SelectionDAGBuilder.cpp revision 9db20f3bd89e51e0765ef21a9992f6dd5364a81e
1//===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements routines for translating from LLVM IR into SelectionDAG IR.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "SDNodeDbgValue.h"
16#include "SelectionDAGBuilder.h"
17#include "llvm/ADT/BitVector.h"
18#include "llvm/ADT/PostOrderIterator.h"
19#include "llvm/ADT/SmallSet.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/ConstantFolding.h"
22#include "llvm/Constants.h"
23#include "llvm/CallingConv.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Function.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/InlineAsm.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/IntrinsicInst.h"
31#include "llvm/LLVMContext.h"
32#include "llvm/Module.h"
33#include "llvm/CodeGen/Analysis.h"
34#include "llvm/CodeGen/FastISel.h"
35#include "llvm/CodeGen/FunctionLoweringInfo.h"
36#include "llvm/CodeGen/GCStrategy.h"
37#include "llvm/CodeGen/GCMetadata.h"
38#include "llvm/CodeGen/MachineFunction.h"
39#include "llvm/CodeGen/MachineFrameInfo.h"
40#include "llvm/CodeGen/MachineInstrBuilder.h"
41#include "llvm/CodeGen/MachineJumpTableInfo.h"
42#include "llvm/CodeGen/MachineModuleInfo.h"
43#include "llvm/CodeGen/MachineRegisterInfo.h"
44#include "llvm/CodeGen/PseudoSourceValue.h"
45#include "llvm/CodeGen/SelectionDAG.h"
46#include "llvm/Analysis/DebugInfo.h"
47#include "llvm/Target/TargetData.h"
48#include "llvm/Target/TargetFrameLowering.h"
49#include "llvm/Target/TargetInstrInfo.h"
50#include "llvm/Target/TargetIntrinsicInfo.h"
51#include "llvm/Target/TargetLowering.h"
52#include "llvm/Target/TargetOptions.h"
53#include "llvm/Support/CommandLine.h"
54#include "llvm/Support/Debug.h"
55#include "llvm/Support/ErrorHandling.h"
56#include "llvm/Support/MathExtras.h"
57#include "llvm/Support/raw_ostream.h"
58#include <algorithm>
59using namespace llvm;
60
61/// LimitFloatPrecision - Generate low-precision inline sequences for
62/// some float libcalls (6, 8 or 12 bits).
63static unsigned LimitFloatPrecision;
64
65static cl::opt<unsigned, true>
66LimitFPPrecision("limit-float-precision",
67                 cl::desc("Generate low-precision inline sequences "
68                          "for some float libcalls"),
69                 cl::location(LimitFloatPrecision),
70                 cl::init(0));
71
72// Limit the width of DAG chains. This is important in general to prevent
73// prevent DAG-based analysis from blowing up. For example, alias analysis and
74// load clustering may not complete in reasonable time. It is difficult to
75// recognize and avoid this situation within each individual analysis, and
76// future analyses are likely to have the same behavior. Limiting DAG width is
77// the safe approach, and will be especially important with global DAGs.
78//
79// MaxParallelChains default is arbitrarily high to avoid affecting
80// optimization, but could be lowered to improve compile time. Any ld-ld-st-st
81// sequence over this should have been converted to llvm.memcpy by the
82// frontend. It easy to induce this behavior with .ll code such as:
83// %buffer = alloca [4096 x i8]
84// %data = load [4096 x i8]* %argPtr
85// store [4096 x i8] %data, [4096 x i8]* %buffer
86static const unsigned MaxParallelChains = 64;
87
88static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
89                                      const SDValue *Parts, unsigned NumParts,
90                                      EVT PartVT, EVT ValueVT);
91
92/// getCopyFromParts - Create a value that contains the specified legal parts
93/// combined into the value they represent.  If the parts combine to a type
94/// larger then ValueVT then AssertOp can be used to specify whether the extra
95/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
96/// (ISD::AssertSext).
97static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL,
98                                const SDValue *Parts,
99                                unsigned NumParts, EVT PartVT, EVT ValueVT,
100                                ISD::NodeType AssertOp = ISD::DELETED_NODE) {
101  if (ValueVT.isVector())
102    return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT);
103
104  assert(NumParts > 0 && "No parts to assemble!");
105  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
106  SDValue Val = Parts[0];
107
108  if (NumParts > 1) {
109    // Assemble the value from multiple parts.
110    if (ValueVT.isInteger()) {
111      unsigned PartBits = PartVT.getSizeInBits();
112      unsigned ValueBits = ValueVT.getSizeInBits();
113
114      // Assemble the power of 2 part.
115      unsigned RoundParts = NumParts & (NumParts - 1) ?
116        1 << Log2_32(NumParts) : NumParts;
117      unsigned RoundBits = PartBits * RoundParts;
118      EVT RoundVT = RoundBits == ValueBits ?
119        ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
120      SDValue Lo, Hi;
121
122      EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
123
124      if (RoundParts > 2) {
125        Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
126                              PartVT, HalfVT);
127        Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
128                              RoundParts / 2, PartVT, HalfVT);
129      } else {
130        Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
131        Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
132      }
133
134      if (TLI.isBigEndian())
135        std::swap(Lo, Hi);
136
137      Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
138
139      if (RoundParts < NumParts) {
140        // Assemble the trailing non-power-of-2 part.
141        unsigned OddParts = NumParts - RoundParts;
142        EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
143        Hi = getCopyFromParts(DAG, DL,
144                              Parts + RoundParts, OddParts, PartVT, OddVT);
145
146        // Combine the round and odd parts.
147        Lo = Val;
148        if (TLI.isBigEndian())
149          std::swap(Lo, Hi);
150        EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
151        Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
152        Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
153                         DAG.getConstant(Lo.getValueType().getSizeInBits(),
154                                         TLI.getPointerTy()));
155        Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
156        Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
157      }
158    } else if (PartVT.isFloatingPoint()) {
159      // FP split into multiple FP parts (for ppcf128)
160      assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) &&
161             "Unexpected split");
162      SDValue Lo, Hi;
163      Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
164      Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
165      if (TLI.isBigEndian())
166        std::swap(Lo, Hi);
167      Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
168    } else {
169      // FP split into integer parts (soft fp)
170      assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
171             !PartVT.isVector() && "Unexpected split");
172      EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
173      Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT);
174    }
175  }
176
177  // There is now one part, held in Val.  Correct it to match ValueVT.
178  PartVT = Val.getValueType();
179
180  if (PartVT == ValueVT)
181    return Val;
182
183  if (PartVT.isInteger() && ValueVT.isInteger()) {
184    if (ValueVT.bitsLT(PartVT)) {
185      // For a truncate, see if we have any information to
186      // indicate whether the truncated bits will always be
187      // zero or sign-extension.
188      if (AssertOp != ISD::DELETED_NODE)
189        Val = DAG.getNode(AssertOp, DL, PartVT, Val,
190                          DAG.getValueType(ValueVT));
191      return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
192    }
193    return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
194  }
195
196  if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
197    // FP_ROUND's are always exact here.
198    if (ValueVT.bitsLT(Val.getValueType()))
199      return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val,
200                         DAG.getIntPtrConstant(1));
201
202    return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
203  }
204
205  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
206    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
207
208  llvm_unreachable("Unknown mismatch!");
209  return SDValue();
210}
211
212/// getCopyFromParts - Create a value that contains the specified legal parts
213/// combined into the value they represent.  If the parts combine to a type
214/// larger then ValueVT then AssertOp can be used to specify whether the extra
215/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
216/// (ISD::AssertSext).
217static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
218                                      const SDValue *Parts, unsigned NumParts,
219                                      EVT PartVT, EVT ValueVT) {
220  assert(ValueVT.isVector() && "Not a vector value");
221  assert(NumParts > 0 && "No parts to assemble!");
222  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
223  SDValue Val = Parts[0];
224
225  // Handle a multi-element vector.
226  if (NumParts > 1) {
227    EVT IntermediateVT, RegisterVT;
228    unsigned NumIntermediates;
229    unsigned NumRegs =
230    TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
231                               NumIntermediates, RegisterVT);
232    assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
233    NumParts = NumRegs; // Silence a compiler warning.
234    assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
235    assert(RegisterVT == Parts[0].getValueType() &&
236           "Part type doesn't match part!");
237
238    // Assemble the parts into intermediate operands.
239    SmallVector<SDValue, 8> Ops(NumIntermediates);
240    if (NumIntermediates == NumParts) {
241      // If the register was not expanded, truncate or copy the value,
242      // as appropriate.
243      for (unsigned i = 0; i != NumParts; ++i)
244        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
245                                  PartVT, IntermediateVT);
246    } else if (NumParts > 0) {
247      // If the intermediate type was expanded, build the intermediate
248      // operands from the parts.
249      assert(NumParts % NumIntermediates == 0 &&
250             "Must expand into a divisible number of parts!");
251      unsigned Factor = NumParts / NumIntermediates;
252      for (unsigned i = 0; i != NumIntermediates; ++i)
253        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
254                                  PartVT, IntermediateVT);
255    }
256
257    // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
258    // intermediate operands.
259    Val = DAG.getNode(IntermediateVT.isVector() ?
260                      ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL,
261                      ValueVT, &Ops[0], NumIntermediates);
262  }
263
264  // There is now one part, held in Val.  Correct it to match ValueVT.
265  PartVT = Val.getValueType();
266
267  if (PartVT == ValueVT)
268    return Val;
269
270  if (PartVT.isVector()) {
271    // If the element type of the source/dest vectors are the same, but the
272    // parts vector has more elements than the value vector, then we have a
273    // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
274    // elements we want.
275    if (PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
276      assert(PartVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
277             "Cannot narrow, it would be a lossy transformation");
278      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
279                         DAG.getIntPtrConstant(0));
280    }
281
282    // Vector/Vector bitcast.
283    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
284  }
285
286  assert(ValueVT.getVectorElementType() == PartVT &&
287         ValueVT.getVectorNumElements() == 1 &&
288         "Only trivial scalar-to-vector conversions should get here!");
289  return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
290}
291
292
293
294
295static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl,
296                                 SDValue Val, SDValue *Parts, unsigned NumParts,
297                                 EVT PartVT);
298
299/// getCopyToParts - Create a series of nodes that contain the specified value
300/// split into legal parts.  If the parts contain more bits than Val, then, for
301/// integers, ExtendKind can be used to specify how to generate the extra bits.
302static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL,
303                           SDValue Val, SDValue *Parts, unsigned NumParts,
304                           EVT PartVT,
305                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
306  EVT ValueVT = Val.getValueType();
307
308  // Handle the vector case separately.
309  if (ValueVT.isVector())
310    return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT);
311
312  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
313  unsigned PartBits = PartVT.getSizeInBits();
314  unsigned OrigNumParts = NumParts;
315  assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
316
317  if (NumParts == 0)
318    return;
319
320  assert(!ValueVT.isVector() && "Vector case handled elsewhere");
321  if (PartVT == ValueVT) {
322    assert(NumParts == 1 && "No-op copy with multiple parts!");
323    Parts[0] = Val;
324    return;
325  }
326
327  if (NumParts * PartBits > ValueVT.getSizeInBits()) {
328    // If the parts cover more bits than the value has, promote the value.
329    if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
330      assert(NumParts == 1 && "Do not know what to promote to!");
331      Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
332    } else {
333      assert(PartVT.isInteger() && ValueVT.isInteger() &&
334             "Unknown mismatch!");
335      ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
336      Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
337    }
338  } else if (PartBits == ValueVT.getSizeInBits()) {
339    // Different types of the same size.
340    assert(NumParts == 1 && PartVT != ValueVT);
341    Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
342  } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
343    // If the parts cover less bits than value has, truncate the value.
344    assert(PartVT.isInteger() && ValueVT.isInteger() &&
345           "Unknown mismatch!");
346    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
347    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
348  }
349
350  // The value may have changed - recompute ValueVT.
351  ValueVT = Val.getValueType();
352  assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
353         "Failed to tile the value with PartVT!");
354
355  if (NumParts == 1) {
356    assert(PartVT == ValueVT && "Type conversion failed!");
357    Parts[0] = Val;
358    return;
359  }
360
361  // Expand the value into multiple parts.
362  if (NumParts & (NumParts - 1)) {
363    // The number of parts is not a power of 2.  Split off and copy the tail.
364    assert(PartVT.isInteger() && ValueVT.isInteger() &&
365           "Do not know what to expand to!");
366    unsigned RoundParts = 1 << Log2_32(NumParts);
367    unsigned RoundBits = RoundParts * PartBits;
368    unsigned OddParts = NumParts - RoundParts;
369    SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
370                                 DAG.getIntPtrConstant(RoundBits));
371    getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT);
372
373    if (TLI.isBigEndian())
374      // The odd parts were reversed by getCopyToParts - unreverse them.
375      std::reverse(Parts + RoundParts, Parts + NumParts);
376
377    NumParts = RoundParts;
378    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
379    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
380  }
381
382  // The number of parts is a power of 2.  Repeatedly bisect the value using
383  // EXTRACT_ELEMENT.
384  Parts[0] = DAG.getNode(ISD::BITCAST, DL,
385                         EVT::getIntegerVT(*DAG.getContext(),
386                                           ValueVT.getSizeInBits()),
387                         Val);
388
389  for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
390    for (unsigned i = 0; i < NumParts; i += StepSize) {
391      unsigned ThisBits = StepSize * PartBits / 2;
392      EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
393      SDValue &Part0 = Parts[i];
394      SDValue &Part1 = Parts[i+StepSize/2];
395
396      Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
397                          ThisVT, Part0, DAG.getIntPtrConstant(1));
398      Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
399                          ThisVT, Part0, DAG.getIntPtrConstant(0));
400
401      if (ThisBits == PartBits && ThisVT != PartVT) {
402        Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
403        Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
404      }
405    }
406  }
407
408  if (TLI.isBigEndian())
409    std::reverse(Parts, Parts + OrigNumParts);
410}
411
412
413/// getCopyToPartsVector - Create a series of nodes that contain the specified
414/// value split into legal parts.
415static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL,
416                                 SDValue Val, SDValue *Parts, unsigned NumParts,
417                                 EVT PartVT) {
418  EVT ValueVT = Val.getValueType();
419  assert(ValueVT.isVector() && "Not a vector");
420  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
421
422  if (NumParts == 1) {
423    if (PartVT == ValueVT) {
424      // Nothing to do.
425    } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
426      // Bitconvert vector->vector case.
427      Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
428    } else if (PartVT.isVector() &&
429               PartVT.getVectorElementType() == ValueVT.getVectorElementType()&&
430               PartVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
431      EVT ElementVT = PartVT.getVectorElementType();
432      // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
433      // undef elements.
434      SmallVector<SDValue, 16> Ops;
435      for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
436        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
437                                  ElementVT, Val, DAG.getIntPtrConstant(i)));
438
439      for (unsigned i = ValueVT.getVectorNumElements(),
440           e = PartVT.getVectorNumElements(); i != e; ++i)
441        Ops.push_back(DAG.getUNDEF(ElementVT));
442
443      Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size());
444
445      // FIXME: Use CONCAT for 2x -> 4x.
446
447      //SDValue UndefElts = DAG.getUNDEF(VectorTy);
448      //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
449    } else {
450      // Vector -> scalar conversion.
451      assert(ValueVT.getVectorElementType() == PartVT &&
452             ValueVT.getVectorNumElements() == 1 &&
453             "Only trivial vector-to-scalar conversions should get here!");
454      Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
455                        PartVT, Val, DAG.getIntPtrConstant(0));
456    }
457
458    Parts[0] = Val;
459    return;
460  }
461
462  // Handle a multi-element vector.
463  EVT IntermediateVT, RegisterVT;
464  unsigned NumIntermediates;
465  unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
466                                                IntermediateVT,
467                                                NumIntermediates, RegisterVT);
468  unsigned NumElements = ValueVT.getVectorNumElements();
469
470  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
471  NumParts = NumRegs; // Silence a compiler warning.
472  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
473
474  // Split the vector into intermediate operands.
475  SmallVector<SDValue, 8> Ops(NumIntermediates);
476  for (unsigned i = 0; i != NumIntermediates; ++i) {
477    if (IntermediateVT.isVector())
478      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
479                           IntermediateVT, Val,
480                   DAG.getIntPtrConstant(i * (NumElements / NumIntermediates)));
481    else
482      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
483                           IntermediateVT, Val, DAG.getIntPtrConstant(i));
484  }
485
486  // Split the intermediate operands into legal parts.
487  if (NumParts == NumIntermediates) {
488    // If the register was not expanded, promote or copy the value,
489    // as appropriate.
490    for (unsigned i = 0; i != NumParts; ++i)
491      getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT);
492  } else if (NumParts > 0) {
493    // If the intermediate type was expanded, split each the value into
494    // legal parts.
495    assert(NumParts % NumIntermediates == 0 &&
496           "Must expand into a divisible number of parts!");
497    unsigned Factor = NumParts / NumIntermediates;
498    for (unsigned i = 0; i != NumIntermediates; ++i)
499      getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT);
500  }
501}
502
503
504
505
506namespace {
507  /// RegsForValue - This struct represents the registers (physical or virtual)
508  /// that a particular set of values is assigned, and the type information
509  /// about the value. The most common situation is to represent one value at a
510  /// time, but struct or array values are handled element-wise as multiple
511  /// values.  The splitting of aggregates is performed recursively, so that we
512  /// never have aggregate-typed registers. The values at this point do not
513  /// necessarily have legal types, so each value may require one or more
514  /// registers of some legal type.
515  ///
516  struct RegsForValue {
517    /// ValueVTs - The value types of the values, which may not be legal, and
518    /// may need be promoted or synthesized from one or more registers.
519    ///
520    SmallVector<EVT, 4> ValueVTs;
521
522    /// RegVTs - The value types of the registers. This is the same size as
523    /// ValueVTs and it records, for each value, what the type of the assigned
524    /// register or registers are. (Individual values are never synthesized
525    /// from more than one type of register.)
526    ///
527    /// With virtual registers, the contents of RegVTs is redundant with TLI's
528    /// getRegisterType member function, however when with physical registers
529    /// it is necessary to have a separate record of the types.
530    ///
531    SmallVector<EVT, 4> RegVTs;
532
533    /// Regs - This list holds the registers assigned to the values.
534    /// Each legal or promoted value requires one register, and each
535    /// expanded value requires multiple registers.
536    ///
537    SmallVector<unsigned, 4> Regs;
538
539    RegsForValue() {}
540
541    RegsForValue(const SmallVector<unsigned, 4> &regs,
542                 EVT regvt, EVT valuevt)
543      : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
544
545    RegsForValue(LLVMContext &Context, const TargetLowering &tli,
546                 unsigned Reg, const Type *Ty) {
547      ComputeValueVTs(tli, Ty, ValueVTs);
548
549      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
550        EVT ValueVT = ValueVTs[Value];
551        unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
552        EVT RegisterVT = tli.getRegisterType(Context, ValueVT);
553        for (unsigned i = 0; i != NumRegs; ++i)
554          Regs.push_back(Reg + i);
555        RegVTs.push_back(RegisterVT);
556        Reg += NumRegs;
557      }
558    }
559
560    /// areValueTypesLegal - Return true if types of all the values are legal.
561    bool areValueTypesLegal(const TargetLowering &TLI) {
562      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
563        EVT RegisterVT = RegVTs[Value];
564        if (!TLI.isTypeLegal(RegisterVT))
565          return false;
566      }
567      return true;
568    }
569
570    /// append - Add the specified values to this one.
571    void append(const RegsForValue &RHS) {
572      ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
573      RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
574      Regs.append(RHS.Regs.begin(), RHS.Regs.end());
575    }
576
577    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
578    /// this value and returns the result as a ValueVTs value.  This uses
579    /// Chain/Flag as the input and updates them for the output Chain/Flag.
580    /// If the Flag pointer is NULL, no flag is used.
581    SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
582                            DebugLoc dl,
583                            SDValue &Chain, SDValue *Flag) const;
584
585    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
586    /// specified value into the registers specified by this object.  This uses
587    /// Chain/Flag as the input and updates them for the output Chain/Flag.
588    /// If the Flag pointer is NULL, no flag is used.
589    void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
590                       SDValue &Chain, SDValue *Flag) const;
591
592    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
593    /// operand list.  This adds the code marker, matching input operand index
594    /// (if applicable), and includes the number of values added into it.
595    void AddInlineAsmOperands(unsigned Kind,
596                              bool HasMatching, unsigned MatchingIdx,
597                              SelectionDAG &DAG,
598                              std::vector<SDValue> &Ops) const;
599  };
600}
601
602/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
603/// this value and returns the result as a ValueVT value.  This uses
604/// Chain/Flag as the input and updates them for the output Chain/Flag.
605/// If the Flag pointer is NULL, no flag is used.
606SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
607                                      FunctionLoweringInfo &FuncInfo,
608                                      DebugLoc dl,
609                                      SDValue &Chain, SDValue *Flag) const {
610  // A Value with type {} or [0 x %t] needs no registers.
611  if (ValueVTs.empty())
612    return SDValue();
613
614  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
615
616  // Assemble the legal parts into the final values.
617  SmallVector<SDValue, 4> Values(ValueVTs.size());
618  SmallVector<SDValue, 8> Parts;
619  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
620    // Copy the legal parts from the registers.
621    EVT ValueVT = ValueVTs[Value];
622    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
623    EVT RegisterVT = RegVTs[Value];
624
625    Parts.resize(NumRegs);
626    for (unsigned i = 0; i != NumRegs; ++i) {
627      SDValue P;
628      if (Flag == 0) {
629        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
630      } else {
631        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
632        *Flag = P.getValue(2);
633      }
634
635      Chain = P.getValue(1);
636      Parts[i] = P;
637
638      // If the source register was virtual and if we know something about it,
639      // add an assert node.
640      if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
641          !RegisterVT.isInteger() || RegisterVT.isVector())
642        continue;
643
644      const FunctionLoweringInfo::LiveOutInfo *LOI =
645        FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
646      if (!LOI)
647        continue;
648
649      unsigned RegSize = RegisterVT.getSizeInBits();
650      unsigned NumSignBits = LOI->NumSignBits;
651      unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
652
653      // FIXME: We capture more information than the dag can represent.  For
654      // now, just use the tightest assertzext/assertsext possible.
655      bool isSExt = true;
656      EVT FromVT(MVT::Other);
657      if (NumSignBits == RegSize)
658        isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
659      else if (NumZeroBits >= RegSize-1)
660        isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
661      else if (NumSignBits > RegSize-8)
662        isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
663      else if (NumZeroBits >= RegSize-8)
664        isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
665      else if (NumSignBits > RegSize-16)
666        isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
667      else if (NumZeroBits >= RegSize-16)
668        isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
669      else if (NumSignBits > RegSize-32)
670        isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
671      else if (NumZeroBits >= RegSize-32)
672        isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
673      else
674        continue;
675
676      // Add an assertion node.
677      assert(FromVT != MVT::Other);
678      Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
679                             RegisterVT, P, DAG.getValueType(FromVT));
680    }
681
682    Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
683                                     NumRegs, RegisterVT, ValueVT);
684    Part += NumRegs;
685    Parts.clear();
686  }
687
688  return DAG.getNode(ISD::MERGE_VALUES, dl,
689                     DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
690                     &Values[0], ValueVTs.size());
691}
692
693/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
694/// specified value into the registers specified by this object.  This uses
695/// Chain/Flag as the input and updates them for the output Chain/Flag.
696/// If the Flag pointer is NULL, no flag is used.
697void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
698                                 SDValue &Chain, SDValue *Flag) const {
699  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
700
701  // Get the list of the values's legal parts.
702  unsigned NumRegs = Regs.size();
703  SmallVector<SDValue, 8> Parts(NumRegs);
704  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
705    EVT ValueVT = ValueVTs[Value];
706    unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
707    EVT RegisterVT = RegVTs[Value];
708
709    getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
710                   &Parts[Part], NumParts, RegisterVT);
711    Part += NumParts;
712  }
713
714  // Copy the parts into the registers.
715  SmallVector<SDValue, 8> Chains(NumRegs);
716  for (unsigned i = 0; i != NumRegs; ++i) {
717    SDValue Part;
718    if (Flag == 0) {
719      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
720    } else {
721      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
722      *Flag = Part.getValue(1);
723    }
724
725    Chains[i] = Part.getValue(0);
726  }
727
728  if (NumRegs == 1 || Flag)
729    // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
730    // flagged to it. That is the CopyToReg nodes and the user are considered
731    // a single scheduling unit. If we create a TokenFactor and return it as
732    // chain, then the TokenFactor is both a predecessor (operand) of the
733    // user as well as a successor (the TF operands are flagged to the user).
734    // c1, f1 = CopyToReg
735    // c2, f2 = CopyToReg
736    // c3     = TokenFactor c1, c2
737    // ...
738    //        = op c3, ..., f2
739    Chain = Chains[NumRegs-1];
740  else
741    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
742}
743
744/// AddInlineAsmOperands - Add this value to the specified inlineasm node
745/// operand list.  This adds the code marker and includes the number of
746/// values added into it.
747void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
748                                        unsigned MatchingIdx,
749                                        SelectionDAG &DAG,
750                                        std::vector<SDValue> &Ops) const {
751  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
752
753  unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
754  if (HasMatching)
755    Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
756  SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
757  Ops.push_back(Res);
758
759  for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
760    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
761    EVT RegisterVT = RegVTs[Value];
762    for (unsigned i = 0; i != NumRegs; ++i) {
763      assert(Reg < Regs.size() && "Mismatch in # registers expected");
764      Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
765    }
766  }
767}
768
769void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) {
770  AA = &aa;
771  GFI = gfi;
772  TD = DAG.getTarget().getTargetData();
773}
774
775/// clear - Clear out the current SelectionDAG and the associated
776/// state and prepare this SelectionDAGBuilder object to be used
777/// for a new block. This doesn't clear out information about
778/// additional blocks that are needed to complete switch lowering
779/// or PHI node updating; that information is cleared out as it is
780/// consumed.
781void SelectionDAGBuilder::clear() {
782  NodeMap.clear();
783  UnusedArgNodeMap.clear();
784  PendingLoads.clear();
785  PendingExports.clear();
786  DanglingDebugInfoMap.clear();
787  CurDebugLoc = DebugLoc();
788  HasTailCall = false;
789}
790
791/// getRoot - Return the current virtual root of the Selection DAG,
792/// flushing any PendingLoad items. This must be done before emitting
793/// a store or any other node that may need to be ordered after any
794/// prior load instructions.
795///
796SDValue SelectionDAGBuilder::getRoot() {
797  if (PendingLoads.empty())
798    return DAG.getRoot();
799
800  if (PendingLoads.size() == 1) {
801    SDValue Root = PendingLoads[0];
802    DAG.setRoot(Root);
803    PendingLoads.clear();
804    return Root;
805  }
806
807  // Otherwise, we have to make a token factor node.
808  SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
809                               &PendingLoads[0], PendingLoads.size());
810  PendingLoads.clear();
811  DAG.setRoot(Root);
812  return Root;
813}
814
815/// getControlRoot - Similar to getRoot, but instead of flushing all the
816/// PendingLoad items, flush all the PendingExports items. It is necessary
817/// to do this before emitting a terminator instruction.
818///
819SDValue SelectionDAGBuilder::getControlRoot() {
820  SDValue Root = DAG.getRoot();
821
822  if (PendingExports.empty())
823    return Root;
824
825  // Turn all of the CopyToReg chains into one factored node.
826  if (Root.getOpcode() != ISD::EntryToken) {
827    unsigned i = 0, e = PendingExports.size();
828    for (; i != e; ++i) {
829      assert(PendingExports[i].getNode()->getNumOperands() > 1);
830      if (PendingExports[i].getNode()->getOperand(0) == Root)
831        break;  // Don't add the root if we already indirectly depend on it.
832    }
833
834    if (i == e)
835      PendingExports.push_back(Root);
836  }
837
838  Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
839                     &PendingExports[0],
840                     PendingExports.size());
841  PendingExports.clear();
842  DAG.setRoot(Root);
843  return Root;
844}
845
846void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) {
847  if (DAG.GetOrdering(Node) != 0) return; // Already has ordering.
848  DAG.AssignOrdering(Node, SDNodeOrder);
849
850  for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I)
851    AssignOrderingToNode(Node->getOperand(I).getNode());
852}
853
854void SelectionDAGBuilder::visit(const Instruction &I) {
855  // Set up outgoing PHI node register values before emitting the terminator.
