SelectionDAGBuilder.cpp revision 9d0796a0e06e3b44bbdd696259f80066c285d9c3
1//===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements routines for translating from LLVM IR into SelectionDAG IR.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "SDNodeDbgValue.h"
16#include "SelectionDAGBuilder.h"
17#include "llvm/ADT/BitVector.h"
18#include "llvm/ADT/SmallSet.h"
19#include "llvm/Analysis/AliasAnalysis.h"
20#include "llvm/Analysis/ConstantFolding.h"
21#include "llvm/Constants.h"
22#include "llvm/CallingConv.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/Function.h"
25#include "llvm/GlobalVariable.h"
26#include "llvm/InlineAsm.h"
27#include "llvm/Instructions.h"
28#include "llvm/Intrinsics.h"
29#include "llvm/IntrinsicInst.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/Module.h"
32#include "llvm/CodeGen/Analysis.h"
33#include "llvm/CodeGen/FastISel.h"
34#include "llvm/CodeGen/FunctionLoweringInfo.h"
35#include "llvm/CodeGen/GCStrategy.h"
36#include "llvm/CodeGen/GCMetadata.h"
37#include "llvm/CodeGen/MachineFunction.h"
38#include "llvm/CodeGen/MachineFrameInfo.h"
39#include "llvm/CodeGen/MachineInstrBuilder.h"
40#include "llvm/CodeGen/MachineJumpTableInfo.h"
41#include "llvm/CodeGen/MachineModuleInfo.h"
42#include "llvm/CodeGen/MachineRegisterInfo.h"
43#include "llvm/CodeGen/PseudoSourceValue.h"
44#include "llvm/CodeGen/SelectionDAG.h"
45#include "llvm/Analysis/DebugInfo.h"
46#include "llvm/Target/TargetRegisterInfo.h"
47#include "llvm/Target/TargetData.h"
48#include "llvm/Target/TargetFrameInfo.h"
49#include "llvm/Target/TargetInstrInfo.h"
50#include "llvm/Target/TargetIntrinsicInfo.h"
51#include "llvm/Target/TargetLowering.h"
52#include "llvm/Target/TargetOptions.h"
53#include "llvm/Support/Compiler.h"
54#include "llvm/Support/CommandLine.h"
55#include "llvm/Support/Debug.h"
56#include "llvm/Support/ErrorHandling.h"
57#include "llvm/Support/MathExtras.h"
58#include "llvm/Support/raw_ostream.h"
59#include <algorithm>
60using namespace llvm;
61
62/// LimitFloatPrecision - Generate low-precision inline sequences for
63/// some float libcalls (6, 8 or 12 bits).
64static unsigned LimitFloatPrecision;
65
66static cl::opt<unsigned, true>
67LimitFPPrecision("limit-float-precision",
68                 cl::desc("Generate low-precision inline sequences "
69                          "for some float libcalls"),
70                 cl::location(LimitFloatPrecision),
71                 cl::init(0));
72
73static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
74                                      const SDValue *Parts, unsigned NumParts,
75                                      EVT PartVT, EVT ValueVT);
76
77/// getCopyFromParts - Create a value that contains the specified legal parts
78/// combined into the value they represent.  If the parts combine to a type
79/// larger then ValueVT then AssertOp can be used to specify whether the extra
80/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
81/// (ISD::AssertSext).
82static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL,
83                                const SDValue *Parts,
84                                unsigned NumParts, EVT PartVT, EVT ValueVT,
85                                ISD::NodeType AssertOp = ISD::DELETED_NODE) {
86  if (ValueVT.isVector())
87    return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT);
88
89  assert(NumParts > 0 && "No parts to assemble!");
90  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
91  SDValue Val = Parts[0];
92
93  if (NumParts > 1) {
94    // Assemble the value from multiple parts.
95    if (ValueVT.isInteger()) {
96      unsigned PartBits = PartVT.getSizeInBits();
97      unsigned ValueBits = ValueVT.getSizeInBits();
98
99      // Assemble the power of 2 part.
100      unsigned RoundParts = NumParts & (NumParts - 1) ?
101        1 << Log2_32(NumParts) : NumParts;
102      unsigned RoundBits = PartBits * RoundParts;
103      EVT RoundVT = RoundBits == ValueBits ?
104        ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
105      SDValue Lo, Hi;
106
107      EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
108
109      if (RoundParts > 2) {
110        Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
111                              PartVT, HalfVT);
112        Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
113                              RoundParts / 2, PartVT, HalfVT);
114      } else {
115        Lo = DAG.getNode(ISD::BIT_CONVERT, DL, HalfVT, Parts[0]);
116        Hi = DAG.getNode(ISD::BIT_CONVERT, DL, HalfVT, Parts[1]);
117      }
118
119      if (TLI.isBigEndian())
120        std::swap(Lo, Hi);
121
122      Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
123
124      if (RoundParts < NumParts) {
125        // Assemble the trailing non-power-of-2 part.
126        unsigned OddParts = NumParts - RoundParts;
127        EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
128        Hi = getCopyFromParts(DAG, DL,
129                              Parts + RoundParts, OddParts, PartVT, OddVT);
130
131        // Combine the round and odd parts.
132        Lo = Val;
133        if (TLI.isBigEndian())
134          std::swap(Lo, Hi);
135        EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
136        Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
137        Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
138                         DAG.getConstant(Lo.getValueType().getSizeInBits(),
139                                         TLI.getPointerTy()));
140        Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
141        Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
142      }
143    } else if (PartVT.isFloatingPoint()) {
144      // FP split into multiple FP parts (for ppcf128)
145      assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) &&
146             "Unexpected split");
147      SDValue Lo, Hi;
148      Lo = DAG.getNode(ISD::BIT_CONVERT, DL, EVT(MVT::f64), Parts[0]);
149      Hi = DAG.getNode(ISD::BIT_CONVERT, DL, EVT(MVT::f64), Parts[1]);
150      if (TLI.isBigEndian())
151        std::swap(Lo, Hi);
152      Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
153    } else {
154      // FP split into integer parts (soft fp)
155      assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
156             !PartVT.isVector() && "Unexpected split");
157      EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
158      Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT);
159    }
160  }
161
162  // There is now one part, held in Val.  Correct it to match ValueVT.
163  PartVT = Val.getValueType();
164
165  if (PartVT == ValueVT)
166    return Val;
167
168  if (PartVT.isInteger() && ValueVT.isInteger()) {
169    if (ValueVT.bitsLT(PartVT)) {
170      // For a truncate, see if we have any information to
171      // indicate whether the truncated bits will always be
172      // zero or sign-extension.
173      if (AssertOp != ISD::DELETED_NODE)
174        Val = DAG.getNode(AssertOp, DL, PartVT, Val,
175                          DAG.getValueType(ValueVT));
176      return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
177    }
178    return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
179  }
180
181  if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
182    // FP_ROUND's are always exact here.
183    if (ValueVT.bitsLT(Val.getValueType()))
184      return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val,
185                         DAG.getIntPtrConstant(1));
186
187    return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
188  }
189
190  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
191    return DAG.getNode(ISD::BIT_CONVERT, DL, ValueVT, Val);
192
193  llvm_unreachable("Unknown mismatch!");
194  return SDValue();
195}
196
197/// getCopyFromParts - Create a value that contains the specified legal parts
198/// combined into the value they represent.  If the parts combine to a type
199/// larger then ValueVT then AssertOp can be used to specify whether the extra
200/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
201/// (ISD::AssertSext).
202static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
203                                      const SDValue *Parts, unsigned NumParts,
204                                      EVT PartVT, EVT ValueVT) {
205  assert(ValueVT.isVector() && "Not a vector value");
206  assert(NumParts > 0 && "No parts to assemble!");
207  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
208  SDValue Val = Parts[0];
209
210  // Handle a multi-element vector.
211  if (NumParts > 1) {
212    EVT IntermediateVT, RegisterVT;
213    unsigned NumIntermediates;
214    unsigned NumRegs =
215    TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
216                               NumIntermediates, RegisterVT);
217    assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
218    NumParts = NumRegs; // Silence a compiler warning.
219    assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
220    assert(RegisterVT == Parts[0].getValueType() &&
221           "Part type doesn't match part!");
222
223    // Assemble the parts into intermediate operands.
224    SmallVector<SDValue, 8> Ops(NumIntermediates);
225    if (NumIntermediates == NumParts) {
226      // If the register was not expanded, truncate or copy the value,
227      // as appropriate.
228      for (unsigned i = 0; i != NumParts; ++i)
229        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
230                                  PartVT, IntermediateVT);
231    } else if (NumParts > 0) {
232      // If the intermediate type was expanded, build the intermediate
233      // operands from the parts.
234      assert(NumParts % NumIntermediates == 0 &&
235             "Must expand into a divisible number of parts!");
236      unsigned Factor = NumParts / NumIntermediates;
237      for (unsigned i = 0; i != NumIntermediates; ++i)
238        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
239                                  PartVT, IntermediateVT);
240    }
241
242    // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
243    // intermediate operands.
244    Val = DAG.getNode(IntermediateVT.isVector() ?
245                      ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL,
246                      ValueVT, &Ops[0], NumIntermediates);
247  }
248
249  // There is now one part, held in Val.  Correct it to match ValueVT.
250  PartVT = Val.getValueType();
251
252  if (PartVT == ValueVT)
253    return Val;
254
255  if (PartVT.isVector()) {
256    // If the element type of the source/dest vectors are the same, but the
257    // parts vector has more elements than the value vector, then we have a
258    // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
259    // elements we want.
260    if (PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
261      assert(PartVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
262             "Cannot narrow, it would be a lossy transformation");
263      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
264                         DAG.getIntPtrConstant(0));
265    }
266
267    // Vector/Vector bitcast.
268    return DAG.getNode(ISD::BIT_CONVERT, DL, ValueVT, Val);
269  }
270
271  assert(ValueVT.getVectorElementType() == PartVT &&
272         ValueVT.getVectorNumElements() == 1 &&
273         "Only trivial scalar-to-vector conversions should get here!");
274  return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
275}
276
277
278
279
280static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl,
281                                 SDValue Val, SDValue *Parts, unsigned NumParts,
282                                 EVT PartVT);
283
284/// getCopyToParts - Create a series of nodes that contain the specified value
285/// split into legal parts.  If the parts contain more bits than Val, then, for
286/// integers, ExtendKind can be used to specify how to generate the extra bits.
287static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL,
288                           SDValue Val, SDValue *Parts, unsigned NumParts,
289                           EVT PartVT,
290                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
291  EVT ValueVT = Val.getValueType();
292
293  // Handle the vector case separately.
294  if (ValueVT.isVector())
295    return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT);
296
297  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
298  unsigned PartBits = PartVT.getSizeInBits();
299  unsigned OrigNumParts = NumParts;
300  assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
301
302  if (NumParts == 0)
303    return;
304
305  assert(!ValueVT.isVector() && "Vector case handled elsewhere");
306  if (PartVT == ValueVT) {
307    assert(NumParts == 1 && "No-op copy with multiple parts!");
308    Parts[0] = Val;
309    return;
310  }
311
312  if (NumParts * PartBits > ValueVT.getSizeInBits()) {
313    // If the parts cover more bits than the value has, promote the value.
314    if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
315      assert(NumParts == 1 && "Do not know what to promote to!");
316      Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
317    } else {
318      assert(PartVT.isInteger() && ValueVT.isInteger() &&
319             "Unknown mismatch!");
320      ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
321      Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
322    }
323  } else if (PartBits == ValueVT.getSizeInBits()) {
324    // Different types of the same size.
325    assert(NumParts == 1 && PartVT != ValueVT);
326    Val = DAG.getNode(ISD::BIT_CONVERT, DL, PartVT, Val);
327  } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
328    // If the parts cover less bits than value has, truncate the value.
329    assert(PartVT.isInteger() && ValueVT.isInteger() &&
330           "Unknown mismatch!");
331    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
332    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
333  }
334
335  // The value may have changed - recompute ValueVT.
336  ValueVT = Val.getValueType();
337  assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
338         "Failed to tile the value with PartVT!");
339
340  if (NumParts == 1) {
341    assert(PartVT == ValueVT && "Type conversion failed!");
342    Parts[0] = Val;
343    return;
344  }
345
346  // Expand the value into multiple parts.
347  if (NumParts & (NumParts - 1)) {
348    // The number of parts is not a power of 2.  Split off and copy the tail.
349    assert(PartVT.isInteger() && ValueVT.isInteger() &&
350           "Do not know what to expand to!");
351    unsigned RoundParts = 1 << Log2_32(NumParts);
352    unsigned RoundBits = RoundParts * PartBits;
353    unsigned OddParts = NumParts - RoundParts;
354    SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
355                                 DAG.getIntPtrConstant(RoundBits));
356    getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT);
357
358    if (TLI.isBigEndian())
359      // The odd parts were reversed by getCopyToParts - unreverse them.
360      std::reverse(Parts + RoundParts, Parts + NumParts);
361
362    NumParts = RoundParts;
363    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
364    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
365  }
366
367  // The number of parts is a power of 2.  Repeatedly bisect the value using
368  // EXTRACT_ELEMENT.
369  Parts[0] = DAG.getNode(ISD::BIT_CONVERT, DL,
370                         EVT::getIntegerVT(*DAG.getContext(),
371                                           ValueVT.getSizeInBits()),
372                         Val);
373
374  for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
375    for (unsigned i = 0; i < NumParts; i += StepSize) {
376      unsigned ThisBits = StepSize * PartBits / 2;
377      EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
378      SDValue &Part0 = Parts[i];
379      SDValue &Part1 = Parts[i+StepSize/2];
380
381      Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
382                          ThisVT, Part0, DAG.getIntPtrConstant(1));
383      Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
384                          ThisVT, Part0, DAG.getIntPtrConstant(0));
385
386      if (ThisBits == PartBits && ThisVT != PartVT) {
387        Part0 = DAG.getNode(ISD::BIT_CONVERT, DL, PartVT, Part0);
388        Part1 = DAG.getNode(ISD::BIT_CONVERT, DL, PartVT, Part1);
389      }
390    }
391  }
392
393  if (TLI.isBigEndian())
394    std::reverse(Parts, Parts + OrigNumParts);
395}
396
397
398/// getCopyToPartsVector - Create a series of nodes that contain the specified
399/// value split into legal parts.
400static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL,
401                                 SDValue Val, SDValue *Parts, unsigned NumParts,
402                                 EVT PartVT) {
403  EVT ValueVT = Val.getValueType();
404  assert(ValueVT.isVector() && "Not a vector");
405  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
406
407  if (NumParts == 1) {
408    if (PartVT == ValueVT) {
409      // Nothing to do.
410    } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
411      // Bitconvert vector->vector case.
412      Val = DAG.getNode(ISD::BIT_CONVERT, DL, PartVT, Val);
413    } else if (PartVT.isVector() &&
414               PartVT.getVectorElementType() == ValueVT.getVectorElementType()&&
415               PartVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
416      EVT ElementVT = PartVT.getVectorElementType();
417      // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
418      // undef elements.
419      SmallVector<SDValue, 16> Ops;
420      for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
421        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
422                                  ElementVT, Val, DAG.getIntPtrConstant(i)));
423
424      for (unsigned i = ValueVT.getVectorNumElements(),
425           e = PartVT.getVectorNumElements(); i != e; ++i)
426        Ops.push_back(DAG.getUNDEF(ElementVT));
427
428      Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size());
429
430      // FIXME: Use CONCAT for 2x -> 4x.
431
432      //SDValue UndefElts = DAG.getUNDEF(VectorTy);
433      //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
434    } else {
435      // Vector -> scalar conversion.
436      assert(ValueVT.getVectorElementType() == PartVT &&
437             ValueVT.getVectorNumElements() == 1 &&
438             "Only trivial vector-to-scalar conversions should get here!");
439      Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
440                        PartVT, Val, DAG.getIntPtrConstant(0));
441    }
442
443    Parts[0] = Val;
444    return;
445  }
446
447  // Handle a multi-element vector.
448  EVT IntermediateVT, RegisterVT;
449  unsigned NumIntermediates;
450  unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
451                                                IntermediateVT, NumIntermediates, RegisterVT);
452  unsigned NumElements = ValueVT.getVectorNumElements();
453
454  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
455  NumParts = NumRegs; // Silence a compiler warning.
456  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
457
458  // Split the vector into intermediate operands.
459  SmallVector<SDValue, 8> Ops(NumIntermediates);
460  for (unsigned i = 0; i != NumIntermediates; ++i) {
461    if (IntermediateVT.isVector())
462      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
463                           IntermediateVT, Val,
464                   DAG.getIntPtrConstant(i * (NumElements / NumIntermediates)));
465    else
466      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
467                           IntermediateVT, Val, DAG.getIntPtrConstant(i));
468  }
469
470  // Split the intermediate operands into legal parts.
471  if (NumParts == NumIntermediates) {
472    // If the register was not expanded, promote or copy the value,
473    // as appropriate.
474    for (unsigned i = 0; i != NumParts; ++i)
475      getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT);
476  } else if (NumParts > 0) {
477    // If the intermediate type was expanded, split each the value into
478    // legal parts.
479    assert(NumParts % NumIntermediates == 0 &&
480           "Must expand into a divisible number of parts!");
481    unsigned Factor = NumParts / NumIntermediates;
482    for (unsigned i = 0; i != NumIntermediates; ++i)
483      getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT);
484  }
485}
486
487
488
489
490namespace {
491  /// RegsForValue - This struct represents the registers (physical or virtual)
492  /// that a particular set of values is assigned, and the type information
493  /// about the value. The most common situation is to represent one value at a
494  /// time, but struct or array values are handled element-wise as multiple
495  /// values.  The splitting of aggregates is performed recursively, so that we
496  /// never have aggregate-typed registers. The values at this point do not
497  /// necessarily have legal types, so each value may require one or more
498  /// registers of some legal type.
499  ///
500  struct RegsForValue {
501    /// ValueVTs - The value types of the values, which may not be legal, and
502    /// may need be promoted or synthesized from one or more registers.
503    ///
504    SmallVector<EVT, 4> ValueVTs;
505
506    /// RegVTs - The value types of the registers. This is the same size as
507    /// ValueVTs and it records, for each value, what the type of the assigned
508    /// register or registers are. (Individual values are never synthesized
509    /// from more than one type of register.)
510    ///
511    /// With virtual registers, the contents of RegVTs is redundant with TLI's
512    /// getRegisterType member function, however when with physical registers
513    /// it is necessary to have a separate record of the types.
514    ///
515    SmallVector<EVT, 4> RegVTs;
516
517    /// Regs - This list holds the registers assigned to the values.
518    /// Each legal or promoted value requires one register, and each
519    /// expanded value requires multiple registers.
520    ///
521    SmallVector<unsigned, 4> Regs;
522
523    RegsForValue() {}
524
525    RegsForValue(const SmallVector<unsigned, 4> &regs,
526                 EVT regvt, EVT valuevt)
527      : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
528
529    RegsForValue(LLVMContext &Context, const TargetLowering &tli,
530                 unsigned Reg, const Type *Ty) {
531      ComputeValueVTs(tli, Ty, ValueVTs);
532
533      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
534        EVT ValueVT = ValueVTs[Value];
535        unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
536        EVT RegisterVT = tli.getRegisterType(Context, ValueVT);
537        for (unsigned i = 0; i != NumRegs; ++i)
538          Regs.push_back(Reg + i);
539        RegVTs.push_back(RegisterVT);
540        Reg += NumRegs;
541      }
542    }
543
544    /// areValueTypesLegal - Return true if types of all the values are legal.
545    bool areValueTypesLegal(const TargetLowering &TLI) {
546      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
547        EVT RegisterVT = RegVTs[Value];
548        if (!TLI.isTypeLegal(RegisterVT))
549          return false;
550      }
551      return true;
552    }
553
554    /// append - Add the specified values to this one.
555    void append(const RegsForValue &RHS) {
556      ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
557      RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
558      Regs.append(RHS.Regs.begin(), RHS.Regs.end());
559    }
560
561    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
562    /// this value and returns the result as a ValueVTs value.  This uses
563    /// Chain/Flag as the input and updates them for the output Chain/Flag.
564    /// If the Flag pointer is NULL, no flag is used.
565    SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
566                            DebugLoc dl,
567                            SDValue &Chain, SDValue *Flag) const;
568
569    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
570    /// specified value into the registers specified by this object.  This uses
571    /// Chain/Flag as the input and updates them for the output Chain/Flag.
572    /// If the Flag pointer is NULL, no flag is used.
573    void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
574                       SDValue &Chain, SDValue *Flag) const;
575
576    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
577    /// operand list.  This adds the code marker, matching input operand index
578    /// (if applicable), and includes the number of values added into it.
579    void AddInlineAsmOperands(unsigned Kind,
580                              bool HasMatching, unsigned MatchingIdx,
581                              SelectionDAG &DAG,
582                              std::vector<SDValue> &Ops) const;
583  };
584}
585
586/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
587/// this value and returns the result as a ValueVT value.  This uses
588/// Chain/Flag as the input and updates them for the output Chain/Flag.
589/// If the Flag pointer is NULL, no flag is used.
590SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
591                                      FunctionLoweringInfo &FuncInfo,
592                                      DebugLoc dl,
593                                      SDValue &Chain, SDValue *Flag) const {
594  // A Value with type {} or [0 x %t] needs no registers.
595  if (ValueVTs.empty())
596    return SDValue();
597
598  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
599
600  // Assemble the legal parts into the final values.
601  SmallVector<SDValue, 4> Values(ValueVTs.size());
602  SmallVector<SDValue, 8> Parts;
603  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
604    // Copy the legal parts from the registers.
605    EVT ValueVT = ValueVTs[Value];
606    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
607    EVT RegisterVT = RegVTs[Value];
608
609    Parts.resize(NumRegs);
610    for (unsigned i = 0; i != NumRegs; ++i) {
611      SDValue P;
612      if (Flag == 0) {
613        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
614      } else {
615        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
616        *Flag = P.getValue(2);
617      }
618
619      Chain = P.getValue(1);
620
621      // If the source register was virtual and if we know something about it,
622      // add an assert node.
623      if (TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) &&
624          RegisterVT.isInteger() && !RegisterVT.isVector()) {
625        unsigned SlotNo = Regs[Part+i]-TargetRegisterInfo::FirstVirtualRegister;
626        if (FuncInfo.LiveOutRegInfo.size() > SlotNo) {
627          const FunctionLoweringInfo::LiveOutInfo &LOI =
628            FuncInfo.LiveOutRegInfo[SlotNo];
629
630          unsigned RegSize = RegisterVT.getSizeInBits();
631          unsigned NumSignBits = LOI.NumSignBits;
632          unsigned NumZeroBits = LOI.KnownZero.countLeadingOnes();
633
634          // FIXME: We capture more information than the dag can represent.  For
635          // now, just use the tightest assertzext/assertsext possible.
636          bool isSExt = true;
637          EVT FromVT(MVT::Other);
638          if (NumSignBits == RegSize)
639            isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
640          else if (NumZeroBits >= RegSize-1)
641            isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
642          else if (NumSignBits > RegSize-8)
643            isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
644          else if (NumZeroBits >= RegSize-8)
645            isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
646          else if (NumSignBits > RegSize-16)
647            isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
648          else if (NumZeroBits >= RegSize-16)
649            isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
650          else if (NumSignBits > RegSize-32)
651            isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
652          else if (NumZeroBits >= RegSize-32)
653            isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
654
655          if (FromVT != MVT::Other)
656            P = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
657                            RegisterVT, P, DAG.getValueType(FromVT));
658        }
659      }
660
661      Parts[i] = P;
662    }
663
664    Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
665                                     NumRegs, RegisterVT, ValueVT);
666    Part += NumRegs;
667    Parts.clear();
668  }
669
670  return DAG.getNode(ISD::MERGE_VALUES, dl,
671                     DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
672                     &Values[0], ValueVTs.size());
673}
674
675/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
676/// specified value into the registers specified by this object.  This uses
677/// Chain/Flag as the input and updates them for the output Chain/Flag.
678/// If the Flag pointer is NULL, no flag is used.
679void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
680                                 SDValue &Chain, SDValue *Flag) const {
681  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
682
683  // Get the list of the values's legal parts.
684  unsigned NumRegs = Regs.size();
685  SmallVector<SDValue, 8> Parts(NumRegs);
686  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
687    EVT ValueVT = ValueVTs[Value];
688    unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
689    EVT RegisterVT = RegVTs[Value];
690
691    getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
692                   &Parts[Part], NumParts, RegisterVT);
693    Part += NumParts;
694  }
695
696  // Copy the parts into the registers.
697  SmallVector<SDValue, 8> Chains(NumRegs);
698  for (unsigned i = 0; i != NumRegs; ++i) {
699    SDValue Part;
700    if (Flag == 0) {
701      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
702    } else {
703      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
704      *Flag = Part.getValue(1);
705    }
706
707    Chains[i] = Part.getValue(0);
708  }
709
710  if (NumRegs == 1 || Flag)
711    // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
712    // flagged to it. That is the CopyToReg nodes and the user are considered
713    // a single scheduling unit. If we create a TokenFactor and return it as
714    // chain, then the TokenFactor is both a predecessor (operand) of the
715    // user as well as a successor (the TF operands are flagged to the user).
716    // c1, f1 = CopyToReg
717    // c2, f2 = CopyToReg
718    // c3     = TokenFactor c1, c2
719    // ...
720    //        = op c3, ..., f2
721    Chain = Chains[NumRegs-1];
722  else
723    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
724}
725
726/// AddInlineAsmOperands - Add this value to the specified inlineasm node
727/// operand list.  This adds the code marker and includes the number of
728/// values added into it.
729void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
730                                        unsigned MatchingIdx,
731                                        SelectionDAG &DAG,
732                                        std::vector<SDValue> &Ops) const {
733  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
734
735  unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
736  if (HasMatching)
737    Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
738  SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
739  Ops.push_back(Res);
740
741  for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
742    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
743    EVT RegisterVT = RegVTs[Value];
744    for (unsigned i = 0; i != NumRegs; ++i) {
745      assert(Reg < Regs.size() && "Mismatch in # registers expected");
746      Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
747    }
748  }
749}
750
751void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) {
752  AA = &aa;
753  GFI = gfi;
754  TD = DAG.getTarget().getTargetData();
755}
756
757/// clear - Clear out the current SelectionDAG and the associated
758/// state and prepare this SelectionDAGBuilder object to be used
759/// for a new block. This doesn't clear out information about
760/// additional blocks that are needed to complete switch lowering
761/// or PHI node updating; that information is cleared out as it is
762/// consumed.
763void SelectionDAGBuilder::clear() {
764  NodeMap.clear();
765  UnusedArgNodeMap.clear();
766  PendingLoads.clear();
767  PendingExports.clear();
768  DanglingDebugInfoMap.clear();
769  CurDebugLoc = DebugLoc();
770  HasTailCall = false;
771}
772
773/// getRoot - Return the current virtual root of the Selection DAG,
774/// flushing any PendingLoad items. This must be done before emitting
775/// a store or any other node that may need to be ordered after any
776/// prior load instructions.
