPExt is never a no-op cast, no need to check
2798  SDValue N = getValue(I.getOperand(0));
2799  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2800  setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
2801}
2802
2803void SelectionDAGBuilder::visitFPToUI(const User &I) {
2804  // FPToUI is never a no-op cast, no need to check
2805  SDValue N = getValue(I.getOperand(0));
2806  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2807  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
2808}
2809
2810void SelectionDAGBuilder::visitFPToSI(const User &I) {
2811  // FPToSI is never a no-op cast, no need to check
2812  SDValue N = getValue(I.getOperand(0));
2813  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2814  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
2815}
2816
2817void SelectionDAGBuilder::visitUIToFP(const User &I) {
2818  // UIToFP is never a no-op cast, no need to check
2819  SDValue N = getValue(I.getOperand(0));
2820  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2821  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
2822}
2823
2824void SelectionDAGBuilder::visitSIToFP(const User &I){
2825  // SIToFP is never a no-op cast, no need to check
2826  SDValue N = getValue(I.getOperand(0));
2827  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2828  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
2829}
2830
2831void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2832  // What to do depends on the size of the integer and the size of the pointer.
2833  // We can either truncate, zero extend, or no-op, accordingly.
2834  SDValue N = getValue(I.getOperand(0));
2835  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2836  setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
2837}
2838
2839void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2840  // What to do depends on the size of the integer and the size of the pointer.
2841  // We can either truncate, zero extend, or no-op, accordingly.
2842  SDValue N = getValue(I.getOperand(0));
2843  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2844  setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
2845}
2846
2847void SelectionDAGBuilder::visitBitCast(const User &I) {
2848  SDValue N = getValue(I.getOperand(0));
2849  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2850
2851  // BitCast assures us that source and destination are the same size so this is
2852  // either a BITCAST or a no-op.
2853  if (DestVT != N.getValueType())
2854    setValue(&I, DAG.getNode(ISD::BITCAST, getCurSDLoc(),
2855                             DestVT, N)); // convert types.
2856  else
2857    setValue(&I, N);            // noop cast.
2858}
2859
2860void SelectionDAGBuilder::visitInsertElement(const User &I) {
2861  SDValue InVec = getValue(I.getOperand(0));
2862  SDValue InVal = getValue(I.getOperand(1));
2863  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(),
2864                              TM.getTargetLowering()->getPointerTy(),
2865                              getValue(I.getOperand(2)));
2866  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
2867                           TM.getTargetLowering()->getValueType(I.getType()),
2868                           InVec, InVal, InIdx));
2869}
2870
2871void SelectionDAGBuilder::visitExtractElement(const User &I) {
2872  SDValue InVec = getValue(I.getOperand(0));
2873  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(),
2874                              TM.getTargetLowering()->getPointerTy(),
2875                              getValue(I.getOperand(1)));
2876  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
2877                           TM.getTargetLowering()->getValueType(I.getType()),
2878                           InVec, InIdx));
2879}
2880
2881// Utility for visitShuffleVector - Return true if every element in Mask,
2882// beginning from position Pos and ending in Pos+Size, falls within the
2883// specified sequential range [L, L+Pos). or is undef.
2884static bool isSequentialInRange(const SmallVectorImpl<int> &Mask,
2885                                unsigned Pos, unsigned Size, int Low) {
2886  for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
2887    if (Mask[i] >= 0 && Mask[i] != Low)
2888      return false;
2889  return true;
2890}
2891
2892void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2893  SDValue Src1 = getValue(I.getOperand(0));
2894  SDValue Src2 = getValue(I.getOperand(1));
2895
2896  SmallVector<int, 8> Mask;
2897  ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
2898  unsigned MaskNumElts = Mask.size();
2899
2900  const TargetLowering *TLI = TM.getTargetLowering();
2901  EVT VT = TLI->getValueType(I.getType());
2902  EVT SrcVT = Src1.getValueType();
2903  unsigned SrcNumElts = SrcVT.getVectorNumElements();
2904
2905  if (SrcNumElts == MaskNumElts) {
2906    setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
2907                                      &Mask[0]));
2908    return;
2909  }
2910
2911  // Normalize the shuffle vector since mask and vector length don't match.
2912  if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2913    // Mask is longer than the source vectors and is a multiple of the source
2914    // vectors.  We can use concatenate vector to make the mask and vectors
2915    // lengths match.
2916    if (SrcNumElts*2 == MaskNumElts) {
2917      // First check for Src1 in low and Src2 in high
2918      if (isSequentialInRange(Mask, 0, SrcNumElts, 0) &&
2919          isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) {
2920        // The shuffle is concatenating two vectors together.
2921        setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(),
2922                                 VT, Src1, Src2));
2923        return;
2924      }
2925      // Then check for Src2 in low and Src1 in high
2926      if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) &&
2927          isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) {
2928        // The shuffle is concatenating two vectors together.
2929        setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(),
2930                                 VT, Src2, Src1));
2931        return;
2932      }
2933    }
2934
2935    // Pad both vectors with undefs to make them the same length as the mask.
2936    unsigned NumConcat = MaskNumElts / SrcNumElts;
2937    bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2938    bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2939    SDValue UndefVal = DAG.getUNDEF(SrcVT);
2940
2941    SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2942    SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2943    MOps1[0] = Src1;
2944    MOps2[0] = Src2;
2945
2946    Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2947                                                  getCurSDLoc(), VT,
2948                                                  &MOps1[0], NumConcat);
2949    Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2950                                                  getCurSDLoc(), VT,
2951                                                  &MOps2[0], NumConcat);
2952
2953    // Readjust mask for new input vector length.
2954    SmallVector<int, 8> MappedOps;
2955    for (unsigned i = 0; i != MaskNumElts; ++i) {
2956      int Idx = Mask[i];
2957      if (Idx >= (int)SrcNumElts)
2958        Idx -= SrcNumElts - MaskNumElts;
2959      MappedOps.push_back(Idx);
2960    }
2961
2962    setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
2963                                      &MappedOps[0]));
2964    return;
2965  }
2966
2967  if (SrcNumElts > MaskNumElts) {
2968    // Analyze the access pattern of the vector to see if we can extract
2969    // two subvectors and do the shuffle. The analysis is done by calculating
2970    // the range of elements the mask access on both vectors.
2971    int MinRange[2] = { static_cast<int>(SrcNumElts),
2972                        static_cast<int>(SrcNumElts)};
2973    int MaxRange[2] = {-1, -1};
2974
2975    for (unsigned i = 0; i != MaskNumElts; ++i) {
2976      int Idx = Mask[i];
2977      unsigned Input = 0;
2978      if (Idx < 0)
2979        continue;
2980
2981      if (Idx >= (int)SrcNumElts) {
2982        Input = 1;
2983        Idx -= SrcNumElts;
2984      }
2985      if (Idx > MaxRange[Input])
2986        MaxRange[Input] = Idx;
2987      if (Idx < MinRange[Input])
2988        MinRange[Input] = Idx;
2989    }
2990
2991    // Check if the access is smaller than the vector size and can we find
2992    // a reasonable extract index.
2993    int RangeUse[2] = { -1, -1 };  // 0 = Unused, 1 = Extract, -1 = Can not
2994                                   // Extract.
2995    int StartIdx[2];  // StartIdx to extract from
2996    for (unsigned Input = 0; Input < 2; ++Input) {
2997      if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) {
2998        RangeUse[Input] = 0; // Unused
2999        StartIdx[Input] = 0;
3000        continue;
3001      }
3002
3003      // Find a good start index that is a multiple of the mask length. Then
3004      // see if the rest of the elements are in range.
3005      StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
3006      if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
3007          StartIdx[Input] + MaskNumElts <= SrcNumElts)
3008        RangeUse[Input] = 1; // Extract from a multiple of the mask length.
3009    }
3010
3011    if (RangeUse[0] == 0 && RangeUse[1] == 0) {
3012      setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3013      return;
3014    }
3015    if (RangeUse[0] >= 0 && RangeUse[1] >= 0) {
3016      // Extract appropriate subvector and generate a vector shuffle
3017      for (unsigned Input = 0; Input < 2; ++Input) {
3018        SDValue &Src = Input == 0 ? Src1 : Src2;
3019        if (RangeUse[Input] == 0)
3020          Src = DAG.getUNDEF(VT);
3021        else
3022          Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurSDLoc(), VT,
3023                            Src, DAG.getIntPtrConstant(StartIdx[Input]));
3024      }
3025
3026      // Calculate new mask.
3027      SmallVector<int, 8> MappedOps;
3028      for (unsigned i = 0; i != MaskNumElts; ++i) {
3029        int Idx = Mask[i];
3030        if (Idx >= 0) {
3031          if (Idx < (int)SrcNumElts)
3032            Idx -= StartIdx[0];
3033          else
3034            Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3035        }
3036        MappedOps.push_back(Idx);
3037      }
3038
3039      setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
3040                                        &MappedOps[0]));
3041      return;
3042    }
3043  }
3044
3045  // We can't use either concat vectors or extract subvectors so fall back to
3046  // replacing the shuffle with extract and build vector.
3047  // to insert and build vector.
3048  EVT EltVT = VT.getVectorElementType();
3049  EVT PtrVT = TLI->getPointerTy();
3050  SmallVector<SDValue,8> Ops;
3051  for (unsigned i = 0; i != MaskNumElts; ++i) {
3052    int Idx = Mask[i];
3053    SDValue Res;
3054
3055    if (Idx < 0) {
3056      Res = DAG.getUNDEF(EltVT);
3057    } else {
3058      SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3059      if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3060
3061      Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3062                        EltVT, Src, DAG.getConstant(Idx, PtrVT));
3063    }
3064
3065    Ops.push_back(Res);
3066  }
3067
3068  setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(),
3069                           VT, &Ops[0], Ops.size()));
3070}
3071
3072void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
3073  const Value *Op0 = I.getOperand(0);
3074  const Value *Op1 = I.getOperand(1);
3075  Type *AggTy = I.getType();
3076  Type *ValTy = Op1->getType();
3077  bool IntoUndef = isa<UndefValue>(Op0);
3078  bool FromUndef = isa<UndefValue>(Op1);
3079
3080  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3081
3082  const TargetLowering *TLI = TM.getTargetLowering();
3083  SmallVector<EVT, 4> AggValueVTs;
3084  ComputeValueVTs(*TLI, AggTy, AggValueVTs);
3085  SmallVector<EVT, 4> ValValueVTs;
3086  ComputeValueVTs(*TLI, ValTy, ValValueVTs);
3087
3088  unsigned NumAggValues = AggValueVTs.size();
3089  unsigned NumValValues = ValValueVTs.size();
3090  SmallVector<SDValue, 4> Values(NumAggValues);
3091
3092  SDValue Agg = getValue(Op0);
3093  unsigned i = 0;
3094  // Copy the beginning value(s) from the original aggregate.
3095  for (; i != LinearIndex; ++i)
3096    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3097                SDValue(Agg.getNode(), Agg.getResNo() + i);
3098  // Copy values from the inserted value(s).
3099  if (NumValValues) {
3100    SDValue Val = getValue(Op1);
3101    for (; i != LinearIndex + NumValValues; ++i)
3102      Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3103                  SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3104  }
3105  // Copy remaining value(s) from the original aggregate.
3106  for (; i != NumAggValues; ++i)
3107    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3108                SDValue(Agg.getNode(), Agg.getResNo() + i);
3109
3110  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3111                           DAG.getVTList(&AggValueVTs[0], NumAggValues),
3112                           &Values[0], NumAggValues));
3113}
3114
3115void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
3116  const Value *Op0 = I.getOperand(0);
3117  Type *AggTy = Op0->getType();
3118  Type *ValTy = I.getType();
3119  bool OutOfUndef = isa<UndefValue>(Op0);
3120
3121  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3122
3123  const TargetLowering *TLI = TM.getTargetLowering();
3124  SmallVector<EVT, 4> ValValueVTs;
3125  ComputeValueVTs(*TLI, ValTy, ValValueVTs);
3126
3127  unsigned NumValValues = ValValueVTs.size();
3128
3129  // Ignore a extractvalue that produces an empty object
3130  if (!NumValValues) {
3131    setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3132    return;
3133  }
3134
3135  SmallVector<SDValue, 4> Values(NumValValues);
3136
3137  SDValue Agg = getValue(Op0);
3138  // Copy out the selected value(s).
3139  for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3140    Values[i - LinearIndex] =
3141      OutOfUndef ?
3142        DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3143        SDValue(Agg.getNode(), Agg.getResNo() + i);
3144
3145  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3146                           DAG.getVTList(&ValValueVTs[0], NumValValues),
3147                           &Values[0], NumValValues));
3148}
3149
3150void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3151  SDValue N = getValue(I.getOperand(0));
3152  // Note that the pointer operand may be a vector of pointers. Take the scalar
3153  // element which holds a pointer.
3154  Type *Ty = I.getOperand(0)->getType()->getScalarType();
3155
3156  for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
3157       OI != E; ++OI) {
3158    const Value *Idx = *OI;
3159    if (StructType *StTy = dyn_cast<StructType>(Ty)) {
3160      unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3161      if (Field) {
3162        // N = N + Offset
3163        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
3164        N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N,
3165                        DAG.getConstant(Offset, N.getValueType()));
3166      }
3167
3168      Ty = StTy->getElementType(Field);
3169    } else {
3170      Ty = cast<SequentialType>(Ty)->getElementType();
3171
3172      // If this is a constant subscript, handle it quickly.
3173      const TargetLowering *TLI = TM.getTargetLowering();
3174      if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
3175        if (CI->isZero()) continue;
3176        uint64_t Offs =
3177            TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
3178        SDValue OffsVal;
3179        EVT PTy = TLI->getPointerTy();
3180        unsigned PtrBits = PTy.getSizeInBits();
3181        if (PtrBits < 64)
3182          OffsVal = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(),
3183                                TLI->getPointerTy(),
3184                                DAG.getConstant(Offs, MVT::i64));
3185        else
3186          OffsVal = DAG.getIntPtrConstant(Offs);
3187
3188        N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N,
3189                        OffsVal);
3190        continue;
3191      }
3192
3193      // N = N + Idx * ElementSize;
3194      APInt ElementSize = APInt(TLI->getPointerTy().getSizeInBits(),
3195                                TD->getTypeAllocSize(Ty));
3196      SDValue IdxN = getValue(Idx);
3197
3198      // If the index is smaller or larger than intptr_t, truncate or extend
3199      // it.
3200      IdxN = DAG.getSExtOrTrunc(IdxN, getCurSDLoc(), N.getValueType());
3201
3202      // If this is a multiply by a power of two, turn it into a shl
3203      // immediately.  This is a very common case.
3204      if (ElementSize != 1) {
3205        if (ElementSize.isPowerOf2()) {
3206          unsigned Amt = ElementSize.logBase2();
3207          IdxN = DAG.getNode(ISD::SHL, getCurSDLoc(),
3208                             N.getValueType(), IdxN,
3209                             DAG.getConstant(Amt, IdxN.getValueType()));
3210        } else {
3211          SDValue Scale = DAG.getConstant(ElementSize, IdxN.getValueType());
3212          IdxN = DAG.getNode(ISD::MUL, getCurSDLoc(),
3213                             N.getValueType(), IdxN, Scale);
3214        }
3215      }
3216
3217      N = DAG.getNode(ISD::ADD, getCurSDLoc(),
3218                      N.getValueType(), N, IdxN);
3219    }
3220  }
3221
3222  setValue(&I, N);
3223}
3224
3225void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3226  // If this is a fixed sized alloca in the entry block of the function,
3227  // allocate it statically on the stack.
3228  if (FuncInfo.StaticAllocaMap.count(&I))
3229    return;   // getValue will auto-populate this.
3230
3231  Type *Ty = I.getAllocatedType();
3232  const TargetLowering *TLI = TM.getTargetLowering();
3233  uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty);
3234  unsigned Align =
3235    std::max((unsigned)TLI->getDataLayout()->getPrefTypeAlignment(Ty),
3236             I.getAlignment());
3237
3238  SDValue AllocSize = getValue(I.getArraySize());
3239
3240  EVT IntPtr = TLI->getPointerTy();
3241  if (AllocSize.getValueType() != IntPtr)
3242    AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurSDLoc(), IntPtr);
3243
3244  AllocSize = DAG.getNode(ISD::MUL, getCurSDLoc(), IntPtr,
3245                          AllocSize,
3246                          DAG.getConstant(TySize, IntPtr));
3247
3248  // Handle alignment.  If the requested alignment is less than or equal to
3249  // the stack alignment, ignore it.  If the size is greater than or equal to
3250  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3251  unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
3252  if (Align <= StackAlign)
3253    Align = 0;
3254
3255  // Round the size of the allocation up to the stack alignment size
3256  // by add SA-1 to the size.
3257  AllocSize = DAG.getNode(ISD::ADD, getCurSDLoc(),
3258                          AllocSize.getValueType(), AllocSize,
3259                          DAG.getIntPtrConstant(StackAlign-1));
3260
3261  // Mask out the low bits for alignment purposes.
3262  AllocSize = DAG.getNode(ISD::AND, getCurSDLoc(),
3263                          AllocSize.getValueType(), AllocSize,
3264                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
3265
3266  SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
3267  SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3268  SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurSDLoc(),
3269                            VTs, Ops, 3);
3270  setValue(&I, DSA);
3271  DAG.setRoot(DSA.getValue(1));
3272
3273  // Inform the Frame Information that we have just allocated a variable-sized
3274  // object.
3275  FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1);
3276}
3277
3278void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3279  if (I.isAtomic())
3280    return visitAtomicLoad(I);
3281
3282  const Value *SV = I.getOperand(0);
3283  SDValue Ptr = getValue(SV);
3284
3285  Type *Ty = I.getType();
3286
3287  bool isVolatile = I.isVolatile();
3288  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3289  bool isInvariant = I.getMetadata("invariant.load") != 0;
3290  unsigned Alignment = I.getAlignment();
3291  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3292  const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3293
3294  SmallVector<EVT, 4> ValueVTs;
3295  SmallVector<uint64_t, 4> Offsets;
3296  ComputeValueVTs(*TM.getTargetLowering(), Ty, ValueVTs, &Offsets);
3297  unsigned NumValues = ValueVTs.size();
3298  if (NumValues == 0)
3299    return;
3300
3301  SDValue Root;
3302  bool ConstantMemory = false;
3303  if (I.isVolatile() || NumValues > MaxParallelChains)
3304    // Serialize volatile loads with other side effects.
