SelectionDAGBuilder.cpp revision ac6d9bec671252dd1e596fa71180ff6b39d06b5d
1//===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements routines for translating from LLVM IR into SelectionDAG IR.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "SelectionDAGBuilder.h"
16#include "SDNodeDbgValue.h"
17#include "llvm/ADT/BitVector.h"
18#include "llvm/ADT/SmallSet.h"
19#include "llvm/Analysis/AliasAnalysis.h"
20#include "llvm/Analysis/BranchProbabilityInfo.h"
21#include "llvm/Analysis/ConstantFolding.h"
22#include "llvm/Analysis/ValueTracking.h"
23#include "llvm/CodeGen/Analysis.h"
24#include "llvm/CodeGen/FastISel.h"
25#include "llvm/CodeGen/FunctionLoweringInfo.h"
26#include "llvm/CodeGen/GCMetadata.h"
27#include "llvm/CodeGen/GCStrategy.h"
28#include "llvm/CodeGen/MachineFrameInfo.h"
29#include "llvm/CodeGen/MachineFunction.h"
30#include "llvm/CodeGen/MachineInstrBuilder.h"
31#include "llvm/CodeGen/MachineJumpTableInfo.h"
32#include "llvm/CodeGen/MachineModuleInfo.h"
33#include "llvm/CodeGen/MachineRegisterInfo.h"
34#include "llvm/CodeGen/SelectionDAG.h"
35#include "llvm/DebugInfo.h"
36#include "llvm/IR/CallingConv.h"
37#include "llvm/IR/Constants.h"
38#include "llvm/IR/DataLayout.h"
39#include "llvm/IR/DerivedTypes.h"
40#include "llvm/IR/Function.h"
41#include "llvm/IR/GlobalVariable.h"
42#include "llvm/IR/InlineAsm.h"
43#include "llvm/IR/Instructions.h"
44#include "llvm/IR/IntrinsicInst.h"
45#include "llvm/IR/Intrinsics.h"
46#include "llvm/IR/LLVMContext.h"
47#include "llvm/IR/Module.h"
48#include "llvm/Support/CommandLine.h"
49#include "llvm/Support/Debug.h"
50#include "llvm/Support/ErrorHandling.h"
51#include "llvm/Support/IntegersSubsetMapping.h"
52#include "llvm/Support/MathExtras.h"
53#include "llvm/Support/raw_ostream.h"
54#include "llvm/Target/TargetFrameLowering.h"
55#include "llvm/Target/TargetInstrInfo.h"
56#include "llvm/Target/TargetIntrinsicInfo.h"
57#include "llvm/Target/TargetLibraryInfo.h"
58#include "llvm/Target/TargetLowering.h"
59#include "llvm/Target/TargetOptions.h"
60#include <algorithm>
61using namespace llvm;
62
63/// LimitFloatPrecision - Generate low-precision inline sequences for
64/// some float libcalls (6, 8 or 12 bits).
65static unsigned LimitFloatPrecision;
66
67static cl::opt<unsigned, true>
68LimitFPPrecision("limit-float-precision",
69                 cl::desc("Generate low-precision inline sequences "
70                          "for some float libcalls"),
71                 cl::location(LimitFloatPrecision),
72                 cl::init(0));
73
74// Limit the width of DAG chains. This is important in general to prevent
75// prevent DAG-based analysis from blowing up. For example, alias analysis and
76// load clustering may not complete in reasonable time. It is difficult to
77// recognize and avoid this situation within each individual analysis, and
78// future analyses are likely to have the same behavior. Limiting DAG width is
79// the safe approach, and will be especially important with global DAGs.
80//
81// MaxParallelChains default is arbitrarily high to avoid affecting
82// optimization, but could be lowered to improve compile time. Any ld-ld-st-st
83// sequence over this should have been converted to llvm.memcpy by the
84// frontend. It easy to induce this behavior with .ll code such as:
85// %buffer = alloca [4096 x i8]
86// %data = load [4096 x i8]* %argPtr
87// store [4096 x i8] %data, [4096 x i8]* %buffer
88static const unsigned MaxParallelChains = 64;
89
90static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL,
91                                      const SDValue *Parts, unsigned NumParts,
92                                      MVT PartVT, EVT ValueVT, const Value *V);
93
94/// getCopyFromParts - Create a value that contains the specified legal parts
95/// combined into the value they represent.  If the parts combine to a type
96/// larger then ValueVT then AssertOp can be used to specify whether the extra
97/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
98/// (ISD::AssertSext).
99static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL,
100                                const SDValue *Parts,
101                                unsigned NumParts, MVT PartVT, EVT ValueVT,
102                                const Value *V,
103                                ISD::NodeType AssertOp = ISD::DELETED_NODE) {
104  if (ValueVT.isVector())
105    return getCopyFromPartsVector(DAG, DL, Parts, NumParts,
106                                  PartVT, ValueVT, V);
107
108  assert(NumParts > 0 && "No parts to assemble!");
109  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
110  SDValue Val = Parts[0];
111
112  if (NumParts > 1) {
113    // Assemble the value from multiple parts.
114    if (ValueVT.isInteger()) {
115      unsigned PartBits = PartVT.getSizeInBits();
116      unsigned ValueBits = ValueVT.getSizeInBits();
117
118      // Assemble the power of 2 part.
119      unsigned RoundParts = NumParts & (NumParts - 1) ?
120        1 << Log2_32(NumParts) : NumParts;
121      unsigned RoundBits = PartBits * RoundParts;
122      EVT RoundVT = RoundBits == ValueBits ?
123        ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
124      SDValue Lo, Hi;
125
126      EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
127
128      if (RoundParts > 2) {
129        Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
130                              PartVT, HalfVT, V);
131        Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
132                              RoundParts / 2, PartVT, HalfVT, V);
133      } else {
134        Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
135        Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
136      }
137
138      if (TLI.isBigEndian())
139        std::swap(Lo, Hi);
140
141      Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
142
143      if (RoundParts < NumParts) {
144        // Assemble the trailing non-power-of-2 part.
145        unsigned OddParts = NumParts - RoundParts;
146        EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
147        Hi = getCopyFromParts(DAG, DL,
148                              Parts + RoundParts, OddParts, PartVT, OddVT, V);
149
150        // Combine the round and odd parts.
151        Lo = Val;
152        if (TLI.isBigEndian())
153          std::swap(Lo, Hi);
154        EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
155        Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
156        Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
157                         DAG.getConstant(Lo.getValueType().getSizeInBits(),
158                                         TLI.getPointerTy()));
159        Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
160        Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
161      }
162    } else if (PartVT.isFloatingPoint()) {
163      // FP split into multiple FP parts (for ppcf128)
164      assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
165             "Unexpected split");
166      SDValue Lo, Hi;
167      Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
168      Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
169      if (TLI.isBigEndian())
170        std::swap(Lo, Hi);
171      Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
172    } else {
173      // FP split into integer parts (soft fp)
174      assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
175             !PartVT.isVector() && "Unexpected split");
176      EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
177      Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V);
178    }
179  }
180
181  // There is now one part, held in Val.  Correct it to match ValueVT.
182  EVT PartEVT = Val.getValueType();
183
184  if (PartEVT == ValueVT)
185    return Val;
186
187  if (PartEVT.isInteger() && ValueVT.isInteger()) {
188    if (ValueVT.bitsLT(PartEVT)) {
189      // For a truncate, see if we have any information to
190      // indicate whether the truncated bits will always be
191      // zero or sign-extension.
192      if (AssertOp != ISD::DELETED_NODE)
193        Val = DAG.getNode(AssertOp, DL, PartEVT, Val,
194                          DAG.getValueType(ValueVT));
195      return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
196    }
197    return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
198  }
199
200  if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
201    // FP_ROUND's are always exact here.
202    if (ValueVT.bitsLT(Val.getValueType()))
203      return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val,
204                         DAG.getTargetConstant(1, TLI.getPointerTy()));
205
206    return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
207  }
208
209  if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
210    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
211
212  llvm_unreachable("Unknown mismatch!");
213}
214
215/// getCopyFromPartsVector - Create a value that contains the specified legal
216/// parts combined into the value they represent.  If the parts combine to a
217/// type larger then ValueVT then AssertOp can be used to specify whether the
218/// extra bits are known to be zero (ISD::AssertZext) or sign extended from
219/// ValueVT (ISD::AssertSext).
220static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL,
221                                      const SDValue *Parts, unsigned NumParts,
222                                      MVT PartVT, EVT ValueVT, const Value *V) {
223  assert(ValueVT.isVector() && "Not a vector value");
224  assert(NumParts > 0 && "No parts to assemble!");
225  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
226  SDValue Val = Parts[0];
227
228  // Handle a multi-element vector.
229  if (NumParts > 1) {
230    EVT IntermediateVT;
231    MVT RegisterVT;
232    unsigned NumIntermediates;
233    unsigned NumRegs =
234    TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
235                               NumIntermediates, RegisterVT);
236    assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
237    NumParts = NumRegs; // Silence a compiler warning.
238    assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
239    assert(RegisterVT == Parts[0].getSimpleValueType() &&
240           "Part type doesn't match part!");
241
242    // Assemble the parts into intermediate operands.
243    SmallVector<SDValue, 8> Ops(NumIntermediates);
244    if (NumIntermediates == NumParts) {
245      // If the register was not expanded, truncate or copy the value,
246      // as appropriate.
247      for (unsigned i = 0; i != NumParts; ++i)
248        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
249                                  PartVT, IntermediateVT, V);
250    } else if (NumParts > 0) {
251      // If the intermediate type was expanded, build the intermediate
252      // operands from the parts.
253      assert(NumParts % NumIntermediates == 0 &&
254             "Must expand into a divisible number of parts!");
255      unsigned Factor = NumParts / NumIntermediates;
256      for (unsigned i = 0; i != NumIntermediates; ++i)
257        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
258                                  PartVT, IntermediateVT, V);
259    }
260
261    // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
262    // intermediate operands.
263    Val = DAG.getNode(IntermediateVT.isVector() ?
264                      ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL,
265                      ValueVT, &Ops[0], NumIntermediates);
266  }
267
268  // There is now one part, held in Val.  Correct it to match ValueVT.
269  EVT PartEVT = Val.getValueType();
270
271  if (PartEVT == ValueVT)
272    return Val;
273
274  if (PartEVT.isVector()) {
275    // If the element type of the source/dest vectors are the same, but the
276    // parts vector has more elements than the value vector, then we have a
277    // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
278    // elements we want.
279    if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
280      assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
281             "Cannot narrow, it would be a lossy transformation");
282      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
283                         DAG.getIntPtrConstant(0));
284    }
285
286    // Vector/Vector bitcast.
287    if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
288      return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
289
290    assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
291      "Cannot handle this kind of promotion");
292    // Promoted vector extract
293    bool Smaller = ValueVT.bitsLE(PartEVT);
294    return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
295                       DL, ValueVT, Val);
296
297  }
298
299  // Trivial bitcast if the types are the same size and the destination
300  // vector type is legal.
301  if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
302      TLI.isTypeLegal(ValueVT))
303    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
304
305  // Handle cases such as i8 -> <1 x i1>
306  if (ValueVT.getVectorNumElements() != 1) {
307    LLVMContext &Ctx = *DAG.getContext();
308    Twine ErrMsg("non-trivial scalar-to-vector conversion");
309    if (const Instruction *I = dyn_cast_or_null<Instruction>(V)) {
310      if (const CallInst *CI = dyn_cast<CallInst>(I))
311        if (isa<InlineAsm>(CI->getCalledValue()))
312          ErrMsg = ErrMsg + ", possible invalid constraint for vector type";
313      Ctx.emitError(I, ErrMsg);
314    } else {
315      Ctx.emitError(ErrMsg);
316    }
317    return DAG.getUNDEF(ValueVT);
318  }
319
320  if (ValueVT.getVectorNumElements() == 1 &&
321      ValueVT.getVectorElementType() != PartEVT) {
322    bool Smaller = ValueVT.bitsLE(PartEVT);
323    Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
324                       DL, ValueVT.getScalarType(), Val);
325  }
326
327  return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
328}
329
330static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl,
331                                 SDValue Val, SDValue *Parts, unsigned NumParts,
332                                 MVT PartVT, const Value *V);
333
334/// getCopyToParts - Create a series of nodes that contain the specified value
335/// split into legal parts.  If the parts contain more bits than Val, then, for
336/// integers, ExtendKind can be used to specify how to generate the extra bits.
337static void getCopyToParts(SelectionDAG &DAG, SDLoc DL,
338                           SDValue Val, SDValue *Parts, unsigned NumParts,
339                           MVT PartVT, const Value *V,
340                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
341  EVT ValueVT = Val.getValueType();
342
343  // Handle the vector case separately.
344  if (ValueVT.isVector())
345    return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V);
346
347  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
348  unsigned PartBits = PartVT.getSizeInBits();
349  unsigned OrigNumParts = NumParts;
350  assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
351
352  if (NumParts == 0)
353    return;
354
355  assert(!ValueVT.isVector() && "Vector case handled elsewhere");
356  EVT PartEVT = PartVT;
357  if (PartEVT == ValueVT) {
358    assert(NumParts == 1 && "No-op copy with multiple parts!");
359    Parts[0] = Val;
360    return;
361  }
362
363  if (NumParts * PartBits > ValueVT.getSizeInBits()) {
364    // If the parts cover more bits than the value has, promote the value.
365    if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
366      assert(NumParts == 1 && "Do not know what to promote to!");
367      Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
368    } else {
369      assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
370             ValueVT.isInteger() &&
371             "Unknown mismatch!");
372      ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
373      Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
374      if (PartVT == MVT::x86mmx)
375        Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
376    }
377  } else if (PartBits == ValueVT.getSizeInBits()) {
378    // Different types of the same size.
379    assert(NumParts == 1 && PartEVT != ValueVT);
380    Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
381  } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
382    // If the parts cover less bits than value has, truncate the value.
383    assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
384           ValueVT.isInteger() &&
385           "Unknown mismatch!");
386    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
387    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
388    if (PartVT == MVT::x86mmx)
389      Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
390  }
391
392  // The value may have changed - recompute ValueVT.
393  ValueVT = Val.getValueType();
394  assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
395         "Failed to tile the value with PartVT!");
396
397  if (NumParts == 1) {
398    if (PartEVT != ValueVT) {
399      LLVMContext &Ctx = *DAG.getContext();
400      Twine ErrMsg("scalar-to-vector conversion failed");
401      if (const Instruction *I = dyn_cast_or_null<Instruction>(V)) {
402        if (const CallInst *CI = dyn_cast<CallInst>(I))
403          if (isa<InlineAsm>(CI->getCalledValue()))
404            ErrMsg = ErrMsg + ", possible invalid constraint for vector type";
405        Ctx.emitError(I, ErrMsg);
406      } else {
407        Ctx.emitError(ErrMsg);
408      }
409    }
410
411    Parts[0] = Val;
412    return;
413  }
414
415  // Expand the value into multiple parts.
416  if (NumParts & (NumParts - 1)) {
417    // The number of parts is not a power of 2.  Split off and copy the tail.
418    assert(PartVT.isInteger() && ValueVT.isInteger() &&
419           "Do not know what to expand to!");
420    unsigned RoundParts = 1 << Log2_32(NumParts);
421    unsigned RoundBits = RoundParts * PartBits;
422    unsigned OddParts = NumParts - RoundParts;
423    SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
424                                 DAG.getIntPtrConstant(RoundBits));
425    getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V);
426
427    if (TLI.isBigEndian())
428      // The odd parts were reversed by getCopyToParts - unreverse them.
429      std::reverse(Parts + RoundParts, Parts + NumParts);
430
431    NumParts = RoundParts;
432    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
433    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
434  }
435
436  // The number of parts is a power of 2.  Repeatedly bisect the value using
437  // EXTRACT_ELEMENT.
438  Parts[0] = DAG.getNode(ISD::BITCAST, DL,
439                         EVT::getIntegerVT(*DAG.getContext(),
440                                           ValueVT.getSizeInBits()),
441                         Val);
442
443  for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
444    for (unsigned i = 0; i < NumParts; i += StepSize) {
445      unsigned ThisBits = StepSize * PartBits / 2;
446      EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
447      SDValue &Part0 = Parts[i];
448      SDValue &Part1 = Parts[i+StepSize/2];
449
450      Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
451                          ThisVT, Part0, DAG.getIntPtrConstant(1));
452      Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
453                          ThisVT, Part0, DAG.getIntPtrConstant(0));
454
455      if (ThisBits == PartBits && ThisVT != PartVT) {
456        Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
457        Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
458      }
459    }
460  }
461
462  if (TLI.isBigEndian())
463    std::reverse(Parts, Parts + OrigNumParts);
464}
465
466
467/// getCopyToPartsVector - Create a series of nodes that contain the specified
468/// value split into legal parts.
469static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL,
470                                 SDValue Val, SDValue *Parts, unsigned NumParts,
471                                 MVT PartVT, const Value *V) {
472  EVT ValueVT = Val.getValueType();
473  assert(ValueVT.isVector() && "Not a vector");
474  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
475
476  if (NumParts == 1) {
477    EVT PartEVT = PartVT;
478    if (PartEVT == ValueVT) {
479      // Nothing to do.
480    } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
481      // Bitconvert vector->vector case.
482      Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
483    } else if (PartVT.isVector() &&
484               PartEVT.getVectorElementType() == ValueVT.getVectorElementType() &&
485               PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
486      EVT ElementVT = PartVT.getVectorElementType();
487      // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
488      // undef elements.
489      SmallVector<SDValue, 16> Ops;
490      for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
491        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
492                                  ElementVT, Val, DAG.getIntPtrConstant(i)));
493
494      for (unsigned i = ValueVT.getVectorNumElements(),
495           e = PartVT.getVectorNumElements(); i != e; ++i)
496        Ops.push_back(DAG.getUNDEF(ElementVT));
497
498      Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size());
499
500      // FIXME: Use CONCAT for 2x -> 4x.
501
502      //SDValue UndefElts = DAG.getUNDEF(VectorTy);
503      //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
504    } else if (PartVT.isVector() &&
505               PartEVT.getVectorElementType().bitsGE(
506                 ValueVT.getVectorElementType()) &&
507               PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
508
509      // Promoted vector extract
510      bool Smaller = PartEVT.bitsLE(ValueVT);
511      Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
512                        DL, PartVT, Val);
513    } else{
514      // Vector -> scalar conversion.
515      assert(ValueVT.getVectorNumElements() == 1 &&
516             "Only trivial vector-to-scalar conversions should get here!");
517      Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
518                        PartVT, Val, DAG.getIntPtrConstant(0));
519
520      bool Smaller = ValueVT.bitsLE(PartVT);
521      Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
522                         DL, PartVT, Val);
523    }
524
525    Parts[0] = Val;
526    return;
527  }
528
529  // Handle a multi-element vector.
530  EVT IntermediateVT;
531  MVT RegisterVT;
532  unsigned NumIntermediates;
533  unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
534                                                IntermediateVT,
535                                                NumIntermediates, RegisterVT);
536  unsigned NumElements = ValueVT.getVectorNumElements();
537
538  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
539  NumParts = NumRegs; // Silence a compiler warning.
540  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
541
542  // Split the vector into intermediate operands.
543  SmallVector<SDValue, 8> Ops(NumIntermediates);
544  for (unsigned i = 0; i != NumIntermediates; ++i) {
545    if (IntermediateVT.isVector())
546      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
547                           IntermediateVT, Val,
548                   DAG.getIntPtrConstant(i * (NumElements / NumIntermediates)));
549    else
550      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
551                           IntermediateVT, Val, DAG.getIntPtrConstant(i));
552  }
553
554  // Split the intermediate operands into legal parts.
555  if (NumParts == NumIntermediates) {
556    // If the register was not expanded, promote or copy the value,
557    // as appropriate.
558    for (unsigned i = 0; i != NumParts; ++i)
559      getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V);
560  } else if (NumParts > 0) {
561    // If the intermediate type was expanded, split each the value into
562    // legal parts.
563    assert(NumParts % NumIntermediates == 0 &&
564           "Must expand into a divisible number of parts!");
565    unsigned Factor = NumParts / NumIntermediates;
566    for (unsigned i = 0; i != NumIntermediates; ++i)
567      getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V);
568  }
569}
570
571namespace {
572  /// RegsForValue - This struct represents the registers (physical or virtual)
573  /// that a particular set of values is assigned, and the type information
574  /// about the value. The most common situation is to represent one value at a
575  /// time, but struct or array values are handled element-wise as multiple
576  /// values.  The splitting of aggregates is performed recursively, so that we
577  /// never have aggregate-typed registers. The values at this point do not
578  /// necessarily have legal types, so each value may require one or more
579  /// registers of some legal type.
580  ///
581  struct RegsForValue {
582    /// ValueVTs - The value types of the values, which may not be legal, and
583    /// may need be promoted or synthesized from one or more registers.
584    ///
585    SmallVector<EVT, 4> ValueVTs;
586
587    /// RegVTs - The value types of the registers. This is the same size as
588    /// ValueVTs and it records, for each value, what the type of the assigned
589    /// register or registers are. (Individual values are never synthesized
590    /// from more than one type of register.)
591    ///
592    /// With virtual registers, the contents of RegVTs is redundant with TLI's
593    /// getRegisterType member function, however when with physical registers
594    /// it is necessary to have a separate record of the types.
595    ///
596    SmallVector<MVT, 4> RegVTs;
597
598    /// Regs - This list holds the registers assigned to the values.
599    /// Each legal or promoted value requires one register, and each
600    /// expanded value requires multiple registers.
601    ///
602    SmallVector<unsigned, 4> Regs;
603
604    RegsForValue() {}
605
606    RegsForValue(const SmallVector<unsigned, 4> &regs,
607                 MVT regvt, EVT valuevt)
608      : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
609
610    RegsForValue(LLVMContext &Context, const TargetLowering &tli,
611                 unsigned Reg, Type *Ty) {
612      ComputeValueVTs(tli, Ty, ValueVTs);
613
614      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
615        EVT ValueVT = ValueVTs[Value];
616        unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
617        MVT RegisterVT = tli.getRegisterType(Context, ValueVT);
618        for (unsigned i = 0; i != NumRegs; ++i)
619          Regs.push_back(Reg + i);
620        RegVTs.push_back(RegisterVT);
621        Reg += NumRegs;
622      }
623    }
624
625    /// areValueTypesLegal - Return true if types of all the values are legal.
626    bool areValueTypesLegal(const TargetLowering &TLI) {
627      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
628        MVT RegisterVT = RegVTs[Value];
629        if (!TLI.isTypeLegal(RegisterVT))
630          return false;
631      }
632      return true;
633    }
634
635    /// append - Add the specified values to this one.
636    void append(const RegsForValue &RHS) {
637      ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
638      RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
639      Regs.append(RHS.Regs.begin(), RHS.Regs.end());
640    }
641
642    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
643    /// this value and returns the result as a ValueVTs value.  This uses
644    /// Chain/Flag as the input and updates them for the output Chain/Flag.
645    /// If the Flag pointer is NULL, no flag is used.
646    SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
647                            SDLoc dl,
648                            SDValue &Chain, SDValue *Flag,
649                            const Value *V = 0) const;
650
651    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
652    /// specified value into the registers specified by this object.  This uses
653    /// Chain/Flag as the input and updates them for the output Chain/Flag.
654    /// If the Flag pointer is NULL, no flag is used.
655    void getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl,
656                       SDValue &Chain, SDValue *Flag, const Value *V) const;
657
658    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
659    /// operand list.  This adds the code marker, matching input operand index
660    /// (if applicable), and includes the number of values added into it.
661    void AddInlineAsmOperands(unsigned Kind,
662                              bool HasMatching, unsigned MatchingIdx,
663                              SelectionDAG &DAG,
664                              std::vector<SDValue> &Ops) const;
665  };
666}
667
668/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
669/// this value and returns the result as a ValueVT value.  This uses
670/// Chain/Flag as the input and updates them for the output Chain/Flag.
671/// If the Flag pointer is NULL, no flag is used.
672SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
673                                      FunctionLoweringInfo &FuncInfo,
674                                      SDLoc dl,
675                                      SDValue &Chain, SDValue *Flag,
676                                      const Value *V) const {
677  // A Value with type {} or [0 x %t] needs no registers.
678  if (ValueVTs.empty())
679    return SDValue();
680
681  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
682
683  // Assemble the legal parts into the final values.
684  SmallVector<SDValue, 4> Values(ValueVTs.size());
685  SmallVector<SDValue, 8> Parts;
686  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
687    // Copy the legal parts from the registers.
688    EVT ValueVT = ValueVTs[Value];
689    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
690    MVT RegisterVT = RegVTs[Value];
691
692    Parts.resize(NumRegs);
693    for (unsigned i = 0; i != NumRegs; ++i) {
694      SDValue P;
695      if (Flag == 0) {
696        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
697      } else {
698        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
699        *Flag = P.getValue(2);
700      }
701
702      Chain = P.getValue(1);
703      Parts[i] = P;
704
705      // If the source register was virtual and if we know something about it,
706      // add an assert node.
707      if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
708          !RegisterVT.isInteger() || RegisterVT.isVector())
709        continue;
710
711      const FunctionLoweringInfo::LiveOutInfo *LOI =
712        FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
713      if (!LOI)
714        continue;
715
716      unsigned RegSize = RegisterVT.getSizeInBits();
717      unsigned NumSignBits = LOI->NumSignBits;
718      unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
719
720      // FIXME: We capture more information than the dag can represent.  For
721      // now, just use the tightest assertzext/assertsext possible.
722      bool isSExt = true;
723      EVT FromVT(MVT::Other);
724      if (NumSignBits == RegSize)
725        isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
726      else if (NumZeroBits >= RegSize-1)
727        isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
728      else if (NumSignBits > RegSize-8)
729        isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
730      else if (NumZeroBits >= RegSize-8)
731        isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
732      else if (NumSignBits > RegSize-16)
733        isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
734      else if (NumZeroBits >= RegSize-16)
735        isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
736      else if (NumSignBits > RegSize-32)
737        isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
738      else if (NumZeroBits >= RegSize-32)
739        isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
740      else
741        continue;
742
743      // Add an assertion node.
744      assert(FromVT != MVT::Other);
745      Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
746                             RegisterVT, P, DAG.getValueType(FromVT));
747    }
748
749    Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
750                                     NumRegs, RegisterVT, ValueVT, V);
751    Part += NumRegs;
752    Parts.clear();
753  }
754
755  return DAG.getNode(ISD::MERGE_VALUES, dl,
756                     DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
757                     &Values[0], ValueVTs.size());
758}
759
760/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
761/// specified value into the registers specified by this object.  This uses
762/// Chain/Flag as the input and updates them for the output Chain/Flag.
763/// If the Flag pointer is NULL, no flag is used.
764void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl,
765                                 SDValue &Chain, SDValue *Flag,
766                                 const Value *V) const {
767  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
768
769  // Get the list of the values's legal parts.
770  unsigned NumRegs = Regs.size();
771  SmallVector<SDValue, 8> Parts(NumRegs);
772  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
773    EVT ValueVT = ValueVTs[Value];
774    unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
775    MVT RegisterVT = RegVTs[Value];
776    ISD::NodeType ExtendKind =
777      TLI.isZExtFree(Val, RegisterVT)? ISD::ZERO_EXTEND: ISD::ANY_EXTEND;
778
779    getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
780                   &Parts[Part], NumParts, RegisterVT, V, ExtendKind);
781    Part += NumParts;
782  }
783
784  // Copy the parts into the registers.
785  SmallVector<SDValue, 8> Chains(NumRegs);
786  for (unsigned i = 0; i != NumRegs; ++i) {
787    SDValue Part;
788    if (Flag == 0) {
789      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
790    } else {
791      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
792      *Flag = Part.getValue(1);
793    }
794
795    Chains[i] = Part.getValue(0);
796  }
797
798  if (NumRegs == 1 || Flag)
799    // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
800    // flagged to it. That is the CopyToReg nodes and the user are considered
801    // a single scheduling unit. If we create a TokenFactor and return it as
802    // chain, then the TokenFactor is both a predecessor (operand) of the
803    // user as well as a successor (the TF operands are flagged to the user).
804    // c1, f1 = CopyToReg
805    // c2, f2 = CopyToReg
806    // c3     = TokenFactor c1, c2
807    // ...
808    //        = op c3, ..., f2
809    Chain = Chains[NumRegs-1];
810  else
811    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
812}
813
814/// AddInlineAsmOperands - Add this value to the specified inlineasm node
815/// operand list.  This adds the code marker and includes the number of
816/// values added into it.
817void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
818                                        unsigned MatchingIdx,
819                                        SelectionDAG &DAG,
820                                        std::vector<SDValue> &Ops) const {
821  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
822
823  unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
824  if (HasMatching)
825    Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
826  else if (!Regs.empty() &&
827           TargetRegisterInfo::isVirtualRegister(Regs.front())) {
828    // Put the register class of the virtual registers in the flag word.  That
829    // way, later passes can recompute register class constraints for inline
830    // assembly as well as normal instructions.
831    // Don't do this for tied operands that can use the regclass information
832    // from the def.
833    const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
834    const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
835    Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
836  }
837
838  SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
839  Ops.push_back(Res);
840
841  for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
842    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
843    MVT RegisterVT = RegVTs[Value];
844    for (unsigned i = 0; i != NumRegs; ++i) {
845      assert(Reg < Regs.size() && "Mismatch in # registers expected");
846      Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
847    }
848  }
849}
850
851void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa,
852                               const TargetLibraryInfo *li) {
853  AA = &aa;
854  GFI = gfi;
855  LibInfo = li;
856  TD = DAG.getTarget().getDataLayout();
857  Context = DAG.getContext();
858  LPadToCallSiteMap.clear();
859}
860
861/// clear - Clear out the current SelectionDAG and the associated
862/// state and prepare this SelectionDAGBuilder object to be used
863/// for a new block. This doesn't clear out information about
864/// additional blocks that are needed to complete switch lowering
865/// or PHI node updating; that information is cleared out as it is
866/// consumed.