777///
778SDValue SelectionDAGBuilder::getRoot() {
779  if (PendingLoads.empty())
780    return DAG.getRoot();
781
782  if (PendingLoads.size() == 1) {
783    SDValue Root = PendingLoads[0];
784    DAG.setRoot(Root);
785    PendingLoads.clear();
786    return Root;
787  }
788
789  // Otherwise, we have to make a token factor node.
790  SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
791                               &PendingLoads[0], PendingLoads.size());
792  PendingLoads.clear();
793  DAG.setRoot(Root);
794  return Root;
795}
796
797/// getControlRoot - Similar to getRoot, but instead of flushing all the
798/// PendingLoad items, flush all the PendingExports items. It is necessary
799/// to do this before emitting a terminator instruction.
800///
801SDValue SelectionDAGBuilder::getControlRoot() {
802  SDValue Root = DAG.getRoot();
803
804  if (PendingExports.empty())
805    return Root;
806
807  // Turn all of the CopyToReg chains into one factored node.
808  if (Root.getOpcode() != ISD::EntryToken) {
809    unsigned i = 0, e = PendingExports.size();
810    for (; i != e; ++i) {
811      assert(PendingExports[i].getNode()->getNumOperands() > 1);
812      if (PendingExports[i].getNode()->getOperand(0) == Root)
813        break;  // Don't add the root if we already indirectly depend on it.
814    }
815
816    if (i == e)
817      PendingExports.push_back(Root);
818  }
819
820  Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
821                     &PendingExports[0],
822                     PendingExports.size());
823  PendingExports.clear();
824  DAG.setRoot(Root);
825  return Root;
826}
827
828void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) {
829  if (DAG.GetOrdering(Node) != 0) return; // Already has ordering.
830  DAG.AssignOrdering(Node, SDNodeOrder);
831
832  for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I)
833    AssignOrderingToNode(Node->getOperand(I).getNode());
834}
835
836void SelectionDAGBuilder::visit(const Instruction &I) {
837  // Set up outgoing PHI node register values before emitting the terminator.
838  if (isa<TerminatorInst>(&I))
839    HandlePHINodesInSuccessorBlocks(I.getParent());
840
841  CurDebugLoc = I.getDebugLoc();
842
843  visit(I.getOpcode(), I);
844
845  if (!isa<TerminatorInst>(&I) && !HasTailCall)
846    CopyToExportRegsIfNeeded(&I);
847
848  CurDebugLoc = DebugLoc();
849}
850
851void SelectionDAGBuilder::visitPHI(const PHINode &) {
852  llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
853}
854
855void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
856  // Note: this doesn't use InstVisitor, because it has to work with
857  // ConstantExpr's in addition to instructions.
858  switch (Opcode) {
859  default: llvm_unreachable("Unknown instruction type encountered!");
860    // Build the switch statement using the Instruction.def file.
861#define HANDLE_INST(NUM, OPCODE, CLASS) \
862    case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break;
863#include "llvm/Instruction.def"
864  }
865
866  // Assign the ordering to the freshly created DAG nodes.
867  if (NodeMap.count(&I)) {
868    ++SDNodeOrder;
869    AssignOrderingToNode(getValue(&I).getNode());
870  }
871}
872
873// resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
874// generate the debug data structures now that we've seen its definition.
875void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
876                                                   SDValue Val) {
877  DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
878  if (DDI.getDI()) {
879    const DbgValueInst *DI = DDI.getDI();
880    DebugLoc dl = DDI.getdl();
881    unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
882    MDNode *Variable = DI->getVariable();
883    uint64_t Offset = DI->getOffset();
884    SDDbgValue *SDV;
885    if (Val.getNode()) {
886      if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) {
887        SDV = DAG.getDbgValue(Variable, Val.getNode(),
888                              Val.getResNo(), Offset, dl, DbgSDNodeOrder);
889        DAG.AddDbgValue(SDV, Val.getNode(), false);
890      }
891    } else {
892      SDV = DAG.getDbgValue(Variable, UndefValue::get(V->getType()),
893                            Offset, dl, SDNodeOrder);
894      DAG.AddDbgValue(SDV, 0, false);
895    }
896    DanglingDebugInfoMap[V] = DanglingDebugInfo();
897  }
898}
899
900// getValue - Return an SDValue for the given Value.
901SDValue SelectionDAGBuilder::getValue(const Value *V) {
902  // If we already have an SDValue for this value, use it. It's important
903  // to do this first, so that we don't create a CopyFromReg if we already
904  // have a regular SDValue.
905  SDValue &N = NodeMap[V];
906  if (N.getNode()) return N;
907
908  // If there's a virtual register allocated and initialized for this
909  // value, use it.
910  DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
911  if (It != FuncInfo.ValueMap.end()) {
912    unsigned InReg = It->second;
913    RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
914    SDValue Chain = DAG.getEntryNode();
915    N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain,NULL);
916    resolveDanglingDebugInfo(V, N);
917    return N;
918  }
919
920  // Otherwise create a new SDValue and remember it.
921  SDValue Val = getValueImpl(V);
922  NodeMap[V] = Val;
923  resolveDanglingDebugInfo(V, Val);
924  return Val;
925}
926
927/// getNonRegisterValue - Return an SDValue for the given Value, but
928/// don't look in FuncInfo.ValueMap for a virtual register.
929SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
930  // If we already have an SDValue for this value, use it.
931  SDValue &N = NodeMap[V];
932  if (N.getNode()) return N;
933
934  // Otherwise create a new SDValue and remember it.
935  SDValue Val = getValueImpl(V);
936  NodeMap[V] = Val;
937  resolveDanglingDebugInfo(V, Val);
938  return Val;
939}
940
941/// getValueImpl - Helper function for getValue and getNonRegisterValue.
942/// Create an SDValue for the given value.
943SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
944  if (const Constant *C = dyn_cast<Constant>(V)) {
945    EVT VT = TLI.getValueType(V->getType(), true);
946
947    if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
948      return DAG.getConstant(*CI, VT);
949
950    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
951      return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT);
952
953    if (isa<ConstantPointerNull>(C))
954      return DAG.getConstant(0, TLI.getPointerTy());
955
956    if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
957      return DAG.getConstantFP(*CFP, VT);
958
959    if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
960      return DAG.getUNDEF(VT);
961
962    if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
963      visit(CE->getOpcode(), *CE);
964      SDValue N1 = NodeMap[V];
965      assert(N1.getNode() && "visit didn't populate the NodeMap!");
966      return N1;
967    }
968
969    if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
970      SmallVector<SDValue, 4> Constants;
971      for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
972           OI != OE; ++OI) {
973        SDNode *Val = getValue(*OI).getNode();
974        // If the operand is an empty aggregate, there are no values.
975        if (!Val) continue;
976        // Add each leaf value from the operand to the Constants list
977        // to form a flattened list of all the values.
978        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
979          Constants.push_back(SDValue(Val, i));
980      }
981
982      return DAG.getMergeValues(&Constants[0], Constants.size(),
983                                getCurDebugLoc());
984    }
985
986    if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
987      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
988             "Unknown struct or array constant!");
989
990      SmallVector<EVT, 4> ValueVTs;
991      ComputeValueVTs(TLI, C->getType(), ValueVTs);
992      unsigned NumElts = ValueVTs.size();
993      if (NumElts == 0)
994        return SDValue(); // empty struct
995      SmallVector<SDValue, 4> Constants(NumElts);
996      for (unsigned i = 0; i != NumElts; ++i) {
997        EVT EltVT = ValueVTs[i];
998        if (isa<UndefValue>(C))
999          Constants[i] = DAG.getUNDEF(EltVT);
1000        else if (EltVT.isFloatingPoint())
1001          Constants[i] = DAG.getConstantFP(0, EltVT);
1002        else
1003          Constants[i] = DAG.getConstant(0, EltVT);
1004      }
1005
1006      return DAG.getMergeValues(&Constants[0], NumElts,
1007                                getCurDebugLoc());
1008    }
1009
1010    if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1011      return DAG.getBlockAddress(BA, VT);
1012
1013    const VectorType *VecTy = cast<VectorType>(V->getType());
1014    unsigned NumElements = VecTy->getNumElements();
1015
1016    // Now that we know the number and type of the elements, get that number of
1017    // elements into the Ops array based on what kind of constant it is.
1018    SmallVector<SDValue, 16> Ops;
1019    if (const ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
1020      for (unsigned i = 0; i != NumElements; ++i)
1021        Ops.push_back(getValue(CP->getOperand(i)));
1022    } else {
1023      assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1024      EVT EltVT = TLI.getValueType(VecTy->getElementType());
1025
1026      SDValue Op;
1027      if (EltVT.isFloatingPoint())
1028        Op = DAG.getConstantFP(0, EltVT);
1029      else
1030        Op = DAG.getConstant(0, EltVT);
1031      Ops.assign(NumElements, Op);
1032    }
1033
1034    // Create a BUILD_VECTOR node.
1035    return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
1036                                    VT, &Ops[0], Ops.size());
1037  }
1038
1039  // If this is a static alloca, generate it as the frameindex instead of
1040  // computation.
1041  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1042    DenseMap<const AllocaInst*, int>::iterator SI =
1043      FuncInfo.StaticAllocaMap.find(AI);
1044    if (SI != FuncInfo.StaticAllocaMap.end())
1045      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
1046  }
1047
1048  // If this is an instruction which fast-isel has deferred, select it now.
1049  if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1050    unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1051    RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType());
1052    SDValue Chain = DAG.getEntryNode();
1053    return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL);
1054  }
1055
1056  llvm_unreachable("Can't get register for value!");
1057  return SDValue();
1058}
1059
1060void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1061  SDValue Chain = getControlRoot();
1062  SmallVector<ISD::OutputArg, 8> Outs;
1063  SmallVector<SDValue, 8> OutVals;
1064
1065  if (!FuncInfo.CanLowerReturn) {
1066    unsigned DemoteReg = FuncInfo.DemoteRegister;
1067    const Function *F = I.getParent()->getParent();
1068
1069    // Emit a store of the return value through the virtual register.
1070    // Leave Outs empty so that LowerReturn won't try to load return
1071    // registers the usual way.
1072    SmallVector<EVT, 1> PtrValueVTs;
1073    ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
1074                    PtrValueVTs);
1075
1076    SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
1077    SDValue RetOp = getValue(I.getOperand(0));
1078
1079    SmallVector<EVT, 4> ValueVTs;
1080    SmallVector<uint64_t, 4> Offsets;
1081    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1082    unsigned NumValues = ValueVTs.size();
1083
1084    SmallVector<SDValue, 4> Chains(NumValues);
1085    for (unsigned i = 0; i != NumValues; ++i) {
1086      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(),
1087                                RetPtr.getValueType(), RetPtr,
1088                                DAG.getIntPtrConstant(Offsets[i]));
1089      Chains[i] =
1090        DAG.getStore(Chain, getCurDebugLoc(),
1091                     SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1092                     Add, NULL, Offsets[i], false, false, 0);
1093    }
1094
1095    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
1096                        MVT::Other, &Chains[0], NumValues);
1097  } else if (I.getNumOperands() != 0) {
1098    SmallVector<EVT, 4> ValueVTs;
1099    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
1100    unsigned NumValues = ValueVTs.size();
1101    if (NumValues) {
1102      SDValue RetOp = getValue(I.getOperand(0));
1103      for (unsigned j = 0, f = NumValues; j != f; ++j) {
1104        EVT VT = ValueVTs[j];
1105
1106        ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1107
1108        const Function *F = I.getParent()->getParent();
1109        if (F->paramHasAttr(0, Attribute::SExt))
1110          ExtendKind = ISD::SIGN_EXTEND;
1111        else if (F->paramHasAttr(0, Attribute::ZExt))
1112          ExtendKind = ISD::ZERO_EXTEND;
1113
1114        // FIXME: C calling convention requires the return type to be promoted
1115        // to at least 32-bit. But this is not necessary for non-C calling
1116        // conventions. The frontend should mark functions whose return values
1117        // require promoting with signext or zeroext attributes.
1118        if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
1119          EVT MinVT = TLI.getRegisterType(*DAG.getContext(), MVT::i32);
1120          if (VT.bitsLT(MinVT))
1121            VT = MinVT;
1122        }
1123
1124        unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
1125        EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
1126        SmallVector<SDValue, 4> Parts(NumParts);
1127        getCopyToParts(DAG, getCurDebugLoc(),
1128                       SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1129                       &Parts[0], NumParts, PartVT, ExtendKind);
1130
1131        // 'inreg' on function refers to return value
1132        ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1133        if (F->paramHasAttr(0, Attribute::InReg))
1134          Flags.setInReg();
1135
1136        // Propagate extension type if any
1137        if (F->paramHasAttr(0, Attribute::SExt))
1138          Flags.setSExt();
1139        else if (F->paramHasAttr(0, Attribute::ZExt))
1140          Flags.setZExt();
1141
1142        for (unsigned i = 0; i < NumParts; ++i) {
1143          Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1144                                        /*isfixed=*/true));
1145          OutVals.push_back(Parts[i]);
1146        }
1147      }
1148    }
1149  }
1150
1151  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1152  CallingConv::ID CallConv =
1153    DAG.getMachineFunction().getFunction()->getCallingConv();
1154  Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
1155                          Outs, OutVals, getCurDebugLoc(), DAG);
1156
1157  // Verify that the target's LowerReturn behaved as expected.
1158  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1159         "LowerReturn didn't return a valid chain!");
1160
1161  // Update the DAG with the new chain value resulting from return lowering.
1162  DAG.setRoot(Chain);
1163}
1164
1165/// CopyToExportRegsIfNeeded - If the given value has virtual registers
1166/// created for it, emit nodes to copy the value into the virtual
1167/// registers.
1168void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1169  DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1170  if (VMI != FuncInfo.ValueMap.end()) {
1171    assert(!V->use_empty() && "Unused value assigned virtual registers!");
1172    CopyValueToVirtualRegister(V, VMI->second);
1173  }
1174}
1175
1176/// ExportFromCurrentBlock - If this condition isn't known to be exported from
1177/// the current basic block, add it to ValueMap now so that we'll get a
1178/// CopyTo/FromReg.
1179void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1180  // No need to export constants.
1181  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1182
1183  // Already exported?
1184  if (FuncInfo.isExportedInst(V)) return;
1185
1186  unsigned Reg = FuncInfo.InitializeRegForValue(V);
1187  CopyValueToVirtualRegister(V, Reg);
1188}
1189
1190bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1191                                                     const BasicBlock *FromBB) {
1192  // The operands of the setcc have to be in this block.  We don't know
1193  // how to export them from some other block.
1194  if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1195    // Can export from current BB.
1196    if (VI->getParent() == FromBB)
1197      return true;
1198
1199    // Is already exported, noop.
1200    return FuncInfo.isExportedInst(V);
1201  }
1202
1203  // If this is an argument, we can export it if the BB is the entry block or
1204  // if it is already exported.
1205  if (isa<Argument>(V)) {
1206    if (FromBB == &FromBB->getParent()->getEntryBlock())
1207      return true;
1208
1209    // Otherwise, can only export this if it is already exported.
1210    return FuncInfo.isExportedInst(V);
1211  }
1212
1213  // Otherwise, constants can always be exported.
1214  return true;
1215}
1216
1217static bool InBlock(const Value *V, const BasicBlock *BB) {
1218  if (const Instruction *I = dyn_cast<Instruction>(V))
1219    return I->getParent() == BB;
1220  return true;
1221}
1222
1223/// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1224/// This function emits a branch and is used at the leaves of an OR or an
1225/// AND operator tree.
1226///
1227void
1228SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1229                                                  MachineBasicBlock *TBB,
1230                                                  MachineBasicBlock *FBB,
1231                                                  MachineBasicBlock *CurBB,
1232                                                  MachineBasicBlock *SwitchBB) {
1233  const BasicBlock *BB = CurBB->getBasicBlock();
1234
1235  // If the leaf of the tree is a comparison, merge the condition into
1236  // the caseblock.
1237  if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1238    // The operands of the cmp have to be in this block.  We don't know
1239    // how to export them from some other block.  If this is the first block
1240    // of the sequence, no exporting is needed.
1241    if (CurBB == SwitchBB ||
1242        (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1243         isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1244      ISD::CondCode Condition;
1245      if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1246        Condition = getICmpCondCode(IC->getPredicate());
1247      } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1248        Condition = getFCmpCondCode(FC->getPredicate());
1249      } else {
1250        Condition = ISD::SETEQ; // silence warning.
1251        llvm_unreachable("Unknown compare instruction");
1252      }
1253
1254      CaseBlock CB(Condition, BOp->getOperand(0),
1255                   BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1256      SwitchCases.push_back(CB);
1257      return;
1258    }
1259  }
1260
1261  // Create a CaseBlock record representing this branch.
1262  CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1263               NULL, TBB, FBB, CurBB);
1264  SwitchCases.push_back(CB);
1265}
1266
1267/// FindMergedConditions - If Cond is an expression like
1268void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1269                                               MachineBasicBlock *TBB,
1270                                               MachineBasicBlock *FBB,
1271                                               MachineBasicBlock *CurBB,
1272                                               MachineBasicBlock *SwitchBB,
1273                                               unsigned Opc) {
1274  // If this node is not part of the or/and tree, emit it as a branch.
1275  const Instruction *BOp = dyn_cast<Instruction>(Cond);
1276  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1277      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1278      BOp->getParent() != CurBB->getBasicBlock() ||
1279      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1280      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1281    EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB);
1282    return;
1283  }
1284
1285  //  Create TmpBB after CurBB.
1286  MachineFunction::iterator BBI = CurBB;
1287  MachineFunction &MF = DAG.getMachineFunction();
1288  MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1289  CurBB->getParent()->insert(++BBI, TmpBB);
1290
1291  if (Opc == Instruction::Or) {
1292    // Codegen X | Y as:
1293    //   jmp_if_X TBB
1294    //   jmp TmpBB
1295    // TmpBB:
1296    //   jmp_if_Y TBB
1297    //   jmp FBB
1298    //
1299
1300    // Emit the LHS condition.
1301    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc);
1302
1303    // Emit the RHS condition into TmpBB.
1304    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1305  } else {
1306    assert(Opc == Instruction::And && "Unknown merge op!");
1307    // Codegen X & Y as:
1308    //   jmp_if_X TmpBB
1309    //   jmp FBB
1310    // TmpBB:
1311    //   jmp_if_Y TBB
1312    //   jmp FBB
1313    //
1314    //  This requires creation of TmpBB after CurBB.
1315
1316    // Emit the LHS condition.
1317    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc);
1318
1319    // Emit the RHS condition into TmpBB.
1320    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1321  }
1322}
1323
1324/// If the set of cases should be emitted as a series of branches, return true.
1325/// If we should emit this as a bunch of and/or'd together conditions, return
1326/// false.
1327bool
1328SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
1329  if (Cases.size() != 2) return true;
1330
1331  // If this is two comparisons of the same values or'd or and'd together, they
1332  // will get folded into a single comparison, so don't emit two blocks.
1333  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1334       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1335      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1336       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1337    return false;
1338  }
1339
1340  // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1341  // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1342  if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1343      Cases[0].CC == Cases[1].CC &&
1344      isa<Constant>(Cases[0].CmpRHS) &&
1345      cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1346    if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1347      return false;
1348    if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1349      return false;
1350  }
1351
1352  return true;
1353}
1354
1355void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1356  MachineBasicBlock *BrMBB = FuncInfo.MBB;
1357
1358  // Update machine-CFG edges.
1359  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1360
1361  // Figure out which block is immediately after the current one.
1362  MachineBasicBlock *NextBlock = 0;
1363  MachineFunction::iterator BBI = BrMBB;
1364  if (++BBI != FuncInfo.MF->end())
1365    NextBlock = BBI;
1366
1367  if (I.isUnconditional()) {
1368    // Update machine-CFG edges.
1369    BrMBB->addSuccessor(Succ0MBB);
1370
1371    // If this is not a fall-through branch, emit the branch.
1372    if (Succ0MBB != NextBlock)
1373      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1374                              MVT::Other, getControlRoot(),
1375                              DAG.getBasicBlock(Succ0MBB)));
1376
1377    return;
1378  }
1379
1380  // If this condition is one of the special cases we handle, do special stuff
1381  // now.
1382  const Value *CondVal = I.getCondition();
1383  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1384
1385  // If this is a series of conditions that are or'd or and'd together, emit
1386  // this as a sequence of branches instead of setcc's with and/or operations.
1387  // For example, instead of something like:
1388  //     cmp A, B
1389  //     C = seteq
1390  //     cmp D, E
1391  //     F = setle
1392  //     or C, F
1393  //     jnz foo
1394  // Emit:
1395  //     cmp A, B
1396  //     je foo
1397  //     cmp D, E
1398  //     jle foo
1399  //
1400  if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1401    if (BOp->hasOneUse() &&
1402        (BOp->getOpcode() == Instruction::And ||
1403         BOp->getOpcode() == Instruction::Or)) {
1404      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1405                           BOp->getOpcode());
1406      // If the compares in later blocks need to use values not currently
1407      // exported from this block, export them now.  This block should always
1408      // be the first entry.
1409      assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1410
1411      // Allow some cases to be rejected.
1412      if (ShouldEmitAsBranches(SwitchCases)) {
1413        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1414          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1415          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1416        }
1417
1418        // Emit the branch for this block.
1419        visitSwitchCase(SwitchCases[0], BrMBB);
1420        SwitchCases.erase(SwitchCases.begin());
1421        return;
1422      }
1423
1424      // Okay, we decided not to do this, remove any inserted MBB's and clear
1425      // SwitchCases.
1426      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1427        FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1428
1429      SwitchCases.clear();
1430    }
1431  }
1432
1433  // Create a CaseBlock record representing this branch.
1434  CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1435               NULL, Succ0MBB, Succ1MBB, BrMBB);
1436
1437  // Use visitSwitchCase to actually insert the fast branch sequence for this
1438  // cond branch.
1439  visitSwitchCase(CB, BrMBB);
1440}
1441
1442/// visitSwitchCase - Emits the necessary code to represent a single node in
1443/// the binary search tree resulting from lowering a switch instruction.
1444void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1445                                          MachineBasicBlock *SwitchBB) {
1446  SDValue Cond;
1447  SDValue CondLHS = getValue(CB.CmpLHS);
1448  DebugLoc dl = getCurDebugLoc();
1449
1450  // Build the setcc now.
1451  if (CB.CmpMHS == NULL) {
1452    // Fold "(X == true)" to X and "(X == false)" to !X to
1453    // handle common cases produced by branch lowering.
1454    if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1455        CB.CC == ISD::SETEQ)
1456      Cond = CondLHS;
1457    else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1458             CB.CC == ISD::SETEQ) {
1459      SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1460      Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1461    } else
1462      Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1463  } else {
1464    assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1465
1466    const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1467    const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
1468
1469    SDValue CmpOp = getValue(CB.CmpMHS);
1470    EVT VT = CmpOp.getValueType();
1471
1472    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1473      Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1474                          ISD::SETLE);
1475    } else {
1476      SDValue SUB = DAG.getNode(ISD::SUB, dl,
1477                                VT, CmpOp, DAG.getConstant(Low, VT));
1478      Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1479                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1480    }
1481  }
1482
1483  // Update successor info
1484  SwitchBB->addSuccessor(CB.TrueBB);
1485  SwitchBB->addSuccessor(CB.FalseBB);
1486
1487  // Set NextBlock to be the MBB immediately after the current one, if any.
1488  // This is used to avoid emitting unnecessary branches to the next block.
1489  MachineBasicBlock *NextBlock = 0;
1490  MachineFunction::iterator BBI = SwitchBB;
1491  if (++BBI != FuncInfo.MF->end())
1492    NextBlock = BBI;
1493
1494  // If the lhs block is the next block, invert the condition so that we can
1495  // fall through to the lhs instead of the rhs block.
1496  if (CB.TrueBB == NextBlock) {
1497    std::swap(CB.TrueBB, CB.FalseBB);
1498    SDValue True = DAG.getConstant(1, Cond.getValueType());
1499    Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1500  }
1501
1502  SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1503                               MVT::Other, getControlRoot(), Cond,
1504                               DAG.getBasicBlock(CB.TrueBB));
1505
1506  // Insert the false branch.
1507  if (CB.FalseBB != NextBlock)
1508    BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1509                         DAG.getBasicBlock(CB.FalseBB));
1510
1511  DAG.setRoot(BrCond);
1512}
1513
1514/// visitJumpTable - Emit JumpTable node in the current MBB
1515void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1516  // Emit the code for the jump table
1517  assert(JT.Reg != -1U && "Should lower JT Header first!");
1518  EVT PTy = TLI.getPointerTy();
1519  SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1520                                     JT.Reg, PTy);
1521  SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1522  SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(),
1523                                    MVT::Other, Index.getValue(1),
1524                                    Table, Index);
1525  DAG.setRoot(BrJumpTable);
1526}
1527
1528/// visitJumpTableHeader - This function emits necessary code to produce index
1529/// in the JumpTable from switch case.
1530void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1531                                               JumpTableHeader &JTH,
1532                                               MachineBasicBlock *SwitchBB) {
1533  // Subtract the lowest switch case value from the value being switched on and
1534  // conditional branch to default mbb if the result is greater than the
1535  // difference between smallest and largest cases.
1536  SDValue SwitchOp = getValue(JTH.SValue);
1537  EVT VT = SwitchOp.getValueType();
1538  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1539                            DAG.getConstant(JTH.First, VT));
1540
1541  // The SDNode we just created, which holds the value being switched on minus
1542  // the smallest case value, needs to be copied to a virtual register so it
1543  // can be used as an index into the jump table in a subsequent basic block.
1544  // This value may be smaller or larger than the target's pointer type, and
1545  // therefore require extension or truncating.
1546  SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy());
1547
1548  unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy());
1549  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1550                                    JumpTableReg, SwitchOp);
1551  JT.Reg = JumpTableReg;
1552
1553  // Emit the range check for the jump table, and branch to the default block
1554  // for the switch statement if the value being switched on exceeds the largest
1555  // case in the switch.
1556  SDValue CMP = DAG.getSetCC(getCurDebugLoc(),
1557                             TLI.getSetCCResultType(Sub.getValueType()), Sub,
1558                             DAG.getConstant(JTH.Last-JTH.First,VT),
1559                             ISD::SETUGT);
1560
1561  // Set NextBlock to be the MBB immediately after the current one, if any.
1562  // This is used to avoid emitting unnecessary branches to the next block.
