SelectionDAGBuilder.cpp revision 9da9934e27dfb48de77b80a3e20ed2d869b52024
1//===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements routines for translating from LLVM IR into SelectionDAG IR.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "SDNodeDbgValue.h"
16#include "SelectionDAGBuilder.h"
17#include "llvm/ADT/BitVector.h"
18#include "llvm/ADT/PostOrderIterator.h"
19#include "llvm/ADT/SmallSet.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/ConstantFolding.h"
22#include "llvm/Constants.h"
23#include "llvm/CallingConv.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Function.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/InlineAsm.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/IntrinsicInst.h"
31#include "llvm/LLVMContext.h"
32#include "llvm/Module.h"
33#include "llvm/CodeGen/Analysis.h"
34#include "llvm/CodeGen/FastISel.h"
35#include "llvm/CodeGen/FunctionLoweringInfo.h"
36#include "llvm/CodeGen/GCStrategy.h"
37#include "llvm/CodeGen/GCMetadata.h"
38#include "llvm/CodeGen/MachineFunction.h"
39#include "llvm/CodeGen/MachineFrameInfo.h"
40#include "llvm/CodeGen/MachineInstrBuilder.h"
41#include "llvm/CodeGen/MachineJumpTableInfo.h"
42#include "llvm/CodeGen/MachineModuleInfo.h"
43#include "llvm/CodeGen/MachineRegisterInfo.h"
44#include "llvm/CodeGen/PseudoSourceValue.h"
45#include "llvm/CodeGen/SelectionDAG.h"
46#include "llvm/Analysis/DebugInfo.h"
47#include "llvm/Target/TargetData.h"
48#include "llvm/Target/TargetFrameLowering.h"
49#include "llvm/Target/TargetInstrInfo.h"
50#include "llvm/Target/TargetIntrinsicInfo.h"
51#include "llvm/Target/TargetLowering.h"
52#include "llvm/Target/TargetOptions.h"
53#include "llvm/Support/CommandLine.h"
54#include "llvm/Support/Debug.h"
55#include "llvm/Support/ErrorHandling.h"
56#include "llvm/Support/MathExtras.h"
57#include "llvm/Support/raw_ostream.h"
58#include <algorithm>
59using namespace llvm;
60
61/// LimitFloatPrecision - Generate low-precision inline sequences for
62/// some float libcalls (6, 8 or 12 bits).
63static unsigned LimitFloatPrecision;
64
65static cl::opt<unsigned, true>
66LimitFPPrecision("limit-float-precision",
67                 cl::desc("Generate low-precision inline sequences "
68                          "for some float libcalls"),
69                 cl::location(LimitFloatPrecision),
70                 cl::init(0));
71
72// Limit the width of DAG chains. This is important in general to prevent
73// prevent DAG-based analysis from blowing up. For example, alias analysis and
74// load clustering may not complete in reasonable time. It is difficult to
75// recognize and avoid this situation within each individual analysis, and
76// future analyses are likely to have the same behavior. Limiting DAG width is
77// the safe approach, and will be especially important with global DAGs.
78//
79// MaxParallelChains default is arbitrarily high to avoid affecting
80// optimization, but could be lowered to improve compile time. Any ld-ld-st-st
81// sequence over this should have been converted to llvm.memcpy by the
82// frontend. It easy to induce this behavior with .ll code such as:
83// %buffer = alloca [4096 x i8]
84// %data = load [4096 x i8]* %argPtr
85// store [4096 x i8] %data, [4096 x i8]* %buffer
86static const unsigned MaxParallelChains = 64;
87
88static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
89                                      const SDValue *Parts, unsigned NumParts,
90                                      EVT PartVT, EVT ValueVT);
91
92/// getCopyFromParts - Create a value that contains the specified legal parts
93/// combined into the value they represent.  If the parts combine to a type
94/// larger then ValueVT then AssertOp can be used to specify whether the extra
95/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
96/// (ISD::AssertSext).
97static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL,
98                                const SDValue *Parts,
99                                unsigned NumParts, EVT PartVT, EVT ValueVT,
100                                ISD::NodeType AssertOp = ISD::DELETED_NODE) {
101  if (ValueVT.isVector())
102    return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT);
103
104  assert(NumParts > 0 && "No parts to assemble!");
105  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
106  SDValue Val = Parts[0];
107
108  if (NumParts > 1) {
109    // Assemble the value from multiple parts.
110    if (ValueVT.isInteger()) {
111      unsigned PartBits = PartVT.getSizeInBits();
112      unsigned ValueBits = ValueVT.getSizeInBits();
113
114      // Assemble the power of 2 part.
115      unsigned RoundParts = NumParts & (NumParts - 1) ?
116        1 << Log2_32(NumParts) : NumParts;
117      unsigned RoundBits = PartBits * RoundParts;
118      EVT RoundVT = RoundBits == ValueBits ?
119        ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
120      SDValue Lo, Hi;
121
122      EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
123
124      if (RoundParts > 2) {
125        Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
126                              PartVT, HalfVT);
127        Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
128                              RoundParts / 2, PartVT, HalfVT);
129      } else {
130        Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
131        Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
132      }
133
134      if (TLI.isBigEndian())
135        std::swap(Lo, Hi);
136
137      Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
138
139      if (RoundParts < NumParts) {
140        // Assemble the trailing non-power-of-2 part.
141        unsigned OddParts = NumParts - RoundParts;
142        EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
143        Hi = getCopyFromParts(DAG, DL,
144                              Parts + RoundParts, OddParts, PartVT, OddVT);
145
146        // Combine the round and odd parts.
147        Lo = Val;
148        if (TLI.isBigEndian())
149          std::swap(Lo, Hi);
150        EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
151        Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
152        Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
153                         DAG.getConstant(Lo.getValueType().getSizeInBits(),
154                                         TLI.getPointerTy()));
155        Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
156        Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
157      }
158    } else if (PartVT.isFloatingPoint()) {
159      // FP split into multiple FP parts (for ppcf128)
160      assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) &&
161             "Unexpected split");
162      SDValue Lo, Hi;
163      Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
164      Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
165      if (TLI.isBigEndian())
166        std::swap(Lo, Hi);
167      Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
168    } else {
169      // FP split into integer parts (soft fp)
170      assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
171             !PartVT.isVector() && "Unexpected split");
172      EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
173      Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT);
174    }
175  }
176
177  // There is now one part, held in Val.  Correct it to match ValueVT.
178  PartVT = Val.getValueType();
179
180  if (PartVT == ValueVT)
181    return Val;
182
183  if (PartVT.isInteger() && ValueVT.isInteger()) {
184    if (ValueVT.bitsLT(PartVT)) {
185      // For a truncate, see if we have any information to
186      // indicate whether the truncated bits will always be
187      // zero or sign-extension.
188      if (AssertOp != ISD::DELETED_NODE)
189        Val = DAG.getNode(AssertOp, DL, PartVT, Val,
190                          DAG.getValueType(ValueVT));
191      return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
192    }
193    return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
194  }
195
196  if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
197    // FP_ROUND's are always exact here.
198    if (ValueVT.bitsLT(Val.getValueType()))
199      return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val,
200                         DAG.getIntPtrConstant(1));
201
202    return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
203  }
204
205  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
206    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
207
208  llvm_unreachable("Unknown mismatch!");
209  return SDValue();
210}
211
212/// getCopyFromParts - Create a value that contains the specified legal parts
213/// combined into the value they represent.  If the parts combine to a type
214/// larger then ValueVT then AssertOp can be used to specify whether the extra
215/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
216/// (ISD::AssertSext).
217static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
218                                      const SDValue *Parts, unsigned NumParts,
219                                      EVT PartVT, EVT ValueVT) {
220  assert(ValueVT.isVector() && "Not a vector value");
221  assert(NumParts > 0 && "No parts to assemble!");
222  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
223  SDValue Val = Parts[0];
224
225  // Handle a multi-element vector.
226  if (NumParts > 1) {
227    EVT IntermediateVT, RegisterVT;
228    unsigned NumIntermediates;
229    unsigned NumRegs =
230    TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
231                               NumIntermediates, RegisterVT);
232    assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
233    NumParts = NumRegs; // Silence a compiler warning.
234    assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
235    assert(RegisterVT == Parts[0].getValueType() &&
236           "Part type doesn't match part!");
237
238    // Assemble the parts into intermediate operands.
239    SmallVector<SDValue, 8> Ops(NumIntermediates);
240    if (NumIntermediates == NumParts) {
241      // If the register was not expanded, truncate or copy the value,
242      // as appropriate.
243      for (unsigned i = 0; i != NumParts; ++i)
244        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
245                                  PartVT, IntermediateVT);
246    } else if (NumParts > 0) {
247      // If the intermediate type was expanded, build the intermediate
248      // operands from the parts.
249      assert(NumParts % NumIntermediates == 0 &&
250             "Must expand into a divisible number of parts!");
251      unsigned Factor = NumParts / NumIntermediates;
252      for (unsigned i = 0; i != NumIntermediates; ++i)
253        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
254                                  PartVT, IntermediateVT);
255    }
256
257    // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
258    // intermediate operands.
259    Val = DAG.getNode(IntermediateVT.isVector() ?
260                      ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL,
261                      ValueVT, &Ops[0], NumIntermediates);
262  }
263
264  // There is now one part, held in Val.  Correct it to match ValueVT.
265  PartVT = Val.getValueType();
266
267  if (PartVT == ValueVT)
268    return Val;
269
270  if (PartVT.isVector()) {
271    // If the element type of the source/dest vectors are the same, but the
272    // parts vector has more elements than the value vector, then we have a
273    // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
274    // elements we want.
275    if (PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
276      assert(PartVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
277             "Cannot narrow, it would be a lossy transformation");
278      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
279                         DAG.getIntPtrConstant(0));
280    }
281
282    // Vector/Vector bitcast.
283    if (ValueVT.getSizeInBits() == PartVT.getSizeInBits())
284      return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
285
286    assert(PartVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
287      "Cannot handle this kind of promotion");
288    // Promoted vector extract
289    bool Smaller = ValueVT.bitsLE(PartVT);
290    return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
291                       DL, ValueVT, Val);
292
293  }
294
295  // Trivial bitcast if the types are the same size and the destination
296  // vector type is legal.
297  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits() &&
298      TLI.isTypeLegal(ValueVT))
299    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
300
301  // Handle cases such as i8 -> <1 x i1>
302  assert(ValueVT.getVectorNumElements() == 1 &&
303         "Only trivial scalar-to-vector conversions should get here!");
304
305  if (ValueVT.getVectorNumElements() == 1 &&
306      ValueVT.getVectorElementType() != PartVT) {
307    bool Smaller = ValueVT.bitsLE(PartVT);
308    Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
309                       DL, ValueVT.getScalarType(), Val);
310  }
311
312  return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
313}
314
315
316
317
318static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl,
319                                 SDValue Val, SDValue *Parts, unsigned NumParts,
320                                 EVT PartVT);
321
322/// getCopyToParts - Create a series of nodes that contain the specified value
323/// split into legal parts.  If the parts contain more bits than Val, then, for
324/// integers, ExtendKind can be used to specify how to generate the extra bits.
325static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL,
326                           SDValue Val, SDValue *Parts, unsigned NumParts,
327                           EVT PartVT,
328                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
329  EVT ValueVT = Val.getValueType();
330
331  // Handle the vector case separately.
332  if (ValueVT.isVector())
333    return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT);
334
335  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
336  unsigned PartBits = PartVT.getSizeInBits();
337  unsigned OrigNumParts = NumParts;
338  assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
339
340  if (NumParts == 0)
341    return;
342
343  assert(!ValueVT.isVector() && "Vector case handled elsewhere");
344  if (PartVT == ValueVT) {
345    assert(NumParts == 1 && "No-op copy with multiple parts!");
346    Parts[0] = Val;
347    return;
348  }
349
350  if (NumParts * PartBits > ValueVT.getSizeInBits()) {
351    // If the parts cover more bits than the value has, promote the value.
352    if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
353      assert(NumParts == 1 && "Do not know what to promote to!");
354      Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
355    } else {
356      assert(PartVT.isInteger() && ValueVT.isInteger() &&
357             "Unknown mismatch!");
358      ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
359      Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
360    }
361  } else if (PartBits == ValueVT.getSizeInBits()) {
362    // Different types of the same size.
363    assert(NumParts == 1 && PartVT != ValueVT);
364    Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
365  } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
366    // If the parts cover less bits than value has, truncate the value.
367    assert(PartVT.isInteger() && ValueVT.isInteger() &&
368           "Unknown mismatch!");
369    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
370    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
371  }
372
373  // The value may have changed - recompute ValueVT.
374  ValueVT = Val.getValueType();
375  assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
376         "Failed to tile the value with PartVT!");
377
378  if (NumParts == 1) {
379    assert(PartVT == ValueVT && "Type conversion failed!");
380    Parts[0] = Val;
381    return;
382  }
383
384  // Expand the value into multiple parts.
385  if (NumParts & (NumParts - 1)) {
386    // The number of parts is not a power of 2.  Split off and copy the tail.
387    assert(PartVT.isInteger() && ValueVT.isInteger() &&
388           "Do not know what to expand to!");
389    unsigned RoundParts = 1 << Log2_32(NumParts);
390    unsigned RoundBits = RoundParts * PartBits;
391    unsigned OddParts = NumParts - RoundParts;
392    SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
393                                 DAG.getIntPtrConstant(RoundBits));
394    getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT);
395
396    if (TLI.isBigEndian())
397      // The odd parts were reversed by getCopyToParts - unreverse them.
398      std::reverse(Parts + RoundParts, Parts + NumParts);
399
400    NumParts = RoundParts;
401    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
402    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
403  }
404
405  // The number of parts is a power of 2.  Repeatedly bisect the value using
406  // EXTRACT_ELEMENT.
407  Parts[0] = DAG.getNode(ISD::BITCAST, DL,
408                         EVT::getIntegerVT(*DAG.getContext(),
409                                           ValueVT.getSizeInBits()),
410                         Val);
411
412  for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
413    for (unsigned i = 0; i < NumParts; i += StepSize) {
414      unsigned ThisBits = StepSize * PartBits / 2;
415      EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
416      SDValue &Part0 = Parts[i];
417      SDValue &Part1 = Parts[i+StepSize/2];
418
419      Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
420                          ThisVT, Part0, DAG.getIntPtrConstant(1));
421      Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
422                          ThisVT, Part0, DAG.getIntPtrConstant(0));
423
424      if (ThisBits == PartBits && ThisVT != PartVT) {
425        Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
426        Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
427      }
428    }
429  }
430
431  if (TLI.isBigEndian())
432    std::reverse(Parts, Parts + OrigNumParts);
433}
434
435
436/// getCopyToPartsVector - Create a series of nodes that contain the specified
437/// value split into legal parts.
438static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL,
439                                 SDValue Val, SDValue *Parts, unsigned NumParts,
440                                 EVT PartVT) {
441  EVT ValueVT = Val.getValueType();
442  assert(ValueVT.isVector() && "Not a vector");
443  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
444
445  if (NumParts == 1) {
446    if (PartVT == ValueVT) {
447      // Nothing to do.
448    } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
449      // Bitconvert vector->vector case.
450      Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
451    } else if (PartVT.isVector() &&
452               PartVT.getVectorElementType() == ValueVT.getVectorElementType() &&
453               PartVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
454      EVT ElementVT = PartVT.getVectorElementType();
455      // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
456      // undef elements.
457      SmallVector<SDValue, 16> Ops;
458      for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
459        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
460                                  ElementVT, Val, DAG.getIntPtrConstant(i)));
461
462      for (unsigned i = ValueVT.getVectorNumElements(),
463           e = PartVT.getVectorNumElements(); i != e; ++i)
464        Ops.push_back(DAG.getUNDEF(ElementVT));
465
466      Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size());
467
468      // FIXME: Use CONCAT for 2x -> 4x.
469
470      //SDValue UndefElts = DAG.getUNDEF(VectorTy);
471      //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
472    } else if (PartVT.isVector() &&
473               PartVT.getVectorElementType().bitsGE(
474                 ValueVT.getVectorElementType()) &&
475               PartVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
476
477      // Promoted vector extract
478      bool Smaller = PartVT.bitsLE(ValueVT);
479      Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
480                        DL, PartVT, Val);
481    } else{
482      // Vector -> scalar conversion.
483      assert(ValueVT.getVectorNumElements() == 1 &&
484             "Only trivial vector-to-scalar conversions should get here!");
485      Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
486                        PartVT, Val, DAG.getIntPtrConstant(0));
487
488      bool Smaller = ValueVT.bitsLE(PartVT);
489      Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
490                         DL, PartVT, Val);
491    }
492
493    Parts[0] = Val;
494    return;
495  }
496
497  // Handle a multi-element vector.
498  EVT IntermediateVT, RegisterVT;
499  unsigned NumIntermediates;
500  unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
501                                                IntermediateVT,
502                                                NumIntermediates, RegisterVT);
503  unsigned NumElements = ValueVT.getVectorNumElements();
504
505  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
506  NumParts = NumRegs; // Silence a compiler warning.
507  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
508
509  // Split the vector into intermediate operands.
510  SmallVector<SDValue, 8> Ops(NumIntermediates);
511  for (unsigned i = 0; i != NumIntermediates; ++i) {
512    if (IntermediateVT.isVector())
513      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
514                           IntermediateVT, Val,
515                   DAG.getIntPtrConstant(i * (NumElements / NumIntermediates)));
516    else
517      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
518                           IntermediateVT, Val, DAG.getIntPtrConstant(i));
519  }
520
521  // Split the intermediate operands into legal parts.
522  if (NumParts == NumIntermediates) {
523    // If the register was not expanded, promote or copy the value,
524    // as appropriate.
525    for (unsigned i = 0; i != NumParts; ++i)
526      getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT);
527  } else if (NumParts > 0) {
528    // If the intermediate type was expanded, split each the value into
529    // legal parts.
530    assert(NumParts % NumIntermediates == 0 &&
531           "Must expand into a divisible number of parts!");
532    unsigned Factor = NumParts / NumIntermediates;
533    for (unsigned i = 0; i != NumIntermediates; ++i)
534      getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT);
535  }
536}
537
538
539
540
541namespace {
542  /// RegsForValue - This struct represents the registers (physical or virtual)
543  /// that a particular set of values is assigned, and the type information
544  /// about the value. The most common situation is to represent one value at a
545  /// time, but struct or array values are handled element-wise as multiple
546  /// values.  The splitting of aggregates is performed recursively, so that we
547  /// never have aggregate-typed registers. The values at this point do not
548  /// necessarily have legal types, so each value may require one or more
549  /// registers of some legal type.
550  ///
551  struct RegsForValue {
552    /// ValueVTs - The value types of the values, which may not be legal, and
553    /// may need be promoted or synthesized from one or more registers.
554    ///
555    SmallVector<EVT, 4> ValueVTs;
556
557    /// RegVTs - The value types of the registers. This is the same size as
558    /// ValueVTs and it records, for each value, what the type of the assigned
559    /// register or registers are. (Individual values are never synthesized
560    /// from more than one type of register.)
561    ///
562    /// With virtual registers, the contents of RegVTs is redundant with TLI's
563    /// getRegisterType member function, however when with physical registers
564    /// it is necessary to have a separate record of the types.
565    ///
566    SmallVector<EVT, 4> RegVTs;
567
568    /// Regs - This list holds the registers assigned to the values.
569    /// Each legal or promoted value requires one register, and each
570    /// expanded value requires multiple registers.
571    ///
572    SmallVector<unsigned, 4> Regs;
573
574    RegsForValue() {}
575
576    RegsForValue(const SmallVector<unsigned, 4> &regs,
577                 EVT regvt, EVT valuevt)
578      : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
579
580    RegsForValue(LLVMContext &Context, const TargetLowering &tli,
581                 unsigned Reg, const Type *Ty) {
582      ComputeValueVTs(tli, Ty, ValueVTs);
583
584      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
585        EVT ValueVT = ValueVTs[Value];
586        unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
587        EVT RegisterVT = tli.getRegisterType(Context, ValueVT);
588        for (unsigned i = 0; i != NumRegs; ++i)
589          Regs.push_back(Reg + i);
590        RegVTs.push_back(RegisterVT);
591        Reg += NumRegs;
592      }
593    }
594
595    /// areValueTypesLegal - Return true if types of all the values are legal.
596    bool areValueTypesLegal(const TargetLowering &TLI) {
597      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
598        EVT RegisterVT = RegVTs[Value];
599        if (!TLI.isTypeLegal(RegisterVT))
600          return false;
601      }
602      return true;
603    }
604
605    /// append - Add the specified values to this one.
606    void append(const RegsForValue &RHS) {
607      ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
608      RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
609      Regs.append(RHS.Regs.begin(), RHS.Regs.end());
610    }
611
612    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
613    /// this value and returns the result as a ValueVTs value.  This uses
614    /// Chain/Flag as the input and updates them for the output Chain/Flag.
615    /// If the Flag pointer is NULL, no flag is used.
616    SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
617                            DebugLoc dl,
618                            SDValue &Chain, SDValue *Flag) const;
619
620    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
621    /// specified value into the registers specified by this object.  This uses
622    /// Chain/Flag as the input and updates them for the output Chain/Flag.
623    /// If the Flag pointer is NULL, no flag is used.
624    void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
625                       SDValue &Chain, SDValue *Flag) const;
626
627    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
628    /// operand list.  This adds the code marker, matching input operand index
629    /// (if applicable), and includes the number of values added into it.
630    void AddInlineAsmOperands(unsigned Kind,
631                              bool HasMatching, unsigned MatchingIdx,
632                              SelectionDAG &DAG,
633                              std::vector<SDValue> &Ops) const;
634  };
635}
636
637/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
638/// this value and returns the result as a ValueVT value.  This uses
639/// Chain/Flag as the input and updates them for the output Chain/Flag.
640/// If the Flag pointer is NULL, no flag is used.
641SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
642                                      FunctionLoweringInfo &FuncInfo,
643                                      DebugLoc dl,
644                                      SDValue &Chain, SDValue *Flag) const {
645  // A Value with type {} or [0 x %t] needs no registers.
646  if (ValueVTs.empty())
647    return SDValue();
648
649  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
650
651  // Assemble the legal parts into the final values.
652  SmallVector<SDValue, 4> Values(ValueVTs.size());
653  SmallVector<SDValue, 8> Parts;
654  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
655    // Copy the legal parts from the registers.
656    EVT ValueVT = ValueVTs[Value];
657    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
658    EVT RegisterVT = RegVTs[Value];
659
660    Parts.resize(NumRegs);
661    for (unsigned i = 0; i != NumRegs; ++i) {
662      SDValue P;
663      if (Flag == 0) {
664        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
665      } else {
666        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
667        *Flag = P.getValue(2);
668      }
669
670      Chain = P.getValue(1);
671      Parts[i] = P;
672
673      // If the source register was virtual and if we know something about it,
674      // add an assert node.
675      if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
676          !RegisterVT.isInteger() || RegisterVT.isVector())
677        continue;
678
679      const FunctionLoweringInfo::LiveOutInfo *LOI =
680        FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
681      if (!LOI)
682        continue;
683
684      unsigned RegSize = RegisterVT.getSizeInBits();
685      unsigned NumSignBits = LOI->NumSignBits;
686      unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
687
688      // FIXME: We capture more information than the dag can represent.  For
689      // now, just use the tightest assertzext/assertsext possible.
690      bool isSExt = true;
691      EVT FromVT(MVT::Other);
692      if (NumSignBits == RegSize)
693        isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
694      else if (NumZeroBits >= RegSize-1)
695        isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
696      else if (NumSignBits > RegSize-8)
697        isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
698      else if (NumZeroBits >= RegSize-8)
699        isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
700      else if (NumSignBits > RegSize-16)
701        isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
702      else if (NumZeroBits >= RegSize-16)
703        isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
704      else if (NumSignBits > RegSize-32)
705        isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
706      else if (NumZeroBits >= RegSize-32)
707        isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
708      else
709        continue;
710
711      // Add an assertion node.
712      assert(FromVT != MVT::Other);
713      Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
714                             RegisterVT, P, DAG.getValueType(FromVT));
715    }
716
717    Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
718                                     NumRegs, RegisterVT, ValueVT);
719    Part += NumRegs;
720    Parts.clear();
721  }
722
723  return DAG.getNode(ISD::MERGE_VALUES, dl,
724                     DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
725                     &Values[0], ValueVTs.size());
726}
727
728/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
729/// specified value into the registers specified by this object.  This uses
730/// Chain/Flag as the input and updates them for the output Chain/Flag.
731/// If the Flag pointer is NULL, no flag is used.
732void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
733                                 SDValue &Chain, SDValue *Flag) const {
734  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
735
736  // Get the list of the values's legal parts.
737  unsigned NumRegs = Regs.size();
738  SmallVector<SDValue, 8> Parts(NumRegs);
739  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
740    EVT ValueVT = ValueVTs[Value];
741    unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
742    EVT RegisterVT = RegVTs[Value];
743
744    getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
745                   &Parts[Part], NumParts, RegisterVT);
746    Part += NumParts;
747  }
748
749  // Copy the parts into the registers.
750  SmallVector<SDValue, 8> Chains(NumRegs);
751  for (unsigned i = 0; i != NumRegs; ++i) {
752    SDValue Part;
753    if (Flag == 0) {
754      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
755    } else {
756      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
757      *Flag = Part.getValue(1);
758    }
759
760    Chains[i] = Part.getValue(0);
761  }
762
763  if (NumRegs == 1 || Flag)
764    // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
765    // flagged to it. That is the CopyToReg nodes and the user are considered
766    // a single scheduling unit. If we create a TokenFactor and return it as
767    // chain, then the TokenFactor is both a predecessor (operand) of the
768    // user as well as a successor (the TF operands are flagged to the user).
769    // c1, f1 = CopyToReg
770    // c2, f2 = CopyToReg
771    // c3     = TokenFactor c1, c2
772    // ...
773    //        = op c3, ..., f2
774    Chain = Chains[NumRegs-1];
775  else
776    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
777}
778
779/// AddInlineAsmOperands - Add this value to the specified inlineasm node
780/// operand list.  This adds the code marker and includes the number of
781/// values added into it.
782void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
783                                        unsigned MatchingIdx,
784                                        SelectionDAG &DAG,
785                                        std::vector<SDValue> &Ops) const {
786  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
787
788  unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
789  if (HasMatching)
790    Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
791  SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
792  Ops.push_back(Res);
793
794  for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
795    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
796    EVT RegisterVT = RegVTs[Value];
797    for (unsigned i = 0; i != NumRegs; ++i) {
798      assert(Reg < Regs.size() && "Mismatch in # registers expected");
799      Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
800    }
801  }
802}
803
804void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) {
805  AA = &aa;
806  GFI = gfi;
807  TD = DAG.getTarget().getTargetData();
808}
809
810/// clear - Clear out the current SelectionDAG and the associated
811/// state and prepare this SelectionDAGBuilder object to be used
812/// for a new block. This doesn't clear out information about
813/// additional blocks that are needed to complete switch lowering
814/// or PHI node updating; that information is cleared out as it is
815/// consumed.
816void SelectionDAGBuilder::clear() {
817  NodeMap.clear();
818  UnusedArgNodeMap.clear();
819  PendingLoads.clear();
820  PendingExports.clear();
821  CurDebugLoc = DebugLoc();
822  HasTailCall = false;
823}
824
825/// clearDanglingDebugInfo - Clear the dangling debug information
826/// map. This function is seperated from the clear so that debug
827/// information that is dangling in a basic block can be properly
828/// resolved in a different basic block. This allows the
829/// SelectionDAG to resolve dangling debug information attached
830/// to PHI nodes.
831void SelectionDAGBuilder::clearDanglingDebugInfo() {
832  DanglingDebugInfoMap.clear();
833}
834
835/// getRoot - Return the current virtual root of the Selection DAG,
836/// flushing any PendingLoad items. This must be done before emitting
837/// a store or any other node that may need to be ordered after any
838/// prior load instructions.
839///
840SDValue SelectionDAGBuilder::getRoot() {
841  if (PendingLoads.empty())
842    return DAG.getRoot();
843
844  if (PendingLoads.size() == 1) {
845    SDValue Root = PendingLoads[0];
846    DAG.setRoot(Root);
847    PendingLoads.clear();
848    return Root;
849  }
850
851  // Otherwise, we have to make a token factor node.