867void SelectionDAGBuilder::clear() {
868  NodeMap.clear();
869  UnusedArgNodeMap.clear();
870  PendingLoads.clear();
871  PendingExports.clear();
872  CurInst = NULL;
873  HasTailCall = false;
874}
875
876/// clearDanglingDebugInfo - Clear the dangling debug information
877/// map. This function is separated from the clear so that debug
878/// information that is dangling in a basic block can be properly
879/// resolved in a different basic block. This allows the
880/// SelectionDAG to resolve dangling debug information attached
881/// to PHI nodes.
882void SelectionDAGBuilder::clearDanglingDebugInfo() {
883  DanglingDebugInfoMap.clear();
884}
885
886/// getRoot - Return the current virtual root of the Selection DAG,
887/// flushing any PendingLoad items. This must be done before emitting
888/// a store or any other node that may need to be ordered after any
889/// prior load instructions.
890///
891SDValue SelectionDAGBuilder::getRoot() {
892  if (PendingLoads.empty())
893    return DAG.getRoot();
894
895  if (PendingLoads.size() == 1) {
896    SDValue Root = PendingLoads[0];
897    DAG.setRoot(Root);
898    PendingLoads.clear();
899    return Root;
900  }
901
902  // Otherwise, we have to make a token factor node.
903  SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
904                               &PendingLoads[0], PendingLoads.size());
905  PendingLoads.clear();
906  DAG.setRoot(Root);
907  return Root;
908}
909
910/// getControlRoot - Similar to getRoot, but instead of flushing all the
911/// PendingLoad items, flush all the PendingExports items. It is necessary
912/// to do this before emitting a terminator instruction.
913///
914SDValue SelectionDAGBuilder::getControlRoot() {
915  SDValue Root = DAG.getRoot();
916
917  if (PendingExports.empty())
918    return Root;
919
920  // Turn all of the CopyToReg chains into one factored node.
921  if (Root.getOpcode() != ISD::EntryToken) {
922    unsigned i = 0, e = PendingExports.size();
923    for (; i != e; ++i) {
924      assert(PendingExports[i].getNode()->getNumOperands() > 1);
925      if (PendingExports[i].getNode()->getOperand(0) == Root)
926        break;  // Don't add the root if we already indirectly depend on it.
927    }
928
929    if (i == e)
930      PendingExports.push_back(Root);
931  }
932
933  Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
934                     &PendingExports[0],
935                     PendingExports.size());
936  PendingExports.clear();
937  DAG.setRoot(Root);
938  return Root;
939}
940
941void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) {
942  if (DAG.GetOrdering(Node) != 0) return; // Already has ordering.
943  DAG.AssignOrdering(Node, SDNodeOrder);
944
945  for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I)
946    AssignOrderingToNode(Node->getOperand(I).getNode());
947}
948
949void SelectionDAGBuilder::visit(const Instruction &I) {
950  // Set up outgoing PHI node register values before emitting the terminator.
951  if (isa<TerminatorInst>(&I))
952    HandlePHINodesInSuccessorBlocks(I.getParent());
953
954  CurInst = &I;
955
956  visit(I.getOpcode(), I);
957
958  if (!isa<TerminatorInst>(&I) && !HasTailCall)
959    CopyToExportRegsIfNeeded(&I);
960
961  CurInst = NULL;
962}
963
964void SelectionDAGBuilder::visitPHI(const PHINode &) {
965  llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
966}
967
968void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
969  // Note: this doesn't use InstVisitor, because it has to work with
970  // ConstantExpr's in addition to instructions.
971  switch (Opcode) {
972  default: llvm_unreachable("Unknown instruction type encountered!");
973    // Build the switch statement using the Instruction.def file.
974#define HANDLE_INST(NUM, OPCODE, CLASS) \
975    case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
976#include "llvm/IR/Instruction.def"
977  }
978
979  // Assign the ordering to the freshly created DAG nodes.
980  if (NodeMap.count(&I)) {
981    ++SDNodeOrder;
982    AssignOrderingToNode(getValue(&I).getNode());
983  }
984}
985
986// resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
987// generate the debug data structures now that we've seen its definition.
988void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
989                                                   SDValue Val) {
990  DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
991  if (DDI.getDI()) {
992    const DbgValueInst *DI = DDI.getDI();
993    DebugLoc dl = DDI.getdl();
994    unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
995    MDNode *Variable = DI->getVariable();
996    uint64_t Offset = DI->getOffset();
997    SDDbgValue *SDV;
998    if (Val.getNode()) {
999      if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) {
1000        SDV = DAG.getDbgValue(Variable, Val.getNode(),
1001                              Val.getResNo(), Offset, dl, DbgSDNodeOrder);
1002        DAG.AddDbgValue(SDV, Val.getNode(), false);
1003      }
1004    } else
1005      DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1006    DanglingDebugInfoMap[V] = DanglingDebugInfo();
1007  }
1008}
1009
1010/// getValue - Return an SDValue for the given Value.
1011SDValue SelectionDAGBuilder::getValue(const Value *V) {
1012  // If we already have an SDValue for this value, use it. It's important
1013  // to do this first, so that we don't create a CopyFromReg if we already
1014  // have a regular SDValue.
1015  SDValue &N = NodeMap[V];
1016  if (N.getNode()) return N;
1017
1018  // If there's a virtual register allocated and initialized for this
1019  // value, use it.
1020  DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
1021  if (It != FuncInfo.ValueMap.end()) {
1022    unsigned InReg = It->second;
1023    RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
1024    SDValue Chain = DAG.getEntryNode();
1025    N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, NULL, V);
1026    resolveDanglingDebugInfo(V, N);
1027    return N;
1028  }
1029
1030  // Otherwise create a new SDValue and remember it.
1031  SDValue Val = getValueImpl(V);
1032  NodeMap[V] = Val;
1033  resolveDanglingDebugInfo(V, Val);
1034  return Val;
1035}
1036
1037/// getNonRegisterValue - Return an SDValue for the given Value, but
1038/// don't look in FuncInfo.ValueMap for a virtual register.
1039SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1040  // If we already have an SDValue for this value, use it.
1041  SDValue &N = NodeMap[V];
1042  if (N.getNode()) return N;
1043
1044  // Otherwise create a new SDValue and remember it.
1045  SDValue Val = getValueImpl(V);
1046  NodeMap[V] = Val;
1047  resolveDanglingDebugInfo(V, Val);
1048  return Val;
1049}
1050
1051/// getValueImpl - Helper function for getValue and getNonRegisterValue.
1052/// Create an SDValue for the given value.
1053SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1054  if (const Constant *C = dyn_cast<Constant>(V)) {
1055    EVT VT = TLI.getValueType(V->getType(), true);
1056
1057    if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1058      return DAG.getConstant(*CI, VT);
1059
1060    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1061      return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1062
1063    if (isa<ConstantPointerNull>(C))
1064      return DAG.getConstant(0, TLI.getPointerTy());
1065
1066    if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1067      return DAG.getConstantFP(*CFP, VT);
1068
1069    if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1070      return DAG.getUNDEF(VT);
1071
1072    if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1073      visit(CE->getOpcode(), *CE);
1074      SDValue N1 = NodeMap[V];
1075      assert(N1.getNode() && "visit didn't populate the NodeMap!");
1076      return N1;
1077    }
1078
1079    if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1080      SmallVector<SDValue, 4> Constants;
1081      for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1082           OI != OE; ++OI) {
1083        SDNode *Val = getValue(*OI).getNode();
1084        // If the operand is an empty aggregate, there are no values.
1085        if (!Val) continue;
1086        // Add each leaf value from the operand to the Constants list
1087        // to form a flattened list of all the values.
1088        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1089          Constants.push_back(SDValue(Val, i));
1090      }
1091
1092      return DAG.getMergeValues(&Constants[0], Constants.size(),
1093                                getCurSDLoc());
1094    }
1095
1096    if (const ConstantDataSequential *CDS =
1097          dyn_cast<ConstantDataSequential>(C)) {
1098      SmallVector<SDValue, 4> Ops;
1099      for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1100        SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1101        // Add each leaf value from the operand to the Constants list
1102        // to form a flattened list of all the values.
1103        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1104          Ops.push_back(SDValue(Val, i));
1105      }
1106
1107      if (isa<ArrayType>(CDS->getType()))
1108        return DAG.getMergeValues(&Ops[0], Ops.size(), getCurSDLoc());
1109      return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(),
1110                                      VT, &Ops[0], Ops.size());
1111    }
1112
1113    if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1114      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1115             "Unknown struct or array constant!");
1116
1117      SmallVector<EVT, 4> ValueVTs;
1118      ComputeValueVTs(TLI, C->getType(), ValueVTs);
1119      unsigned NumElts = ValueVTs.size();
1120      if (NumElts == 0)
1121        return SDValue(); // empty struct
1122      SmallVector<SDValue, 4> Constants(NumElts);
1123      for (unsigned i = 0; i != NumElts; ++i) {
1124        EVT EltVT = ValueVTs[i];
1125        if (isa<UndefValue>(C))
1126          Constants[i] = DAG.getUNDEF(EltVT);
1127        else if (EltVT.isFloatingPoint())
1128          Constants[i] = DAG.getConstantFP(0, EltVT);
1129        else
1130          Constants[i] = DAG.getConstant(0, EltVT);
1131      }
1132
1133      return DAG.getMergeValues(&Constants[0], NumElts,
1134                                getCurSDLoc());
1135    }
1136
1137    if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1138      return DAG.getBlockAddress(BA, VT);
1139
1140    VectorType *VecTy = cast<VectorType>(V->getType());
1141    unsigned NumElements = VecTy->getNumElements();
1142
1143    // Now that we know the number and type of the elements, get that number of
1144    // elements into the Ops array based on what kind of constant it is.
1145    SmallVector<SDValue, 16> Ops;
1146    if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1147      for (unsigned i = 0; i != NumElements; ++i)
1148        Ops.push_back(getValue(CV->getOperand(i)));
1149    } else {
1150      assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1151      EVT EltVT = TLI.getValueType(VecTy->getElementType());
1152
1153      SDValue Op;
1154      if (EltVT.isFloatingPoint())
1155        Op = DAG.getConstantFP(0, EltVT);
1156      else
1157        Op = DAG.getConstant(0, EltVT);
1158      Ops.assign(NumElements, Op);
1159    }
1160
1161    // Create a BUILD_VECTOR node.
1162    return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(),
1163                                    VT, &Ops[0], Ops.size());
1164  }
1165
1166  // If this is a static alloca, generate it as the frameindex instead of
1167  // computation.
1168  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1169    DenseMap<const AllocaInst*, int>::iterator SI =
1170      FuncInfo.StaticAllocaMap.find(AI);
1171    if (SI != FuncInfo.StaticAllocaMap.end())
1172      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
1173  }
1174
1175  // If this is an instruction which fast-isel has deferred, select it now.
1176  if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1177    unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1178    RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType());
1179    SDValue Chain = DAG.getEntryNode();
1180    return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, NULL, V);
1181  }
1182
1183  llvm_unreachable("Can't get register for value!");
1184}
1185
1186void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1187  SDValue Chain = getControlRoot();
1188  SmallVector<ISD::OutputArg, 8> Outs;
1189  SmallVector<SDValue, 8> OutVals;
1190
1191  if (!FuncInfo.CanLowerReturn) {
1192    unsigned DemoteReg = FuncInfo.DemoteRegister;
1193    const Function *F = I.getParent()->getParent();
1194
1195    // Emit a store of the return value through the virtual register.
1196    // Leave Outs empty so that LowerReturn won't try to load return
1197    // registers the usual way.
1198    SmallVector<EVT, 1> PtrValueVTs;
1199    ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
1200                    PtrValueVTs);
1201
1202    SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
1203    SDValue RetOp = getValue(I.getOperand(0));
1204
1205    SmallVector<EVT, 4> ValueVTs;
1206    SmallVector<uint64_t, 4> Offsets;
1207    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1208    unsigned NumValues = ValueVTs.size();
1209
1210    SmallVector<SDValue, 4> Chains(NumValues);
1211    for (unsigned i = 0; i != NumValues; ++i) {
1212      SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(),
1213                                RetPtr.getValueType(), RetPtr,
1214                                DAG.getIntPtrConstant(Offsets[i]));
1215      Chains[i] =
1216        DAG.getStore(Chain, getCurSDLoc(),
1217                     SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1218                     // FIXME: better loc info would be nice.
1219                     Add, MachinePointerInfo(), false, false, 0);
1220    }
1221
1222    Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1223                        MVT::Other, &Chains[0], NumValues);
1224  } else if (I.getNumOperands() != 0) {
1225    SmallVector<EVT, 4> ValueVTs;
1226    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
1227    unsigned NumValues = ValueVTs.size();
1228    if (NumValues) {
1229      SDValue RetOp = getValue(I.getOperand(0));
1230      for (unsigned j = 0, f = NumValues; j != f; ++j) {
1231        EVT VT = ValueVTs[j];
1232
1233        ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1234
1235        const Function *F = I.getParent()->getParent();
1236        if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1237                                            Attribute::SExt))
1238          ExtendKind = ISD::SIGN_EXTEND;
1239        else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1240                                                 Attribute::ZExt))
1241          ExtendKind = ISD::ZERO_EXTEND;
1242
1243        if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1244          VT = TLI.getTypeForExtArgOrReturn(VT.getSimpleVT(), ExtendKind);
1245
1246        unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
1247        MVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
1248        SmallVector<SDValue, 4> Parts(NumParts);
1249        getCopyToParts(DAG, getCurSDLoc(),
1250                       SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1251                       &Parts[0], NumParts, PartVT, &I, ExtendKind);
1252
1253        // 'inreg' on function refers to return value
1254        ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1255        if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1256                                            Attribute::InReg))
1257          Flags.setInReg();
1258
1259        // Propagate extension type if any
1260        if (ExtendKind == ISD::SIGN_EXTEND)
1261          Flags.setSExt();
1262        else if (ExtendKind == ISD::ZERO_EXTEND)
1263          Flags.setZExt();
1264
1265        for (unsigned i = 0; i < NumParts; ++i) {
1266          Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1267                                        /*isfixed=*/true, 0, 0));
1268          OutVals.push_back(Parts[i]);
1269        }
1270      }
1271    }
1272  }
1273
1274  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1275  CallingConv::ID CallConv =
1276    DAG.getMachineFunction().getFunction()->getCallingConv();
1277  Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
1278                          Outs, OutVals, getCurSDLoc(), DAG);
1279
1280  // Verify that the target's LowerReturn behaved as expected.
1281  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1282         "LowerReturn didn't return a valid chain!");
1283
1284  // Update the DAG with the new chain value resulting from return lowering.
1285  DAG.setRoot(Chain);
1286}
1287
1288/// CopyToExportRegsIfNeeded - If the given value has virtual registers
1289/// created for it, emit nodes to copy the value into the virtual
1290/// registers.
1291void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1292  // Skip empty types
1293  if (V->getType()->isEmptyTy())
1294    return;
1295
1296  DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1297  if (VMI != FuncInfo.ValueMap.end()) {
1298    assert(!V->use_empty() && "Unused value assigned virtual registers!");
1299    CopyValueToVirtualRegister(V, VMI->second);
1300  }
1301}
1302
1303/// ExportFromCurrentBlock - If this condition isn't known to be exported from
1304/// the current basic block, add it to ValueMap now so that we'll get a
1305/// CopyTo/FromReg.
1306void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1307  // No need to export constants.
1308  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1309
1310  // Already exported?
1311  if (FuncInfo.isExportedInst(V)) return;
1312
1313  unsigned Reg = FuncInfo.InitializeRegForValue(V);
1314  CopyValueToVirtualRegister(V, Reg);
1315}
1316
1317bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1318                                                     const BasicBlock *FromBB) {
1319  // The operands of the setcc have to be in this block.  We don't know
1320  // how to export them from some other block.
1321  if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1322    // Can export from current BB.
1323    if (VI->getParent() == FromBB)
1324      return true;
1325
1326    // Is already exported, noop.
1327    return FuncInfo.isExportedInst(V);
1328  }
1329
1330  // If this is an argument, we can export it if the BB is the entry block or
1331  // if it is already exported.
1332  if (isa<Argument>(V)) {
1333    if (FromBB == &FromBB->getParent()->getEntryBlock())
1334      return true;
1335
1336    // Otherwise, can only export this if it is already exported.
1337    return FuncInfo.isExportedInst(V);
1338  }
1339
1340  // Otherwise, constants can always be exported.
1341  return true;
1342}
1343
1344/// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1345uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src,
1346                                            const MachineBasicBlock *Dst) const {
1347  BranchProbabilityInfo *BPI = FuncInfo.BPI;
1348  if (!BPI)
1349    return 0;
1350  const BasicBlock *SrcBB = Src->getBasicBlock();
1351  const BasicBlock *DstBB = Dst->getBasicBlock();
1352  return BPI->getEdgeWeight(SrcBB, DstBB);
1353}
1354
1355void SelectionDAGBuilder::
1356addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst,
1357                       uint32_t Weight /* = 0 */) {
1358  if (!Weight)
1359    Weight = getEdgeWeight(Src, Dst);
1360  Src->addSuccessor(Dst, Weight);
1361}
1362
1363
1364static bool InBlock(const Value *V, const BasicBlock *BB) {
1365  if (const Instruction *I = dyn_cast<Instruction>(V))
1366    return I->getParent() == BB;
1367  return true;
1368}
1369
1370/// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1371/// This function emits a branch and is used at the leaves of an OR or an
1372/// AND operator tree.
1373///
1374void
1375SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1376                                                  MachineBasicBlock *TBB,
1377                                                  MachineBasicBlock *FBB,
1378                                                  MachineBasicBlock *CurBB,
1379                                                  MachineBasicBlock *SwitchBB) {
1380  const BasicBlock *BB = CurBB->getBasicBlock();
1381
1382  // If the leaf of the tree is a comparison, merge the condition into
1383  // the caseblock.
1384  if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1385    // The operands of the cmp have to be in this block.  We don't know
1386    // how to export them from some other block.  If this is the first block
1387    // of the sequence, no exporting is needed.
1388    if (CurBB == SwitchBB ||
1389        (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1390         isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1391      ISD::CondCode Condition;
1392      if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1393        Condition = getICmpCondCode(IC->getPredicate());
1394      } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1395        Condition = getFCmpCondCode(FC->getPredicate());
1396        if (TM.Options.NoNaNsFPMath)
1397          Condition = getFCmpCodeWithoutNaN(Condition);
1398      } else {
1399        Condition = ISD::SETEQ; // silence warning.
1400        llvm_unreachable("Unknown compare instruction");
1401      }
1402
1403      CaseBlock CB(Condition, BOp->getOperand(0),
1404                   BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1405      SwitchCases.push_back(CB);
1406      return;
1407    }
1408  }
1409
1410  // Create a CaseBlock record representing this branch.
1411  CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1412               NULL, TBB, FBB, CurBB);
1413  SwitchCases.push_back(CB);
1414}
1415
1416/// FindMergedConditions - If Cond is an expression like
1417void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1418                                               MachineBasicBlock *TBB,
1419                                               MachineBasicBlock *FBB,
1420                                               MachineBasicBlock *CurBB,
1421                                               MachineBasicBlock *SwitchBB,
1422                                               unsigned Opc) {
1423  // If this node is not part of the or/and tree, emit it as a branch.
1424  const Instruction *BOp = dyn_cast<Instruction>(Cond);
1425  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1426      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1427      BOp->getParent() != CurBB->getBasicBlock() ||
1428      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1429      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1430    EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB);
1431    return;
1432  }
1433
1434  //  Create TmpBB after CurBB.
1435  MachineFunction::iterator BBI = CurBB;
1436  MachineFunction &MF = DAG.getMachineFunction();
1437  MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1438  CurBB->getParent()->insert(++BBI, TmpBB);
1439
1440  if (Opc == Instruction::Or) {
1441    // Codegen X | Y as:
1442    //   jmp_if_X TBB
1443    //   jmp TmpBB
1444    // TmpBB:
1445    //   jmp_if_Y TBB
1446    //   jmp FBB
1447    //
1448
1449    // Emit the LHS condition.
1450    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc);
1451
1452    // Emit the RHS condition into TmpBB.
1453    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1454  } else {
1455    assert(Opc == Instruction::And && "Unknown merge op!");
1456    // Codegen X & Y as:
1457    //   jmp_if_X TmpBB
1458    //   jmp FBB
1459    // TmpBB:
1460    //   jmp_if_Y TBB
1461    //   jmp FBB
1462    //
1463    //  This requires creation of TmpBB after CurBB.
1464
1465    // Emit the LHS condition.
1466    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc);
1467
1468    // Emit the RHS condition into TmpBB.
1469    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1470  }
1471}
1472
1473/// If the set of cases should be emitted as a series of branches, return true.
1474/// If we should emit this as a bunch of and/or'd together conditions, return
1475/// false.
1476bool
1477SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
1478  if (Cases.size() != 2) return true;
1479
1480  // If this is two comparisons of the same values or'd or and'd together, they
1481  // will get folded into a single comparison, so don't emit two blocks.
1482  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1483       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1484      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1485       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1486    return false;
1487  }
1488
1489  // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1490  // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1491  if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1492      Cases[0].CC == Cases[1].CC &&
1493      isa<Constant>(Cases[0].CmpRHS) &&
1494      cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1495    if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1496      return false;
1497    if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1498      return false;
1499  }
1500
1501  return true;
1502}
1503
1504void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1505  MachineBasicBlock *BrMBB = FuncInfo.MBB;
1506
1507  // Update machine-CFG edges.
1508  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1509
1510  // Figure out which block is immediately after the current one.
1511  MachineBasicBlock *NextBlock = 0;
1512  MachineFunction::iterator BBI = BrMBB;
1513  if (++BBI != FuncInfo.MF->end())
1514    NextBlock = BBI;
1515
1516  if (I.isUnconditional()) {
1517    // Update machine-CFG edges.
1518    BrMBB->addSuccessor(Succ0MBB);
1519
1520    // If this is not a fall-through branch, emit the branch.
1521    if (Succ0MBB != NextBlock)
1522      DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
1523                              MVT::Other, getControlRoot(),
1524                              DAG.getBasicBlock(Succ0MBB)));
1525
1526    return;
1527  }
1528
1529  // If this condition is one of the special cases we handle, do special stuff
1530  // now.
1531  const Value *CondVal = I.getCondition();
1532  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1533
1534  // If this is a series of conditions that are or'd or and'd together, emit
1535  // this as a sequence of branches instead of setcc's with and/or operations.
1536  // As long as jumps are not expensive, this should improve performance.
1537  // For example, instead of something like:
1538  //     cmp A, B
1539  //     C = seteq
1540  //     cmp D, E
1541  //     F = setle
1542  //     or C, F
1543  //     jnz foo
1544  // Emit:
1545  //     cmp A, B
1546  //     je foo
1547  //     cmp D, E
1548  //     jle foo
1549  //
1550  if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1551    if (!TLI.isJumpExpensive() &&
1552        BOp->hasOneUse() &&
1553        (BOp->getOpcode() == Instruction::And ||
1554         BOp->getOpcode() == Instruction::Or)) {
1555      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1556                           BOp->getOpcode());
1557      // If the compares in later blocks need to use values not currently
1558      // exported from this block, export them now.  This block should always
1559      // be the first entry.
1560      assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1561
1562      // Allow some cases to be rejected.
1563      if (ShouldEmitAsBranches(SwitchCases)) {
1564        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1565          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1566          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1567        }
1568
1569        // Emit the branch for this block.
1570        visitSwitchCase(SwitchCases[0], BrMBB);
1571        SwitchCases.erase(SwitchCases.begin());
1572        return;
1573      }
1574
1575      // Okay, we decided not to do this, remove any inserted MBB's and clear
1576      // SwitchCases.
1577      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1578        FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1579
1580      SwitchCases.clear();
1581    }
1582  }
1583
1584  // Create a CaseBlock record representing this branch.
1585  CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1586               NULL, Succ0MBB, Succ1MBB, BrMBB);
1587
1588  // Use visitSwitchCase to actually insert the fast branch sequence for this
1589  // cond branch.
1590  visitSwitchCase(CB, BrMBB);
1591}
1592
1593/// visitSwitchCase - Emits the necessary code to represent a single node in
1594/// the binary search tree resulting from lowering a switch instruction.
1595void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1596                                          MachineBasicBlock *SwitchBB) {
1597  SDValue Cond;
1598  SDValue CondLHS = getValue(CB.CmpLHS);
1599  SDLoc dl = getCurSDLoc();
1600
1601  // Build the setcc now.
1602  if (CB.CmpMHS == NULL) {
1603    // Fold "(X == true)" to X and "(X == false)" to !X to
1604    // handle common cases produced by branch lowering.
1605    if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1606        CB.CC == ISD::SETEQ)
1607      Cond = CondLHS;
1608    else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1609             CB.CC == ISD::SETEQ) {
1610      SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1611      Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1612    } else
1613      Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1614  } else {
1615    assert(CB.CC == ISD::SETCC_INVALID &&
1616           "Condition is undefined for to-the-range belonging check.");
1617
1618    const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1619    const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
1620
1621    SDValue CmpOp = getValue(CB.CmpMHS);
1622    EVT VT = CmpOp.getValueType();
1623
1624    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(false)) {
1625      Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1626                          ISD::SETULE);
1627    } else {
1628      SDValue SUB = DAG.getNode(ISD::SUB, dl,
1629                                VT, CmpOp, DAG.getConstant(Low, VT));
1630      Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1631                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1632    }
1633  }
1634
1635  // Update successor info
1636  addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight);
1637  // TrueBB and FalseBB are always different unless the incoming IR is
1638  // degenerate. This only happens when running llc on weird IR.
1639  if (CB.TrueBB != CB.FalseBB)
1640    addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight);
1641
1642  // Set NextBlock to be the MBB immediately after the current one, if any.
1643  // This is used to avoid emitting unnecessary branches to the next block.
1644  MachineBasicBlock *NextBlock = 0;
1645  MachineFunction::iterator BBI = SwitchBB;
1646  if (++BBI != FuncInfo.MF->end())
1647    NextBlock = BBI;
1648
1649  // If the lhs block is the next block, invert the condition so that we can
1650  // fall through to the lhs instead of the rhs block.
1651  if (CB.TrueBB == NextBlock) {
1652    std::swap(CB.TrueBB, CB.FalseBB);
1653    SDValue True = DAG.getConstant(1, Cond.getValueType());
1654    Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1655  }
1656
1657  SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1658                               MVT::Other, getControlRoot(), Cond,
1659                               DAG.getBasicBlock(CB.TrueBB));
1660
1661  // Insert the false branch. Do this even if it's a fall through branch,
1662  // this makes it easier to do DAG optimizations which require inverting
1663  // the branch condition.
1664  BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1665                       DAG.getBasicBlock(CB.FalseBB));
1666
1667  DAG.setRoot(BrCond);
1668}
1669
1670/// visitJumpTable - Emit JumpTable node in the current MBB
1671void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1672  // Emit the code for the jump table
1673  assert(JT.Reg != -1U && "Should lower JT Header first!");
1674  EVT PTy = TLI.getPointerTy();
1675  SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
1676                                     JT.Reg, PTy);
1677  SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1678  SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
1679                                    MVT::Other, Index.getValue(1),
1680                                    Table, Index);
1681  DAG.setRoot(BrJumpTable);
1682}
1683
1684/// visitJumpTableHeader - This function emits necessary code to produce index
1685/// in the JumpTable from switch case.
1686void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1687                                               JumpTableHeader &JTH,
1688                                               MachineBasicBlock *SwitchBB) {
1689  // Subtract the lowest switch case value from the value being switched on and
1690  // conditional branch to default mbb if the result is greater than the
1691  // difference between smallest and largest cases.
1692  SDValue SwitchOp = getValue(JTH.SValue);
1693  EVT VT = SwitchOp.getValueType();
1694  SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp,
1695                            DAG.getConstant(JTH.First, VT));
1696
1697  // The SDNode we just created, which holds the value being switched on minus
1698  // the smallest case value, needs to be copied to a virtual register so it
1699  // can be used as an index into the jump table in a subsequent basic block.
1700  // This value may be smaller or larger than the target's pointer type, and
1701  // therefore require extension or truncating.
1702  SwitchOp = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), TLI.getPointerTy());
1703
1704  unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy());
1705  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(),
1706                                    JumpTableReg, SwitchOp);
1707  JT.Reg = JumpTableReg;
1708
1709  // Emit the range check for the jump table, and branch to the default block
1710  // for the switch statement if the value being switched on exceeds the largest
1711  // case in the switch.
1712  SDValue CMP = DAG.getSetCC(getCurSDLoc(),
1713                             TLI.getSetCCResultType(*DAG.getContext(),
1714                                                    Sub.getValueType()),
1715                             Sub,
1716                             DAG.getConstant(JTH.Last - JTH.First,VT),
1717                             ISD::SETUGT);
1718
1719  // Set NextBlock to be the MBB immediately after the current one, if any.
1720  // This is used to avoid emitting unnecessary branches to the next block.
1721  MachineBasicBlock *NextBlock = 0;
1722  MachineFunction::iterator BBI = SwitchBB;
1723
1724  if (++BBI != FuncInfo.MF->end())
1725    NextBlock = BBI;
1726
1727  SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
1728                               MVT::Other, CopyTo, CMP,
1729                               DAG.getBasicBlock(JT.Default));
1730
1731  if (JT.MBB != NextBlock)
1732    BrCond = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrCond,
1733                         DAG.getBasicBlock(JT.MBB));
1734
1735  DAG.setRoot(BrCond);
1736}
1737
1738/// visitBitTestHeader - This function emits necessary code to produce value
1739/// suitable for "bit tests"
1740void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1741                                             MachineBasicBlock *SwitchBB) {
1742  // Subtract the minimum value
1743  SDValue SwitchOp = getValue(B.SValue);
1744  EVT VT = SwitchOp.getValueType();
1745  SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp,
1746                            DAG.getConstant(B.First, VT));
1747
1748  // Check range
1749  SDValue RangeCmp = DAG.getSetCC(getCurSDLoc(),
1750                                  TLI.getSetCCResultType(*DAG.getContext(),
1751                                                         Sub.getValueType()),
1752                                  Sub, DAG.getConstant(B.Range, VT),
1753                                  ISD::SETUGT);
1754
1755  // Determine the type of the test operands.