1563  MachineBasicBlock *NextBlock = 0;
1564  MachineFunction::iterator BBI = SwitchBB;
1565
1566  if (++BBI != FuncInfo.MF->end())
1567    NextBlock = BBI;
1568
1569  SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1570                               MVT::Other, CopyTo, CMP,
1571                               DAG.getBasicBlock(JT.Default));
1572
1573  if (JT.MBB != NextBlock)
1574    BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond,
1575                         DAG.getBasicBlock(JT.MBB));
1576
1577  DAG.setRoot(BrCond);
1578}
1579
1580/// visitBitTestHeader - This function emits necessary code to produce value
1581/// suitable for "bit tests"
1582void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1583                                             MachineBasicBlock *SwitchBB) {
1584  // Subtract the minimum value
1585  SDValue SwitchOp = getValue(B.SValue);
1586  EVT VT = SwitchOp.getValueType();
1587  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1588                            DAG.getConstant(B.First, VT));
1589
1590  // Check range
1591  SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(),
1592                                  TLI.getSetCCResultType(Sub.getValueType()),
1593                                  Sub, DAG.getConstant(B.Range, VT),
1594                                  ISD::SETUGT);
1595
1596  SDValue ShiftOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(),
1597                                       TLI.getPointerTy());
1598
1599  B.Reg = FuncInfo.CreateReg(TLI.getPointerTy());
1600  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1601                                    B.Reg, ShiftOp);
1602
1603  // Set NextBlock to be the MBB immediately after the current one, if any.
1604  // This is used to avoid emitting unnecessary branches to the next block.
1605  MachineBasicBlock *NextBlock = 0;
1606  MachineFunction::iterator BBI = SwitchBB;
1607  if (++BBI != FuncInfo.MF->end())
1608    NextBlock = BBI;
1609
1610  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1611
1612  SwitchBB->addSuccessor(B.Default);
1613  SwitchBB->addSuccessor(MBB);
1614
1615  SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1616                                MVT::Other, CopyTo, RangeCmp,
1617                                DAG.getBasicBlock(B.Default));
1618
1619  if (MBB != NextBlock)
1620    BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo,
1621                          DAG.getBasicBlock(MBB));
1622
1623  DAG.setRoot(BrRange);
1624}
1625
1626/// visitBitTestCase - this function produces one "bit test"
1627void SelectionDAGBuilder::visitBitTestCase(MachineBasicBlock* NextMBB,
1628                                           unsigned Reg,
1629                                           BitTestCase &B,
1630                                           MachineBasicBlock *SwitchBB) {
1631  SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), Reg,
1632                                       TLI.getPointerTy());
1633  SDValue Cmp;
1634  if (CountPopulation_64(B.Mask) == 1) {
1635    // Testing for a single bit; just compare the shift count with what it
1636    // would need to be to shift a 1 bit in that position.
1637    Cmp = DAG.getSetCC(getCurDebugLoc(),
1638                       TLI.getSetCCResultType(ShiftOp.getValueType()),
1639                       ShiftOp,
1640                       DAG.getConstant(CountTrailingZeros_64(B.Mask),
1641                                       TLI.getPointerTy()),
1642                       ISD::SETEQ);
1643  } else {
1644    // Make desired shift
1645    SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(),
1646                                    TLI.getPointerTy(),
1647                                    DAG.getConstant(1, TLI.getPointerTy()),
1648                                    ShiftOp);
1649
1650    // Emit bit tests and jumps
1651    SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(),
1652                                TLI.getPointerTy(), SwitchVal,
1653                                DAG.getConstant(B.Mask, TLI.getPointerTy()));
1654    Cmp = DAG.getSetCC(getCurDebugLoc(),
1655                       TLI.getSetCCResultType(AndOp.getValueType()),
1656                       AndOp, DAG.getConstant(0, TLI.getPointerTy()),
1657                       ISD::SETNE);
1658  }
1659
1660  SwitchBB->addSuccessor(B.TargetBB);
1661  SwitchBB->addSuccessor(NextMBB);
1662
1663  SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1664                              MVT::Other, getControlRoot(),
1665                              Cmp, DAG.getBasicBlock(B.TargetBB));
1666
1667  // Set NextBlock to be the MBB immediately after the current one, if any.
1668  // This is used to avoid emitting unnecessary branches to the next block.
1669  MachineBasicBlock *NextBlock = 0;
1670  MachineFunction::iterator BBI = SwitchBB;
1671  if (++BBI != FuncInfo.MF->end())
1672    NextBlock = BBI;
1673
1674  if (NextMBB != NextBlock)
1675    BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd,
1676                        DAG.getBasicBlock(NextMBB));
1677
1678  DAG.setRoot(BrAnd);
1679}
1680
1681void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1682  MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
1683
1684  // Retrieve successors.
1685  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1686  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1687
1688  const Value *Callee(I.getCalledValue());
1689  if (isa<InlineAsm>(Callee))
1690    visitInlineAsm(&I);
1691  else
1692    LowerCallTo(&I, getValue(Callee), false, LandingPad);
1693
1694  // If the value of the invoke is used outside of its defining block, make it
1695  // available as a virtual register.
1696  CopyToExportRegsIfNeeded(&I);
1697
1698  // Update successor info
1699  InvokeMBB->addSuccessor(Return);
1700  InvokeMBB->addSuccessor(LandingPad);
1701
1702  // Drop into normal successor.
1703  DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1704                          MVT::Other, getControlRoot(),
1705                          DAG.getBasicBlock(Return)));
1706}
1707
1708void SelectionDAGBuilder::visitUnwind(const UnwindInst &I) {
1709}
1710
1711/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1712/// small case ranges).
1713bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
1714                                                 CaseRecVector& WorkList,
1715                                                 const Value* SV,
1716                                                 MachineBasicBlock *Default,
1717                                                 MachineBasicBlock *SwitchBB) {
1718  Case& BackCase  = *(CR.Range.second-1);
1719
1720  // Size is the number of Cases represented by this range.
1721  size_t Size = CR.Range.second - CR.Range.first;
1722  if (Size > 3)
1723    return false;
1724
1725  // Get the MachineFunction which holds the current MBB.  This is used when
1726  // inserting any additional MBBs necessary to represent the switch.
1727  MachineFunction *CurMF = FuncInfo.MF;
1728
1729  // Figure out which block is immediately after the current one.
1730  MachineBasicBlock *NextBlock = 0;
1731  MachineFunction::iterator BBI = CR.CaseBB;
1732
1733  if (++BBI != FuncInfo.MF->end())
1734    NextBlock = BBI;
1735
1736  // TODO: If any two of the cases has the same destination, and if one value
1737  // is the same as the other, but has one bit unset that the other has set,
1738  // use bit manipulation to do two compares at once.  For example:
1739  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1740
1741  // Rearrange the case blocks so that the last one falls through if possible.
1742  if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1743    // The last case block won't fall through into 'NextBlock' if we emit the
1744    // branches in this order.  See if rearranging a case value would help.
1745    for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1746      if (I->BB == NextBlock) {
1747        std::swap(*I, BackCase);
1748        break;
1749      }
1750    }
1751  }
1752
1753  // Create a CaseBlock record representing a conditional branch to
1754  // the Case's target mbb if the value being switched on SV is equal
1755  // to C.
1756  MachineBasicBlock *CurBlock = CR.CaseBB;
1757  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1758    MachineBasicBlock *FallThrough;
1759    if (I != E-1) {
1760      FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
1761      CurMF->insert(BBI, FallThrough);
1762
1763      // Put SV in a virtual register to make it available from the new blocks.
1764      ExportFromCurrentBlock(SV);
1765    } else {
1766      // If the last case doesn't match, go to the default block.
1767      FallThrough = Default;
1768    }
1769
1770    const Value *RHS, *LHS, *MHS;
1771    ISD::CondCode CC;
1772    if (I->High == I->Low) {
1773      // This is just small small case range :) containing exactly 1 case
1774      CC = ISD::SETEQ;
1775      LHS = SV; RHS = I->High; MHS = NULL;
1776    } else {
1777      CC = ISD::SETLE;
1778      LHS = I->Low; MHS = SV; RHS = I->High;
1779    }
1780    CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock);
1781
1782    // If emitting the first comparison, just call visitSwitchCase to emit the
1783    // code into the current block.  Otherwise, push the CaseBlock onto the
1784    // vector to be later processed by SDISel, and insert the node's MBB
1785    // before the next MBB.
1786    if (CurBlock == SwitchBB)
1787      visitSwitchCase(CB, SwitchBB);
1788    else
1789      SwitchCases.push_back(CB);
1790
1791    CurBlock = FallThrough;
1792  }
1793
1794  return true;
1795}
1796
1797static inline bool areJTsAllowed(const TargetLowering &TLI) {
1798  return !DisableJumpTables &&
1799          (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
1800           TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
1801}
1802
1803static APInt ComputeRange(const APInt &First, const APInt &Last) {
1804  APInt LastExt(Last), FirstExt(First);
1805  uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
1806  LastExt.sext(BitWidth); FirstExt.sext(BitWidth);
1807  return (LastExt - FirstExt + 1ULL);
1808}
1809
1810/// handleJTSwitchCase - Emit jumptable for current switch case range
1811bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec& CR,
1812                                             CaseRecVector& WorkList,
1813                                             const Value* SV,
1814                                             MachineBasicBlock* Default,
1815                                             MachineBasicBlock *SwitchBB) {
1816  Case& FrontCase = *CR.Range.first;
1817  Case& BackCase  = *(CR.Range.second-1);
1818
1819  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
1820  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
1821
1822  APInt TSize(First.getBitWidth(), 0);
1823  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1824       I!=E; ++I)
1825    TSize += I->size();
1826
1827  if (!areJTsAllowed(TLI) || TSize.ult(4))
1828    return false;
1829
1830  APInt Range = ComputeRange(First, Last);
1831  double Density = TSize.roundToDouble() / Range.roundToDouble();
1832  if (Density < 0.4)
1833    return false;
1834
1835  DEBUG(dbgs() << "Lowering jump table\n"
1836               << "First entry: " << First << ". Last entry: " << Last << '\n'
1837               << "Range: " << Range
1838               << "Size: " << TSize << ". Density: " << Density << "\n\n");
1839
1840  // Get the MachineFunction which holds the current MBB.  This is used when
1841  // inserting any additional MBBs necessary to represent the switch.
1842  MachineFunction *CurMF = FuncInfo.MF;
1843
1844  // Figure out which block is immediately after the current one.
1845  MachineFunction::iterator BBI = CR.CaseBB;
1846  ++BBI;
1847
1848  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1849
1850  // Create a new basic block to hold the code for loading the address
1851  // of the jump table, and jumping to it.  Update successor information;
1852  // we will either branch to the default case for the switch, or the jump
1853  // table.
1854  MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1855  CurMF->insert(BBI, JumpTableBB);
1856  CR.CaseBB->addSuccessor(Default);
1857  CR.CaseBB->addSuccessor(JumpTableBB);
1858
1859  // Build a vector of destination BBs, corresponding to each target
1860  // of the jump table. If the value of the jump table slot corresponds to
1861  // a case statement, push the case's BB onto the vector, otherwise, push
1862  // the default BB.
1863  std::vector<MachineBasicBlock*> DestBBs;
1864  APInt TEI = First;
1865  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
1866    const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
1867    const APInt &High = cast<ConstantInt>(I->High)->getValue();
1868
1869    if (Low.sle(TEI) && TEI.sle(High)) {
1870      DestBBs.push_back(I->BB);
1871      if (TEI==High)
1872        ++I;
1873    } else {
1874      DestBBs.push_back(Default);
1875    }
1876  }
1877
1878  // Update successor info. Add one edge to each unique successor.
1879  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
1880  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
1881         E = DestBBs.end(); I != E; ++I) {
1882    if (!SuccsHandled[(*I)->getNumber()]) {
1883      SuccsHandled[(*I)->getNumber()] = true;
1884      JumpTableBB->addSuccessor(*I);
1885    }
1886  }
1887
1888  // Create a jump table index for this jump table.
1889  unsigned JTEncoding = TLI.getJumpTableEncoding();
1890  unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
1891                       ->createJumpTableIndex(DestBBs);
1892
1893  // Set the jump table information so that we can codegen it as a second
1894  // MachineBasicBlock
1895  JumpTable JT(-1U, JTI, JumpTableBB, Default);
1896  JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
1897  if (CR.CaseBB == SwitchBB)
1898    visitJumpTableHeader(JT, JTH, SwitchBB);
1899
1900  JTCases.push_back(JumpTableBlock(JTH, JT));
1901
1902  return true;
1903}
1904
1905/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
1906/// 2 subtrees.
1907bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
1908                                                  CaseRecVector& WorkList,
1909                                                  const Value* SV,
1910                                                  MachineBasicBlock *Default,
1911                                                  MachineBasicBlock *SwitchBB) {
1912  // Get the MachineFunction which holds the current MBB.  This is used when
1913  // inserting any additional MBBs necessary to represent the switch.
1914  MachineFunction *CurMF = FuncInfo.MF;
1915
1916  // Figure out which block is immediately after the current one.
1917  MachineFunction::iterator BBI = CR.CaseBB;
1918  ++BBI;
1919
1920  Case& FrontCase = *CR.Range.first;
1921  Case& BackCase  = *(CR.Range.second-1);
1922  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1923
1924  // Size is the number of Cases represented by this range.
1925  unsigned Size = CR.Range.second - CR.Range.first;
1926
1927  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
1928  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
1929  double FMetric = 0;
1930  CaseItr Pivot = CR.Range.first + Size/2;
1931
1932  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
1933  // (heuristically) allow us to emit JumpTable's later.
1934  APInt TSize(First.getBitWidth(), 0);
1935  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1936       I!=E; ++I)
1937    TSize += I->size();
1938
1939  APInt LSize = FrontCase.size();
1940  APInt RSize = TSize-LSize;
1941  DEBUG(dbgs() << "Selecting best pivot: \n"
1942               << "First: " << First << ", Last: " << Last <<'\n'
1943               << "LSize: " << LSize << ", RSize: " << RSize << '\n');
1944  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
1945       J!=E; ++I, ++J) {
1946    const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
1947    const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
1948    APInt Range = ComputeRange(LEnd, RBegin);
1949    assert((Range - 2ULL).isNonNegative() &&
1950           "Invalid case distance");
1951    double LDensity = (double)LSize.roundToDouble() /
1952                           (LEnd - First + 1ULL).roundToDouble();
1953    double RDensity = (double)RSize.roundToDouble() /
1954                           (Last - RBegin + 1ULL).roundToDouble();
1955    double Metric = Range.logBase2()*(LDensity+RDensity);
1956    // Should always split in some non-trivial place
1957    DEBUG(dbgs() <<"=>Step\n"
1958                 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
1959                 << "LDensity: " << LDensity
1960                 << ", RDensity: " << RDensity << '\n'
1961                 << "Metric: " << Metric << '\n');
1962    if (FMetric < Metric) {
1963      Pivot = J;
1964      FMetric = Metric;
1965      DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
1966    }
1967
1968    LSize += J->size();
1969    RSize -= J->size();
1970  }
1971  if (areJTsAllowed(TLI)) {
1972    // If our case is dense we *really* should handle it earlier!
1973    assert((FMetric > 0) && "Should handle dense range earlier!");
1974  } else {
1975    Pivot = CR.Range.first + Size/2;
1976  }
1977
1978  CaseRange LHSR(CR.Range.first, Pivot);
1979  CaseRange RHSR(Pivot, CR.Range.second);
1980  Constant *C = Pivot->Low;
1981  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
1982
1983  // We know that we branch to the LHS if the Value being switched on is
1984  // less than the Pivot value, C.  We use this to optimize our binary
1985  // tree a bit, by recognizing that if SV is greater than or equal to the
1986  // LHS's Case Value, and that Case Value is exactly one less than the
1987  // Pivot's Value, then we can branch directly to the LHS's Target,
1988  // rather than creating a leaf node for it.
1989  if ((LHSR.second - LHSR.first) == 1 &&
1990      LHSR.first->High == CR.GE &&
1991      cast<ConstantInt>(C)->getValue() ==
1992      (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
1993    TrueBB = LHSR.first->BB;
1994  } else {
1995    TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1996    CurMF->insert(BBI, TrueBB);
1997    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
1998
1999    // Put SV in a virtual register to make it available from the new blocks.
2000    ExportFromCurrentBlock(SV);
2001  }
2002
2003  // Similar to the optimization above, if the Value being switched on is
2004  // known to be less than the Constant CR.LT, and the current Case Value
2005  // is CR.LT - 1, then we can branch directly to the target block for
2006  // the current Case Value, rather than emitting a RHS leaf node for it.
2007  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
2008      cast<ConstantInt>(RHSR.first->Low)->getValue() ==
2009      (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
2010    FalseBB = RHSR.first->BB;
2011  } else {
2012    FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2013    CurMF->insert(BBI, FalseBB);
2014    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
2015
2016    // Put SV in a virtual register to make it available from the new blocks.
2017    ExportFromCurrentBlock(SV);
2018  }
2019
2020  // Create a CaseBlock record representing a conditional branch to
2021  // the LHS node if the value being switched on SV is less than C.
2022  // Otherwise, branch to LHS.
2023  CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
2024
2025  if (CR.CaseBB == SwitchBB)
2026    visitSwitchCase(CB, SwitchBB);
2027  else
2028    SwitchCases.push_back(CB);
2029
2030  return true;
2031}
2032
2033/// handleBitTestsSwitchCase - if current case range has few destination and
2034/// range span less, than machine word bitwidth, encode case range into series
2035/// of masks and emit bit tests with these masks.
2036bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
2037                                                   CaseRecVector& WorkList,
2038                                                   const Value* SV,
2039                                                   MachineBasicBlock* Default,
2040                                                   MachineBasicBlock *SwitchBB){
2041  EVT PTy = TLI.getPointerTy();
2042  unsigned IntPtrBits = PTy.getSizeInBits();
2043
2044  Case& FrontCase = *CR.Range.first;
2045  Case& BackCase  = *(CR.Range.second-1);
2046
2047  // Get the MachineFunction which holds the current MBB.  This is used when
2048  // inserting any additional MBBs necessary to represent the switch.
2049  MachineFunction *CurMF = FuncInfo.MF;
2050
2051  // If target does not have legal shift left, do not emit bit tests at all.
2052  if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
2053    return false;
2054
2055  size_t numCmps = 0;
2056  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2057       I!=E; ++I) {
2058    // Single case counts one, case range - two.
2059    numCmps += (I->Low == I->High ? 1 : 2);
2060  }
2061
2062  // Count unique destinations
2063  SmallSet<MachineBasicBlock*, 4> Dests;
2064  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2065    Dests.insert(I->BB);
2066    if (Dests.size() > 3)
2067      // Don't bother the code below, if there are too much unique destinations
2068      return false;
2069  }
2070  DEBUG(dbgs() << "Total number of unique destinations: "
2071        << Dests.size() << '\n'
2072        << "Total number of comparisons: " << numCmps << '\n');
2073
2074  // Compute span of values.
2075  const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
2076  const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
2077  APInt cmpRange = maxValue - minValue;
2078
2079  DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
2080               << "Low bound: " << minValue << '\n'
2081               << "High bound: " << maxValue << '\n');
2082
2083  if (cmpRange.uge(IntPtrBits) ||
2084      (!(Dests.size() == 1 && numCmps >= 3) &&
2085       !(Dests.size() == 2 && numCmps >= 5) &&
2086       !(Dests.size() >= 3 && numCmps >= 6)))
2087    return false;
2088
2089  DEBUG(dbgs() << "Emitting bit tests\n");
2090  APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
2091
2092  // Optimize the case where all the case values fit in a
2093  // word without having to subtract minValue. In this case,
2094  // we can optimize away the subtraction.
2095  if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) {
2096    cmpRange = maxValue;
2097  } else {
2098    lowBound = minValue;
2099  }
2100
2101  CaseBitsVector CasesBits;
2102  unsigned i, count = 0;
2103
2104  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2105    MachineBasicBlock* Dest = I->BB;
2106    for (i = 0; i < count; ++i)
2107      if (Dest == CasesBits[i].BB)
2108        break;
2109
2110    if (i == count) {
2111      assert((count < 3) && "Too much destinations to test!");
2112      CasesBits.push_back(CaseBits(0, Dest, 0));
2113      count++;
2114    }
2115
2116    const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
2117    const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
2118
2119    uint64_t lo = (lowValue - lowBound).getZExtValue();
2120    uint64_t hi = (highValue - lowBound).getZExtValue();
2121
2122    for (uint64_t j = lo; j <= hi; j++) {
2123      CasesBits[i].Mask |=  1ULL << j;
2124      CasesBits[i].Bits++;
2125    }
2126
2127  }
2128  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2129
2130  BitTestInfo BTC;
2131
2132  // Figure out which block is immediately after the current one.
2133  MachineFunction::iterator BBI = CR.CaseBB;
2134  ++BBI;
2135
2136  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2137
2138  DEBUG(dbgs() << "Cases:\n");
2139  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2140    DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
2141                 << ", Bits: " << CasesBits[i].Bits
2142                 << ", BB: " << CasesBits[i].BB << '\n');
2143
2144    MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2145    CurMF->insert(BBI, CaseBB);
2146    BTC.push_back(BitTestCase(CasesBits[i].Mask,
2147                              CaseBB,
2148                              CasesBits[i].BB));
2149
2150    // Put SV in a virtual register to make it available from the new blocks.
2151    ExportFromCurrentBlock(SV);
2152  }
2153
2154  BitTestBlock BTB(lowBound, cmpRange, SV,
2155                   -1U, (CR.CaseBB == SwitchBB),
2156                   CR.CaseBB, Default, BTC);
2157
2158  if (CR.CaseBB == SwitchBB)
2159    visitBitTestHeader(BTB, SwitchBB);
2160
2161  BitTestCases.push_back(BTB);
2162
2163  return true;
2164}
2165
2166/// Clusterify - Transform simple list of Cases into list of CaseRange's
2167size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
2168                                       const SwitchInst& SI) {
2169  size_t numCmps = 0;
2170
2171  // Start with "simple" cases
2172  for (size_t i = 1; i < SI.getNumSuccessors(); ++i) {
2173    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
2174    Cases.push_back(Case(SI.getSuccessorValue(i),
2175                         SI.getSuccessorValue(i),
2176                         SMBB));
2177  }
2178  std::sort(Cases.begin(), Cases.end(), CaseCmp());
2179
2180  // Merge case into clusters
2181  if (Cases.size() >= 2)
2182    // Must recompute end() each iteration because it may be
2183    // invalidated by erase if we hold on to it
2184    for (CaseItr I = Cases.begin(), J = ++(Cases.begin()); J != Cases.end(); ) {
2185      const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
2186      const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
2187      MachineBasicBlock* nextBB = J->BB;
2188      MachineBasicBlock* currentBB = I->BB;
2189
2190      // If the two neighboring cases go to the same destination, merge them
2191      // into a single case.
2192      if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
2193        I->High = J->High;
2194        J = Cases.erase(J);
2195      } else {
2196        I = J++;
2197      }
2198    }
2199
2200  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
2201    if (I->Low != I->High)
2202      // A range counts double, since it requires two compares.
2203      ++numCmps;
2204  }
2205
2206  return numCmps;
2207}
2208
2209void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
2210  MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
2211
2212  // Figure out which block is immediately after the current one.
2213  MachineBasicBlock *NextBlock = 0;
2214  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2215
2216  // If there is only the default destination, branch to it if it is not the
2217  // next basic block.  Otherwise, just fall through.
2218  if (SI.getNumOperands() == 2) {
2219    // Update machine-CFG edges.
2220
2221    // If this is not a fall-through branch, emit the branch.
2222    SwitchMBB->addSuccessor(Default);
2223    if (Default != NextBlock)
2224      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
2225                              MVT::Other, getControlRoot(),
2226                              DAG.getBasicBlock(Default)));
2227
2228    return;
2229  }
2230
2231  // If there are any non-default case statements, create a vector of Cases
2232  // representing each one, and sort the vector so that we can efficiently
2233  // create a binary search tree from them.
2234  CaseVector Cases;
2235  size_t numCmps = Clusterify(Cases, SI);
2236  DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2237               << ". Total compares: " << numCmps << '\n');
2238  numCmps = 0;
2239
2240  // Get the Value to be switched on and default basic blocks, which will be
2241  // inserted into CaseBlock records, representing basic blocks in the binary
2242  // search tree.
2243  const Value *SV = SI.getOperand(0);
2244
2245  // Push the initial CaseRec onto the worklist
2246  CaseRecVector WorkList;
2247  WorkList.push_back(CaseRec(SwitchMBB,0,0,
2248                             CaseRange(Cases.begin(),Cases.end())));
2249
2250  while (!WorkList.empty()) {
2251    // Grab a record representing a case range to process off the worklist
2252    CaseRec CR = WorkList.back();
2253    WorkList.pop_back();
2254
2255    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2256      continue;
2257
2258    // If the range has few cases (two or less) emit a series of specific
2259    // tests.
2260    if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
2261      continue;
2262
2263    // If the switch has more than 5 blocks, and at least 40% dense, and the
2264    // target supports indirect branches, then emit a jump table rather than
2265    // lowering the switch to a binary tree of conditional branches.
2266    if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2267      continue;
2268
2269    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2270    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2271    handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
2272  }
2273}
2274
2275void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2276  MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2277
2278  // Update machine-CFG edges with unique successors.
2279  SmallVector<BasicBlock*, 32> succs;
2280  succs.reserve(I.getNumSuccessors());
2281  for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i)
2282    succs.push_back(I.getSuccessor(i));
2283  array_pod_sort(succs.begin(), succs.end());
2284  succs.erase(std::unique(succs.begin(), succs.end()), succs.end());
2285  for (unsigned i = 0, e = succs.size(); i != e; ++i)
2286    IndirectBrMBB->addSuccessor(FuncInfo.MBBMap[succs[i]]);
2287
2288  DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(),
2289                          MVT::Other, getControlRoot(),
2290                          getValue(I.getAddress())));
2291}
2292
2293void SelectionDAGBuilder::visitFSub(const User &I) {
2294  // -0.0 - X --> fneg
2295  const Type *Ty = I.getType();
2296  if (Ty->isVectorTy()) {
2297    if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) {
2298      const VectorType *DestTy = cast<VectorType>(I.getType());
2299      const Type *ElTy = DestTy->getElementType();
2300      unsigned VL = DestTy->getNumElements();
2301      std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy));
2302      Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size());
2303      if (CV == CNZ) {
2304        SDValue Op2 = getValue(I.getOperand(1));
2305        setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2306                                 Op2.getValueType(), Op2));
2307        return;
2308      }
2309    }
2310  }
2311
2312  if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
2313    if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) {
2314      SDValue Op2 = getValue(I.getOperand(1));
2315      setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2316                               Op2.getValueType(), Op2));
2317      return;
2318    }
2319
2320  visitBinary(I, ISD::FSUB);
2321}
2322
2323void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2324  SDValue Op1 = getValue(I.getOperand(0));
2325  SDValue Op2 = getValue(I.getOperand(1));
2326  setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(),
2327                           Op1.getValueType(), Op1, Op2));
2328}
2329
2330void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2331  SDValue Op1 = getValue(I.getOperand(0));
2332  SDValue Op2 = getValue(I.getOperand(1));
2333  if (!I.getType()->isVectorTy() &&
2334      Op2.getValueType() != TLI.getShiftAmountTy()) {
2335    // If the operand is smaller than the shift count type, promote it.