3305    Root = getRoot();
3306  else if (AA->pointsToConstantMemory(
3307             AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) {
3308    // Do not serialize (non-volatile) loads of constant memory with anything.
3309    Root = DAG.getEntryNode();
3310    ConstantMemory = true;
3311  } else {
3312    // Do not serialize non-volatile loads against each other.
3313    Root = DAG.getRoot();
3314  }
3315
3316  SmallVector<SDValue, 4> Values(NumValues);
3317  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3318                                          NumValues));
3319  EVT PtrVT = Ptr.getValueType();
3320  unsigned ChainI = 0;
3321  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3322    // Serializing loads here may result in excessive register pressure, and
3323    // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3324    // could recover a bit by hoisting nodes upward in the chain by recognizing
3325    // they are side-effect free or do not alias. The optimizer should really
3326    // avoid this case by converting large object/array copies to llvm.memcpy
3327    // (MaxParallelChains should always remain as failsafe).
3328    if (ChainI == MaxParallelChains) {
3329      assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3330      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
3331                                  MVT::Other, &Chains[0], ChainI);
3332      Root = Chain;
3333      ChainI = 0;
3334    }
3335    SDValue A = DAG.getNode(ISD::ADD, getCurSDLoc(),
3336                            PtrVT, Ptr,
3337                            DAG.getConstant(Offsets[i], PtrVT));
3338    SDValue L = DAG.getLoad(ValueVTs[i], getCurSDLoc(), Root,
3339                            A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
3340                            isNonTemporal, isInvariant, Alignment, TBAAInfo,
3341                            Ranges);
3342
3343    Values[i] = L;
3344    Chains[ChainI] = L.getValue(1);
3345  }
3346
3347  if (!ConstantMemory) {
3348    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
3349                                MVT::Other, &Chains[0], ChainI);
3350    if (isVolatile)
3351      DAG.setRoot(Chain);
3352    else
3353      PendingLoads.push_back(Chain);
3354  }
3355
3356  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3357                           DAG.getVTList(&ValueVTs[0], NumValues),
3358                           &Values[0], NumValues));
3359}
3360
3361void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3362  if (I.isAtomic())
3363    return visitAtomicStore(I);
3364
3365  const Value *SrcV = I.getOperand(0);
3366  const Value *PtrV = I.getOperand(1);
3367
3368  SmallVector<EVT, 4> ValueVTs;
3369  SmallVector<uint64_t, 4> Offsets;
3370  ComputeValueVTs(*TM.getTargetLowering(), SrcV->getType(), ValueVTs, &Offsets);
3371  unsigned NumValues = ValueVTs.size();
3372  if (NumValues == 0)
3373    return;
3374
3375  // Get the lowered operands. Note that we do this after
3376  // checking if NumResults is zero, because with zero results
3377  // the operands won't have values in the map.
3378  SDValue Src = getValue(SrcV);
3379  SDValue Ptr = getValue(PtrV);
3380
3381  SDValue Root = getRoot();
3382  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3383                                          NumValues));
3384  EVT PtrVT = Ptr.getValueType();
3385  bool isVolatile = I.isVolatile();
3386  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3387  unsigned Alignment = I.getAlignment();
3388  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3389
3390  unsigned ChainI = 0;
3391  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3392    // See visitLoad comments.
3393    if (ChainI == MaxParallelChains) {
3394      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
3395                                  MVT::Other, &Chains[0], ChainI);
3396      Root = Chain;
3397      ChainI = 0;
3398    }
3399    SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT, Ptr,
3400                              DAG.getConstant(Offsets[i], PtrVT));
3401    SDValue St = DAG.getStore(Root, getCurSDLoc(),
3402                              SDValue(Src.getNode(), Src.getResNo() + i),
3403                              Add, MachinePointerInfo(PtrV, Offsets[i]),
3404                              isVolatile, isNonTemporal, Alignment, TBAAInfo);
3405    Chains[ChainI] = St;
3406  }
3407
3408  SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
3409                                  MVT::Other, &Chains[0], ChainI);
3410  DAG.setRoot(StoreNode);
3411}
3412
3413static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order,
3414                                    SynchronizationScope Scope,
3415                                    bool Before, SDLoc dl,
3416                                    SelectionDAG &DAG,
3417                                    const TargetLowering &TLI) {
3418  // Fence, if necessary
3419  if (Before) {
3420    if (Order == AcquireRelease || Order == SequentiallyConsistent)
3421      Order = Release;
3422    else if (Order == Acquire || Order == Monotonic)
3423      return Chain;
3424  } else {
3425    if (Order == AcquireRelease)
3426      Order = Acquire;
3427    else if (Order == Release || Order == Monotonic)
3428      return Chain;
3429  }
3430  SDValue Ops[3];
3431  Ops[0] = Chain;
3432  Ops[1] = DAG.getConstant(Order, TLI.getPointerTy());
3433  Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy());
3434  return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3);
3435}
3436
3437void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
3438  SDLoc dl = getCurSDLoc();
3439  AtomicOrdering Order = I.getOrdering();
3440  SynchronizationScope Scope = I.getSynchScope();
3441
3442  SDValue InChain = getRoot();
3443
3444  const TargetLowering *TLI = TM.getTargetLowering();
3445  if (TLI->getInsertFencesForAtomic())
3446    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3447                                   DAG, *TLI);
3448
3449  SDValue L =
3450    DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl,
3451                  getValue(I.getCompareOperand()).getValueType().getSimpleVT(),
3452                  InChain,
3453                  getValue(I.getPointerOperand()),
3454                  getValue(I.getCompareOperand()),
3455                  getValue(I.getNewValOperand()),
3456                  MachinePointerInfo(I.getPointerOperand()), 0 /* Alignment */,
3457                  TLI->getInsertFencesForAtomic() ? Monotonic : Order,
3458                  Scope);
3459
3460  SDValue OutChain = L.getValue(1);
3461
3462  if (TLI->getInsertFencesForAtomic())
3463    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3464                                    DAG, *TLI);
3465
3466  setValue(&I, L);
3467  DAG.setRoot(OutChain);
3468}
3469
3470void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
3471  SDLoc dl = getCurSDLoc();
3472  ISD::NodeType NT;
3473  switch (I.getOperation()) {
3474  default: llvm_unreachable("Unknown atomicrmw operation");
3475  case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
3476  case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
3477  case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
3478  case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
3479  case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
3480  case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
3481  case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
3482  case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
3483  case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
3484  case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
3485  case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
3486  }
3487  AtomicOrdering Order = I.getOrdering();
3488  SynchronizationScope Scope = I.getSynchScope();
3489
3490  SDValue InChain = getRoot();
3491
3492  const TargetLowering *TLI = TM.getTargetLowering();
3493  if (TLI->getInsertFencesForAtomic())
3494    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3495                                   DAG, *TLI);
3496
3497  SDValue L =
3498    DAG.getAtomic(NT, dl,
3499                  getValue(I.getValOperand()).getValueType().getSimpleVT(),
3500                  InChain,
3501                  getValue(I.getPointerOperand()),
3502                  getValue(I.getValOperand()),
3503                  I.getPointerOperand(), 0 /* Alignment */,
3504                  TLI->getInsertFencesForAtomic() ? Monotonic : Order,
3505                  Scope);
3506
3507  SDValue OutChain = L.getValue(1);
3508
3509  if (TLI->getInsertFencesForAtomic())
3510    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3511                                    DAG, *TLI);
3512
3513  setValue(&I, L);
3514  DAG.setRoot(OutChain);
3515}
3516
3517void SelectionDAGBuilder::visitFence(const FenceInst &I) {
3518  SDLoc dl = getCurSDLoc();
3519  const TargetLowering *TLI = TM.getTargetLowering();
3520  SDValue Ops[3];
3521  Ops[0] = getRoot();
3522  Ops[1] = DAG.getConstant(I.getOrdering(), TLI->getPointerTy());
3523  Ops[2] = DAG.getConstant(I.getSynchScope(), TLI->getPointerTy());
3524  DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3));
3525}
3526
3527void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
3528  SDLoc dl = getCurSDLoc();
3529  AtomicOrdering Order = I.getOrdering();
3530  SynchronizationScope Scope = I.getSynchScope();
3531
3532  SDValue InChain = getRoot();
3533
3534  const TargetLowering *TLI = TM.getTargetLowering();
3535  EVT VT = TLI->getValueType(I.getType());
3536
3537  if (I.getAlignment() < VT.getSizeInBits() / 8)
3538    report_fatal_error("Cannot generate unaligned atomic load");
3539
3540  SDValue L =
3541    DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
3542                  getValue(I.getPointerOperand()),
3543                  I.getPointerOperand(), I.getAlignment(),
3544                  TLI->getInsertFencesForAtomic() ? Monotonic : Order,
3545                  Scope);
3546
3547  SDValue OutChain = L.getValue(1);
3548
3549  if (TLI->getInsertFencesForAtomic())
3550    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3551                                    DAG, *TLI);
3552
3553  setValue(&I, L);
3554  DAG.setRoot(OutChain);
3555}
3556
3557void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
3558  SDLoc dl = getCurSDLoc();
3559
3560  AtomicOrdering Order = I.getOrdering();
3561  SynchronizationScope Scope = I.getSynchScope();
3562
3563  SDValue InChain = getRoot();
3564
3565  const TargetLowering *TLI = TM.getTargetLowering();
3566  EVT VT = TLI->getValueType(I.getValueOperand()->getType());
3567
3568  if (I.getAlignment() < VT.getSizeInBits() / 8)
3569    report_fatal_error("Cannot generate unaligned atomic store");
3570
3571  if (TLI->getInsertFencesForAtomic())
3572    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3573                                   DAG, *TLI);
3574
3575  SDValue OutChain =
3576    DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
3577                  InChain,
3578                  getValue(I.getPointerOperand()),
3579                  getValue(I.getValueOperand()),
3580                  I.getPointerOperand(), I.getAlignment(),
3581                  TLI->getInsertFencesForAtomic() ? Monotonic : Order,
3582                  Scope);
3583
3584  if (TLI->getInsertFencesForAtomic())
3585    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3586                                    DAG, *TLI);
3587
3588  DAG.setRoot(OutChain);
3589}
3590
3591/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3592/// node.
3593void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3594                                               unsigned Intrinsic) {
3595  bool HasChain = !I.doesNotAccessMemory();
3596  bool OnlyLoad = HasChain && I.onlyReadsMemory();
3597
3598  // Build the operand list.
3599  SmallVector<SDValue, 8> Ops;
3600  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
3601    if (OnlyLoad) {
3602      // We don't need to serialize loads against other loads.
3603      Ops.push_back(DAG.getRoot());
3604    } else {
3605      Ops.push_back(getRoot());
3606    }
3607  }
3608
3609  // Info is set by getTgtMemInstrinsic
3610  TargetLowering::IntrinsicInfo Info;
3611  const TargetLowering *TLI = TM.getTargetLowering();
3612  bool IsTgtIntrinsic = TLI->getTgtMemIntrinsic(Info, I, Intrinsic);
3613
3614  // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3615  if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
3616      Info.opc == ISD::INTRINSIC_W_CHAIN)
3617    Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI->getPointerTy()));
3618
3619  // Add all operands of the call to the operand list.
3620  for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
3621    SDValue Op = getValue(I.getArgOperand(i));
3622    Ops.push_back(Op);
3623  }
3624
3625  SmallVector<EVT, 4> ValueVTs;
3626  ComputeValueVTs(*TLI, I.getType(), ValueVTs);
3627
3628  if (HasChain)
3629    ValueVTs.push_back(MVT::Other);
3630
3631  SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
3632
3633  // Create the node.
3634  SDValue Result;
3635  if (IsTgtIntrinsic) {
3636    // This is target intrinsic that touches memory
3637    Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(),
3638                                     VTs, &Ops[0], Ops.size(),
3639                                     Info.memVT,
3640                                   MachinePointerInfo(Info.ptrVal, Info.offset),
3641                                     Info.align, Info.vol,
3642                                     Info.readMem, Info.writeMem);
3643  } else if (!HasChain) {
3644    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(),
3645                         VTs, &Ops[0], Ops.size());
3646  } else if (!I.getType()->isVoidTy()) {
3647    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(),
3648                         VTs, &Ops[0], Ops.size());
3649  } else {
3650    Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(),
3651                         VTs, &Ops[0], Ops.size());
3652  }
3653
3654  if (HasChain) {
3655    SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3656    if (OnlyLoad)
3657      PendingLoads.push_back(Chain);
3658    else
3659      DAG.setRoot(Chain);
3660  }
3661
3662  if (!I.getType()->isVoidTy()) {
3663    if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3664      EVT VT = TLI->getValueType(PTy);
3665      Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
3666    }
3667
3668    setValue(&I, Result);
3669  }
3670}
3671
3672/// GetSignificand - Get the significand and build it into a floating-point
3673/// number with exponent of 1:
3674///
3675///   Op = (Op & 0x007fffff) | 0x3f800000;
3676///
3677/// where Op is the hexadecimal representation of floating point value.
3678static SDValue
3679GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) {
3680  SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3681                           DAG.getConstant(0x007fffff, MVT::i32));
3682  SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3683                           DAG.getConstant(0x3f800000, MVT::i32));
3684  return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
3685}
3686
3687/// GetExponent - Get the exponent:
3688///
3689///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3690///
3691/// where Op is the hexadecimal representation of floating point value.
3692static SDValue
3693GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3694            SDLoc dl) {
3695  SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3696                           DAG.getConstant(0x7f800000, MVT::i32));
3697  SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3698                           DAG.getConstant(23, TLI.getPointerTy()));
3699  SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3700                           DAG.getConstant(127, MVT::i32));
3701  return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3702}
3703
3704/// getF32Constant - Get 32-bit floating point constant.
3705static SDValue
3706getF32Constant(SelectionDAG &DAG, unsigned Flt) {
3707  return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)),
3708                           MVT::f32);
3709}
3710
3711/// expandExp - Lower an exp intrinsic. Handles the special sequences for
3712/// limited-precision mode.
3713static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG,
3714                         const TargetLowering &TLI) {
3715  if (Op.getValueType() == MVT::f32 &&
3716      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3717
3718    // Put the exponent in the right bit position for later addition to the
3719    // final result:
3720    //
3721    //   #define LOG2OFe 1.4426950f
3722    //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3723    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3724                             getF32Constant(DAG, 0x3fb8aa3b));
3725    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3726
3727    //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3728    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3729    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3730
3731    //   IntegerPartOfX <<= 23;
3732    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3733                                 DAG.getConstant(23, TLI.getPointerTy()));
3734
3735    SDValue TwoToFracPartOfX;
3736    if (LimitFloatPrecision <= 6) {
3737      // For floating-point precision of 6:
3738      //
3739      //   TwoToFractionalPartOfX =
3740      //     0.997535578f +
3741      //       (0.735607626f + 0.252464424f * x) * x;
3742      //
3743      // error 0.0144103317, which is 6 bits
3744      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3745                               getF32Constant(DAG, 0x3e814304));
3746      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3747                               getF32Constant(DAG, 0x3f3c50c8));
3748      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3749      TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3750                                     getF32Constant(DAG, 0x3f7f5e7e));
3751    } else if (LimitFloatPrecision <= 12) {
3752      // For floating-point precision of 12:
3753      //
3754      //   TwoToFractionalPartOfX =
3755      //     0.999892986f +
3756      //       (0.696457318f +
3757      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3758      //
3759      // 0.000107046256 error, which is 13 to 14 bits
3760      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3761                               getF32Constant(DAG, 0x3da235e3));
3762      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3763                               getF32Constant(DAG, 0x3e65b8f3));
3764      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3765      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3766                               getF32Constant(DAG, 0x3f324b07));
3767      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3768      TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3769                                     getF32Constant(DAG, 0x3f7ff8fd));
3770    } else { // LimitFloatPrecision <= 18
3771      // For floating-point precision of 18:
3772      //
3773      //   TwoToFractionalPartOfX =
3774      //     0.999999982f +
3775      //       (0.693148872f +
3776      //         (0.240227044f +
3777      //           (0.554906021e-1f +
3778      //             (0.961591928e-2f +
3779      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3780      //
3781      // error 2.47208000*10^(-7), which is better than 18 bits
3782      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3783                               getF32Constant(DAG, 0x3924b03e));
3784      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3785                               getF32Constant(DAG, 0x3ab24b87));
3786      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3787      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3788                               getF32Constant(DAG, 0x3c1d8c17));
3789      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3790      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3791                               getF32Constant(DAG, 0x3d634a1d));
3792      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3793      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3794                               getF32Constant(DAG, 0x3e75fe14));
3795      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3796      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3797                                getF32Constant(DAG, 0x3f317234));
3798      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3799      TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3800                                     getF32Constant(DAG, 0x3f800000));
3801    }
3802
3803    // Add the exponent into the result in integer domain.
3804    SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFracPartOfX);
3805    return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
3806                       DAG.getNode(ISD::ADD, dl, MVT::i32,
3807                                   t13, IntegerPartOfX));
3808  }
3809
3810  // No special expansion.
3811  return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
3812}
3813
3814/// expandLog - Lower a log intrinsic. Handles the special sequences for
3815/// limited-precision mode.
3816static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG,
3817                         const TargetLowering &TLI) {
3818  if (Op.getValueType() == MVT::f32 &&
3819      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3820    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3821
3822    // Scale the exponent by log(2) [0.69314718f].
3823    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3824    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3825                                        getF32Constant(DAG, 0x3f317218));
3826
3827    // Get the significand and build it into a floating-point number with
3828    // exponent of 1.