852  SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
853                               &PendingLoads[0], PendingLoads.size());
854  PendingLoads.clear();
855  DAG.setRoot(Root);
856  return Root;
857}
858
859/// getControlRoot - Similar to getRoot, but instead of flushing all the
860/// PendingLoad items, flush all the PendingExports items. It is necessary
861/// to do this before emitting a terminator instruction.
862///
863SDValue SelectionDAGBuilder::getControlRoot() {
864  SDValue Root = DAG.getRoot();
865
866  if (PendingExports.empty())
867    return Root;
868
869  // Turn all of the CopyToReg chains into one factored node.
870  if (Root.getOpcode() != ISD::EntryToken) {
871    unsigned i = 0, e = PendingExports.size();
872    for (; i != e; ++i) {
873      assert(PendingExports[i].getNode()->getNumOperands() > 1);
874      if (PendingExports[i].getNode()->getOperand(0) == Root)
875        break;  // Don't add the root if we already indirectly depend on it.
876    }
877
878    if (i == e)
879      PendingExports.push_back(Root);
880  }
881
882  Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
883                     &PendingExports[0],
884                     PendingExports.size());
885  PendingExports.clear();
886  DAG.setRoot(Root);
887  return Root;
888}
889
890void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) {
891  if (DAG.GetOrdering(Node) != 0) return; // Already has ordering.
892  DAG.AssignOrdering(Node, SDNodeOrder);
893
894  for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I)
895    AssignOrderingToNode(Node->getOperand(I).getNode());
896}
897
898void SelectionDAGBuilder::visit(const Instruction &I) {
899  // Set up outgoing PHI node register values before emitting the terminator.
900  if (isa<TerminatorInst>(&I))
901    HandlePHINodesInSuccessorBlocks(I.getParent());
902
903  CurDebugLoc = I.getDebugLoc();
904
905  visit(I.getOpcode(), I);
906
907  if (!isa<TerminatorInst>(&I) && !HasTailCall)
908    CopyToExportRegsIfNeeded(&I);
909
910  CurDebugLoc = DebugLoc();
911}
912
913void SelectionDAGBuilder::visitPHI(const PHINode &) {
914  llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
915}
916
917void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
918  // Note: this doesn't use InstVisitor, because it has to work with
919  // ConstantExpr's in addition to instructions.
920  switch (Opcode) {
921  default: llvm_unreachable("Unknown instruction type encountered!");
922    // Build the switch statement using the Instruction.def file.
923#define HANDLE_INST(NUM, OPCODE, CLASS) \
924    case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break;
925#include "llvm/Instruction.def"
926  }
927
928  // Assign the ordering to the freshly created DAG nodes.
929  if (NodeMap.count(&I)) {
930    ++SDNodeOrder;
931    AssignOrderingToNode(getValue(&I).getNode());
932  }
933}
934
935// resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
936// generate the debug data structures now that we've seen its definition.
937void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
938                                                   SDValue Val) {
939  DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
940  if (DDI.getDI()) {
941    const DbgValueInst *DI = DDI.getDI();
942    DebugLoc dl = DDI.getdl();
943    unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
944    MDNode *Variable = DI->getVariable();
945    uint64_t Offset = DI->getOffset();
946    SDDbgValue *SDV;
947    if (Val.getNode()) {
948      if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) {
949        SDV = DAG.getDbgValue(Variable, Val.getNode(),
950                              Val.getResNo(), Offset, dl, DbgSDNodeOrder);
951        DAG.AddDbgValue(SDV, Val.getNode(), false);
952      }
953    } else
954      DEBUG(dbgs() << "Dropping debug info for " << DI);
955    DanglingDebugInfoMap[V] = DanglingDebugInfo();
956  }
957}
958
959// getValue - Return an SDValue for the given Value.
960SDValue SelectionDAGBuilder::getValue(const Value *V) {
961  // If we already have an SDValue for this value, use it. It's important
962  // to do this first, so that we don't create a CopyFromReg if we already
963  // have a regular SDValue.
964  SDValue &N = NodeMap[V];
965  if (N.getNode()) return N;
966
967  // If there's a virtual register allocated and initialized for this
968  // value, use it.
969  DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
970  if (It != FuncInfo.ValueMap.end()) {
971    unsigned InReg = It->second;
972    RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
973    SDValue Chain = DAG.getEntryNode();
974    N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain,NULL);
975    resolveDanglingDebugInfo(V, N);
976    return N;
977  }
978
979  // Otherwise create a new SDValue and remember it.
980  SDValue Val = getValueImpl(V);
981  NodeMap[V] = Val;
982  resolveDanglingDebugInfo(V, Val);
983  return Val;
984}
985
986/// getNonRegisterValue - Return an SDValue for the given Value, but
987/// don't look in FuncInfo.ValueMap for a virtual register.
988SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
989  // If we already have an SDValue for this value, use it.
990  SDValue &N = NodeMap[V];
991  if (N.getNode()) return N;
992
993  // Otherwise create a new SDValue and remember it.
994  SDValue Val = getValueImpl(V);
995  NodeMap[V] = Val;
996  resolveDanglingDebugInfo(V, Val);
997  return Val;
998}
999
1000/// getValueImpl - Helper function for getValue and getNonRegisterValue.
1001/// Create an SDValue for the given value.
1002SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1003  if (const Constant *C = dyn_cast<Constant>(V)) {
1004    EVT VT = TLI.getValueType(V->getType(), true);
1005
1006    if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1007      return DAG.getConstant(*CI, VT);
1008
1009    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1010      return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT);
1011
1012    if (isa<ConstantPointerNull>(C))
1013      return DAG.getConstant(0, TLI.getPointerTy());
1014
1015    if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1016      return DAG.getConstantFP(*CFP, VT);
1017
1018    if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1019      return DAG.getUNDEF(VT);
1020
1021    if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1022      visit(CE->getOpcode(), *CE);
1023      SDValue N1 = NodeMap[V];
1024      assert(N1.getNode() && "visit didn't populate the NodeMap!");
1025      return N1;
1026    }
1027
1028    if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1029      SmallVector<SDValue, 4> Constants;
1030      for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1031           OI != OE; ++OI) {
1032        SDNode *Val = getValue(*OI).getNode();
1033        // If the operand is an empty aggregate, there are no values.
1034        if (!Val) continue;
1035        // Add each leaf value from the operand to the Constants list
1036        // to form a flattened list of all the values.
1037        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1038          Constants.push_back(SDValue(Val, i));
1039      }
1040
1041      return DAG.getMergeValues(&Constants[0], Constants.size(),
1042                                getCurDebugLoc());
1043    }
1044
1045    if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1046      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1047             "Unknown struct or array constant!");
1048
1049      SmallVector<EVT, 4> ValueVTs;
1050      ComputeValueVTs(TLI, C->getType(), ValueVTs);
1051      unsigned NumElts = ValueVTs.size();
1052      if (NumElts == 0)
1053        return SDValue(); // empty struct
1054      SmallVector<SDValue, 4> Constants(NumElts);
1055      for (unsigned i = 0; i != NumElts; ++i) {
1056        EVT EltVT = ValueVTs[i];
1057        if (isa<UndefValue>(C))
1058          Constants[i] = DAG.getUNDEF(EltVT);
1059        else if (EltVT.isFloatingPoint())
1060          Constants[i] = DAG.getConstantFP(0, EltVT);
1061        else
1062          Constants[i] = DAG.getConstant(0, EltVT);
1063      }
1064
1065      return DAG.getMergeValues(&Constants[0], NumElts,
1066                                getCurDebugLoc());
1067    }
1068
1069    if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1070      return DAG.getBlockAddress(BA, VT);
1071
1072    const VectorType *VecTy = cast<VectorType>(V->getType());
1073    unsigned NumElements = VecTy->getNumElements();
1074
1075    // Now that we know the number and type of the elements, get that number of
1076    // elements into the Ops array based on what kind of constant it is.
1077    SmallVector<SDValue, 16> Ops;
1078    if (const ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
1079      for (unsigned i = 0; i != NumElements; ++i)
1080        Ops.push_back(getValue(CP->getOperand(i)));
1081    } else {
1082      assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1083      EVT EltVT = TLI.getValueType(VecTy->getElementType());
1084
1085      SDValue Op;
1086      if (EltVT.isFloatingPoint())
1087        Op = DAG.getConstantFP(0, EltVT);
1088      else
1089        Op = DAG.getConstant(0, EltVT);
1090      Ops.assign(NumElements, Op);
1091    }
1092
1093    // Create a BUILD_VECTOR node.
1094    return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
1095                                    VT, &Ops[0], Ops.size());
1096  }
1097
1098  // If this is a static alloca, generate it as the frameindex instead of
1099  // computation.
1100  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1101    DenseMap<const AllocaInst*, int>::iterator SI =
1102      FuncInfo.StaticAllocaMap.find(AI);
1103    if (SI != FuncInfo.StaticAllocaMap.end())
1104      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
1105  }
1106
1107  // If this is an instruction which fast-isel has deferred, select it now.
1108  if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1109    unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1110    RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType());
1111    SDValue Chain = DAG.getEntryNode();
1112    return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL);
1113  }
1114
1115  llvm_unreachable("Can't get register for value!");
1116  return SDValue();
1117}
1118
1119void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1120  SDValue Chain = getControlRoot();
1121  SmallVector<ISD::OutputArg, 8> Outs;
1122  SmallVector<SDValue, 8> OutVals;
1123
1124  if (!FuncInfo.CanLowerReturn) {
1125    unsigned DemoteReg = FuncInfo.DemoteRegister;
1126    const Function *F = I.getParent()->getParent();
1127
1128    // Emit a store of the return value through the virtual register.
1129    // Leave Outs empty so that LowerReturn won't try to load return
1130    // registers the usual way.
1131    SmallVector<EVT, 1> PtrValueVTs;
1132    ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
1133                    PtrValueVTs);
1134
1135    SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
1136    SDValue RetOp = getValue(I.getOperand(0));
1137
1138    SmallVector<EVT, 4> ValueVTs;
1139    SmallVector<uint64_t, 4> Offsets;
1140    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1141    unsigned NumValues = ValueVTs.size();
1142
1143    SmallVector<SDValue, 4> Chains(NumValues);
1144    for (unsigned i = 0; i != NumValues; ++i) {
1145      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(),
1146                                RetPtr.getValueType(), RetPtr,
1147                                DAG.getIntPtrConstant(Offsets[i]));
1148      Chains[i] =
1149        DAG.getStore(Chain, getCurDebugLoc(),
1150                     SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1151                     // FIXME: better loc info would be nice.
1152                     Add, MachinePointerInfo(), false, false, 0);
1153    }
1154
1155    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
1156                        MVT::Other, &Chains[0], NumValues);
1157  } else if (I.getNumOperands() != 0) {
1158    SmallVector<EVT, 4> ValueVTs;
1159    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
1160    unsigned NumValues = ValueVTs.size();
1161    if (NumValues) {
1162      SDValue RetOp = getValue(I.getOperand(0));
1163      for (unsigned j = 0, f = NumValues; j != f; ++j) {
1164        EVT VT = ValueVTs[j];
1165
1166        ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1167
1168        const Function *F = I.getParent()->getParent();
1169        if (F->paramHasAttr(0, Attribute::SExt))
1170          ExtendKind = ISD::SIGN_EXTEND;
1171        else if (F->paramHasAttr(0, Attribute::ZExt))
1172          ExtendKind = ISD::ZERO_EXTEND;
1173
1174        if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1175          VT = TLI.getTypeForExtArgOrReturn(*DAG.getContext(), VT, ExtendKind);
1176
1177        unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
1178        EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
1179        SmallVector<SDValue, 4> Parts(NumParts);
1180        getCopyToParts(DAG, getCurDebugLoc(),
1181                       SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1182                       &Parts[0], NumParts, PartVT, ExtendKind);
1183
1184        // 'inreg' on function refers to return value
1185        ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1186        if (F->paramHasAttr(0, Attribute::InReg))
1187          Flags.setInReg();
1188
1189        // Propagate extension type if any
1190        if (ExtendKind == ISD::SIGN_EXTEND)
1191          Flags.setSExt();
1192        else if (ExtendKind == ISD::ZERO_EXTEND)
1193          Flags.setZExt();
1194
1195        for (unsigned i = 0; i < NumParts; ++i) {
1196          Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1197                                        /*isfixed=*/true));
1198          OutVals.push_back(Parts[i]);
1199        }
1200      }
1201    }
1202  }
1203
1204  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1205  CallingConv::ID CallConv =
1206    DAG.getMachineFunction().getFunction()->getCallingConv();
1207  Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
1208                          Outs, OutVals, getCurDebugLoc(), DAG);
1209
1210  // Verify that the target's LowerReturn behaved as expected.
1211  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1212         "LowerReturn didn't return a valid chain!");
1213
1214  // Update the DAG with the new chain value resulting from return lowering.
1215  DAG.setRoot(Chain);
1216}
1217
1218/// CopyToExportRegsIfNeeded - If the given value has virtual registers
1219/// created for it, emit nodes to copy the value into the virtual
1220/// registers.
1221void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1222  // Skip empty types
1223  if (V->getType()->isEmptyTy())
1224    return;
1225
1226  DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1227  if (VMI != FuncInfo.ValueMap.end()) {
1228    assert(!V->use_empty() && "Unused value assigned virtual registers!");
1229    CopyValueToVirtualRegister(V, VMI->second);
1230  }
1231}
1232
1233/// ExportFromCurrentBlock - If this condition isn't known to be exported from
1234/// the current basic block, add it to ValueMap now so that we'll get a
1235/// CopyTo/FromReg.
1236void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1237  // No need to export constants.
1238  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1239
1240  // Already exported?
1241  if (FuncInfo.isExportedInst(V)) return;
1242
1243  unsigned Reg = FuncInfo.InitializeRegForValue(V);
1244  CopyValueToVirtualRegister(V, Reg);
1245}
1246
1247bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1248                                                     const BasicBlock *FromBB) {
1249  // The operands of the setcc have to be in this block.  We don't know
1250  // how to export them from some other block.
1251  if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1252    // Can export from current BB.
1253    if (VI->getParent() == FromBB)
1254      return true;
1255
1256    // Is already exported, noop.
1257    return FuncInfo.isExportedInst(V);
1258  }
1259
1260  // If this is an argument, we can export it if the BB is the entry block or
1261  // if it is already exported.
1262  if (isa<Argument>(V)) {
1263    if (FromBB == &FromBB->getParent()->getEntryBlock())
1264      return true;
1265
1266    // Otherwise, can only export this if it is already exported.
1267    return FuncInfo.isExportedInst(V);
1268  }
1269
1270  // Otherwise, constants can always be exported.
1271  return true;
1272}
1273
1274/// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1275uint32_t SelectionDAGBuilder::getEdgeWeight(MachineBasicBlock *Src,
1276                                            MachineBasicBlock *Dst) {
1277  BranchProbabilityInfo *BPI = FuncInfo.BPI;
1278  if (!BPI)
1279    return 0;
1280  BasicBlock *SrcBB = const_cast<BasicBlock*>(Src->getBasicBlock());
1281  BasicBlock *DstBB = const_cast<BasicBlock*>(Dst->getBasicBlock());
1282  return BPI->getEdgeWeight(SrcBB, DstBB);
1283}
1284
1285void SelectionDAGBuilder::addSuccessorWithWeight(MachineBasicBlock *Src,
1286                                                 MachineBasicBlock *Dst) {
1287  uint32_t weight = getEdgeWeight(Src, Dst);
1288  Src->addSuccessor(Dst, weight);
1289}
1290
1291
1292static bool InBlock(const Value *V, const BasicBlock *BB) {
1293  if (const Instruction *I = dyn_cast<Instruction>(V))
1294    return I->getParent() == BB;
1295  return true;
1296}
1297
1298/// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1299/// This function emits a branch and is used at the leaves of an OR or an
1300/// AND operator tree.
1301///
1302void
1303SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1304                                                  MachineBasicBlock *TBB,
1305                                                  MachineBasicBlock *FBB,
1306                                                  MachineBasicBlock *CurBB,
1307                                                  MachineBasicBlock *SwitchBB) {
1308  const BasicBlock *BB = CurBB->getBasicBlock();
1309
1310  // If the leaf of the tree is a comparison, merge the condition into
1311  // the caseblock.
1312  if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1313    // The operands of the cmp have to be in this block.  We don't know
1314    // how to export them from some other block.  If this is the first block
1315    // of the sequence, no exporting is needed.
1316    if (CurBB == SwitchBB ||
1317        (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1318         isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1319      ISD::CondCode Condition;
1320      if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1321        Condition = getICmpCondCode(IC->getPredicate());
1322      } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1323        Condition = getFCmpCondCode(FC->getPredicate());
1324      } else {
1325        Condition = ISD::SETEQ; // silence warning.
1326        llvm_unreachable("Unknown compare instruction");
1327      }
1328
1329      CaseBlock CB(Condition, BOp->getOperand(0),
1330                   BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1331      SwitchCases.push_back(CB);
1332      return;
1333    }
1334  }
1335
1336  // Create a CaseBlock record representing this branch.
1337  CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1338               NULL, TBB, FBB, CurBB);
1339  SwitchCases.push_back(CB);
1340}
1341
1342/// FindMergedConditions - If Cond is an expression like
1343void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1344                                               MachineBasicBlock *TBB,
1345                                               MachineBasicBlock *FBB,
1346                                               MachineBasicBlock *CurBB,
1347                                               MachineBasicBlock *SwitchBB,
1348                                               unsigned Opc) {
1349  // If this node is not part of the or/and tree, emit it as a branch.
1350  const Instruction *BOp = dyn_cast<Instruction>(Cond);
1351  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1352      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1353      BOp->getParent() != CurBB->getBasicBlock() ||
1354      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1355      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1356    EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB);
1357    return;
1358  }
1359
1360  //  Create TmpBB after CurBB.
1361  MachineFunction::iterator BBI = CurBB;
1362  MachineFunction &MF = DAG.getMachineFunction();
1363  MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1364  CurBB->getParent()->insert(++BBI, TmpBB);
1365
1366  if (Opc == Instruction::Or) {
1367    // Codegen X | Y as:
1368    //   jmp_if_X TBB
1369    //   jmp TmpBB
1370    // TmpBB:
1371    //   jmp_if_Y TBB
1372    //   jmp FBB
1373    //
1374
1375    // Emit the LHS condition.
1376    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc);
1377
1378    // Emit the RHS condition into TmpBB.
1379    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1380  } else {
1381    assert(Opc == Instruction::And && "Unknown merge op!");
1382    // Codegen X & Y as:
1383    //   jmp_if_X TmpBB
1384    //   jmp FBB
1385    // TmpBB:
1386    //   jmp_if_Y TBB
1387    //   jmp FBB
1388    //
1389    //  This requires creation of TmpBB after CurBB.
1390
1391    // Emit the LHS condition.
1392    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc);
1393
1394    // Emit the RHS condition into TmpBB.
1395    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1396  }
1397}
1398
1399/// If the set of cases should be emitted as a series of branches, return true.
1400/// If we should emit this as a bunch of and/or'd together conditions, return
1401/// false.
1402bool
1403SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
1404  if (Cases.size() != 2) return true;
1405
1406  // If this is two comparisons of the same values or'd or and'd together, they
1407  // will get folded into a single comparison, so don't emit two blocks.
1408  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1409       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1410      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1411       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1412    return false;
1413  }
1414
1415  // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1416  // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1417  if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1418      Cases[0].CC == Cases[1].CC &&
1419      isa<Constant>(Cases[0].CmpRHS) &&
1420      cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1421    if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1422      return false;
1423    if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1424      return false;
1425  }
1426
1427  return true;
1428}
1429
1430void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1431  MachineBasicBlock *BrMBB = FuncInfo.MBB;
1432
1433  // Update machine-CFG edges.
1434  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1435
1436  // Figure out which block is immediately after the current one.
1437  MachineBasicBlock *NextBlock = 0;
1438  MachineFunction::iterator BBI = BrMBB;
1439  if (++BBI != FuncInfo.MF->end())
1440    NextBlock = BBI;
1441
1442  if (I.isUnconditional()) {
1443    // Update machine-CFG edges.
1444    BrMBB->addSuccessor(Succ0MBB);
1445
1446    // If this is not a fall-through branch, emit the branch.
1447    if (Succ0MBB != NextBlock)
1448      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1449                              MVT::Other, getControlRoot(),
1450                              DAG.getBasicBlock(Succ0MBB)));
1451
1452    return;
1453  }
1454
1455  // If this condition is one of the special cases we handle, do special stuff
1456  // now.
1457  const Value *CondVal = I.getCondition();
1458  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1459
1460  // If this is a series of conditions that are or'd or and'd together, emit
1461  // this as a sequence of branches instead of setcc's with and/or operations.
1462  // As long as jumps are not expensive, this should improve performance.
1463  // For example, instead of something like:
1464  //     cmp A, B
1465  //     C = seteq
1466  //     cmp D, E
1467  //     F = setle
1468  //     or C, F
1469  //     jnz foo
1470  // Emit:
1471  //     cmp A, B
1472  //     je foo
1473  //     cmp D, E
1474  //     jle foo
1475  //
1476  if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1477    if (!TLI.isJumpExpensive() &&
1478        BOp->hasOneUse() &&
1479        (BOp->getOpcode() == Instruction::And ||
1480         BOp->getOpcode() == Instruction::Or)) {
1481      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1482                           BOp->getOpcode());
1483      // If the compares in later blocks need to use values not currently
1484      // exported from this block, export them now.  This block should always
1485      // be the first entry.
1486      assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1487
1488      // Allow some cases to be rejected.
1489      if (ShouldEmitAsBranches(SwitchCases)) {
1490        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1491          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1492          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1493        }
1494
1495        // Emit the branch for this block.
1496        visitSwitchCase(SwitchCases[0], BrMBB);
1497        SwitchCases.erase(SwitchCases.begin());
1498        return;
1499      }
1500
1501      // Okay, we decided not to do this, remove any inserted MBB's and clear
1502      // SwitchCases.
1503      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1504        FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1505
1506      SwitchCases.clear();
1507    }
1508  }
1509
1510  // Create a CaseBlock record representing this branch.
1511  CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1512               NULL, Succ0MBB, Succ1MBB, BrMBB);
1513
1514  // Use visitSwitchCase to actually insert the fast branch sequence for this
1515  // cond branch.
1516  visitSwitchCase(CB, BrMBB);
1517}
1518
1519/// visitSwitchCase - Emits the necessary code to represent a single node in
1520/// the binary search tree resulting from lowering a switch instruction.
1521void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1522                                          MachineBasicBlock *SwitchBB) {
1523  SDValue Cond;
1524  SDValue CondLHS = getValue(CB.CmpLHS);
1525  DebugLoc dl = getCurDebugLoc();
1526
1527  // Build the setcc now.
1528  if (CB.CmpMHS == NULL) {
1529    // Fold "(X == true)" to X and "(X == false)" to !X to
1530    // handle common cases produced by branch lowering.
1531    if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1532        CB.CC == ISD::SETEQ)
1533      Cond = CondLHS;
1534    else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1535             CB.CC == ISD::SETEQ) {
1536      SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1537      Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1538    } else
1539      Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1540  } else {
1541    assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1542
1543    const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1544    const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
1545
1546    SDValue CmpOp = getValue(CB.CmpMHS);
1547    EVT VT = CmpOp.getValueType();
1548
1549    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1550      Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1551                          ISD::SETLE);
1552    } else {
1553      SDValue SUB = DAG.getNode(ISD::SUB, dl,
1554                                VT, CmpOp, DAG.getConstant(Low, VT));
1555      Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1556                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1557    }
1558  }
1559
1560  // Update successor info
1561  addSuccessorWithWeight(SwitchBB, CB.TrueBB);
1562  addSuccessorWithWeight(SwitchBB, CB.FalseBB);
1563
1564  // Set NextBlock to be the MBB immediately after the current one, if any.
1565  // This is used to avoid emitting unnecessary branches to the next block.
1566  MachineBasicBlock *NextBlock = 0;
1567  MachineFunction::iterator BBI = SwitchBB;
1568  if (++BBI != FuncInfo.MF->end())
1569    NextBlock = BBI;
1570
1571  // If the lhs block is the next block, invert the condition so that we can
1572  // fall through to the lhs instead of the rhs block.
1573  if (CB.TrueBB == NextBlock) {
1574    std::swap(CB.TrueBB, CB.FalseBB);
1575    SDValue True = DAG.getConstant(1, Cond.getValueType());
1576    Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1577  }
1578
1579  SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1580                               MVT::Other, getControlRoot(), Cond,
1581                               DAG.getBasicBlock(CB.TrueBB));
1582
1583  // Insert the false branch. Do this even if it's a fall through branch,
1584  // this makes it easier to do DAG optimizations which require inverting
1585  // the branch condition.
1586  BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1587                       DAG.getBasicBlock(CB.FalseBB));
1588
1589  DAG.setRoot(BrCond);
1590}
1591
1592/// visitJumpTable - Emit JumpTable node in the current MBB
1593void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1594  // Emit the code for the jump table
1595  assert(JT.Reg != -1U && "Should lower JT Header first!");
1596  EVT PTy = TLI.getPointerTy();
1597  SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1598                                     JT.Reg, PTy);
1599  SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1600  SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(),
1601                                    MVT::Other, Index.getValue(1),
1602                                    Table, Index);
1603  DAG.setRoot(BrJumpTable);
1604}
1605
1606/// visitJumpTableHeader - This function emits necessary code to produce index
1607/// in the JumpTable from switch case.
1608void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1609                                               JumpTableHeader &JTH,
1610                                               MachineBasicBlock *SwitchBB) {
1611  // Subtract the lowest switch case value from the value being switched on and
1612  // conditional branch to default mbb if the result is greater than the
1613  // difference between smallest and largest cases.
1614  SDValue SwitchOp = getValue(JTH.SValue);
1615  EVT VT = SwitchOp.getValueType();
1616  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1617                            DAG.getConstant(JTH.First, VT));
1618
1619  // The SDNode we just created, which holds the value being switched on minus
1620  // the smallest case value, needs to be copied to a virtual register so it
1621  // can be used as an index into the jump table in a subsequent basic block.
1622  // This value may be smaller or larger than the target's pointer type, and
1623  // therefore require extension or truncating.
1624  SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy());
1625
1626  unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy());
1627  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1628                                    JumpTableReg, SwitchOp);
1629  JT.Reg = JumpTableReg;
1630
1631  // Emit the range check for the jump table, and branch to the default block
1632  // for the switch statement if the value being switched on exceeds the largest
1633  // case in the switch.
1634  SDValue CMP = DAG.getSetCC(getCurDebugLoc(),
1635                             TLI.getSetCCResultType(Sub.getValueType()), Sub,
1636                             DAG.getConstant(JTH.Last-JTH.First,VT),
1637                             ISD::SETUGT);
1638
1639  // Set NextBlock to be the MBB immediately after the current one, if any.
1640  // This is used to avoid emitting unnecessary branches to the next block.
1641  MachineBasicBlock *NextBlock = 0;
1642  MachineFunction::iterator BBI = SwitchBB;
1643
1644  if (++BBI != FuncInfo.MF->end())
1645    NextBlock = BBI;
1646
1647  SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1648                               MVT::Other, CopyTo, CMP,
1649                               DAG.getBasicBlock(JT.Default));
1650
1651  if (JT.MBB != NextBlock)
1652    BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond,
1653                         DAG.getBasicBlock(JT.MBB));
1654
1655  DAG.setRoot(BrCond);
1656}
1657
1658/// visitBitTestHeader - This function emits necessary code to produce value
1659/// suitable for "bit tests"
1660void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1661                                             MachineBasicBlock *SwitchBB) {
1662  // Subtract the minimum value
1663  SDValue SwitchOp = getValue(B.SValue);
1664  EVT VT = SwitchOp.getValueType();
1665  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1666                            DAG.getConstant(B.First, VT));
1667
1668  // Check range
1669  SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(),
1670                                  TLI.getSetCCResultType(Sub.getValueType()),
1671                                  Sub, DAG.getConstant(B.Range, VT),
1672                                  ISD::SETUGT);
1673
1674  // Determine the type of the test operands.
1675  bool UsePtrType = false;
1676  if (!TLI.isTypeLegal(VT))
1677    UsePtrType = true;
1678  else {
1679    for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
1680      if ((uint64_t)((int64_t)B.Cases[i].Mask >> VT.getSizeInBits()) + 1 >= 2) {
1681        // Switch table case range are encoded into series of masks.