2336    EVT PTy = TLI.getPointerTy();
2337    EVT STy = TLI.getShiftAmountTy();
2338    if (STy.bitsGT(Op2.getValueType()))
2339      Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(),
2340                        TLI.getShiftAmountTy(), Op2);
2341    // If the operand is larger than the shift count type but the shift
2342    // count type has enough bits to represent any shift value, truncate
2343    // it now. This is a common case and it exposes the truncate to
2344    // optimization early.
2345    else if (STy.getSizeInBits() >=
2346             Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2347      Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2348                        TLI.getShiftAmountTy(), Op2);
2349    // Otherwise we'll need to temporarily settle for some other
2350    // convenient type; type legalization will make adjustments as
2351    // needed.
2352    else if (PTy.bitsLT(Op2.getValueType()))
2353      Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2354                        TLI.getPointerTy(), Op2);
2355    else if (PTy.bitsGT(Op2.getValueType()))
2356      Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(),
2357                        TLI.getPointerTy(), Op2);
2358  }
2359
2360  setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(),
2361                           Op1.getValueType(), Op1, Op2));
2362}
2363
2364void SelectionDAGBuilder::visitICmp(const User &I) {
2365  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2366  if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2367    predicate = IC->getPredicate();
2368  else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2369    predicate = ICmpInst::Predicate(IC->getPredicate());
2370  SDValue Op1 = getValue(I.getOperand(0));
2371  SDValue Op2 = getValue(I.getOperand(1));
2372  ISD::CondCode Opcode = getICmpCondCode(predicate);
2373
2374  EVT DestVT = TLI.getValueType(I.getType());
2375  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode));
2376}
2377
2378void SelectionDAGBuilder::visitFCmp(const User &I) {
2379  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2380  if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2381    predicate = FC->getPredicate();
2382  else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2383    predicate = FCmpInst::Predicate(FC->getPredicate());
2384  SDValue Op1 = getValue(I.getOperand(0));
2385  SDValue Op2 = getValue(I.getOperand(1));
2386  ISD::CondCode Condition = getFCmpCondCode(predicate);
2387  EVT DestVT = TLI.getValueType(I.getType());
2388  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition));
2389}
2390
2391void SelectionDAGBuilder::visitSelect(const User &I) {
2392  SmallVector<EVT, 4> ValueVTs;
2393  ComputeValueVTs(TLI, I.getType(), ValueVTs);
2394  unsigned NumValues = ValueVTs.size();
2395  if (NumValues == 0) return;
2396
2397  SmallVector<SDValue, 4> Values(NumValues);
2398  SDValue Cond     = getValue(I.getOperand(0));
2399  SDValue TrueVal  = getValue(I.getOperand(1));
2400  SDValue FalseVal = getValue(I.getOperand(2));
2401
2402  for (unsigned i = 0; i != NumValues; ++i)
2403    Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(),
2404                          TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2405                            Cond,
2406                            SDValue(TrueVal.getNode(),
2407                                    TrueVal.getResNo() + i),
2408                            SDValue(FalseVal.getNode(),
2409                                    FalseVal.getResNo() + i));
2410
2411  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2412                           DAG.getVTList(&ValueVTs[0], NumValues),
2413                           &Values[0], NumValues));
2414}
2415
2416void SelectionDAGBuilder::visitTrunc(const User &I) {
2417  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2418  SDValue N = getValue(I.getOperand(0));
2419  EVT DestVT = TLI.getValueType(I.getType());
2420  setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N));
2421}
2422
2423void SelectionDAGBuilder::visitZExt(const User &I) {
2424  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2425  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2426  SDValue N = getValue(I.getOperand(0));
2427  EVT DestVT = TLI.getValueType(I.getType());
2428  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N));
2429}
2430
2431void SelectionDAGBuilder::visitSExt(const User &I) {
2432  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2433  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2434  SDValue N = getValue(I.getOperand(0));
2435  EVT DestVT = TLI.getValueType(I.getType());
2436  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N));
2437}
2438
2439void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2440  // FPTrunc is never a no-op cast, no need to check
2441  SDValue N = getValue(I.getOperand(0));
2442  EVT DestVT = TLI.getValueType(I.getType());
2443  setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(),
2444                           DestVT, N, DAG.getIntPtrConstant(0)));
2445}
2446
2447void SelectionDAGBuilder::visitFPExt(const User &I){
2448  // FPTrunc is never a no-op cast, no need to check
2449  SDValue N = getValue(I.getOperand(0));
2450  EVT DestVT = TLI.getValueType(I.getType());
2451  setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N));
2452}
2453
2454void SelectionDAGBuilder::visitFPToUI(const User &I) {
2455  // FPToUI is never a no-op cast, no need to check
2456  SDValue N = getValue(I.getOperand(0));
2457  EVT DestVT = TLI.getValueType(I.getType());
2458  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N));
2459}
2460
2461void SelectionDAGBuilder::visitFPToSI(const User &I) {
2462  // FPToSI is never a no-op cast, no need to check
2463  SDValue N = getValue(I.getOperand(0));
2464  EVT DestVT = TLI.getValueType(I.getType());
2465  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N));
2466}
2467
2468void SelectionDAGBuilder::visitUIToFP(const User &I) {
2469  // UIToFP is never a no-op cast, no need to check
2470  SDValue N = getValue(I.getOperand(0));
2471  EVT DestVT = TLI.getValueType(I.getType());
2472  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N));
2473}
2474
2475void SelectionDAGBuilder::visitSIToFP(const User &I){
2476  // SIToFP is never a no-op cast, no need to check
2477  SDValue N = getValue(I.getOperand(0));
2478  EVT DestVT = TLI.getValueType(I.getType());
2479  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N));
2480}
2481
2482void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2483  // What to do depends on the size of the integer and the size of the pointer.
2484  // We can either truncate, zero extend, or no-op, accordingly.
2485  SDValue N = getValue(I.getOperand(0));
2486  EVT DestVT = TLI.getValueType(I.getType());
2487  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2488}
2489
2490void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2491  // What to do depends on the size of the integer and the size of the pointer.
2492  // We can either truncate, zero extend, or no-op, accordingly.
2493  SDValue N = getValue(I.getOperand(0));
2494  EVT DestVT = TLI.getValueType(I.getType());
2495  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2496}
2497
2498void SelectionDAGBuilder::visitBitCast(const User &I) {
2499  SDValue N = getValue(I.getOperand(0));
2500  EVT DestVT = TLI.getValueType(I.getType());
2501
2502  // BitCast assures us that source and destination are the same size so this is
2503  // either a BIT_CONVERT or a no-op.
2504  if (DestVT != N.getValueType())
2505    setValue(&I, DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
2506                             DestVT, N)); // convert types.
2507  else
2508    setValue(&I, N);            // noop cast.
2509}
2510
2511void SelectionDAGBuilder::visitInsertElement(const User &I) {
2512  SDValue InVec = getValue(I.getOperand(0));
2513  SDValue InVal = getValue(I.getOperand(1));
2514  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2515                              TLI.getPointerTy(),
2516                              getValue(I.getOperand(2)));
2517  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(),
2518                           TLI.getValueType(I.getType()),
2519                           InVec, InVal, InIdx));
2520}
2521
2522void SelectionDAGBuilder::visitExtractElement(const User &I) {
2523  SDValue InVec = getValue(I.getOperand(0));
2524  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2525                              TLI.getPointerTy(),
2526                              getValue(I.getOperand(1)));
2527  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2528                           TLI.getValueType(I.getType()), InVec, InIdx));
2529}
2530
2531// Utility for visitShuffleVector - Returns true if the mask is mask starting
2532// from SIndx and increasing to the element length (undefs are allowed).
2533static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) {
2534  unsigned MaskNumElts = Mask.size();
2535  for (unsigned i = 0; i != MaskNumElts; ++i)
2536    if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx)))
2537      return false;
2538  return true;
2539}
2540
2541void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2542  SmallVector<int, 8> Mask;
2543  SDValue Src1 = getValue(I.getOperand(0));
2544  SDValue Src2 = getValue(I.getOperand(1));
2545
2546  // Convert the ConstantVector mask operand into an array of ints, with -1
2547  // representing undef values.
2548  SmallVector<Constant*, 8> MaskElts;
2549  cast<Constant>(I.getOperand(2))->getVectorElements(MaskElts);
2550  unsigned MaskNumElts = MaskElts.size();
2551  for (unsigned i = 0; i != MaskNumElts; ++i) {
2552    if (isa<UndefValue>(MaskElts[i]))
2553      Mask.push_back(-1);
2554    else
2555      Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue());
2556  }
2557
2558  EVT VT = TLI.getValueType(I.getType());
2559  EVT SrcVT = Src1.getValueType();
2560  unsigned SrcNumElts = SrcVT.getVectorNumElements();
2561
2562  if (SrcNumElts == MaskNumElts) {
2563    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2564                                      &Mask[0]));
2565    return;
2566  }
2567
2568  // Normalize the shuffle vector since mask and vector length don't match.
2569  if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2570    // Mask is longer than the source vectors and is a multiple of the source
2571    // vectors.  We can use concatenate vector to make the mask and vectors
2572    // lengths match.
2573    if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) {
2574      // The shuffle is concatenating two vectors together.
2575      setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2576                               VT, Src1, Src2));
2577      return;
2578    }
2579
2580    // Pad both vectors with undefs to make them the same length as the mask.
2581    unsigned NumConcat = MaskNumElts / SrcNumElts;
2582    bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2583    bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2584    SDValue UndefVal = DAG.getUNDEF(SrcVT);
2585
2586    SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2587    SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2588    MOps1[0] = Src1;
2589    MOps2[0] = Src2;
2590
2591    Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2592                                                  getCurDebugLoc(), VT,
2593                                                  &MOps1[0], NumConcat);
2594    Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2595                                                  getCurDebugLoc(), VT,
2596                                                  &MOps2[0], NumConcat);
2597
2598    // Readjust mask for new input vector length.
2599    SmallVector<int, 8> MappedOps;
2600    for (unsigned i = 0; i != MaskNumElts; ++i) {
2601      int Idx = Mask[i];
2602      if (Idx < (int)SrcNumElts)
2603        MappedOps.push_back(Idx);
2604      else
2605        MappedOps.push_back(Idx + MaskNumElts - SrcNumElts);
2606    }
2607
2608    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2609                                      &MappedOps[0]));
2610    return;
2611  }
2612
2613  if (SrcNumElts > MaskNumElts) {
2614    // Analyze the access pattern of the vector to see if we can extract
2615    // two subvectors and do the shuffle. The analysis is done by calculating
2616    // the range of elements the mask access on both vectors.
2617    int MinRange[2] = { SrcNumElts+1, SrcNumElts+1};
2618    int MaxRange[2] = {-1, -1};
2619
2620    for (unsigned i = 0; i != MaskNumElts; ++i) {
2621      int Idx = Mask[i];
2622      int Input = 0;
2623      if (Idx < 0)
2624        continue;
2625
2626      if (Idx >= (int)SrcNumElts) {
2627        Input = 1;
2628        Idx -= SrcNumElts;
2629      }
2630      if (Idx > MaxRange[Input])
2631        MaxRange[Input] = Idx;
2632      if (Idx < MinRange[Input])
2633        MinRange[Input] = Idx;
2634    }
2635
2636    // Check if the access is smaller than the vector size and can we find
2637    // a reasonable extract index.
2638    int RangeUse[2] = { 2, 2 };  // 0 = Unused, 1 = Extract, 2 = Can not
2639                                 // Extract.
2640    int StartIdx[2];  // StartIdx to extract from
2641    for (int Input=0; Input < 2; ++Input) {
2642      if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) {
2643        RangeUse[Input] = 0; // Unused
2644        StartIdx[Input] = 0;
2645      } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) {
2646        // Fits within range but we should see if we can find a good
2647        // start index that is a multiple of the mask length.
2648        if (MaxRange[Input] < (int)MaskNumElts) {
2649          RangeUse[Input] = 1; // Extract from beginning of the vector
2650          StartIdx[Input] = 0;
2651        } else {
2652          StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2653          if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2654              StartIdx[Input] + MaskNumElts < SrcNumElts)
2655            RangeUse[Input] = 1; // Extract from a multiple of the mask length.
2656        }
2657      }
2658    }
2659
2660    if (RangeUse[0] == 0 && RangeUse[1] == 0) {
2661      setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
2662      return;
2663    }
2664    else if (RangeUse[0] < 2 && RangeUse[1] < 2) {
2665      // Extract appropriate subvector and generate a vector shuffle
2666      for (int Input=0; Input < 2; ++Input) {
2667        SDValue &Src = Input == 0 ? Src1 : Src2;
2668        if (RangeUse[Input] == 0)
2669          Src = DAG.getUNDEF(VT);
2670        else
2671          Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT,
2672                            Src, DAG.getIntPtrConstant(StartIdx[Input]));
2673      }
2674
2675      // Calculate new mask.
2676      SmallVector<int, 8> MappedOps;
2677      for (unsigned i = 0; i != MaskNumElts; ++i) {
2678        int Idx = Mask[i];
2679        if (Idx < 0)
2680          MappedOps.push_back(Idx);
2681        else if (Idx < (int)SrcNumElts)
2682          MappedOps.push_back(Idx - StartIdx[0]);
2683        else
2684          MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts);
2685      }
2686
2687      setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2688                                        &MappedOps[0]));
2689      return;
2690    }
2691  }
2692
2693  // We can't use either concat vectors or extract subvectors so fall back to
2694  // replacing the shuffle with extract and build vector.
2695  // to insert and build vector.
2696  EVT EltVT = VT.getVectorElementType();
2697  EVT PtrVT = TLI.getPointerTy();
2698  SmallVector<SDValue,8> Ops;
2699  for (unsigned i = 0; i != MaskNumElts; ++i) {
2700    if (Mask[i] < 0) {
2701      Ops.push_back(DAG.getUNDEF(EltVT));
2702    } else {
2703      int Idx = Mask[i];
2704      SDValue Res;
2705
2706      if (Idx < (int)SrcNumElts)
2707        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2708                          EltVT, Src1, DAG.getConstant(Idx, PtrVT));
2709      else
2710        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2711                          EltVT, Src2,
2712                          DAG.getConstant(Idx - SrcNumElts, PtrVT));
2713
2714      Ops.push_back(Res);
2715    }
2716  }
2717
2718  setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
2719                           VT, &Ops[0], Ops.size()));
2720}
2721
2722void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
2723  const Value *Op0 = I.getOperand(0);
2724  const Value *Op1 = I.getOperand(1);
2725  const Type *AggTy = I.getType();
2726  const Type *ValTy = Op1->getType();
2727  bool IntoUndef = isa<UndefValue>(Op0);
2728  bool FromUndef = isa<UndefValue>(Op1);
2729
2730  unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
2731                                            I.idx_begin(), I.idx_end());
2732
2733  SmallVector<EVT, 4> AggValueVTs;
2734  ComputeValueVTs(TLI, AggTy, AggValueVTs);
2735  SmallVector<EVT, 4> ValValueVTs;
2736  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2737
2738  unsigned NumAggValues = AggValueVTs.size();
2739  unsigned NumValValues = ValValueVTs.size();
2740  SmallVector<SDValue, 4> Values(NumAggValues);
2741
2742  SDValue Agg = getValue(Op0);
2743  SDValue Val = getValue(Op1);
2744  unsigned i = 0;
2745  // Copy the beginning value(s) from the original aggregate.
2746  for (; i != LinearIndex; ++i)
2747    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2748                SDValue(Agg.getNode(), Agg.getResNo() + i);
2749  // Copy values from the inserted value(s).
2750  for (; i != LinearIndex + NumValValues; ++i)
2751    Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2752                SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
2753  // Copy remaining value(s) from the original aggregate.
2754  for (; i != NumAggValues; ++i)
2755    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2756                SDValue(Agg.getNode(), Agg.getResNo() + i);
2757
2758  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2759                           DAG.getVTList(&AggValueVTs[0], NumAggValues),
2760                           &Values[0], NumAggValues));
2761}
2762
2763void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
2764  const Value *Op0 = I.getOperand(0);
2765  const Type *AggTy = Op0->getType();
2766  const Type *ValTy = I.getType();
2767  bool OutOfUndef = isa<UndefValue>(Op0);
2768
2769  unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
2770                                            I.idx_begin(), I.idx_end());
2771
2772  SmallVector<EVT, 4> ValValueVTs;
2773  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2774
2775  unsigned NumValValues = ValValueVTs.size();
2776  SmallVector<SDValue, 4> Values(NumValValues);
2777
2778  SDValue Agg = getValue(Op0);
2779  // Copy out the selected value(s).
2780  for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
2781    Values[i - LinearIndex] =
2782      OutOfUndef ?
2783        DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
2784        SDValue(Agg.getNode(), Agg.getResNo() + i);
2785
2786  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2787                           DAG.getVTList(&ValValueVTs[0], NumValValues),
2788                           &Values[0], NumValValues));
2789}
2790
2791void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
2792  SDValue N = getValue(I.getOperand(0));
2793  const Type *Ty = I.getOperand(0)->getType();
2794
2795  for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
2796       OI != E; ++OI) {
2797    const Value *Idx = *OI;
2798    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2799      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2800      if (Field) {
2801        // N = N + Offset
2802        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
2803        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2804                        DAG.getIntPtrConstant(Offset));
2805      }
2806
2807      Ty = StTy->getElementType(Field);
2808    } else if (const UnionType *UnTy = dyn_cast<UnionType>(Ty)) {
2809      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2810
2811      // Offset canonically 0 for unions, but type changes
2812      Ty = UnTy->getElementType(Field);
2813    } else {
2814      Ty = cast<SequentialType>(Ty)->getElementType();
2815
2816      // If this is a constant subscript, handle it quickly.
2817      if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2818        if (CI->isZero()) continue;
2819        uint64_t Offs =
2820            TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
2821        SDValue OffsVal;
2822        EVT PTy = TLI.getPointerTy();
2823        unsigned PtrBits = PTy.getSizeInBits();
2824        if (PtrBits < 64)
2825          OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2826                                TLI.getPointerTy(),
2827                                DAG.getConstant(Offs, MVT::i64));
2828        else
2829          OffsVal = DAG.getIntPtrConstant(Offs);
2830
2831        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2832                        OffsVal);
2833        continue;
2834      }
2835
2836      // N = N + Idx * ElementSize;
2837      APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
2838                                TD->getTypeAllocSize(Ty));
2839      SDValue IdxN = getValue(Idx);
2840
2841      // If the index is smaller or larger than intptr_t, truncate or extend
2842      // it.
2843      IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType());
2844
2845      // If this is a multiply by a power of two, turn it into a shl
2846      // immediately.  This is a very common case.
2847      if (ElementSize != 1) {
2848        if (ElementSize.isPowerOf2()) {
2849          unsigned Amt = ElementSize.logBase2();
2850          IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(),
2851                             N.getValueType(), IdxN,
2852                             DAG.getConstant(Amt, TLI.getPointerTy()));
2853        } else {
2854          SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy());
2855          IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(),
2856                             N.getValueType(), IdxN, Scale);
2857        }
2858      }
2859
2860      N = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2861                      N.getValueType(), N, IdxN);
2862    }
2863  }
2864
2865  setValue(&I, N);
2866}
2867
2868void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
2869  // If this is a fixed sized alloca in the entry block of the function,
2870  // allocate it statically on the stack.
2871  if (FuncInfo.StaticAllocaMap.count(&I))
2872    return;   // getValue will auto-populate this.
2873
2874  const Type *Ty = I.getAllocatedType();
2875  uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
2876  unsigned Align =
2877    std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
2878             I.getAlignment());
2879
2880  SDValue AllocSize = getValue(I.getArraySize());
2881
2882  EVT IntPtr = TLI.getPointerTy();
2883  if (AllocSize.getValueType() != IntPtr)
2884    AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr);
2885
2886  AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr,
2887                          AllocSize,
2888                          DAG.getConstant(TySize, IntPtr));
2889
2890  // Handle alignment.  If the requested alignment is less than or equal to
2891  // the stack alignment, ignore it.  If the size is greater than or equal to
2892  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
2893  unsigned StackAlign = TM.getFrameInfo()->getStackAlignment();
2894  if (Align <= StackAlign)
2895    Align = 0;
2896
2897  // Round the size of the allocation up to the stack alignment size
2898  // by add SA-1 to the size.
2899  AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2900                          AllocSize.getValueType(), AllocSize,
2901                          DAG.getIntPtrConstant(StackAlign-1));
2902
2903  // Mask out the low bits for alignment purposes.
2904  AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(),
2905                          AllocSize.getValueType(), AllocSize,
2906                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
2907
2908  SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
2909  SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
2910  SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(),
2911                            VTs, Ops, 3);
2912  setValue(&I, DSA);
2913  DAG.setRoot(DSA.getValue(1));
2914
2915  // Inform the Frame Information that we have just allocated a variable-sized
2916  // object.
2917  FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1);
2918}
2919
2920void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
2921  const Value *SV = I.getOperand(0);
2922  SDValue Ptr = getValue(SV);
2923
2924  const Type *Ty = I.getType();
2925
2926  bool isVolatile = I.isVolatile();
2927  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
2928  unsigned Alignment = I.getAlignment();
2929
2930  SmallVector<EVT, 4> ValueVTs;
2931  SmallVector<uint64_t, 4> Offsets;
2932  ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
2933  unsigned NumValues = ValueVTs.size();
2934  if (NumValues == 0)
2935    return;
2936
2937  SDValue Root;
2938  bool ConstantMemory = false;
2939  if (I.isVolatile())
2940    // Serialize volatile loads with other side effects.
2941    Root = getRoot();
2942  else if (AA->pointsToConstantMemory(SV)) {
2943    // Do not serialize (non-volatile) loads of constant memory with anything.
2944    Root = DAG.getEntryNode();
2945    ConstantMemory = true;
2946  } else {
2947    // Do not serialize non-volatile loads against each other.
2948    Root = DAG.getRoot();
2949  }
2950
2951  SmallVector<SDValue, 4> Values(NumValues);
2952  SmallVector<SDValue, 4> Chains(NumValues);
2953  EVT PtrVT = Ptr.getValueType();
2954  for (unsigned i = 0; i != NumValues; ++i) {
2955    SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2956                            PtrVT, Ptr,
2957                            DAG.getConstant(Offsets[i], PtrVT));
2958    SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root,
2959                            A, SV, Offsets[i], isVolatile,
2960                            isNonTemporal, Alignment);
2961
2962    Values[i] = L;
2963    Chains[i] = L.getValue(1);
2964  }
2965
2966  if (!ConstantMemory) {
2967    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
2968                                MVT::Other, &Chains[0], NumValues);
2969    if (isVolatile)
2970      DAG.setRoot(Chain);
2971    else
2972      PendingLoads.push_back(Chain);
2973  }
2974
2975  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2976                           DAG.getVTList(&ValueVTs[0], NumValues),
2977                           &Values[0], NumValues));
2978}
2979
2980void SelectionDAGBuilder::visitStore(const StoreInst &I) {
2981  const Value *SrcV = I.getOperand(0);
2982  const Value *PtrV = I.getOperand(1);
2983
2984  SmallVector<EVT, 4> ValueVTs;
2985  SmallVector<uint64_t, 4> Offsets;
2986  ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
2987  unsigned NumValues = ValueVTs.size();
2988  if (NumValues == 0)
2989    return;
2990
2991  // Get the lowered operands. Note that we do this after
2992  // checking if NumResults is zero, because with zero results
2993  // the operands won't have values in the map.
2994  SDValue Src = getValue(SrcV);
2995  SDValue Ptr = getValue(PtrV);
2996
2997  SDValue Root = getRoot();
2998  SmallVector<SDValue, 4> Chains(NumValues);
2999  EVT PtrVT = Ptr.getValueType();
3000  bool isVolatile = I.isVolatile();
3001  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3002  unsigned Alignment = I.getAlignment();
3003
3004  for (unsigned i = 0; i != NumValues; ++i) {
3005    SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr,
3006                              DAG.getConstant(Offsets[i], PtrVT));
3007    Chains[i] = DAG.getStore(Root, getCurDebugLoc(),
3008                             SDValue(Src.getNode(), Src.getResNo() + i),
3009                             Add, PtrV, Offsets[i], isVolatile,
3010                             isNonTemporal, Alignment);
3011  }
3012
3013  DAG.setRoot(DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3014                          MVT::Other, &Chains[0], NumValues));
3015}
3016
3017/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3018/// node.
3019void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3020                                               unsigned Intrinsic) {
3021  bool HasChain = !I.doesNotAccessMemory();
3022  bool OnlyLoad = HasChain && I.onlyReadsMemory();
3023
3024  // Build the operand list.
3025  SmallVector<SDValue, 8> Ops;
3026  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
3027    if (OnlyLoad) {
3028      // We don't need to serialize loads against other loads.
3029      Ops.push_back(DAG.getRoot());
3030    } else {
3031      Ops.push_back(getRoot());
3032    }
3033  }
3034
3035  // Info is set by getTgtMemInstrinsic
3036  TargetLowering::IntrinsicInfo Info;
3037  bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
3038
3039  // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3040  if (!IsTgtIntrinsic)
3041    Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
3042
3043  // Add all operands of the call to the operand list.
3044  for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
3045    SDValue Op = getValue(I.getArgOperand(i));
3046    assert(TLI.isTypeLegal(Op.getValueType()) &&
3047           "Intrinsic uses a non-legal type?");
3048    Ops.push_back(Op);
3049  }
3050
3051  SmallVector<EVT, 4> ValueVTs;
3052  ComputeValueVTs(TLI, I.getType(), ValueVTs);
3053#ifndef NDEBUG
3054  for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) {
3055    assert(TLI.isTypeLegal(ValueVTs[Val]) &&
3056           "Intrinsic uses a non-legal type?");
3057  }
3058#endif // NDEBUG
3059
3060  if (HasChain)
3061    ValueVTs.push_back(MVT::Other);
3062
3063  SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
3064
3065  // Create the node.
3066  SDValue Result;
3067  if (IsTgtIntrinsic) {
3068    // This is target intrinsic that touches memory
3069    Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(),
3070                                     VTs, &Ops[0], Ops.size(),
3071                                     Info.memVT, Info.ptrVal, Info.offset,
3072                                     Info.align, Info.vol,
3073                                     Info.readMem, Info.writeMem);
3074  } else if (!HasChain) {
3075    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
3076                         VTs, &Ops[0], Ops.size());
3077  } else if (!I.getType()->isVoidTy()) {
3078    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
3079                         VTs, &Ops[0], Ops.size());
3080  } else {
3081    Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(),
3082                         VTs, &Ops[0], Ops.size());
3083  }
3084
3085  if (HasChain) {
3086    SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3087    if (OnlyLoad)
3088      PendingLoads.push_back(Chain);
3089    else
3090      DAG.setRoot(Chain);
3091  }
3092
3093  if (!I.getType()->isVoidTy()) {
3094    if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3095      EVT VT = TLI.getValueType(PTy);
3096      Result = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), VT, Result);
3097    }
3098
3099    setValue(&I, Result);
3100  }
3101}
3102
3103/// GetSignificand - Get the significand and build it into a floating-point
3104/// number with exponent of 1:
3105///
3106///   Op = (Op & 0x007fffff) | 0x3f800000;
3107///
3108/// where Op is the hexidecimal representation of floating point value.