856  if (isa<TerminatorInst>(&I))
857    HandlePHINodesInSuccessorBlocks(I.getParent());
858
859  CurDebugLoc = I.getDebugLoc();
860
861  visit(I.getOpcode(), I);
862
863  if (!isa<TerminatorInst>(&I) && !HasTailCall)
864    CopyToExportRegsIfNeeded(&I);
865
866  CurDebugLoc = DebugLoc();
867}
868
869void SelectionDAGBuilder::visitPHI(const PHINode &) {
870  llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
871}
872
873void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
874  // Note: this doesn't use InstVisitor, because it has to work with
875  // ConstantExpr's in addition to instructions.
876  switch (Opcode) {
877  default: llvm_unreachable("Unknown instruction type encountered!");
878    // Build the switch statement using the Instruction.def file.
879#define HANDLE_INST(NUM, OPCODE, CLASS) \
880    case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break;
881#include "llvm/Instruction.def"
882  }
883
884  // Assign the ordering to the freshly created DAG nodes.
885  if (NodeMap.count(&I)) {
886    ++SDNodeOrder;
887    AssignOrderingToNode(getValue(&I).getNode());
888  }
889}
890
891// resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
892// generate the debug data structures now that we've seen its definition.
893void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
894                                                   SDValue Val) {
895  DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
896  if (DDI.getDI()) {
897    const DbgValueInst *DI = DDI.getDI();
898    DebugLoc dl = DDI.getdl();
899    unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
900    MDNode *Variable = DI->getVariable();
901    uint64_t Offset = DI->getOffset();
902    SDDbgValue *SDV;
903    if (Val.getNode()) {
904      if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) {
905        SDV = DAG.getDbgValue(Variable, Val.getNode(),
906                              Val.getResNo(), Offset, dl, DbgSDNodeOrder);
907        DAG.AddDbgValue(SDV, Val.getNode(), false);
908      }
909    } else
910      DEBUG(dbgs() << "Dropping debug info for " << DI);
911    DanglingDebugInfoMap[V] = DanglingDebugInfo();
912  }
913}
914
915// getValue - Return an SDValue for the given Value.
916SDValue SelectionDAGBuilder::getValue(const Value *V) {
917  // If we already have an SDValue for this value, use it. It's important
918  // to do this first, so that we don't create a CopyFromReg if we already
919  // have a regular SDValue.
920  SDValue &N = NodeMap[V];
921  if (N.getNode()) return N;
922
923  // If there's a virtual register allocated and initialized for this
924  // value, use it.
925  DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
926  if (It != FuncInfo.ValueMap.end()) {
927    unsigned InReg = It->second;
928    RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
929    SDValue Chain = DAG.getEntryNode();
930    N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain,NULL);
931    resolveDanglingDebugInfo(V, N);
932    return N;
933  }
934
935  // Otherwise create a new SDValue and remember it.
936  SDValue Val = getValueImpl(V);
937  NodeMap[V] = Val;
938  resolveDanglingDebugInfo(V, Val);
939  return Val;
940}
941
942/// getNonRegisterValue - Return an SDValue for the given Value, but
943/// don't look in FuncInfo.ValueMap for a virtual register.
944SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
945  // If we already have an SDValue for this value, use it.
946  SDValue &N = NodeMap[V];
947  if (N.getNode()) return N;
948
949  // Otherwise create a new SDValue and remember it.
950  SDValue Val = getValueImpl(V);
951  NodeMap[V] = Val;
952  resolveDanglingDebugInfo(V, Val);
953  return Val;
954}
955
956/// getValueImpl - Helper function for getValue and getNonRegisterValue.
957/// Create an SDValue for the given value.
958SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
959  if (const Constant *C = dyn_cast<Constant>(V)) {
960    EVT VT = TLI.getValueType(V->getType(), true);
961
962    if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
963      return DAG.getConstant(*CI, VT);
964
965    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
966      return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT);
967
968    if (isa<ConstantPointerNull>(C))
969      return DAG.getConstant(0, TLI.getPointerTy());
970
971    if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
972      return DAG.getConstantFP(*CFP, VT);
973
974    if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
975      return DAG.getUNDEF(VT);
976
977    if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
978      visit(CE->getOpcode(), *CE);
979      SDValue N1 = NodeMap[V];
980      assert(N1.getNode() && "visit didn't populate the NodeMap!");
981      return N1;
982    }
983
984    if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
985      SmallVector<SDValue, 4> Constants;
986      for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
987           OI != OE; ++OI) {
988        SDNode *Val = getValue(*OI).getNode();
989        // If the operand is an empty aggregate, there are no values.
990        if (!Val) continue;
991        // Add each leaf value from the operand to the Constants list
992        // to form a flattened list of all the values.
993        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
994          Constants.push_back(SDValue(Val, i));
995      }
996
997      return DAG.getMergeValues(&Constants[0], Constants.size(),
998                                getCurDebugLoc());
999    }
1000
1001    if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1002      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1003             "Unknown struct or array constant!");
1004
1005      SmallVector<EVT, 4> ValueVTs;
1006      ComputeValueVTs(TLI, C->getType(), ValueVTs);
1007      unsigned NumElts = ValueVTs.size();
1008      if (NumElts == 0)
1009        return SDValue(); // empty struct
1010      SmallVector<SDValue, 4> Constants(NumElts);
1011      for (unsigned i = 0; i != NumElts; ++i) {
1012        EVT EltVT = ValueVTs[i];
1013        if (isa<UndefValue>(C))
1014          Constants[i] = DAG.getUNDEF(EltVT);
1015        else if (EltVT.isFloatingPoint())
1016          Constants[i] = DAG.getConstantFP(0, EltVT);
1017        else
1018          Constants[i] = DAG.getConstant(0, EltVT);
1019      }
1020
1021      return DAG.getMergeValues(&Constants[0], NumElts,
1022                                getCurDebugLoc());
1023    }
1024
1025    if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1026      return DAG.getBlockAddress(BA, VT);
1027
1028    const VectorType *VecTy = cast<VectorType>(V->getType());
1029    unsigned NumElements = VecTy->getNumElements();
1030
1031    // Now that we know the number and type of the elements, get that number of
1032    // elements into the Ops array based on what kind of constant it is.
1033    SmallVector<SDValue, 16> Ops;
1034    if (const ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
1035      for (unsigned i = 0; i != NumElements; ++i)
1036        Ops.push_back(getValue(CP->getOperand(i)));
1037    } else {
1038      assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1039      EVT EltVT = TLI.getValueType(VecTy->getElementType());
1040
1041      SDValue Op;
1042      if (EltVT.isFloatingPoint())
1043        Op = DAG.getConstantFP(0, EltVT);
1044      else
1045        Op = DAG.getConstant(0, EltVT);
1046      Ops.assign(NumElements, Op);
1047    }
1048
1049    // Create a BUILD_VECTOR node.
1050    return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
1051                                    VT, &Ops[0], Ops.size());
1052  }
1053
1054  // If this is a static alloca, generate it as the frameindex instead of
1055  // computation.
1056  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1057    DenseMap<const AllocaInst*, int>::iterator SI =
1058      FuncInfo.StaticAllocaMap.find(AI);
1059    if (SI != FuncInfo.StaticAllocaMap.end())
1060      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
1061  }
1062
1063  // If this is an instruction which fast-isel has deferred, select it now.
1064  if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1065    unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1066    RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType());
1067    SDValue Chain = DAG.getEntryNode();
1068    return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL);
1069  }
1070
1071  llvm_unreachable("Can't get register for value!");
1072  return SDValue();
1073}
1074
1075void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1076  SDValue Chain = getControlRoot();
1077  SmallVector<ISD::OutputArg, 8> Outs;
1078  SmallVector<SDValue, 8> OutVals;
1079
1080  if (!FuncInfo.CanLowerReturn) {
1081    unsigned DemoteReg = FuncInfo.DemoteRegister;
1082    const Function *F = I.getParent()->getParent();
1083
1084    // Emit a store of the return value through the virtual register.
1085    // Leave Outs empty so that LowerReturn won't try to load return
1086    // registers the usual way.
1087    SmallVector<EVT, 1> PtrValueVTs;
1088    ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
1089                    PtrValueVTs);
1090
1091    SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
1092    SDValue RetOp = getValue(I.getOperand(0));
1093
1094    SmallVector<EVT, 4> ValueVTs;
1095    SmallVector<uint64_t, 4> Offsets;
1096    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1097    unsigned NumValues = ValueVTs.size();
1098
1099    SmallVector<SDValue, 4> Chains(NumValues);
1100    for (unsigned i = 0; i != NumValues; ++i) {
1101      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(),
1102                                RetPtr.getValueType(), RetPtr,
1103                                DAG.getIntPtrConstant(Offsets[i]));
1104      Chains[i] =
1105        DAG.getStore(Chain, getCurDebugLoc(),
1106                     SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1107                     // FIXME: better loc info would be nice.
1108                     Add, MachinePointerInfo(), false, false, 0);
1109    }
1110
1111    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
1112                        MVT::Other, &Chains[0], NumValues);
1113  } else if (I.getNumOperands() != 0) {
1114    SmallVector<EVT, 4> ValueVTs;
1115    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
1116    unsigned NumValues = ValueVTs.size();
1117    if (NumValues) {
1118      SDValue RetOp = getValue(I.getOperand(0));
1119      for (unsigned j = 0, f = NumValues; j != f; ++j) {
1120        EVT VT = ValueVTs[j];
1121
1122        ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1123
1124        const Function *F = I.getParent()->getParent();
1125        if (F->paramHasAttr(0, Attribute::SExt))
1126          ExtendKind = ISD::SIGN_EXTEND;
1127        else if (F->paramHasAttr(0, Attribute::ZExt))
1128          ExtendKind = ISD::ZERO_EXTEND;
1129
1130        if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1131          VT = TLI.getTypeForExtArgOrReturn(*DAG.getContext(), VT, ExtendKind);
1132
1133        unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
1134        EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
1135        SmallVector<SDValue, 4> Parts(NumParts);
1136        getCopyToParts(DAG, getCurDebugLoc(),
1137                       SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1138                       &Parts[0], NumParts, PartVT, ExtendKind);
1139
1140        // 'inreg' on function refers to return value
1141        ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1142        if (F->paramHasAttr(0, Attribute::InReg))
1143          Flags.setInReg();
1144
1145        // Propagate extension type if any
1146        if (ExtendKind == ISD::SIGN_EXTEND)
1147          Flags.setSExt();
1148        else if (ExtendKind == ISD::ZERO_EXTEND)
1149          Flags.setZExt();
1150
1151        for (unsigned i = 0; i < NumParts; ++i) {
1152          Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1153                                        /*isfixed=*/true));
1154          OutVals.push_back(Parts[i]);
1155        }
1156      }
1157    }
1158  }
1159
1160  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1161  CallingConv::ID CallConv =
1162    DAG.getMachineFunction().getFunction()->getCallingConv();
1163  Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
1164                          Outs, OutVals, getCurDebugLoc(), DAG);
1165
1166  // Verify that the target's LowerReturn behaved as expected.
1167  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1168         "LowerReturn didn't return a valid chain!");
1169
1170  // Update the DAG with the new chain value resulting from return lowering.
1171  DAG.setRoot(Chain);
1172}
1173
1174/// CopyToExportRegsIfNeeded - If the given value has virtual registers
1175/// created for it, emit nodes to copy the value into the virtual
1176/// registers.
1177void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1178  // Skip empty types
1179  if (V->getType()->isEmptyTy())
1180    return;
1181
1182  DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1183  if (VMI != FuncInfo.ValueMap.end()) {
1184    assert(!V->use_empty() && "Unused value assigned virtual registers!");
1185    CopyValueToVirtualRegister(V, VMI->second);
1186  }
1187}
1188
1189/// ExportFromCurrentBlock - If this condition isn't known to be exported from
1190/// the current basic block, add it to ValueMap now so that we'll get a
1191/// CopyTo/FromReg.
1192void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1193  // No need to export constants.
1194  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1195
1196  // Already exported?
1197  if (FuncInfo.isExportedInst(V)) return;
1198
1199  unsigned Reg = FuncInfo.InitializeRegForValue(V);
1200  CopyValueToVirtualRegister(V, Reg);
1201}
1202
1203bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1204                                                     const BasicBlock *FromBB) {
1205  // The operands of the setcc have to be in this block.  We don't know
1206  // how to export them from some other block.
1207  if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1208    // Can export from current BB.
1209    if (VI->getParent() == FromBB)
1210      return true;
1211
1212    // Is already exported, noop.
1213    return FuncInfo.isExportedInst(V);
1214  }
1215
1216  // If this is an argument, we can export it if the BB is the entry block or
1217  // if it is already exported.
1218  if (isa<Argument>(V)) {
1219    if (FromBB == &FromBB->getParent()->getEntryBlock())
1220      return true;
1221
1222    // Otherwise, can only export this if it is already exported.
1223    return FuncInfo.isExportedInst(V);
1224  }
1225
1226  // Otherwise, constants can always be exported.
1227  return true;
1228}
1229
1230static bool InBlock(const Value *V, const BasicBlock *BB) {
1231  if (const Instruction *I = dyn_cast<Instruction>(V))
1232    return I->getParent() == BB;
1233  return true;
1234}
1235
1236/// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1237/// This function emits a branch and is used at the leaves of an OR or an
1238/// AND operator tree.
1239///
1240void
1241SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1242                                                  MachineBasicBlock *TBB,
1243                                                  MachineBasicBlock *FBB,
1244                                                  MachineBasicBlock *CurBB,
1245                                                  MachineBasicBlock *SwitchBB) {
1246  const BasicBlock *BB = CurBB->getBasicBlock();
1247
1248  // If the leaf of the tree is a comparison, merge the condition into
1249  // the caseblock.
1250  if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1251    // The operands of the cmp have to be in this block.  We don't know
1252    // how to export them from some other block.  If this is the first block
1253    // of the sequence, no exporting is needed.
1254    if (CurBB == SwitchBB ||
1255        (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1256         isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1257      ISD::CondCode Condition;
1258      if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1259        Condition = getICmpCondCode(IC->getPredicate());
1260      } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1261        Condition = getFCmpCondCode(FC->getPredicate());
1262      } else {
1263        Condition = ISD::SETEQ; // silence warning.
1264        llvm_unreachable("Unknown compare instruction");
1265      }
1266
1267      CaseBlock CB(Condition, BOp->getOperand(0),
1268                   BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1269      SwitchCases.push_back(CB);
1270      return;
1271    }
1272  }
1273
1274  // Create a CaseBlock record representing this branch.
1275  CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1276               NULL, TBB, FBB, CurBB);
1277  SwitchCases.push_back(CB);
1278}
1279
1280/// FindMergedConditions - If Cond is an expression like
1281void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1282                                               MachineBasicBlock *TBB,
1283                                               MachineBasicBlock *FBB,
1284                                               MachineBasicBlock *CurBB,
1285                                               MachineBasicBlock *SwitchBB,
1286                                               unsigned Opc) {
1287  // If this node is not part of the or/and tree, emit it as a branch.
1288  const Instruction *BOp = dyn_cast<Instruction>(Cond);
1289  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1290      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1291      BOp->getParent() != CurBB->getBasicBlock() ||
1292      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1293      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1294    EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB);
1295    return;
1296  }
1297
1298  //  Create TmpBB after CurBB.
1299  MachineFunction::iterator BBI = CurBB;
1300  MachineFunction &MF = DAG.getMachineFunction();
1301  MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1302  CurBB->getParent()->insert(++BBI, TmpBB);
1303
1304  if (Opc == Instruction::Or) {
1305    // Codegen X | Y as:
1306    //   jmp_if_X TBB
1307    //   jmp TmpBB
1308    // TmpBB:
1309    //   jmp_if_Y TBB
1310    //   jmp FBB
1311    //
1312
1313    // Emit the LHS condition.
1314    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc);
1315
1316    // Emit the RHS condition into TmpBB.
1317    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1318  } else {
1319    assert(Opc == Instruction::And && "Unknown merge op!");
1320    // Codegen X & Y as:
1321    //   jmp_if_X TmpBB
1322    //   jmp FBB
1323    // TmpBB:
1324    //   jmp_if_Y TBB
1325    //   jmp FBB
1326    //
1327    //  This requires creation of TmpBB after CurBB.
1328
1329    // Emit the LHS condition.
1330    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc);
1331
1332    // Emit the RHS condition into TmpBB.
1333    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1334  }
1335}
1336
1337/// If the set of cases should be emitted as a series of branches, return true.
1338/// If we should emit this as a bunch of and/or'd together conditions, return
1339/// false.
1340bool
1341SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
1342  if (Cases.size() != 2) return true;
1343
1344  // If this is two comparisons of the same values or'd or and'd together, they
1345  // will get folded into a single comparison, so don't emit two blocks.
1346  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1347       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1348      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1349       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1350    return false;
1351  }
1352
1353  // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1354  // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1355  if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1356      Cases[0].CC == Cases[1].CC &&
1357      isa<Constant>(Cases[0].CmpRHS) &&
1358      cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1359    if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1360      return false;
1361    if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1362      return false;
1363  }
1364
1365  return true;
1366}
1367
1368void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1369  MachineBasicBlock *BrMBB = FuncInfo.MBB;
1370
1371  // Update machine-CFG edges.
1372  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1373
1374  // Figure out which block is immediately after the current one.
1375  MachineBasicBlock *NextBlock = 0;
1376  MachineFunction::iterator BBI = BrMBB;
1377  if (++BBI != FuncInfo.MF->end())
1378    NextBlock = BBI;
1379
1380  if (I.isUnconditional()) {
1381    // Update machine-CFG edges.
1382    BrMBB->addSuccessor(Succ0MBB);
1383
1384    // If this is not a fall-through branch, emit the branch.
1385    if (Succ0MBB != NextBlock)
1386      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1387                              MVT::Other, getControlRoot(),
1388                              DAG.getBasicBlock(Succ0MBB)));
1389
1390    return;
1391  }
1392
1393  // If this condition is one of the special cases we handle, do special stuff
1394  // now.
1395  const Value *CondVal = I.getCondition();
1396  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1397
1398  // If this is a series of conditions that are or'd or and'd together, emit
1399  // this as a sequence of branches instead of setcc's with and/or operations.
1400  // As long as jumps are not expensive, this should improve performance.
1401  // For example, instead of something like:
1402  //     cmp A, B
1403  //     C = seteq
1404  //     cmp D, E
1405  //     F = setle
1406  //     or C, F
1407  //     jnz foo
1408  // Emit:
1409  //     cmp A, B
1410  //     je foo
1411  //     cmp D, E
1412  //     jle foo
1413  //
1414  if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1415    if (!TLI.isJumpExpensive() &&
1416        BOp->hasOneUse() &&
1417        (BOp->getOpcode() == Instruction::And ||
1418         BOp->getOpcode() == Instruction::Or)) {
1419      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1420                           BOp->getOpcode());
1421      // If the compares in later blocks need to use values not currently
1422      // exported from this block, export them now.  This block should always
1423      // be the first entry.
1424      assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1425
1426      // Allow some cases to be rejected.
1427      if (ShouldEmitAsBranches(SwitchCases)) {
1428        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1429          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1430          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1431        }
1432
1433        // Emit the branch for this block.
1434        visitSwitchCase(SwitchCases[0], BrMBB);
1435        SwitchCases.erase(SwitchCases.begin());
1436        return;
1437      }
1438
1439      // Okay, we decided not to do this, remove any inserted MBB's and clear
1440      // SwitchCases.
1441      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1442        FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1443
1444      SwitchCases.clear();
1445    }
1446  }
1447
1448  // Create a CaseBlock record representing this branch.
1449  CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1450               NULL, Succ0MBB, Succ1MBB, BrMBB);
1451
1452  // Use visitSwitchCase to actually insert the fast branch sequence for this
1453  // cond branch.
1454  visitSwitchCase(CB, BrMBB);
1455}
1456
1457/// visitSwitchCase - Emits the necessary code to represent a single node in
1458/// the binary search tree resulting from lowering a switch instruction.
1459void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1460                                          MachineBasicBlock *SwitchBB) {
1461  SDValue Cond;
1462  SDValue CondLHS = getValue(CB.CmpLHS);
1463  DebugLoc dl = getCurDebugLoc();
1464
1465  // Build the setcc now.
1466  if (CB.CmpMHS == NULL) {
1467    // Fold "(X == true)" to X and "(X == false)" to !X to
1468    // handle common cases produced by branch lowering.
1469    if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1470        CB.CC == ISD::SETEQ)
1471      Cond = CondLHS;
1472    else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1473             CB.CC == ISD::SETEQ) {
1474      SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1475      Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1476    } else
1477      Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1478  } else {
1479    assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1480
1481    const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1482    const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
1483
1484    SDValue CmpOp = getValue(CB.CmpMHS);
1485    EVT VT = CmpOp.getValueType();
1486
1487    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1488      Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1489                          ISD::SETLE);
1490    } else {
1491      SDValue SUB = DAG.getNode(ISD::SUB, dl,
1492                                VT, CmpOp, DAG.getConstant(Low, VT));
1493      Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1494                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1495    }
1496  }
1497
1498  // Update successor info
1499  SwitchBB->addSuccessor(CB.TrueBB);
1500  SwitchBB->addSuccessor(CB.FalseBB);
1501
1502  // Set NextBlock to be the MBB immediately after the current one, if any.
1503  // This is used to avoid emitting unnecessary branches to the next block.
1504  MachineBasicBlock *NextBlock = 0;
1505  MachineFunction::iterator BBI = SwitchBB;
1506  if (++BBI != FuncInfo.MF->end())
1507    NextBlock = BBI;
1508
1509  // If the lhs block is the next block, invert the condition so that we can
1510  // fall through to the lhs instead of the rhs block.
1511  if (CB.TrueBB == NextBlock) {
1512    std::swap(CB.TrueBB, CB.FalseBB);
1513    SDValue True = DAG.getConstant(1, Cond.getValueType());
1514    Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1515  }
1516
1517  SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1518                               MVT::Other, getControlRoot(), Cond,
1519                               DAG.getBasicBlock(CB.TrueBB));
1520
1521  // Insert the false branch. Do this even if it's a fall through branch,
1522  // this makes it easier to do DAG optimizations which require inverting
1523  // the branch condition.
1524  BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1525                       DAG.getBasicBlock(CB.FalseBB));
1526
1527  DAG.setRoot(BrCond);
1528}
1529
1530/// visitJumpTable - Emit JumpTable node in the current MBB
1531void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1532  // Emit the code for the jump table
1533  assert(JT.Reg != -1U && "Should lower JT Header first!");
1534  EVT PTy = TLI.getPointerTy();
1535  SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1536                                     JT.Reg, PTy);
1537  SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1538  SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(),
1539                                    MVT::Other, Index.getValue(1),
1540                                    Table, Index);
1541  DAG.setRoot(BrJumpTable);
1542}
1543
1544/// visitJumpTableHeader - This function emits necessary code to produce index
1545/// in the JumpTable from switch case.
1546void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1547                                               JumpTableHeader &JTH,
1548                                               MachineBasicBlock *SwitchBB) {
1549  // Subtract the lowest switch case value from the value being switched on and
1550  // conditional branch to default mbb if the result is greater than the
1551  // difference between smallest and largest cases.
1552  SDValue SwitchOp = getValue(JTH.SValue);
1553  EVT VT = SwitchOp.getValueType();
1554  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1555                            DAG.getConstant(JTH.First, VT));
1556
1557  // The SDNode we just created, which holds the value being switched on minus
1558  // the smallest case value, needs to be copied to a virtual register so it
1559  // can be used as an index into the jump table in a subsequent basic block.
1560  // This value may be smaller or larger than the target's pointer type, and
1561  // therefore require extension or truncating.
1562  SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy());
1563
1564  unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy());
1565  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1566                                    JumpTableReg, SwitchOp);
1567  JT.Reg = JumpTableReg;
1568
1569  // Emit the range check for the jump table, and branch to the default block
1570  // for the switch statement if the value being switched on exceeds the largest
1571  // case in the switch.
1572  SDValue CMP = DAG.getSetCC(getCurDebugLoc(),
1573                             TLI.getSetCCResultType(Sub.getValueType()), Sub,
1574                             DAG.getConstant(JTH.Last-JTH.First,VT),
1575                             ISD::SETUGT);
1576
1577  // Set NextBlock to be the MBB immediately after the current one, if any.
1578  // This is used to avoid emitting unnecessary branches to the next block.
1579  MachineBasicBlock *NextBlock = 0;
1580  MachineFunction::iterator BBI = SwitchBB;
1581
1582  if (++BBI != FuncInfo.MF->end())
1583    NextBlock = BBI;
1584
1585  SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1586                               MVT::Other, CopyTo, CMP,
1587                               DAG.getBasicBlock(JT.Default));
1588
1589  if (JT.MBB != NextBlock)
1590    BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond,
1591                         DAG.getBasicBlock(JT.MBB));
1592
1593  DAG.setRoot(BrCond);
1594}
1595
1596/// visitBitTestHeader - This function emits necessary code to produce value
1597/// suitable for "bit tests"
1598void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1599                                             MachineBasicBlock *SwitchBB) {
1600  // Subtract the minimum value
1601  SDValue SwitchOp = getValue(B.SValue);
1602  EVT VT = SwitchOp.getValueType();
1603  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1604                            DAG.getConstant(B.First, VT));
1605
1606  // Check range
1607  SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(),
1608                                  TLI.getSetCCResultType(Sub.getValueType()),
1609                                  Sub, DAG.getConstant(B.Range, VT),
1610                                  ISD::SETUGT);
1611
1612  // Determine the type of the test operands.
1613  bool UsePtrType = false;
1614  if (!TLI.isTypeLegal(VT))
1615    UsePtrType = true;
1616  else {
1617    for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
1618      if ((uint64_t)((int64_t)B.Cases[i].Mask >> VT.getSizeInBits()) + 1 >= 2) {
1619        // Switch table case range are encoded into series of masks.
1620        // Just use pointer type, it's guaranteed to fit.
1621        UsePtrType = true;
1622        break;
1623      }
1624  }
1625  if (UsePtrType) {
1626    VT = TLI.getPointerTy();
1627    Sub = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), VT);
1628  }
1629
1630  B.RegVT = VT;
1631  B.Reg = FuncInfo.CreateReg(VT);
1632  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1633                                    B.Reg, Sub);
1634
1635  // Set NextBlock to be the MBB immediately after the current one, if any.
1636  // This is used to avoid emitting unnecessary branches to the next block.
1637  MachineBasicBlock *NextBlock = 0;
1638  MachineFunction::iterator BBI = SwitchBB;
1639  if (++BBI != FuncInfo.MF->end())
1640    NextBlock = BBI;
1641
1642  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1643
1644  SwitchBB->addSuccessor(B.Default);
1645  SwitchBB->addSuccessor(MBB);
1646
1647  SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1648                                MVT::Other, CopyTo, RangeCmp,
1649                                DAG.getBasicBlock(B.Default));
1650
1651  if (MBB != NextBlock)
1652    BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo,
1653                          DAG.getBasicBlock(MBB));
1654
1655  DAG.setRoot(BrRange);
1656}
1657
1658/// visitBitTestCase - this function produces one "bit test"
1659void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
1660                                           MachineBasicBlock* NextMBB,
1661                                           unsigned Reg,
1662                                           BitTestCase &B,
1663                                           MachineBasicBlock *SwitchBB) {
1664  EVT VT = BB.RegVT;
1665  SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1666                                       Reg, VT);
1667  SDValue Cmp;
1668  if (CountPopulation_64(B.Mask) == 1) {
1669    // Testing for a single bit; just compare the shift count with what it
1670    // would need to be to shift a 1 bit in that position.
1671    Cmp = DAG.getSetCC(getCurDebugLoc(),
1672                       TLI.getSetCCResultType(VT),
1673                       ShiftOp,
1674                       DAG.getConstant(CountTrailingZeros_64(B.Mask), VT),
1675                       ISD::SETEQ);
1676  } else {
1677    // Make desired shift
1678    SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), VT,
1679                                    DAG.getConstant(1, VT), ShiftOp);
1680
1681    // Emit bit tests and jumps
1682    SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(),
1683                                VT, SwitchVal, DAG.getConstant(B.Mask, VT));
1684    Cmp = DAG.getSetCC(getCurDebugLoc(),
1685                       TLI.getSetCCResultType(VT),
1686                       AndOp, DAG.getConstant(0, VT),
1687                       ISD::SETNE);
1688  }
1689
1690  SwitchBB->addSuccessor(B.TargetBB);
1691  SwitchBB->addSuccessor(NextMBB);
1692
1693  SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1694                              MVT::Other, getControlRoot(),
1695                              Cmp, DAG.getBasicBlock(B.TargetBB));
1696
1697  // Set NextBlock to be the MBB immediately after the current one, if any.