1682        // Just use pointer type, it's guaranteed to fit.
1683        UsePtrType = true;
1684        break;
1685      }
1686  }
1687  if (UsePtrType) {
1688    VT = TLI.getPointerTy();
1689    Sub = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), VT);
1690  }
1691
1692  B.RegVT = VT;
1693  B.Reg = FuncInfo.CreateReg(VT);
1694  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1695                                    B.Reg, Sub);
1696
1697  // Set NextBlock to be the MBB immediately after the current one, if any.
1698  // This is used to avoid emitting unnecessary branches to the next block.
1699  MachineBasicBlock *NextBlock = 0;
1700  MachineFunction::iterator BBI = SwitchBB;
1701  if (++BBI != FuncInfo.MF->end())
1702    NextBlock = BBI;
1703
1704  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1705
1706  addSuccessorWithWeight(SwitchBB, B.Default);
1707  addSuccessorWithWeight(SwitchBB, MBB);
1708
1709  SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1710                                MVT::Other, CopyTo, RangeCmp,
1711                                DAG.getBasicBlock(B.Default));
1712
1713  if (MBB != NextBlock)
1714    BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo,
1715                          DAG.getBasicBlock(MBB));
1716
1717  DAG.setRoot(BrRange);
1718}
1719
1720/// visitBitTestCase - this function produces one "bit test"
1721void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
1722                                           MachineBasicBlock* NextMBB,
1723                                           unsigned Reg,
1724                                           BitTestCase &B,
1725                                           MachineBasicBlock *SwitchBB) {
1726  EVT VT = BB.RegVT;
1727  SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1728                                       Reg, VT);
1729  SDValue Cmp;
1730  if (CountPopulation_64(B.Mask) == 1) {
1731    // Testing for a single bit; just compare the shift count with what it
1732    // would need to be to shift a 1 bit in that position.
1733    Cmp = DAG.getSetCC(getCurDebugLoc(),
1734                       TLI.getSetCCResultType(VT),
1735                       ShiftOp,
1736                       DAG.getConstant(CountTrailingZeros_64(B.Mask), VT),
1737                       ISD::SETEQ);
1738  } else {
1739    // Make desired shift
1740    SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), VT,
1741                                    DAG.getConstant(1, VT), ShiftOp);
1742
1743    // Emit bit tests and jumps
1744    SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(),
1745                                VT, SwitchVal, DAG.getConstant(B.Mask, VT));
1746    Cmp = DAG.getSetCC(getCurDebugLoc(),
1747                       TLI.getSetCCResultType(VT),
1748                       AndOp, DAG.getConstant(0, VT),
1749                       ISD::SETNE);
1750  }
1751
1752  addSuccessorWithWeight(SwitchBB, B.TargetBB);
1753  addSuccessorWithWeight(SwitchBB, NextMBB);
1754
1755  SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1756                              MVT::Other, getControlRoot(),
1757                              Cmp, DAG.getBasicBlock(B.TargetBB));
1758
1759  // Set NextBlock to be the MBB immediately after the current one, if any.
1760  // This is used to avoid emitting unnecessary branches to the next block.
1761  MachineBasicBlock *NextBlock = 0;
1762  MachineFunction::iterator BBI = SwitchBB;
1763  if (++BBI != FuncInfo.MF->end())
1764    NextBlock = BBI;
1765
1766  if (NextMBB != NextBlock)
1767    BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd,
1768                        DAG.getBasicBlock(NextMBB));
1769
1770  DAG.setRoot(BrAnd);
1771}
1772
1773void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1774  MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
1775
1776  // Retrieve successors.
1777  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1778  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1779
1780  const Value *Callee(I.getCalledValue());
1781  if (isa<InlineAsm>(Callee))
1782    visitInlineAsm(&I);
1783  else
1784    LowerCallTo(&I, getValue(Callee), false, LandingPad);
1785
1786  // If the value of the invoke is used outside of its defining block, make it
1787  // available as a virtual register.
1788  CopyToExportRegsIfNeeded(&I);
1789
1790  // Update successor info
1791  InvokeMBB->addSuccessor(Return);
1792  InvokeMBB->addSuccessor(LandingPad);
1793
1794  // Drop into normal successor.
1795  DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1796                          MVT::Other, getControlRoot(),
1797                          DAG.getBasicBlock(Return)));
1798}
1799
1800void SelectionDAGBuilder::visitUnwind(const UnwindInst &I) {
1801}
1802
1803/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1804/// small case ranges).
1805bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
1806                                                 CaseRecVector& WorkList,
1807                                                 const Value* SV,
1808                                                 MachineBasicBlock *Default,
1809                                                 MachineBasicBlock *SwitchBB) {
1810  Case& BackCase  = *(CR.Range.second-1);
1811
1812  // Size is the number of Cases represented by this range.
1813  size_t Size = CR.Range.second - CR.Range.first;
1814  if (Size > 3)
1815    return false;
1816
1817  // Get the MachineFunction which holds the current MBB.  This is used when
1818  // inserting any additional MBBs necessary to represent the switch.
1819  MachineFunction *CurMF = FuncInfo.MF;
1820
1821  // Figure out which block is immediately after the current one.
1822  MachineBasicBlock *NextBlock = 0;
1823  MachineFunction::iterator BBI = CR.CaseBB;
1824
1825  if (++BBI != FuncInfo.MF->end())
1826    NextBlock = BBI;
1827
1828  // If any two of the cases has the same destination, and if one value
1829  // is the same as the other, but has one bit unset that the other has set,
1830  // use bit manipulation to do two compares at once.  For example:
1831  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1832  // TODO: This could be extended to merge any 2 cases in switches with 3 cases.
1833  // TODO: Handle cases where CR.CaseBB != SwitchBB.
1834  if (Size == 2 && CR.CaseBB == SwitchBB) {
1835    Case &Small = *CR.Range.first;
1836    Case &Big = *(CR.Range.second-1);
1837
1838    if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) {
1839      const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue();
1840      const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue();
1841
1842      // Check that there is only one bit different.
1843      if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 &&
1844          (SmallValue | BigValue) == BigValue) {
1845        // Isolate the common bit.
1846        APInt CommonBit = BigValue & ~SmallValue;
1847        assert((SmallValue | CommonBit) == BigValue &&
1848               CommonBit.countPopulation() == 1 && "Not a common bit?");
1849
1850        SDValue CondLHS = getValue(SV);
1851        EVT VT = CondLHS.getValueType();
1852        DebugLoc DL = getCurDebugLoc();
1853
1854        SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
1855                                 DAG.getConstant(CommonBit, VT));
1856        SDValue Cond = DAG.getSetCC(DL, MVT::i1,
1857                                    Or, DAG.getConstant(BigValue, VT),
1858                                    ISD::SETEQ);
1859
1860        // Update successor info.
1861        SwitchBB->addSuccessor(Small.BB);
1862        SwitchBB->addSuccessor(Default);
1863
1864        // Insert the true branch.
1865        SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other,
1866                                     getControlRoot(), Cond,
1867                                     DAG.getBasicBlock(Small.BB));
1868
1869        // Insert the false branch.
1870        BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
1871                             DAG.getBasicBlock(Default));
1872
1873        DAG.setRoot(BrCond);
1874        return true;
1875      }
1876    }
1877  }
1878
1879  // Rearrange the case blocks so that the last one falls through if possible.
1880  if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1881    // The last case block won't fall through into 'NextBlock' if we emit the
1882    // branches in this order.  See if rearranging a case value would help.
1883    for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1884      if (I->BB == NextBlock) {
1885        std::swap(*I, BackCase);
1886        break;
1887      }
1888    }
1889  }
1890
1891  // Create a CaseBlock record representing a conditional branch to
1892  // the Case's target mbb if the value being switched on SV is equal
1893  // to C.
1894  MachineBasicBlock *CurBlock = CR.CaseBB;
1895  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1896    MachineBasicBlock *FallThrough;
1897    if (I != E-1) {
1898      FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
1899      CurMF->insert(BBI, FallThrough);
1900
1901      // Put SV in a virtual register to make it available from the new blocks.
1902      ExportFromCurrentBlock(SV);
1903    } else {
1904      // If the last case doesn't match, go to the default block.
1905      FallThrough = Default;
1906    }
1907
1908    const Value *RHS, *LHS, *MHS;
1909    ISD::CondCode CC;
1910    if (I->High == I->Low) {
1911      // This is just small small case range :) containing exactly 1 case
1912      CC = ISD::SETEQ;
1913      LHS = SV; RHS = I->High; MHS = NULL;
1914    } else {
1915      CC = ISD::SETLE;
1916      LHS = I->Low; MHS = SV; RHS = I->High;
1917    }
1918    CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock);
1919
1920    // If emitting the first comparison, just call visitSwitchCase to emit the
1921    // code into the current block.  Otherwise, push the CaseBlock onto the
1922    // vector to be later processed by SDISel, and insert the node's MBB
1923    // before the next MBB.
1924    if (CurBlock == SwitchBB)
1925      visitSwitchCase(CB, SwitchBB);
1926    else
1927      SwitchCases.push_back(CB);
1928
1929    CurBlock = FallThrough;
1930  }
1931
1932  return true;
1933}
1934
1935static inline bool areJTsAllowed(const TargetLowering &TLI) {
1936  return !DisableJumpTables &&
1937          (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
1938           TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
1939}
1940
1941static APInt ComputeRange(const APInt &First, const APInt &Last) {
1942  uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
1943  APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth);
1944  return (LastExt - FirstExt + 1ULL);
1945}
1946
1947/// handleJTSwitchCase - Emit jumptable for current switch case range
1948bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec& CR,
1949                                             CaseRecVector& WorkList,
1950                                             const Value* SV,
1951                                             MachineBasicBlock* Default,
1952                                             MachineBasicBlock *SwitchBB) {
1953  Case& FrontCase = *CR.Range.first;
1954  Case& BackCase  = *(CR.Range.second-1);
1955
1956  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
1957  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
1958
1959  APInt TSize(First.getBitWidth(), 0);
1960  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1961       I!=E; ++I)
1962    TSize += I->size();
1963
1964  if (!areJTsAllowed(TLI) || TSize.ult(4))
1965    return false;
1966
1967  APInt Range = ComputeRange(First, Last);
1968  double Density = TSize.roundToDouble() / Range.roundToDouble();
1969  if (Density < 0.4)
1970    return false;
1971
1972  DEBUG(dbgs() << "Lowering jump table\n"
1973               << "First entry: " << First << ". Last entry: " << Last << '\n'
1974               << "Range: " << Range
1975               << ". Size: " << TSize << ". Density: " << Density << "\n\n");
1976
1977  // Get the MachineFunction which holds the current MBB.  This is used when
1978  // inserting any additional MBBs necessary to represent the switch.
1979  MachineFunction *CurMF = FuncInfo.MF;
1980
1981  // Figure out which block is immediately after the current one.
1982  MachineFunction::iterator BBI = CR.CaseBB;
1983  ++BBI;
1984
1985  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1986
1987  // Create a new basic block to hold the code for loading the address
1988  // of the jump table, and jumping to it.  Update successor information;
1989  // we will either branch to the default case for the switch, or the jump
1990  // table.
1991  MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1992  CurMF->insert(BBI, JumpTableBB);
1993
1994  addSuccessorWithWeight(CR.CaseBB, Default);
1995  addSuccessorWithWeight(CR.CaseBB, JumpTableBB);
1996
1997  // Build a vector of destination BBs, corresponding to each target
1998  // of the jump table. If the value of the jump table slot corresponds to
1999  // a case statement, push the case's BB onto the vector, otherwise, push
2000  // the default BB.
2001  std::vector<MachineBasicBlock*> DestBBs;
2002  APInt TEI = First;
2003  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
2004    const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
2005    const APInt &High = cast<ConstantInt>(I->High)->getValue();
2006
2007    if (Low.sle(TEI) && TEI.sle(High)) {
2008      DestBBs.push_back(I->BB);
2009      if (TEI==High)
2010        ++I;
2011    } else {
2012      DestBBs.push_back(Default);
2013    }
2014  }
2015
2016  // Update successor info. Add one edge to each unique successor.
2017  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
2018  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
2019         E = DestBBs.end(); I != E; ++I) {
2020    if (!SuccsHandled[(*I)->getNumber()]) {
2021      SuccsHandled[(*I)->getNumber()] = true;
2022      addSuccessorWithWeight(JumpTableBB, *I);
2023    }
2024  }
2025
2026  // Create a jump table index for this jump table.
2027  unsigned JTEncoding = TLI.getJumpTableEncoding();
2028  unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
2029                       ->createJumpTableIndex(DestBBs);
2030
2031  // Set the jump table information so that we can codegen it as a second
2032  // MachineBasicBlock
2033  JumpTable JT(-1U, JTI, JumpTableBB, Default);
2034  JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
2035  if (CR.CaseBB == SwitchBB)
2036    visitJumpTableHeader(JT, JTH, SwitchBB);
2037
2038  JTCases.push_back(JumpTableBlock(JTH, JT));
2039
2040  return true;
2041}
2042
2043/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
2044/// 2 subtrees.
2045bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
2046                                                  CaseRecVector& WorkList,
2047                                                  const Value* SV,
2048                                                  MachineBasicBlock *Default,
2049                                                  MachineBasicBlock *SwitchBB) {
2050  // Get the MachineFunction which holds the current MBB.  This is used when
2051  // inserting any additional MBBs necessary to represent the switch.
2052  MachineFunction *CurMF = FuncInfo.MF;
2053
2054  // Figure out which block is immediately after the current one.
2055  MachineFunction::iterator BBI = CR.CaseBB;
2056  ++BBI;
2057
2058  Case& FrontCase = *CR.Range.first;
2059  Case& BackCase  = *(CR.Range.second-1);
2060  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2061
2062  // Size is the number of Cases represented by this range.
2063  unsigned Size = CR.Range.second - CR.Range.first;
2064
2065  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2066  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2067  double FMetric = 0;
2068  CaseItr Pivot = CR.Range.first + Size/2;
2069
2070  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
2071  // (heuristically) allow us to emit JumpTable's later.
2072  APInt TSize(First.getBitWidth(), 0);
2073  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2074       I!=E; ++I)
2075    TSize += I->size();
2076
2077  APInt LSize = FrontCase.size();
2078  APInt RSize = TSize-LSize;
2079  DEBUG(dbgs() << "Selecting best pivot: \n"
2080               << "First: " << First << ", Last: " << Last <<'\n'
2081               << "LSize: " << LSize << ", RSize: " << RSize << '\n');
2082  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
2083       J!=E; ++I, ++J) {
2084    const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
2085    const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
2086    APInt Range = ComputeRange(LEnd, RBegin);
2087    assert((Range - 2ULL).isNonNegative() &&
2088           "Invalid case distance");
2089    // Use volatile double here to avoid excess precision issues on some hosts,
2090    // e.g. that use 80-bit X87 registers.
2091    volatile double LDensity =
2092       (double)LSize.roundToDouble() /
2093                           (LEnd - First + 1ULL).roundToDouble();
2094    volatile double RDensity =
2095      (double)RSize.roundToDouble() /
2096                           (Last - RBegin + 1ULL).roundToDouble();
2097    double Metric = Range.logBase2()*(LDensity+RDensity);
2098    // Should always split in some non-trivial place
2099    DEBUG(dbgs() <<"=>Step\n"
2100                 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
2101                 << "LDensity: " << LDensity
2102                 << ", RDensity: " << RDensity << '\n'
2103                 << "Metric: " << Metric << '\n');
2104    if (FMetric < Metric) {
2105      Pivot = J;
2106      FMetric = Metric;
2107      DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
2108    }
2109
2110    LSize += J->size();
2111    RSize -= J->size();
2112  }
2113  if (areJTsAllowed(TLI)) {
2114    // If our case is dense we *really* should handle it earlier!
2115    assert((FMetric > 0) && "Should handle dense range earlier!");
2116  } else {
2117    Pivot = CR.Range.first + Size/2;
2118  }
2119
2120  CaseRange LHSR(CR.Range.first, Pivot);
2121  CaseRange RHSR(Pivot, CR.Range.second);
2122  Constant *C = Pivot->Low;
2123  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
2124
2125  // We know that we branch to the LHS if the Value being switched on is
2126  // less than the Pivot value, C.  We use this to optimize our binary
2127  // tree a bit, by recognizing that if SV is greater than or equal to the
2128  // LHS's Case Value, and that Case Value is exactly one less than the
2129  // Pivot's Value, then we can branch directly to the LHS's Target,
2130  // rather than creating a leaf node for it.
2131  if ((LHSR.second - LHSR.first) == 1 &&
2132      LHSR.first->High == CR.GE &&
2133      cast<ConstantInt>(C)->getValue() ==
2134      (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
2135    TrueBB = LHSR.first->BB;
2136  } else {
2137    TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2138    CurMF->insert(BBI, TrueBB);
2139    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
2140
2141    // Put SV in a virtual register to make it available from the new blocks.
2142    ExportFromCurrentBlock(SV);
2143  }
2144
2145  // Similar to the optimization above, if the Value being switched on is
2146  // known to be less than the Constant CR.LT, and the current Case Value
2147  // is CR.LT - 1, then we can branch directly to the target block for
2148  // the current Case Value, rather than emitting a RHS leaf node for it.
2149  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
2150      cast<ConstantInt>(RHSR.first->Low)->getValue() ==
2151      (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
2152    FalseBB = RHSR.first->BB;
2153  } else {
2154    FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2155    CurMF->insert(BBI, FalseBB);
2156    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
2157
2158    // Put SV in a virtual register to make it available from the new blocks.
2159    ExportFromCurrentBlock(SV);
2160  }
2161
2162  // Create a CaseBlock record representing a conditional branch to
2163  // the LHS node if the value being switched on SV is less than C.
2164  // Otherwise, branch to LHS.
2165  CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
2166
2167  if (CR.CaseBB == SwitchBB)
2168    visitSwitchCase(CB, SwitchBB);
2169  else
2170    SwitchCases.push_back(CB);
2171
2172  return true;
2173}
2174
2175/// handleBitTestsSwitchCase - if current case range has few destination and
2176/// range span less, than machine word bitwidth, encode case range into series
2177/// of masks and emit bit tests with these masks.
2178bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
2179                                                   CaseRecVector& WorkList,
2180                                                   const Value* SV,
2181                                                   MachineBasicBlock* Default,
2182                                                   MachineBasicBlock *SwitchBB){
2183  EVT PTy = TLI.getPointerTy();
2184  unsigned IntPtrBits = PTy.getSizeInBits();
2185
2186  Case& FrontCase = *CR.Range.first;
2187  Case& BackCase  = *(CR.Range.second-1);
2188
2189  // Get the MachineFunction which holds the current MBB.  This is used when
2190  // inserting any additional MBBs necessary to represent the switch.
2191  MachineFunction *CurMF = FuncInfo.MF;
2192
2193  // If target does not have legal shift left, do not emit bit tests at all.
2194  if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
2195    return false;
2196
2197  size_t numCmps = 0;
2198  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2199       I!=E; ++I) {
2200    // Single case counts one, case range - two.
2201    numCmps += (I->Low == I->High ? 1 : 2);
2202  }
2203
2204  // Count unique destinations
2205  SmallSet<MachineBasicBlock*, 4> Dests;
2206  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2207    Dests.insert(I->BB);
2208    if (Dests.size() > 3)
2209      // Don't bother the code below, if there are too much unique destinations
2210      return false;
2211  }
2212  DEBUG(dbgs() << "Total number of unique destinations: "
2213        << Dests.size() << '\n'
2214        << "Total number of comparisons: " << numCmps << '\n');
2215
2216  // Compute span of values.
2217  const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
2218  const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
2219  APInt cmpRange = maxValue - minValue;
2220
2221  DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
2222               << "Low bound: " << minValue << '\n'
2223               << "High bound: " << maxValue << '\n');
2224
2225  if (cmpRange.uge(IntPtrBits) ||
2226      (!(Dests.size() == 1 && numCmps >= 3) &&
2227       !(Dests.size() == 2 && numCmps >= 5) &&
2228       !(Dests.size() >= 3 && numCmps >= 6)))
2229    return false;
2230
2231  DEBUG(dbgs() << "Emitting bit tests\n");
2232  APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
2233
2234  // Optimize the case where all the case values fit in a
2235  // word without having to subtract minValue. In this case,
2236  // we can optimize away the subtraction.
2237  if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) {
2238    cmpRange = maxValue;
2239  } else {
2240    lowBound = minValue;
2241  }
2242
2243  CaseBitsVector CasesBits;
2244  unsigned i, count = 0;
2245
2246  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2247    MachineBasicBlock* Dest = I->BB;
2248    for (i = 0; i < count; ++i)
2249      if (Dest == CasesBits[i].BB)
2250        break;
2251
2252    if (i == count) {
2253      assert((count < 3) && "Too much destinations to test!");
2254      CasesBits.push_back(CaseBits(0, Dest, 0));
2255      count++;
2256    }
2257
2258    const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
2259    const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
2260
2261    uint64_t lo = (lowValue - lowBound).getZExtValue();
2262    uint64_t hi = (highValue - lowBound).getZExtValue();
2263
2264    for (uint64_t j = lo; j <= hi; j++) {
2265      CasesBits[i].Mask |=  1ULL << j;
2266      CasesBits[i].Bits++;
2267    }
2268
2269  }
2270  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2271
2272  BitTestInfo BTC;
2273
2274  // Figure out which block is immediately after the current one.
2275  MachineFunction::iterator BBI = CR.CaseBB;
2276  ++BBI;
2277
2278  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2279
2280  DEBUG(dbgs() << "Cases:\n");
2281  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2282    DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
2283                 << ", Bits: " << CasesBits[i].Bits
2284                 << ", BB: " << CasesBits[i].BB << '\n');
2285
2286    MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2287    CurMF->insert(BBI, CaseBB);
2288    BTC.push_back(BitTestCase(CasesBits[i].Mask,
2289                              CaseBB,
2290                              CasesBits[i].BB));
2291
2292    // Put SV in a virtual register to make it available from the new blocks.
2293    ExportFromCurrentBlock(SV);
2294  }
2295
2296  BitTestBlock BTB(lowBound, cmpRange, SV,
2297                   -1U, MVT::Other, (CR.CaseBB == SwitchBB),
2298                   CR.CaseBB, Default, BTC);
2299
2300  if (CR.CaseBB == SwitchBB)
2301    visitBitTestHeader(BTB, SwitchBB);
2302
2303  BitTestCases.push_back(BTB);
2304
2305  return true;
2306}
2307
2308/// Clusterify - Transform simple list of Cases into list of CaseRange's
2309size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
2310                                       const SwitchInst& SI) {
2311  size_t numCmps = 0;
2312
2313  // Start with "simple" cases
2314  for (size_t i = 1; i < SI.getNumSuccessors(); ++i) {
2315    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
2316    Cases.push_back(Case(SI.getSuccessorValue(i),
2317                         SI.getSuccessorValue(i),
2318                         SMBB));
2319  }
2320  std::sort(Cases.begin(), Cases.end(), CaseCmp());
2321
2322  // Merge case into clusters
2323  if (Cases.size() >= 2)
2324    // Must recompute end() each iteration because it may be
2325    // invalidated by erase if we hold on to it
2326    for (CaseItr I = Cases.begin(), J = llvm::next(Cases.begin());
2327         J != Cases.end(); ) {
2328      const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
2329      const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
2330      MachineBasicBlock* nextBB = J->BB;
2331      MachineBasicBlock* currentBB = I->BB;
2332
2333      // If the two neighboring cases go to the same destination, merge them
2334      // into a single case.
2335      if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
2336        I->High = J->High;
2337        J = Cases.erase(J);
2338      } else {
2339        I = J++;
2340      }
2341    }
2342
2343  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
2344    if (I->Low != I->High)
2345      // A range counts double, since it requires two compares.
2346      ++numCmps;
2347  }
2348
2349  return numCmps;
2350}
2351
2352void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2353                                           MachineBasicBlock *Last) {
2354  // Update JTCases.
2355  for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2356    if (JTCases[i].first.HeaderBB == First)
2357      JTCases[i].first.HeaderBB = Last;
2358
2359  // Update BitTestCases.
2360  for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2361    if (BitTestCases[i].Parent == First)
2362      BitTestCases[i].Parent = Last;
2363}
2364
2365void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
2366  MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
2367
2368  // Figure out which block is immediately after the current one.
2369  MachineBasicBlock *NextBlock = 0;
2370  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2371
2372  // If there is only the default destination, branch to it if it is not the
2373  // next basic block.  Otherwise, just fall through.
2374  if (SI.getNumOperands() == 2) {
2375    // Update machine-CFG edges.
2376
2377    // If this is not a fall-through branch, emit the branch.
2378    SwitchMBB->addSuccessor(Default);
2379    if (Default != NextBlock)
2380      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
2381                              MVT::Other, getControlRoot(),
2382                              DAG.getBasicBlock(Default)));
2383
2384    return;
2385  }
2386
2387  // If there are any non-default case statements, create a vector of Cases
2388  // representing each one, and sort the vector so that we can efficiently
2389  // create a binary search tree from them.
2390  CaseVector Cases;
2391  size_t numCmps = Clusterify(Cases, SI);
2392  DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2393               << ". Total compares: " << numCmps << '\n');
2394  numCmps = 0;
2395
2396  // Get the Value to be switched on and default basic blocks, which will be
2397  // inserted into CaseBlock records, representing basic blocks in the binary
2398  // search tree.
2399  const Value *SV = SI.getOperand(0);
2400
2401  // Push the initial CaseRec onto the worklist
2402  CaseRecVector WorkList;
2403  WorkList.push_back(CaseRec(SwitchMBB,0,0,
2404                             CaseRange(Cases.begin(),Cases.end())));
2405
2406  while (!WorkList.empty()) {
2407    // Grab a record representing a case range to process off the worklist
2408    CaseRec CR = WorkList.back();
2409    WorkList.pop_back();
2410
2411    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2412      continue;
2413
2414    // If the range has few cases (two or less) emit a series of specific
2415    // tests.
2416    if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
2417      continue;
2418
2419    // If the switch has more than 5 blocks, and at least 40% dense, and the
2420    // target supports indirect branches, then emit a jump table rather than
2421    // lowering the switch to a binary tree of conditional branches.
2422    if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2423      continue;
2424
2425    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2426    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2427    handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
2428  }
2429}
2430
2431void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2432  MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2433
2434  // Update machine-CFG edges with unique successors.
2435  SmallVector<BasicBlock*, 32> succs;
2436  succs.reserve(I.getNumSuccessors());
2437  for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i)
2438    succs.push_back(I.getSuccessor(i));
2439  array_pod_sort(succs.begin(), succs.end());
2440  succs.erase(std::unique(succs.begin(), succs.end()), succs.end());
2441  for (unsigned i = 0, e = succs.size(); i != e; ++i) {
2442    MachineBasicBlock *Succ = FuncInfo.MBBMap[succs[i]];
2443    addSuccessorWithWeight(IndirectBrMBB, Succ);
2444  }
2445
2446  DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(),
2447                          MVT::Other, getControlRoot(),
2448                          getValue(I.getAddress())));
2449}
2450
2451void SelectionDAGBuilder::visitFSub(const User &I) {
2452  // -0.0 - X --> fneg
2453  const Type *Ty = I.getType();
2454  if (isa<Constant>(I.getOperand(0)) &&
2455      I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2456    SDValue Op2 = getValue(I.getOperand(1));
2457    setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2458                             Op2.getValueType(), Op2));
2459    return;
2460  }
2461
2462  visitBinary(I, ISD::FSUB);
2463}
2464
2465void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2466  SDValue Op1 = getValue(I.getOperand(0));
2467  SDValue Op2 = getValue(I.getOperand(1));
2468  setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(),
2469                           Op1.getValueType(), Op1, Op2));
2470}
2471
2472void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2473  SDValue Op1 = getValue(I.getOperand(0));
2474  SDValue Op2 = getValue(I.getOperand(1));
2475
2476  MVT ShiftTy = TLI.getShiftAmountTy(Op2.getValueType());
2477
2478  // Coerce the shift amount to the right type if we can.
2479  if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2480    unsigned ShiftSize = ShiftTy.getSizeInBits();
2481    unsigned Op2Size = Op2.getValueType().getSizeInBits();
2482    DebugLoc DL = getCurDebugLoc();
2483
2484    // If the operand is smaller than the shift count type, promote it.