1756  bool UsePtrType = false;
1757  if (!TLI.isTypeLegal(VT))
1758    UsePtrType = true;
1759  else {
1760    for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
1761      if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
1762        // Switch table case range are encoded into series of masks.
1763        // Just use pointer type, it's guaranteed to fit.
1764        UsePtrType = true;
1765        break;
1766      }
1767  }
1768  if (UsePtrType) {
1769    VT = TLI.getPointerTy();
1770    Sub = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), VT);
1771  }
1772
1773  B.RegVT = VT.getSimpleVT();
1774  B.Reg = FuncInfo.CreateReg(B.RegVT);
1775  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(),
1776                                    B.Reg, Sub);
1777
1778  // Set NextBlock to be the MBB immediately after the current one, if any.
1779  // This is used to avoid emitting unnecessary branches to the next block.
1780  MachineBasicBlock *NextBlock = 0;
1781  MachineFunction::iterator BBI = SwitchBB;
1782  if (++BBI != FuncInfo.MF->end())
1783    NextBlock = BBI;
1784
1785  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1786
1787  addSuccessorWithWeight(SwitchBB, B.Default);
1788  addSuccessorWithWeight(SwitchBB, MBB);
1789
1790  SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
1791                                MVT::Other, CopyTo, RangeCmp,
1792                                DAG.getBasicBlock(B.Default));
1793
1794  if (MBB != NextBlock)
1795    BrRange = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, CopyTo,
1796                          DAG.getBasicBlock(MBB));
1797
1798  DAG.setRoot(BrRange);
1799}
1800
1801/// visitBitTestCase - this function produces one "bit test"
1802void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
1803                                           MachineBasicBlock* NextMBB,
1804                                           uint32_t BranchWeightToNext,
1805                                           unsigned Reg,
1806                                           BitTestCase &B,
1807                                           MachineBasicBlock *SwitchBB) {
1808  MVT VT = BB.RegVT;
1809  SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
1810                                       Reg, VT);
1811  SDValue Cmp;
1812  unsigned PopCount = CountPopulation_64(B.Mask);
1813  if (PopCount == 1) {
1814    // Testing for a single bit; just compare the shift count with what it
1815    // would need to be to shift a 1 bit in that position.
1816    Cmp = DAG.getSetCC(getCurSDLoc(),
1817                       TLI.getSetCCResultType(*DAG.getContext(), VT),
1818                       ShiftOp,
1819                       DAG.getConstant(countTrailingZeros(B.Mask), VT),
1820                       ISD::SETEQ);
1821  } else if (PopCount == BB.Range) {
1822    // There is only one zero bit in the range, test for it directly.
1823    Cmp = DAG.getSetCC(getCurSDLoc(),
1824                       TLI.getSetCCResultType(*DAG.getContext(), VT),
1825                       ShiftOp,
1826                       DAG.getConstant(CountTrailingOnes_64(B.Mask), VT),
1827                       ISD::SETNE);
1828  } else {
1829    // Make desired shift
1830    SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurSDLoc(), VT,
1831                                    DAG.getConstant(1, VT), ShiftOp);
1832
1833    // Emit bit tests and jumps
1834    SDValue AndOp = DAG.getNode(ISD::AND, getCurSDLoc(),
1835                                VT, SwitchVal, DAG.getConstant(B.Mask, VT));
1836    Cmp = DAG.getSetCC(getCurSDLoc(),
1837                       TLI.getSetCCResultType(*DAG.getContext(), VT),
1838                       AndOp, DAG.getConstant(0, VT),
1839                       ISD::SETNE);
1840  }
1841
1842  // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight.
1843  addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight);
1844  // The branch weight from SwitchBB to NextMBB is BranchWeightToNext.
1845  addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext);
1846
1847  SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
1848                              MVT::Other, getControlRoot(),
1849                              Cmp, DAG.getBasicBlock(B.TargetBB));
1850
1851  // Set NextBlock to be the MBB immediately after the current one, if any.
1852  // This is used to avoid emitting unnecessary branches to the next block.
1853  MachineBasicBlock *NextBlock = 0;
1854  MachineFunction::iterator BBI = SwitchBB;
1855  if (++BBI != FuncInfo.MF->end())
1856    NextBlock = BBI;
1857
1858  if (NextMBB != NextBlock)
1859    BrAnd = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrAnd,
1860                        DAG.getBasicBlock(NextMBB));
1861
1862  DAG.setRoot(BrAnd);
1863}
1864
1865void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1866  MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
1867
1868  // Retrieve successors.
1869  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1870  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1871
1872  const Value *Callee(I.getCalledValue());
1873  const Function *Fn = dyn_cast<Function>(Callee);
1874  if (isa<InlineAsm>(Callee))
1875    visitInlineAsm(&I);
1876  else if (Fn && Fn->isIntrinsic()) {
1877    assert(Fn->getIntrinsicID() == Intrinsic::donothing);
1878    // Ignore invokes to @llvm.donothing: jump directly to the next BB.
1879  } else
1880    LowerCallTo(&I, getValue(Callee), false, LandingPad);
1881
1882  // If the value of the invoke is used outside of its defining block, make it
1883  // available as a virtual register.
1884  CopyToExportRegsIfNeeded(&I);
1885
1886  // Update successor info
1887  addSuccessorWithWeight(InvokeMBB, Return);
1888  addSuccessorWithWeight(InvokeMBB, LandingPad);
1889
1890  // Drop into normal successor.
1891  DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
1892                          MVT::Other, getControlRoot(),
1893                          DAG.getBasicBlock(Return)));
1894}
1895
1896void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
1897  llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
1898}
1899
1900void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
1901  assert(FuncInfo.MBB->isLandingPad() &&
1902         "Call to landingpad not in landing pad!");
1903
1904  MachineBasicBlock *MBB = FuncInfo.MBB;
1905  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
1906  AddLandingPadInfo(LP, MMI, MBB);
1907
1908  // If there aren't registers to copy the values into (e.g., during SjLj
1909  // exceptions), then don't bother to create these DAG nodes.
1910  if (TLI.getExceptionPointerRegister() == 0 &&
1911      TLI.getExceptionSelectorRegister() == 0)
1912    return;
1913
1914  SmallVector<EVT, 2> ValueVTs;
1915  ComputeValueVTs(TLI, LP.getType(), ValueVTs);
1916
1917  // Insert the EXCEPTIONADDR instruction.
1918  assert(FuncInfo.MBB->isLandingPad() &&
1919         "Call to eh.exception not in landing pad!");
1920  SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
1921  SDValue Ops[2];
1922  Ops[0] = DAG.getRoot();
1923  SDValue Op1 = DAG.getNode(ISD::EXCEPTIONADDR, getCurSDLoc(), VTs, Ops, 1);
1924  SDValue Chain = Op1.getValue(1);
1925
1926  // Insert the EHSELECTION instruction.
1927  VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
1928  Ops[0] = Op1;
1929  Ops[1] = Chain;
1930  SDValue Op2 = DAG.getNode(ISD::EHSELECTION, getCurSDLoc(), VTs, Ops, 2);
1931  Chain = Op2.getValue(1);
1932  Op2 = DAG.getSExtOrTrunc(Op2, getCurSDLoc(), MVT::i32);
1933
1934  Ops[0] = Op1;
1935  Ops[1] = Op2;
1936  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
1937                            DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
1938                            &Ops[0], 2);
1939
1940  std::pair<SDValue, SDValue> RetPair = std::make_pair(Res, Chain);
1941  setValue(&LP, RetPair.first);
1942  DAG.setRoot(RetPair.second);
1943}
1944
1945/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1946/// small case ranges).
1947bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
1948                                                 CaseRecVector& WorkList,
1949                                                 const Value* SV,
1950                                                 MachineBasicBlock *Default,
1951                                                 MachineBasicBlock *SwitchBB) {
1952  // Size is the number of Cases represented by this range.
1953  size_t Size = CR.Range.second - CR.Range.first;
1954  if (Size > 3)
1955    return false;
1956
1957  // Get the MachineFunction which holds the current MBB.  This is used when
1958  // inserting any additional MBBs necessary to represent the switch.
1959  MachineFunction *CurMF = FuncInfo.MF;
1960
1961  // Figure out which block is immediately after the current one.
1962  MachineBasicBlock *NextBlock = 0;
1963  MachineFunction::iterator BBI = CR.CaseBB;
1964
1965  if (++BBI != FuncInfo.MF->end())
1966    NextBlock = BBI;
1967
1968  BranchProbabilityInfo *BPI = FuncInfo.BPI;
1969  // If any two of the cases has the same destination, and if one value
1970  // is the same as the other, but has one bit unset that the other has set,
1971  // use bit manipulation to do two compares at once.  For example:
1972  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1973  // TODO: This could be extended to merge any 2 cases in switches with 3 cases.
1974  // TODO: Handle cases where CR.CaseBB != SwitchBB.
1975  if (Size == 2 && CR.CaseBB == SwitchBB) {
1976    Case &Small = *CR.Range.first;
1977    Case &Big = *(CR.Range.second-1);
1978
1979    if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) {
1980      const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue();
1981      const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue();
1982
1983      // Check that there is only one bit different.
1984      if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 &&
1985          (SmallValue | BigValue) == BigValue) {
1986        // Isolate the common bit.
1987        APInt CommonBit = BigValue & ~SmallValue;
1988        assert((SmallValue | CommonBit) == BigValue &&
1989               CommonBit.countPopulation() == 1 && "Not a common bit?");
1990
1991        SDValue CondLHS = getValue(SV);
1992        EVT VT = CondLHS.getValueType();
1993        SDLoc DL = getCurSDLoc();
1994
1995        SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
1996                                 DAG.getConstant(CommonBit, VT));
1997        SDValue Cond = DAG.getSetCC(DL, MVT::i1,
1998                                    Or, DAG.getConstant(BigValue, VT),
1999                                    ISD::SETEQ);
2000
2001        // Update successor info.
2002        // Both Small and Big will jump to Small.BB, so we sum up the weights.
2003        addSuccessorWithWeight(SwitchBB, Small.BB,
2004                               Small.ExtraWeight + Big.ExtraWeight);
2005        addSuccessorWithWeight(SwitchBB, Default,
2006          // The default destination is the first successor in IR.
2007          BPI ? BPI->getEdgeWeight(SwitchBB->getBasicBlock(), (unsigned)0) : 0);
2008
2009        // Insert the true branch.
2010        SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other,
2011                                     getControlRoot(), Cond,
2012                                     DAG.getBasicBlock(Small.BB));
2013
2014        // Insert the false branch.
2015        BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
2016                             DAG.getBasicBlock(Default));
2017
2018        DAG.setRoot(BrCond);
2019        return true;
2020      }
2021    }
2022  }
2023
2024  // Order cases by weight so the most likely case will be checked first.
2025  uint32_t UnhandledWeights = 0;
2026  if (BPI) {
2027    for (CaseItr I = CR.Range.first, IE = CR.Range.second; I != IE; ++I) {
2028      uint32_t IWeight = I->ExtraWeight;
2029      UnhandledWeights += IWeight;
2030      for (CaseItr J = CR.Range.first; J < I; ++J) {
2031        uint32_t JWeight = J->ExtraWeight;
2032        if (IWeight > JWeight)
2033          std::swap(*I, *J);
2034      }
2035    }
2036  }
2037  // Rearrange the case blocks so that the last one falls through if possible.
2038  Case &BackCase = *(CR.Range.second-1);
2039  if (Size > 1 &&
2040      NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
2041    // The last case block won't fall through into 'NextBlock' if we emit the
2042    // branches in this order.  See if rearranging a case value would help.
2043    // We start at the bottom as it's the case with the least weight.
2044    for (Case *I = &*(CR.Range.second-2), *E = &*CR.Range.first-1; I != E; --I){
2045      if (I->BB == NextBlock) {
2046        std::swap(*I, BackCase);
2047        break;
2048      }
2049    }
2050  }
2051
2052  // Create a CaseBlock record representing a conditional branch to
2053  // the Case's target mbb if the value being switched on SV is equal
2054  // to C.
2055  MachineBasicBlock *CurBlock = CR.CaseBB;
2056  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
2057    MachineBasicBlock *FallThrough;
2058    if (I != E-1) {
2059      FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
2060      CurMF->insert(BBI, FallThrough);
2061
2062      // Put SV in a virtual register to make it available from the new blocks.
2063      ExportFromCurrentBlock(SV);
2064    } else {
2065      // If the last case doesn't match, go to the default block.
2066      FallThrough = Default;
2067    }
2068
2069    const Value *RHS, *LHS, *MHS;
2070    ISD::CondCode CC;
2071    if (I->High == I->Low) {
2072      // This is just small small case range :) containing exactly 1 case
2073      CC = ISD::SETEQ;
2074      LHS = SV; RHS = I->High; MHS = NULL;
2075    } else {
2076      CC = ISD::SETCC_INVALID;
2077      LHS = I->Low; MHS = SV; RHS = I->High;
2078    }
2079
2080    // The false weight should be sum of all un-handled cases.
2081    UnhandledWeights -= I->ExtraWeight;
2082    CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough,
2083                 /* me */ CurBlock,
2084                 /* trueweight */ I->ExtraWeight,
2085                 /* falseweight */ UnhandledWeights);
2086
2087    // If emitting the first comparison, just call visitSwitchCase to emit the
2088    // code into the current block.  Otherwise, push the CaseBlock onto the
2089    // vector to be later processed by SDISel, and insert the node's MBB
2090    // before the next MBB.
2091    if (CurBlock == SwitchBB)
2092      visitSwitchCase(CB, SwitchBB);
2093    else
2094      SwitchCases.push_back(CB);
2095
2096    CurBlock = FallThrough;
2097  }
2098
2099  return true;
2100}
2101
2102static inline bool areJTsAllowed(const TargetLowering &TLI) {
2103  return TLI.supportJumpTables() &&
2104          (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
2105           TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
2106}
2107
2108static APInt ComputeRange(const APInt &First, const APInt &Last) {
2109  uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
2110  APInt LastExt = Last.zext(BitWidth), FirstExt = First.zext(BitWidth);
2111  return (LastExt - FirstExt + 1ULL);
2112}
2113
2114/// handleJTSwitchCase - Emit jumptable for current switch case range
2115bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR,
2116                                             CaseRecVector &WorkList,
2117                                             const Value *SV,
2118                                             MachineBasicBlock *Default,
2119                                             MachineBasicBlock *SwitchBB) {
2120  Case& FrontCase = *CR.Range.first;
2121  Case& BackCase  = *(CR.Range.second-1);
2122
2123  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2124  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2125
2126  APInt TSize(First.getBitWidth(), 0);
2127  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I)
2128    TSize += I->size();
2129
2130  if (!areJTsAllowed(TLI) || TSize.ult(TLI.getMinimumJumpTableEntries()))
2131    return false;
2132
2133  APInt Range = ComputeRange(First, Last);
2134  // The density is TSize / Range. Require at least 40%.
2135  // It should not be possible for IntTSize to saturate for sane code, but make
2136  // sure we handle Range saturation correctly.
2137  uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10);
2138  uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10);
2139  if (IntTSize * 10 < IntRange * 4)
2140    return false;
2141
2142  DEBUG(dbgs() << "Lowering jump table\n"
2143               << "First entry: " << First << ". Last entry: " << Last << '\n'
2144               << "Range: " << Range << ". Size: " << TSize << ".\n\n");
2145
2146  // Get the MachineFunction which holds the current MBB.  This is used when
2147  // inserting any additional MBBs necessary to represent the switch.
2148  MachineFunction *CurMF = FuncInfo.MF;
2149
2150  // Figure out which block is immediately after the current one.
2151  MachineFunction::iterator BBI = CR.CaseBB;
2152  ++BBI;
2153
2154  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2155
2156  // Create a new basic block to hold the code for loading the address
2157  // of the jump table, and jumping to it.  Update successor information;
2158  // we will either branch to the default case for the switch, or the jump
2159  // table.
2160  MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2161  CurMF->insert(BBI, JumpTableBB);
2162
2163  addSuccessorWithWeight(CR.CaseBB, Default);
2164  addSuccessorWithWeight(CR.CaseBB, JumpTableBB);
2165
2166  // Build a vector of destination BBs, corresponding to each target
2167  // of the jump table. If the value of the jump table slot corresponds to
2168  // a case statement, push the case's BB onto the vector, otherwise, push
2169  // the default BB.
2170  std::vector<MachineBasicBlock*> DestBBs;
2171  APInt TEI = First;
2172  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
2173    const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
2174    const APInt &High = cast<ConstantInt>(I->High)->getValue();
2175
2176    if (Low.ule(TEI) && TEI.ule(High)) {
2177      DestBBs.push_back(I->BB);
2178      if (TEI==High)
2179        ++I;
2180    } else {
2181      DestBBs.push_back(Default);
2182    }
2183  }
2184
2185  // Calculate weight for each unique destination in CR.
2186  DenseMap<MachineBasicBlock*, uint32_t> DestWeights;
2187  if (FuncInfo.BPI)
2188    for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
2189      DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr =
2190          DestWeights.find(I->BB);
2191      if (Itr != DestWeights.end())
2192        Itr->second += I->ExtraWeight;
2193      else
2194        DestWeights[I->BB] = I->ExtraWeight;
2195    }
2196
2197  // Update successor info. Add one edge to each unique successor.
2198  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
2199  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
2200         E = DestBBs.end(); I != E; ++I) {
2201    if (!SuccsHandled[(*I)->getNumber()]) {
2202      SuccsHandled[(*I)->getNumber()] = true;
2203      DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr =
2204          DestWeights.find(*I);
2205      addSuccessorWithWeight(JumpTableBB, *I,
2206                             Itr != DestWeights.end() ? Itr->second : 0);
2207    }
2208  }
2209
2210  // Create a jump table index for this jump table.
2211  unsigned JTEncoding = TLI.getJumpTableEncoding();
2212  unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
2213                       ->createJumpTableIndex(DestBBs);
2214
2215  // Set the jump table information so that we can codegen it as a second
2216  // MachineBasicBlock
2217  JumpTable JT(-1U, JTI, JumpTableBB, Default);
2218  JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
2219  if (CR.CaseBB == SwitchBB)
2220    visitJumpTableHeader(JT, JTH, SwitchBB);
2221
2222  JTCases.push_back(JumpTableBlock(JTH, JT));
2223  return true;
2224}
2225
2226/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
2227/// 2 subtrees.
2228bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
2229                                                  CaseRecVector& WorkList,
2230                                                  const Value* SV,
2231                                                  MachineBasicBlock *Default,
2232                                                  MachineBasicBlock *SwitchBB) {
2233  // Get the MachineFunction which holds the current MBB.  This is used when
2234  // inserting any additional MBBs necessary to represent the switch.
2235  MachineFunction *CurMF = FuncInfo.MF;
2236
2237  // Figure out which block is immediately after the current one.
2238  MachineFunction::iterator BBI = CR.CaseBB;
2239  ++BBI;
2240
2241  Case& FrontCase = *CR.Range.first;
2242  Case& BackCase  = *(CR.Range.second-1);
2243  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2244
2245  // Size is the number of Cases represented by this range.
2246  unsigned Size = CR.Range.second - CR.Range.first;
2247
2248  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2249  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2250  double FMetric = 0;
2251  CaseItr Pivot = CR.Range.first + Size/2;
2252
2253  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
2254  // (heuristically) allow us to emit JumpTable's later.
2255  APInt TSize(First.getBitWidth(), 0);
2256  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2257       I!=E; ++I)
2258    TSize += I->size();
2259
2260  APInt LSize = FrontCase.size();
2261  APInt RSize = TSize-LSize;
2262  DEBUG(dbgs() << "Selecting best pivot: \n"
2263               << "First: " << First << ", Last: " << Last <<'\n'
2264               << "LSize: " << LSize << ", RSize: " << RSize << '\n');
2265  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
2266       J!=E; ++I, ++J) {
2267    const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
2268    const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
2269    APInt Range = ComputeRange(LEnd, RBegin);
2270    assert((Range - 2ULL).isNonNegative() &&
2271           "Invalid case distance");
2272    // Use volatile double here to avoid excess precision issues on some hosts,
2273    // e.g. that use 80-bit X87 registers.
2274    volatile double LDensity =
2275       (double)LSize.roundToDouble() /
2276                           (LEnd - First + 1ULL).roundToDouble();
2277    volatile double RDensity =
2278      (double)RSize.roundToDouble() /
2279                           (Last - RBegin + 1ULL).roundToDouble();
2280    double Metric = Range.logBase2()*(LDensity+RDensity);
2281    // Should always split in some non-trivial place
2282    DEBUG(dbgs() <<"=>Step\n"
2283                 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
2284                 << "LDensity: " << LDensity
2285                 << ", RDensity: " << RDensity << '\n'
2286                 << "Metric: " << Metric << '\n');
2287    if (FMetric < Metric) {
2288      Pivot = J;
2289      FMetric = Metric;
2290      DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
2291    }
2292
2293    LSize += J->size();
2294    RSize -= J->size();
2295  }
2296  if (areJTsAllowed(TLI)) {
2297    // If our case is dense we *really* should handle it earlier!
2298    assert((FMetric > 0) && "Should handle dense range earlier!");
2299  } else {
2300    Pivot = CR.Range.first + Size/2;
2301  }
2302
2303  CaseRange LHSR(CR.Range.first, Pivot);
2304  CaseRange RHSR(Pivot, CR.Range.second);
2305  const Constant *C = Pivot->Low;
2306  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
2307
2308  // We know that we branch to the LHS if the Value being switched on is
2309  // less than the Pivot value, C.  We use this to optimize our binary
2310  // tree a bit, by recognizing that if SV is greater than or equal to the
2311  // LHS's Case Value, and that Case Value is exactly one less than the
2312  // Pivot's Value, then we can branch directly to the LHS's Target,
2313  // rather than creating a leaf node for it.
2314  if ((LHSR.second - LHSR.first) == 1 &&
2315      LHSR.first->High == CR.GE &&
2316      cast<ConstantInt>(C)->getValue() ==
2317      (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
2318    TrueBB = LHSR.first->BB;
2319  } else {
2320    TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2321    CurMF->insert(BBI, TrueBB);
2322    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
2323
2324    // Put SV in a virtual register to make it available from the new blocks.
2325    ExportFromCurrentBlock(SV);
2326  }
2327
2328  // Similar to the optimization above, if the Value being switched on is
2329  // known to be less than the Constant CR.LT, and the current Case Value
2330  // is CR.LT - 1, then we can branch directly to the target block for
2331  // the current Case Value, rather than emitting a RHS leaf node for it.
2332  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
2333      cast<ConstantInt>(RHSR.first->Low)->getValue() ==
2334      (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
2335    FalseBB = RHSR.first->BB;
2336  } else {
2337    FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2338    CurMF->insert(BBI, FalseBB);
2339    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
2340
2341    // Put SV in a virtual register to make it available from the new blocks.
2342    ExportFromCurrentBlock(SV);
2343  }
2344
2345  // Create a CaseBlock record representing a conditional branch to
2346  // the LHS node if the value being switched on SV is less than C.
2347  // Otherwise, branch to LHS.
2348  CaseBlock CB(ISD::SETULT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
2349
2350  if (CR.CaseBB == SwitchBB)
2351    visitSwitchCase(CB, SwitchBB);
2352  else
2353    SwitchCases.push_back(CB);
2354
2355  return true;
2356}
2357
2358/// handleBitTestsSwitchCase - if current case range has few destination and
2359/// range span less, than machine word bitwidth, encode case range into series
2360/// of masks and emit bit tests with these masks.
2361bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
2362                                                   CaseRecVector& WorkList,
2363                                                   const Value* SV,
2364                                                   MachineBasicBlock* Default,
2365                                                   MachineBasicBlock *SwitchBB){
2366  EVT PTy = TLI.getPointerTy();
2367  unsigned IntPtrBits = PTy.getSizeInBits();
2368
2369  Case& FrontCase = *CR.Range.first;
2370  Case& BackCase  = *(CR.Range.second-1);
2371
2372  // Get the MachineFunction which holds the current MBB.  This is used when
2373  // inserting any additional MBBs necessary to represent the switch.
2374  MachineFunction *CurMF = FuncInfo.MF;
2375
2376  // If target does not have legal shift left, do not emit bit tests at all.
2377  if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
2378    return false;
2379
2380  size_t numCmps = 0;
2381  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2382       I!=E; ++I) {
2383    // Single case counts one, case range - two.
2384    numCmps += (I->Low == I->High ? 1 : 2);
2385  }
2386
2387  // Count unique destinations
2388  SmallSet<MachineBasicBlock*, 4> Dests;
2389  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2390    Dests.insert(I->BB);
2391    if (Dests.size() > 3)
2392      // Don't bother the code below, if there are too much unique destinations
2393      return false;
2394  }
2395  DEBUG(dbgs() << "Total number of unique destinations: "
2396        << Dests.size() << '\n'
2397        << "Total number of comparisons: " << numCmps << '\n');
2398
2399  // Compute span of values.
2400  const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
2401  const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
2402  APInt cmpRange = maxValue - minValue;
2403
2404  DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
2405               << "Low bound: " << minValue << '\n'
2406               << "High bound: " << maxValue << '\n');
2407
2408  if (cmpRange.uge(IntPtrBits) ||
2409      (!(Dests.size() == 1 && numCmps >= 3) &&
2410       !(Dests.size() == 2 && numCmps >= 5) &&
2411       !(Dests.size() >= 3 && numCmps >= 6)))
2412    return false;
2413
2414  DEBUG(dbgs() << "Emitting bit tests\n");
2415  APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
2416
2417  // Optimize the case where all the case values fit in a
2418  // word without having to subtract minValue. In this case,
2419  // we can optimize away the subtraction.
2420  if (maxValue.ult(IntPtrBits)) {
2421    cmpRange = maxValue;
2422  } else {
2423    lowBound = minValue;
2424  }
2425
2426  CaseBitsVector CasesBits;
2427  unsigned i, count = 0;
2428
2429  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2430    MachineBasicBlock* Dest = I->BB;
2431    for (i = 0; i < count; ++i)
2432      if (Dest == CasesBits[i].BB)
2433        break;
2434
2435    if (i == count) {
2436      assert((count < 3) && "Too much destinations to test!");
2437      CasesBits.push_back(CaseBits(0, Dest, 0, 0/*Weight*/));
2438      count++;
2439    }
2440
2441    const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
2442    const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
2443
2444    uint64_t lo = (lowValue - lowBound).getZExtValue();
2445    uint64_t hi = (highValue - lowBound).getZExtValue();
2446    CasesBits[i].ExtraWeight += I->ExtraWeight;
2447
2448    for (uint64_t j = lo; j <= hi; j++) {
2449      CasesBits[i].Mask |=  1ULL << j;
2450      CasesBits[i].Bits++;
2451    }
2452
2453  }
2454  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2455
2456  BitTestInfo BTC;
2457
2458  // Figure out which block is immediately after the current one.
2459  MachineFunction::iterator BBI = CR.CaseBB;
2460  ++BBI;
2461
2462  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2463
2464  DEBUG(dbgs() << "Cases:\n");
2465  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2466    DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
2467                 << ", Bits: " << CasesBits[i].Bits
2468                 << ", BB: " << CasesBits[i].BB << '\n');
2469
2470    MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2471    CurMF->insert(BBI, CaseBB);
2472    BTC.push_back(BitTestCase(CasesBits[i].Mask,
2473                              CaseBB,
2474                              CasesBits[i].BB, CasesBits[i].ExtraWeight));
2475
2476    // Put SV in a virtual register to make it available from the new blocks.
2477    ExportFromCurrentBlock(SV);
2478  }
2479
2480  BitTestBlock BTB(lowBound, cmpRange, SV,
2481                   -1U, MVT::Other, (CR.CaseBB == SwitchBB),
2482                   CR.CaseBB, Default, BTC);
2483
2484  if (CR.CaseBB == SwitchBB)
2485    visitBitTestHeader(BTB, SwitchBB);
2486
2487  BitTestCases.push_back(BTB);
2488
2489  return true;
2490}
2491
2492/// Clusterify - Transform simple list of Cases into list of CaseRange's
2493size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
2494                                       const SwitchInst& SI) {
2495
2496  /// Use a shorter form of declaration, and also
2497  /// show the we want to use CRSBuilder as Clusterifier.
2498  typedef IntegersSubsetMapping<MachineBasicBlock> Clusterifier;
2499
2500  Clusterifier TheClusterifier;
2501
2502  BranchProbabilityInfo *BPI = FuncInfo.BPI;
2503  // Start with "simple" cases
2504  for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
2505       i != e; ++i) {
2506    const BasicBlock *SuccBB = i.getCaseSuccessor();
2507    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB];
2508
2509    TheClusterifier.add(i.getCaseValueEx(), SMBB,
2510        BPI ? BPI->getEdgeWeight(SI.getParent(), i.getSuccessorIndex()) : 0);
2511  }
2512
2513  TheClusterifier.optimize();
2514
2515  size_t numCmps = 0;
2516  for (Clusterifier::RangeIterator i = TheClusterifier.begin(),
2517       e = TheClusterifier.end(); i != e; ++i, ++numCmps) {
2518    Clusterifier::Cluster &C = *i;
2519    // Update edge weight for the cluster.
2520    unsigned W = C.first.Weight;
2521
2522    // FIXME: Currently work with ConstantInt based numbers.
2523    // Changing it to APInt based is a pretty heavy for this commit.
2524    Cases.push_back(Case(C.first.getLow().toConstantInt(),
2525                         C.first.getHigh().toConstantInt(), C.second, W));
2526
2527    if (C.first.getLow() != C.first.getHigh())
2528    // A range counts double, since it requires two compares.
2529    ++numCmps;
2530  }
2531
2532  return numCmps;
2533}
2534
2535void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2536                                           MachineBasicBlock *Last) {
2537  // Update JTCases.
2538  for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2539    if (JTCases[i].first.HeaderBB == First)
2540      JTCases[i].first.HeaderBB = Last;
2541
2542  // Update BitTestCases.
2543  for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2544    if (BitTestCases[i].Parent == First)
2545      BitTestCases[i].Parent = Last;
2546}
2547
2548void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
2549  MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
2550
2551  // Figure out which block is immediately after the current one.