3829    SDValue X = GetSignificand(DAG, Op1, dl);
3830
3831    SDValue LogOfMantissa;
3832    if (LimitFloatPrecision <= 6) {
3833      // For floating-point precision of 6:
3834      //
3835      //   LogofMantissa =
3836      //     -1.1609546f +
3837      //       (1.4034025f - 0.23903021f * x) * x;
3838      //
3839      // error 0.0034276066, which is better than 8 bits
3840      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3841                               getF32Constant(DAG, 0xbe74c456));
3842      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3843                               getF32Constant(DAG, 0x3fb3a2b1));
3844      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3845      LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3846                                  getF32Constant(DAG, 0x3f949a29));
3847    } else if (LimitFloatPrecision <= 12) {
3848      // For floating-point precision of 12:
3849      //
3850      //   LogOfMantissa =
3851      //     -1.7417939f +
3852      //       (2.8212026f +
3853      //         (-1.4699568f +
3854      //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3855      //
3856      // error 0.000061011436, which is 14 bits
3857      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3858                               getF32Constant(DAG, 0xbd67b6d6));
3859      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3860                               getF32Constant(DAG, 0x3ee4f4b8));
3861      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3862      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3863                               getF32Constant(DAG, 0x3fbc278b));
3864      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3865      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3866                               getF32Constant(DAG, 0x40348e95));
3867      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3868      LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3869                                  getF32Constant(DAG, 0x3fdef31a));
3870    } else { // LimitFloatPrecision <= 18
3871      // For floating-point precision of 18:
3872      //
3873      //   LogOfMantissa =
3874      //     -2.1072184f +
3875      //       (4.2372794f +
3876      //         (-3.7029485f +
3877      //           (2.2781945f +
3878      //             (-0.87823314f +
3879      //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3880      //
3881      // error 0.0000023660568, which is better than 18 bits
3882      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3883                               getF32Constant(DAG, 0xbc91e5ac));
3884      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3885                               getF32Constant(DAG, 0x3e4350aa));
3886      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3887      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3888                               getF32Constant(DAG, 0x3f60d3e3));
3889      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3890      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3891                               getF32Constant(DAG, 0x4011cdf0));
3892      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3893      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3894                               getF32Constant(DAG, 0x406cfd1c));
3895      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3896      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3897                               getF32Constant(DAG, 0x408797cb));
3898      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3899      LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3900                                  getF32Constant(DAG, 0x4006dcab));
3901    }
3902
3903    return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
3904  }
3905
3906  // No special expansion.
3907  return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
3908}
3909
3910/// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
3911/// limited-precision mode.
3912static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG,
3913                          const TargetLowering &TLI) {
3914  if (Op.getValueType() == MVT::f32 &&
3915      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3916    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3917
3918    // Get the exponent.
3919    SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3920
3921    // Get the significand and build it into a floating-point number with
3922    // exponent of 1.
3923    SDValue X = GetSignificand(DAG, Op1, dl);
3924
3925    // Different possible minimax approximations of significand in
3926    // floating-point for various degrees of accuracy over [1,2].
3927    SDValue Log2ofMantissa;
3928    if (LimitFloatPrecision <= 6) {
3929      // For floating-point precision of 6:
3930      //
3931      //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3932      //
3933      // error 0.0049451742, which is more than 7 bits
3934      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3935                               getF32Constant(DAG, 0xbeb08fe0));
3936      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3937                               getF32Constant(DAG, 0x40019463));
3938      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3939      Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3940                                   getF32Constant(DAG, 0x3fd6633d));
3941    } else if (LimitFloatPrecision <= 12) {
3942      // For floating-point precision of 12:
3943      //
3944      //   Log2ofMantissa =
3945      //     -2.51285454f +
3946      //       (4.07009056f +
3947      //         (-2.12067489f +
3948      //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3949      //
3950      // error 0.0000876136000, which is better than 13 bits
3951      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3952                               getF32Constant(DAG, 0xbda7262e));
3953      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3954                               getF32Constant(DAG, 0x3f25280b));
3955      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3956      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3957                               getF32Constant(DAG, 0x4007b923));
3958      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3959      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3960                               getF32Constant(DAG, 0x40823e2f));
3961      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3962      Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3963                                   getF32Constant(DAG, 0x4020d29c));
3964    } else { // LimitFloatPrecision <= 18
3965      // For floating-point precision of 18:
3966      //
3967      //   Log2ofMantissa =
3968      //     -3.0400495f +
3969      //       (6.1129976f +
3970      //         (-5.3420409f +
3971      //           (3.2865683f +
3972      //             (-1.2669343f +
3973      //               (0.27515199f -
3974      //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3975      //
3976      // error 0.0000018516, which is better than 18 bits
3977      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3978                               getF32Constant(DAG, 0xbcd2769e));
3979      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3980                               getF32Constant(DAG, 0x3e8ce0b9));
3981      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3982      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3983                               getF32Constant(DAG, 0x3fa22ae7));
3984      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3985      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3986                               getF32Constant(DAG, 0x40525723));
3987      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3988      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3989                               getF32Constant(DAG, 0x40aaf200));
3990      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3991      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3992                               getF32Constant(DAG, 0x40c39dad));
3993      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3994      Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3995                                   getF32Constant(DAG, 0x4042902c));
3996    }
3997
3998    return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
3999  }
4000
4001  // No special expansion.
4002  return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
4003}
4004
4005/// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
4006/// limited-precision mode.
4007static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4008                           const TargetLowering &TLI) {
4009  if (Op.getValueType() == MVT::f32 &&
4010      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4011    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4012
4013    // Scale the exponent by log10(2) [0.30102999f].
4014    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4015    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4016                                        getF32Constant(DAG, 0x3e9a209a));
4017
4018    // Get the significand and build it into a floating-point number with
4019    // exponent of 1.
4020    SDValue X = GetSignificand(DAG, Op1, dl);
4021
4022    SDValue Log10ofMantissa;
4023    if (LimitFloatPrecision <= 6) {
4024      // For floating-point precision of 6:
4025      //
4026      //   Log10ofMantissa =
4027      //     -0.50419619f +
4028      //       (0.60948995f - 0.10380950f * x) * x;
4029      //
4030      // error 0.0014886165, which is 6 bits
4031      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4032                               getF32Constant(DAG, 0xbdd49a13));
4033      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4034                               getF32Constant(DAG, 0x3f1c0789));
4035      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4036      Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4037                                    getF32Constant(DAG, 0x3f011300));
4038    } else if (LimitFloatPrecision <= 12) {
4039      // For floating-point precision of 12:
4040      //
4041      //   Log10ofMantissa =
4042      //     -0.64831180f +
4043      //       (0.91751397f +
4044      //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4045      //
4046      // error 0.00019228036, which is better than 12 bits
4047      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4048                               getF32Constant(DAG, 0x3d431f31));
4049      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4050                               getF32Constant(DAG, 0x3ea21fb2));
4051      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4052      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4053                               getF32Constant(DAG, 0x3f6ae232));
4054      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4055      Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4056                                    getF32Constant(DAG, 0x3f25f7c3));
4057    } else { // LimitFloatPrecision <= 18
4058      // For floating-point precision of 18:
4059      //
4060      //   Log10ofMantissa =
4061      //     -0.84299375f +
4062      //       (1.5327582f +
4063      //         (-1.0688956f +
4064      //           (0.49102474f +
4065      //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4066      //
4067      // error 0.0000037995730, which is better than 18 bits
4068      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4069                               getF32Constant(DAG, 0x3c5d51ce));
4070      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4071                               getF32Constant(DAG, 0x3e00685a));
4072      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4073      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4074                               getF32Constant(DAG, 0x3efb6798));
4075      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4076      SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4077                               getF32Constant(DAG, 0x3f88d192));
4078      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4079      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4080                               getF32Constant(DAG, 0x3fc4316c));
4081      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4082      Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4083                                    getF32Constant(DAG, 0x3f57ce70));
4084    }
4085
4086    return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
4087  }
4088
4089  // No special expansion.
4090  return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
4091}
4092
4093/// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4094/// limited-precision mode.
4095static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4096                          const TargetLowering &TLI) {
4097  if (Op.getValueType() == MVT::f32 &&
4098      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4099    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
4100
4101    //   FractionalPartOfX = x - (float)IntegerPartOfX;
4102    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4103    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
4104
4105    //   IntegerPartOfX <<= 23;
4106    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4107                                 DAG.getConstant(23, TLI.getPointerTy()));
4108
4109    SDValue TwoToFractionalPartOfX;
4110    if (LimitFloatPrecision <= 6) {
4111      // For floating-point precision of 6:
4112      //
4113      //   TwoToFractionalPartOfX =
4114      //     0.997535578f +
4115      //       (0.735607626f + 0.252464424f * x) * x;
4116      //
4117      // error 0.0144103317, which is 6 bits
4118      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4119                               getF32Constant(DAG, 0x3e814304));
4120      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4121                               getF32Constant(DAG, 0x3f3c50c8));
4122      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4123      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4124                                           getF32Constant(DAG, 0x3f7f5e7e));
4125    } else if (LimitFloatPrecision <= 12) {
4126      // For floating-point precision of 12:
4127      //
4128      //   TwoToFractionalPartOfX =
4129      //     0.999892986f +
4130      //       (0.696457318f +
4131      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4132      //
4133      // error 0.000107046256, which is 13 to 14 bits
4134      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4135                               getF32Constant(DAG, 0x3da235e3));
4136      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4137                               getF32Constant(DAG, 0x3e65b8f3));
4138      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4139      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4140                               getF32Constant(DAG, 0x3f324b07));
4141      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4142      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4143                                           getF32Constant(DAG, 0x3f7ff8fd));
4144    } else { // LimitFloatPrecision <= 18
4145      // For floating-point precision of 18:
4146      //
4147      //   TwoToFractionalPartOfX =
4148      //     0.999999982f +
4149      //       (0.693148872f +
4150      //         (0.240227044f +
4151      //           (0.554906021e-1f +
4152      //             (0.961591928e-2f +
4153      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4154      // error 2.47208000*10^(-7), which is better than 18 bits
4155      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4156                               getF32Constant(DAG, 0x3924b03e));
4157      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4158                               getF32Constant(DAG, 0x3ab24b87));
4159      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4160      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4161                               getF32Constant(DAG, 0x3c1d8c17));
4162      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4163      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4164                               getF32Constant(DAG, 0x3d634a1d));
4165      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4166      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4167                               getF32Constant(DAG, 0x3e75fe14));
4168      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4169      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4170                                getF32Constant(DAG, 0x3f317234));
4171      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4172      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4173                                           getF32Constant(DAG, 0x3f800000));
4174    }
4175
4176    // Add the exponent into the result in integer domain.
4177    SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32,
4178                              TwoToFractionalPartOfX);
4179    return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4180                       DAG.getNode(ISD::ADD, dl, MVT::i32,
4181                                   t13, IntegerPartOfX));
4182  }
4183
4184  // No special expansion.
4185  return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
4186}
4187
4188/// visitPow - Lower a pow intrinsic. Handles the special sequences for
4189/// limited-precision mode with x == 10.0f.
4190static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS,
4191                         SelectionDAG &DAG, const TargetLowering &TLI) {
4192  bool IsExp10 = false;
4193  if (LHS.getValueType() == MVT::f32 && LHS.getValueType() == MVT::f32 &&
4194      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4195    if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
4196      APFloat Ten(10.0f);
4197      IsExp10 = LHSC->isExactlyValue(Ten);
4198    }
4199  }
4200
4201  if (IsExp10) {
4202    // Put the exponent in the right bit position for later addition to the
4203    // final result:
4204    //
4205    //   #define LOG2OF10 3.3219281f
4206    //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
4207    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
4208                             getF32Constant(DAG, 0x40549a78));
4209    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4210
4211    //   FractionalPartOfX = x - (float)IntegerPartOfX;
4212    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4213    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4214
4215    //   IntegerPartOfX <<= 23;
4216    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4217                                 DAG.getConstant(23, TLI.getPointerTy()));
4218
4219    SDValue TwoToFractionalPartOfX;
4220    if (LimitFloatPrecision <= 6) {
4221      // For floating-point precision of 6:
4222      //
4223      //   twoToFractionalPartOfX =
4224      //     0.997535578f +
4225      //       (0.735607626f + 0.252464424f * x) * x;
4226      //
4227      // error 0.0144103317, which is 6 bits
4228      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4229                               getF32Constant(DAG, 0x3e814304));
4230      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4231                               getF32Constant(DAG, 0x3f3c50c8));
4232      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4233      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4234                                           getF32Constant(DAG, 0x3f7f5e7e));
4235    } else if (LimitFloatPrecision <= 12) {
4236      // For floating-point precision of 12:
4237      //
4238      //   TwoToFractionalPartOfX =
4239      //     0.999892986f +
4240      //       (0.696457318f +
4241      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4242      //
4243      // error 0.000107046256, which is 13 to 14 bits
4244      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4245                               getF32Constant(DAG, 0x3da235e3));
4246      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4247                               getF32Constant(DAG, 0x3e65b8f3));
4248      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4249      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4250                               getF32Constant(DAG, 0x3f324b07));
4251      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4252      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4253                                           getF32Constant(DAG, 0x3f7ff8fd));
4254    } else { // LimitFloatPrecision <= 18
4255      // For floating-point precision of 18:
4256      //
4257      //   TwoToFractionalPartOfX =
4258      //     0.999999982f +
4259      //       (0.693148872f +
4260      //         (0.240227044f +
4261      //           (0.554906021e-1f +
4262      //             (0.961591928e-2f +
4263      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4264      // error 2.47208000*10^(-7), which is better than 18 bits
4265      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4266                               getF32Constant(DAG, 0x3924b03e));
4267      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4268                               getF32Constant(DAG, 0x3ab24b87));
4269      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4270      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4271                               getF32Constant(DAG, 0x3c1d8c17));
4272      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4273      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4274                               getF32Constant(DAG, 0x3d634a1d));
4275      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4276      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4277                               getF32Constant(DAG, 0x3e75fe14));
4278      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4279      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4280                                getF32Constant(DAG, 0x3f317234));
4281      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4282      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4283                                           getF32Constant(DAG, 0x3f800000));
4284    }
4285
4286    SDValue t13 = DAG.getNode(ISD::BITCAST, dl,MVT::i32,TwoToFractionalPartOfX);
4287    return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4288                       DAG.getNode(ISD::ADD, dl, MVT::i32,
4289                                   t13, IntegerPartOfX));
4290  }
4291
4292  // No special expansion.
4293  return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
4294}
4295
4296
4297/// ExpandPowI - Expand a llvm.powi intrinsic.
4298static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS,
4299                          SelectionDAG &DAG) {
4300  // If RHS is a constant, we can expand this out to a multiplication tree,
4301  // otherwise we end up lowering to a call to __powidf2 (for example).  When
4302  // optimizing for size, we only want to do this if the expansion would produce
4303  // a small number of multiplies, otherwise we do the full expansion.
4304  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4305    // Get the exponent as a positive value.
4306    unsigned Val = RHSC->getSExtValue();
4307    if ((int)Val < 0) Val = -Val;
4308
4309    // powi(x, 0) -> 1.0
4310    if (Val == 0)
4311      return DAG.getConstantFP(1.0, LHS.getValueType());
4312
4313    const Function *F = DAG.getMachineFunction().getFunction();
4314    if (!F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
4315                                         Attribute::OptimizeForSize) ||
4316        // If optimizing for size, don't insert too many multiplies.  This
4317        // inserts up to 5 multiplies.
4318        CountPopulation_32(Val)+Log2_32(Val) < 7) {
4319      // We use the simple binary decomposition method to generate the multiply
4320      // sequence.  There are more optimal ways to do this (for example,
4321      // powi(x,15) generates one more multiply than it should), but this has
4322      // the benefit of being both really simple and much better than a libcall.
4323      SDValue Res;  // Logically starts equal to 1.0
4324      SDValue CurSquare = LHS;
4325      while (Val) {
4326        if (Val & 1) {
4327          if (Res.getNode())
4328            Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4329          else
4330            Res = CurSquare;  // 1.0*CurSquare.
4331        }
4332
4333        CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4334                                CurSquare, CurSquare);
4335        Val >>= 1;
4336      }
4337
4338      // If the original was negative, invert the result, producing 1/(x*x*x).
4339      if (RHSC->getSExtValue() < 0)
4340        Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4341                          DAG.getConstantFP(1.0, LHS.getValueType()), Res);
4342      return Res;
4343    }
4344  }
4345
4346  // Otherwise, expand to a libcall.
4347  return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4348}
4349
4350// getTruncatedArgReg - Find underlying register used for an truncated
4351// argument.
4352static unsigned getTruncatedArgReg(const SDValue &N) {
4353  if (N.getOpcode() != ISD::TRUNCATE)
4354    return 0;
4355
4356  const SDValue &Ext = N.getOperand(0);
4357  if (Ext.getOpcode() == ISD::AssertZext || Ext.getOpcode() == ISD::AssertSext){
4358    const SDValue &CFR = Ext.getOperand(0);
4359    if (CFR.getOpcode() == ISD::CopyFromReg)
4360      return cast<RegisterSDNode>(CFR.getOperand(1))->getReg();
4361    if (CFR.getOpcode() == ISD::TRUNCATE)
4362      return getTruncatedArgReg(CFR);
4363  }
4364  return 0;
4365}
4366
4367/// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4368/// argument, create the corresponding DBG_VALUE machine instruction for it now.
4369/// At the end of instruction selection, they will be inserted to the entry BB.
4370bool
4371SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
4372                                              int64_t Offset,
4373                                              const SDValue &N) {
4374  const Argument *Arg = dyn_cast<Argument>(V);
4375  if (!Arg)
4376    return false;
4377
4378  MachineFunction &MF = DAG.getMachineFunction();
4379  const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
4380
4381  // Ignore inlined function arguments here.
4382  DIVariable DV(Variable);
4383  if (DV.isInlinedFnArgument(MF.getFunction()))
4384    return false;
4385
4386  Optional<MachineOperand> Op;
4387  // Some arguments' frame index is recorded during argument lowering.
4388  if (int FI = FuncInfo.getArgumentFrameIndex(Arg))
4389    Op = MachineOperand::CreateFI(FI);
4390
4391  if (!Op && N.getNode()) {
4392    unsigned Reg;
4393    if (N.getOpcode() == ISD::CopyFromReg)
4394      Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
4395    else
4396      Reg = getTruncatedArgReg(N);
4397    if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4398      MachineRegisterInfo &RegInfo = MF.getRegInfo();
4399      unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4400      if (PR)
4401        Reg = PR;
4402    }
4403    if (Reg)
4404      Op = MachineOperand::CreateReg(Reg, false);
4405  }
4406
4407  if (!Op) {
4408    // Check if ValueMap has reg number.