2485    if (ShiftSize > Op2Size)
2486      Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2487
2488    // If the operand is larger than the shift count type but the shift
2489    // count type has enough bits to represent any shift value, truncate
2490    // it now. This is a common case and it exposes the truncate to
2491    // optimization early.
2492    else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2493      Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2494    // Otherwise we'll need to temporarily settle for some other convenient
2495    // type.  Type legalization will make adjustments once the shiftee is split.
2496    else
2497      Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2498  }
2499
2500  setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(),
2501                           Op1.getValueType(), Op1, Op2));
2502}
2503
2504void SelectionDAGBuilder::visitICmp(const User &I) {
2505  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2506  if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2507    predicate = IC->getPredicate();
2508  else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2509    predicate = ICmpInst::Predicate(IC->getPredicate());
2510  SDValue Op1 = getValue(I.getOperand(0));
2511  SDValue Op2 = getValue(I.getOperand(1));
2512  ISD::CondCode Opcode = getICmpCondCode(predicate);
2513
2514  EVT DestVT = TLI.getValueType(I.getType());
2515  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode));
2516}
2517
2518void SelectionDAGBuilder::visitFCmp(const User &I) {
2519  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2520  if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2521    predicate = FC->getPredicate();
2522  else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2523    predicate = FCmpInst::Predicate(FC->getPredicate());
2524  SDValue Op1 = getValue(I.getOperand(0));
2525  SDValue Op2 = getValue(I.getOperand(1));
2526  ISD::CondCode Condition = getFCmpCondCode(predicate);
2527  EVT DestVT = TLI.getValueType(I.getType());
2528  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition));
2529}
2530
2531void SelectionDAGBuilder::visitSelect(const User &I) {
2532  SmallVector<EVT, 4> ValueVTs;
2533  ComputeValueVTs(TLI, I.getType(), ValueVTs);
2534  unsigned NumValues = ValueVTs.size();
2535  if (NumValues == 0) return;
2536
2537  SmallVector<SDValue, 4> Values(NumValues);
2538  SDValue Cond     = getValue(I.getOperand(0));
2539  SDValue TrueVal  = getValue(I.getOperand(1));
2540  SDValue FalseVal = getValue(I.getOperand(2));
2541
2542  for (unsigned i = 0; i != NumValues; ++i)
2543    Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(),
2544                          TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2545                            Cond,
2546                            SDValue(TrueVal.getNode(),
2547                                    TrueVal.getResNo() + i),
2548                            SDValue(FalseVal.getNode(),
2549                                    FalseVal.getResNo() + i));
2550
2551  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2552                           DAG.getVTList(&ValueVTs[0], NumValues),
2553                           &Values[0], NumValues));
2554}
2555
2556void SelectionDAGBuilder::visitTrunc(const User &I) {
2557  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2558  SDValue N = getValue(I.getOperand(0));
2559  EVT DestVT = TLI.getValueType(I.getType());
2560  setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N));
2561}
2562
2563void SelectionDAGBuilder::visitZExt(const User &I) {
2564  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2565  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2566  SDValue N = getValue(I.getOperand(0));
2567  EVT DestVT = TLI.getValueType(I.getType());
2568  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N));
2569}
2570
2571void SelectionDAGBuilder::visitSExt(const User &I) {
2572  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2573  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2574  SDValue N = getValue(I.getOperand(0));
2575  EVT DestVT = TLI.getValueType(I.getType());
2576  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N));
2577}
2578
2579void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2580  // FPTrunc is never a no-op cast, no need to check
2581  SDValue N = getValue(I.getOperand(0));
2582  EVT DestVT = TLI.getValueType(I.getType());
2583  setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(),
2584                           DestVT, N, DAG.getIntPtrConstant(0)));
2585}
2586
2587void SelectionDAGBuilder::visitFPExt(const User &I){
2588  // FPTrunc is never a no-op cast, no need to check
2589  SDValue N = getValue(I.getOperand(0));
2590  EVT DestVT = TLI.getValueType(I.getType());
2591  setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N));
2592}
2593
2594void SelectionDAGBuilder::visitFPToUI(const User &I) {
2595  // FPToUI is never a no-op cast, no need to check
2596  SDValue N = getValue(I.getOperand(0));
2597  EVT DestVT = TLI.getValueType(I.getType());
2598  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N));
2599}
2600
2601void SelectionDAGBuilder::visitFPToSI(const User &I) {
2602  // FPToSI is never a no-op cast, no need to check
2603  SDValue N = getValue(I.getOperand(0));
2604  EVT DestVT = TLI.getValueType(I.getType());
2605  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N));
2606}
2607
2608void SelectionDAGBuilder::visitUIToFP(const User &I) {
2609  // UIToFP is never a no-op cast, no need to check
2610  SDValue N = getValue(I.getOperand(0));
2611  EVT DestVT = TLI.getValueType(I.getType());
2612  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N));
2613}
2614
2615void SelectionDAGBuilder::visitSIToFP(const User &I){
2616  // SIToFP is never a no-op cast, no need to check
2617  SDValue N = getValue(I.getOperand(0));
2618  EVT DestVT = TLI.getValueType(I.getType());
2619  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N));
2620}
2621
2622void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2623  // What to do depends on the size of the integer and the size of the pointer.
2624  // We can either truncate, zero extend, or no-op, accordingly.
2625  SDValue N = getValue(I.getOperand(0));
2626  EVT DestVT = TLI.getValueType(I.getType());
2627  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2628}
2629
2630void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2631  // What to do depends on the size of the integer and the size of the pointer.
2632  // We can either truncate, zero extend, or no-op, accordingly.
2633  SDValue N = getValue(I.getOperand(0));
2634  EVT DestVT = TLI.getValueType(I.getType());
2635  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2636}
2637
2638void SelectionDAGBuilder::visitBitCast(const User &I) {
2639  SDValue N = getValue(I.getOperand(0));
2640  EVT DestVT = TLI.getValueType(I.getType());
2641
2642  // BitCast assures us that source and destination are the same size so this is
2643  // either a BITCAST or a no-op.
2644  if (DestVT != N.getValueType())
2645    setValue(&I, DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
2646                             DestVT, N)); // convert types.
2647  else
2648    setValue(&I, N);            // noop cast.
2649}
2650
2651void SelectionDAGBuilder::visitInsertElement(const User &I) {
2652  SDValue InVec = getValue(I.getOperand(0));
2653  SDValue InVal = getValue(I.getOperand(1));
2654  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2655                              TLI.getPointerTy(),
2656                              getValue(I.getOperand(2)));
2657  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(),
2658                           TLI.getValueType(I.getType()),
2659                           InVec, InVal, InIdx));
2660}
2661
2662void SelectionDAGBuilder::visitExtractElement(const User &I) {
2663  SDValue InVec = getValue(I.getOperand(0));
2664  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2665                              TLI.getPointerTy(),
2666                              getValue(I.getOperand(1)));
2667  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2668                           TLI.getValueType(I.getType()), InVec, InIdx));
2669}
2670
2671// Utility for visitShuffleVector - Returns true if the mask is mask starting
2672// from SIndx and increasing to the element length (undefs are allowed).
2673static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) {
2674  unsigned MaskNumElts = Mask.size();
2675  for (unsigned i = 0; i != MaskNumElts; ++i)
2676    if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx)))
2677      return false;
2678  return true;
2679}
2680
2681void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2682  SmallVector<int, 8> Mask;
2683  SDValue Src1 = getValue(I.getOperand(0));
2684  SDValue Src2 = getValue(I.getOperand(1));
2685
2686  // Convert the ConstantVector mask operand into an array of ints, with -1
2687  // representing undef values.
2688  SmallVector<Constant*, 8> MaskElts;
2689  cast<Constant>(I.getOperand(2))->getVectorElements(MaskElts);
2690  unsigned MaskNumElts = MaskElts.size();
2691  for (unsigned i = 0; i != MaskNumElts; ++i) {
2692    if (isa<UndefValue>(MaskElts[i]))
2693      Mask.push_back(-1);
2694    else
2695      Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue());
2696  }
2697
2698  EVT VT = TLI.getValueType(I.getType());
2699  EVT SrcVT = Src1.getValueType();
2700  unsigned SrcNumElts = SrcVT.getVectorNumElements();
2701
2702  if (SrcNumElts == MaskNumElts) {
2703    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2704                                      &Mask[0]));
2705    return;
2706  }
2707
2708  // Normalize the shuffle vector since mask and vector length don't match.
2709  if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2710    // Mask is longer than the source vectors and is a multiple of the source
2711    // vectors.  We can use concatenate vector to make the mask and vectors
2712    // lengths match.
2713    if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) {
2714      // The shuffle is concatenating two vectors together.
2715      setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2716                               VT, Src1, Src2));
2717      return;
2718    }
2719
2720    // Pad both vectors with undefs to make them the same length as the mask.
2721    unsigned NumConcat = MaskNumElts / SrcNumElts;
2722    bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2723    bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2724    SDValue UndefVal = DAG.getUNDEF(SrcVT);
2725
2726    SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2727    SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2728    MOps1[0] = Src1;
2729    MOps2[0] = Src2;
2730
2731    Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2732                                                  getCurDebugLoc(), VT,
2733                                                  &MOps1[0], NumConcat);
2734    Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2735                                                  getCurDebugLoc(), VT,
2736                                                  &MOps2[0], NumConcat);
2737
2738    // Readjust mask for new input vector length.
2739    SmallVector<int, 8> MappedOps;
2740    for (unsigned i = 0; i != MaskNumElts; ++i) {
2741      int Idx = Mask[i];
2742      if (Idx < (int)SrcNumElts)
2743        MappedOps.push_back(Idx);
2744      else
2745        MappedOps.push_back(Idx + MaskNumElts - SrcNumElts);
2746    }
2747
2748    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2749                                      &MappedOps[0]));
2750    return;
2751  }
2752
2753  if (SrcNumElts > MaskNumElts) {
2754    // Analyze the access pattern of the vector to see if we can extract
2755    // two subvectors and do the shuffle. The analysis is done by calculating
2756    // the range of elements the mask access on both vectors.
2757    int MinRange[2] = { SrcNumElts+1, SrcNumElts+1};
2758    int MaxRange[2] = {-1, -1};
2759
2760    for (unsigned i = 0; i != MaskNumElts; ++i) {
2761      int Idx = Mask[i];
2762      int Input = 0;
2763      if (Idx < 0)
2764        continue;
2765
2766      if (Idx >= (int)SrcNumElts) {
2767        Input = 1;
2768        Idx -= SrcNumElts;
2769      }
2770      if (Idx > MaxRange[Input])
2771        MaxRange[Input] = Idx;
2772      if (Idx < MinRange[Input])
2773        MinRange[Input] = Idx;
2774    }
2775
2776    // Check if the access is smaller than the vector size and can we find
2777    // a reasonable extract index.
2778    int RangeUse[2] = { 2, 2 };  // 0 = Unused, 1 = Extract, 2 = Can not
2779                                 // Extract.
2780    int StartIdx[2];  // StartIdx to extract from
2781    for (int Input=0; Input < 2; ++Input) {
2782      if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) {
2783        RangeUse[Input] = 0; // Unused
2784        StartIdx[Input] = 0;
2785      } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) {
2786        // Fits within range but we should see if we can find a good
2787        // start index that is a multiple of the mask length.
2788        if (MaxRange[Input] < (int)MaskNumElts) {
2789          RangeUse[Input] = 1; // Extract from beginning of the vector
2790          StartIdx[Input] = 0;
2791        } else {
2792          StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2793          if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2794              StartIdx[Input] + MaskNumElts <= SrcNumElts)
2795            RangeUse[Input] = 1; // Extract from a multiple of the mask length.
2796        }
2797      }
2798    }
2799
2800    if (RangeUse[0] == 0 && RangeUse[1] == 0) {
2801      setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
2802      return;
2803    }
2804    else if (RangeUse[0] < 2 && RangeUse[1] < 2) {
2805      // Extract appropriate subvector and generate a vector shuffle
2806      for (int Input=0; Input < 2; ++Input) {
2807        SDValue &Src = Input == 0 ? Src1 : Src2;
2808        if (RangeUse[Input] == 0)
2809          Src = DAG.getUNDEF(VT);
2810        else
2811          Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT,
2812                            Src, DAG.getIntPtrConstant(StartIdx[Input]));
2813      }
2814
2815      // Calculate new mask.
2816      SmallVector<int, 8> MappedOps;
2817      for (unsigned i = 0; i != MaskNumElts; ++i) {
2818        int Idx = Mask[i];
2819        if (Idx < 0)
2820          MappedOps.push_back(Idx);
2821        else if (Idx < (int)SrcNumElts)
2822          MappedOps.push_back(Idx - StartIdx[0]);
2823        else
2824          MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts);
2825      }
2826
2827      setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2828                                        &MappedOps[0]));
2829      return;
2830    }
2831  }
2832
2833  // We can't use either concat vectors or extract subvectors so fall back to
2834  // replacing the shuffle with extract and build vector.
2835  // to insert and build vector.
2836  EVT EltVT = VT.getVectorElementType();
2837  EVT PtrVT = TLI.getPointerTy();
2838  SmallVector<SDValue,8> Ops;
2839  for (unsigned i = 0; i != MaskNumElts; ++i) {
2840    if (Mask[i] < 0) {
2841      Ops.push_back(DAG.getUNDEF(EltVT));
2842    } else {
2843      int Idx = Mask[i];
2844      SDValue Res;
2845
2846      if (Idx < (int)SrcNumElts)
2847        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2848                          EltVT, Src1, DAG.getConstant(Idx, PtrVT));
2849      else
2850        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2851                          EltVT, Src2,
2852                          DAG.getConstant(Idx - SrcNumElts, PtrVT));
2853
2854      Ops.push_back(Res);
2855    }
2856  }
2857
2858  setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
2859                           VT, &Ops[0], Ops.size()));
2860}
2861
2862void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
2863  const Value *Op0 = I.getOperand(0);
2864  const Value *Op1 = I.getOperand(1);
2865  const Type *AggTy = I.getType();
2866  const Type *ValTy = Op1->getType();
2867  bool IntoUndef = isa<UndefValue>(Op0);
2868  bool FromUndef = isa<UndefValue>(Op1);
2869
2870  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.idx_begin(), I.idx_end());
2871
2872  SmallVector<EVT, 4> AggValueVTs;
2873  ComputeValueVTs(TLI, AggTy, AggValueVTs);
2874  SmallVector<EVT, 4> ValValueVTs;
2875  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2876
2877  unsigned NumAggValues = AggValueVTs.size();
2878  unsigned NumValValues = ValValueVTs.size();
2879  SmallVector<SDValue, 4> Values(NumAggValues);
2880
2881  SDValue Agg = getValue(Op0);
2882  unsigned i = 0;
2883  // Copy the beginning value(s) from the original aggregate.
2884  for (; i != LinearIndex; ++i)
2885    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2886                SDValue(Agg.getNode(), Agg.getResNo() + i);
2887  // Copy values from the inserted value(s).
2888  if (NumValValues) {
2889    SDValue Val = getValue(Op1);
2890    for (; i != LinearIndex + NumValValues; ++i)
2891      Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2892                  SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
2893  }
2894  // Copy remaining value(s) from the original aggregate.
2895  for (; i != NumAggValues; ++i)
2896    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2897                SDValue(Agg.getNode(), Agg.getResNo() + i);
2898
2899  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2900                           DAG.getVTList(&AggValueVTs[0], NumAggValues),
2901                           &Values[0], NumAggValues));
2902}
2903
2904void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
2905  const Value *Op0 = I.getOperand(0);
2906  const Type *AggTy = Op0->getType();
2907  const Type *ValTy = I.getType();
2908  bool OutOfUndef = isa<UndefValue>(Op0);
2909
2910  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.idx_begin(), I.idx_end());
2911
2912  SmallVector<EVT, 4> ValValueVTs;
2913  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2914
2915  unsigned NumValValues = ValValueVTs.size();
2916
2917  // Ignore a extractvalue that produces an empty object
2918  if (!NumValValues) {
2919    setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
2920    return;
2921  }
2922
2923  SmallVector<SDValue, 4> Values(NumValValues);
2924
2925  SDValue Agg = getValue(Op0);
2926  // Copy out the selected value(s).
2927  for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
2928    Values[i - LinearIndex] =
2929      OutOfUndef ?
2930        DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
2931        SDValue(Agg.getNode(), Agg.getResNo() + i);
2932
2933  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2934                           DAG.getVTList(&ValValueVTs[0], NumValValues),
2935                           &Values[0], NumValValues));
2936}
2937
2938void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
2939  SDValue N = getValue(I.getOperand(0));
2940  const Type *Ty = I.getOperand(0)->getType();
2941
2942  for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
2943       OI != E; ++OI) {
2944    const Value *Idx = *OI;
2945    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2946      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2947      if (Field) {
2948        // N = N + Offset
2949        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
2950        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2951                        DAG.getIntPtrConstant(Offset));
2952      }
2953
2954      Ty = StTy->getElementType(Field);
2955    } else {
2956      Ty = cast<SequentialType>(Ty)->getElementType();
2957
2958      // If this is a constant subscript, handle it quickly.
2959      if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2960        if (CI->isZero()) continue;
2961        uint64_t Offs =
2962            TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
2963        SDValue OffsVal;
2964        EVT PTy = TLI.getPointerTy();
2965        unsigned PtrBits = PTy.getSizeInBits();
2966        if (PtrBits < 64)
2967          OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2968                                TLI.getPointerTy(),
2969                                DAG.getConstant(Offs, MVT::i64));
2970        else
2971          OffsVal = DAG.getIntPtrConstant(Offs);
2972
2973        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2974                        OffsVal);
2975        continue;
2976      }
2977
2978      // N = N + Idx * ElementSize;
2979      APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
2980                                TD->getTypeAllocSize(Ty));
2981      SDValue IdxN = getValue(Idx);
2982
2983      // If the index is smaller or larger than intptr_t, truncate or extend
2984      // it.
2985      IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType());
2986
2987      // If this is a multiply by a power of two, turn it into a shl
2988      // immediately.  This is a very common case.
2989      if (ElementSize != 1) {
2990        if (ElementSize.isPowerOf2()) {
2991          unsigned Amt = ElementSize.logBase2();
2992          IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(),
2993                             N.getValueType(), IdxN,
2994                             DAG.getConstant(Amt, TLI.getPointerTy()));
2995        } else {
2996          SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy());
2997          IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(),
2998                             N.getValueType(), IdxN, Scale);
2999        }
3000      }
3001
3002      N = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3003                      N.getValueType(), N, IdxN);
3004    }
3005  }
3006
3007  setValue(&I, N);
3008}
3009
3010void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3011  // If this is a fixed sized alloca in the entry block of the function,
3012  // allocate it statically on the stack.
3013  if (FuncInfo.StaticAllocaMap.count(&I))
3014    return;   // getValue will auto-populate this.
3015
3016  const Type *Ty = I.getAllocatedType();
3017  uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
3018  unsigned Align =
3019    std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
3020             I.getAlignment());
3021
3022  SDValue AllocSize = getValue(I.getArraySize());
3023
3024  EVT IntPtr = TLI.getPointerTy();
3025  if (AllocSize.getValueType() != IntPtr)
3026    AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr);
3027
3028  AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr,
3029                          AllocSize,
3030                          DAG.getConstant(TySize, IntPtr));
3031
3032  // Handle alignment.  If the requested alignment is less than or equal to
3033  // the stack alignment, ignore it.  If the size is greater than or equal to
3034  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3035  unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
3036  if (Align <= StackAlign)
3037    Align = 0;
3038
3039  // Round the size of the allocation up to the stack alignment size
3040  // by add SA-1 to the size.
3041  AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3042                          AllocSize.getValueType(), AllocSize,
3043                          DAG.getIntPtrConstant(StackAlign-1));
3044
3045  // Mask out the low bits for alignment purposes.
3046  AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(),
3047                          AllocSize.getValueType(), AllocSize,
3048                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
3049
3050  SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
3051  SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3052  SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(),
3053                            VTs, Ops, 3);
3054  setValue(&I, DSA);
3055  DAG.setRoot(DSA.getValue(1));
3056
3057  // Inform the Frame Information that we have just allocated a variable-sized
3058  // object.
3059  FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1);
3060}
3061
3062void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3063  const Value *SV = I.getOperand(0);
3064  SDValue Ptr = getValue(SV);
3065
3066  const Type *Ty = I.getType();
3067
3068  bool isVolatile = I.isVolatile();
3069  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3070  unsigned Alignment = I.getAlignment();
3071  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3072
3073  SmallVector<EVT, 4> ValueVTs;
3074  SmallVector<uint64_t, 4> Offsets;
3075  ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
3076  unsigned NumValues = ValueVTs.size();
3077  if (NumValues == 0)
3078    return;
3079
3080  SDValue Root;
3081  bool ConstantMemory = false;
3082  if (I.isVolatile() || NumValues > MaxParallelChains)
3083    // Serialize volatile loads with other side effects.
3084    Root = getRoot();
3085  else if (AA->pointsToConstantMemory(
3086             AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) {
3087    // Do not serialize (non-volatile) loads of constant memory with anything.
3088    Root = DAG.getEntryNode();
3089    ConstantMemory = true;
3090  } else {
3091    // Do not serialize non-volatile loads against each other.
3092    Root = DAG.getRoot();
3093  }
3094
3095  SmallVector<SDValue, 4> Values(NumValues);
3096  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3097                                          NumValues));
3098  EVT PtrVT = Ptr.getValueType();
3099  unsigned ChainI = 0;
3100  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3101    // Serializing loads here may result in excessive register pressure, and
3102    // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3103    // could recover a bit by hoisting nodes upward in the chain by recognizing
3104    // they are side-effect free or do not alias. The optimizer should really
3105    // avoid this case by converting large object/array copies to llvm.memcpy
3106    // (MaxParallelChains should always remain as failsafe).
3107    if (ChainI == MaxParallelChains) {
3108      assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3109      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3110                                  MVT::Other, &Chains[0], ChainI);
3111      Root = Chain;
3112      ChainI = 0;
3113    }
3114    SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3115                            PtrVT, Ptr,
3116                            DAG.getConstant(Offsets[i], PtrVT));
3117    SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root,
3118                            A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
3119                            isNonTemporal, Alignment, TBAAInfo);
3120
3121    Values[i] = L;
3122    Chains[ChainI] = L.getValue(1);
3123  }
3124
3125  if (!ConstantMemory) {
3126    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3127                                MVT::Other, &Chains[0], ChainI);
3128    if (isVolatile)
3129      DAG.setRoot(Chain);
3130    else
3131      PendingLoads.push_back(Chain);
3132  }
3133
3134  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3135                           DAG.getVTList(&ValueVTs[0], NumValues),
3136                           &Values[0], NumValues));
3137}
3138
3139void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3140  const Value *SrcV = I.getOperand(0);
3141  const Value *PtrV = I.getOperand(1);
3142
3143  SmallVector<EVT, 4> ValueVTs;
3144  SmallVector<uint64_t, 4> Offsets;
3145  ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
3146  unsigned NumValues = ValueVTs.size();
3147  if (NumValues == 0)
3148    return;
3149
3150  // Get the lowered operands. Note that we do this after
3151  // checking if NumResults is zero, because with zero results
3152  // the operands won't have values in the map.
3153  SDValue Src = getValue(SrcV);
3154  SDValue Ptr = getValue(PtrV);
3155
3156  SDValue Root = getRoot();
3157  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3158                                          NumValues));
3159  EVT PtrVT = Ptr.getValueType();
3160  bool isVolatile = I.isVolatile();
3161  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3162  unsigned Alignment = I.getAlignment();
3163  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3164
3165  unsigned ChainI = 0;
3166  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3167    // See visitLoad comments.
3168    if (ChainI == MaxParallelChains) {
3169      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3170                                  MVT::Other, &Chains[0], ChainI);
3171      Root = Chain;
3172      ChainI = 0;
3173    }
3174    SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr,
3175                              DAG.getConstant(Offsets[i], PtrVT));
3176    SDValue St = DAG.getStore(Root, getCurDebugLoc(),
3177                              SDValue(Src.getNode(), Src.getResNo() + i),
3178                              Add, MachinePointerInfo(PtrV, Offsets[i]),
3179                              isVolatile, isNonTemporal, Alignment, TBAAInfo);
3180    Chains[ChainI] = St;
3181  }
3182
3183  SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3184                                  MVT::Other, &Chains[0], ChainI);
3185  ++SDNodeOrder;
3186  AssignOrderingToNode(StoreNode.getNode());
3187  DAG.setRoot(StoreNode);
3188}
3189
3190/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3191/// node.
3192void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3193                                               unsigned Intrinsic) {
3194  bool HasChain = !I.doesNotAccessMemory();
3195  bool OnlyLoad = HasChain && I.onlyReadsMemory();
3196
3197  // Build the operand list.
3198  SmallVector<SDValue, 8> Ops;
3199  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
3200    if (OnlyLoad) {
3201      // We don't need to serialize loads against other loads.
3202      Ops.push_back(DAG.getRoot());
3203    } else {
3204      Ops.push_back(getRoot());
3205    }
3206  }
3207
3208  // Info is set by getTgtMemInstrinsic
3209  TargetLowering::IntrinsicInfo Info;
3210  bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
3211
3212  // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3213  if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
3214      Info.opc == ISD::INTRINSIC_W_CHAIN)
3215    Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
3216
3217  // Add all operands of the call to the operand list.
3218  for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
3219    SDValue Op = getValue(I.getArgOperand(i));
3220    assert(TLI.isTypeLegal(Op.getValueType()) &&
3221           "Intrinsic uses a non-legal type?");
3222    Ops.push_back(Op);
3223  }
3224
3225  SmallVector<EVT, 4> ValueVTs;
3226  ComputeValueVTs(TLI, I.getType(), ValueVTs);
3227#ifndef NDEBUG
3228  for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) {
3229    assert(TLI.isTypeLegal(ValueVTs[Val]) &&
3230           "Intrinsic uses a non-legal type?");
3231  }
3232#endif // NDEBUG
3233
3234  if (HasChain)
3235    ValueVTs.push_back(MVT::Other);
3236
3237  SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
3238
3239  // Create the node.
3240  SDValue Result;
3241  if (IsTgtIntrinsic) {
3242    // This is target intrinsic that touches memory
3243    Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(),
3244                                     VTs, &Ops[0], Ops.size(),
3245                                     Info.memVT,
3246                                   MachinePointerInfo(Info.ptrVal, Info.offset),
3247                                     Info.align, Info.vol,
3248                                     Info.readMem, Info.writeMem);
3249  } else if (!HasChain) {
3250    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
3251                         VTs, &Ops[0], Ops.size());
3252  } else if (!I.getType()->isVoidTy()) {
3253    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
3254                         VTs, &Ops[0], Ops.size());
3255  } else {
3256    Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(),
3257                         VTs, &Ops[0], Ops.size());
3258  }
3259
3260  if (HasChain) {
3261    SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3262    if (OnlyLoad)
3263      PendingLoads.push_back(Chain);
3264    else
3265      DAG.setRoot(Chain);
3266  }
3267
3268  if (!I.getType()->isVoidTy()) {
3269    if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3270      EVT VT = TLI.getValueType(PTy);
3271      Result = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), VT, Result);
3272    }
3273
3274    setValue(&I, Result);
3275  }
3276}
3277
3278/// GetSignificand - Get the significand and build it into a floating-point
3279/// number with exponent of 1:
3280///
3281///   Op = (Op & 0x007fffff) | 0x3f800000;
3282///
3283/// where Op is the hexidecimal representation of floating point value.
3284static SDValue
3285GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) {
3286  SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3287                           DAG.getConstant(0x007fffff, MVT::i32));
3288  SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3289                           DAG.getConstant(0x3f800000, MVT::i32));
3290  return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
3291}
3292
3293/// GetExponent - Get the exponent:
3294///
3295///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3296///
3297/// where Op is the hexidecimal representation of floating point value.
3298static SDValue
3299GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3300            DebugLoc dl) {
3301  SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3302                           DAG.getConstant(0x7f800000, MVT::i32));
3303  SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3304                           DAG.getConstant(23, TLI.getPointerTy()));
3305  SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3306                           DAG.getConstant(127, MVT::i32));
3307  return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3308}
3309
3310/// getF32Constant - Get 32-bit floating point constant.