2552  MachineBasicBlock *NextBlock = 0;
2553  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2554
2555  // If there is only the default destination, branch to it if it is not the
2556  // next basic block.  Otherwise, just fall through.
2557  if (!SI.getNumCases()) {
2558    // Update machine-CFG edges.
2559
2560    // If this is not a fall-through branch, emit the branch.
2561    SwitchMBB->addSuccessor(Default);
2562    if (Default != NextBlock)
2563      DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2564                              MVT::Other, getControlRoot(),
2565                              DAG.getBasicBlock(Default)));
2566
2567    return;
2568  }
2569
2570  // If there are any non-default case statements, create a vector of Cases
2571  // representing each one, and sort the vector so that we can efficiently
2572  // create a binary search tree from them.
2573  CaseVector Cases;
2574  size_t numCmps = Clusterify(Cases, SI);
2575  DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2576               << ". Total compares: " << numCmps << '\n');
2577  (void)numCmps;
2578
2579  // Get the Value to be switched on and default basic blocks, which will be
2580  // inserted into CaseBlock records, representing basic blocks in the binary
2581  // search tree.
2582  const Value *SV = SI.getCondition();
2583
2584  // Push the initial CaseRec onto the worklist
2585  CaseRecVector WorkList;
2586  WorkList.push_back(CaseRec(SwitchMBB,0,0,
2587                             CaseRange(Cases.begin(),Cases.end())));
2588
2589  while (!WorkList.empty()) {
2590    // Grab a record representing a case range to process off the worklist
2591    CaseRec CR = WorkList.back();
2592    WorkList.pop_back();
2593
2594    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2595      continue;
2596
2597    // If the range has few cases (two or less) emit a series of specific
2598    // tests.
2599    if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
2600      continue;
2601
2602    // If the switch has more than N blocks, and is at least 40% dense, and the
2603    // target supports indirect branches, then emit a jump table rather than
2604    // lowering the switch to a binary tree of conditional branches.
2605    // N defaults to 4 and is controlled via TLS.getMinimumJumpTableEntries().
2606    if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2607      continue;
2608
2609    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2610    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2611    handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
2612  }
2613}
2614
2615void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2616  MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2617
2618  // Update machine-CFG edges with unique successors.
2619  SmallSet<BasicBlock*, 32> Done;
2620  for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2621    BasicBlock *BB = I.getSuccessor(i);
2622    bool Inserted = Done.insert(BB);
2623    if (!Inserted)
2624        continue;
2625
2626    MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2627    addSuccessorWithWeight(IndirectBrMBB, Succ);
2628  }
2629
2630  DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2631                          MVT::Other, getControlRoot(),
2632                          getValue(I.getAddress())));
2633}
2634
2635void SelectionDAGBuilder::visitFSub(const User &I) {
2636  // -0.0 - X --> fneg
2637  Type *Ty = I.getType();
2638  if (isa<Constant>(I.getOperand(0)) &&
2639      I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2640    SDValue Op2 = getValue(I.getOperand(1));
2641    setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2642                             Op2.getValueType(), Op2));
2643    return;
2644  }
2645
2646  visitBinary(I, ISD::FSUB);
2647}
2648
2649void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2650  SDValue Op1 = getValue(I.getOperand(0));
2651  SDValue Op2 = getValue(I.getOperand(1));
2652  setValue(&I, DAG.getNode(OpCode, getCurSDLoc(),
2653                           Op1.getValueType(), Op1, Op2));
2654}
2655
2656void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2657  SDValue Op1 = getValue(I.getOperand(0));
2658  SDValue Op2 = getValue(I.getOperand(1));
2659
2660  EVT ShiftTy = TLI.getShiftAmountTy(Op2.getValueType());
2661
2662  // Coerce the shift amount to the right type if we can.
2663  if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2664    unsigned ShiftSize = ShiftTy.getSizeInBits();
2665    unsigned Op2Size = Op2.getValueType().getSizeInBits();
2666    SDLoc DL = getCurSDLoc();
2667
2668    // If the operand is smaller than the shift count type, promote it.
2669    if (ShiftSize > Op2Size)
2670      Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2671
2672    // If the operand is larger than the shift count type but the shift
2673    // count type has enough bits to represent any shift value, truncate
2674    // it now. This is a common case and it exposes the truncate to
2675    // optimization early.
2676    else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2677      Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2678    // Otherwise we'll need to temporarily settle for some other convenient
2679    // type.  Type legalization will make adjustments once the shiftee is split.
2680    else
2681      Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2682  }
2683
2684  setValue(&I, DAG.getNode(Opcode, getCurSDLoc(),
2685                           Op1.getValueType(), Op1, Op2));
2686}
2687
2688void SelectionDAGBuilder::visitSDiv(const User &I) {
2689  SDValue Op1 = getValue(I.getOperand(0));
2690  SDValue Op2 = getValue(I.getOperand(1));
2691
2692  // Turn exact SDivs into multiplications.
2693  // FIXME: This should be in DAGCombiner, but it doesn't have access to the
2694  // exact bit.
2695  if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() &&
2696      !isa<ConstantSDNode>(Op1) &&
2697      isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue())
2698    setValue(&I, TLI.BuildExactSDIV(Op1, Op2, getCurSDLoc(), DAG));
2699  else
2700    setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(),
2701                             Op1, Op2));
2702}
2703
2704void SelectionDAGBuilder::visitICmp(const User &I) {
2705  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2706  if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2707    predicate = IC->getPredicate();
2708  else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2709    predicate = ICmpInst::Predicate(IC->getPredicate());
2710  SDValue Op1 = getValue(I.getOperand(0));
2711  SDValue Op2 = getValue(I.getOperand(1));
2712  ISD::CondCode Opcode = getICmpCondCode(predicate);
2713
2714  EVT DestVT = TLI.getValueType(I.getType());
2715  setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
2716}
2717
2718void SelectionDAGBuilder::visitFCmp(const User &I) {
2719  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2720  if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2721    predicate = FC->getPredicate();
2722  else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2723    predicate = FCmpInst::Predicate(FC->getPredicate());
2724  SDValue Op1 = getValue(I.getOperand(0));
2725  SDValue Op2 = getValue(I.getOperand(1));
2726  ISD::CondCode Condition = getFCmpCondCode(predicate);
2727  if (TM.Options.NoNaNsFPMath)
2728    Condition = getFCmpCodeWithoutNaN(Condition);
2729  EVT DestVT = TLI.getValueType(I.getType());
2730  setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
2731}
2732
2733void SelectionDAGBuilder::visitSelect(const User &I) {
2734  SmallVector<EVT, 4> ValueVTs;
2735  ComputeValueVTs(TLI, I.getType(), ValueVTs);
2736  unsigned NumValues = ValueVTs.size();
2737  if (NumValues == 0) return;
2738
2739  SmallVector<SDValue, 4> Values(NumValues);
2740  SDValue Cond     = getValue(I.getOperand(0));
2741  SDValue TrueVal  = getValue(I.getOperand(1));
2742  SDValue FalseVal = getValue(I.getOperand(2));
2743  ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2744    ISD::VSELECT : ISD::SELECT;
2745
2746  for (unsigned i = 0; i != NumValues; ++i)
2747    Values[i] = DAG.getNode(OpCode, getCurSDLoc(),
2748                            TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2749                            Cond,
2750                            SDValue(TrueVal.getNode(),
2751                                    TrueVal.getResNo() + i),
2752                            SDValue(FalseVal.getNode(),
2753                                    FalseVal.getResNo() + i));
2754
2755  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
2756                           DAG.getVTList(&ValueVTs[0], NumValues),
2757                           &Values[0], NumValues));
2758}
2759
2760void SelectionDAGBuilder::visitTrunc(const User &I) {
2761  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2762  SDValue N = getValue(I.getOperand(0));
2763  EVT DestVT = TLI.getValueType(I.getType());
2764  setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
2765}
2766
2767void SelectionDAGBuilder::visitZExt(const User &I) {
2768  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2769  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2770  SDValue N = getValue(I.getOperand(0));
2771  EVT DestVT = TLI.getValueType(I.getType());
2772  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
2773}
2774
2775void SelectionDAGBuilder::visitSExt(const User &I) {
2776  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2777  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2778  SDValue N = getValue(I.getOperand(0));
2779  EVT DestVT = TLI.getValueType(I.getType());
2780  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
2781}
2782
2783void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2784  // FPTrunc is never a no-op cast, no need to check
2785  SDValue N = getValue(I.getOperand(0));
2786  EVT DestVT = TLI.getValueType(I.getType());
2787  setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurSDLoc(),
2788                           DestVT, N,
2789                           DAG.getTargetConstant(0, TLI.getPointerTy())));
2790}
2791
2792void SelectionDAGBuilder::visitFPExt(const User &I){
2793  // FPExt is never a no-op cast, no need to check
2794  SDValue N = getValue(I.getOperand(0));
2795  EVT DestVT = TLI.getValueType(I.getType());
2796  setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
2797}
2798
2799void SelectionDAGBuilder::visitFPToUI(const User &I) {
2800  // FPToUI is never a no-op cast, no need to check
2801  SDValue N = getValue(I.getOperand(0));
2802  EVT DestVT = TLI.getValueType(I.getType());
2803  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
2804}
2805
2806void SelectionDAGBuilder::visitFPToSI(const User &I) {
2807  // FPToSI is never a no-op cast, no need to check
2808  SDValue N = getValue(I.getOperand(0));
2809  EVT DestVT = TLI.getValueType(I.getType());
2810  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
2811}
2812
2813void SelectionDAGBuilder::visitUIToFP(const User &I) {
2814  // UIToFP is never a no-op cast, no need to check
2815  SDValue N = getValue(I.getOperand(0));
2816  EVT DestVT = TLI.getValueType(I.getType());
2817  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
2818}
2819
2820void SelectionDAGBuilder::visitSIToFP(const User &I){
2821  // SIToFP is never a no-op cast, no need to check
2822  SDValue N = getValue(I.getOperand(0));
2823  EVT DestVT = TLI.getValueType(I.getType());
2824  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
2825}
2826
2827void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2828  // What to do depends on the size of the integer and the size of the pointer.
2829  // We can either truncate, zero extend, or no-op, accordingly.
2830  SDValue N = getValue(I.getOperand(0));
2831  EVT DestVT = TLI.getValueType(I.getType());
2832  setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
2833}
2834
2835void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2836  // What to do depends on the size of the integer and the size of the pointer.
2837  // We can either truncate, zero extend, or no-op, accordingly.
2838  SDValue N = getValue(I.getOperand(0));
2839  EVT DestVT = TLI.getValueType(I.getType());
2840  setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
2841}
2842
2843void SelectionDAGBuilder::visitBitCast(const User &I) {
2844  SDValue N = getValue(I.getOperand(0));
2845  EVT DestVT = TLI.getValueType(I.getType());
2846
2847  // BitCast assures us that source and destination are the same size so this is
2848  // either a BITCAST or a no-op.
2849  if (DestVT != N.getValueType())
2850    setValue(&I, DAG.getNode(ISD::BITCAST, getCurSDLoc(),
2851                             DestVT, N)); // convert types.
2852  else
2853    setValue(&I, N);            // noop cast.
2854}
2855
2856void SelectionDAGBuilder::visitInsertElement(const User &I) {
2857  SDValue InVec = getValue(I.getOperand(0));
2858  SDValue InVal = getValue(I.getOperand(1));
2859  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(),
2860                              TLI.getPointerTy(),
2861                              getValue(I.getOperand(2)));
2862  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
2863                           TLI.getValueType(I.getType()),
2864                           InVec, InVal, InIdx));
2865}
2866
2867void SelectionDAGBuilder::visitExtractElement(const User &I) {
2868  SDValue InVec = getValue(I.getOperand(0));
2869  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(),
2870                              TLI.getPointerTy(),
2871                              getValue(I.getOperand(1)));
2872  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
2873                           TLI.getValueType(I.getType()), InVec, InIdx));
2874}
2875
2876// Utility for visitShuffleVector - Return true if every element in Mask,
2877// beginning from position Pos and ending in Pos+Size, falls within the
2878// specified sequential range [L, L+Pos). or is undef.
2879static bool isSequentialInRange(const SmallVectorImpl<int> &Mask,
2880                                unsigned Pos, unsigned Size, int Low) {
2881  for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
2882    if (Mask[i] >= 0 && Mask[i] != Low)
2883      return false;
2884  return true;
2885}
2886
2887void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2888  SDValue Src1 = getValue(I.getOperand(0));
2889  SDValue Src2 = getValue(I.getOperand(1));
2890
2891  SmallVector<int, 8> Mask;
2892  ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
2893  unsigned MaskNumElts = Mask.size();
2894
2895  EVT VT = TLI.getValueType(I.getType());
2896  EVT SrcVT = Src1.getValueType();
2897  unsigned SrcNumElts = SrcVT.getVectorNumElements();
2898
2899  if (SrcNumElts == MaskNumElts) {
2900    setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
2901                                      &Mask[0]));
2902    return;
2903  }
2904
2905  // Normalize the shuffle vector since mask and vector length don't match.
2906  if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2907    // Mask is longer than the source vectors and is a multiple of the source
2908    // vectors.  We can use concatenate vector to make the mask and vectors
2909    // lengths match.
2910    if (SrcNumElts*2 == MaskNumElts) {
2911      // First check for Src1 in low and Src2 in high
2912      if (isSequentialInRange(Mask, 0, SrcNumElts, 0) &&
2913          isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) {
2914        // The shuffle is concatenating two vectors together.
2915        setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(),
2916                                 VT, Src1, Src2));
2917        return;
2918      }
2919      // Then check for Src2 in low and Src1 in high
2920      if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) &&
2921          isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) {
2922        // The shuffle is concatenating two vectors together.
2923        setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(),
2924                                 VT, Src2, Src1));
2925        return;
2926      }
2927    }
2928
2929    // Pad both vectors with undefs to make them the same length as the mask.
2930    unsigned NumConcat = MaskNumElts / SrcNumElts;
2931    bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2932    bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2933    SDValue UndefVal = DAG.getUNDEF(SrcVT);
2934
2935    SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2936    SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2937    MOps1[0] = Src1;
2938    MOps2[0] = Src2;
2939
2940    Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2941                                                  getCurSDLoc(), VT,
2942                                                  &MOps1[0], NumConcat);
2943    Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2944                                                  getCurSDLoc(), VT,
2945                                                  &MOps2[0], NumConcat);
2946
2947    // Readjust mask for new input vector length.
2948    SmallVector<int, 8> MappedOps;
2949    for (unsigned i = 0; i != MaskNumElts; ++i) {
2950      int Idx = Mask[i];
2951      if (Idx >= (int)SrcNumElts)
2952        Idx -= SrcNumElts - MaskNumElts;
2953      MappedOps.push_back(Idx);
2954    }
2955
2956    setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
2957                                      &MappedOps[0]));
2958    return;
2959  }
2960
2961  if (SrcNumElts > MaskNumElts) {
2962    // Analyze the access pattern of the vector to see if we can extract
2963    // two subvectors and do the shuffle. The analysis is done by calculating
2964    // the range of elements the mask access on both vectors.
2965    int MinRange[2] = { static_cast<int>(SrcNumElts),
2966                        static_cast<int>(SrcNumElts)};
2967    int MaxRange[2] = {-1, -1};
2968
2969    for (unsigned i = 0; i != MaskNumElts; ++i) {
2970      int Idx = Mask[i];
2971      unsigned Input = 0;
2972      if (Idx < 0)
2973        continue;
2974
2975      if (Idx >= (int)SrcNumElts) {
2976        Input = 1;
2977        Idx -= SrcNumElts;
2978      }
2979      if (Idx > MaxRange[Input])
2980        MaxRange[Input] = Idx;
2981      if (Idx < MinRange[Input])
2982        MinRange[Input] = Idx;
2983    }
2984
2985    // Check if the access is smaller than the vector size and can we find
2986    // a reasonable extract index.
2987    int RangeUse[2] = { -1, -1 };  // 0 = Unused, 1 = Extract, -1 = Can not
2988                                   // Extract.
2989    int StartIdx[2];  // StartIdx to extract from
2990    for (unsigned Input = 0; Input < 2; ++Input) {
2991      if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) {
2992        RangeUse[Input] = 0; // Unused
2993        StartIdx[Input] = 0;
2994        continue;
2995      }
2996
2997      // Find a good start index that is a multiple of the mask length. Then
2998      // see if the rest of the elements are in range.
2999      StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
3000      if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
3001          StartIdx[Input] + MaskNumElts <= SrcNumElts)
3002        RangeUse[Input] = 1; // Extract from a multiple of the mask length.
3003    }
3004
3005    if (RangeUse[0] == 0 && RangeUse[1] == 0) {
3006      setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3007      return;
3008    }
3009    if (RangeUse[0] >= 0 && RangeUse[1] >= 0) {
3010      // Extract appropriate subvector and generate a vector shuffle
3011      for (unsigned Input = 0; Input < 2; ++Input) {
3012        SDValue &Src = Input == 0 ? Src1 : Src2;
3013        if (RangeUse[Input] == 0)
3014          Src = DAG.getUNDEF(VT);
3015        else
3016          Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurSDLoc(), VT,
3017                            Src, DAG.getIntPtrConstant(StartIdx[Input]));
3018      }
3019
3020      // Calculate new mask.
3021      SmallVector<int, 8> MappedOps;
3022      for (unsigned i = 0; i != MaskNumElts; ++i) {
3023        int Idx = Mask[i];
3024        if (Idx >= 0) {
3025          if (Idx < (int)SrcNumElts)
3026            Idx -= StartIdx[0];
3027          else
3028            Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3029        }
3030        MappedOps.push_back(Idx);
3031      }
3032
3033      setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
3034                                        &MappedOps[0]));
3035      return;
3036    }
3037  }
3038
3039  // We can't use either concat vectors or extract subvectors so fall back to
3040  // replacing the shuffle with extract and build vector.
3041  // to insert and build vector.
3042  EVT EltVT = VT.getVectorElementType();
3043  EVT PtrVT = TLI.getPointerTy();
3044  SmallVector<SDValue,8> Ops;
3045  for (unsigned i = 0; i != MaskNumElts; ++i) {
3046    int Idx = Mask[i];
3047    SDValue Res;
3048
3049    if (Idx < 0) {
3050      Res = DAG.getUNDEF(EltVT);
3051    } else {
3052      SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3053      if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3054
3055      Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3056                        EltVT, Src, DAG.getConstant(Idx, PtrVT));
3057    }
3058
3059    Ops.push_back(Res);
3060  }
3061
3062  setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(),
3063                           VT, &Ops[0], Ops.size()));
3064}
3065
3066void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
3067  const Value *Op0 = I.getOperand(0);
3068  const Value *Op1 = I.getOperand(1);
3069  Type *AggTy = I.getType();
3070  Type *ValTy = Op1->getType();
3071  bool IntoUndef = isa<UndefValue>(Op0);
3072  bool FromUndef = isa<UndefValue>(Op1);
3073
3074  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3075
3076  SmallVector<EVT, 4> AggValueVTs;
3077  ComputeValueVTs(TLI, AggTy, AggValueVTs);
3078  SmallVector<EVT, 4> ValValueVTs;
3079  ComputeValueVTs(TLI, ValTy, ValValueVTs);
3080
3081  unsigned NumAggValues = AggValueVTs.size();
3082  unsigned NumValValues = ValValueVTs.size();
3083  SmallVector<SDValue, 4> Values(NumAggValues);
3084
3085  SDValue Agg = getValue(Op0);
3086  unsigned i = 0;
3087  // Copy the beginning value(s) from the original aggregate.
3088  for (; i != LinearIndex; ++i)
3089    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3090                SDValue(Agg.getNode(), Agg.getResNo() + i);
3091  // Copy values from the inserted value(s).
3092  if (NumValValues) {
3093    SDValue Val = getValue(Op1);
3094    for (; i != LinearIndex + NumValValues; ++i)
3095      Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3096                  SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3097  }
3098  // Copy remaining value(s) from the original aggregate.
3099  for (; i != NumAggValues; ++i)
3100    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3101                SDValue(Agg.getNode(), Agg.getResNo() + i);
3102
3103  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3104                           DAG.getVTList(&AggValueVTs[0], NumAggValues),
3105                           &Values[0], NumAggValues));
3106}
3107
3108void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
3109  const Value *Op0 = I.getOperand(0);
3110  Type *AggTy = Op0->getType();
3111  Type *ValTy = I.getType();
3112  bool OutOfUndef = isa<UndefValue>(Op0);
3113
3114  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3115
3116  SmallVector<EVT, 4> ValValueVTs;
3117  ComputeValueVTs(TLI, ValTy, ValValueVTs);
3118
3119  unsigned NumValValues = ValValueVTs.size();
3120
3121  // Ignore a extractvalue that produces an empty object
3122  if (!NumValValues) {
3123    setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3124    return;
3125  }
3126
3127  SmallVector<SDValue, 4> Values(NumValValues);
3128
3129  SDValue Agg = getValue(Op0);
3130  // Copy out the selected value(s).
3131  for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3132    Values[i - LinearIndex] =
3133      OutOfUndef ?
3134        DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3135        SDValue(Agg.getNode(), Agg.getResNo() + i);
3136
3137  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3138                           DAG.getVTList(&ValValueVTs[0], NumValValues),
3139                           &Values[0], NumValValues));
3140}
3141
3142void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3143  SDValue N = getValue(I.getOperand(0));
3144  // Note that the pointer operand may be a vector of pointers. Take the scalar
3145  // element which holds a pointer.
3146  Type *Ty = I.getOperand(0)->getType()->getScalarType();
3147
3148  for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
3149       OI != E; ++OI) {
3150    const Value *Idx = *OI;
3151    if (StructType *StTy = dyn_cast<StructType>(Ty)) {
3152      unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3153      if (Field) {
3154        // N = N + Offset
3155        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
3156        N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N,
3157                        DAG.getConstant(Offset, N.getValueType()));
3158      }
3159
3160      Ty = StTy->getElementType(Field);
3161    } else {
3162      Ty = cast<SequentialType>(Ty)->getElementType();
3163
3164      // If this is a constant subscript, handle it quickly.
3165      if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
3166        if (CI->isZero()) continue;
3167        uint64_t Offs =
3168            TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
3169        SDValue OffsVal;
3170        EVT PTy = TLI.getPointerTy();
3171        unsigned PtrBits = PTy.getSizeInBits();
3172        if (PtrBits < 64)
3173          OffsVal = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(),
3174                                TLI.getPointerTy(),
3175                                DAG.getConstant(Offs, MVT::i64));
3176        else
3177          OffsVal = DAG.getIntPtrConstant(Offs);
3178
3179        N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N,
3180                        OffsVal);
3181        continue;
3182      }
3183
3184      // N = N + Idx * ElementSize;
3185      APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
3186                                TD->getTypeAllocSize(Ty));
3187      SDValue IdxN = getValue(Idx);
3188
3189      // If the index is smaller or larger than intptr_t, truncate or extend
3190      // it.
3191      IdxN = DAG.getSExtOrTrunc(IdxN, getCurSDLoc(), N.getValueType());
3192
3193      // If this is a multiply by a power of two, turn it into a shl
3194      // immediately.  This is a very common case.
3195      if (ElementSize != 1) {
3196        if (ElementSize.isPowerOf2()) {
3197          unsigned Amt = ElementSize.logBase2();
3198          IdxN = DAG.getNode(ISD::SHL, getCurSDLoc(),
3199                             N.getValueType(), IdxN,
3200                             DAG.getConstant(Amt, IdxN.getValueType()));
3201        } else {
3202          SDValue Scale = DAG.getConstant(ElementSize, IdxN.getValueType());
3203          IdxN = DAG.getNode(ISD::MUL, getCurSDLoc(),
3204                             N.getValueType(), IdxN, Scale);
3205        }
3206      }
3207
3208      N = DAG.getNode(ISD::ADD, getCurSDLoc(),
3209                      N.getValueType(), N, IdxN);
3210    }
3211  }
3212
3213  setValue(&I, N);
3214}
3215
3216void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3217  // If this is a fixed sized alloca in the entry block of the function,
3218  // allocate it statically on the stack.
3219  if (FuncInfo.StaticAllocaMap.count(&I))
3220    return;   // getValue will auto-populate this.
3221
3222  Type *Ty = I.getAllocatedType();
3223  uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty);
3224  unsigned Align =
3225    std::max((unsigned)TLI.getDataLayout()->getPrefTypeAlignment(Ty),
3226             I.getAlignment());
3227
3228  SDValue AllocSize = getValue(I.getArraySize());
3229
3230  EVT IntPtr = TLI.getPointerTy();
3231  if (AllocSize.getValueType() != IntPtr)
3232    AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurSDLoc(), IntPtr);
3233
3234  AllocSize = DAG.getNode(ISD::MUL, getCurSDLoc(), IntPtr,
3235                          AllocSize,
3236                          DAG.getConstant(TySize, IntPtr));
3237
3238  // Handle alignment.  If the requested alignment is less than or equal to
3239  // the stack alignment, ignore it.  If the size is greater than or equal to
3240  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3241  unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
3242  if (Align <= StackAlign)
3243    Align = 0;
3244
3245  // Round the size of the allocation up to the stack alignment size
3246  // by add SA-1 to the size.
3247  AllocSize = DAG.getNode(ISD::ADD, getCurSDLoc(),
3248                          AllocSize.getValueType(), AllocSize,
3249                          DAG.getIntPtrConstant(StackAlign-1));
3250
3251  // Mask out the low bits for alignment purposes.
3252  AllocSize = DAG.getNode(ISD::AND, getCurSDLoc(),
3253                          AllocSize.getValueType(), AllocSize,
3254                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
3255
3256  SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
3257  SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3258  SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurSDLoc(),
3259                            VTs, Ops, 3);
3260  setValue(&I, DSA);
3261  DAG.setRoot(DSA.getValue(1));
3262
3263  // Inform the Frame Information that we have just allocated a variable-sized
3264  // object.
3265  FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1);
3266}
3267
3268void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3269  if (I.isAtomic())
3270    return visitAtomicLoad(I);
3271
3272  const Value *SV = I.getOperand(0);
3273  SDValue Ptr = getValue(SV);
3274
3275  Type *Ty = I.getType();
3276
3277  bool isVolatile = I.isVolatile();
3278  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3279  bool isInvariant = I.getMetadata("invariant.load") != 0;
3280  unsigned Alignment = I.getAlignment();
3281  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3282  const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3283
3284  SmallVector<EVT, 4> ValueVTs;
3285  SmallVector<uint64_t, 4> Offsets;
3286  ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
3287  unsigned NumValues = ValueVTs.size();
3288  if (NumValues == 0)
3289    return;
3290
3291  SDValue Root;
3292  bool ConstantMemory = false;
3293  if (I.isVolatile() || NumValues > MaxParallelChains)
3294    // Serialize volatile loads with other side effects.
3295    Root = getRoot();
3296  else if (AA->pointsToConstantMemory(
3297             AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) {
3298    // Do not serialize (non-volatile) loads of constant memory with anything.
3299    Root = DAG.getEntryNode();
3300    ConstantMemory = true;
3301  } else {
3302    // Do not serialize non-volatile loads against each other.
3303    Root = DAG.getRoot();
3304  }
3305
3306  SmallVector<SDValue, 4> Values(NumValues);
3307  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3308                                          NumValues));
3309  EVT PtrVT = Ptr.getValueType();
3310  unsigned ChainI = 0;
3311  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3312    // Serializing loads here may result in excessive register pressure, and
3313    // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3314    // could recover a bit by hoisting nodes upward in the chain by recognizing
3315    // they are side-effect free or do not alias. The optimizer should really
3316    // avoid this case by converting large object/array copies to llvm.memcpy
3317    // (MaxParallelChains should always remain as failsafe).
3318    if (ChainI == MaxParallelChains) {
3319      assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3320      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
3321                                  MVT::Other, &Chains[0], ChainI);
3322      Root = Chain;
3323      ChainI = 0;
3324    }
3325    SDValue A = DAG.getNode(ISD::ADD, getCurSDLoc(),
3326                            PtrVT, Ptr,
3327                            DAG.getConstant(Offsets[i], PtrVT));
3328    SDValue L = DAG.getLoad(ValueVTs[i], getCurSDLoc(), Root,
3329                            A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
3330                            isNonTemporal, isInvariant, Alignment, TBAAInfo,
3331                            Ranges);
3332
3333    Values[i] = L;
3334    Chains[ChainI] = L.getValue(1);
3335  }
3336
3337  if (!ConstantMemory) {
3338    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
3339                                MVT::Other, &Chains[0], ChainI);
3340    if (isVolatile)
3341      DAG.setRoot(Chain);
3342    else
3343      PendingLoads.push_back(Chain);
3344  }
3345
3346  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3347                           DAG.getVTList(&ValueVTs[0], NumValues),
3348                           &Values[0], NumValues));
3349}
3350
3351void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3352  if (I.isAtomic())
3353    return visitAtomicStore(I);
3354
3355  const Value *SrcV = I.getOperand(0);
3356  const Value *PtrV = I.getOperand(1);
3357
3358  SmallVector<EVT, 4> ValueVTs;
3359  SmallVector<uint64_t, 4> Offsets;
3360  ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
3361  unsigned NumValues = ValueVTs.size();
3362  if (NumValues == 0)
3363    return;
3364
3365  // Get the lowered operands. Note that we do this after
3366  // checking if NumResults is zero, because with zero results
3367  // the operands won't have values in the map.
3368  SDValue Src = getValue(SrcV);
3369  SDValue Ptr = getValue(PtrV);
3370
3371  SDValue Root = getRoot();
3372  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3373                                          NumValues));
3374  EVT PtrVT = Ptr.getValueType();
3375  bool isVolatile = I.isVolatile();
3376  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3377  unsigned Alignment = I.getAlignment();
3378  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3379
3380  unsigned ChainI = 0;
3381  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3382    // See visitLoad comments.