1698  // This is used to avoid emitting unnecessary branches to the next block.
1699  MachineBasicBlock *NextBlock = 0;
1700  MachineFunction::iterator BBI = SwitchBB;
1701  if (++BBI != FuncInfo.MF->end())
1702    NextBlock = BBI;
1703
1704  if (NextMBB != NextBlock)
1705    BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd,
1706                        DAG.getBasicBlock(NextMBB));
1707
1708  DAG.setRoot(BrAnd);
1709}
1710
1711void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1712  MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
1713
1714  // Retrieve successors.
1715  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1716  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1717
1718  const Value *Callee(I.getCalledValue());
1719  if (isa<InlineAsm>(Callee))
1720    visitInlineAsm(&I);
1721  else
1722    LowerCallTo(&I, getValue(Callee), false, LandingPad);
1723
1724  // If the value of the invoke is used outside of its defining block, make it
1725  // available as a virtual register.
1726  CopyToExportRegsIfNeeded(&I);
1727
1728  // Update successor info
1729  InvokeMBB->addSuccessor(Return);
1730  InvokeMBB->addSuccessor(LandingPad);
1731
1732  // Drop into normal successor.
1733  DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1734                          MVT::Other, getControlRoot(),
1735                          DAG.getBasicBlock(Return)));
1736}
1737
1738void SelectionDAGBuilder::visitUnwind(const UnwindInst &I) {
1739}
1740
1741/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1742/// small case ranges).
1743bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
1744                                                 CaseRecVector& WorkList,
1745                                                 const Value* SV,
1746                                                 MachineBasicBlock *Default,
1747                                                 MachineBasicBlock *SwitchBB) {
1748  Case& BackCase  = *(CR.Range.second-1);
1749
1750  // Size is the number of Cases represented by this range.
1751  size_t Size = CR.Range.second - CR.Range.first;
1752  if (Size > 3)
1753    return false;
1754
1755  // Get the MachineFunction which holds the current MBB.  This is used when
1756  // inserting any additional MBBs necessary to represent the switch.
1757  MachineFunction *CurMF = FuncInfo.MF;
1758
1759  // Figure out which block is immediately after the current one.
1760  MachineBasicBlock *NextBlock = 0;
1761  MachineFunction::iterator BBI = CR.CaseBB;
1762
1763  if (++BBI != FuncInfo.MF->end())
1764    NextBlock = BBI;
1765
1766  // If any two of the cases has the same destination, and if one value
1767  // is the same as the other, but has one bit unset that the other has set,
1768  // use bit manipulation to do two compares at once.  For example:
1769  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1770  // TODO: This could be extended to merge any 2 cases in switches with 3 cases.
1771  // TODO: Handle cases where CR.CaseBB != SwitchBB.
1772  if (Size == 2 && CR.CaseBB == SwitchBB) {
1773    Case &Small = *CR.Range.first;
1774    Case &Big = *(CR.Range.second-1);
1775
1776    if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) {
1777      const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue();
1778      const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue();
1779
1780      // Check that there is only one bit different.
1781      if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 &&
1782          (SmallValue | BigValue) == BigValue) {
1783        // Isolate the common bit.
1784        APInt CommonBit = BigValue & ~SmallValue;
1785        assert((SmallValue | CommonBit) == BigValue &&
1786               CommonBit.countPopulation() == 1 && "Not a common bit?");
1787
1788        SDValue CondLHS = getValue(SV);
1789        EVT VT = CondLHS.getValueType();
1790        DebugLoc DL = getCurDebugLoc();
1791
1792        SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
1793                                 DAG.getConstant(CommonBit, VT));
1794        SDValue Cond = DAG.getSetCC(DL, MVT::i1,
1795                                    Or, DAG.getConstant(BigValue, VT),
1796                                    ISD::SETEQ);
1797
1798        // Update successor info.
1799        SwitchBB->addSuccessor(Small.BB);
1800        SwitchBB->addSuccessor(Default);
1801
1802        // Insert the true branch.
1803        SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other,
1804                                     getControlRoot(), Cond,
1805                                     DAG.getBasicBlock(Small.BB));
1806
1807        // Insert the false branch.
1808        BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
1809                             DAG.getBasicBlock(Default));
1810
1811        DAG.setRoot(BrCond);
1812        return true;
1813      }
1814    }
1815  }
1816
1817  // Rearrange the case blocks so that the last one falls through if possible.
1818  if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1819    // The last case block won't fall through into 'NextBlock' if we emit the
1820    // branches in this order.  See if rearranging a case value would help.
1821    for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1822      if (I->BB == NextBlock) {
1823        std::swap(*I, BackCase);
1824        break;
1825      }
1826    }
1827  }
1828
1829  // Create a CaseBlock record representing a conditional branch to
1830  // the Case's target mbb if the value being switched on SV is equal
1831  // to C.
1832  MachineBasicBlock *CurBlock = CR.CaseBB;
1833  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1834    MachineBasicBlock *FallThrough;
1835    if (I != E-1) {
1836      FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
1837      CurMF->insert(BBI, FallThrough);
1838
1839      // Put SV in a virtual register to make it available from the new blocks.
1840      ExportFromCurrentBlock(SV);
1841    } else {
1842      // If the last case doesn't match, go to the default block.
1843      FallThrough = Default;
1844    }
1845
1846    const Value *RHS, *LHS, *MHS;
1847    ISD::CondCode CC;
1848    if (I->High == I->Low) {
1849      // This is just small small case range :) containing exactly 1 case
1850      CC = ISD::SETEQ;
1851      LHS = SV; RHS = I->High; MHS = NULL;
1852    } else {
1853      CC = ISD::SETLE;
1854      LHS = I->Low; MHS = SV; RHS = I->High;
1855    }
1856    CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock);
1857
1858    // If emitting the first comparison, just call visitSwitchCase to emit the
1859    // code into the current block.  Otherwise, push the CaseBlock onto the
1860    // vector to be later processed by SDISel, and insert the node's MBB
1861    // before the next MBB.
1862    if (CurBlock == SwitchBB)
1863      visitSwitchCase(CB, SwitchBB);
1864    else
1865      SwitchCases.push_back(CB);
1866
1867    CurBlock = FallThrough;
1868  }
1869
1870  return true;
1871}
1872
1873static inline bool areJTsAllowed(const TargetLowering &TLI) {
1874  return !DisableJumpTables &&
1875          (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
1876           TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
1877}
1878
1879static APInt ComputeRange(const APInt &First, const APInt &Last) {
1880  uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
1881  APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth);
1882  return (LastExt - FirstExt + 1ULL);
1883}
1884
1885/// handleJTSwitchCase - Emit jumptable for current switch case range
1886bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec& CR,
1887                                             CaseRecVector& WorkList,
1888                                             const Value* SV,
1889                                             MachineBasicBlock* Default,
1890                                             MachineBasicBlock *SwitchBB) {
1891  Case& FrontCase = *CR.Range.first;
1892  Case& BackCase  = *(CR.Range.second-1);
1893
1894  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
1895  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
1896
1897  APInt TSize(First.getBitWidth(), 0);
1898  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1899       I!=E; ++I)
1900    TSize += I->size();
1901
1902  if (!areJTsAllowed(TLI) || TSize.ult(4))
1903    return false;
1904
1905  APInt Range = ComputeRange(First, Last);
1906  double Density = TSize.roundToDouble() / Range.roundToDouble();
1907  if (Density < 0.4)
1908    return false;
1909
1910  DEBUG(dbgs() << "Lowering jump table\n"
1911               << "First entry: " << First << ". Last entry: " << Last << '\n'
1912               << "Range: " << Range
1913               << ". Size: " << TSize << ". Density: " << Density << "\n\n");
1914
1915  // Get the MachineFunction which holds the current MBB.  This is used when
1916  // inserting any additional MBBs necessary to represent the switch.
1917  MachineFunction *CurMF = FuncInfo.MF;
1918
1919  // Figure out which block is immediately after the current one.
1920  MachineFunction::iterator BBI = CR.CaseBB;
1921  ++BBI;
1922
1923  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1924
1925  // Create a new basic block to hold the code for loading the address
1926  // of the jump table, and jumping to it.  Update successor information;
1927  // we will either branch to the default case for the switch, or the jump
1928  // table.
1929  MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1930  CurMF->insert(BBI, JumpTableBB);
1931  CR.CaseBB->addSuccessor(Default);
1932  CR.CaseBB->addSuccessor(JumpTableBB);
1933
1934  // Build a vector of destination BBs, corresponding to each target
1935  // of the jump table. If the value of the jump table slot corresponds to
1936  // a case statement, push the case's BB onto the vector, otherwise, push
1937  // the default BB.
1938  std::vector<MachineBasicBlock*> DestBBs;
1939  APInt TEI = First;
1940  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
1941    const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
1942    const APInt &High = cast<ConstantInt>(I->High)->getValue();
1943
1944    if (Low.sle(TEI) && TEI.sle(High)) {
1945      DestBBs.push_back(I->BB);
1946      if (TEI==High)
1947        ++I;
1948    } else {
1949      DestBBs.push_back(Default);
1950    }
1951  }
1952
1953  // Update successor info. Add one edge to each unique successor.
1954  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
1955  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
1956         E = DestBBs.end(); I != E; ++I) {
1957    if (!SuccsHandled[(*I)->getNumber()]) {
1958      SuccsHandled[(*I)->getNumber()] = true;
1959      JumpTableBB->addSuccessor(*I);
1960    }
1961  }
1962
1963  // Create a jump table index for this jump table.
1964  unsigned JTEncoding = TLI.getJumpTableEncoding();
1965  unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
1966                       ->createJumpTableIndex(DestBBs);
1967
1968  // Set the jump table information so that we can codegen it as a second
1969  // MachineBasicBlock
1970  JumpTable JT(-1U, JTI, JumpTableBB, Default);
1971  JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
1972  if (CR.CaseBB == SwitchBB)
1973    visitJumpTableHeader(JT, JTH, SwitchBB);
1974
1975  JTCases.push_back(JumpTableBlock(JTH, JT));
1976
1977  return true;
1978}
1979
1980/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
1981/// 2 subtrees.
1982bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
1983                                                  CaseRecVector& WorkList,
1984                                                  const Value* SV,
1985                                                  MachineBasicBlock *Default,
1986                                                  MachineBasicBlock *SwitchBB) {
1987  // Get the MachineFunction which holds the current MBB.  This is used when
1988  // inserting any additional MBBs necessary to represent the switch.
1989  MachineFunction *CurMF = FuncInfo.MF;
1990
1991  // Figure out which block is immediately after the current one.
1992  MachineFunction::iterator BBI = CR.CaseBB;
1993  ++BBI;
1994
1995  Case& FrontCase = *CR.Range.first;
1996  Case& BackCase  = *(CR.Range.second-1);
1997  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1998
1999  // Size is the number of Cases represented by this range.
2000  unsigned Size = CR.Range.second - CR.Range.first;
2001
2002  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2003  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2004  double FMetric = 0;
2005  CaseItr Pivot = CR.Range.first + Size/2;
2006
2007  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
2008  // (heuristically) allow us to emit JumpTable's later.
2009  APInt TSize(First.getBitWidth(), 0);
2010  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2011       I!=E; ++I)
2012    TSize += I->size();
2013
2014  APInt LSize = FrontCase.size();
2015  APInt RSize = TSize-LSize;
2016  DEBUG(dbgs() << "Selecting best pivot: \n"
2017               << "First: " << First << ", Last: " << Last <<'\n'
2018               << "LSize: " << LSize << ", RSize: " << RSize << '\n');
2019  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
2020       J!=E; ++I, ++J) {
2021    const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
2022    const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
2023    APInt Range = ComputeRange(LEnd, RBegin);
2024    assert((Range - 2ULL).isNonNegative() &&
2025           "Invalid case distance");
2026    // Use volatile double here to avoid excess precision issues on some hosts,
2027    // e.g. that use 80-bit X87 registers.
2028    volatile double LDensity =
2029       (double)LSize.roundToDouble() /
2030                           (LEnd - First + 1ULL).roundToDouble();
2031    volatile double RDensity =
2032      (double)RSize.roundToDouble() /
2033                           (Last - RBegin + 1ULL).roundToDouble();
2034    double Metric = Range.logBase2()*(LDensity+RDensity);
2035    // Should always split in some non-trivial place
2036    DEBUG(dbgs() <<"=>Step\n"
2037                 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
2038                 << "LDensity: " << LDensity
2039                 << ", RDensity: " << RDensity << '\n'
2040                 << "Metric: " << Metric << '\n');
2041    if (FMetric < Metric) {
2042      Pivot = J;
2043      FMetric = Metric;
2044      DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
2045    }
2046
2047    LSize += J->size();
2048    RSize -= J->size();
2049  }
2050  if (areJTsAllowed(TLI)) {
2051    // If our case is dense we *really* should handle it earlier!
2052    assert((FMetric > 0) && "Should handle dense range earlier!");
2053  } else {
2054    Pivot = CR.Range.first + Size/2;
2055  }
2056
2057  CaseRange LHSR(CR.Range.first, Pivot);
2058  CaseRange RHSR(Pivot, CR.Range.second);
2059  Constant *C = Pivot->Low;
2060  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
2061
2062  // We know that we branch to the LHS if the Value being switched on is
2063  // less than the Pivot value, C.  We use this to optimize our binary
2064  // tree a bit, by recognizing that if SV is greater than or equal to the
2065  // LHS's Case Value, and that Case Value is exactly one less than the
2066  // Pivot's Value, then we can branch directly to the LHS's Target,
2067  // rather than creating a leaf node for it.
2068  if ((LHSR.second - LHSR.first) == 1 &&
2069      LHSR.first->High == CR.GE &&
2070      cast<ConstantInt>(C)->getValue() ==
2071      (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
2072    TrueBB = LHSR.first->BB;
2073  } else {
2074    TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2075    CurMF->insert(BBI, TrueBB);
2076    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
2077
2078    // Put SV in a virtual register to make it available from the new blocks.
2079    ExportFromCurrentBlock(SV);
2080  }
2081
2082  // Similar to the optimization above, if the Value being switched on is
2083  // known to be less than the Constant CR.LT, and the current Case Value
2084  // is CR.LT - 1, then we can branch directly to the target block for
2085  // the current Case Value, rather than emitting a RHS leaf node for it.
2086  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
2087      cast<ConstantInt>(RHSR.first->Low)->getValue() ==
2088      (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
2089    FalseBB = RHSR.first->BB;
2090  } else {
2091    FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2092    CurMF->insert(BBI, FalseBB);
2093    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
2094
2095    // Put SV in a virtual register to make it available from the new blocks.
2096    ExportFromCurrentBlock(SV);
2097  }
2098
2099  // Create a CaseBlock record representing a conditional branch to
2100  // the LHS node if the value being switched on SV is less than C.
2101  // Otherwise, branch to LHS.
2102  CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
2103
2104  if (CR.CaseBB == SwitchBB)
2105    visitSwitchCase(CB, SwitchBB);
2106  else
2107    SwitchCases.push_back(CB);
2108
2109  return true;
2110}
2111
2112/// handleBitTestsSwitchCase - if current case range has few destination and
2113/// range span less, than machine word bitwidth, encode case range into series
2114/// of masks and emit bit tests with these masks.
2115bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
2116                                                   CaseRecVector& WorkList,
2117                                                   const Value* SV,
2118                                                   MachineBasicBlock* Default,
2119                                                   MachineBasicBlock *SwitchBB){
2120  EVT PTy = TLI.getPointerTy();
2121  unsigned IntPtrBits = PTy.getSizeInBits();
2122
2123  Case& FrontCase = *CR.Range.first;
2124  Case& BackCase  = *(CR.Range.second-1);
2125
2126  // Get the MachineFunction which holds the current MBB.  This is used when
2127  // inserting any additional MBBs necessary to represent the switch.
2128  MachineFunction *CurMF = FuncInfo.MF;
2129
2130  // If target does not have legal shift left, do not emit bit tests at all.
2131  if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
2132    return false;
2133
2134  size_t numCmps = 0;
2135  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2136       I!=E; ++I) {
2137    // Single case counts one, case range - two.
2138    numCmps += (I->Low == I->High ? 1 : 2);
2139  }
2140
2141  // Count unique destinations
2142  SmallSet<MachineBasicBlock*, 4> Dests;
2143  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2144    Dests.insert(I->BB);
2145    if (Dests.size() > 3)
2146      // Don't bother the code below, if there are too much unique destinations
2147      return false;
2148  }
2149  DEBUG(dbgs() << "Total number of unique destinations: "
2150        << Dests.size() << '\n'
2151        << "Total number of comparisons: " << numCmps << '\n');
2152
2153  // Compute span of values.
2154  const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
2155  const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
2156  APInt cmpRange = maxValue - minValue;
2157
2158  DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
2159               << "Low bound: " << minValue << '\n'
2160               << "High bound: " << maxValue << '\n');
2161
2162  if (cmpRange.uge(IntPtrBits) ||
2163      (!(Dests.size() == 1 && numCmps >= 3) &&
2164       !(Dests.size() == 2 && numCmps >= 5) &&
2165       !(Dests.size() >= 3 && numCmps >= 6)))
2166    return false;
2167
2168  DEBUG(dbgs() << "Emitting bit tests\n");
2169  APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
2170
2171  // Optimize the case where all the case values fit in a
2172  // word without having to subtract minValue. In this case,
2173  // we can optimize away the subtraction.
2174  if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) {
2175    cmpRange = maxValue;
2176  } else {
2177    lowBound = minValue;
2178  }
2179
2180  CaseBitsVector CasesBits;
2181  unsigned i, count = 0;
2182
2183  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2184    MachineBasicBlock* Dest = I->BB;
2185    for (i = 0; i < count; ++i)
2186      if (Dest == CasesBits[i].BB)
2187        break;
2188
2189    if (i == count) {
2190      assert((count < 3) && "Too much destinations to test!");
2191      CasesBits.push_back(CaseBits(0, Dest, 0));
2192      count++;
2193    }
2194
2195    const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
2196    const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
2197
2198    uint64_t lo = (lowValue - lowBound).getZExtValue();
2199    uint64_t hi = (highValue - lowBound).getZExtValue();
2200
2201    for (uint64_t j = lo; j <= hi; j++) {
2202      CasesBits[i].Mask |=  1ULL << j;
2203      CasesBits[i].Bits++;
2204    }
2205
2206  }
2207  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2208
2209  BitTestInfo BTC;
2210
2211  // Figure out which block is immediately after the current one.
2212  MachineFunction::iterator BBI = CR.CaseBB;
2213  ++BBI;
2214
2215  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2216
2217  DEBUG(dbgs() << "Cases:\n");
2218  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2219    DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
2220                 << ", Bits: " << CasesBits[i].Bits
2221                 << ", BB: " << CasesBits[i].BB << '\n');
2222
2223    MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2224    CurMF->insert(BBI, CaseBB);
2225    BTC.push_back(BitTestCase(CasesBits[i].Mask,
2226                              CaseBB,
2227                              CasesBits[i].BB));
2228
2229    // Put SV in a virtual register to make it available from the new blocks.
2230    ExportFromCurrentBlock(SV);
2231  }
2232
2233  BitTestBlock BTB(lowBound, cmpRange, SV,
2234                   -1U, MVT::Other, (CR.CaseBB == SwitchBB),
2235                   CR.CaseBB, Default, BTC);
2236
2237  if (CR.CaseBB == SwitchBB)
2238    visitBitTestHeader(BTB, SwitchBB);
2239
2240  BitTestCases.push_back(BTB);
2241
2242  return true;
2243}
2244
2245/// Clusterify - Transform simple list of Cases into list of CaseRange's
2246size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
2247                                       const SwitchInst& SI) {
2248  size_t numCmps = 0;
2249
2250  // Start with "simple" cases
2251  for (size_t i = 1; i < SI.getNumSuccessors(); ++i) {
2252    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
2253    Cases.push_back(Case(SI.getSuccessorValue(i),
2254                         SI.getSuccessorValue(i),
2255                         SMBB));
2256  }
2257  std::sort(Cases.begin(), Cases.end(), CaseCmp());
2258
2259  // Merge case into clusters
2260  if (Cases.size() >= 2)
2261    // Must recompute end() each iteration because it may be
2262    // invalidated by erase if we hold on to it
2263    for (CaseItr I = Cases.begin(), J = llvm::next(Cases.begin());
2264         J != Cases.end(); ) {
2265      const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
2266      const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
2267      MachineBasicBlock* nextBB = J->BB;
2268      MachineBasicBlock* currentBB = I->BB;
2269
2270      // If the two neighboring cases go to the same destination, merge them
2271      // into a single case.
2272      if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
2273        I->High = J->High;
2274        J = Cases.erase(J);
2275      } else {
2276        I = J++;
2277      }
2278    }
2279
2280  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
2281    if (I->Low != I->High)
2282      // A range counts double, since it requires two compares.
2283      ++numCmps;
2284  }
2285
2286  return numCmps;
2287}
2288
2289void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2290                                           MachineBasicBlock *Last) {
2291  // Update JTCases.
2292  for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2293    if (JTCases[i].first.HeaderBB == First)
2294      JTCases[i].first.HeaderBB = Last;
2295
2296  // Update BitTestCases.
2297  for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2298    if (BitTestCases[i].Parent == First)
2299      BitTestCases[i].Parent = Last;
2300}
2301
2302void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
2303  MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
2304
2305  // Figure out which block is immediately after the current one.
2306  MachineBasicBlock *NextBlock = 0;
2307  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2308
2309  // If there is only the default destination, branch to it if it is not the
2310  // next basic block.  Otherwise, just fall through.
2311  if (SI.getNumOperands() == 2) {
2312    // Update machine-CFG edges.
2313
2314    // If this is not a fall-through branch, emit the branch.
2315    SwitchMBB->addSuccessor(Default);
2316    if (Default != NextBlock)
2317      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
2318                              MVT::Other, getControlRoot(),
2319                              DAG.getBasicBlock(Default)));
2320
2321    return;
2322  }
2323
2324  // If there are any non-default case statements, create a vector of Cases
2325  // representing each one, and sort the vector so that we can efficiently
2326  // create a binary search tree from them.
2327  CaseVector Cases;
2328  size_t numCmps = Clusterify(Cases, SI);
2329  DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2330               << ". Total compares: " << numCmps << '\n');
2331  numCmps = 0;
2332
2333  // Get the Value to be switched on and default basic blocks, which will be
2334  // inserted into CaseBlock records, representing basic blocks in the binary
2335  // search tree.
2336  const Value *SV = SI.getOperand(0);
2337
2338  // Push the initial CaseRec onto the worklist
2339  CaseRecVector WorkList;
2340  WorkList.push_back(CaseRec(SwitchMBB,0,0,
2341                             CaseRange(Cases.begin(),Cases.end())));
2342
2343  while (!WorkList.empty()) {
2344    // Grab a record representing a case range to process off the worklist
2345    CaseRec CR = WorkList.back();
2346    WorkList.pop_back();
2347
2348    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2349      continue;
2350
2351    // If the range has few cases (two or less) emit a series of specific
2352    // tests.
2353    if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
2354      continue;
2355
2356    // If the switch has more than 5 blocks, and at least 40% dense, and the
2357    // target supports indirect branches, then emit a jump table rather than
2358    // lowering the switch to a binary tree of conditional branches.
2359    if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2360      continue;
2361
2362    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2363    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2364    handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
2365  }
2366}
2367
2368void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2369  MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2370
2371  // Update machine-CFG edges with unique successors.
2372  SmallVector<BasicBlock*, 32> succs;
2373  succs.reserve(I.getNumSuccessors());
2374  for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i)
2375    succs.push_back(I.getSuccessor(i));
2376  array_pod_sort(succs.begin(), succs.end());
2377  succs.erase(std::unique(succs.begin(), succs.end()), succs.end());
2378  for (unsigned i = 0, e = succs.size(); i != e; ++i)
2379    IndirectBrMBB->addSuccessor(FuncInfo.MBBMap[succs[i]]);
2380
2381  DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(),
2382                          MVT::Other, getControlRoot(),
2383                          getValue(I.getAddress())));
2384}
2385
2386void SelectionDAGBuilder::visitFSub(const User &I) {
2387  // -0.0 - X --> fneg
2388  const Type *Ty = I.getType();
2389  if (isa<Constant>(I.getOperand(0)) &&
2390      I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2391    SDValue Op2 = getValue(I.getOperand(1));
2392    setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2393                             Op2.getValueType(), Op2));
2394    return;
2395  }
2396
2397  visitBinary(I, ISD::FSUB);
2398}
2399
2400void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2401  SDValue Op1 = getValue(I.getOperand(0));
2402  SDValue Op2 = getValue(I.getOperand(1));
2403  setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(),
2404                           Op1.getValueType(), Op1, Op2));
2405}
2406
2407void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2408  SDValue Op1 = getValue(I.getOperand(0));
2409  SDValue Op2 = getValue(I.getOperand(1));
2410
2411  MVT ShiftTy = TLI.getShiftAmountTy(Op2.getValueType());
2412
2413  // Coerce the shift amount to the right type if we can.
2414  if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2415    unsigned ShiftSize = ShiftTy.getSizeInBits();
2416    unsigned Op2Size = Op2.getValueType().getSizeInBits();
2417    DebugLoc DL = getCurDebugLoc();
2418
2419    // If the operand is smaller than the shift count type, promote it.
2420    if (ShiftSize > Op2Size)
2421      Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2422
2423    // If the operand is larger than the shift count type but the shift
2424    // count type has enough bits to represent any shift value, truncate
2425    // it now. This is a common case and it exposes the truncate to
2426    // optimization early.
2427    else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2428      Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2429    // Otherwise we'll need to temporarily settle for some other convenient
2430    // type.  Type legalization will make adjustments once the shiftee is split.
2431    else
2432      Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2433  }
2434
2435  setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(),
2436                           Op1.getValueType(), Op1, Op2));
2437}
2438
2439void SelectionDAGBuilder::visitICmp(const User &I) {
2440  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2441  if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2442    predicate = IC->getPredicate();
2443  else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2444    predicate = ICmpInst::Predicate(IC->getPredicate());
2445  SDValue Op1 = getValue(I.getOperand(0));
2446  SDValue Op2 = getValue(I.getOperand(1));
2447  ISD::CondCode Opcode = getICmpCondCode(predicate);
2448
2449  EVT DestVT = TLI.getValueType(I.getType());
2450  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode));
2451}
2452
2453void SelectionDAGBuilder::visitFCmp(const User &I) {
2454  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2455  if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2456    predicate = FC->getPredicate();
2457  else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2458    predicate = FCmpInst::Predicate(FC->getPredicate());
2459  SDValue Op1 = getValue(I.getOperand(0));
2460  SDValue Op2 = getValue(I.getOperand(1));
2461  ISD::CondCode Condition = getFCmpCondCode(predicate);
2462  EVT DestVT = TLI.getValueType(I.getType());
2463  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition));
2464}
2465
2466void SelectionDAGBuilder::visitSelect(const User &I) {
2467  SmallVector<EVT, 4> ValueVTs;
2468  ComputeValueVTs(TLI, I.getType(), ValueVTs);
2469  unsigned NumValues = ValueVTs.size();
2470  if (NumValues == 0) return;
2471
2472  SmallVector<SDValue, 4> Values(NumValues);
2473  SDValue Cond     = getValue(I.getOperand(0));
2474  SDValue TrueVal  = getValue(I.getOperand(1));
2475  SDValue FalseVal = getValue(I.getOperand(2));
2476
2477  for (unsigned i = 0; i != NumValues; ++i)
2478    Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(),
2479                          TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2480                            Cond,
2481                            SDValue(TrueVal.getNode(),
2482                                    TrueVal.getResNo() + i),
2483                            SDValue(FalseVal.getNode(),
2484                                    FalseVal.getResNo() + i));
2485
2486  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2487                           DAG.getVTList(&ValueVTs[0], NumValues),
2488                           &Values[0], NumValues));
2489}
2490
2491void SelectionDAGBuilder::visitTrunc(const User &I) {
2492  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2493  SDValue N = getValue(I.getOperand(0));
2494  EVT DestVT = TLI.getValueType(I.getType());
2495  setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N));
2496}
2497
2498void SelectionDAGBuilder::visitZExt(const User &I) {
2499  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2500  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2501  SDValue N = getValue(I.getOperand(0));
2502  EVT DestVT = TLI.getValueType(I.getType());
2503  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N));
2504}
2505
2506void SelectionDAGBuilder::visitSExt(const User &I) {
2507  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2508  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2509  SDValue N = getValue(I.getOperand(0));
2510  EVT DestVT = TLI.getValueType(I.getType());
2511  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N));
2512}
2513
2514void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2515  // FPTrunc is never a no-op cast, no need to check
2516  SDValue N = getValue(I.getOperand(0));
2517  EVT DestVT = TLI.getValueType(I.getType());
2518  setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(),
2519                           DestVT, N, DAG.getIntPtrConstant(0)));
2520}
2521
2522void SelectionDAGBuilder::visitFPExt(const User &I){
2523  // FPTrunc is never a no-op cast, no need to check
2524  SDValue N = getValue(I.getOperand(0));
2525  EVT DestVT = TLI.getValueType(I.getType());
2526  setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N));
2527}
2528
2529void SelectionDAGBuilder::visitFPToUI(const User &I) {
2530  // FPToUI is never a no-op cast, no need to check
2531  SDValue N = getValue(I.getOperand(0));
2532  EVT DestVT = TLI.getValueType(I.getType());
2533  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N));
2534}
2535
2536void SelectionDAGBuilder::visitFPToSI(const User &I) {
2537  // FPToSI is never a no-op cast, no need to check
2538  SDValue N = getValue(I.getOperand(0));
2539  EVT DestVT = TLI.getValueType(I.getType());
2540  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N));
2541}
2542
2543void SelectionDAGBuilder::visitUIToFP(const User &I) {
2544  // UIToFP is never a no-op cast, no need to check
2545  SDValue N = getValue(I.getOperand(0));
2546  EVT DestVT = TLI.getValueType(I.getType());
2547  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N));
2548}
2549
2550void SelectionDAGBuilder::visitSIToFP(const User &I){
2551  // SIToFP is never a no-op cast, no need to check
2552  SDValue N = getValue(I.getOperand(0));
2553  EVT DestVT = TLI.getValueType(I.getType());
2554  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N));
2555}
2556
2557void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2558  // What to do depends on the size of the integer and the size of the pointer.