3311static SDValue
3312getF32Constant(SelectionDAG &DAG, unsigned Flt) {
3313  return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32);
3314}
3315
3316/// Inlined utility function to implement binary input atomic intrinsics for
3317/// visitIntrinsicCall: I is a call instruction
3318///                     Op is the associated NodeType for I
3319const char *
3320SelectionDAGBuilder::implVisitBinaryAtomic(const CallInst& I,
3321                                           ISD::NodeType Op) {
3322  SDValue Root = getRoot();
3323  SDValue L =
3324    DAG.getAtomic(Op, getCurDebugLoc(),
3325                  getValue(I.getArgOperand(1)).getValueType().getSimpleVT(),
3326                  Root,
3327                  getValue(I.getArgOperand(0)),
3328                  getValue(I.getArgOperand(1)),
3329                  I.getArgOperand(0));
3330  setValue(&I, L);
3331  DAG.setRoot(L.getValue(1));
3332  return 0;
3333}
3334
3335// implVisitAluOverflow - Lower arithmetic overflow instrinsics.
3336const char *
3337SelectionDAGBuilder::implVisitAluOverflow(const CallInst &I, ISD::NodeType Op) {
3338  SDValue Op1 = getValue(I.getArgOperand(0));
3339  SDValue Op2 = getValue(I.getArgOperand(1));
3340
3341  SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
3342  setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2));
3343  return 0;
3344}
3345
3346/// visitExp - Lower an exp intrinsic. Handles the special sequences for
3347/// limited-precision mode.
3348void
3349SelectionDAGBuilder::visitExp(const CallInst &I) {
3350  SDValue result;
3351  DebugLoc dl = getCurDebugLoc();
3352
3353  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3354      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3355    SDValue Op = getValue(I.getArgOperand(0));
3356
3357    // Put the exponent in the right bit position for later addition to the
3358    // final result:
3359    //
3360    //   #define LOG2OFe 1.4426950f
3361    //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3362    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3363                             getF32Constant(DAG, 0x3fb8aa3b));
3364    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3365
3366    //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3367    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3368    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3369
3370    //   IntegerPartOfX <<= 23;
3371    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3372                                 DAG.getConstant(23, TLI.getPointerTy()));
3373
3374    if (LimitFloatPrecision <= 6) {
3375      // For floating-point precision of 6:
3376      //
3377      //   TwoToFractionalPartOfX =
3378      //     0.997535578f +
3379      //       (0.735607626f + 0.252464424f * x) * x;
3380      //
3381      // error 0.0144103317, which is 6 bits
3382      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3383                               getF32Constant(DAG, 0x3e814304));
3384      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3385                               getF32Constant(DAG, 0x3f3c50c8));
3386      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3387      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3388                               getF32Constant(DAG, 0x3f7f5e7e));
3389      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t5);
3390
3391      // Add the exponent into the result in integer domain.
3392      SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3393                               TwoToFracPartOfX, IntegerPartOfX);
3394
3395      result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t6);
3396    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3397      // For floating-point precision of 12:
3398      //
3399      //   TwoToFractionalPartOfX =
3400      //     0.999892986f +
3401      //       (0.696457318f +
3402      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3403      //
3404      // 0.000107046256 error, which is 13 to 14 bits
3405      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3406                               getF32Constant(DAG, 0x3da235e3));
3407      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3408                               getF32Constant(DAG, 0x3e65b8f3));
3409      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3410      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3411                               getF32Constant(DAG, 0x3f324b07));
3412      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3413      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3414                               getF32Constant(DAG, 0x3f7ff8fd));
3415      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t7);
3416
3417      // Add the exponent into the result in integer domain.
3418      SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3419                               TwoToFracPartOfX, IntegerPartOfX);
3420
3421      result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t8);
3422    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3423      // For floating-point precision of 18:
3424      //
3425      //   TwoToFractionalPartOfX =
3426      //     0.999999982f +
3427      //       (0.693148872f +
3428      //         (0.240227044f +
3429      //           (0.554906021e-1f +
3430      //             (0.961591928e-2f +
3431      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3432      //
3433      // error 2.47208000*10^(-7), which is better than 18 bits
3434      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3435                               getF32Constant(DAG, 0x3924b03e));
3436      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3437                               getF32Constant(DAG, 0x3ab24b87));
3438      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3439      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3440                               getF32Constant(DAG, 0x3c1d8c17));
3441      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3442      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3443                               getF32Constant(DAG, 0x3d634a1d));
3444      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3445      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3446                               getF32Constant(DAG, 0x3e75fe14));
3447      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3448      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3449                                getF32Constant(DAG, 0x3f317234));
3450      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3451      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3452                                getF32Constant(DAG, 0x3f800000));
3453      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,
3454                                             MVT::i32, t13);
3455
3456      // Add the exponent into the result in integer domain.
3457      SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3458                                TwoToFracPartOfX, IntegerPartOfX);
3459
3460      result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t14);
3461    }
3462  } else {
3463    // No special expansion.
3464    result = DAG.getNode(ISD::FEXP, dl,
3465                         getValue(I.getArgOperand(0)).getValueType(),
3466                         getValue(I.getArgOperand(0)));
3467  }
3468
3469  setValue(&I, result);
3470}
3471
3472/// visitLog - Lower a log intrinsic. Handles the special sequences for
3473/// limited-precision mode.
3474void
3475SelectionDAGBuilder::visitLog(const CallInst &I) {
3476  SDValue result;
3477  DebugLoc dl = getCurDebugLoc();
3478
3479  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3480      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3481    SDValue Op = getValue(I.getArgOperand(0));
3482    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3483
3484    // Scale the exponent by log(2) [0.69314718f].
3485    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3486    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3487                                        getF32Constant(DAG, 0x3f317218));
3488
3489    // Get the significand and build it into a floating-point number with
3490    // exponent of 1.
3491    SDValue X = GetSignificand(DAG, Op1, dl);
3492
3493    if (LimitFloatPrecision <= 6) {
3494      // For floating-point precision of 6:
3495      //
3496      //   LogofMantissa =
3497      //     -1.1609546f +
3498      //       (1.4034025f - 0.23903021f * x) * x;
3499      //
3500      // error 0.0034276066, which is better than 8 bits
3501      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3502                               getF32Constant(DAG, 0xbe74c456));
3503      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3504                               getF32Constant(DAG, 0x3fb3a2b1));
3505      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3506      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3507                                          getF32Constant(DAG, 0x3f949a29));
3508
3509      result = DAG.getNode(ISD::FADD, dl,
3510                           MVT::f32, LogOfExponent, LogOfMantissa);
3511    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3512      // For floating-point precision of 12:
3513      //
3514      //   LogOfMantissa =
3515      //     -1.7417939f +
3516      //       (2.8212026f +
3517      //         (-1.4699568f +
3518      //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3519      //
3520      // error 0.000061011436, which is 14 bits
3521      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3522                               getF32Constant(DAG, 0xbd67b6d6));
3523      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3524                               getF32Constant(DAG, 0x3ee4f4b8));
3525      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3526      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3527                               getF32Constant(DAG, 0x3fbc278b));
3528      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3529      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3530                               getF32Constant(DAG, 0x40348e95));
3531      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3532      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3533                                          getF32Constant(DAG, 0x3fdef31a));
3534
3535      result = DAG.getNode(ISD::FADD, dl,
3536                           MVT::f32, LogOfExponent, LogOfMantissa);
3537    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3538      // For floating-point precision of 18:
3539      //
3540      //   LogOfMantissa =
3541      //     -2.1072184f +
3542      //       (4.2372794f +
3543      //         (-3.7029485f +
3544      //           (2.2781945f +
3545      //             (-0.87823314f +
3546      //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3547      //
3548      // error 0.0000023660568, which is better than 18 bits
3549      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3550                               getF32Constant(DAG, 0xbc91e5ac));
3551      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3552                               getF32Constant(DAG, 0x3e4350aa));
3553      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3554      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3555                               getF32Constant(DAG, 0x3f60d3e3));
3556      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3557      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3558                               getF32Constant(DAG, 0x4011cdf0));
3559      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3560      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3561                               getF32Constant(DAG, 0x406cfd1c));
3562      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3563      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3564                               getF32Constant(DAG, 0x408797cb));
3565      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3566      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3567                                          getF32Constant(DAG, 0x4006dcab));
3568
3569      result = DAG.getNode(ISD::FADD, dl,
3570                           MVT::f32, LogOfExponent, LogOfMantissa);
3571    }
3572  } else {
3573    // No special expansion.
3574    result = DAG.getNode(ISD::FLOG, dl,
3575                         getValue(I.getArgOperand(0)).getValueType(),
3576                         getValue(I.getArgOperand(0)));
3577  }
3578
3579  setValue(&I, result);
3580}
3581
3582/// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for
3583/// limited-precision mode.
3584void
3585SelectionDAGBuilder::visitLog2(const CallInst &I) {
3586  SDValue result;
3587  DebugLoc dl = getCurDebugLoc();
3588
3589  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3590      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3591    SDValue Op = getValue(I.getArgOperand(0));
3592    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3593
3594    // Get the exponent.
3595    SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3596
3597    // Get the significand and build it into a floating-point number with
3598    // exponent of 1.
3599    SDValue X = GetSignificand(DAG, Op1, dl);
3600
3601    // Different possible minimax approximations of significand in
3602    // floating-point for various degrees of accuracy over [1,2].
3603    if (LimitFloatPrecision <= 6) {
3604      // For floating-point precision of 6:
3605      //
3606      //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3607      //
3608      // error 0.0049451742, which is more than 7 bits
3609      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3610                               getF32Constant(DAG, 0xbeb08fe0));
3611      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3612                               getF32Constant(DAG, 0x40019463));
3613      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3614      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3615                                           getF32Constant(DAG, 0x3fd6633d));
3616
3617      result = DAG.getNode(ISD::FADD, dl,
3618                           MVT::f32, LogOfExponent, Log2ofMantissa);
3619    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3620      // For floating-point precision of 12:
3621      //
3622      //   Log2ofMantissa =
3623      //     -2.51285454f +
3624      //       (4.07009056f +
3625      //         (-2.12067489f +
3626      //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3627      //
3628      // error 0.0000876136000, which is better than 13 bits
3629      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3630                               getF32Constant(DAG, 0xbda7262e));
3631      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3632                               getF32Constant(DAG, 0x3f25280b));
3633      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3634      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3635                               getF32Constant(DAG, 0x4007b923));
3636      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3637      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3638                               getF32Constant(DAG, 0x40823e2f));
3639      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3640      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3641                                           getF32Constant(DAG, 0x4020d29c));
3642
3643      result = DAG.getNode(ISD::FADD, dl,
3644                           MVT::f32, LogOfExponent, Log2ofMantissa);
3645    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3646      // For floating-point precision of 18:
3647      //
3648      //   Log2ofMantissa =
3649      //     -3.0400495f +
3650      //       (6.1129976f +
3651      //         (-5.3420409f +
3652      //           (3.2865683f +
3653      //             (-1.2669343f +
3654      //               (0.27515199f -
3655      //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3656      //
3657      // error 0.0000018516, which is better than 18 bits
3658      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3659                               getF32Constant(DAG, 0xbcd2769e));
3660      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3661                               getF32Constant(DAG, 0x3e8ce0b9));
3662      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3663      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3664                               getF32Constant(DAG, 0x3fa22ae7));
3665      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3666      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3667                               getF32Constant(DAG, 0x40525723));
3668      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3669      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3670                               getF32Constant(DAG, 0x40aaf200));
3671      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3672      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3673                               getF32Constant(DAG, 0x40c39dad));
3674      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3675      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3676                                           getF32Constant(DAG, 0x4042902c));
3677
3678      result = DAG.getNode(ISD::FADD, dl,
3679                           MVT::f32, LogOfExponent, Log2ofMantissa);
3680    }
3681  } else {
3682    // No special expansion.
3683    result = DAG.getNode(ISD::FLOG2, dl,
3684                         getValue(I.getArgOperand(0)).getValueType(),
3685                         getValue(I.getArgOperand(0)));
3686  }
3687
3688  setValue(&I, result);
3689}
3690
3691/// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for
3692/// limited-precision mode.
3693void
3694SelectionDAGBuilder::visitLog10(const CallInst &I) {
3695  SDValue result;
3696  DebugLoc dl = getCurDebugLoc();
3697
3698  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3699      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3700    SDValue Op = getValue(I.getArgOperand(0));
3701    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3702
3703    // Scale the exponent by log10(2) [0.30102999f].
3704    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3705    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3706                                        getF32Constant(DAG, 0x3e9a209a));
3707
3708    // Get the significand and build it into a floating-point number with
3709    // exponent of 1.
3710    SDValue X = GetSignificand(DAG, Op1, dl);
3711
3712    if (LimitFloatPrecision <= 6) {
3713      // For floating-point precision of 6:
3714      //
3715      //   Log10ofMantissa =
3716      //     -0.50419619f +
3717      //       (0.60948995f - 0.10380950f * x) * x;
3718      //
3719      // error 0.0014886165, which is 6 bits
3720      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3721                               getF32Constant(DAG, 0xbdd49a13));
3722      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3723                               getF32Constant(DAG, 0x3f1c0789));
3724      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3725      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3726                                            getF32Constant(DAG, 0x3f011300));
3727
3728      result = DAG.getNode(ISD::FADD, dl,
3729                           MVT::f32, LogOfExponent, Log10ofMantissa);
3730    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3731      // For floating-point precision of 12:
3732      //
3733      //   Log10ofMantissa =
3734      //     -0.64831180f +
3735      //       (0.91751397f +
3736      //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
3737      //
3738      // error 0.00019228036, which is better than 12 bits
3739      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3740                               getF32Constant(DAG, 0x3d431f31));
3741      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3742                               getF32Constant(DAG, 0x3ea21fb2));
3743      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3744      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3745                               getF32Constant(DAG, 0x3f6ae232));
3746      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3747      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3748                                            getF32Constant(DAG, 0x3f25f7c3));
3749
3750      result = DAG.getNode(ISD::FADD, dl,
3751                           MVT::f32, LogOfExponent, Log10ofMantissa);
3752    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3753      // For floating-point precision of 18:
3754      //
3755      //   Log10ofMantissa =
3756      //     -0.84299375f +
3757      //       (1.5327582f +
3758      //         (-1.0688956f +
3759      //           (0.49102474f +
3760      //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
3761      //
3762      // error 0.0000037995730, which is better than 18 bits
3763      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3764                               getF32Constant(DAG, 0x3c5d51ce));
3765      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3766                               getF32Constant(DAG, 0x3e00685a));
3767      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3768      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3769                               getF32Constant(DAG, 0x3efb6798));
3770      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3771      SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3772                               getF32Constant(DAG, 0x3f88d192));
3773      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3774      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3775                               getF32Constant(DAG, 0x3fc4316c));
3776      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3777      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
3778                                            getF32Constant(DAG, 0x3f57ce70));
3779
3780      result = DAG.getNode(ISD::FADD, dl,
3781                           MVT::f32, LogOfExponent, Log10ofMantissa);
3782    }
3783  } else {
3784    // No special expansion.
3785    result = DAG.getNode(ISD::FLOG10, dl,
3786                         getValue(I.getArgOperand(0)).getValueType(),
3787                         getValue(I.getArgOperand(0)));
3788  }
3789
3790  setValue(&I, result);
3791}
3792
3793/// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for
3794/// limited-precision mode.
3795void
3796SelectionDAGBuilder::visitExp2(const CallInst &I) {
3797  SDValue result;
3798  DebugLoc dl = getCurDebugLoc();
3799
3800  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3801      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3802    SDValue Op = getValue(I.getArgOperand(0));
3803
3804    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
3805
3806    //   FractionalPartOfX = x - (float)IntegerPartOfX;
3807    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3808    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
3809
3810    //   IntegerPartOfX <<= 23;
3811    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3812                                 DAG.getConstant(23, TLI.getPointerTy()));
3813
3814    if (LimitFloatPrecision <= 6) {
3815      // For floating-point precision of 6:
3816      //
3817      //   TwoToFractionalPartOfX =
3818      //     0.997535578f +
3819      //       (0.735607626f + 0.252464424f * x) * x;
3820      //
3821      // error 0.0144103317, which is 6 bits
3822      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3823                               getF32Constant(DAG, 0x3e814304));
3824      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3825                               getF32Constant(DAG, 0x3f3c50c8));
3826      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3827      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3828                               getF32Constant(DAG, 0x3f7f5e7e));
3829      SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
3830      SDValue TwoToFractionalPartOfX =
3831        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3832
3833      result = DAG.getNode(ISD::BITCAST, dl,
3834                           MVT::f32, TwoToFractionalPartOfX);
3835    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3836      // For floating-point precision of 12:
3837      //
3838      //   TwoToFractionalPartOfX =
3839      //     0.999892986f +
3840      //       (0.696457318f +
3841      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3842      //
3843      // error 0.000107046256, which is 13 to 14 bits
3844      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3845                               getF32Constant(DAG, 0x3da235e3));
3846      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3847                               getF32Constant(DAG, 0x3e65b8f3));
3848      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3849      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3850                               getF32Constant(DAG, 0x3f324b07));
3851      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3852      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3853                               getF32Constant(DAG, 0x3f7ff8fd));
3854      SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
3855      SDValue TwoToFractionalPartOfX =
3856        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
3857
3858      result = DAG.getNode(ISD::BITCAST, dl,
3859                           MVT::f32, TwoToFractionalPartOfX);
3860    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3861      // For floating-point precision of 18:
3862      //
3863      //   TwoToFractionalPartOfX =
3864      //     0.999999982f +
3865      //       (0.693148872f +
3866      //         (0.240227044f +
3867      //           (0.554906021e-1f +
3868      //             (0.961591928e-2f +
3869      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3870      // error 2.47208000*10^(-7), which is better than 18 bits
3871      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3872                               getF32Constant(DAG, 0x3924b03e));
3873      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3874                               getF32Constant(DAG, 0x3ab24b87));
3875      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3876      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3877                               getF32Constant(DAG, 0x3c1d8c17));
3878      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3879      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3880                               getF32Constant(DAG, 0x3d634a1d));
3881      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3882      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3883                               getF32Constant(DAG, 0x3e75fe14));
3884      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3885      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3886                                getF32Constant(DAG, 0x3f317234));
3887      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3888      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3889                                getF32Constant(DAG, 0x3f800000));
3890      SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
3891      SDValue TwoToFractionalPartOfX =
3892        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
3893
3894      result = DAG.getNode(ISD::BITCAST, dl,
3895                           MVT::f32, TwoToFractionalPartOfX);
3896    }
3897  } else {
3898    // No special expansion.
3899    result = DAG.getNode(ISD::FEXP2, dl,
3900                         getValue(I.getArgOperand(0)).getValueType(),
3901                         getValue(I.getArgOperand(0)));
3902  }
3903
3904  setValue(&I, result);
3905}
3906
3907/// visitPow - Lower a pow intrinsic. Handles the special sequences for
3908/// limited-precision mode with x == 10.0f.
3909void
3910SelectionDAGBuilder::visitPow(const CallInst &I) {
3911  SDValue result;
3912  const Value *Val = I.getArgOperand(0);
3913  DebugLoc dl = getCurDebugLoc();
3914  bool IsExp10 = false;
3915
3916  if (getValue(Val).getValueType() == MVT::f32 &&
3917      getValue(I.getArgOperand(1)).getValueType() == MVT::f32 &&
3918      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3919    if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) {
3920      if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
3921        APFloat Ten(10.0f);
3922        IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten);
3923      }
3924    }
3925  }
3926
3927  if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3928    SDValue Op = getValue(I.getArgOperand(1));
3929
3930    // Put the exponent in the right bit position for later addition to the
3931    // final result:
3932    //
3933    //   #define LOG2OF10 3.3219281f
3934    //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
3935    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3936                             getF32Constant(DAG, 0x40549a78));
3937    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3938
3939    //   FractionalPartOfX = x - (float)IntegerPartOfX;
3940    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3941    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3942
3943    //   IntegerPartOfX <<= 23;
3944    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3945                                 DAG.getConstant(23, TLI.getPointerTy()));
3946
3947    if (LimitFloatPrecision <= 6) {
3948      // For floating-point precision of 6:
3949      //
3950      //   twoToFractionalPartOfX =
3951      //     0.997535578f +
3952      //       (0.735607626f + 0.252464424f * x) * x;
3953      //
3954      // error 0.0144103317, which is 6 bits
3955      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3956                               getF32Constant(DAG, 0x3e814304));
3957      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3958                               getF32Constant(DAG, 0x3f3c50c8));
3959      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3960      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3961                               getF32Constant(DAG, 0x3f7f5e7e));
3962      SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
3963      SDValue TwoToFractionalPartOfX =
3964        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3965
3966      result = DAG.getNode(ISD::BITCAST, dl,
3967                           MVT::f32, TwoToFractionalPartOfX);
3968    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3969      // For floating-point precision of 12:
3970      //
3971      //   TwoToFractionalPartOfX =
3972      //     0.999892986f +
3973      //       (0.696457318f +
3974      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3975      //
3976      // error 0.000107046256, which is 13 to 14 bits
3977      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3978                               getF32Constant(DAG, 0x3da235e3));
3979      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3980                               getF32Constant(DAG, 0x3e65b8f3));
3981      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3982      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3983                               getF32Constant(DAG, 0x3f324b07));
3984      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3985      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3986                               getF32Constant(DAG, 0x3f7ff8fd));
3987      SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
3988      SDValue TwoToFractionalPartOfX =
3989        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
3990
3991      result = DAG.getNode(ISD::BITCAST, dl,
3992                           MVT::f32, TwoToFractionalPartOfX);
3993    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3994      // For floating-point precision of 18:
3995      //
3996      //   TwoToFractionalPartOfX =
3997      //     0.999999982f +
3998      //       (0.693148872f +
3999      //         (0.240227044f +
4000      //           (0.554906021e-1f +
4001      //             (0.961591928e-2f +
4002      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4003      // error 2.47208000*10^(-7), which is better than 18 bits
4004      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4005                               getF32Constant(DAG, 0x3924b03e));
4006      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4007                               getF32Constant(DAG, 0x3ab24b87));
4008      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4009      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4010                               getF32Constant(DAG, 0x3c1d8c17));
4011      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4012      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4013                               getF32Constant(DAG, 0x3d634a1d));
4014      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4015      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4016                               getF32Constant(DAG, 0x3e75fe14));
4017      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4018      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4019                                getF32Constant(DAG, 0x3f317234));
4020      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4021      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4022                                getF32Constant(DAG, 0x3f800000));
4023      SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
4024      SDValue TwoToFractionalPartOfX =
4025        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
4026
4027      result = DAG.getNode(ISD::BITCAST, dl,
4028                           MVT::f32, TwoToFractionalPartOfX);
4029    }
4030  } else {
4031    // No special expansion.
4032    result = DAG.getNode(ISD::FPOW, dl,
4033                         getValue(I.getArgOperand(0)).getValueType(),
4034                         getValue(I.getArgOperand(0)),
4035                         getValue(I.getArgOperand(1)));
4036  }
4037
4038  setValue(&I, result);
4039}
4040
4041
4042/// ExpandPowI - Expand a llvm.powi intrinsic.
4043static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS,
4044                          SelectionDAG &DAG) {
4045  // If RHS is a constant, we can expand this out to a multiplication tree,
4046  // otherwise we end up lowering to a call to __powidf2 (for example).  When
4047  // optimizing for size, we only want to do this if the expansion would produce
4048  // a small number of multiplies, otherwise we do the full expansion.
4049  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4050    // Get the exponent as a positive value.
4051    unsigned Val = RHSC->getSExtValue();
4052    if ((int)Val < 0) Val = -Val;
4053
4054    // powi(x, 0) -> 1.0
4055    if (Val == 0)
4056      return DAG.getConstantFP(1.0, LHS.getValueType());
4057
4058    const Function *F = DAG.getMachineFunction().getFunction();
4059    if (!F->hasFnAttr(Attribute::OptimizeForSize) ||
4060        // If optimizing for size, don't insert too many multiplies.  This
4061        // inserts up to 5 multiplies.
4062        CountPopulation_32(Val)+Log2_32(Val) < 7) {
4063      // We use the simple binary decomposition method to generate the multiply
4064      // sequence.  There are more optimal ways to do this (for example,
4065      // powi(x,15) generates one more multiply than it should), but this has
4066      // the benefit of being both really simple and much better than a libcall.
4067      SDValue Res;  // Logically starts equal to 1.0
4068      SDValue CurSquare = LHS;
4069      while (Val) {
4070        if (Val & 1) {
4071          if (Res.getNode())
4072            Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4073          else
4074            Res = CurSquare;  // 1.0*CurSquare.
4075        }
4076
4077        CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4078                                CurSquare, CurSquare);
4079        Val >>= 1;
4080      }
4081
4082      // If the original was negative, invert the result, producing 1/(x*x*x).
4083      if (RHSC->getSExtValue() < 0)
4084        Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4085                          DAG.getConstantFP(1.0, LHS.getValueType()), Res);
4086      return Res;
4087    }
4088  }
4089
4090  // Otherwise, expand to a libcall.
4091  return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4092}
4093
4094// getTruncatedArgReg - Find underlying register used for an truncated
4095// argument.
4096static unsigned getTruncatedArgReg(const SDValue &N) {
4097  if (N.getOpcode() != ISD::TRUNCATE)
4098    return 0;
4099
4100  const SDValue &Ext = N.getOperand(0);
4101  if (Ext.getOpcode() == ISD::AssertZext || Ext.getOpcode() == ISD::AssertSext){
4102    const SDValue &CFR = Ext.getOperand(0);
4103    if (CFR.getOpcode() == ISD::CopyFromReg)
4104      return cast<RegisterSDNode>(CFR.getOperand(1))->getReg();
4105    else
4106      if (CFR.getOpcode() == ISD::TRUNCATE)
4107        return getTruncatedArgReg(CFR);
4108  }
4109  return 0;
4110}
4111
4112/// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4113/// argument, create the corresponding DBG_VALUE machine instruction for it now.
4114/// At the end of instruction selection, they will be inserted to the entry BB.
4115bool
4116SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
4117                                              int64_t Offset,
4118                                              const SDValue &N) {
4119  const Argument *Arg = dyn_cast<Argument>(V);
4120  if (!Arg)
4121    return false;
4122
4123  MachineFunction &MF = DAG.getMachineFunction();
4124  const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
4125  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
4126
4127  // Ignore inlined function arguments here.
4128  DIVariable DV(Variable);
4129  if (DV.isInlinedFnArgument(MF.getFunction()))
4130    return false;
4131
4132  unsigned Reg = 0;
4133  if (Arg->hasByValAttr()) {
4134    // Byval arguments' frame index is recorded during argument lowering.
4135    // Use this info directly.
4136    Reg = TRI->getFrameRegister(MF);
4137    Offset = FuncInfo.getByValArgumentFrameIndex(Arg);
4138    // If byval argument ofset is not recorded then ignore this.
4139    if (!Offset)
4140      Reg = 0;
4141  }
4142
4143  if (N.getNode()) {
4144    if (N.getOpcode() == ISD::CopyFromReg)
4145      Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
4146    else
4147      Reg = getTruncatedArgReg(N);
4148    if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4149      MachineRegisterInfo &RegInfo = MF.getRegInfo();
4150      unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4151      if (PR)
4152        Reg = PR;
4153    }
4154  }
4155
4156  if (!Reg) {
4157    // Check if ValueMap has reg number.
4158    DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4159    if (VMI != FuncInfo.ValueMap.end())
4160      Reg = VMI->second;
4161  }
4162
4163  if (!Reg && N.getNode()) {
4164    // Check if frame index is available.
4165    if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4166      if (FrameIndexSDNode *FINode =
4167          dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) {
4168        Reg = TRI->getFrameRegister(MF);
4169        Offset = FINode->getIndex();
4170      }
4171  }
4172
4173  if (!Reg)
4174    return false;
4175
4176  MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(),
4177                                    TII->get(TargetOpcode::DBG_VALUE))
4178    .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable);
4179  FuncInfo.ArgDbgValues.push_back(&*MIB);
4180  return true;
4181}
4182
4183// VisualStudio defines setjmp as _setjmp
4184#if defined(_MSC_VER) && defined(setjmp) && \
4185                         !defined(setjmp_undefined_for_msvc)
4186#  pragma push_macro("setjmp")
4187#  undef setjmp
4188#  define setjmp_undefined_for_msvc
4189#endif
4190
4191/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4192/// we want to emit this as a call to a named external function, return the name
4193/// otherwise lower it and return null.