4409    DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4410    if (VMI != FuncInfo.ValueMap.end())
4411      Op = MachineOperand::CreateReg(VMI->second, false);
4412  }
4413
4414  if (!Op && N.getNode())
4415    // Check if frame index is available.
4416    if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4417      if (FrameIndexSDNode *FINode =
4418          dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
4419        Op = MachineOperand::CreateFI(FINode->getIndex());
4420
4421  if (!Op)
4422    return false;
4423
4424  if (Op->isReg())
4425    Op->setIsDebug();
4426
4427  FuncInfo.ArgDbgValues.push_back(
4428      BuildMI(MF, getCurDebugLoc(), TII->get(TargetOpcode::DBG_VALUE))
4429          .addOperand(*Op).addImm(Offset).addMetadata(Variable));
4430  return true;
4431}
4432
4433// VisualStudio defines setjmp as _setjmp
4434#if defined(_MSC_VER) && defined(setjmp) && \
4435                         !defined(setjmp_undefined_for_msvc)
4436#  pragma push_macro("setjmp")
4437#  undef setjmp
4438#  define setjmp_undefined_for_msvc
4439#endif
4440
4441/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4442/// we want to emit this as a call to a named external function, return the name
4443/// otherwise lower it and return null.
4444const char *
4445SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4446  const TargetLowering *TLI = TM.getTargetLowering();
4447  SDLoc sdl = getCurSDLoc();
4448  DebugLoc dl = getCurDebugLoc();
4449  SDValue Res;
4450
4451  switch (Intrinsic) {
4452  default:
4453    // By default, turn this into a target intrinsic node.
4454    visitTargetIntrinsic(I, Intrinsic);
4455    return 0;
4456  case Intrinsic::vastart:  visitVAStart(I); return 0;
4457  case Intrinsic::vaend:    visitVAEnd(I); return 0;
4458  case Intrinsic::vacopy:   visitVACopy(I); return 0;
4459  case Intrinsic::returnaddress:
4460    setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, TLI->getPointerTy(),
4461                             getValue(I.getArgOperand(0))));
4462    return 0;
4463  case Intrinsic::frameaddress:
4464    setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, TLI->getPointerTy(),
4465                             getValue(I.getArgOperand(0))));
4466    return 0;
4467  case Intrinsic::setjmp:
4468    return &"_setjmp"[!TLI->usesUnderscoreSetJmp()];
4469  case Intrinsic::longjmp:
4470    return &"_longjmp"[!TLI->usesUnderscoreLongJmp()];
4471  case Intrinsic::memcpy: {
4472    // Assert for address < 256 since we support only user defined address
4473    // spaces.
4474    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4475           < 256 &&
4476           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4477           < 256 &&
4478           "Unknown address space");
4479    SDValue Op1 = getValue(I.getArgOperand(0));
4480    SDValue Op2 = getValue(I.getArgOperand(1));
4481    SDValue Op3 = getValue(I.getArgOperand(2));
4482    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4483    if (!Align)
4484      Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment.
4485    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4486    DAG.setRoot(DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, false,
4487                              MachinePointerInfo(I.getArgOperand(0)),
4488                              MachinePointerInfo(I.getArgOperand(1))));
4489    return 0;
4490  }
4491  case Intrinsic::memset: {
4492    // Assert for address < 256 since we support only user defined address
4493    // spaces.
4494    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4495           < 256 &&
4496           "Unknown address space");
4497    SDValue Op1 = getValue(I.getArgOperand(0));
4498    SDValue Op2 = getValue(I.getArgOperand(1));
4499    SDValue Op3 = getValue(I.getArgOperand(2));
4500    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4501    if (!Align)
4502      Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment.
4503    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4504    DAG.setRoot(DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4505                              MachinePointerInfo(I.getArgOperand(0))));
4506    return 0;
4507  }
4508  case Intrinsic::memmove: {
4509    // Assert for address < 256 since we support only user defined address
4510    // spaces.
4511    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4512           < 256 &&
4513           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4514           < 256 &&
4515           "Unknown address space");
4516    SDValue Op1 = getValue(I.getArgOperand(0));
4517    SDValue Op2 = getValue(I.getArgOperand(1));
4518    SDValue Op3 = getValue(I.getArgOperand(2));
4519    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4520    if (!Align)
4521      Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment.
4522    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4523    DAG.setRoot(DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4524                               MachinePointerInfo(I.getArgOperand(0)),
4525                               MachinePointerInfo(I.getArgOperand(1))));
4526    return 0;
4527  }
4528  case Intrinsic::dbg_declare: {
4529    const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4530    MDNode *Variable = DI.getVariable();
4531    const Value *Address = DI.getAddress();
4532    DIVariable DIVar(Variable);
4533    assert((!DIVar || DIVar.isVariable()) &&
4534      "Variable in DbgDeclareInst should be either null or a DIVariable.");
4535    if (!Address || !DIVar) {
4536      DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4537      return 0;
4538    }
4539
4540    // Check if address has undef value.
4541    if (isa<UndefValue>(Address) ||
4542        (Address->use_empty() && !isa<Argument>(Address))) {
4543      DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4544      return 0;
4545    }
4546
4547    SDValue &N = NodeMap[Address];
4548    if (!N.getNode() && isa<Argument>(Address))
4549      // Check unused arguments map.
4550      N = UnusedArgNodeMap[Address];
4551    SDDbgValue *SDV;
4552    if (N.getNode()) {
4553      if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4554        Address = BCI->getOperand(0);
4555      // Parameters are handled specially.
4556      bool isParameter =
4557        (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable ||
4558         isa<Argument>(Address));
4559
4560      const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
4561
4562      if (isParameter && !AI) {
4563        FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4564        if (FINode)
4565          // Byval parameter.  We have a frame index at this point.
4566          SDV = DAG.getDbgValue(Variable, FINode->getIndex(),
4567                                0, dl, SDNodeOrder);
4568        else {
4569          // Address is an argument, so try to emit its dbg value using
4570          // virtual register info from the FuncInfo.ValueMap.
4571          EmitFuncArgumentDbgValue(Address, Variable, 0, N);
4572          return 0;
4573        }
4574      } else if (AI)
4575        SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
4576                              0, dl, SDNodeOrder);
4577      else {
4578        // Can't do anything with other non-AI cases yet.
4579        DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4580        DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t");
4581        DEBUG(Address->dump());
4582        return 0;
4583      }
4584      DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4585    } else {
4586      // If Address is an argument then try to emit its dbg value using
4587      // virtual register info from the FuncInfo.ValueMap.
4588      if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) {
4589        // If variable is pinned by a alloca in dominating bb then
4590        // use StaticAllocaMap.
4591        if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4592          if (AI->getParent() != DI.getParent()) {
4593            DenseMap<const AllocaInst*, int>::iterator SI =
4594              FuncInfo.StaticAllocaMap.find(AI);
4595            if (SI != FuncInfo.StaticAllocaMap.end()) {
4596              SDV = DAG.getDbgValue(Variable, SI->second,
4597                                    0, dl, SDNodeOrder);
4598              DAG.AddDbgValue(SDV, 0, false);
4599              return 0;
4600            }
4601          }
4602        }
4603        DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4604      }
4605    }
4606    return 0;
4607  }
4608  case Intrinsic::dbg_value: {
4609    const DbgValueInst &DI = cast<DbgValueInst>(I);
4610    DIVariable DIVar(DI.getVariable());
4611    assert((!DIVar || DIVar.isVariable()) &&
4612      "Variable in DbgValueInst should be either null or a DIVariable.");
4613    if (!DIVar)
4614      return 0;
4615
4616    MDNode *Variable = DI.getVariable();
4617    uint64_t Offset = DI.getOffset();
4618    const Value *V = DI.getValue();
4619    if (!V)
4620      return 0;
4621
4622    SDDbgValue *SDV;
4623    if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
4624      SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder);
4625      DAG.AddDbgValue(SDV, 0, false);
4626    } else {
4627      // Do not use getValue() in here; we don't want to generate code at
4628      // this point if it hasn't been done yet.
4629      SDValue N = NodeMap[V];
4630      if (!N.getNode() && isa<Argument>(V))
4631        // Check unused arguments map.
4632        N = UnusedArgNodeMap[V];
4633      if (N.getNode()) {
4634        if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) {
4635          SDV = DAG.getDbgValue(Variable, N.getNode(),
4636                                N.getResNo(), Offset, dl, SDNodeOrder);
4637          DAG.AddDbgValue(SDV, N.getNode(), false);
4638        }
4639      } else if (!V->use_empty() ) {
4640        // Do not call getValue(V) yet, as we don't want to generate code.
4641        // Remember it for later.
4642        DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4643        DanglingDebugInfoMap[V] = DDI;
4644      } else {
4645        // We may expand this to cover more cases.  One case where we have no
4646        // data available is an unreferenced parameter.
4647        DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4648      }
4649    }
4650
4651    // Build a debug info table entry.
4652    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4653      V = BCI->getOperand(0);
4654    const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4655    // Don't handle byval struct arguments or VLAs, for example.
4656    if (!AI) {
4657      DEBUG(dbgs() << "Dropping debug location info for:\n  " << DI << "\n");
4658      DEBUG(dbgs() << "  Last seen at:\n    " << *V << "\n");
4659      return 0;
4660    }
4661    DenseMap<const AllocaInst*, int>::iterator SI =
4662      FuncInfo.StaticAllocaMap.find(AI);
4663    if (SI == FuncInfo.StaticAllocaMap.end())
4664      return 0; // VLAs.
4665    int FI = SI->second;
4666
4667    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4668    if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
4669      MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
4670    return 0;
4671  }
4672
4673  case Intrinsic::eh_typeid_for: {
4674    // Find the type id for the given typeinfo.
4675    GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0));
4676    unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4677    Res = DAG.getConstant(TypeID, MVT::i32);
4678    setValue(&I, Res);
4679    return 0;
4680  }
4681
4682  case Intrinsic::eh_return_i32:
4683  case Intrinsic::eh_return_i64:
4684    DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4685    DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
4686                            MVT::Other,
4687                            getControlRoot(),
4688                            getValue(I.getArgOperand(0)),
4689                            getValue(I.getArgOperand(1))));
4690    return 0;
4691  case Intrinsic::eh_unwind_init:
4692    DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4693    return 0;
4694  case Intrinsic::eh_dwarf_cfa: {
4695    SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl,
4696                                        TLI->getPointerTy());
4697    SDValue Offset = DAG.getNode(ISD::ADD, sdl,
4698                                 TLI->getPointerTy(),
4699                                 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl,
4700                                             TLI->getPointerTy()),
4701                                 CfaArg);
4702    SDValue FA = DAG.getNode(ISD::FRAMEADDR, sdl,
4703                             TLI->getPointerTy(),
4704                             DAG.getConstant(0, TLI->getPointerTy()));
4705    setValue(&I, DAG.getNode(ISD::ADD, sdl, TLI->getPointerTy(),
4706                             FA, Offset));
4707    return 0;
4708  }
4709  case Intrinsic::eh_sjlj_callsite: {
4710    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4711    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4712    assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4713    assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4714
4715    MMI.setCurrentCallSite(CI->getZExtValue());
4716    return 0;
4717  }
4718  case Intrinsic::eh_sjlj_functioncontext: {
4719    // Get and store the index of the function context.
4720    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4721    AllocaInst *FnCtx =
4722      cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
4723    int FI = FuncInfo.StaticAllocaMap[FnCtx];
4724    MFI->setFunctionContextIndex(FI);
4725    return 0;
4726  }
4727  case Intrinsic::eh_sjlj_setjmp: {
4728    SDValue Ops[2];
4729    Ops[0] = getRoot();
4730    Ops[1] = getValue(I.getArgOperand(0));
4731    SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
4732                             DAG.getVTList(MVT::i32, MVT::Other),
4733                             Ops, 2);
4734    setValue(&I, Op.getValue(0));
4735    DAG.setRoot(Op.getValue(1));
4736    return 0;
4737  }
4738  case Intrinsic::eh_sjlj_longjmp: {
4739    DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
4740                            getRoot(), getValue(I.getArgOperand(0))));
4741    return 0;
4742  }
4743
4744  case Intrinsic::x86_mmx_pslli_w:
4745  case Intrinsic::x86_mmx_pslli_d:
4746  case Intrinsic::x86_mmx_pslli_q:
4747  case Intrinsic::x86_mmx_psrli_w:
4748  case Intrinsic::x86_mmx_psrli_d:
4749  case Intrinsic::x86_mmx_psrli_q:
4750  case Intrinsic::x86_mmx_psrai_w:
4751  case Intrinsic::x86_mmx_psrai_d: {
4752    SDValue ShAmt = getValue(I.getArgOperand(1));
4753    if (isa<ConstantSDNode>(ShAmt)) {
4754      visitTargetIntrinsic(I, Intrinsic);
4755      return 0;
4756    }
4757    unsigned NewIntrinsic = 0;
4758    EVT ShAmtVT = MVT::v2i32;
4759    switch (Intrinsic) {
4760    case Intrinsic::x86_mmx_pslli_w:
4761      NewIntrinsic = Intrinsic::x86_mmx_psll_w;
4762      break;
4763    case Intrinsic::x86_mmx_pslli_d:
4764      NewIntrinsic = Intrinsic::x86_mmx_psll_d;
4765      break;
4766    case Intrinsic::x86_mmx_pslli_q:
4767      NewIntrinsic = Intrinsic::x86_mmx_psll_q;
4768      break;
4769    case Intrinsic::x86_mmx_psrli_w:
4770      NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
4771      break;
4772    case Intrinsic::x86_mmx_psrli_d:
4773      NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
4774      break;
4775    case Intrinsic::x86_mmx_psrli_q:
4776      NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
4777      break;
4778    case Intrinsic::x86_mmx_psrai_w:
4779      NewIntrinsic = Intrinsic::x86_mmx_psra_w;
4780      break;
4781    case Intrinsic::x86_mmx_psrai_d:
4782      NewIntrinsic = Intrinsic::x86_mmx_psra_d;
4783      break;
4784    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4785    }
4786
4787    // The vector shift intrinsics with scalars uses 32b shift amounts but
4788    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
4789    // to be zero.
4790    // We must do this early because v2i32 is not a legal type.