2559  // We can either truncate, zero extend, or no-op, accordingly.
2560  SDValue N = getValue(I.getOperand(0));
2561  EVT DestVT = TLI.getValueType(I.getType());
2562  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2563}
2564
2565void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2566  // What to do depends on the size of the integer and the size of the pointer.
2567  // We can either truncate, zero extend, or no-op, accordingly.
2568  SDValue N = getValue(I.getOperand(0));
2569  EVT DestVT = TLI.getValueType(I.getType());
2570  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2571}
2572
2573void SelectionDAGBuilder::visitBitCast(const User &I) {
2574  SDValue N = getValue(I.getOperand(0));
2575  EVT DestVT = TLI.getValueType(I.getType());
2576
2577  // BitCast assures us that source and destination are the same size so this is
2578  // either a BITCAST or a no-op.
2579  if (DestVT != N.getValueType())
2580    setValue(&I, DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
2581                             DestVT, N)); // convert types.
2582  else
2583    setValue(&I, N);            // noop cast.
2584}
2585
2586void SelectionDAGBuilder::visitInsertElement(const User &I) {
2587  SDValue InVec = getValue(I.getOperand(0));
2588  SDValue InVal = getValue(I.getOperand(1));
2589  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2590                              TLI.getPointerTy(),
2591                              getValue(I.getOperand(2)));
2592  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(),
2593                           TLI.getValueType(I.getType()),
2594                           InVec, InVal, InIdx));
2595}
2596
2597void SelectionDAGBuilder::visitExtractElement(const User &I) {
2598  SDValue InVec = getValue(I.getOperand(0));
2599  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2600                              TLI.getPointerTy(),
2601                              getValue(I.getOperand(1)));
2602  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2603                           TLI.getValueType(I.getType()), InVec, InIdx));
2604}
2605
2606// Utility for visitShuffleVector - Returns true if the mask is mask starting
2607// from SIndx and increasing to the element length (undefs are allowed).
2608static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) {
2609  unsigned MaskNumElts = Mask.size();
2610  for (unsigned i = 0; i != MaskNumElts; ++i)
2611    if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx)))
2612      return false;
2613  return true;
2614}
2615
2616void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2617  SmallVector<int, 8> Mask;
2618  SDValue Src1 = getValue(I.getOperand(0));
2619  SDValue Src2 = getValue(I.getOperand(1));
2620
2621  // Convert the ConstantVector mask operand into an array of ints, with -1
2622  // representing undef values.
2623  SmallVector<Constant*, 8> MaskElts;
2624  cast<Constant>(I.getOperand(2))->getVectorElements(MaskElts);
2625  unsigned MaskNumElts = MaskElts.size();
2626  for (unsigned i = 0; i != MaskNumElts; ++i) {
2627    if (isa<UndefValue>(MaskElts[i]))
2628      Mask.push_back(-1);
2629    else
2630      Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue());
2631  }
2632
2633  EVT VT = TLI.getValueType(I.getType());
2634  EVT SrcVT = Src1.getValueType();
2635  unsigned SrcNumElts = SrcVT.getVectorNumElements();
2636
2637  if (SrcNumElts == MaskNumElts) {
2638    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2639                                      &Mask[0]));
2640    return;
2641  }
2642
2643  // Normalize the shuffle vector since mask and vector length don't match.
2644  if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2645    // Mask is longer than the source vectors and is a multiple of the source
2646    // vectors.  We can use concatenate vector to make the mask and vectors
2647    // lengths match.
2648    if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) {
2649      // The shuffle is concatenating two vectors together.
2650      setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2651                               VT, Src1, Src2));
2652      return;
2653    }
2654
2655    // Pad both vectors with undefs to make them the same length as the mask.
2656    unsigned NumConcat = MaskNumElts / SrcNumElts;
2657    bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2658    bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2659    SDValue UndefVal = DAG.getUNDEF(SrcVT);
2660
2661    SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2662    SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2663    MOps1[0] = Src1;
2664    MOps2[0] = Src2;
2665
2666    Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2667                                                  getCurDebugLoc(), VT,
2668                                                  &MOps1[0], NumConcat);
2669    Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2670                                                  getCurDebugLoc(), VT,
2671                                                  &MOps2[0], NumConcat);
2672
2673    // Readjust mask for new input vector length.
2674    SmallVector<int, 8> MappedOps;
2675    for (unsigned i = 0; i != MaskNumElts; ++i) {
2676      int Idx = Mask[i];
2677      if (Idx < (int)SrcNumElts)
2678        MappedOps.push_back(Idx);
2679      else
2680        MappedOps.push_back(Idx + MaskNumElts - SrcNumElts);
2681    }
2682
2683    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2684                                      &MappedOps[0]));
2685    return;
2686  }
2687
2688  if (SrcNumElts > MaskNumElts) {
2689    // Analyze the access pattern of the vector to see if we can extract
2690    // two subvectors and do the shuffle. The analysis is done by calculating
2691    // the range of elements the mask access on both vectors.
2692    int MinRange[2] = { SrcNumElts+1, SrcNumElts+1};
2693    int MaxRange[2] = {-1, -1};
2694
2695    for (unsigned i = 0; i != MaskNumElts; ++i) {
2696      int Idx = Mask[i];
2697      int Input = 0;
2698      if (Idx < 0)
2699        continue;
2700
2701      if (Idx >= (int)SrcNumElts) {
2702        Input = 1;
2703        Idx -= SrcNumElts;
2704      }
2705      if (Idx > MaxRange[Input])
2706        MaxRange[Input] = Idx;
2707      if (Idx < MinRange[Input])
2708        MinRange[Input] = Idx;
2709    }
2710
2711    // Check if the access is smaller than the vector size and can we find
2712    // a reasonable extract index.
2713    int RangeUse[2] = { 2, 2 };  // 0 = Unused, 1 = Extract, 2 = Can not
2714                                 // Extract.
2715    int StartIdx[2];  // StartIdx to extract from
2716    for (int Input=0; Input < 2; ++Input) {
2717      if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) {
2718        RangeUse[Input] = 0; // Unused
2719        StartIdx[Input] = 0;
2720      } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) {
2721        // Fits within range but we should see if we can find a good
2722        // start index that is a multiple of the mask length.
2723        if (MaxRange[Input] < (int)MaskNumElts) {
2724          RangeUse[Input] = 1; // Extract from beginning of the vector
2725          StartIdx[Input] = 0;
2726        } else {
2727          StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2728          if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2729              StartIdx[Input] + MaskNumElts <= SrcNumElts)
2730            RangeUse[Input] = 1; // Extract from a multiple of the mask length.
2731        }
2732      }
2733    }
2734
2735    if (RangeUse[0] == 0 && RangeUse[1] == 0) {
2736      setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
2737      return;
2738    }
2739    else if (RangeUse[0] < 2 && RangeUse[1] < 2) {
2740      // Extract appropriate subvector and generate a vector shuffle
2741      for (int Input=0; Input < 2; ++Input) {
2742        SDValue &Src = Input == 0 ? Src1 : Src2;
2743        if (RangeUse[Input] == 0)
2744          Src = DAG.getUNDEF(VT);
2745        else
2746          Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT,
2747                            Src, DAG.getIntPtrConstant(StartIdx[Input]));
2748      }
2749
2750      // Calculate new mask.
2751      SmallVector<int, 8> MappedOps;
2752      for (unsigned i = 0; i != MaskNumElts; ++i) {
2753        int Idx = Mask[i];
2754        if (Idx < 0)
2755          MappedOps.push_back(Idx);
2756        else if (Idx < (int)SrcNumElts)
2757          MappedOps.push_back(Idx - StartIdx[0]);
2758        else
2759          MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts);
2760      }
2761
2762      setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2763                                        &MappedOps[0]));
2764      return;
2765    }
2766  }
2767
2768  // We can't use either concat vectors or extract subvectors so fall back to
2769  // replacing the shuffle with extract and build vector.
2770  // to insert and build vector.
2771  EVT EltVT = VT.getVectorElementType();
2772  EVT PtrVT = TLI.getPointerTy();
2773  SmallVector<SDValue,8> Ops;
2774  for (unsigned i = 0; i != MaskNumElts; ++i) {
2775    if (Mask[i] < 0) {
2776      Ops.push_back(DAG.getUNDEF(EltVT));
2777    } else {
2778      int Idx = Mask[i];
2779      SDValue Res;
2780
2781      if (Idx < (int)SrcNumElts)
2782        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2783                          EltVT, Src1, DAG.getConstant(Idx, PtrVT));
2784      else
2785        Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2786                          EltVT, Src2,
2787                          DAG.getConstant(Idx - SrcNumElts, PtrVT));
2788
2789      Ops.push_back(Res);
2790    }
2791  }
2792
2793  setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
2794                           VT, &Ops[0], Ops.size()));
2795}
2796
2797void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
2798  const Value *Op0 = I.getOperand(0);
2799  const Value *Op1 = I.getOperand(1);
2800  const Type *AggTy = I.getType();
2801  const Type *ValTy = Op1->getType();
2802  bool IntoUndef = isa<UndefValue>(Op0);
2803  bool FromUndef = isa<UndefValue>(Op1);
2804
2805  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.idx_begin(), I.idx_end());
2806
2807  SmallVector<EVT, 4> AggValueVTs;
2808  ComputeValueVTs(TLI, AggTy, AggValueVTs);
2809  SmallVector<EVT, 4> ValValueVTs;
2810  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2811
2812  unsigned NumAggValues = AggValueVTs.size();
2813  unsigned NumValValues = ValValueVTs.size();
2814  SmallVector<SDValue, 4> Values(NumAggValues);
2815
2816  SDValue Agg = getValue(Op0);
2817  unsigned i = 0;
2818  // Copy the beginning value(s) from the original aggregate.
2819  for (; i != LinearIndex; ++i)
2820    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2821                SDValue(Agg.getNode(), Agg.getResNo() + i);
2822  // Copy values from the inserted value(s).
2823  if (NumValValues) {
2824    SDValue Val = getValue(Op1);
2825    for (; i != LinearIndex + NumValValues; ++i)
2826      Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2827                  SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
2828  }
2829  // Copy remaining value(s) from the original aggregate.
2830  for (; i != NumAggValues; ++i)
2831    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2832                SDValue(Agg.getNode(), Agg.getResNo() + i);
2833
2834  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2835                           DAG.getVTList(&AggValueVTs[0], NumAggValues),
2836                           &Values[0], NumAggValues));
2837}
2838
2839void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
2840  const Value *Op0 = I.getOperand(0);
2841  const Type *AggTy = Op0->getType();
2842  const Type *ValTy = I.getType();
2843  bool OutOfUndef = isa<UndefValue>(Op0);
2844
2845  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.idx_begin(), I.idx_end());
2846
2847  SmallVector<EVT, 4> ValValueVTs;
2848  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2849
2850  unsigned NumValValues = ValValueVTs.size();
2851
2852  // Ignore a extractvalue that produces an empty object
2853  if (!NumValValues) {
2854    setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
2855    return;
2856  }
2857
2858  SmallVector<SDValue, 4> Values(NumValValues);
2859
2860  SDValue Agg = getValue(Op0);
2861  // Copy out the selected value(s).
2862  for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
2863    Values[i - LinearIndex] =
2864      OutOfUndef ?
2865        DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
2866        SDValue(Agg.getNode(), Agg.getResNo() + i);
2867
2868  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2869                           DAG.getVTList(&ValValueVTs[0], NumValValues),
2870                           &Values[0], NumValValues));
2871}
2872
2873void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
2874  SDValue N = getValue(I.getOperand(0));
2875  const Type *Ty = I.getOperand(0)->getType();
2876
2877  for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
2878       OI != E; ++OI) {
2879    const Value *Idx = *OI;
2880    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2881      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2882      if (Field) {
2883        // N = N + Offset
2884        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
2885        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2886                        DAG.getIntPtrConstant(Offset));
2887      }
2888
2889      Ty = StTy->getElementType(Field);
2890    } else {
2891      Ty = cast<SequentialType>(Ty)->getElementType();
2892
2893      // If this is a constant subscript, handle it quickly.
2894      if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2895        if (CI->isZero()) continue;
2896        uint64_t Offs =
2897            TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
2898        SDValue OffsVal;
2899        EVT PTy = TLI.getPointerTy();
2900        unsigned PtrBits = PTy.getSizeInBits();
2901        if (PtrBits < 64)
2902          OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2903                                TLI.getPointerTy(),
2904                                DAG.getConstant(Offs, MVT::i64));
2905        else
2906          OffsVal = DAG.getIntPtrConstant(Offs);
2907
2908        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2909                        OffsVal);
2910        continue;
2911      }
2912
2913      // N = N + Idx * ElementSize;
2914      APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
2915                                TD->getTypeAllocSize(Ty));
2916      SDValue IdxN = getValue(Idx);
2917
2918      // If the index is smaller or larger than intptr_t, truncate or extend
2919      // it.
2920      IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType());
2921
2922      // If this is a multiply by a power of two, turn it into a shl
2923      // immediately.  This is a very common case.
2924      if (ElementSize != 1) {
2925        if (ElementSize.isPowerOf2()) {
2926          unsigned Amt = ElementSize.logBase2();
2927          IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(),
2928                             N.getValueType(), IdxN,
2929                             DAG.getConstant(Amt, TLI.getPointerTy()));
2930        } else {
2931          SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy());
2932          IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(),
2933                             N.getValueType(), IdxN, Scale);
2934        }
2935      }
2936
2937      N = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2938                      N.getValueType(), N, IdxN);
2939    }
2940  }
2941
2942  setValue(&I, N);
2943}
2944
2945void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
2946  // If this is a fixed sized alloca in the entry block of the function,
2947  // allocate it statically on the stack.
2948  if (FuncInfo.StaticAllocaMap.count(&I))
2949    return;   // getValue will auto-populate this.
2950
2951  const Type *Ty = I.getAllocatedType();
2952  uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
2953  unsigned Align =
2954    std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
2955             I.getAlignment());
2956
2957  SDValue AllocSize = getValue(I.getArraySize());
2958
2959  EVT IntPtr = TLI.getPointerTy();
2960  if (AllocSize.getValueType() != IntPtr)
2961    AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr);
2962
2963  AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr,
2964                          AllocSize,
2965                          DAG.getConstant(TySize, IntPtr));
2966
2967  // Handle alignment.  If the requested alignment is less than or equal to
2968  // the stack alignment, ignore it.  If the size is greater than or equal to
2969  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
2970  unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
2971  if (Align <= StackAlign)
2972    Align = 0;
2973
2974  // Round the size of the allocation up to the stack alignment size
2975  // by add SA-1 to the size.
2976  AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2977                          AllocSize.getValueType(), AllocSize,
2978                          DAG.getIntPtrConstant(StackAlign-1));
2979
2980  // Mask out the low bits for alignment purposes.
2981  AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(),
2982                          AllocSize.getValueType(), AllocSize,
2983                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
2984
2985  SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
2986  SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
2987  SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(),
2988                            VTs, Ops, 3);
2989  setValue(&I, DSA);
2990  DAG.setRoot(DSA.getValue(1));
2991
2992  // Inform the Frame Information that we have just allocated a variable-sized
2993  // object.
2994  FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1);
2995}
2996
2997void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
2998  const Value *SV = I.getOperand(0);
2999  SDValue Ptr = getValue(SV);
3000
3001  const Type *Ty = I.getType();
3002
3003  bool isVolatile = I.isVolatile();
3004  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3005  unsigned Alignment = I.getAlignment();
3006  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3007
3008  SmallVector<EVT, 4> ValueVTs;
3009  SmallVector<uint64_t, 4> Offsets;
3010  ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
3011  unsigned NumValues = ValueVTs.size();
3012  if (NumValues == 0)
3013    return;
3014
3015  SDValue Root;
3016  bool ConstantMemory = false;
3017  if (I.isVolatile() || NumValues > MaxParallelChains)
3018    // Serialize volatile loads with other side effects.
3019    Root = getRoot();
3020  else if (AA->pointsToConstantMemory(
3021             AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) {
3022    // Do not serialize (non-volatile) loads of constant memory with anything.
3023    Root = DAG.getEntryNode();
3024    ConstantMemory = true;
3025  } else {
3026    // Do not serialize non-volatile loads against each other.
3027    Root = DAG.getRoot();
3028  }
3029
3030  SmallVector<SDValue, 4> Values(NumValues);
3031  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3032                                          NumValues));
3033  EVT PtrVT = Ptr.getValueType();
3034  unsigned ChainI = 0;
3035  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3036    // Serializing loads here may result in excessive register pressure, and
3037    // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3038    // could recover a bit by hoisting nodes upward in the chain by recognizing
3039    // they are side-effect free or do not alias. The optimizer should really
3040    // avoid this case by converting large object/array copies to llvm.memcpy
3041    // (MaxParallelChains should always remain as failsafe).
3042    if (ChainI == MaxParallelChains) {
3043      assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3044      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3045                                  MVT::Other, &Chains[0], ChainI);
3046      Root = Chain;
3047      ChainI = 0;
3048    }
3049    SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3050                            PtrVT, Ptr,
3051                            DAG.getConstant(Offsets[i], PtrVT));
3052    SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root,
3053                            A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
3054                            isNonTemporal, Alignment, TBAAInfo);
3055
3056    Values[i] = L;
3057    Chains[ChainI] = L.getValue(1);
3058  }
3059
3060  if (!ConstantMemory) {
3061    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3062                                MVT::Other, &Chains[0], ChainI);
3063    if (isVolatile)
3064      DAG.setRoot(Chain);
3065    else
3066      PendingLoads.push_back(Chain);
3067  }
3068
3069  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3070                           DAG.getVTList(&ValueVTs[0], NumValues),
3071                           &Values[0], NumValues));
3072}
3073
3074void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3075  const Value *SrcV = I.getOperand(0);
3076  const Value *PtrV = I.getOperand(1);
3077
3078  SmallVector<EVT, 4> ValueVTs;
3079  SmallVector<uint64_t, 4> Offsets;
3080  ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
3081  unsigned NumValues = ValueVTs.size();
3082  if (NumValues == 0)
3083    return;
3084
3085  // Get the lowered operands. Note that we do this after
3086  // checking if NumResults is zero, because with zero results
3087  // the operands won't have values in the map.
3088  SDValue Src = getValue(SrcV);
3089  SDValue Ptr = getValue(PtrV);
3090
3091  SDValue Root = getRoot();
3092  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3093                                          NumValues));
3094  EVT PtrVT = Ptr.getValueType();
3095  bool isVolatile = I.isVolatile();
3096  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3097  unsigned Alignment = I.getAlignment();
3098  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3099
3100  unsigned ChainI = 0;
3101  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3102    // See visitLoad comments.
3103    if (ChainI == MaxParallelChains) {
3104      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3105                                  MVT::Other, &Chains[0], ChainI);
3106      Root = Chain;
3107      ChainI = 0;
3108    }
3109    SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr,
3110                              DAG.getConstant(Offsets[i], PtrVT));
3111    SDValue St = DAG.getStore(Root, getCurDebugLoc(),
3112                              SDValue(Src.getNode(), Src.getResNo() + i),
3113                              Add, MachinePointerInfo(PtrV, Offsets[i]),
3114                              isVolatile, isNonTemporal, Alignment, TBAAInfo);
3115    Chains[ChainI] = St;
3116  }
3117
3118  SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3119                                  MVT::Other, &Chains[0], ChainI);
3120  ++SDNodeOrder;
3121  AssignOrderingToNode(StoreNode.getNode());
3122  DAG.setRoot(StoreNode);
3123}
3124
3125/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3126/// node.
3127void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3128                                               unsigned Intrinsic) {
3129  bool HasChain = !I.doesNotAccessMemory();
3130  bool OnlyLoad = HasChain && I.onlyReadsMemory();
3131
3132  // Build the operand list.
3133  SmallVector<SDValue, 8> Ops;
3134  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
3135    if (OnlyLoad) {
3136      // We don't need to serialize loads against other loads.
3137      Ops.push_back(DAG.getRoot());
3138    } else {
3139      Ops.push_back(getRoot());
3140    }
3141  }
3142
3143  // Info is set by getTgtMemInstrinsic
3144  TargetLowering::IntrinsicInfo Info;
3145  bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
3146
3147  // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3148  if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
3149      Info.opc == ISD::INTRINSIC_W_CHAIN)
3150    Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
3151
3152  // Add all operands of the call to the operand list.
3153  for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
3154    SDValue Op = getValue(I.getArgOperand(i));
3155    assert(TLI.isTypeLegal(Op.getValueType()) &&
3156           "Intrinsic uses a non-legal type?");
3157    Ops.push_back(Op);
3158  }
3159
3160  SmallVector<EVT, 4> ValueVTs;
3161  ComputeValueVTs(TLI, I.getType(), ValueVTs);
3162#ifndef NDEBUG
3163  for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) {
3164    assert(TLI.isTypeLegal(ValueVTs[Val]) &&
3165           "Intrinsic uses a non-legal type?");
3166  }
3167#endif // NDEBUG
3168
3169  if (HasChain)
3170    ValueVTs.push_back(MVT::Other);
3171
3172  SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
3173
3174  // Create the node.
3175  SDValue Result;
3176  if (IsTgtIntrinsic) {
3177    // This is target intrinsic that touches memory
3178    Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(),
3179                                     VTs, &Ops[0], Ops.size(),
3180                                     Info.memVT,
3181                                   MachinePointerInfo(Info.ptrVal, Info.offset),
3182                                     Info.align, Info.vol,
3183                                     Info.readMem, Info.writeMem);
3184  } else if (!HasChain) {
3185    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
3186                         VTs, &Ops[0], Ops.size());
3187  } else if (!I.getType()->isVoidTy()) {
3188    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
3189                         VTs, &Ops[0], Ops.size());
3190  } else {
3191    Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(),
3192                         VTs, &Ops[0], Ops.size());
3193  }
3194
3195  if (HasChain) {
3196    SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3197    if (OnlyLoad)
3198      PendingLoads.push_back(Chain);
3199    else
3200      DAG.setRoot(Chain);
3201  }
3202
3203  if (!I.getType()->isVoidTy()) {
3204    if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3205      EVT VT = TLI.getValueType(PTy);
3206      Result = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), VT, Result);
3207    }
3208
3209    setValue(&I, Result);
3210  }
3211}
3212
3213/// GetSignificand - Get the significand and build it into a floating-point
3214/// number with exponent of 1:
3215///
3216///   Op = (Op & 0x007fffff) | 0x3f800000;
3217///
3218/// where Op is the hexidecimal representation of floating point value.
3219static SDValue
3220GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) {
3221  SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3222                           DAG.getConstant(0x007fffff, MVT::i32));
3223  SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3224                           DAG.getConstant(0x3f800000, MVT::i32));
3225  return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
3226}
3227
3228/// GetExponent - Get the exponent:
3229///
3230///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3231///
3232/// where Op is the hexidecimal representation of floating point value.
3233static SDValue
3234GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3235            DebugLoc dl) {
3236  SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3237                           DAG.getConstant(0x7f800000, MVT::i32));
3238  SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3239                           DAG.getConstant(23, TLI.getPointerTy()));
3240  SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3241                           DAG.getConstant(127, MVT::i32));
3242  return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3243}
3244
3245/// getF32Constant - Get 32-bit floating point constant.
3246static SDValue
3247getF32Constant(SelectionDAG &DAG, unsigned Flt) {
3248  return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32);
3249}
3250
3251/// Inlined utility function to implement binary input atomic intrinsics for
3252/// visitIntrinsicCall: I is a call instruction
3253///                     Op is the associated NodeType for I
3254const char *
3255SelectionDAGBuilder::implVisitBinaryAtomic(const CallInst& I,
3256                                           ISD::NodeType Op) {
3257  SDValue Root = getRoot();
3258  SDValue L =
3259    DAG.getAtomic(Op, getCurDebugLoc(),
3260                  getValue(I.getArgOperand(1)).getValueType().getSimpleVT(),
3261                  Root,
3262                  getValue(I.getArgOperand(0)),
3263                  getValue(I.getArgOperand(1)),
3264                  I.getArgOperand(0));
3265  setValue(&I, L);
3266  DAG.setRoot(L.getValue(1));
3267  return 0;
3268}
3269
3270// implVisitAluOverflow - Lower arithmetic overflow instrinsics.
3271const char *
3272SelectionDAGBuilder::implVisitAluOverflow(const CallInst &I, ISD::NodeType Op) {
3273  SDValue Op1 = getValue(I.getArgOperand(0));
3274  SDValue Op2 = getValue(I.getArgOperand(1));
3275
3276  SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
3277  setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2));
3278  return 0;
3279}
3280
3281/// visitExp - Lower an exp intrinsic. Handles the special sequences for
3282/// limited-precision mode.
3283void
3284SelectionDAGBuilder::visitExp(const CallInst &I) {
3285  SDValue result;
3286  DebugLoc dl = getCurDebugLoc();
3287
3288  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3289      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3290    SDValue Op = getValue(I.getArgOperand(0));
3291
3292    // Put the exponent in the right bit position for later addition to the
3293    // final result:
3294    //
3295    //   #define LOG2OFe 1.4426950f
3296    //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3297    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3298                             getF32Constant(DAG, 0x3fb8aa3b));
3299    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3300
3301    //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3302    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3303    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3304
3305    //   IntegerPartOfX <<= 23;
3306    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3307                                 DAG.getConstant(23, TLI.getPointerTy()));
3308
3309    if (LimitFloatPrecision <= 6) {
3310      // For floating-point precision of 6:
3311      //
3312      //   TwoToFractionalPartOfX =
3313      //     0.997535578f +
3314      //       (0.735607626f + 0.252464424f * x) * x;
3315      //
3316      // error 0.0144103317, which is 6 bits
3317      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3318                               getF32Constant(DAG, 0x3e814304));
3319      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3320                               getF32Constant(DAG, 0x3f3c50c8));
3321      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3322      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3323                               getF32Constant(DAG, 0x3f7f5e7e));
3324      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t5);
3325
3326      // Add the exponent into the result in integer domain.