4194const char *
4195SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4196  DebugLoc dl = getCurDebugLoc();
4197  SDValue Res;
4198
4199  switch (Intrinsic) {
4200  default:
4201    // By default, turn this into a target intrinsic node.
4202    visitTargetIntrinsic(I, Intrinsic);
4203    return 0;
4204  case Intrinsic::vastart:  visitVAStart(I); return 0;
4205  case Intrinsic::vaend:    visitVAEnd(I); return 0;
4206  case Intrinsic::vacopy:   visitVACopy(I); return 0;
4207  case Intrinsic::returnaddress:
4208    setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(),
4209                             getValue(I.getArgOperand(0))));
4210    return 0;
4211  case Intrinsic::frameaddress:
4212    setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(),
4213                             getValue(I.getArgOperand(0))));
4214    return 0;
4215  case Intrinsic::setjmp:
4216    return "_setjmp"+!TLI.usesUnderscoreSetJmp();
4217  case Intrinsic::longjmp:
4218    return "_longjmp"+!TLI.usesUnderscoreLongJmp();
4219  case Intrinsic::memcpy: {
4220    // Assert for address < 256 since we support only user defined address
4221    // spaces.
4222    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4223           < 256 &&
4224           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4225           < 256 &&
4226           "Unknown address space");
4227    SDValue Op1 = getValue(I.getArgOperand(0));
4228    SDValue Op2 = getValue(I.getArgOperand(1));
4229    SDValue Op3 = getValue(I.getArgOperand(2));
4230    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4231    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4232    DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false,
4233                              MachinePointerInfo(I.getArgOperand(0)),
4234                              MachinePointerInfo(I.getArgOperand(1))));
4235    return 0;
4236  }
4237  case Intrinsic::memset: {
4238    // Assert for address < 256 since we support only user defined address
4239    // spaces.
4240    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4241           < 256 &&
4242           "Unknown address space");
4243    SDValue Op1 = getValue(I.getArgOperand(0));
4244    SDValue Op2 = getValue(I.getArgOperand(1));
4245    SDValue Op3 = getValue(I.getArgOperand(2));
4246    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4247    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4248    DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4249                              MachinePointerInfo(I.getArgOperand(0))));
4250    return 0;
4251  }
4252  case Intrinsic::memmove: {
4253    // Assert for address < 256 since we support only user defined address
4254    // spaces.
4255    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4256           < 256 &&
4257           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4258           < 256 &&
4259           "Unknown address space");
4260    SDValue Op1 = getValue(I.getArgOperand(0));
4261    SDValue Op2 = getValue(I.getArgOperand(1));
4262    SDValue Op3 = getValue(I.getArgOperand(2));
4263    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4264    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4265    DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4266                               MachinePointerInfo(I.getArgOperand(0)),
4267                               MachinePointerInfo(I.getArgOperand(1))));
4268    return 0;
4269  }
4270  case Intrinsic::dbg_declare: {
4271    const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4272    MDNode *Variable = DI.getVariable();
4273    const Value *Address = DI.getAddress();
4274    if (!Address || !DIVariable(DI.getVariable()).Verify())
4275      return 0;
4276
4277    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4278    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4279    // absolute, but not relative, values are different depending on whether
4280    // debug info exists.
4281    ++SDNodeOrder;
4282
4283    // Check if address has undef value.
4284    if (isa<UndefValue>(Address) ||
4285        (Address->use_empty() && !isa<Argument>(Address))) {
4286      DEBUG(dbgs() << "Dropping debug info for " << DI);
4287      return 0;
4288    }
4289
4290    SDValue &N = NodeMap[Address];
4291    if (!N.getNode() && isa<Argument>(Address))
4292      // Check unused arguments map.
4293      N = UnusedArgNodeMap[Address];
4294    SDDbgValue *SDV;
4295    if (N.getNode()) {
4296      // Parameters are handled specially.
4297      bool isParameter =
4298        DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable;
4299      if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4300        Address = BCI->getOperand(0);
4301      const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
4302
4303      if (isParameter && !AI) {
4304        FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4305        if (FINode)
4306          // Byval parameter.  We have a frame index at this point.
4307          SDV = DAG.getDbgValue(Variable, FINode->getIndex(),
4308                                0, dl, SDNodeOrder);
4309        else {
4310          // Address is an argument, so try to emit its dbg value using
4311          // virtual register info from the FuncInfo.ValueMap.
4312          EmitFuncArgumentDbgValue(Address, Variable, 0, N);
4313          return 0;
4314        }
4315      } else if (AI)
4316        SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
4317                              0, dl, SDNodeOrder);
4318      else {
4319        // Can't do anything with other non-AI cases yet.
4320        DEBUG(dbgs() << "Dropping debug info for " << DI);
4321        return 0;
4322      }
4323      DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4324    } else {
4325      // If Address is an argument then try to emit its dbg value using
4326      // virtual register info from the FuncInfo.ValueMap.
4327      if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) {
4328        // If variable is pinned by a alloca in dominating bb then
4329        // use StaticAllocaMap.
4330        if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4331          if (AI->getParent() != DI.getParent()) {
4332            DenseMap<const AllocaInst*, int>::iterator SI =
4333              FuncInfo.StaticAllocaMap.find(AI);
4334            if (SI != FuncInfo.StaticAllocaMap.end()) {
4335              SDV = DAG.getDbgValue(Variable, SI->second,
4336                                    0, dl, SDNodeOrder);
4337              DAG.AddDbgValue(SDV, 0, false);
4338              return 0;
4339            }
4340          }
4341        }
4342        DEBUG(dbgs() << "Dropping debug info for " << DI);
4343      }
4344    }
4345    return 0;
4346  }
4347  case Intrinsic::dbg_value: {
4348    const DbgValueInst &DI = cast<DbgValueInst>(I);
4349    if (!DIVariable(DI.getVariable()).Verify())
4350      return 0;
4351
4352    MDNode *Variable = DI.getVariable();
4353    uint64_t Offset = DI.getOffset();
4354    const Value *V = DI.getValue();
4355    if (!V)
4356      return 0;
4357
4358    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4359    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4360    // absolute, but not relative, values are different depending on whether
4361    // debug info exists.
4362    ++SDNodeOrder;
4363    SDDbgValue *SDV;
4364    if (isa<ConstantInt>(V) || isa<ConstantFP>(V)) {
4365      SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder);
4366      DAG.AddDbgValue(SDV, 0, false);
4367    } else {
4368      // Do not use getValue() in here; we don't want to generate code at
4369      // this point if it hasn't been done yet.
4370      SDValue N = NodeMap[V];
4371      if (!N.getNode() && isa<Argument>(V))
4372        // Check unused arguments map.
4373        N = UnusedArgNodeMap[V];
4374      if (N.getNode()) {
4375        if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) {
4376          SDV = DAG.getDbgValue(Variable, N.getNode(),
4377                                N.getResNo(), Offset, dl, SDNodeOrder);
4378          DAG.AddDbgValue(SDV, N.getNode(), false);
4379        }
4380      } else if (!V->use_empty() ) {
4381        // Do not call getValue(V) yet, as we don't want to generate code.
4382        // Remember it for later.
4383        DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4384        DanglingDebugInfoMap[V] = DDI;
4385      } else {
4386        // We may expand this to cover more cases.  One case where we have no
4387        // data available is an unreferenced parameter.
4388        DEBUG(dbgs() << "Dropping debug info for " << DI);
4389      }
4390    }
4391
4392    // Build a debug info table entry.
4393    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4394      V = BCI->getOperand(0);
4395    const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4396    // Don't handle byval struct arguments or VLAs, for example.
4397    if (!AI)
4398      return 0;
4399    DenseMap<const AllocaInst*, int>::iterator SI =
4400      FuncInfo.StaticAllocaMap.find(AI);
4401    if (SI == FuncInfo.StaticAllocaMap.end())
4402      return 0; // VLAs.
4403    int FI = SI->second;
4404
4405    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4406    if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
4407      MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
4408    return 0;
4409  }
4410  case Intrinsic::eh_exception: {
4411    // Insert the EXCEPTIONADDR instruction.
4412    assert(FuncInfo.MBB->isLandingPad() &&
4413           "Call to eh.exception not in landing pad!");
4414    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4415    SDValue Ops[1];
4416    Ops[0] = DAG.getRoot();
4417    SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1);
4418    setValue(&I, Op);
4419    DAG.setRoot(Op.getValue(1));
4420    return 0;
4421  }
4422
4423  case Intrinsic::eh_selector: {
4424    MachineBasicBlock *CallMBB = FuncInfo.MBB;
4425    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4426    if (CallMBB->isLandingPad())
4427      AddCatchInfo(I, &MMI, CallMBB);
4428    else {
4429#ifndef NDEBUG
4430      FuncInfo.CatchInfoLost.insert(&I);
4431#endif
4432      // FIXME: Mark exception selector register as live in.  Hack for PR1508.
4433      unsigned Reg = TLI.getExceptionSelectorRegister();
4434      if (Reg) FuncInfo.MBB->addLiveIn(Reg);
4435    }
4436
4437    // Insert the EHSELECTION instruction.
4438    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4439    SDValue Ops[2];
4440    Ops[0] = getValue(I.getArgOperand(0));
4441    Ops[1] = getRoot();
4442    SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2);
4443    DAG.setRoot(Op.getValue(1));
4444    setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32));
4445    return 0;
4446  }
4447
4448  case Intrinsic::eh_typeid_for: {
4449    // Find the type id for the given typeinfo.
4450    GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0));
4451    unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4452    Res = DAG.getConstant(TypeID, MVT::i32);
4453    setValue(&I, Res);
4454    return 0;
4455  }
4456
4457  case Intrinsic::eh_return_i32:
4458  case Intrinsic::eh_return_i64:
4459    DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4460    DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl,
4461                            MVT::Other,
4462                            getControlRoot(),
4463                            getValue(I.getArgOperand(0)),
4464                            getValue(I.getArgOperand(1))));
4465    return 0;
4466  case Intrinsic::eh_unwind_init:
4467    DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4468    return 0;
4469  case Intrinsic::eh_dwarf_cfa: {
4470    SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl,
4471                                        TLI.getPointerTy());
4472    SDValue Offset = DAG.getNode(ISD::ADD, dl,
4473                                 TLI.getPointerTy(),
4474                                 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
4475                                             TLI.getPointerTy()),
4476                                 CfaArg);
4477    SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl,
4478                             TLI.getPointerTy(),
4479                             DAG.getConstant(0, TLI.getPointerTy()));
4480    setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
4481                             FA, Offset));
4482    return 0;
4483  }
4484  case Intrinsic::eh_sjlj_callsite: {
4485    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4486    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4487    assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4488    assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4489
4490    MMI.setCurrentCallSite(CI->getZExtValue());
4491    return 0;
4492  }
4493  case Intrinsic::eh_sjlj_setjmp: {
4494    setValue(&I, DAG.getNode(ISD::EH_SJLJ_SETJMP, dl, MVT::i32, getRoot(),
4495                             getValue(I.getArgOperand(0))));
4496    return 0;
4497  }
4498  case Intrinsic::eh_sjlj_longjmp: {
4499    DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other,
4500                            getRoot(), getValue(I.getArgOperand(0))));
4501    return 0;
4502  }
4503  case Intrinsic::eh_sjlj_dispatch_setup: {
4504    DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_DISPATCHSETUP, dl, MVT::Other,
4505                            getRoot(), getValue(I.getArgOperand(0))));
4506    return 0;
4507  }
4508
4509  case Intrinsic::x86_mmx_pslli_w:
4510  case Intrinsic::x86_mmx_pslli_d:
4511  case Intrinsic::x86_mmx_pslli_q:
4512  case Intrinsic::x86_mmx_psrli_w:
4513  case Intrinsic::x86_mmx_psrli_d:
4514  case Intrinsic::x86_mmx_psrli_q:
4515  case Intrinsic::x86_mmx_psrai_w:
4516  case Intrinsic::x86_mmx_psrai_d: {
4517    SDValue ShAmt = getValue(I.getArgOperand(1));
4518    if (isa<ConstantSDNode>(ShAmt)) {
4519      visitTargetIntrinsic(I, Intrinsic);
4520      return 0;
4521    }
4522    unsigned NewIntrinsic = 0;
4523    EVT ShAmtVT = MVT::v2i32;
4524    switch (Intrinsic) {
4525    case Intrinsic::x86_mmx_pslli_w:
4526      NewIntrinsic = Intrinsic::x86_mmx_psll_w;
4527      break;
4528    case Intrinsic::x86_mmx_pslli_d:
4529      NewIntrinsic = Intrinsic::x86_mmx_psll_d;
4530      break;
4531    case Intrinsic::x86_mmx_pslli_q:
4532      NewIntrinsic = Intrinsic::x86_mmx_psll_q;
4533      break;
4534    case Intrinsic::x86_mmx_psrli_w:
4535      NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
4536      break;
4537    case Intrinsic::x86_mmx_psrli_d:
4538      NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
4539      break;
4540    case Intrinsic::x86_mmx_psrli_q:
4541      NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
4542      break;
4543    case Intrinsic::x86_mmx_psrai_w:
4544      NewIntrinsic = Intrinsic::x86_mmx_psra_w;
4545      break;
4546    case Intrinsic::x86_mmx_psrai_d:
4547      NewIntrinsic = Intrinsic::x86_mmx_psra_d;
4548      break;
4549    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4550    }
4551
4552    // The vector shift intrinsics with scalars uses 32b shift amounts but
4553    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
4554    // to be zero.
4555    // We must do this early because v2i32 is not a legal type.
4556    DebugLoc dl = getCurDebugLoc();
4557    SDValue ShOps[2];
4558    ShOps[0] = ShAmt;
4559    ShOps[1] = DAG.getConstant(0, MVT::i32);
4560    ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
4561    EVT DestVT = TLI.getValueType(I.getType());
4562    ShAmt = DAG.getNode(ISD::BITCAST, dl, DestVT, ShAmt);
4563    Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
4564                       DAG.getConstant(NewIntrinsic, MVT::i32),
4565                       getValue(I.getArgOperand(0)), ShAmt);
4566    setValue(&I, Res);
4567    return 0;
4568  }
4569  case Intrinsic::convertff:
4570  case Intrinsic::convertfsi:
4571  case Intrinsic::convertfui:
4572  case Intrinsic::convertsif:
4573  case Intrinsic::convertuif:
4574  case Intrinsic::convertss:
4575  case Intrinsic::convertsu:
4576  case Intrinsic::convertus:
4577  case Intrinsic::convertuu: {
4578    ISD::CvtCode Code = ISD::CVT_INVALID;
4579    switch (Intrinsic) {
4580    case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
4581    case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4582    case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4583    case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4584    case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4585    case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
4586    case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
4587    case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4588    case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4589    }
4590    EVT DestVT = TLI.getValueType(I.getType());
4591    const Value *Op1 = I.getArgOperand(0);
4592    Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1),
4593                               DAG.getValueType(DestVT),
4594                               DAG.getValueType(getValue(Op1).getValueType()),
4595                               getValue(I.getArgOperand(1)),
4596                               getValue(I.getArgOperand(2)),
4597                               Code);
4598    setValue(&I, Res);
4599    return 0;
4600  }
4601  case Intrinsic::sqrt:
4602    setValue(&I, DAG.getNode(ISD::FSQRT, dl,
4603                             getValue(I.getArgOperand(0)).getValueType(),
4604                             getValue(I.getArgOperand(0))));
4605    return 0;
4606  case Intrinsic::powi:
4607    setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)),
4608                            getValue(I.getArgOperand(1)), DAG));
4609    return 0;
4610  case Intrinsic::sin:
4611    setValue(&I, DAG.getNode(ISD::FSIN, dl,
4612                             getValue(I.getArgOperand(0)).getValueType(),
4613                             getValue(I.getArgOperand(0))));
4614    return 0;
4615  case Intrinsic::cos:
4616    setValue(&I, DAG.getNode(ISD::FCOS, dl,
4617                             getValue(I.getArgOperand(0)).getValueType(),
4618                             getValue(I.getArgOperand(0))));
4619    return 0;
4620  case Intrinsic::log:
4621    visitLog(I);
4622    return 0;
4623  case Intrinsic::log2:
4624    visitLog2(I);
4625    return 0;
4626  case Intrinsic::log10:
4627    visitLog10(I);
4628    return 0;
4629  case Intrinsic::exp:
4630    visitExp(I);
4631    return 0;
4632  case Intrinsic::exp2:
4633    visitExp2(I);
4634    return 0;
4635  case Intrinsic::pow:
4636    visitPow(I);
4637    return 0;
4638  case Intrinsic::convert_to_fp16:
4639    setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl,
4640                             MVT::i16, getValue(I.getArgOperand(0))));
4641    return 0;
4642  case Intrinsic::convert_from_fp16:
4643    setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl,
4644                             MVT::f32, getValue(I.getArgOperand(0))));
4645    return 0;
4646  case Intrinsic::pcmarker: {
4647    SDValue Tmp = getValue(I.getArgOperand(0));
4648    DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp));
4649    return 0;
4650  }
4651  case Intrinsic::readcyclecounter: {
4652    SDValue Op = getRoot();
4653    Res = DAG.getNode(ISD::READCYCLECOUNTER, dl,
4654                      DAG.getVTList(MVT::i64, MVT::Other),
4655                      &Op, 1);
4656    setValue(&I, Res);
4657    DAG.setRoot(Res.getValue(1));
4658    return 0;
4659  }
4660  case Intrinsic::bswap:
4661    setValue(&I, DAG.getNode(ISD::BSWAP, dl,
4662                             getValue(I.getArgOperand(0)).getValueType(),
4663                             getValue(I.getArgOperand(0))));
4664    return 0;
4665  case Intrinsic::cttz: {
4666    SDValue Arg = getValue(I.getArgOperand(0));
4667    EVT Ty = Arg.getValueType();
4668    setValue(&I, DAG.getNode(ISD::CTTZ, dl, Ty, Arg));
4669    return 0;
4670  }
4671  case Intrinsic::ctlz: {
4672    SDValue Arg = getValue(I.getArgOperand(0));
4673    EVT Ty = Arg.getValueType();
4674    setValue(&I, DAG.getNode(ISD::CTLZ, dl, Ty, Arg));
4675    return 0;
4676  }
4677  case Intrinsic::ctpop: {
4678    SDValue Arg = getValue(I.getArgOperand(0));
4679    EVT Ty = Arg.getValueType();
4680    setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg));
4681    return 0;
4682  }
4683  case Intrinsic::stacksave: {
4684    SDValue Op = getRoot();
4685    Res = DAG.getNode(ISD::STACKSAVE, dl,
4686                      DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
4687    setValue(&I, Res);
4688    DAG.setRoot(Res.getValue(1));
4689    return 0;
4690  }
4691  case Intrinsic::stackrestore: {
4692    Res = getValue(I.getArgOperand(0));
4693    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res));
4694    return 0;
4695  }
4696  case Intrinsic::stackprotector: {
4697    // Emit code into the DAG to store the stack guard onto the stack.
4698    MachineFunction &MF = DAG.getMachineFunction();
4699    MachineFrameInfo *MFI = MF.getFrameInfo();
4700    EVT PtrTy = TLI.getPointerTy();
4701
4702    SDValue Src = getValue(I.getArgOperand(0));   // The guard's value.
4703    AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
4704
4705    int FI = FuncInfo.StaticAllocaMap[Slot];
4706    MFI->setStackProtectorIndex(FI);
4707
4708    SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
4709
4710    // Store the stack protector onto the stack.
4711    Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN,
4712                       MachinePointerInfo::getFixedStack(FI),
4713                       true, false, 0);
4714    setValue(&I, Res);
4715    DAG.setRoot(Res);
4716    return 0;
4717  }
4718  case Intrinsic::objectsize: {
4719    // If we don't know by now, we're never going to know.
4720    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
4721
4722    assert(CI && "Non-constant type in __builtin_object_size?");
4723
4724    SDValue Arg = getValue(I.getCalledValue());
4725    EVT Ty = Arg.getValueType();
4726
4727    if (CI->isZero())
4728      Res = DAG.getConstant(-1ULL, Ty);
4729    else
4730      Res = DAG.getConstant(0, Ty);
4731
4732    setValue(&I, Res);
4733    return 0;
4734  }
4735  case Intrinsic::var_annotation:
4736    // Discard annotate attributes
4737    return 0;
4738
4739  case Intrinsic::init_trampoline: {
4740    const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
4741
4742    SDValue Ops[6];
4743    Ops[0] = getRoot();
4744    Ops[1] = getValue(I.getArgOperand(0));
4745    Ops[2] = getValue(I.getArgOperand(1));
4746    Ops[3] = getValue(I.getArgOperand(2));
4747    Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
4748    Ops[5] = DAG.getSrcValue(F);
4749
4750    Res = DAG.getNode(ISD::TRAMPOLINE, dl,
4751                      DAG.getVTList(TLI.getPointerTy(), MVT::Other),
4752                      Ops, 6);
4753
4754    setValue(&I, Res);
4755    DAG.setRoot(Res.getValue(1));
4756    return 0;
4757  }
4758  case Intrinsic::gcroot:
4759    if (GFI) {
4760      const Value *Alloca = I.getArgOperand(0);
4761      const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
4762
4763      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
4764      GFI->addStackRoot(FI->getIndex(), TypeMap);
4765    }
4766    return 0;
4767  case Intrinsic::gcread:
4768  case Intrinsic::gcwrite:
4769    llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
4770    return 0;
4771  case Intrinsic::flt_rounds:
4772    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32));
4773    return 0;
4774
4775  case Intrinsic::expect: {
4776    // Just replace __builtin_expect(exp, c) with EXP.
4777    setValue(&I, getValue(I.getArgOperand(0)));
4778    return 0;
4779  }
4780
4781  case Intrinsic::trap: {
4782    StringRef TrapFuncName = getTrapFunctionName();
4783    if (TrapFuncName.empty()) {
4784      DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot()));
4785      return 0;
4786    }
4787    TargetLowering::ArgListTy Args;
4788    std::pair<SDValue, SDValue> Result =
4789      TLI.LowerCallTo(getRoot(), I.getType(),
4790                 false, false, false, false, 0, CallingConv::C,
4791                 /*isTailCall=*/false, /*isReturnValueUsed=*/true,
4792                 DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()),
4793                 Args, DAG, getCurDebugLoc());
4794    DAG.setRoot(Result.second);
4795    return 0;
4796  }
4797  case Intrinsic::uadd_with_overflow:
4798    return implVisitAluOverflow(I, ISD::UADDO);
4799  case Intrinsic::sadd_with_overflow:
4800    return implVisitAluOverflow(I, ISD::SADDO);
4801  case Intrinsic::usub_with_overflow:
4802    return implVisitAluOverflow(I, ISD::USUBO);
4803  case Intrinsic::ssub_with_overflow:
4804    return implVisitAluOverflow(I, ISD::SSUBO);
4805  case Intrinsic::umul_with_overflow:
4806    return implVisitAluOverflow(I, ISD::UMULO);
4807  case Intrinsic::smul_with_overflow:
4808    return implVisitAluOverflow(I, ISD::SMULO);
4809
4810  case Intrinsic::prefetch: {
4811    SDValue Ops[5];
4812    unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
4813    Ops[0] = getRoot();
4814    Ops[1] = getValue(I.getArgOperand(0));
4815    Ops[2] = getValue(I.getArgOperand(1));
4816    Ops[3] = getValue(I.getArgOperand(2));
4817    Ops[4] = getValue(I.getArgOperand(3));
4818    DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, dl,
4819                                        DAG.getVTList(MVT::Other),
4820                                        &Ops[0], 5,
4821                                        EVT::getIntegerVT(*Context, 8),
4822                                        MachinePointerInfo(I.getArgOperand(0)),
4823                                        0, /* align */
4824                                        false, /* volatile */
4825                                        rw==0, /* read */
4826                                        rw==1)); /* write */
4827    return 0;
4828  }
4829  case Intrinsic::memory_barrier: {
4830    SDValue Ops[6];
4831    Ops[0] = getRoot();
4832    for (int x = 1; x < 6; ++x)
4833      Ops[x] = getValue(I.getArgOperand(x - 1));
4834
4835    DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6));
4836    return 0;
4837  }
4838  case Intrinsic::atomic_cmp_swap: {
4839    SDValue Root = getRoot();
4840    SDValue L =
4841      DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(),
4842                    getValue(I.getArgOperand(1)).getValueType().getSimpleVT(),
4843                    Root,
4844                    getValue(I.getArgOperand(0)),
4845                    getValue(I.getArgOperand(1)),
4846                    getValue(I.getArgOperand(2)),
4847                    MachinePointerInfo(I.getArgOperand(0)));
4848    setValue(&I, L);
4849    DAG.setRoot(L.getValue(1));
4850    return 0;
4851  }
4852  case Intrinsic::atomic_load_add:
4853    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD);
4854  case Intrinsic::atomic_load_sub:
4855    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB);
4856  case Intrinsic::atomic_load_or:
4857    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR);
4858  case Intrinsic::atomic_load_xor:
4859    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR);
4860  case Intrinsic::atomic_load_and:
4861    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND);
4862  case Intrinsic::atomic_load_nand:
4863    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND);
4864  case Intrinsic::atomic_load_max:
4865    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX);
4866  case Intrinsic::atomic_load_min:
4867    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN);
4868  case Intrinsic::atomic_load_umin:
4869    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN);
4870  case Intrinsic::atomic_load_umax:
4871    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX);
4872  case Intrinsic::atomic_swap:
4873    return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP);
4874
4875  case Intrinsic::invariant_start:
4876  case Intrinsic::lifetime_start:
4877    // Discard region information.
4878    setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
4879    return 0;
4880  case Intrinsic::invariant_end:
4881  case Intrinsic::lifetime_end:
4882    // Discard region information.
4883    return 0;
4884  }
4885}
4886
4887void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
4888                                      bool isTailCall,
4889                                      MachineBasicBlock *LandingPad) {
4890  const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
4891  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
4892  const Type *RetTy = FTy->getReturnType();
4893  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4894  MCSymbol *BeginLabel = 0;
4895
4896  TargetLowering::ArgListTy Args;
4897  TargetLowering::ArgListEntry Entry;
4898  Args.reserve(CS.arg_size());
4899
4900  // Check whether the function can return without sret-demotion.
4901  SmallVector<ISD::OutputArg, 4> Outs;
4902  SmallVector<uint64_t, 4> Offsets;
4903  GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(),
4904                Outs, TLI, &Offsets);
4905
4906  bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
4907					   DAG.getMachineFunction(),
4908					   FTy->isVarArg(), Outs,
4909					   FTy->getContext());
4910
4911  SDValue DemoteStackSlot;
4912  int DemoteStackIdx = -100;
4913
4914  if (!CanLowerReturn) {
4915    uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(
4916                      FTy->getReturnType());
4917    unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(
4918                      FTy->getReturnType());
4919    MachineFunction &MF = DAG.getMachineFunction();
4920    DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
4921    const Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
4922
4923    DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI.getPointerTy());
4924    Entry.Node = DemoteStackSlot;
4925    Entry.Ty = StackSlotPtrType;
4926    Entry.isSExt = false;
4927    Entry.isZExt = false;
4928    Entry.isInReg = false;
4929    Entry.isSRet = true;
4930    Entry.isNest = false;
4931    Entry.isByVal = false;
4932    Entry.Alignment = Align;
4933    Args.push_back(Entry);
4934    RetTy = Type::getVoidTy(FTy->getContext());
4935  }
4936
4937  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
4938       i != e; ++i) {
4939    const Value *V = *i;
4940
4941    // Skip empty types
4942    if (V->getType()->isEmptyTy())
4943      continue;
4944
4945    SDValue ArgNode = getValue(V);
4946    Entry.Node = ArgNode; Entry.Ty = V->getType();
4947
4948    unsigned attrInd = i - CS.arg_begin() + 1;
4949    Entry.isSExt  = CS.paramHasAttr(attrInd, Attribute::SExt);
4950    Entry.isZExt  = CS.paramHasAttr(attrInd, Attribute::ZExt);
4951    Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg);
4952    Entry.isSRet  = CS.paramHasAttr(attrInd, Attribute::StructRet);
4953    Entry.isNest  = CS.paramHasAttr(attrInd, Attribute::Nest);
4954    Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal);
4955    Entry.Alignment = CS.getParamAlignment(attrInd);
4956    Args.push_back(Entry);
4957  }
4958
4959  if (LandingPad) {
4960    // Insert a label before the invoke call to mark the try range.  This can be
4961    // used to detect deletion of the invoke via the MachineModuleInfo.