3383    if (ChainI == MaxParallelChains) {
3384      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
3385                                  MVT::Other, &Chains[0], ChainI);
3386      Root = Chain;
3387      ChainI = 0;
3388    }
3389    SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT, Ptr,
3390                              DAG.getConstant(Offsets[i], PtrVT));
3391    SDValue St = DAG.getStore(Root, getCurSDLoc(),
3392                              SDValue(Src.getNode(), Src.getResNo() + i),
3393                              Add, MachinePointerInfo(PtrV, Offsets[i]),
3394                              isVolatile, isNonTemporal, Alignment, TBAAInfo);
3395    Chains[ChainI] = St;
3396  }
3397
3398  SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
3399                                  MVT::Other, &Chains[0], ChainI);
3400  ++SDNodeOrder;
3401  AssignOrderingToNode(StoreNode.getNode());
3402  DAG.setRoot(StoreNode);
3403}
3404
3405static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order,
3406                                    SynchronizationScope Scope,
3407                                    bool Before, SDLoc dl,
3408                                    SelectionDAG &DAG,
3409                                    const TargetLowering &TLI) {
3410  // Fence, if necessary
3411  if (Before) {
3412    if (Order == AcquireRelease || Order == SequentiallyConsistent)
3413      Order = Release;
3414    else if (Order == Acquire || Order == Monotonic)
3415      return Chain;
3416  } else {
3417    if (Order == AcquireRelease)
3418      Order = Acquire;
3419    else if (Order == Release || Order == Monotonic)
3420      return Chain;
3421  }
3422  SDValue Ops[3];
3423  Ops[0] = Chain;
3424  Ops[1] = DAG.getConstant(Order, TLI.getPointerTy());
3425  Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy());
3426  return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3);
3427}
3428
3429void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
3430  SDLoc dl = getCurSDLoc();
3431  AtomicOrdering Order = I.getOrdering();
3432  SynchronizationScope Scope = I.getSynchScope();
3433
3434  SDValue InChain = getRoot();
3435
3436  if (TLI.getInsertFencesForAtomic())
3437    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3438                                   DAG, TLI);
3439
3440  SDValue L =
3441    DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl,
3442                  getValue(I.getCompareOperand()).getValueType().getSimpleVT(),
3443                  InChain,
3444                  getValue(I.getPointerOperand()),
3445                  getValue(I.getCompareOperand()),
3446                  getValue(I.getNewValOperand()),
3447                  MachinePointerInfo(I.getPointerOperand()), 0 /* Alignment */,
3448                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3449                  Scope);
3450
3451  SDValue OutChain = L.getValue(1);
3452
3453  if (TLI.getInsertFencesForAtomic())
3454    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3455                                    DAG, TLI);
3456
3457  setValue(&I, L);
3458  DAG.setRoot(OutChain);
3459}
3460
3461void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
3462  SDLoc dl = getCurSDLoc();
3463  ISD::NodeType NT;
3464  switch (I.getOperation()) {
3465  default: llvm_unreachable("Unknown atomicrmw operation");
3466  case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
3467  case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
3468  case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
3469  case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
3470  case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
3471  case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
3472  case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
3473  case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
3474  case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
3475  case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
3476  case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
3477  }
3478  AtomicOrdering Order = I.getOrdering();
3479  SynchronizationScope Scope = I.getSynchScope();
3480
3481  SDValue InChain = getRoot();
3482
3483  if (TLI.getInsertFencesForAtomic())
3484    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3485                                   DAG, TLI);
3486
3487  SDValue L =
3488    DAG.getAtomic(NT, dl,
3489                  getValue(I.getValOperand()).getValueType().getSimpleVT(),
3490                  InChain,
3491                  getValue(I.getPointerOperand()),
3492                  getValue(I.getValOperand()),
3493                  I.getPointerOperand(), 0 /* Alignment */,
3494                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3495                  Scope);
3496
3497  SDValue OutChain = L.getValue(1);
3498
3499  if (TLI.getInsertFencesForAtomic())
3500    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3501                                    DAG, TLI);
3502
3503  setValue(&I, L);
3504  DAG.setRoot(OutChain);
3505}
3506
3507void SelectionDAGBuilder::visitFence(const FenceInst &I) {
3508  SDLoc dl = getCurSDLoc();
3509  SDValue Ops[3];
3510  Ops[0] = getRoot();
3511  Ops[1] = DAG.getConstant(I.getOrdering(), TLI.getPointerTy());
3512  Ops[2] = DAG.getConstant(I.getSynchScope(), TLI.getPointerTy());
3513  DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3));
3514}
3515
3516void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
3517  SDLoc dl = getCurSDLoc();
3518  AtomicOrdering Order = I.getOrdering();
3519  SynchronizationScope Scope = I.getSynchScope();
3520
3521  SDValue InChain = getRoot();
3522
3523  EVT VT = TLI.getValueType(I.getType());
3524
3525  if (I.getAlignment() < VT.getSizeInBits() / 8)
3526    report_fatal_error("Cannot generate unaligned atomic load");
3527
3528  SDValue L =
3529    DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
3530                  getValue(I.getPointerOperand()),
3531                  I.getPointerOperand(), I.getAlignment(),
3532                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3533                  Scope);
3534
3535  SDValue OutChain = L.getValue(1);
3536
3537  if (TLI.getInsertFencesForAtomic())
3538    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3539                                    DAG, TLI);
3540
3541  setValue(&I, L);
3542  DAG.setRoot(OutChain);
3543}
3544
3545void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
3546  SDLoc dl = getCurSDLoc();
3547
3548  AtomicOrdering Order = I.getOrdering();
3549  SynchronizationScope Scope = I.getSynchScope();
3550
3551  SDValue InChain = getRoot();
3552
3553  EVT VT = TLI.getValueType(I.getValueOperand()->getType());
3554
3555  if (I.getAlignment() < VT.getSizeInBits() / 8)
3556    report_fatal_error("Cannot generate unaligned atomic store");
3557
3558  if (TLI.getInsertFencesForAtomic())
3559    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3560                                   DAG, TLI);
3561
3562  SDValue OutChain =
3563    DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
3564                  InChain,
3565                  getValue(I.getPointerOperand()),
3566                  getValue(I.getValueOperand()),
3567                  I.getPointerOperand(), I.getAlignment(),
3568                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3569                  Scope);
3570
3571  if (TLI.getInsertFencesForAtomic())
3572    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3573                                    DAG, TLI);
3574
3575  DAG.setRoot(OutChain);
3576}
3577
3578/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3579/// node.
3580void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3581                                               unsigned Intrinsic) {
3582  bool HasChain = !I.doesNotAccessMemory();
3583  bool OnlyLoad = HasChain && I.onlyReadsMemory();
3584
3585  // Build the operand list.
3586  SmallVector<SDValue, 8> Ops;
3587  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
3588    if (OnlyLoad) {
3589      // We don't need to serialize loads against other loads.
3590      Ops.push_back(DAG.getRoot());
3591    } else {
3592      Ops.push_back(getRoot());
3593    }
3594  }
3595
3596  // Info is set by getTgtMemInstrinsic
3597  TargetLowering::IntrinsicInfo Info;
3598  bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
3599
3600  // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3601  if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
3602      Info.opc == ISD::INTRINSIC_W_CHAIN)
3603    Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI.getPointerTy()));
3604
3605  // Add all operands of the call to the operand list.
3606  for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
3607    SDValue Op = getValue(I.getArgOperand(i));
3608    Ops.push_back(Op);
3609  }
3610
3611  SmallVector<EVT, 4> ValueVTs;
3612  ComputeValueVTs(TLI, I.getType(), ValueVTs);
3613
3614  if (HasChain)
3615    ValueVTs.push_back(MVT::Other);
3616
3617  SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
3618
3619  // Create the node.
3620  SDValue Result;
3621  if (IsTgtIntrinsic) {
3622    // This is target intrinsic that touches memory
3623    Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(),
3624                                     VTs, &Ops[0], Ops.size(),
3625                                     Info.memVT,
3626                                   MachinePointerInfo(Info.ptrVal, Info.offset),
3627                                     Info.align, Info.vol,
3628                                     Info.readMem, Info.writeMem);
3629  } else if (!HasChain) {
3630    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(),
3631                         VTs, &Ops[0], Ops.size());
3632  } else if (!I.getType()->isVoidTy()) {
3633    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(),
3634                         VTs, &Ops[0], Ops.size());
3635  } else {
3636    Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(),
3637                         VTs, &Ops[0], Ops.size());
3638  }
3639
3640  if (HasChain) {
3641    SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3642    if (OnlyLoad)
3643      PendingLoads.push_back(Chain);
3644    else
3645      DAG.setRoot(Chain);
3646  }
3647
3648  if (!I.getType()->isVoidTy()) {
3649    if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3650      EVT VT = TLI.getValueType(PTy);
3651      Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
3652    }
3653
3654    setValue(&I, Result);
3655  } else {
3656    // Assign order to result here. If the intrinsic does not produce a result,
3657    // it won't be mapped to a SDNode and visit() will not assign it an order
3658    // number.
3659    ++SDNodeOrder;
3660    AssignOrderingToNode(Result.getNode());
3661  }
3662}
3663
3664/// GetSignificand - Get the significand and build it into a floating-point
3665/// number with exponent of 1:
3666///
3667///   Op = (Op & 0x007fffff) | 0x3f800000;
3668///
3669/// where Op is the hexadecimal representation of floating point value.
3670static SDValue
3671GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) {
3672  SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3673                           DAG.getConstant(0x007fffff, MVT::i32));
3674  SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3675                           DAG.getConstant(0x3f800000, MVT::i32));
3676  return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
3677}
3678
3679/// GetExponent - Get the exponent:
3680///
3681///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3682///
3683/// where Op is the hexadecimal representation of floating point value.
3684static SDValue
3685GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3686            SDLoc dl) {
3687  SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3688                           DAG.getConstant(0x7f800000, MVT::i32));
3689  SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3690                           DAG.getConstant(23, TLI.getPointerTy()));
3691  SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3692                           DAG.getConstant(127, MVT::i32));
3693  return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3694}
3695
3696/// getF32Constant - Get 32-bit floating point constant.
3697static SDValue
3698getF32Constant(SelectionDAG &DAG, unsigned Flt) {
3699  return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)),
3700                           MVT::f32);
3701}
3702
3703/// expandExp - Lower an exp intrinsic. Handles the special sequences for
3704/// limited-precision mode.
3705static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG,
3706                         const TargetLowering &TLI) {
3707  if (Op.getValueType() == MVT::f32 &&
3708      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3709
3710    // Put the exponent in the right bit position for later addition to the
3711    // final result:
3712    //
3713    //   #define LOG2OFe 1.4426950f
3714    //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3715    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3716                             getF32Constant(DAG, 0x3fb8aa3b));
3717    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3718
3719    //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3720    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3721    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3722
3723    //   IntegerPartOfX <<= 23;
3724    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3725                                 DAG.getConstant(23, TLI.getPointerTy()));
3726
3727    SDValue TwoToFracPartOfX;
3728    if (LimitFloatPrecision <= 6) {
3729      // For floating-point precision of 6:
3730      //
3731      //   TwoToFractionalPartOfX =
3732      //     0.997535578f +
3733      //       (0.735607626f + 0.252464424f * x) * x;
3734      //
3735      // error 0.0144103317, which is 6 bits
3736      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3737                               getF32Constant(DAG, 0x3e814304));
3738      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3739                               getF32Constant(DAG, 0x3f3c50c8));
3740      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3741      TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3742                                     getF32Constant(DAG, 0x3f7f5e7e));
3743    } else if (LimitFloatPrecision <= 12) {
3744      // For floating-point precision of 12:
3745      //
3746      //   TwoToFractionalPartOfX =
3747      //     0.999892986f +
3748      //       (0.696457318f +
3749      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3750      //
3751      // 0.000107046256 error, which is 13 to 14 bits
3752      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3753                               getF32Constant(DAG, 0x3da235e3));
3754      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3755                               getF32Constant(DAG, 0x3e65b8f3));
3756      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3757      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3758                               getF32Constant(DAG, 0x3f324b07));
3759      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3760      TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3761                                     getF32Constant(DAG, 0x3f7ff8fd));
3762    } else { // LimitFloatPrecision <= 18
3763      // For floating-point precision of 18:
3764      //
3765      //   TwoToFractionalPartOfX =
3766      //     0.999999982f +
3767      //       (0.693148872f +
3768      //         (0.240227044f +
3769      //           (0.554906021e-1f +
3770      //             (0.961591928e-2f +
3771      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3772      //
3773      // error 2.47208000*10^(-7), which is better than 18 bits
3774      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3775                               getF32Constant(DAG, 0x3924b03e));
3776      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3777                               getF32Constant(DAG, 0x3ab24b87));
3778      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3779      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3780                               getF32Constant(DAG, 0x3c1d8c17));
3781      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3782      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3783                               getF32Constant(DAG, 0x3d634a1d));
3784      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3785      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3786                               getF32Constant(DAG, 0x3e75fe14));
3787      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3788      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3789                                getF32Constant(DAG, 0x3f317234));
3790      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3791      TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3792                                     getF32Constant(DAG, 0x3f800000));
3793    }
3794
3795    // Add the exponent into the result in integer domain.
3796    SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFracPartOfX);
3797    return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
3798                       DAG.getNode(ISD::ADD, dl, MVT::i32,
3799                                   t13, IntegerPartOfX));
3800  }
3801
3802  // No special expansion.
3803  return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
3804}
3805
3806/// expandLog - Lower a log intrinsic. Handles the special sequences for
3807/// limited-precision mode.
3808static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG,
3809                         const TargetLowering &TLI) {
3810  if (Op.getValueType() == MVT::f32 &&
3811      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3812    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3813
3814    // Scale the exponent by log(2) [0.69314718f].
3815    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3816    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3817                                        getF32Constant(DAG, 0x3f317218));
3818
3819    // Get the significand and build it into a floating-point number with
3820    // exponent of 1.
3821    SDValue X = GetSignificand(DAG, Op1, dl);
3822
3823    SDValue LogOfMantissa;
3824    if (LimitFloatPrecision <= 6) {
3825      // For floating-point precision of 6:
3826      //
3827      //   LogofMantissa =
3828      //     -1.1609546f +
3829      //       (1.4034025f - 0.23903021f * x) * x;
3830      //
3831      // error 0.0034276066, which is better than 8 bits
3832      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3833                               getF32Constant(DAG, 0xbe74c456));
3834      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3835                               getF32Constant(DAG, 0x3fb3a2b1));
3836      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3837      LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3838                                  getF32Constant(DAG, 0x3f949a29));
3839    } else if (LimitFloatPrecision <= 12) {
3840      // For floating-point precision of 12:
3841      //
3842      //   LogOfMantissa =
3843      //     -1.7417939f +
3844      //       (2.8212026f +
3845      //         (-1.4699568f +
3846      //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3847      //
3848      // error 0.000061011436, which is 14 bits
3849      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3850                               getF32Constant(DAG, 0xbd67b6d6));
3851      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3852                               getF32Constant(DAG, 0x3ee4f4b8));
3853      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3854      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3855                               getF32Constant(DAG, 0x3fbc278b));
3856      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3857      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3858                               getF32Constant(DAG, 0x40348e95));
3859      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3860      LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3861                                  getF32Constant(DAG, 0x3fdef31a));
3862    } else { // LimitFloatPrecision <= 18
3863      // For floating-point precision of 18:
3864      //
3865      //   LogOfMantissa =
3866      //     -2.1072184f +
3867      //       (4.2372794f +
3868      //         (-3.7029485f +
3869      //           (2.2781945f +
3870      //             (-0.87823314f +
3871      //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3872      //
3873      // error 0.0000023660568, which is better than 18 bits
3874      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3875                               getF32Constant(DAG, 0xbc91e5ac));
3876      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3877                               getF32Constant(DAG, 0x3e4350aa));
3878      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3879      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3880                               getF32Constant(DAG, 0x3f60d3e3));
3881      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3882      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3883                               getF32Constant(DAG, 0x4011cdf0));
3884      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3885      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3886                               getF32Constant(DAG, 0x406cfd1c));
3887      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3888      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3889                               getF32Constant(DAG, 0x408797cb));
3890      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3891      LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3892                                  getF32Constant(DAG, 0x4006dcab));
3893    }
3894
3895    return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
3896  }
3897
3898  // No special expansion.
3899  return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
3900}
3901
3902/// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
3903/// limited-precision mode.
3904static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG,
3905                          const TargetLowering &TLI) {
3906  if (Op.getValueType() == MVT::f32 &&
3907      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3908    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3909
3910    // Get the exponent.
3911    SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3912
3913    // Get the significand and build it into a floating-point number with
3914    // exponent of 1.
3915    SDValue X = GetSignificand(DAG, Op1, dl);
3916
3917    // Different possible minimax approximations of significand in
3918    // floating-point for various degrees of accuracy over [1,2].
3919    SDValue Log2ofMantissa;
3920    if (LimitFloatPrecision <= 6) {
3921      // For floating-point precision of 6:
3922      //
3923      //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3924      //
3925      // error 0.0049451742, which is more than 7 bits
3926      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3927                               getF32Constant(DAG, 0xbeb08fe0));
3928      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3929                               getF32Constant(DAG, 0x40019463));
3930      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3931      Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3932                                   getF32Constant(DAG, 0x3fd6633d));
3933    } else if (LimitFloatPrecision <= 12) {
3934      // For floating-point precision of 12:
3935      //
3936      //   Log2ofMantissa =
3937      //     -2.51285454f +
3938      //       (4.07009056f +
3939      //         (-2.12067489f +
3940      //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3941      //
3942      // error 0.0000876136000, which is better than 13 bits
3943      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3944                               getF32Constant(DAG, 0xbda7262e));
3945      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3946                               getF32Constant(DAG, 0x3f25280b));
3947      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3948      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3949                               getF32Constant(DAG, 0x4007b923));
3950      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3951      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3952                               getF32Constant(DAG, 0x40823e2f));
3953      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3954      Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3955                                   getF32Constant(DAG, 0x4020d29c));
3956    } else { // LimitFloatPrecision <= 18
3957      // For floating-point precision of 18:
3958      //
3959      //   Log2ofMantissa =
3960      //     -3.0400495f +
3961      //       (6.1129976f +
3962      //         (-5.3420409f +
3963      //           (3.2865683f +
3964      //             (-1.2669343f +
3965      //               (0.27515199f -
3966      //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3967      //
3968      // error 0.0000018516, which is better than 18 bits
3969      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3970                               getF32Constant(DAG, 0xbcd2769e));
3971      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3972                               getF32Constant(DAG, 0x3e8ce0b9));
3973      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3974      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3975                               getF32Constant(DAG, 0x3fa22ae7));
3976      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3977      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3978                               getF32Constant(DAG, 0x40525723));
3979      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3980      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3981                               getF32Constant(DAG, 0x40aaf200));
3982      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3983      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3984                               getF32Constant(DAG, 0x40c39dad));
3985      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3986      Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3987                                   getF32Constant(DAG, 0x4042902c));
3988    }
3989
3990    return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
3991  }
3992
3993  // No special expansion.
3994  return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
3995}
3996
3997/// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
3998/// limited-precision mode.
3999static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4000                           const TargetLowering &TLI) {
4001  if (Op.getValueType() == MVT::f32 &&
4002      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4003    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4004
4005    // Scale the exponent by log10(2) [0.30102999f].
4006    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4007    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4008                                        getF32Constant(DAG, 0x3e9a209a));
4009
4010    // Get the significand and build it into a floating-point number with
4011    // exponent of 1.
4012    SDValue X = GetSignificand(DAG, Op1, dl);
4013
4014    SDValue Log10ofMantissa;
4015    if (LimitFloatPrecision <= 6) {
4016      // For floating-point precision of 6:
4017      //
4018      //   Log10ofMantissa =
4019      //     -0.50419619f +
4020      //       (0.60948995f - 0.10380950f * x) * x;
4021      //
4022      // error 0.0014886165, which is 6 bits
4023      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4024                               getF32Constant(DAG, 0xbdd49a13));
4025      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4026                               getF32Constant(DAG, 0x3f1c0789));
4027      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4028      Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4029                                    getF32Constant(DAG, 0x3f011300));
4030    } else if (LimitFloatPrecision <= 12) {
4031      // For floating-point precision of 12:
4032      //
4033      //   Log10ofMantissa =
4034      //     -0.64831180f +
4035      //       (0.91751397f +
4036      //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4037      //
4038      // error 0.00019228036, which is better than 12 bits
4039      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4040                               getF32Constant(DAG, 0x3d431f31));
4041      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4042                               getF32Constant(DAG, 0x3ea21fb2));
4043      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4044      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4045                               getF32Constant(DAG, 0x3f6ae232));
4046      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4047      Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4048                                    getF32Constant(DAG, 0x3f25f7c3));
4049    } else { // LimitFloatPrecision <= 18
4050      // For floating-point precision of 18:
4051      //
4052      //   Log10ofMantissa =
4053      //     -0.84299375f +
4054      //       (1.5327582f +
4055      //         (-1.0688956f +
4056      //           (0.49102474f +
4057      //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4058      //
4059      // error 0.0000037995730, which is better than 18 bits
4060      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4061                               getF32Constant(DAG, 0x3c5d51ce));
4062      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4063                               getF32Constant(DAG, 0x3e00685a));
4064      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4065      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4066                               getF32Constant(DAG, 0x3efb6798));
4067      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4068      SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4069                               getF32Constant(DAG, 0x3f88d192));
4070      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4071      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4072                               getF32Constant(DAG, 0x3fc4316c));
4073      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4074      Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4075                                    getF32Constant(DAG, 0x3f57ce70));
4076    }
4077
4078    return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
4079  }
4080
4081  // No special expansion.
4082  return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
4083}
4084
4085/// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4086/// limited-precision mode.
4087static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4088                          const TargetLowering &TLI) {
4089  if (Op.getValueType() == MVT::f32 &&
4090      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4091    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
4092
4093    //   FractionalPartOfX = x - (float)IntegerPartOfX;
4094    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4095    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
4096
4097    //   IntegerPartOfX <<= 23;
4098    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4099                                 DAG.getConstant(23, TLI.getPointerTy()));
4100
4101    SDValue TwoToFractionalPartOfX;
4102    if (LimitFloatPrecision <= 6) {
4103      // For floating-point precision of 6:
4104      //
4105      //   TwoToFractionalPartOfX =
4106      //     0.997535578f +
4107      //       (0.735607626f + 0.252464424f * x) * x;
4108      //
4109      // error 0.0144103317, which is 6 bits
4110      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4111                               getF32Constant(DAG, 0x3e814304));
4112      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4113                               getF32Constant(DAG, 0x3f3c50c8));
4114      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4115      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4116                                           getF32Constant(DAG, 0x3f7f5e7e));
4117    } else if (LimitFloatPrecision <= 12) {
4118      // For floating-point precision of 12:
4119      //
4120      //   TwoToFractionalPartOfX =
4121      //     0.999892986f +
4122      //       (0.696457318f +
4123      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4124      //
4125      // error 0.000107046256, which is 13 to 14 bits
4126      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4127                               getF32Constant(DAG, 0x3da235e3));
4128      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4129                               getF32Constant(DAG, 0x3e65b8f3));
4130      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4131      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4132                               getF32Constant(DAG, 0x3f324b07));
4133      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4134      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4135                                           getF32Constant(DAG, 0x3f7ff8fd));
4136    } else { // LimitFloatPrecision <= 18
4137      // For floating-point precision of 18:
4138      //
4139      //   TwoToFractionalPartOfX =
4140      //     0.999999982f +
4141      //       (0.693148872f +
4142      //         (0.240227044f +
4143      //           (0.554906021e-1f +
4144      //             (0.961591928e-2f +
4145      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4146      // error 2.47208000*10^(-7), which is better than 18 bits
4147      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4148                               getF32Constant(DAG, 0x3924b03e));
4149      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4150                               getF32Constant(DAG, 0x3ab24b87));
4151      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4152      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4153                               getF32Constant(DAG, 0x3c1d8c17));
4154      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4155      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4156                               getF32Constant(DAG, 0x3d634a1d));
4157      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4158      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4159                               getF32Constant(DAG, 0x3e75fe14));
4160      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4161      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4162                                getF32Constant(DAG, 0x3f317234));
4163      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4164      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4165                                           getF32Constant(DAG, 0x3f800000));
4166    }
4167
4168    // Add the exponent into the result in integer domain.
4169    SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32,
4170                              TwoToFractionalPartOfX);
4171    return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4172                       DAG.getNode(ISD::ADD, dl, MVT::i32,
4173                                   t13, IntegerPartOfX));
4174  }
4175
4176  // No special expansion.
4177  return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
4178}
4179
4180/// visitPow - Lower a pow intrinsic. Handles the special sequences for
4181/// limited-precision mode with x == 10.0f.
4182static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS,
4183                         SelectionDAG &DAG, const TargetLowering &TLI) {
4184  bool IsExp10 = false;
4185  if (LHS.getValueType() == MVT::f32 && LHS.getValueType() == MVT::f32 &&
4186      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4187    if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
4188      APFloat Ten(10.0f);
4189      IsExp10 = LHSC->isExactlyValue(Ten);
4190    }
4191  }
4192
4193  if (IsExp10) {
4194    // Put the exponent in the right bit position for later addition to the
4195    // final result:
4196    //
4197    //   #define LOG2OF10 3.3219281f
4198    //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
4199    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
4200                             getF32Constant(DAG, 0x40549a78));
4201    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4202
4203    //   FractionalPartOfX = x - (float)IntegerPartOfX;
4204    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4205    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4206
4207    //   IntegerPartOfX <<= 23;
4208    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4209                                 DAG.getConstant(23, TLI.getPointerTy()));
4210
4211    SDValue TwoToFractionalPartOfX;
4212    if (LimitFloatPrecision <= 6) {
4213      // For floating-point precision of 6:
4214      //
4215      //   twoToFractionalPartOfX =
4216      //     0.997535578f +
4217      //       (0.735607626f + 0.252464424f * x) * x;
4218      //
4219      // error 0.0144103317, which is 6 bits
4220      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4221                               getF32Constant(DAG, 0x3e814304));
4222      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4223                               getF32Constant(DAG, 0x3f3c50c8));
4224      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4225      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4226                                           getF32Constant(DAG, 0x3f7f5e7e));
4227    } else if (LimitFloatPrecision <= 12) {
4228      // For floating-point precision of 12:
4229      //
4230      //   TwoToFractionalPartOfX =
4231      //     0.999892986f +
4232      //       (0.696457318f +
4233      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4234      //
4235      // error 0.000107046256, which is 13 to 14 bits
4236      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4237                               getF32Constant(DAG, 0x3da235e3));
4238      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4239                               getF32Constant(DAG, 0x3e65b8f3));
4240      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4241      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4242                               getF32Constant(DAG, 0x3f324b07));
4243      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4244      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4245                                           getF32Constant(DAG, 0x3f7ff8fd));
4246    } else { // LimitFloatPrecision <= 18
4247      // For floating-point precision of 18:
4248      //
4249      //   TwoToFractionalPartOfX =
4250      //     0.999999982f +
4251      //       (0.693148872f +
4252      //         (0.240227044f +
4253      //           (0.554906021e-1f +
4254      //             (0.961591928e-2f +
4255      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4256      // error 2.47208000*10^(-7), which is better than 18 bits
4257      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4258                               getF32Constant(DAG, 0x3924b03e));
4259      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4260                               getF32Constant(DAG, 0x3ab24b87));
4261      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4262      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4263                               getF32Constant(DAG, 0x3c1d8c17));
4264      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4265      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4266                               getF32Constant(DAG, 0x3d634a1d));
4267      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4268      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4269                               getF32Constant(DAG, 0x3e75fe14));
4270      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4271      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4272                                getF32Constant(DAG, 0x3f317234));
4273      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4274      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4275                                           getF32Constant(DAG, 0x3f800000));
4276    }
4277
4278    SDValue t13 = DAG.getNode(ISD::BITCAST, dl,MVT::i32,TwoToFractionalPartOfX);
4279    return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4280                       DAG.getNode(ISD::ADD, dl, MVT::i32,
4281                                   t13, IntegerPartOfX));
4282  }
4283
4284  // No special expansion.
4285  return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
4286}
4287
4288
4289/// ExpandPowI - Expand a llvm.powi intrinsic.
4290static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS,
4291                          SelectionDAG &DAG) {
4292  // If RHS is a constant, we can expand this out to a multiplication tree,
4293  // otherwise we end up lowering to a call to __powidf2 (for example).  When
4294  // optimizing for size, we only want to do this if the expansion would produce
4295  // a small number of multiplies, otherwise we do the full expansion.
4296  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4297    // Get the exponent as a positive value.
4298    unsigned Val = RHSC->getSExtValue();
4299    if ((int)Val < 0) Val = -Val;
4300
4301    // powi(x, 0) -> 1.0
4302    if (Val == 0)
4303      return DAG.getConstantFP(1.0, LHS.getValueType());
4304
4305    const Function *F = DAG.getMachineFunction().getFunction();
4306    if (!F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
4307                                         Attribute::OptimizeForSize) ||
4308        // If optimizing for size, don't insert too many multiplies.  This
4309        // inserts up to 5 multiplies.
4310        CountPopulation_32(Val)+Log2_32(Val) < 7) {
4311      // We use the simple binary decomposition method to generate the multiply
4312      // sequence.  There are more optimal ways to do this (for example,
4313      // powi(x,15) generates one more multiply than it should), but this has
4314      // the benefit of being both really simple and much better than a libcall.
4315      SDValue Res;  // Logically starts equal to 1.0
4316      SDValue CurSquare = LHS;
4317      while (Val) {
4318        if (Val & 1) {
4319          if (Res.getNode())
4320            Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4321          else
4322            Res = CurSquare;  // 1.0*CurSquare.
4323        }
4324
4325        CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4326                                CurSquare, CurSquare);
4327        Val >>= 1;
4328      }
4329
4330      // If the original was negative, invert the result, producing 1/(x*x*x).
4331      if (RHSC->getSExtValue() < 0)
4332        Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4333                          DAG.getConstantFP(1.0, LHS.getValueType()), Res);
4334      return Res;
4335    }
4336  }
4337
4338  // Otherwise, expand to a libcall.
4339  return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4340}
4341
4342// getTruncatedArgReg - Find underlying register used for an truncated
4343// argument.