3327      SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3328                               TwoToFracPartOfX, IntegerPartOfX);
3329
3330      result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t6);
3331    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3332      // For floating-point precision of 12:
3333      //
3334      //   TwoToFractionalPartOfX =
3335      //     0.999892986f +
3336      //       (0.696457318f +
3337      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3338      //
3339      // 0.000107046256 error, which is 13 to 14 bits
3340      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3341                               getF32Constant(DAG, 0x3da235e3));
3342      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3343                               getF32Constant(DAG, 0x3e65b8f3));
3344      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3345      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3346                               getF32Constant(DAG, 0x3f324b07));
3347      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3348      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3349                               getF32Constant(DAG, 0x3f7ff8fd));
3350      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t7);
3351
3352      // Add the exponent into the result in integer domain.
3353      SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3354                               TwoToFracPartOfX, IntegerPartOfX);
3355
3356      result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t8);
3357    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3358      // For floating-point precision of 18:
3359      //
3360      //   TwoToFractionalPartOfX =
3361      //     0.999999982f +
3362      //       (0.693148872f +
3363      //         (0.240227044f +
3364      //           (0.554906021e-1f +
3365      //             (0.961591928e-2f +
3366      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3367      //
3368      // error 2.47208000*10^(-7), which is better than 18 bits
3369      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3370                               getF32Constant(DAG, 0x3924b03e));
3371      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3372                               getF32Constant(DAG, 0x3ab24b87));
3373      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3374      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3375                               getF32Constant(DAG, 0x3c1d8c17));
3376      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3377      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3378                               getF32Constant(DAG, 0x3d634a1d));
3379      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3380      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3381                               getF32Constant(DAG, 0x3e75fe14));
3382      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3383      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3384                                getF32Constant(DAG, 0x3f317234));
3385      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3386      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3387                                getF32Constant(DAG, 0x3f800000));
3388      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,
3389                                             MVT::i32, t13);
3390
3391      // Add the exponent into the result in integer domain.
3392      SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3393                                TwoToFracPartOfX, IntegerPartOfX);
3394
3395      result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t14);
3396    }
3397  } else {
3398    // No special expansion.
3399    result = DAG.getNode(ISD::FEXP, dl,
3400                         getValue(I.getArgOperand(0)).getValueType(),
3401                         getValue(I.getArgOperand(0)));
3402  }
3403
3404  setValue(&I, result);
3405}
3406
3407/// visitLog - Lower a log intrinsic. Handles the special sequences for
3408/// limited-precision mode.
3409void
3410SelectionDAGBuilder::visitLog(const CallInst &I) {
3411  SDValue result;
3412  DebugLoc dl = getCurDebugLoc();
3413
3414  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3415      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3416    SDValue Op = getValue(I.getArgOperand(0));
3417    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3418
3419    // Scale the exponent by log(2) [0.69314718f].
3420    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3421    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3422                                        getF32Constant(DAG, 0x3f317218));
3423
3424    // Get the significand and build it into a floating-point number with
3425    // exponent of 1.
3426    SDValue X = GetSignificand(DAG, Op1, dl);
3427
3428    if (LimitFloatPrecision <= 6) {
3429      // For floating-point precision of 6:
3430      //
3431      //   LogofMantissa =
3432      //     -1.1609546f +
3433      //       (1.4034025f - 0.23903021f * x) * x;
3434      //
3435      // error 0.0034276066, which is better than 8 bits
3436      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3437                               getF32Constant(DAG, 0xbe74c456));
3438      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3439                               getF32Constant(DAG, 0x3fb3a2b1));
3440      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3441      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3442                                          getF32Constant(DAG, 0x3f949a29));
3443
3444      result = DAG.getNode(ISD::FADD, dl,
3445                           MVT::f32, LogOfExponent, LogOfMantissa);
3446    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3447      // For floating-point precision of 12:
3448      //
3449      //   LogOfMantissa =
3450      //     -1.7417939f +
3451      //       (2.8212026f +
3452      //         (-1.4699568f +
3453      //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3454      //
3455      // error 0.000061011436, which is 14 bits
3456      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3457                               getF32Constant(DAG, 0xbd67b6d6));
3458      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3459                               getF32Constant(DAG, 0x3ee4f4b8));
3460      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3461      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3462                               getF32Constant(DAG, 0x3fbc278b));
3463      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3464      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3465                               getF32Constant(DAG, 0x40348e95));
3466      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3467      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3468                                          getF32Constant(DAG, 0x3fdef31a));
3469
3470      result = DAG.getNode(ISD::FADD, dl,
3471                           MVT::f32, LogOfExponent, LogOfMantissa);
3472    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3473      // For floating-point precision of 18:
3474      //
3475      //   LogOfMantissa =
3476      //     -2.1072184f +
3477      //       (4.2372794f +
3478      //         (-3.7029485f +
3479      //           (2.2781945f +
3480      //             (-0.87823314f +
3481      //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3482      //
3483      // error 0.0000023660568, which is better than 18 bits
3484      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3485                               getF32Constant(DAG, 0xbc91e5ac));
3486      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3487                               getF32Constant(DAG, 0x3e4350aa));
3488      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3489      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3490                               getF32Constant(DAG, 0x3f60d3e3));
3491      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3492      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3493                               getF32Constant(DAG, 0x4011cdf0));
3494      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3495      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3496                               getF32Constant(DAG, 0x406cfd1c));
3497      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3498      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3499                               getF32Constant(DAG, 0x408797cb));
3500      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3501      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3502                                          getF32Constant(DAG, 0x4006dcab));
3503
3504      result = DAG.getNode(ISD::FADD, dl,
3505                           MVT::f32, LogOfExponent, LogOfMantissa);
3506    }
3507  } else {
3508    // No special expansion.
3509    result = DAG.getNode(ISD::FLOG, dl,
3510                         getValue(I.getArgOperand(0)).getValueType(),
3511                         getValue(I.getArgOperand(0)));
3512  }
3513
3514  setValue(&I, result);
3515}
3516
3517/// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for
3518/// limited-precision mode.
3519void
3520SelectionDAGBuilder::visitLog2(const CallInst &I) {
3521  SDValue result;
3522  DebugLoc dl = getCurDebugLoc();
3523
3524  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3525      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3526    SDValue Op = getValue(I.getArgOperand(0));
3527    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3528
3529    // Get the exponent.
3530    SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3531
3532    // Get the significand and build it into a floating-point number with
3533    // exponent of 1.
3534    SDValue X = GetSignificand(DAG, Op1, dl);
3535
3536    // Different possible minimax approximations of significand in
3537    // floating-point for various degrees of accuracy over [1,2].
3538    if (LimitFloatPrecision <= 6) {
3539      // For floating-point precision of 6:
3540      //
3541      //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3542      //
3543      // error 0.0049451742, which is more than 7 bits
3544      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3545                               getF32Constant(DAG, 0xbeb08fe0));
3546      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3547                               getF32Constant(DAG, 0x40019463));
3548      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3549      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3550                                           getF32Constant(DAG, 0x3fd6633d));
3551
3552      result = DAG.getNode(ISD::FADD, dl,
3553                           MVT::f32, LogOfExponent, Log2ofMantissa);
3554    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3555      // For floating-point precision of 12:
3556      //
3557      //   Log2ofMantissa =
3558      //     -2.51285454f +
3559      //       (4.07009056f +
3560      //         (-2.12067489f +
3561      //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3562      //
3563      // error 0.0000876136000, which is better than 13 bits
3564      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3565                               getF32Constant(DAG, 0xbda7262e));
3566      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3567                               getF32Constant(DAG, 0x3f25280b));
3568      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3569      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3570                               getF32Constant(DAG, 0x4007b923));
3571      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3572      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3573                               getF32Constant(DAG, 0x40823e2f));
3574      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3575      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3576                                           getF32Constant(DAG, 0x4020d29c));
3577
3578      result = DAG.getNode(ISD::FADD, dl,
3579                           MVT::f32, LogOfExponent, Log2ofMantissa);
3580    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3581      // For floating-point precision of 18:
3582      //
3583      //   Log2ofMantissa =
3584      //     -3.0400495f +
3585      //       (6.1129976f +
3586      //         (-5.3420409f +
3587      //           (3.2865683f +
3588      //             (-1.2669343f +
3589      //               (0.27515199f -
3590      //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3591      //
3592      // error 0.0000018516, which is better than 18 bits
3593      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3594                               getF32Constant(DAG, 0xbcd2769e));
3595      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3596                               getF32Constant(DAG, 0x3e8ce0b9));
3597      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3598      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3599                               getF32Constant(DAG, 0x3fa22ae7));
3600      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3601      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3602                               getF32Constant(DAG, 0x40525723));
3603      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3604      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3605                               getF32Constant(DAG, 0x40aaf200));
3606      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3607      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3608                               getF32Constant(DAG, 0x40c39dad));
3609      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3610      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3611                                           getF32Constant(DAG, 0x4042902c));
3612
3613      result = DAG.getNode(ISD::FADD, dl,
3614                           MVT::f32, LogOfExponent, Log2ofMantissa);
3615    }
3616  } else {
3617    // No special expansion.
3618    result = DAG.getNode(ISD::FLOG2, dl,
3619                         getValue(I.getArgOperand(0)).getValueType(),
3620                         getValue(I.getArgOperand(0)));
3621  }
3622
3623  setValue(&I, result);
3624}
3625
3626/// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for
3627/// limited-precision mode.
3628void
3629SelectionDAGBuilder::visitLog10(const CallInst &I) {
3630  SDValue result;
3631  DebugLoc dl = getCurDebugLoc();
3632
3633  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3634      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3635    SDValue Op = getValue(I.getArgOperand(0));
3636    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3637
3638    // Scale the exponent by log10(2) [0.30102999f].
3639    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3640    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3641                                        getF32Constant(DAG, 0x3e9a209a));
3642
3643    // Get the significand and build it into a floating-point number with
3644    // exponent of 1.
3645    SDValue X = GetSignificand(DAG, Op1, dl);
3646
3647    if (LimitFloatPrecision <= 6) {
3648      // For floating-point precision of 6:
3649      //
3650      //   Log10ofMantissa =
3651      //     -0.50419619f +
3652      //       (0.60948995f - 0.10380950f * x) * x;
3653      //
3654      // error 0.0014886165, which is 6 bits
3655      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3656                               getF32Constant(DAG, 0xbdd49a13));
3657      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3658                               getF32Constant(DAG, 0x3f1c0789));
3659      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3660      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3661                                            getF32Constant(DAG, 0x3f011300));
3662
3663      result = DAG.getNode(ISD::FADD, dl,
3664                           MVT::f32, LogOfExponent, Log10ofMantissa);
3665    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3666      // For floating-point precision of 12:
3667      //
3668      //   Log10ofMantissa =
3669      //     -0.64831180f +
3670      //       (0.91751397f +
3671      //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
3672      //
3673      // error 0.00019228036, which is better than 12 bits
3674      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3675                               getF32Constant(DAG, 0x3d431f31));
3676      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3677                               getF32Constant(DAG, 0x3ea21fb2));
3678      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3679      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3680                               getF32Constant(DAG, 0x3f6ae232));
3681      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3682      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3683                                            getF32Constant(DAG, 0x3f25f7c3));
3684
3685      result = DAG.getNode(ISD::FADD, dl,
3686                           MVT::f32, LogOfExponent, Log10ofMantissa);
3687    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3688      // For floating-point precision of 18:
3689      //
3690      //   Log10ofMantissa =
3691      //     -0.84299375f +
3692      //       (1.5327582f +
3693      //         (-1.0688956f +
3694      //           (0.49102474f +
3695      //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
3696      //
3697      // error 0.0000037995730, which is better than 18 bits
3698      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3699                               getF32Constant(DAG, 0x3c5d51ce));
3700      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3701                               getF32Constant(DAG, 0x3e00685a));
3702      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3703      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3704                               getF32Constant(DAG, 0x3efb6798));
3705      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3706      SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3707                               getF32Constant(DAG, 0x3f88d192));
3708      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3709      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3710                               getF32Constant(DAG, 0x3fc4316c));
3711      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3712      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
3713                                            getF32Constant(DAG, 0x3f57ce70));
3714
3715      result = DAG.getNode(ISD::FADD, dl,
3716                           MVT::f32, LogOfExponent, Log10ofMantissa);
3717    }
3718  } else {
3719    // No special expansion.
3720    result = DAG.getNode(ISD::FLOG10, dl,
3721                         getValue(I.getArgOperand(0)).getValueType(),
3722                         getValue(I.getArgOperand(0)));
3723  }
3724
3725  setValue(&I, result);
3726}
3727
3728/// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for
3729/// limited-precision mode.
3730void
3731SelectionDAGBuilder::visitExp2(const CallInst &I) {
3732  SDValue result;
3733  DebugLoc dl = getCurDebugLoc();
3734
3735  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3736      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3737    SDValue Op = getValue(I.getArgOperand(0));
3738
3739    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
3740
3741    //   FractionalPartOfX = x - (float)IntegerPartOfX;
3742    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3743    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
3744
3745    //   IntegerPartOfX <<= 23;
3746    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3747                                 DAG.getConstant(23, TLI.getPointerTy()));
3748
3749    if (LimitFloatPrecision <= 6) {
3750      // For floating-point precision of 6:
3751      //
3752      //   TwoToFractionalPartOfX =
3753      //     0.997535578f +
3754      //       (0.735607626f + 0.252464424f * x) * x;
3755      //
3756      // error 0.0144103317, which is 6 bits
3757      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3758                               getF32Constant(DAG, 0x3e814304));
3759      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3760                               getF32Constant(DAG, 0x3f3c50c8));
3761      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3762      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3763                               getF32Constant(DAG, 0x3f7f5e7e));
3764      SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
3765      SDValue TwoToFractionalPartOfX =
3766        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3767
3768      result = DAG.getNode(ISD::BITCAST, dl,
3769                           MVT::f32, TwoToFractionalPartOfX);
3770    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3771      // For floating-point precision of 12:
3772      //
3773      //   TwoToFractionalPartOfX =
3774      //     0.999892986f +
3775      //       (0.696457318f +
3776      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3777      //
3778      // error 0.000107046256, which is 13 to 14 bits
3779      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3780                               getF32Constant(DAG, 0x3da235e3));
3781      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3782                               getF32Constant(DAG, 0x3e65b8f3));
3783      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3784      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3785                               getF32Constant(DAG, 0x3f324b07));
3786      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3787      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3788                               getF32Constant(DAG, 0x3f7ff8fd));
3789      SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
3790      SDValue TwoToFractionalPartOfX =
3791        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
3792
3793      result = DAG.getNode(ISD::BITCAST, dl,
3794                           MVT::f32, TwoToFractionalPartOfX);
3795    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3796      // For floating-point precision of 18:
3797      //
3798      //   TwoToFractionalPartOfX =
3799      //     0.999999982f +
3800      //       (0.693148872f +
3801      //         (0.240227044f +
3802      //           (0.554906021e-1f +
3803      //             (0.961591928e-2f +
3804      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3805      // error 2.47208000*10^(-7), which is better than 18 bits
3806      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3807                               getF32Constant(DAG, 0x3924b03e));
3808      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3809                               getF32Constant(DAG, 0x3ab24b87));
3810      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3811      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3812                               getF32Constant(DAG, 0x3c1d8c17));
3813      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3814      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3815                               getF32Constant(DAG, 0x3d634a1d));
3816      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3817      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3818                               getF32Constant(DAG, 0x3e75fe14));
3819      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3820      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3821                                getF32Constant(DAG, 0x3f317234));
3822      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3823      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3824                                getF32Constant(DAG, 0x3f800000));
3825      SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
3826      SDValue TwoToFractionalPartOfX =
3827        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
3828
3829      result = DAG.getNode(ISD::BITCAST, dl,
3830                           MVT::f32, TwoToFractionalPartOfX);
3831    }
3832  } else {
3833    // No special expansion.
3834    result = DAG.getNode(ISD::FEXP2, dl,
3835                         getValue(I.getArgOperand(0)).getValueType(),
3836                         getValue(I.getArgOperand(0)));
3837  }
3838
3839  setValue(&I, result);
3840}
3841
3842/// visitPow - Lower a pow intrinsic. Handles the special sequences for
3843/// limited-precision mode with x == 10.0f.
3844void
3845SelectionDAGBuilder::visitPow(const CallInst &I) {
3846  SDValue result;
3847  const Value *Val = I.getArgOperand(0);
3848  DebugLoc dl = getCurDebugLoc();
3849  bool IsExp10 = false;
3850
3851  if (getValue(Val).getValueType() == MVT::f32 &&
3852      getValue(I.getArgOperand(1)).getValueType() == MVT::f32 &&
3853      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3854    if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) {
3855      if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
3856        APFloat Ten(10.0f);
3857        IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten);
3858      }
3859    }
3860  }
3861
3862  if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3863    SDValue Op = getValue(I.getArgOperand(1));
3864
3865    // Put the exponent in the right bit position for later addition to the
3866    // final result:
3867    //
3868    //   #define LOG2OF10 3.3219281f
3869    //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
3870    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3871                             getF32Constant(DAG, 0x40549a78));
3872    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3873
3874    //   FractionalPartOfX = x - (float)IntegerPartOfX;
3875    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3876    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3877
3878    //   IntegerPartOfX <<= 23;
3879    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3880                                 DAG.getConstant(23, TLI.getPointerTy()));
3881
3882    if (LimitFloatPrecision <= 6) {
3883      // For floating-point precision of 6:
3884      //
3885      //   twoToFractionalPartOfX =
3886      //     0.997535578f +
3887      //       (0.735607626f + 0.252464424f * x) * x;
3888      //
3889      // error 0.0144103317, which is 6 bits
3890      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3891                               getF32Constant(DAG, 0x3e814304));
3892      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3893                               getF32Constant(DAG, 0x3f3c50c8));
3894      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3895      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3896                               getF32Constant(DAG, 0x3f7f5e7e));
3897      SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
3898      SDValue TwoToFractionalPartOfX =
3899        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3900
3901      result = DAG.getNode(ISD::BITCAST, dl,
3902                           MVT::f32, TwoToFractionalPartOfX);
3903    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3904      // For floating-point precision of 12:
3905      //
3906      //   TwoToFractionalPartOfX =
3907      //     0.999892986f +
3908      //       (0.696457318f +
3909      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3910      //
3911      // error 0.000107046256, which is 13 to 14 bits
3912      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3913                               getF32Constant(DAG, 0x3da235e3));
3914      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3915                               getF32Constant(DAG, 0x3e65b8f3));
3916      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3917      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3918                               getF32Constant(DAG, 0x3f324b07));
3919      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3920      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3921                               getF32Constant(DAG, 0x3f7ff8fd));
3922      SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
3923      SDValue TwoToFractionalPartOfX =
3924        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
3925
3926      result = DAG.getNode(ISD::BITCAST, dl,
3927                           MVT::f32, TwoToFractionalPartOfX);
3928    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3929      // For floating-point precision of 18:
3930      //
3931      //   TwoToFractionalPartOfX =
3932      //     0.999999982f +
3933      //       (0.693148872f +
3934      //         (0.240227044f +
3935      //           (0.554906021e-1f +
3936      //             (0.961591928e-2f +
3937      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3938      // error 2.47208000*10^(-7), which is better than 18 bits
3939      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3940                               getF32Constant(DAG, 0x3924b03e));
3941      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3942                               getF32Constant(DAG, 0x3ab24b87));
3943      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3944      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3945                               getF32Constant(DAG, 0x3c1d8c17));
3946      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3947      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3948                               getF32Constant(DAG, 0x3d634a1d));
3949      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3950      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3951                               getF32Constant(DAG, 0x3e75fe14));
3952      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3953      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3954                                getF32Constant(DAG, 0x3f317234));
3955      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3956      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3957                                getF32Constant(DAG, 0x3f800000));
3958      SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
3959      SDValue TwoToFractionalPartOfX =
3960        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
3961
3962      result = DAG.getNode(ISD::BITCAST, dl,
3963                           MVT::f32, TwoToFractionalPartOfX);
3964    }
3965  } else {
3966    // No special expansion.
3967    result = DAG.getNode(ISD::FPOW, dl,
3968                         getValue(I.getArgOperand(0)).getValueType(),
3969                         getValue(I.getArgOperand(0)),
3970                         getValue(I.getArgOperand(1)));
3971  }
3972
3973  setValue(&I, result);
3974}
3975
3976
3977/// ExpandPowI - Expand a llvm.powi intrinsic.
3978static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS,
3979                          SelectionDAG &DAG) {
3980  // If RHS is a constant, we can expand this out to a multiplication tree,
3981  // otherwise we end up lowering to a call to __powidf2 (for example).  When
3982  // optimizing for size, we only want to do this if the expansion would produce
3983  // a small number of multiplies, otherwise we do the full expansion.
3984  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3985    // Get the exponent as a positive value.
3986    unsigned Val = RHSC->getSExtValue();
3987    if ((int)Val < 0) Val = -Val;
3988
3989    // powi(x, 0) -> 1.0
3990    if (Val == 0)
3991      return DAG.getConstantFP(1.0, LHS.getValueType());
3992
3993    const Function *F = DAG.getMachineFunction().getFunction();
3994    if (!F->hasFnAttr(Attribute::OptimizeForSize) ||
3995        // If optimizing for size, don't insert too many multiplies.  This
3996        // inserts up to 5 multiplies.
3997        CountPopulation_32(Val)+Log2_32(Val) < 7) {
3998      // We use the simple binary decomposition method to generate the multiply
3999      // sequence.  There are more optimal ways to do this (for example,
4000      // powi(x,15) generates one more multiply than it should), but this has
4001      // the benefit of being both really simple and much better than a libcall.
4002      SDValue Res;  // Logically starts equal to 1.0
4003      SDValue CurSquare = LHS;
4004      while (Val) {
4005        if (Val & 1) {
4006          if (Res.getNode())
4007            Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4008          else
4009            Res = CurSquare;  // 1.0*CurSquare.
4010        }
4011
4012        CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4013                                CurSquare, CurSquare);
4014        Val >>= 1;
4015      }
4016
4017      // If the original was negative, invert the result, producing 1/(x*x*x).
4018      if (RHSC->getSExtValue() < 0)
4019        Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4020                          DAG.getConstantFP(1.0, LHS.getValueType()), Res);
4021      return Res;
4022    }
4023  }
4024
4025  // Otherwise, expand to a libcall.
4026  return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4027}
4028
4029// getTruncatedArgReg - Find underlying register used for an truncated
4030// argument.
4031static unsigned getTruncatedArgReg(const SDValue &N) {
4032  if (N.getOpcode() != ISD::TRUNCATE)
4033    return 0;
4034
4035  const SDValue &Ext = N.getOperand(0);
4036  if (Ext.getOpcode() == ISD::AssertZext || Ext.getOpcode() == ISD::AssertSext){
4037    const SDValue &CFR = Ext.getOperand(0);
4038    if (CFR.getOpcode() == ISD::CopyFromReg)
4039      return cast<RegisterSDNode>(CFR.getOperand(1))->getReg();
4040    else
4041      if (CFR.getOpcode() == ISD::TRUNCATE)
4042        return getTruncatedArgReg(CFR);
4043  }
4044  return 0;
4045}
4046
4047/// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4048/// argument, create the corresponding DBG_VALUE machine instruction for it now.
4049/// At the end of instruction selection, they will be inserted to the entry BB.
4050bool
4051SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
4052                                              int64_t Offset,
4053                                              const SDValue &N) {
4054  const Argument *Arg = dyn_cast<Argument>(V);
4055  if (!Arg)
4056    return false;
4057
4058  MachineFunction &MF = DAG.getMachineFunction();
4059  const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
4060  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
4061
4062  // Ignore inlined function arguments here.
4063  DIVariable DV(Variable);
4064  if (DV.isInlinedFnArgument(MF.getFunction()))
4065    return false;
4066
4067  unsigned Reg = 0;
4068  if (Arg->hasByValAttr()) {
4069    // Byval arguments' frame index is recorded during argument lowering.
4070    // Use this info directly.
4071    Reg = TRI->getFrameRegister(MF);
4072    Offset = FuncInfo.getByValArgumentFrameIndex(Arg);
4073    // If byval argument ofset is not recorded then ignore this.
4074    if (!Offset)
4075      Reg = 0;
4076  }
4077
4078  if (N.getNode()) {
4079    if (N.getOpcode() == ISD::CopyFromReg)
4080      Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
4081    else
4082      Reg = getTruncatedArgReg(N);
4083    if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4084      MachineRegisterInfo &RegInfo = MF.getRegInfo();
4085      unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4086      if (PR)
4087        Reg = PR;
4088    }
4089  }
4090
4091  if (!Reg) {
4092    // Check if ValueMap has reg number.
4093    DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4094    if (VMI != FuncInfo.ValueMap.end())
4095      Reg = VMI->second;
4096  }
4097
4098  if (!Reg && N.getNode()) {
4099    // Check if frame index is available.
4100    if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4101      if (FrameIndexSDNode *FINode =
4102          dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) {
4103        Reg = TRI->getFrameRegister(MF);
4104        Offset = FINode->getIndex();
4105      }
4106  }
4107
4108  if (!Reg)
4109    return false;
4110
4111  MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(),
4112                                    TII->get(TargetOpcode::DBG_VALUE))
4113    .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable);
4114  FuncInfo.ArgDbgValues.push_back(&*MIB);
4115  return true;
4116}
4117
4118// VisualStudio defines setjmp as _setjmp
4119#if defined(_MSC_VER) && defined(setjmp) && \
4120                         !defined(setjmp_undefined_for_msvc)
4121#  pragma push_macro("setjmp")
4122#  undef setjmp
4123#  define setjmp_undefined_for_msvc
4124#endif
4125
4126/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4127/// we want to emit this as a call to a named external function, return the name
4128/// otherwise lower it and return null.
4129const char *
4130SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4131  DebugLoc dl = getCurDebugLoc();
4132  SDValue Res;
4133
4134  switch (Intrinsic) {
4135  default:
4136    // By default, turn this into a target intrinsic node.
4137    visitTargetIntrinsic(I, Intrinsic);
4138    return 0;
4139  case Intrinsic::vastart:  visitVAStart(I); return 0;
4140  case Intrinsic::vaend:    visitVAEnd(I); return 0;
4141  case Intrinsic::vacopy:   visitVACopy(I); return 0;
4142  case Intrinsic::returnaddress:
4143    setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(),
4144                             getValue(I.getArgOperand(0))));
4145    return 0;
4146  case Intrinsic::frameaddress:
4147    setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(),
4148                             getValue(I.getArgOperand(0))));
4149    return 0;
4150  case Intrinsic::setjmp:
4151    return "_setjmp"+!TLI.usesUnderscoreSetJmp();
4152  case Intrinsic::longjmp:
4153    return "_longjmp"+!TLI.usesUnderscoreLongJmp();
4154  case Intrinsic::memcpy: {
4155    // Assert for address < 256 since we support only user defined address
4156    // spaces.
4157    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4158           < 256 &&
4159           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4160           < 256 &&
4161           "Unknown address space");
4162    SDValue Op1 = getValue(I.getArgOperand(0));
4163    SDValue Op2 = getValue(I.getArgOperand(1));
4164    SDValue Op3 = getValue(I.getArgOperand(2));
4165    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4166    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4167    DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false,
4168                              MachinePointerInfo(I.getArgOperand(0)),
4169                              MachinePointerInfo(I.getArgOperand(1))));
4170    return 0;
4171  }
4172  case Intrinsic::memset: {
4173    // Assert for address < 256 since we support only user defined address
4174    // spaces.
4175    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4176           < 256 &&
4177           "Unknown address space");
4178    SDValue Op1 = getValue(I.getArgOperand(0));
4179    SDValue Op2 = getValue(I.getArgOperand(1));
4180    SDValue Op3 = getValue(I.getArgOperand(2));
4181    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4182    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4183    DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4184                              MachinePointerInfo(I.getArgOperand(0))));
4185    return 0;
4186  }
4187  case Intrinsic::memmove: {
4188    // Assert for address < 256 since we support only user defined address
4189    // spaces.
4190    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4191           < 256 &&
4192           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4193           < 256 &&
4194           "Unknown address space");
4195    SDValue Op1 = getValue(I.getArgOperand(0));
4196    SDValue Op2 = getValue(I.getArgOperand(1));
4197    SDValue Op3 = getValue(I.getArgOperand(2));
4198    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4199    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4200    DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4201                               MachinePointerInfo(I.getArgOperand(0)),
4202                               MachinePointerInfo(I.getArgOperand(1))));
4203    return 0;
4204  }
4205  case Intrinsic::dbg_declare: {
4206    const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4207    MDNode *Variable = DI.getVariable();
4208    const Value *Address = DI.getAddress();
4209    if (!Address || !DIVariable(DI.getVariable()).Verify())
4210      return 0;
4211
4212    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4213    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4214    // absolute, but not relative, values are different depending on whether
4215    // debug info exists.