3109static SDValue
3110GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) {
3111  SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3112                           DAG.getConstant(0x007fffff, MVT::i32));
3113  SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3114                           DAG.getConstant(0x3f800000, MVT::i32));
3115  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t2);
3116}
3117
3118/// GetExponent - Get the exponent:
3119///
3120///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3121///
3122/// where Op is the hexidecimal representation of floating point value.
3123static SDValue
3124GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3125            DebugLoc dl) {
3126  SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3127                           DAG.getConstant(0x7f800000, MVT::i32));
3128  SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3129                           DAG.getConstant(23, TLI.getPointerTy()));
3130  SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3131                           DAG.getConstant(127, MVT::i32));
3132  return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3133}
3134
3135/// getF32Constant - Get 32-bit floating point constant.
3136static SDValue
3137getF32Constant(SelectionDAG &DAG, unsigned Flt) {
3138  return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32);
3139}
3140
3141/// Inlined utility function to implement binary input atomic intrinsics for
3142/// visitIntrinsicCall: I is a call instruction
3143///                     Op is the associated NodeType for I
3144const char *
3145SelectionDAGBuilder::implVisitBinaryAtomic(const CallInst& I,
3146                                           ISD::NodeType Op) {
3147  SDValue Root = getRoot();
3148  SDValue L =
3149    DAG.getAtomic(Op, getCurDebugLoc(),
3150                  getValue(I.getArgOperand(1)).getValueType().getSimpleVT(),
3151                  Root,
3152                  getValue(I.getArgOperand(0)),
3153                  getValue(I.getArgOperand(1)),
3154                  I.getArgOperand(0));
3155  setValue(&I, L);
3156  DAG.setRoot(L.getValue(1));
3157  return 0;
3158}
3159
3160// implVisitAluOverflow - Lower arithmetic overflow instrinsics.
3161const char *
3162SelectionDAGBuilder::implVisitAluOverflow(const CallInst &I, ISD::NodeType Op) {
3163  SDValue Op1 = getValue(I.getArgOperand(0));
3164  SDValue Op2 = getValue(I.getArgOperand(1));
3165
3166  SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
3167  setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2));
3168  return 0;
3169}
3170
3171/// visitExp - Lower an exp intrinsic. Handles the special sequences for
3172/// limited-precision mode.
3173void
3174SelectionDAGBuilder::visitExp(const CallInst &I) {
3175  SDValue result;
3176  DebugLoc dl = getCurDebugLoc();
3177
3178  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3179      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3180    SDValue Op = getValue(I.getArgOperand(0));
3181
3182    // Put the exponent in the right bit position for later addition to the
3183    // final result:
3184    //
3185    //   #define LOG2OFe 1.4426950f
3186    //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3187    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3188                             getF32Constant(DAG, 0x3fb8aa3b));
3189    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3190
3191    //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3192    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3193    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3194
3195    //   IntegerPartOfX <<= 23;
3196    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3197                                 DAG.getConstant(23, TLI.getPointerTy()));
3198
3199    if (LimitFloatPrecision <= 6) {
3200      // For floating-point precision of 6:
3201      //
3202      //   TwoToFractionalPartOfX =
3203      //     0.997535578f +
3204      //       (0.735607626f + 0.252464424f * x) * x;
3205      //
3206      // error 0.0144103317, which is 6 bits
3207      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3208                               getF32Constant(DAG, 0x3e814304));
3209      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3210                               getF32Constant(DAG, 0x3f3c50c8));
3211      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3212      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3213                               getF32Constant(DAG, 0x3f7f5e7e));
3214      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t5);
3215
3216      // Add the exponent into the result in integer domain.
3217      SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3218                               TwoToFracPartOfX, IntegerPartOfX);
3219
3220      result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t6);
3221    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3222      // For floating-point precision of 12:
3223      //
3224      //   TwoToFractionalPartOfX =
3225      //     0.999892986f +
3226      //       (0.696457318f +
3227      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3228      //
3229      // 0.000107046256 error, which is 13 to 14 bits
3230      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3231                               getF32Constant(DAG, 0x3da235e3));
3232      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3233                               getF32Constant(DAG, 0x3e65b8f3));
3234      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3235      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3236                               getF32Constant(DAG, 0x3f324b07));
3237      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3238      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3239                               getF32Constant(DAG, 0x3f7ff8fd));
3240      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t7);
3241
3242      // Add the exponent into the result in integer domain.
3243      SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3244                               TwoToFracPartOfX, IntegerPartOfX);
3245
3246      result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t8);
3247    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3248      // For floating-point precision of 18:
3249      //
3250      //   TwoToFractionalPartOfX =
3251      //     0.999999982f +
3252      //       (0.693148872f +
3253      //         (0.240227044f +
3254      //           (0.554906021e-1f +
3255      //             (0.961591928e-2f +
3256      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3257      //
3258      // error 2.47208000*10^(-7), which is better than 18 bits
3259      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3260                               getF32Constant(DAG, 0x3924b03e));
3261      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3262                               getF32Constant(DAG, 0x3ab24b87));
3263      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3264      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3265                               getF32Constant(DAG, 0x3c1d8c17));
3266      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3267      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3268                               getF32Constant(DAG, 0x3d634a1d));
3269      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3270      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3271                               getF32Constant(DAG, 0x3e75fe14));
3272      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3273      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3274                                getF32Constant(DAG, 0x3f317234));
3275      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3276      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3277                                getF32Constant(DAG, 0x3f800000));
3278      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,
3279                                             MVT::i32, t13);
3280
3281      // Add the exponent into the result in integer domain.
3282      SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3283                                TwoToFracPartOfX, IntegerPartOfX);
3284
3285      result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t14);
3286    }
3287  } else {
3288    // No special expansion.
3289    result = DAG.getNode(ISD::FEXP, dl,
3290                         getValue(I.getArgOperand(0)).getValueType(),
3291                         getValue(I.getArgOperand(0)));
3292  }
3293
3294  setValue(&I, result);
3295}
3296
3297/// visitLog - Lower a log intrinsic. Handles the special sequences for
3298/// limited-precision mode.
3299void
3300SelectionDAGBuilder::visitLog(const CallInst &I) {
3301  SDValue result;
3302  DebugLoc dl = getCurDebugLoc();
3303
3304  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3305      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3306    SDValue Op = getValue(I.getArgOperand(0));
3307    SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
3308
3309    // Scale the exponent by log(2) [0.69314718f].
3310    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3311    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3312                                        getF32Constant(DAG, 0x3f317218));
3313
3314    // Get the significand and build it into a floating-point number with
3315    // exponent of 1.
3316    SDValue X = GetSignificand(DAG, Op1, dl);
3317
3318    if (LimitFloatPrecision <= 6) {
3319      // For floating-point precision of 6:
3320      //
3321      //   LogofMantissa =
3322      //     -1.1609546f +
3323      //       (1.4034025f - 0.23903021f * x) * x;
3324      //
3325      // error 0.0034276066, which is better than 8 bits
3326      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3327                               getF32Constant(DAG, 0xbe74c456));
3328      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3329                               getF32Constant(DAG, 0x3fb3a2b1));
3330      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3331      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3332                                          getF32Constant(DAG, 0x3f949a29));
3333
3334      result = DAG.getNode(ISD::FADD, dl,
3335                           MVT::f32, LogOfExponent, LogOfMantissa);
3336    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3337      // For floating-point precision of 12:
3338      //
3339      //   LogOfMantissa =
3340      //     -1.7417939f +
3341      //       (2.8212026f +
3342      //         (-1.4699568f +
3343      //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3344      //
3345      // error 0.000061011436, which is 14 bits
3346      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3347                               getF32Constant(DAG, 0xbd67b6d6));
3348      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3349                               getF32Constant(DAG, 0x3ee4f4b8));
3350      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3351      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3352                               getF32Constant(DAG, 0x3fbc278b));
3353      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3354      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3355                               getF32Constant(DAG, 0x40348e95));
3356      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3357      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3358                                          getF32Constant(DAG, 0x3fdef31a));
3359
3360      result = DAG.getNode(ISD::FADD, dl,
3361                           MVT::f32, LogOfExponent, LogOfMantissa);
3362    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3363      // For floating-point precision of 18:
3364      //
3365      //   LogOfMantissa =
3366      //     -2.1072184f +
3367      //       (4.2372794f +
3368      //         (-3.7029485f +
3369      //           (2.2781945f +
3370      //             (-0.87823314f +
3371      //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3372      //
3373      // error 0.0000023660568, which is better than 18 bits
3374      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3375                               getF32Constant(DAG, 0xbc91e5ac));
3376      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3377                               getF32Constant(DAG, 0x3e4350aa));
3378      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3379      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3380                               getF32Constant(DAG, 0x3f60d3e3));
3381      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3382      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3383                               getF32Constant(DAG, 0x4011cdf0));
3384      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3385      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3386                               getF32Constant(DAG, 0x406cfd1c));
3387      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3388      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3389                               getF32Constant(DAG, 0x408797cb));
3390      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3391      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3392                                          getF32Constant(DAG, 0x4006dcab));
3393
3394      result = DAG.getNode(ISD::FADD, dl,
3395                           MVT::f32, LogOfExponent, LogOfMantissa);
3396    }
3397  } else {
3398    // No special expansion.
3399    result = DAG.getNode(ISD::FLOG, dl,
3400                         getValue(I.getArgOperand(0)).getValueType(),
3401                         getValue(I.getArgOperand(0)));
3402  }
3403
3404  setValue(&I, result);
3405}
3406
3407/// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for
3408/// limited-precision mode.
3409void
3410SelectionDAGBuilder::visitLog2(const CallInst &I) {
3411  SDValue result;
3412  DebugLoc dl = getCurDebugLoc();
3413
3414  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3415      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3416    SDValue Op = getValue(I.getArgOperand(0));
3417    SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
3418
3419    // Get the exponent.
3420    SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3421
3422    // Get the significand and build it into a floating-point number with
3423    // exponent of 1.
3424    SDValue X = GetSignificand(DAG, Op1, dl);
3425
3426    // Different possible minimax approximations of significand in
3427    // floating-point for various degrees of accuracy over [1,2].
3428    if (LimitFloatPrecision <= 6) {
3429      // For floating-point precision of 6:
3430      //
3431      //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3432      //
3433      // error 0.0049451742, which is more than 7 bits
3434      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3435                               getF32Constant(DAG, 0xbeb08fe0));
3436      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3437                               getF32Constant(DAG, 0x40019463));
3438      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3439      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3440                                           getF32Constant(DAG, 0x3fd6633d));
3441
3442      result = DAG.getNode(ISD::FADD, dl,
3443                           MVT::f32, LogOfExponent, Log2ofMantissa);
3444    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3445      // For floating-point precision of 12:
3446      //
3447      //   Log2ofMantissa =
3448      //     -2.51285454f +
3449      //       (4.07009056f +
3450      //         (-2.12067489f +
3451      //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3452      //
3453      // error 0.0000876136000, which is better than 13 bits
3454      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3455                               getF32Constant(DAG, 0xbda7262e));
3456      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3457                               getF32Constant(DAG, 0x3f25280b));
3458      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3459      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3460                               getF32Constant(DAG, 0x4007b923));
3461      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3462      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3463                               getF32Constant(DAG, 0x40823e2f));
3464      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3465      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3466                                           getF32Constant(DAG, 0x4020d29c));
3467
3468      result = DAG.getNode(ISD::FADD, dl,
3469                           MVT::f32, LogOfExponent, Log2ofMantissa);
3470    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3471      // For floating-point precision of 18:
3472      //
3473      //   Log2ofMantissa =
3474      //     -3.0400495f +
3475      //       (6.1129976f +
3476      //         (-5.3420409f +
3477      //           (3.2865683f +
3478      //             (-1.2669343f +
3479      //               (0.27515199f -
3480      //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3481      //
3482      // error 0.0000018516, which is better than 18 bits
3483      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3484                               getF32Constant(DAG, 0xbcd2769e));
3485      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3486                               getF32Constant(DAG, 0x3e8ce0b9));
3487      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3488      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3489                               getF32Constant(DAG, 0x3fa22ae7));
3490      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3491      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3492                               getF32Constant(DAG, 0x40525723));
3493      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3494      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3495                               getF32Constant(DAG, 0x40aaf200));
3496      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3497      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3498                               getF32Constant(DAG, 0x40c39dad));
3499      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3500      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3501                                           getF32Constant(DAG, 0x4042902c));
3502
3503      result = DAG.getNode(ISD::FADD, dl,
3504                           MVT::f32, LogOfExponent, Log2ofMantissa);
3505    }
3506  } else {
3507    // No special expansion.
3508    result = DAG.getNode(ISD::FLOG2, dl,
3509                         getValue(I.getArgOperand(0)).getValueType(),
3510                         getValue(I.getArgOperand(0)));
3511  }
3512
3513  setValue(&I, result);
3514}
3515
3516/// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for
3517/// limited-precision mode.
3518void
3519SelectionDAGBuilder::visitLog10(const CallInst &I) {
3520  SDValue result;
3521  DebugLoc dl = getCurDebugLoc();
3522
3523  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3524      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3525    SDValue Op = getValue(I.getArgOperand(0));
3526    SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
3527
3528    // Scale the exponent by log10(2) [0.30102999f].
3529    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3530    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3531                                        getF32Constant(DAG, 0x3e9a209a));
3532
3533    // Get the significand and build it into a floating-point number with
3534    // exponent of 1.
3535    SDValue X = GetSignificand(DAG, Op1, dl);
3536
3537    if (LimitFloatPrecision <= 6) {
3538      // For floating-point precision of 6:
3539      //
3540      //   Log10ofMantissa =
3541      //     -0.50419619f +
3542      //       (0.60948995f - 0.10380950f * x) * x;
3543      //
3544      // error 0.0014886165, which is 6 bits
3545      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3546                               getF32Constant(DAG, 0xbdd49a13));
3547      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3548                               getF32Constant(DAG, 0x3f1c0789));
3549      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3550      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3551                                            getF32Constant(DAG, 0x3f011300));
3552
3553      result = DAG.getNode(ISD::FADD, dl,
3554                           MVT::f32, LogOfExponent, Log10ofMantissa);
3555    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3556      // For floating-point precision of 12:
3557      //
3558      //   Log10ofMantissa =
3559      //     -0.64831180f +
3560      //       (0.91751397f +
3561      //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
3562      //
3563      // error 0.00019228036, which is better than 12 bits
3564      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3565                               getF32Constant(DAG, 0x3d431f31));
3566      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3567                               getF32Constant(DAG, 0x3ea21fb2));
3568      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3569      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3570                               getF32Constant(DAG, 0x3f6ae232));
3571      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3572      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3573                                            getF32Constant(DAG, 0x3f25f7c3));
3574
3575      result = DAG.getNode(ISD::FADD, dl,
3576                           MVT::f32, LogOfExponent, Log10ofMantissa);
3577    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3578      // For floating-point precision of 18:
3579      //
3580      //   Log10ofMantissa =
3581      //     -0.84299375f +
3582      //       (1.5327582f +
3583      //         (-1.0688956f +
3584      //           (0.49102474f +
3585      //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
3586      //
3587      // error 0.0000037995730, which is better than 18 bits
3588      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3589                               getF32Constant(DAG, 0x3c5d51ce));
3590      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3591                               getF32Constant(DAG, 0x3e00685a));
3592      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3593      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3594                               getF32Constant(DAG, 0x3efb6798));
3595      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3596      SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3597                               getF32Constant(DAG, 0x3f88d192));
3598      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3599      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3600                               getF32Constant(DAG, 0x3fc4316c));
3601      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3602      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
3603                                            getF32Constant(DAG, 0x3f57ce70));
3604
3605      result = DAG.getNode(ISD::FADD, dl,
3606                           MVT::f32, LogOfExponent, Log10ofMantissa);
3607    }
3608  } else {
3609    // No special expansion.
3610    result = DAG.getNode(ISD::FLOG10, dl,
3611                         getValue(I.getArgOperand(0)).getValueType(),
3612                         getValue(I.getArgOperand(0)));
3613  }
3614
3615  setValue(&I, result);
3616}
3617
3618/// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for
3619/// limited-precision mode.
3620void
3621SelectionDAGBuilder::visitExp2(const CallInst &I) {
3622  SDValue result;
3623  DebugLoc dl = getCurDebugLoc();
3624
3625  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3626      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3627    SDValue Op = getValue(I.getArgOperand(0));
3628
3629    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
3630
3631    //   FractionalPartOfX = x - (float)IntegerPartOfX;
3632    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3633    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
3634
3635    //   IntegerPartOfX <<= 23;
3636    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3637                                 DAG.getConstant(23, TLI.getPointerTy()));
3638
3639    if (LimitFloatPrecision <= 6) {
3640      // For floating-point precision of 6:
3641      //
3642      //   TwoToFractionalPartOfX =
3643      //     0.997535578f +
3644      //       (0.735607626f + 0.252464424f * x) * x;
3645      //
3646      // error 0.0144103317, which is 6 bits
3647      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3648                               getF32Constant(DAG, 0x3e814304));
3649      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3650                               getF32Constant(DAG, 0x3f3c50c8));
3651      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3652      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3653                               getF32Constant(DAG, 0x3f7f5e7e));
3654      SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5);
3655      SDValue TwoToFractionalPartOfX =
3656        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3657
3658      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3659                           MVT::f32, TwoToFractionalPartOfX);
3660    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3661      // For floating-point precision of 12:
3662      //
3663      //   TwoToFractionalPartOfX =
3664      //     0.999892986f +
3665      //       (0.696457318f +
3666      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3667      //
3668      // error 0.000107046256, which is 13 to 14 bits
3669      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3670                               getF32Constant(DAG, 0x3da235e3));
3671      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3672                               getF32Constant(DAG, 0x3e65b8f3));
3673      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3674      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3675                               getF32Constant(DAG, 0x3f324b07));
3676      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3677      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3678                               getF32Constant(DAG, 0x3f7ff8fd));
3679      SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7);
3680      SDValue TwoToFractionalPartOfX =
3681        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
3682
3683      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3684                           MVT::f32, TwoToFractionalPartOfX);
3685    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3686      // For floating-point precision of 18:
3687      //
3688      //   TwoToFractionalPartOfX =
3689      //     0.999999982f +
3690      //       (0.693148872f +
3691      //         (0.240227044f +
3692      //           (0.554906021e-1f +
3693      //             (0.961591928e-2f +
3694      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3695      // error 2.47208000*10^(-7), which is better than 18 bits
3696      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3697                               getF32Constant(DAG, 0x3924b03e));
3698      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3699                               getF32Constant(DAG, 0x3ab24b87));
3700      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3701      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3702                               getF32Constant(DAG, 0x3c1d8c17));
3703      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3704      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3705                               getF32Constant(DAG, 0x3d634a1d));
3706      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3707      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3708                               getF32Constant(DAG, 0x3e75fe14));
3709      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3710      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3711                                getF32Constant(DAG, 0x3f317234));
3712      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3713      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3714                                getF32Constant(DAG, 0x3f800000));
3715      SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13);
3716      SDValue TwoToFractionalPartOfX =
3717        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
3718
3719      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3720                           MVT::f32, TwoToFractionalPartOfX);
3721    }
3722  } else {
3723    // No special expansion.
3724    result = DAG.getNode(ISD::FEXP2, dl,
3725                         getValue(I.getArgOperand(0)).getValueType(),
3726                         getValue(I.getArgOperand(0)));
3727  }
3728
3729  setValue(&I, result);
3730}
3731
3732/// visitPow - Lower a pow intrinsic. Handles the special sequences for
3733/// limited-precision mode with x == 10.0f.
3734void
3735SelectionDAGBuilder::visitPow(const CallInst &I) {
3736  SDValue result;
3737  const Value *Val = I.getArgOperand(0);
3738  DebugLoc dl = getCurDebugLoc();
3739  bool IsExp10 = false;
3740
3741  if (getValue(Val).getValueType() == MVT::f32 &&
3742      getValue(I.getArgOperand(1)).getValueType() == MVT::f32 &&
3743      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3744    if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) {
3745      if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
3746        APFloat Ten(10.0f);
3747        IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten);
3748      }
3749    }
3750  }
3751
3752  if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3753    SDValue Op = getValue(I.getArgOperand(1));
3754
3755    // Put the exponent in the right bit position for later addition to the
3756    // final result:
3757    //
3758    //   #define LOG2OF10 3.3219281f
3759    //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
3760    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3761                             getF32Constant(DAG, 0x40549a78));
3762    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3763
3764    //   FractionalPartOfX = x - (float)IntegerPartOfX;
3765    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3766    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3767
3768    //   IntegerPartOfX <<= 23;
3769    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3770                                 DAG.getConstant(23, TLI.getPointerTy()));
3771
3772    if (LimitFloatPrecision <= 6) {
3773      // For floating-point precision of 6:
3774      //
3775      //   twoToFractionalPartOfX =
3776      //     0.997535578f +
3777      //       (0.735607626f + 0.252464424f * x) * x;
3778      //
3779      // error 0.0144103317, which is 6 bits
3780      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3781                               getF32Constant(DAG, 0x3e814304));
3782      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3783                               getF32Constant(DAG, 0x3f3c50c8));
3784      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3785      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3786                               getF32Constant(DAG, 0x3f7f5e7e));
3787      SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5);
3788      SDValue TwoToFractionalPartOfX =
3789        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3790
3791      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3792                           MVT::f32, TwoToFractionalPartOfX);
3793    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3794      // For floating-point precision of 12:
3795      //
3796      //   TwoToFractionalPartOfX =
3797      //     0.999892986f +
3798      //       (0.696457318f +
3799      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3800      //
3801      // error 0.000107046256, which is 13 to 14 bits
3802      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3803                               getF32Constant(DAG, 0x3da235e3));
3804      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3805                               getF32Constant(DAG, 0x3e65b8f3));
3806      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3807      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3808                               getF32Constant(DAG, 0x3f324b07));
3809      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3810      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3811                               getF32Constant(DAG, 0x3f7ff8fd));
3812      SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7);
3813      SDValue TwoToFractionalPartOfX =
3814        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
3815
3816      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3817                           MVT::f32, TwoToFractionalPartOfX);
3818    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3819      // For floating-point precision of 18:
3820      //
3821      //   TwoToFractionalPartOfX =
3822      //     0.999999982f +
3823      //       (0.693148872f +
3824      //         (0.240227044f +
3825      //           (0.554906021e-1f +
3826      //             (0.961591928e-2f +
3827      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3828      // error 2.47208000*10^(-7), which is better than 18 bits
3829      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3830                               getF32Constant(DAG, 0x3924b03e));
3831      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3832                               getF32Constant(DAG, 0x3ab24b87));
3833      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3834      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3835                               getF32Constant(DAG, 0x3c1d8c17));
3836      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3837      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3838                               getF32Constant(DAG, 0x3d634a1d));
3839      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3840      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3841                               getF32Constant(DAG, 0x3e75fe14));
3842      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3843      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3844                                getF32Constant(DAG, 0x3f317234));
3845      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3846      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3847                                getF32Constant(DAG, 0x3f800000));
3848      SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13);
3849      SDValue TwoToFractionalPartOfX =
3850        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
3851
3852      result = DAG.getNode(ISD::BIT_CONVERT, dl,
3853                           MVT::f32, TwoToFractionalPartOfX);
3854    }
3855  } else {
3856    // No special expansion.
3857    result = DAG.getNode(ISD::FPOW, dl,
3858                         getValue(I.getArgOperand(0)).getValueType(),
3859                         getValue(I.getArgOperand(0)),
3860                         getValue(I.getArgOperand(1)));
3861  }
3862
3863  setValue(&I, result);
3864}
3865
3866
3867/// ExpandPowI - Expand a llvm.powi intrinsic.
3868static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS,
3869                          SelectionDAG &DAG) {
3870  // If RHS is a constant, we can expand this out to a multiplication tree,
3871  // otherwise we end up lowering to a call to __powidf2 (for example).  When
3872  // optimizing for size, we only want to do this if the expansion would produce
3873  // a small number of multiplies, otherwise we do the full expansion.
3874  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3875    // Get the exponent as a positive value.
3876    unsigned Val = RHSC->getSExtValue();
3877    if ((int)Val < 0) Val = -Val;
3878
3879    // powi(x, 0) -> 1.0
3880    if (Val == 0)
3881      return DAG.getConstantFP(1.0, LHS.getValueType());
3882
3883    const Function *F = DAG.getMachineFunction().getFunction();
3884    if (!F->hasFnAttr(Attribute::OptimizeForSize) ||
3885        // If optimizing for size, don't insert too many multiplies.  This
3886        // inserts up to 5 multiplies.
3887        CountPopulation_32(Val)+Log2_32(Val) < 7) {
3888      // We use the simple binary decomposition method to generate the multiply
3889      // sequence.  There are more optimal ways to do this (for example,
3890      // powi(x,15) generates one more multiply than it should), but this has
3891      // the benefit of being both really simple and much better than a libcall.
3892      SDValue Res;  // Logically starts equal to 1.0
3893      SDValue CurSquare = LHS;
3894      while (Val) {
3895        if (Val & 1) {
3896          if (Res.getNode())
3897            Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
3898          else
3899            Res = CurSquare;  // 1.0*CurSquare.
3900        }
3901
3902        CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
3903                                CurSquare, CurSquare);
3904        Val >>= 1;
3905      }
3906
3907      // If the original was negative, invert the result, producing 1/(x*x*x).
3908      if (RHSC->getSExtValue() < 0)
3909        Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
3910                          DAG.getConstantFP(1.0, LHS.getValueType()), Res);
3911      return Res;
3912    }
3913  }
3914
3915  // Otherwise, expand to a libcall.
3916  return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
3917}
3918
3919/// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
3920/// argument, create the corresponding DBG_VALUE machine instruction for it now.
3921/// At the end of instruction selection, they will be inserted to the entry BB.
3922bool
3923SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
3924                                              uint64_t Offset,
3925                                              const SDValue &N) {
3926  if (!isa<Argument>(V))
3927    return false;
3928
3929  MachineFunction &MF = DAG.getMachineFunction();
3930  // Ignore inlined function arguments here.
3931  DIVariable DV(Variable);
3932  if (DV.isInlinedFnArgument(MF.getFunction()))
3933    return false;
3934
3935  MachineBasicBlock *MBB = FuncInfo.MBB;
3936  if (MBB != &MF.front())
3937    return false;
3938
3939  unsigned Reg = 0;
3940  if (N.getOpcode() == ISD::CopyFromReg) {
3941    Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
3942    if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
3943      MachineRegisterInfo &RegInfo = MF.getRegInfo();
3944      unsigned PR = RegInfo.getLiveInPhysReg(Reg);
3945      if (PR)
3946        Reg = PR;
3947    }
3948  }
3949
3950  if (!Reg) {
3951    DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
3952    if (VMI == FuncInfo.ValueMap.end())
3953      return false;
3954    Reg = VMI->second;
3955  }
3956
3957  const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
3958  MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(),
3959                                    TII->get(TargetOpcode::DBG_VALUE))
3960    .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable);
3961  FuncInfo.ArgDbgValues.push_back(&*MIB);
3962  return true;
3963}
3964
3965// VisualStudio defines setjmp as _setjmp
3966#if defined(_MSC_VER) && defined(setjmp)
3967#define setjmp_undefined_for_visual_studio
3968#undef setjmp
3969#endif
3970
3971/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
3972/// we want to emit this as a call to a named external function, return the name
3973/// otherwise lower it and return null.