4791    SDValue ShOps[2];
4792    ShOps[0] = ShAmt;
4793    ShOps[1] = DAG.getConstant(0, MVT::i32);
4794    ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, &ShOps[0], 2);
4795    EVT DestVT = TLI->getValueType(I.getType());
4796    ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt);
4797    Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT,
4798                       DAG.getConstant(NewIntrinsic, MVT::i32),
4799                       getValue(I.getArgOperand(0)), ShAmt);
4800    setValue(&I, Res);
4801    return 0;
4802  }
4803  case Intrinsic::x86_avx_vinsertf128_pd_256:
4804  case Intrinsic::x86_avx_vinsertf128_ps_256:
4805  case Intrinsic::x86_avx_vinsertf128_si_256:
4806  case Intrinsic::x86_avx2_vinserti128: {
4807    EVT DestVT = TLI->getValueType(I.getType());
4808    EVT ElVT = TLI->getValueType(I.getArgOperand(1)->getType());
4809    uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue() & 1) *
4810                   ElVT.getVectorNumElements();
4811    Res = DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, DestVT,
4812                      getValue(I.getArgOperand(0)),
4813                      getValue(I.getArgOperand(1)),
4814                      DAG.getIntPtrConstant(Idx));
4815    setValue(&I, Res);
4816    return 0;
4817  }
4818  case Intrinsic::x86_avx_vextractf128_pd_256:
4819  case Intrinsic::x86_avx_vextractf128_ps_256:
4820  case Intrinsic::x86_avx_vextractf128_si_256:
4821  case Intrinsic::x86_avx2_vextracti128: {
4822    EVT DestVT = TLI->getValueType(I.getType());
4823    uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(1))->getZExtValue() & 1) *
4824                   DestVT.getVectorNumElements();
4825    Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, DestVT,
4826                      getValue(I.getArgOperand(0)),
4827                      DAG.getIntPtrConstant(Idx));
4828    setValue(&I, Res);
4829    return 0;
4830  }
4831  case Intrinsic::convertff:
4832  case Intrinsic::convertfsi:
4833  case Intrinsic::convertfui:
4834  case Intrinsic::convertsif:
4835  case Intrinsic::convertuif:
4836  case Intrinsic::convertss:
4837  case Intrinsic::convertsu:
4838  case Intrinsic::convertus:
4839  case Intrinsic::convertuu: {
4840    ISD::CvtCode Code = ISD::CVT_INVALID;
4841    switch (Intrinsic) {
4842    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4843    case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
4844    case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4845    case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4846    case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4847    case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4848    case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
4849    case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
4850    case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4851    case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4852    }
4853    EVT DestVT = TLI->getValueType(I.getType());
4854    const Value *Op1 = I.getArgOperand(0);
4855    Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1),
4856                               DAG.getValueType(DestVT),
4857                               DAG.getValueType(getValue(Op1).getValueType()),
4858                               getValue(I.getArgOperand(1)),
4859                               getValue(I.getArgOperand(2)),
4860                               Code);
4861    setValue(&I, Res);
4862    return 0;
4863  }
4864  case Intrinsic::powi:
4865    setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
4866                            getValue(I.getArgOperand(1)), DAG));
4867    return 0;
4868  case Intrinsic::log:
4869    setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, *TLI));
4870    return 0;
4871  case Intrinsic::log2:
4872    setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, *TLI));
4873    return 0;
4874  case Intrinsic::log10:
4875    setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, *TLI));
4876    return 0;
4877  case Intrinsic::exp:
4878    setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, *TLI));
4879    return 0;
4880  case Intrinsic::exp2:
4881    setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, *TLI));
4882    return 0;
4883  case Intrinsic::pow:
4884    setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
4885                           getValue(I.getArgOperand(1)), DAG, *TLI));
4886    return 0;
4887  case Intrinsic::sqrt:
4888  case Intrinsic::fabs:
4889  case Intrinsic::sin:
4890  case Intrinsic::cos:
4891  case Intrinsic::floor:
4892  case Intrinsic::ceil:
4893  case Intrinsic::trunc:
4894  case Intrinsic::rint:
4895  case Intrinsic::nearbyint: {
4896    unsigned Opcode;
4897    switch (Intrinsic) {
4898    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4899    case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
4900    case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
4901    case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
4902    case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
4903    case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
4904    case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
4905    case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
4906    case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
4907    case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
4908    }
4909
4910    setValue(&I, DAG.getNode(Opcode, sdl,
4911                             getValue(I.getArgOperand(0)).getValueType(),
4912                             getValue(I.getArgOperand(0))));
4913    return 0;
4914  }
4915  case Intrinsic::fma:
4916    setValue(&I, DAG.getNode(ISD::FMA, sdl,
4917                             getValue(I.getArgOperand(0)).getValueType(),
4918                             getValue(I.getArgOperand(0)),
4919                             getValue(I.getArgOperand(1)),
4920                             getValue(I.getArgOperand(2))));
4921    return 0;
4922  case Intrinsic::fmuladd: {
4923    EVT VT = TLI->getValueType(I.getType());
4924    if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
4925        TLI->isFMAFasterThanMulAndAdd(VT)){
4926      setValue(&I, DAG.getNode(ISD::FMA, sdl,
4927                               getValue(I.getArgOperand(0)).getValueType(),
4928                               getValue(I.getArgOperand(0)),
4929                               getValue(I.getArgOperand(1)),
4930                               getValue(I.getArgOperand(2))));
4931    } else {
4932      SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
4933                                getValue(I.getArgOperand(0)).getValueType(),
4934                                getValue(I.getArgOperand(0)),
4935                                getValue(I.getArgOperand(1)));
4936      SDValue Add = DAG.getNode(ISD::FADD, sdl,
4937                                getValue(I.getArgOperand(0)).getValueType(),
4938                                Mul,
4939                                getValue(I.getArgOperand(2)));
4940      setValue(&I, Add);
4941    }
4942    return 0;
4943  }
4944  case Intrinsic::convert_to_fp16:
4945    setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, sdl,
4946                             MVT::i16, getValue(I.getArgOperand(0))));
4947    return 0;
4948  case Intrinsic::convert_from_fp16:
4949    setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, sdl,
4950                             MVT::f32, getValue(I.getArgOperand(0))));
4951    return 0;
4952  case Intrinsic::pcmarker: {
4953    SDValue Tmp = getValue(I.getArgOperand(0));
4954    DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
4955    return 0;
4956  }
4957  case Intrinsic::readcyclecounter: {
4958    SDValue Op = getRoot();
4959    Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
4960                      DAG.getVTList(MVT::i64, MVT::Other),
4961                      &Op, 1);
4962    setValue(&I, Res);
4963    DAG.setRoot(Res.getValue(1));
4964    return 0;
4965  }
4966  case Intrinsic::bswap:
4967    setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
4968                             getValue(I.getArgOperand(0)).getValueType(),
4969                             getValue(I.getArgOperand(0))));
4970    return 0;
4971  case Intrinsic::cttz: {
4972    SDValue Arg = getValue(I.getArgOperand(0));
4973    ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
4974    EVT Ty = Arg.getValueType();
4975    setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
4976                             sdl, Ty, Arg));
4977    return 0;
4978  }
4979  case Intrinsic::ctlz: {
4980    SDValue Arg = getValue(I.getArgOperand(0));
4981    ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
4982    EVT Ty = Arg.getValueType();
4983    setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
4984                             sdl, Ty, Arg));
4985    return 0;
4986  }
4987  case Intrinsic::ctpop: {
4988    SDValue Arg = getValue(I.getArgOperand(0));
4989    EVT Ty = Arg.getValueType();
4990    setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
4991    return 0;
4992  }
4993  case Intrinsic::stacksave: {
4994    SDValue Op = getRoot();
4995    Res = DAG.getNode(ISD::STACKSAVE, sdl,
4996                      DAG.getVTList(TLI->getPointerTy(), MVT::Other), &Op, 1);
4997    setValue(&I, Res);
4998    DAG.setRoot(Res.getValue(1));
4999    return 0;
5000  }
5001  case Intrinsic::stackrestore: {
5002    Res = getValue(I.getArgOperand(0));
5003    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
5004    return 0;
5005  }
5006  case Intrinsic::stackprotector: {
5007    // Emit code into the DAG to store the stack guard onto the stack.
5008    MachineFunction &MF = DAG.getMachineFunction();
5009    MachineFrameInfo *MFI = MF.getFrameInfo();
5010    EVT PtrTy = TLI->getPointerTy();
5011
5012    SDValue Src = getValue(I.getArgOperand(0));   // The guard's value.
5013    AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
5014
5015    int FI = FuncInfo.StaticAllocaMap[Slot];
5016    MFI->setStackProtectorIndex(FI);
5017
5018    SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
5019
5020    // Store the stack protector onto the stack.
5021    Res = DAG.getStore(getRoot(), sdl, Src, FIN,
5022                       MachinePointerInfo::getFixedStack(FI),
5023                       true, false, 0);
5024    setValue(&I, Res);
5025    DAG.setRoot(Res);
5026    return 0;
5027  }
5028  case Intrinsic::objectsize: {
5029    // If we don't know by now, we're never going to know.
5030    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
5031
5032    assert(CI && "Non-constant type in __builtin_object_size?");
5033
5034    SDValue Arg = getValue(I.getCalledValue());
5035    EVT Ty = Arg.getValueType();
5036
5037    if (CI->isZero())
5038      Res = DAG.getConstant(-1ULL, Ty);
5039    else
5040      Res = DAG.getConstant(0, Ty);
5041
5042    setValue(&I, Res);
5043    return 0;
5044  }
5045  case Intrinsic::annotation:
5046  case Intrinsic::ptr_annotation:
5047    // Drop the intrinsic, but forward the value
5048    setValue(&I, getValue(I.getOperand(0)));
5049    return 0;
5050  case Intrinsic::var_annotation:
5051    // Discard annotate attributes
5052    return 0;
5053
5054  case Intrinsic::init_trampoline: {
5055    const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5056
5057    SDValue Ops[6];
5058    Ops[0] = getRoot();
5059    Ops[1] = getValue(I.getArgOperand(0));
5060    Ops[2] = getValue(I.getArgOperand(1));
5061    Ops[3] = getValue(I.getArgOperand(2));
5062    Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5063    Ops[5] = DAG.getSrcValue(F);
5064
5065    Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops, 6);
5066
5067    DAG.setRoot(Res);
5068    return 0;
5069  }
5070  case Intrinsic::adjust_trampoline: {
5071    setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
5072                             TLI->getPointerTy(),
5073                             getValue(I.getArgOperand(0))));
5074    return 0;
5075  }
5076  case Intrinsic::gcroot:
5077    if (GFI) {
5078      const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
5079      const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
5080
5081      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
5082      GFI->addStackRoot(FI->getIndex(), TypeMap);
5083    }
5084    return 0;
5085  case Intrinsic::gcread:
5086  case Intrinsic::gcwrite:
5087    llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
5088  case Intrinsic::flt_rounds:
5089    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
5090    return 0;
5091
5092  case Intrinsic::expect: {
5093    // Just replace __builtin_expect(exp, c) with EXP.
5094    setValue(&I, getValue(I.getArgOperand(0)));
5095    return 0;
5096  }
5097
5098  case Intrinsic::debugtrap:
5099  case Intrinsic::trap: {
5100    StringRef TrapFuncName = TM.Options.getTrapFunctionName();
5101    if (TrapFuncName.empty()) {
5102      ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
5103        ISD::TRAP : ISD::DEBUGTRAP;
5104      DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
5105      return 0;
5106    }
5107    TargetLowering::ArgListTy Args;
5108    TargetLowering::
5109    CallLoweringInfo CLI(getRoot(), I.getType(),
5110                 false, false, false, false, 0, CallingConv::C,
5111                 /*isTailCall=*/false,
5112                 /*doesNotRet=*/false, /*isReturnValueUsed=*/true,
5113                 DAG.getExternalSymbol(TrapFuncName.data(),
5114                                       TLI->getPointerTy()),
5115                 Args, DAG, sdl);
5116    std::pair<SDValue, SDValue> Result = TLI->LowerCallTo(CLI);
5117    DAG.setRoot(Result.second);
5118    return 0;
5119  }
5120
5121  case Intrinsic::uadd_with_overflow:
5122  case Intrinsic::sadd_with_overflow:
5123  case Intrinsic::usub_with_overflow:
5124  case Intrinsic::ssub_with_overflow:
5125  case Intrinsic::umul_with_overflow:
5126  case Intrinsic::smul_with_overflow: {
5127    ISD::NodeType Op;
5128    switch (Intrinsic) {
5129    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5130    case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
5131    case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
5132    case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
5133    case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
5134    case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
5135    case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
5136    }
5137    SDValue Op1 = getValue(I.getArgOperand(0));
5138    SDValue Op2 = getValue(I.getArgOperand(1));
5139
5140    SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
5141    setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
5142    return 0;
5143  }
5144  case Intrinsic::prefetch: {
5145    SDValue Ops[5];
5146    unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
5147    Ops[0] = getRoot();
5148    Ops[1] = getValue(I.getArgOperand(0));
5149    Ops[2] = getValue(I.getArgOperand(1));
5150    Ops[3] = getValue(I.getArgOperand(2));
5151    Ops[4] = getValue(I.getArgOperand(3));
5152    DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
5153                                        DAG.getVTList(MVT::Other),
5154                                        &Ops[0], 5,
5155                                        EVT::getIntegerVT(*Context, 8),
5156                                        MachinePointerInfo(I.getArgOperand(0)),
5157                                        0, /* align */
5158                                        false, /* volatile */
5159                                        rw==0, /* read */
5160                                        rw==1)); /* write */
5161    return 0;
5162  }
5163  case Intrinsic::lifetime_start:
5164  case Intrinsic::lifetime_end: {
5165    bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
5166    // Stack coloring is not enabled in O0, discard region information.
5167    if (TM.getOptLevel() == CodeGenOpt::None)
5168      return 0;
5169
5170    SmallVector<Value *, 4> Allocas;
5171    GetUnderlyingObjects(I.getArgOperand(1), Allocas, TD);
5172
5173    for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(),
5174           E = Allocas.end(); Object != E; ++Object) {
5175      AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
5176
5177      // Could not find an Alloca.
5178      if (!LifetimeObject)
5179        continue;
5180
5181      int FI = FuncInfo.StaticAllocaMap[LifetimeObject];
5182
5183      SDValue Ops[2];
5184      Ops[0] = getRoot();
5185      Ops[1] = DAG.getFrameIndex(FI, TLI->getPointerTy(), true);
5186      unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END);
5187
5188      Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops, 2);
5189      DAG.setRoot(Res);
5190    }
5191    return 0;
5192  }
5193  case Intrinsic::invariant_start:
5194    // Discard region information.
5195    setValue(&I, DAG.getUNDEF(TLI->getPointerTy()));
5196    return 0;
5197  case Intrinsic::invariant_end:
5198    // Discard region information.
5199    return 0;
5200  case Intrinsic::donothing:
5201    // ignore
5202    return 0;
5203  }
5204}
5205
5206void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
5207                                      bool isTailCall,
5208                                      MachineBasicBlock *LandingPad) {
5209  PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
5210  FunctionType *FTy = cast<FunctionType>(PT->getElementType());
5211  Type *RetTy = FTy->getReturnType();
5212  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5213  MCSymbol *BeginLabel = 0;
5214
5215  TargetLowering::ArgListTy Args;
5216  TargetLowering::ArgListEntry Entry;
5217  Args.reserve(CS.arg_size());
5218
5219  // Check whether the function can return without sret-demotion.
5220  SmallVector<ISD::OutputArg, 4> Outs;
5221  const TargetLowering *TLI = TM.getTargetLowering();
5222  GetReturnInfo(RetTy, CS.getAttributes(), Outs, *TLI);
5223
5224  bool CanLowerReturn = TLI->CanLowerReturn(CS.getCallingConv(),
5225                                            DAG.getMachineFunction(),
5226                                            FTy->isVarArg(), Outs,
5227                                            FTy->getContext());
5228
5229  SDValue DemoteStackSlot;
5230  int DemoteStackIdx = -100;
5231
5232  if (!CanLowerReturn) {
5233    uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(
5234                      FTy->getReturnType());
5235    unsigned Align  = TLI->getDataLayout()->getPrefTypeAlignment(
5236                      FTy->getReturnType());
5237    MachineFunction &MF = DAG.getMachineFunction();
5238    DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5239    Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
5240
5241    DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI->getPointerTy());
5242    Entry.Node = DemoteStackSlot;
5243    Entry.Ty = StackSlotPtrType;
5244    Entry.isSExt = false;
5245    Entry.isZExt = false;
5246    Entry.isInReg = false;
5247    Entry.isSRet = true;
5248    Entry.isNest = false;
5249    Entry.isByVal = false;
5250    Entry.isReturned = false;
5251    Entry.Alignment = Align;
5252    Args.push_back(Entry);
5253    RetTy = Type::getVoidTy(FTy->getContext());
5254  }
5255
5256  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
5257       i != e; ++i) {
5258    const Value *V = *i;
5259
5260    // Skip empty types
5261    if (V->getType()->isEmptyTy())
5262      continue;
5263
5264    SDValue ArgNode = getValue(V);
5265    Entry.Node = ArgNode; Entry.Ty = V->getType();
5266
5267    unsigned attrInd = i - CS.arg_begin() + 1;
5268    Entry.isSExt     = CS.paramHasAttr(attrInd, Attribute::SExt);
5269    Entry.isZExt     = CS.paramHasAttr(attrInd, Attribute::ZExt);
5270    Entry.isInReg    = CS.paramHasAttr(attrInd, Attribute::InReg);
5271    Entry.isSRet     = CS.paramHasAttr(attrInd, Attribute::StructRet);
5272    Entry.isNest     = CS.paramHasAttr(attrInd, Attribute::Nest);
5273    Entry.isByVal    = CS.paramHasAttr(attrInd, Attribute::ByVal);
5274    Entry.isReturned = CS.paramHasAttr(attrInd, Attribute::Returned);
5275    Entry.Alignment  = CS.getParamAlignment(attrInd);
5276    Args.push_back(Entry);
5277  }
5278
5279  if (LandingPad) {
5280    // Insert a label before the invoke call to mark the try range.  This can be
5281    // used to detect deletion of the invoke via the MachineModuleInfo.
5282    BeginLabel = MMI.getContext().CreateTempSymbol();
5283
5284    // For SjLj, keep track of which landing pads go with which invokes
5285    // so as to maintain the ordering of pads in the LSDA.
5286    unsigned CallSiteIndex = MMI.getCurrentCallSite();
5287    if (CallSiteIndex) {
5288      MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
5289      LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex);
5290
5291      // Now that the call site is handled, stop tracking it.
5292      MMI.setCurrentCallSite(0);
5293    }
5294
5295    // Both PendingLoads and PendingExports must be flushed here;
5296    // this call might not return.
5297    (void)getRoot();
5298    DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
5299  }
5300
5301  // Check if target-independent constraints permit a tail call here.
5302  // Target-dependent constraints are checked within TLI->LowerCallTo.
5303  if (isTailCall && !isInTailCallPosition(CS, *TLI))
5304    isTailCall = false;
5305
5306  TargetLowering::
5307  CallLoweringInfo CLI(getRoot(), RetTy, FTy, isTailCall, Callee, Args, DAG,
5308                       getCurSDLoc(), CS);
5309  std::pair<SDValue,SDValue> Result = TLI->LowerCallTo(CLI);
5310  assert((isTailCall || Result.second.getNode()) &&
5311         "Non-null chain expected with non-tail call!");
5312  assert((Result.second.getNode() || !Result.first.getNode()) &&
5313         "Null value expected with tail call!");
5314  if (Result.first.getNode()) {
5315    setValue(CS.getInstruction(), Result.first);
5316  } else if (!CanLowerReturn && Result.second.getNode()) {
5317    // The instruction result is the result of loading from the
5318    // hidden sret parameter.
5319    SmallVector<EVT, 1> PVTs;
5320    Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
5321
5322    ComputeValueVTs(*TLI, PtrRetTy, PVTs);
5323    assert(PVTs.size() == 1 && "Pointers should fit in one register");
5324    EVT PtrVT = PVTs[0];
5325
5326    SmallVector<EVT, 4> RetTys;
5327    SmallVector<uint64_t, 4> Offsets;
5328    RetTy = FTy->getReturnType();
5329    ComputeValueVTs(*TLI, RetTy, RetTys, &Offsets);
5330
5331    unsigned NumValues = RetTys.size();
5332    SmallVector<SDValue, 4> Values(NumValues);
5333    SmallVector<SDValue, 4> Chains(NumValues);
5334
5335    for (unsigned i = 0; i < NumValues; ++i) {
5336      SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT,
5337                                DemoteStackSlot,
5338                                DAG.getConstant(Offsets[i], PtrVT));
5339      SDValue L = DAG.getLoad(RetTys[i], getCurSDLoc(), Result.second, Add,
5340                  MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]),
5341                              false, false, false, 1);
5342      Values[i] = L;
5343      Chains[i] = L.getValue(1);
5344    }
5345
5346    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
5347                                MVT::Other, &Chains[0], NumValues);
5348    PendingLoads.push_back(Chain);
5349
5350    setValue(CS.getInstruction(),
5351             DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
5352                         DAG.getVTList(&RetTys[0], RetTys.size()),
5353                         &Values[0], Values.size()));
5354  }
5355
5356  if (!Result.second.getNode()) {
5357    // As a special case, a null chain means that a tail call has been emitted and
5358    // the DAG root is already updated.
5359    HasTailCall = true;
5360  } else {
5361    DAG.setRoot(Result.second);
5362  }
5363
5364  if (LandingPad) {
5365    // Insert a label at the end of the invoke call to mark the try range.  This
5366    // can be used to detect deletion of the invoke via the MachineModuleInfo.
5367    MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
5368    DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
5369
5370    // Inform MachineModuleInfo of range.
5371    MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
5372  }
5373}
5374
5375/// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
5376/// value is equal or not-equal to zero.
5377static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
5378  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
5379       UI != E; ++UI) {
5380    if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
5381      if (IC->isEquality())
5382        if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
5383          if (C->isNullValue())
5384            continue;
5385    // Unknown instruction.