4216    ++SDNodeOrder;
4217
4218    // Check if address has undef value.
4219    if (isa<UndefValue>(Address) ||
4220        (Address->use_empty() && !isa<Argument>(Address))) {
4221      DEBUG(dbgs() << "Dropping debug info for " << DI);
4222      return 0;
4223    }
4224
4225    SDValue &N = NodeMap[Address];
4226    if (!N.getNode() && isa<Argument>(Address))
4227      // Check unused arguments map.
4228      N = UnusedArgNodeMap[Address];
4229    SDDbgValue *SDV;
4230    if (N.getNode()) {
4231      // Parameters are handled specially.
4232      bool isParameter =
4233        DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable;
4234      if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4235        Address = BCI->getOperand(0);
4236      const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
4237
4238      if (isParameter && !AI) {
4239        FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4240        if (FINode)
4241          // Byval parameter.  We have a frame index at this point.
4242          SDV = DAG.getDbgValue(Variable, FINode->getIndex(),
4243                                0, dl, SDNodeOrder);
4244        else {
4245          // Address is an argument, so try to emit its dbg value using
4246          // virtual register info from the FuncInfo.ValueMap.
4247          EmitFuncArgumentDbgValue(Address, Variable, 0, N);
4248          return 0;
4249        }
4250      } else if (AI)
4251        SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
4252                              0, dl, SDNodeOrder);
4253      else {
4254        // Can't do anything with other non-AI cases yet.
4255        DEBUG(dbgs() << "Dropping debug info for " << DI);
4256        return 0;
4257      }
4258      DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4259    } else {
4260      // If Address is an argument then try to emit its dbg value using
4261      // virtual register info from the FuncInfo.ValueMap.
4262      if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) {
4263        // If variable is pinned by a alloca in dominating bb then
4264        // use StaticAllocaMap.
4265        if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4266          if (AI->getParent() != DI.getParent()) {
4267            DenseMap<const AllocaInst*, int>::iterator SI =
4268              FuncInfo.StaticAllocaMap.find(AI);
4269            if (SI != FuncInfo.StaticAllocaMap.end()) {
4270              SDV = DAG.getDbgValue(Variable, SI->second,
4271                                    0, dl, SDNodeOrder);
4272              DAG.AddDbgValue(SDV, 0, false);
4273              return 0;
4274            }
4275          }
4276        }
4277        DEBUG(dbgs() << "Dropping debug info for " << DI);
4278      }
4279    }
4280    return 0;
4281  }
4282  case Intrinsic::dbg_value: {
4283    const DbgValueInst &DI = cast<DbgValueInst>(I);
4284    if (!DIVariable(DI.getVariable()).Verify())
4285      return 0;
4286
4287    MDNode *Variable = DI.getVariable();
4288    uint64_t Offset = DI.getOffset();
4289    const Value *V = DI.getValue();
4290    if (!V)
4291      return 0;
4292
4293    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4294    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4295    // absolute, but not relative, values are different depending on whether
4296    // debug info exists.
4297    ++SDNodeOrder;
4298    SDDbgValue *SDV;
4299    if (isa<ConstantInt>(V) || isa<ConstantFP>(V)) {
4300      SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder);
4301      DAG.AddDbgValue(SDV, 0, false);
4302    } else {
4303      // Do not use getValue() in here; we don't want to generate code at
4304      // this point if it hasn't been done yet.
4305      SDValue N = NodeMap[V];
4306      if (!N.getNode() && isa<Argument>(V))
4307        // Check unused arguments map.
4308        N = UnusedArgNodeMap[V];
4309      if (N.getNode()) {
4310        if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) {
4311          SDV = DAG.getDbgValue(Variable, N.getNode(),
4312                                N.getResNo(), Offset, dl, SDNodeOrder);
4313          DAG.AddDbgValue(SDV, N.getNode(), false);
4314        }
4315      } else if (!V->use_empty() ) {
4316        // Do not call getValue(V) yet, as we don't want to generate code.
4317        // Remember it for later.
4318        DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4319        DanglingDebugInfoMap[V] = DDI;
4320      } else {
4321        // We may expand this to cover more cases.  One case where we have no
4322        // data available is an unreferenced parameter.
4323        DEBUG(dbgs() << "Dropping debug info for " << DI);
4324      }
4325    }
4326
4327    // Build a debug info table entry.
4328    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4329      V = BCI->getOperand(0);
4330    const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4331    // Don't handle byval struct arguments or VLAs, for example.
4332    if (!AI)
4333      return 0;
4334    DenseMap<const AllocaInst*, int>::iterator SI =
4335      FuncInfo.StaticAllocaMap.find(AI);
4336    if (SI == FuncInfo.StaticAllocaMap.end())
4337      return 0; // VLAs.
4338    int FI = SI->second;
4339
4340    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4341    if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
4342      MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
4343    return 0;
4344  }
4345  case Intrinsic::eh_exception: {
4346    // Insert the EXCEPTIONADDR instruction.
4347    assert(FuncInfo.MBB->isLandingPad() &&
4348           "Call to eh.exception not in landing pad!");
4349    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4350    SDValue Ops[1];
4351    Ops[0] = DAG.getRoot();
4352    SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1);
4353    setValue(&I, Op);
4354    DAG.setRoot(Op.getValue(1));
4355    return 0;
4356  }
4357
4358  case Intrinsic::eh_selector: {
4359    MachineBasicBlock *CallMBB = FuncInfo.MBB;
4360    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4361    if (CallMBB->isLandingPad())
4362      AddCatchInfo(I, &MMI, CallMBB);
4363    else {
4364#ifndef NDEBUG
4365      FuncInfo.CatchInfoLost.insert(&I);
4366#endif
4367      // FIXME: Mark exception selector register as live in.  Hack for PR1508.
4368      unsigned Reg = TLI.getExceptionSelectorRegister();
4369      if (Reg) FuncInfo.MBB->addLiveIn(Reg);
4370    }
4371
4372    // Insert the EHSELECTION instruction.
4373    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
4374    SDValue Ops[2];
4375    Ops[0] = getValue(I.getArgOperand(0));
4376    Ops[1] = getRoot();
4377    SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2);
4378    DAG.setRoot(Op.getValue(1));
4379    setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32));
4380    return 0;
4381  }
4382
4383  case Intrinsic::eh_typeid_for: {
4384    // Find the type id for the given typeinfo.
4385    GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0));
4386    unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4387    Res = DAG.getConstant(TypeID, MVT::i32);
4388    setValue(&I, Res);
4389    return 0;
4390  }
4391
4392  case Intrinsic::eh_return_i32:
4393  case Intrinsic::eh_return_i64:
4394    DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4395    DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl,
4396                            MVT::Other,
4397                            getControlRoot(),
4398                            getValue(I.getArgOperand(0)),
4399                            getValue(I.getArgOperand(1))));
4400    return 0;
4401  case Intrinsic::eh_unwind_init:
4402    DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4403    return 0;
4404  case Intrinsic::eh_dwarf_cfa: {
4405    SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl,
4406                                        TLI.getPointerTy());
4407    SDValue Offset = DAG.getNode(ISD::ADD, dl,
4408                                 TLI.getPointerTy(),
4409                                 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
4410                                             TLI.getPointerTy()),
4411                                 CfaArg);
4412    SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl,
4413                             TLI.getPointerTy(),
4414                             DAG.getConstant(0, TLI.getPointerTy()));
4415    setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
4416                             FA, Offset));
4417    return 0;
4418  }
4419  case Intrinsic::eh_sjlj_callsite: {
4420    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4421    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4422    assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4423    assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4424
4425    MMI.setCurrentCallSite(CI->getZExtValue());
4426    return 0;
4427  }
4428  case Intrinsic::eh_sjlj_setjmp: {
4429    setValue(&I, DAG.getNode(ISD::EH_SJLJ_SETJMP, dl, MVT::i32, getRoot(),
4430                             getValue(I.getArgOperand(0))));
4431    return 0;
4432  }
4433  case Intrinsic::eh_sjlj_longjmp: {
4434    DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other,
4435                            getRoot(), getValue(I.getArgOperand(0))));
4436    return 0;
4437  }
4438  case Intrinsic::eh_sjlj_dispatch_setup: {
4439    DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_DISPATCHSETUP, dl, MVT::Other,
4440                            getRoot(), getValue(I.getArgOperand(0))));
4441    return 0;
4442  }
4443
4444  case Intrinsic::x86_mmx_pslli_w:
4445  case Intrinsic::x86_mmx_pslli_d:
4446  case Intrinsic::x86_mmx_pslli_q:
4447  case Intrinsic::x86_mmx_psrli_w:
4448  case Intrinsic::x86_mmx_psrli_d:
4449  case Intrinsic::x86_mmx_psrli_q:
4450  case Intrinsic::x86_mmx_psrai_w:
4451  case Intrinsic::x86_mmx_psrai_d: {
4452    SDValue ShAmt = getValue(I.getArgOperand(1));
4453    if (isa<ConstantSDNode>(ShAmt)) {
4454      visitTargetIntrinsic(I, Intrinsic);
4455      return 0;
4456    }
4457    unsigned NewIntrinsic = 0;
4458    EVT ShAmtVT = MVT::v2i32;
4459    switch (Intrinsic) {
4460    case Intrinsic::x86_mmx_pslli_w:
4461      NewIntrinsic = Intrinsic::x86_mmx_psll_w;
4462      break;
4463    case Intrinsic::x86_mmx_pslli_d:
4464      NewIntrinsic = Intrinsic::x86_mmx_psll_d;
4465      break;
4466    case Intrinsic::x86_mmx_pslli_q:
4467      NewIntrinsic = Intrinsic::x86_mmx_psll_q;
4468      break;
4469    case Intrinsic::x86_mmx_psrli_w:
4470      NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
4471      break;
4472    case Intrinsic::x86_mmx_psrli_d:
4473      NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
4474      break;
4475    case Intrinsic::x86_mmx_psrli_q:
4476      NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
4477      break;
4478    case Intrinsic::x86_mmx_psrai_w:
4479      NewIntrinsic = Intrinsic::x86_mmx_psra_w;
4480      break;
4481    case Intrinsic::x86_mmx_psrai_d:
4482      NewIntrinsic = Intrinsic::x86_mmx_psra_d;
4483      break;
4484    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4485    }
4486
4487    // The vector shift intrinsics with scalars uses 32b shift amounts but
4488    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
4489    // to be zero.
4490    // We must do this early because v2i32 is not a legal type.
4491    DebugLoc dl = getCurDebugLoc();
4492    SDValue ShOps[2];
4493    ShOps[0] = ShAmt;
4494    ShOps[1] = DAG.getConstant(0, MVT::i32);
4495    ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
4496    EVT DestVT = TLI.getValueType(I.getType());
4497    ShAmt = DAG.getNode(ISD::BITCAST, dl, DestVT, ShAmt);
4498    Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
4499                       DAG.getConstant(NewIntrinsic, MVT::i32),
4500                       getValue(I.getArgOperand(0)), ShAmt);
4501    setValue(&I, Res);
4502    return 0;
4503  }
4504  case Intrinsic::convertff:
4505  case Intrinsic::convertfsi:
4506  case Intrinsic::convertfui:
4507  case Intrinsic::convertsif:
4508  case Intrinsic::convertuif:
4509  case Intrinsic::convertss:
4510  case Intrinsic::convertsu:
4511  case Intrinsic::convertus:
4512  case Intrinsic::convertuu: {
4513    ISD::CvtCode Code = ISD::CVT_INVALID;
4514    switch (Intrinsic) {
4515    case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
4516    case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4517    case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4518    case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4519    case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4520    case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
4521    case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
4522    case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4523    case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4524    }
4525    EVT DestVT = TLI.getValueType(I.getType());
4526    const Value *Op1 = I.getArgOperand(0);
4527    Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1),
4528                               DAG.getValueType(DestVT),
4529                               DAG.getValueType(getValue(Op1).getValueType()),
4530                               getValue(I.getArgOperand(1)),
4531                               getValue(I.getArgOperand(2)),
4532                               Code);
4533    setValue(&I, Res);
4534    return 0;
4535  }
4536  case Intrinsic::sqrt:
4537    setValue(&I, DAG.getNode(ISD::FSQRT, dl,
4538                             getValue(I.getArgOperand(0)).getValueType(),
4539                             getValue(I.getArgOperand(0))));
4540    return 0;
4541  case Intrinsic::powi:
4542    setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)),
4543                            getValue(I.getArgOperand(1)), DAG));
4544    return 0;
4545  case Intrinsic::sin:
4546    setValue(&I, DAG.getNode(ISD::FSIN, dl,
4547                             getValue(I.getArgOperand(0)).getValueType(),
4548                             getValue(I.getArgOperand(0))));
4549    return 0;
4550  case Intrinsic::cos:
4551    setValue(&I, DAG.getNode(ISD::FCOS, dl,
4552                             getValue(I.getArgOperand(0)).getValueType(),
4553                             getValue(I.getArgOperand(0))));
4554    return 0;
4555  case Intrinsic::log:
4556    visitLog(I);
4557    return 0;
4558  case Intrinsic::log2:
4559    visitLog2(I);
4560    return 0;
4561  case Intrinsic::log10:
4562    visitLog10(I);
4563    return 0;
4564  case Intrinsic::exp:
4565    visitExp(I);
4566    return 0;
4567  case Intrinsic::exp2:
4568    visitExp2(I);
4569    return 0;
4570  case Intrinsic::pow:
4571    visitPow(I);
4572    return 0;
4573  case Intrinsic::convert_to_fp16:
4574    setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl,
4575                             MVT::i16, getValue(I.getArgOperand(0))));
4576    return 0;
4577  case Intrinsic::convert_from_fp16:
4578    setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl,
4579                             MVT::f32, getValue(I.getArgOperand(0))));
4580    return 0;
4581  case Intrinsic::pcmarker: {
4582    SDValue Tmp = getValue(I.getArgOperand(0));
4583    DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp));
4584    return 0;
4585  }
4586  case Intrinsic::readcyclecounter: {
4587    SDValue Op = getRoot();
4588    Res = DAG.getNode(ISD::READCYCLECOUNTER, dl,
4589                      DAG.getVTList(MVT::i64, MVT::Other),
4590                      &Op, 1);
4591    setValue(&I, Res);
4592    DAG.setRoot(Res.getValue(1));
4593    return 0;
4594  }
4595  case Intrinsic::bswap:
4596    setValue(&I, DAG.getNode(ISD::BSWAP, dl,
4597                             getValue(I.getArgOperand(0)).getValueType(),
4598                             getValue(I.getArgOperand(0))));
4599    return 0;
4600  case Intrinsic::cttz: {
4601    SDValue Arg = getValue(I.getArgOperand(0));
4602    EVT Ty = Arg.getValueType();
4603    setValue(&I, DAG.getNode(ISD::CTTZ, dl, Ty, Arg));
4604    return 0;
4605  }
4606  case Intrinsic::ctlz: {
4607    SDValue Arg = getValue(I.getArgOperand(0));
4608    EVT Ty = Arg.getValueType();
4609    setValue(&I, DAG.getNode(ISD::CTLZ, dl, Ty, Arg));
4610    return 0;
4611  }
4612  case Intrinsic::ctpop: {
4613    SDValue Arg = getValue(I.getArgOperand(0));
4614    EVT Ty = Arg.getValueType();
4615    setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg));
4616    return 0;
4617  }
4618  case Intrinsic::stacksave: {
4619    SDValue Op = getRoot();
4620    Res = DAG.getNode(ISD::STACKSAVE, dl,
4621                      DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
4622    setValue(&I, Res);
4623    DAG.setRoot(Res.getValue(1));
4624    return 0;
4625  }
4626  case Intrinsic::stackrestore: {
4627    Res = getValue(I.getArgOperand(0));
4628    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res));
4629    return 0;
4630  }
4631  case Intrinsic::stackprotector: {
4632    // Emit code into the DAG to store the stack guard onto the stack.
4633    MachineFunction &MF = DAG.getMachineFunction();
4634    MachineFrameInfo *MFI = MF.getFrameInfo();
4635    EVT PtrTy = TLI.getPointerTy();
4636
4637    SDValue Src = getValue(I.getArgOperand(0));   // The guard's value.
4638    AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
4639
4640    int FI = FuncInfo.StaticAllocaMap[Slot];
4641    MFI->setStackProtectorIndex(FI);
4642
4643    SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
4644
4645    // Store the stack protector onto the stack.
4646    Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN,
4647                       MachinePointerInfo::getFixedStack(FI),
4648                       true, false, 0);
4649    setValue(&I, Res);
4650    DAG.setRoot(Res);
4651    return 0;
4652  }
4653  case Intrinsic::objectsize: {
4654    // If we don't know by now, we're never going to know.
4655    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
4656
4657    assert(CI && "Non-constant type in __builtin_object_size?");
4658
4659    SDValue Arg = getValue(I.getCalledValue());
4660    EVT Ty = Arg.getValueType();
4661
4662    if (CI->isZero())
4663      Res = DAG.getConstant(-1ULL, Ty);
4664    else
4665      Res = DAG.getConstant(0, Ty);
4666
4667    setValue(&I, Res);
4668    return 0;
4669  }
4670  case Intrinsic::var_annotation:
4671    // Discard annotate attributes
4672    return 0;
4673
4674  case Intrinsic::init_trampoline: {
4675    const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
4676
4677    SDValue Ops[6];
4678    Ops[0] = getRoot();
4679    Ops[1] = getValue(I.getArgOperand(0));
4680    Ops[2] = getValue(I.getArgOperand(1));
4681    Ops[3] = getValue(I.getArgOperand(2));
4682    Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
4683    Ops[5] = DAG.getSrcValue(F);
4684
4685    Res = DAG.getNode(ISD::TRAMPOLINE, dl,
4686                      DAG.getVTList(TLI.getPointerTy(), MVT::Other),
4687                      Ops, 6);
4688
4689    setValue(&I, Res);
4690    DAG.setRoot(Res.getValue(1));
4691    return 0;
4692  }
4693  case Intrinsic::gcroot:
4694    if (GFI) {
4695      const Value *Alloca = I.getArgOperand(0);
4696      const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
4697
4698      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
4699      GFI->addStackRoot(FI->getIndex(), TypeMap);
4700    }
4701    return 0;
4702  case Intrinsic::gcread:
4703  case Intrinsic::gcwrite:
4704    llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
4705    return 0;
4706  case Intrinsic::flt_rounds:
4707    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32));
4708    return 0;
4709  case Intrinsic::trap: {
4710    StringRef TrapFuncName = getTrapFunctionName();
4711    if (TrapFuncName.empty()) {
4712      DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot()));
4713      return 0;
4714    }
4715    TargetLowering::ArgListTy Args;
4716    std::pair<SDValue, SDValue> Result =
4717      TLI.LowerCallTo(getRoot(), I.getType(),
4718                 false, false, false, false, 0, CallingConv::C,
4719                 /*isTailCall=*/false, /*isReturnValueUsed=*/true,
4720                 DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()),
4721                 Args, DAG, getCurDebugLoc());
4722    DAG.setRoot(Result.second);
4723    return 0;
4724  }
4725  case Intrinsic::uadd_with_overflow:
4726    return implVisitAluOverflow(I, ISD::UADDO);
4727  case Intrinsic::sadd_with_overflow:
4728    return implVisitAluOverflow(I, ISD::SADDO);
4729  case Intrinsic::usub_with_overflow:
4730    return implVisitAluOverflow(I, ISD::USUBO);
4731  case Intrinsic::ssub_with_overflow:
4732    return implVisitAluOverflow(I, ISD::SSUBO);
4733  case Intrinsic::umul_with_overflow:
4734    return implVisitAluOverflow(I, ISD::UMULO);
4735  case Intrinsic::smul_with_overflow:
4736    return implVisitAluOverflow(I, ISD::SMULO);
4737
4738  case Intrinsic::prefetch: {
4739    SDValue Ops[4];
4740    unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
4741    Ops[0] = getRoot();
4742    Ops[1] = getValue(I.getArgOperand(0));
4743    Ops[2] = getValue(I.getArgOperand(1));
4744    Ops[3] = getValue(I.getArgOperand(2));
4745    DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, dl,
4746                                        DAG.getVTList(MVT::Other),
4747                                        &Ops[0], 4,
4748                                        EVT::getIntegerVT(*Context, 8),
4749                                        MachinePointerInfo(I.getArgOperand(0)),
4750                                        0, /* align */
4751                                        false, /* volatile */
4752                                        rw==0, /* read */
4753                                        rw==1)); /* write */
4754    return 0;
4755  }
4756  case Intrinsic::memory_barrier: {
4757    SDValue Ops[6];
4758    Ops[0] = getRoot();
4759    for (int x = 1; x < 6; ++x)
4760      Ops[x] = getValue(I.getArgOperand(x - 1));
4761
4762    DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6));
4763    return 0;
4764  }
4765  case Intrinsic::atomic_cmp_swap: {
4766    SDValue Root = getRoot();
4767    SDValue L =
4768      DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(),
4769                    getValue(I.getArgOperand(1)).getValueType().getSimpleVT(),
4770                    Root,
4771                    getValue(I.getArgOperand(0)),
4772                    getValue(I.getArgOperand(1)),
4773                    getValue(I.getArgOperand(2)),
4774                    MachinePointerInfo(I.getArgOperand(0)));
4775    setValue(&I, L);
4776    DAG.setRoot(L.getValue(1));
4777    return 0;
4778  }
4779  case Intrinsic::atomic_load_add:
4780    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD);
4781  case Intrinsic::atomic_load_sub:
4782    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB);
4783  case Intrinsic::atomic_load_or:
4784    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR);
4785  case Intrinsic::atomic_load_xor:
4786    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR);
4787  case Intrinsic::atomic_load_and:
4788    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND);
4789  case Intrinsic::atomic_load_nand:
4790    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND);
4791  case Intrinsic::atomic_load_max:
4792    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX);
4793  case Intrinsic::atomic_load_min:
4794    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN);
4795  case Intrinsic::atomic_load_umin:
4796    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN);
4797  case Intrinsic::atomic_load_umax:
4798    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX);
4799  case Intrinsic::atomic_swap:
4800    return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP);
4801
4802  case Intrinsic::invariant_start:
4803  case Intrinsic::lifetime_start:
4804    // Discard region information.
4805    setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
4806    return 0;
4807  case Intrinsic::invariant_end:
4808  case Intrinsic::lifetime_end:
4809    // Discard region information.
4810    return 0;
4811  }
4812}
4813
4814void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
4815                                      bool isTailCall,
4816                                      MachineBasicBlock *LandingPad) {
4817  const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
4818  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
4819  const Type *RetTy = FTy->getReturnType();
4820  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4821  MCSymbol *BeginLabel = 0;
4822
4823  TargetLowering::ArgListTy Args;
4824  TargetLowering::ArgListEntry Entry;
4825  Args.reserve(CS.arg_size());
4826
4827  // Check whether the function can return without sret-demotion.
4828  SmallVector<ISD::OutputArg, 4> Outs;
4829  SmallVector<uint64_t, 4> Offsets;
4830  GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(),
4831                Outs, TLI, &Offsets);
4832
4833  bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
4834                        FTy->isVarArg(), Outs, FTy->getContext());
4835
4836  SDValue DemoteStackSlot;
4837  int DemoteStackIdx = -100;
4838
4839  if (!CanLowerReturn) {
4840    uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(
4841                      FTy->getReturnType());
4842    unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(
4843                      FTy->getReturnType());
4844    MachineFunction &MF = DAG.getMachineFunction();
4845    DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
4846    const Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
4847
4848    DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI.getPointerTy());
4849    Entry.Node = DemoteStackSlot;
4850    Entry.Ty = StackSlotPtrType;
4851    Entry.isSExt = false;
4852    Entry.isZExt = false;
4853    Entry.isInReg = false;
4854    Entry.isSRet = true;
4855    Entry.isNest = false;
4856    Entry.isByVal = false;
4857    Entry.Alignment = Align;
4858    Args.push_back(Entry);
4859    RetTy = Type::getVoidTy(FTy->getContext());
4860  }
4861
4862  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
4863       i != e; ++i) {
4864    const Value *V = *i;
4865
4866    // Skip empty types
4867    if (V->getType()->isEmptyTy())
4868      continue;
4869
4870    SDValue ArgNode = getValue(V);
4871    Entry.Node = ArgNode; Entry.Ty = V->getType();
4872
4873    unsigned attrInd = i - CS.arg_begin() + 1;
4874    Entry.isSExt  = CS.paramHasAttr(attrInd, Attribute::SExt);
4875    Entry.isZExt  = CS.paramHasAttr(attrInd, Attribute::ZExt);
4876    Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg);
4877    Entry.isSRet  = CS.paramHasAttr(attrInd, Attribute::StructRet);
4878    Entry.isNest  = CS.paramHasAttr(attrInd, Attribute::Nest);
4879    Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal);
4880    Entry.Alignment = CS.getParamAlignment(attrInd);
4881    Args.push_back(Entry);
4882  }
4883
4884  if (LandingPad) {
4885    // Insert a label before the invoke call to mark the try range.  This can be
4886    // used to detect deletion of the invoke via the MachineModuleInfo.
4887    BeginLabel = MMI.getContext().CreateTempSymbol();
4888
4889    // For SjLj, keep track of which landing pads go with which invokes
4890    // so as to maintain the ordering of pads in the LSDA.
4891    unsigned CallSiteIndex = MMI.getCurrentCallSite();
4892    if (CallSiteIndex) {
4893      MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
4894      // Now that the call site is handled, stop tracking it.
4895      MMI.setCurrentCallSite(0);
4896    }
4897
4898    // Both PendingLoads and PendingExports must be flushed here;
4899    // this call might not return.
4900    (void)getRoot();
4901    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel));
4902  }
4903
4904  // Check if target-independent constraints permit a tail call here.
4905  // Target-dependent constraints are checked within TLI.LowerCallTo.
4906  if (isTailCall &&
4907      !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI))
4908    isTailCall = false;
4909
4910  // If there's a possibility that fast-isel has already selected some amount
4911  // of the current basic block, don't emit a tail call.
4912  if (isTailCall && EnableFastISel)
4913    isTailCall = false;
4914
4915  std::pair<SDValue,SDValue> Result =
4916    TLI.LowerCallTo(getRoot(), RetTy,
4917                    CS.paramHasAttr(0, Attribute::SExt),
4918                    CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(),
4919                    CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(),
4920                    CS.getCallingConv(),
4921                    isTailCall,
4922                    !CS.getInstruction()->use_empty(),
4923                    Callee, Args, DAG, getCurDebugLoc());
4924  assert((isTailCall || Result.second.getNode()) &&
4925         "Non-null chain expected with non-tail call!");
4926  assert((Result.second.getNode() || !Result.first.getNode()) &&
4927         "Null value expected with tail call!");
4928  if (Result.first.getNode()) {
4929    setValue(CS.getInstruction(), Result.first);
4930  } else if (!CanLowerReturn && Result.second.getNode()) {
4931    // The instruction result is the result of loading from the
4932    // hidden sret parameter.
4933    SmallVector<EVT, 1> PVTs;
4934    const Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
4935
4936    ComputeValueVTs(TLI, PtrRetTy, PVTs);
4937    assert(PVTs.size() == 1 && "Pointers should fit in one register");
4938    EVT PtrVT = PVTs[0];
4939    unsigned NumValues = Outs.size();
4940    SmallVector<SDValue, 4> Values(NumValues);
4941    SmallVector<SDValue, 4> Chains(NumValues);
4942
4943    for (unsigned i = 0; i < NumValues; ++i) {
4944      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT,
4945                                DemoteStackSlot,
4946                                DAG.getConstant(Offsets[i], PtrVT));
4947      SDValue L = DAG.getLoad(Outs[i].VT, getCurDebugLoc(), Result.second,
4948                              Add,
4949                  MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]),
4950                              false, false, 1);
4951      Values[i] = L;
4952      Chains[i] = L.getValue(1);
4953    }
4954
4955    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
4956                                MVT::Other, &Chains[0], NumValues);
4957    PendingLoads.push_back(Chain);
4958
4959    // Collect the legal value parts into potentially illegal values
4960    // that correspond to the original function's return values.