3974const char *
3975SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
3976  DebugLoc dl = getCurDebugLoc();
3977  SDValue Res;
3978
3979  switch (Intrinsic) {
3980  default:
3981    // By default, turn this into a target intrinsic node.
3982    visitTargetIntrinsic(I, Intrinsic);
3983    return 0;
3984  case Intrinsic::vastart:  visitVAStart(I); return 0;
3985  case Intrinsic::vaend:    visitVAEnd(I); return 0;
3986  case Intrinsic::vacopy:   visitVACopy(I); return 0;
3987  case Intrinsic::returnaddress:
3988    setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(),
3989                             getValue(I.getArgOperand(0))));
3990    return 0;
3991  case Intrinsic::frameaddress:
3992    setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(),
3993                             getValue(I.getArgOperand(0))));
3994    return 0;
3995  case Intrinsic::setjmp:
3996    return "_setjmp"+!TLI.usesUnderscoreSetJmp();
3997  case Intrinsic::longjmp:
3998    return "_longjmp"+!TLI.usesUnderscoreLongJmp();
3999  case Intrinsic::memcpy: {
4000    // Assert for address < 256 since we support only user defined address
4001    // spaces.
4002    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4003           < 256 &&
4004           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4005           < 256 &&
4006           "Unknown address space");
4007    SDValue Op1 = getValue(I.getArgOperand(0));
4008    SDValue Op2 = getValue(I.getArgOperand(1));
4009    SDValue Op3 = getValue(I.getArgOperand(2));
4010    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4011    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4012    DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false,
4013                              I.getArgOperand(0), 0, I.getArgOperand(1), 0));
4014    return 0;
4015  }
4016  case Intrinsic::memset: {
4017    // Assert for address < 256 since we support only user defined address
4018    // spaces.
4019    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4020           < 256 &&
4021           "Unknown address space");
4022    SDValue Op1 = getValue(I.getArgOperand(0));
4023    SDValue Op2 = getValue(I.getArgOperand(1));
4024    SDValue Op3 = getValue(I.getArgOperand(2));
4025    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4026    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4027    DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4028                              I.getArgOperand(0), 0));
4029    return 0;
4030  }
4031  case Intrinsic::memmove: {
4032    // Assert for address < 256 since we support only user defined address
4033    // spaces.
4034    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4035           < 256 &&
4036           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4037           < 256 &&
4038           "Unknown address space");
4039    SDValue Op1 = getValue(I.getArgOperand(0));
4040    SDValue Op2 = getValue(I.getArgOperand(1));
4041    SDValue Op3 = getValue(I.getArgOperand(2));
4042    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4043    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4044
4045    // If the source and destination are known to not be aliases, we can
4046    // lower memmove as memcpy.
4047    uint64_t Size = -1ULL;
4048    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3))
4049      Size = C->getZExtValue();
4050    if (AA->alias(I.getArgOperand(0), Size, I.getArgOperand(1), Size) ==
4051        AliasAnalysis::NoAlias) {
4052      DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4053                                false, I.getArgOperand(0), 0,
4054                                I.getArgOperand(1), 0));
4055      return 0;
4056    }
4057
4058    DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4059                               I.getArgOperand(0), 0, I.getArgOperand(1), 0));
4060    return 0;
4061  }
4062  case Intrinsic::dbg_declare: {
4063    const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4064    if (!DIVariable(DI.getVariable()).Verify())
4065      return 0;
4066
4067    MDNode *Variable = DI.getVariable();
4068    // Parameters are handled specially.
4069    bool isParameter =
4070      DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable;
4071    const Value *Address = DI.getAddress();
4072    if (!Address)
4073      return 0;
4074    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4075      Address = BCI->getOperand(0);
4076    const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
4077
4078    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4079    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4080    // absolute, but not relative, values are different depending on whether
4081    // debug info exists.
4082    ++SDNodeOrder;
4083    SDValue &N = NodeMap[Address];
4084    SDDbgValue *SDV;
4085    if (N.getNode()) {
4086      if (isParameter && !AI) {
4087        FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4088        if (FINode)
4089          // Byval parameter.  We have a frame index at this point.
4090          SDV = DAG.getDbgValue(Variable, FINode->getIndex(),
4091                                0, dl, SDNodeOrder);
4092        else
4093          // Can't do anything with other non-AI cases yet.  This might be a
4094          // parameter of a callee function that got inlined, for example.
4095          return 0;
4096      } else if (AI)
4097        SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
4098                              0, dl, SDNodeOrder);
4099      else
4100        // Can't do anything with other non-AI cases yet.
4101        return 0;
4102      DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4103    } else {
4104      // This isn't useful, but it shows what we're missing.
4105      SDV = DAG.getDbgValue(Variable, UndefValue::get(Address->getType()),
4106                            0, dl, SDNodeOrder);
4107      DAG.AddDbgValue(SDV, 0, isParameter);
4108    }
4109    return 0;
4110  }
4111  case Intrinsic::dbg_value: {
4112    const DbgValueInst &DI = cast<DbgValueInst>(I);
4113    if (!DIVariable(DI.getVariable()).Verify())
4114      return 0;
4115
4116    MDNode *Variable = DI.getVariable();
4117    uint64_t Offset = DI.getOffset();
4118    const Value *V = DI.getValue();
4119    if (!V)
4120      return 0;
4121
4122    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4123    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4124    // absolute, but not relative, values are different depending on whether
4125    // debug info exists.
4126    ++SDNodeOrder;
4127    SDDbgValue *SDV;
4128    if (isa<ConstantInt>(V) || isa<ConstantFP>(V)) {
4129      SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder);
4130      DAG.AddDbgValue(SDV, 0, false);
4131    } else {
4132      bool createUndef = false;
4133      // Do not use getValue() in here; we don't want to generate code at
4134      // this point if it hasn't been done yet.
4135      SDValue N = NodeMap[V];
4136      if (!N.getNode() && isa<Argument>(V))
4137        // Check unused arguments map.
4138        N = UnusedArgNodeMap[V];
4139      if (N.getNode()) {
4140        if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) {
4141          SDV = DAG.getDbgValue(Variable, N.getNode(),
4142                                N.getResNo(), Offset, dl, SDNodeOrder);
4143          DAG.AddDbgValue(SDV, N.getNode(), false);
4144        }
4145      } else if (isa<PHINode>(V) && !V->use_empty() ) {
4146        // Do not call getValue(V) yet, as we don't want to generate code.
4147        // Remember it for later.
4148        DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4149        DanglingDebugInfoMap[V] = DDI;
4150      } else
4151        createUndef = true;
4152      if (createUndef) {
4153        // We may expand this to cover more cases.  One case where we have no
4154        // data available is an unreferenced parameter; we need this fallback.
4155        SDV = DAG.getDbgValue(Variable, UndefValue::get(V->getType()),
4156                              Offset, dl, SDNodeOrder);
4157        DAG.AddDbgValue(SDV, 0, false);
4158      }
4159    }
4160
4161    // Build a debug info table entry.
4162    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4163      V = BCI->getOperand(0);
4164    const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4165    // Don't handle byval struct arguments or VLAs, for example.
4166    if (!AI)
4167      return 0;
4168    DenseMap<const AllocaInst*, int>::iterator SI =
4169      FuncInfo.StaticAllocaMap.find(AI);
4170    if (SI == FuncInfo.StaticAllocaMap.end())
4171      return 0; // VLAs.
4172    int FI = SI->second;
4173
4174    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4175    if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
4176      MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
4177    return 0;
4178  }
4179  case Intrinsic::eh_exception: {
4180    // Insert the EXCEPTIONADDR instruction.
4181    assert(FuncInfo.MBB->isLandingPad() &&
4182           "Call to eh.exception not in landing pad!");
4183    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4184    SDValue Ops[1];
4185    Ops[0] = DAG.getRoot();
4186    SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1);
4187    setValue(&I, Op);
4188    DAG.setRoot(Op.getValue(1));
4189    return 0;
4190  }
4191
4192  case Intrinsic::eh_selector: {
4193    MachineBasicBlock *CallMBB = FuncInfo.MBB;
4194    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4195    if (CallMBB->isLandingPad())
4196      AddCatchInfo(I, &MMI, CallMBB);
4197    else {
4198#ifndef NDEBUG
4199      FuncInfo.CatchInfoLost.insert(&I);
4200#endif
4201      // FIXME: Mark exception selector register as live in.  Hack for PR1508.
4202      unsigned Reg = TLI.getExceptionSelectorRegister();
4203      if (Reg) FuncInfo.MBB->addLiveIn(Reg);
4204    }
4205
4206    // Insert the EHSELECTION instruction.
4207    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4208    SDValue Ops[2];
4209    Ops[0] = getValue(I.getArgOperand(0));
4210    Ops[1] = getRoot();
4211    SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2);
4212    DAG.setRoot(Op.getValue(1));
4213    setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32));
4214    return 0;
4215  }
4216
4217  case Intrinsic::eh_typeid_for: {
4218    // Find the type id for the given typeinfo.
4219    GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0));
4220    unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4221    Res = DAG.getConstant(TypeID, MVT::i32);
4222    setValue(&I, Res);
4223    return 0;
4224  }
4225
4226  case Intrinsic::eh_return_i32:
4227  case Intrinsic::eh_return_i64:
4228    DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4229    DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl,
4230                            MVT::Other,
4231                            getControlRoot(),
4232                            getValue(I.getArgOperand(0)),
4233                            getValue(I.getArgOperand(1))));
4234    return 0;
4235  case Intrinsic::eh_unwind_init:
4236    DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4237    return 0;
4238  case Intrinsic::eh_dwarf_cfa: {
4239    SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl,
4240                                        TLI.getPointerTy());
4241    SDValue Offset = DAG.getNode(ISD::ADD, dl,
4242                                 TLI.getPointerTy(),
4243                                 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
4244                                             TLI.getPointerTy()),
4245                                 CfaArg);
4246    SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl,
4247                             TLI.getPointerTy(),
4248                             DAG.getConstant(0, TLI.getPointerTy()));
4249    setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
4250                             FA, Offset));
4251    return 0;
4252  }
4253  case Intrinsic::eh_sjlj_callsite: {
4254    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4255    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4256    assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4257    assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4258
4259    MMI.setCurrentCallSite(CI->getZExtValue());
4260    return 0;
4261  }
4262  case Intrinsic::eh_sjlj_setjmp: {
4263    setValue(&I, DAG.getNode(ISD::EH_SJLJ_SETJMP, dl, MVT::i32, getRoot(),
4264                             getValue(I.getArgOperand(0))));
4265    return 0;
4266  }
4267  case Intrinsic::eh_sjlj_longjmp: {
4268    DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other,
4269                            getRoot(),
4270                            getValue(I.getArgOperand(0))));
4271    return 0;
4272  }
4273
4274  case Intrinsic::convertff:
4275  case Intrinsic::convertfsi:
4276  case Intrinsic::convertfui:
4277  case Intrinsic::convertsif:
4278  case Intrinsic::convertuif:
4279  case Intrinsic::convertss:
4280  case Intrinsic::convertsu:
4281  case Intrinsic::convertus:
4282  case Intrinsic::convertuu: {
4283    ISD::CvtCode Code = ISD::CVT_INVALID;
4284    switch (Intrinsic) {
4285    case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
4286    case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4287    case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4288    case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4289    case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4290    case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
4291    case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
4292    case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4293    case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4294    }
4295    EVT DestVT = TLI.getValueType(I.getType());
4296    const Value *Op1 = I.getArgOperand(0);
4297    Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1),
4298                               DAG.getValueType(DestVT),
4299                               DAG.getValueType(getValue(Op1).getValueType()),
4300                               getValue(I.getArgOperand(1)),
4301                               getValue(I.getArgOperand(2)),
4302                               Code);
4303    setValue(&I, Res);
4304    return 0;
4305  }
4306  case Intrinsic::sqrt:
4307    setValue(&I, DAG.getNode(ISD::FSQRT, dl,
4308                             getValue(I.getArgOperand(0)).getValueType(),
4309                             getValue(I.getArgOperand(0))));
4310    return 0;
4311  case Intrinsic::powi:
4312    setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)),
4313                            getValue(I.getArgOperand(1)), DAG));
4314    return 0;
4315  case Intrinsic::sin:
4316    setValue(&I, DAG.getNode(ISD::FSIN, dl,
4317                             getValue(I.getArgOperand(0)).getValueType(),
4318                             getValue(I.getArgOperand(0))));
4319    return 0;
4320  case Intrinsic::cos:
4321    setValue(&I, DAG.getNode(ISD::FCOS, dl,
4322                             getValue(I.getArgOperand(0)).getValueType(),
4323                             getValue(I.getArgOperand(0))));
4324    return 0;
4325  case Intrinsic::log:
4326    visitLog(I);
4327    return 0;
4328  case Intrinsic::log2:
4329    visitLog2(I);
4330    return 0;
4331  case Intrinsic::log10:
4332    visitLog10(I);
4333    return 0;
4334  case Intrinsic::exp:
4335    visitExp(I);
4336    return 0;
4337  case Intrinsic::exp2:
4338    visitExp2(I);
4339    return 0;
4340  case Intrinsic::pow:
4341    visitPow(I);
4342    return 0;
4343  case Intrinsic::convert_to_fp16:
4344    setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl,
4345                             MVT::i16, getValue(I.getArgOperand(0))));
4346    return 0;
4347  case Intrinsic::convert_from_fp16:
4348    setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl,
4349                             MVT::f32, getValue(I.getArgOperand(0))));
4350    return 0;
4351  case Intrinsic::pcmarker: {
4352    SDValue Tmp = getValue(I.getArgOperand(0));
4353    DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp));
4354    return 0;
4355  }
4356  case Intrinsic::readcyclecounter: {
4357    SDValue Op = getRoot();
4358    Res = DAG.getNode(ISD::READCYCLECOUNTER, dl,
4359                      DAG.getVTList(MVT::i64, MVT::Other),
4360                      &Op, 1);
4361    setValue(&I, Res);
4362    DAG.setRoot(Res.getValue(1));
4363    return 0;
4364  }
4365  case Intrinsic::bswap:
4366    setValue(&I, DAG.getNode(ISD::BSWAP, dl,
4367                             getValue(I.getArgOperand(0)).getValueType(),
4368                             getValue(I.getArgOperand(0))));
4369    return 0;
4370  case Intrinsic::cttz: {
4371    SDValue Arg = getValue(I.getArgOperand(0));
4372    EVT Ty = Arg.getValueType();
4373    setValue(&I, DAG.getNode(ISD::CTTZ, dl, Ty, Arg));
4374    return 0;
4375  }
4376  case Intrinsic::ctlz: {
4377    SDValue Arg = getValue(I.getArgOperand(0));
4378    EVT Ty = Arg.getValueType();
4379    setValue(&I, DAG.getNode(ISD::CTLZ, dl, Ty, Arg));
4380    return 0;
4381  }
4382  case Intrinsic::ctpop: {
4383    SDValue Arg = getValue(I.getArgOperand(0));
4384    EVT Ty = Arg.getValueType();
4385    setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg));
4386    return 0;
4387  }
4388  case Intrinsic::stacksave: {
4389    SDValue Op = getRoot();
4390    Res = DAG.getNode(ISD::STACKSAVE, dl,
4391                      DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
4392    setValue(&I, Res);
4393    DAG.setRoot(Res.getValue(1));
4394    return 0;
4395  }
4396  case Intrinsic::stackrestore: {
4397    Res = getValue(I.getArgOperand(0));
4398    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res));
4399    return 0;
4400  }
4401  case Intrinsic::stackprotector: {
4402    // Emit code into the DAG to store the stack guard onto the stack.
4403    MachineFunction &MF = DAG.getMachineFunction();
4404    MachineFrameInfo *MFI = MF.getFrameInfo();
4405    EVT PtrTy = TLI.getPointerTy();
4406
4407    SDValue Src = getValue(I.getArgOperand(0));   // The guard's value.
4408    AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
4409
4410    int FI = FuncInfo.StaticAllocaMap[Slot];
4411    MFI->setStackProtectorIndex(FI);
4412
4413    SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
4414
4415    // Store the stack protector onto the stack.
4416    Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN,
4417                       PseudoSourceValue::getFixedStack(FI),
4418                       0, true, false, 0);
4419    setValue(&I, Res);
4420    DAG.setRoot(Res);
4421    return 0;
4422  }
4423  case Intrinsic::objectsize: {
4424    // If we don't know by now, we're never going to know.
4425    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
4426
4427    assert(CI && "Non-constant type in __builtin_object_size?");
4428
4429    SDValue Arg = getValue(I.getCalledValue());
4430    EVT Ty = Arg.getValueType();
4431
4432    if (CI->isZero())
4433      Res = DAG.getConstant(-1ULL, Ty);
4434    else
4435      Res = DAG.getConstant(0, Ty);
4436
4437    setValue(&I, Res);
4438    return 0;
4439  }
4440  case Intrinsic::var_annotation:
4441    // Discard annotate attributes
4442    return 0;
4443
4444  case Intrinsic::init_trampoline: {
4445    const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
4446
4447    SDValue Ops[6];
4448    Ops[0] = getRoot();
4449    Ops[1] = getValue(I.getArgOperand(0));
4450    Ops[2] = getValue(I.getArgOperand(1));
4451    Ops[3] = getValue(I.getArgOperand(2));
4452    Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
4453    Ops[5] = DAG.getSrcValue(F);
4454
4455    Res = DAG.getNode(ISD::TRAMPOLINE, dl,
4456                      DAG.getVTList(TLI.getPointerTy(), MVT::Other),
4457                      Ops, 6);
4458
4459    setValue(&I, Res);
4460    DAG.setRoot(Res.getValue(1));
4461    return 0;
4462  }
4463  case Intrinsic::gcroot:
4464    if (GFI) {
4465      const Value *Alloca = I.getArgOperand(0);
4466      const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
4467
4468      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
4469      GFI->addStackRoot(FI->getIndex(), TypeMap);
4470    }
4471    return 0;
4472  case Intrinsic::gcread:
4473  case Intrinsic::gcwrite:
4474    llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
4475    return 0;
4476  case Intrinsic::flt_rounds:
4477    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32));
4478    return 0;
4479  case Intrinsic::trap:
4480    DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot()));
4481    return 0;
4482  case Intrinsic::uadd_with_overflow:
4483    return implVisitAluOverflow(I, ISD::UADDO);
4484  case Intrinsic::sadd_with_overflow:
4485    return implVisitAluOverflow(I, ISD::SADDO);
4486  case Intrinsic::usub_with_overflow:
4487    return implVisitAluOverflow(I, ISD::USUBO);
4488  case Intrinsic::ssub_with_overflow:
4489    return implVisitAluOverflow(I, ISD::SSUBO);
4490  case Intrinsic::umul_with_overflow:
4491    return implVisitAluOverflow(I, ISD::UMULO);
4492  case Intrinsic::smul_with_overflow:
4493    return implVisitAluOverflow(I, ISD::SMULO);
4494
4495  case Intrinsic::prefetch: {
4496    SDValue Ops[4];
4497    Ops[0] = getRoot();
4498    Ops[1] = getValue(I.getArgOperand(0));
4499    Ops[2] = getValue(I.getArgOperand(1));
4500    Ops[3] = getValue(I.getArgOperand(2));
4501    DAG.setRoot(DAG.getNode(ISD::PREFETCH, dl, MVT::Other, &Ops[0], 4));
4502    return 0;
4503  }
4504
4505  case Intrinsic::memory_barrier: {
4506    SDValue Ops[6];
4507    Ops[0] = getRoot();
4508    for (int x = 1; x < 6; ++x)
4509      Ops[x] = getValue(I.getArgOperand(x - 1));
4510
4511    DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6));
4512    return 0;
4513  }
4514  case Intrinsic::atomic_cmp_swap: {
4515    SDValue Root = getRoot();
4516    SDValue L =
4517      DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(),
4518                    getValue(I.getArgOperand(1)).getValueType().getSimpleVT(),
4519                    Root,
4520                    getValue(I.getArgOperand(0)),
4521                    getValue(I.getArgOperand(1)),
4522                    getValue(I.getArgOperand(2)),
4523                    I.getArgOperand(0));
4524    setValue(&I, L);
4525    DAG.setRoot(L.getValue(1));
4526    return 0;
4527  }
4528  case Intrinsic::atomic_load_add:
4529    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD);
4530  case Intrinsic::atomic_load_sub:
4531    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB);
4532  case Intrinsic::atomic_load_or:
4533    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR);
4534  case Intrinsic::atomic_load_xor:
4535    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR);
4536  case Intrinsic::atomic_load_and:
4537    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND);
4538  case Intrinsic::atomic_load_nand:
4539    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND);
4540  case Intrinsic::atomic_load_max:
4541    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX);
4542  case Intrinsic::atomic_load_min:
4543    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN);
4544  case Intrinsic::atomic_load_umin:
4545    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN);
4546  case Intrinsic::atomic_load_umax:
4547    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX);
4548  case Intrinsic::atomic_swap:
4549    return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP);
4550
4551  case Intrinsic::invariant_start:
4552  case Intrinsic::lifetime_start:
4553    // Discard region information.
4554    setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
4555    return 0;
4556  case Intrinsic::invariant_end:
4557  case Intrinsic::lifetime_end:
4558    // Discard region information.
4559    return 0;
4560  }
4561}
4562
4563void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
4564                                      bool isTailCall,
4565                                      MachineBasicBlock *LandingPad) {
4566  const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
4567  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
4568  const Type *RetTy = FTy->getReturnType();
4569  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4570  MCSymbol *BeginLabel = 0;
4571
4572  TargetLowering::ArgListTy Args;
4573  TargetLowering::ArgListEntry Entry;
4574  Args.reserve(CS.arg_size());
4575
4576  // Check whether the function can return without sret-demotion.
4577  SmallVector<ISD::OutputArg, 4> Outs;
4578  SmallVector<uint64_t, 4> Offsets;
4579  GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(),
4580                Outs, TLI, &Offsets);
4581
4582  bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
4583                        FTy->isVarArg(), Outs, FTy->getContext());
4584
4585  SDValue DemoteStackSlot;
4586
4587  if (!CanLowerReturn) {
4588    uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(
4589                      FTy->getReturnType());
4590    unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(
4591                      FTy->getReturnType());
4592    MachineFunction &MF = DAG.getMachineFunction();
4593    int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
4594    const Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
4595
4596    DemoteStackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
4597    Entry.Node = DemoteStackSlot;
4598    Entry.Ty = StackSlotPtrType;
4599    Entry.isSExt = false;
4600    Entry.isZExt = false;
4601    Entry.isInReg = false;
4602    Entry.isSRet = true;
4603    Entry.isNest = false;
4604    Entry.isByVal = false;
4605    Entry.Alignment = Align;
4606    Args.push_back(Entry);
4607    RetTy = Type::getVoidTy(FTy->getContext());
4608  }
4609
4610  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
4611       i != e; ++i) {
4612    SDValue ArgNode = getValue(*i);
4613    Entry.Node = ArgNode; Entry.Ty = (*i)->getType();
4614
4615    unsigned attrInd = i - CS.arg_begin() + 1;
4616    Entry.isSExt  = CS.paramHasAttr(attrInd, Attribute::SExt);
4617    Entry.isZExt  = CS.paramHasAttr(attrInd, Attribute::ZExt);
4618    Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg);
4619    Entry.isSRet  = CS.paramHasAttr(attrInd, Attribute::StructRet);
4620    Entry.isNest  = CS.paramHasAttr(attrInd, Attribute::Nest);
4621    Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal);
4622    Entry.Alignment = CS.getParamAlignment(attrInd);
4623    Args.push_back(Entry);
4624  }
4625
4626  if (LandingPad) {
4627    // Insert a label before the invoke call to mark the try range.  This can be
4628    // used to detect deletion of the invoke via the MachineModuleInfo.
4629    BeginLabel = MMI.getContext().CreateTempSymbol();
4630
4631    // For SjLj, keep track of which landing pads go with which invokes
4632    // so as to maintain the ordering of pads in the LSDA.
4633    unsigned CallSiteIndex = MMI.getCurrentCallSite();
4634    if (CallSiteIndex) {
4635      MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
4636      // Now that the call site is handled, stop tracking it.
4637      MMI.setCurrentCallSite(0);
4638    }
4639
4640    // Both PendingLoads and PendingExports must be flushed here;
4641    // this call might not return.
4642    (void)getRoot();
4643    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel));
4644  }
4645
4646  // Check if target-independent constraints permit a tail call here.
4647  // Target-dependent constraints are checked within TLI.LowerCallTo.
4648  if (isTailCall &&
4649      !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI))
4650    isTailCall = false;
4651
4652  std::pair<SDValue,SDValue> Result =
4653    TLI.LowerCallTo(getRoot(), RetTy,
4654                    CS.paramHasAttr(0, Attribute::SExt),
4655                    CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(),
4656                    CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(),
4657                    CS.getCallingConv(),
4658                    isTailCall,
4659                    !CS.getInstruction()->use_empty(),
4660                    Callee, Args, DAG, getCurDebugLoc());
4661  assert((isTailCall || Result.second.getNode()) &&
4662         "Non-null chain expected with non-tail call!");
4663  assert((Result.second.getNode() || !Result.first.getNode()) &&
4664         "Null value expected with tail call!");
4665  if (Result.first.getNode()) {
4666    setValue(CS.getInstruction(), Result.first);
4667  } else if (!CanLowerReturn && Result.second.getNode()) {
4668    // The instruction result is the result of loading from the
4669    // hidden sret parameter.
4670    SmallVector<EVT, 1> PVTs;
4671    const Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
4672
4673    ComputeValueVTs(TLI, PtrRetTy, PVTs);
4674    assert(PVTs.size() == 1 && "Pointers should fit in one register");
4675    EVT PtrVT = PVTs[0];
4676    unsigned NumValues = Outs.size();
4677    SmallVector<SDValue, 4> Values(NumValues);
4678    SmallVector<SDValue, 4> Chains(NumValues);
4679
4680    for (unsigned i = 0; i < NumValues; ++i) {
4681      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT,
4682                                DemoteStackSlot,
4683                                DAG.getConstant(Offsets[i], PtrVT));
4684      SDValue L = DAG.getLoad(Outs[i].VT, getCurDebugLoc(), Result.second,
4685                              Add, NULL, Offsets[i], false, false, 1);
4686      Values[i] = L;
4687      Chains[i] = L.getValue(1);
4688    }
4689
4690    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
4691                                MVT::Other, &Chains[0], NumValues);
4692    PendingLoads.push_back(Chain);
4693
4694    // Collect the legal value parts into potentially illegal values
4695    // that correspond to the original function's return values.