5386    return false;
5387  }
5388  return true;
5389}
5390
5391static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
5392                             Type *LoadTy,
5393                             SelectionDAGBuilder &Builder) {
5394
5395  // Check to see if this load can be trivially constant folded, e.g. if the
5396  // input is from a string literal.
5397  if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5398    // Cast pointer to the type we really want to load.
5399    LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5400                                         PointerType::getUnqual(LoadTy));
5401
5402    if (const Constant *LoadCst =
5403          ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
5404                                       Builder.TD))
5405      return Builder.getValue(LoadCst);
5406  }
5407
5408  // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
5409  // still constant memory, the input chain can be the entry node.
5410  SDValue Root;
5411  bool ConstantMemory = false;
5412
5413  // Do not serialize (non-volatile) loads of constant memory with anything.
5414  if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5415    Root = Builder.DAG.getEntryNode();
5416    ConstantMemory = true;
5417  } else {
5418    // Do not serialize non-volatile loads against each other.
5419    Root = Builder.DAG.getRoot();
5420  }
5421
5422  SDValue Ptr = Builder.getValue(PtrVal);
5423  SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
5424                                        Ptr, MachinePointerInfo(PtrVal),
5425                                        false /*volatile*/,
5426                                        false /*nontemporal*/,
5427                                        false /*isinvariant*/, 1 /* align=1 */);
5428
5429  if (!ConstantMemory)
5430    Builder.PendingLoads.push_back(LoadVal.getValue(1));
5431  return LoadVal;
5432}
5433
5434
5435/// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5436/// If so, return true and lower it, otherwise return false and it will be
5437/// lowered like a normal call.
5438bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5439  // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
5440  if (I.getNumArgOperands() != 3)
5441    return false;
5442
5443  const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5444  if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5445      !I.getArgOperand(2)->getType()->isIntegerTy() ||
5446      !I.getType()->isIntegerTy())
5447    return false;
5448
5449  const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2));
5450
5451  // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
5452  // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
5453  if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) {
5454    bool ActuallyDoIt = true;
5455    MVT LoadVT;
5456    Type *LoadTy;
5457    switch (Size->getZExtValue()) {
5458    default:
5459      LoadVT = MVT::Other;
5460      LoadTy = 0;
5461      ActuallyDoIt = false;
5462      break;
5463    case 2:
5464      LoadVT = MVT::i16;
5465      LoadTy = Type::getInt16Ty(Size->getContext());
5466      break;
5467    case 4:
5468      LoadVT = MVT::i32;
5469      LoadTy = Type::getInt32Ty(Size->getContext());
5470      break;
5471    case 8:
5472      LoadVT = MVT::i64;
5473      LoadTy = Type::getInt64Ty(Size->getContext());
5474      break;
5475        /*
5476    case 16:
5477      LoadVT = MVT::v4i32;
5478      LoadTy = Type::getInt32Ty(Size->getContext());
5479      LoadTy = VectorType::get(LoadTy, 4);
5480      break;
5481         */
5482    }
5483
5484    // This turns into unaligned loads.  We only do this if the target natively
5485    // supports the MVT we'll be loading or if it is small enough (<= 4) that
5486    // we'll only produce a small number of byte loads.
5487
5488    // Require that we can find a legal MVT, and only do this if the target
5489    // supports unaligned loads of that type.  Expanding into byte loads would
5490    // bloat the code.
5491    const TargetLowering *TLI = TM.getTargetLowering();
5492    if (ActuallyDoIt && Size->getZExtValue() > 4) {
5493      // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5494      // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5495      if (!TLI->isTypeLegal(LoadVT) ||!TLI->allowsUnalignedMemoryAccesses(LoadVT))
5496        ActuallyDoIt = false;
5497    }
5498
5499    if (ActuallyDoIt) {
5500      SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5501      SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5502
5503      SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal,
5504                                 ISD::SETNE);
5505      EVT CallVT = TLI->getValueType(I.getType(), true);
5506      setValue(&I, DAG.getZExtOrTrunc(Res, getCurSDLoc(), CallVT));
5507      return true;
5508    }
5509  }
5510
5511
5512  return false;
5513}
5514
5515/// visitUnaryFloatCall - If a call instruction is a unary floating-point
5516/// operation (as expected), translate it to an SDNode with the specified opcode
5517/// and return true.
5518bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
5519                                              unsigned Opcode) {
5520  // Sanity check that it really is a unary floating-point call.
5521  if (I.getNumArgOperands() != 1 ||
5522      !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
5523      I.getType() != I.getArgOperand(0)->getType() ||
5524      !I.onlyReadsMemory())
5525    return false;
5526
5527  SDValue Tmp = getValue(I.getArgOperand(0));
5528  setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
5529  return true;
5530}
5531
5532void SelectionDAGBuilder::visitCall(const CallInst &I) {
5533  // Handle inline assembly differently.
5534  if (isa<InlineAsm>(I.getCalledValue())) {
5535    visitInlineAsm(&I);
5536    return;
5537  }
5538
5539  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5540  ComputeUsesVAFloatArgument(I, &MMI);
5541
5542  const char *RenameFn = 0;
5543  if (Function *F = I.getCalledFunction()) {
5544    if (F->isDeclaration()) {
5545      if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
5546        if (unsigned IID = II->getIntrinsicID(F)) {
5547          RenameFn = visitIntrinsicCall(I, IID);
5548          if (!RenameFn)
5549            return;
5550        }
5551      }
5552      if (unsigned IID = F->getIntrinsicID()) {
5553        RenameFn = visitIntrinsicCall(I, IID);
5554        if (!RenameFn)
5555          return;
5556      }
5557    }
5558
5559    // Check for well-known libc/libm calls.  If the function is internal, it
5560    // can't be a library call.
5561    LibFunc::Func Func;
5562    if (!F->hasLocalLinkage() && F->hasName() &&
5563        LibInfo->getLibFunc(F->getName(), Func) &&
5564        LibInfo->hasOptimizedCodeGen(Func)) {
5565      switch (Func) {
5566      default: break;
5567      case LibFunc::copysign:
5568      case LibFunc::copysignf:
5569      case LibFunc::copysignl:
5570        if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
5571            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5572            I.getType() == I.getArgOperand(0)->getType() &&
5573            I.getType() == I.getArgOperand(1)->getType() &&
5574            I.onlyReadsMemory()) {
5575          SDValue LHS = getValue(I.getArgOperand(0));
5576          SDValue RHS = getValue(I.getArgOperand(1));
5577          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
5578                                   LHS.getValueType(), LHS, RHS));
5579          return;
5580        }
5581        break;
5582      case LibFunc::fabs:
5583      case LibFunc::fabsf:
5584      case LibFunc::fabsl:
5585        if (visitUnaryFloatCall(I, ISD::FABS))
5586          return;
5587        break;
5588      case LibFunc::sin:
5589      case LibFunc::sinf:
5590      case LibFunc::sinl:
5591        if (visitUnaryFloatCall(I, ISD::FSIN))
5592          return;
5593        break;
5594      case LibFunc::cos:
5595      case LibFunc::cosf:
5596      case LibFunc::cosl:
5597        if (visitUnaryFloatCall(I, ISD::FCOS))
5598          return;
5599        break;
5600      case LibFunc::sqrt:
5601      case LibFunc::sqrtf:
5602      case LibFunc::sqrtl:
5603      case LibFunc::sqrt_finite:
5604      case LibFunc::sqrtf_finite:
5605      case LibFunc::sqrtl_finite:
5606        if (visitUnaryFloatCall(I, ISD::FSQRT))
5607          return;
5608        break;
5609      case LibFunc::floor:
5610      case LibFunc::floorf:
5611      case LibFunc::floorl:
5612        if (visitUnaryFloatCall(I, ISD::FFLOOR))
5613          return;
5614        break;
5615      case LibFunc::nearbyint:
5616      case LibFunc::nearbyintf:
5617      case LibFunc::nearbyintl:
5618        if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
5619          return;
5620        break;
5621      case LibFunc::ceil:
5622      case LibFunc::ceilf:
5623      case LibFunc::ceill:
5624        if (visitUnaryFloatCall(I, ISD::FCEIL))
5625          return;
5626        break;
5627      case LibFunc::rint:
5628      case LibFunc::rintf:
5629      case LibFunc::rintl:
5630        if (visitUnaryFloatCall(I, ISD::FRINT))
5631          return;
5632        break;
5633      case LibFunc::trunc:
5634      case LibFunc::truncf:
5635      case LibFunc::truncl:
5636        if (visitUnaryFloatCall(I, ISD::FTRUNC))
5637          return;
5638        break;
5639      case LibFunc::log2:
5640      case LibFunc::log2f:
5641      case LibFunc::log2l:
5642        if (visitUnaryFloatCall(I, ISD::FLOG2))
5643          return;
5644        break;
5645      case LibFunc::exp2:
5646      case LibFunc::exp2f:
5647      case LibFunc::exp2l:
5648        if (visitUnaryFloatCall(I, ISD::FEXP2))
5649          return;
5650        break;
5651      case LibFunc::memcmp:
5652        if (visitMemCmpCall(I))
5653          return;
5654        break;
5655      }
5656    }
5657  }
5658
5659  SDValue Callee;
5660  if (!RenameFn)
5661    Callee = getValue(I.getCalledValue());
5662  else
5663    Callee = DAG.getExternalSymbol(RenameFn,
5664                                   TM.getTargetLowering()->getPointerTy());
5665
5666  // Check if we can potentially perform a tail call. More detailed checking is
5667  // be done within LowerCallTo, after more information about the call is known.
5668  LowerCallTo(&I, Callee, I.isTailCall());
5669}
5670
5671namespace {
5672
5673/// AsmOperandInfo - This contains information for each constraint that we are
5674/// lowering.
5675class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
5676public:
5677  /// CallOperand - If this is the result output operand or a clobber
5678  /// this is null, otherwise it is the incoming operand to the CallInst.
5679  /// This gets modified as the asm is processed.
5680  SDValue CallOperand;
5681
5682  /// AssignedRegs - If this is a register or register class operand, this
5683  /// contains the set of register corresponding to the operand.
5684  RegsForValue AssignedRegs;
5685
5686  explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
5687    : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
5688  }
5689
5690  /// getCallOperandValEVT - Return the EVT of the Value* that this operand
5691  /// corresponds to.  If there is no Value* for this operand, it returns
5692  /// MVT::Other.
5693  EVT getCallOperandValEVT(LLVMContext &Context,
5694                           const TargetLowering &TLI,
5695                           const DataLayout *TD) const {
5696    if (CallOperandVal == 0) return MVT::Other;
5697
5698    if (isa<BasicBlock>(CallOperandVal))
5699      return TLI.getPointerTy();
5700
5701    llvm::Type *OpTy = CallOperandVal->getType();
5702
5703    // FIXME: code duplicated from TargetLowering::ParseConstraints().
5704    // If this is an indirect operand, the operand is a pointer to the
5705    // accessed type.
5706    if (isIndirect) {
5707      llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
5708      if (!PtrTy)
5709        report_fatal_error("Indirect operand for inline asm not a pointer!");
5710      OpTy = PtrTy->getElementType();
5711    }
5712
5713    // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
5714    if (StructType *STy = dyn_cast<StructType>(OpTy))
5715      if (STy->getNumElements() == 1)
5716        OpTy = STy->getElementType(0);
5717
5718    // If OpTy is not a single value, it may be a struct/union that we
5719    // can tile with integers.
5720    if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5721      unsigned BitSize = TD->getTypeSizeInBits(OpTy);
5722      switch (BitSize) {
5723      default: break;
5724      case 1:
5725      case 8:
5726      case 16:
5727      case 32:
5728      case 64:
5729      case 128:
5730        OpTy = IntegerType::get(Context, BitSize);
5731        break;
5732      }
5733    }
5734
5735    return TLI.getValueType(OpTy, true);
5736  }
5737};
5738
5739typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
5740
5741} // end anonymous namespace
5742
5743/// GetRegistersForValue - Assign registers (virtual or physical) for the
5744/// specified operand.  We prefer to assign virtual registers, to allow the
5745/// register allocator to handle the assignment process.  However, if the asm
5746/// uses features that we can't model on machineinstrs, we have SDISel do the
5747/// allocation.  This produces generally horrible, but correct, code.
5748///
5749///   OpInfo describes the operand.
5750///
5751static void GetRegistersForValue(SelectionDAG &DAG,
5752                                 const TargetLowering &TLI,
5753                                 SDLoc DL,
5754                                 SDISelAsmOperandInfo &OpInfo) {
5755  LLVMContext &Context = *DAG.getContext();
5756
5757  MachineFunction &MF = DAG.getMachineFunction();
5758  SmallVector<unsigned, 4> Regs;
5759
5760  // If this is a constraint for a single physreg, or a constraint for a
5761  // register class, find it.
5762  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
5763    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5764                                     OpInfo.ConstraintVT);
5765
5766  unsigned NumRegs = 1;
5767  if (OpInfo.ConstraintVT != MVT::Other) {
5768    // If this is a FP input in an integer register (or visa versa) insert a bit
5769    // cast of the input value.  More generally, handle any case where the input
5770    // value disagrees with the register class we plan to stick this in.
5771    if (OpInfo.Type == InlineAsm::isInput &&
5772        PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
5773      // Try to convert to the first EVT that the reg class contains.  If the
5774      // types are identical size, use a bitcast to convert (e.g. two differing
5775      // vector types).
5776      MVT RegVT = *PhysReg.second->vt_begin();
5777      if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
5778        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5779                                         RegVT, OpInfo.CallOperand);
5780        OpInfo.ConstraintVT = RegVT;
5781      } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
5782        // If the input is a FP value and we want it in FP registers, do a
5783        // bitcast to the corresponding integer type.  This turns an f64 value
5784        // into i64, which can be passed with two i32 values on a 32-bit
5785        // machine.
5786        RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
5787        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5788                                         RegVT, OpInfo.CallOperand);
5789        OpInfo.ConstraintVT = RegVT;
5790      }
5791    }
5792
5793    NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
5794  }
5795
5796  MVT RegVT;
5797  EVT ValueVT = OpInfo.ConstraintVT;
5798
5799  // If this is a constraint for a specific physical register, like {r17},
5800  // assign it now.
5801  if (unsigned AssignedReg = PhysReg.first) {
5802    const TargetRegisterClass *RC = PhysReg.second;
5803    if (OpInfo.ConstraintVT == MVT::Other)
5804      ValueVT = *RC->vt_begin();
5805
5806    // Get the actual register value type.  This is important, because the user
5807    // may have asked for (e.g.) the AX register in i32 type.  We need to
5808    // remember that AX is actually i16 to get the right extension.
5809    RegVT = *RC->vt_begin();
5810
5811    // This is a explicit reference to a physical register.
5812    Regs.push_back(AssignedReg);
5813
5814    // If this is an expanded reference, add the rest of the regs to Regs.
5815    if (NumRegs != 1) {
5816      TargetRegisterClass::iterator I = RC->begin();
5817      for (; *I != AssignedReg; ++I)
5818        assert(I != RC->end() && "Didn't find reg!");
5819
5820      // Already added the first reg.
5821      --NumRegs; ++I;
5822      for (; NumRegs; --NumRegs, ++I) {
5823        assert(I != RC->end() && "Ran out of registers to allocate!");
5824        Regs.push_back(*I);
5825      }
5826    }
5827
5828    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5829    return;
5830  }
5831
5832  // Otherwise, if this was a reference to an LLVM register class, create vregs
5833  // for this reference.
5834  if (const TargetRegisterClass *RC = PhysReg.second) {
5835    RegVT = *RC->vt_begin();
5836    if (OpInfo.ConstraintVT == MVT::Other)
5837      ValueVT = RegVT;
5838
5839    // Create the appropriate number of virtual registers.
5840    MachineRegisterInfo &RegInfo = MF.getRegInfo();
5841    for (; NumRegs; --NumRegs)
5842      Regs.push_back(RegInfo.createVirtualRegister(RC));
5843
5844    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5845    return;
5846  }
5847
5848  // Otherwise, we couldn't allocate enough registers for this.
5849}
5850
5851/// visitInlineAsm - Handle a call to an InlineAsm object.
5852///
5853void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
5854  const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
5855
5856  /// ConstraintOperands - Information about all of the constraints.
5857  SDISelAsmOperandInfoVector ConstraintOperands;
5858
5859  const TargetLowering *TLI = TM.getTargetLowering();
5860  TargetLowering::AsmOperandInfoVector
5861    TargetConstraints = TLI->ParseConstraints(CS);
5862
5863  bool hasMemory = false;
5864
5865  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
5866  unsigned ResNo = 0;   // ResNo - The result number of the next output.
5867  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
5868    ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
5869    SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
5870
5871    MVT OpVT = MVT::Other;
5872
5873    // Compute the value type for each operand.
5874    switch (OpInfo.Type) {
5875    case InlineAsm::isOutput:
5876      // Indirect outputs just consume an argument.
5877      if (OpInfo.isIndirect) {
5878        OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5879        break;
5880      }
5881
5882      // The return value of the call is this value.  As such, there is no
5883      // corresponding argument.
5884      assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
5885      if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
5886        OpVT = TLI->getSimpleValueType(STy->getElementType(ResNo));
5887      } else {
5888        assert(ResNo == 0 && "Asm only has one result!");
5889        OpVT = TLI->getSimpleValueType(CS.getType());
5890      }
5891      ++ResNo;
5892      break;
5893    case InlineAsm::isInput:
5894      OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5895      break;
5896    case InlineAsm::isClobber:
5897      // Nothing to do.
5898      break;
5899    }
5900
5901    // If this is an input or an indirect output, process the call argument.
5902    // BasicBlocks are labels, currently appearing only in asm's.
5903    if (OpInfo.CallOperandVal) {
5904      if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
5905        OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
5906      } else {
5907        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
5908      }
5909
5910      OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), *TLI, TD).
5911        getSimpleVT();
5912    }
5913
5914    OpInfo.ConstraintVT = OpVT;
5915
5916    // Indirect operand accesses access memory.