4344static unsigned getTruncatedArgReg(const SDValue &N) {
4345  if (N.getOpcode() != ISD::TRUNCATE)
4346    return 0;
4347
4348  const SDValue &Ext = N.getOperand(0);
4349  if (Ext.getOpcode() == ISD::AssertZext || Ext.getOpcode() == ISD::AssertSext){
4350    const SDValue &CFR = Ext.getOperand(0);
4351    if (CFR.getOpcode() == ISD::CopyFromReg)
4352      return cast<RegisterSDNode>(CFR.getOperand(1))->getReg();
4353    if (CFR.getOpcode() == ISD::TRUNCATE)
4354      return getTruncatedArgReg(CFR);
4355  }
4356  return 0;
4357}
4358
4359/// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4360/// argument, create the corresponding DBG_VALUE machine instruction for it now.
4361/// At the end of instruction selection, they will be inserted to the entry BB.
4362bool
4363SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
4364                                              int64_t Offset,
4365                                              const SDValue &N) {
4366  const Argument *Arg = dyn_cast<Argument>(V);
4367  if (!Arg)
4368    return false;
4369
4370  MachineFunction &MF = DAG.getMachineFunction();
4371  const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
4372  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
4373
4374  // Ignore inlined function arguments here.
4375  DIVariable DV(Variable);
4376  if (DV.isInlinedFnArgument(MF.getFunction()))
4377    return false;
4378
4379  unsigned Reg = 0;
4380  // Some arguments' frame index is recorded during argument lowering.
4381  Offset = FuncInfo.getArgumentFrameIndex(Arg);
4382  if (Offset)
4383    Reg = TRI->getFrameRegister(MF);
4384
4385  if (!Reg && N.getNode()) {
4386    if (N.getOpcode() == ISD::CopyFromReg)
4387      Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
4388    else
4389      Reg = getTruncatedArgReg(N);
4390    if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4391      MachineRegisterInfo &RegInfo = MF.getRegInfo();
4392      unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4393      if (PR)
4394        Reg = PR;
4395    }
4396  }
4397
4398  if (!Reg) {
4399    // Check if ValueMap has reg number.
4400    DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4401    if (VMI != FuncInfo.ValueMap.end())
4402      Reg = VMI->second;
4403  }
4404
4405  if (!Reg && N.getNode()) {
4406    // Check if frame index is available.
4407    if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4408      if (FrameIndexSDNode *FINode =
4409          dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) {
4410        Reg = TRI->getFrameRegister(MF);
4411        Offset = FINode->getIndex();
4412      }
4413  }
4414
4415  if (!Reg)
4416    return false;
4417
4418  MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(),
4419                                    TII->get(TargetOpcode::DBG_VALUE))
4420    .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable);
4421  FuncInfo.ArgDbgValues.push_back(&*MIB);
4422  return true;
4423}
4424
4425// VisualStudio defines setjmp as _setjmp
4426#if defined(_MSC_VER) && defined(setjmp) && \
4427                         !defined(setjmp_undefined_for_msvc)
4428#  pragma push_macro("setjmp")
4429#  undef setjmp
4430#  define setjmp_undefined_for_msvc
4431#endif
4432
4433/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4434/// we want to emit this as a call to a named external function, return the name
4435/// otherwise lower it and return null.
4436const char *
4437SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4438  SDLoc sdl = getCurSDLoc();
4439  DebugLoc dl = getCurDebugLoc();
4440  SDValue Res;
4441
4442  switch (Intrinsic) {
4443  default:
4444    // By default, turn this into a target intrinsic node.
4445    visitTargetIntrinsic(I, Intrinsic);
4446    return 0;
4447  case Intrinsic::vastart:  visitVAStart(I); return 0;
4448  case Intrinsic::vaend:    visitVAEnd(I); return 0;
4449  case Intrinsic::vacopy:   visitVACopy(I); return 0;
4450  case Intrinsic::returnaddress:
4451    setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, TLI.getPointerTy(),
4452                             getValue(I.getArgOperand(0))));
4453    return 0;
4454  case Intrinsic::frameaddress:
4455    setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, TLI.getPointerTy(),
4456                             getValue(I.getArgOperand(0))));
4457    return 0;
4458  case Intrinsic::setjmp:
4459    return &"_setjmp"[!TLI.usesUnderscoreSetJmp()];
4460  case Intrinsic::longjmp:
4461    return &"_longjmp"[!TLI.usesUnderscoreLongJmp()];
4462  case Intrinsic::memcpy: {
4463    // Assert for address < 256 since we support only user defined address
4464    // spaces.
4465    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4466           < 256 &&
4467           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4468           < 256 &&
4469           "Unknown address space");
4470    SDValue Op1 = getValue(I.getArgOperand(0));
4471    SDValue Op2 = getValue(I.getArgOperand(1));
4472    SDValue Op3 = getValue(I.getArgOperand(2));
4473    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4474    if (!Align)
4475      Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment.
4476    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4477    DAG.setRoot(DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, false,
4478                              MachinePointerInfo(I.getArgOperand(0)),
4479                              MachinePointerInfo(I.getArgOperand(1))));
4480    return 0;
4481  }
4482  case Intrinsic::memset: {
4483    // Assert for address < 256 since we support only user defined address
4484    // spaces.
4485    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4486           < 256 &&
4487           "Unknown address space");
4488    SDValue Op1 = getValue(I.getArgOperand(0));
4489    SDValue Op2 = getValue(I.getArgOperand(1));
4490    SDValue Op3 = getValue(I.getArgOperand(2));
4491    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4492    if (!Align)
4493      Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment.
4494    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4495    DAG.setRoot(DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4496                              MachinePointerInfo(I.getArgOperand(0))));
4497    return 0;
4498  }
4499  case Intrinsic::memmove: {
4500    // Assert for address < 256 since we support only user defined address
4501    // spaces.
4502    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4503           < 256 &&
4504           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4505           < 256 &&
4506           "Unknown address space");
4507    SDValue Op1 = getValue(I.getArgOperand(0));
4508    SDValue Op2 = getValue(I.getArgOperand(1));
4509    SDValue Op3 = getValue(I.getArgOperand(2));
4510    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4511    if (!Align)
4512      Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment.
4513    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4514    DAG.setRoot(DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4515                               MachinePointerInfo(I.getArgOperand(0)),
4516                               MachinePointerInfo(I.getArgOperand(1))));
4517    return 0;
4518  }
4519  case Intrinsic::dbg_declare: {
4520    const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4521    MDNode *Variable = DI.getVariable();
4522    const Value *Address = DI.getAddress();
4523    if (!Address || !DIVariable(Variable).Verify()) {
4524      DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4525      return 0;
4526    }
4527
4528    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4529    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4530    // absolute, but not relative, values are different depending on whether
4531    // debug info exists.
4532    ++SDNodeOrder;
4533
4534    // Check if address has undef value.
4535    if (isa<UndefValue>(Address) ||
4536        (Address->use_empty() && !isa<Argument>(Address))) {
4537      DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4538      return 0;
4539    }
4540
4541    SDValue &N = NodeMap[Address];
4542    if (!N.getNode() && isa<Argument>(Address))
4543      // Check unused arguments map.
4544      N = UnusedArgNodeMap[Address];
4545    SDDbgValue *SDV;
4546    if (N.getNode()) {
4547      if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4548        Address = BCI->getOperand(0);
4549      // Parameters are handled specially.
4550      bool isParameter =
4551        (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable ||
4552         isa<Argument>(Address));
4553
4554      const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
4555
4556      if (isParameter && !AI) {
4557        FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4558        if (FINode)
4559          // Byval parameter.  We have a frame index at this point.
4560          SDV = DAG.getDbgValue(Variable, FINode->getIndex(),
4561                                0, dl, SDNodeOrder);
4562        else {
4563          // Address is an argument, so try to emit its dbg value using
4564          // virtual register info from the FuncInfo.ValueMap.
4565          EmitFuncArgumentDbgValue(Address, Variable, 0, N);
4566          return 0;
4567        }
4568      } else if (AI)
4569        SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
4570                              0, dl, SDNodeOrder);
4571      else {
4572        // Can't do anything with other non-AI cases yet.
4573        DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4574        DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t");
4575        DEBUG(Address->dump());
4576        return 0;
4577      }
4578      DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4579    } else {
4580      // If Address is an argument then try to emit its dbg value using
4581      // virtual register info from the FuncInfo.ValueMap.
4582      if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) {
4583        // If variable is pinned by a alloca in dominating bb then
4584        // use StaticAllocaMap.
4585        if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4586          if (AI->getParent() != DI.getParent()) {
4587            DenseMap<const AllocaInst*, int>::iterator SI =
4588              FuncInfo.StaticAllocaMap.find(AI);
4589            if (SI != FuncInfo.StaticAllocaMap.end()) {
4590              SDV = DAG.getDbgValue(Variable, SI->second,
4591                                    0, dl, SDNodeOrder);
4592              DAG.AddDbgValue(SDV, 0, false);
4593              return 0;
4594            }
4595          }
4596        }
4597        DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4598      }
4599    }
4600    return 0;
4601  }
4602  case Intrinsic::dbg_value: {
4603    const DbgValueInst &DI = cast<DbgValueInst>(I);
4604    if (!DIVariable(DI.getVariable()).Verify())
4605      return 0;
4606
4607    MDNode *Variable = DI.getVariable();
4608    uint64_t Offset = DI.getOffset();
4609    const Value *V = DI.getValue();
4610    if (!V)
4611      return 0;
4612
4613    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4614    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4615    // absolute, but not relative, values are different depending on whether
4616    // debug info exists.
4617    ++SDNodeOrder;
4618    SDDbgValue *SDV;
4619    if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
4620      SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder);
4621      DAG.AddDbgValue(SDV, 0, false);
4622    } else {
4623      // Do not use getValue() in here; we don't want to generate code at
4624      // this point if it hasn't been done yet.
4625      SDValue N = NodeMap[V];
4626      if (!N.getNode() && isa<Argument>(V))
4627        // Check unused arguments map.
4628        N = UnusedArgNodeMap[V];
4629      if (N.getNode()) {
4630        if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) {
4631          SDV = DAG.getDbgValue(Variable, N.getNode(),
4632                                N.getResNo(), Offset, dl, SDNodeOrder);
4633          DAG.AddDbgValue(SDV, N.getNode(), false);
4634        }
4635      } else if (!V->use_empty() ) {
4636        // Do not call getValue(V) yet, as we don't want to generate code.
4637        // Remember it for later.
4638        DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4639        DanglingDebugInfoMap[V] = DDI;
4640      } else {
4641        // We may expand this to cover more cases.  One case where we have no
4642        // data available is an unreferenced parameter.
4643        DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4644      }
4645    }
4646
4647    // Build a debug info table entry.
4648    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4649      V = BCI->getOperand(0);
4650    const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4651    // Don't handle byval struct arguments or VLAs, for example.
4652    if (!AI) {
4653      DEBUG(dbgs() << "Dropping debug location info for:\n  " << DI << "\n");
4654      DEBUG(dbgs() << "  Last seen at:\n    " << *V << "\n");
4655      return 0;
4656    }
4657    DenseMap<const AllocaInst*, int>::iterator SI =
4658      FuncInfo.StaticAllocaMap.find(AI);
4659    if (SI == FuncInfo.StaticAllocaMap.end())
4660      return 0; // VLAs.
4661    int FI = SI->second;
4662
4663    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4664    if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
4665      MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
4666    return 0;
4667  }
4668
4669  case Intrinsic::eh_typeid_for: {
4670    // Find the type id for the given typeinfo.
4671    GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0));
4672    unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4673    Res = DAG.getConstant(TypeID, MVT::i32);
4674    setValue(&I, Res);
4675    return 0;
4676  }
4677
4678  case Intrinsic::eh_return_i32:
4679  case Intrinsic::eh_return_i64:
4680    DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4681    DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
4682                            MVT::Other,
4683                            getControlRoot(),
4684                            getValue(I.getArgOperand(0)),
4685                            getValue(I.getArgOperand(1))));
4686    return 0;
4687  case Intrinsic::eh_unwind_init:
4688    DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4689    return 0;
4690  case Intrinsic::eh_dwarf_cfa: {
4691    SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl,
4692                                        TLI.getPointerTy());
4693    SDValue Offset = DAG.getNode(ISD::ADD, sdl,
4694                                 TLI.getPointerTy(),
4695                                 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl,
4696                                             TLI.getPointerTy()),
4697                                 CfaArg);
4698    SDValue FA = DAG.getNode(ISD::FRAMEADDR, sdl,
4699                             TLI.getPointerTy(),
4700                             DAG.getConstant(0, TLI.getPointerTy()));
4701    setValue(&I, DAG.getNode(ISD::ADD, sdl, TLI.getPointerTy(),
4702                             FA, Offset));
4703    return 0;
4704  }
4705  case Intrinsic::eh_sjlj_callsite: {
4706    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4707    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4708    assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4709    assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4710
4711    MMI.setCurrentCallSite(CI->getZExtValue());
4712    return 0;
4713  }
4714  case Intrinsic::eh_sjlj_functioncontext: {
4715    // Get and store the index of the function context.
4716    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4717    AllocaInst *FnCtx =
4718      cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
4719    int FI = FuncInfo.StaticAllocaMap[FnCtx];
4720    MFI->setFunctionContextIndex(FI);
4721    return 0;
4722  }
4723  case Intrinsic::eh_sjlj_setjmp: {
4724    SDValue Ops[2];
4725    Ops[0] = getRoot();
4726    Ops[1] = getValue(I.getArgOperand(0));
4727    SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
4728                             DAG.getVTList(MVT::i32, MVT::Other),
4729                             Ops, 2);
4730    setValue(&I, Op.getValue(0));
4731    DAG.setRoot(Op.getValue(1));
4732    return 0;
4733  }
4734  case Intrinsic::eh_sjlj_longjmp: {
4735    DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
4736                            getRoot(), getValue(I.getArgOperand(0))));
4737    return 0;
4738  }
4739
4740  case Intrinsic::x86_mmx_pslli_w:
4741  case Intrinsic::x86_mmx_pslli_d:
4742  case Intrinsic::x86_mmx_pslli_q:
4743  case Intrinsic::x86_mmx_psrli_w:
4744  case Intrinsic::x86_mmx_psrli_d:
4745  case Intrinsic::x86_mmx_psrli_q:
4746  case Intrinsic::x86_mmx_psrai_w:
4747  case Intrinsic::x86_mmx_psrai_d: {
4748    SDValue ShAmt = getValue(I.getArgOperand(1));
4749    if (isa<ConstantSDNode>(ShAmt)) {
4750      visitTargetIntrinsic(I, Intrinsic);
4751      return 0;
4752    }
4753    unsigned NewIntrinsic = 0;
4754    EVT ShAmtVT = MVT::v2i32;
4755    switch (Intrinsic) {
4756    case Intrinsic::x86_mmx_pslli_w:
4757      NewIntrinsic = Intrinsic::x86_mmx_psll_w;
4758      break;
4759    case Intrinsic::x86_mmx_pslli_d:
4760      NewIntrinsic = Intrinsic::x86_mmx_psll_d;
4761      break;
4762    case Intrinsic::x86_mmx_pslli_q:
4763      NewIntrinsic = Intrinsic::x86_mmx_psll_q;
4764      break;
4765    case Intrinsic::x86_mmx_psrli_w:
4766      NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
4767      break;
4768    case Intrinsic::x86_mmx_psrli_d:
4769      NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
4770      break;
4771    case Intrinsic::x86_mmx_psrli_q:
4772      NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
4773      break;
4774    case Intrinsic::x86_mmx_psrai_w:
4775      NewIntrinsic = Intrinsic::x86_mmx_psra_w;
4776      break;
4777    case Intrinsic::x86_mmx_psrai_d:
4778      NewIntrinsic = Intrinsic::x86_mmx_psra_d;
4779      break;
4780    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4781    }
4782
4783    // The vector shift intrinsics with scalars uses 32b shift amounts but
4784    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
4785    // to be zero.
4786    // We must do this early because v2i32 is not a legal type.
4787    SDValue ShOps[2];
4788    ShOps[0] = ShAmt;
4789    ShOps[1] = DAG.getConstant(0, MVT::i32);
4790    ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, &ShOps[0], 2);
4791    EVT DestVT = TLI.getValueType(I.getType());
4792    ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt);
4793    Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT,
4794                       DAG.getConstant(NewIntrinsic, MVT::i32),
4795                       getValue(I.getArgOperand(0)), ShAmt);
4796    setValue(&I, Res);
4797    return 0;
4798  }
4799  case Intrinsic::x86_avx_vinsertf128_pd_256:
4800  case Intrinsic::x86_avx_vinsertf128_ps_256:
4801  case Intrinsic::x86_avx_vinsertf128_si_256:
4802  case Intrinsic::x86_avx2_vinserti128: {
4803    EVT DestVT = TLI.getValueType(I.getType());
4804    EVT ElVT = TLI.getValueType(I.getArgOperand(1)->getType());
4805    uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue() & 1) *
4806                   ElVT.getVectorNumElements();
4807    Res = DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, DestVT,
4808                      getValue(I.getArgOperand(0)),
4809                      getValue(I.getArgOperand(1)),
4810                      DAG.getIntPtrConstant(Idx));
4811    setValue(&I, Res);
4812    return 0;
4813  }
4814  case Intrinsic::x86_avx_vextractf128_pd_256:
4815  case Intrinsic::x86_avx_vextractf128_ps_256:
4816  case Intrinsic::x86_avx_vextractf128_si_256:
4817  case Intrinsic::x86_avx2_vextracti128: {
4818    EVT DestVT = TLI.getValueType(I.getType());
4819    uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(1))->getZExtValue() & 1) *
4820                   DestVT.getVectorNumElements();
4821    Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, DestVT,
4822                      getValue(I.getArgOperand(0)),
4823                      DAG.getIntPtrConstant(Idx));
4824    setValue(&I, Res);
4825    return 0;
4826  }
4827  case Intrinsic::convertff:
4828  case Intrinsic::convertfsi:
4829  case Intrinsic::convertfui:
4830  case Intrinsic::convertsif:
4831  case Intrinsic::convertuif:
4832  case Intrinsic::convertss:
4833  case Intrinsic::convertsu:
4834  case Intrinsic::convertus:
4835  case Intrinsic::convertuu: {
4836    ISD::CvtCode Code = ISD::CVT_INVALID;
4837    switch (Intrinsic) {
4838    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4839    case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
4840    case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4841    case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4842    case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4843    case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4844    case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
4845    case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
4846    case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4847    case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4848    }
4849    EVT DestVT = TLI.getValueType(I.getType());
4850    const Value *Op1 = I.getArgOperand(0);
4851    Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1),
4852                               DAG.getValueType(DestVT),
4853                               DAG.getValueType(getValue(Op1).getValueType()),
4854                               getValue(I.getArgOperand(1)),
4855                               getValue(I.getArgOperand(2)),
4856                               Code);
4857    setValue(&I, Res);
4858    return 0;
4859  }
4860  case Intrinsic::powi:
4861    setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
4862                            getValue(I.getArgOperand(1)), DAG));
4863    return 0;
4864  case Intrinsic::log:
4865    setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
4866    return 0;
4867  case Intrinsic::log2:
4868    setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
4869    return 0;
4870  case Intrinsic::log10:
4871    setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
4872    return 0;
4873  case Intrinsic::exp:
4874    setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
4875    return 0;
4876  case Intrinsic::exp2:
4877    setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
4878    return 0;
4879  case Intrinsic::pow:
4880    setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
4881                           getValue(I.getArgOperand(1)), DAG, TLI));
4882    return 0;
4883  case Intrinsic::sqrt:
4884  case Intrinsic::fabs:
4885  case Intrinsic::sin:
4886  case Intrinsic::cos:
4887  case Intrinsic::floor:
4888  case Intrinsic::ceil:
4889  case Intrinsic::trunc:
4890  case Intrinsic::rint:
4891  case Intrinsic::nearbyint: {
4892    unsigned Opcode;
4893    switch (Intrinsic) {
4894    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4895    case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
4896    case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
4897    case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
4898    case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
4899    case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
4900    case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
4901    case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
4902    case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
4903    case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
4904    }
4905
4906    setValue(&I, DAG.getNode(Opcode, sdl,
4907                             getValue(I.getArgOperand(0)).getValueType(),
4908                             getValue(I.getArgOperand(0))));
4909    return 0;
4910  }
4911  case Intrinsic::fma:
4912    setValue(&I, DAG.getNode(ISD::FMA, sdl,
4913                             getValue(I.getArgOperand(0)).getValueType(),
4914                             getValue(I.getArgOperand(0)),
4915                             getValue(I.getArgOperand(1)),
4916                             getValue(I.getArgOperand(2))));
4917    return 0;
4918  case Intrinsic::fmuladd: {
4919    EVT VT = TLI.getValueType(I.getType());
4920    if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
4921        TLI.isFMAFasterThanMulAndAdd(VT)){
4922      setValue(&I, DAG.getNode(ISD::FMA, sdl,
4923                               getValue(I.getArgOperand(0)).getValueType(),
4924                               getValue(I.getArgOperand(0)),
4925                               getValue(I.getArgOperand(1)),
4926                               getValue(I.getArgOperand(2))));
4927    } else {
4928      SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
4929                                getValue(I.getArgOperand(0)).getValueType(),
4930                                getValue(I.getArgOperand(0)),
4931                                getValue(I.getArgOperand(1)));
4932      SDValue Add = DAG.getNode(ISD::FADD, sdl,
4933                                getValue(I.getArgOperand(0)).getValueType(),
4934                                Mul,
4935                                getValue(I.getArgOperand(2)));
4936      setValue(&I, Add);
4937    }
4938    return 0;
4939  }
4940  case Intrinsic::convert_to_fp16:
4941    setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, sdl,
4942                             MVT::i16, getValue(I.getArgOperand(0))));
4943    return 0;
4944  case Intrinsic::convert_from_fp16:
4945    setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, sdl,
4946                             MVT::f32, getValue(I.getArgOperand(0))));
4947    return 0;
4948  case Intrinsic::pcmarker: {
4949    SDValue Tmp = getValue(I.getArgOperand(0));
4950    DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
4951    return 0;
4952  }
4953  case Intrinsic::readcyclecounter: {
4954    SDValue Op = getRoot();
4955    Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
4956                      DAG.getVTList(MVT::i64, MVT::Other),
4957                      &Op, 1);
4958    setValue(&I, Res);
4959    DAG.setRoot(Res.getValue(1));
4960    return 0;
4961  }
4962  case Intrinsic::bswap:
4963    setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
4964                             getValue(I.getArgOperand(0)).getValueType(),
4965                             getValue(I.getArgOperand(0))));
4966    return 0;
4967  case Intrinsic::cttz: {
4968    SDValue Arg = getValue(I.getArgOperand(0));
4969    ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
4970    EVT Ty = Arg.getValueType();
4971    setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
4972                             sdl, Ty, Arg));
4973    return 0;
4974  }
4975  case Intrinsic::ctlz: {
4976    SDValue Arg = getValue(I.getArgOperand(0));
4977    ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
4978    EVT Ty = Arg.getValueType();
4979    setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
4980                             sdl, Ty, Arg));
4981    return 0;
4982  }
4983  case Intrinsic::ctpop: {
4984    SDValue Arg = getValue(I.getArgOperand(0));
4985    EVT Ty = Arg.getValueType();
4986    setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
4987    return 0;
4988  }
4989  case Intrinsic::stacksave: {
4990    SDValue Op = getRoot();
4991    Res = DAG.getNode(ISD::STACKSAVE, sdl,
4992                      DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
4993    setValue(&I, Res);
4994    DAG.setRoot(Res.getValue(1));
4995    return 0;
4996  }
4997  case Intrinsic::stackrestore: {
4998    Res = getValue(I.getArgOperand(0));
4999    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
5000    return 0;
5001  }
5002  case Intrinsic::stackprotector: {
5003    // Emit code into the DAG to store the stack guard onto the stack.
5004    MachineFunction &MF = DAG.getMachineFunction();
5005    MachineFrameInfo *MFI = MF.getFrameInfo();
5006    EVT PtrTy = TLI.getPointerTy();
5007
5008    SDValue Src = getValue(I.getArgOperand(0));   // The guard's value.
5009    AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
5010
5011    int FI = FuncInfo.StaticAllocaMap[Slot];
5012    MFI->setStackProtectorIndex(FI);
5013
5014    SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
5015
5016    // Store the stack protector onto the stack.
5017    Res = DAG.getStore(getRoot(), sdl, Src, FIN,
5018                       MachinePointerInfo::getFixedStack(FI),
5019                       true, false, 0);
5020    setValue(&I, Res);
5021    DAG.setRoot(Res);
5022    return 0;
5023  }
5024  case Intrinsic::objectsize: {
5025    // If we don't know by now, we're never going to know.
5026    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
5027
5028    assert(CI && "Non-constant type in __builtin_object_size?");
5029
5030    SDValue Arg = getValue(I.getCalledValue());
5031    EVT Ty = Arg.getValueType();
5032
5033    if (CI->isZero())
5034      Res = DAG.getConstant(-1ULL, Ty);
5035    else
5036      Res = DAG.getConstant(0, Ty);
5037
5038    setValue(&I, Res);
5039    return 0;
5040  }
5041  case Intrinsic::annotation:
5042  case Intrinsic::ptr_annotation:
5043    // Drop the intrinsic, but forward the value
5044    setValue(&I, getValue(I.getOperand(0)));
5045    return 0;
5046  case Intrinsic::var_annotation:
5047    // Discard annotate attributes
5048    return 0;
5049
5050  case Intrinsic::init_trampoline: {
5051    const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5052
5053    SDValue Ops[6];
5054    Ops[0] = getRoot();
5055    Ops[1] = getValue(I.getArgOperand(0));
5056    Ops[2] = getValue(I.getArgOperand(1));
5057    Ops[3] = getValue(I.getArgOperand(2));
5058    Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5059    Ops[5] = DAG.getSrcValue(F);
5060
5061    Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops, 6);
5062
5063    DAG.setRoot(Res);
5064    return 0;
5065  }
5066  case Intrinsic::adjust_trampoline: {
5067    setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
5068                             TLI.getPointerTy(),
5069                             getValue(I.getArgOperand(0))));
5070    return 0;
5071  }
5072  case Intrinsic::gcroot:
5073    if (GFI) {
5074      const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
5075      const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
5076
5077      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
5078      GFI->addStackRoot(FI->getIndex(), TypeMap);
5079    }
5080    return 0;
5081  case Intrinsic::gcread:
5082  case Intrinsic::gcwrite:
5083    llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
5084  case Intrinsic::flt_rounds:
5085    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
5086    return 0;
5087
5088  case Intrinsic::expect: {
5089    // Just replace __builtin_expect(exp, c) with EXP.
5090    setValue(&I, getValue(I.getArgOperand(0)));
5091    return 0;
5092  }
5093
5094  case Intrinsic::debugtrap:
5095  case Intrinsic::trap: {
5096    StringRef TrapFuncName = TM.Options.getTrapFunctionName();
5097    if (TrapFuncName.empty()) {
5098      ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
5099        ISD::TRAP : ISD::DEBUGTRAP;
5100      DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
5101      return 0;
5102    }
5103    TargetLowering::ArgListTy Args;
5104    TargetLowering::
5105    CallLoweringInfo CLI(getRoot(), I.getType(),
5106                 false, false, false, false, 0, CallingConv::C,
5107                 /*isTailCall=*/false,
5108                 /*doesNotRet=*/false, /*isReturnValueUsed=*/true,
5109                 DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()),
5110                 Args, DAG, sdl);
5111    std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
5112    DAG.setRoot(Result.second);
5113    return 0;
5114  }
5115
5116  case Intrinsic::uadd_with_overflow:
5117  case Intrinsic::sadd_with_overflow:
5118  case Intrinsic::usub_with_overflow:
5119  case Intrinsic::ssub_with_overflow:
5120  case Intrinsic::umul_with_overflow:
5121  case Intrinsic::smul_with_overflow: {
5122    ISD::NodeType Op;
5123    switch (Intrinsic) {
5124    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5125    case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
5126    case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
5127    case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
5128    case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
5129    case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
5130    case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
5131    }
5132    SDValue Op1 = getValue(I.getArgOperand(0));
5133    SDValue Op2 = getValue(I.getArgOperand(1));
5134
5135    SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
5136    setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
5137    return 0;
5138  }
5139  case Intrinsic::prefetch: {
5140    SDValue Ops[5];
5141    unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
5142    Ops[0] = getRoot();
5143    Ops[1] = getValue(I.getArgOperand(0));
5144    Ops[2] = getValue(I.getArgOperand(1));
5145    Ops[3] = getValue(I.getArgOperand(2));
5146    Ops[4] = getValue(I.getArgOperand(3));
5147    DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
5148                                        DAG.getVTList(MVT::Other),
5149                                        &Ops[0], 5,
5150                                        EVT::getIntegerVT(*Context, 8),
5151                                        MachinePointerInfo(I.getArgOperand(0)),
5152                                        0, /* align */
5153                                        false, /* volatile */
5154                                        rw==0, /* read */
5155                                        rw==1)); /* write */
5156    return 0;
5157  }
5158  case Intrinsic::lifetime_start:
5159  case Intrinsic::lifetime_end: {
5160    bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
5161    // Stack coloring is not enabled in O0, discard region information.
5162    if (TM.getOptLevel() == CodeGenOpt::None)
5163      return 0;
5164
5165    SmallVector<Value *, 4> Allocas;
5166    GetUnderlyingObjects(I.getArgOperand(1), Allocas, TD);
5167
5168    for (SmallVector<Value*, 4>::iterator Object = Allocas.begin(),
5169         E = Allocas.end(); Object != E; ++Object) {
5170      AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
5171
5172      // Could not find an Alloca.
5173      if (!LifetimeObject)
5174        continue;
5175
5176      int FI = FuncInfo.StaticAllocaMap[LifetimeObject];
5177
5178      SDValue Ops[2];
5179      Ops[0] = getRoot();
5180      Ops[1] = DAG.getFrameIndex(FI, TLI.getPointerTy(), true);
5181      unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END);
5182
5183      Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops, 2);
5184      DAG.setRoot(Res);
5185    }
5186    return 0;
5187  }
5188  case Intrinsic::invariant_start:
5189    // Discard region information.