4696    SmallVector<EVT, 4> RetTys;
4697    RetTy = FTy->getReturnType();
4698    ComputeValueVTs(TLI, RetTy, RetTys);
4699    ISD::NodeType AssertOp = ISD::DELETED_NODE;
4700    SmallVector<SDValue, 4> ReturnValues;
4701    unsigned CurReg = 0;
4702    for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
4703      EVT VT = RetTys[I];
4704      EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT);
4705      unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT);
4706
4707      SDValue ReturnValue =
4708        getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs,
4709                         RegisterVT, VT, AssertOp);
4710      ReturnValues.push_back(ReturnValue);
4711      CurReg += NumRegs;
4712    }
4713
4714    setValue(CS.getInstruction(),
4715             DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
4716                         DAG.getVTList(&RetTys[0], RetTys.size()),
4717                         &ReturnValues[0], ReturnValues.size()));
4718
4719  }
4720
4721  // As a special case, a null chain means that a tail call has been emitted and
4722  // the DAG root is already updated.
4723  if (Result.second.getNode())
4724    DAG.setRoot(Result.second);
4725  else
4726    HasTailCall = true;
4727
4728  if (LandingPad) {
4729    // Insert a label at the end of the invoke call to mark the try range.  This
4730    // can be used to detect deletion of the invoke via the MachineModuleInfo.
4731    MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
4732    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel));
4733
4734    // Inform MachineModuleInfo of range.
4735    MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
4736  }
4737}
4738
4739/// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
4740/// value is equal or not-equal to zero.
4741static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
4742  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
4743       UI != E; ++UI) {
4744    if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
4745      if (IC->isEquality())
4746        if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
4747          if (C->isNullValue())
4748            continue;
4749    // Unknown instruction.
4750    return false;
4751  }
4752  return true;
4753}
4754
4755static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
4756                             const Type *LoadTy,
4757                             SelectionDAGBuilder &Builder) {
4758
4759  // Check to see if this load can be trivially constant folded, e.g. if the
4760  // input is from a string literal.
4761  if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
4762    // Cast pointer to the type we really want to load.
4763    LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
4764                                         PointerType::getUnqual(LoadTy));
4765
4766    if (const Constant *LoadCst =
4767          ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
4768                                       Builder.TD))
4769      return Builder.getValue(LoadCst);
4770  }
4771
4772  // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
4773  // still constant memory, the input chain can be the entry node.
4774  SDValue Root;
4775  bool ConstantMemory = false;
4776
4777  // Do not serialize (non-volatile) loads of constant memory with anything.
4778  if (Builder.AA->pointsToConstantMemory(PtrVal)) {
4779    Root = Builder.DAG.getEntryNode();
4780    ConstantMemory = true;
4781  } else {
4782    // Do not serialize non-volatile loads against each other.
4783    Root = Builder.DAG.getRoot();
4784  }
4785
4786  SDValue Ptr = Builder.getValue(PtrVal);
4787  SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root,
4788                                        Ptr, PtrVal /*SrcValue*/, 0/*SVOffset*/,
4789                                        false /*volatile*/,
4790                                        false /*nontemporal*/, 1 /* align=1 */);
4791
4792  if (!ConstantMemory)
4793    Builder.PendingLoads.push_back(LoadVal.getValue(1));
4794  return LoadVal;
4795}
4796
4797
4798/// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
4799/// If so, return true and lower it, otherwise return false and it will be
4800/// lowered like a normal call.
4801bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
4802  // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
4803  if (I.getNumArgOperands() != 3)
4804    return false;
4805
4806  const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
4807  if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
4808      !I.getArgOperand(2)->getType()->isIntegerTy() ||
4809      !I.getType()->isIntegerTy())
4810    return false;
4811
4812  const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2));
4813
4814  // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
4815  // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
4816  if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) {
4817    bool ActuallyDoIt = true;
4818    MVT LoadVT;
4819    const Type *LoadTy;
4820    switch (Size->getZExtValue()) {
4821    default:
4822      LoadVT = MVT::Other;
4823      LoadTy = 0;
4824      ActuallyDoIt = false;
4825      break;
4826    case 2:
4827      LoadVT = MVT::i16;
4828      LoadTy = Type::getInt16Ty(Size->getContext());
4829      break;
4830    case 4:
4831      LoadVT = MVT::i32;
4832      LoadTy = Type::getInt32Ty(Size->getContext());
4833      break;
4834    case 8:
4835      LoadVT = MVT::i64;
4836      LoadTy = Type::getInt64Ty(Size->getContext());
4837      break;
4838        /*
4839    case 16:
4840      LoadVT = MVT::v4i32;
4841      LoadTy = Type::getInt32Ty(Size->getContext());
4842      LoadTy = VectorType::get(LoadTy, 4);
4843      break;
4844         */
4845    }
4846
4847    // This turns into unaligned loads.  We only do this if the target natively
4848    // supports the MVT we'll be loading or if it is small enough (<= 4) that
4849    // we'll only produce a small number of byte loads.
4850
4851    // Require that we can find a legal MVT, and only do this if the target
4852    // supports unaligned loads of that type.  Expanding into byte loads would
4853    // bloat the code.
4854    if (ActuallyDoIt && Size->getZExtValue() > 4) {
4855      // TODO: Handle 5 byte compare as 4-byte + 1 byte.
4856      // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
4857      if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT))
4858        ActuallyDoIt = false;
4859    }
4860
4861    if (ActuallyDoIt) {
4862      SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
4863      SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
4864
4865      SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal,
4866                                 ISD::SETNE);
4867      EVT CallVT = TLI.getValueType(I.getType(), true);
4868      setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT));
4869      return true;
4870    }
4871  }
4872
4873
4874  return false;
4875}
4876
4877
4878void SelectionDAGBuilder::visitCall(const CallInst &I) {
4879  // Handle inline assembly differently.
4880  if (isa<InlineAsm>(I.getCalledValue())) {
4881    visitInlineAsm(&I);
4882    return;
4883  }
4884
4885  const char *RenameFn = 0;
4886  if (Function *F = I.getCalledFunction()) {
4887    if (F->isDeclaration()) {
4888      if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
4889        if (unsigned IID = II->getIntrinsicID(F)) {
4890          RenameFn = visitIntrinsicCall(I, IID);
4891          if (!RenameFn)
4892            return;
4893        }
4894      }
4895      if (unsigned IID = F->getIntrinsicID()) {
4896        RenameFn = visitIntrinsicCall(I, IID);
4897        if (!RenameFn)
4898          return;
4899      }
4900    }
4901
4902    // Check for well-known libc/libm calls.  If the function is internal, it
4903    // can't be a library call.
4904    if (!F->hasLocalLinkage() && F->hasName()) {
4905      StringRef Name = F->getName();
4906      if (Name == "copysign" || Name == "copysignf" || Name == "copysignl") {
4907        if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
4908            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
4909            I.getType() == I.getArgOperand(0)->getType() &&
4910            I.getType() == I.getArgOperand(1)->getType()) {
4911          SDValue LHS = getValue(I.getArgOperand(0));
4912          SDValue RHS = getValue(I.getArgOperand(1));
4913          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(),
4914                                   LHS.getValueType(), LHS, RHS));
4915          return;
4916        }
4917      } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") {
4918        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
4919            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
4920            I.getType() == I.getArgOperand(0)->getType()) {
4921          SDValue Tmp = getValue(I.getArgOperand(0));
4922          setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(),
4923                                   Tmp.getValueType(), Tmp));
4924          return;
4925        }
4926      } else if (Name == "sin" || Name == "sinf" || Name == "sinl") {
4927        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
4928            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
4929            I.getType() == I.getArgOperand(0)->getType() &&
4930            I.onlyReadsMemory()) {
4931          SDValue Tmp = getValue(I.getArgOperand(0));
4932          setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(),
4933                                   Tmp.getValueType(), Tmp));
4934          return;
4935        }
4936      } else if (Name == "cos" || Name == "cosf" || Name == "cosl") {
4937        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
4938            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
4939            I.getType() == I.getArgOperand(0)->getType() &&
4940            I.onlyReadsMemory()) {
4941          SDValue Tmp = getValue(I.getArgOperand(0));
4942          setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(),
4943                                   Tmp.getValueType(), Tmp));
4944          return;
4945        }
4946      } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") {
4947        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
4948            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
4949            I.getType() == I.getArgOperand(0)->getType() &&
4950            I.onlyReadsMemory()) {
4951          SDValue Tmp = getValue(I.getArgOperand(0));
4952          setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(),
4953                                   Tmp.getValueType(), Tmp));
4954          return;
4955        }
4956      } else if (Name == "memcmp") {
4957        if (visitMemCmpCall(I))
4958          return;
4959      }
4960    }
4961  }
4962
4963  SDValue Callee;
4964  if (!RenameFn)
4965    Callee = getValue(I.getCalledValue());
4966  else
4967    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
4968
4969  // Check if we can potentially perform a tail call. More detailed checking is
4970  // be done within LowerCallTo, after more information about the call is known.
4971  LowerCallTo(&I, Callee, I.isTailCall());
4972}
4973
4974namespace llvm {
4975
4976/// AsmOperandInfo - This contains information for each constraint that we are
4977/// lowering.
4978class LLVM_LIBRARY_VISIBILITY SDISelAsmOperandInfo :
4979    public TargetLowering::AsmOperandInfo {
4980public:
4981  /// CallOperand - If this is the result output operand or a clobber
4982  /// this is null, otherwise it is the incoming operand to the CallInst.
4983  /// This gets modified as the asm is processed.
4984  SDValue CallOperand;
4985
4986  /// AssignedRegs - If this is a register or register class operand, this
4987  /// contains the set of register corresponding to the operand.
4988  RegsForValue AssignedRegs;
4989
4990  explicit SDISelAsmOperandInfo(const InlineAsm::ConstraintInfo &info)
4991    : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
4992  }
4993
4994  /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
4995  /// busy in OutputRegs/InputRegs.
4996  void MarkAllocatedRegs(bool isOutReg, bool isInReg,
4997                         std::set<unsigned> &OutputRegs,
4998                         std::set<unsigned> &InputRegs,
4999                         const TargetRegisterInfo &TRI) const {
5000    if (isOutReg) {
5001      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
5002        MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
5003    }
5004    if (isInReg) {
5005      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
5006        MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
5007    }
5008  }
5009
5010  /// getCallOperandValEVT - Return the EVT of the Value* that this operand
5011  /// corresponds to.  If there is no Value* for this operand, it returns
5012  /// MVT::Other.
5013  EVT getCallOperandValEVT(LLVMContext &Context,
5014                           const TargetLowering &TLI,
5015                           const TargetData *TD) const {
5016    if (CallOperandVal == 0) return MVT::Other;
5017
5018    if (isa<BasicBlock>(CallOperandVal))
5019      return TLI.getPointerTy();
5020
5021    const llvm::Type *OpTy = CallOperandVal->getType();
5022
5023    // If this is an indirect operand, the operand is a pointer to the
5024    // accessed type.
5025    if (isIndirect) {
5026      const llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
5027      if (!PtrTy)
5028        report_fatal_error("Indirect operand for inline asm not a pointer!");
5029      OpTy = PtrTy->getElementType();
5030    }
5031
5032    // If OpTy is not a single value, it may be a struct/union that we
5033    // can tile with integers.
5034    if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5035      unsigned BitSize = TD->getTypeSizeInBits(OpTy);
5036      switch (BitSize) {
5037      default: break;
5038      case 1:
5039      case 8:
5040      case 16:
5041      case 32:
5042      case 64:
5043      case 128:
5044        OpTy = IntegerType::get(Context, BitSize);
5045        break;
5046      }
5047    }
5048
5049    return TLI.getValueType(OpTy, true);
5050  }
5051
5052private:
5053  /// MarkRegAndAliases - Mark the specified register and all aliases in the
5054  /// specified set.
5055  static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
5056                                const TargetRegisterInfo &TRI) {
5057    assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
5058    Regs.insert(Reg);
5059    if (const unsigned *Aliases = TRI.getAliasSet(Reg))
5060      for (; *Aliases; ++Aliases)
5061        Regs.insert(*Aliases);
5062  }
5063};
5064
5065} // end llvm namespace.
5066
5067/// isAllocatableRegister - If the specified register is safe to allocate,
5068/// i.e. it isn't a stack pointer or some other special register, return the
5069/// register class for the register.  Otherwise, return null.
5070static const TargetRegisterClass *
5071isAllocatableRegister(unsigned Reg, MachineFunction &MF,
5072                      const TargetLowering &TLI,
5073                      const TargetRegisterInfo *TRI) {
5074  EVT FoundVT = MVT::Other;
5075  const TargetRegisterClass *FoundRC = 0;
5076  for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(),
5077       E = TRI->regclass_end(); RCI != E; ++RCI) {
5078    EVT ThisVT = MVT::Other;
5079
5080    const TargetRegisterClass *RC = *RCI;
5081    // If none of the value types for this register class are valid, we
5082    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
5083    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
5084         I != E; ++I) {
5085      if (TLI.isTypeLegal(*I)) {
5086        // If we have already found this register in a different register class,
5087        // choose the one with the largest VT specified.  For example, on
5088        // PowerPC, we favor f64 register classes over f32.
5089        if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) {
5090          ThisVT = *I;
5091          break;
5092        }
5093      }
5094    }
5095
5096    if (ThisVT == MVT::Other) continue;
5097
5098    // NOTE: This isn't ideal.  In particular, this might allocate the
5099    // frame pointer in functions that need it (due to them not being taken
5100    // out of allocation, because a variable sized allocation hasn't been seen
5101    // yet).  This is a slight code pessimization, but should still work.
5102    for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
5103         E = RC->allocation_order_end(MF); I != E; ++I)
5104      if (*I == Reg) {
5105        // We found a matching register class.  Keep looking at others in case
5106        // we find one with larger registers that this physreg is also in.
5107        FoundRC = RC;
5108        FoundVT = ThisVT;
5109        break;
5110      }
5111  }
5112  return FoundRC;
5113}
5114
5115/// GetRegistersForValue - Assign registers (virtual or physical) for the
5116/// specified operand.  We prefer to assign virtual registers, to allow the
5117/// register allocator to handle the assignment process.  However, if the asm
5118/// uses features that we can't model on machineinstrs, we have SDISel do the
5119/// allocation.  This produces generally horrible, but correct, code.
5120///
5121///   OpInfo describes the operand.
5122///   Input and OutputRegs are the set of already allocated physical registers.
5123///
5124void SelectionDAGBuilder::
5125GetRegistersForValue(SDISelAsmOperandInfo &OpInfo,
5126                     std::set<unsigned> &OutputRegs,
5127                     std::set<unsigned> &InputRegs) {
5128  LLVMContext &Context = FuncInfo.Fn->getContext();
5129
5130  // Compute whether this value requires an input register, an output register,
5131  // or both.
5132  bool isOutReg = false;
5133  bool isInReg = false;
5134  switch (OpInfo.Type) {
5135  case InlineAsm::isOutput:
5136    isOutReg = true;
5137
5138    // If there is an input constraint that matches this, we need to reserve
5139    // the input register so no other inputs allocate to it.
5140    isInReg = OpInfo.hasMatchingInput();
5141    break;
5142  case InlineAsm::isInput:
5143    isInReg = true;
5144    isOutReg = false;
5145    break;
5146  case InlineAsm::isClobber:
5147    isOutReg = true;
5148    isInReg = true;
5149    break;
5150  }
5151
5152
5153  MachineFunction &MF = DAG.getMachineFunction();
5154  SmallVector<unsigned, 4> Regs;
5155
5156  // If this is a constraint for a single physreg, or a constraint for a
5157  // register class, find it.
5158  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
5159    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5160                                     OpInfo.ConstraintVT);
5161
5162  unsigned NumRegs = 1;
5163  if (OpInfo.ConstraintVT != MVT::Other) {
5164    // If this is a FP input in an integer register (or visa versa) insert a bit
5165    // cast of the input value.  More generally, handle any case where the input
5166    // value disagrees with the register class we plan to stick this in.
5167    if (OpInfo.Type == InlineAsm::isInput &&
5168        PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
5169      // Try to convert to the first EVT that the reg class contains.  If the
5170      // types are identical size, use a bitcast to convert (e.g. two differing
5171      // vector types).
5172      EVT RegVT = *PhysReg.second->vt_begin();
5173      if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
5174        OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
5175                                         RegVT, OpInfo.CallOperand);
5176        OpInfo.ConstraintVT = RegVT;
5177      } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
5178        // If the input is a FP value and we want it in FP registers, do a
5179        // bitcast to the corresponding integer type.  This turns an f64 value
5180        // into i64, which can be passed with two i32 values on a 32-bit
5181        // machine.
5182        RegVT = EVT::getIntegerVT(Context,
5183                                  OpInfo.ConstraintVT.getSizeInBits());
5184        OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
5185                                         RegVT, OpInfo.CallOperand);
5186        OpInfo.ConstraintVT = RegVT;
5187      }
5188    }
5189
5190    NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
5191  }
5192
5193  EVT RegVT;
5194  EVT ValueVT = OpInfo.ConstraintVT;
5195
5196  // If this is a constraint for a specific physical register, like {r17},
5197  // assign it now.
5198  if (unsigned AssignedReg = PhysReg.first) {
5199    const TargetRegisterClass *RC = PhysReg.second;
5200    if (OpInfo.ConstraintVT == MVT::Other)
5201      ValueVT = *RC->vt_begin();
5202
5203    // Get the actual register value type.  This is important, because the user
5204    // may have asked for (e.g.) the AX register in i32 type.  We need to
5205    // remember that AX is actually i16 to get the right extension.
5206    RegVT = *RC->vt_begin();
5207
5208    // This is a explicit reference to a physical register.
5209    Regs.push_back(AssignedReg);
5210
5211    // If this is an expanded reference, add the rest of the regs to Regs.
5212    if (NumRegs != 1) {
5213      TargetRegisterClass::iterator I = RC->begin();
5214      for (; *I != AssignedReg; ++I)
5215        assert(I != RC->end() && "Didn't find reg!");
5216
5217      // Already added the first reg.
5218      --NumRegs; ++I;
5219      for (; NumRegs; --NumRegs, ++I) {
5220        assert(I != RC->end() && "Ran out of registers to allocate!");
5221        Regs.push_back(*I);
5222      }
5223    }
5224
5225    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5226    const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5227    OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5228    return;
5229  }
5230
5231  // Otherwise, if this was a reference to an LLVM register class, create vregs
5232  // for this reference.
5233  if (const TargetRegisterClass *RC = PhysReg.second) {
5234    RegVT = *RC->vt_begin();
5235    if (OpInfo.ConstraintVT == MVT::Other)
5236      ValueVT = RegVT;
5237
5238    // Create the appropriate number of virtual registers.
5239    MachineRegisterInfo &RegInfo = MF.getRegInfo();
5240    for (; NumRegs; --NumRegs)
5241      Regs.push_back(RegInfo.createVirtualRegister(RC));
5242
5243    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5244    return;
5245  }
5246
5247  // This is a reference to a register class that doesn't directly correspond
5248  // to an LLVM register class.  Allocate NumRegs consecutive, available,
5249  // registers from the class.
5250  std::vector<unsigned> RegClassRegs
5251    = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
5252                                            OpInfo.ConstraintVT);
5253
5254  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5255  unsigned NumAllocated = 0;
5256  for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
5257    unsigned Reg = RegClassRegs[i];
5258    // See if this register is available.
5259    if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
5260        (isInReg  && InputRegs.count(Reg))) {    // Already used.
5261      // Make sure we find consecutive registers.
5262      NumAllocated = 0;
5263      continue;
5264    }
5265
5266    // Check to see if this register is allocatable (i.e. don't give out the
5267    // stack pointer).
5268    const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, TRI);
5269    if (!RC) {        // Couldn't allocate this register.
5270      // Reset NumAllocated to make sure we return consecutive registers.
5271      NumAllocated = 0;
5272      continue;
5273    }
5274
5275    // Okay, this register is good, we can use it.
5276    ++NumAllocated;
5277
5278    // If we allocated enough consecutive registers, succeed.
5279    if (NumAllocated == NumRegs) {
5280      unsigned RegStart = (i-NumAllocated)+1;
5281      unsigned RegEnd   = i+1;
5282      // Mark all of the allocated registers used.
5283      for (unsigned i = RegStart; i != RegEnd; ++i)
5284        Regs.push_back(RegClassRegs[i]);
5285
5286      OpInfo.AssignedRegs = RegsForValue(Regs, *RC->vt_begin(),
5287                                         OpInfo.ConstraintVT);
5288      OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5289      return;
5290    }
5291  }
5292
5293  // Otherwise, we couldn't allocate enough registers for this.
5294}
5295
5296/// visitInlineAsm - Handle a call to an InlineAsm object.
5297///
5298void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
5299  const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
5300
5301  /// ConstraintOperands - Information about all of the constraints.
5302  std::vector<SDISelAsmOperandInfo> ConstraintOperands;
5303
5304  std::set<unsigned> OutputRegs, InputRegs;
5305
5306  // Do a prepass over the constraints, canonicalizing them, and building up the
5307  // ConstraintOperands list.
5308  std::vector<InlineAsm::ConstraintInfo>
5309    ConstraintInfos = IA->ParseConstraints();
5310
5311  bool hasMemory = hasInlineAsmMemConstraint(ConstraintInfos, TLI);
5312
5313  SDValue Chain, Flag;
5314
5315  // We won't need to flush pending loads if this asm doesn't touch
5316  // memory and is nonvolatile.
5317  if (hasMemory || IA->hasSideEffects())
5318    Chain = getRoot();
5319  else
5320    Chain = DAG.getRoot();
5321
5322  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
5323  unsigned ResNo = 0;   // ResNo - The result number of the next output.
5324  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
5325    ConstraintOperands.push_back(SDISelAsmOperandInfo(ConstraintInfos[i]));
5326    SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
5327
5328    EVT OpVT = MVT::Other;
5329
5330    // Compute the value type for each operand.
5331    switch (OpInfo.Type) {
5332    case InlineAsm::isOutput:
5333      // Indirect outputs just consume an argument.
5334      if (OpInfo.isIndirect) {
5335        OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5336        break;
5337      }
5338
5339      // The return value of the call is this value.  As such, there is no
5340      // corresponding argument.
5341      assert(!CS.getType()->isVoidTy() &&
5342             "Bad inline asm!");
5343      if (const StructType *STy = dyn_cast<StructType>(CS.getType())) {
5344        OpVT = TLI.getValueType(STy->getElementType(ResNo));
5345      } else {
5346        assert(ResNo == 0 && "Asm only has one result!");
5347        OpVT = TLI.getValueType(CS.getType());
5348      }
5349      ++ResNo;
5350      break;
5351    case InlineAsm::isInput:
5352      OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5353      break;
5354    case InlineAsm::isClobber:
5355      // Nothing to do.
5356      break;
5357    }
5358
5359    // If this is an input or an indirect output, process the call argument.
5360    // BasicBlocks are labels, currently appearing only in asm's.
5361    if (OpInfo.CallOperandVal) {
5362      // Strip bitcasts, if any.  This mostly comes up for functions.
5363      OpInfo.CallOperandVal = OpInfo.CallOperandVal->stripPointerCasts();
5364
5365      if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
5366        OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
5367      } else {
5368        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
5369      }
5370
5371      OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD);
5372    }
5373
5374    OpInfo.ConstraintVT = OpVT;
5375  }
5376
5377  // Second pass over the constraints: compute which constraint option to use
5378  // and assign registers to constraints that want a specific physreg.
5379  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
5380    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5381
5382    // If this is an output operand with a matching input operand, look up the
5383    // matching input. If their types mismatch, e.g. one is an integer, the
5384    // other is floating point, or their sizes are different, flag it as an
5385    // error.
5386    if (OpInfo.hasMatchingInput()) {
5387      SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5388
5389      if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5390        if ((OpInfo.ConstraintVT.isInteger() !=
5391             Input.ConstraintVT.isInteger()) ||
5392            (OpInfo.ConstraintVT.getSizeInBits() !=
5393             Input.ConstraintVT.getSizeInBits())) {
5394          report_fatal_error("Unsupported asm: input constraint"
5395                             " with a matching output constraint of"
5396                             " incompatible type!");
5397        }
5398        Input.ConstraintVT = OpInfo.ConstraintVT;
5399      }
5400    }
5401
5402    // Compute the constraint code and ConstraintType to use.
5403    TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
5404
5405    // If this is a memory input, and if the operand is not indirect, do what we
5406    // need to to provide an address for the memory input.
5407    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5408        !OpInfo.isIndirect) {
5409      assert(OpInfo.Type == InlineAsm::isInput &&
5410             "Can only indirectify direct input operands!");
5411
5412      // Memory operands really want the address of the value.  If we don't have
5413      // an indirect input, put it in the constpool if we can, otherwise spill
5414      // it to a stack slot.
5415
5416      // If the operand is a float, integer, or vector constant, spill to a
5417      // constant pool entry to get its address.
5418      const Value *OpVal = OpInfo.CallOperandVal;
5419      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
5420          isa<ConstantVector>(OpVal)) {
5421        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
5422                                                 TLI.getPointerTy());
5423      } else {
5424        // Otherwise, create a stack slot and emit a store to it before the
5425        // asm.
5426        const Type *Ty = OpVal->getType();
5427        uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
5428        unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
5429        MachineFunction &MF = DAG.getMachineFunction();
5430        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5431        SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
5432        Chain = DAG.getStore(Chain, getCurDebugLoc(),
5433                             OpInfo.CallOperand, StackSlot, NULL, 0,
5434                             false, false, 0);
5435        OpInfo.CallOperand = StackSlot;
5436      }
5437
5438      // There is no longer a Value* corresponding to this operand.
5439      OpInfo.CallOperandVal = 0;
5440
5441      // It is now an indirect operand.
5442      OpInfo.isIndirect = true;
5443    }
5444
5445    // If this constraint is for a specific register, allocate it before
5446    // anything else.
5447    if (OpInfo.ConstraintType == TargetLowering::C_Register)
5448      GetRegistersForValue(OpInfo, OutputRegs, InputRegs);
5449  }
5450
5451  ConstraintInfos.clear();
5452
5453  // Second pass - Loop over all of the operands, assigning virtual or physregs
5454  // to register class operands.
5455  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5456    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5457
5458    // C_Register operands have already been allocated, Other/Memory don't need
5459    // to be.
5460    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
5461      GetRegistersForValue(OpInfo, OutputRegs, InputRegs);
5462  }
5463
5464  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
5465  std::vector<SDValue> AsmNodeOperands;
5466  AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
5467  AsmNodeOperands.push_back(
5468          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
5469                                      TLI.getPointerTy()));
5470
5471  // If we have a !srcloc metadata node associated with it, we want to attach
5472  // this to the ultimately generated inline asm machineinstr.  To do this, we
5473  // pass in the third operand as this (potentially null) inline asm MDNode.
5474  const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
5475  AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
5476
5477  // Remember the AlignStack bit as operand 3.
5478  AsmNodeOperands.push_back(DAG.getTargetConstant(IA->isAlignStack() ? 1 : 0,
5479                                            MVT::i1));
5480
5481  // Loop over all of the inputs, copying the operand values into the
5482  // appropriate registers and processing the output regs.