5917    if (OpInfo.isIndirect)
5918      hasMemory = true;
5919    else {
5920      for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
5921        TargetLowering::ConstraintType
5922          CType = TLI->getConstraintType(OpInfo.Codes[j]);
5923        if (CType == TargetLowering::C_Memory) {
5924          hasMemory = true;
5925          break;
5926        }
5927      }
5928    }
5929  }
5930
5931  SDValue Chain, Flag;
5932
5933  // We won't need to flush pending loads if this asm doesn't touch
5934  // memory and is nonvolatile.
5935  if (hasMemory || IA->hasSideEffects())
5936    Chain = getRoot();
5937  else
5938    Chain = DAG.getRoot();
5939
5940  // Second pass over the constraints: compute which constraint option to use
5941  // and assign registers to constraints that want a specific physreg.
5942  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5943    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5944
5945    // If this is an output operand with a matching input operand, look up the
5946    // matching input. If their types mismatch, e.g. one is an integer, the
5947    // other is floating point, or their sizes are different, flag it as an
5948    // error.
5949    if (OpInfo.hasMatchingInput()) {
5950      SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5951
5952      if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5953        std::pair<unsigned, const TargetRegisterClass*> MatchRC =
5954          TLI->getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5955                                            OpInfo.ConstraintVT);
5956        std::pair<unsigned, const TargetRegisterClass*> InputRC =
5957          TLI->getRegForInlineAsmConstraint(Input.ConstraintCode,
5958                                            Input.ConstraintVT);
5959        if ((OpInfo.ConstraintVT.isInteger() !=
5960             Input.ConstraintVT.isInteger()) ||
5961            (MatchRC.second != InputRC.second)) {
5962          report_fatal_error("Unsupported asm: input constraint"
5963                             " with a matching output constraint of"
5964                             " incompatible type!");
5965        }
5966        Input.ConstraintVT = OpInfo.ConstraintVT;
5967      }
5968    }
5969
5970    // Compute the constraint code and ConstraintType to use.
5971    TLI->ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
5972
5973    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5974        OpInfo.Type == InlineAsm::isClobber)
5975      continue;
5976
5977    // If this is a memory input, and if the operand is not indirect, do what we
5978    // need to to provide an address for the memory input.
5979    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5980        !OpInfo.isIndirect) {
5981      assert((OpInfo.isMultipleAlternative ||
5982              (OpInfo.Type == InlineAsm::isInput)) &&
5983             "Can only indirectify direct input operands!");
5984
5985      // Memory operands really want the address of the value.  If we don't have
5986      // an indirect input, put it in the constpool if we can, otherwise spill
5987      // it to a stack slot.
5988      // TODO: This isn't quite right. We need to handle these according to
5989      // the addressing mode that the constraint wants. Also, this may take
5990      // an additional register for the computation and we don't want that
5991      // either.
5992
5993      // If the operand is a float, integer, or vector constant, spill to a
5994      // constant pool entry to get its address.
5995      const Value *OpVal = OpInfo.CallOperandVal;
5996      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
5997          isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
5998        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
5999                                                 TLI->getPointerTy());
6000      } else {
6001        // Otherwise, create a stack slot and emit a store to it before the
6002        // asm.
6003        Type *Ty = OpVal->getType();
6004        uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty);
6005        unsigned Align  = TLI->getDataLayout()->getPrefTypeAlignment(Ty);
6006        MachineFunction &MF = DAG.getMachineFunction();
6007        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
6008        SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI->getPointerTy());
6009        Chain = DAG.getStore(Chain, getCurSDLoc(),
6010                             OpInfo.CallOperand, StackSlot,
6011                             MachinePointerInfo::getFixedStack(SSFI),
6012                             false, false, 0);
6013        OpInfo.CallOperand = StackSlot;
6014      }
6015
6016      // There is no longer a Value* corresponding to this operand.
6017      OpInfo.CallOperandVal = 0;
6018
6019      // It is now an indirect operand.
6020      OpInfo.isIndirect = true;
6021    }
6022
6023    // If this constraint is for a specific register, allocate it before
6024    // anything else.
6025    if (OpInfo.ConstraintType == TargetLowering::C_Register)
6026      GetRegistersForValue(DAG, *TLI, getCurSDLoc(), OpInfo);
6027  }
6028
6029  // Second pass - Loop over all of the operands, assigning virtual or physregs
6030  // to register class operands.
6031  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6032    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6033
6034    // C_Register operands have already been allocated, Other/Memory don't need
6035    // to be.
6036    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
6037      GetRegistersForValue(DAG, *TLI, getCurSDLoc(), OpInfo);
6038  }
6039
6040  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
6041  std::vector<SDValue> AsmNodeOperands;
6042  AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
6043  AsmNodeOperands.push_back(
6044          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
6045                                      TLI->getPointerTy()));
6046
6047  // If we have a !srcloc metadata node associated with it, we want to attach
6048  // this to the ultimately generated inline asm machineinstr.  To do this, we
6049  // pass in the third operand as this (potentially null) inline asm MDNode.
6050  const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
6051  AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
6052
6053  // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
6054  // bits as operand 3.
6055  unsigned ExtraInfo = 0;
6056  if (IA->hasSideEffects())
6057    ExtraInfo |= InlineAsm::Extra_HasSideEffects;
6058  if (IA->isAlignStack())
6059    ExtraInfo |= InlineAsm::Extra_IsAlignStack;
6060  // Set the asm dialect.
6061  ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
6062
6063  // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
6064  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
6065    TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
6066
6067    // Compute the constraint code and ConstraintType to use.
6068    TLI->ComputeConstraintToUse(OpInfo, SDValue());
6069
6070    // Ideally, we would only check against memory constraints.  However, the
6071    // meaning of an other constraint can be target-specific and we can't easily
6072    // reason about it.  Therefore, be conservative and set MayLoad/MayStore
6073    // for other constriants as well.
6074    if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
6075        OpInfo.ConstraintType == TargetLowering::C_Other) {
6076      if (OpInfo.Type == InlineAsm::isInput)
6077        ExtraInfo |= InlineAsm::Extra_MayLoad;
6078      else if (OpInfo.Type == InlineAsm::isOutput)
6079        ExtraInfo |= InlineAsm::Extra_MayStore;
6080      else if (OpInfo.Type == InlineAsm::isClobber)
6081        ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
6082    }
6083  }
6084
6085  AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo,
6086                                                  TLI->getPointerTy()));
6087
6088  // Loop over all of the inputs, copying the operand values into the
6089  // appropriate registers and processing the output regs.
6090  RegsForValue RetValRegs;
6091
6092  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
6093  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
6094
6095  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6096    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6097
6098    switch (OpInfo.Type) {
6099    case InlineAsm::isOutput: {
6100      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
6101          OpInfo.ConstraintType != TargetLowering::C_Register) {
6102        // Memory output, or 'other' output (e.g. 'X' constraint).
6103        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
6104
6105        // Add information to the INLINEASM node to know about this output.
6106        unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6107        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
6108                                                        TLI->getPointerTy()));
6109        AsmNodeOperands.push_back(OpInfo.CallOperand);
6110        break;
6111      }
6112
6113      // Otherwise, this is a register or register class output.
6114
6115      // Copy the output from the appropriate register.  Find a register that
6116      // we can use.
6117      if (OpInfo.AssignedRegs.Regs.empty()) {
6118        LLVMContext &Ctx = *DAG.getContext();
6119        Ctx.emitError(CS.getInstruction(),
6120                      "couldn't allocate output register for constraint '" +
6121                           Twine(OpInfo.ConstraintCode) + "'");
6122        break;
6123      }
6124
6125      // If this is an indirect operand, store through the pointer after the
6126      // asm.
6127      if (OpInfo.isIndirect) {
6128        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
6129                                                      OpInfo.CallOperandVal));
6130      } else {
6131        // This is the result value of the call.
6132        assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6133        // Concatenate this output onto the outputs list.
6134        RetValRegs.append(OpInfo.AssignedRegs);
6135      }
6136
6137      // Add information to the INLINEASM node to know that this register is
6138      // set.
6139      OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
6140                                           InlineAsm::Kind_RegDefEarlyClobber :
6141                                               InlineAsm::Kind_RegDef,
6142                                               false,
6143                                               0,
6144                                               DAG,
6145                                               AsmNodeOperands);
6146      break;
6147    }
6148    case InlineAsm::isInput: {
6149      SDValue InOperandVal = OpInfo.CallOperand;
6150
6151      if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
6152        // If this is required to match an output register we have already set,
6153        // just use its register.
6154        unsigned OperandNo = OpInfo.getMatchedOperand();
6155
6156        // Scan until we find the definition we already emitted of this operand.
6157        // When we find it, create a RegsForValue operand.
6158        unsigned CurOp = InlineAsm::Op_FirstOperand;
6159        for (; OperandNo; --OperandNo) {
6160          // Advance to the next operand.
6161          unsigned OpFlag =
6162            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6163          assert((InlineAsm::isRegDefKind(OpFlag) ||
6164                  InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
6165                  InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
6166          CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
6167        }
6168
6169        unsigned OpFlag =
6170          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6171        if (InlineAsm::isRegDefKind(OpFlag) ||
6172            InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
6173          // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
6174          if (OpInfo.isIndirect) {
6175            // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
6176            LLVMContext &Ctx = *DAG.getContext();
6177            Ctx.emitError(CS.getInstruction(),  "inline asm not supported yet:"
6178                          " don't know how to handle tied "
6179                          "indirect register inputs");
6180            report_fatal_error("Cannot handle indirect register inputs!");
6181          }
6182
6183          RegsForValue MatchedRegs;
6184          MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
6185          MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
6186          MatchedRegs.RegVTs.push_back(RegVT);
6187          MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
6188          for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
6189               i != e; ++i) {
6190            if (const TargetRegisterClass *RC = TLI->getRegClassFor(RegVT))
6191              MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC));
6192            else {
6193              LLVMContext &Ctx = *DAG.getContext();
6194              Ctx.emitError(CS.getInstruction(), "inline asm error: This value"
6195                            " type register class is not natively supported!");
6196              report_fatal_error("inline asm error: This value type register "
6197                                 "class is not natively supported!");
6198            }
6199          }
6200          // Use the produced MatchedRegs object to
6201          MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(),
6202                                    Chain, &Flag, CS.getInstruction());
6203          MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
6204                                           true, OpInfo.getMatchedOperand(),
6205                                           DAG, AsmNodeOperands);
6206          break;
6207        }
6208
6209        assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
6210        assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
6211               "Unexpected number of operands");
6212        // Add information to the INLINEASM node to know about this input.
6213        // See InlineAsm.h isUseOperandTiedToDef.
6214        OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
6215                                                    OpInfo.getMatchedOperand());
6216        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
6217                                                        TLI->getPointerTy()));
6218        AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
6219        break;
6220      }
6221
6222      // Treat indirect 'X' constraint as memory.
6223      if (OpInfo.ConstraintType == TargetLowering::C_Other &&
6224          OpInfo.isIndirect)
6225        OpInfo.ConstraintType = TargetLowering::C_Memory;
6226
6227      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
6228        std::vector<SDValue> Ops;
6229        TLI->LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
6230                                          Ops, DAG);
6231        if (Ops.empty()) {
6232          LLVMContext &Ctx = *DAG.getContext();
6233          Ctx.emitError(CS.getInstruction(),
6234                        "invalid operand for inline asm constraint '" +
6235                        Twine(OpInfo.ConstraintCode) + "'");
6236          break;
6237        }
6238
6239        // Add information to the INLINEASM node to know about this input.
6240        unsigned ResOpType =
6241          InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
6242        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6243                                                        TLI->getPointerTy()));
6244        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
6245        break;
6246      }
6247
6248      if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
6249        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
6250        assert(InOperandVal.getValueType() == TLI->getPointerTy() &&
6251               "Memory operands expect pointer values");
6252
6253        // Add information to the INLINEASM node to know about this input.
6254        unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6255        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6256                                                        TLI->getPointerTy()));
6257        AsmNodeOperands.push_back(InOperandVal);
6258        break;
6259      }
6260
6261      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
6262              OpInfo.ConstraintType == TargetLowering::C_Register) &&
6263             "Unknown constraint type!");
6264
6265      // TODO: Support this.
6266      if (OpInfo.isIndirect) {
6267        LLVMContext &Ctx = *DAG.getContext();
6268        Ctx.emitError(CS.getInstruction(),
6269                      "Don't know how to handle indirect register inputs yet "
6270                      "for constraint '" + Twine(OpInfo.ConstraintCode) + "'");
6271        break;
6272      }
6273
6274      // Copy the input into the appropriate registers.
6275      if (OpInfo.AssignedRegs.Regs.empty()) {
6276        LLVMContext &Ctx = *DAG.getContext();
6277        Ctx.emitError(CS.getInstruction(),
6278                      "couldn't allocate input reg for constraint '" +
6279                           Twine(OpInfo.ConstraintCode) + "'");
6280        break;
6281      }
6282
6283      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(),
6284                                        Chain, &Flag, CS.getInstruction());
6285
6286      OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
6287                                               DAG, AsmNodeOperands);
6288      break;
6289    }
6290    case InlineAsm::isClobber: {
6291      // Add the clobbered value to the operand list, so that the register
6292      // allocator is aware that the physreg got clobbered.
6293      if (!OpInfo.AssignedRegs.Regs.empty())
6294        OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
6295                                                 false, 0, DAG,
6296                                                 AsmNodeOperands);
6297      break;
6298    }
6299    }
6300  }
6301
6302  // Finish up input operands.  Set the input chain and add the flag last.
6303  AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
6304  if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
6305
6306  Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(),
6307                      DAG.getVTList(MVT::Other, MVT::Glue),
6308                      &AsmNodeOperands[0], AsmNodeOperands.size());
6309  Flag = Chain.getValue(1);
6310
6311  // If this asm returns a register value, copy the result from that register
6312  // and set it as the value of the call.
6313  if (!RetValRegs.Regs.empty()) {
6314    SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
6315                                             Chain, &Flag, CS.getInstruction());
6316
6317    // FIXME: Why don't we do this for inline asms with MRVs?
6318    if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
6319      EVT ResultType = TLI->getValueType(CS.getType());
6320
6321      // If any of the results of the inline asm is a vector, it may have the
6322      // wrong width/num elts.  This can happen for register classes that can
6323      // contain multiple different value types.  The preg or vreg allocated may
6324      // not have the same VT as was expected.  Convert it to the right type
6325      // with bit_convert.
6326      if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
6327        Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(),
6328                          ResultType, Val);
6329
6330      } else if (ResultType != Val.getValueType() &&
6331                 ResultType.isInteger() && Val.getValueType().isInteger()) {
6332        // If a result value was tied to an input value, the computed result may
6333        // have a wider width than the expected result.  Extract the relevant
6334        // portion.
6335        Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val);
6336      }
6337
6338      assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
6339    }
6340
6341    setValue(CS.getInstruction(), Val);
6342    // Don't need to use this as a chain in this case.
6343    if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
6344      return;
6345  }
6346
6347  std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
6348
6349  // Process indirect outputs, first output all of the flagged copies out of
6350  // physregs.
6351  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
6352    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
6353    const Value *Ptr = IndirectStoresToEmit[i].second;
6354    SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
6355                                             Chain, &Flag, IA);
6356    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
6357  }
6358
6359  // Emit the non-flagged stores from the physregs.
6360  SmallVector<SDValue, 8> OutChains;
6361  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
6362    SDValue Val = DAG.getStore(Chain, getCurSDLoc(),
6363                               StoresToEmit[i].first,
6364                               getValue(StoresToEmit[i].second),
6365                               MachinePointerInfo(StoresToEmit[i].second),
6366                               false, false, 0);
6367    OutChains.push_back(Val);
6368  }
6369
6370  if (!OutChains.empty())
6371    Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
6372                        &OutChains[0], OutChains.size());
6373
6374  DAG.setRoot(Chain);
6375}
6376
6377void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
6378  DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
6379                          MVT::Other, getRoot(),
6380                          getValue(I.getArgOperand(0)),
6381                          DAG.getSrcValue(I.getArgOperand(0))));
6382}
6383
6384void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
6385  const TargetLowering *TLI = TM.getTargetLowering();
6386  const DataLayout &TD = *TLI->getDataLayout();
6387  SDValue V = DAG.getVAArg(TLI->getValueType(I.getType()), getCurSDLoc(),
6388                           getRoot(), getValue(I.getOperand(0)),
6389                           DAG.getSrcValue(I.getOperand(0)),
6390                           TD.getABITypeAlignment(I.getType()));
6391  setValue(&I, V);
6392  DAG.setRoot(V.getValue(1));
6393}
6394
6395void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
6396  DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
6397                          MVT::Other, getRoot(),
6398                          getValue(I.getArgOperand(0)),
6399                          DAG.getSrcValue(I.getArgOperand(0))));
6400}
6401
6402void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
6403  DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
6404                          MVT::Other, getRoot(),
6405                          getValue(I.getArgOperand(0)),
6406                          getValue(I.getArgOperand(1)),
6407                          DAG.getSrcValue(I.getArgOperand(0)),
6408                          DAG.getSrcValue(I.getArgOperand(1))));
6409}
6410
6411/// TargetLowering::LowerCallTo - This is the default LowerCallTo
6412/// implementation, which just calls LowerCall.
6413/// FIXME: When all targets are
6414/// migrated to using LowerCall, this hook should be integrated into SDISel.
6415std::pair<SDValue, SDValue>
6416TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
6417  // Handle the incoming return values from the call.
6418  CLI.Ins.clear();
6419  SmallVector<EVT, 4> RetTys;
6420  ComputeValueVTs(*this, CLI.RetTy, RetTys);
6421  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6422    EVT VT = RetTys[I];
6423    MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
6424    unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
6425    for (unsigned i = 0; i != NumRegs; ++i) {
6426      ISD::InputArg MyFlags;
6427      MyFlags.VT = RegisterVT;
6428      MyFlags.Used = CLI.IsReturnValueUsed;
6429      if (CLI.RetSExt)
6430        MyFlags.Flags.setSExt();
6431      if (CLI.RetZExt)
6432        MyFlags.Flags.setZExt();
6433      if (CLI.IsInReg)
6434        MyFlags.Flags.setInReg();
6435      CLI.Ins.push_back(MyFlags);
6436    }
6437  }
6438
6439  // Handle all of the outgoing arguments.