4961    SmallVector<EVT, 4> RetTys;
4962    RetTy = FTy->getReturnType();
4963    ComputeValueVTs(TLI, RetTy, RetTys);
4964    ISD::NodeType AssertOp = ISD::DELETED_NODE;
4965    SmallVector<SDValue, 4> ReturnValues;
4966    unsigned CurReg = 0;
4967    for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
4968      EVT VT = RetTys[I];
4969      EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT);
4970      unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT);
4971
4972      SDValue ReturnValue =
4973        getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs,
4974                         RegisterVT, VT, AssertOp);
4975      ReturnValues.push_back(ReturnValue);
4976      CurReg += NumRegs;
4977    }
4978
4979    setValue(CS.getInstruction(),
4980             DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
4981                         DAG.getVTList(&RetTys[0], RetTys.size()),
4982                         &ReturnValues[0], ReturnValues.size()));
4983  }
4984
4985  // Assign order to nodes here. If the call does not produce a result, it won't
4986  // be mapped to a SDNode and visit() will not assign it an order number.
4987  if (!Result.second.getNode()) {
4988    // As a special case, a null chain means that a tail call has been emitted and
4989    // the DAG root is already updated.
4990    HasTailCall = true;
4991    ++SDNodeOrder;
4992    AssignOrderingToNode(DAG.getRoot().getNode());
4993  } else {
4994    DAG.setRoot(Result.second);
4995    ++SDNodeOrder;
4996    AssignOrderingToNode(Result.second.getNode());
4997  }
4998
4999  if (LandingPad) {
5000    // Insert a label at the end of the invoke call to mark the try range.  This
5001    // can be used to detect deletion of the invoke via the MachineModuleInfo.
5002    MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
5003    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel));
5004
5005    // Inform MachineModuleInfo of range.
5006    MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
5007  }
5008}
5009
5010/// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
5011/// value is equal or not-equal to zero.
5012static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
5013  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
5014       UI != E; ++UI) {
5015    if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
5016      if (IC->isEquality())
5017        if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
5018          if (C->isNullValue())
5019            continue;
5020    // Unknown instruction.
5021    return false;
5022  }
5023  return true;
5024}
5025
5026static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
5027                             const Type *LoadTy,
5028                             SelectionDAGBuilder &Builder) {
5029
5030  // Check to see if this load can be trivially constant folded, e.g. if the
5031  // input is from a string literal.
5032  if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5033    // Cast pointer to the type we really want to load.
5034    LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5035                                         PointerType::getUnqual(LoadTy));
5036
5037    if (const Constant *LoadCst =
5038          ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
5039                                       Builder.TD))
5040      return Builder.getValue(LoadCst);
5041  }
5042
5043  // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
5044  // still constant memory, the input chain can be the entry node.
5045  SDValue Root;
5046  bool ConstantMemory = false;
5047
5048  // Do not serialize (non-volatile) loads of constant memory with anything.
5049  if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5050    Root = Builder.DAG.getEntryNode();
5051    ConstantMemory = true;
5052  } else {
5053    // Do not serialize non-volatile loads against each other.
5054    Root = Builder.DAG.getRoot();
5055  }
5056
5057  SDValue Ptr = Builder.getValue(PtrVal);
5058  SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root,
5059                                        Ptr, MachinePointerInfo(PtrVal),
5060                                        false /*volatile*/,
5061                                        false /*nontemporal*/, 1 /* align=1 */);
5062
5063  if (!ConstantMemory)
5064    Builder.PendingLoads.push_back(LoadVal.getValue(1));
5065  return LoadVal;
5066}
5067
5068
5069/// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5070/// If so, return true and lower it, otherwise return false and it will be
5071/// lowered like a normal call.
5072bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5073  // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
5074  if (I.getNumArgOperands() != 3)
5075    return false;
5076
5077  const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5078  if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5079      !I.getArgOperand(2)->getType()->isIntegerTy() ||
5080      !I.getType()->isIntegerTy())
5081    return false;
5082
5083  const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2));
5084
5085  // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
5086  // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
5087  if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) {
5088    bool ActuallyDoIt = true;
5089    MVT LoadVT;
5090    const Type *LoadTy;
5091    switch (Size->getZExtValue()) {
5092    default:
5093      LoadVT = MVT::Other;
5094      LoadTy = 0;
5095      ActuallyDoIt = false;
5096      break;
5097    case 2:
5098      LoadVT = MVT::i16;
5099      LoadTy = Type::getInt16Ty(Size->getContext());
5100      break;
5101    case 4:
5102      LoadVT = MVT::i32;
5103      LoadTy = Type::getInt32Ty(Size->getContext());
5104      break;
5105    case 8:
5106      LoadVT = MVT::i64;
5107      LoadTy = Type::getInt64Ty(Size->getContext());
5108      break;
5109        /*
5110    case 16:
5111      LoadVT = MVT::v4i32;
5112      LoadTy = Type::getInt32Ty(Size->getContext());
5113      LoadTy = VectorType::get(LoadTy, 4);
5114      break;
5115         */
5116    }
5117
5118    // This turns into unaligned loads.  We only do this if the target natively
5119    // supports the MVT we'll be loading or if it is small enough (<= 4) that
5120    // we'll only produce a small number of byte loads.
5121
5122    // Require that we can find a legal MVT, and only do this if the target
5123    // supports unaligned loads of that type.  Expanding into byte loads would
5124    // bloat the code.
5125    if (ActuallyDoIt && Size->getZExtValue() > 4) {
5126      // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5127      // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5128      if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT))
5129        ActuallyDoIt = false;
5130    }
5131
5132    if (ActuallyDoIt) {
5133      SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5134      SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5135
5136      SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal,
5137                                 ISD::SETNE);
5138      EVT CallVT = TLI.getValueType(I.getType(), true);
5139      setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT));
5140      return true;
5141    }
5142  }
5143
5144
5145  return false;
5146}
5147
5148
5149void SelectionDAGBuilder::visitCall(const CallInst &I) {
5150  // Handle inline assembly differently.
5151  if (isa<InlineAsm>(I.getCalledValue())) {
5152    visitInlineAsm(&I);
5153    return;
5154  }
5155
5156  // See if any floating point values are being passed to this function. This is
5157  // used to emit an undefined reference to fltused on Windows.
5158  const FunctionType *FT =
5159    cast<FunctionType>(I.getCalledValue()->getType()->getContainedType(0));
5160  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5161  if (FT->isVarArg() &&
5162      !MMI.callsExternalVAFunctionWithFloatingPointArguments()) {
5163    for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
5164      const Type* T = I.getArgOperand(i)->getType();
5165      for (po_iterator<const Type*> i = po_begin(T), e = po_end(T);
5166           i != e; ++i) {
5167        if (!i->isFloatingPointTy()) continue;
5168        MMI.setCallsExternalVAFunctionWithFloatingPointArguments(true);
5169        break;
5170      }
5171    }
5172  }
5173
5174  const char *RenameFn = 0;
5175  if (Function *F = I.getCalledFunction()) {
5176    if (F->isDeclaration()) {
5177      if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
5178        if (unsigned IID = II->getIntrinsicID(F)) {
5179          RenameFn = visitIntrinsicCall(I, IID);
5180          if (!RenameFn)
5181            return;
5182        }
5183      }
5184      if (unsigned IID = F->getIntrinsicID()) {
5185        RenameFn = visitIntrinsicCall(I, IID);
5186        if (!RenameFn)
5187          return;
5188      }
5189    }
5190
5191    // Check for well-known libc/libm calls.  If the function is internal, it
5192    // can't be a library call.
5193    if (!F->hasLocalLinkage() && F->hasName()) {
5194      StringRef Name = F->getName();
5195      if (Name == "copysign" || Name == "copysignf" || Name == "copysignl") {
5196        if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
5197            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5198            I.getType() == I.getArgOperand(0)->getType() &&
5199            I.getType() == I.getArgOperand(1)->getType()) {
5200          SDValue LHS = getValue(I.getArgOperand(0));
5201          SDValue RHS = getValue(I.getArgOperand(1));
5202          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(),
5203                                   LHS.getValueType(), LHS, RHS));
5204          return;
5205        }
5206      } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") {
5207        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5208            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5209            I.getType() == I.getArgOperand(0)->getType()) {
5210          SDValue Tmp = getValue(I.getArgOperand(0));
5211          setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(),
5212                                   Tmp.getValueType(), Tmp));
5213          return;
5214        }
5215      } else if (Name == "sin" || Name == "sinf" || Name == "sinl") {
5216        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5217            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5218            I.getType() == I.getArgOperand(0)->getType() &&
5219            I.onlyReadsMemory()) {
5220          SDValue Tmp = getValue(I.getArgOperand(0));
5221          setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(),
5222                                   Tmp.getValueType(), Tmp));
5223          return;
5224        }
5225      } else if (Name == "cos" || Name == "cosf" || Name == "cosl") {
5226        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5227            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5228            I.getType() == I.getArgOperand(0)->getType() &&
5229            I.onlyReadsMemory()) {
5230          SDValue Tmp = getValue(I.getArgOperand(0));
5231          setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(),
5232                                   Tmp.getValueType(), Tmp));
5233          return;
5234        }
5235      } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") {
5236        if (I.getNumArgOperands() == 1 &&   // Basic sanity checks.
5237            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5238            I.getType() == I.getArgOperand(0)->getType() &&
5239            I.onlyReadsMemory()) {
5240          SDValue Tmp = getValue(I.getArgOperand(0));
5241          setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(),
5242                                   Tmp.getValueType(), Tmp));
5243          return;
5244        }
5245      } else if (Name == "memcmp") {
5246        if (visitMemCmpCall(I))
5247          return;
5248      }
5249    }
5250  }
5251
5252  SDValue Callee;
5253  if (!RenameFn)
5254    Callee = getValue(I.getCalledValue());
5255  else
5256    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
5257
5258  // Check if we can potentially perform a tail call. More detailed checking is
5259  // be done within LowerCallTo, after more information about the call is known.
5260  LowerCallTo(&I, Callee, I.isTailCall());
5261}
5262
5263namespace {
5264
5265/// AsmOperandInfo - This contains information for each constraint that we are
5266/// lowering.
5267class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
5268public:
5269  /// CallOperand - If this is the result output operand or a clobber
5270  /// this is null, otherwise it is the incoming operand to the CallInst.
5271  /// This gets modified as the asm is processed.
5272  SDValue CallOperand;
5273
5274  /// AssignedRegs - If this is a register or register class operand, this
5275  /// contains the set of register corresponding to the operand.
5276  RegsForValue AssignedRegs;
5277
5278  explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
5279    : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
5280  }
5281
5282  /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
5283  /// busy in OutputRegs/InputRegs.
5284  void MarkAllocatedRegs(bool isOutReg, bool isInReg,
5285                         std::set<unsigned> &OutputRegs,
5286                         std::set<unsigned> &InputRegs,
5287                         const TargetRegisterInfo &TRI) const {
5288    if (isOutReg) {
5289      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
5290        MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
5291    }
5292    if (isInReg) {
5293      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
5294        MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
5295    }
5296  }
5297
5298  /// getCallOperandValEVT - Return the EVT of the Value* that this operand
5299  /// corresponds to.  If there is no Value* for this operand, it returns
5300  /// MVT::Other.
5301  EVT getCallOperandValEVT(LLVMContext &Context,
5302                           const TargetLowering &TLI,
5303                           const TargetData *TD) const {
5304    if (CallOperandVal == 0) return MVT::Other;
5305
5306    if (isa<BasicBlock>(CallOperandVal))
5307      return TLI.getPointerTy();
5308
5309    const llvm::Type *OpTy = CallOperandVal->getType();
5310
5311    // FIXME: code duplicated from TargetLowering::ParseConstraints().
5312    // If this is an indirect operand, the operand is a pointer to the
5313    // accessed type.
5314    if (isIndirect) {
5315      const llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
5316      if (!PtrTy)
5317        report_fatal_error("Indirect operand for inline asm not a pointer!");
5318      OpTy = PtrTy->getElementType();
5319    }
5320
5321    // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
5322    if (const StructType *STy = dyn_cast<StructType>(OpTy))
5323      if (STy->getNumElements() == 1)
5324        OpTy = STy->getElementType(0);
5325
5326    // If OpTy is not a single value, it may be a struct/union that we
5327    // can tile with integers.
5328    if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5329      unsigned BitSize = TD->getTypeSizeInBits(OpTy);
5330      switch (BitSize) {
5331      default: break;
5332      case 1:
5333      case 8:
5334      case 16:
5335      case 32:
5336      case 64:
5337      case 128:
5338        OpTy = IntegerType::get(Context, BitSize);
5339        break;
5340      }
5341    }
5342
5343    return TLI.getValueType(OpTy, true);
5344  }
5345
5346private:
5347  /// MarkRegAndAliases - Mark the specified register and all aliases in the
5348  /// specified set.
5349  static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
5350                                const TargetRegisterInfo &TRI) {
5351    assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
5352    Regs.insert(Reg);
5353    if (const unsigned *Aliases = TRI.getAliasSet(Reg))
5354      for (; *Aliases; ++Aliases)
5355        Regs.insert(*Aliases);
5356  }
5357};
5358
5359typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
5360
5361} // end anonymous namespace
5362
5363/// isAllocatableRegister - If the specified register is safe to allocate,
5364/// i.e. it isn't a stack pointer or some other special register, return the
5365/// register class for the register.  Otherwise, return null.
5366static const TargetRegisterClass *
5367isAllocatableRegister(unsigned Reg, MachineFunction &MF,
5368                      const TargetLowering &TLI,
5369                      const TargetRegisterInfo *TRI) {
5370  EVT FoundVT = MVT::Other;
5371  const TargetRegisterClass *FoundRC = 0;
5372  for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(),
5373       E = TRI->regclass_end(); RCI != E; ++RCI) {
5374    EVT ThisVT = MVT::Other;
5375
5376    const TargetRegisterClass *RC = *RCI;
5377    // If none of the value types for this register class are valid, we
5378    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
5379    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
5380         I != E; ++I) {
5381      if (TLI.isTypeLegal(*I)) {
5382        // If we have already found this register in a different register class,
5383        // choose the one with the largest VT specified.  For example, on
5384        // PowerPC, we favor f64 register classes over f32.
5385        if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) {
5386          ThisVT = *I;
5387          break;
5388        }
5389      }
5390    }
5391
5392    if (ThisVT == MVT::Other) continue;
5393
5394    // NOTE: This isn't ideal.  In particular, this might allocate the
5395    // frame pointer in functions that need it (due to them not being taken
5396    // out of allocation, because a variable sized allocation hasn't been seen
5397    // yet).  This is a slight code pessimization, but should still work.
5398    for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
5399         E = RC->allocation_order_end(MF); I != E; ++I)
5400      if (*I == Reg) {
5401        // We found a matching register class.  Keep looking at others in case
5402        // we find one with larger registers that this physreg is also in.
5403        FoundRC = RC;
5404        FoundVT = ThisVT;
5405        break;
5406      }
5407  }
5408  return FoundRC;
5409}
5410
5411/// GetRegistersForValue - Assign registers (virtual or physical) for the
5412/// specified operand.  We prefer to assign virtual registers, to allow the
5413/// register allocator to handle the assignment process.  However, if the asm
5414/// uses features that we can't model on machineinstrs, we have SDISel do the
5415/// allocation.  This produces generally horrible, but correct, code.
5416///
5417///   OpInfo describes the operand.
5418///   Input and OutputRegs are the set of already allocated physical registers.
5419///
5420static void GetRegistersForValue(SelectionDAG &DAG,
5421                                 const TargetLowering &TLI,
5422                                 DebugLoc DL,
5423                                 SDISelAsmOperandInfo &OpInfo,
5424                                 std::set<unsigned> &OutputRegs,
5425                                 std::set<unsigned> &InputRegs) {
5426  LLVMContext &Context = *DAG.getContext();
5427
5428  // Compute whether this value requires an input register, an output register,
5429  // or both.
5430  bool isOutReg = false;
5431  bool isInReg = false;
5432  switch (OpInfo.Type) {
5433  case InlineAsm::isOutput:
5434    isOutReg = true;
5435
5436    // If there is an input constraint that matches this, we need to reserve
5437    // the input register so no other inputs allocate to it.
5438    isInReg = OpInfo.hasMatchingInput();
5439    break;
5440  case InlineAsm::isInput:
5441    isInReg = true;
5442    isOutReg = false;
5443    break;
5444  case InlineAsm::isClobber:
5445    isOutReg = true;
5446    isInReg = true;
5447    break;
5448  }
5449
5450
5451  MachineFunction &MF = DAG.getMachineFunction();
5452  SmallVector<unsigned, 4> Regs;
5453
5454  // If this is a constraint for a single physreg, or a constraint for a
5455  // register class, find it.
5456  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
5457    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5458                                     OpInfo.ConstraintVT);
5459
5460  unsigned NumRegs = 1;
5461  if (OpInfo.ConstraintVT != MVT::Other) {
5462    // If this is a FP input in an integer register (or visa versa) insert a bit
5463    // cast of the input value.  More generally, handle any case where the input
5464    // value disagrees with the register class we plan to stick this in.
5465    if (OpInfo.Type == InlineAsm::isInput &&
5466        PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
5467      // Try to convert to the first EVT that the reg class contains.  If the
5468      // types are identical size, use a bitcast to convert (e.g. two differing
5469      // vector types).
5470      EVT RegVT = *PhysReg.second->vt_begin();
5471      if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
5472        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5473                                         RegVT, OpInfo.CallOperand);
5474        OpInfo.ConstraintVT = RegVT;
5475      } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
5476        // If the input is a FP value and we want it in FP registers, do a
5477        // bitcast to the corresponding integer type.  This turns an f64 value
5478        // into i64, which can be passed with two i32 values on a 32-bit
5479        // machine.
5480        RegVT = EVT::getIntegerVT(Context,
5481                                  OpInfo.ConstraintVT.getSizeInBits());
5482        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5483                                         RegVT, OpInfo.CallOperand);
5484        OpInfo.ConstraintVT = RegVT;
5485      }
5486    }
5487
5488    NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
5489  }
5490
5491  EVT RegVT;
5492  EVT ValueVT = OpInfo.ConstraintVT;
5493
5494  // If this is a constraint for a specific physical register, like {r17},
5495  // assign it now.
5496  if (unsigned AssignedReg = PhysReg.first) {
5497    const TargetRegisterClass *RC = PhysReg.second;
5498    if (OpInfo.ConstraintVT == MVT::Other)
5499      ValueVT = *RC->vt_begin();
5500
5501    // Get the actual register value type.  This is important, because the user
5502    // may have asked for (e.g.) the AX register in i32 type.  We need to
5503    // remember that AX is actually i16 to get the right extension.
5504    RegVT = *RC->vt_begin();
5505
5506    // This is a explicit reference to a physical register.
5507    Regs.push_back(AssignedReg);
5508
5509    // If this is an expanded reference, add the rest of the regs to Regs.
5510    if (NumRegs != 1) {
5511      TargetRegisterClass::iterator I = RC->begin();
5512      for (; *I != AssignedReg; ++I)
5513        assert(I != RC->end() && "Didn't find reg!");
5514
5515      // Already added the first reg.
5516      --NumRegs; ++I;
5517      for (; NumRegs; --NumRegs, ++I) {
5518        assert(I != RC->end() && "Ran out of registers to allocate!");
5519        Regs.push_back(*I);
5520      }
5521    }
5522
5523    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5524    const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5525    OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5526    return;
5527  }
5528
5529  // Otherwise, if this was a reference to an LLVM register class, create vregs
5530  // for this reference.
5531  if (const TargetRegisterClass *RC = PhysReg.second) {
5532    RegVT = *RC->vt_begin();
5533    if (OpInfo.ConstraintVT == MVT::Other)
5534      ValueVT = RegVT;
5535
5536    // Create the appropriate number of virtual registers.
5537    MachineRegisterInfo &RegInfo = MF.getRegInfo();
5538    for (; NumRegs; --NumRegs)
5539      Regs.push_back(RegInfo.createVirtualRegister(RC));
5540
5541    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5542    return;
5543  }
5544
5545  // This is a reference to a register class that doesn't directly correspond
5546  // to an LLVM register class.  Allocate NumRegs consecutive, available,
5547  // registers from the class.
5548  std::vector<unsigned> RegClassRegs
5549    = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
5550                                            OpInfo.ConstraintVT);
5551
5552  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5553  unsigned NumAllocated = 0;
5554  for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
5555    unsigned Reg = RegClassRegs[i];
5556    // See if this register is available.
5557    if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
5558        (isInReg  && InputRegs.count(Reg))) {    // Already used.
5559      // Make sure we find consecutive registers.
5560      NumAllocated = 0;
5561      continue;
5562    }
5563
5564    // Check to see if this register is allocatable (i.e. don't give out the
5565    // stack pointer).
5566    const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, TRI);
5567    if (!RC) {        // Couldn't allocate this register.
5568      // Reset NumAllocated to make sure we return consecutive registers.
5569      NumAllocated = 0;
5570      continue;
5571    }
5572
5573    // Okay, this register is good, we can use it.
5574    ++NumAllocated;
5575
5576    // If we allocated enough consecutive registers, succeed.
5577    if (NumAllocated == NumRegs) {
5578      unsigned RegStart = (i-NumAllocated)+1;
5579      unsigned RegEnd   = i+1;
5580      // Mark all of the allocated registers used.
5581      for (unsigned i = RegStart; i != RegEnd; ++i)
5582        Regs.push_back(RegClassRegs[i]);
5583
5584      OpInfo.AssignedRegs = RegsForValue(Regs, *RC->vt_begin(),
5585                                         OpInfo.ConstraintVT);
5586      OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5587      return;
5588    }
5589  }
5590
5591  // Otherwise, we couldn't allocate enough registers for this.
5592}
5593
5594/// visitInlineAsm - Handle a call to an InlineAsm object.
5595///
5596void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
5597  const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
5598
5599  /// ConstraintOperands - Information about all of the constraints.
5600  SDISelAsmOperandInfoVector ConstraintOperands;
5601
5602  std::set<unsigned> OutputRegs, InputRegs;
5603
5604  TargetLowering::AsmOperandInfoVector
5605    TargetConstraints = TLI.ParseConstraints(CS);
5606
5607  bool hasMemory = false;
5608
5609  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
5610  unsigned ResNo = 0;   // ResNo - The result number of the next output.
5611  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
5612    ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
5613    SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
5614
5615    EVT OpVT = MVT::Other;
5616
5617    // Compute the value type for each operand.
5618    switch (OpInfo.Type) {
5619    case InlineAsm::isOutput:
5620      // Indirect outputs just consume an argument.
5621      if (OpInfo.isIndirect) {
5622        OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5623        break;
5624      }
5625
5626      // The return value of the call is this value.  As such, there is no
5627      // corresponding argument.
5628      assert(!CS.getType()->isVoidTy() &&
5629             "Bad inline asm!");
5630      if (const StructType *STy = dyn_cast<StructType>(CS.getType())) {
5631        OpVT = TLI.getValueType(STy->getElementType(ResNo));
5632      } else {
5633        assert(ResNo == 0 && "Asm only has one result!");
5634        OpVT = TLI.getValueType(CS.getType());
5635      }
5636      ++ResNo;
5637      break;
5638    case InlineAsm::isInput:
5639      OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5640      break;
5641    case InlineAsm::isClobber:
5642      // Nothing to do.
5643      break;
5644    }
5645
5646    // If this is an input or an indirect output, process the call argument.
5647    // BasicBlocks are labels, currently appearing only in asm's.
5648    if (OpInfo.CallOperandVal) {
5649      if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
5650        OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
5651      } else {
5652        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
5653      }
5654
5655      OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD);
5656    }
5657
5658    OpInfo.ConstraintVT = OpVT;
5659
5660    // Indirect operand accesses access memory.
5661    if (OpInfo.isIndirect)
5662      hasMemory = true;
5663    else {
5664      for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
5665        TargetLowering::ConstraintType
5666          CType = TLI.getConstraintType(OpInfo.Codes[j]);
5667        if (CType == TargetLowering::C_Memory) {
5668          hasMemory = true;
5669          break;
5670        }
5671      }
5672    }
5673  }
5674
5675  SDValue Chain, Flag;
5676
5677  // We won't need to flush pending loads if this asm doesn't touch
5678  // memory and is nonvolatile.
5679  if (hasMemory || IA->hasSideEffects())
5680    Chain = getRoot();
5681  else
5682    Chain = DAG.getRoot();
5683
5684  // Second pass over the constraints: compute which constraint option to use
5685  // and assign registers to constraints that want a specific physreg.
5686  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5687    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5688
5689    // If this is an output operand with a matching input operand, look up the
5690    // matching input. If their types mismatch, e.g. one is an integer, the
5691    // other is floating point, or their sizes are different, flag it as an
5692    // error.
5693    if (OpInfo.hasMatchingInput()) {
5694      SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5695
5696      if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5697        if ((OpInfo.ConstraintVT.isInteger() !=
5698             Input.ConstraintVT.isInteger()) ||
5699            (OpInfo.ConstraintVT.getSizeInBits() !=
5700             Input.ConstraintVT.getSizeInBits())) {
5701          report_fatal_error("Unsupported asm: input constraint"
5702                             " with a matching output constraint of"
5703                             " incompatible type!");
5704        }
5705        Input.ConstraintVT = OpInfo.ConstraintVT;
5706      }
5707    }
5708
5709    // Compute the constraint code and ConstraintType to use.
5710    TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
5711
5712    // If this is a memory input, and if the operand is not indirect, do what we
5713    // need to to provide an address for the memory input.
5714    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5715        !OpInfo.isIndirect) {
5716      assert((OpInfo.isMultipleAlternative ||
5717              (OpInfo.Type == InlineAsm::isInput)) &&
5718             "Can only indirectify direct input operands!");
5719
5720      // Memory operands really want the address of the value.  If we don't have
5721      // an indirect input, put it in the constpool if we can, otherwise spill
5722      // it to a stack slot.
5723
5724      // If the operand is a float, integer, or vector constant, spill to a
5725      // constant pool entry to get its address.
5726      const Value *OpVal = OpInfo.CallOperandVal;
5727      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
5728          isa<ConstantVector>(OpVal)) {
5729        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
5730                                                 TLI.getPointerTy());
5731      } else {
5732        // Otherwise, create a stack slot and emit a store to it before the
5733        // asm.
5734        const Type *Ty = OpVal->getType();
5735        uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
5736        unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
5737        MachineFunction &MF = DAG.getMachineFunction();
5738        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5739        SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
5740        Chain = DAG.getStore(Chain, getCurDebugLoc(),
5741                             OpInfo.CallOperand, StackSlot,
5742                             MachinePointerInfo::getFixedStack(SSFI),
5743                             false, false, 0);
5744        OpInfo.CallOperand = StackSlot;
5745      }
5746
5747      // There is no longer a Value* corresponding to this operand.
5748      OpInfo.CallOperandVal = 0;
5749
5750      // It is now an indirect operand.
5751      OpInfo.isIndirect = true;
5752    }
5753
5754    // If this constraint is for a specific register, allocate it before
5755    // anything else.
5756    if (OpInfo.ConstraintType == TargetLowering::C_Register)
5757      GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo, OutputRegs,
5758                           InputRegs);
5759  }
5760
5761  // Second pass - Loop over all of the operands, assigning virtual or physregs
5762  // to register class operands.
5763  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5764    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5765
5766    // C_Register operands have already been allocated, Other/Memory don't need
5767    // to be.
5768    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
5769      GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo, OutputRegs,
5770                           InputRegs);
5771  }
5772
5773  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
5774  std::vector<SDValue> AsmNodeOperands;
5775  AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
5776  AsmNodeOperands.push_back(
5777          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
5778                                      TLI.getPointerTy()));
5779
5780  // If we have a !srcloc metadata node associated with it, we want to attach
5781  // this to the ultimately generated inline asm machineinstr.  To do this, we
5782  // pass in the third operand as this (potentially null) inline asm MDNode.
5783  const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
5784  AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
5785
5786  // Remember the HasSideEffect and AlignStack bits as operand 3.
5787  unsigned ExtraInfo = 0;
5788  if (IA->hasSideEffects())
5789    ExtraInfo |= InlineAsm::Extra_HasSideEffects;
5790  if (IA->isAlignStack())
5791    ExtraInfo |= InlineAsm::Extra_IsAlignStack;
5792  AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo,
5793                                                  TLI.getPointerTy()));
5794
5795  // Loop over all of the inputs, copying the operand values into the
5796  // appropriate registers and processing the output regs.