5483  RegsForValue RetValRegs;
5484
5485  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
5486  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
5487
5488  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5489    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5490
5491    switch (OpInfo.Type) {
5492    case InlineAsm::isOutput: {
5493      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
5494          OpInfo.ConstraintType != TargetLowering::C_Register) {
5495        // Memory output, or 'other' output (e.g. 'X' constraint).
5496        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
5497
5498        // Add information to the INLINEASM node to know about this output.
5499        unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
5500        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
5501                                                        TLI.getPointerTy()));
5502        AsmNodeOperands.push_back(OpInfo.CallOperand);
5503        break;
5504      }
5505
5506      // Otherwise, this is a register or register class output.
5507
5508      // Copy the output from the appropriate register.  Find a register that
5509      // we can use.
5510      if (OpInfo.AssignedRegs.Regs.empty())
5511        report_fatal_error("Couldn't allocate output reg for constraint '" +
5512                           Twine(OpInfo.ConstraintCode) + "'!");
5513
5514      // If this is an indirect operand, store through the pointer after the
5515      // asm.
5516      if (OpInfo.isIndirect) {
5517        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
5518                                                      OpInfo.CallOperandVal));
5519      } else {
5520        // This is the result value of the call.
5521        assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
5522        // Concatenate this output onto the outputs list.
5523        RetValRegs.append(OpInfo.AssignedRegs);
5524      }
5525
5526      // Add information to the INLINEASM node to know that this register is
5527      // set.
5528      OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
5529                                           InlineAsm::Kind_RegDefEarlyClobber :
5530                                               InlineAsm::Kind_RegDef,
5531                                               false,
5532                                               0,
5533                                               DAG,
5534                                               AsmNodeOperands);
5535      break;
5536    }
5537    case InlineAsm::isInput: {
5538      SDValue InOperandVal = OpInfo.CallOperand;
5539
5540      if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
5541        // If this is required to match an output register we have already set,
5542        // just use its register.
5543        unsigned OperandNo = OpInfo.getMatchedOperand();
5544
5545        // Scan until we find the definition we already emitted of this operand.
5546        // When we find it, create a RegsForValue operand.
5547        unsigned CurOp = InlineAsm::Op_FirstOperand;
5548        for (; OperandNo; --OperandNo) {
5549          // Advance to the next operand.
5550          unsigned OpFlag =
5551            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5552          assert((InlineAsm::isRegDefKind(OpFlag) ||
5553                  InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
5554                  InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
5555          CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
5556        }
5557
5558        unsigned OpFlag =
5559          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5560        if (InlineAsm::isRegDefKind(OpFlag) ||
5561            InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
5562          // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
5563          if (OpInfo.isIndirect) {
5564            // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
5565            LLVMContext &Ctx = *DAG.getContext();
5566            Ctx.emitError(CS.getInstruction(),  "inline asm not supported yet:"
5567                          " don't know how to handle tied "
5568                          "indirect register inputs");
5569          }
5570
5571          RegsForValue MatchedRegs;
5572          MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
5573          EVT RegVT = AsmNodeOperands[CurOp+1].getValueType();
5574          MatchedRegs.RegVTs.push_back(RegVT);
5575          MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
5576          for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
5577               i != e; ++i)
5578            MatchedRegs.Regs.push_back
5579              (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)));
5580
5581          // Use the produced MatchedRegs object to
5582          MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
5583                                    Chain, &Flag);
5584          MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
5585                                           true, OpInfo.getMatchedOperand(),
5586                                           DAG, AsmNodeOperands);
5587          break;
5588        }
5589
5590        assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
5591        assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
5592               "Unexpected number of operands");
5593        // Add information to the INLINEASM node to know about this input.
5594        // See InlineAsm.h isUseOperandTiedToDef.
5595        OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
5596                                                    OpInfo.getMatchedOperand());
5597        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
5598                                                        TLI.getPointerTy()));
5599        AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
5600        break;
5601      }
5602
5603      // Treat indirect 'X' constraint as memory.
5604      if (OpInfo.ConstraintType == TargetLowering::C_Other &&
5605          OpInfo.isIndirect)
5606        OpInfo.ConstraintType = TargetLowering::C_Memory;
5607
5608      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
5609        std::vector<SDValue> Ops;
5610        TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0],
5611                                         Ops, DAG);
5612        if (Ops.empty())
5613          report_fatal_error("Invalid operand for inline asm constraint '" +
5614                             Twine(OpInfo.ConstraintCode) + "'!");
5615
5616        // Add information to the INLINEASM node to know about this input.
5617        unsigned ResOpType =
5618          InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
5619        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5620                                                        TLI.getPointerTy()));
5621        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
5622        break;
5623      }
5624
5625      if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
5626        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
5627        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
5628               "Memory operands expect pointer values");
5629
5630        // Add information to the INLINEASM node to know about this input.
5631        unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
5632        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5633                                                        TLI.getPointerTy()));
5634        AsmNodeOperands.push_back(InOperandVal);
5635        break;
5636      }
5637
5638      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
5639              OpInfo.ConstraintType == TargetLowering::C_Register) &&
5640             "Unknown constraint type!");
5641      assert(!OpInfo.isIndirect &&
5642             "Don't know how to handle indirect register inputs yet!");
5643
5644      // Copy the input into the appropriate registers.
5645      if (OpInfo.AssignedRegs.Regs.empty() ||
5646          !OpInfo.AssignedRegs.areValueTypesLegal(TLI))
5647        report_fatal_error("Couldn't allocate input reg for constraint '" +
5648                           Twine(OpInfo.ConstraintCode) + "'!");
5649
5650      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
5651                                        Chain, &Flag);
5652
5653      OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
5654                                               DAG, AsmNodeOperands);
5655      break;
5656    }
5657    case InlineAsm::isClobber: {
5658      // Add the clobbered value to the operand list, so that the register
5659      // allocator is aware that the physreg got clobbered.
5660      if (!OpInfo.AssignedRegs.Regs.empty())
5661        OpInfo.AssignedRegs.AddInlineAsmOperands(
5662                                            InlineAsm::Kind_RegDefEarlyClobber,
5663                                                 false, 0, DAG,
5664                                                 AsmNodeOperands);
5665      break;
5666    }
5667    }
5668  }
5669
5670  // Finish up input operands.  Set the input chain and add the flag last.
5671  AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
5672  if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
5673
5674  Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(),
5675                      DAG.getVTList(MVT::Other, MVT::Flag),
5676                      &AsmNodeOperands[0], AsmNodeOperands.size());
5677  Flag = Chain.getValue(1);
5678
5679  // If this asm returns a register value, copy the result from that register
5680  // and set it as the value of the call.
5681  if (!RetValRegs.Regs.empty()) {
5682    SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
5683                                             Chain, &Flag);
5684
5685    // FIXME: Why don't we do this for inline asms with MRVs?
5686    if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
5687      EVT ResultType = TLI.getValueType(CS.getType());
5688
5689      // If any of the results of the inline asm is a vector, it may have the
5690      // wrong width/num elts.  This can happen for register classes that can
5691      // contain multiple different value types.  The preg or vreg allocated may
5692      // not have the same VT as was expected.  Convert it to the right type
5693      // with bit_convert.
5694      if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
5695        Val = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
5696                          ResultType, Val);
5697
5698      } else if (ResultType != Val.getValueType() &&
5699                 ResultType.isInteger() && Val.getValueType().isInteger()) {
5700        // If a result value was tied to an input value, the computed result may
5701        // have a wider width than the expected result.  Extract the relevant
5702        // portion.
5703        Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val);
5704      }
5705
5706      assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
5707    }
5708
5709    setValue(CS.getInstruction(), Val);
5710    // Don't need to use this as a chain in this case.
5711    if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
5712      return;
5713  }
5714
5715  std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
5716
5717  // Process indirect outputs, first output all of the flagged copies out of
5718  // physregs.
5719  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
5720    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
5721    const Value *Ptr = IndirectStoresToEmit[i].second;
5722    SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
5723                                             Chain, &Flag);
5724    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
5725  }
5726
5727  // Emit the non-flagged stores from the physregs.
5728  SmallVector<SDValue, 8> OutChains;
5729  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
5730    SDValue Val = DAG.getStore(Chain, getCurDebugLoc(),
5731                               StoresToEmit[i].first,
5732                               getValue(StoresToEmit[i].second),
5733                               StoresToEmit[i].second, 0,
5734                               false, false, 0);
5735    OutChains.push_back(Val);
5736  }
5737
5738  if (!OutChains.empty())
5739    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
5740                        &OutChains[0], OutChains.size());
5741
5742  DAG.setRoot(Chain);
5743}
5744
5745void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
5746  DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(),
5747                          MVT::Other, getRoot(),
5748                          getValue(I.getArgOperand(0)),
5749                          DAG.getSrcValue(I.getArgOperand(0))));
5750}
5751
5752void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
5753  const TargetData &TD = *TLI.getTargetData();
5754  SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(),
5755                           getRoot(), getValue(I.getOperand(0)),
5756                           DAG.getSrcValue(I.getOperand(0)),
5757                           TD.getABITypeAlignment(I.getType()));
5758  setValue(&I, V);
5759  DAG.setRoot(V.getValue(1));
5760}
5761
5762void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
5763  DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(),
5764                          MVT::Other, getRoot(),
5765                          getValue(I.getArgOperand(0)),
5766                          DAG.getSrcValue(I.getArgOperand(0))));
5767}
5768
5769void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
5770  DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(),
5771                          MVT::Other, getRoot(),
5772                          getValue(I.getArgOperand(0)),
5773                          getValue(I.getArgOperand(1)),
5774                          DAG.getSrcValue(I.getArgOperand(0)),
5775                          DAG.getSrcValue(I.getArgOperand(1))));
5776}
5777
5778/// TargetLowering::LowerCallTo - This is the default LowerCallTo
5779/// implementation, which just calls LowerCall.
5780/// FIXME: When all targets are
5781/// migrated to using LowerCall, this hook should be integrated into SDISel.
5782std::pair<SDValue, SDValue>
5783TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy,
5784                            bool RetSExt, bool RetZExt, bool isVarArg,
5785                            bool isInreg, unsigned NumFixedArgs,
5786                            CallingConv::ID CallConv, bool isTailCall,
5787                            bool isReturnValueUsed,
5788                            SDValue Callee,
5789                            ArgListTy &Args, SelectionDAG &DAG,
5790                            DebugLoc dl) const {
5791  // Handle all of the outgoing arguments.
5792  SmallVector<ISD::OutputArg, 32> Outs;
5793  SmallVector<SDValue, 32> OutVals;
5794  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
5795    SmallVector<EVT, 4> ValueVTs;
5796    ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
5797    for (unsigned Value = 0, NumValues = ValueVTs.size();
5798         Value != NumValues; ++Value) {
5799      EVT VT = ValueVTs[Value];
5800      const Type *ArgTy = VT.getTypeForEVT(RetTy->getContext());
5801      SDValue Op = SDValue(Args[i].Node.getNode(),
5802                           Args[i].Node.getResNo() + Value);
5803      ISD::ArgFlagsTy Flags;
5804      unsigned OriginalAlignment =
5805        getTargetData()->getABITypeAlignment(ArgTy);
5806
5807      if (Args[i].isZExt)
5808        Flags.setZExt();
5809      if (Args[i].isSExt)
5810        Flags.setSExt();
5811      if (Args[i].isInReg)
5812        Flags.setInReg();
5813      if (Args[i].isSRet)
5814        Flags.setSRet();
5815      if (Args[i].isByVal) {
5816        Flags.setByVal();
5817        const PointerType *Ty = cast<PointerType>(Args[i].Ty);
5818        const Type *ElementTy = Ty->getElementType();
5819        unsigned FrameAlign = getByValTypeAlignment(ElementTy);
5820        unsigned FrameSize  = getTargetData()->getTypeAllocSize(ElementTy);
5821        // For ByVal, alignment should come from FE.  BE will guess if this
5822        // info is not there but there are cases it cannot get right.
5823        if (Args[i].Alignment)
5824          FrameAlign = Args[i].Alignment;
5825        Flags.setByValAlign(FrameAlign);
5826        Flags.setByValSize(FrameSize);
5827      }
5828      if (Args[i].isNest)
5829        Flags.setNest();
5830      Flags.setOrigAlign(OriginalAlignment);
5831
5832      EVT PartVT = getRegisterType(RetTy->getContext(), VT);
5833      unsigned NumParts = getNumRegisters(RetTy->getContext(), VT);
5834      SmallVector<SDValue, 4> Parts(NumParts);
5835      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
5836
5837      if (Args[i].isSExt)
5838        ExtendKind = ISD::SIGN_EXTEND;
5839      else if (Args[i].isZExt)
5840        ExtendKind = ISD::ZERO_EXTEND;
5841
5842      getCopyToParts(DAG, dl, Op, &Parts[0], NumParts,
5843                     PartVT, ExtendKind);
5844
5845      for (unsigned j = 0; j != NumParts; ++j) {
5846        // if it isn't first piece, alignment must be 1
5847        ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(),
5848                               i < NumFixedArgs);
5849        if (NumParts > 1 && j == 0)
5850          MyFlags.Flags.setSplit();
5851        else if (j != 0)
5852          MyFlags.Flags.setOrigAlign(1);
5853
5854        Outs.push_back(MyFlags);
5855        OutVals.push_back(Parts[j]);
5856      }
5857    }
5858  }
5859
5860  // Handle the incoming return values from the call.
5861  SmallVector<ISD::InputArg, 32> Ins;
5862  SmallVector<EVT, 4> RetTys;
5863  ComputeValueVTs(*this, RetTy, RetTys);
5864  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
5865    EVT VT = RetTys[I];
5866    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
5867    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
5868    for (unsigned i = 0; i != NumRegs; ++i) {
5869      ISD::InputArg MyFlags;
5870      MyFlags.VT = RegisterVT;
5871      MyFlags.Used = isReturnValueUsed;
5872      if (RetSExt)
5873        MyFlags.Flags.setSExt();
5874      if (RetZExt)
5875        MyFlags.Flags.setZExt();
5876      if (isInreg)
5877        MyFlags.Flags.setInReg();
5878      Ins.push_back(MyFlags);
5879    }
5880  }
5881
5882  SmallVector<SDValue, 4> InVals;
5883  Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall,
5884                    Outs, OutVals, Ins, dl, DAG, InVals);
5885
5886  // Verify that the target's LowerCall behaved as expected.
5887  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
5888         "LowerCall didn't return a valid chain!");
5889  assert((!isTailCall || InVals.empty()) &&
5890         "LowerCall emitted a return value for a tail call!");
5891  assert((isTailCall || InVals.size() == Ins.size()) &&
5892         "LowerCall didn't emit the correct number of values!");
5893
5894  // For a tail call, the return value is merely live-out and there aren't
5895  // any nodes in the DAG representing it. Return a special value to
5896  // indicate that a tail call has been emitted and no more Instructions
5897  // should be processed in the current block.
5898  if (isTailCall) {
5899    DAG.setRoot(Chain);
5900    return std::make_pair(SDValue(), SDValue());
5901  }
5902
5903  DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
5904          assert(InVals[i].getNode() &&
5905                 "LowerCall emitted a null value!");
5906          assert(Ins[i].VT == InVals[i].getValueType() &&
5907                 "LowerCall emitted a value with the wrong type!");
5908        });
5909
5910  // Collect the legal value parts into potentially illegal values
5911  // that correspond to the original function's return values.
5912  ISD::NodeType AssertOp = ISD::DELETED_NODE;
5913  if (RetSExt)
5914    AssertOp = ISD::AssertSext;
5915  else if (RetZExt)
5916    AssertOp = ISD::AssertZext;
5917  SmallVector<SDValue, 4> ReturnValues;
5918  unsigned CurReg = 0;
5919  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
5920    EVT VT = RetTys[I];
5921    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
5922    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
5923
5924    ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg],
5925                                            NumRegs, RegisterVT, VT,
5926                                            AssertOp));
5927    CurReg += NumRegs;
5928  }
5929
5930  // For a function returning void, there is no return value. We can't create
5931  // such a node, so we just return a null return value in that case. In
5932  // that case, nothing will actualy look at the value.
5933  if (ReturnValues.empty())
5934    return std::make_pair(SDValue(), Chain);
5935
5936  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
5937                            DAG.getVTList(&RetTys[0], RetTys.size()),
5938                            &ReturnValues[0], ReturnValues.size());
5939  return std::make_pair(Res, Chain);
5940}
5941
5942void TargetLowering::LowerOperationWrapper(SDNode *N,
5943                                           SmallVectorImpl<SDValue> &Results,
5944                                           SelectionDAG &DAG) const {
5945  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
5946  if (Res.getNode())
5947    Results.push_back(Res);
5948}
5949
5950SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
5951  llvm_unreachable("LowerOperation not implemented for this target!");
5952  return SDValue();
5953}
5954
5955void
5956SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
5957  SDValue Op = getNonRegisterValue(V);
5958  assert((Op.getOpcode() != ISD::CopyFromReg ||
5959          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
5960         "Copy from a reg to the same reg!");
5961  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
5962
5963  RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
5964  SDValue Chain = DAG.getEntryNode();
5965  RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0);
5966  PendingExports.push_back(Chain);
5967}
5968
5969#include "llvm/CodeGen/SelectionDAGISel.h"
5970
5971void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) {
5972  // If this is the entry block, emit arguments.
5973  const Function &F = *LLVMBB->getParent();
5974  SelectionDAG &DAG = SDB->DAG;
5975  DebugLoc dl = SDB->getCurDebugLoc();
5976  const TargetData *TD = TLI.getTargetData();
5977  SmallVector<ISD::InputArg, 16> Ins;
5978
5979  // Check whether the function can return without sret-demotion.
5980  SmallVector<ISD::OutputArg, 4> Outs;
5981  GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
5982                Outs, TLI);
5983
5984  if (!FuncInfo->CanLowerReturn) {
5985    // Put in an sret pointer parameter before all the other parameters.
5986    SmallVector<EVT, 1> ValueVTs;
5987    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
5988
5989    // NOTE: Assuming that a pointer will never break down to more than one VT
5990    // or one register.
5991    ISD::ArgFlagsTy Flags;
5992    Flags.setSRet();
5993    EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]);
5994    ISD::InputArg RetArg(Flags, RegisterVT, true);
5995    Ins.push_back(RetArg);
5996  }
5997
5998  // Set up the incoming argument description vector.
5999  unsigned Idx = 1;
6000  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
6001       I != E; ++I, ++Idx) {
6002    SmallVector<EVT, 4> ValueVTs;
6003    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6004    bool isArgValueUsed = !I->use_empty();
6005    for (unsigned Value = 0, NumValues = ValueVTs.size();
6006         Value != NumValues; ++Value) {
6007      EVT VT = ValueVTs[Value];
6008      const Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
6009      ISD::ArgFlagsTy Flags;
6010      unsigned OriginalAlignment =
6011        TD->getABITypeAlignment(ArgTy);
6012
6013      if (F.paramHasAttr(Idx, Attribute::ZExt))
6014        Flags.setZExt();
6015      if (F.paramHasAttr(Idx, Attribute::SExt))
6016        Flags.setSExt();
6017      if (F.paramHasAttr(Idx, Attribute::InReg))
6018        Flags.setInReg();
6019      if (F.paramHasAttr(Idx, Attribute::StructRet))
6020        Flags.setSRet();
6021      if (F.paramHasAttr(Idx, Attribute::ByVal)) {
6022        Flags.setByVal();
6023        const PointerType *Ty = cast<PointerType>(I->getType());
6024        const Type *ElementTy = Ty->getElementType();
6025        unsigned FrameAlign = TLI.getByValTypeAlignment(ElementTy);
6026        unsigned FrameSize  = TD->getTypeAllocSize(ElementTy);
6027        // For ByVal, alignment should be passed from FE.  BE will guess if
6028        // this info is not there but there are cases it cannot get right.
6029        if (F.getParamAlignment(Idx))
6030          FrameAlign = F.getParamAlignment(Idx);
6031        Flags.setByValAlign(FrameAlign);
6032        Flags.setByValSize(FrameSize);
6033      }
6034      if (F.paramHasAttr(Idx, Attribute::Nest))
6035        Flags.setNest();
6036      Flags.setOrigAlign(OriginalAlignment);
6037
6038      EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6039      unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6040      for (unsigned i = 0; i != NumRegs; ++i) {
6041        ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed);
6042        if (NumRegs > 1 && i == 0)
6043          MyFlags.Flags.setSplit();
6044        // if it isn't first piece, alignment must be 1
6045        else if (i > 0)
6046          MyFlags.Flags.setOrigAlign(1);
6047        Ins.push_back(MyFlags);
6048      }
6049    }
6050  }
6051
6052  // Call the target to set up the argument values.
6053  SmallVector<SDValue, 8> InVals;
6054  SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
6055                                             F.isVarArg(), Ins,
6056                                             dl, DAG, InVals);
6057
6058  // Verify that the target's LowerFormalArguments behaved as expected.
6059  assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
6060         "LowerFormalArguments didn't return a valid chain!");
6061  assert(InVals.size() == Ins.size() &&
6062         "LowerFormalArguments didn't emit the correct number of values!");
6063  DEBUG({
6064      for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6065        assert(InVals[i].getNode() &&
6066               "LowerFormalArguments emitted a null value!");
6067        assert(Ins[i].VT == InVals[i].getValueType() &&
6068               "LowerFormalArguments emitted a value with the wrong type!");
6069      }
6070    });
6071
6072  // Update the DAG with the new chain value resulting from argument lowering.
6073  DAG.setRoot(NewRoot);
6074
6075  // Set up the argument values.
6076  unsigned i = 0;
6077  Idx = 1;
6078  if (!FuncInfo->CanLowerReturn) {
6079    // Create a virtual register for the sret pointer, and put in a copy
6080    // from the sret argument into it.
6081    SmallVector<EVT, 1> ValueVTs;
6082    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6083    EVT VT = ValueVTs[0];
6084    EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6085    ISD::NodeType AssertOp = ISD::DELETED_NODE;
6086    SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
6087                                        RegVT, VT, AssertOp);
6088
6089    MachineFunction& MF = SDB->DAG.getMachineFunction();
6090    MachineRegisterInfo& RegInfo = MF.getRegInfo();
6091    unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT));
6092    FuncInfo->DemoteRegister = SRetReg;
6093    NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(),
6094                                    SRetReg, ArgValue);
6095    DAG.setRoot(NewRoot);
6096
6097    // i indexes lowered arguments.  Bump it past the hidden sret argument.
6098    // Idx indexes LLVM arguments.  Don't touch it.
6099    ++i;
6100  }
6101
6102  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
6103      ++I, ++Idx) {
6104    SmallVector<SDValue, 4> ArgValues;
6105    SmallVector<EVT, 4> ValueVTs;
6106    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6107    unsigned NumValues = ValueVTs.size();
6108
6109    // If this argument is unused then remember its value. It is used to generate
6110    // debugging information.
6111    if (I->use_empty() && NumValues)
6112      SDB->setUnusedArgValue(I, InVals[i]);
6113
6114    for (unsigned Value = 0; Value != NumValues; ++Value) {
6115      EVT VT = ValueVTs[Value];
6116      EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6117      unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6118
6119      if (!I->use_empty()) {
6120        ISD::NodeType AssertOp = ISD::DELETED_NODE;
6121        if (F.paramHasAttr(Idx, Attribute::SExt))
6122          AssertOp = ISD::AssertSext;
6123        else if (F.paramHasAttr(Idx, Attribute::ZExt))
6124          AssertOp = ISD::AssertZext;
6125
6126        ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
6127                                             NumParts, PartVT, VT,
6128                                             AssertOp));
6129      }
6130
6131      i += NumParts;
6132    }
6133
6134    if (!I->use_empty()) {
6135      SDValue Res;
6136      if (!ArgValues.empty())
6137        Res = DAG.getMergeValues(&ArgValues[0], NumValues,
6138                                 SDB->getCurDebugLoc());
6139      SDB->setValue(I, Res);
6140
6141      // If this argument is live outside of the entry block, insert a copy from
6142      // whereever we got it to the vreg that other BB's will reference it as.
6143      SDB->CopyToExportRegsIfNeeded(I);
6144    }
6145  }
6146
6147  assert(i == InVals.size() && "Argument register count mismatch!");
6148
6149  // Finally, if the target has anything special to do, allow it to do so.
6150  // FIXME: this should insert code into the DAG!
6151  EmitFunctionEntryCode();
6152}
6153
6154/// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
6155/// ensure constants are generated when needed.  Remember the virtual registers
6156/// that need to be added to the Machine PHI nodes as input.  We cannot just
6157/// directly add them, because expansion might result in multiple MBB's for one
6158/// BB.  As such, the start of the BB might correspond to a different MBB than
6159/// the end.
6160///
6161void
6162SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
6163  const TerminatorInst *TI = LLVMBB->getTerminator();
6164
6165  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6166
6167  // Check successor nodes' PHI nodes that expect a constant to be available
6168  // from this block.
6169  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6170    const BasicBlock *SuccBB = TI->getSuccessor(succ);
6171    if (!isa<PHINode>(SuccBB->begin())) continue;
6172    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
6173
6174    // If this terminator has multiple identical successors (common for
6175    // switches), only handle each succ once.
6176    if (!SuccsHandled.insert(SuccMBB)) continue;
6177
6178    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6179
6180    // At this point we know that there is a 1-1 correspondence between LLVM PHI
6181    // nodes and Machine PHI nodes, but the incoming operands have not been
6182    // emitted yet.
6183    for (BasicBlock::const_iterator I = SuccBB->begin();
6184         const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
6185      // Ignore dead phi's.
6186      if (PN->use_empty()) continue;
6187
6188      unsigned Reg;
6189      const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6190
6191      if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
6192        unsigned &RegOut = ConstantsOut[C];
6193        if (RegOut == 0) {
6194          RegOut = FuncInfo.CreateRegs(C->getType());
6195          CopyValueToVirtualRegister(C, RegOut);
6196        }
6197        Reg = RegOut;
6198      } else {
6199        DenseMap<const Value *, unsigned>::iterator I =
6200          FuncInfo.ValueMap.find(PHIOp);
6201        if (I != FuncInfo.ValueMap.end())
6202          Reg = I->second;
6203        else {
6204          assert(isa<AllocaInst>(PHIOp) &&
6205                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
6206                 "Didn't codegen value into a register!??");
6207          Reg = FuncInfo.CreateRegs(PHIOp->getType());
6208          CopyValueToVirtualRegister(PHIOp, Reg);
6209        }
6210      }
6211
6212      // Remember that this register needs to added to the machine PHI node as
6213      // the input for this MBB.
6214      SmallVector<EVT, 4> ValueVTs;
6215      ComputeValueVTs(TLI, PN->getType(), ValueVTs);
6216      for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
6217        EVT VT = ValueVTs[vti];
6218        unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
6219        for (unsigned i = 0, e = NumRegisters; i != e; ++i)
6220          FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
6221        Reg += NumRegisters;
6222      }
6223    }
6224  }
6225  ConstantsOut.clear();
6226}
6227