4962    BeginLabel = MMI.getContext().CreateTempSymbol();
4963
4964    // For SjLj, keep track of which landing pads go with which invokes
4965    // so as to maintain the ordering of pads in the LSDA.
4966    unsigned CallSiteIndex = MMI.getCurrentCallSite();
4967    if (CallSiteIndex) {
4968      MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
4969      // Now that the call site is handled, stop tracking it.
4970      MMI.setCurrentCallSite(0);
4971    }
4972
4973    // Both PendingLoads and PendingExports must be flushed here;
4974    // this call might not return.
4975    (void)getRoot();
4976    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel));
4977  }
4978
4979  // Check if target-independent constraints permit a tail call here.
4980  // Target-dependent constraints are checked within TLI.LowerCallTo.
4981  if (isTailCall &&
4982      !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI))
4983    isTailCall = false;
4984
4985  // If there's a possibility that fast-isel has already selected some amount
4986  // of the current basic block, don't emit a tail call.
4987  if (isTailCall && EnableFastISel)
4988    isTailCall = false;
4989
4990  std::pair<SDValue,SDValue> Result =
4991    TLI.LowerCallTo(getRoot(), RetTy,
4992                    CS.paramHasAttr(0, Attribute::SExt),
4993                    CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(),
4994                    CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(),
4995                    CS.getCallingConv(),
4996                    isTailCall,
4997                    !CS.getInstruction()->use_empty(),
4998                    Callee, Args, DAG, getCurDebugLoc());
4999  assert((isTailCall || Result.second.getNode()) &&
5000         "Non-null chain expected with non-tail call!");
5001  assert((Result.second.getNode() || !Result.first.getNode()) &&
5002         "Null value expected with tail call!");
5003  if (Result.first.getNode()) {
5004    setValue(CS.getInstruction(), Result.first);
5005  } else if (!CanLowerReturn && Result.second.getNode()) {
5006    // The instruction result is the result of loading from the
5007    // hidden sret parameter.
5008    SmallVector<EVT, 1> PVTs;
5009    const Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
5010
5011    ComputeValueVTs(TLI, PtrRetTy, PVTs);
5012    assert(PVTs.size() == 1 && "Pointers should fit in one register");
5013    EVT PtrVT = PVTs[0];
5014    unsigned NumValues = Outs.size();
5015    SmallVector<SDValue, 4> Values(NumValues);
5016    SmallVector<SDValue, 4> Chains(NumValues);
5017
5018    for (unsigned i = 0; i < NumValues; ++i) {
5019      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT,
5020                                DemoteStackSlot,
5021                                DAG.getConstant(Offsets[i], PtrVT));
5022      SDValue L = DAG.getLoad(Outs[i].VT, getCurDebugLoc(), Result.second,
5023                              Add,
5024                  MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]),
5025                              false, false, 1);
5026      Values[i] = L;
5027      Chains[i] = L.getValue(1);
5028    }
5029
5030    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
5031                                MVT::Other, &Chains[0], NumValues);
5032    PendingLoads.push_back(Chain);
5033
5034    // Collect the legal value parts into potentially illegal values
5035    // that correspond to the original function's return values.
5036    SmallVector<EVT, 4> RetTys;
5037    RetTy = FTy->getReturnType();
5038    ComputeValueVTs(TLI, RetTy, RetTys);
5039    ISD::NodeType AssertOp = ISD::DELETED_NODE;
5040    SmallVector<SDValue, 4> ReturnValues;
5041    unsigned CurReg = 0;
5042    for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
5043      EVT VT = RetTys[I];
5044      EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT);
5045      unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT);
5046
5047      SDValue ReturnValue =
5048        getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs,
5049                         RegisterVT, VT, AssertOp);
5050      ReturnValues.push_back(ReturnValue);
5051      CurReg += NumRegs;
5052    }
5053
5054    setValue(CS.getInstruction(),
5055             DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
5056                         DAG.getVTList(&RetTys[0], RetTys.size()),
5057                         &ReturnValues[0], ReturnValues.size()));
5058  }
5059
5060  // Assign order to nodes here. If the call does not produce a result, it won't
5061  // be mapped to a SDNode and visit() will not assign it an order number.
5062  if (!Result.second.getNode()) {
5063    // As a special case, a null chain means that a tail call has been emitted and
5064    // the DAG root is already updated.
5065    HasTailCall = true;
5066    ++SDNodeOrder;
5067    AssignOrderingToNode(DAG.getRoot().getNode());
5068  } else {
5069    DAG.setRoot(Result.second);
5070    ++SDNodeOrder;
5071    AssignOrderingToNode(Result.second.getNode());
5072  }
5073
5074  if (LandingPad) {
5075    // Insert a label at the end of the invoke call to mark the try range.  This
5076    // can be used to detect deletion of the invoke via the MachineModuleInfo.
5077    MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
5078    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel));
5079
5080    // Inform MachineModuleInfo of range.
5081    MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
5082  }
5083}
5084
5085/// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
5086/// value is equal or not-equal to zero.
5087static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
5088  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
5089       UI != E; ++UI) {
5090    if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
5091      if (IC->isEquality())
5092        if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
5093          if (C->isNullValue())
5094            continue;
5095    // Unknown instruction.
5096    return false;
5097  }
5098  return true;
5099}
5100
5101static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
5102                             const Type *LoadTy,
5103                             SelectionDAGBuilder &Builder) {
5104
5105  // Check to see if this load can be trivially constant folded, e.g. if the
5106  // input is from a string literal.
5107  if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5108    // Cast pointer to the type we really want to load.
5109    LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5110                                         PointerType::getUnqual(LoadTy));
5111
5112    if (const Constant *LoadCst =
5113          ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
5114                                       Builder.TD))
5115      return Builder.getValue(LoadCst);
5116  }
5117
5118  // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
5119  // still constant memory, the input chain can be the entry node.
5120  SDValue Root;
5121  bool ConstantMemory = false;
5122
5123  // Do not serialize (non-volatile) loads of constant memory with anything.
5124  if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5125    Root = Builder.DAG.getEntryNode();
5126    ConstantMemory = true;
5127  } else {
5128    // Do not serialize non-volatile loads against each other.
5129    Root = Builder.DAG.getRoot();
5130  }
5131
5132  SDValue Ptr = Builder.getValue(PtrVal);
5133  SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root,
5134                                        Ptr, MachinePointerInfo(PtrVal),
5135                                        false /*volatile*/,
5136                                        false /*nontemporal*/, 1 /* align=1 */);
5137
5138  if (!ConstantMemory)
5139    Builder.PendingLoads.push_back(LoadVal.getValue(1));
5140  return LoadVal;
5141}
5142
5143
5144/// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5145/// If so, return true and lower it, otherwise return false and it will be
5146/// lowered like a normal call.
5147bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5148  // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
5149  if (I.getNumArgOperands() != 3)
5150    return false;
5151
5152  const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5153  if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5154      !I.getArgOperand(2)->getType()->isIntegerTy() ||
5155      !I.getType()->isIntegerTy())
5156    return false;
5157
5158  const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2));
5159
5160  // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
5161  // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
5162  if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) {
5163    bool ActuallyDoIt = true;
5164    MVT LoadVT;
5165    const Type *LoadTy;
5166    switch (Size->getZExtValue()) {
5167    default:
5168      LoadVT = MVT::Other;
5169      LoadTy = 0;
5170      ActuallyDoIt = false;
5171      break;
5172    case 2:
5173      LoadVT = MVT::i16;
5174      LoadTy = Type::getInt16Ty(Size->getContext());
5175      break;
5176    case 4:
5177      LoadVT = MVT::i32;
5178      LoadTy = Type::getInt32Ty(Size->getContext());
5179      break;
5180    case 8:
5181      LoadVT = MVT::i64;
5182      LoadTy = Type::getInt64Ty(Size->getContext());
5183      break;
5184        /*
5185    case 16:
5186      LoadVT = MVT::v4i32;
5187      LoadTy = Type::getInt32Ty(Size->getContext());
5188      LoadTy = VectorType::get(LoadTy, 4);
5189      break;
5190         */
5191    }
5192
5193    // This turns into unaligned loads.  We only do this if the target natively
5194    // supports the MVT we'll be loading or if it is small enough (<= 4) that
5195    // we'll only produce a small number of byte loads.
5196
5197    // Require that we can find a legal MVT, and only do this if the target
5198    // supports unaligned loads of that type.  Expanding into byte loads would
5199    // bloat the code.
5200    if (ActuallyDoIt && Size->getZExtValue() > 4) {
5201      // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5202      // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5203      if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT))
5204        ActuallyDoIt = false;
5205    }
5206
5207    if (ActuallyDoIt) {
5208      SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5209      SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5210
5211      SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal,
5212                                 ISD::SETNE);
5213      EVT CallVT = TLI.getValueType(I.getType(), true);
5214      setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT));
5215      return true;
5216    }
5217  }
5218
5219
5220  return false;
5221}
5222
5223
5224void SelectionDAGBuilder::visitCall(const CallInst &I) {
5225  // Handle inline assembly differently.
5226  if (isa<InlineAsm>(I.getCalledValue())) {
5227    visitInlineAsm(&I);
5228    return;
5229  }
5230
5231  // See if any floating point values are being passed to this function. This is
5232  // used to emit an undefined reference to fltused on Windows.
5233  const FunctionType *FT =
5234    cast<FunctionType>(I.getCalledValue()->getType()->getContainedType(0));
5235  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5236  if (FT->isVarArg() &&
5237      !MMI.callsExternalVAFunctionWithFloatingPointArguments()) {
5238    for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
5239      const Type* T = I.getArgOperand(i)->getType();
5240      for (po_iterator<const Type*> i = po_begin(T), e = po_end(T);
5241           i != e; ++i) {
5242        if (!i->isFloatingPointTy()) continue;
5243        MMI.setCallsExternalVAFunctionWithFloatingPointArguments(true);
5244        break;
5245      }
5246    }
5247  }
5248
5249  const char *RenameFn = 0;
5250  if (Function *F = I.getCalledFunction()) {
5251    if (F->isDeclaration()) {
5252      if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
5253        if (unsigned IID = II->getIntrinsicID(F)) {
5254          RenameFn = visitIntrinsicCall(I, IID);
5255          if (!RenameFn)
5256            return;
5257        }
5258      }
5259      if (unsigned IID = F->getIntrinsicID()) {
5260        RenameFn = visitIntrinsicCall(I, IID);
5261        if (!RenameFn)
5262          return;
5263      }
5264    }
5265
5266    // Check for well-known libc/libm calls.  If the function is internal, it
5267    // can't be a library call.
5268    if (!F->hasLocalLinkage() && F->hasName()) {
5269      StringRef Name = F->getName();
5270      if (Name == "copysign" || Name == "copysignf" || Name == "copysignl") {
5271        if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
5272            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5273            I.getType() == I.getArgOperand(0)->getType() &&
5274            I.getType() == I.getArgOperand(1)->getType()) {
5275          SDValue LHS = getValue(I.getArgOperand(0));
5276          SDValue RHS = getValue(I.getArgOperand(1));
5277          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(),
5278                                   LHS.getValueType(), LHS, RHS));
5279          return;
5280        }
5281      } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") {
5282        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5283            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5284            I.getType() == I.getArgOperand(0)->getType()) {
5285          SDValue Tmp = getValue(I.getArgOperand(0));
5286          setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(),
5287                                   Tmp.getValueType(), Tmp));
5288          return;
5289        }
5290      } else if (Name == "sin" || Name == "sinf" || Name == "sinl") {
5291        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5292            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5293            I.getType() == I.getArgOperand(0)->getType() &&
5294            I.onlyReadsMemory()) {
5295          SDValue Tmp = getValue(I.getArgOperand(0));
5296          setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(),
5297                                   Tmp.getValueType(), Tmp));
5298          return;
5299        }
5300      } else if (Name == "cos" || Name == "cosf" || Name == "cosl") {
5301        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5302            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5303            I.getType() == I.getArgOperand(0)->getType() &&
5304            I.onlyReadsMemory()) {
5305          SDValue Tmp = getValue(I.getArgOperand(0));
5306          setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(),
5307                                   Tmp.getValueType(), Tmp));
5308          return;
5309        }
5310      } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") {
5311        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5312            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5313            I.getType() == I.getArgOperand(0)->getType() &&
5314            I.onlyReadsMemory()) {
5315          SDValue Tmp = getValue(I.getArgOperand(0));
5316          setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(),
5317                                   Tmp.getValueType(), Tmp));
5318          return;
5319        }
5320      } else if (Name == "memcmp") {
5321        if (visitMemCmpCall(I))
5322          return;
5323      }
5324    }
5325  }
5326
5327  SDValue Callee;
5328  if (!RenameFn)
5329    Callee = getValue(I.getCalledValue());
5330  else
5331    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
5332
5333  // Check if we can potentially perform a tail call. More detailed checking is
5334  // be done within LowerCallTo, after more information about the call is known.
5335  LowerCallTo(&I, Callee, I.isTailCall());
5336}
5337
5338namespace {
5339
5340/// AsmOperandInfo - This contains information for each constraint that we are
5341/// lowering.
5342class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
5343public:
5344  /// CallOperand - If this is the result output operand or a clobber
5345  /// this is null, otherwise it is the incoming operand to the CallInst.
5346  /// This gets modified as the asm is processed.
5347  SDValue CallOperand;
5348
5349  /// AssignedRegs - If this is a register or register class operand, this
5350  /// contains the set of register corresponding to the operand.
5351  RegsForValue AssignedRegs;
5352
5353  explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
5354    : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
5355  }
5356
5357  /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
5358  /// busy in OutputRegs/InputRegs.
5359  void MarkAllocatedRegs(bool isOutReg, bool isInReg,
5360                         std::set<unsigned> &OutputRegs,
5361                         std::set<unsigned> &InputRegs,
5362                         const TargetRegisterInfo &TRI) const {
5363    if (isOutReg) {
5364      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
5365        MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
5366    }
5367    if (isInReg) {
5368      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
5369        MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
5370    }
5371  }
5372
5373  /// getCallOperandValEVT - Return the EVT of the Value* that this operand
5374  /// corresponds to.  If there is no Value* for this operand, it returns
5375  /// MVT::Other.
5376  EVT getCallOperandValEVT(LLVMContext &Context,
5377                           const TargetLowering &TLI,
5378                           const TargetData *TD) const {
5379    if (CallOperandVal == 0) return MVT::Other;
5380
5381    if (isa<BasicBlock>(CallOperandVal))
5382      return TLI.getPointerTy();
5383
5384    const llvm::Type *OpTy = CallOperandVal->getType();
5385
5386    // FIXME: code duplicated from TargetLowering::ParseConstraints().
5387    // If this is an indirect operand, the operand is a pointer to the
5388    // accessed type.
5389    if (isIndirect) {
5390      const llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
5391      if (!PtrTy)
5392        report_fatal_error("Indirect operand for inline asm not a pointer!");
5393      OpTy = PtrTy->getElementType();
5394    }
5395
5396    // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
5397    if (const StructType *STy = dyn_cast<StructType>(OpTy))
5398      if (STy->getNumElements() == 1)
5399        OpTy = STy->getElementType(0);
5400
5401    // If OpTy is not a single value, it may be a struct/union that we
5402    // can tile with integers.
5403    if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5404      unsigned BitSize = TD->getTypeSizeInBits(OpTy);
5405      switch (BitSize) {
5406      default: break;
5407      case 1:
5408      case 8:
5409      case 16:
5410      case 32:
5411      case 64:
5412      case 128:
5413        OpTy = IntegerType::get(Context, BitSize);
5414        break;
5415      }
5416    }
5417
5418    return TLI.getValueType(OpTy, true);
5419  }
5420
5421private:
5422  /// MarkRegAndAliases - Mark the specified register and all aliases in the
5423  /// specified set.
5424  static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
5425                                const TargetRegisterInfo &TRI) {
5426    assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
5427    Regs.insert(Reg);
5428    if (const unsigned *Aliases = TRI.getAliasSet(Reg))
5429      for (; *Aliases; ++Aliases)
5430        Regs.insert(*Aliases);
5431  }
5432};
5433
5434typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
5435
5436} // end anonymous namespace
5437
5438/// GetRegistersForValue - Assign registers (virtual or physical) for the
5439/// specified operand.  We prefer to assign virtual registers, to allow the
5440/// register allocator to handle the assignment process.  However, if the asm
5441/// uses features that we can't model on machineinstrs, we have SDISel do the
5442/// allocation.  This produces generally horrible, but correct, code.
5443///
5444///   OpInfo describes the operand.
5445///   Input and OutputRegs are the set of already allocated physical registers.
5446///
5447static void GetRegistersForValue(SelectionDAG &DAG,
5448                                 const TargetLowering &TLI,
5449                                 DebugLoc DL,
5450                                 SDISelAsmOperandInfo &OpInfo,
5451                                 std::set<unsigned> &OutputRegs,
5452                                 std::set<unsigned> &InputRegs) {
5453  LLVMContext &Context = *DAG.getContext();
5454
5455  // Compute whether this value requires an input register, an output register,
5456  // or both.
5457  bool isOutReg = false;
5458  bool isInReg = false;
5459  switch (OpInfo.Type) {
5460  case InlineAsm::isOutput:
5461    isOutReg = true;
5462
5463    // If there is an input constraint that matches this, we need to reserve
5464    // the input register so no other inputs allocate to it.
5465    isInReg = OpInfo.hasMatchingInput();
5466    break;
5467  case InlineAsm::isInput:
5468    isInReg = true;
5469    isOutReg = false;
5470    break;
5471  case InlineAsm::isClobber:
5472    isOutReg = true;
5473    isInReg = true;
5474    break;
5475  }
5476
5477
5478  MachineFunction &MF = DAG.getMachineFunction();
5479  SmallVector<unsigned, 4> Regs;
5480
5481  // If this is a constraint for a single physreg, or a constraint for a
5482  // register class, find it.
5483  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
5484    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5485                                     OpInfo.ConstraintVT);
5486
5487  unsigned NumRegs = 1;
5488  if (OpInfo.ConstraintVT != MVT::Other) {
5489    // If this is a FP input in an integer register (or visa versa) insert a bit
5490    // cast of the input value.  More generally, handle any case where the input
5491    // value disagrees with the register class we plan to stick this in.
5492    if (OpInfo.Type == InlineAsm::isInput &&
5493        PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
5494      // Try to convert to the first EVT that the reg class contains.  If the
5495      // types are identical size, use a bitcast to convert (e.g. two differing
5496      // vector types).
5497      EVT RegVT = *PhysReg.second->vt_begin();
5498      if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
5499        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5500                                         RegVT, OpInfo.CallOperand);
5501        OpInfo.ConstraintVT = RegVT;
5502      } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
5503        // If the input is a FP value and we want it in FP registers, do a
5504        // bitcast to the corresponding integer type.  This turns an f64 value
5505        // into i64, which can be passed with two i32 values on a 32-bit
5506        // machine.
5507        RegVT = EVT::getIntegerVT(Context,
5508                                  OpInfo.ConstraintVT.getSizeInBits());
5509        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5510                                         RegVT, OpInfo.CallOperand);
5511        OpInfo.ConstraintVT = RegVT;
5512      }
5513    }
5514
5515    NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
5516  }
5517
5518  EVT RegVT;
5519  EVT ValueVT = OpInfo.ConstraintVT;
5520
5521  // If this is a constraint for a specific physical register, like {r17},
5522  // assign it now.
5523  if (unsigned AssignedReg = PhysReg.first) {
5524    const TargetRegisterClass *RC = PhysReg.second;
5525    if (OpInfo.ConstraintVT == MVT::Other)
5526      ValueVT = *RC->vt_begin();
5527
5528    // Get the actual register value type.  This is important, because the user
5529    // may have asked for (e.g.) the AX register in i32 type.  We need to
5530    // remember that AX is actually i16 to get the right extension.
5531    RegVT = *RC->vt_begin();
5532
5533    // This is a explicit reference to a physical register.
5534    Regs.push_back(AssignedReg);
5535
5536    // If this is an expanded reference, add the rest of the regs to Regs.
5537    if (NumRegs != 1) {
5538      TargetRegisterClass::iterator I = RC->begin();
5539      for (; *I != AssignedReg; ++I)
5540        assert(I != RC->end() && "Didn't find reg!");
5541
5542      // Already added the first reg.
5543      --NumRegs; ++I;
5544      for (; NumRegs; --NumRegs, ++I) {
5545        assert(I != RC->end() && "Ran out of registers to allocate!");
5546        Regs.push_back(*I);
5547      }
5548    }
5549
5550    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5551    const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5552    OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5553    return;
5554  }
5555
5556  // Otherwise, if this was a reference to an LLVM register class, create vregs
5557  // for this reference.
5558  if (const TargetRegisterClass *RC = PhysReg.second) {
5559    RegVT = *RC->vt_begin();
5560    if (OpInfo.ConstraintVT == MVT::Other)
5561      ValueVT = RegVT;
5562
5563    // Create the appropriate number of virtual registers.
5564    MachineRegisterInfo &RegInfo = MF.getRegInfo();
5565    for (; NumRegs; --NumRegs)
5566      Regs.push_back(RegInfo.createVirtualRegister(RC));
5567
5568    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5569    return;
5570  }
5571
5572  // Otherwise, we couldn't allocate enough registers for this.
5573}
5574
5575/// visitInlineAsm - Handle a call to an InlineAsm object.
5576///
5577void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
5578  const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
5579
5580  /// ConstraintOperands - Information about all of the constraints.
5581  SDISelAsmOperandInfoVector ConstraintOperands;
5582
5583  std::set<unsigned> OutputRegs, InputRegs;
5584
5585  TargetLowering::AsmOperandInfoVector
5586    TargetConstraints = TLI.ParseConstraints(CS);
5587
5588  bool hasMemory = false;
5589
5590  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
5591  unsigned ResNo = 0;   // ResNo - The result number of the next output.
5592  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
5593    ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
5594    SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
5595
5596    EVT OpVT = MVT::Other;
5597
5598    // Compute the value type for each operand.
5599    switch (OpInfo.Type) {
5600    case InlineAsm::isOutput:
5601      // Indirect outputs just consume an argument.
5602      if (OpInfo.isIndirect) {
5603        OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5604        break;
5605      }
5606
5607      // The return value of the call is this value.  As such, there is no
5608      // corresponding argument.
5609      assert(!CS.getType()->isVoidTy() &&
5610             "Bad inline asm!");
5611      if (const StructType *STy = dyn_cast<StructType>(CS.getType())) {
5612        OpVT = TLI.getValueType(STy->getElementType(ResNo));
5613      } else {
5614        assert(ResNo == 0 && "Asm only has one result!");
5615        OpVT = TLI.getValueType(CS.getType());
5616      }
5617      ++ResNo;
5618      break;
5619    case InlineAsm::isInput:
5620      OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5621      break;
5622    case InlineAsm::isClobber:
5623      // Nothing to do.
5624      break;
5625    }
5626
5627    // If this is an input or an indirect output, process the call argument.
5628    // BasicBlocks are labels, currently appearing only in asm's.
5629    if (OpInfo.CallOperandVal) {
5630      if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
5631        OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
5632      } else {
5633        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
5634      }
5635
5636      OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD);
5637    }
5638
5639    OpInfo.ConstraintVT = OpVT;
5640
5641    // Indirect operand accesses access memory.
5642    if (OpInfo.isIndirect)
5643      hasMemory = true;
5644    else {
5645      for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
5646        TargetLowering::ConstraintType
5647          CType = TLI.getConstraintType(OpInfo.Codes[j]);
5648        if (CType == TargetLowering::C_Memory) {
5649          hasMemory = true;
5650          break;
5651        }
5652      }
5653    }
5654  }
5655
5656  SDValue Chain, Flag;
5657
5658  // We won't need to flush pending loads if this asm doesn't touch
5659  // memory and is nonvolatile.
5660  if (hasMemory || IA->hasSideEffects())
5661    Chain = getRoot();
5662  else
5663    Chain = DAG.getRoot();
5664
5665  // Second pass over the constraints: compute which constraint option to use
5666  // and assign registers to constraints that want a specific physreg.
5667  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5668    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5669
5670    // If this is an output operand with a matching input operand, look up the
5671    // matching input. If their types mismatch, e.g. one is an integer, the
5672    // other is floating point, or their sizes are different, flag it as an
5673    // error.
5674    if (OpInfo.hasMatchingInput()) {
5675      SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5676
5677      if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5678        if ((OpInfo.ConstraintVT.isInteger() !=
5679             Input.ConstraintVT.isInteger()) ||
5680            (OpInfo.ConstraintVT.getSizeInBits() !=
5681             Input.ConstraintVT.getSizeInBits())) {
5682          report_fatal_error("Unsupported asm: input constraint"
5683                             " with a matching output constraint of"
5684                             " incompatible type!");
5685        }
5686        Input.ConstraintVT = OpInfo.ConstraintVT;
5687      }
5688    }
5689
5690    // Compute the constraint code and ConstraintType to use.
5691    TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
5692
5693    // If this is a memory input, and if the operand is not indirect, do what we
5694    // need to to provide an address for the memory input.
5695    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5696        !OpInfo.isIndirect) {
5697      assert((OpInfo.isMultipleAlternative ||
5698              (OpInfo.Type == InlineAsm::isInput)) &&
5699             "Can only indirectify direct input operands!");
5700
5701      // Memory operands really want the address of the value.  If we don't have
5702      // an indirect input, put it in the constpool if we can, otherwise spill
5703      // it to a stack slot.
5704      // TODO: This isn't quite right. We need to handle these according to
5705      // the addressing mode that the constraint wants. Also, this may take
5706      // an additional register for the computation and we don't want that
5707      // either.
5708
5709      // If the operand is a float, integer, or vector constant, spill to a
5710      // constant pool entry to get its address.
5711      const Value *OpVal = OpInfo.CallOperandVal;
5712      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
5713          isa<ConstantVector>(OpVal)) {
5714        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
5715                                                 TLI.getPointerTy());
5716      } else {
5717        // Otherwise, create a stack slot and emit a store to it before the
5718        // asm.
5719        const Type *Ty = OpVal->getType();
5720        uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
5721        unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
5722        MachineFunction &MF = DAG.getMachineFunction();
5723        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5724        SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
5725        Chain = DAG.getStore(Chain, getCurDebugLoc(),
5726                             OpInfo.CallOperand, StackSlot,
5727                             MachinePointerInfo::getFixedStack(SSFI),
5728                             false, false, 0);
5729        OpInfo.CallOperand = StackSlot;
5730      }
5731
5732      // There is no longer a Value* corresponding to this operand.
5733      OpInfo.CallOperandVal = 0;
5734
5735      // It is now an indirect operand.
5736      OpInfo.isIndirect = true;
5737    }
5738
5739    // If this constraint is for a specific register, allocate it before
5740    // anything else.
5741    if (OpInfo.ConstraintType == TargetLowering::C_Register)
5742      GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo, OutputRegs,
5743                           InputRegs);
5744  }
5745
5746  // Second pass - Loop over all of the operands, assigning virtual or physregs
5747  // to register class operands.
5748  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5749    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5750
5751    // C_Register operands have already been allocated, Other/Memory don't need
5752    // to be.
5753    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
5754      GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo, OutputRegs,
5755                           InputRegs);
5756  }
5757
5758  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
5759  std::vector<SDValue> AsmNodeOperands;
5760  AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
5761  AsmNodeOperands.push_back(
5762          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
5763                                      TLI.getPointerTy()));
5764
5765  // If we have a !srcloc metadata node associated with it, we want to attach
5766  // this to the ultimately generated inline asm machineinstr.  To do this, we
5767  // pass in the third operand as this (potentially null) inline asm MDNode.
5768  const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
5769  AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
5770
5771  // Remember the HasSideEffect and AlignStack bits as operand 3.
5772  unsigned ExtraInfo = 0;
5773  if (IA->hasSideEffects())
5774    ExtraInfo |= InlineAsm::Extra_HasSideEffects;
5775  if (IA->isAlignStack())
5776    ExtraInfo |= InlineAsm::Extra_IsAlignStack;
5777  AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo,
5778                                                  TLI.getPointerTy()));
5779
5780  // Loop over all of the inputs, copying the operand values into the
5781  // appropriate registers and processing the output regs.