6440  CLI.Outs.clear();
6441  CLI.OutVals.clear();
6442  ArgListTy &Args = CLI.Args;
6443  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
6444    SmallVector<EVT, 4> ValueVTs;
6445    ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
6446    for (unsigned Value = 0, NumValues = ValueVTs.size();
6447         Value != NumValues; ++Value) {
6448      EVT VT = ValueVTs[Value];
6449      Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
6450      SDValue Op = SDValue(Args[i].Node.getNode(),
6451                           Args[i].Node.getResNo() + Value);
6452      ISD::ArgFlagsTy Flags;
6453      unsigned OriginalAlignment =
6454        getDataLayout()->getABITypeAlignment(ArgTy);
6455
6456      if (Args[i].isZExt)
6457        Flags.setZExt();
6458      if (Args[i].isSExt)
6459        Flags.setSExt();
6460      if (Args[i].isInReg)
6461        Flags.setInReg();
6462      if (Args[i].isSRet)
6463        Flags.setSRet();
6464      if (Args[i].isByVal) {
6465        Flags.setByVal();
6466        PointerType *Ty = cast<PointerType>(Args[i].Ty);
6467        Type *ElementTy = Ty->getElementType();
6468        Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy));
6469        // For ByVal, alignment should come from FE.  BE will guess if this
6470        // info is not there but there are cases it cannot get right.
6471        unsigned FrameAlign;
6472        if (Args[i].Alignment)
6473          FrameAlign = Args[i].Alignment;
6474        else
6475          FrameAlign = getByValTypeAlignment(ElementTy);
6476        Flags.setByValAlign(FrameAlign);
6477      }
6478      if (Args[i].isNest)
6479        Flags.setNest();
6480      Flags.setOrigAlign(OriginalAlignment);
6481
6482      MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT);
6483      unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT);
6484      SmallVector<SDValue, 4> Parts(NumParts);
6485      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
6486
6487      if (Args[i].isSExt)
6488        ExtendKind = ISD::SIGN_EXTEND;
6489      else if (Args[i].isZExt)
6490        ExtendKind = ISD::ZERO_EXTEND;
6491
6492      // Conservatively only handle 'returned' on non-vectors for now
6493      if (Args[i].isReturned && !Op.getValueType().isVector()) {
6494        assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues &&
6495               "unexpected use of 'returned'");
6496        // Before passing 'returned' to the target lowering code, ensure that
6497        // either the register MVT and the actual EVT are the same size or that
6498        // the return value and argument are extended in the same way; in these
6499        // cases it's safe to pass the argument register value unchanged as the
6500        // return register value (although it's at the target's option whether
6501        // to do so)
6502        // TODO: allow code generation to take advantage of partially preserved
6503        // registers rather than clobbering the entire register when the
6504        // parameter extension method is not compatible with the return
6505        // extension method
6506        if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
6507            (ExtendKind != ISD::ANY_EXTEND &&
6508             CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt))
6509        Flags.setReturned();
6510      }
6511
6512      getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts,
6513                     PartVT, CLI.CS ? CLI.CS->getInstruction() : 0, ExtendKind);
6514
6515      for (unsigned j = 0; j != NumParts; ++j) {
6516        // if it isn't first piece, alignment must be 1
6517        ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(),
6518                               i < CLI.NumFixedArgs,
6519                               i, j*Parts[j].getValueType().getStoreSize());
6520        if (NumParts > 1 && j == 0)
6521          MyFlags.Flags.setSplit();
6522        else if (j != 0)
6523          MyFlags.Flags.setOrigAlign(1);
6524
6525        CLI.Outs.push_back(MyFlags);
6526        CLI.OutVals.push_back(Parts[j]);
6527      }
6528    }
6529  }
6530
6531  SmallVector<SDValue, 4> InVals;
6532  CLI.Chain = LowerCall(CLI, InVals);
6533
6534  // Verify that the target's LowerCall behaved as expected.
6535  assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
6536         "LowerCall didn't return a valid chain!");
6537  assert((!CLI.IsTailCall || InVals.empty()) &&
6538         "LowerCall emitted a return value for a tail call!");
6539  assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
6540         "LowerCall didn't emit the correct number of values!");
6541
6542  // For a tail call, the return value is merely live-out and there aren't
6543  // any nodes in the DAG representing it. Return a special value to
6544  // indicate that a tail call has been emitted and no more Instructions
6545  // should be processed in the current block.
6546  if (CLI.IsTailCall) {
6547    CLI.DAG.setRoot(CLI.Chain);
6548    return std::make_pair(SDValue(), SDValue());
6549  }
6550
6551  DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
6552          assert(InVals[i].getNode() &&
6553                 "LowerCall emitted a null value!");
6554          assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
6555                 "LowerCall emitted a value with the wrong type!");
6556        });
6557
6558  // Collect the legal value parts into potentially illegal values
6559  // that correspond to the original function's return values.
6560  ISD::NodeType AssertOp = ISD::DELETED_NODE;
6561  if (CLI.RetSExt)
6562    AssertOp = ISD::AssertSext;
6563  else if (CLI.RetZExt)
6564    AssertOp = ISD::AssertZext;
6565  SmallVector<SDValue, 4> ReturnValues;
6566  unsigned CurReg = 0;
6567  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6568    EVT VT = RetTys[I];
6569    MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
6570    unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
6571
6572    ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
6573                                            NumRegs, RegisterVT, VT, NULL,
6574                                            AssertOp));
6575    CurReg += NumRegs;
6576  }
6577
6578  // For a function returning void, there is no return value. We can't create
6579  // such a node, so we just return a null return value in that case. In
6580  // that case, nothing will actually look at the value.
6581  if (ReturnValues.empty())
6582    return std::make_pair(SDValue(), CLI.Chain);
6583
6584  SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
6585                                CLI.DAG.getVTList(&RetTys[0], RetTys.size()),
6586                            &ReturnValues[0], ReturnValues.size());
6587  return std::make_pair(Res, CLI.Chain);
6588}
6589
6590void TargetLowering::LowerOperationWrapper(SDNode *N,
6591                                           SmallVectorImpl<SDValue> &Results,
6592                                           SelectionDAG &DAG) const {
6593  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
6594  if (Res.getNode())
6595    Results.push_back(Res);
6596}
6597
6598SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
6599  llvm_unreachable("LowerOperation not implemented for this target!");
6600}
6601
6602void
6603SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
6604  SDValue Op = getNonRegisterValue(V);
6605  assert((Op.getOpcode() != ISD::CopyFromReg ||
6606          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
6607         "Copy from a reg to the same reg!");
6608  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
6609
6610  const TargetLowering *TLI = TM.getTargetLowering();
6611  RegsForValue RFV(V->getContext(), *TLI, Reg, V->getType());
6612  SDValue Chain = DAG.getEntryNode();
6613  RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, 0, V);
6614  PendingExports.push_back(Chain);
6615}
6616
6617#include "llvm/CodeGen/SelectionDAGISel.h"
6618
6619/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
6620/// entry block, return true.  This includes arguments used by switches, since
6621/// the switch may expand into multiple basic blocks.
6622static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
6623  // With FastISel active, we may be splitting blocks, so force creation
6624  // of virtual registers for all non-dead arguments.
6625  if (FastISel)
6626    return A->use_empty();
6627
6628  const BasicBlock *Entry = A->getParent()->begin();
6629  for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end();
6630       UI != E; ++UI) {
6631    const User *U = *UI;
6632    if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U))
6633      return false;  // Use not in entry block.
6634  }
6635  return true;
6636}
6637
6638void SelectionDAGISel::LowerArguments(const Function &F) {
6639  SelectionDAG &DAG = SDB->DAG;
6640  SDLoc dl = SDB->getCurSDLoc();
6641  const TargetLowering *TLI = getTargetLowering();
6642  const DataLayout *TD = TLI->getDataLayout();
6643  SmallVector<ISD::InputArg, 16> Ins;
6644
6645  if (!FuncInfo->CanLowerReturn) {
6646    // Put in an sret pointer parameter before all the other parameters.
6647    SmallVector<EVT, 1> ValueVTs;
6648    ComputeValueVTs(*getTargetLowering(),
6649                    PointerType::getUnqual(F.getReturnType()), ValueVTs);
6650
6651    // NOTE: Assuming that a pointer will never break down to more than one VT
6652    // or one register.
6653    ISD::ArgFlagsTy Flags;
6654    Flags.setSRet();
6655    MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
6656    ISD::InputArg RetArg(Flags, RegisterVT, true, 0, 0);
6657    Ins.push_back(RetArg);
6658  }
6659
6660  // Set up the incoming argument description vector.
6661  unsigned Idx = 1;
6662  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
6663       I != E; ++I, ++Idx) {
6664    SmallVector<EVT, 4> ValueVTs;
6665    ComputeValueVTs(*TLI, I->getType(), ValueVTs);
6666    bool isArgValueUsed = !I->use_empty();
6667    for (unsigned Value = 0, NumValues = ValueVTs.size();
6668         Value != NumValues; ++Value) {
6669      EVT VT = ValueVTs[Value];
6670      Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
6671      ISD::ArgFlagsTy Flags;
6672      unsigned OriginalAlignment =
6673        TD->getABITypeAlignment(ArgTy);
6674
6675      if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
6676        Flags.setZExt();
6677      if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
6678        Flags.setSExt();
6679      if (F.getAttributes().hasAttribute(Idx, Attribute::InReg))
6680        Flags.setInReg();
6681      if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet))
6682        Flags.setSRet();
6683      if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) {
6684        Flags.setByVal();
6685        PointerType *Ty = cast<PointerType>(I->getType());
6686        Type *ElementTy = Ty->getElementType();
6687        Flags.setByValSize(TD->getTypeAllocSize(ElementTy));
6688        // For ByVal, alignment should be passed from FE.  BE will guess if
6689        // this info is not there but there are cases it cannot get right.
6690        unsigned FrameAlign;
6691        if (F.getParamAlignment(Idx))
6692          FrameAlign = F.getParamAlignment(Idx);
6693        else
6694          FrameAlign = TLI->getByValTypeAlignment(ElementTy);
6695        Flags.setByValAlign(FrameAlign);
6696      }
6697      if (F.getAttributes().hasAttribute(Idx, Attribute::Nest))
6698        Flags.setNest();
6699      Flags.setOrigAlign(OriginalAlignment);
6700
6701      MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
6702      unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT);
6703      for (unsigned i = 0; i != NumRegs; ++i) {
6704        ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed,
6705                              Idx-1, i*RegisterVT.getStoreSize());
6706        if (NumRegs > 1 && i == 0)
6707          MyFlags.Flags.setSplit();
6708        // if it isn't first piece, alignment must be 1
6709        else if (i > 0)
6710          MyFlags.Flags.setOrigAlign(1);
6711        Ins.push_back(MyFlags);
6712      }
6713    }
6714  }
6715
6716  // Call the target to set up the argument values.
6717  SmallVector<SDValue, 8> InVals;
6718  SDValue NewRoot = TLI->LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
6719                                              F.isVarArg(), Ins,
6720                                              dl, DAG, InVals);
6721
6722  // Verify that the target's LowerFormalArguments behaved as expected.
6723  assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
6724         "LowerFormalArguments didn't return a valid chain!");
6725  assert(InVals.size() == Ins.size() &&
6726         "LowerFormalArguments didn't emit the correct number of values!");
6727  DEBUG({
6728      for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6729        assert(InVals[i].getNode() &&
6730               "LowerFormalArguments emitted a null value!");
6731        assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6732               "LowerFormalArguments emitted a value with the wrong type!");
6733      }
6734    });
6735
6736  // Update the DAG with the new chain value resulting from argument lowering.
6737  DAG.setRoot(NewRoot);
6738
6739  // Set up the argument values.
6740  unsigned i = 0;
6741  Idx = 1;
6742  if (!FuncInfo->CanLowerReturn) {
6743    // Create a virtual register for the sret pointer, and put in a copy
6744    // from the sret argument into it.
6745    SmallVector<EVT, 1> ValueVTs;
6746    ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6747    MVT VT = ValueVTs[0].getSimpleVT();
6748    MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
6749    ISD::NodeType AssertOp = ISD::DELETED_NODE;
6750    SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
6751                                        RegVT, VT, NULL, AssertOp);
6752
6753    MachineFunction& MF = SDB->DAG.getMachineFunction();
6754    MachineRegisterInfo& RegInfo = MF.getRegInfo();
6755    unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
6756    FuncInfo->DemoteRegister = SRetReg;
6757    NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(),
6758                                    SRetReg, ArgValue);
6759    DAG.setRoot(NewRoot);
6760
6761    // i indexes lowered arguments.  Bump it past the hidden sret argument.
6762    // Idx indexes LLVM arguments.  Don't touch it.
6763    ++i;
6764  }
6765
6766  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
6767      ++I, ++Idx) {
6768    SmallVector<SDValue, 4> ArgValues;
6769    SmallVector<EVT, 4> ValueVTs;
6770    ComputeValueVTs(*TLI, I->getType(), ValueVTs);
6771    unsigned NumValues = ValueVTs.size();
6772
6773    // If this argument is unused then remember its value. It is used to generate
6774    // debugging information.
6775    if (I->use_empty() && NumValues) {
6776      SDB->setUnusedArgValue(I, InVals[i]);
6777
6778      // Also remember any frame index for use in FastISel.
6779      if (FrameIndexSDNode *FI =
6780          dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
6781        FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
6782    }
6783
6784    for (unsigned Val = 0; Val != NumValues; ++Val) {
6785      EVT VT = ValueVTs[Val];
6786      MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
6787      unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT);
6788
6789      if (!I->use_empty()) {
6790        ISD::NodeType AssertOp = ISD::DELETED_NODE;
6791        if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
6792          AssertOp = ISD::AssertSext;
6793        else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
6794          AssertOp = ISD::AssertZext;
6795
6796        ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
6797                                             NumParts, PartVT, VT,
6798                                             NULL, AssertOp));
6799      }
6800
6801      i += NumParts;
6802    }
6803
6804    // We don't need to do anything else for unused arguments.
6805    if (ArgValues.empty())
6806      continue;
6807
6808    // Note down frame index.
6809    if (FrameIndexSDNode *FI =
6810        dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
6811      FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
6812
6813    SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues,
6814                                     SDB->getCurSDLoc());
6815
6816    SDB->setValue(I, Res);
6817    if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
6818      if (LoadSDNode *LNode =
6819          dyn_cast<LoadSDNode>(Res.getOperand(0).getNode()))
6820        if (FrameIndexSDNode *FI =
6821            dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
6822        FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
6823    }
6824
6825    // If this argument is live outside of the entry block, insert a copy from
6826    // wherever we got it to the vreg that other BB's will reference it as.
6827    if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
6828      // If we can, though, try to skip creating an unnecessary vreg.
6829      // FIXME: This isn't very clean... it would be nice to make this more
6830      // general.  It's also subtly incompatible with the hacks FastISel
6831      // uses with vregs.
6832      unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
6833      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
6834        FuncInfo->ValueMap[I] = Reg;
6835        continue;
6836      }
6837    }
6838    if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) {
6839      FuncInfo->InitializeRegForValue(I);
6840      SDB->CopyToExportRegsIfNeeded(I);
6841    }
6842  }
6843
6844  assert(i == InVals.size() && "Argument register count mismatch!");
6845
6846  // Finally, if the target has anything special to do, allow it to do so.
6847  // FIXME: this should insert code into the DAG!
6848  EmitFunctionEntryCode();
6849}
6850
6851/// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
6852/// ensure constants are generated when needed.  Remember the virtual registers
6853/// that need to be added to the Machine PHI nodes as input.  We cannot just
6854/// directly add them, because expansion might result in multiple MBB's for one
6855/// BB.  As such, the start of the BB might correspond to a different MBB than
6856/// the end.
6857///
6858void
6859SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
6860  const TerminatorInst *TI = LLVMBB->getTerminator();
6861
6862  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6863
6864  // Check successor nodes' PHI nodes that expect a constant to be available
6865  // from this block.
6866  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6867    const BasicBlock *SuccBB = TI->getSuccessor(succ);
6868    if (!isa<PHINode>(SuccBB->begin())) continue;
6869    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
6870
6871    // If this terminator has multiple identical successors (common for
6872    // switches), only handle each succ once.
6873    if (!SuccsHandled.insert(SuccMBB)) continue;
6874
6875    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6876
6877    // At this point we know that there is a 1-1 correspondence between LLVM PHI
6878    // nodes and Machine PHI nodes, but the incoming operands have not been
6879    // emitted yet.
6880    for (BasicBlock::const_iterator I = SuccBB->begin();
6881         const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
6882      // Ignore dead phi's.
6883      if (PN->use_empty()) continue;
6884
6885      // Skip empty types
6886      if (PN->getType()->isEmptyTy())
6887        continue;
6888
6889      unsigned Reg;
6890      const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6891
6892      if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
6893        unsigned &RegOut = ConstantsOut[C];
6894        if (RegOut == 0) {
6895          RegOut = FuncInfo.CreateRegs(C->getType());
6896          CopyValueToVirtualRegister(C, RegOut);
6897        }
6898        Reg = RegOut;
6899      } else {
6900        DenseMap<const Value *, unsigned>::iterator I =
6901          FuncInfo.ValueMap.find(PHIOp);
6902        if (I != FuncInfo.ValueMap.end())
6903          Reg = I->second;
6904        else {
6905          assert(isa<AllocaInst>(PHIOp) &&
6906                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
6907                 "Didn't codegen value into a register!??");
6908          Reg = FuncInfo.CreateRegs(PHIOp->getType());
6909          CopyValueToVirtualRegister(PHIOp, Reg);
6910        }
6911      }
6912
6913      // Remember that this register needs to added to the machine PHI node as
6914      // the input for this MBB.
6915      SmallVector<EVT, 4> ValueVTs;
6916      const TargetLowering *TLI = TM.getTargetLowering();
6917      ComputeValueVTs(*TLI, PN->getType(), ValueVTs);
6918      for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
6919        EVT VT = ValueVTs[vti];
6920        unsigned NumRegisters = TLI->getNumRegisters(*DAG.getContext(), VT);
6921        for (unsigned i = 0, e = NumRegisters; i != e; ++i)
6922          FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
6923        Reg += NumRegisters;
6924      }
6925    }
6926  }
6927
6928  ConstantsOut.clear();
6929}
6930