5797  RegsForValue RetValRegs;
5798
5799  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
5800  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
5801
5802  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5803    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5804
5805    switch (OpInfo.Type) {
5806    case InlineAsm::isOutput: {
5807      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
5808          OpInfo.ConstraintType != TargetLowering::C_Register) {
5809        // Memory output, or 'other' output (e.g. 'X' constraint).
5810        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
5811
5812        // Add information to the INLINEASM node to know about this output.
5813        unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
5814        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
5815                                                        TLI.getPointerTy()));
5816        AsmNodeOperands.push_back(OpInfo.CallOperand);
5817        break;
5818      }
5819
5820      // Otherwise, this is a register or register class output.
5821
5822      // Copy the output from the appropriate register.  Find a register that
5823      // we can use.
5824      if (OpInfo.AssignedRegs.Regs.empty())
5825        report_fatal_error("Couldn't allocate output reg for constraint '" +
5826                           Twine(OpInfo.ConstraintCode) + "'!");
5827
5828      // If this is an indirect operand, store through the pointer after the
5829      // asm.
5830      if (OpInfo.isIndirect) {
5831        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
5832                                                      OpInfo.CallOperandVal));
5833      } else {
5834        // This is the result value of the call.
5835        assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
5836        // Concatenate this output onto the outputs list.
5837        RetValRegs.append(OpInfo.AssignedRegs);
5838      }
5839
5840      // Add information to the INLINEASM node to know that this register is
5841      // set.
5842      OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
5843                                           InlineAsm::Kind_RegDefEarlyClobber :
5844                                               InlineAsm::Kind_RegDef,
5845                                               false,
5846                                               0,
5847                                               DAG,
5848                                               AsmNodeOperands);
5849      break;
5850    }
5851    case InlineAsm::isInput: {
5852      SDValue InOperandVal = OpInfo.CallOperand;
5853
5854      if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
5855        // If this is required to match an output register we have already set,
5856        // just use its register.
5857        unsigned OperandNo = OpInfo.getMatchedOperand();
5858
5859        // Scan until we find the definition we already emitted of this operand.
5860        // When we find it, create a RegsForValue operand.
5861        unsigned CurOp = InlineAsm::Op_FirstOperand;
5862        for (; OperandNo; --OperandNo) {
5863          // Advance to the next operand.
5864          unsigned OpFlag =
5865            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5866          assert((InlineAsm::isRegDefKind(OpFlag) ||
5867                  InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
5868                  InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
5869          CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
5870        }
5871
5872        unsigned OpFlag =
5873          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5874        if (InlineAsm::isRegDefKind(OpFlag) ||
5875            InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
5876          // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
5877          if (OpInfo.isIndirect) {
5878            // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
5879            LLVMContext &Ctx = *DAG.getContext();
5880            Ctx.emitError(CS.getInstruction(),  "inline asm not supported yet:"
5881                          " don't know how to handle tied "
5882                          "indirect register inputs");
5883          }
5884
5885          RegsForValue MatchedRegs;
5886          MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
5887          EVT RegVT = AsmNodeOperands[CurOp+1].getValueType();
5888          MatchedRegs.RegVTs.push_back(RegVT);
5889          MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
5890          for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
5891               i != e; ++i)
5892            MatchedRegs.Regs.push_back
5893              (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)));
5894
5895          // Use the produced MatchedRegs object to
5896          MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
5897                                    Chain, &Flag);
5898          MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
5899                                           true, OpInfo.getMatchedOperand(),
5900                                           DAG, AsmNodeOperands);
5901          break;
5902        }
5903
5904        assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
5905        assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
5906               "Unexpected number of operands");
5907        // Add information to the INLINEASM node to know about this input.
5908        // See InlineAsm.h isUseOperandTiedToDef.
5909        OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
5910                                                    OpInfo.getMatchedOperand());
5911        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
5912                                                        TLI.getPointerTy()));
5913        AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
5914        break;
5915      }
5916
5917      // Treat indirect 'X' constraint as memory.
5918      if (OpInfo.ConstraintType == TargetLowering::C_Other &&
5919          OpInfo.isIndirect)
5920        OpInfo.ConstraintType = TargetLowering::C_Memory;
5921
5922      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
5923        std::vector<SDValue> Ops;
5924        TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0],
5925                                         Ops, DAG);
5926        if (Ops.empty())
5927          report_fatal_error("Invalid operand for inline asm constraint '" +
5928                             Twine(OpInfo.ConstraintCode) + "'!");
5929
5930        // Add information to the INLINEASM node to know about this input.
5931        unsigned ResOpType =
5932          InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
5933        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5934                                                        TLI.getPointerTy()));
5935        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
5936        break;
5937      }
5938
5939      if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
5940        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
5941        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
5942               "Memory operands expect pointer values");
5943
5944        // Add information to the INLINEASM node to know about this input.
5945        unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
5946        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5947                                                        TLI.getPointerTy()));
5948        AsmNodeOperands.push_back(InOperandVal);
5949        break;
5950      }
5951
5952      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
5953              OpInfo.ConstraintType == TargetLowering::C_Register) &&
5954             "Unknown constraint type!");
5955      assert(!OpInfo.isIndirect &&
5956             "Don't know how to handle indirect register inputs yet!");
5957
5958      // Copy the input into the appropriate registers.
5959      if (OpInfo.AssignedRegs.Regs.empty() ||
5960          !OpInfo.AssignedRegs.areValueTypesLegal(TLI))
5961        report_fatal_error("Couldn't allocate input reg for constraint '" +
5962                           Twine(OpInfo.ConstraintCode) + "'!");
5963
5964      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
5965                                        Chain, &Flag);
5966
5967      OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
5968                                               DAG, AsmNodeOperands);
5969      break;
5970    }
5971    case InlineAsm::isClobber: {
5972      // Add the clobbered value to the operand list, so that the register
5973      // allocator is aware that the physreg got clobbered.
5974      if (!OpInfo.AssignedRegs.Regs.empty())
5975        OpInfo.AssignedRegs.AddInlineAsmOperands(
5976                                            InlineAsm::Kind_RegDefEarlyClobber,
5977                                                 false, 0, DAG,
5978                                                 AsmNodeOperands);
5979      break;
5980    }
5981    }
5982  }
5983
5984  // Finish up input operands.  Set the input chain and add the flag last.
5985  AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
5986  if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
5987
5988  Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(),
5989                      DAG.getVTList(MVT::Other, MVT::Glue),
5990                      &AsmNodeOperands[0], AsmNodeOperands.size());
5991  Flag = Chain.getValue(1);
5992
5993  // If this asm returns a register value, copy the result from that register
5994  // and set it as the value of the call.
5995  if (!RetValRegs.Regs.empty()) {
5996    SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
5997                                             Chain, &Flag);
5998
5999    // FIXME: Why don't we do this for inline asms with MRVs?
6000    if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
6001      EVT ResultType = TLI.getValueType(CS.getType());
6002
6003      // If any of the results of the inline asm is a vector, it may have the
6004      // wrong width/num elts.  This can happen for register classes that can
6005      // contain multiple different value types.  The preg or vreg allocated may
6006      // not have the same VT as was expected.  Convert it to the right type
6007      // with bit_convert.
6008      if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
6009        Val = DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
6010                          ResultType, Val);
6011
6012      } else if (ResultType != Val.getValueType() &&
6013                 ResultType.isInteger() && Val.getValueType().isInteger()) {
6014        // If a result value was tied to an input value, the computed result may
6015        // have a wider width than the expected result.  Extract the relevant
6016        // portion.
6017        Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val);
6018      }
6019
6020      assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
6021    }
6022
6023    setValue(CS.getInstruction(), Val);
6024    // Don't need to use this as a chain in this case.
6025    if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
6026      return;
6027  }
6028
6029  std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
6030
6031  // Process indirect outputs, first output all of the flagged copies out of
6032  // physregs.
6033  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
6034    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
6035    const Value *Ptr = IndirectStoresToEmit[i].second;
6036    SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
6037                                             Chain, &Flag);
6038    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
6039  }
6040
6041  // Emit the non-flagged stores from the physregs.
6042  SmallVector<SDValue, 8> OutChains;
6043  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
6044    SDValue Val = DAG.getStore(Chain, getCurDebugLoc(),
6045                               StoresToEmit[i].first,
6046                               getValue(StoresToEmit[i].second),
6047                               MachinePointerInfo(StoresToEmit[i].second),
6048                               false, false, 0);
6049    OutChains.push_back(Val);
6050  }
6051
6052  if (!OutChains.empty())
6053    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
6054                        &OutChains[0], OutChains.size());
6055
6056  DAG.setRoot(Chain);
6057}
6058
6059void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
6060  DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(),
6061                          MVT::Other, getRoot(),
6062                          getValue(I.getArgOperand(0)),
6063                          DAG.getSrcValue(I.getArgOperand(0))));
6064}
6065
6066void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
6067  const TargetData &TD = *TLI.getTargetData();
6068  SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(),
6069                           getRoot(), getValue(I.getOperand(0)),
6070                           DAG.getSrcValue(I.getOperand(0)),
6071                           TD.getABITypeAlignment(I.getType()));
6072  setValue(&I, V);
6073  DAG.setRoot(V.getValue(1));
6074}
6075
6076void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
6077  DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(),
6078                          MVT::Other, getRoot(),
6079                          getValue(I.getArgOperand(0)),
6080                          DAG.getSrcValue(I.getArgOperand(0))));
6081}
6082
6083void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
6084  DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(),
6085                          MVT::Other, getRoot(),
6086                          getValue(I.getArgOperand(0)),
6087                          getValue(I.getArgOperand(1)),
6088                          DAG.getSrcValue(I.getArgOperand(0)),
6089                          DAG.getSrcValue(I.getArgOperand(1))));
6090}
6091
6092/// TargetLowering::LowerCallTo - This is the default LowerCallTo
6093/// implementation, which just calls LowerCall.
6094/// FIXME: When all targets are
6095/// migrated to using LowerCall, this hook should be integrated into SDISel.
6096std::pair<SDValue, SDValue>
6097TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy,
6098                            bool RetSExt, bool RetZExt, bool isVarArg,
6099                            bool isInreg, unsigned NumFixedArgs,
6100                            CallingConv::ID CallConv, bool isTailCall,
6101                            bool isReturnValueUsed,
6102                            SDValue Callee,
6103                            ArgListTy &Args, SelectionDAG &DAG,
6104                            DebugLoc dl) const {
6105  // Handle all of the outgoing arguments.
6106  SmallVector<ISD::OutputArg, 32> Outs;
6107  SmallVector<SDValue, 32> OutVals;
6108  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
6109    SmallVector<EVT, 4> ValueVTs;
6110    ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
6111    for (unsigned Value = 0, NumValues = ValueVTs.size();
6112         Value != NumValues; ++Value) {
6113      EVT VT = ValueVTs[Value];
6114      const Type *ArgTy = VT.getTypeForEVT(RetTy->getContext());
6115      SDValue Op = SDValue(Args[i].Node.getNode(),
6116                           Args[i].Node.getResNo() + Value);
6117      ISD::ArgFlagsTy Flags;
6118      unsigned OriginalAlignment =
6119        getTargetData()->getABITypeAlignment(ArgTy);
6120
6121      if (Args[i].isZExt)
6122        Flags.setZExt();
6123      if (Args[i].isSExt)
6124        Flags.setSExt();
6125      if (Args[i].isInReg)
6126        Flags.setInReg();
6127      if (Args[i].isSRet)
6128        Flags.setSRet();
6129      if (Args[i].isByVal) {
6130        Flags.setByVal();
6131        const PointerType *Ty = cast<PointerType>(Args[i].Ty);
6132        const Type *ElementTy = Ty->getElementType();
6133        Flags.setByValSize(getTargetData()->getTypeAllocSize(ElementTy));
6134        // For ByVal, alignment should come from FE.  BE will guess if this
6135        // info is not there but there are cases it cannot get right.
6136        unsigned FrameAlign;
6137        if (Args[i].Alignment)
6138          FrameAlign = Args[i].Alignment;
6139        else
6140          FrameAlign = getByValTypeAlignment(ElementTy);
6141        Flags.setByValAlign(FrameAlign);
6142      }
6143      if (Args[i].isNest)
6144        Flags.setNest();
6145      Flags.setOrigAlign(OriginalAlignment);
6146
6147      EVT PartVT = getRegisterType(RetTy->getContext(), VT);
6148      unsigned NumParts = getNumRegisters(RetTy->getContext(), VT);
6149      SmallVector<SDValue, 4> Parts(NumParts);
6150      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
6151
6152      if (Args[i].isSExt)
6153        ExtendKind = ISD::SIGN_EXTEND;
6154      else if (Args[i].isZExt)
6155        ExtendKind = ISD::ZERO_EXTEND;
6156
6157      getCopyToParts(DAG, dl, Op, &Parts[0], NumParts,
6158                     PartVT, ExtendKind);
6159
6160      for (unsigned j = 0; j != NumParts; ++j) {
6161        // if it isn't first piece, alignment must be 1
6162        ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(),
6163                               i < NumFixedArgs);
6164        if (NumParts > 1 && j == 0)
6165          MyFlags.Flags.setSplit();
6166        else if (j != 0)
6167          MyFlags.Flags.setOrigAlign(1);
6168
6169        Outs.push_back(MyFlags);
6170        OutVals.push_back(Parts[j]);
6171      }
6172    }
6173  }
6174
6175  // Handle the incoming return values from the call.
6176  SmallVector<ISD::InputArg, 32> Ins;
6177  SmallVector<EVT, 4> RetTys;
6178  ComputeValueVTs(*this, RetTy, RetTys);
6179  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6180    EVT VT = RetTys[I];
6181    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
6182    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
6183    for (unsigned i = 0; i != NumRegs; ++i) {
6184      ISD::InputArg MyFlags;
6185      MyFlags.VT = RegisterVT.getSimpleVT();
6186      MyFlags.Used = isReturnValueUsed;
6187      if (RetSExt)
6188        MyFlags.Flags.setSExt();
6189      if (RetZExt)
6190        MyFlags.Flags.setZExt();
6191      if (isInreg)
6192        MyFlags.Flags.setInReg();
6193      Ins.push_back(MyFlags);
6194    }
6195  }
6196
6197  SmallVector<SDValue, 4> InVals;
6198  Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall,
6199                    Outs, OutVals, Ins, dl, DAG, InVals);
6200
6201  // Verify that the target's LowerCall behaved as expected.
6202  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
6203         "LowerCall didn't return a valid chain!");
6204  assert((!isTailCall || InVals.empty()) &&
6205         "LowerCall emitted a return value for a tail call!");
6206  assert((isTailCall || InVals.size() == Ins.size()) &&
6207         "LowerCall didn't emit the correct number of values!");
6208
6209  // For a tail call, the return value is merely live-out and there aren't
6210  // any nodes in the DAG representing it. Return a special value to
6211  // indicate that a tail call has been emitted and no more Instructions
6212  // should be processed in the current block.
6213  if (isTailCall) {
6214    DAG.setRoot(Chain);
6215    return std::make_pair(SDValue(), SDValue());
6216  }
6217
6218  DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6219          assert(InVals[i].getNode() &&
6220                 "LowerCall emitted a null value!");
6221          assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6222                 "LowerCall emitted a value with the wrong type!");
6223        });
6224
6225  // Collect the legal value parts into potentially illegal values
6226  // that correspond to the original function's return values.
6227  ISD::NodeType AssertOp = ISD::DELETED_NODE;
6228  if (RetSExt)
6229    AssertOp = ISD::AssertSext;
6230  else if (RetZExt)
6231    AssertOp = ISD::AssertZext;
6232  SmallVector<SDValue, 4> ReturnValues;
6233  unsigned CurReg = 0;
6234  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6235    EVT VT = RetTys[I];
6236    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
6237    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
6238
6239    ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg],
6240                                            NumRegs, RegisterVT, VT,
6241                                            AssertOp));
6242    CurReg += NumRegs;
6243  }
6244
6245  // For a function returning void, there is no return value. We can't create
6246  // such a node, so we just return a null return value in that case. In
6247  // that case, nothing will actually look at the value.
6248  if (ReturnValues.empty())
6249    return std::make_pair(SDValue(), Chain);
6250
6251  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
6252                            DAG.getVTList(&RetTys[0], RetTys.size()),
6253                            &ReturnValues[0], ReturnValues.size());
6254  return std::make_pair(Res, Chain);
6255}
6256
6257void TargetLowering::LowerOperationWrapper(SDNode *N,
6258                                           SmallVectorImpl<SDValue> &Results,
6259                                           SelectionDAG &DAG) const {
6260  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
6261  if (Res.getNode())
6262    Results.push_back(Res);
6263}
6264
6265SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
6266  llvm_unreachable("LowerOperation not implemented for this target!");
6267  return SDValue();
6268}
6269
6270void
6271SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
6272  SDValue Op = getNonRegisterValue(V);
6273  assert((Op.getOpcode() != ISD::CopyFromReg ||
6274          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
6275         "Copy from a reg to the same reg!");
6276  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
6277
6278  RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
6279  SDValue Chain = DAG.getEntryNode();
6280  RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0);
6281  PendingExports.push_back(Chain);
6282}
6283
6284#include "llvm/CodeGen/SelectionDAGISel.h"
6285
6286/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
6287/// entry block, return true.  This includes arguments used by switches, since
6288/// the switch may expand into multiple basic blocks.
6289static bool isOnlyUsedInEntryBlock(const Argument *A) {
6290  // With FastISel active, we may be splitting blocks, so force creation
6291  // of virtual registers for all non-dead arguments.
6292  if (EnableFastISel)
6293    return A->use_empty();
6294
6295  const BasicBlock *Entry = A->getParent()->begin();
6296  for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end();
6297       UI != E; ++UI) {
6298    const User *U = *UI;
6299    if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U))
6300      return false;  // Use not in entry block.
6301  }
6302  return true;
6303}
6304
6305void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) {
6306  // If this is the entry block, emit arguments.
6307  const Function &F = *LLVMBB->getParent();
6308  SelectionDAG &DAG = SDB->DAG;
6309  DebugLoc dl = SDB->getCurDebugLoc();
6310  const TargetData *TD = TLI.getTargetData();
6311  SmallVector<ISD::InputArg, 16> Ins;
6312
6313  // Check whether the function can return without sret-demotion.
6314  SmallVector<ISD::OutputArg, 4> Outs;
6315  GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
6316                Outs, TLI);
6317
6318  if (!FuncInfo->CanLowerReturn) {
6319    // Put in an sret pointer parameter before all the other parameters.
6320    SmallVector<EVT, 1> ValueVTs;
6321    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6322
6323    // NOTE: Assuming that a pointer will never break down to more than one VT
6324    // or one register.
6325    ISD::ArgFlagsTy Flags;
6326    Flags.setSRet();
6327    EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]);
6328    ISD::InputArg RetArg(Flags, RegisterVT, true);
6329    Ins.push_back(RetArg);
6330  }
6331
6332  // Set up the incoming argument description vector.
6333  unsigned Idx = 1;
6334  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
6335       I != E; ++I, ++Idx) {
6336    SmallVector<EVT, 4> ValueVTs;
6337    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6338    bool isArgValueUsed = !I->use_empty();
6339    for (unsigned Value = 0, NumValues = ValueVTs.size();
6340         Value != NumValues; ++Value) {
6341      EVT VT = ValueVTs[Value];
6342      const Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
6343      ISD::ArgFlagsTy Flags;
6344      unsigned OriginalAlignment =
6345        TD->getABITypeAlignment(ArgTy);
6346
6347      if (F.paramHasAttr(Idx, Attribute::ZExt))
6348        Flags.setZExt();
6349      if (F.paramHasAttr(Idx, Attribute::SExt))
6350        Flags.setSExt();
6351      if (F.paramHasAttr(Idx, Attribute::InReg))
6352        Flags.setInReg();
6353      if (F.paramHasAttr(Idx, Attribute::StructRet))
6354        Flags.setSRet();
6355      if (F.paramHasAttr(Idx, Attribute::ByVal)) {
6356        Flags.setByVal();
6357        const PointerType *Ty = cast<PointerType>(I->getType());
6358        const Type *ElementTy = Ty->getElementType();
6359        Flags.setByValSize(TD->getTypeAllocSize(ElementTy));
6360        // For ByVal, alignment should be passed from FE.  BE will guess if
6361        // this info is not there but there are cases it cannot get right.
6362        unsigned FrameAlign;
6363        if (F.getParamAlignment(Idx))
6364          FrameAlign = F.getParamAlignment(Idx);
6365        else
6366          FrameAlign = TLI.getByValTypeAlignment(ElementTy);
6367        Flags.setByValAlign(FrameAlign);
6368      }
6369      if (F.paramHasAttr(Idx, Attribute::Nest))
6370        Flags.setNest();
6371      Flags.setOrigAlign(OriginalAlignment);
6372
6373      EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6374      unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6375      for (unsigned i = 0; i != NumRegs; ++i) {
6376        ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed);
6377        if (NumRegs > 1 && i == 0)
6378          MyFlags.Flags.setSplit();
6379        // if it isn't first piece, alignment must be 1
6380        else if (i > 0)
6381          MyFlags.Flags.setOrigAlign(1);
6382        Ins.push_back(MyFlags);
6383      }
6384    }
6385  }
6386
6387  // Call the target to set up the argument values.
6388  SmallVector<SDValue, 8> InVals;
6389  SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
6390                                             F.isVarArg(), Ins,
6391                                             dl, DAG, InVals);
6392
6393  // Verify that the target's LowerFormalArguments behaved as expected.
6394  assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
6395         "LowerFormalArguments didn't return a valid chain!");
6396  assert(InVals.size() == Ins.size() &&
6397         "LowerFormalArguments didn't emit the correct number of values!");
6398  DEBUG({
6399      for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6400        assert(InVals[i].getNode() &&
6401               "LowerFormalArguments emitted a null value!");
6402        assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6403               "LowerFormalArguments emitted a value with the wrong type!");
6404      }
6405    });
6406
6407  // Update the DAG with the new chain value resulting from argument lowering.
6408  DAG.setRoot(NewRoot);
6409
6410  // Set up the argument values.
6411  unsigned i = 0;
6412  Idx = 1;
6413  if (!FuncInfo->CanLowerReturn) {
6414    // Create a virtual register for the sret pointer, and put in a copy
6415    // from the sret argument into it.
6416    SmallVector<EVT, 1> ValueVTs;
6417    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6418    EVT VT = ValueVTs[0];
6419    EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6420    ISD::NodeType AssertOp = ISD::DELETED_NODE;
6421    SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
6422                                        RegVT, VT, AssertOp);
6423
6424    MachineFunction& MF = SDB->DAG.getMachineFunction();
6425    MachineRegisterInfo& RegInfo = MF.getRegInfo();
6426    unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT));
6427    FuncInfo->DemoteRegister = SRetReg;
6428    NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(),
6429                                    SRetReg, ArgValue);
6430    DAG.setRoot(NewRoot);
6431
6432    // i indexes lowered arguments.  Bump it past the hidden sret argument.
6433    // Idx indexes LLVM arguments.  Don't touch it.
6434    ++i;
6435  }
6436
6437  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
6438      ++I, ++Idx) {
6439    SmallVector<SDValue, 4> ArgValues;
6440    SmallVector<EVT, 4> ValueVTs;
6441    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6442    unsigned NumValues = ValueVTs.size();
6443
6444    // If this argument is unused then remember its value. It is used to generate
6445    // debugging information.
6446    if (I->use_empty() && NumValues)
6447      SDB->setUnusedArgValue(I, InVals[i]);
6448
6449    for (unsigned Val = 0; Val != NumValues; ++Val) {
6450      EVT VT = ValueVTs[Val];
6451      EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6452      unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6453
6454      if (!I->use_empty()) {
6455        ISD::NodeType AssertOp = ISD::DELETED_NODE;
6456        if (F.paramHasAttr(Idx, Attribute::SExt))
6457          AssertOp = ISD::AssertSext;
6458        else if (F.paramHasAttr(Idx, Attribute::ZExt))
6459          AssertOp = ISD::AssertZext;
6460
6461        ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
6462                                             NumParts, PartVT, VT,
6463                                             AssertOp));
6464      }
6465
6466      i += NumParts;
6467    }
6468
6469    // We don't need to do anything else for unused arguments.
6470    if (ArgValues.empty())
6471      continue;
6472
6473    // Note down frame index for byval arguments.
6474    if (I->hasByValAttr())
6475      if (FrameIndexSDNode *FI =
6476          dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
6477        FuncInfo->setByValArgumentFrameIndex(I, FI->getIndex());
6478
6479    SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues,
6480                                     SDB->getCurDebugLoc());
6481    SDB->setValue(I, Res);
6482
6483    // If this argument is live outside of the entry block, insert a copy from
6484    // wherever we got it to the vreg that other BB's will reference it as.
6485    if (!EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
6486      // If we can, though, try to skip creating an unnecessary vreg.
6487      // FIXME: This isn't very clean... it would be nice to make this more
6488      // general.  It's also subtly incompatible with the hacks FastISel
6489      // uses with vregs.
6490      unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
6491      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
6492        FuncInfo->ValueMap[I] = Reg;
6493        continue;
6494      }
6495    }
6496    if (!isOnlyUsedInEntryBlock(I)) {
6497      FuncInfo->InitializeRegForValue(I);
6498      SDB->CopyToExportRegsIfNeeded(I);
6499    }
6500  }
6501
6502  assert(i == InVals.size() && "Argument register count mismatch!");
6503
6504  // Finally, if the target has anything special to do, allow it to do so.
6505  // FIXME: this should insert code into the DAG!
6506  EmitFunctionEntryCode();
6507}
6508
6509/// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
6510/// ensure constants are generated when needed.  Remember the virtual registers
6511/// that need to be added to the Machine PHI nodes as input.  We cannot just
6512/// directly add them, because expansion might result in multiple MBB's for one
6513/// BB.  As such, the start of the BB might correspond to a different MBB than
6514/// the end.
6515///
6516void
6517SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
6518  const TerminatorInst *TI = LLVMBB->getTerminator();
6519
6520  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6521
6522  // Check successor nodes' PHI nodes that expect a constant to be available
6523  // from this block.
6524  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6525    const BasicBlock *SuccBB = TI->getSuccessor(succ);
6526    if (!isa<PHINode>(SuccBB->begin())) continue;
6527    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
6528
6529    // If this terminator has multiple identical successors (common for
6530    // switches), only handle each succ once.
6531    if (!SuccsHandled.insert(SuccMBB)) continue;
6532
6533    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6534
6535    // At this point we know that there is a 1-1 correspondence between LLVM PHI
6536    // nodes and Machine PHI nodes, but the incoming operands have not been
6537    // emitted yet.
6538    for (BasicBlock::const_iterator I = SuccBB->begin();
6539         const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
6540      // Ignore dead phi's.
6541      if (PN->use_empty()) continue;
6542
6543      // Skip empty types
6544      if (PN->getType()->isEmptyTy())
6545        continue;
6546
6547      unsigned Reg;
6548      const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6549
6550      if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
6551        unsigned &RegOut = ConstantsOut[C];
6552        if (RegOut == 0) {
6553          RegOut = FuncInfo.CreateRegs(C->getType());
6554          CopyValueToVirtualRegister(C, RegOut);
6555        }
6556        Reg = RegOut;
6557      } else {
6558        DenseMap<const Value *, unsigned>::iterator I =
6559          FuncInfo.ValueMap.find(PHIOp);
6560        if (I != FuncInfo.ValueMap.end())
6561          Reg = I->second;
6562        else {
6563          assert(isa<AllocaInst>(PHIOp) &&
6564                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
6565                 "Didn't codegen value into a register!??");
6566          Reg = FuncInfo.CreateRegs(PHIOp->getType());
6567          CopyValueToVirtualRegister(PHIOp, Reg);
6568        }
6569      }
6570
6571      // Remember that this register needs to added to the machine PHI node as
6572      // the input for this MBB.
6573      SmallVector<EVT, 4> ValueVTs;
6574      ComputeValueVTs(TLI, PN->getType(), ValueVTs);
6575      for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
6576        EVT VT = ValueVTs[vti];
6577        unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
6578        for (unsigned i = 0, e = NumRegisters; i != e; ++i)
6579          FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
6580        Reg += NumRegisters;
6581      }
6582    }
6583  }
6584  ConstantsOut.clear();
6585}
6586