5782  RegsForValue RetValRegs;
5783
5784  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
5785  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
5786
5787  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5788    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5789
5790    switch (OpInfo.Type) {
5791    case InlineAsm::isOutput: {
5792      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
5793          OpInfo.ConstraintType != TargetLowering::C_Register) {
5794        // Memory output, or 'other' output (e.g. 'X' constraint).
5795        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
5796
5797        // Add information to the INLINEASM node to know about this output.
5798        unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
5799        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
5800                                                        TLI.getPointerTy()));
5801        AsmNodeOperands.push_back(OpInfo.CallOperand);
5802        break;
5803      }
5804
5805      // Otherwise, this is a register or register class output.
5806
5807      // Copy the output from the appropriate register.  Find a register that
5808      // we can use.
5809      if (OpInfo.AssignedRegs.Regs.empty())
5810        report_fatal_error("Couldn't allocate output reg for constraint '" +
5811                           Twine(OpInfo.ConstraintCode) + "'!");
5812
5813      // If this is an indirect operand, store through the pointer after the
5814      // asm.
5815      if (OpInfo.isIndirect) {
5816        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
5817                                                      OpInfo.CallOperandVal));
5818      } else {
5819        // This is the result value of the call.
5820        assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
5821        // Concatenate this output onto the outputs list.
5822        RetValRegs.append(OpInfo.AssignedRegs);
5823      }
5824
5825      // Add information to the INLINEASM node to know that this register is
5826      // set.
5827      OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
5828                                           InlineAsm::Kind_RegDefEarlyClobber :
5829                                               InlineAsm::Kind_RegDef,
5830                                               false,
5831                                               0,
5832                                               DAG,
5833                                               AsmNodeOperands);
5834      break;
5835    }
5836    case InlineAsm::isInput: {
5837      SDValue InOperandVal = OpInfo.CallOperand;
5838
5839      if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
5840        // If this is required to match an output register we have already set,
5841        // just use its register.
5842        unsigned OperandNo = OpInfo.getMatchedOperand();
5843
5844        // Scan until we find the definition we already emitted of this operand.
5845        // When we find it, create a RegsForValue operand.
5846        unsigned CurOp = InlineAsm::Op_FirstOperand;
5847        for (; OperandNo; --OperandNo) {
5848          // Advance to the next operand.
5849          unsigned OpFlag =
5850            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5851          assert((InlineAsm::isRegDefKind(OpFlag) ||
5852                  InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
5853                  InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
5854          CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
5855        }
5856
5857        unsigned OpFlag =
5858          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5859        if (InlineAsm::isRegDefKind(OpFlag) ||
5860            InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
5861          // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
5862          if (OpInfo.isIndirect) {
5863            // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
5864            LLVMContext &Ctx = *DAG.getContext();
5865            Ctx.emitError(CS.getInstruction(),  "inline asm not supported yet:"
5866                          " don't know how to handle tied "
5867                          "indirect register inputs");
5868          }
5869
5870          RegsForValue MatchedRegs;
5871          MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
5872          EVT RegVT = AsmNodeOperands[CurOp+1].getValueType();
5873          MatchedRegs.RegVTs.push_back(RegVT);
5874          MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
5875          for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
5876               i != e; ++i)
5877            MatchedRegs.Regs.push_back
5878              (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)));
5879
5880          // Use the produced MatchedRegs object to
5881          MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
5882                                    Chain, &Flag);
5883          MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
5884                                           true, OpInfo.getMatchedOperand(),
5885                                           DAG, AsmNodeOperands);
5886          break;
5887        }
5888
5889        assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
5890        assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
5891               "Unexpected number of operands");
5892        // Add information to the INLINEASM node to know about this input.
5893        // See InlineAsm.h isUseOperandTiedToDef.
5894        OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
5895                                                    OpInfo.getMatchedOperand());
5896        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
5897                                                        TLI.getPointerTy()));
5898        AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
5899        break;
5900      }
5901
5902      // Treat indirect 'X' constraint as memory.
5903      if (OpInfo.ConstraintType == TargetLowering::C_Other &&
5904          OpInfo.isIndirect)
5905        OpInfo.ConstraintType = TargetLowering::C_Memory;
5906
5907      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
5908        std::vector<SDValue> Ops;
5909        TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
5910                                         Ops, DAG);
5911        if (Ops.empty())
5912          report_fatal_error("Invalid operand for inline asm constraint '" +
5913                             Twine(OpInfo.ConstraintCode) + "'!");
5914
5915        // Add information to the INLINEASM node to know about this input.
5916        unsigned ResOpType =
5917          InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
5918        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5919                                                        TLI.getPointerTy()));
5920        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
5921        break;
5922      }
5923
5924      if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
5925        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
5926        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
5927               "Memory operands expect pointer values");
5928
5929        // Add information to the INLINEASM node to know about this input.
5930        unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
5931        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5932                                                        TLI.getPointerTy()));
5933        AsmNodeOperands.push_back(InOperandVal);
5934        break;
5935      }
5936
5937      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
5938              OpInfo.ConstraintType == TargetLowering::C_Register) &&
5939             "Unknown constraint type!");
5940      assert(!OpInfo.isIndirect &&
5941             "Don't know how to handle indirect register inputs yet!");
5942
5943      // Copy the input into the appropriate registers.
5944      if (OpInfo.AssignedRegs.Regs.empty() ||
5945          !OpInfo.AssignedRegs.areValueTypesLegal(TLI))
5946        report_fatal_error("Couldn't allocate input reg for constraint '" +
5947                           Twine(OpInfo.ConstraintCode) + "'!");
5948
5949      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
5950                                        Chain, &Flag);
5951
5952      OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
5953                                               DAG, AsmNodeOperands);
5954      break;
5955    }
5956    case InlineAsm::isClobber: {
5957      // Add the clobbered value to the operand list, so that the register
5958      // allocator is aware that the physreg got clobbered.
5959      if (!OpInfo.AssignedRegs.Regs.empty())
5960        OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
5961                                                 false, 0, DAG,
5962                                                 AsmNodeOperands);
5963      break;
5964    }
5965    }
5966  }
5967
5968  // Finish up input operands.  Set the input chain and add the flag last.
5969  AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
5970  if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
5971
5972  Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(),
5973                      DAG.getVTList(MVT::Other, MVT::Glue),
5974                      &AsmNodeOperands[0], AsmNodeOperands.size());
5975  Flag = Chain.getValue(1);
5976
5977  // If this asm returns a register value, copy the result from that register
5978  // and set it as the value of the call.
5979  if (!RetValRegs.Regs.empty()) {
5980    SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
5981                                             Chain, &Flag);
5982
5983    // FIXME: Why don't we do this for inline asms with MRVs?
5984    if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
5985      EVT ResultType = TLI.getValueType(CS.getType());
5986
5987      // If any of the results of the inline asm is a vector, it may have the
5988      // wrong width/num elts.  This can happen for register classes that can
5989      // contain multiple different value types.  The preg or vreg allocated may
5990      // not have the same VT as was expected.  Convert it to the right type
5991      // with bit_convert.
5992      if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
5993        Val = DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
5994                          ResultType, Val);
5995
5996      } else if (ResultType != Val.getValueType() &&
5997                 ResultType.isInteger() && Val.getValueType().isInteger()) {
5998        // If a result value was tied to an input value, the computed result may
5999        // have a wider width than the expected result.  Extract the relevant
6000        // portion.
6001        Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val);
6002      }
6003
6004      assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
6005    }
6006
6007    setValue(CS.getInstruction(), Val);
6008    // Don't need to use this as a chain in this case.
6009    if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
6010      return;
6011  }
6012
6013  std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
6014
6015  // Process indirect outputs, first output all of the flagged copies out of
6016  // physregs.
6017  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
6018    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
6019    const Value *Ptr = IndirectStoresToEmit[i].second;
6020    SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
6021                                             Chain, &Flag);
6022    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
6023  }
6024
6025  // Emit the non-flagged stores from the physregs.
6026  SmallVector<SDValue, 8> OutChains;
6027  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
6028    SDValue Val = DAG.getStore(Chain, getCurDebugLoc(),
6029                               StoresToEmit[i].first,
6030                               getValue(StoresToEmit[i].second),
6031                               MachinePointerInfo(StoresToEmit[i].second),
6032                               false, false, 0);
6033    OutChains.push_back(Val);
6034  }
6035
6036  if (!OutChains.empty())
6037    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
6038                        &OutChains[0], OutChains.size());
6039
6040  DAG.setRoot(Chain);
6041}
6042
6043void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
6044  DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(),
6045                          MVT::Other, getRoot(),
6046                          getValue(I.getArgOperand(0)),
6047                          DAG.getSrcValue(I.getArgOperand(0))));
6048}
6049
6050void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
6051  const TargetData &TD = *TLI.getTargetData();
6052  SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(),
6053                           getRoot(), getValue(I.getOperand(0)),
6054                           DAG.getSrcValue(I.getOperand(0)),
6055                           TD.getABITypeAlignment(I.getType()));
6056  setValue(&I, V);
6057  DAG.setRoot(V.getValue(1));
6058}
6059
6060void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
6061  DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(),
6062                          MVT::Other, getRoot(),
6063                          getValue(I.getArgOperand(0)),
6064                          DAG.getSrcValue(I.getArgOperand(0))));
6065}
6066
6067void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
6068  DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(),
6069                          MVT::Other, getRoot(),
6070                          getValue(I.getArgOperand(0)),
6071                          getValue(I.getArgOperand(1)),
6072                          DAG.getSrcValue(I.getArgOperand(0)),
6073                          DAG.getSrcValue(I.getArgOperand(1))));
6074}
6075
6076/// TargetLowering::LowerCallTo - This is the default LowerCallTo
6077/// implementation, which just calls LowerCall.
6078/// FIXME: When all targets are
6079/// migrated to using LowerCall, this hook should be integrated into SDISel.
6080std::pair<SDValue, SDValue>
6081TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy,
6082                            bool RetSExt, bool RetZExt, bool isVarArg,
6083                            bool isInreg, unsigned NumFixedArgs,
6084                            CallingConv::ID CallConv, bool isTailCall,
6085                            bool isReturnValueUsed,
6086                            SDValue Callee,
6087                            ArgListTy &Args, SelectionDAG &DAG,
6088                            DebugLoc dl) const {
6089  // Handle all of the outgoing arguments.
6090  SmallVector<ISD::OutputArg, 32> Outs;
6091  SmallVector<SDValue, 32> OutVals;
6092  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
6093    SmallVector<EVT, 4> ValueVTs;
6094    ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
6095    for (unsigned Value = 0, NumValues = ValueVTs.size();
6096         Value != NumValues; ++Value) {
6097      EVT VT = ValueVTs[Value];
6098      const Type *ArgTy = VT.getTypeForEVT(RetTy->getContext());
6099      SDValue Op = SDValue(Args[i].Node.getNode(),
6100                           Args[i].Node.getResNo() + Value);
6101      ISD::ArgFlagsTy Flags;
6102      unsigned OriginalAlignment =
6103        getTargetData()->getABITypeAlignment(ArgTy);
6104
6105      if (Args[i].isZExt)
6106        Flags.setZExt();
6107      if (Args[i].isSExt)
6108        Flags.setSExt();
6109      if (Args[i].isInReg)
6110        Flags.setInReg();
6111      if (Args[i].isSRet)
6112        Flags.setSRet();
6113      if (Args[i].isByVal) {
6114        Flags.setByVal();
6115        const PointerType *Ty = cast<PointerType>(Args[i].Ty);
6116        const Type *ElementTy = Ty->getElementType();
6117        Flags.setByValSize(getTargetData()->getTypeAllocSize(ElementTy));
6118        // For ByVal, alignment should come from FE.  BE will guess if this
6119        // info is not there but there are cases it cannot get right.
6120        unsigned FrameAlign;
6121        if (Args[i].Alignment)
6122          FrameAlign = Args[i].Alignment;
6123        else
6124          FrameAlign = getByValTypeAlignment(ElementTy);
6125        Flags.setByValAlign(FrameAlign);
6126      }
6127      if (Args[i].isNest)
6128        Flags.setNest();
6129      Flags.setOrigAlign(OriginalAlignment);
6130
6131      EVT PartVT = getRegisterType(RetTy->getContext(), VT);
6132      unsigned NumParts = getNumRegisters(RetTy->getContext(), VT);
6133      SmallVector<SDValue, 4> Parts(NumParts);
6134      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
6135
6136      if (Args[i].isSExt)
6137        ExtendKind = ISD::SIGN_EXTEND;
6138      else if (Args[i].isZExt)
6139        ExtendKind = ISD::ZERO_EXTEND;
6140
6141      getCopyToParts(DAG, dl, Op, &Parts[0], NumParts,
6142                     PartVT, ExtendKind);
6143
6144      for (unsigned j = 0; j != NumParts; ++j) {
6145        // if it isn't first piece, alignment must be 1
6146        ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(),
6147                               i < NumFixedArgs);
6148        if (NumParts > 1 && j == 0)
6149          MyFlags.Flags.setSplit();
6150        else if (j != 0)
6151          MyFlags.Flags.setOrigAlign(1);
6152
6153        Outs.push_back(MyFlags);
6154        OutVals.push_back(Parts[j]);
6155      }
6156    }
6157  }
6158
6159  // Handle the incoming return values from the call.
6160  SmallVector<ISD::InputArg, 32> Ins;
6161  SmallVector<EVT, 4> RetTys;
6162  ComputeValueVTs(*this, RetTy, RetTys);
6163  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6164    EVT VT = RetTys[I];
6165    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
6166    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
6167    for (unsigned i = 0; i != NumRegs; ++i) {
6168      ISD::InputArg MyFlags;
6169      MyFlags.VT = RegisterVT.getSimpleVT();
6170      MyFlags.Used = isReturnValueUsed;
6171      if (RetSExt)
6172        MyFlags.Flags.setSExt();
6173      if (RetZExt)
6174        MyFlags.Flags.setZExt();
6175      if (isInreg)
6176        MyFlags.Flags.setInReg();
6177      Ins.push_back(MyFlags);
6178    }
6179  }
6180
6181  SmallVector<SDValue, 4> InVals;
6182  Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall,
6183                    Outs, OutVals, Ins, dl, DAG, InVals);
6184
6185  // Verify that the target's LowerCall behaved as expected.
6186  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
6187         "LowerCall didn't return a valid chain!");
6188  assert((!isTailCall || InVals.empty()) &&
6189         "LowerCall emitted a return value for a tail call!");
6190  assert((isTailCall || InVals.size() == Ins.size()) &&
6191         "LowerCall didn't emit the correct number of values!");
6192
6193  // For a tail call, the return value is merely live-out and there aren't
6194  // any nodes in the DAG representing it. Return a special value to
6195  // indicate that a tail call has been emitted and no more Instructions
6196  // should be processed in the current block.
6197  if (isTailCall) {
6198    DAG.setRoot(Chain);
6199    return std::make_pair(SDValue(), SDValue());
6200  }
6201
6202  DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6203          assert(InVals[i].getNode() &&
6204                 "LowerCall emitted a null value!");
6205          assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6206                 "LowerCall emitted a value with the wrong type!");
6207        });
6208
6209  // Collect the legal value parts into potentially illegal values
6210  // that correspond to the original function's return values.
6211  ISD::NodeType AssertOp = ISD::DELETED_NODE;
6212  if (RetSExt)
6213    AssertOp = ISD::AssertSext;
6214  else if (RetZExt)
6215    AssertOp = ISD::AssertZext;
6216  SmallVector<SDValue, 4> ReturnValues;
6217  unsigned CurReg = 0;
6218  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6219    EVT VT = RetTys[I];
6220    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
6221    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
6222
6223    ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg],
6224                                            NumRegs, RegisterVT, VT,
6225                                            AssertOp));
6226    CurReg += NumRegs;
6227  }
6228
6229  // For a function returning void, there is no return value. We can't create
6230  // such a node, so we just return a null return value in that case. In
6231  // that case, nothing will actually look at the value.
6232  if (ReturnValues.empty())
6233    return std::make_pair(SDValue(), Chain);
6234
6235  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
6236                            DAG.getVTList(&RetTys[0], RetTys.size()),
6237                            &ReturnValues[0], ReturnValues.size());
6238  return std::make_pair(Res, Chain);
6239}
6240
6241void TargetLowering::LowerOperationWrapper(SDNode *N,
6242                                           SmallVectorImpl<SDValue> &Results,
6243                                           SelectionDAG &DAG) const {
6244  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
6245  if (Res.getNode())
6246    Results.push_back(Res);
6247}
6248
6249SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
6250  llvm_unreachable("LowerOperation not implemented for this target!");
6251  return SDValue();
6252}
6253
6254void
6255SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
6256  SDValue Op = getNonRegisterValue(V);
6257  assert((Op.getOpcode() != ISD::CopyFromReg ||
6258          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
6259         "Copy from a reg to the same reg!");
6260  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
6261
6262  RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
6263  SDValue Chain = DAG.getEntryNode();
6264  RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0);
6265  PendingExports.push_back(Chain);
6266}
6267
6268#include "llvm/CodeGen/SelectionDAGISel.h"
6269
6270/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
6271/// entry block, return true.  This includes arguments used by switches, since
6272/// the switch may expand into multiple basic blocks.
6273static bool isOnlyUsedInEntryBlock(const Argument *A) {
6274  // With FastISel active, we may be splitting blocks, so force creation
6275  // of virtual registers for all non-dead arguments.
6276  if (EnableFastISel)
6277    return A->use_empty();
6278
6279  const BasicBlock *Entry = A->getParent()->begin();
6280  for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end();
6281       UI != E; ++UI) {
6282    const User *U = *UI;
6283    if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U))
6284      return false;  // Use not in entry block.
6285  }
6286  return true;
6287}
6288
6289void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) {
6290  // If this is the entry block, emit arguments.
6291  const Function &F = *LLVMBB->getParent();
6292  SelectionDAG &DAG = SDB->DAG;
6293  DebugLoc dl = SDB->getCurDebugLoc();
6294  const TargetData *TD = TLI.getTargetData();
6295  SmallVector<ISD::InputArg, 16> Ins;
6296
6297  // Check whether the function can return without sret-demotion.
6298  SmallVector<ISD::OutputArg, 4> Outs;
6299  GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
6300                Outs, TLI);
6301
6302  if (!FuncInfo->CanLowerReturn) {
6303    // Put in an sret pointer parameter before all the other parameters.
6304    SmallVector<EVT, 1> ValueVTs;
6305    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6306
6307    // NOTE: Assuming that a pointer will never break down to more than one VT
6308    // or one register.
6309    ISD::ArgFlagsTy Flags;
6310    Flags.setSRet();
6311    EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]);
6312    ISD::InputArg RetArg(Flags, RegisterVT, true);
6313    Ins.push_back(RetArg);
6314  }
6315
6316  // Set up the incoming argument description vector.
6317  unsigned Idx = 1;
6318  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
6319       I != E; ++I, ++Idx) {
6320    SmallVector<EVT, 4> ValueVTs;
6321    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6322    bool isArgValueUsed = !I->use_empty();
6323    for (unsigned Value = 0, NumValues = ValueVTs.size();
6324         Value != NumValues; ++Value) {
6325      EVT VT = ValueVTs[Value];
6326      const Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
6327      ISD::ArgFlagsTy Flags;
6328      unsigned OriginalAlignment =
6329        TD->getABITypeAlignment(ArgTy);
6330
6331      if (F.paramHasAttr(Idx, Attribute::ZExt))
6332        Flags.setZExt();
6333      if (F.paramHasAttr(Idx, Attribute::SExt))
6334        Flags.setSExt();
6335      if (F.paramHasAttr(Idx, Attribute::InReg))
6336        Flags.setInReg();
6337      if (F.paramHasAttr(Idx, Attribute::StructRet))
6338        Flags.setSRet();
6339      if (F.paramHasAttr(Idx, Attribute::ByVal)) {
6340        Flags.setByVal();
6341        const PointerType *Ty = cast<PointerType>(I->getType());
6342        const Type *ElementTy = Ty->getElementType();
6343        Flags.setByValSize(TD->getTypeAllocSize(ElementTy));
6344        // For ByVal, alignment should be passed from FE.  BE will guess if
6345        // this info is not there but there are cases it cannot get right.
6346        unsigned FrameAlign;
6347        if (F.getParamAlignment(Idx))
6348          FrameAlign = F.getParamAlignment(Idx);
6349        else
6350          FrameAlign = TLI.getByValTypeAlignment(ElementTy);
6351        Flags.setByValAlign(FrameAlign);
6352      }
6353      if (F.paramHasAttr(Idx, Attribute::Nest))
6354        Flags.setNest();
6355      Flags.setOrigAlign(OriginalAlignment);
6356
6357      EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6358      unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6359      for (unsigned i = 0; i != NumRegs; ++i) {
6360        ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed);
6361        if (NumRegs > 1 && i == 0)
6362          MyFlags.Flags.setSplit();
6363        // if it isn't first piece, alignment must be 1
6364        else if (i > 0)
6365          MyFlags.Flags.setOrigAlign(1);
6366        Ins.push_back(MyFlags);
6367      }
6368    }
6369  }
6370
6371  // Call the target to set up the argument values.
6372  SmallVector<SDValue, 8> InVals;
6373  SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
6374                                             F.isVarArg(), Ins,
6375                                             dl, DAG, InVals);
6376
6377  // Verify that the target's LowerFormalArguments behaved as expected.
6378  assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
6379         "LowerFormalArguments didn't return a valid chain!");
6380  assert(InVals.size() == Ins.size() &&
6381         "LowerFormalArguments didn't emit the correct number of values!");
6382  DEBUG({
6383      for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6384        assert(InVals[i].getNode() &&
6385               "LowerFormalArguments emitted a null value!");
6386        assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6387               "LowerFormalArguments emitted a value with the wrong type!");
6388      }
6389    });
6390
6391  // Update the DAG with the new chain value resulting from argument lowering.
6392  DAG.setRoot(NewRoot);
6393
6394  // Set up the argument values.
6395  unsigned i = 0;
6396  Idx = 1;
6397  if (!FuncInfo->CanLowerReturn) {
6398    // Create a virtual register for the sret pointer, and put in a copy
6399    // from the sret argument into it.
6400    SmallVector<EVT, 1> ValueVTs;
6401    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6402    EVT VT = ValueVTs[0];
6403    EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6404    ISD::NodeType AssertOp = ISD::DELETED_NODE;
6405    SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
6406                                        RegVT, VT, AssertOp);
6407
6408    MachineFunction& MF = SDB->DAG.getMachineFunction();
6409    MachineRegisterInfo& RegInfo = MF.getRegInfo();
6410    unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT));
6411    FuncInfo->DemoteRegister = SRetReg;
6412    NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(),
6413                                    SRetReg, ArgValue);
6414    DAG.setRoot(NewRoot);
6415
6416    // i indexes lowered arguments.  Bump it past the hidden sret argument.
6417    // Idx indexes LLVM arguments.  Don't touch it.
6418    ++i;
6419  }
6420
6421  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
6422      ++I, ++Idx) {
6423    SmallVector<SDValue, 4> ArgValues;
6424    SmallVector<EVT, 4> ValueVTs;
6425    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6426    unsigned NumValues = ValueVTs.size();
6427
6428    // If this argument is unused then remember its value. It is used to generate
6429    // debugging information.
6430    if (I->use_empty() && NumValues)
6431      SDB->setUnusedArgValue(I, InVals[i]);
6432
6433    for (unsigned Val = 0; Val != NumValues; ++Val) {
6434      EVT VT = ValueVTs[Val];
6435      EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6436      unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6437
6438      if (!I->use_empty()) {
6439        ISD::NodeType AssertOp = ISD::DELETED_NODE;
6440        if (F.paramHasAttr(Idx, Attribute::SExt))
6441          AssertOp = ISD::AssertSext;
6442        else if (F.paramHasAttr(Idx, Attribute::ZExt))
6443          AssertOp = ISD::AssertZext;
6444
6445        ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
6446                                             NumParts, PartVT, VT,
6447                                             AssertOp));
6448      }
6449
6450      i += NumParts;
6451    }
6452
6453    // We don't need to do anything else for unused arguments.
6454    if (ArgValues.empty())
6455      continue;
6456
6457    // Note down frame index for byval arguments.
6458    if (I->hasByValAttr())
6459      if (FrameIndexSDNode *FI =
6460          dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
6461        FuncInfo->setByValArgumentFrameIndex(I, FI->getIndex());
6462
6463    SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues,
6464                                     SDB->getCurDebugLoc());
6465    SDB->setValue(I, Res);
6466
6467    // If this argument is live outside of the entry block, insert a copy from
6468    // wherever we got it to the vreg that other BB's will reference it as.
6469    if (!EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
6470      // If we can, though, try to skip creating an unnecessary vreg.
6471      // FIXME: This isn't very clean... it would be nice to make this more
6472      // general.  It's also subtly incompatible with the hacks FastISel
6473      // uses with vregs.
6474      unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
6475      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
6476        FuncInfo->ValueMap[I] = Reg;
6477        continue;
6478      }
6479    }
6480    if (!isOnlyUsedInEntryBlock(I)) {
6481      FuncInfo->InitializeRegForValue(I);
6482      SDB->CopyToExportRegsIfNeeded(I);
6483    }
6484  }
6485
6486  assert(i == InVals.size() && "Argument register count mismatch!");
6487
6488  // Finally, if the target has anything special to do, allow it to do so.
6489  // FIXME: this should insert code into the DAG!
6490  EmitFunctionEntryCode();
6491}
6492
6493/// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
6494/// ensure constants are generated when needed.  Remember the virtual registers
6495/// that need to be added to the Machine PHI nodes as input.  We cannot just
6496/// directly add them, because expansion might result in multiple MBB's for one
6497/// BB.  As such, the start of the BB might correspond to a different MBB than
6498/// the end.
6499///
6500void
6501SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
6502  const TerminatorInst *TI = LLVMBB->getTerminator();
6503
6504  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6505
6506  // Check successor nodes' PHI nodes that expect a constant to be available
6507  // from this block.
6508  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6509    const BasicBlock *SuccBB = TI->getSuccessor(succ);
6510    if (!isa<PHINode>(SuccBB->begin())) continue;
6511    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
6512
6513    // If this terminator has multiple identical successors (common for
6514    // switches), only handle each succ once.
6515    if (!SuccsHandled.insert(SuccMBB)) continue;
6516
6517    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6518
6519    // At this point we know that there is a 1-1 correspondence between LLVM PHI
6520    // nodes and Machine PHI nodes, but the incoming operands have not been
6521    // emitted yet.
6522    for (BasicBlock::const_iterator I = SuccBB->begin();
6523         const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
6524      // Ignore dead phi's.
6525      if (PN->use_empty()) continue;
6526
6527      // Skip empty types
6528      if (PN->getType()->isEmptyTy())
6529        continue;
6530
6531      unsigned Reg;
6532      const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6533
6534      if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
6535        unsigned &RegOut = ConstantsOut[C];
6536        if (RegOut == 0) {
6537          RegOut = FuncInfo.CreateRegs(C->getType());
6538          CopyValueToVirtualRegister(C, RegOut);
6539        }
6540        Reg = RegOut;
6541      } else {
6542        DenseMap<const Value *, unsigned>::iterator I =
6543          FuncInfo.ValueMap.find(PHIOp);
6544        if (I != FuncInfo.ValueMap.end())
6545          Reg = I->second;
6546        else {
6547          assert(isa<AllocaInst>(PHIOp) &&
6548                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
6549                 "Didn't codegen value into a register!??");
6550          Reg = FuncInfo.CreateRegs(PHIOp->getType());
6551          CopyValueToVirtualRegister(PHIOp, Reg);
6552        }
6553      }
6554
6555      // Remember that this register needs to added to the machine PHI node as
6556      // the input for this MBB.
6557      SmallVector<EVT, 4> ValueVTs;
6558      ComputeValueVTs(TLI, PN->getType(), ValueVTs);
6559      for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
6560        EVT VT = ValueVTs[vti];
6561        unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
6562        for (unsigned i = 0, e = NumRegisters; i != e; ++i)
6563          FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
6564        Reg += NumRegisters;
6565      }
6566    }
6567  }
6568  ConstantsOut.clear();
6569}
6570