5190    setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
5191    return 0;
5192  case Intrinsic::invariant_end:
5193    // Discard region information.
5194    return 0;
5195  case Intrinsic::donothing:
5196    // ignore
5197    return 0;
5198  }
5199}
5200
5201void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
5202                                      bool isTailCall,
5203                                      MachineBasicBlock *LandingPad) {
5204  PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
5205  FunctionType *FTy = cast<FunctionType>(PT->getElementType());
5206  Type *RetTy = FTy->getReturnType();
5207  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5208  MCSymbol *BeginLabel = 0;
5209
5210  TargetLowering::ArgListTy Args;
5211  TargetLowering::ArgListEntry Entry;
5212  Args.reserve(CS.arg_size());
5213
5214  // Check whether the function can return without sret-demotion.
5215  SmallVector<ISD::OutputArg, 4> Outs;
5216  GetReturnInfo(RetTy, CS.getAttributes(), Outs, TLI);
5217
5218  bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
5219                                           DAG.getMachineFunction(),
5220                                           FTy->isVarArg(), Outs,
5221                                           FTy->getContext());
5222
5223  SDValue DemoteStackSlot;
5224  int DemoteStackIdx = -100;
5225
5226  if (!CanLowerReturn) {
5227    uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(
5228                      FTy->getReturnType());
5229    unsigned Align  = TLI.getDataLayout()->getPrefTypeAlignment(
5230                      FTy->getReturnType());
5231    MachineFunction &MF = DAG.getMachineFunction();
5232    DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5233    Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
5234
5235    DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI.getPointerTy());
5236    Entry.Node = DemoteStackSlot;
5237    Entry.Ty = StackSlotPtrType;
5238    Entry.isSExt = false;
5239    Entry.isZExt = false;
5240    Entry.isInReg = false;
5241    Entry.isSRet = true;
5242    Entry.isNest = false;
5243    Entry.isByVal = false;
5244    Entry.isReturned = false;
5245    Entry.Alignment = Align;
5246    Args.push_back(Entry);
5247    RetTy = Type::getVoidTy(FTy->getContext());
5248  }
5249
5250  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
5251       i != e; ++i) {
5252    const Value *V = *i;
5253
5254    // Skip empty types
5255    if (V->getType()->isEmptyTy())
5256      continue;
5257
5258    SDValue ArgNode = getValue(V);
5259    Entry.Node = ArgNode; Entry.Ty = V->getType();
5260
5261    unsigned attrInd = i - CS.arg_begin() + 1;
5262    Entry.isSExt     = CS.paramHasAttr(attrInd, Attribute::SExt);
5263    Entry.isZExt     = CS.paramHasAttr(attrInd, Attribute::ZExt);
5264    Entry.isInReg    = CS.paramHasAttr(attrInd, Attribute::InReg);
5265    Entry.isSRet     = CS.paramHasAttr(attrInd, Attribute::StructRet);
5266    Entry.isNest     = CS.paramHasAttr(attrInd, Attribute::Nest);
5267    Entry.isByVal    = CS.paramHasAttr(attrInd, Attribute::ByVal);
5268    Entry.isReturned = CS.paramHasAttr(attrInd, Attribute::Returned);
5269    Entry.Alignment  = CS.getParamAlignment(attrInd);
5270    Args.push_back(Entry);
5271  }
5272
5273  if (LandingPad) {
5274    // Insert a label before the invoke call to mark the try range.  This can be
5275    // used to detect deletion of the invoke via the MachineModuleInfo.
5276    BeginLabel = MMI.getContext().CreateTempSymbol();
5277
5278    // For SjLj, keep track of which landing pads go with which invokes
5279    // so as to maintain the ordering of pads in the LSDA.
5280    unsigned CallSiteIndex = MMI.getCurrentCallSite();
5281    if (CallSiteIndex) {
5282      MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
5283      LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex);
5284
5285      // Now that the call site is handled, stop tracking it.
5286      MMI.setCurrentCallSite(0);
5287    }
5288
5289    // Both PendingLoads and PendingExports must be flushed here;
5290    // this call might not return.
5291    (void)getRoot();
5292    DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
5293  }
5294
5295  // Check if target-independent constraints permit a tail call here.
5296  // Target-dependent constraints are checked within TLI.LowerCallTo.
5297  if (isTailCall && !isInTailCallPosition(CS, TLI))
5298    isTailCall = false;
5299
5300  TargetLowering::
5301  CallLoweringInfo CLI(getRoot(), RetTy, FTy, isTailCall, Callee, Args, DAG,
5302                       getCurSDLoc(), CS);
5303  std::pair<SDValue,SDValue> Result = TLI.LowerCallTo(CLI);
5304  assert((isTailCall || Result.second.getNode()) &&
5305         "Non-null chain expected with non-tail call!");
5306  assert((Result.second.getNode() || !Result.first.getNode()) &&
5307         "Null value expected with tail call!");
5308  if (Result.first.getNode()) {
5309    setValue(CS.getInstruction(), Result.first);
5310  } else if (!CanLowerReturn && Result.second.getNode()) {
5311    // The instruction result is the result of loading from the
5312    // hidden sret parameter.
5313    SmallVector<EVT, 1> PVTs;
5314    Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
5315
5316    ComputeValueVTs(TLI, PtrRetTy, PVTs);
5317    assert(PVTs.size() == 1 && "Pointers should fit in one register");
5318    EVT PtrVT = PVTs[0];
5319
5320    SmallVector<EVT, 4> RetTys;
5321    SmallVector<uint64_t, 4> Offsets;
5322    RetTy = FTy->getReturnType();
5323    ComputeValueVTs(TLI, RetTy, RetTys, &Offsets);
5324
5325    unsigned NumValues = RetTys.size();
5326    SmallVector<SDValue, 4> Values(NumValues);
5327    SmallVector<SDValue, 4> Chains(NumValues);
5328
5329    for (unsigned i = 0; i < NumValues; ++i) {
5330      SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT,
5331                                DemoteStackSlot,
5332                                DAG.getConstant(Offsets[i], PtrVT));
5333      SDValue L = DAG.getLoad(RetTys[i], getCurSDLoc(), Result.second, Add,
5334                  MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]),
5335                              false, false, false, 1);
5336      Values[i] = L;
5337      Chains[i] = L.getValue(1);
5338    }
5339
5340    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
5341                                MVT::Other, &Chains[0], NumValues);
5342    PendingLoads.push_back(Chain);
5343
5344    setValue(CS.getInstruction(),
5345             DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
5346                         DAG.getVTList(&RetTys[0], RetTys.size()),
5347                         &Values[0], Values.size()));
5348  }
5349
5350  // Assign order to nodes here. If the call does not produce a result, it won't
5351  // be mapped to a SDNode and visit() will not assign it an order number.
5352  if (!Result.second.getNode()) {
5353    // As a special case, a null chain means that a tail call has been emitted and
5354    // the DAG root is already updated.
5355    HasTailCall = true;
5356    ++SDNodeOrder;
5357    AssignOrderingToNode(DAG.getRoot().getNode());
5358  } else {
5359    DAG.setRoot(Result.second);
5360    ++SDNodeOrder;
5361    AssignOrderingToNode(Result.second.getNode());
5362  }
5363
5364  if (LandingPad) {
5365    // Insert a label at the end of the invoke call to mark the try range.  This
5366    // can be used to detect deletion of the invoke via the MachineModuleInfo.
5367    MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
5368    DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
5369
5370    // Inform MachineModuleInfo of range.
5371    MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
5372  }
5373}
5374
5375/// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
5376/// value is equal or not-equal to zero.
5377static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
5378  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
5379       UI != E; ++UI) {
5380    if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
5381      if (IC->isEquality())
5382        if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
5383          if (C->isNullValue())
5384            continue;
5385    // Unknown instruction.
5386    return false;
5387  }
5388  return true;
5389}
5390
5391static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
5392                             Type *LoadTy,
5393                             SelectionDAGBuilder &Builder) {
5394
5395  // Check to see if this load can be trivially constant folded, e.g. if the
5396  // input is from a string literal.
5397  if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5398    // Cast pointer to the type we really want to load.
5399    LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5400                                         PointerType::getUnqual(LoadTy));
5401
5402    if (const Constant *LoadCst =
5403          ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
5404                                       Builder.TD))
5405      return Builder.getValue(LoadCst);
5406  }
5407
5408  // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
5409  // still constant memory, the input chain can be the entry node.
5410  SDValue Root;
5411  bool ConstantMemory = false;
5412
5413  // Do not serialize (non-volatile) loads of constant memory with anything.
5414  if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5415    Root = Builder.DAG.getEntryNode();
5416    ConstantMemory = true;
5417  } else {
5418    // Do not serialize non-volatile loads against each other.
5419    Root = Builder.DAG.getRoot();
5420  }
5421
5422  SDValue Ptr = Builder.getValue(PtrVal);
5423  SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
5424                                        Ptr, MachinePointerInfo(PtrVal),
5425                                        false /*volatile*/,
5426                                        false /*nontemporal*/,
5427                                        false /*isinvariant*/, 1 /* align=1 */);
5428
5429  if (!ConstantMemory)
5430    Builder.PendingLoads.push_back(LoadVal.getValue(1));
5431  return LoadVal;
5432}
5433
5434
5435/// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5436/// If so, return true and lower it, otherwise return false and it will be
5437/// lowered like a normal call.
5438bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5439  // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
5440  if (I.getNumArgOperands() != 3)
5441    return false;
5442
5443  const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5444  if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5445      !I.getArgOperand(2)->getType()->isIntegerTy() ||
5446      !I.getType()->isIntegerTy())
5447    return false;
5448
5449  const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2));
5450
5451  // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
5452  // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
5453  if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) {
5454    bool ActuallyDoIt = true;
5455    MVT LoadVT;
5456    Type *LoadTy;
5457    switch (Size->getZExtValue()) {
5458    default:
5459      LoadVT = MVT::Other;
5460      LoadTy = 0;
5461      ActuallyDoIt = false;
5462      break;
5463    case 2:
5464      LoadVT = MVT::i16;
5465      LoadTy = Type::getInt16Ty(Size->getContext());
5466      break;
5467    case 4:
5468      LoadVT = MVT::i32;
5469      LoadTy = Type::getInt32Ty(Size->getContext());
5470      break;
5471    case 8:
5472      LoadVT = MVT::i64;
5473      LoadTy = Type::getInt64Ty(Size->getContext());
5474      break;
5475        /*
5476    case 16:
5477      LoadVT = MVT::v4i32;
5478      LoadTy = Type::getInt32Ty(Size->getContext());
5479      LoadTy = VectorType::get(LoadTy, 4);
5480      break;
5481         */
5482    }
5483
5484    // This turns into unaligned loads.  We only do this if the target natively
5485    // supports the MVT we'll be loading or if it is small enough (<= 4) that
5486    // we'll only produce a small number of byte loads.
5487
5488    // Require that we can find a legal MVT, and only do this if the target
5489    // supports unaligned loads of that type.  Expanding into byte loads would
5490    // bloat the code.
5491    if (ActuallyDoIt && Size->getZExtValue() > 4) {
5492      // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5493      // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5494      if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT))
5495        ActuallyDoIt = false;
5496    }
5497
5498    if (ActuallyDoIt) {
5499      SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5500      SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5501
5502      SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal,
5503                                 ISD::SETNE);
5504      EVT CallVT = TLI.getValueType(I.getType(), true);
5505      setValue(&I, DAG.getZExtOrTrunc(Res, getCurSDLoc(), CallVT));
5506      return true;
5507    }
5508  }
5509
5510
5511  return false;
5512}
5513
5514/// visitUnaryFloatCall - If a call instruction is a unary floating-point
5515/// operation (as expected), translate it to an SDNode with the specified opcode
5516/// and return true.
5517bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
5518                                              unsigned Opcode) {
5519  // Sanity check that it really is a unary floating-point call.
5520  if (I.getNumArgOperands() != 1 ||
5521      !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
5522      I.getType() != I.getArgOperand(0)->getType() ||
5523      !I.onlyReadsMemory())
5524    return false;
5525
5526  SDValue Tmp = getValue(I.getArgOperand(0));
5527  setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
5528  return true;
5529}
5530
5531void SelectionDAGBuilder::visitCall(const CallInst &I) {
5532  // Handle inline assembly differently.
5533  if (isa<InlineAsm>(I.getCalledValue())) {
5534    visitInlineAsm(&I);
5535    return;
5536  }
5537
5538  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5539  ComputeUsesVAFloatArgument(I, &MMI);
5540
5541  const char *RenameFn = 0;
5542  if (Function *F = I.getCalledFunction()) {
5543    if (F->isDeclaration()) {
5544      if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
5545        if (unsigned IID = II->getIntrinsicID(F)) {
5546          RenameFn = visitIntrinsicCall(I, IID);
5547          if (!RenameFn)
5548            return;
5549        }
5550      }
5551      if (unsigned IID = F->getIntrinsicID()) {
5552        RenameFn = visitIntrinsicCall(I, IID);
5553        if (!RenameFn)
5554          return;
5555      }
5556    }
5557
5558    // Check for well-known libc/libm calls.  If the function is internal, it
5559    // can't be a library call.
5560    LibFunc::Func Func;
5561    if (!F->hasLocalLinkage() && F->hasName() &&
5562        LibInfo->getLibFunc(F->getName(), Func) &&
5563        LibInfo->hasOptimizedCodeGen(Func)) {
5564      switch (Func) {
5565      default: break;
5566      case LibFunc::copysign:
5567      case LibFunc::copysignf:
5568      case LibFunc::copysignl:
5569        if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
5570            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5571            I.getType() == I.getArgOperand(0)->getType() &&
5572            I.getType() == I.getArgOperand(1)->getType() &&
5573            I.onlyReadsMemory()) {
5574          SDValue LHS = getValue(I.getArgOperand(0));
5575          SDValue RHS = getValue(I.getArgOperand(1));
5576          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
5577                                   LHS.getValueType(), LHS, RHS));
5578          return;
5579        }
5580        break;
5581      case LibFunc::fabs:
5582      case LibFunc::fabsf:
5583      case LibFunc::fabsl:
5584        if (visitUnaryFloatCall(I, ISD::FABS))
5585          return;
5586        break;
5587      case LibFunc::sin:
5588      case LibFunc::sinf:
5589      case LibFunc::sinl:
5590        if (visitUnaryFloatCall(I, ISD::FSIN))
5591          return;
5592        break;
5593      case LibFunc::cos:
5594      case LibFunc::cosf:
5595      case LibFunc::cosl:
5596        if (visitUnaryFloatCall(I, ISD::FCOS))
5597          return;
5598        break;
5599      case LibFunc::sqrt:
5600      case LibFunc::sqrtf:
5601      case LibFunc::sqrtl:
5602        if (visitUnaryFloatCall(I, ISD::FSQRT))
5603          return;
5604        break;
5605      case LibFunc::floor:
5606      case LibFunc::floorf:
5607      case LibFunc::floorl:
5608        if (visitUnaryFloatCall(I, ISD::FFLOOR))
5609          return;
5610        break;
5611      case LibFunc::nearbyint:
5612      case LibFunc::nearbyintf:
5613      case LibFunc::nearbyintl:
5614        if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
5615          return;
5616        break;
5617      case LibFunc::ceil:
5618      case LibFunc::ceilf:
5619      case LibFunc::ceill:
5620        if (visitUnaryFloatCall(I, ISD::FCEIL))
5621          return;
5622        break;
5623      case LibFunc::rint:
5624      case LibFunc::rintf:
5625      case LibFunc::rintl:
5626        if (visitUnaryFloatCall(I, ISD::FRINT))
5627          return;
5628        break;
5629      case LibFunc::trunc:
5630      case LibFunc::truncf:
5631      case LibFunc::truncl:
5632        if (visitUnaryFloatCall(I, ISD::FTRUNC))
5633          return;
5634        break;
5635      case LibFunc::log2:
5636      case LibFunc::log2f:
5637      case LibFunc::log2l:
5638        if (visitUnaryFloatCall(I, ISD::FLOG2))
5639          return;
5640        break;
5641      case LibFunc::exp2:
5642      case LibFunc::exp2f:
5643      case LibFunc::exp2l:
5644        if (visitUnaryFloatCall(I, ISD::FEXP2))
5645          return;
5646        break;
5647      case LibFunc::memcmp:
5648        if (visitMemCmpCall(I))
5649          return;
5650        break;
5651      }
5652    }
5653  }
5654
5655  SDValue Callee;
5656  if (!RenameFn)
5657    Callee = getValue(I.getCalledValue());
5658  else
5659    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
5660
5661  // Check if we can potentially perform a tail call. More detailed checking is
5662  // be done within LowerCallTo, after more information about the call is known.
5663  LowerCallTo(&I, Callee, I.isTailCall());
5664}
5665
5666namespace {
5667
5668/// AsmOperandInfo - This contains information for each constraint that we are
5669/// lowering.
5670class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
5671public:
5672  /// CallOperand - If this is the result output operand or a clobber
5673  /// this is null, otherwise it is the incoming operand to the CallInst.
5674  /// This gets modified as the asm is processed.
5675  SDValue CallOperand;
5676
5677  /// AssignedRegs - If this is a register or register class operand, this
5678  /// contains the set of register corresponding to the operand.
5679  RegsForValue AssignedRegs;
5680
5681  explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
5682    : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
5683  }
5684
5685  /// getCallOperandValEVT - Return the EVT of the Value* that this operand
5686  /// corresponds to.  If there is no Value* for this operand, it returns
5687  /// MVT::Other.
5688  EVT getCallOperandValEVT(LLVMContext &Context,
5689                           const TargetLowering &TLI,
5690                           const DataLayout *TD) const {
5691    if (CallOperandVal == 0) return MVT::Other;
5692
5693    if (isa<BasicBlock>(CallOperandVal))
5694      return TLI.getPointerTy();
5695
5696    llvm::Type *OpTy = CallOperandVal->getType();
5697
5698    // FIXME: code duplicated from TargetLowering::ParseConstraints().
5699    // If this is an indirect operand, the operand is a pointer to the
5700    // accessed type.
5701    if (isIndirect) {
5702      llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
5703      if (!PtrTy)
5704        report_fatal_error("Indirect operand for inline asm not a pointer!");
5705      OpTy = PtrTy->getElementType();
5706    }
5707
5708    // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
5709    if (StructType *STy = dyn_cast<StructType>(OpTy))
5710      if (STy->getNumElements() == 1)
5711        OpTy = STy->getElementType(0);
5712
5713    // If OpTy is not a single value, it may be a struct/union that we
5714    // can tile with integers.
5715    if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5716      unsigned BitSize = TD->getTypeSizeInBits(OpTy);
5717      switch (BitSize) {
5718      default: break;
5719      case 1:
5720      case 8:
5721      case 16:
5722      case 32:
5723      case 64:
5724      case 128:
5725        OpTy = IntegerType::get(Context, BitSize);
5726        break;
5727      }
5728    }
5729
5730    return TLI.getValueType(OpTy, true);
5731  }
5732};
5733
5734typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
5735
5736} // end anonymous namespace
5737
5738/// GetRegistersForValue - Assign registers (virtual or physical) for the
5739/// specified operand.  We prefer to assign virtual registers, to allow the
5740/// register allocator to handle the assignment process.  However, if the asm
5741/// uses features that we can't model on machineinstrs, we have SDISel do the
5742/// allocation.  This produces generally horrible, but correct, code.
5743///
5744///   OpInfo describes the operand.
5745///
5746static void GetRegistersForValue(SelectionDAG &DAG,
5747                                 const TargetLowering &TLI,
5748                                 SDLoc DL,
5749                                 SDISelAsmOperandInfo &OpInfo) {
5750  LLVMContext &Context = *DAG.getContext();
5751
5752  MachineFunction &MF = DAG.getMachineFunction();
5753  SmallVector<unsigned, 4> Regs;
5754
5755  // If this is a constraint for a single physreg, or a constraint for a
5756  // register class, find it.
5757  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
5758    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5759                                     OpInfo.ConstraintVT);
5760
5761  unsigned NumRegs = 1;
5762  if (OpInfo.ConstraintVT != MVT::Other) {
5763    // If this is a FP input in an integer register (or visa versa) insert a bit
5764    // cast of the input value.  More generally, handle any case where the input
5765    // value disagrees with the register class we plan to stick this in.
5766    if (OpInfo.Type == InlineAsm::isInput &&
5767        PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
5768      // Try to convert to the first EVT that the reg class contains.  If the
5769      // types are identical size, use a bitcast to convert (e.g. two differing
5770      // vector types).
5771      MVT RegVT = *PhysReg.second->vt_begin();
5772      if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
5773        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5774                                         RegVT, OpInfo.CallOperand);
5775        OpInfo.ConstraintVT = RegVT;
5776      } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
5777        // If the input is a FP value and we want it in FP registers, do a
5778        // bitcast to the corresponding integer type.  This turns an f64 value
5779        // into i64, which can be passed with two i32 values on a 32-bit
5780        // machine.
5781        RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
5782        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5783                                         RegVT, OpInfo.CallOperand);
5784        OpInfo.ConstraintVT = RegVT;
5785      }
5786    }
5787
5788    NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
5789  }
5790
5791  MVT RegVT;
5792  EVT ValueVT = OpInfo.ConstraintVT;
5793
5794  // If this is a constraint for a specific physical register, like {r17},
5795  // assign it now.
5796  if (unsigned AssignedReg = PhysReg.first) {
5797    const TargetRegisterClass *RC = PhysReg.second;
5798    if (OpInfo.ConstraintVT == MVT::Other)
5799      ValueVT = *RC->vt_begin();
5800
5801    // Get the actual register value type.  This is important, because the user
5802    // may have asked for (e.g.) the AX register in i32 type.  We need to
5803    // remember that AX is actually i16 to get the right extension.
5804    RegVT = *RC->vt_begin();
5805
5806    // This is a explicit reference to a physical register.
5807    Regs.push_back(AssignedReg);
5808
5809    // If this is an expanded reference, add the rest of the regs to Regs.
5810    if (NumRegs != 1) {
5811      TargetRegisterClass::iterator I = RC->begin();
5812      for (; *I != AssignedReg; ++I)
5813        assert(I != RC->end() && "Didn't find reg!");
5814
5815      // Already added the first reg.
5816      --NumRegs; ++I;
5817      for (; NumRegs; --NumRegs, ++I) {
5818        assert(I != RC->end() && "Ran out of registers to allocate!");
5819        Regs.push_back(*I);
5820      }
5821    }
5822
5823    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5824    return;
5825  }
5826
5827  // Otherwise, if this was a reference to an LLVM register class, create vregs
5828  // for this reference.
5829  if (const TargetRegisterClass *RC = PhysReg.second) {
5830    RegVT = *RC->vt_begin();
5831    if (OpInfo.ConstraintVT == MVT::Other)
5832      ValueVT = RegVT;
5833
5834    // Create the appropriate number of virtual registers.
5835    MachineRegisterInfo &RegInfo = MF.getRegInfo();
5836    for (; NumRegs; --NumRegs)
5837      Regs.push_back(RegInfo.createVirtualRegister(RC));
5838
5839    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5840    return;
5841  }
5842
5843  // Otherwise, we couldn't allocate enough registers for this.
5844}
5845
5846/// visitInlineAsm - Handle a call to an InlineAsm object.
5847///
5848void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
5849  const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
5850
5851  /// ConstraintOperands - Information about all of the constraints.
5852  SDISelAsmOperandInfoVector ConstraintOperands;
5853
5854  TargetLowering::AsmOperandInfoVector
5855    TargetConstraints = TLI.ParseConstraints(CS);
5856
5857  bool hasMemory = false;
5858
5859  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
5860  unsigned ResNo = 0;   // ResNo - The result number of the next output.
5861  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
5862    ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
5863    SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
5864
5865    MVT OpVT = MVT::Other;
5866
5867    // Compute the value type for each operand.
5868    switch (OpInfo.Type) {
5869    case InlineAsm::isOutput:
5870      // Indirect outputs just consume an argument.
5871      if (OpInfo.isIndirect) {
5872        OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5873        break;
5874      }
5875
5876      // The return value of the call is this value.  As such, there is no
5877      // corresponding argument.
5878      assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
5879      if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
5880        OpVT = TLI.getSimpleValueType(STy->getElementType(ResNo));
5881      } else {
5882        assert(ResNo == 0 && "Asm only has one result!");
5883        OpVT = TLI.getSimpleValueType(CS.getType());
5884      }
5885      ++ResNo;
5886      break;
5887    case InlineAsm::isInput:
5888      OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5889      break;
5890    case InlineAsm::isClobber:
5891      // Nothing to do.
5892      break;
5893    }
5894
5895    // If this is an input or an indirect output, process the call argument.
5896    // BasicBlocks are labels, currently appearing only in asm's.
5897    if (OpInfo.CallOperandVal) {
5898      if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
5899        OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
5900      } else {
5901        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
5902      }
5903
5904      OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD).
5905        getSimpleVT();
5906    }
5907
5908    OpInfo.ConstraintVT = OpVT;
5909
5910    // Indirect operand accesses access memory.
5911    if (OpInfo.isIndirect)
5912      hasMemory = true;
5913    else {
5914      for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
5915        TargetLowering::ConstraintType
5916          CType = TLI.getConstraintType(OpInfo.Codes[j]);
5917        if (CType == TargetLowering::C_Memory) {
5918          hasMemory = true;
5919          break;
5920        }
5921      }
5922    }
5923  }
5924
5925  SDValue Chain, Flag;
5926
5927  // We won't need to flush pending loads if this asm doesn't touch
5928  // memory and is nonvolatile.
5929  if (hasMemory || IA->hasSideEffects())
5930    Chain = getRoot();
5931  else
5932    Chain = DAG.getRoot();
5933
5934  // Second pass over the constraints: compute which constraint option to use
5935  // and assign registers to constraints that want a specific physreg.
5936  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5937    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5938
5939    // If this is an output operand with a matching input operand, look up the
5940    // matching input. If their types mismatch, e.g. one is an integer, the
5941    // other is floating point, or their sizes are different, flag it as an
5942    // error.
5943    if (OpInfo.hasMatchingInput()) {
5944      SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5945
5946      if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5947        std::pair<unsigned, const TargetRegisterClass*> MatchRC =
5948          TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5949                                           OpInfo.ConstraintVT);
5950        std::pair<unsigned, const TargetRegisterClass*> InputRC =
5951          TLI.getRegForInlineAsmConstraint(Input.ConstraintCode,
5952                                           Input.ConstraintVT);
5953        if ((OpInfo.ConstraintVT.isInteger() !=
5954             Input.ConstraintVT.isInteger()) ||
5955            (MatchRC.second != InputRC.second)) {
5956          report_fatal_error("Unsupported asm: input constraint"
5957                             " with a matching output constraint of"
5958                             " incompatible type!");
5959        }
5960        Input.ConstraintVT = OpInfo.ConstraintVT;
5961      }
5962    }
5963
5964    // Compute the constraint code and ConstraintType to use.
5965    TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
5966
5967    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5968        OpInfo.Type == InlineAsm::isClobber)
5969      continue;
5970
5971    // If this is a memory input, and if the operand is not indirect, do what we
5972    // need to to provide an address for the memory input.
5973    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5974        !OpInfo.isIndirect) {
5975      assert((OpInfo.isMultipleAlternative ||
5976              (OpInfo.Type == InlineAsm::isInput)) &&
5977             "Can only indirectify direct input operands!");
5978
5979      // Memory operands really want the address of the value.  If we don't have
5980      // an indirect input, put it in the constpool if we can, otherwise spill
5981      // it to a stack slot.
5982      // TODO: This isn't quite right. We need to handle these according to
5983      // the addressing mode that the constraint wants. Also, this may take
5984      // an additional register for the computation and we don't want that
5985      // either.
5986
5987      // If the operand is a float, integer, or vector constant, spill to a
5988      // constant pool entry to get its address.
5989      const Value *OpVal = OpInfo.CallOperandVal;
5990      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
5991          isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
5992        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
5993                                                 TLI.getPointerTy());
5994      } else {
5995        // Otherwise, create a stack slot and emit a store to it before the
5996        // asm.
5997        Type *Ty = OpVal->getType();
5998        uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty);
5999        unsigned Align  = TLI.getDataLayout()->getPrefTypeAlignment(Ty);
6000        MachineFunction &MF = DAG.getMachineFunction();
6001        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
6002        SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
6003        Chain = DAG.getStore(Chain, getCurSDLoc(),
6004                             OpInfo.CallOperand, StackSlot,
6005                             MachinePointerInfo::getFixedStack(SSFI),
6006                             false, false, 0);
6007        OpInfo.CallOperand = StackSlot;
6008      }
6009
6010      // There is no longer a Value* corresponding to this operand.
6011      OpInfo.CallOperandVal = 0;
6012
6013      // It is now an indirect operand.
6014      OpInfo.isIndirect = true;
6015    }
6016
6017    // If this constraint is for a specific register, allocate it before
6018    // anything else.
6019    if (OpInfo.ConstraintType == TargetLowering::C_Register)
6020      GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
6021  }
6022
6023  // Second pass - Loop over all of the operands, assigning virtual or physregs
6024  // to register class operands.
6025  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6026    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6027
6028    // C_Register operands have already been allocated, Other/Memory don't need
6029    // to be.
6030    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
6031      GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
6032  }
6033
6034  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
6035  std::vector<SDValue> AsmNodeOperands;
6036  AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
6037  AsmNodeOperands.push_back(
6038          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
6039                                      TLI.getPointerTy()));
6040
6041  // If we have a !srcloc metadata node associated with it, we want to attach
6042  // this to the ultimately generated inline asm machineinstr.  To do this, we
6043  // pass in the third operand as this (potentially null) inline asm MDNode.
6044  const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
6045  AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
6046
6047  // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
6048  // bits as operand 3.
6049  unsigned ExtraInfo = 0;
6050  if (IA->hasSideEffects())
6051    ExtraInfo |= InlineAsm::Extra_HasSideEffects;
6052  if (IA->isAlignStack())
6053    ExtraInfo |= InlineAsm::Extra_IsAlignStack;
6054  // Set the asm dialect.
6055  ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
6056
6057  // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
6058  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
6059    TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
6060
6061    // Compute the constraint code and ConstraintType to use.
6062    TLI.ComputeConstraintToUse(OpInfo, SDValue());
6063
6064    // Ideally, we would only check against memory constraints.  However, the
6065    // meaning of an other constraint can be target-specific and we can't easily
6066    // reason about it.  Therefore, be conservative and set MayLoad/MayStore
6067    // for other constriants as well.
6068    if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
6069        OpInfo.ConstraintType == TargetLowering::C_Other) {
6070      if (OpInfo.Type == InlineAsm::isInput)
6071        ExtraInfo |= InlineAsm::Extra_MayLoad;
6072      else if (OpInfo.Type == InlineAsm::isOutput)
6073        ExtraInfo |= InlineAsm::Extra_MayStore;
6074      else if (OpInfo.Type == InlineAsm::isClobber)
6075        ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
6076    }
6077  }
6078
6079  AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo,
6080                                                  TLI.getPointerTy()));
6081
6082  // Loop over all of the inputs, copying the operand values into the
6083  // appropriate registers and processing the output regs.
6084  RegsForValue RetValRegs;
6085
6086  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
6087  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
6088
6089  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6090    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6091
6092    switch (OpInfo.Type) {
6093    case InlineAsm::isOutput: {
6094      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
6095          OpInfo.ConstraintType != TargetLowering::C_Register) {
6096        // Memory output, or 'other' output (e.g. 'X' constraint).
6097        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
6098
6099        // Add information to the INLINEASM node to know about this output.
6100        unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6101        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
6102                                                        TLI.getPointerTy()));
6103        AsmNodeOperands.push_back(OpInfo.CallOperand);
6104        break;
6105      }
6106
6107      // Otherwise, this is a register or register class output.
6108
6109      // Copy the output from the appropriate register.  Find a register that
6110      // we can use.
6111      if (OpInfo.AssignedRegs.Regs.empty()) {
6112        LLVMContext &Ctx = *DAG.getContext();
6113        Ctx.emitError(CS.getInstruction(),
6114                      "couldn't allocate output register for constraint '" +
6115                           Twine(OpInfo.ConstraintCode) + "'");
6116        break;
6117      }
6118
6119      // If this is an indirect operand, store through the pointer after the
6120      // asm.
6121      if (OpInfo.isIndirect) {
6122        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
6123                                                      OpInfo.CallOperandVal));
6124      } else {
6125        // This is the result value of the call.
6126        assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6127        // Concatenate this output onto the outputs list.
6128        RetValRegs.append(OpInfo.AssignedRegs);
6129      }
6130
6131      // Add information to the INLINEASM node to know that this register is
6132      // set.
6133      OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
6134                                           InlineAsm::Kind_RegDefEarlyClobber :
6135                                               InlineAsm::Kind_RegDef,
6136                                               false,
6137                                               0,
6138                                               DAG,
6139                                               AsmNodeOperands);
6140      break;
6141    }
6142    case InlineAsm::isInput: {
6143      SDValue InOperandVal = OpInfo.CallOperand;
6144
6145      if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
6146        // If this is required to match an output register we have already set,
6147        // just use its register.
6148        unsigned OperandNo = OpInfo.getMatchedOperand();
6149
6150        // Scan until we find the definition we already emitted of this operand.
6151        // When we find it, create a RegsForValue operand.
6152        unsigned CurOp = InlineAsm::Op_FirstOperand;
6153        for (; OperandNo; --OperandNo) {
6154          // Advance to the next operand.
6155          unsigned OpFlag =
6156            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6157          assert((InlineAsm::isRegDefKind(OpFlag) ||
6158                  InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
6159                  InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
6160          CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
6161        }
6162
6163        unsigned OpFlag =
6164          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6165        if (InlineAsm::isRegDefKind(OpFlag) ||
6166            InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
6167          // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
6168          if (OpInfo.isIndirect) {
6169            // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
6170            LLVMContext &Ctx = *DAG.getContext();
6171            Ctx.emitError(CS.getInstruction(),  "inline asm not supported yet:"
6172                          " don't know how to handle tied "
6173                          "indirect register inputs");
6174            report_fatal_error("Cannot handle indirect register inputs!");
6175          }
6176
6177          RegsForValue MatchedRegs;
6178          MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
6179          MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
6180          MatchedRegs.RegVTs.push_back(RegVT);
6181          MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
6182          for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
6183               i != e; ++i) {
6184            if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT))
6185              MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC));
6186            else {
6187              LLVMContext &Ctx = *DAG.getContext();
6188              Ctx.emitError(CS.getInstruction(), "inline asm error: This value"
6189                            " type register class is not natively supported!");
6190              report_fatal_error("inline asm error: This value type register "
6191                                 "class is not natively supported!");
6192            }
6193          }
6194          // Use the produced MatchedRegs object to
6195          MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(),
6196                                    Chain, &Flag, CS.getInstruction());
6197          MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
6198                                           true, OpInfo.getMatchedOperand(),
6199                                           DAG, AsmNodeOperands);
6200          break;
6201        }
6202
6203        assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
6204        assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
6205               "Unexpected number of operands");
6206        // Add information to the INLINEASM node to know about this input.
6207        // See InlineAsm.h isUseOperandTiedToDef.
6208        OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
6209                                                    OpInfo.getMatchedOperand());
6210        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
6211                                                        TLI.getPointerTy()));
6212        AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
6213        break;
6214      }
6215
6216      // Treat indirect 'X' constraint as memory.
6217      if (OpInfo.ConstraintType == TargetLowering::C_Other &&
6218          OpInfo.isIndirect)
6219        OpInfo.ConstraintType = TargetLowering::C_Memory;
6220
6221      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
6222        std::vector<SDValue> Ops;
6223        TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
6224                                         Ops, DAG);
6225        if (Ops.empty()) {
6226          LLVMContext &Ctx = *DAG.getContext();
6227          Ctx.emitError(CS.getInstruction(),
6228                        "invalid operand for inline asm constraint '" +
6229                        Twine(OpInfo.ConstraintCode) + "'");
6230          break;
6231        }
6232
6233        // Add information to the INLINEASM node to know about this input.
6234        unsigned ResOpType =
6235          InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
6236        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6237                                                        TLI.getPointerTy()));
6238        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
6239        break;
6240      }
6241
6242      if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
6243        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
6244        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
6245               "Memory operands expect pointer values");
6246
6247        // Add information to the INLINEASM node to know about this input.
6248        unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6249        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6250                                                        TLI.getPointerTy()));
6251        AsmNodeOperands.push_back(InOperandVal);
6252        break;
6253      }
6254
6255      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
6256              OpInfo.ConstraintType == TargetLowering::C_Register) &&
6257             "Unknown constraint type!");
6258
6259      // TODO: Support this.
6260      if (OpInfo.isIndirect) {
6261        LLVMContext &Ctx = *DAG.getContext();
6262        Ctx.emitError(CS.getInstruction(),
6263                      "Don't know how to handle indirect register inputs yet "
6264                      "for constraint '" + Twine(OpInfo.ConstraintCode) + "'");
6265        break;
6266      }
6267
6268      // Copy the input into the appropriate registers.
6269      if (OpInfo.AssignedRegs.Regs.empty()) {
6270        LLVMContext &Ctx = *DAG.getContext();
6271        Ctx.emitError(CS.getInstruction(),
6272                      "couldn't allocate input reg for constraint '" +
6273                           Twine(OpInfo.ConstraintCode) + "'");
6274        break;
6275      }
6276
6277      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(),
6278                                        Chain, &Flag, CS.getInstruction());
6279
6280      OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
6281                                               DAG, AsmNodeOperands);
6282      break;
6283    }
6284    case InlineAsm::isClobber: {
6285      // Add the clobbered value to the operand list, so that the register
6286      // allocator is aware that the physreg got clobbered.
6287      if (!OpInfo.AssignedRegs.Regs.empty())
6288        OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
6289                                                 false, 0, DAG,
6290                                                 AsmNodeOperands);
6291      break;
6292    }
6293    }
6294  }
6295
6296  // Finish up input operands.  Set the input chain and add the flag last.
6297  AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
6298  if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
6299
6300  Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(),
6301                      DAG.getVTList(MVT::Other, MVT::Glue),
6302                      &AsmNodeOperands[0], AsmNodeOperands.size());
6303  Flag = Chain.getValue(1);
6304
6305  // If this asm returns a register value, copy the result from that register
6306  // and set it as the value of the call.
6307  if (!RetValRegs.Regs.empty()) {
6308    SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
6309                                             Chain, &Flag, CS.getInstruction());
6310
6311    // FIXME: Why don't we do this for inline asms with MRVs?
6312    if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
6313      EVT ResultType = TLI.getValueType(CS.getType());
6314
6315      // If any of the results of the inline asm is a vector, it may have the
6316      // wrong width/num elts.  This can happen for register classes that can
6317      // contain multiple different value types.  The preg or vreg allocated may
6318      // not have the same VT as was expected.  Convert it to the right type
6319      // with bit_convert.
6320      if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
6321        Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(),
6322                          ResultType, Val);
6323
6324      } else if (ResultType != Val.getValueType() &&
6325                 ResultType.isInteger() && Val.getValueType().isInteger()) {
6326        // If a result value was tied to an input value, the computed result may
6327        // have a wider width than the expected result.  Extract the relevant
6328        // portion.
6329        Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val);
6330      }
6331
6332      assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
6333    }
6334
6335    setValue(CS.getInstruction(), Val);
6336    // Don't need to use this as a chain in this case.
6337    if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
6338      return;
6339  }
6340
6341  std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
6342
6343  // Process indirect outputs, first output all of the flagged copies out of
6344  // physregs.
6345  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
6346    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
6347    const Value *Ptr = IndirectStoresToEmit[i].second;
6348    SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
6349                                             Chain, &Flag, IA);
6350    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
6351  }
6352
6353  // Emit the non-flagged stores from the physregs.
6354  SmallVector<SDValue, 8> OutChains;
6355  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
6356    SDValue Val = DAG.getStore(Chain, getCurSDLoc(),
6357                               StoresToEmit[i].first,
6358                               getValue(StoresToEmit[i].second),
6359                               MachinePointerInfo(StoresToEmit[i].second),
6360                               false, false, 0);
6361    OutChains.push_back(Val);
6362  }
6363
6364  if (!OutChains.empty())
6365    Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
6366                        &OutChains[0], OutChains.size());
6367
6368  DAG.setRoot(Chain);
6369}
6370
6371void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
6372  DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
6373                          MVT::Other, getRoot(),
6374                          getValue(I.getArgOperand(0)),
6375                          DAG.getSrcValue(I.getArgOperand(0))));
6376}
6377
6378void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
6379  const DataLayout &TD = *TLI.getDataLayout();
6380  SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurSDLoc(),
6381                           getRoot(), getValue(I.getOperand(0)),
6382                           DAG.getSrcValue(I.getOperand(0)),
6383                           TD.getABITypeAlignment(I.getType()));
6384  setValue(&I, V);
6385  DAG.setRoot(V.getValue(1));
6386}
6387
6388void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
6389  DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
6390                          MVT::Other, getRoot(),
6391                          getValue(I.getArgOperand(0)),
6392                          DAG.getSrcValue(I.getArgOperand(0))));
6393}
6394
6395void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
6396  DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
6397                          MVT::Other, getRoot(),
6398                          getValue(I.getArgOperand(0)),
6399                          getValue(I.getArgOperand(1)),
6400                          DAG.getSrcValue(I.getArgOperand(0)),
6401                          DAG.getSrcValue(I.getArgOperand(1))));
6402}
6403
6404/// TargetLowering::LowerCallTo - This is the default LowerCallTo
6405/// implementation, which just calls LowerCall.
6406/// FIXME: When all targets are
6407/// migrated to using LowerCall, this hook should be integrated into SDISel.
6408std::pair<SDValue, SDValue>
6409TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
6410  // Handle the incoming return values from the call.
6411  CLI.Ins.clear();
6412  SmallVector<EVT, 4> RetTys;
6413  ComputeValueVTs(*this, CLI.RetTy, RetTys);
6414  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6415    EVT VT = RetTys[I];
6416    MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
6417    unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
6418    for (unsigned i = 0; i != NumRegs; ++i) {
6419      ISD::InputArg MyFlags;
6420      MyFlags.VT = RegisterVT;
6421      MyFlags.Used = CLI.IsReturnValueUsed;
6422      if (CLI.RetSExt)
6423        MyFlags.Flags.setSExt();
6424      if (CLI.RetZExt)
6425        MyFlags.Flags.setZExt();
6426      if (CLI.IsInReg)
6427        MyFlags.Flags.setInReg();
6428      CLI.Ins.push_back(MyFlags);
6429    }
6430  }
6431
6432  // Handle all of the outgoing arguments.
6433  CLI.Outs.clear();
6434  CLI.OutVals.clear();
6435  ArgListTy &Args = CLI.Args;
6436  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
6437    SmallVector<EVT, 4> ValueVTs;
6438    ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
6439    for (unsigned Value = 0, NumValues = ValueVTs.size();
6440         Value != NumValues; ++Value) {
6441      EVT VT = ValueVTs[Value];
6442      Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
6443      SDValue Op = SDValue(Args[i].Node.getNode(),
6444                           Args[i].Node.getResNo() + Value);
6445      ISD::ArgFlagsTy Flags;
6446      unsigned OriginalAlignment =
6447        getDataLayout()->getABITypeAlignment(ArgTy);
6448
6449      if (Args[i].isZExt)
6450        Flags.setZExt();
6451      if (Args[i].isSExt)
6452        Flags.setSExt();
6453      if (Args[i].isInReg)
6454        Flags.setInReg();
6455      if (Args[i].isSRet)
6456        Flags.setSRet();
6457      if (Args[i].isByVal) {
6458        Flags.setByVal();
6459        PointerType *Ty = cast<PointerType>(Args[i].Ty);
6460        Type *ElementTy = Ty->getElementType();
6461        Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy));
6462        // For ByVal, alignment should come from FE.  BE will guess if this
6463        // info is not there but there are cases it cannot get right.
6464        unsigned FrameAlign;
6465        if (Args[i].Alignment)
6466          FrameAlign = Args[i].Alignment;
6467        else
6468          FrameAlign = getByValTypeAlignment(ElementTy);
6469        Flags.setByValAlign(FrameAlign);
6470      }
6471      if (Args[i].isNest)
6472        Flags.setNest();
6473      Flags.setOrigAlign(OriginalAlignment);
6474
6475      MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT);
6476      unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT);
6477      SmallVector<SDValue, 4> Parts(NumParts);
6478      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
6479
6480      if (Args[i].isSExt)
6481        ExtendKind = ISD::SIGN_EXTEND;
6482      else if (Args[i].isZExt)
6483        ExtendKind = ISD::ZERO_EXTEND;
6484
6485      // Conservatively only handle 'returned' on non-vectors for now
6486      if (Args[i].isReturned && !Op.getValueType().isVector()) {
6487        assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues &&
6488               "unexpected use of 'returned'");
6489        // Before passing 'returned' to the target lowering code, ensure that
6490        // either the register MVT and the actual EVT are the same size or that
6491        // the return value and argument are extended in the same way; in these
6492        // cases it's safe to pass the argument register value unchanged as the
6493        // return register value (although it's at the target's option whether
6494        // to do so)
6495        // TODO: allow code generation to take advantage of partially preserved
6496        // registers rather than clobbering the entire register when the
6497        // parameter extension method is not compatible with the return
6498        // extension method
6499        if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
6500            (ExtendKind != ISD::ANY_EXTEND &&
6501             CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt))
6502        Flags.setReturned();
6503      }
6504
6505      getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts,
6506                     PartVT, CLI.CS ? CLI.CS->getInstruction() : 0, ExtendKind);
6507
6508      for (unsigned j = 0; j != NumParts; ++j) {
6509        // if it isn't first piece, alignment must be 1
6510        ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(),
6511                               i < CLI.NumFixedArgs,
6512                               i, j*Parts[j].getValueType().getStoreSize());
6513        if (NumParts > 1 && j == 0)
6514          MyFlags.Flags.setSplit();
6515        else if (j != 0)
6516          MyFlags.Flags.setOrigAlign(1);
6517
6518        CLI.Outs.push_back(MyFlags);
6519        CLI.OutVals.push_back(Parts[j]);
6520      }
6521    }
6522  }
6523
6524  SmallVector<SDValue, 4> InVals;
6525  CLI.Chain = LowerCall(CLI, InVals);
6526
6527  // Verify that the target's LowerCall behaved as expected.
6528  assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
6529         "LowerCall didn't return a valid chain!");
6530  assert((!CLI.IsTailCall || InVals.empty()) &&
6531         "LowerCall emitted a return value for a tail call!");
6532  assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
6533         "LowerCall didn't emit the correct number of values!");
6534
6535  // For a tail call, the return value is merely live-out and there aren't
6536  // any nodes in the DAG representing it. Return a special value to
6537  // indicate that a tail call has been emitted and no more Instructions
6538  // should be processed in the current block.
6539  if (CLI.IsTailCall) {
6540    CLI.DAG.setRoot(CLI.Chain);
6541    return std::make_pair(SDValue(), SDValue());
6542  }
6543
6544  DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
6545          assert(InVals[i].getNode() &&
6546                 "LowerCall emitted a null value!");
6547          assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
6548                 "LowerCall emitted a value with the wrong type!");
6549        });
6550
6551  // Collect the legal value parts into potentially illegal values
6552  // that correspond to the original function's return values.
6553  ISD::NodeType AssertOp = ISD::DELETED_NODE;
6554  if (CLI.RetSExt)
6555    AssertOp = ISD::AssertSext;
6556  else if (CLI.RetZExt)
6557    AssertOp = ISD::AssertZext;
6558  SmallVector<SDValue, 4> ReturnValues;
6559  unsigned CurReg = 0;
6560  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6561    EVT VT = RetTys[I];
6562    MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
6563    unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
6564
6565    ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
6566                                            NumRegs, RegisterVT, VT, NULL,
6567                                            AssertOp));
6568    CurReg += NumRegs;
6569  }
6570
6571  // For a function returning void, there is no return value. We can't create
6572  // such a node, so we just return a null return value in that case. In
6573  // that case, nothing will actually look at the value.
6574  if (ReturnValues.empty())
6575    return std::make_pair(SDValue(), CLI.Chain);
6576
6577  SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
6578                                CLI.DAG.getVTList(&RetTys[0], RetTys.size()),
6579                            &ReturnValues[0], ReturnValues.size());
6580  return std::make_pair(Res, CLI.Chain);
6581}
6582
6583void TargetLowering::LowerOperationWrapper(SDNode *N,
6584                                           SmallVectorImpl<SDValue> &Results,
6585                                           SelectionDAG &DAG) const {
6586  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
6587  if (Res.getNode())
6588    Results.push_back(Res);
6589}
6590
6591SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
6592  llvm_unreachable("LowerOperation not implemented for this target!");
6593}
6594
6595void
6596SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
6597  SDValue Op = getNonRegisterValue(V);
6598  assert((Op.getOpcode() != ISD::CopyFromReg ||
6599          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
6600         "Copy from a reg to the same reg!");
6601  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
6602
6603  RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
6604  SDValue Chain = DAG.getEntryNode();
6605  RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, 0, V);
6606  PendingExports.push_back(Chain);
6607}
6608
6609#include "llvm/CodeGen/SelectionDAGISel.h"
6610
6611/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
6612/// entry block, return true.  This includes arguments used by switches, since
6613/// the switch may expand into multiple basic blocks.
6614static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
6615  // With FastISel active, we may be splitting blocks, so force creation
6616  // of virtual registers for all non-dead arguments.
6617  if (FastISel)
6618    return A->use_empty();
6619
6620  const BasicBlock *Entry = A->getParent()->begin();
6621  for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end();
6622       UI != E; ++UI) {
6623    const User *U = *UI;
6624    if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U))
6625      return false;  // Use not in entry block.
6626  }
6627  return true;
6628}
6629
6630void SelectionDAGISel::LowerArguments(const Function &F) {
6631  SelectionDAG &DAG = SDB->DAG;
6632  SDLoc dl = SDB->getCurSDLoc();
6633  const DataLayout *TD = TLI.getDataLayout();
6634  SmallVector<ISD::InputArg, 16> Ins;
6635
6636  if (!FuncInfo->CanLowerReturn) {
6637    // Put in an sret pointer parameter before all the other parameters.
6638    SmallVector<EVT, 1> ValueVTs;
6639    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6640
6641    // NOTE: Assuming that a pointer will never break down to more than one VT
6642    // or one register.
6643    ISD::ArgFlagsTy Flags;
6644    Flags.setSRet();
6645    MVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]);
6646    ISD::InputArg RetArg(Flags, RegisterVT, true, 0, 0);
6647    Ins.push_back(RetArg);
6648  }
6649
6650  // Set up the incoming argument description vector.
6651  unsigned Idx = 1;
6652  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
6653       I != E; ++I, ++Idx) {
6654    SmallVector<EVT, 4> ValueVTs;
6655    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6656    bool isArgValueUsed = !I->use_empty();
6657    for (unsigned Value = 0, NumValues = ValueVTs.size();
6658         Value != NumValues; ++Value) {
6659      EVT VT = ValueVTs[Value];
6660      Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
6661      ISD::ArgFlagsTy Flags;
6662      unsigned OriginalAlignment =
6663        TD->getABITypeAlignment(ArgTy);
6664
6665      if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
6666        Flags.setZExt();
6667      if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
6668        Flags.setSExt();
6669      if (F.getAttributes().hasAttribute(Idx, Attribute::InReg))
6670        Flags.setInReg();
6671      if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet))
6672        Flags.setSRet();
6673      if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) {
6674        Flags.setByVal();
6675        PointerType *Ty = cast<PointerType>(I->getType());
6676        Type *ElementTy = Ty->getElementType();
6677        Flags.setByValSize(TD->getTypeAllocSize(ElementTy));
6678        // For ByVal, alignment should be passed from FE.  BE will guess if
6679        // this info is not there but there are cases it cannot get right.
6680        unsigned FrameAlign;
6681        if (F.getParamAlignment(Idx))
6682          FrameAlign = F.getParamAlignment(Idx);
6683        else
6684          FrameAlign = TLI.getByValTypeAlignment(ElementTy);
6685        Flags.setByValAlign(FrameAlign);
6686      }
6687      if (F.getAttributes().hasAttribute(Idx, Attribute::Nest))
6688        Flags.setNest();
6689      Flags.setOrigAlign(OriginalAlignment);
6690
6691      MVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6692      unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6693      for (unsigned i = 0; i != NumRegs; ++i) {
6694        ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed,
6695                              Idx-1, i*RegisterVT.getStoreSize());
6696        if (NumRegs > 1 && i == 0)
6697          MyFlags.Flags.setSplit();
6698        // if it isn't first piece, alignment must be 1
6699        else if (i > 0)
6700          MyFlags.Flags.setOrigAlign(1);
6701        Ins.push_back(MyFlags);
6702      }
6703    }
6704  }
6705
6706  // Call the target to set up the argument values.
6707  SmallVector<SDValue, 8> InVals;
6708  SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
6709                                             F.isVarArg(), Ins,
6710                                             dl, DAG, InVals);
6711
6712  // Verify that the target's LowerFormalArguments behaved as expected.
6713  assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
6714         "LowerFormalArguments didn't return a valid chain!");
6715  assert(InVals.size() == Ins.size() &&
6716         "LowerFormalArguments didn't emit the correct number of values!");
6717  DEBUG({
6718      for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6719        assert(InVals[i].getNode() &&
6720               "LowerFormalArguments emitted a null value!");
6721        assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6722               "LowerFormalArguments emitted a value with the wrong type!");
6723      }
6724    });
6725
6726  // Update the DAG with the new chain value resulting from argument lowering.
6727  DAG.setRoot(NewRoot);
6728
6729  // Set up the argument values.
6730  unsigned i = 0;
6731  Idx = 1;
6732  if (!FuncInfo->CanLowerReturn) {
6733    // Create a virtual register for the sret pointer, and put in a copy
6734    // from the sret argument into it.
6735    SmallVector<EVT, 1> ValueVTs;
6736    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6737    MVT VT = ValueVTs[0].getSimpleVT();
6738    MVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6739    ISD::NodeType AssertOp = ISD::DELETED_NODE;
6740    SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
6741                                        RegVT, VT, NULL, AssertOp);
6742
6743    MachineFunction& MF = SDB->DAG.getMachineFunction();
6744    MachineRegisterInfo& RegInfo = MF.getRegInfo();
6745    unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT));
6746    FuncInfo->DemoteRegister = SRetReg;
6747    NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(),
6748                                    SRetReg, ArgValue);
6749    DAG.setRoot(NewRoot);
6750
6751    // i indexes lowered arguments.  Bump it past the hidden sret argument.
6752    // Idx indexes LLVM arguments.  Don't touch it.
6753    ++i;
6754  }
6755
6756  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
6757      ++I, ++Idx) {
6758    SmallVector<SDValue, 4> ArgValues;
6759    SmallVector<EVT, 4> ValueVTs;
6760    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6761    unsigned NumValues = ValueVTs.size();
6762
6763    // If this argument is unused then remember its value. It is used to generate
6764    // debugging information.
6765    if (I->use_empty() && NumValues) {
6766      SDB->setUnusedArgValue(I, InVals[i]);
6767
6768      // Also remember any frame index for use in FastISel.
6769      if (FrameIndexSDNode *FI =
6770          dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
6771        FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
6772    }
6773
6774    for (unsigned Val = 0; Val != NumValues; ++Val) {
6775      EVT VT = ValueVTs[Val];
6776      MVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6777      unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6778
6779      if (!I->use_empty()) {
6780        ISD::NodeType AssertOp = ISD::DELETED_NODE;
6781        if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
6782          AssertOp = ISD::AssertSext;
6783        else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
6784          AssertOp = ISD::AssertZext;
6785
6786        ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
6787                                             NumParts, PartVT, VT,
6788                                             NULL, AssertOp));
6789      }
6790
6791      i += NumParts;
6792    }
6793
6794    // We don't need to do anything else for unused arguments.
6795    if (ArgValues.empty())
6796      continue;
6797
6798    // Note down frame index.
6799    if (FrameIndexSDNode *FI =
6800        dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
6801      FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
6802
6803    SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues,
6804                                     SDB->getCurSDLoc());
6805
6806    SDB->setValue(I, Res);
6807    if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
6808      if (LoadSDNode *LNode =
6809          dyn_cast<LoadSDNode>(Res.getOperand(0).getNode()))
6810        if (FrameIndexSDNode *FI =
6811            dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
6812        FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
6813    }
6814
6815    // If this argument is live outside of the entry block, insert a copy from
6816    // wherever we got it to the vreg that other BB's will reference it as.
6817    if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
6818      // If we can, though, try to skip creating an unnecessary vreg.
6819      // FIXME: This isn't very clean... it would be nice to make this more
6820      // general.  It's also subtly incompatible with the hacks FastISel
6821      // uses with vregs.
6822      unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
6823      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
6824        FuncInfo->ValueMap[I] = Reg;
6825        continue;
6826      }
6827    }
6828    if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) {
6829      FuncInfo->InitializeRegForValue(I);
6830      SDB->CopyToExportRegsIfNeeded(I);
6831    }
6832  }
6833
6834  assert(i == InVals.size() && "Argument register count mismatch!");
6835
6836  // Finally, if the target has anything special to do, allow it to do so.
6837  // FIXME: this should insert code into the DAG!
6838  EmitFunctionEntryCode();
6839}
6840
6841/// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
6842/// ensure constants are generated when needed.  Remember the virtual registers
6843/// that need to be added to the Machine PHI nodes as input.  We cannot just
6844/// directly add them, because expansion might result in multiple MBB's for one
6845/// BB.  As such, the start of the BB might correspond to a different MBB than
6846/// the end.
6847///
6848void
6849SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
6850  const TerminatorInst *TI = LLVMBB->getTerminator();
6851
6852  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6853
6854  // Check successor nodes' PHI nodes that expect a constant to be available
6855  // from this block.
6856  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6857    const BasicBlock *SuccBB = TI->getSuccessor(succ);
6858    if (!isa<PHINode>(SuccBB->begin())) continue;
6859    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
6860
6861    // If this terminator has multiple identical successors (common for
6862    // switches), only handle each succ once.
6863    if (!SuccsHandled.insert(SuccMBB)) continue;
6864
6865    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6866
6867    // At this point we know that there is a 1-1 correspondence between LLVM PHI
6868    // nodes and Machine PHI nodes, but the incoming operands have not been
6869    // emitted yet.
6870    for (BasicBlock::const_iterator I = SuccBB->begin();
6871         const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
6872      // Ignore dead phi's.
6873      if (PN->use_empty()) continue;
6874
6875      // Skip empty types
6876      if (PN->getType()->isEmptyTy())
6877        continue;
6878
6879      unsigned Reg;
6880      const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6881
6882      if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
6883        unsigned &RegOut = ConstantsOut[C];
6884        if (RegOut == 0) {
6885          RegOut = FuncInfo.CreateRegs(C->getType());
6886          CopyValueToVirtualRegister(C, RegOut);
6887        }
6888        Reg = RegOut;
6889      } else {
6890        DenseMap<const Value *, unsigned>::iterator I =
6891          FuncInfo.ValueMap.find(PHIOp);
6892        if (I != FuncInfo.ValueMap.end())
6893          Reg = I->second;
6894        else {
6895          assert(isa<AllocaInst>(PHIOp) &&
6896                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
6897                 "Didn't codegen value into a register!??");
6898          Reg = FuncInfo.CreateRegs(PHIOp->getType());
6899          CopyValueToVirtualRegister(PHIOp, Reg);
6900        }
6901      }
6902
6903      // Remember that this register needs to added to the machine PHI node as
6904      // the input for this MBB.
6905      SmallVector<EVT, 4> ValueVTs;
6906      ComputeValueVTs(TLI, PN->getType(), ValueVTs);
6907      for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
6908        EVT VT = ValueVTs[vti];
6909        unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
6910        for (unsigned i = 0, e = NumRegisters; i != e; ++i)
6911          FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
6912        Reg += NumRegisters;
6913      }
6914    }
6915  }
6916  ConstantsOut.clear();
6917}
6918